Fl FTH

USER' S MANUAL

BY

Rl CHARD TAYLOR

CRL

Therewere alot of printing errorsin this manual, particularly in the coding examples. | think I've corrected
most of them, and I've checked that al the routinesin this transcription work. JimG

LINTRODUCTI ON TO VAL N | NSTRUCTI ONS

For a long tinme now there has been the need for a BASIC
extension to inprove its graphics capabilities. G aphics
seemto have becone the nost inportant feature of any mcro-
conmputer. The Spectrumis no exception but fortunately has

a quite reasonabl e graphic power. Its major short-comng

is the fact that you can only have a naxi num of two col ours
in a single character square. This problemcan, however, be
mai nly solved by careful screen |ayout.

When you think about it there are few BASIC commands which
actual ly affect the content of the screen: CLS, PRI NI, PLOT,
DRAWand CIRCLE. These can only directly nake static displays
To produce a noving display is very conplicated. By careful use
of the PRINT conmand you can get sone sort of "junpy" novement.
When you want to nove nore than about two objects at once then
things get really conplicated and even a very experi enced BASI C
progranmer would find it extrenely difficult to produce the
convi ncing graphics. There is a |least tendency to return to the
sophi stication of the early ZX81 BASI C ganes where in an
aircraft carrier bonmbing game, for instance, the plane woul d
stop dead in md-air while the bonb would slowy, junpily, nove
downwards. Since the pioneering days of the ZX80 nachi ne
graphi cs have inproved dramatically. The BASIC, however, has
not. It still contains the sone old snattering of vague BASIC
graphi c statenents.

"FI FTH' hel ps to bring BASIC back into "line" with the graphic
power of today's machines. "FIFTH', although it does other
things as well, is mainly designed to allow you to produce BASIC
games with rmuch the sonme effect as nachi ne code ones. "FIFTH'

al so saves conputer menory since operations that woul d have
previously taken many |ines of BASIC programm ng can be
condensed into a small selection of the 25 "FI FTH' conmmands.

"FI FTH' makes it so easy to get graphics nmoving around the
screen that it makes it inviting to do so; encouraging you to
wite effective prograns.

"FI FTH' graphics are incredibly smooth, the objects literally
float across the screen naking it a pleasure to watch them You
are also not linited to a few objects but as nany as you |ike
within reason. "FIFTH' is not a |l anguage on its own but
augrnents the already resident BASIC. You can nake the two

| anguages comuni cate with each other with the m ni mum of fuss

You might think that the sl ow speed of BASIC would limt the
performance of "FIFTH' but this is not so. One of the advantages
of "FIFTH' is that the graphics are independent of the program
this does not nean you have difficult in controlling them but
relieves you fromthe fuss of updating screen positions and
erasing characters etc. This method is nmuch faster than normal
BASI C novenent since the erasing, updating and re-printing
routines are well witten in ultra-fast nachine code. To get a
"FI FTH' object to nove around the screen all you have to do is
give the conputer certain information about its direction and
speed etc. "FIFTH' can then get on with the job of actually
noving the object. It will keep noving it in the specified
direction and speed until it goes off the edge of the screen or
it hits sonething else. This is where another powerful feature
of "FIFTH' cones in; a sort of "parallel" BASIC

Paral l el BASI C means that you have two independent prograns
running at the sone tinme. "FIFTH' can't do that exactly since
only one programcan actually be running at once but appears to
al rost do so. What happens is that if, say, an object went off
the edge of the screen then sonething called a service routine
woul d be called. This is a short routine witten in BASIC, which
is supplied with the necessary information, (what went off the
screen and in which direction) and has to do sonet hi ng
appropriate. In nost cases this would nmean pointing the object
the opposite way to what went off the screen and sending it on
its merry way again, until it goes off the edge of the screen
again or "hits" something else onits way. Aroutine to handle a
collision between two objects, or "interacts" as they are
called, is witten in a simlar way. In this case you woul d have
to send each of the objects involved in the collision in
opposite directions to avoid further ones. The advantage of this
is that the service routine is called autonatically, without any
speci al pronpting

fromthe rest of the program |In fact, the rest of the
programwon't even know that it has been interrupted. This
neans that the "main-1ap" of the programcan be entirely
unconnected with the objects noving on the screen. This |ack
of dependence on BASI C (except for the service routines and
parts of the nmain loop) really means that the speed of BASIC
is of less inmportance than usual. The novi ng graphics slow
down BASIC quite a lot, depending on the amount of objects
noving on the screen at that tine. It still takes much | ess
time, however, accessing each noving object individually
like the nornmal way BASI C woul d produce novenent.

As wel | as providing noving graphics, "FIFTH' also vastly
improves the Spectrum s sound. The BEEP conmand does not produce
anything like the zaps and bangs you woul d probably require in a
ganme. The sound effects "FIFTH' provides are very useful for
this purpose. "FIFTH' al so has comnmands to rapidly change the
on-screen colours and to print in larger than normal characters.

That conpletes this introduction to "FIFTH'. | hope that it
has given you an insight into the basic way "FI FTH' operates.
Renmenber, you cannot wite a programin just "FIFTH', it is an
enl argenent and extension to BASIC.

Printed by CLEARAPRI NT

01-274 2527/ 0872
© Conputer Rentals Ltd.

Version 1.24 by Richard M Tayl or, 1983

The ZX Spectrumis certainly a form dable and very powerful
machi ne. The dialect of BASICthat it uses, Sinclair BASIC, is
well blessed with a variety of useful extraneous commands. Like
nost other makes of machine it is used to a |large extent for

pl ayi ng ganes on. Unfortunately, BASICis not really designed
for witing fast nmoving graphic games, This is especially true
of Sinclair BASIC which | acks the speed of nany other dial ects.
There is a conpl ete absence of commands for noving characters,
and | arger bl ocks, around the screen with both smoot hness and
speed. The usual renedy for this problemhas been witing ganes
in machine code. This can certainly produce amazing effects but
tends to be out of reach for the najority of users. Few people
are willing to take the time and trouble of |earning the whole
new | anguage of the machi ne code. "FIFTH' renedies these short-
comngs to a large extent by providing a large quantity of
power ful, useful graphics commands. "FIFTH' is an extension to
BASIC so there is only a snall anmpunt of learning to do if you
al ready know BASIC - which | suggest you should, if you wish to
use this programto its full potential.

Witten entirely in nmachine code for the 48K version, "FIFTH'
resi des above RAMIOP. It occupi es a shade over 4K or 4338 bytes
to be precise. To LOAD use: CLEAR 61029: LOAD "" CODE

61030 65365 65535
BA3SIC AREA - 3EE F.1l65 P TFTH™ T3EFR. DEFINAELE
0F THE SINCLAIF. MANUAL GRAPHICH

FIG1 - "FIFTH s" Position in the Menory Map

Many of the "FIFTH' commands have to be cross-referenced

wi th one another. References sonetinmes have to be made with
commands not di scussed at that particular point. For this
reason, you may not be able to understand nmany things on the
first reading of this manual but as you unconsciously inter-
connect everything, your understanding shoul d i ncrease.

Exanpl es are scattered liberally throughout this manual. They
shoul d be entered exactly as listed with the "FIFTH' tool box
program | oaded. After running, if they do not stop automatically
you shoul d use BREAK. Type NEWto be sure of clearing

the BASI C area before typing in the next exanple routine. You
will not need to re-load the "FIFTH' programsince it resides
above RAMIOP and is not affected by NEW

The commands are put into REM statements in the BASIC program
Every program whi ch uses "FI FTH' nust start with the fol |l ow ng
l'ines: -

10 RANDOM ZE 1000
20 RANDOM ZE USR 61030

The 1000 in line 10 tells "FIFTH' how much menory to reserve for
the object data; this nay vary fromprogramto program This is
fully described under the OBJECT comrand. Line 20 calls the nmain
body of the actual "FIFTH' program Although it is usual to have
these two lines at the begi nning of the program this is not
always so. In fact, it nust be at the main entry point of the
program which is better at the end rather than the beginning of
a program

After executing line 20 the interpreter carries on as nornal
(the interpreter is a larger routine in the Spectrums 16K ROM
whi ch actually executes BASIC prograns). There is, however, one
exception; when the interpreter finds a REM Statenent it treats
it inadifferent way.. Normally a REM conmand woul d be

conpl etely ignored and the interpreter would go straight onto
the next Iine.

However, the REM statenent nay now contain "FlI FTH' commands

so the interpreter acts accordingly. The first thing it does
istolook at the first character; if this is an asterisk then
it treats the REMas it would have normally. If it is not an
asterisk then the interpreter can be sure that the REM contains
"FI FTH' commands.

1000 REM* THI S | S A COMMENT
Comment |ines can be put in as
normal if you include an asterisk

Li ke nornmal BASIC statenents you can have nul tiple commands on
one line but instead of being separated by colons they are
separated by the rather negl ected back-slash (back-slash is
synbol shifted Din E node). The paraneters of "FIFTH' comrands
are separated by commas, as with the parameters of nornal BASIC
statenments. Every BASIC command has its own token on the key-
board but "FIFTH' conmands obvi ously do not have their own
tokens. YOU HAVE TO SPELL THEM OUT YOURSELF, | NCORPORATI NG A
TRAILING SPACE. It's up to you whether you use upper or |ower
case to do this. You can even change the case in the mddl e of
command words eg: -

1000 REM TeMps\ | ARge
is just as legal as:-
1000 REM tenps\ | arge
or

1000 REM TEMPS\ LARGE

You can vary the case of the paraneters in much the same way
(the above two comrands do not have any paraneters - or
argunents as they are nore usually called). Personally, | think
it is a good idea to type the commands in upper case and the
paraneters in | ower case. This makes the |listing nore readabl e
as well as nmeking it | ook neater, You can just as freely
incorporate control characters in "FIFTH' REM statenments - see
page 114 of the Sinclair Progranm ng manual

If the command you give is wongly spelt or does not make
sense for sone reason then the conputer will helpfully respond
with error "Q Paraneter error". This is usually used for the
FN function. Since this is not utilised much in games witing,
error Qvery rarely occurs. Therefore error Q now takes on a
second neani ng of a syntax error in a "FIFTH' command. Error Q
is also produced if a function name is incorrectly spelt.

