The Complete
Sinclair Z2X81
Basic Course.

98dN07) 9ISeg

Published by Melbourne House {Publishers) Ltd
Glebe Cottage, Glebe House,

Station Road, Cheddington,

Leighton Buzzard, Bedfordshire LU7 7HA

Copyright {c) 1981 by Bear Software
Certain programs in this beok are copyright
by other authors as indicated.

ISBH O 86161 105 5

This book is copyright. A1l rights reserved.

No part of this book may be copied or stored by any
means whatsoever whether mechanical or electronic,
except for private or study use as defined in the
Copyright Act.

All enquiries should be addressed to the publishers.

First United Kingdom printing.
Printed by Copyworld.

CAN YOUR SINCLAIR ZX8I COUNT?

Some of the earlier releases of the Sinclair ZX81 have 2
Faclt in their ROM which causes sope arithmetic calculations
te give the wrong answers. This is caused by an lextra!
three bytes in the ROM of these ZXBls that should never have
been there.

To check yours, try some of these calculations that the
'eld ROM' gets wrong:

CORRECT WRONG
ANSKER ANSHER
PRINT .25 »% 2 0.0625 3.162384
PRINT 4 - 0.0000000001 4 12
PRINT SQR .29 0.5 1.3591408
PRINT SQR .D6&25 0.25 1.847264

Some 2X81s have a hardware add-on which corrects these
arithmetic errors. However, this hardware add-on does not
correct another problem involved with the PAUSE function.
This problem is explained Further in Chapter 15,

The ultimate test is PRINT PEEK 54
If the answer is 136, then your computer is fine.
If not, we suggest you contact your Sinclair distributor,

and enquire about having the 'old RON replaced by one of the
"new ROMst.

CHAPTER

TNDEX

0 = o N o R e

o

14
11
12
i3
1%
15
16
17
18
19
20
21
22

APPERDICES

Introduction
Flowcharting
Arithmetic Dperators
Arithumetic Functions
string Variables
Substrings

Editing

Loops and Decisions
REM, STOP and CONMT statements
Arrays

Subroutines
Characters

Two speed computer
Jutput

INKEYS £ PAUSE

SAVE £ LOAD progranms
Top down programming
Debugging

Saving Memory
NHachine Code Programs
System Yariables
Beyond Graphics

REFERENCE MANUAL

103
109
i17
131
141
147
153

157

179

awemx i INTRODUCTION

1.1 What is a computer, and what does it do?

Simply, a computer is a tool. As much as a
hammer or screwdriver is a tool designed to make’
actions of your hands easier, so iz a computer
designed to make actions of your mind easier. A
screwdriver, although good at screwing and
unscrewing, needs a hand to guide and turn ir.
So, as a tool , the computer is unable te do
things on its own, and reguires your mind to tell
it what te do. Once told what to do - provided
it is able to do so - it will do it very quickly
indeed.

Unfortunately, a2 computer needs to be told
precisely what to do, using the limited
instructions that it understands. For example,
consider the sentence, 'I want you to add up the
aumbers 1 to 10'. If you instructed your
compiiter to do this, it will neot understand.
towever, 1if you were to type:

PRTNT 1+243+4+546+7484+9+410 (then push
newline)

- the computer would respond with

55

As you may have already noticed, there is no
difference between what the two instructions
required, but the way the instruction was phrased
was very important.

Computers are very, very fussy !

As we sald earlier, a computer will do as it is
told, provided it is able to do se. The things a
computer can do may be put into five general
categories

Remember data and instructions.
Interpret instructions.
Perform calculations.
Print results.
" Make decisions.

LA P) B e
"

At first glance, these five things. do not seem
like much, and can be done by almost anyone, and
without the need for a fussy computer. The power
of a computer is in its ability to do these
things, much faster than a human.

We cam illustrate this with a simple test :
multiple 2 by 3 by 4 by 5 by 6 by 7 by 8 by 9 by
10.

Finished ?
Now, type into the computer the following :

PRINT 2 % 3 % 5 % % 7 * 8 % 9 % 190 (follow
with newline)

The computer responded with :
3628800
Pretty -quicky 1sn'e 4 2

In the above instruction, the sign * is used by
the computer rather than x as the computer does
not know when the x is a letter or multiplication
sign. The computer also does not know when the
instruction is finished, and you must tell it by
pushing the NEWLINE key.

The question, 'What happens when T have more than
one instruction for the computer to perform 7!
must be asked. It will also have an answer.

In the next section !/

1.2 Programs, or, what to do with more than one
instruction,

In this section, we will define a 'computer
program’ for you. We will also tell you how they
may be used.

The term 'computer program' - often shortened to
just 'program' is simply a series of instructions
that are numbered so that the computer performs
them in sequence. These numbered instructions
are on their own called ‘program statements'. By
numbering each statement, the computer is able to
keep them in order, and knows which to perform
First. There are a number instructions that
cannot be put in a program, and these are
distinguished by their names : they are called
COMMANDS, and you will be introduced to these
gradually. there are not a great many ¢f them,
but they are very important, as you will see.

Type in the following program :
10 PRINT "“HELLO" (newline)

Note that the line numbers are always the first
part of the statement on the extreme left-hand
side. ILine number up to 9999,

20 PRINT “HOW ARE YOU ? " (newline)
After the line number, comes the second part of a

program statement, the statement itself. A
Statement is just another word for instruction,

and serves to tell the computer what you want it
to do, In this case, the computer will print
what comes immediately after the statement.

IMPORTANT : When using the PRINT statement the
computer will actually print only what appears
between the inverted commas, and not the commas
themselves,

In the bottom left-hand corner of the screen
there is a K. This is the cursor, and is a
symbol or mark that lets you know. that the
computer is ready for what you want to do next.

Now that you have a program in the computer you
will want to use or 'run' it. This is easily
done by typing the command RUN. Follow this with
newline. (In future we will not tell you to type
newline.)

Try it now.
The following méssage should have appeared :

HELLO
HOW ARE YOU?

You have just written, entered and run your firse
program. This simple program serves to show how
easily programs may be written, and therefore,
computers used.

Before we show you how to write larger and more
useful programs, it is necessary to introduce you
to another new word in the computer programmer’'s
dictionary.

