
 ULTRAVIOLET

Ultraviolet is a 2-pass assembler written specially for the Sinclair ZX Spectrum.
It is supplied in two different versions for use in either 16K or 48K machines.
Please make sure that you are using the correct version for your machine. The
48K version of Ultraviolet can be used at the same time as the 48K version of
Infrared, the complementary disassembler program from ACS Software. In this
case, please note that Ultraviolet should be loaded before Infrared.
 To load Ultraviolet, simply use LOAD””. (The 16K version loads in
three sections, so be patient.) To prepare the assembler for use, press any key to
clear the screen and low memory. The assembler will remain in high memory
ready for use. It is not possible here to provide an account of how to program in
Z80 machine code. If you want to learn, we would suggest that you acquire a
copy of “Understanding Your ZX81 ROM” by Dr. Ian Logan, published by
Melbourne House Publishers Ltd.

Writing machine code programs with Ultraviolet
To use Ultraviolet, first reserve space for the machine code that it will produce.
This is probably best done by putting a dummy REM statement at the beginning
of the program. The REM statement should contain enough space to take the
machine code. In this case, the first address available to accept machine code
will normally be 23760. Normal Z80 mnemonics are recognised written in REM
statements in lower case exactly as they appear in the back of the Sinclair ZX
Spectrum Basic programming book. The exception is that ret c, ret p, ret m and
ret z must always be followed by a comma. When using relative jumps, the
direction must be indicated with a sign e.g. jr -3 or jr nc,+7. Note that all
numbers are entered as decimal, so use for example rst 16 rather than rst 10h.
(True hex enthusiasts may frown at this, but we believe that if humans want to
use decimal, then they should not be forced to use hexadecimal simply to make
life easier for a computer. Don’t worry though, the assembler will list the hex
code for you!) The mnemonics should be preceded by “REM go” and
terminated by “REM finish”. The first instruction should be the pseudo-
instruction org (see below). Apart from the go and finish statements which
should be on separate lines, multiple statements per line are allowed provided
that they are separated by semicolons.
 Remember when writing the mnemonics that the positions of the
commas, spaces and brackets are very important. For example, out (255),a will
be recognized correctly, but out(255),a or out(255)a will not. (In this respect
note that some of the mnemonics listed at the back of the Sinclair ZX81 BASIC
book are incorrect so make sure that you are using the Spectrum book.)

The pseudo-instructions
Ultraviolet supports certain instructions which, although not official Z80
instructions can be included in machine code programs to make life a bit easier.
They are listed here:
 org This instruction tells the assembler where to start assembling code.
For example, org 23760 will initiate assembly at the first free byte in your REM
statement at the top of your program. For obvious reasons the first instruction in
your program must be an org. You can use org as often as you like to make the
assembler skip to a new assembly address. Sometimes you might want to write

a program which is designed to operate in the region of memory around address
60000 (or around address 30000 in the 16K Spectrum). This could present a
problem because this is where the assembler itself lives. Assembling code here
would overwrite the assembler and probably cause a crash. You can get round
this problem by using a special form of org. If you were to write org 23760
(60000) this would result in code being assembled at 23760 but written so that it
would operate correctly when relocated to 60000. All you need to do now is to
use the Spectrum SAVE”” CODE 23760,x and LOAD””CODE 60000,x facility
to relocate the code (or better still use ldir). Once again, remember that the
spaces and brackets are important.
 defb This allows a byte at the current assembly address to be set to a
defined value. This can be useful when forcing an error message with rst 8. For
example rest 8;defb 1 will give the error message “2 Variable not found”.
 defw This is similar to defb but sets a word (2 bytes) rather than a single
byte. Its argument is therefore a number between 0 and 65535. The number is
inserted into memory least significant byte first.
 defs This allows a string of ASCII characters to be inserted into memory
at the current assembly position. For example the name of this program could be
stored with defs Ultraviolet. This can be useful for storing text within a
program.
 equ This is used for specifying labels and for linking sections of code
together (see below).

Labels
Labels can be used to refer to memory locations whose addresses will not be
known until assembly is complete. Labels can be any length with the following
restrictions: the first character must be a capital letter and the characters “)” and
“+” must not be used. For example, “Here”, “Any-where” and “Z3/@$(“ are
valid labels but “this label”, “Place(2)” and “Local+1” are not. The labels are
simply written into the program like any other instruction. Suppose you had the
label “AcS”. This can be referred to in the following ways:
ld a,(AcS);ld hl,(AcS); ld hl,AcS;ld de, AcS;call AcS;jp nz,AcS;jr c,AcS etc.

