

1

The Professional Adventure Writer

A graphic adventure writing system for the Sinclair

Spectrum computers.

(c) 1986 Gilsoft International Ltd.

Program: T.J.Gilberts, C.Yeandle and P.Wade

Graphics: D. Peeke, K.Maddocks and A.Williams

Manuals: T.J.Gilberts

All Rights reserved no part of this publication may be copied,

loaned, hired or reproduced in any form whatsoever including

electronic retrieval systems without the prior written consent of

the authors and Gilsoft International Ltd.

The above notice does not apply to the ‘run time’ routines

appended to and which form part of a saved game which you are

free to distribute any way you wish in that form, all we would

request is that you credit the use of the Professional Adventure

Writer somewhere within the game.

2

Acknowledgement

Thanks to Howard and Pam for their

forbearance. Phil for his ‘comments’,

Graeme for his ideas, Dicon et al for the

graphics and all our customers for their

support and suggestions.

Reproduction Author Notes:

This manual has been typed up and

reproduced for WOS. I have attempted to

keep the formatting exactly as the

original, including every spelling

mistake, lack of full stops and incorrect

use of apostrophes in the reproduction.

Reproduced with love by: Steve Johnson

(steve@cherrydrop.com)

mailto:steve@cherrydrop.com

3

Contents

Contents

Introduction Page 5

Getting Started Page 6

Concepts Page 7

Writing and adventure Page 10

 Start typing Page 13

 Playing the game Page 18

 Objects Page 19

 Process & Response Page 27

 The Bird Page 42

 The Dog Page 47

 Do it yourself Page 54

Overlays Page 55

Text Compression Page 56

The Character Editor Page 57

The Graphics Editor Page 58

End of the road Page 66

User Registration Page 67

4

5

Introduction

Introduction

Welcome to the world of adventure writing...

The Professional Adventure Writer (or P.A.W. as it is more

commonly known) provides you with the facilities to produce high

quality graphic adventures (in machine code) of equal or better

quality than many commercially available.

PAW will provide you with the basic framework for writing a game,

but it is still up to you to provide an imaginative storyline and

original puzzles.

The manuals supplied with PAW cover all aspects of its use, this

manual provides a tutorial covering its use in constructing an

adventure and we would recommend you work your way through this

manual and its accompanying examples before attempting a game of

your own. The other manual provides a detailed breakdown of the

entire system and can be used as a reference guide while writing

your own games.

Good luck...

A great deal of time and effort has been put into ensuring PAW

deals with all conceivable situations in a logical and useful

manner this has resulted in a complex program of some 20K in

size, and it is entirely possible that somewhere deep within the

code a few well hidden bugs remain, indeed a well known quote

states that; “Testing only proves the presence of bugs, not their

absence”. If you should find a problem please tell us so that we

can correct it if necessary.

All due care has been exercised in the preparation of these

manuals and their accompanying programs, however the authors and

Gilsoft International Ltd assume no responsibility for errors,

omissions or suitability of their contents for any application.

Not do we assure any liability whatsoever for damage resulting

from their use. This disclaimer does not affect your statutory

rights.

6

Getting Started

Getting Started

If you have purchased a Disc or Microdrive version of PAW please

see extra instruction sheet supplied for loading details.

The cassette supplied contains the main PAW program on side 1,

this program is the same for both 48K and 128K users.

Insert cassette in the recorder and type:-

 LOAD “” then press ENTER and PLAY on the tape deck.

or on 128K use the load option from the start up menu, note that

loading PAW in 48K mode on a 128K spectrum will make it assume it

is a 48K version, it is usually preferable to load PAW in 128K

mode.

PAW will display a start up screen when loaded which shows its

current version number (a letter followed by a two digit number

e.g. A01) Also shown are two address’ in decimal which will be

required if you wish to write your own BASIC or machine code

additions to PAW – details in the technical guide.

Pressing any key will cause the main menu to be displayed...

Within this tutorial any input that may be required by PAW is

shown enclosed in brackets e.g. [A 1 BAG], if the surrounding

text requires the entry to be made type exactly what is within

the brackets – including any spaces – but not the brackets

themselves. Several special keys are shown by using their name in

capitals (upper case), e.g. ENTER,CAPS SHIFT etc do not type

these in full, just press the required key (or combination of

keys).

Note: If you have a cassette version of PAW and later require a

Disc or Microdrive version please contact us for details of our

upgrade service.

Any communication regarding PAW should be directed to:-

Gilsoft International Ltd.

2 Park Crescent,

Barry,

South Glamorgan,

CF6 8HD

7

Concepts

Concepts

It is probably a good idea at this stage to introduce some of the

more important concepts which PAW embodies in its design.

Overlays

For many years it has been common practice for very large

programs on disc based machines to be split into two or more

parts which are then loaded as required. This system has not

been featured greatly on tape software due to the serial nature

of tape storage. PAW uses a very simple form of overlay to allow

maximum free memory on both 128K and 48K spectrums which is

quick and easy to use. The system uses the free memory available

on each machine to store the overlays until such time as that

memory is required and/or overwritten, they are then pulled in

from cassette as required. On a 128K spectrum you will not need

to worry about overlays until the last 16K is required (i.e.

after you have written a game about 92K long!). On a 48K the

overlays will come into play when you need to use graphics or

have entered about 16K of program. The tutorial in this manual

does not need to use overlays so their use is deferred until a

later chapter.

Memory Paging

The 128K spectrum uses a system known as paging to provide its

extra memory, diagram 1 should help to visualise the arrangement

where the top 16K of memory can be shuffled along like a slide in

a projector to present one of five ‘pages’ to the computer which

can only ‘see’ 64K at any one time.

Diagram 1

Note that pages 2 & 5 are the memory

area where PAW is located and are thus

unavailable. Note also that memory

shown as ‘overlay’ will be used by

PAW if required (see overlay section).

Free Free Free Free

Free

48K Overlay

Database

PAW

System

128K

 O

 v

e

r

l

a

y
0 1 3 4 6 7

8

Concepts

Databases

PAW stores your game in a ‘database’ (a collection of tables and

information which define the game you are writing). Initially the

database is very small with only the words and commands common to

every game already defined. This database gradually uses the area

of memory shown as free on diagram 1. PAW can also make use of

the other pages, but, on a 48K spectrum the extra pages are not

available and you will thus not be allowed to try and use them.

This also means that if you are writing on a 128K spectrum and

you want your game to run on both a 48K and 128K spectrum you

must not use any page other than the main page (page 0).

Parser

Back to school for this bit:-

parse v.t. to classify a word or analyse a sentence in terms of

grammar. parsing n. (Minster English dictionary)

PAW features a fairly powerful parser to convert what the player

types when playing your adventure into a series of simplified

‘Logical Sentences’ (LS’s) to which you will have defined the

responses. The parser does this by extracting ‘phrases’ from the

input string one at a time and allowing the rest of PAW to

interpret their meaning. Phrases are separated by any punctuation

mark and the conjugations ‘AND’ or ‘THEN’ (Although you can

change this if required), when it runs out of phrases in the

current input string it will request another. A phrase consists

of at least a Verb (a doing word!) and optionally two Nouns

(which describe objects), an adverb (which modifies the verb), a

preposition (shows the relation of one Noun with another word)

and finally a string enclosed in quotes which is used for speech

to other characters in the adventure.

The Menus

From the main menu (displayed after pressing a key on the title

page) you can select all of the options in PAW by typing a single

letter (in capitals) followed by ENTER, this letter is usually

the first letter of the option to allow you to easily remember

them (they are of course always displayed anyway). The main menu

is split into two parts and option E allows you to switch between

them, the menu displayed initially shows all the functions

related to writing the game, if you now type [E ENTER] – i.e.

Capital E and the ENTER key. The other menu should be displayed

which contains all the options related to saving loading and

testing your game. (also the character designer and text

compressor which are dealt with later in the manual.) If you

should get in the message ‘Load Overlay?’ you have selected as

option which requires an overlay to be loaded so type [N ENTER]

to get back to the main menu as we don’t need these just yet.

9

Concepts

The Edit Line

This is very similar to the editor provided by the INPUT command

in BASIC, you can use the cursor LEFT and RIGHT keys to move

through anything you type, and DELETE to delete the character to

the left of the cursor as usual. EDIT must be pressed twice (or

held down until it repeats) to clear anything you have typed and

cursor DOWN pressed twice (or held down!) to abandon the current

text (this is different to clearing the text as it will leave any

text you may be editing unchanged in the database).

Free Memory

Option F on the main menu will show how much memory remains free

in each page you have available (i.e. only page 0 will be

displayed on a 48K spectrum.) In addition it also shows the

highest location and message used so far, the reason for this

wonderfully useful bit of information will be explained in more

detail later. Pressing any key will return you to the main menu.

Saving, Verifying and Loading the database

Obviously you will not be able to finish typing in a game in only

one session, and indeed you should not attempt to enter large

quantities of information in one go as any interruption to the

power supply (or fault in the computer) can cause the loss of a

lot of hard work! These options allow just the contents of the

database of information to be stored on a tape in a ‘file’

(collection of information or data) and recalled at any time.

Selecting option S will request a filename to save the database

under, this should be meaningful and usefully could contain a

version number, e.g. DEMO01. The database will then be saved in

several parts (PAW saves two files per page, changing the last

letter of the name to A,B,C etc for each file used).

Option H (Verify) will allow a database just saved to be checked

against the one in memory – if a tape error should be reported

then the database should be resaved with Option S onto a

different tape if necessary.

Finally option J will request the name of a database file to

allow a database saved previously to be reloaded into PAW,

overwriting any database already present. Should you get an error

during the loading of a database, the database area will be

‘corrupt’ (i.e. not in the form PAW likes!) and the only safe

option to use is J until a database is successfully loaded, any

other options may cause damage to the PAW program itself

necessitating a reload.

RULE: Save your database regularly onto different tapes so that

you always have a reasonably up to date version should disaster

strike.

10

Writing an adventure

Writing an adventure

Now the fun starts...

Planning

Planning you game is very important if you want to create a

professional result, it is no use sitting at the machine and

typing away in fits and starts as you wait for inspiration! You

will merely entangle yourself in a maze of numbers and words with

no recourse but to start from scratch anyway.

To illustrate the recommended approach to writing an adventure we

will consider the design and development of a simple game from

initial idea to final testing.

Remember to save your database regularly!!!

Getting an Idea

This is always the hardest part of creating anything! An original

storyline can provide a game with an interest which rescuing a

princess will probably not evoke in a modern adventurer.

Subjects for adventures are all around in many day to day

actions, in exotic places around the world and out of this world!

If you decide to base a game on a book or a film you have enjoyed

and intend using it commercially make sure you have obtained

permission from the original author or copyright owners.

For our sample we will use a simple problem which besets a

passenger on his/her way home:-

While standing on the bus stop the passengers’ ticket blows away

into the breeze and is carried away by a small bird into an

adjacent park, the computer will play the part of the passenger

who you must direct to find the ticket before the bus arrives.

Game design

Now you have the idea, it is worth drawing a rough sketch of the

area the game will take place within as we have done in diagram 2

(well actually our artist drew it...).

Note that any game design ought to be within a logically enclosed

area or the player will wonder why they can’t go in a direction

when nothing appears to bar the way.

An adventure consists of a number of ‘discrete’ that is separate,

‘locations’ or places, the player can visit. You must now decide

which areas can become a location and number them individually.

11

Writing an adventure

Diagram 2

12

Writing an adventure

Try to make the scale consistent or logical (unless the game is

illogical by intent!) as a single step into an airport earlier

described as 10 miles away doesn’t help the impression of

realism, you can introduce a method of transport such as a taxi

etc if needed. Now location 0 is always reserved as a title

screen for a game and we want location 1 for a special use later

so we number the locations from 2 upwards.

For our example we have chosen 7 locations as follows:-

2 The Bus Stop.

3 On the Grass.

4 By the Bench.

5 The Bandstand.

6 The Ornamental Pond.

7 By the Tree.

8 Up the Tree!

To clarify the layout and to work out the possible movements

diagram 3 is a block diagram showing a stylised map of the game.

Diagram 3

Now we can start to write the contextual description of each

location, try not to make them a dry and uninteresting monologue

on the state of the nation, short and snappy is just as effective

in creating an atmosphere if a little imagination is brought to

bear. Remember to stick to one form of address (‘I’ or ‘You’

usually) or the player will suffer a serious identity crisis.

Note that if you use ‘You’ as a form of address you will need to

change the system messages, see the technical guide for details.

Up Tree

8

By Tree

7

By Pond

6

Bandstand

5

By Bench

4

On Grass

3

Bus Stop

2

North

13

Start Typing

Start Typing

Select option L on the main menu for Locations [L ENTER] i.e.

Press L in capitals followed by ENTER. A small sub-menu will be

displayed which shows the options available to deal with entering

and amending location descriptions. All the menus in PAW are laid

out in a similar way so we will examine these options a little

more closely, see one menu you’ve seen them all!

Should now be displayed on your screen.

Anything you type will appear at the bottom of the screen as

usual, the areas in inverse give you an indication of what you

must type to achieve the function shown on the right of the line.

Take for example option P, type in [P ENTER] and you should see

the description of location 0 (location 0 always exists as it

simplifies the operation of PAW) on the screen. It demonstrates

the inclusion of colours etc within text to highlight certain

words. The text that exists however, must be replaced with our

introduction for the example adventure, so we need to ‘amend’ it.

Press any key to get back to the sub-menu and type in [A 0] –

don’t forget the space between A and 0. This form of entry or

‘syntax’ is displayed on the line ‘A locno.’ i.e. you must type A

followed by a space followed by the LOCation Number you wish to

amend. Pressing [ENTER] will cause the current text for location

0 to be displayed with the cursor displayed at the end for

possible editing. Now we want to clear the entire entry, so press

[EDIT] (CAPS SHIFT & 1 on a 48K spectrum) twice. You now have a

blank entry to work with, note that if you press Cursor DOWN

twice now you will abandon the changes and an ‘error’ report will

be displayed in the lower screen (whenever a report is displayed

in the lower screen, pressing any key will return you to the last

used menu) and the original text will remain. You can try that if

you like and then amend ([A 0 ENTER EDIT EDIT]) again.