We will do this in the next section.

1.3 The term 'variable' and its meanings,

10

Although it sounds impressive, the word variable
has a very simple meaning: it is a name given to
a storage space in which information is kept.

Here, we introduce the LET statement. This
statement is used by the computer so that it can
assign (and remember) the name of a storage
space, and what is in it.

In the following part of a program, the LET
statement is used to assign 3 variables:

10 LET A=8
20 LET B=5
30 LET €=56

Upon seeing the LET statement, the computer knows
that it must set aside part of its memory to hold
a numerical value and another part for the name
of that value.

In this case, the computer will set aside three
parts of its memory to hold the values 8,5 and
56, It will also reserve another three places
for the variables A, B and C. 1f you want to
prove that the computer will do this, then the
next statement:

40 PRINT A,B,C - may be used. Note that there
are no inverted commas here. They are not needed,
since the wvalue of the variable is what you want
to see, not the variable name.

N.B. Commas in the PRINT statement are used for
spacing.

Enter lines 10 to 40 and type LIST. The same
result may be achieved by pressing newline. The
statement LIST will cause a list of the program
lines to be displayed on the screen. This is a
very handy statement, as it allows you see the

13

program before you vuse it., If you have entered
the program correctly, you may now use, or ‘run’
it. Another command - the RUN command — will
allow youn to do this.

The display should be:

8 3
56

- these being the values of A, B and C
respectively.

You can combine the LET statement with simple
arithmetic in the following line:

50 LET D= A + B + C
Type it in then:

60 PRINT D

— and RUN

The display should be:

8 5
56
69

It so, congratulations! You have just seem how
easy it is to manipulate numbers in a computer
program. In doing this, the variables A, B, C
have all retained their original values, but a
new variable has been introduced, that has a
value rhat is the sum of these three. See what
happens when you alter the values of one of the
variables by typing in new lines with different
values of the same variable.

Although we have used only single letters,

variable names may be as long as you like. You
must not forget, though, that the longer the
variable name, the more memory space it will rake
up - and therefore the less memory you will have
for the program.

There are two rules for variable names that must
be obeyed:

(1). The first character of the name must be a
letter.
and :
(2). Only letters or digits (numbers) may be
legal parts of a variable name. : |

Below, you can see a brief list of legal and
illegal variable names. Note that spaces are
allowed, making long variable names more easily
read.

LEGAL ILLEGAL

ALFRED1 1ALFRED (does not
sStart with a
lecter)

POP GROUP POP "GROUP" (the "

character
is not a digit
or letter)

dse s Something NEW and GCLEAR

The final part of this chapter will introduce a
command and a statement to vou. The first of
these is the command NEW. This command is very
Important — although it cannot be put in 3
program -because when used, it will empty the
memory of your computer completely. The second
is the CLEAR statement. Its function is to
undefine all variables that have previously been

13

defined. The use of this command is fairly
limited when very short programs are being run.
However, with long programs that nearly fill. the
mcmory, it can be useful if there is a way of
CLEARing the old and unused variables out of
memory, so that new and usable variables may be
stored.

Refer back to the program you entered, in section
1.3; we will prove the statement GCLEAR does as we
SaY.

Enter the following line:
15> CLEAR
—- now LIST the program.

Isn’t that great! Line 15 has been inserted
between lines 10 and 20, as it should be if the
program lines are to be run in numerical order.
This illustrates the advantage of numbered lines,
in that you can put an extra line, in wherever
you like,

Almost,

All line number must be integer or whole number
values, hence if rhe lines were numbered 1,2,3,4,
etc., it would not be possible to insert a line
anywhere between 1 and 4. That is why most

programmers number lines in multiples of 10 or
20.

Now RUN the program.
The display should show
2740 on the bottom left hand concer of the

screen. This is a display message whenever you
run your program.

14

In this case, the 2 stands for report 2 -
variables not found - (due to the statement 15},
The second part of this message ;3 40 refers to

statement 40. IE. the program halts at statement
40, '

This is because the value of A was CLEARed from
memory and the computer did net know what the
value of A should have been,

The command NEW performs much the same task, but
operates on the cntire memory of the computer. It
clears all the program statements as well as the
variables. You use this command when you wish to
empty the memory prior to loading another
program.

Now test how well you have understood this
chapter by attempting the Following questions.

1 Which of the following are legal variables?
a) VARI b) 2VAR
c} DR. WHQ c) TOM JORES
e) A14BK7 d) 4JOHN
(You can check your answer by typing the command
LET (variable name)=2.
If the computer accepts the command, the variable
name is legal.)

2 Write a program that will store the numbers 1
to 5 in 5 variables, called A,B,C,D and E. RUN
your program, then type the command

PRINT A+B+C+D+E
If your program is correct, the answer will be
Lo,

3 Add a line to your program in question 2 to
print out the values of all rthe variables, and
their sum. Use the format

13

v

efc.

16

curr - FLOWCHARTING

In the previous chapter, you were shown how easy
it is to write your own computer program. This
1s fine if you only intend to write very simple
programs.

If you wish to write more complex programs, then
it is often necessary to write down what you
wish to do before trying to write a program,
After this, you build a simple picture of how you
would like the program to run. This is called
flowcharting, An example of a flowchart is given
below :

FLOWCHART FOR EGG FRYING

TAR

™

il
PLACE FRYING PAN
ON S5TOVE

BREAK EGG INTO FRYING

PAN
[7
[53
WALT
EGG COOKED ON THAT NO —
18
GG COOKED ON OTHE. NO — TURN
Ff,;ff”ij OVER

YES

17

PUT ON PLATE

I
EAT EGG

- LIKE
~ONE MORE 7

NC STOP

YES

That flowchart would work well, if we wanted the

computer to fry an egg for us, except that we did
not have a little box containing the words "TURN

ON STOVE" at the start. The egg would therefore

take an extremely long time to cook. Also, when

we sat down to eat the egg, we left the computer

to decide what to do with the pan. If the stove

was on, the pan would have been burnt.

This example illustrates the two major features
of all computers :

1. They have no imeagination and hence cannot
assume anything { meaning we would have cold raw
egg).

2. The computer does only as it is told and has
no initiative (once we turned the stove aon for
it, the computer would promptly burn the pan).

