

FIFTH

USER'S MANUAL

BY

RICHARD TAYLOR

C R L

 There were a lot of printing errors in this manual, particularly in the coding examples. I think I've corrected
most of them, and I've checked that all the routines in this transcription work. JimG

INTRODUCTION TO MAIN INSTRUCTIONS

For a long time now there has been the need for a BASIC
extension to improve its graphics capabilities. Graphics
seem to have become the most important feature of any micro-
computer. The Spectrum is no exception but fortunately has
a quite reasonable graphic power. Its major short-coming
is the fact that you can only have a maximum of two colours
in a single character square. This problem can, however, be
mainly solved by careful screen layout.

When you think about it there are few BASIC commands which
actually affect the content of the screen: CLS, PRINT, PLOT,
DRAW and CIRCLE. These can only directly make static displays.
To produce a moving display is very complicated. By careful use
of the PRINT command you can get some sort of "jumpy" movement.
When you want to move more than about two objects at once then
things get really complicated and even a very experienced BASIC
programmer would find it extremely difficult to produce the
convincing graphics. There is a least tendency to return to the
sophistication of the early ZX81 BASIC games where in an
aircraft carrier bombing game, for instance, the plane would
stop dead in mid-air while the bomb would slowly, jumpily, move
downwards. Since the pioneering days of the ZX80 machine
graphics have improved dramatically. The BASIC, however, has
not. It still contains the some old smattering of vague BASIC
graphic statements.

"FIFTH" helps to bring BASIC back into "line" with the graphic
power of today's machines. "FIFTH", although it does other
things as well, is mainly designed to allow you to produce BASIC
games with much the some effect as machine code ones. "FIFTH"
also saves computer memory since operations that would have
previously taken many lines of BASIC programming can be
condensed into a small selection of the 25 "FIFTH" commands.
"FIFTH" makes it so easy to get graphics moving around the
screen that it makes it inviting to do so; encouraging you to
write effective programs.

"FIFTH" graphics are incredibly smooth, the objects literally
float across the screen making it a pleasure to watch them. You
are also not limited to a few objects but as many as you like,
within reason. "FIFTH" is not a language on its own but
augments the already resident BASIC. You can make the two
languages communicate with each other with the minimum of fuss.

You might think that the slow speed of BASIC would limit the
performance of "FIFTH" but this is not so. One of the advantages
of "FIFTH" is that the graphics are independent of the program;
this does not mean you have difficult in controlling them but
relieves you from the fuss of updating screen positions and
erasing characters etc. This method is much faster than normal
BASIC movement since the erasing, updating and re-printing
routines are well written in ultra-fast machine code. To get a
"FIFTH" object to move around the screen all you have to do is
give the computer certain information about its direction and
speed etc. "FIFTH" can then get on with the job of actually
moving the object. It will keep moving it in the specified
direction and speed until it goes off the edge of the screen or
it hits something else. This is where another powerful feature
of "FIFTH" comes in; a sort of "parallel" BASIC.

Parallel BASIC means that you have two independent programs
running at the some time. "FIFTH" can't do that exactly since
only one program can actually be running at once but appears to
almost do so. What happens is that if, say, an object went off
the edge of the screen then something called a service routine
would be called. This is a short routine written in BASIC, which
is supplied with the necessary information, (what went off the
screen and in which direction) and has to do something
appropriate. In most cases this would mean pointing the object
the opposite way to what went off the screen and sending it on
its merry way again, until it goes off the edge of the screen
again or "hits" something else on its way. A routine to handle a
collision between two objects, or "interacts" as they are
called, is written in a similar way. In this case you would have
to send each of the objects involved in the collision in
opposite directions to avoid further ones. The advantage of this
is that the service routine is called automatically, without any
special prompting

from the rest of the program. In fact, the rest of the
program won't even know that it has been interrupted. This
means that the "main-lap" of the program can be entirely
unconnected with the objects moving on the screen. This lack
of dependence on BASIC (except for the service routines and
parts of the main loop) really means that the speed of BASIC
is of less importance than usual. The moving graphics slow
down BASIC quite a lot, depending on the amount of objects
moving on the screen at that time. It still takes much less
time, however, accessing each moving object individually
like the normal way BASIC would produce movement.

As well as providing moving graphics, "FIFTH" also vastly
improves the Spectrum's sound. The BEEP command does not produce
anything like the zaps and bangs you would probably require in a
game. The sound effects "FIFTH" provides are very useful for
this purpose. "FIFTH" also has commands to rapidly change the
on-screen colours and to print in larger than normal characters.

That completes this introduction to "FIFTH". I hope that it
has given you an insight into the basic way "FIFTH" operates.
Remember, you cannot write a program in just "FIFTH", it is an
enlargement and extension to BASIC.

 Printed by CLEARAPRINT
01-274 2527/0872

© Computer Rentals Ltd.

 1.

INSTRUCTIONS FOR "FIFTH"

Version 1.24 by Richard M Taylor, 1983

The ZX Spectrum is certainly a formidable and very powerful
machine. The dialect of BASIC that it uses, Sinclair BASIC, is
well blessed with a variety of useful extraneous commands. Like
most other makes of machine it is used to a large extent for
playing games on. Unfortunately, BASIC is not really designed
for writing fast moving graphic games, This is especially true
of Sinclair BASIC which lacks the speed of many other dialects.
There is a complete absence of commands for moving characters,
and larger blocks, around the screen with both smoothness and
speed. The usual remedy for this problem has been writing games
in machine code. This can certainly produce amazing effects but
tends to be out of reach for the majority of users. Few people
are willing to take the time and trouble of learning the whole
new language of the machine code. "FIFTH" remedies these short-
comings to a large extent by providing a large quantity of
powerful, useful graphics commands. "FIFTH" is an extension to
BASIC so there is only a small amount of learning to do if you
already know BASIC - which I suggest you should, if you wish to
use this program to its full potential.

Written entirely in machine code for the 48K version, "FIFTH"
resides above RAMTOP. It occupies a shade over 4K or 4338 bytes
to be precise. To LOAD use: CLEAR 61029: LOAD "" CODE

FIG.1 - "FIFTH's" Position in the Memory Map

 2.

Many of the "FIFTH" commands have to be cross-referenced
with one another. References sometimes have to be made with
commands not discussed at that particular point. For this
reason, you may not be able to understand many things on the
first reading of this manual but as you unconsciously inter-
connect everything, your understanding should increase.

Examples are scattered liberally throughout this manual. They
should be entered exactly as listed with the "FIFTH" toolbox
program loaded. After running, if they do not stop automatically
you should use BREAK. Type NEW to be sure of clearing
the BASIC area before typing in the next example routine. You
will not need to re-load the "FIFTH" program since it resides
above RAMTOP and is not affected by NEW.

The commands are put into REM statements in the BASIC program.
Every program which uses "FIFTH" must start with the following
lines:-

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030

The 1000 in line 10 tells "FIFTH" how much memory to reserve for
the object data; this may vary from program to program. This is
fully described under the OBJECT command. Line 20 calls the main
body of the actual "FIFTH" program. Although it is usual to have
these two lines at the beginning of the program, this is not
always so. In fact, it must be at the main entry point of the
program which is better at the end rather than the beginning of
a program.

After executing line 20 the interpreter carries on as normal
(the interpreter is a larger routine in the Spectrum's 16K ROM
which actually executes BASIC programs). There is, however, one
exception; when the interpreter finds a REM Statement it treats
it in a different way.. Normally a REM command would be
completely ignored and the interpreter would go straight onto
the next line.

 3.

However, the REM statement may now contain "FIFTH" commands
so the interpreter acts accordingly. The first thing it does
is to look at the first character; if this is an asterisk then
it treats the REM as it would have normally. If it is not an
asterisk then the interpreter can be sure that the REM contains
"FIFTH" commands.

 1000 REM * THIS IS A COMMENT
 Comment lines can be put in as
 normal if you include an asterisk.

Like normal BASIC statements you can have multiple commands on
one line but instead of being separated by colons they are
separated by the rather neglected back-slash (back-slash is
symbol shifted D in E mode). The parameters of "FIFTH" commands
are separated by commas, as with the parameters of normal BASIC
statements. Every BASIC command has its own token on the key-
board but "FIFTH" commands obviously do not have their own
tokens. YOU HAVE TO SPELL THEM OUT YOURSELF, INCORPORATING A
TRAILING SPACE. It's up to you whether you use upper or lower
case to do this. You can even change the case in the middle of
command words eg:-

 1000 REM TeMps\ lARge
 is just as legal as:-
 1000 REM temps\ large
 or
 1000 REM TEMPS\ LARGE

You can vary the case of the parameters in much the same way
(the above two commands do not have any parameters - or
arguments as they are more usually called). Personally, I think
it is a good idea to type the commands in upper case and the
parameters in lower case. This makes the listing more readable
as well as making it look neater, You can just as freely
incorporate control characters in "FIFTH" REM statements - see
page 114 of the Sinclair Programming manual.

 4.

If the command you give is wrongly spelt or does not make
sense for some reason then the computer will helpfully respond
with error "Q Parameter error". This is usually used for the
FN function. Since this is not utilised much in games writing,
error Q very rarely occurs. Therefore error Q now takes on a
second meaning of a syntax error in a "FIFTH" command. Error Q
is also produced if a function name is incorrectly spelt.