The text we will use for the introduction screen is going to

Location Text

I Insert a Text

B Begin new Page

A locno. Amend a Text

p (locno.) Print

L (locno.) LPrint

Z Main menu

C

14

Start Typing

include some colour to brighten up the title, so type eleven

spaces []- which will put the title in the centre of

the line. next press [EXTENDED MODE] (SYMBOL & CAPS SHIFT on a

48K spectrum). The keys from 0 to 7 will now provide the paper

(or background) colours which are available, we want the title

which is [The Ticket]. Next the original paper colour must be

restored (Black) so press [EXTENDED MODE] again and type [0].

We need to put a blank line between the title and the text, we

can’t press ENTER because this finishes the edit, so we need an

‘Extended Screen Control Code’ these are codes from 0 to 7 which

serve a variety of purposes within PAW. ESCC 7 provides a

newline, to enter an ESCC you need to use a ‘quirk’ in the

editor, as follows; first press [EXTENDED MODE] and select colour

White (i.e. type [7]) next press [DELETE] once which deletes the

paper control but leaves the number – you guessed it 7! so the

cursor jumps to the start of the next line. Do this again to give

a blank line and type in the remainder of the introduction as

follows, don’t attempt to stop words breaking over lines as PAW

does this automatically when the game is running (i.e. It formats

the text):

[While standing on the bus stop my bus ticket has been blown

away, can you help me find it?]

When you have finished press [ENTER] to finish the edit and then

anykey as requested to return to the sub-menu. You can use option

P to look at your text if you like, but note that it is not yet

formatted, this is done only while playing the game.

If you have a printer you might like to try option L which ‘Line

Prints’ the text, if this causes the computer to ‘hang’ or appear

to do nothing press [BREAK] (CAPS SHIFT & SPACE on a 48K

spectrum) to get back to the menu then refer to the technical

guide for further information on printers.

Option I on the menu allows a new location to be created within

the game, it has no number following it because PAW automatically

assigns the next available location number. Now we wanted

location 1 for a special purpose which we will explain later

(good these secrets aren’t they!) so just type [I ENTER], you

will now have a blank location available for use so just press

[ENTER] again (and any key) to return the sub-menu.

Now type [I ENTER] again to ‘insert’ location 2, and type in the

following text to describe it. Note that the spaces between

“..a road..” and “..South. To..” will occur exactly at the start

of new lines, due to the text formatting you must still type the

spaces or the formatter will think the two words are one long

word – the spaces will be ‘suppressed’ (removed) by the formatter

where required when the text is printed during the game.

15

Start Typing

RULE: Always type the space between two words or between a full

stop and the start of the next sentence, even if that space is at

the start of a new screen line. It will be suppressed by the

formatter if required.

The text for location 2 is as follows:

[I’m standing by a bus stop, on a road which runs North to

South. To the West a park gate set in iron railing stands

open.]

Right got that little lot in. Press [ENTER] to finish the edit

and return to the sub-menu. From now on we will omit the ‘ENTER’

assuming that you are remembering it anyway, besides it saves our

typing finger.

Now might be a good time to demonstrate a natty little feature

which prevents you entering invalid commands on menus, try typing

in [I 3 ENTER] (well one more reminder won’t hurt.), you should

now have a flashing question mark after the 3 along with the

cursor, PAW has checked the ‘syntax’ (remember that?) and

discovered that no number is needed after the Insert option, the

cursor will always be positioned as close to the problem as PAW

can get, in this case a single press of [DELETE] will suffice to

get rid of the offending number (don’t worry about the space as

PAW ignores any superfluous ones) now [ENTER] will provide you

with a blank entry for location 3. The text required for this and

the remaining locations is shown below, so using your new found

knowledge type in the description then insert and enter the

remainder of the locations. Note that the []’s have been omitted.

Location 3

The grass on which I stand is neatly trimmed. To the North

is a path and bench while to the East is an ornamental

pond.

Location 4

I am on a gravel path running East to West, by a park bench,

to the South is a grassy area while to the North I can see a

bandstand.

Location 5

I am standing on the bandstand which appears to be made of

ornate cast iron painted white. To the South is a path.

Location 6

The sun glitters on the surface of the ornamental pond,

whose waters ripple in the gentle breeze. A path runs North

towards a large tree, while to the East is a grassy area.

16

Start Typing

Location 7

The path curves South and East here beside a large tree.

Location 8

I am sitting on a branch in a broad leaved tree, the park

is spread out before me, to the East I can see the bus stop

through the gate in the railings.

Use [P] to check what you have typed, when the screen fills up

with text you will see “More...” printed in the lower part of the

screen, pressing any key except BREAK, SPACE or N at this point

will cause another screen full of text to appear and so on until

the final ‘Press any key’ is reached. BREAK, SPACE or N will

cause a ‘BREAK error and allow you to exit the listing.

Great now we have a collection of locations, but no way to get

from one to the other!

That leaves two options to discuss; B is to begin a new memory

page on 128K machines – do not do that at the moment as the demo

game will fit easily on page 0. The option is dealt with is the

chapter on 128K considerations in the technical guide.

So we use the last option, Z which it should be obvious takes us

back to the main menu, so type [Z ENTER] (oops another ENTER!).

Connections

Select option C from the main menu, type [C], and you will be

presented with a sub-menu again similar to that for locations.

Notice that entries can be Amended (A), Printed (P) or Line

Printed (L) only, the reason is that PAW inserts a blank entry in

the connections table every time you insert a location. If you

use option P to look at the table, type [P], you will see the

blank entries for locations 0 to 8.

Looking back at our map we can see the interconnections required

between the locations, for location 2 (the bus stop) we need a

single movement WEST which will take the player to location 4.

So type [A 2] to amend the entry for location 2 and type [WEST 4]

which instructs PAW that when the player types the word West when

in location 2 they are to be moved to location 4!

If you now use option P to examine the entry (note that [P 2]

will print only the entries from location 2 onwards) you will

discover that it looks something like:-

Location 2 W TO 4

etc

17

Start Typing

This is because PAW knows that ‘W’ is synonymous with ‘WEST’ (A

synonym is a word which means the same) and PAW will always use

the shortest synonym it knows when printing (indeed it will also

use it if you amend the entry a second time).

For location 3 (the green) we need three connections:-

NORTH to 4, WEST to 6 and NorthWest to 7.

‘NW’ is the word paw understands for NorthWest so amend the entry

for location 3 by typing [A 3] and type in the following exactly

as printed (again we have omitted the []’s and will do so in

future for entries that are displayed on a line of their own):

NORT 4 WEST 6 NW 77

when you press [ENTER], PAW will place the flashing ‘syntax

marker’ after ‘NORT’ because it does not know the word, add the

[H] to make it [NORTH] and press [ENTER] again, this time the

marker will be displayed after the 77 because PAW does not know

of a location 77 (in fact ther are no locations higher than 8 yet

in our game) this is another example of the syntax checker at

work, it will usually prevent you entering silly of illegal

information. So delete one of the sevens by pressing [DELETE] and

press [ENTER] to complete the edit.

The remaining connections are as follows (in abbreviated form to

save you some typing):-

Location 4 N 5 E 2 S 3 SW 6 W 7

Location 5 S 4 SW 7

Location 6 N 7 NE 4 E 3

Location 7 U 8 NE 5 E 4 SE 3 S 6

Location 8 D 7

‘D’ and ‘U’ are short for DOWN and UP respectively to allow the

player to go up and down the tree (SW is SouthWest, NE is

NorthEast and SE is SouthEast!).

Finally amend the entry for location 0 so that a movement will

take us to location 2 where we start the game (there is a better

way than this which needs a table we haven’t come across yet so

is best left till later). Typing [A 0 ENTER NORTH 2 ENTER] from

the sub-menu will achieve the required effect.

Check these thoroughly against the map and the list and when you

are happy that they are correct, reward yourself with a cup of

tea after saving the database for safety. Just to remind you; use

option Z to return to the main menu and option S from there to

save the current database (you can also use option E to see the

other main menu if you want.).

18

Playing the Game

Playing the Game

A suitable time has now arrived to try out the game. The option

to test the game is T on the main menu, if you now select it, by

typing [T], you will be asked whether you require diagnostics,

for the moment just type [N ENTER] (oops, another one of those

ENTERs) for no, as we don’t know what diagnostics are, and indeed

don’t need them yet.

Now you should have the title screen you typed in earlier along

with a request for input displayed. The input line is used to

enter the commands for PAW to interpret into things to do,

according to the information you have entered when writing your

game. So far we have only told about it where to take us when a

certain direction is entered, so try starting the game properly

by typing [NORTH] (or whatever direction you used in the

connection table entry for location 0) and pressing [ENTER].

(DELETE on the input line will allow you to correct any

mistakes).

The screen will clear and the description for location 3 will

appear – if it doesn’t you probably have the entry in Connections

wrong, don’t worry you can go back to the editor by typing [QUIT]

(which is a command PAW knows to start with) and replying [Y];

you do want to quit and [N]; you don’t want to try again. Use the

connections table option to check and amend the entry as

necessary.

You can now try moving between locations, testing the possible

moves (make a note of any which are wrong so that you can correct

them upon returning to the editor).

You might also like to try some of the other commands which PAW

knows, e.g. R or REDESCRIBE will display the location description

again – which is useful if a lot of text has been output and the

description lost. I or INVENTORY will list the ‘objects’ you are

carrying, you will be carrying one object to start with but will

be able to do nothing with it.

You are probably dying to see the parser in action by now (why

not?) so if you work your way back to the bus stop and enter the

following line you will get a flying visit round the game!

GO WEST THEN NORTH THEN SW THEN UP AND DOWN THEN SOUTH

AND EAST THEN NORTH THEN EAST. INVENTORY

By the way [W.N.SW.U.D.S.E.N.E.I] will have the same effect but

doesn’t look half as impressive...

Right back to the boring bit, QUIT from the game as shown

previously so that we can deal with the next chapter in this

saga.

19

Objects

Objects

Objects are anything which the player can manipulate within the

game, for example; An apple which they could eat, a key which

they could use to unlock a door, or a rucksack to contain the key

and the apple!

In our simple game we will have the following objects (not all of

which have a function in the final game).

Object 0 A lit torch.

Object 1 A bag.

Object 2 A sandwich.

Object 3 An apple.

Object 4 A ticket.

Object 5 A lead.

Object 6 An anorak

Object 7 An unlit torch.

Note that the torch is in fact two separate objects which we will

swap over when the player turns it on and off.

Option O from the main menu as you might have guessed is used to

enter the descriptions of the objects in a very similar way to

how we entered our location descriptions, select the option by

typing [O]. You might not be surprised either to find that an

object 0 already exists if you use option P to list them. Enter

the above descriptions – remember to use [A 0] for the first one

as it already exists – perhaps using a different Ink colour, say

Cyan (selected by [EXTENDED MODE] and holding down [CAPS SHIFT]

while pressing key [5]). Don’t forget to turn the colour back to

white (press [EXTENDED MODE] then [CAPS SHIFT] & [7]) at the end

of each text.

Back to the main menu so that we can tell PAW all about our new

objects. Option I allows us to define where each object will

initially be when the adventure starts, so select the option and

the sub-menu to deal with initial position of objects will be

displayed, similarly to connections there is no option to insert

as this is done by PAW automatically when you insert an object.

Notice that Amend has two ‘parameters’ the object number and it’s

position and that this position has several special values (which

are non existent locations); 252 is ‘not-created’, i.e. does not

yet exist within the game. 253 is used to ‘contain’ objects worn

by the player, while objects carried by the player are contained

in location 254.

For example we want to make the lit torch a ‘not-created’ object

[it was ‘carried’ in the start database) so type [A 0 252] and

the message “Amended” will be printed to show that PAW has

completed the task.

20

Objects

The remainder of the initial positions are as follows, so amend

each in turn but don’t try and type in the comments. Use option P

to ensure the positions are correct when you finish.

Object 1 2 ;the bag starts off at the bus stop

Object 2 254 ;the player is carrying the sandwich

Object 3 254 ;and the apple

Object 4 8 ;the ticket is up the tree..

Object 5 3 ;the lead is on the grass.

Object 6 253 ;the player is wearing the anorak.

Object 7 254 ;and carrying the unlit torch.

Next we need to tell PAW some more about the objects, their

relative weight, if they are capable of containing other objects

and if the player can wear them! Type [Z] to return to the main

menu and select option X (xtra info??), by typing [X], this

selects the object weight menu which also allows us to set the

other two object ‘attributes’ (container/wearable). You may not

be surprised by now to find that PAW has created an entry in this

table for all the objects inserted earlier. It in fact inserts an

entry which makes all objects weigh 1 unit, not be a container

and not be wearable this is known as an objects’ ‘default’

attributes. PAW allocates default values to everything even if

that entry is ‘null’ (nothing).

You need to amend only the anorak and bag attributes as the

player is able to ‘wear’ the anorak (in fact the is doing this

when the game commences) and the bag will be able to ‘contain’

other objects. In addition the bag and the anorak are ‘heavier’

relatively than the other objects and will have their default

weight changed to 3 units each.

The A to amend an entry is followed by three values; the object

number, the unit weight of that object and finally it’s attribute

options which are; 0-none, 1-a container for other objects, 2-the

player may wear (and remove) it and 3-a container which may be

worn (and removed), (e.g. a pair of jeans which have a pocket).

So for our bag (object number 1) which is a container weighing

three units we need to type [A 1 3 1] (not forgetting the

spaces). The anorak has no pockets (well ours hasn’t anyway!) but

it can be worn/removed so the entry is [A 6 3 2].