Writing self-modifying code
Suppose that you have the following piece of code:
 ….;Johnny;ld hl,(23700);….
You might want your program to alter the address from which hl is loaded. In
other words you might want to change the two bytes in memory one byte after
“Johnny”. This can be done with the following code:
 ….ld hl,30000;ld (Johnny+1),hl;….
When this part of the program is executed, it rewrites the program to give
 ….;Johnny;ld hl, (30000);….
Note that only +1 and +2 are allowed in this type of label reference.

Explicit reference to labels
Sometimes, particularly if you have a 16K Spectrum, you might want to write a
machine code program in several sections and then join them together later.
This is fine if you do not try to refer to labels outside the section of code that
you are currently writing. If you do, then the label will not be found and an error
will occur. You can get round this problem by using equ which tells the

assembler the address of a label. For example equ 23780 Fred will allow the
label “Fred” to be used even though the address of “Fred” is not within the
section of code being assembled.
 A final word on labels. The assembler stores the names and addresses of
labels in a table. The space allocated for this table is limited. When it is used up,
no more labels will be recognised and reference to further labels will give an
error. The number of labels that you can use clearly depends on their length.
You can have about 100 5-character labels but fewer longer ones, so be frugal
and concise!

Comments
Comments can be included in your programs by preceding them with an
exclamation mark. During assembly, the first 32 characters of a comment will
appear on the screen or printer. If you want to say more, use several consecutive
comments.

Running the assembler
The 48K version of the assembler is run with RANDOMIZE USR 60000
(RANDOMIZE USR 27500 for the 16K version). This statement can be added
to the REM statements so that assembly can be simply started with RUN. In this
case a typical listing might look like this:
 10 REM-------space for machine code-------
 20 REM go
 30 REM org 23760 (54321);equ 30000 Other
 40 REM !Start of first section
 50 REM Start;ld hl,(Other);inc hl;ld a,(hl);cp 240;jr z,-6
 60 REM sub 34;ret z,;ld hl,(Start+1);dec hl;ld (Start+1),hl
 70 REM jr Start
 80 REM !Start of second section
 90 REM org 21000
 100 REM defs This is text;ld hl,31000;ld a,(hl);cp 84;ret nz
 110 REM rst 8;defs 10
 120 REM !End of 2 useless sections
 130 REM finish
 140 RANDOMIZE USR 60000 or RANDOMIZE USR 27500
 When run, the assembly address of each instruction, its hex code(!) and
the first 13 characters of the mnemonic will appear on the screen. Each
instruction is assembled twice so that the destination addresses of forward
jumps can be calculated. Assembly stops when the screen is full. Pressing the
space key will abort the assembly, pressing “p” during the second pass will
copy the listing to the printer and pressing any other key will continue the
assembly.

Errors
If go, finish or org are faulty, then an error will be given before assembly starts.
If an error is detected during assembly, then assembly will stop with two error
messages. The first is a flashing error message which tells you the line number,
statement number and type of the instruction where the error was detected. This
should let you locate the offender quite easily. The second error message is one
of the Sinclair messages. There are three possible. If you enter a wrong number,

i.e. >255 for a single byte or >65535 for a 2-byte number, the assembler will
repeatedly subtract either 256 or 65536 from it until it gets a sensible number
that it can use. If it can not get a sensible result (e.g. >129 for a relative jump)
then error “B integer out of range” will be given. If you refer to a label which
does not exist or if you have filled up the label table, the error given will be “2
Variable not found”. All other errors (e.g. mistyped instructions) will give the
error “Q Parameter error”. Note that in certain rare cases the assembler will
correct you. For example ld r,8 will be assembled as ld r,a since this is the only
instruction of this type in the instruction set. However, do not regard the
assembler as infallible and be sure to put the semicolons in the correct places. If
you have any problems or need any advice, please contact ACS Software.

Please note: All programs from ACS Software are copyright material in both
high and low memory forms. Copyright exists on written versions of all the
products of ACS Software and programs are sold on cassette on the
understanding that these are merely copies of the written material and are
therefore protected by the same copyright. No programs or their associated
documents may be reproduced whole or in part in any way without written
permission from ACS Software. Acceptance of the cassettes will be taken as a
binding agreement to the acceptance of these conditions.