Error "A Invalid argument” can occur if the argunments of a

"FI FTH' command do not make sense. For nore details see the
section under the "FIFTH' functions. Qther errors can occur but
these are unique to each "FI FTH' command. They are fully

expl ai ned under each command description. There is one other
peculiarity of programming in "FIFTH'. Nornally, when a program
is conpleted or a junp is made to a |ine nunber bigger than
existing then "OK'" will be the conputer's response. However, in
"FIFTH' OK is substituted for error "8 End of file". This report
was originally designed for the elusive Sinclair Mcrodrive but
has been put to this use in "FIFTH'. The reason for using error
8 instead of error O is rather technical, so | will not go into
it.

10 RANDOM ZE 1000
20 RANDOM ZE USR 61030

If you RUNthis, notice howit stops
with error 8.

There now fol l ows a detail ed description of each of the 25
"FI FTH' conmmands: -

TEMPS

This command nerely sets up colours for succeeding "Fl FTH'
comrands. You will remenber that there are two ways of using the
BASI C col our statenents, either universally as statenents on
their own or in graphic conmmands to specify tenporary col ours.
This "FI FTH' command nekes the tenporary col ours the same as the
uni versal ones. It also transfers the state of | NVERSE and OVER
whi ch can al so be set up tenporarily. This is because sone

"FI FTH' commrands require "dummy” PRI NT statenents precedi ng

t hem such as: -
100 PRINT I NK 6; PAPER 1; FLASH I;

This does not print anything but changes the tenporary col ours.
If, however, you just wanted to use the universal colours then
precede the "FI FTH' command with TEMPS. Conmmands whi ch may use
TEMPS ar e:

a) LARGE

b) FILL

c) REPLACE
d) COLOUR
e) PUT

Exanpl es: -

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030
30 PAPER 5

40 REM TEMPS\ FI LL

50 PAPER 7

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030
30 PRINT PAPER 5

40 REM FI LL

Both of these routines use the FILL comrand, which is described
next. They both do a simlar job in nmaking the background cyan.
Notice how TEMPS is used in the first exanple.

FILL

This command is used to change the screen col ours without
actually affecting the screen display. It is an annoying feature
of Sinclair BASIC that you have to clear the screen, using CLS,
bef ore new uni versal colours are shown. This comrand renedi es

t he probl em

The col our you want to change the screen to is put into a
dummy PRI NT statenent preceding the FILL command. e.g:

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 PRINT "This is a denonstration of the
FI LL command"

40 PRI NT PAPER RND*7; |INK 9;

50 REM FI LL

60 GO TO 40

This programcontains a lot of suitable points. It constantly
changes the background col our always keeping the | NK col our
contrasted with it. Page 111 of the Sinclair BASIC Progranmm ng
manual gives informati on about the use of colours 8 & 9 in
PRI NT statements. You can also use 8 & 9 in FILL conmmands; their
use i s expl ai ned bel ow -
"COLOUR' 8 - This leaves the appropriate type of colour (INK
PAPER, FLASH or BRIGHT) as it was previously.
"COLOUR' 9 - This can be used with either INK or PAPER |t
makes one contrast with the other, in nuch the same way as in
normal PRI NT statenents, e.g.

100 PRI NT PAPER 8; INK 9;
Wien used in front of a FILL command, this nmakes sure that all
INK on the screen is in contrast with the PAPER which is not
changed.

Exanpl es: -

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 FOR a=0 TO 255

40 PLOT a, 0

50 DRAW OVER 1; 255-2*a, 175
60 NEXT a

70 FOR a=0 TO 175

80 PLOT 0, a

90 DRAW OVER 1; 255, 175- 2*a
100 NEXT a

110 PAUSE 50

120 PRINT PAPER RND*7; INK 9;
130 REM FI LL

140 O TO 110

This programdraws a "noire" pattern and then proceeds to change
its colour once every second. The INK 9 in the line 120 ensures
that the INK is never the same as the PAPER col our; i.e making
the pattern invisible. You can of course use the TEMPS comrand
instead of the dummy PRINT statenment if the need arises; e.g.

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 REM TEMPS\ FI LL
woul d make sure that the screen colours are the sane as the
uni ver sal ones.

REPLACE

The replace conmand is very simlar to the FILL one except that
it is nore selective in the on-screen colours that it changes.
It will only change a colour if it is another, specified, one.
You have to specify two colours so the conmand uses both the
uni versal and tenporary colours. The tenporary colour is the one
to be searched for and the universal colour is the one which
will replace it. For instance:-

100 PRINT I NK 1; PAPER 6;

110 REM REPLACE
If incorporated into a programthis would change every
occurrence of blue ink on yellow paper to the current universal
colour. "Colours" 8 & 9 as universal colours have their nornmnal
neaning, but 8 & 9 as tenporary colours are interpreted slightly
differently. Details bel ow -
Col our 8 - The appropriate colour type is ignored and so has no
inportance in the search; i.e.

100 PRI NT PAPER 8, INK 2;
If this was put before a REPLACE command then any attribute with
red INK (PAPER is not inportant) would be set to the current
uni versal col our.
Colour 9 - This has no inportance or use in a REPLACE command.
The TEMPS commands coul d be used but woul d not be of nuch use.

Can you see why? Any attribute that was al ready the universal
woul d be repl aced by the universal colour - not very useful.

Exanpl es: -
10 RANDOM ZE 1000
20 RANDOM ZE USR 61030
30 FOR a=0 TO 703
40 PRINT INK RND*7;"*"; REM* An inverse space
50 NEXT a
60 PAUSE 0
70 PRINT I NK RND*7;
80 REM REPLACE
90 GO TO 60

This fills the screen with col oured bl ocks and every tinme you
press a key, all blocks in a particular colour are changed to
bl ack. Press BREAK to escape fromthe program

LARGE

This allows you to print larger than nornal characters, or
strings of characters, on the screen. Like the other comrands

di scussed so far it has no paranmeters and needs a dummy PRI NT
statenent before it. What is printed is determned by the state
of 5 BASIC variables - x, y, t, w, and a$. The variables x and y
deternmine where the top left-hand corner of the printout is to
be. Unlike nornal printing these are high resolution co-
ordinates. x can be 0 to 255 inclusive and y can be 0 to 175

i nclusive. Wien using normal BASIC high resolution statenents
the y co-ordinate starts fromthe bottom- (0,0) being the
bottom | eft-hand corner of the screen. In contrast H-res

"FI FTH' commands have the y co-ordinate starting fromthe top so
(0,0) is the top left-hand corner of the screen. The variables t
and w determ ne the size of the characters to be printed. The
height is given in the variable t which should contain a nunber
between 1 & 22. The width is given in the variable w which

shoul d contain a nunber between 1 & 32.

Here are some useful val ues:-

a) t=1, w=2 - double width

b) t=2, w=1l - doubl e hei ght

c) t=2, w=2 - double size

d) t=22, w=32 - A size at which a single character fills
t he whol e screen.

If the value given in x, y, t or wis non-integer then it

is rounded to the nearest integer. If this is out of range

then error Bwll be given. a$ holds the string of characters
to be printed. This can be of any length including zero
characters (a "null" string). The string, however, should not
contain any control characters. If you do then the conputer will
show its displeasure by replying with error "Alnvalid

Argunent ".

e.g.-

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a$="FI FTH'

40 LET x=0: LET y=0: LET t=22: LET w=6
50 REM TEMPS\ LARGE

This exanple programw |l print "FIFTH' in | arge enough letters
to cover the whole screen. Notice how the TEMPS command i s used
inline 50. If you precede the LARGE command with a dummy PRI NT
statenment to set up tenporary colours itens then the |arge
characters will be printed in the specified colours. The routine
works by using part of the plot command routine, in the 16K ROM
to print the characters. Please note that the plot position is
not changed by this comand.

Exanpl es: -
10 RANDOM ZE 1000
20 RANDOM ZE USR 61030
30 LET x=0: LET y=0
40 LET t=1: LET w=2
50 LET a$="Doubl e w dth"
60 REM TEMPS\ LARGE
70 LET y=50: LET t=2: LET w1
80 LET a$="This is double height"
90 REM TEMPS\ LARGE
100 LET y=100: LET w=2
110 LET a$="Doubl e si ze"
120 REM TEMPS\ LARGE
This will print in the three nost used types of |large text.

N.B. If any of the five variables are not defined then error
"2 Variable not found" will result.

10.

SOUND

This is the conmand that produces those anazing sound effects
you may [have] heard in the denonstration program The BASIC
BEEP command is very limted in the sounds that it can produce
The SOUND conmand "fills in" the enornmous sound naki ng gap
Unl i ke the commands so far described, Sound does need paraneters
(4 in all) to describe what sound to nake but it does not need a
precedi ng dunmy PRI NT statement. You can give paranmeters in two
ways:
a)yAs a "FIFTH' function (see the section on "FIFTH" functions).
This is the | east used way.
b) As a single letter variable. The variable nust however be
nunmeri c and nust not be a subscripted variable. If the
variable is not defined then error "2 Variable not found" will
be produced. You are not allowed to do any nathematics in a
"FI FTH' REM statenent; i.e. addition or subtraction

100 REM SQUND a, b, c,d

This is the usual format for a SOUND command; each of the

vari abl es describe a different property of the sound:

VARI ABLE a - THE REPEAT VALUE. It describes how nany tinmes a
sound of length b and tone ¢ should be produced and the current
tone (initially c¢) should be added to d (the step) and the sound
repeated before the particular sound statenent has been
finished.

VARI ABLE b - The SOUND LENGTH. This describes the I ength of each
conmponent noi se of the whol e SOUND conmmand.

VARI ABLE ¢ - THE SOUND TONE. This describes the starting pitch
of the sound comrand. This has the variable d added to it after
every repeat to find the new pitch (The NO of repeats is
deternmined by the a variable).