Now use option P to examine the new entries which should be:-

Object 0 weighs 1

Object 1 weighs 3 C ;C means a container

Object 2 weighs 1

Object 3 weighs 1

Object 4 weighs 1

Object 5 weighs 1

Object 6 weighs 3 WR ;WR means Wear or Remove

Object 7 weighs 1

21

Objects

You might like to test the adventure again now to ensure that all

the objects are where they should be, but note you will not be

able to do anything with them yet, we still have to tell PAW what

word describes each object. (it may be a suitable time to do

another save of the database now but ensure it is on a fresh

section of tape and use the next filename number if you are

numbering the versions.).

Vocabulary

This is a major table and to reflect this the menu is rather more

complex than any you have met so far. Note that most of the text

is merely reminding you of various options that are available and

thus isn’t really as complex as it looks at first.

The vocabulary is a list of all words that PAW is able to

recognise in any input the player types in during the game. Thus

any words which aren’t in this table will have no effect at all!

Initially the vocabulary contains about 70 common English words

which will be required for most adventures.

Each entry for a word consists of up to fice letters which will

either be a complete word e.g. NORTH or the first five letters of

a longer word e.g. ASCEN(D). a world value and a word type (e.g.

Noun, Verb etc).

The use of only five letters to store a word reduces the amount

of memory required to store the entire vocabulary, the amount of

typing the player must do and makes PAW faster at looking up

words when required. Five letters is also more than adequate to

differentiate the majority of important words in the English

language from each other.

The menu allows the insertion and deletion of words, the listing

of entries for each word type and the inspection of ‘synonyms’

which we met earlier when we found out that PAW knew ‘W’ meant

the same as ‘WEST’. Try [S WEST] (Show synonyms) to see indeed

that PAW knows ‘W’ as well.

Now try [P 2] to look at all the Nouns that PAW knows to start

with (the numbers which represent each word type are given on the

right of the menu, type 2 are Nouns, type 0 are Verbs etc.).

You will find all the major compass directions, ‘I’ (which even

though it is short for Inventory is a Noun.) and ‘ALL’ – plus

their synonyms.

We need to increase the number of Nouns by inserting a word for

each of our objects, now the first free number appears to be 15,

but Noun values less than 50 have special meanings thus;

Nouns less that 50 are Proper Nouns, for example peoples names or

places, but more specifically for PAW they are Nouns which will

22

Objects

not affect the subject of ‘it’, take the sentence:-

 GET THE SWORD AND CLEAN IT

It (a word known as a pronoun) refers to the SWORD obviously and

PAW will (as long as SWORD is a Noun in the vocabulary with a

value greater than 49) know this and assuming you have dealt with

the possibility of cleaning the sword, allow you to do so. But

take the following sentence:-

 GET THE SWORD AND KILL THE ORC WITH IT THEN DROP IT.

Normally PAW assumes ‘it’ to be the last used Noun but as long as

ORC is a Noun in the vocabulary with a word value less than 50

then PAW will remember ‘it’ as being the sword and carry out the

action correctly. This feature is noted on the left of the menu

along with mention of word values less than 20; these are Nouns

which if PAW cannot find a Verb in a ‘phrase’ containing one,

will convert temporarily (i.e. it does not change the vocabulary)

into a Verb. The major use of this is for things like NORTH which

may be typed on their own implying GO NORTH which in normal

English is invalid but is common when playing adventures.

Finally words less than 14 are assumed to be movement words (any

word which is a direction) and merely determine the message which

will be printed if PAW cannot do anything with the phrase it has

found (i.e. it determines if “I can’t” or “I can’t go in that

direction” is displayed). Note that this tag of ‘less than 14 is

a movement’ applies to both Verbs and conversion Nouns.

Since all our objects are ‘its’ we must give them word values

greater than 49 as follows:-

 TORCH 50

 BAG 51

 SANDW(ICH) 52

 APPLE 53

 BUS 54

 TICKE(T) 54

 LEAD 55

 ANORA(K) 56

note that there are two words with value 54, this makes BUS and

TICKET synonymous so if the player types GET BUS TICKET or GET

TICKET, PAW will know they mean the same thing.

Use the I option to insert these 8 words as Nouns (word type 2),

for example TORCH is inserted by typing [I TORCH 50 2] and so on.

Use [P 2] to check that the extra Nouns are now in the vocabulary

when you have finished.

We also need some words to describe the difference between our

two torches to PAW. The words which describe a Noun are called

23

Objects

Adjectives, you can see which adjectives PAW knows already using

[P 3] (adjectives are word type 3), we need two extra adjectives

LIT and UNLIT so insert these as word values 138 and 139

respectively using [I LIT 138 3] and [I UNLIT 139 3]. Note that

the adjective numbers start high as they are not used as often in

sentences and it is pointless to search through them all the time

when PAW mostly needs common Nouns or Verbs.

All word values from 2 to 254 are available for each type of word

and there is no limitation on the number of words with the same

word value (synonyms) so the vocabulary can become quite large if

you want.

Just to familiarise yourself with the other options, try

inserting a word which is already present e.g. [I GET 20 0] will

result in the message “GET is already present”, deleting a word

which isn’t present [D BANANA] (we don’t have an banana in our

game or the word in the vocabulary) will result in “BANANA is not

present”. Note that PAW takes only up to the first five letters

whenever you refer to a word and ignores the rest.

We will come back to the vocabulary fairly soon, but are going to

tell PAW which words describe our objects first. We may have

described what each object is and how much it weighs and even

where it starts in the game, but we haven’t actually told PAW

which word in its vocabulary refers to which object!

Return to the main menu now so that we can continue with yet

another option.

Object Words

Option W is the table where the words in the vocabulary are

linked to a particular object, again you can only Amend, Print or

LPrint the entries in the table as PAW inserts a blank entry for

each object when you insert its description on the object text

option. So [P] will reveal 8 blank entries for our objects.

The object word table allows both a Noun and an Adjective to be

associated with each object number in the game. Our objects

require the following entries:-

 Object 0 TORCH LIT

 Object 1 BAG _

 Object 2 SANDW _

 Object 3 APPLE _

 Object 4 TICKE _

 Object 5 LEAD _

 Object 6 ANORA _

 Object 7 TORCH UNLIT

This introduces a special word “_” (underscore of underline

depending on your colonial bias) which means (in this case) no

24

Objects

word (“_” is [SYMBOL SHIFT] & [0]). You must always type it in if

there is no adjective to describe the Noun. So for example lit

torch and the bag are amended using [A TORCH LIT] and [A BAG _]

respectively (they are in reverse order to simplify their use

within PAW). Amend these and the other objects entries now so

that we can have a play again.

Play it again...?

This time we will examine the use of diagnostics, so from the

main menu type [T] to select test game and [Y] to request

diagnostics. The title and introduction will appear again along

with a request for input. The request for diagnostics has

apparently had no effect, but if you now press [ENTER] before you

type anything in you should find the cursor dissapear and a line

similar to:

 Flag 38= 0 ?

appear in the bottom of the screen followed by a flashing cursor.

PAW contains 256 of what are known as ‘flags’, each flag can be

used to contain a number from 0 to 255 and are used to indicate

(or flag!) the state of some part of the game. e.g. You could

decide that flag 11 when set to 1 meant that the park gate was

closed and when set to 0 meant it was open, we will see examples

of the way flags can be set and used in the next section.

PAW has set aside several of the flags to indicate specific

things (flags 0 to 10 and 29 to 59 actually). The value displayed

on the bottom of the screen is the contents of flag 38 which PAW

knows is your current location (- in this case). To see this go

back tot he input prompt by pressing [ENTER] (ENTER ‘toggles’

between diagnostics and input if you haven’t typed anything else)

and move to the start of the game properly using [NORTH] (or

whichever direction you used in the connections table for

location 0). Again before typing anything on the new input line

press [ENTER] to get diagnostics and the line:

 Flag 38= 2 ?

should be displayed, because you are now at location 2 (the bus

stop). You can look at the values of other flags by typing their

number before pressing ENTER, try [100 ENTER] to look at flag

100, which will display:

 Flag 100= 0 ?

A very powerful feature allows you to set the value of a flag by

putting = in front of the number, try [=10 ENTER] and the line

should be redisplayed as:

 Flag 100= 10 ?

25

Objects

Flag 100 does nothing in our game and its value is unimportant

but if you decide to practice on your own do not change the

values of any other flags for the moment or you may get some

funny effects if you happen on a flag which is important. Return

to the input line when you have finished (press [ENTER]) so that

we can see what else PAW can do.

We should now be able to manipulate the objects in the game, at

the moment the bag will be at the bus stop with us, we will be

carrying the sandwich, apple, unlit torch and wearing the anorak.

Use the diagnostics to look at the value in flag 1

([ENTER 1 ENTER]) this has the value of 3, which is the number of

objects carried but not worn, return to the input line and type

[GET BAG], PAW will print the message “I now have the bag.”,

which is known as auto-reporting (PAW automatically reports any

action it has carried out). This command has caused the current

position of the bag to be changed from location 2 (the bus stop)

to ‘location’ 254 (carried), note that no change has occurred to

the initially at table in the database only to a copy which was

made when the game started. If you look at the value of flag 1

again (notice how the flag you looked at last is displayed when

you reselect diagnostics) you should find it has been increased

to 4.

Now try [REMOVE ANORAK] and the report “I can’t remove the

anorak, my hands are full” will be printed. This is because PAW

initially (by default in other words) allows the player to carry

only four objects at any one time, this logically must prevent

the player from taking off clothing etc (actually removing is

changing an objects position from location 254 to location 253!)

Try [DROP BAG] and then [REMOVE ANORAK] again, this time you

should be able to do so. Look again at flag 1 and you should

discover it is still four – this is because removing the anorak

has increased the number of things you have in your ‘hands’.

Try the following and see if you can work out why they do what

they do:

 GET BAG

 REMOVE ANORAK

 WEAR ANORAK

 GET APPLE

 GET TICKET

Notice that all except the last report actually mentioned the

objects by name, this is because they were in plain sight and

thus the player would know they existed. But to a player who did

not know the game, the ticket has not yet been found and to

26

Objects

mention it by name would imply that it existed or that there was

only one in the whole game thus giving a clue!

If you try and put anything in the bag you will find that PAW

drops that objects instead. This is because we haven’t yet told

PAW what can be put in the bag only that the bag is a container,

the next chapter deals with this subject.

Finally we will find a ‘bug’ in our game; type [GET GATE] which

will result in “There isn’t one of those here”. It shouldn’t say

that because the description says there is a gate here!

The problem arises because although we told PAW about the apple

the sandwich, the torch and so on, we didn’t tell it about the

gate, if you use GET (or DROP,WEAR and REMOVE) with any word

which is not in the vocabulary then PAW assumes it is an object

which is ‘not here’. Of course once the word is in the

vocabulary, PAW will know it isn’t an object (if there is no

entry for the word in the object word table) and report “I can’t

do that.” which is correct.

So go back to the editor main menu ([QUIT ENTER Y ENTER N ENTER])

and select the vocabulary option [V]. The extra Nouns we require

are as follows:

 GATE 57

 RAILI(NGS) 58

 GRASS 59

 PATH 60

 BENCH 61

 POND 62

 BANDS(TAND) 63

 IRON 63

 TREE 64

 BRANC(H) 64

 LEAF 64

Notice how all the ways the player can refer to the tree are

catered for, we have no intention of allowing the manipulation of

leaves or the branch, but if you did you would need to give them

separate word values – this is an important design consideration.

You might like to test the game again to ensure that GET GATE

does indeed produce the correct response.

We have now dealt with; creating locations and connecting them

together, creating and describing objects, assigning them a word

from the vocabulary, a starting point in the game, a relative

weight, flagging if they are wearable (and removable) and if they

are a container. The next chapter goes on to create problems and

characters to make the game world a more interesting place by

allowing the player to do things!

27

Process & Response

Process & Response

We now come to the section of PAW which allows the problems and

characters in the game to be created.

The Response table

The response table is option R on the main menu and is a special

form of what PAW terms a process table. A process table can be

thought of as a simple sequential (it does each command in turn)

programming language, the commands which are carried out are

called ‘CondActs’ because they can be divided mainly into two

groups; Conditions and Actions.

Earlier we mentioned that the parser in PAW breaks sentences down

into phrases, which are then organised into what is known as a LS

(logical sentence). In the case of directions like NORTH (which

sare LS’s on their own) it uses the connections table to discover

where (if at all) it should move the player to. Before it does

that however it carries out a check against the response table to

see if that table contains an entry which can deal with the LS,

i.e. give a response to part of/entire command the player

originally typed.

Every possible phrase the player types and therefore every LS

that your game will respond to, will have a corresponding entry

in the response table, except for most movements which you set in

the connections table.

The most important part of a LS is the Verb, this shows the

purpose of the LS, next most important is the first Noun whic

shows the subject of the LS; e.g. GET APPLE, GET is the purpose

and APPLE is the subject.

If you now select the response table option from the main menu by

typing [R] you will be presented with the sub—menu to deal with

this table.

Type [P] to look at the table. For the moment ignore the other

entries and consider the first entry only:

 I _ INVEN

the two words indicate the Verb and Noun respectively of the LS

that this entry can deal with. Now I is a conversion noun (as we

saw in the section on vocabulary) which means if it is the only

word the player types in a phrase, it will become the Verb for

the LS. The underline (_) indicates that the Noun is not

important in this entry – a bit like a ‘no word’ in the object

word table. What this means in simple terms is that if the player

types I on its own PAW will match it up with the first entry in

the response table and carry out that entry as described next.

28

Process & Response

In order to carry out the entry, PAW will execute each of the

condacts (commands) in the list which follows. Now the first

entry contains only one condact;

INVEN is an action (the act part of the word condact!). It is an

action because is carries out the act of listing the objects the

player is carrying and wearing on the screen, you do not need to

worry how INVEN does this it just does.

When you typed I (or INVENTORY which is synonymous remember)

during testing the game, it was this entry in response that

caused something to happen because a logical sentence of “I _”

was created by the parser, which PAW then found matched the first

entry in the response table.

