

 MACHINE CODE ASSEMBER

 ASTRON

Astron is a Z80 Assembler with many unique features, user friendly for the beginner yet
having the power and versatility required by the advanced programmer. Both versions feature
a toolkit utility which, after a short time, you will wonder how you managed without!

LOADING

Load"" The program is in two parts and will auto-run giving a Menu. RUN will always give
the Menu and also incidentally set all Border, Paper and Ink colours to "normal". Ramtop will
be 55972 (16K 27390) but you can of course CLEAR lower to protect Object Code.

ENTERING SOURCE CODE

Source code as standard Zilog mnemonics is entered into REM statements. Multi statement
lines use semi-colons as separators. Numbers can be written as decimal or hex (hex preceded
by &). Relative jumps can be + or - but index displacements must always be positive.

LABELS

Labels are substitutes for any numeric value 0-65535. Examination of the sample program
will reveal their usefulness in saving tedious calculation and making source code easy to
modify and understand. Most labels represent an address and are assigned by writing the label
into the code. Other values can be assigned to a label using 'equate', e.g. equ 16384 DFILE.
Throughout the program any reference to DFILE will be substituted with 16384 e.g. 1d h1,
DFILE.

Apart from the first character, which must be a capital letter, labels can be a mix of characters
and any length. Small and capital letters are not distinguished between e.g. LABEL and Label
are identical but LABELS LABS LAB1 LAB3 are all unique.

ASTRON used two types of label, temporary and permanent. Those described so far are
temporary and at each assembly are erased and reassigned to their old or to new values.
Permanent labels of which there are 26 will always consist of a per cent sign followed by a
capital letter e.g. %A, %B and are designed specifically to deal with amalgamating sections of
code assembled separately (see below).

PSEUDO OP-CODES

These non Zilog codes are designed as programming aids.

"Start" and "end" must be placed in REM statements as the first and last codes of your
program so that the assembler knows its operational limits.

"Org" (shortened ORIGIN) must follow "Start" on the next line and be followed by the first
address of the object code. "Org" can be used more than once in a program to assemble code
into different parts of memory.

Sometimes you may wish your code to occupy a space in memory which during assembly is
already used e.g. by your source code or ASTRON. If for instance you want your code to run
at 24000 you have to do it in two stages using a special org instruction consisting of the
assembly address (say 40000) followed by a comma and then the RUN address i.e. Org
40000,24000. Code will now be assembled at 40000 but will crash if you run it there. It must
then be transferred to 24000 in order to run correctly either by saving to cassette and loading
to 24000, or using a few lines of Basic transfer program.

"datab" (data byte) is used to insert one or more bytes (0-255) into the code. Leave spaces
only between the numbers e.g. Datab 80 81 36 0 254.

"dataw" (data word) is used exactly as Datab but each two-byte number (0-65535) takes two
bytes of code e.g. dataw 0 4 256 3473 65535 will code as 0,0,4,0,0,1,145,13,255,255.

"defm" (define message) can be followed by a string of any length, which will be converted
into its ASC11 code, e.g. Defm Words will code as 87,111,114,100,115. Colour control
characters may be included.

"defs" (define space) will reserve the number of bytes specified by skipping over them during
assembly, and is useful for reserving space for program generated data.

All data input can, of course, be labelled e.g. M1; defm. This is a message; SPACE; defs 20.

COMMENTS

Any string preceded by an apostrophe (CHR$ 39) is a comment for in-program
documentation and will be listed but otherwise ignored by the assembler. They can be any
length and contain colour control characters but must not, for obvious reasons, include a semi-
colon except to terminate.

ASSEMBLY

To assemble your program RUN for Menu and press A. Assembly is in two passes. The
screen will be blank during the first pass and a display of addresses, codes and your programs
will be given on the second pass.

Error messages will be given for incorrect syntax, oversize relative jumps, duplications of
labels etc., during either pass and assembly will stop.

During the second pass a number of options are available, obtained by pressing the following
keys:
Q - will switch off the screen display increasing assembly speed appreciably.
W - restores the screen display.
I - will give continuous scrolling.

U - will restore normal scroll.
P - sends the output to the printer.
O - restores screen display from the printer.
Assembly may be stopped at any time with the SPACE key.

SHORTAGE OF SPACE

If you run short of space the following remedies are available:
(1) If a small space is required you could:
 (a) Delete comments.
 (b) Use the toolkit to remove spaces in all 1d inc dec add sub call instructions. They
 will still assemble correctly.
 (c) Overwrite the Editor/Toolkit code (48K only) but, of course, don't try to use it!