Error "A Invalid argument" can occur if the arguments of a
"FIFTH" command do not make sense. For more details see the
section under the "FIFTH" functions. Other errors can occur but
these are unique to each "FIFTH" command. They are fully
explained under each command description. There is one other
peculiarity of programming in "FIFTH". Normally, when a program
is completed or a jump is made to a line number bigger than
existing then "OK" will be the computer's response. However, in
"FIFTH" OK is substituted for error "8 End of file". This report
was originally designed for the elusive Sinclair Microdrive but
has been put to this use in "FIFTH". The reason for using error
8 instead of error 0 is rather technical, so I will not go into
it.

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030

 If you RUN this, notice how it stops
 with error 8.

There now follows a detailed description of each of the 25
"FIFTH" commands:-

TEMPS

This command merely sets up colours for succeeding "FIFTH"
commands. You will remember that there are two ways of using the
BASIC colour statements, either universally as statements on
their own or in graphic commands to specify temporary colours.
This "FIFTH" command makes the temporary colours the same as the
universal ones. It also transfers the state of INVERSE and OVER
which can also be set up temporarily. This is because some
"FIFTH" commands require "dummy" PRINT statements preceding

 5.

them such as:-

 100 PRINT INK 6; PAPER 1; FLASH I;

This does not print anything but changes the temporary colours.
If, however, you just wanted to use the universal colours then
precede the "FIFTH" command with TEMPS. Commands which may use
TEMPS are:

a) LARGE
b) FILL
c) REPLACE
d) COLOUR
e) PUT

Examples:-

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 PAPER 5
 40 REM TEMPS\FILL
 50 PAPER 7

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 PRINT PAPER 5
 40 REM FILL

Both of these routines use the FILL command, which is described
next. They both do a similar job in making the background cyan.
Notice how TEMPS is used in the first example.

FILL

This command is used to change the screen colours without
actually affecting the screen display. It is an annoying feature
of Sinclair BASIC that you have to clear the screen, using CLS,
before new universal colours are shown. This command remedies
the problem.

 6.

The colour you want to change the screen to is put into a
dummy PRINT statement preceding the FILL command. e.g:

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 PRINT "This is a demonstration of the
 FILL command"
 40 PRINT PAPER RND*7; INK 9;
 50 REM FILL
 60 GO TO 40

This program contains a lot of suitable points. It constantly
changes the background colour always keeping the INK colour
contrasted with it. Page 111 of the Sinclair BASIC Programming
manual gives information about the use of colours 8 & 9 in
PRINT statements. You can also use 8 & 9 in FILL commands; their
use is explained below:-
"COLOUR" 8 - This leaves the appropriate type of colour (INK,
PAPER, FLASH or BRIGHT) as it was previously.
"COLOUR" 9 - This can be used with either INK or PAPER. It
makes one contrast with the other, in much the same way as in
normal PRINT statements, e.g.
 100 PRINT PAPER 8; INK 9;
When used in front of a FILL command, this makes sure that all
INK on the screen is in contrast with the PAPER, which is not
changed.

Examples:-

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 FOR a=0 TO 255
 40 PLOT a,0
 50 DRAW OVER 1;255-2*a,175
 60 NEXT a
 70 FOR a=0 TO 175
 80 PLOT 0,a
 90 DRAW OVER 1;255,175-2*a
 100 NEXT a

 7.

 110 PAUSE 50
 120 PRINT PAPER RND*7; INK 9;
 130 REM FILL
 140 GO TO 110

This program draws a "moire" pattern and then proceeds to change
its colour once every second. The INK 9 in the line 120 ensures
that the INK is never the same as the PAPER colour; i.e making
the pattern invisible. You can of course use the TEMPS command
instead of the dummy PRINT statement if the need arises; e.g.
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 REM TEMPS\FILL
would make sure that the screen colours are the same as the
universal ones.

REPLACE

The replace command is very similar to the FILL one except that
it is more selective in the on-screen colours that it changes.
It will only change a colour if it is another, specified, one.
You have to specify two colours so the command uses both the
universal and temporary colours. The temporary colour is the one
to be searched for and the universal colour is the one which
will replace it. For instance:-
 100 PRINT INK 1; PAPER 6;
 110 REM REPLACE
If incorporated into a program this would change every
occurrence of blue ink on yellow paper to the current universal
colour. "Colours" 8 & 9 as universal colours have their normal
meaning, but 8 & 9 as temporary colours are interpreted slightly
differently. Details below:-
Colour 8 - The appropriate colour type is ignored and so has no
importance in the search; i.e.
 100 PRINT PAPER 8, INK 2;
If this was put before a REPLACE command then any attribute with
red INK (PAPER is not important) would be set to the current
universal colour.
Colour 9 - This has no importance or use in a REPLACE command.
The TEMPS commands could be used but would not be of much use.

 8.

Can you see why? Any attribute that was already the universal
would be replaced by the universal colour - not very useful.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 FOR a=0 TO 703
 40 PRINT INK RND*7;"*"; REM * An inverse space
 50 NEXT a
 60 PAUSE 0
 70 PRINT INK RND*7;
 80 REM REPLACE
 90 GO TO 60

This fills the screen with coloured blocks and every time you
press a key, all blocks in a particular colour are changed to
black. Press BREAK to escape from the program.

LARGE

This allows you to print larger than normal characters, or
strings of characters, on the screen. Like the other commands
discussed so far it has no parameters and needs a dummy PRINT
statement before it. What is printed is determined by the state
of 5 BASIC variables - x, y, t, w, and a$. The variables x and y
determine where the top left-hand corner of the printout is to
be. Unlike normal printing these are high resolution co-
ordinates. x can be 0 to 255 inclusive and y can be 0 to 175
inclusive. When using normal BASIC high resolution statements
the y co-ordinate starts from the bottom - (0,0) being the
bottom left-hand corner of the screen. In contrast Hi-res
"FIFTH" commands have the y co-ordinate starting from the top so
(0,0) is the top left-hand corner of the screen. The variables t
and w determine the size of the characters to be printed. The
height is given in the variable t which should contain a number
between 1 & 22. The width is given in the variable w which
should contain a number between 1 & 32.
Here are some useful values:-

a) t=1, w=2 - double width
b) t=2, w=1 - double height
c) t=2, w=2 - double size
d) t=22, w=32 - A size at which a single character fills
the whole screen.

 9.

If the value given in x, y, t or w is non-integer then it
is rounded to the nearest integer. If this is out of range
then error B will be given. a$ holds the string of characters
to be printed. This can be of any length including zero
characters (a "null" string). The string, however, should not
contain any control characters. If you do then the computer will
show its displeasure by replying with error "A Invalid
Argument".
e.g.-

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a$="FIFTH"
 40 LET x=0: LET y=0: LET t=22: LET w=6
 50 REM TEMPS\LARGE

This example program will print "FIFTH" in large enough letters
to cover the whole screen. Notice how the TEMPS command is used
in line 50. If you precede the LARGE command with a dummy PRINT
statement to set up temporary colours items then the large
characters will be printed in the specified colours. The routine
works by using part of the plot command routine, in the 16K ROM,
to print the characters. Please note that the plot position is
not changed by this command.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET x=0: LET y=0
 40 LET t=1: LET w=2
 50 LET a$="Double width"
 60 REM TEMPS\LARGE
 70 LET y=50: LET t=2: LET w=1
 80 LET a$="This is double height"
 90 REM TEMPS\LARGE
 100 LET y=100: LET w=2
 110 LET a$="Double size"
 120 REM TEMPS\LARGE
This will print in the three most used types of large text.

N.B. If any of the five variables are not defined then error
"2 Variable not found" will result.

 10.

SOUND

This is the command that produces those amazing sound effects
you may [have] heard in the demonstration program. The BASIC
BEEP command is very limited in the sounds that it can produce.
The SOUND command "fills in" the enormous sound making gap.
Unlike the commands so far described, Sound does need parameters
(4 in all) to describe what sound to make but it does not need a
preceding dummy PRINT statement. You can give parameters in two
ways:
a) As a "FIFTH" function (see the section on "FIFTH" functions).
 This is the least used way.
b) As a single letter variable. The variable must however be
 numeric and must not be a subscripted variable. If the
variable is not defined then error "2 Variable not found" will
be produced. You are not allowed to do any mathematics in a
"FIFTH" REM statement; i.e. addition or subtraction.

 100 REM SOUND a,b,c,d

This is the usual format for a SOUND command; each of the
variables describe a different property of the sound:
VARIABLE a - THE REPEAT VALUE. It describes how many times a
sound of length b and tone c should be produced and the current
tone (initially c) should be added to d (the step) and the sound
repeated before the particular sound statement has been
finished.
VARIABLE b - The SOUND LENGTH. This describes the length of each
component noise of the whole SOUND command.
VARIABLE c - THE SOUND TONE. This describes the starting pitch
of the sound command. This has the variable d added to it after
every repeat to find the new pitch (The NO. of repeats is
determined by the a variable).
VARIABLE d - THE STEP VALUE. This is the value that is added to
the last tone after every repeat to find the new tone; e.g.