INVEN once it has listed any objects you are carrying, instructs

PAW it has ‘done’ something, when PAW discovers this is asks the

parser for another LS, which the parser provides by decoding the

next phrase int he players input, PAW gets this LS and checks it

against the entries in response and so on. this ‘loop’ is shown

in diagram 4 in the form of a flowchart which you should follow

from the box marked ‘start’. The loop is slightly more complex

than the diagram might lead you to believe and a complete one is

given in the technical guide, but diagram 4 will do for now.

We advise you reread the above paragraphs and study the diagram

until you are happy with the way PAW operates on LS’s before

proceeding.

Let’s consider the second entry in response:

 GET I INVEN

as you might have worked out this entry deals with the phrase

TAKE INVENTORY (GET is a synonym of TAKE, I is a synonym of

INVENTORY and PAW always prints the shortest synonym) this deals

with another way the player might request a list of the objects

he has with him.

We will skip the next few entreis (you will have to press a key –

except for BREAK, SPACE of N – to get the next screen full of

text at this point) and move onto:

 QUIT _ QUIT

 TURNS

 END

Now, QUIT is a Verb in the vocabulary, so, as the minimum valid

phrase is a Verb, if QUIT is typed on its own by the player then

the parser will generate a LS of “QUIT _”, on searching through

the response table PAW will find the above entry and start to

carry out the condacts which follow;

29

Process & Response

 Start

Get input

from

player

Lock for

valid

phrase

Create

Logical

Sentence

Search

Response

Table

Found?

Diagram 4

..... Parser used here.

No

Yes

..... For entry

 to match

 the LS. .

 .

 .

 .

 .

 .

Found?

Search

Response

Table

Carry out

CondActs

until DONE

Found?

Search

Response

Table

No

Yes

30

Process & Response

QUIT is a condition, (the cond part of the word condact), do not

confuse the Verb QUIT in the vocabulary with the condition QUIT,

if you were to make STOP a synonym of QUIT and then delete the

qord QUIT from the vocabulary then the player would have to type

STOP to end the game, but the condition QUIT would still be

carried out i.e. the entry would then read:

 STOP _ QUIT

 TURNS

 END

A condition merely decides if PAW should carry out the next

condact in the list. QUIT determines if the next condact should

be carried out by asking the player “Are you sure?”. If they

reply “NO” then QUIT tells PAW it has ‘done’ something which

causes PAW to go and get another LS (i.e. it stops the QUIT) this

is slightly different to the normal way a condition works as you

will see later. If the player types “YES” then QUIT does nothing

and allows PAW to look at the next condact in sequence which is

TURNS.

TURNS is an action, which prints “You have taken x turn(s).” on

the screen where x is the number of phrases that PAW has carried

out since the player started the game. Despite the fact it has

done something it does not tell PAW to stop looking at condacts

which proceeds to look at the next condact END.

END is a special action, which prints “Would you like another

go?” on the screen. If the player types “YES” then END will cause

the game to be restarted with all objects restored to their

required position and so on. Otherwise END causes an “OK” error

to be generated which will return you to the editor menu of PAW.

If the editor menu of PAW isn’t present (i.e. a finished game)

then the computer will reset.

Note that you should always have an END action somewhere in the

game (if you should happen to remove the QUIT entry that is) or

you may not be able to return to the editor section very easily –

you would have to use the BREAK key which only works while PAW is

processing, and as you found out earlier PAW is so fast that

catching it doing something isn’t that easy!

The other entries which are present int he database deal with a

number of other standard commands which the player of an

adventure will usually need. The condacts used in the other

entries are discussed below. You may be wondering why these

entries are in the table and not part of PAW if they are needed

in every game. Well apart from the fact it is easier to make them

a table entry, your game might not need them and as they are a

table entry they can be deleted.

DESC is an action, used by the “R _” entry int he table which

causes PAW to abandon scanning the response table and reDESCribe

31

Process & Response

the current location of the player.

SAVE and LOAD are two actions which allow the current state of

the game to be saved and reloaded from tape, the current game

position includes every piece of information needed to restore

the game after a LOAD to exactly the same position it was before

the SAVE and includes the values of flags, position of objects

plus sundry other information. Again do not confuse the Verbs

SAVE and LOAD in vocabulary with the actions SAVE and LOAD. You

could equally as well use STORE and RECAL(L) as your vocabulary

Verbs but they would still use the SAVE and LOAD actions in the

response table. Note that both SAVE and LOAD effectively do a

DESC action when they have finished which means any condacts

which follow will be ignored and that they also cause any further

phrases in a players input to be ignored.

RAMSAVE and RAMLOAD are two actions similar to SAVE and LOAD,

except that they use a ‘buffer’ (area of free memory) to store

the game position, this means that there is no need for the

player to fiddle about with tapes. Only one position can be

stored and as it is stored in memory it will be lost if the

computer is turned off, this should be made clear to the player.

Note that the buffer area is lost when you return to the editor

section of PAW because you might change the design of the game in

between two tests! The number after RAMLOAD is a parameter and

tells the condact how many of the flags to restore from the

previous RAMSAVE, this allows scores etc to be maintained even if

the player ‘cheats’ by using RAMSAVE and RAMLOAD in a difficult

part of the game. They are both followed by a DESC action as

unlike SAVE and LOAD they just continue onto the next condact.

If PAW runs out of condacts in a list without being told it has

DONE something it will ‘drop off’ the end and realizing this will

continue to search response for another matching LS. We also said

that QUIT was a bit different to normal conditions, well for a

start it is the only condition which asks the player for

information and secondly it tells PAW something has been done if

the player replies “NO” (they don’t want to abandon the game)

which causes PAW to get a new LS. A normal condition if it

‘failed’ would merely cause PAW to continue searching the

response table for another entry matching the LS.

The other condacts which are used will be considered now in

relation to the entries they are part of. To simplify our

explanation we can consider the position of an object to be one

of four places;

HERE: The current location of the player (the value stored in

flag 38 if you remember).

CARRIED: ‘location’ 254, the imaginary location which is where

all objects the player is carrying are stored.

32

Process & Response

WORN: ‘location’ 253, the imaginary location which is where

all objects the player is wearing are stored.

NOTHERE: Anywhere else! This may also include ‘location’ 252

which is the imaginary location where any objects which

do not yet ‘exist’ within the game are stored.

Take the following two entries in the response table:

 GET ALL DOALL 255

 GET _ AUTOG

 DONE

these two entries allow the player to GET an object. GETting an

object involves changing its location from HERE to CARRIED.

Ignoring the GET ALL for a moment let us look at the GET _ entry,

as we said earlier underline means ‘any word’ so no matter what

Noun the player types in, in the phrase containing the GET the

GET _ entry will match (this is called triggering the entry).

Take the phrase GET THE APPLE; THE will be ignored because it is

now in PAW’s vocabulary, so the LS will be “GET APPLE”, this will

‘trigger’ the GET _ entry resulting in PAW looking at condact;

AUTOG is an action which AUTOmatically Gets the object specified

by the Noun. This is where the object word table comes into

effect, AUTOG looks through the object work table for an entry

which matches the Noun in the LS, when it finds one (APPLE in the

example) it then knows the number of the object it refers to (the

apple is object 3), it then ensures that the current location of

that object number is HERE and if so changes it to CARRIED and

prints the message “I now have the _.” when the underline is

replaced with the description of the current object. i.e. the one

AUTOG just looked up. If it does not succeed in finding an entry

then there are five possibilities;

1/ The player has tried to get an object which they are

already carrying or wearing in which case “I already have

the _.” is displayed.

2/ The player has tried to get an object which is NOTHERE in

which case “There isn’t one of those here.” is displayed.

3/ The player has tried to get something which is not an

object but does have a word in the vocabulary (e.g. GATE in

the demo game) this results in “I can’t do that.”.

4/ The player has used a word which is not in the vocabulary

which cause the parser to create a LS of “GET _” which

triggers our GET _ entry anyway. AUTOG assumes this to be a

Noun describing an object (which may or may not exist) and

displays “There isn’t one of those here.”.

33

Process & Response

5/ The player is unable to carry any more objects or this

object would cause the weight limit to be exceeded in which

case a suitable message is displayed.

If AUGOG succeeds then PAW looks at the next condact DONE;

DONE merely tells PAW that this entry is finished and it should

go and get another LS.

Next we will look at the GET ALL entry, you may have guessed what

this does (it attempts to GET all objects at the current

location), so we shall explain the mechanism;

Should the player type the phrase GET ALL, the parser will create

a logical sentence of “GET ALL”, which will match the entry and

cause PAW to look at the DOALL section;

DOALL is an action which is followed by a parameter which gives a

location number to use. DOALL looks through the current location

list for each object looking for entries that are at the same

location as the parameter (which in this case is 255, a special

location which means that the current location of the player

should be used instead), when it finds one it looks in the

object word table to find the vocabulary word which describes

that object number, this is placed in the current LS (thus

replacing the Noun ALL), a flag is set to indicate that DOALL is

active and the rest of the response is scanned by PAW for an

entry which matches the newly modified LS. This will be the GET _

entry discussed earlier, which will GET that object. Once this

has been done PAW will discover that DOALL is active and go back

to the GET ALL entry (actually it goes direct to the DOALL

action) and allows DOALL to look for another object which

generates a new LS and so on for all objects at the specified

location. When DOALL runs out of objects it resets the flag to

show it is not active and tells PAW to get a new LS.

This may seem a rather roundabout way to approach this task, but

if you examine the very similar DROP,WEAR and REMOVE entries you

will see that the same mechanism is used to create all four

commands. AUTOD, AUTOW and AUTOR work in a very similar way to

AUTOG while DOALL merely uses location; 254 (CARRIED) as the

parameter for DROP and WEAR (i.e. DOALL searches all the CARRIED

objects when you try to DROP or WEAR ALL!) and 253 (WORN) when

you try to REMOVE ALL.

If the above seemed a bit heavy going don’t worry about it for

now as DOALL is one of the two most complex condacts in PAW and

hopefully the penny will drop as we continue. At this point you

might like to use the test adventure option and try out the ‘all’

commands which may make the mechanism clearer.

34

Process & Response

Messages

Before we continue with the response table we will insert some

entries in another table which will be needed. So return to the

main menu and select option M for messages.

Messages should be a breath of fresh air after that discussion of

the response table, the sub-menu provides options very similar to

the location and object description menus, the purpose of

messages is to contain all the text which will be displayed to

describe what is happening in the game to the player, excluding

the messages that PAW itself displays (like “I can’t do that.”

etc). If you use option P you shouldn’t be surprised to discover

that an entry already exists.

We are going to deal with the player wanting to examine things in

the game, e.g. EXAMINE APPLE. Now examining an object merely

requires the writer to provide a message which gives more

information about the specified object, so in the case of the

apple we could say “The apple is crisp and green.”. Change the

text of the message 0 to read that ([A 0 ENTER]), and then insert

the following messages to deal with some of the other things in

the game;

 Message 1

 It’s a cheese and pickle sandwich.

 Message 2

 The ticket has “City Bus Company” printed on it.

 Message 3

 The bench is firmly screwed to a concrete base.

We are goin got deal with only four items in the demo game but in

a large game you would usually provide detail for most things,

even if they serve no purpose it provides a touch of realism

which always makes the player feel involved.

So back to the response table (option R from the main menu) and

start work. Let’s take the apple first; the phrase which the

player will type will be EXAMINE THE APPLE (or EXAMI APPLE if

they are lazy!) producing a LS of “EXAMI APPLE”. So we need to

insert an entry with these two words.

First type [I EXAMINE APPLE ENTER], PAW will ignore the extra

letters and print the entry at the top of a clear screen and wait

for you to type in the list of condacts for that entry. Now we

must only allow th player to examine the apple if it is actually

HERE, CARRIED or WORN (most normal people have a distinct

disability at looking round corners or through walls!), this is

35

Process & Response

collectively known as present and can be checked for using the

condition PRESENT followed by the number of the object we are

considering (the apple is object 3). If the object is indeed

present then we can display our message (0) which describes the

object, using the action MESSAGE which is followed by the number

of the message you want to display. Finally we top it off with a

DONE action to tell PAW that we have completed the task.

So type [PRESENT 3 MESSAGE 0 DONE ENTER] which will result in the

message “Inserted.” being displayed by PAW. Now press a key to

get back to the sub menu and use [P EXAMINE] to examine our new

entry (the brackets about the parameters show they are optional,

so you can use P to see the table from the start, P followed by a

Verb to see entries from that Verb on, or P followed by a Verb

and Noun to see all entries from that Verb and Noun on). The

entry should look like;

 LOOK APPLE PRESENT 3

 MESSAGE 0

 DONE

PAW has found the synonym LOOK and printed it because it is

shorter than EXAMI(NE). This is a classic example of a response

table entry because if the condition PRESENT 3 fails then PAW

will continue to look for an entry to match the LS, in this case

it will find the next entry displayed which is LOOK _, this entry

will trigger and describe the current location (the DESC action),

after the PLUS action has added 128 to flag 29, which causes PAW

to redraw any picture at the location as well as display its

description this will be covered in more detail in the section on

graphics. Assuming that the APPLE is indeed present then PAW will

continue with the condacts and display our description of the

apple (MESSAGE 0) the DONE action tells PAW to go and get another

LS because we have done something – this prevents the LOOK _

entry triggering as well.

If the entry should be incorrect you can amend it by typing A

LOOK APPLE, with process tables however there may be more than

one entry with the same word values, these will be presented in

turn for possible amending – just press ENTER to leave an entry

as it is. To delete an entry entirely from the table remove all

its condacts. i.e. Amend the entry and press EDIT twice to clear

the buffer and then press ENTER.

So at the moment if the player tries to EXAMINE anything except

the apple (or tries to EXAMINE APPLE when it isn’t rpesent) they

will be rewarded with a fresh description of their current

location. Let’s insert the entries to deal with the sandwich,

ticket and bench – the entries are listed as you would see them

if you used P after they are typed in, along with some comments

for your reference only, you must still enter them as you did the

EXAMINE APPLE entry earlier.