VARI ABLE d - THE STEP VALUE. This is the value that is added to
the last tone after every repeat to find the new tone; e.g.

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=10: LET b=5: LET ¢=200: LET d=150:
REM SCUND a, b, c, d

This produces a "phasor" |ike sound. The graph bel ow shows how
t he phasor noise is made up

11.
QG aph. FIG2. - Acloser |ook at the phasor noise.

2000 |
15007
1000

TONE 500 —
0

0 & 100 18 2o z5' 30! 350 a0 45! 500 LHE

As you can see, the phasor noise is actually made up of very
short BEEPs, each one being slightly higher than the previous
one. Now change the LET b=5 in line 30 to LET b=100. Wen you
RUN t he program now you can distinctly hear each individua
tone. You may want the sound to decrease in pitch rather than
increase. This is achieved by nmaking d a nunber between about
65000 and 65535. This is because after adding d to the current
tone it is taken to MOD 65536 (this means it divides by 65536
and takes the renmi nder, NOT the answer). Another way of | ooking
at this is that if the nunber is bigger than 65535 then it
subtracts 65536 fromit. In other words, 65536 is the same as O
For good sounds the variables should be within the ranges

bel ow. -

Variable A - Between 1 & 50 but this really depends on the sound
length given in b. Al the other nunbers can have a range of 0
to 65535 inclusive except this one which nust be 1 to 255

i ncl usi ve.

Variable B - Between 3 and 100

Variable C - Between 0 and 2000 if going up or between 2000 and
5000 i f goi ng down.

Variable D - Between 1 and 500 if going up or between 65000 and
65535 i f goi ng down.

Unli ke during a normal BEEP statement, the SOUND comrand checks
t he BREAK key whil e producing the sound

Exanpl es: -
10 RANDOM ZE 1000
20 RANDOM ZE USR 61030
30 LET a=RND*20+3
40 LET b=RND*10+3
50 LET c=RND*1000
60 LET d=RND*200+50
70 | F RND>. 5 THEN LET c=RND*1000+4000
LET d=RND*50+65400
80 FOR e=1 TO 3- RND*10
90 REM SOUND a, b, c, d,

12.

100 NEXT e

110 GO TO 30
Press BREAK to escape fromthis program It makes random sound
effects.
N. B. Al though the variables a, b, ¢ and d have been referred to
t hroughout this description you do not have to use them w, X, y
and z coul d have been used just as easily. You can even use the
sane variable twice or even nore tinmes in a single SOUND
comnmand; e.g.

100 REM SQUND e, a, e,z is perfectly |egal

€3}

GET and PUT (described next) are used together. They are very
power ful comrands. They allow you to put part of the screen
display into a BASIC string variable using the GET command and
then PUT the information back onto the screen. GET has five
paraneters, 4 to tell it fromwhich part of the screen to get
the data fromand 1 to tell it in which BASIC string the data
should be stored. It is used in the form-

100 REM CET a, b, c, d, a$

a and ¢ nust be 0 to 21 inclusive and b and d 0 to 31 inclusive
As you can see CGET uses PRI NT positions, not high resolution co-
ordi nates. The reason for this is sinple; the attributes (which
are al so saved by GET) are stored in character positions so it
woul d be difficult to save the colours if GET was a high

resol uti on command. The data which is stored is always in a
rectangle, (a,b) being the top left-hand corner and (c,d) being
the bottomright hand corner of the rectangle. In order for this
to work properly ¢ nmust be greater than or equal to a and d nust
be greater than or equal to b - otherw se you woul d have a
rather strange rectangle, the right-hand side being nore |eft
than the left-hand side or the top being bel ow the bottom
Fortunately, if co-ordinates do not nake sense then error "B
Integer out of range" will be produced

la,b)

(Line Mumber, Column
AFEA SAVED Number)

fc,d)
FIG 3 - How the CET co-ordinates are arranged

13.

The last paraneter tells GET where to store the data. This
should be a string froma$ to z$. If there was already a
variable called a$ etc. then it is deleted and replaced by the
new version. You cannot slice a string or use a subscripted
string array; i.e.

100 REM CET a, b, c,d,c$(2 TO 20) is not all owed.

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=0: LET b=0: LET c=21: LET d=0
40 REM GET a, b, c, d, x$

This puts the screen data in the left-nmost col um of the screen
in the variable x$. The only way to replace the data is to use
the PUT command as the data is stored in a special format. Error
"2 Variable not found" occurs if one or nore of the first four
paraneter variables are not defined.

Exanpl es: -
10 RANDOM ZE 1000
20 RANDOM ZE USR 61030
30 LET a=0: LET b=0: LET c=21: LET d=31
40 LET x=0: LET y=0: LET t=22: LET w=10:
LET a$="GET"
50 REM TEMPS\ LARGE\ GET a, b, c, d, a$
60 FOR a=0 TO 31
70 REM TEMPS\ PUT b, a, a$
80 LET b=b+0. 6875
90 PAUSE 50
100 CLS: NEXT a

This draws "CGET" in large letters across the screen and then
proceeds to nove it in a "south-easterly" direction. The PUT
comrand (which is described next) is used in this exanple
program

PUT
This command, which is used in conjunction with GET, allows you
to put data froma string back onto the screen after it has been
collected by GET. It has 3 paraneters; the first two tell it
where to put the data on the screen and the third one tells it
in which string the data to be used is. Unlike GET, this command
nust be preceded by a dummy PRINT statenent or a TEMPS command.
PUT is used in the form -

14.

100 REM PUT x, vy, a$

X must be in the range of 0 to 21 and is the |line nunber. y, on
the other hand, must be in the range of 0 to 31 as it is a
colum nunber. If you do not keep the nunbers within these
ranges then the computer will showits ingratitude by responding
with error "B Integer out of range". The string variabl e nust
have been previously defined in a GET command. If no such sinple
string exists or it was not defined in a GET command (the
comput er has ways of telling whether it was or not) then error
"2 Variable not found" will be produced. Under nornal

ci rcunst ances you woul d precede the PUT command with a TEMPS
instruction unless you wanted to do sonething special with the
colours. Only "colours” 8 & 9 are useful in PUT dummy PRI NT
statenents; their use is explained bel ow -

COLQURS 8 - The particular colour type is left as it was
previously (I NK PAPER, BRI GHT or FLASH). Nornally, the col ours
that were saved by the GET command woul d be PUT back onto the
screen. COLOUR 8 is a way [to] circunvent this behaviour; e.g.

100 PRINT PAPER 8, INK 8; BRIGHT 8; FLASH 8;

in front of a PUT comrand; this dummy PRI NT staterment woul d
ensure that the screen colours would renmain the sane.
COLOUR 9 - This is not as useful as colour 8.

100 PRINT I NK 9;

This will not change the on-screen PAPER col our but will ensure
that the INK colour is contrasted with it.

I N\VERSE and OVER are al so very useful in PUT dummy PRI NT
statenments;

e.g.

INVERSE 1 - WIIl print the display in inverse to the way in
which it was collected by CET.

OVER 1 - Normally, PUT will obliterate the display that was
already on the screen. By using OVER 1 the two displays will be
nerged together; see page 113 of the Sinclair BASIC Progranm ng
manual .

100 PRINT OVER 1; | NVERSE 1;

This | eaves the display exactly as it was previously but does
change the on-screen colours (attributes).

15.

If the data stored in the string takes up the whol e screen, say,
then when you use PUT it will not fit conpletely on the screen
unl ess you start printing at (0,0). In fact the PUT conmand wil |l
only put on as nuch as it can, anything else is left unprinted.
GET AND PUT also allow you to have a limted formof animation.
By drawi ng each frame and getting theminto different strings
you can rapidly go through themusing the PUT conmand. Be

war ned, however, that the nmenory requirenents for this can be
qui te considerable. A screenful of data needs 6K of RAM

Exanpl es: -
10 RANDOM ZE 1000
20 RANDOM ZE USR 61030
30 PRINT "This is a dowward scroll"
40 PAUSE 10
50 GO SUB 8000
60 GO TO 40
8000 LET a=0: LET b=0: LET c=21: LET d=31
8010 REM CET a, b, c, d, a$
8020 LET a=1
8030 REM TEMPS\ PUT a, b, a$
8040 PRI NT AT 0,0;" (32 spaces)"”
8050 RETURN

Thi s denonstrates how you can use GET and PUT to do a downward

scroll. The subroutine at |ine 8000 actually does the scrolling.
You can also fix it to do rightward scrolling but NOT upward or
leftward scrolling. Can you think why?

LET
This is alnost exactly the some as the BASIC LET statenent. The
main difference is that the variable you are defining nust be a
single letter, non-subscripted, nuneric variable. Its format is:
100 REM LET a=("FI FTH' expressi on)

The a represents the variable that you are defining. The "FI FTH'
expression would usually be a "FIFTH' function. You could have a
variable as with nornal paraneters but this could be done with a
BASI C LET statement. You may be wondering what use all this is.

It allows you to access the "FIFTH'" functions in BASIC and then
do cal cul ati ons on them (which you cannot do in "FIFTH'); e.g

100 REM LET x=COLUWN i nvader
110 LET x=x+12: REM MOVE i nvader, X, LI NE i nvader

16.

This uses the "FIFTH' LET comand and BASI C cal cul ati on to make
the invader junp 12 pixels right.

Exanpl es: -

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=1: REM OBJECT bonb, a

40 REM PRI NT bonb, v

50 REM LET t=SCREEN bonb

60 PRI NT CHRS$ t
Li nes 50 & 60 use the LET command to find out what the bonb is
printed as.

OBJECT

Up until now the conmands have not been really related to one
anot her. The OBJECT command is the basis for nost of the

remai ni ng conmands. The real power of "FIFTH' is its ability to
define objects using the OBJECT conmand. The objects can nove
about the screen conpletely independently of BASIC. The BASIC
you woul d have to | aboriously erase and reprint an object to
nove it around the screen. This is slow as well as being
inmpractical, if you wish to nmove nore than a couple of objects
simul taneously. Wth "FIFTH" all you have to do is tell the
conputer the foll owi ng information:-

a) Wiat the object is to be printed as; e.g. The letter "A" or a
full stop.

b) I'n what direction is the object going to go in; e.g. up, down
or left ("FIFTH' allows 16 different directions).

c) In what colour the object is to be printed; e.g. Red, Yellow
or Geen.

d) The speed at which the object is to nove. In "FIFTH' you can
al so define how many pixels an object will junp at any one tine.
An object can junp as snall as one pixel; this is 8 tines

snoot her than BASI C graphi cs.