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=10: LET b=5: LET c=200: LET d=150:
 REM SOUND a,b,c,d

This produces a "phasor" like sound. The graph below shows how
the phasor noise is made up.

 11.

Graph. FIG 2. - A closer look at the phasor noise.

As you can see, the phasor noise is actually made up of very
short BEEPs, each one being slightly higher than the previous
one. Now change the LET b=5 in line 30 to LET b=100. When you
RUN the program now you can distinctly hear each individual
tone. You may want the sound to decrease in pitch rather than
increase. This is achieved by making d a number between about
65000 and 65535. This is because after adding d to the current
tone it is taken to MOD 65536 (this means it divides by 65536
and takes the remainder, NOT the answer). Another way of looking
at this is that if the number is bigger than 65535 then it
subtracts 65536 from it. In other words, 65536 is the same as 0.
For good sounds the variables should be within the ranges
below:-
Variable A - Between 1 & 50 but this really depends on the sound
length given in b. All the other numbers can have a range of 0
to 65535 inclusive except this one which must be 1 to 255
inclusive.
Variable B - Between 3 and 100
Variable C - Between 0 and 2000 if going up or between 2000 and
5000 if going down.
Variable D - Between 1 and 500 if going up or between 65000 and
65535 if going down.

Unlike during a normal BEEP statement, the SOUND command checks
the BREAK key while producing the sound.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=RND*20+3
 40 LET b=RND*10+3
 50 LET c=RND*1000
 60 LET d=RND*200+50
 70 IF RND>.5 THEN LET c=RND*1000+4000:
 LET d=RND*50+65400
 80 FOR e=1 TO 3-RND*10
 90 REM SOUND a,b,c,d,

 12.

 100 NEXT e
 110 GO TO 30
Press BREAK to escape from this program. It makes random sound
effects.
N.B. Although the variables a, b, c and d have been referred to
throughout this description you do not have to use them. w, x, y
and z could have been used just as easily. You can even use the
same variable twice or even more times in a single SOUND
command; e.g.

 100 REM SOUND e,a,e,z is perfectly legal.

GET

GET and PUT (described next) are used together. They are very
powerful commands. They allow you to put part of the screen
display into a BASIC string variable using the GET command and
then PUT the information back onto the screen. GET has five
parameters, 4 to tell it from which part of the screen to get
the data from and 1 to tell it in which BASIC string the data
should be stored. It is used in the form:-
 100 REM GET a,b,c,d,a$

a and c must be 0 to 21 inclusive and b and d 0 to 31 inclusive.
As you can see GET uses PRINT positions, not high resolution co-
ordinates. The reason for this is simple; the attributes (which
are also saved by GET) are stored in character positions so it
would be difficult to save the colours if GET was a high
resolution command. The data which is stored is always in a
rectangle, (a,b) being the top left-hand corner and (c,d) being
the bottom right hand corner of the rectangle. In order for this
to work properly c must be greater than or equal to a and d must
be greater than or equal to b - otherwise you would have a
rather strange rectangle, the right-hand side being more left
than the left-hand side or the top being below the bottom!
Fortunately, if co-ordinates do not make sense then error "B
Integer out of range" will be produced.

FIG. 3 - How the GET co-ordinates are arranged.

 13.

The last parameter tells GET where to store the data. This
should be a string from a$ to z$. If there was already a
variable called a$ etc. then it is deleted and replaced by the
new version. You cannot slice a string or use a subscripted
string array; i.e.
 100 REM GET a,b,c,d,c$(2 TO 20) is not allowed.

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=0: LET b=0: LET c=21: LET d=0
 40 REM GET a,b,c,d,x$

This puts the screen data in the left-most column of the screen
in the variable x$. The only way to replace the data is to use
the PUT command as the data is stored in a special format. Error
"2 Variable not found" occurs if one or more of the first four
parameter variables are not defined.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=0: LET b=0: LET c=21: LET d=31
 40 LET x=0: LET y=0: LET t=22: LET w=10:
 LET a$="GET"
 50 REM TEMPS\LARGE\GET a,b,c,d,a$
 60 FOR a=0 TO 31
 70 REM TEMPS\PUT b,a,a$
 80 LET b=b+0.6875
 90 PAUSE 50
 100 CLS: NEXT a

This draws "GET" in large letters across the screen and then
proceeds to move it in a "south-easterly" direction. The PUT
command (which is described next) is used in this example
program.

PUT

This command, which is used in conjunction with GET, allows you
to put data from a string back onto the screen after it has been
collected by GET. It has 3 parameters; the first two tell it
where to put the data on the screen and the third one tells it
in which string the data to be used is. Unlike GET, this command
must be preceded by a dummy PRINT statement or a TEMPS command.
PUT is used in the form:-

 14.

 100 REM PUT x,y,a$

x must be in the range of 0 to 21 and is the line number. y, on
the other hand, must be in the range of 0 to 31 as it is a
column number. If you do not keep the numbers within these
ranges then the computer will show its ingratitude by responding
with error "B Integer out of range". The string variable must
have been previously defined in a GET command. If no such simple
string exists or it was not defined in a GET command (the
computer has ways of telling whether it was or not) then error
"2 Variable not found" will be produced. Under normal
circumstances you would precede the PUT command with a TEMPS
instruction unless you wanted to do something special with the
colours. Only "colours" 8 & 9 are useful in PUT dummy PRINT
statements; their use is explained below:-
COLOURS 8 - The particular colour type is left as it was
previously (INK, PAPER, BRIGHT or FLASH). Normally, the colours
that were saved by the GET command would be PUT back onto the
screen. COLOUR 8 is a way [to] circumvent this behaviour; e.g.

 100 PRINT PAPER 8, INK 8; BRIGHT 8; FLASH 8;

in front of a PUT command; this dummy PRINT statement would
ensure that the screen colours would remain the same.
COLOUR 9 - This is not as useful as colour 8.

 100 PRINT INK 9;

This will not change the on-screen PAPER colour but will ensure
that the INK colour is contrasted with it.
INVERSE and OVER are also very useful in PUT dummy PRINT
statements;
e.g.
INVERSE 1 - Will print the display in inverse to the way in
which it was collected by GET.
OVER 1 - Normally, PUT will obliterate the display that was
already on the screen. By using OVER 1 the two displays will be
merged together; see page 113 of the Sinclair BASIC Programming
manual.

 100 PRINT OVER 1; INVERSE 1;

This leaves the display exactly as it was previously but does
change the on-screen colours (attributes).

 15.

If the data stored in the string takes up the whole screen, say,
then when you use PUT it will not fit completely on the screen
unless you start printing at (0,0). In fact the PUT command will
only put on as much as it can, anything else is left unprinted.
GET AND PUT also allow you to have a limited form of animation.
By drawing each frame and getting them into different strings
you can rapidly go through them using the PUT command. Be
warned, however, that the memory requirements for this can be
quite considerable. A screenful of data needs 6K of RAM.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 PRINT "This is a downward scroll"
 40 PAUSE 10
 50 GO SUB 8000
 60 GO TO 40
 8000 LET a=0: LET b=0: LET c=21: LET d=31
 8010 REM GET a,b,c,d,a$
 8020 LET a=1
 8030 REM TEMPS\PUT a,b,a$
 8040 PRINT AT 0,0;"(32 spaces)"
 8050 RETURN

This demonstrates how you can use GET and PUT to do a downward
scroll. The subroutine at line 8000 actually does the scrolling.
You can also fix it to do rightward scrolling but NOT upward or
leftward scrolling. Can you think why?

LET

This is almost exactly the some as the BASIC LET statement. The
main difference is that the variable you are defining must be a
single letter, non-subscripted, numeric variable. Its format is:
 100 REM LET a=("FIFTH" expression)
The a represents the variable that you are defining. The "FIFTH"
expression would usually be a "FIFTH" function. You could have a
variable as with normal parameters but this could be done with a
BASIC LET statement. You may be wondering what use all this is.
It allows you to access the "FIFTH" functions in BASIC and then
do calculations on them (which you cannot do in "FIFTH"); e.g

 100 REM LET x=COLUMN invader
 110 LET x=x+12: REM MOVE invader,x,LINE invader

 16.

This uses the "FIFTH" LET command and BASIC calculation to make
the invader jump 12 pixels right.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=1: REM OBJECT bomb,a
 40 REM PRINT bomb,v
 50 REM LET t=SCREEN bomb
 60 PRINT CHR$ t
Lines 50 & 60 use the LET command to find out what the bomb is
printed as.