As you saw in the example, there are a number of
different shapes in a flowchart, these are to
make part of it stands out, so that it may be
more easily understood. We will explain to you
what these shapes stand for :

This shape always contains either a
START or STOP, indicating that, obviously the
program starts or stops at this place. There
may be only one START in each flowchart, and

18

usually only one STOP, although in some cases,
there may be more.

This shape (rectangle) is usually used
for all parts of the program not concerned
directly with input/output, and decision making
(more about these later). That is, the
mathematical operations, LET statements, and so
on.

NO

YES :

These shapes must always contain a
question, the answer to which may be eicher 'YES!
or 'NO'. This is because there are times when a
computer must make a decision, whilst executing a
program. Since computers are only able ro answer
simple questions, the questien must be simple.

Z é This symbol is used to'signify

an input /output section of a program. Output is
by a PRINT statement and input by an INPUT
Statement. You have not yet been introduced to
the INPUT statement, but its function isg to halte
execution while the operator {you) gives the
computer a desired piece of information, or
datum. The plural of datum is data, and may be
either digits or characters, or in a word
alphanumeric.

(:)The small circle contains a
number. There must always be two and only two on
each complete flowchart. When writing large
programs with their large flowcharts, it is
sometimes not possible to put the complete
flowchart on one page. Thus, these are used so

19

the programmer knows when there is a continuation
of a program and where the two (or more) parts
join together.

Let us now consider a situvation which is more
practical in cterms of using a computer: we will
write a fleowchart for a computer program that
will aid in teaching arithmetic tn a young child.
The computer will give a small compliment. The
compliment is of importance, as encouragement is
always desirable when teaching. 1If the answer
given to the computer is incorrect, then the
computer must say so and wait for another
attempt. We will not worry about how the .
computer gets the numbers or how the inputs take
place, for the moment.

Firstly, we begin with a start bubble :

And follow it with a box thus :

5¢

,PIEK TWO NUMBERS
FROM O TQ 9

Now that we have the twe numbers to be added, we
must inform the scholar-ro-he what.they are with

DISPLAY THE TWO NUMBERS

AND
PRINT STATEMENTS

20

©

Execution of the program must now stop for the
answer to be input

'/ INPUT ANSWER/

The computer must decide if the answer is correct
and what to do next. If correct, the computer
must display the appropriate 'congratulations!
message, then ask if the pupil wishes to do
anethers: 4F not Corteds, “the appropriate 'sorry!
message and invite the pupil to try again. In a
flowchart, all rhese words would look like

ANSWER YES "/ CONGRATULATIONS/

CORRECT?

TELL PUPIL
' SORRY"

The next part of the flowchart after the / DO YOU
WANT ANOTHER / diamond, will not contain another
input box as the question asked in the previous
box is implied to have been answered by an input
~ either yes or no - and this requires an iaput
from the keyboard. The next two parts of the
flowchart will be :

21

and

| VERY WELL

STOP

Referring to the case of an erroreous answer,
execution must be returned to the input stage.

All the pieces of the flowchart may now be pieced
together and since the [lowchart is for a small
program, the continuation circles will not be

needed

This signifies that
execution

is transferred back to the

start of the program.

PICK 2 NUMBERS
FROM O TD 9

DISPLAY THE 2
NUMBERS AND
FRINT INFORMATIOD

N

JTHPUT ANSKWER /

IS
ANSWER
ORRECT?

SORRY PLEASE
TRY AGAIN

YES

22

CONGRATU-

LATIONS

YOU WANT
ANOTHER?

VERY WELL

Ok !

Although it seems complex now, the program will
appedr to be quite simple once you learn a few
more statements. In fact, we will show vou how
to write the program later on, since vyou already
have the flowchart written.

When writing very large progvams, a useful
technique is to write a very peneral flowchart
and for each box on the flowchart, write a more
detailed flowchart from which the program may be
written. As an example, our egg frying flowchart
may have the second box expanded to the purchase
of the epgs, taking them home, placing in the
fridge, and so on.

Now try to write a few of your own flowcharts.
Choose tasks you know very well, like making a
sandwich for instance. This may not seem very
applicable to programming a computer, but you
will get an idea of how to break a task into
Separate steps. You could also rewrite the
flowchart for frying an egg, putting in the steps
that were forgotten, like icurning on the stove.

23

CHAPTER 3 ARITH M ETIC
OPERATIONS

In this chapter, we will show you cne of the very
useful facets of the ZX81 - the ability for the
computer to be used as a calculator. You may not
always wish to write a program if you have a
short arithmetic problem, especially if you need
the answer quickly.

There are five basic arithmetic operations that
your Z2X81 can perform:

OPERATION SYMBOL

i ADDITION +
p SUBTRAGTION =
: P MULTIPTCATION *
i DIVISION /
5 POWER Ak

—~ as you saw, several of the ZXB1 symbols are not
the normal symbol and there are some good reasons
for this :

(1) The first one stems from the keyboard, but
when added to the lack of imaginatien (which
computers suffer from), means that the following
distinction canaot be made:

A5% 5 and A5 X 5 (as a
variable)

Originally, computer keyboard only had capital or
upper case letters, and the computer could not
distinguish between a multiplication sign and an
X. Leaving spaces does not help, as a computer
does not recognize a space, although it will
notice when one occurs, and remember it's place.

25

(2) Also, it is not normally possible to type in
subscript (and superscript) characters, so a way

arcund this had te be fcund to tell the computer

when to perform, say, 55 5

(3) The division sign - called slash - is not
radical departure from the norm in that it has
long been used in fractions. 1t is important to
remember that when the slash appears, all numbers
and variables to the right, will be divided,

i.e.:

8 +2 F6 %2 will be performed as :

8+ (2 /6% 2), even though you may
have wanted : '

(8 + 2/ 6) * 2

In longer arithmetic operations (this is what
progammers call "sums"). You may use brackets so
that the line is easier to read. However, you
need not do so, as rhe computer uses a priority
system of deciding which operation to perform.