Then "FI FTH' can nove the object around the screen. Wen the

obj ect goes off the edge of the screen or collides wth another
obj ect then a special user-defined service routine is called,
but this is described later. "FIFTH' allows you to give objects
nanmes. This nakes progranm ng easier than if you had to quote a
I ong nunber every tine. If you were witing a space invader type
programyou may want 40, say, invader objects. It would be very
difficult to refer to each one individually. Fortunately "FIFTH'
has a solution to this problem Like a BASIC array you can
define a nunber of objects with the sanme nane. "FIFTH', however,
is more flexible in

17.

the way you can access them You can either concentrate
operations on on individual or collectively on the whole group.
Sorre pi eces of object informati on can be unique to each
subscript. In fact only colour and the "print as" character have
to be the sane for all subscripts. You may renenber that the
RANDOM ZE 1000 at the beginning of [a] "FIFTH' programtells the
comput er how much menory to reserve for the object data. One
t housand bytes is usually used because it is |arge enough for
just about any application. To work out exactly how nmany bytes
you wi Il need use the bel ow net hod:

No. of letters in the nane + 10 + 6 x No of subscripts.

Fromthis you can see that 10 invaders woul d take:
7 + 10 + (6 x 10) = 77 bytes - not very rnuch.
An obj ect command has the fornat:
100 REM OBJECT (nan®), ("FI FTH' Expression).

The name can be any |length and can contain any character (Except
":"). It is best, however, to stick to letters and nunbers
(Al phanureric characters). The "FI FTH' expression is eval uated
and tells "FIFTH' how nmany subscripts with that name you want.
This can be anything from1 to 255 inclusive. |f you define an
object with the same nanme as one al ready defined then "FI FTH'
will not take any notice of the new version. It will, in fact,
still store the new object data, so defining objects with the
sane nane is just a way of wasting menory. You rmay be wondering
where "FI FTH' keeps all this data. Wiat it does is to | ower
RAMICP (which is initially set at 61029) by the anobunt given in
the first RANDOM ZE statenment. For instance, after running one
of the exanpl e programs, type:

PRI NT PEEK 23730+256* PEEK 23731 (This finds RAMIOP)
This will reply with 60029 which is 1000 bytes | ower than the
initial setting of 61029. The initial RANDOM ZE instruction can
have any argunment except 0. If there is not enough roomin the
conputer's nenory then it will reply with error "4 out of
menory".

Now for an exanpl e: -
10 RANDOM ZE 1000
20 RANDOM ZE USR 61030
30 LET a=100: REM OBJECT M ssile, a

This will define 100 objects called "M ssile". Now change the
100 in the line 30 to 250. Wien you RUN it this time, the
conmputer responds with error "4 out of menory". This is
because there is not enough roomreserved for 250 objects.
Change the 1000 in line 10 to 10000.

18.

This reserves nearly 10K of menory for the objects - nore than
enough. Wen an object is defined, you have not given
information about speed, direction, etc. The conputer has to
make themup. The data it uses is |listed bel ow -

a) CURRENT SUBSCRIPT - Set to ALL

b) COLOUR - Set to the current universal col our
c) PRINT - A Space character (CHR$ 32)

d) DI RECTI ON - Direction 0 (Upwards)

e) SPEED - Moves once every five seconds (250

interrupts). It nakes one pixel junps.

It is ENABLED but is on Line 176,

Colum 0

g) ERASE STATUS - It will be overprinted under any
circunstances but this is possible with
t he above paraneters anyway.

N.B. (Until you have read the rest of the manual you will not be

able to understand this).

f) SCREEN POSI TI ON

Exanpl es: -
10 RANDOM ZE 1000
20 RANDOM ZE USR 61030
30 LET a=10: REM OBJECT i nvader, a
40 REM PRI NT i nvader, X
50 REM DI SABLE i nvader
60 FCR a=1 TO 10
70 REM USE i nvader, a
80 LET b=84: LET c¢=20+20*a: REM MOVE i nvader,
c,b
90 NEXT a

This will print ten Xs across the centre of the screen. Actually
these are the ten "invaders" defined in |ine 30. The program
uses a variety of comrands not expl ained yet to achieve this
result.

Not e: -
a) Any commands (or functions) that need an object nane (EXCEPT
COBJECT) can be given a string variable nane instead. This, as
usual , nust not be subscripted or sliced; e.g.
100 REM PRI NT i nvader, A

and
100 LET a$="invader": REM PRI NT a$, A
Bot h have the sanme neani ng.

If the string variable is not defined then error "2 Variabl e not
found" will be produced.

19.

b) If you use a name that has not been defined in an OBJECT
command then error "a Invalid Argunent” will result.

c) Wien referring to or defining object nanes it makes no

di fference whether you use upper or |ower case; e.g:-

PLANE, plane, Plane and pLAne all refer to the same object type.

USE
This is one of the comands whi ch det erni nes whether a
particul ar object type will have its subscripts accessed
individually or as a whole group. This is the comrand which will
all ow you to access subscripts individually. Its format is:-

100 REM USE (obj ect type nane), ("FI FTH' expression)
The object nane is that of the object type that you wish to
access on a single subscript basis in succeeding operations. The
"FI FTH' expression tells the conputer which individual subscript
you wish to use; e.g. if you defined 10 objects called a
"torpedo"” then this "FIFTH' expression can be evaluated to a
nunber between 1 and 10. If the nunber is not between 0 and 255
inclusive the error "B Integer out of range" wll be produced.
If the nunber is then bigger than the nunber of subscripts (in
this case bigger than 10) then error "6 Nunber too big" wll be
the result.

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=10: REM OBJECT i nvader, a
40 LET a=7: REM USE i nvader, a

This defines an object called "invader" and then sets the
"CURRENT" subscript to 7. If you change the LET a=7 in line 40
to LET a=11 then when RUN, the programw |l stop with error 6.
This is because you have tried to use a subscript that does not
exi st. Now change the LET a=10 in line 30 to LET a=11 and the
programwi |l work all right again.
You may think that if you use O for the second paraneter then
sone error woul d be produced because subscripts start at 1. In
fact this is not the case as:-

100 LET a=0: REM USE bonb, a (or something simlar)
has the same neaning as ALL, which is described next.

Exanpl es: -
10 RANDOM ZE 1000
20 RANDOM ZE USR 61030
30 LET a=100: REM OBJECT rocket, a
40 REM PRI NT rocket, X\ DI SABLE r ocket

20.

50 FCR a=1 TO 100

60 REM USE rocket, a

70 LET x=I NT (RND*256): LET y=INT (RND*176)
80 REM MOVE rocket, X,y

90 NEXT a

This randomy positions 100 Xs around the screen. It uses a host
of unexpl ai ned commands but notice how the USE command is
utilised in line 60. The program goes through all 100 rocket's
individual ly and pl aces each at a random position.

ALL
This is the command which allows you to access all subscripts of
a particular object type at the sane tine. It is used in the
form -

100 REM ALL (Nane of object type)
Unli ke USE, ALL does not need a second paraneter to tell it
whi ch subscript you want to USE as it assumes you want to access
all subscripts. After using ALL, every operation you do to that
particul ar object type will be done to every subscript; i.e. If
you did an operation to nove a "rocket" to position (231, 67)
then if ALL had been used on the "rocket" object type all
subscripts would nove to (231,67). Conversely, if USE had been
carried out on "rocket" then only the sel ected individual would
nove to (231,67) and all the others would stay where they are.

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=10: REM OBJECT i nvader, a

40 REM DI SABLE i nvader\ PRI NT i nvader, H

50 FOR a=1 TO 10

60 REM USE i nvader, a

70 LET x=RND*255: LET y=RND*175

80 REM MOVE i nvader, X,y

90 NEXT a

100 REM ALL i nvader

110 PAUSE 0

120 LET y=176: REM MOVE invader, a,y
If you RUN, ten Hs will appear at random positions on the
screen. |If you press a key then they will all disappear. Now
change line 100 to:-

100 LET z=10: REM USE i nvader, z
If you RUN the program again and press any key then only one H
will disappear. This illustrates the power of ALL and USE. Try
and account for the difference in the two RUNs.

21.

N.B. Al though a USE command with a second paraneter with a val ue
of 0 is the sane as an ALL command, it is good programmi ng
practice to use ALL except in situations where it is nuch nore
"elegant” to utilise the first nmethod. A good use for this
property of USE is given later in this nanual.

PRI NT

This is the conmand whi ch descri bes what character an object
will print as. This can be any character, including graphic
synbol s and user-defi nabl e graphics. It has the form-

100 REM PRI NT (object nanme), (Character)
If no such object with the nane you give exists then the
conmputer will respond with error "A lnvalid Argunent”. If the
character you give is a token (anything with nore than one
character init; i.e. PRINT or SCREEN) or unprintable (anything
with a code below 32) then error Awll result. The only other
character that you cannot use is the space (CHR$ 32). There is
however a graphic synbol which is the same as a space. It is
accessi ble on key 8 in GRAPH CS node. An individual subscript
cannot have its personal "print as" character. In fact, every
subscript in each object type nust be printed as the same
character. This also nmeans that the PRI NT conmand i s not
affected by ALL or USE commands.
Exanpl es: -

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=1: REM OBJECT missil e, a\ Dl SABLE nissil e\

PRINT Mssile,s

40 LET x=124: LET y=84: REM MOVE missile, X,y
Changi ng the second paraneter of the PRINT command in line 30 to
ot her characters.