OBJECT

Up until now the commands have not been really related to one
another. The OBJECT command is the basis for most of the
remaining commands. The real power of "FIFTH" is its ability to
define objects using the OBJECT command. The objects can move
about the screen completely independently of BASIC. The BASIC
you would have to laboriously erase and reprint an object to
move it around the screen. This is slow as well as being
impractical, if you wish to move more than a couple of objects
simultaneously. With "FIFTH" all you have to do is tell the
computer the following information:-
a) What the object is to be printed as; e.g. The letter "A" or a
full stop.
b) In what direction is the object going to go in; e.g. up, down
or left ("FIFTH" allows 16 different directions).
c) In what colour the object is to be printed; e.g. Red, Yellow
or Green.
d) The speed at which the object is to move. In "FIFTH" you can
also define how many pixels an object will jump at any one time.
An object can jump as small as one pixel; this is 8 times
smoother than BASIC graphics.
Then "FIFTH" can move the object around the screen. When the
object goes off the edge of the screen or collides with another
object then a special user-defined service routine is called,
but this is described later. "FIFTH" allows you to give objects
names. This makes programming easier than if you had to quote a
long number every time. If you were writing a space invader type
program you may want 40, say, invader objects. It would be very
difficult to refer to each one individually. Fortunately "FIFTH"
has a solution to this problem. Like a BASIC array you can
define a number of objects with the same name. "FIFTH", however,
is more flexible in

 17.

the way you can access them. You can either concentrate
operations on on individual or collectively on the whole group.
Some pieces of object information can be unique to each
subscript. In fact only colour and the "print as" character have
to be the same for all subscripts. You may remember that the
RANDOMIZE 1000 at the beginning of [a] "FIFTH" program tells the
computer how much memory to reserve for the object data. One
thousand bytes is usually used because it is large enough for
just about any application. To work out exactly how many bytes
you will need use the below method:
 No. of letters in the name + 10 + 6 x No of subscripts.

From this you can see that 10 invaders would take:
 7 + 10 + (6 x 10) = 77 bytes - not very much.
An object command has the format:
 100 REM OBJECT (name),("FIFTH" Expression).

The name can be any length and can contain any character (Except
":"). It is best, however, to stick to letters and numbers
(Alphanumeric characters). The "FIFTH" expression is evaluated
and tells "FIFTH" how many subscripts with that name you want.
This can be anything from 1 to 255 inclusive. If you define an
object with the same name as one already defined then "FIFTH"
will not take any notice of the new version. It will, in fact,
still store the new object data, so defining objects with the
same name is just a way of wasting memory. You may be wondering
where "FIFTH" keeps all this data. What it does is to lower
RAMTOP (which is initially set at 61029) by the amount given in
the first RANDOMIZE statement. For instance, after running one
of the example programs, type:
 PRINT PEEK 23730+256*PEEK 23731 (This finds RAMTOP)
This will reply with 60029 which is 1000 bytes lower than the
initial setting of 61029. The initial RANDOMIZE instruction can
have any argument except 0. If there is not enough room in the
computer's memory then it will reply with error "4 out of
memory".

Now for an example:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=100: REM OBJECT Missile,a

This will define 100 objects called "Missile". Now change the
100 in the line 30 to 250. When you RUN it this time, the
computer responds with error "4 out of memory". This is
because there is not enough room reserved for 250 objects.
Change the 1000 in line 10 to 10000.

 18.

This reserves nearly 10K of memory for the objects - more than
enough. When an object is defined, you have not given
information about speed, direction, etc. The computer has to
make them up. The data it uses is listed below:-
a) CURRENT SUBSCRIPT - Set to ALL
b) COLOUR - Set to the current universal colour
c) PRINT - A Space character (CHR$ 32)
d) DIRECTION - Direction 0 (Upwards)
e) SPEED - Moves once every five seconds (250

 interrupts). It makes one pixel jumps.
f) SCREEN POSITION - It is ENABLED but is on Line 176,

 Column 0
g) ERASE STATUS - It will be overprinted under any

 circumstances but this is possible with
 the above parameters anyway.

N.B. (Until you have read the rest of the manual you will not be
able to understand this).

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=10: REM OBJECT invader,a
 40 REM PRINT invader,x
 50 REM DISABLE invader
 60 FOR a=1 TO 10
 70 REM USE invader,a
 80 LET b=84: LET c=20+20*a: REM MOVE invader,
 c,b
 90 NEXT a

This will print ten Xs across the centre of the screen. Actually
these are the ten "invaders" defined in line 30. The program
uses a variety of commands not explained yet to achieve this
result.

Note:-
a) Any commands (or functions) that need an object name (EXCEPT
 OBJECT) can be given a string variable name instead. This, as
 usual, must not be subscripted or sliced; e.g.
 100 REM PRINT invader,A
 and
 100 LET a$="invader": REM PRINT a$,A
 Both have the same meaning.

If the string variable is not defined then error "2 Variable not
found" will be produced.

 19.

b) If you use a name that has not been defined in an OBJECT
command then error "a Invalid Argument" will result.
c) When referring to or defining object names it makes no
difference whether you use upper or lower case; e.g:-
PLANE, plane, Plane and pLAne all refer to the same object type.

USE

This is one of the commands which determines whether a
particular object type will have its subscripts accessed
individually or as a whole group. This is the command which will
allow you to access subscripts individually. Its format is:-
 100 REM USE (object type name),("FIFTH" expression)
The object name is that of the object type that you wish to
access on a single subscript basis in succeeding operations. The
"FIFTH" expression tells the computer which individual subscript
you wish to use; e.g. if you defined 10 objects called a
"torpedo" then this "FIFTH" expression can be evaluated to a
number between 1 and 10. If the number is not between 0 and 255
inclusive the error "B Integer out of range" will be produced.
If the number is then bigger than the number of subscripts (in
this case bigger than 10) then error "6 Number too big" will be
the result.

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=10: REM OBJECT invader,a
 40 LET a=7: REM USE invader,a

This defines an object called "invader" and then sets the
"CURRENT" subscript to 7. If you change the LET a=7 in line 40
to LET a=11 then when RUN, the program will stop with error 6.
This is because you have tried to use a subscript that does not
exist. Now change the LET a=10 in line 30 to LET a=11 and the
program will work all right again.
You may think that if you use 0 for the second parameter then
some error would be produced because subscripts start at 1. In
fact this is not the case as:-
 100 LET a=0: REM USE bomb,a (or something similar)
has the same meaning as ALL, which is described next.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=100: REM OBJECT rocket,a
 40 REM PRINT rocket,X\DISABLE rocket

 20.

 50 FOR a=1 TO 100
 60 REM USE rocket,a
 70 LET x=INT (RND*256): LET y=INT (RND*176)
 80 REM MOVE rocket,x,y
 90 NEXT a

This randomly positions 100 Xs around the screen. It uses a host
of unexplained commands but notice how the USE command is
utilised in line 60. The program goes through all 100 rocket's
individually and places each at a random position.

ALL

This is the command which allows you to access all subscripts of
a particular object type at the same time. It is used in the
form:-
 100 REM ALL (Name of object type)
Unlike USE, ALL does not need a second parameter to tell it
which subscript you want to USE as it assumes you want to access
all subscripts. After using ALL, every operation you do to that
particular object type will be done to every subscript; i.e. If
you did an operation to move a "rocket" to position (231,67)
then if ALL had been used on the "rocket" object type all
subscripts would move to (231,67). Conversely, if USE had been
carried out on "rocket" then only the selected individual would
move to (231,67) and all the others would stay where they are.

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=10: REM OBJECT invader,a
 40 REM DISABLE invader\PRINT invader,H
 50 FOR a=1 TO 10
 60 REM USE invader,a
 70 LET x=RND*255: LET y=RND*175
 80 REM MOVE invader,x,y
 90 NEXT a
 100 REM ALL invader
 110 PAUSE 0
 120 LET y=176: REM MOVE invader,a,y
If you RUN, ten Hs will appear at random positions on the
screen. If you press a key then they will all disappear. Now
change line 100 to:-
 100 LET z=10: REM USE invader,z
If you RUN the program again and press any key then only one H
will disappear. This illustrates the power of ALL and USE. Try
and account for the difference in the two RUNs.

 21.

N.B. Although a USE command with a second parameter with a value
of 0 is the same as an ALL command, it is good programming
practice to use ALL except in situations where it is much more
"elegant" to utilise the first method. A good use for this
property of USE is given later in this manual.

PRINT

This is the command which describes what character an object
will print as. This can be any character, including graphic
symbols and user-definable graphics. It has the form:-
 100 REM PRINT (object name), (Character)
If no such object with the name you give exists then the
computer will respond with error "A Invalid Argument". If the
character you give is a token (anything with more than one
character in it; i.e. PRINT or SCREEN) or unprintable (anything
with a code below 32) then error A will result. The only other
character that you cannot use is the space (CHR$ 32). There is
however a graphic symbol which is the same as a space. It is
accessible on key 8 in GRAPHICS mode. An individual subscript
cannot have its personal "print as" character. In fact, every
subscript in each object type must be printed as the same
character. This also means that the PRINT command is not
affected by ALL or USE commands.
Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=1: REM OBJECT missile,a\DISABLE missile\
 PRINT Missile,s
 40 LET x=124: LET y=84: REM MOVE missile,x,y
Changing the second parameter of the PRINT command in line 30 to
other characters.

COLOURS

This command determines what colour an object is printed in.
Like PRINT, only one set of colours can be defined per object
type. The command must be preceded by a dummy PRINT statement.
This is the colour that the object will be printed in. You could
of course use a TEMPS command if you wanted the object to be
printed in the current universal colour. A colour command is
used in the format:-
 100 REM COLOUR (Name of object type)
"Colour" 8 has its usual meaning although "colour" 9 is not used
by the COLOUR command.