36

Process & Response

 LOOK SANDW PRESENT 2 ; The sandwich is here

 MESSAGE 1 ;Describe it

 DONE

 LOOK TICKE PRESENT 4 ;The ticket is here

 MESSAGE 2

 DONE

 LOOK BENCH AT 4 ;The bench isn’t an object

 MESSAGE 3 ;so check location

 DONE

AT is a condition which is followed by a location number which

will succeed (i.e. allow PAW to continue onto the next condact)

if the player is at the same location, this was used because the

bench was not an object, but as it is part of the description for

location 4 it will always be there!

Use test adventure to check that you can examine these four items

correctly and that the location is described at any other time.

The Process Tables

We shall now turn our attention to the most powerful writing

option on the main menu; the Process table.

It was stated earlier that the response table was a special form

of process table, and indeed it is, if you select option P from

the main menu you will be presented with a similar sub-menu to

that for the response except it has two extra options. Note that

the title says “Process 2”, this is because there is more than

one process table in PAW, indeed there can be upto 254 process

tables as we shall see.

There are two process tables in the database to start with, just

like response PAW scans through them, but, unlike response, it

scans them not after obtaining a LS, but;

Process 1 is scanned immediately after PAW has described a

location. This allows information to be printed only

once when the player first arrives at a location or

when he requests a redescribe.

Process 2 just before requesting a new LS from the parser. This

is used to provide PAWs ‘turn’ at the game.

The main difference being that it does not attempt to match the

LS against each entry looking for a match, it does every single

one!

So far while playing our demo game we have had to end the game by

typing QUIT. Now the original storyline (if you can remember that

37

Process & Response

far back!) was to help the passenger fidn the ticket before the

bus arrived. Now we obviously could have an entry in response

which if the player said GET TICKET (and it was present) could

trigger the end of game e.g.

 GET TICKE PRESENT 4 ;The ticket is here

 TURNS

 END ;That’s all folks!

but wouldn’t it be much better to finish the game when the player

gets back to the bus stop?

We shall do so, ut, first we need a message to describe the

arrival of the bus, so return to the main menu and select

messages (option M) and insert the following message;

 Message 4

 The bus arrives. I hand the ticket to the driver who

smiles and says “Sorry I’m late, hope you haven’t been

standing too long?”.

Back we go to the Process menu. Now although the words have no

meaning to PAW they can usefully be used as a comment on what the

entry does “_ BUS” (we must start with _ as PAW only allows the

NOUN BUS in the Noun position). So type [I _ BUS ENTER] to insert

the entry (PAW has actually inserted a null entry now and if you

press [CURSOR DOWN CURSOR DOWN] to abandon the entry, you will

have to [A _ BUS ENTER] to complete the entry). The conditions

for the end of the game are that the player is at the bus stop

(location 2) and is carrying the ticket (object 4). The first

condition of course will be AT 2, the other can be checked with

CARRIED 4 (pretty unusual names these conditions have...) so the

final entry will be;

 AT 2 CARRIED 4 MESSAGE 4 TURNS END

pressing [ENTER] will complete the insert/amend. Use [P] to

ensure the entry looks as follows;

 _ BUS AT 2

 CARRIED 4

 MESSAGE 4

 TURNS

 END

this entry will now be scanned just before PAW gets a new LS and

as soon as both conditions are met the game will end independent

of the commands the player uses to get to the bus stop with the

ticket!

Select process 1 by typing [S 1 ENTER] and use [P] to examine the

38

Process & Response

entries that are present, they are;

 * _ NEWLINE

 ZERO 0

 ABSENT 0

 LISTOBJ

 * _ PRESENT 0

 LISTOBJ

The asterisk ‘*’ is an ‘any-word’ word like ‘_’ with a subtle

difference; Whenever PAW inserts entries in a process table

(including response) it inserts them in order of word value of

the Verb and then the Noin (i.e. all entries dealing with one

type of Verb will follow each other in ascending order of Noun

value). PAW considers underline “_” to be a word of value 255 (it

will always be the last entry) and asterisk “*” to be a word of

value 1 (it will always be the first entry). The position of

entries in process tables can be important for example the two

entries shown must always be done soon after a location

description has been printed so we use an asterisk to ensure they

will be close to the start of the table (the use of underline as

the Noun allows entries to be inserted before them as we will do

in a moment).

Back to why these two entries are present (always getting

sidetracked, so much to tell!). Because PAW does every entry in

Process 1 and 2 (you might spot that it would do anyway even if

not forced to as the * _ entries would match any LS the player

typed!) the first action NEWLINE will always be executed;

NEWLINE prints spaces to the end of the current line as opposed

to just starting a newline as CHR$(13) does on a Spectrum. This

allows areas of Paper colour to continue to the end of the line

without having to type the spaces. It’s main purpose here is to

ensure that any text displayed will be on a new line because PAW

does not start one at the end of displaying a location

description, the technical guide shows how to use this to good

effect to modify the location description to reflect changes in

the location.

From now on the two entries must be considered as a pair, their

ultimate purpose is to list the objects at the current location,

first a bit of background information.

PAW uses flag zero to determine if there is light for the player

to see by (this feature is not used at the moment in our demo

game), if there is no light the flag will have a value other than

zero and PAW will say “It’s too dark to see anything.” instead of

the description for the location. In this case the objects that

are present must not be listed.

Object 0 is assumed by PAW to be an object which provides light

39

Process & Response

which is why object 0 in our demo is a lit torch. If this is

present while the game is ‘dark’ (flag 0 in non zero) then it

will override the darkness and so the objects must be described.

The two entries provide an example of using PAW to create an OR

situation i.e. List the objects if it is light OR if object zero

is present;

ZERO is the first condition we have met which tests the state of

a flag. ZERO 0 will succeed if flag zero contains 0 which means

there if light.

ABSENT ensures that Object 0 is not present (opposite of PRESENT

condition – all conditions have an opposite, e.g. AT has an

opposite of NOTAT and so on.), the next * _ entry lists the

objects if object 0 (the source of light) is present so we do not

want this entry to succeed as well (i.e. This deals with the

situation of it being light and object 0 being present which

would otherwise list the objects twice!).

LISTOBJ lists any objects that are present at the players current

location, if none are present it does nothing – it would look a

bit silly saying “I can also see nothing.”!

Think about the above as it represents a fairly useful feature of

PAW which you may well need to adapt for use in your own games.

Right, now we shall reveal the better way of getting from the

introduction screen to the start of the game at the bus stop:

 * * AT 0

 ANYKEY

 GOTO 2

 DESC

Insert this in to Process 1 (ensure you still have it selected)

using [I * * ENTER] and [AT 0 ANYKEY GOTO 2 DESC]. This uses two

new condacts ANYKEY and GOTO which are both actions;

ANYKEY prints “Press any key to continue.” in the bottom section

of the screen and waits for you to press a key, it then allows

PAW to continue onto the next condact.

GOTO is followed by a location number and moves the player to

that location, it effectively sets flag 38 (players current

location) to the value given, it does nothing else so it is

followed by a DESCribe to get PAW to display the new description.

This entry thus causes the title screen to be displayed (when PAW

displays the first location description), a wait for a key and

then the game itself is started at the correct location.

You might like to go to the connections table and remove the

40

Process & Response

entry for NORTH in location 0 as this is not needed now.

Use test game to see the above two entries in action. The

following input while at location 2 (the bus stop) will ‘solve’

the game in one go:

 GO WEST, WEST AND UP. GET THE TICKET. GO DOWN,EAST AND EAST.

You should then get the finishing message and an option to play

again. If not check the entries in Process tables 1 and 2

thoroughly.

Let’s have a break and go back to deal with the ability of the

bag to contain objects. Thought we had forgotten about that,

didn’t you? Well we nearly did. This will require some entries in

the response table and we are going to allow the player to LOOK

IN BAG, so we need a new message “In the bag in:”, select the

messages option and insert this (it should be message 5) then

select the response table. We are going to provide the player

with the option of saying PUT ALL IN BAG as well as PUT object IN

BAG. We can use exactly the same system as GET/DROP ALL discussed

earlier. PUT is a synonym of DROP (which takes care of DROP

TICKET IN BAG and such similar phrases), so the LS we must check

for will be PUT _ (i.e. player is trying to put or drop

something), now if the player includes IN BAG as part of the

phrase we want PAW to put the object in the BAG. This means we

must override the PUT _ entry already present, and if the extra

words are included in the LS put the specified object in the bag.

To insert this entry before the one already present requires the

use of an extra option. Normally PAW would insert another entry

with the same word values after any already present, it is

possible to force this by specifying a number after the insert,

try [I PUT _ 0 ENTER], this instructs PAW to place the entry

before entry number 1 (which is the existing PUT _ entry). Now

the condacts we need are:

 PREP IN NOUN2 BAG PRESENT 1 AUTOP 1 DONE

This shows how we check for an extended LS (i.e. ensuring certain

parts of the phrase were what we need).

PREP is a condition which is followed by a preposition from the

vocabulary. Prepositions are words used before a Noun to show its

relation to another word in the phrase, in this case the

condition will succeed if the player has used IN as part of the

phrase.

NOUN2 is a condition which is followed by a Noun from the

vocabulary. This will succeed if the player has used BAG in the

phrase. Combined with the previous entry it effectively stops PAW

looking at the condacts unless the LS was PUT _ IN BAG where the

underline is any object.

41

Process & Response

AUTOP is followed by a location number. Now we set aside location

1 for a special purpose early on in the tutorial, this is it, it

is used as the inside of the bag! SO AUTOP just like AUTOD scans

the object word table for a Noun which matches the current first

Noun in the LS, when it has found one it places it at the

location given, reporting “I have put the _ in the bag.”!

The DROP ALL entry which exists will also work to deal with PUT

ALL IN BAG, because it does not ensure that IN BAG is part of the

LS and will trigger on both occasions, and in both cases 254 is

the location the objects will be coming from.

Now for a GET object OUT OF BAG type command we need an entry

similar to the above to override the GET _ entry which is present

so insert the following using [I GET _ 0 ENTER]:

 PREP OUT NOUN2 BAG PRESENT 1 AUTOT 1 DONE

AUTOT is followed by a location number which shows where the

object to TAKEOUT will come from.

The implementation of an ALL version of the commands needs an

entry of its own, at the moment GET ALL causes a DOALL 255 which

is the current position of the player to be carried out, in order

to get all from the bag we need to generate all the objects that

are inside it (location 1), so insert a GET ALL entry to override

the existing one thus; [I GET ALL 0 ENTER]:

 PREP OUT NOUN2 BAG DOALL 1

Before you test the game we will insert the entry that allows the

player to LOOK IN THE BAG the entry needed is as followed (note

it will be positioned in a suitable place anyway so there is no

need to specify a number after it when inserting).

 LOOK BAG PREP IN

 MESSAGE 5

 LISTAT 1

 DONE

LISTAT is followed by a location number and lists any objects

present at that location, note that if no objects are present it

will print “nothing.” so the above would result in:

 In the bag is:

 nothing.

which is correct, unlike LISTOBJ which because of its main use

does not print anything at all in that situation.

So use test adventure to ensure that you can indeed PUT ALL IN

BAG and GET object OUT OF BAG etc.

42

The Bird

The Bird

The tutorial game is a little bit simple to solve so we shall add

some complexity in the form of puzzles by creating two characters

to wander round our little world. These are termed ‘Pseudo-

Intelligences’ (PSIs for short) because they cannot obviously

think, but must appear to do so to the player. A PSI consists

mainly of a collection of messages, flags and process table

entries, but even a few simple entries can create a surprisingly

realistic effect. Creating a complex PSI of say a human can take

a fair bit of thought, but follows the same principles as we will

take with our two PSIs; a bird and a dog.

The bird will complicate the scenario as follows; The bird will

have the ticket at the start of the game (normally you would

assign an unused location to contain the birds objects, but we

will use location 252 – object does not exist in game – as we

have only one PSI that can have an object). This means you must

persuade the bird to drop the ticket, trying to GET it will

result in an “I can’t do that” message and the bird flying away.

The bird also flies between the Bandstand and the Tree Branch at

regular intervals. The way to get the bird to drop the ticket

will be to drop the sandwich at the same location. So lets get

that little lot working first.

To save flicking back and forth between tables change Object 4 to

be not-created using [I] Initially at now. This makes the ticket

a does not exist object which we are using to indicate it is in

the birds beak. Insert the Nouns DOG and BIRD in the vocabulary

with word values 21 and 22 respectively – ensure DOG is 21 and

BIRD is 22 as their word values will be used to position the

entries in process correctly. Then insert the following messages

which will be needed. Make them use green ink (EXTENDED MODE,

CAPS SHIFT & 4) – not forgetting to reset ink white (EXTENDED

MODE, CAPS SHIFT & 7) at the end of each one.

 Message 6

 The bird drops the ticket to peck at the sandwich.

 Message 7

 The bird snatches the ticket.

 Message 8

 The bird ignores me.

 Message 9

 A small bird is here.

43

The Bird

 Message 10

 The bird has a ticket in its beak.

 Message 11

 A small bird settles on the ground.

 Message 12

 A small bird lands on the branch.

 Message 13

 The bird sees the dog and flutters away quickly.

 Message 14

 The bird flies away.

We will insert the messages to deal with the dog later. So select

the Process tables option and get ready for an ear bending on yet

another feature of PAW.

In a large game which contains several PSIs and a lot of

background action, Process tables 1 and 2 soon become so full of

entries it is nigh on impossible to work out what they do. Enter

stage left the other process tables to the rescue, these can be

‘called’ from Process 1,2 or Response and used as an extension of

the table they are called from. Calling a process causes PAW to

save where it is at the moment and shift the action to the

indicated table. i.e. if called from Response PAW will try and

match the LS against each entry and if called from Process 1 or 2

PAW will do each entry. Note that when something is DONE in the

called process, then PAW will still shift back to the original

table, so some very powerful things can be achieved with

thoughtful use of these sub-process’. Users who program in other

languages will recognise this as a ‘subroutine’.