CALAURS

This command determ nes what colour an object is printed in.
Li ke PRINT, only one set of colours can be defined per object
type. The command nust be preceded by a dummy PRI NT statenent.
This is the colour that the object will be printed in. You coul d
of course use a TEMPS command if you wanted the object to be
printed in the current universal colour. A colour comand is
used in the format: -

100 REM COLOUR (Nane of object type)
"Col our" 8 has its usual neaning although "colour" 9 is not used
by the COLOUR conmand.

Exanpl es: -
10 RANDOM ZE 1000
20 RANDOM ZE USR 61030
30 LET a=1: REM OBJECT i nvader, a
40 REM DI SABLE i nvader\ PRI NT i nvader, X
50 PRINT INK 2: REM COLOUR i nvader
60 LET x=124: LET y=84: REM MOVE i nvader, X,y

Try changi ng the dummy PRI NT st at enent
"X'" in different col ours.

inline 50 to print the

VECTOR

This is the conmand whi ch decides the direction in which an
object will nmove. "FIFTH' gives you a choice of 16 directions,
each one signified by a nunber between 0 and 15 incl usive.
Direction O is an upward direction, 1 is slightly rightward to
this (or eastward). This schene carries on until direction 15
which is just leftward to direction O.

FIG4 - How the VECTOR directions are arranged.
14 15 0 1 2
13 3
1z 4
11 5
10] g 7]

A VECTCR comand has the format: -

100 REM VECTOR (nane of object type), (new direction)

Unli ke PRINT or COLQUR, this command takes notice of ALL and
USE. If the "Current" of the object type is ALL then all
subscripts will have their direction changed. |f, however, the
current is USE then only the direction of the individual

selected in the USE command will have its direction altered. If

22.

the direction value is not between 0 and 15 i ncl usive then error

"B Integer out of range" will result. If the direction value is
not a whol e nunber then it is rounded to the nearest one. Even
if an object is disabled (see the disable command) then the
direction will be changed but will not take effect until the
object is re-enabled. The same will happen if the object is at
an "O f-screen" position (described under the MOVE command).

23.

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=1: REM OBJECT ball, a

40 REM PRI NT ball, o

50 REM SPEED bal |, a, a

60 LET a=8: REM VECTOR ball, a

70 LET x=124: LET y=84: REM MOVE ball, X,y

80 GO TO 80
When you RUN this programan "o" appears at the centre of the
screen and noves downwards until it goes off the edge of the

screen. Press BREAK. Change the value of a [at] line 60 to get
an idea of the different directions of the VECTOR conmand. The
programuses a variety of unexplai ned comrands to achieve this
end. Lines 30-60 just set up the object called ball so that the
comput er has enough infornmation to nove it around the screen
which it does after it has been positioned in the mddle of the
screen by line 70. Line 80 is necessary to allow the object to
nove. This is because if an error report is produced (i.e. in
this case error "8 End of file") then all noving objects on the
screen will cone to a halt.

SPEED

This is the command which all ows you to change the speed at
whi ch an object noves on the screen. "FIFTH' allows a trenendous
choi ce of speeds but nmore inmportant it determ nes how smooth the
graphics of a programw |l be. "FIFTH' allows you to define how
many pi xels an object will junp at any one tine. A speed command
has the format:

100 REM SPEED (Nane of object type), ("FIFTH' expression),

(expression)
This command, |ike VECTOR is affected by ALL and USE. The first
"FI FTH' expression describes the delay in 1/50 of a second
before the object is nmoved, and nust be between 1 and 255
inclusive. Fifty times a second, the Spectrumi s Z80A processor
receives an "Interrupt” fromSinclair's ULA chip which is also
inside that black case of your Spectrum This interrupt signa
tells the processor to read the keyboard and increnent the
frames counter. However, when using "FIFTH' the processor al so
has to nove "FI FTH' objects. This expression, therefore, tells
the "FI FTH' system how nany interrupts it has got to wait
t hrough before it is that particular object's turn to be noved
As you can see a val ue of one would nmean that the object would
be nmoved every tine and therefore 50 tinmes a second. If the
val ue was 50 then the object would only be noved once every
second

24.

If the value was 2 then the object would be noved 25 tinmes a
second. Fromthis it can be seen that the formila:
Number of novenents per second = 50

The val ue of the first expression
can be nade.

This is all very well but there is a trade off between speed and
how fast BASIC is. Since the objects are noved at tinmes when the
BASI C program woul d be nornal |y executed it can be seen that the
nore often an object is noved, the slower BASICwill be. This is
especially true if a large nunber of objects are bei ng noved.
Fortunately, "FIFTH' has a renedy to this difficult problem It
comes in the formof expression NO 2 which nust also be in the
range of 1 to 255 inclusive. It tells "FIFTH' how nmany pixels it
shoul d nove the object every tine it is its turn to be updated
during an interrupted response. Mst of the snooth graphics that
you may have seen in the denonstrati on programwere done using a
novenent of one pixel 50 tines a second. These are the snoot hest
graphi cs possi bl e but are expensive on the speed of BASICif you
have nore than a few of these objects noving sinultaneously. It
is a good idea, however, to try and use these snooth graphics
whenever posslble as the effect produced by the objects
"floating" across the screen can be quite incredible. If you
want to keep the sane speed but do not want the connected

sl owness of BASIC then increase the nunber for both the first
and second paraneters. For instance, the paraneters nay becone
equal to 2,2 after previously being 1,1. The object will still
have the same overall speed but its novenent will be a little
nore "junpy" (but still 4 tinmes better than BASI C novenent),

i nstead of noving one pixel 50 tines a second it will be noving
2 pixels 25 tines a second. But this is really a small price to
pay for the speed increase in BASIC. |If you just increase the
size of the second paraneter w thout the first then the overall
speed of the object will be increased. Now for a practical

exanpl e: -

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=1: REM OBJECT thing, a

40 REM PRI NT t hi ng, <

50 LET d=12: REM VECTCR thing, d

60 LET a=1: LET b=1: REM SPEED thing, a, b
70 LET x=255: LET y=84: REM MOVE thing, X,y
80 GO TO 80

25.

The SPEED command is used in line 60. On the first RUN a "<"
wi Il nove across the screen fromright to left. This is at the
snmoot hest speed. Change the values in line 60 to get the "hang"
of the SPEED conmand. You shoul d now know what every conmand in
the listing does except the nove command, although its use
shoul d be quite obvious.

Exanpl es: -

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=10: REM OBJECT cars, a\ Dl SABLE cars\ PRI NT cars,”

40 FOR a=1 TO 10

50 REM USE cars, a

60 LET b=1: REM SPEED cars, a, b

70 LET y=170: LET x=20*a: REM MOVE cars, X,y

80 NEXT a

90 REM ALL car s\ ENABLE cars

100 GO TO 100
Thi s program pl aces 10 ""A"s at the bottom of the screen. Then
they start noving but everyone is slightly slower than the
previous one, |ooking fromleft to right. The SPEED command is
used in the USE node in |ine 60.

MVE
This command is used to nove a particul ar object to a given
position. It is used in the form-

100 REM MOVE (Nane of object type),(x coordinate), (y
coordi nat e)
Li ke VECTOR and SPEED, MOVE is affected by ALL and USE. The x
co-ordinate is a "FIFTH' expression which nmust have a val ue
between 0 and 255 inclusive. |If the expression evaluates to a
non-integer then It is rounded to the nearest one. The y co-
ordi nate nmust al so have a value of 0 to 255 inclusive although
nunbers bi gger than 175 do not have the usual meaning. As you
may remenber, "FIFTH' H -res co-ordi nates have themstarting
fromthe top of the screen so that (0,0) is the top |eft-hand
corner of the screen. This is in contrast with the BASI C PLOT,
PO NT and Cl RCLE statenents which have their y co-ordinate
starting fromthe bottomof the screen. There are 176 possible y
co-ordinates as there are 22 |ines each of 8 pixel height (22 x
8 = 176). The two bottomlines of the display cannot have
objects printed on thembut they provide a useful area to print
scores and tines etc. as there is no danger of them being
overwitten by the nmoving objects. If, say, the y co-ordinate
was 175 or the x co-ordinate was 251 then there would not be

26.

enough roomto fit the whole of the 8 x 8 character on the
screen. "FIFTH' only prints on as much as it can; anything el se
is left unprinted. This gives the inpression that there is an
area of f the screen that cannot be seen. It is as if the screen
is just a window on a |larger area. The co-ordinates al ways refer
to the top left-hand corner of the character. If the y co-
ordinate is greater than 175 then the object is not printed
anywhere on the screen. The object will cease to be noved by
interrupts and therefore the only way to nmake it reappear on the
screen is to use another MOVE instruction. Please note that MOVE
does not inplenent an interact response cycle even if another

obj ect was collided with. You have to do this nmanually by using
the FIND command to check the position that you are going to
move the object to. (You will probably not understand this unti
you have read the rest of this manual). A MOVE instruction
autonatically erases the old i mage of the object.

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=1: REM OBJECT object, a

40 REM PRI NT obj ect, O\ DI SABLE obj ect

50 LET x=100: LET y=100: REM MOVE object, x,y

This programsets up a single object called "object” (confused)
and then proceeds to nove it to position (100,100). If you
change the values of x and y in line 50 then you can get sone
idea of the way in which MOVE works. Try positioning the object
near the bottom of the screen.

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=1: REM OBJECT arrow, a

40 REM Dl SABLE arrow\ PRI NT arr ow, >
50 LET y=84

60 FOR x=0 TO 255

70 REM MOVE arrow, X, y

80 NEXT x

90 GO TO 60

This programillustrates how you can use the MOVE command to
give you animation. This is obviously not as goad as "FI FTH'
autonmatic nmovenent but at least BASIC is not slowed down. You
can vary the speed of the novenent by introducing a STEP
statement in the FOR instruction at |ine 60. For Instance, a
STEP 2 doubl es the speed of the novenent.

27.