 22.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=1: REM OBJECT invader,a
 40 REM DISABLE invader\PRINT invader,X
 50 PRINT INK 2: REM COLOUR invader
 60 LET x=124: LET y=84: REM MOVE invader,x,y
Try changing the dummy PRINT statement in line 50 to print the
"X" in different colours.

VECTOR

This is the command which decides the direction in which an
object will move. "FIFTH" gives you a choice of 16 directions,
each one signified by a number between 0 and 15 inclusive.
Direction 0 is an upward direction, 1 is slightly rightward to
this (or eastward). This scheme carries on until direction 15
which is just leftward to direction 0.

FIG.4 - How the VECTOR directions are arranged.

A VECTOR command has the format:-
 100 REM VECTOR (name of object type), (new direction)
Unlike PRINT or COLOUR, this command takes notice of ALL and
USE. If the "Current" of the object type is ALL then all
subscripts will have their direction changed. If, however, the
current is USE then only the direction of the individual
selected in the USE command will have its direction altered. If
the direction value is not between 0 and 15 inclusive then error
"B Integer out of range" will result. If the direction value is
not a whole number then it is rounded to the nearest one. Even
if an object is disabled (see the disable command) then the
direction will be changed but will not take effect until the
object is re-enabled. The same will happen if the object is at
an "Off-screen" position (described under the MOVE command).

 23.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=1: REM OBJECT ball,a
 40 REM PRINT ball,o
 50 REM SPEED ball,a,a
 60 LET a=8: REM VECTOR ball,a
 70 LET x=124: LET y=84: REM MOVE ball,x,y
 80 GO TO 80
When you RUN this program an "o" appears at the centre of the
screen and moves downwards until it goes off the edge of the
screen. Press BREAK. Change the value of a [at] line 60 to get
an idea of the different directions of the VECTOR command. The
program uses a variety of unexplained commands to achieve this
end. Lines 30-60 just set up the object called ball so that the
computer has enough information to move it around the screen
which it does after it has been positioned in the middle of the
screen by line 70. Line 80 is necessary to allow the object to
move. This is because if an error report is produced (i.e. in
this case error "8 End of file") then all moving objects on the
screen will come to a halt.

SPEED

This is the command which allows you to change the speed at
which an object moves on the screen. "FIFTH" allows a tremendous
choice of speeds but more important it determines how smooth the
graphics of a program will be. "FIFTH" allows you to define how
many pixels an object will jump at any one time. A speed command
has the format:
 100 REM SPEED (Name of object type),("FIFTH" expression),
 (expression)
This command, like VECTOR, is affected by ALL and USE. The first
"FIFTH" expression describes the delay in 1/50 of a second
before the object is moved, and must be between 1 and 255
inclusive. Fifty times a second, the Spectrum's Z80A processor
receives an "Interrupt" from Sinclair's ULA chip which is also
inside that black case of your Spectrum. This interrupt signal
tells the processor to read the keyboard and increment the
frames counter. However, when using "FIFTH" the processor also
has to move "FIFTH" objects. This expression, therefore, tells
the "FIFTH" system how many interrupts it has got to wait
through before it is that particular object's turn to be moved.
As you can see a value of one would mean that the object would
be moved every time and therefore 50 times a second. If the
value was 50 then the object would only be moved once every
second.

 24.

If the value was 2 then the object would be moved 25 times a
second. From this it can be seen that the formula:
Number of movements per second = 50

 The value of the first expression
can be made.

This is all very well but there is a trade off between speed and
how fast BASIC is. Since the objects are moved at times when the
BASIC program would be normally executed it can be seen that the
more often an object is moved, the slower BASIC will be. This is
especially true if a large number of objects are being moved.
Fortunately, "FIFTH" has a remedy to this difficult problem. It
comes in the form of expression NO.2 which must also be in the
range of 1 to 255 inclusive. It tells "FIFTH" how many pixels it
should move the object every time it is its turn to be updated
during an interrupted response. Most of the smooth graphics that
you may have seen in the demonstration program were done using a
movement of one pixel 50 times a second. These are the smoothest
graphics possible but are expensive on the speed of BASIC if you
have more than a few of these objects moving simultaneously. It
is a good idea, however, to try and use these smooth graphics
whenever possIble as the effect produced by the objects
"floating" across the screen can be quite incredible. If you
want to keep the same speed but do not want the connected
slowness of BASIC then increase the number for both the first
and second parameters. For instance, the parameters may become
equal to 2,2 after previously being 1,1. The object will still
have the same overall speed but its movement will be a little
more "jumpy" (but still 4 times better than BASIC movement),
instead of moving one pixel 50 times a second it will be moving
2 pixels 25 times a second. But this is really a small price to
pay for the speed increase in BASIC. If you just increase the
size of the second parameter without the first then the overall
speed of the object will be increased. Now for a practical
example:-

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=1: REM OBJECT thing,a
 40 REM PRINT thing,<
 50 LET d=12: REM VECTOR thing,d
 60 LET a=1: LET b=1: REM SPEED thing,a,b
 70 LET x=255: LET y=84: REM MOVE thing,x,y
 80 GO TO 80

 25.

The SPEED command is used in line 60. On the first RUN, a "<"
will move across the screen from right to left. This is at the
smoothest speed. Change the values in line 60 to get the "hang"
of the SPEED command. You should now know what every command in
the listing does except the move command, although its use
should be quite obvious.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=10: REM OBJECT cars,a\DISABLE cars\PRINT cars,^
 40 FOR a=1 TO 10
 50 REM USE cars,a
 60 LET b=1: REM SPEED cars,a,b
 70 LET y=170: LET x=20*a: REM MOVE cars,x,y
 80 NEXT a
 90 REM ALL cars\ENABLE cars
 100 GO TO 100
This program places 10 "^"s at the bottom of the screen. Then
they start moving but everyone is slightly slower than the
previous one, looking from left to right. The SPEED command is
used in the USE mode in line 60.

MOVE

This command is used to move a particular object to a given
position. It is used in the form:-
 100 REM MOVE (Name of object type),(x coordinate),(y
coordinate)
Like VECTOR and SPEED, MOVE is affected by ALL and USE. The x
co-ordinate is a "FIFTH" expression which must have a value
between 0 and 255 inclusive. If the expression evaluates to a
non-integer then It is rounded to the nearest one. The y co-
ordinate must also have a value of 0 to 255 inclusive although
numbers bigger than 175 do not have the usual meaning. As you
may remember, "FIFTH" Hi-res co-ordinates have them starting
from the top of the screen so that (0,0) is the top left-hand
corner of the screen. This is in contrast with the BASIC PLOT,
POINT and CIRCLE statements which have their y co-ordinate
starting from the bottom of the screen. There are 176 possible y
co-ordinates as there are 22 lines each of 8 pixel height (22 x
8 = 176). The two bottom lines of the display cannot have
objects printed on them but they provide a useful area to print
scores and times etc. as there is no danger of them being
overwritten by the moving objects. If, say, the y co-ordinate
was 175 or the x co-ordinate was 251 then there would not be

 26.

enough room to fit the whole of the 8 x 8 character on the
screen. "FIFTH" only prints on as much as it can; anything else
is left unprinted. This gives the impression that there is an
area off the screen that cannot be seen. It is as if the screen
is just a window on a larger area. The co-ordinates always refer
to the top left-hand corner of the character. If the y co-
ordinate is greater than 175 then the object is not printed
anywhere on the screen. The object will cease to be moved by
interrupts and therefore the only way to make it reappear on the
screen is to use another MOVE instruction. Please note that MOVE
does not implement an interact response cycle even if another
object was collided with. You have to do this manually by using
the FIND command to check the position that you are going to
move the object to. (You will probably not understand this until
you have read the rest of this manual). A MOVE instruction
automatically erases the old image of the object.

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=1: REM OBJECT object,a
 40 REM PRINT object,0\DISABLE object
 50 LET x=100: LET y=100: REM MOVE object,x,y

This program sets up a single object called "object" (confused)
and then proceeds to move it to position (100,100). If you
change the values of x and y in line 50 then you can get some
idea of the way in which MOVE works. Try positioning the object
near the bottom of the screen.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=1: REM OBJECT arrow,a
 40 REM DISABLE arrow\PRINT arrow,>
 50 LET y=84
 60 FOR x=0 TO 255
 70 REM MOVE arrow,x,y
 80 NEXT x
 90 GO TO 60

This program illustrates how you can use the MOVE command to
give you animation. This is obviously not as goad as "FIFTH"
automatic movement but at least BASIC is not slowed down. You
can vary the speed of the movement by introducing a STEP
statement in the FOR instruction at line 60. For Instance, a
STEP 2 doubles the speed of the movement.

 27.

Note:-
When you first define an object it is moved to position (0,176).
As you can see, this is on off-screen position. This is to
prevent the object immediately appearing on the screen after
definition when perhaps you do not want it to. After setting up
the parameters of the object it can be moved into the active
screen area using a MOVE command.