Enough theory for now, let's prove (and practice)
what you have just learnt :

Type in the following lines and see if you can
predict the answer before hitting NEWLINE

PRINT 2 + 2

PRINT 6 - 3

PRINT & 7

PRINT & / 3

PRINT & * 4 * 2
PRINT 9 + 5 - 4 }/ 8
FRINT 3 *% 3 / 3 % 2

You can tell your computer to perform even longer
operations, if you please and it will perform

2

them with ease.

As we said in chapter 1, a computer will remember
data. If, in a program you were to mix variables
with your numbers, the computer would remember
the values of the variables, and perform the
desired operation. This feature will be pretty
handy, as you will see. For now, let's see if
what we're just said is correct with this short
program {(firstly use the command NEW to empty the
memory)

10 LET A=10
20 LET B=5
30 PRIRT A+B*5

— now RUN it and see.

Bach of the operations has a priority level
attached to it, on a scale up to 16. The higher
priority level, determines which operation is
performed first,

Operations with equal priority are performed in
order from left to right. We have listed the
operations with their appropriate priority levels
below :

DPERATION PRIORITY LEVEL
Slicing 12
FI and RND 11
W 10
- (negative) 9
¥ and / 8
+ and - 6

The - operation can be used to experess a
negative number, but the + operation may never be

217

used to express a positive number. The Computer
will assume a number to be pesitive unless told
otherwise.

The two operations PI and RND are two arithmetic
functions which will describe in chapter 4.

Chapter 7 will introduce you to slicing.

QUESTIONS

1 Check that you understand rhe priority scheme
by typing the following commands into your ZX81,
Before pressing NEWLINE, try to predict what the
answer will bhe,

a) PRINT 2+3*4

b) PRINT 2%5%+%2

€) PRINT 7+2%2%%3

d) PRINT 4——2%%2

2 Add parentheses () to the following command so
that the computer gives the answer 15
PRINT 20-7-4-2

28

CHAPTER 4 ALHITHMETIC '
FUNCTIONS

This chapter will show you what the functions
many functions of the ZX81 are, and you can do
with them. Some are of particular use in
programs, while others are of a more specialized
use. These functions are essentially the same as
those found on calculators that are termed
"scientific’'.

(uestion: What is a 'function’
Answer: A function is a rule used to obtain
results,

All the functions are built infe your ZX81 and
are accessed (this is what computer programmers
say instead of 'used') in the following manner:

1. Press FUNCTION — by SHIFT NEWLINE - and
obsexrve that the cursor changes from K to F,

2. Press the required function key. After the
funcrion appears on the screen, the cursor will
revert to L.

There are 14 functions in your ZX81, and they are
listed below, with the ZX81 symbol:

FUNCTION ZX81 SYMBOL
Square root SQR
Sign SGN
Absolute value ABS
Sinc SIN
Cosine COS
Tangent TAN
Arcsine ASKN
Arcosine ACS

29

Arctangent ATN

Natural logarithm LN
Exponential EXF
Inteper INT
Ex L TT) T
Random number RND

In order to use these functions with the
exception of the last two, an argument must be
used. An argument is a number or variable after
the function. The only limitation on the
argument 1s that it must mot be outside the range
of values usable by the particular function.

In case you are not familiar with the functions,
we will explain them to you as we go along.

1. SQR : this function will return the S5Quare

Root of the argument. This function can only

dccept positive numbers. Try the following line:
PRINT SQR 16

Display : 4

In a program, you ceould use SQR like so:

10 LET 4=36
20 PRINT "THE SQUARE ROOT OF ";A;" = U;SRQ A

2. SGN: This function can return one of several
answers when used:

a. -1 is returned if the value is
less than zero.
© b 0 if the argument is equal to
zero, : .
e 1 if the argument is greater than
Z2rO0.

Try the following lines:

30

PRINT SGN 4
Display : 1
PRINT SGN -20
Display : -1
PRINT SGN O
Display : O
In a program this could appear as :
10 LET A=4
20 LET B=-20
30 LET ©=0
40 PRINT SGN A, SCN B,3GN C
Display : 1 -1
This function can be particularly useful if you
wish execution of a program to alter depending
upon the value of a variable, for example.
3. ABS : This function will return the
ABSolute value {or modulus) of the argument .
This means the sign - either positive or negative
- of the argument is made positive. Prove this
with the following examples :
PRINT ABS 2
Display : 2
FRINT ABS -1234

Display : 1234

di

4. INT : This function will cause the computer
Lo disregard the part of an argument to the right
of the decimal point (if the argument is
numeric). 1f the argument is a variable, only
the whole number part will be recognized. In
other words, it will return the INTeger part of
the argument. Note that this function will not
round off the argument, 1t truncates (that is,
cuts off the decimal part)

PRINT INT 1,5694
Display : 1
PRINT INT 46.9654
Display : 46
PRINT INT 9.2345
Display : 9
One way of using this function is to control the
number of decimal places in a number. Suppose

you wish to obtaln only two decimal places of the
number 1.36782,

The steps to take are
a. Multiply the number by 100 to gtve 136,782

b. Take the integer part by applying INT.
Display : 136

¢. Divide the result in step (b) by 100 ro
give the final result : 1.36

If you desired three decimal places, then you

must use 1000 in steps (a) and (¢) in place of
100,

12

Also, if you wished to round off the number then
before step (b), you would have to add 0.3 to the
number,

5. 'P1 ¢ This function needs no argument and it
returns only one value:- that of pi to ten
decimal places (although only eight will be
displayed)

PRINT PI

Display : 3.14159265

Whenever you need to use pi, then just use this
funccion.

6. RND : This is the second funection that
requires no argument. Use of this function will
generate random numbers between 0 and i, where
zero is inclusive but not 1.

RND does not actually generate random numbers but
Follows a fixed sequence of 65536 numbers that
are so jumbled as te appear random.

The statement RAND is usually used in conjunction
with RND, Tts function is to control the
randomness of RND. Try

10 RAHD 1
20 PRINT END

Display : 0.00227355

When you use the above program, the same Sequence
of random numbers will always appear on the
scregn. The number displayed was the starting
number. Note that RAND does nor produce a random

sequence,

In order to obtain a random sequence, try the

33

following program:

10 RAND 0O
20 PRINT RND

After you have run the program a few times, you
should realize the results are quite different,
This is because RAND O starts RND by judging how
long the television has been on. Therefore, this
should be random.