Not e: -

When you first define an object it is noved to position (0, 176).
As you can see, this is on off-screen position. This is to
prevent the object inmediately appearing on the screen after
definition when perhaps you do not want it to. After setting up
the paraneters of the object it can be noved into the active
screen area using a MOVE command

RMOVE

This is simlar to the MOVE command. The R stands for relative
MOVE. This works in a way simlar to Sinclair BASIC s DRAW
comrand. You do not give an actual screen position but one to be
added to the existing one. A RMOVE has the format: -

100 REM RMOVE (Nane of object type), (relative x),(relative y)
The name of the object type to be used works in exactly the sane
way as in the MOVE command. The x relative co-ordinate is added
to the current x co-ordinate to produce the new one. This
relative x co-ordinate nust be in the range of 0 to 255
inclusive. The relative y co-ordinate works in exactly the sane
way and nmust be in the range 0 to 175 inclusive. The co-ordinate
are in a "wap-round" formso if you add 1 to an x co-ordinate
that was previously 255 then the new x co-ordi nate would be 0
The y co-ordinate is also "wap-round" but waps at 176. For
instance if you added 1 to a y co-ordinate that was previously
175 then the new y would not be 176 but 0. This al so means that
you cannot nove objects to off-screen positions using the RMOVE
command, you have to use MOWE. One Problemwith "FI FTH'
expressions is that you cannot have negative nunbers. The RMOVE
command works alright as long as you are novi ng down or right
but consi der what happens when you try to nove left or up. The
DRAW st at enent al | ows negative argunents but a "Fl FTH'
expression does not. The solution to this problemis simlar to
that used for decreasing pitch in the SOUND conmmand. |If you want
to nmove the x co-ordinate |eft then use the fornula: -

Nurmber to use as first paraneter = 256 - nunber of steps |eft
This works as long as you do not want to nove O pixels left, but
this is not really nmoving |l eft anyway. The forrmula for the y co-
ordinate is:-

Nunber to use as second paraneter = 176 - nunber of steps up

so for instance, to nove 2 pixels up and 1 right the val ues
woul d be (1,254). Like the nove comrand an interact service
routine is not called if the move would nmean a collision with
anot her obj ect.

28.

You have to do this nmanually using the FIND conmand. Alimt
service routine is also not called if the nove neans the object
going of f the edge of the screen.

Exanpl es: -

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=1: REM OBJECT arrow, a\ PRI NT arrow, >\

Dl SABLE arrow

40 LET x=0: LET y=84: REM MOVE arrow, X,y

50 LET x=1: LET y=0

60 REM RMOVE arrow, X, y

70 GO TO 60
This exanple programis a nodified one of that used for the MOVE
exanpl e program It uses the RMOVE instruction to nove the arrow
across the screen. To increase the speed of the arrow, increase
the size of the x in line 50. Change the LET y=0 in line 50 to
LET y=1 and the arrow will nove di agonally.

FI ND

This command is used to determ ne whether there is an object at
a given screen position. It has the form -

100 REM FIND (x co-ordinate), (y co-ordinate)
The x co-ordinate nmust be in the range of 0 to 255 inclusive and
the y must be in the range of 0 to 175 inclusive. The name of
the object type is returned in the BASIC variable j$ and the
nunber of the subscript is returned in the BASIC variable j. If,
however, there is no "FIFTH' object at that position then j$
will be the null string (a string containing no characters - "")
and j will have the val ue 0.

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=1: REM OBJECT i nvader, a\ PRI NT i nvader, Al

Dl SABLE i nvader

40 LET x=1: LET y=100: REM MOVE i nvader, X,y

50 REM FIND x,y

60 PRINT | $,j
This should print "invader" and "1" at the top of the screen. If
you miss out the PRINT command in line 30 then the routine will
still work. In fact, the FIND conmand does not | ook at the
screen at all. It sinply goes through the co-ordinates of all
the objects and uses the first object that seens to [be] near
enough to the position you gave. The nane of the object type,
which is giveninjs$,

29.

is always given conpletely in |lower case letters, even if the
obj ect was defined conpletely in upper case.

Exanpl es: -

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=10: REM OBJECT abc, a\ PRI NT abc, H

40 LET a=1: REM SPEED abc, a, a

50 LET a=1+RND*9: REM USE abc, a

60 LET x=124: LET y=175: REM MOVE abc, X,y

70 LET y=40

80 REM FIND x,y

90 PRINT AT 5,0;j$%;"(3 spaces)";j

100 QGO TO 80
This program defines 10 subscripts of "abc". It then randomy
sel ects one of these and noves it up the screen. One of the
positions it has to pass through is nonitored by a FI ND comrand
whose results are printed on the screen. Fromthe results you
shoul d be able to deternine which subscript it was.

DI SABLE

This command gives you the facility to stop an object noved by
interrupts. It is used in the form-

100 REM DI SABLE (Nane of object type)
Li ke nost of the conmands connected with "FI FTH' automatic
novenent, this command is affected by ALL and USE. The gi ven
object will be disabled as far as autonati c novenent is
concerned. The object nust be re-enabl ed usi ng an ENABLE
instruction for novenent to continue. Al other commands such as
MOVE still work as nornal. Commands that just give infornation
(e.g. PRINT or COLOUR) also still work alright although their
effect is not shown until the object is re-ENABLED. Wen first
defined, an object is enabled. The only tine that it is disabled
(except manually in a BASIC programusing DI SABLE) is after it
collides with another object or goes off the edge of the screen
in which case an appropriate service routine is called which
woul d usual ly re-enable it anyway.

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=1: REM OBJECT ball,a\PRINT ball, O
40 REM SPEED bal |, a, a

50 REM DI SABLE bal |

60 LET x=124: LET y=170: REM MOVE ball, x,y
70 GO TO 70

30.

Wien RUN this programwill print most of an "O' at the bottom of
the screen. If you now delete line 50 then the "ball"™ will then
nove up the screen. This is because the DI SABLE instruction at

line 50 prevents the "ball" from noving. Renenber that if you

DI SABLE an object then it will not be erased fromthe screen and
can still, therefore, be involved in a collision wth another

obj ect .

Exanpl es: -

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=1: REM OBJECT ball, a

40 REM PRI NT bal |, O SPEED bal | , a, a

50 LET x=124: LET y=165: REM MOVE ball, x,y

60 | F I NKEY$="0" THEN REM DI SABLE bal |

70 | F I NKEY$="1" THEN REM ENABLE bal |

80 GO TO 60
This is a nodified version of the | ast programyou nay have
typed in. You can start or stop the ball at any tine as it
travels to the top of the screen. Key "0" stops the ball and key
"1" starts it again. N.B. If you try and DI SABLE an object which
is already disabled then the command will have no net effect.

ENABLE

This is the conpl enentary comrand to DI SABLE, as you m ght
expect. It has a simlar format to D SABLE; i.e.

100 REM ENABLE (Nane of object type)
Everything that was expl ai ned about the DI SABLE command is
applicable to the ENABLE command. Except, of course, the object
is enabl ed instead of disabl ed.
Exanpl es: -
The exanpl e given for the DI SABLE command will also function as
on exanpl e of the ENABLE command, which it contains in line 70.

LIMT

This command is used to define which |line nunber will be junped
to if an object goes off the edge of the screen. "FIFTH' is very
powerful in the sense that it will autormatically junp to a
certain |line nunber when an object reaches the edge of the
active screen area. It will performsonething simlar to a BASIC
G0 SUB but no GO SUB instruction is needed in the main | oop of
the program In fact the service routine (the BASIC routine that
is called when a limt condition occurs) nust be terminated with
CONTI NUE, not RETURN. Mbst of this, however, is explained under
t he LMIPARAM conmand. |t

31.

is up to the programmer to wite a short service routine at the
given line nunber to handle the limt condition. ALIMT comand
has the form -

100 REM LIMT ("FI FTH' expression)
The "FI FTH' expression gives the line nunber to be junped to if
alimt occurs and nust evaluate to between 0 & 65535 inclusive
otherwi se error "B Integer out of range" will result. If the
expression cones to nore than 9999 (the hi ghest nunber possible)
then when a limt condition occurs, no line will be junped to
and so program execution will carry on as nornal.

Now for an exanpl e: -
10 RANDOM ZE 1000
20 RANDOM ZE USR 61030
30 LET a=1000: LET b=1: REMLIMT a\ OBJECT thing,b
40 REM PRI NT t hi ng, "\ SPEED t hing, b, b
50 LET x=124: LET y=175: REM MOVE thing, X,y
60 LET a=0
70 GO TO 60
1000 STCP

Prograns simlar to this already used as exanples in this manual
do not stop when the "7" reached the top of the screen. This
program however, does stop with error "9 STOP statenment". The
stop statenment is at |line 1000. As you can see, there is no
actual staterment to junp [to] line 1000 in the main | oop of the
program This is caused by a limt condition occurring when the
object tries to go off the screen. You nay wonder what the

seemi ngly redundant line 60 is doing in the program This is
needed because "FI FTH' cannot junp to a service routine if the
mai n | oop of the program consists of a single GO TO statenent
which junps to itself. There are other rules concerning this to
be conplied with but these are expl ai ned under the LMIPARAM
comrand. Wen you first execute the "RANDOM ZE USR 61030" at the
begi nning of the program the limt line is set at 10000 so that
if alimt condition occurs then no service routine will be
called (mainly because the conmputer does not know whether you
have witten one or not!).

Exanpl es: -
10 RANDOM ZE 1000
20 RANDOM ZE USR 61030
30 LET a=8000: LET b=1: REM OBJECT ball,b\LIMT a
40 REM PRI NT bal I, o\ SPEED bal |, b, b
50 LET x=128: LET y=88: REM MOVE ball, x,y
60 LET a=0

32.