RMOVE

This is similar to the MOVE command. The R stands for relative
MOVE. This works in a way similar to Sinclair BASIC's DRAW
command. You do not give an actual screen position but one to be
added to the existing one. A RMOVE has the format:-
100 REM RMOVE (Name of object type), (relative x),(relative y)
The name of the object type to be used works in exactly the same
way as in the MOVE command. The x relative co-ordinate is added
to the current x co-ordinate to produce the new one. This
relative x co-ordinate must be in the range of 0 to 255
inclusive. The relative y co-ordinate works in exactly the same
way and must be in the range 0 to 175 inclusive. The co-ordinate
are in a "wrap-round" form so if you add 1 to an x co-ordinate
that was previously 255 then the new x co-ordinate would be 0.
The y co-ordinate is also "wrap-round" but wraps at 176. For
instance if you added 1 to a y co-ordinate that was previously
175 then the new y would not be 176 but 0. This also means that
you cannot move objects to off-screen positions using the RMOVE
command, you have to use MOVE. One Problem with "FIFTH"
expressions is that you cannot have negative numbers. The RMOVE
command works alright as long as you are moving down or right
but consider what happens when you try to move left or up. The
DRAW statement allows negative arguments but a "FIFTH"
expression does not. The solution to this problem is similar to
that used for decreasing pitch in the SOUND command. If you want
to move the x co-ordinate left then use the formula: -
Number to use as first parameter = 256 - number of steps left
This works as long as you do not want to move 0 pixels left, but
this is not really moving left anyway. The formula for the y co-
ordinate is:-
Number to use as second parameter = 176 - number of steps up
so for instance, to move 2 pixels up and 1 right the values
would be (1,254). Like the move command an interact service
routine is not called if the move would mean a collision with
another object.

 28.

You have to do this manually using the FIND command. A limit
service routine is also not called if the move means the object
going off the edge of the screen.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=1: REM OBJECT arrow,a\PRINT arrow,>\
 DISABLE arrow
 40 LET x=0: LET y=84: REM MOVE arrow,x,y
 50 LET x=1: LET y=0
 60 REM RMOVE arrow,x,y
 70 GO TO 60
This example program is a modified one of that used for the MOVE
example program, It uses the RMOVE instruction to move the arrow
across the screen. To increase the speed of the arrow, increase
the size of the x in line 50. Change the LET y=0 in line 50 to
LET y=1 and the arrow will move diagonally.

FIND

This command is used to determine whether there is an object at
a given screen position. It has the form:-
 100 REM FIND (x co-ordinate), (y co-ordinate)
The x co-ordinate must be in the range of 0 to 255 inclusive and
the y must be in the range of 0 to 175 inclusive. The name of
the object type is returned in the BASIC variable j$ and the
number of the subscript is returned in the BASIC variable j. If,
however, there is no "FIFTH" object at that position then j$
will be the null string (a string containing no characters - "")
and j will have the value 0.

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=1: REM OBJECT invader,a\PRINT invader,A\
 DISABLE invader
 40 LET x=1: LET y=100: REM MOVE invader,x,y
 50 REM FIND x,y
 60 PRINT j$,j
This should print "invader" and "1" at the top of the screen. If
you miss out the PRINT command in line 30 then the routine will
still work. In fact, the FIND command does not look at the
screen at all. It simply goes through the co-ordinates of all
the objects and uses the first object that seems to [be] near
enough to the position you gave. The name of the object type,
which is given in j$,

 29.

is always given completely in lower case letters, even if the
object was defined completely in upper case.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=10: REM OBJECT abc,a\PRINT abc,H
 40 LET a=1: REM SPEED abc,a,a
 50 LET a=1+RND*9: REM USE abc,a
 60 LET x=124: LET y=175: REM MOVE abc,x,y
 70 LET y=40
 80 REM FIND x,y
 90 PRINT AT 5,0;j$;"(3 spaces)";j
 100 GO TO 80
This program defines 10 subscripts of "abc". It then randomly
selects one of these and moves it up the screen. One of the
positions it has to pass through is monitored by a FIND command
whose results are printed on the screen. From the results you
should be able to determine which subscript it was.

DISABLE

This command gives you the facility to stop an object moved by
interrupts. It is used in the form:-
 100 REM DISABLE (Name of object type)
Like most of the commands connected with "FIFTH" automatic
movement, this command is affected by ALL and USE. The given
object will be disabled as far as automatic movement is
concerned. The object must be re-enabled using an ENABLE
instruction for movement to continue. All other commands such as
MOVE still work as normal. Commands that just give information
(e.g. PRINT or COLOUR) also still work alright although their
effect is not shown until the object is re-ENABLED. When first
defined, an object is enabled. The only time that it is disabled
(except manually in a BASIC program using DISABLE) is after it
collides with another object or goes off the edge of the screen
in which case an appropriate service routine is called which
would usually re-enable it anyway.

 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=1: REM OBJECT ball,a\PRINT ball,O
 40 REM SPEED ball,a,a
 50 REM DISABLE ball
 60 LET x=124: LET y=170: REM MOVE ball,x,y
 70 GO TO 70

 30.

When RUN this program will print most of an "O" at the bottom of
the screen. If you now delete line 50 then the "ball" will then
move up the screen. This is because the DISABLE instruction at
line 50 prevents the "ball" from moving. Remember that if you
DISABLE an object then it will not be erased from the screen and
can still, therefore, be involved in a collision with another
object.
Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=1: REM OBJECT ball,a
 40 REM PRINT ball,O\SPEED ball,a,a
 50 LET x=124: LET y=165: REM MOVE ball,x,y
 60 IF INKEY$="0" THEN REM DISABLE ball
 70 IF INKEY$="1" THEN REM ENABLE ball
 80 GO TO 60
This is a modified version of the last program you may have
typed in. You can start or stop the ball at any time as it
travels to the top of the screen. Key "0" stops the ball and key
"1" starts it again. N.B. If you try and DISABLE an object which
is already disabled then the command will have no net effect.

ENABLE

This is the complementary command to DISABLE, as you might
expect. It has a similar format to DISABLE; i.e.
 100 REM ENABLE (Name of object type)
Everything that was explained about the DISABLE command is
applicable to the ENABLE command. Except, of course, the object
is enabled instead of disabled.
Examples:-
The example given for the DISABLE command will also function as
on example of the ENABLE command, which it contains in line 70.

LIMIT

This command is used to define which line number will be jumped
to if an object goes off the edge of the screen. "FIFTH" is very
powerful in the sense that it will automatically jump to a
certain line number when an object reaches the edge of the
active screen area. It will perform something similar to a BASIC
GO SUB but no GO SUB instruction is needed in the main loop of
the program. In fact the service routine (the BASIC routine that
is called when a limit condition occurs) must be terminated with
CONTINUE, not RETURN. Most of this, however, is explained under
the LMTPARAM command. It

 31.

is up to the programmer to write a short service routine at the
given line number to handle the limit condition. A LIMIT command
has the form:-
 100 REM LIMIT ("FIFTH" expression)
The "FIFTH" expression gives the line number to be jumped to if
a limit occurs and must evaluate to between 0 & 65535 inclusive
otherwise error "B Integer out of range" will result. If the
expression comes to more than 9999 (the highest number possible)
then when a limit condition occurs, no line will be jumped to
and so program execution will carry on as normal.

Now for an example:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=1000: LET b=1: REM LIMIT a\OBJECT thing,b
 40 REM PRINT thing,^\SPEED thing,b,b
 50 LET x=124: LET y=175: REM MOVE thing,x,y
 60 LET a=0
 70 GO TO 60
 1000 STOP

Programs similar to this already used as examples in this manual
do not stop when the "^" reached the top of the screen. This
program however, does stop with error "9 STOP statement". The
stop statement is at line 1000. As you can see, there is no
actual statement to jump [to] line 1000 in the main loop of the
program. This is caused by a limit condition occurring when the
object tries to go off the screen. You may wonder what the
seemingly redundant line 60 is doing in the program. This is
needed because "FIFTH" cannot jump to a service routine if the
main loop of the program consists of a single GO TO statement
which jumps to itself. There are other rules concerning this to
be complied with but these are explained under the LMTPARAM
command. When you first execute the "RANDOMIZE USR 61030" at the
beginning of the program, the limit line is set at 10000 so that
if a limit condition occurs then no service routine will be
called (mainly because the computer does not know whether you
have written one or not!).

Examples: -
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=8000: LET b=1: REM OBJECT ball,b\LIMIT a
 40 REM PRINT ball,o\SPEED ball,b,b
 50 LET x=128: LET y=88: REM MOVE ball,x,y
 60 LET a=0

 32.

 70 GO TO 60
 8000 REM LMTPARAM
 8010 IF i=0 THEN LET z=7
 8020 IF i=1 THEN LET z=11
 8030 IF i=2 THEN LET z=15
 8040 IF i=3 THEN LET z=3
 8050 LET z=z+INT (RND*3)
 8060 IF z>15 THEN LET z=z-16
 8070 REM VECTOR ball,z\ENABLE ball
 8080 CONTINUE
This program produces an "o" bouncing around the screen; do not
worry about how it works at the moment.