7 - 14 : BIN, COS, TAN, ASN, ACS, ATN, are all
trigonometry functions, and operate only in
radians, not degrees. “These functions perform
the same opecrations on the argument as your -
calculator,

LN, EXP arc mathematical functions with their own
special uses. '

If you have ben taught trigonometry and
mathematics in general, you will probably have
already thought of uses for some or all af thes
functions. If not, do not WOrry, as vyou will
still be abe to program your zZX81 successfully.

We will show you the general format of the above
mathematical functions, and if you wish, you can
try them on your 2ZX81 :

PRINT SIN
FRINT COS
FRINT TAN
PRINT ASN
PRINT ACS
PRINT ATN
PRINT EXP
PRINT LN 2

MNOOoO OO oD
LN Wh oL Lk (notn

Display : 0.47942554
: 0.87758256

34

0.54630249
0.52359878
1.0471976
0.46364761
7.3890561
0.69314718

Since the trigonometric functions work only in
radians, you can convert degrees to radiang by
dividing the degree value by 180 then multiplying
by pi, like so:

PRINT TAN(453/180%P1)

~ Where 45 is the value in degrees. The display
should read
1

QUESTIONS

1. Use the RND function to obtain anp integer
number between 1 and 6. You will also need to use
the INT fFunction, and several arithmetic
operators.

This statement will be used in game programs that
require a die to ba thrown,

2. “The length of the circumference of a circle is
2% PL *R (R ig the length of the radius). Write
? command that will print the length of the
circumference of j circle with a 4cm radius.

- 35

cunerzz 5 O 1 RINGS

5.1 8trings introduction

The previous chapter let you in one of the ZX81's
secrets. That is, you can use ZX81 as a
calculator,

Now, you will iearn another secref of this
machine; the computer can manipulate WORDS, as it
manipulates variables!

In computing areas, these WORDS are known as
strings. A string is easily recognised by the §
(dollar) sign.

The example below will introduce you more to the
‘concept : type in the following,

10 LET A$="I AM YOUR ZXB1, AND I DO WHAT I AM
TOLD."
20 PRINT A%

As you pressed the key NEWLINE, the sentence
Was -

I AM YOUR ZX81, AND 1 DO WHAT T AM TOLD,

~ will appear on the screen. One thing you
should notice is that the printed message 1is
enclosed by quotation marks. ZX81 has printed
the string in the same form as quated.

If the string is not enclosed by quotation marks,

your ZXB1 will treat it as a variablie; which has
been mentioned before.

37

3.2 String variables:
Section 5.1 has allowed you to find out

1. What a string is?
; How to instruct your ZX81 to print out
strings.

Now, you will learn all the ways Lo manipulate
strings.

Chapter 1 has introduced you Lo variables, now
you will learn more about themn.

Variable names can be used to assign numbers, but
presently, you will socon realize that you can
assign strings to all variables as well. The
Previous example illustrated this to you.

A LET statement allows you to assign both strings
and numbers. You must learn the difference
between a string variable and a numeric variable,

For string variables, each variable name consists
of two parts :

1, a single letter (- name)
2. a "§" sign after the first part,

We will now give you the two simple rules for
naming string variables

l. Each string variable only contain a
single letter,

2. Each string variable must have a g
sign after the name. (This doesn't apply to

numeric variables)

NOTE : You mustn't forget the two rules, as if
your string and numeric variables are not

38

coerrectly named, then your ZX81 will become
confused,

| Operations with string variables

You know now that your 2ZX81 can perform
arithmetic operations for any numbers.

Your ZX81 can algso add String variables together.
This operation ig usually known as concatenation.
This means that separate string variables will be
chained together as one string variable.

An example will explain the above peint more
clearly.

PRINT "BIRDSH + YACAN FLY tnr
— the display should appears as below :
BIRDS CAN FLY !
OR :

PRINT MA'™ 4 %Bh
— ¥ou should obtrain the tollowing result :-

AB

This operation can also be used in a program. Wea
will combine it with gome strings.

10 LET A$ = "ALL ANIMALS THAT HAVE FEATHERS"
20 LET B$ = VACAN FLY."
30 PRINT A3 + BS

After you have RUN the program, the following
will appear on the screen.

ALL ANIMALS THAT HAVE FEATHERS CAN FLY,

39

You should have a clear idea of this operation by
now. Your ZX81 can only perform addition with
string variables, Other operations such as
subtraction, multipication, division or raise to
the powers are our of your ZX81's ability.

5.4 The funstions LEN, VAL and STR$

This section will introduce you to three more
"words" of the ZX81's vocabulary. These are
string functions and will allow you to use
strings with numbers and visa versa.

The first of these is Lhe function LEN. This
function will allow you to see how long a string
ig. Consider the following line:

PRINT LEN' HOW LONG IS THIS STRING?™

— the result of this would be to display the
number 25. If you count the number of characters
- and remember in this case a Space counts as a
character — you will see that the characters
number 25. This can be of use if you write a
program that requires a decisien to be made (by
the computer) during program execution, or as a
check on the length of an answer. Tf the answer
15 too long, the message,"YOU TALK T0O MUCH" can
be displayed, for example,

VAL is a very useful function as it allows you to
perform some very interesting tricks with
strings. We had better take you tbrough them one
At a time:

(L) FOr any given string, VAL will return a
numeric VALue of that string. Therefore, if your
string consists of numbers, you can perform
arithmetic functions on 1t, like so :

40

LET A$="1234"
PRINT VAL A$+#2

Display : 2468

Your ZX81 takes the numeric VALue of the string
A%, then multipliea by 2 to obrain the above
resule. '

The prime rule when using VAL, is that the s5tring
must be digits, either positive or negative. The
value of that string will be returned. To prove

this, see what happens when you type in

10 LET B$="A1234"
20 PRINT VAL B$ * 2

You should have an error message 2/20 on the
bottom left hand corner of the screen; implies
undefined variable ar Line 20,

Also, Val must be the first function of the line.