70 GO TO 60

8000 REM LMIPARAM

8010 IF i=0 THEN LET z=7

8020 IF i=1 THEN LET z=11

8030 I F i=2 THEN LET z=15

8040 IF i=3 THEN LET z=3

8050 LET z=z+l NT (RND*3)

8060 I F z>15 THEN LET z=z-16

8070 REM VECTOR bal I, z\ ENABLE bal |

8080 CONTI NUE
Thi s program produces an "0" bouncing around the screen; do not
worry about how it works at the nonent.

| NTERACT

This is simlar to LIMT but determnes the line that will be
junped to when two objects collide with each other. Its form
is:-

100 REM | NTERACT (" FI FTH' expressi on)
Mbst of the details are the sane as for the LIMT command. The
followi ng infornmation applies both to the LIMT and | NTERACT
comrands. Before a service routine can be junped to, the
interpreter nmust finish the statenent that it was executing when
the col lision happened. This nmeans that "FIFTH' nust tenporarily
store the information pertaining to the collision or limt
condition. There has to be roomfor nore than one | ot of
information in case a |l ot of events all happen at once. It can
now be told that the tenporary store is the "service stack". In
fact there are two of these, one for LIMTs and one for
| NTERACTs. There is roomfor 16 outstanding service routine
calls in each stack. If nore than 16 becone outstanding at one
tinme then error "4 Qut of menory" results. This error is a bit
strange as it can occur at any |line since the objects are being
noved and collisions etc. are being stored at the sanme tine
BASICis running. The rule is to look into the possibility that
the error was caused by an overflow of the service stacks before
spendi ng ages | ooking for a non-existent error in the actua
program Under normal circumstances the service stacks should
never overflow unl ess you are doing sonething terribly wong.
The service stacks are LIFO (Last in - First out) structures so
that the |l ast object condition that happened is always the first
one to be processed. As well as this, interacts "have priority
over limts" so before alimt condition is seen to, there nust
be no outstanding interact conditions. "FIFTH' does

33.

not allow "nested" service routines - so another service routine
will not be called while another is in progress. The interpreter
knows that it's finished the service routine when it cones to
the delimting CONTI NUE statenent.

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=1000: LET b=2: REM | NTERACT a\ OBJECT bonb, b

40 REM PRI NT bonb, O

50 LET a=1: REM SPEED bonb, a, a\ ERASE bonb

60 REM USE bonb, a

70 LET c=8: REM VECTOR bonb, c

80 LET x=124: LET y=0: REM MOVE bonb, x,y

90 REM USE bonb, b

100 LET y=175: REM MOVE bonb, X, y

110 LET a=1

120 GO TO 110

1000 REM | NTPARAM

1010 BEEP 2,-30

1020 REM ALL bonb\ ENABLE bonb

1030 CONTI NUE
This program defines two objects hurtling towards each other.
When they neet, a series of |ow frequency BEEPs are produced.

LMIPARAM

LMIPARAM stands for limt paranmeters. The command is used in
limt service routines to assign BASIC variables with
information about the limt condition. This comrand has no
paraneters after it. Wien it is executed it returns the name of
the object type that went off the screen in the BASIC variabl e
h$. This will always be conposed entirely of |ower case letters
so renenber that when you do tests on this variable. The actual
subscript of the object type that went off the screen is
returned in the BASIC variable h. The direction that it went off
the screen is returned in the variable i. This is Oif it went
off the top of the screen, 1 for the right-hand side, 2 for the
bottomand 3 for the |left-hand side. The co-ordinates the object
had just before it went off the screen are kept - the object is
not erased and still renmains on the screen. What happens in
fact, is it is disabled to stop it causing another limt
condition on its next nove. You nust renenber, however, that the
obj ect may not be near the edge of the screen if you gave a
particularly |arge nunber for the second paraneter of its SPEED
comrand. It is the job

34.

of the service routine to "point" the object in another
direction or do sonething appropriate and then re-enable the
object. Even if you are not going to use the information given
by a LMIPARAM conmand, you must still put it in. It is best,
therefore, to always put it as the first line of your service
routine. A service routine is finished when the interpreter
cones to a CONTINUE statenent; this would be the last |ine of
your service routine. As was pointed out in the description of
t he | NTERACT command, another service routine will not be called
whil e one is being executed. What happens, therefore, if the
limt service routine nmarks the end of that particular part of
the program and no CONTI NUE statenent is needed? The answer to
this is to add the line "POKE 23681,0". This tells "FI FTH' that
the service routine is finished, just |ike a CONTI NUE statenent
woul d.

Now for a working exanple: -
10 RANDOM ZE 1000
20 RANDOM ZE USR 61030
30 LET a=2000: LET x=1: REM OBJECT bal l
X\LIMT a
40 REM SPEED bal |, x, X\ PRINT bal |, O
50 LET x=124: LET y=100: REM MOVE ball, x,y
60 LET a=1: GO TO 60
2000 REM LMIPARAM
2010 LET b=(7 AND i =0)+(11 AND i =1)+
(15 AND i =2) +(3 AND i =3)
2020 LET b=b+I NT (RND*3)
2030 I F b>15 THEN LET b=b-16
2040 REM VECTOR h$, b\ ENABLE h$
2050 CONTI NUE

This is a simlar exanple given under the LIMT command. It
produces a " O bounci ng around the screen. The main | oop of the
programis in line 60 which as you can see, is a "do nothing"
loop. Lines 10 - 50 nerely set up the object. Fromline 2000
onwards is the service routine. Notice howit starts with a
LMIPARAM comrand and ends with a CONTI NUE statenent. Line 2010
nakes the b variable equal to a suitable paraneter for the
VECTOR command but pointing in the order direction to which the
obj ect went off the screen, Line 2020 adds sone randomess to
the VECTOR sel ection, otherw se the object would just bounce the
sane way all the time. Line 2030 nakes sure that this variable
does not conme to nore than 15 and if it does it subtracts 16 -
nmaki ng direction 16 equal to direction 0. Line 2040 actually
changes the direction. Notice now h$ is used for the nane
instead of [a] "real" nane. In this particular

35.

exanpl e we know that h$ will always be assigned as "ball" but in
other programs this may not always be the case. Here is [a] nore
sophi sticated version of the sane program it noves 8 balls
si mul t aneousl y: -

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=6000: LET b=8: REM OBJECT ball,

b\LIMT a

40 REM PRI NT ball, O

50 LET a=1: REM SPEED ball, a, a

60 LET x=124: LET y=50: REM MOVE ball, x,y

70 LET a=1: GO TO 70

6000 REM LMIPARAM

6010 LET b=INT (RND*3)+(7 AND i =0) +(11 AND i =1)+

(15 AND i =2) +(3 AND i =3)

6020 I F b>l5 THEN LET b=b- 16

6030 REM LET c¢=CURRENT h$\ USE h$, h\ VECTCR h$,

b\ ENABLE h$\ USE h$, c

6040 CONTI NUE
This programcontains a lot of interesting points. Here is a
description of it:-

Lines 10-60: Set up the object type called "ball". Line 30 al so
sets the service routine at |ine 6000.
Li ne 70: The main | oop of the program As you can see this

contains the seemingly redundant "LET a=1". This is
because the nain | oop of the program nust not
contain a single statement; i.e. None of the bel ow
are legal:-

70 FOR a=0 TO 1000000: NEXT a (FOR is only executed once)

70 GO TO 70

70 IF 2>1 THEN GO TO 70 (Al ways goes back to line 70)

Li ne 6000: Gets the infornation necessary for the service
routi ne.

Li ne 6010: Makes b equal to a suitable nunber for a VECTOR
command.

Li ne 6030: This perforns nost of the work of the service
routine. First of all, it makes c equal to the

current subscript being used of h$. In this
particular programthis is not really needed but is
incorporated to illustrate a point. As you can see
the second command is a USE instruction. This
changes the current of h$ which could spell

di saster for the main | oop of the program A rule
when witing service routines is to | eave
everything exactly as you found it. Be very careful
about BASIC variabl es. A ways use different
variables in the service

36.

routine to those used in the main | oop of the
program It is certainly very difficult to get used
to service routines. Many program bugs can be
attributed to using the sane variable (s) in both
the service routines and the main program | oop.
Al so watch out for other things that you do in a
service routine that nay affect the main program
executi on.

Li ne 6040: This term nates the service routine.

In nost prograns you would want to do different things according
to the object type that went off the edge of the screen. You
could do this by a nunber of IF...THEN GO TO... statenents near
t he begi nning of the service routine; i.e.

9000 REM LMIPARAM

9010 | F h$="i nvader" THEN GO TO 8000

9020 | F h$="bonb" THEN GO TO 8500

9030 | F h$="m ssile" THEN GO TO 7000

etc.

Exanpl es: -

10 RANDOM ZE 1000

20 RANDOM ZE USR 61030

30 LET a=8000: LET b=1: REM OBJECT arrow, b\LIMT a

40 REM PRI NT arrow, >\ SPEED arrow, b, b

50 LET z=4: LET x=0: LET y=0: REM VECTOR arrow, z

60 REM MOVE arrow, X,y

70 LET a=1: GO TO 70

8000 REM LMTPARAM

8010 LET y=y+8: |F y>170 THEN STOCP

8020 REM MOVE arrow, x, y\ ENABLE arr ow

8030 CONTI NUE
Thi s program produces an arrow noving fromleft to right. Wen
it gets to the edge of the screen it goes back to the |eft-hand
side but 8 pixels |ower and continues the cycle.

| NTPARAM

This command is very simlar to the LMIPARAM except it is used
for interact service routines. The main difference are the
variables that it defines and their neaning. A collision

obvi ously involves two objects. The name of the first object is
given in h$ and its subscript nunber in h. The second object has
its nane returned in i$ and its subscript nunber in i. As usual,
the names are given entirely in |ower case, so renenber this
when performing tests on them

37.

Wien a collision occurs both of the involved objects are

di sabl ed. The two objects never actually touch each other. In
fact although the characters are printed on an 8 x 8 pixel grid
the "FIFTH' systemtests the bordering pixels to see if they are
set tothe INK colour. If they are then "FIFTH' knows that it
has collided with another object. One spin-off fromthis is that
if one of the print as characters is equal to a space the
collision can never occur because it will never be detected. If
one of the things involved in the collision is not recognised as
a "FIFTH' object then it is given the name "" (the null string)
and has subscript nunber 0.