While PAW is in a sub-process it is quite possible for it to be

asked to call yet another sub-process – a sub-sub-process? and so

on down to a sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-process!

called ‘nesting’ a call, attempts to go further will result in an

error “Limit Reached” although you will be provided with

diagnostic information as well is you are testing the game from

the PAW’s editor section – see technical guide for details.

We are not going to use anything like that here, only a sedate

sub-process. This will contain all the entries to deal with teh

birds activities.

44

The Bird

Use [B] to begin a new process table, PAW will allocate the next

available number as in other menu options. You should be starting

process 3. As there will only be a few entries in the table we

will use the same word pair (“_ BIRD”) although when writing your

own games you may find using other words useful to remind you of

each entries function.

Flag 11 will be a ‘working’ flag to contain a value for use in a

comparison.

Flag 12 will contain the current location number of the bird.

Flag 5 is a special flag which if it has a value other than zero

PAW will reduce by one whenever is scans process 2 – this is

called an auto decrement flag. In this case it is user to count

the number of ‘time frames’ that have passed in the game, a time

frame is a single time round the big loop shown in diagram 4, and

at the moment this is done before every phrase the player types.

The bird will change location every three phrases on behalf of

the player which will create the appearance of action in the game

independent of the players input.

Now insert the following entries, without the comments as before

each entry is preceded by an explanation of its purpose and any

new condacts it uses:

First determine if the bird is going to fly away this time

through the table, this is indicated by flag five beign zero (as

it counts down from 3), if the ticket is at the same location as

the bird it will be destroyed (i.e. put at location 252 so the

bird ‘has’ it) and if the player is at the same location as the

bird they will be told that the bird has snatched the ticket.

Note that the bird will continue its cycle of movement even if

the player does not see it, a tree certainly does fall even if

there is no one to see it in PAW!

 _ BIRD COPYOF 4 11 ;Copy location of object 4

 (ticket) to flag 11.

 SAME 11 12 ;and see if it is at the

 same location as the bird.

 ZERO 5 ;Bird going to fly?

 DESTROY 4 ;Bird ‘GETS’ the ticket

 SAME 12 38 ;Bird at same location as

 ;player?

 MESSAGE 7 ;Tell player about it.

Note these is no DONE action as we want PAW to do each entry in

turn, the above entry shows how conditions and actions can be

mixed together to create new conditions.

COPYOF is an action followed by an object number and a flag, it

copies the current location of the specified object to the

specified flag. We use it in this situation to see if the ticket

45

The Bird

is at the same location as the bird by following it with;

SAME is a condition which compares the contents of the two flags

and succeeds if they are the same.

DESTROY is an action which places the specified object at

location 252, the not-created location.

Now deal with the two possible movements of the bird. If the bird

is at the bandstand and flag five has reached zero then move the

bird, set flag 5 to 3 again and tell the player the bird is gone

if they were at the same location. Vice Versa if the bird is on

the branch.

 _ BIRD EQ 12 8 ;Bird on branch?

 ZERO 5 ;Time to fly?

 LET 12 5 ;Move bird to bandstand

 LET 5 3 ;Three phrases ‘till move

 AT 8 ;Player here as well?

 MESSAGE 14 ;tell them bird has flown

 _ BIRD EQ 12 5 ;Bird on bandstand

 ZERO 5 ;Time to fly?

 LET 12 8 ;Move to branch

 LET 5 3 ;Three phrases ‘till move

 AT 5 ;Player here as well?

 MESSAGE 14 ;tell them...

EQ is a condition which is followed by a flag number and a value

and will succeed if the flag contains the value, in this case it

is checking if the bird is at a specified location.

LET is an action which is followed by a flag and a value. It sets

the flag to the value.

Now we have dealt with the birds departure, next we must deal

with its arrival, and if it arrives in a location which contains

the player tell them about it.

 _ BIRD EQ 5 3 ;Bird just flown?

 SAME 12 38 ;Now at players location?

 AT 5 ;On bandstand?

 MESSAGE 11 ;landed on ground

 _ BIRD EQ 5 3 ;Bird just flown?

 SAME 12 38 ;Now at players location?

 AT 8 ;On branch?

 MESSAGE 12 ;landed on branch

Now if the bird has the ticket in its beak we must tell the

player.

46

The Bird

 _ BIRD EQ 5 3

 SAME 12 38

 ISAT 4 252 ;Ticket not-created?

 MESSAGE 10 ;Has a ticket in beak..

ISAT is a condition followed by an object and a location number

and succeeds if the object is at the specified location.

Finally is the sandwich is at the same location as the bird the

bird will drop the ticket to peck at the sandwich. This entry

does not rely on flag 5 so it will be checked for every time PAW

checks process 2, so even if the player drops the sandwich after

the bird has arrived the correct sequence will still be carried

out.

 _ BIRD COPYOF 2 11 ;Sandwich

 SAME 11 12 ;at same location as bird?

 ISAT 4 252 ;Ticket in beak?

 COPYFO 12 4 ;Put ticket down

 SAME 12 38 ;Player here as well?

 MESSAGE 6 ;tell them...

COPYFO is an action which copies the contents of the specified

flag to the current location of the specified object. There are

also COPYFF and COPYOO actions which you can probably guess the

purpose of.

That completes the control routine for the bird, but we need an

entry in Process 2 to call this table every time frame, so select

Process table 2 and insert an entry:

 _ BIRD PROCESS 3

which will cause PAW to execute our bird control table every pass

round its main loop.

We must ensure the bird starts at the correct location and that

the player knows the bird is there when the location is described

(or they will see messages about a bird arriving and flying off,

with the description containing no mention of it). So select

Process 1 which is called after a location is described and amend

the existing * * entry we made earlier to contain a LET 12 8,

which will ensure the bird is on the branch at the start of the

game. The modified entry should read thus:

 * * AT 0

 ANYKEY

 LET 12 8 ;Bird is on branch (locno. 8)

 GOTO 2

 DESC

Insert the following entry in the same Process table which tells

the player the bird is present and if it has left the ticket.

47

The Dog

 _ BIRD SAME 12 38

 MESSAGE 9

 ISAT 4 252

 MESSAGE 10

Finally select the Response table option and insert the entry:

 GET TICKE SAME 12 38 ;Bird at same location?

 ISAT 4 252 ;with ticket in beak?

 CLEAR 5 ;Force it to fly away

 NOTDONE ;”I can’t do that”

This will trigger before the GET _ entry and prevent the “There

isn’t one of those here” message being produced if the bird is

present with the ticket.

CLEAR is an action which is followed by a flag number and sets

the flag to have the value 0. This will cause the bird to fly

away (which it might have been going to anyway) simulating its

fright at having a great hand descend on it to get its prized new

possession.

NOTDONE is an action similar to the DONE action but it fools PAW

into thinking that nothing was done and thus causes it to print

the “I can’t do that” message.

Now the moment of truth, upon testing the game you should be able

to watch the bird fly in and out of the bandstand and the branch,

play with the game for a while to see that fact that the bird

does indeed to continue its roving existence. Then try dropping

the sandwich at the same location. Note that if you do not pick

up the ticket before the bird flies away it will snatch the

ticket back.

The Dog

The dog will be added to complicate the game a bit more. The dog

will simply follow the player everywhere (being a very obedient

dog) and frighten the bird off. Now a dog would not be able to

climb the tree so we must prevent the player from tempting the

bird with the sandwich on the branch. To do so we will arrange

for any object dropped while on the branch to fall to the ground.

The player will be able to get rid of the dog by putting the lead

on it and then tying the lead to the bench. In addition the

player will be able to ‘speak’ to the dog which will provide

another way of getting rid of the dog by asking it to SIT or

STAY.

Before we examine the entries in Process and Response needed to

control the dog insert the following words (into vocabulary) and

messages (into the messages table) which will be needed.

48

The Dog

 Verbs Noun

 TIE 34

 UNTIE 35

 SIT 36

 STAY 36

 COME 37 HERE 37

 Message 15

 The _ falls to the ground at the foot of the tree.

Do not change the colour of this message and ensure you include

the underline as it serves a special purpose we will discuss

later. Most of the remainder of the messages deal with the dog

and should be entered in magenta (EXTENDED MODE, CAPS SHIFT & 3)

nto forgetting to reset white at the end of them. do not do this

for messages 21,22,23 and 25. This colour coding allows the

player to see exactly what each message is referring to.

 Message 16

 The dog’s bright eyes stare at me with mindless love.

 Message 17

 A dog is here.

 Message 18

 The dog follows me wagging his tail.

 Message 19

 A lead trails behind the dog.

 Message 20

 The dog is tied to the bench by a lead.

 Message 21

 Trustingly the dog lets me put the lead around its neck.

 Message 22

 I’ve tied the lead to the bench.

 Message 23

 Who should I say it to?

49

The Dog

 Message 24

 The dog is sitting quietly.

 Message 25

 I’ve untied the dog from the bench.

There is no real need to make the control routine for the dog a

separate process table as it is only one entry, but we shall do

so in case you wish to expand the game later.

Flag 13 will contain the current location of the dog.

Flag 14 will contain: 0 – the dog is free to roam, 1 – the dog

has the lead around its neck, 2 – the dog is tied to the bench,

255 – the dog is sitting quietly.

From the Process table menu; Begin a new process table (this

should be table 4) and insert the single entry:

 _ DOG NOTSAME 13 38 ;Dog not where player is?

 LT 14 2 ;Still able to move?

 NOTAT 8 ;Player isn’t up the tree?

 COPYFF 38 13 ;Move the dog to players locno.

 MESSAGE 18 ;tell them its followed...

You should be able to work out what NOTSAME, NOTAT and COPYFF do

but the technical guide will help you out if you have problems.

LT is a condition which succeeds if the flag specified contains a

value Less Than the specified value.

Insert into process table 2;

 _ DOG PROCESS 4

which if you use P to look at the table should come before the

entry for the bird (if not you entered the two vocabulary words

the wrong way round). This ensures the dog will be moved to the

players new location before the bird is checked.

Similarly to the bird entries are required in process table 1 to

inform the player of the dogs presence:

 _ DOG SAME 13 38 ;Dog at same location

 MESSAGE 17 ;tell player

 EQ 14 1 ;with lead?

 MESSAGE 19 ;yes so tell player

 _ DOG SAME 13 38

 EQ 14 2 ;Dog tied to bench?

 MESSAGE 20

50

The Dog

 _ DOG SAME 13 38

 GT 14 2 ;255 is greater than 2 so

 MESSAGE 24 ;tell player dog is sitting

while you are in process 1 modify the * * entry to contain a LET

13 2 (before the GOTO) to make the dog start at the bus stop.

Now in order for the bird to be frightened away by the dog we

need an extra entry in process table 3. Now the entry must go

before the entry which decides to drop the ticket and after the

entries which make the bird fly. This will ensure that the bird

will fly away with the ticket if it has it and leave it if it

does not. So we need to insert before the sixth entry, use

[I _ BIRD 6] to achieve this and type in the condacts for the

entry from its listing below.

 _ BIRD SAME 12 13 ;Bird and dog at same location

 LET 12 8 ;Only ever on bandstand so

 LET 5 3 ;move to branch, three phrases

 AT 5 ;Player on bandstand?

 MESSAGE 13 ‘tell them bird is gone..

The number after insert/amend has a maximum value of 255 so do

not insert more than 256 entries of the same word values (that

would be pretty unmanageable anyway) is you want to retain the

ability to insert anywhere as well as on the end of the list.

the last change to the process tables is to insert a sub-process

which will be calling from Response to deal with speech to the

dog. The mechanism works very simply. If the player includes a

phrase in double quotes (“”) in the input sentence, then the

parser will save where it was and carry on with decoding the

phrase. There is an action called PARSE which instructs PAW to

use the parser to decode the string the player types in, this

then becomes the LS. It is only sensible to do this in a sub-

process as PAW will try to match the new LS against the rest of

the table. Begin a new Process table (table 5 should be next) and

insert the following entries:

 * * PARSE ;Convert string to LS

 MESSAGE 16 ;Not valid phrase so

 DONE ;dog does not understand!

 SIT _ ZERO 14 ;Dog not partially tied up?

 SET 14 ;now sitting quietly

 MESSAGE 24 ;tell player (always at same

 DONE ;place as dog) Then DONE

 COME _ EQ 14 255 ;Dog must be sitting

 CLEAR 14 ;Now normal

 MESSAGE 18 ;Dog follows

 DONE

51

The Dog

 _ HERE EQ 14 255

 CLEAR 14

 MESSAGE 18

 DONE

 _ _ MESSAGE 16 ;Anything else.

We get around the limited vocabulary that the dog understands by

making him wag his tail for most things!

PARSE will allow PAW to continue looking at condacts if it fails

to find a valid phrase, be careful here as the current LS may be

a bit jumbled up (i.e. the parser managed to get some sense out

of the phrase) so you should normally only print a message like

“They didn’t seem to understand” or some such similar and DONE to

return to your calling action. If it does form a valid LS PAW

will start to search the following entries for match as with

Response. PARSE should only be used in a sub-process called from

Response it has no meaning in any table.

Notice how the COME and HERE entries deal with a variety of

phrases that the player might try to call the dog again having

made it sit.

The _ _ entry catches all the valid LS which may have been in the

string and the dog has no specific response to.

Select the Response table now to allow us to insert the extra

entries to control speech and the dropping of objects in the

tree.

First off the mark is the entry which causes all objects dropped

in the tree to fall to the ground, now this must go between the

entry which deals with putting objects in the bag and the normal

DROP _ entry (actually printed as PUT!). [I PUT _ 1] will achieve

this, the entry is:

 PUT _ AT 8 ;Player on branch

 WHATO ;I say old boy!

 LT 51 255 ;Valid object?

 EQ 54 254 ;Object carried?

 MESSAGE 15 ;its now bottom of tree.

 PUTO 7 ;put it there

 DONE

This is an example of creating an automatic action of your own,

like AUTOG and so on.