(2} You can convert the string variable into 3
numeric variable like so

10 LET C$="1234"

20 LET G=VAL C$%

30 PRINT C$,C
Display : 1234 1234

The same rules as in (1) also apply here.

(3) It is possible to eVALuate string as an
arithmetic expression:-—

10 LET D=16

20 LET E=9
30 PRINT VAL'"0.254D#%24E /3"

41

Display : 35.25
Again as in (1) the same rules must apply.

As you can see the VAL function can be 3 very,
very useful function.

Wouldn't it be nice, though if we could convert
numeric variables into string variables?

This is precisely what STR$ does!
We can illustrate this most simply by:

10 LET D=6789
20 PRINT STR$ D

Display : 6789

The STR$ will also cause numeric values to be
displayed as if they were strings.

For example
FPRINT STR$ 123

Display:; 123

QUESTIONS

1. Which of the fcllowing are legal names for
string variables?
a) NAME$ b) A
c} X$ d) 1§
You can check your answers by typing the command
LET (variable name)=""STRING"
The computer will only accept legal names.

2. Type in the following commands, and before

42

typing NEWLINE try to predict the result.
a) PRINT VAL "SQR 4
b) PRINT LEN V"SGR 4
c) PRINT STR$ SQR 4
d) PRINT VAL STR$ LEN SQR 4

43

CHAPTER 6 SU‘BST'RINGS

In chapter 5, we introduced you te strings and
string functions. In this chapter we will deal
with pieces of strings, termed "substrings'". At
this stage, it is necessary to introduce you to
another statement in your ZX81's vocabulary. This
statement allows you to enter a datum into the
computer while program execution is halted
temporarily. The statement may only appear in a
program, S0 You cannct use it as you would a
function or PRINT; it is the input statement.
Accompanying the TNPUT must be a variable -
either numeric or string - the value of which is
the data that has been entered. The program
below will {tlustrate iks use:

10 PRINT "TELL ME A NUMBER PLEASE :"

20 TNPUT A

30 PRINT " THE NUMBER 1S ';A

40 CLS

50 PRINT "PLEASE GIVE ME A WORD :'
60 INPUT A}

/0 PRINT ' THE WORD IS ':A$

As you run the program the K cursor will change
to an L cursor at the bottom of the screen,
Also note that when a string is te be INPUT, the

I is enclesed by inverted commas. The reason
for the change of curser, is so you will know the
computer 1is waiting for you to supply it with
information, Please notc that your computer
displays great patience and waits until you give
a number and type NEWLINE before continuing
program execution,

If the computer is expecting a number, you have

45

to input a numher , otherwise an error message
will be sent to you. The same happens for string
variables.

Another new statement CLS is introduced to you in
line 40. This statement will Clear the Screen -
but nothing else. Any PRINT statement after QLS
will be displayed as first line on the screen -
top of screen.

As we said earlier this chapter is about
substrings, so we will leave the INPUT statement
for a while. |

Consider the 5tring "ABCDE'., Since substrings
are parts of a string - in correct sequence -
then the following must qualify as substrings :

ABG
GDE
BCDE
How do we get substrings? The answer is simple:
just slice off the appropriate pieces of the
string. We do this like so:
"string expression'{start TO finish)
for example :
“"ABCDEFGH'" (4 TQ 6)
- would return the fourth to sixth characters

(inclusive) of the string as the substring "DEF",

There are four things to be wary of when you wish
Lo generate substrings :

&6

(1). If you omit the starting position, then
your 2X81 will interpret this as meaning you wish
to be the first character of the string. That
is,

"ABCDER"(TO 5) will return
"ABCDE™ as the
substring

(2). Similarly, with the finishing positien
omitted, the interpretation will be to start at
the desired position, but continue until the last
character of the string is reached. Thus :

"ABCDERGHIJKL"{3 TQ)
- will be returned as
"CODEFGHIJELY

(3). Predictably, with both starting and
finishing positions omitted, the whole of the
string will be returned as the substring. Hence
with the situation :

"ABCDM(TO)
- you will get
"ABCD" as the substring

(4). Finally, if only one number is enclosed in
the brackets, then a single character will
returned as the substring, in the position
specified by that number :

”ABC"(E)
~ will weturn the character B as the substring.

The above requirements can be met fairly easily
and at times can be useful, but there are thrce
ways you can confuse your ZX81 when dealing with
substrings. We will tell you about these so that
you can avoid them. Then should you accidently

47

confuse your ZX81 with substrings, then you will
be able to find out where you went wrong.

(1). If the starting position is greater than
the finishing position, then your substring
returned will be empty or valueless :
for example
"ABCDEFG" (8 TO 7) - will see
ks returned as the substring.

(2). T1F the finishing position is greater than
the actual string length, then an error code will
be displayed ;

for example :

"ABC"(2 TO 4), will cause an error
message to be displayed as the string is only
three characters long. Your Z2X81 must stop
looking for the fourrth character (as it does not
exist) and you are tocld of this acrion
accordingly.

(3). The last trap to avoid is to ensure the
starting and finishing positions you have entered
are both positive.

Now, type in the program and RUN it :—

10 PRINT "INPUT A 8 CHARACTERS STRING 7"

20 INPUT A%

2> IF LEN A% £ 8 THEN COTO 10

30 PRINT "GUESS THE SUBSTRING(S5 TC 8) !

40 PRINT "STRING IS ";A$;"ANSWER 18 "3;A$(5
TC 8)

53 PRINT "'SUBSTRING{(4 TO 6)! "

60 PRINT "STRING IS '";A$;"ANSWER IS '";A$(4
TO 6)

After you RUN the program few times ; you may
like to go on to next chapter !

QUESTIONS

48

1. If A$="MNOPQRSTU", what would the following
commands print? Check your answer by typing in
LET A$=""MNOPQRSTU"

and then typing in each command.

a) PRINT A$(3 TO 5)

b) PRINT A$(TO)

¢) PRINT A${(5 TO 10)

d) PRINT A$(5 TO 9)+A$(4 TO 7)

e) PRINT A$(7 TO 3)

2. In Chapter &4, question 2, you wrote a program
statement that calculated the length of the
circumference of a circle. Using fhis statement
(with minor modifications) write a program that
will ask for the length of the radius, and then
calculate the circumference.