Exanpl es: -
10 RANDOM ZE 1000
20 RANDOM ZE USR 61030
30 LET a=5000: LET b=2: REM | NTERACT a\ OBJECT
star, b
40 LET a=1: REM PRI NT star, *\ SPEED st ar, a, a\
ERASE st ar
50 REM USE star, a
60 LET x=0: LET y=150: LET z=4: REM MOVE
star, X, Y\ VECTOR star, z
70 REM USE star, b
80 LET z=12: LET x=255: REM MOVE star, X, y\
VECTOR star, z
90 LET a=1: GO TO 90
5000 REM | NTPARAM
5010 BEEP. 05, 50
5020 REM USE h$, h\ ENABLE h$\USE i $,i \ ENABLE i $
5030 CONTI NUE

Thi s program produces two horizontal "*"s noving in opposite
directions. Wen they collide a BEEPI NG noise is produced as the
interact service routine is call ed.

N.B. - Wien you wite an interact service routine and want to
test whether the BASIC variables h$ and i$ are the names of

particul ar object types do it both ways; i.e.
100 I F (h$="bonmb" AND i $="mi ssile") OR (h$="m ssile" AND
i $="bonb")

THEN etc ...

38.

FIG 5 - Were "FIFTH' |ooks for another object
- — THE AREA IS ONLY TESTED

THE ARE2Z WHERE THE ACTUAL
CHARACTER T2 PRINTED

ERASE
The usual way to nove an object is to erase (print a space) the
old inage of the character and then print the character at the
new position. This is all very well but is quite slow since the
"FI FTH' systemactually has to print two characters (the space
to erase the old image plus the print of the actual character).
Under certain conditions it is only necessary to print the new
image as this will autonatically erase the old inmage. The
condition is that the "print as" character nust have a border of
paper pixels equal to the nunmber of junps per nove of that
particul ar object. The two di agrans bel ow explain why the letter
"a" can be noved in "non erase" node with a junp of one pixe
per nove while the letter "j" cannot.

FIG 6 - A conparison of the letters "a" and "j"

ELANE
EORDER

THE "TATL'' OF
THE '"q" SPOTLS
THE EORDER

Whenever you use the PRI NT or SPEED commands, "FIFTH' checks to
see whether it is possible to put that particular object into
non-erase node. If this is possible then "FIFTH" will do so. A
the ERASE command does is to make sure that the given object
type is in erase node, even if non-erase node is possible. ERASE
is affected by ALL and USE. Its format is:-

100 REM ERASE (Nane of object type)
You nay be wondering what good this is as printing a character
in erase nmode uses nmore tinme and therefore slows the speed of
BASI C. The answer is that there is a trade-off between the two.
A character printed in non-erase node "doesn't | ook where it's
goi ng" and therefore never detects a collision with another
obj ect. A non-erased character never takes part in an interact
condition, therefore unless the other character is printed in
erase node and woul d therefore detect the presence of the first

39.

character. There is however another reason for using non-erase
node; it is explained bel ow -

The problemlies with the fact that the T.V. picture is being
output at exactly the sane tine that the objects are being
noved. The problemonly rears its ugly head when you are noving
nore than a few erased characters at the same tinme and even so
only when the characters are at the top of the screen. For the
problemto reach its full extent the objects have to be noved
every interrupt or 50 tines a second. The first thing "FI FTH'
does is to erase the character by printing a space over it. It
sonetimes just so happens that the ULA chip reaches that portion
of the display file where the character is and outputs it to the
T.V. at the exact nmoment. "FIFTH' did not have time to print the
new version of the character so the object visibly disappears
fromthe screen because "FIFTH' only had time to print the space
over the old inmage. This effect does not happen w th non-erased
obj ects since they are never conpletely absent fromthe display
at any tinme. Please note that although the object may not appear
on the screen for a short period of time it is still in the
display file. The answer to this problemis to try and use as
few erased characters as possible and if you do use them keep
themto the bottom of the screen as nmuch as possible. Please
note that you sonetimes see another form of corruption where a
character is only partly printed. This is caused by the ULA
reaching that particular portion of the display when "FIFTH' is
only part way through printing the new i mage of the character
(NB - Although the SPEED command may only refer to a single
subscript, all subscripts of the given object type are tested
for conpatibility with non-erase node.)

THE "FI FTH' FUNCTI ON

When a "FI FTH' command has a nuneric paraneter you can either
put a BASIC variable there or a "FIFTH' function. The use of
single letter variabl es has been expl ai ned but the use of

"FI FTH' functions has not. They basically allow you to "get
back" the information put in using nost of the other commands
Many functions have paraneters thensel ves, usually the nane of
obj ect types. Belowis a description of all 13 of them -

NO
FORVAT:

DESCRI PTI ON:

COLUWN
FORVAT:

DESCRI PTI O\

LI NE
FORVAT:

DESCRi PTi ON:

SCREEN
FORVAT:

DESCRi PTI ON:

ATTR
FORNVAT:

DESCRi PTI ON:

DI RECTI ON
FORVAT:

DESCRI PTI ON:

CURRENT
FORVAT:

DESCRI PTI ON:

40.

No (Nane of object type)
Ret urns the nunber of subscriptions of the given
obj ect type.

COLUWMN (Narre of object type)

This function returns the colum nunber (x co-

ordi nate) of the given object type according

to ALL and USE. If the CURRENT of that object type
is ALL then error "A Invalid argunment"resul ts

LI NE (Nane of object type)

This returns the |line nunber (y co-ordinate) of
the given object type according to ALL and USE
If the CURRENT of that object type is ALL then
error "Alnvalid argurment” results.

SCREEN (Nane of object type)

Returns the code of the character that the given
object type will be printed as. Use the CHR$
function to get the actual character.

ATTR (Nanme of object type)

Returns the colour that the given object type is
printed in. It is given in the same fornat as you
woul d get froma normal ATTR function - see page
116 of the Sinclair BASIC progranmmi ng manual

Dl RECTI ON (Nane of object type)

Returns the direction (0 to 15 inclusive) of the
gi ven object type subject to ALL and USE. If the
current of the given object type is ALL then error
"Alnvalid argunent” will result.

CURRENT (Nane of object type)

Returns the current subscription of the given
object type. If the current is ALL then 0 is
ret ur ned.

41.

MASK

FORMAT: MASK (Nane of object type)

DESCRI PTION: Returns the col our mask for the given object
type. It is used for PAPER or INK 8 etc. Wen
converted to binary any bit that is set signifies
that the corresponding bit fromthe actual
colour (returned by ATTR) is not taken fromthat
byte but fromwhat was al ready on the screen.

VELOC TY

FORVAT: VELOCI TY (Nanme of object type)

DESCRI PTION: Returns the delay in 1/50ths of a second between
successi ve noves of the given object type
according to ALL and USE.

JUWPS

FORMAT: JUWMPS (Name of object type)

DESCRI PTI ON: Returns the nunber of pixel junps an object wll
nake every tine it is noved subject to ALL and
USE. Error Aif the current of the supplied
object type is ALL.

LIMT

FORVAT: LIMT

DESCRI PTION: Returns the nunmber of the line at which the limt
service routine is sited. If this is bigger than
9999 then this signifies that no limt routine
is to be called.

| NTERACT

FORVAT: | NTERACT

DESCRI PTION: Returns the line number of the interact service
routine if there is one. If this is bigger than
9999 then this signifies that no interact service
routine is to be called.

STATUS

FORMAT: STATUS (Nane of object type)

DESCRI PTION: Returns a 1 If the object is enabled or O if
di sabl ed. Subject to ALL and USE but if the current
is ALL then error A wll be produced.

BREAK KEY DI SABLE

"FI FTH' allows you to disable the BREAK key fromwi thin a

program "PCOKE 65239, 1" disables it while "POKE 65239, 0" enabl es
it again. As well as offering nore programsecurity this is a
useful solution to the problemthat you sonetimes press BREAK by

m st ake during a program

42.
H NTS AND TIPS

(a) Saving application prograns
When you wite a programusing "FIFTH' you will have to save
"FIFTH' as well as the BASIC programin order for it to work
on re-| oading.
To SAVE "FI FTH': - SAVE "Data" CODE 61030, 4506

(This al so saves the user-definable graphics)
Renenber to VER FY.
To LOAD "FI FTH': - LQOAD "Data" CODE 61030, 4506

(This also restores the UDGs)
Save "FIFTH' imedi ately after the recording of the BASIC
program Have the BASIC program auto-run and at the entry point
incorporate the line:-
CLEAR 61029: LQAD "Data" CODE 61030, 4506
which will [ower RAMIOP and then | oad "FI FTH'.

(b) The use of CONTI NUE

You can usually use the CONTINUE command to restart program
execution after an error, intentional or not, occurs. Wen using
"FI FTH', however, this is not possible. To avoid this problemit
is best to organise your programstructure into snall
subroutines and to nake correspondingly great use of the GOSUB
statenment. You can then test each subroutine individually -

m ni m sing the anount of bugs.

(c) The use of RANDOM ZE

In nost "FIFTH' prograns, line 20 is "RANDOM ZE USR 61030". You
may think that the USR function always returns the same nunber
for the seed of RND so that random nunbers always start fromthe
sanme point. This is not so since a "randoni nunber is al ways
returned by the USR function.

(d) The use of "FIFTH' REMs

A REM st atenent containing "FI FTH' commands nust al ways be the
last statenment on that particular line. If there are nore
statenents then they are ignored.

COVWPUTER RENTALS LTD

Description PAGE NO.
Instructions for "FIFTH 1
TOMDS o 4
Fil e 5
Replace 7
Large .. 8
SoUNd ... 10
[12
PUt 13
Lt 15
L o =T o S 16
USE i 19
Al 20
Print . 21
GOl OUr S o 21
VECt OF . e 22
Speed ... 23
OV 25
RVDVE . 27
Find ... 28
Disable 29
Enabl e e 30
Limot 30
Interact e 32
LMIPARAM . . . 33
INTPARAM 36
Erase 38
NO. . 40
Col UM 40
Line .. e 40
o =T o 40
AT 40
Direction 40
CUrr eNnt .. e 40
MASK .. e 41
Vel OCi Ly oo 41
JUMPS o 41
I 1 41
Interact 41
StatuUs e 41