If a much larges space is required you will have to write your program in two or more
sections. The problem is that any reference made to addresses in Part 1, must be known to the
assembler while assembling Part 2.

PROCEED AS FOLLOWS

1. While writing Part 1 use P/Labels for any addresses or subroutines needed by Part 2.
2. Use the Menu to save source code mnemonics etc. (Option 5). Also, of course, save your
 assembled object code.
3. (48K) Use the Toolkit to delete all Part 1 source code. You're now ready to write Part 2 of
 your program. P/Labels are still safe in Line 1.
3. (16K) In addition to saving your program, save the P/Labels separately (Option P). Now
 load the first program on tape (the Menu Basic) which will destroy Part 1. Then load the
 P/Labels (LOAD "" CODE) and you're ready to write Part 2.

If while writing Part 2 you wish to back to Part 1 to make alterations this can easily be done
(save Part 2 first!) provided you save P/Labels and then transfer them into Part 2.

If you run out of P/Labels you should note the addresses of any cross reference labels in Part
1 and use "equate" in Part 2 so that the assembler is informed of the addresses of such labels
during its Part 2 assembly. e.g. equ 25763 RAND placed once anywhere in Part 2 will enable
use of the label RAND to refer to the subroutine RAND in Part 1.

EXAMPLE PROGRAM

 100 REM start
 102 REM org 40000
 104 REM 'A silly program
 106 REM 'labelled %S
 108 REM LENG ; nop
 110 REM equ &4000 DFILE
 112 REM MESSAGE; datab 13 13 13; defm Hello there
 114 REM %S ; call LENGTH
 116 REM ld hl , DFILE; ld a , (LENG) , ld b , a
 118 REM LOOP ; push bc
 120 REM ld a , (hl) ; call PRINT
 122 REM 'PRINT is an established subroutine
 124 REM pop bc ; d inz LOOP
 126 REM ret

 128 REM LENGTH; ld a , LEN; ld (LENG) , a ; ret
 130 REM equ 38478 PRINT
 132 REM equ 14 LEN
 134 REM end

16K VERSION ONLY

There is insufficient room in memory for the Assembler and Toolkit together. Only the Basic,
followed by the Assembler will load. The Toolkit, which follows next on the tape is designed
to directly overwrite and replace the Assembler if and when needed, using Option L of the
Menu. After using Toolkit, the Assembler can be reloaded in the same way. Even so, space is
at a premium and the following hints will aid its efficient use.

1. Multi statement lines are more economical than a statement per line.
2. Use P/Labels or keep your labels as brief as possible.
3. Use the print buffer for object code.
4. Omit spaces in source code but be careful of ambiguity. (cpl is not cp l)!

48K VERSION ONLY

These additional options are provided on the Menu:
8 - 8-Bit Peek lists addresses and their contents from an input address.
6 - 16-Bit Peek gives the 16-Bit contents of two consecutive addresses.
P - 16-Bit Poke enables you to poke a word into two consecutive addresses.
V - View labels gives an 'independent' list of normal labels and their addresses. Lines of
 question marks or 'garbage' which follow gives an indication of how much space is
 left for labels. This option is especially useful when assembling in mode Q (no
 screen output).

TOOLKIT

The more program you write, especially with the 48K version, the more useful you will find
the Toolkit in organising your program. H for HELP is the key for both the Basic Menu
selection and the Toolkit Menu. The space key or STOP as input will take you out of Toolkit.

KEY

A ALTER - searches for and then replaces a string of characters. You specify both
 the original and the new string, and the range of line numbers where
 the changes are to be made. See also VERIFY below.
B BYTES - tells you how much free memory space is available for your program.
C COPY - duplicates lines of your program. You specify the range of lines to be
 copied and where they are to be placed.
D DELETE - deletes a block of lines from your program. You specify the range of
 lines to be deleted.
F FIND - finds a string of characters. All lines containing the specified string are
 listed to the screen.
H HELP - gives a menu of the options available along with a brief description of
 the Function.
M MOVE - ask for COPY, except that the original lines are DELETED thus
 effectively moving lines from one part of your program to another.
R RENUMBER - renumbers lines of program from and to input line numbers. Note that
 this option is not suitable for Basic as GOTO's etc are not catered for.

 S SEQUENCE - gives auto line number complete with REMs specifically designed for
 source code entry. To exit from this mode delete the line number and
 REM and then input STOP.
V VERIFY - When ON, will list all lines containing the string replaced by ALTER.
 When OFF, no listing is produced, just the total number of changes
 made in confirmation of successful amendments or otherwise.

 NOTES