3. Write a program that asks for your name, and
then says HELLO N, using your name.

44

cerzr 7 EDITING

In this chapter, we will show you what can be
done when you have made a mistake entering a
line. When a program line needs to changed
after pressing NEWLINE, it is termed "editing’.
There are a number of editing functions in yOour
ZX81, and we shall deal with all of them.

We have deliberately left this chapter until now
so you could have practice learning where the
commonly used statements can be found on your
ZX8l. Also, it gave you practice at typing in
lines correctly.

When you have entered program lines as in
previous chapters, you will hopefully have
noticed an unusual symbol - like a letter V on
its side - displayed between the line number and
statcment., This symbol is called a cursor and
shows you which line is available for editing.

Before we tell you how to edit programs, we will
tell you about each of the editing commands
available to you.

(1>. RUBOUT: ou the keyboard there is a key
marked RUBOUT on the top right hand corner. .
If you realize your mistake immediately after you
make it, then by using the RUBOUT key you will
be able to erase that character. You can gain
access to this key by pushing SHIFT - on the
lower left-hand side of the keyboard and then O.

As you type in your line, the cursor K will

move along it. When you use RUBOUT the
cursor moves backwards in accord. On this

51

cxample use RUBOUT to erase C,D and E
1.0¢ BRINT A, B30, 05 B

{(2). LEFT AND RIGHT CURSOR Controls : If you
reach the end of a line only to find a character
in the middle has been typed in wrongly, you may
move the cursor K backwards aleng it to correct
the mistake. This is achieved by using the left
<A and right > arrows for cursor movement .

The <= will allow you move the cursor backward
along the line to the mistake. You then type
over the mistake and use the [Z>. to move to the
end of the line. If you are satisfied the line
1s as you want it, you can then press NEWLINE

Try it on this example :

10 PRINT '"*GORREGT MISTALES EASILY"
#
this character should be &
4

(3). DOWN arrow : Ag you enter each line into
your ZX81, you will have seen it move from the
bottom of the screen to the top. When you wish
to EDIT & line, it must be moved from the top to
the bottom. To do this the 4 and symbols
are used. The effect of using these is to move
the program cursor (our V on its side) up or
down the program listing. When you have the
cursor on the right line, you then press SHIFT

ERIT - The effect of this is to bring that
line to the bottom of the screen so that editing
can now take place.

for example :
program cursor
10APRINT "HELLO'

- If you press SHIFT EDIT y 4 copy of
tine 10 will appear on the bottom of the screen,

52

(4). Line Deletion : If you decide a line is no
longer needed, then that line may be completely
removed from the program by typing the tine
number then NEWLINE .

Try it witcth ¢
10 PRINT ' I DO NOT WANT THIS LINE"

then follow it with : 10 NEWLINE
You will see line 10 at the top of the screen
disappear.

(5). Line Replacement : If you wish to replace a
lire, then proceed as for 4, but instead of
presssing NEWLINE type in what you wish the
new statement to be and then NEWLINE . You
will see the new line placed at the top of the
screen. The following example will illustrate
this:

10 PRINT "I PO NOT THINK THIS LINE WILL DO
then
10 PRINT "THIS LINE 1S MUCH BETTER "

With these facilities it is possible to quickly
correct any mistakes in your program entry.

hd

CHAPTER 8 LOOPS AND
DECISIONS

Although the statements we have introduced you to
so far have been quite useful, the truly powerful
statements havé been missing. This is because if
they were introduced at the start, their

significance may have not have been too apparent.

8.1 Loops without end

Let us suppose you had a number of items of data
- costs for the running of a small business — and
you wished te add them together and get a
progressive total as you went from one item to
the next. One way to do this would be to write g
program that adds two numbers together and
displays the answer. If you did this, then it
would be necessary to type in two numbers to run
the program: the next item and the progressive:
total.

An easier way would be to have a program that
would wait for each piece of information, do what
you want and recturn to the start for the next
datum. We can do this with an unconditional GOTO
statement. The word unconditional in this case
refers to the fact that regardless of what has
happencd before in the program, execution will
be transfered to the line number. This is opposed
to conditional, which means that execution may be
passed to the line number, depending on the value
of a designated variable. More of this later.

Below is a program that shows the use of the
unconditional GOTO to tackle the problem
mentioned earlier. Before entering it, clear the
ZX81's memory (with the command NEW).

55

10 PRINT "ENTER YOUR NUMBER WHEN THE CURSOR
CHANGES TO L .,

20 LET B = O

30 INPUT A

40 LET B=B+A

50 PRINT A,B

60 GOTO 30

Let us draw your attention ro line 40 for a
minute. If you have not programmed a computer
before, this line may appear to be one rhat will
completely baffle the computer. Such is not the
case! Instead of not being able to decide what
value to assign to B, the computer reads this
line as :

Set a new value for varialbe B that will be
equal to the old value of variable B plus the
current value of wvariable 4,

Now you know how the computer reads line 40, the
whole propram should make more sense,

Something however, is missing

Question : How dees the computer know when to
5top?
Answer t It doesn'g!

A new (and very impertant) command to learn about
is BREAK. This command, when issued BREAKS inte

a4 program - regardless of where in the execution
the computer is - and stops execution that point.
Without this command the loop formed by lines 60

and 20 would continue forever. This is termed
'endless leop!',

RBefore RUNning the program, make up some dara to
Serve as costs to be input. Then type RUN. When

ab

you have run out of data, use the command BREAK
to halt execution. Try drawing a flowchart for
the program as well.

8.2 Loops that do end

There are two ways you can pur endable loops into
your program : one way 1s a little complicated to
understand, but not very complicated to use.
Since loops are new to you, we will deal with the
second method first,

8.2.1 The IF THEN Statement

Earlier in this chapter we mentioned the two
types of GOTO statement as being conditional and
unconditional. You saw how the GOTO statement on
Its own can give continuous execution of part of
a program. This is all an unconditional GOTO can
do on its own. If you couple it to an IF ...,
THEN statement in the following generatized
form:

nn 1IF (variable) {(condition} THEN GOTO mm

— a8 new range of flexibility will be opened to
you .
Let us now cover in detail the above line

1. nn and mm : both refer to line numbers
that must be part of the program and different.