INTERACT

This is similar to LIMIT but determines the line that will be
jumped to when two objects collide with each other. Its form
is:-
 100 REM INTERACT ("FIFTH" expression)
Most of the details are the same as for the LIMIT command. The
following information applies both to the LIMIT and INTERACT
commands. Before a service routine can be jumped to, the
interpreter must finish the statement that it was executing when
the collision happened. This means that "FIFTH" must temporarily
store the information pertaining to the collision or limit
condition. There has to be room for more than one lot of
information in case a lot of events all happen at once. It can
now be told that the temporary store is the "service stack". In
fact there are two of these, one for LIMITs and one for
INTERACTs. There is room for 16 outstanding service routine
calls in each stack. If more than 16 become outstanding at one
time then error "4 Out of memory" results. This error is a bit
strange as it can occur at any line since the objects are being
moved and collisions etc. are being stored at the same time
BASIC is running. The rule is to look into the possibility that
the error was caused by an overflow of the service stacks before
spending ages looking for a non-existent error in the actual
program. Under normal circumstances the service stacks should
never overflow unless you are doing something terribly wrong.
The service stacks are LIFO (Last in - First out) structures so
that the last object condition that happened is always the first
one to be processed. As well as this, interacts "have priority
over limits" so before a limit condition is seen to, there must
be no outstanding interact conditions. "FIFTH" does

 33.

not allow "nested" service routines - so another service routine
will not be called while another is in progress. The interpreter
knows that it's finished the service routine when it comes to
the delimiting CONTINUE statement.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=1000: LET b=2: REM INTERACT a\OBJECT bomb,b
 40 REM PRINT bomb,O
 50 LET a=1: REM SPEED bomb,a,a\ERASE bomb
 60 REM USE bomb,a
 70 LET c=8: REM VECTOR bomb,c
 80 LET x=124: LET y=0: REM MOVE bomb,x,y
 90 REM USE bomb,b
 100 LET y=175: REM MOVE bomb,x,y
 110 LET a=1
 120 GO TO 110
 1000 REM INTPARAM
 1010 BEEP 2,-30
 1020 REM ALL bomb\ENABLE bomb
 1030 CONTINUE
This program defines two objects hurtling towards each other.
When they meet, a series of low frequency BEEPs are produced.

LMTPARAM

LMTPARAM stands for limit parameters. The command is used in
limit service routines to assign BASIC variables with
information about the limit condition. This command has no
parameters after it. When it is executed it returns the name of
the object type that went off the screen in the BASIC variable
h$. This will always be composed entirely of lower case letters
so remember that when you do tests on this variable. The actual
subscript of the object type that went off the screen is
returned in the BASIC variable h. The direction that it went off
the screen is returned in the variable i. This is 0 if it went
off the top of the screen, 1 for the right-hand side, 2 for the
bottom and 3 for the left-hand side. The co-ordinates the object
had just before it went off the screen are kept - the object is
not erased and still remains on the screen. What happens in
fact, is it is disabled to stop it causing another limit
condition on its next move. You must remember, however, that the
object may not be near the edge of the screen if you gave a
particularly large number for the second parameter of its SPEED
command. It is the job

 34.

of the service routine to "point" the object in another
direction or do something appropriate and then re-enable the
object. Even if you are not going to use the information given
by a LMTPARAM command, you must still put it in. It is best,
therefore, to always put it as the first line of your service
routine. A service routine is finished when the interpreter
comes to a CONTINUE statement; this would be the last line of
your service routine. As was pointed out in the description of
the INTERACT command, another service routine will not be called
while one is being executed. What happens, therefore, if the
limit service routine marks the end of that particular part of
the program and no CONTINUE statement is needed? The answer to
this is to add the line "POKE 23681,0". This tells "FIFTH" that
the service routine is finished, just like a CONTINUE statement
would.

Now for a working example:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=2000: LET x=1: REM OBJECT ball,
 x\LIMIT a
 40 REM SPEED ball,x,x\PRINT ball,O
 50 LET x=124: LET y=100: REM MOVE ball,x,y
 60 LET a=1: GO TO 60
 2000 REM LMTPARAM
 2010 LET b=(7 AND i=0)+(11 AND i=1)+
 (15 AND i=2)+(3 AND i=3)
 2020 LET b=b+INT (RND*3)
 2030 IF b>15 THEN LET b=b-16
 2040 REM VECTOR h$,b\ENABLE h$
 2050 CONTINUE

This is a similar example given under the LIMIT command. It
produces a "O" bouncing around the screen. The main loop of the
program is in line 60 which as you can see, is a "do nothing"
loop. Lines 10 - 50 merely set up the object. From line 2000
onwards is the service routine. Notice how it starts with a
LMTPARAM command and ends with a CONTINUE statement. Line 2010
makes the b variable equal to a suitable parameter for the
VECTOR command but pointing in the order direction to which the
object went off the screen, Line 2020 adds some randomness to
the VECTOR selection, otherwise the object would just bounce the
same way all the time. Line 2030 makes sure that this variable
does not come to more than 15 and if it does it subtracts 16 -
making direction 16 equal to direction 0. Line 2040 actually
changes the direction. Notice now h$ is used for the name
instead of [a] "real" name. In this particular

 35.

example we know that h$ will always be assigned as "ball" but in
other programs this may not always be the case. Here is [a] more
sophisticated version of the same program; it moves 8 balls
simultaneously:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=6000: LET b=8: REM OBJECT ball,
 b\LIMIT a
 40 REM PRINT ball,O
 50 LET a=1: REM SPEED ball,a,a
 60 LET x=124: LET y=50: REM MOVE ball,x,y
 70 LET a=1: GO TO 70
 6000 REM LMTPARAM
 6010 LET b=INT (RND*3)+(7 AND i=0)+(11 AND i=1)+
 (15 AND i=2)+(3 AND i=3)
 6020 IF b>l5 THEN LET b=b-16
 6030 REM LET c=CURRENT h$\USE h$,h\VECTOR h$,
 b\ENABLE h$\USE h$,c
 6040 CONTINUE
This program contains a lot of interesting points. Here is a
description of it:-
Lines 10-60: Set up the object type called "ball". Line 30 also

sets the service routine at line 6000.
Line 70: The main loop of the program. As you can see this

contains the seemingly redundant "LET a=1". This is
because the main loop of the program must not
contain a single statement; i.e. None of the below
are legal:-

70 FOR a=0 TO 1000000: NEXT a (FOR is only executed once)
70 GO TO 70
70 IF 2>1 THEN GO TO 70 (Always goes back to line 70)
Line 6000: Gets the information necessary for the service

routine.
Line 6010: Makes b equal to a suitable number for a VECTOR

command.
Line 6030: This performs most of the work of the service

routine. First of all, it makes c equal to the
current subscript being used of h$. In this
particular program this is not really needed but is
incorporated to illustrate a point. As you can see
the second command is a USE instruction. This
changes the current of h$ which could spell
disaster for the main loop of the program. A rule
when writing service routines is to leave
everything exactly as you found it. Be very careful
about BASIC variables. Always use different
variables in the service

 36.

routine to those used in the main loop of the
program. It is certainly very difficult to get used
to service routines. Many program bugs can be
attributed to using the same variable (s) in both
the service routines and the main program loop.
Also watch out for other things that you do in a
service routine that may affect the main program
execution.

Line 6040: This terminates the service routine.

In most programs you would want to do different things according
to the object type that went off the edge of the screen. You
could do this by a number of IF...THEN GO TO... statements near
the beginning of the service routine; i.e.
 9000 REM LMTPARAM
 9010 IF h$="invader" THEN GO TO 8000
 9020 IF h$="bomb" THEN GO TO 8500
 9030 IF h$="missile" THEN GO TO 7000
 etc.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=8000: LET b=1: REM OBJECT arrow,b\LIMIT a
 40 REM PRINT arrow,>\SPEED arrow,b,b
 50 LET z=4: LET x=0: LET y=0: REM VECTOR arrow,z
 60 REM MOVE arrow,x,y
 70 LET a=1: GO TO 70
 8000 REM LMTPARAM
 8010 LET y=y+8: IF y>170 THEN STOP
 8020 REM MOVE arrow,x,y\ENABLE arrow
 8030 CONTINUE
This program produces an arrow moving from left to right. When
it gets to the edge of the screen it goes back to the left-hand
side but 8 pixels lower and continues the cycle.

INTPARAM

This command is very similar to the LMTPARAM except it is used
for interact service routines. The main difference are the
variables that it defines and their meaning. A collision
obviously involves two objects. The name of the first object is
given in h$ and its subscript number in h. The second object has
its name returned in i$ and its subscript number in i. As usual,
the names are given entirely in lower case, so remember this
when performing tests on them.

 37.

When a collision occurs both of the involved objects are
disabled. The two objects never actually touch each other. In
fact although the characters are printed on an 8 x 8 pixel grid
the "FIFTH" system tests the bordering pixels to see if they are
set to the INK colour. If they are then "FIFTH" knows that it
has collided with another object. One spin-off from this is that
if one of the print as characters is equal to a space the
collision can never occur because it will never be detected. If
one of the things involved in the collision is not recognised as
a "FIFTH" object then it is given the name "" (the null string)
and has subscript number 0.