WHATO is an action which looks up the first Noun in the current

LS in the object word table, converting it into an object number.

This number is then placed in flag 51. Flag 51 always contains

the number of the last object referenced by PAW and whenever it

is set the associated flags 54 to 57 are also set. Flag 54

52

The Dog

contains the current location of the object.

PUTO is an action which changes the location of the currently

referenced object to be the one specified.

Message 15 contained an underline. Whenever PAW meets an

underline in text (be it message or location) it replaces it with

the current object hence the message is changed to suit the

object currently being dealt with.

Next a relatively simple entry to deal with PUT LEAD ON DOG:

 PUT LEAD PREP ON ;Ensure not a DROP LEAD

 NOUN2 DOG

 CARRIED 5 ;Played has the lead

 SAME 13 38 ;is at same location as dog

 LET 14 1 ;Dog now has lead on

 DESTROY 5 ;so player hasn’t

 MESSAGE 21 ;tell them so.

 DONE

The entries which follow deal with a new concept again, the

modification of the current LS. We want the game to understand

both TIE DOG TO BENCH and TIE LEAD TO BENCH as the the same

thing, now LEAD and DOG are separate word values, so the TIE DOG

entry which will come first in the table (as its word value is

lower that LEAD) converts the Noun into LEAD (55) and allows PAW

to carry out the TIE LEAD entry! A similar system is used for

UNTIE. Insert the entries:

 TIE DOG LET 34 55 ;Flag 34 is Noun for LS

 TIE LEAD PREP TO

 NOUN2 BENCH

 AT 4 ;Where bench is.

 SAME 13 38 ;dog is here

 EQ 14 1 ;with lead on

 PLUS 14 1 ;now tied to bench

 MESSAGE 22 ;tell player about it

 DONE

 TIE _ NOTDONE ;Ensure an I can’t

 UNTIE DOG LET 34 55 ;Flag 34 is Noun for LS

 UNTIE LEAD AT 4 ;Where bench is.

 EQ 14 2 ;dog tied to it

 CLEAR 14 ;Now free

 MESSAGE 25 ;Tell player

 CREATE 5 ;Recreate lead

 GET 5 ;Try and get it.

 DONE

53

The Dog

 UNTIE _ NOTDONE ;Ensure an I can’t

The NOTDONE makes sure PAW reports “I can’t do that” if you try

and TIE or UNTIE anything other than the lead/dog.

CREATE is an action which is followed by an object number. It

causes that object to be at the position where the player is.

GET is an action which is followed by an ibject number. It

attempts to get the specified object.

We use these actions instead of just placing the object at 254 so

that any weight and/or number of objects carried problems are

reported.

Finally the the entries to allow speech to the dog, we have also

included the entry necessary to allow you to speak to the bird –

it just ignores you!

 SAY DOG SAME 13 38 ;It’s here

 PROCESS 5

 DONE

 SAY BIRD SAME 12 38

 MESSAGE 8

 DONE

 SAY _ MESSAGE 23 ;Who?

 DONE

Notice that we do not ensure the preposition TO is specified –

this allows the player to shorten their input if required. As a

general guide don’t check for an extended LS unless it is

required to differentiate two similar phrases.

As a final test the following inputs should now work in the

indicated situations, they show some of the power which the

parser can provide your games with.

When on the path by the park bench with the lead and dog try;

PUT LEAD ON DOG AND TIE IT TO THE BENCH

then to untie it;

UNTIE DOG

When up the tree with the bag try;

PUT ALL IN BAG AND DROP IT. GO DOWN AND LOOK IN BAG

To make the dog sit down;

SAY TO DOG “SIT”

and get back up;

ASK DOG TO “COME HERE”

54

Do it yourself

Do it yourself

Before we move onto a discussion of the graphics here are a few

points that you might like to tidy up in the demonstration game

as practice on using the system (after the graphics if you like).

1/ EXAMINE should respond to all objects even if it is with a

general reply such as “I see nothing special about the _.”.

Hint: so as not to lose the use of LOOK on its own you could use

a condition LT 34 255 before triggering (i.e. ensure a Noun was

actually specified).

2/ The bird should really fly away if you GET SANDWICH while the

bird is present. i.e. it will be pecking at the sandwich and any

normal bird would fly...

3/ UNTIE _ and TIE _ should have a message something along the

lines of “Tie what to what?”, NOTDONE was an easy copout!

4/ How might you deal with the player typing PUT object IN BAG

when the bag is not rpesent? at the moment the game will drop the

object instead, why?

5/ Nothing was ever done with the torch, the following entries

will allow it to be turned on and off (you will also need TURN as

a verb in the vocabulary):

 TURN TORCH PREP ON

 CARRIED 7

 SWAP 7 0

 OK

 TURN TORCH PREP OFF

 CARRIED 0

 SWAP 0 7

 OK

Lookup the extrac condacts in the technical guide and read the

chapter on light and dark – perhaps a cellar could be created

below the bandstand? The movement would have to be checked in the

Response table with an entry such as: (assuming 9 is the new

location).

 DOWN _ AT 5 ;Player on bandstand?

 SET 0 ;Flag 0=255=Dark!

 GOTO 9 ;New location

 DESC

Not forgetting an entry for UP which clears the flag!

6/ What happens if the player types CLIMB TREE or CLIMB UP TREE

and what is the best way to check for this? Hint: there is only

one thing you can climb in that location.

55

Overlays

Overlays

The 128K user will still not need to use overlays yet, but may

find it useful to read this chapter anyway.

The idea of overlays was explained in concepts, in order to

proceed with the graphics and text compression system the 48K

user will have to load an overlay.

PAW will do most of the work for you, if you just select the main

menu option you require you will be asked to confirm you want to

load an overlay, any key other than Y will return you to the main

menu. If you do not proceed PAW will print the name of the

overlay it is searching for on the screen.

The five overlay files are at the end of the main program (which

is where your tape will be after loading PAW). If you have a tape

counter it is worth setting it to zero at this point and then

noting down the readings for each overlay, fast forward can then

be used to go to just before the required file. The five files

are in the order shown below, also described are the main menu

options contained within each (note that the selection of an

option present in the current overlay is automatic):

PAWOVR 1 Interpreter, Test Game, Save/Verify Adventure.

PAWOVR 4 Process/Response, Vocabulary, Connections, Words.

PAWOVR 5 Messages, Locations, Objects, Initially At,

 Object Weight and Background colours.

PAWOVR 2 Compressor.

PAWOVR 3 Character Editor/Graphics Editor.

Note that Save, Verify and Load database along with Free memory

are always available as they are part of the main menu.

Once the file has loaded you will be presented with the sub-menu

as normal. If an error occurs you will be returned to the main

menu, just reselect the option and try again. (Note that any

overlay loaded previously will be erased by a tape error, so

you will be able to do nothing but load a new overlay – or

save/load database which is always available).

If you do not have a tape counter or wish to make things even

simpler you might like to transfer each of the files to a

separate tape, they are just normal CODE files.

56

Text Compression

Text Compressions

Option K on the main menu (48K users will have to load the

overlay at this point) will ask you is you want to compress the

database, any key other than Y will return you to the main menu.

Otherwise the text compressor will reduce the amount of memory

needed for the text in your game by grouping common letters into

a single ‘token’, this can take anything from one minute to an

hour depending on the size of your game. On the demo this should

take about a minute and save about 900 bytes!

The only difference you will notice is when editing existing text

where the cursor will jump two, three, four or even five

characters at a time – including deleting. Just retype all the

letters separately if you make a correction which requires them

to be deleted, they will be compressed the next time you use the

compressor. Note that the compressor uses the normal spectrum

tokens, which will produce letter groupings and not the keywords

after you use the compressor, so do not use the tokens if you

intend compressing the database.

57

The Character Editor

The Character Editor

Just quickly we will take a look at the character editor. Select

option Q from the main menu – 48K users will need to load an

overlay. This sub-menu allows you to change the way the

characters which are displayed on the screen look. You can have

upto five different character sets in memory, and change between

them at will using ESCC 0-5 or a CHARSET action in Process or

Response. The sets are numbered 0 to 5, set 0 is the normal set

which can not be changed, except for character values 0 to 15

which are the shade patterns and 144 to 165 which are the normal

spectrum UDGs. If you use [P] to look at the table you will find

only these characters displayed. Note that you have to Insert a

blank set before you can change or load it which conserves memory

in the database if you are not changing the character set.

At the moment we are just going to use the editor to change one

of the shade patterns. These are just normal characters which the

graphics system can use to colour in an area of screen with.

[A 0 15 ENTER] will allow you to edit character 15 of set 0. This

is an unimportant shade pattern which we will be altering to

represent the iron work on the bandstand.

Each character in PAW is defined on an 8 by 8 pixel grid, the top

left box on the screen will be showing an enlarged version of the

pattern as it is at the moment, the top centre and right boxes

show how it will look when used as a shade (both normal and in

inverse) while the bottom gives a summary of the commands

available and current character under edit. Use the cursor keys

(CAPS SHIFT 5 to 8 on 48K) to

move the red flashing cursor

around the grid and the SPACE

key to ‘toggle’ the pixel it

is over on/off (that is; if

the pixel is on – black – it

will be turned off,and if off

– yellow/white – it will be

turned on. try it and you

will soon see what we mean!).

The pattern we require is

shown in Diagram 5. When you

have finished use [R] to

redraw the two shade boxes to see what the new pattern looks

like. And finally press ENTER to end the edit.

Side two of the supplied cassette contains 22 different character

sets which can be loaded into character sets 1 to 5, after you

have inserted them of course. After insertion of a set the option

to select that set as the default will be offered on the

Background colours option of the main menu.

Diagram 5

58

Graphics

The Graphics Editor

The graphics system on PAW used a method of drawing called Line

and Fill which is very efficient on memory usage for the type of

pictures included in adventure games. Instead of storing an image

of the screen that you have drawn like many commercial art

packages, it stores a list of the commands you used to draw it.

Even the most complex of pictures will only consumes 2K of memory

as compared to 6K for a standard screen, and indeed you should

find that effective designs can be drawn using as little as 100

bytes!

The list of commands stored is called a drawstring, and there is

a drawstring for every location you insert using the locations

option on the main menu. If you are illustrating only a few of

your locations the other drawstrings will be empty.

Every picture (and therefore every location) has a Paper and Ink

colour defined for it. Select option D from the main menu and you

will be presented with a sub-menu to deal with amending these

values, use [P] to see that an entry exists for our 9 locations

in the demo game. They are all marked as a subroutine which tells

PAW two things:

1/ Do not draw this picture when you describe a location.

2/ The is a sub-picture which can be used in other pictures.

The sub-picture facility is similar to the sub-process idea

discussed previously and an example of its use if given later.

For our example of using the graphics we shall be drawing a

picture of the bandstand as seen from location 4 (on the path).

So we want to make PAW draw the picture when we visit the

location. You do this by assigning the picture a Paper and Ink

value, we will use a black background and Yellow ink so type

[A 4 0 6 ENTER], if you now use [P] the entry for location 4

should be:

 Location 4 Paper: 0 Ink: 6

You could change it back if you wanted by leaving the paper and

ink values out of the amend (e.g. A 4). Leave it as it is for the

moment and select option G from the main menu. 48K owners should

have found that they did not need to use overlays again – this is

because Characters, Default colours and Graphics are all in the

same overlay, the use of the amend option in a moment will wipe

out the overlays which PAW holds in memory and if you wish to use

any other options except Save/Load or Free memory you will need

to load the overlay containing the option.

So on with the graphics; several option are provided on the menu

59

Graphics

to allow you to amend, print (on the screen), copy (to a

printer), calculate the size of and dump a screen image of each

picture in the game. We will be creating a picture for location 4

so type [A 4 ENTER]. The screen will clear and two lines of

information will appear in the lower screen, this shows from

left to right; On the top line the current drawing ink colour,

the current background paper colour, the status of the flash and

brightness options and on the lower line the current x,y

coordinate of the drawing position and the location number under

edit. Sundry other information is also displayed at times which

will be explained as necessary.

It you look carefully you should also see a single flashing pixel

in the bottom left, this is known as ‘the point’ and indicates

the start position for any drawing. If you press key E you should

see a line start to appear, the one end of the line is always at

point and the other end of the line can be moved using the keys

around S as follows:

 Q W E

 A D

 Z X C

Alternatively if you have a joystick you can plug it into port 2

(Plus 2 and Interface 1). Kempston™ interface users should press

[SYMBOL SHIFT] and [J] to activate the driver for it – a letter J

will appear on the bottom line to indicate it is active. The

joystick will now move the end of line around. Movement will be

by single pixels, this can be accelerated to eight pixels at a

time by holding down the CPAS SHIFT key at the same time as one

of the eight keys (or while pushing the joystick in a specific

direction).

The line is ‘rubber banding’ (a term which arrives from the fact

it acts like a taut rubber band) and will allow you to position

line accurately before you draw them.

Our sample game is going to have ‘split screen’ graphics so we

want to leave several lines spare on the screen below the picture

for text. Press [SYMBOL SHIFT] and [Y] to activate a grid which

shows the character boundaries and move the line to X=0,Y=47. We

are going to move ‘point’ to the end of the line so that any

drawing starts at that pixel, press [SYMBOL SHIFT] and [P] for

PLOT to achieve this, the current point will now be where the end

of the line was. Next move the line to X=255,Y=47 using [A] once

which demonstrates the ‘wraparound’ action of the line (i.e.

moving off one side of the screen brings it back on the other

side). This time we want to actually draw the line (this is

called fixing the line) so press [SYMBOL SHIFT] and [L] for LINE

60

Graphics

- or use FIRE on the joystick which acts like SYMBOL SHIFT and L.

If you make a mistake you can delete the previous command by

pressing DELETE (CAPS SHIFT and 0 on 48K) – all the way back to

the start of the picture if you like!