Examples:-
 10 RANDOMIZE 1000
 20 RANDOMIZE USR 61030
 30 LET a=5000: LET b=2: REM INTERACT a\OBJECT
 star,b
 40 LET a=1: REM PRINT star,*\SPEED star,a,a\
 ERASE star
 50 REM USE star,a
 60 LET x=0: LET y=150: LET z=4: REM MOVE
 star,x,y\VECTOR star,z
 70 REM USE star,b
 80 LET z=12: LET x=255: REM MOVE star,x,y\
 VECTOR star,z
 90 LET a=1: GO TO 90
 5000 REM INTPARAM
 5010 BEEP.05,50
 5020 REM USE h$,h\ENABLE h$\USE i$,i\ENABLE i$
 5030 CONTINUE

This program produces two horizontal "*"s moving in opposite
directions. When they collide a BEEPING noise is produced as the
interact service routine is called.
N.B. - When you write an interact service routine and want to
test whether the BASIC variables h$ and i$ are the names of
particular object types do it both ways; i.e.
100 IF (h$="bomb" AND i$="missile") OR (h$="missile" AND
i$="bomb")
THEN etc ...

 38.

FIG. 5 - Where "FIFTH" looks for another object

ERASE
The usual way to move an object is to erase (print a space) the
old image of the character and then print the character at the
new position. This is all very well but is quite slow since the
"FIFTH" system actually has to print two characters (the space
to erase the old image plus the print of the actual character).
Under certain conditions it is only necessary to print the new
image as this will automatically erase the old image. The
condition is that the "print as" character must have a border of
paper pixels equal to the number of jumps per move of that
particular object. The two diagrams below explain why the letter
"a" can be moved in "non erase" mode with a jump of one pixel
per move while the letter "j" cannot.

FIG. 6 - A comparison of the letters "a" and "j"

Whenever you use the PRINT or SPEED commands, "FIFTH" checks to
see whether it is possible to put that particular object into
non-erase mode. If this is possible then "FIFTH" will do so. All
the ERASE command does is to make sure that the given object
type is in erase mode, even if non-erase mode is possible. ERASE
is affected by ALL and USE. Its format is:-
 100 REM ERASE (Name of object type)
You may be wondering what good this is as printing a character
in erase mode uses more time and therefore slows the speed of
BASIC. The answer is that there is a trade-off between the two.
A character printed in non-erase mode "doesn't look where it's
going" and therefore never detects a collision with another
object. A non-erased character never takes part in an interact
condition, therefore unless the other character is printed in
erase mode and would therefore detect the presence of the first

 39.

character. There is however another reason for using non-erase
mode; it is explained below:-

The problem lies with the fact that the T.V. picture is being
output at exactly the same time that the objects are being
moved. The problem only rears its ugly head when you are moving
more than a few erased characters at the same time and even so
only when the characters are at the top of the screen. For the
problem to reach its full extent the objects have to be moved
every interrupt or 50 times a second. The first thing "FIFTH"
does is to erase the character by printing a space over it. It
sometimes just so happens that the ULA chip reaches that portion
of the display file where the character is and outputs it to the
T.V. at the exact moment. "FIFTH" did not have time to print the
new version of the character so the object visibly disappears
from the screen because "FIFTH" only had time to print the space
over the old image. This effect does not happen with non-erased
objects since they are never completely absent from the display
at any time. Please note that although the object may not appear
on the screen for a short period of time it is still in the
display file. The answer to this problem is to try and use as
few erased characters as possible and if you do use them keep
them to the bottom of the screen as much as possible. Please
note that you sometimes see another form of corruption where a
character is only partly printed. This is caused by the ULA
reaching that particular portion of the display when "FIFTH" is
only part way through printing the new image of the character.
(NB - Although the SPEED command may only refer to a single
subscript, all subscripts of the given object type are tested
for compatibility with non-erase mode.)

THE "FIFTH" FUNCTION

When a "FIFTH" command has a numeric parameter you can either
put a BASIC variable there or a "FIFTH" function. The use of
single letter variables has been explained but the use of
"FIFTH" functions has not. They basically allow you to "get
back" the information put in using most of the other commands.
Many functions have parameters themselves, usually the name of
object types. Below is a description of all 13 of them:-

 40.

NO
FORMAT: No (Name of object type)
DESCRIPTION: Returns the number of subscriptions of the given
 object type.

COLUMN
FORMAT: COLUMN (Name of object type)
DESCRIPTION: This function returns the column number (x co-
 ordinate) of the given object type according

to ALL and USE. If the CURRENT of that object type
is ALL then error "A Invalid argument"results.

LINE
FORMAT: LINE (Name of object type)
DESCRiPTiON: This returns the line number (y co-ordinate) of
 the given object type according to ALL and USE.
 If the CURRENT of that object type is ALL then
 error "A Invalid argument" results.

SCREEN
FORMAT: SCREEN (Name of object type)
DESCRiPTION: Returns the code of the character that the given
 object type will be printed as. Use the CHR$
 function to get the actual character.

ATTR
FORMAT: ATTR (Name of object type)
DESCRiPTION: Returns the colour that the given object type is
 printed in. It is given in the same format as you
 would get from a normal ATTR function - see page
 116 of the Sinclair BASIC programming manual.

DIRECTION
FORMAT: DIRECTION (Name of object type)
DESCRIPTION: Returns the direction (0 to 15 inclusive) of the
 given object type subject to ALL and USE. If the
 current of the given object type is ALL then error
 "A Invalid argument" will result.

CURRENT
FORMAT: CURRENT (Name of object type)
DESCRIPTION: Returns the current subscription of the given
 object type. If the current is ALL then 0 is
 returned.

 41.

MASK
FORMAT: MASK (Name of object type)
DESCRIPTION: Returns the colour mask for the given object
 type. It is used for PAPER or INK 8 etc. When
 converted to binary any bit that is set signifies
 that the corresponding bit from the actual
 colour (returned by ATTR) is not taken from that
 byte but from what was already on the screen.

VELOCITY
FORMAT: VELOCITY (Name of object type)
DESCRIPTION: Returns the delay in 1/50ths of a second between
 successive moves of the given object type
 according to ALL and USE.

JUMPS
FORMAT: JUMPS (Name of object type)
DESCRIPTION: Returns the number of pixel jumps an object will
 make every time it is moved subject to ALL and
 USE. Error A if the current of the supplied
 object type is ALL.

LIMIT
FORMAT: LIMIT
DESCRIPTION: Returns the number of the line at which the limit
 service routine is sited. If this is bigger than
 9999 then this signifies that no limit routine
 is to be called.

INTERACT
FORMAT: INTERACT
DESCRIPTION: Returns the line number of the interact service
 routine if there is one. If this is bigger than
 9999 then this signifies that no interact service
 routine is to be called.

STATUS
FORMAT: STATUS (Name of object type)
DESCRIPTION: Returns a 1 If the object is enabled or 0 if
 disabled. Subject to ALL and USE but if the current
 is ALL then error A will be produced.
BREAK KEY DISABLE
"FIFTH" allows you to disable the BREAK key from within a
program. "POKE 65239,1" disables it while "POKE 65239,0" enables
it again. As well as offering more program security this is a
useful solution to the problem that you sometimes press BREAK by
mistake during a program.

 42.

HINTS AND TIPS

(a) Saving application programs
When you write a program using "FIFTH" you will have to save
"FIFTH" as well as the BASIC program in order for it to work
on re-loading.
To SAVE "FIFTH":- SAVE "Data" CODE 61030,4506
 (This also saves the user-definable graphics)
Remember to VERIFY.
To LOAD "FIFTH":- LOAD "Data" CODE 61030,45O6
 (This also restores the UDGs)
Save "FIFTH" immediately after the recording of the BASIC
program. Have the BASIC program auto-run and at the entry point
incorporate the line:-
CLEAR 61029: LOAD "Data" CODE 61030,45O6
which will lower RAMTOP and then load "FIFTH".

(b) The use of CONTINUE
You can usually use the CONTINUE command to restart program
execution after an error, intentional or not, occurs. When using
"FIFTH", however, this is not possible. To avoid this problem it
is best to organise your program structure into small
subroutines and to make correspondingly great use of the GOSUB
statement. You can then test each subroutine individually -
minimising the amount of bugs.

(c) The use of RANDOMIZE
In most "FIFTH" programs, line 20 is "RANDOMIZE USR 61030". You
may think that the USR function always returns the same number
for the seed of RND so that random numbers always start from the
same point. This is not so since a "random" number is always
returned by the USR function.

(d) The use of "FIFTH" REMs
A REM statement containing "FIFTH" commands must always be the
last statement on that particular line. If there are more
statements then they are ignored.

COMPUTER RENTALS LTD

 43.

INDEX

Description PAGE NO.

Instructions for "FIFTH" 1
Temps .. 4
Fill ... 5
Replace .. 7
Large .. 8
Sound ... 10
Get ... 12
Put ... 13
Let ... 15
Object .. 16
Use ... 19
All ... 20
Print ... 21
Colours ... 21
Vector .. 22
Speed ... 23
Move .. 25
RMove ... 27
Find .. 28
Disable ... 29
Enable .. 30
Limit ... 30
Interact .. 32
LMTPARAM .. 33
INTPARAM .. 36
Erase ... 38
No... 40
Column .. 40
Line .. 40
Screen .. 40
Attr .. 40
Direction 40
Current ... 40
Mask .. 41
Velocity .. 41
Jumps ... 41
Limit ... 41
Interact .. 41
Status .. 41
Break Key Disable 41