All graphics commands which insert in the drawstring (like PLOT

and LINE) require SYMBOL SHIFT to be held down so we shall

shorten it to SS, and any co-ordinates given will be in the form

X,Y e.g. 255,47 instead of X=255,Y=47.

Borders around pictures seem to be the fashion at the moment so

ours shall have one! Move the end of line to 248,55 and PLOT the

point, now draw a box by moving to 248,168 and fixing the line,

then onto 7,168 and fixing the line and so on for points 7,55 and

back to 248,55. Note that these lines just skirted the outside of

each character ‘cell’. Because of the spectrums limitation of

only two colours in each cell you must be careful in your

positioning of lines (some hints are given in the technical

guide), or you will find them changing colour later when you draw

near them. Finally to make our border a little more interesting

we shall use the shade option mentioned earlier. Move the end of

line to 248,53 and press [SS] & [S] for SHADE; the lower screen

will change to a request for a pattern number, type in

[12 ENTER], you will be asked for a second pattern, this pattern

would be overlaid on the first, but we want to use pattern 12 on

its own so type [12 ENTER] again. The border area should be

magically shaded with fine diagonal lines. Note that point has

not moved and the line will grow from same place as before the

shade.

The shade command is as you will have noticed very fast, it is

also very good at shading unusually shaped areas of screen,

including worming its way through single pixel ‘holes’ in your

picture. Of course you can delete an errant shade. The shade

area is defined by at least a single pixel line or the edges of

the screen as in the border detailed above. It will not always

shade the entire empty area, but careful positioning will allow

most of it to be shaded in one go, any unshaded areas can be

completed by using the shade command again with a start point

within the empty area. Shade is provided with sixteen possible

default patterns which you can change using the character editor

as detailed earlier. Note that if you change a pattern all uses

of that pattern in pictures will be changed as well, so it is

best to choose useful general patterns for the majority and

define only a few special patterns where absolutely necessary.

Patterns can of course be mixed together by specifying different

pattern numbers when prompted to provide a wide variety of useful

designs.

Now we shall lay down the main sky and grass areas. We are merely

going to set down a paper colour so move the line to 8,56 and

press [SS] & [A] for ABSOLUTE MOVE, this does not affect the

61

Graphics

pixel unlike PLOT. Press [SS] & [Y] to get rid of the grid or you

will not be able to see the colours. The grass will be green so

press [SS] & [C] for PAPER, green is colour 4 so type [4 ENTER],

note that the current paper colour changes to be 4. Now move the

line to 246,87 and press [SS] & [B] for BLOCK which will colour

in the rectangle of character cells which the line forms the

diagonal of, with the current Ink and Paper colours. The sky will

be blue so ABSOLUTE MOVE the line to 247,88 ([SS] & [A]), select

blue paper ([SS] & [C], [1 ENTER]), then BLOCK the rectangle to

8,167 (move to 8,167 and press [SS] & [B]).

Now we shall draw the base of the bandstand in red brick. In

order that we avoid the colour boundary problems the base will be

exactly three character cells high and sixteen wide. Select red

paper ([SS] & [C], [2 ENTER]), and black ink using [SS] & [X] for

INK, 0 is black so type [0 ENTER]. Now PLOT the point at 191,72

(i.e. move the line to 191,72 and press [SS] & [P]). Then fix

lines between each of the following points;

64,72 64,95 111,95 111,75 144,75 144,95 191,95 191,72

One of the shading patterns which you may have noticed earlier is

a brick type pattern, move the line to 189,73 and SHADE using

pattern 14 (i.e. [SS] & [S], [14 ENTER 14 ENTER]) to create an

effective brick base.

Your picture should look like diagram six by now. To create the

steps up to the bandstand move the line to 144,78 and press [SS]

and [R] for RELATIVE MOVE

which moves point like PLOT

and ABSOLUTE MOVE but to a

pixel a fixed distance from

the current point instead of

an absolute x,y position. It

is used to keep groups of

commands which draw a single

object in the picture

together, the reason will be

demonstrated in a moment. Fix

a line to 112,78 and then use

RELATIVE MOVE to move to

111,81, fix a line to 143,81

and so on for each of these

coordinate groups:

REL MOVE to 144,84 LINE to 112,84

REL MOVE to 111,87 LINE to 143,87

REL MOVE to 144,90 LINE to 112,90

REL MOVE to 111,93 LINE to 143,93

We will now examine the editing facilities that are available to

correct mistakes in addition to DELETE. As an example we will

move the entire brick base of the bandstand two character cells

Diagram 6

62

Graphics

further to the right. To DELETE all the way and redraw seems a

bit too much like hard work!

As you draw your picture PAW adds each command to the drawstring,

where it adds them is called the drawstring pointer and at the

 moment the drawstring pointer is at the end

of the drawstring. it is quite feasible for

PAW to backtrack along the commands you have

entered so far to any point along the

drawstring. Press [CURSOR RIGHT] once, don’t

worry the picture is still there, but PAW

only draws the picture as far as the

drawstring pointer, which is now at the

START of the drawstring, Diagram 7 might

help you to visualise the way the

drawstring works in memory. You can step

forward one command in the drawstring by

pressing [CURSOR DOWN] for NEXT command,

and back one command using [CURSOR UP] for

PREVIOUS command – note that this does not

delete the command it merely moves the

drawstring pointer back one command.

 Use NEXT (CURSOR DOWN) until the PLOT (at

191,72) command which starts the brick base is carried out. Use

DELETE to remove it from the drawstring and PLOT 207,72 which PAW

will insert in the drawstring at the pointer. If you use NEXT now

the base line should be drawn, rather than use NEXT all the time

to get to the end of the drawstring a useful trick especially to

where you are near the start on a long drawstring is to press

[ENTER] which will finish the edit and return you to the sub-

menu. Then type [A 4 ENTER] to amend the picture again, presto

your drawstring pointer is at the end again. Notice how the

entire base moved as a unit because we used RELATIVE MOVE when we

originally drew it.

To draw the front balustrade of the bandstand select ink white

([SS] & [X], [7 ENTER]) and paper 8 ([SS] & [C], [8 ENTER]) –

which is a special ‘colour’ meaning do not affect the paper

colour. Then:

PLOT 206,96 LINE 209,109 LINE 162,109 LINE 162,96

move the line to 162,97 and SHADE using the pattern you designed

earlier 15, ([SS] & [S], [15 ENTER 15 ENTER]).

PLOT 125,96 LINE 125,109 LINE 81,109 LINE 81,96

move the line to 82,97 and SHADE in pattern 15 again.

Now the upright poles for the pagoda:

PLOT 103,96 LINE 103,136 LINE 106,136 LINE 106,96

END

NEXT

SPARE

POINTER

START

Diagram 7

63

Graphics

move the line to 104,121 and press [SS] and [F] for FILL, this

fills the defined area completely in set pixels in a similar way

to shade.

REL MOVE 184,96 LINE 184,136 LINE 181,136 LINE 181,96

move the line to 183,122 and FILL, ([SS] & [F]).

The top of the pagoda:

REL MOVE 207,143 LINE 206,140 LINE 202,136 LINE 86,136

LINE 83,139 LINE 80,143 LINE 207,143

move the line to 205,141 and SHADE in pattern 15.

REL MOVE 144,166 LINE 220,139

REL MOVE 65,139 LINE 144,166

move the line to 144,164 and FILL.

To create a rounding effect on the pagoda select OVER by pressing

[SS] and [O], a letter O will appear on the top status line to

indicate that over is active. Normally every PLOT and LINE

command sets the pixels if affects, but those inserted while over

is active will set pixels that are reset and reset pixels that

are set, much like the toggle action of SPACE on the character

editor. Note that the state of Over (and Inverse introduced

later) is encoded as part of the command, to get the effect you

have to insert the command while it is active, you cannot change

a PLOT or LINE inserted previously without deleting it first.

Over is cancelled by START, PREVIOUS or DELETE.

LINE 115,140 REL MOVE 144,166 LINE 171,140

and [SS] and [O] to turn over off again, you should now have two

lines drawn partly in reset and partly in set pixels.

The last upright on the pagoda:

REL MOVE 142,136 LINE 142,96 LINE 145,96 LINE 145,135

move line to 143,133 and FILL.

The back balustrade of the bandstand is drawn slightly smaller:

REL MOVE 125,107 LINE 161,107

REL MOVE 162,96 LINE 126,96

move line to 128,98 and SHADE in pattern 15, and to 150,98 to

SHADE in pattern 15 again. To improve the look we shall make the

centre upright stand out a bit by removing a line of pixels

either side of it. Press [SS] and [I] for INVERSE and a letter I

should appear on the bottom line to show Inverse is active.

64

Graphics

Inverse causes any PLOT and LINE commands to reset pixels instead

of setting them. So:

REL MOVE 141,95 LINE 141,107

REL MOVE 146,108 LINE 146,96

then Inverse off ([SS] & [I]).

Now to construct the railings around the perimeter of the park we

shall use a useful technique of undrawing the surround of a shade

pattern. Draw in black ink ([SS] & [X], [0 ENTER]):

PLOT 8,104 LINE 79,104 LINE 79,88 LINE 8,88

PLOT 247,88 LINE 208,88 LINE 208,104 LINE 247,104

SHADE pattern 7 at 246,102 and 11,102. Undraw the top of the

railing to create spikes by turning Inverse on ([SS] & [I]) and:

PLOT 247,104 LINE 208,104 PLOT 79,104 LINE 8,104

then Inverse off. To finish the effect draw:

PLOT 8,101 LINE 79,101 PLOT 208,101 LINE 247,101

The main picture is finished but we are going to add some tufts

of grass using the subroutine feature mentioned earlier, this

will save memory and the time taken to draw four tufts of grass.

Press [ENTER] to finish the edit and return to the sub-menu. Now

location 0 is the title screen for the demo so we shall use its

drawstring to contain our tuft of grass. Using [A 0 ENTER] amend

the picture for location 0. Note that the location number is

followed by a letter S to indicate that this is a subroutine.

Draw the tuft of grass by temporarily plotting 72,72 and fixing

lines between the following points:

68,85 77,73 74,89 81,73 79,94 87,72

87,94 92,70 94,86 95,70 99,79 98,69

now return to the START of the drawstring ([CURSON RIGHT]) and

use NEXT ([CURSOR DOWN]) to step past the PLOT, then use DELETE

to remove it. This strange action means that the start of the

first line is at 0,0 and allows us to position the picture

accurately. If you try and amend the picture again you will get

an “Out of range” error because PAW cannot draw a line ‘off’

screen. Your drawstring pointer will be positioned just before

the first LINE command so insert the PLOT again while you edit

the drawstring, deleting it again at the end.

Amend picture four again ([A 4 ENTER] from the sub-menu) and PLOT

point 217,69. Now press [SS] and [G] for GOSUB, you will be

prompted for a location number to use, type [O ENTER] to use our

newly defined tuft of grass. Next you will be prompted for a

65

Graphics

scale, this defines how big the picture will be in eights of its

original size, type [4 ENTER] to draw it as half its original

size. Do the same for the following:

PLOT 21,58 GOSUB 0 scale 5

PLOT 60,74 GOSUB 0 scale 3

PLOT 103,61 GOSUB 0 scale 4

And to demonstrate errors:

PLOT 128,170 GOSUB 0 scale 0

Scale 0 actually means full size, not zero eights! The error

which was generated has left the drawstring pointer before the

command which caused the error, in this case the GOSUB. There

would appear to be no way to delete this without plotting further

down and so on. In fact [GRAPH] ([CAPS SHIFT] & [9] on a 48K)

will DELETE the NEXT command, you might as well [DELETE] the PLOT

as well.

Note that at the end of an edit it is possible for you to still

have commands above the drawstring pointer that you do not want,

you can ensure these are removed by holding down DELETE NEXT

([GRAPH]) for a while.

Return to the main menu and select the Response table option (48K

owners will need to load an overlay). Amend the * * entry to

contain MODE 3 3 LINE 16 before the GOTO 2. The MODE action

selects the way the screen operates, mode 3 is a fixed graphic

area (any text displayed will not remove it), the second 3 tells

PAW not to change the border colour and to print “More..” when a

screenfull of text is to be displayed.

Finally use test adventure (again 48K owners will need to load an

overlay) to see your picture in action. It will be displayed the

first time you visit the path, but not on subsequent visits. This

is known as normal mode for graphics. It is also possible to

select On and Off which always draw and never draw the graphics

respectively. These options can be selected using PIC NORM, PICS

ON and PICS OFF – those entries we didn’t explain in Response!

You must make the decision as to whether to allow the player to

switch between options during the game or to force a single

method at start.

66

End of the road

End of the road

We hope that the above tutorial has provided an insight into some

of the many powerful facilities of the Professional Adventure

Writer. Now it is time for you to expand your knowledge of the

system by using it! The Technical Guide will provide an exact

specification of everything that PAW contains and in conjunction

with the essays in it on various subjects, will form essential –

if a little heavy – reading when writing your own games.

Finally you will find a small game in database form on the

cassette after the overlays called “TEWK”, which should be loaded

using option J on the main menu (after saving your database of

course!). Looking through this should provide you with some more

ideas on giving your game an individual look.

What should I do next?

HAVE FUN!

OK

Tim Gilberts – January 1987

67

User Registration

User Registration

We regret that due to the problems of software piracy

that any queries regarding the use of PAW must be

accompanied by a valid user registration number. You

can obtain your registration number simply by

completing this form and returning it to:

 PAW User Registration

 2 Park Crescent,

 Barry,

 South Glamorgan,

 South Wales

 CF6 8HD

This will also ensure you are informed of any additions

or improvements to the system.

We also hope to be able to provide various support

services for PAW users including additional information

on its use and perhaps even a true user group

newsletter etc.

Please write clearly in block letters:

 Name: ______________________________

 Address: ______________________________

 Machine: ______________________________

Date of Purchase: ___________________

For office use only – do not fill in:

 Date:

 Reg No:



blished by Gilsoft International Ltd.,
rescent, Barry, South Glarnogan CFfi Pun
Telephone Barry (0446) 732765