2. Variable : the variable must have a
value, but can be positive or negative,

3. Conditions : this is the most important
part of the line and needs the most care when
writing the program. There are two parts to this
part : firstly the relations (of which Lhere are

57

four); secondly the variable or nunteric
eéxpression or arithmetic expression. We'll
clarify this with a four examples, using X as a
variable to the left of the conditions :

IF X » Y THEN

IF X ¢ 10 THEN
IF X < Y*¥%2 THEN
IF X (= Y THEN
IV X y= Y THEN

These symbols (if you haven't seen them before }
will be somewhat mystifying but you will
understand shortly,

They are the relations, and are always read from
left to right

this symbol } means 'greater than!
this symbol ¢ means 'less than'
and these } = (= mean 'greater than or

equal to' and 'less than or equal to
respectively. If feel you may experience
difficuley in remembering which is which, the
following rules will help : '

1. Always read them from left to.right,

2. Consider the number of 'points' presented
as you read it : e,g. { two here; > one
here.

~ then see that two is greater than one.

4, THEN GO TO mm : only if the previous
conditions are true will execution be transferred
to the designated line number. If not execution
'falls through' to the next line.

In order to rewrite the Program we previocusly
entered we must starr off a counter that will

count the number of times the loop has executed.
When the desired level has been reached, the
conditional GOTO will transfer execution outside
the loop.

It seems as if this i5 an extremely involved way
of achieving our desired results, but ance you
see these in a program, it will become clearer.

Below is our new program for the one we showed
you earlier:

10 PRINT "ENTER YQUR NUMBER WHEN THE CURSOR
CHANGES T0 L "

20 LET B = 0

30 LET C =

40 INPUT A

50 LET B =

60 PRINT &,

Fia f oirid N W

80 IF C (= 10 THEN GOTO 40

90 PRINT ""PROGRAM TERMINATED"

Line 30 to set the counter to its initial value,

Line 70 increments the counter by 1| each time the
loop 1s executed.

There is5 a little backwatrd thinking here that
sometimes can be quite useful when programming

Linc 80 does not transfer execution outside the
loop at all; it merely stops transferring
execution to.the lgop when the counter reaches
10.

Line 90 is not necessary, but can occassionally
be a nice touch.,

59

8.2.2 FOR .,....., NEXT Srtatement

A= you may have noticed, the above method is not
very compact, and although the verastibity of the
program has been increased, its length has been
increased also. Unfortunately it is not often
possible to increase versatility without
increasing length, but there are efficient and
inefficient means of achieving the same ends.
This is where FOR, NEXT looping comes in,

Firstly, the general forms of the statements :

FOR (variable) = aa TO bb (STEP cc¢)

and NEXT (variable)

— are very compact. The two lines above will
replace lines 30, 70 and 80 in our previous
program,

The FOR statement in more detail g

1. The (variable) must be unique to the loop in
that it must not have its value changed at any
point in the program. The (variatle) in this
case must be a single alphanumeric variable.

2. The lower case letter aa, bb, cc stand for
integer values : aa is the initial value of the
(variable); bb is the final value of the
(variable); and cc is the value of the
increments. If you wish te increment by 1, then
it is not necessary to include STEP cc.

3. A FOR must always appear in a program with a
NEXT , and it must be before the NEXT,.

With the NEXT, the only rule is that it must

60

contain the same variable as the FOR statement.

Let us now put the FOR NEXT loop to
work, by rewriting the rewrlte of the program we
introduced at the start of the chapter :

10 PRINT "ENTER YOUR NUMBER WHEN THE CURSOR
CHANGES TQ L

20 LET B = O

30 FOR N = 0 TO ©

40 INPUT

50 LET B = B

60 PRINT A,B

70 NEXT N

80 PRINT '"PROGRAM TERMINATED!

=

+ A

As you can sec, this program is more compact than
the previocus one, and this is an advantage
considering that memory space is limited.

Also , it is for less unwieldy than the previous
method.

8.3 More 1IF ... THEN

There is more than one use for the IF .,... THEN
statement; it can be used to transfer execution
from one place in the program to another,
depending upon the value of a variable being
used. The following programs will serve to
illustrate the uses of the IF ,... THEN.

10 PRINT "DO YOU SEE ANY CLOUDS IN THE SKY?
YES OR NO"

20 INPUT Aj

30 PRINT "'IS 1T RAINING NOW? YES OR NO"

40 INPUT B%

30 IF NOT A$="YES" OR NOT B$="YES'" THEN GOTO
80

60 PRINT'IF YOU DO GO QUT TODAY, TAKE AN

UMBRELLA. ., ."

61

710 GOTO 90 :
80 PRINT "IT'S A NICE DAY TO GO OUT saoea"
90 PRINT "PROGRAM TERMINATED"

NOTE :

Line 30 introduces the NOT and OR logical
operators, and they mean just as they say. If
you have difficulty translating the statement,
then consider it in pieces. The translation you
should get is :

50 IF A$=""RO"™ OR B$="NO'" THEN GOTO 80D

Follow the program through and make sure you can
predict how it would run before emptying ZXBl's
memory and entering it,

10 PRINT "INPUT TODAY'S DAY?"

20 INPUT D

30 PRINT "INPUT THIS MONTH?"

40 INPUT M

50 IF D = 25 AND M=12 THEN GOTO 90
60 IF D = 1 AND M = 1 THEK GOTO 110
.70 PRINT "TODAY'S-DAY IS NEITHER CHRISTHMAS DAY

NOR HEW YEAR"

80 GOTO 120

S50 PRINT"TODAY IS CHRISTMAS"Y
100 GOTO 120
110 PRINT"TODAY IS NEW YEAR"™
120 STOF

This program shows the use of the IF ..,.. THEN to
sort out data and get the appropriate response
from the computer. Lines 50 and 60 will transfer
execution only if both expression on the left and
right of the logical operator are true.

100 CLS

110 PRINT“INPUT THE ORIGINAL AMOUNT (IN $)»
120 INPUT A

130 CLS

62

140 PRINT"INPUT THE ANNUAL INTEREST RATE
{ PERCENTAGE)¢
150 INPUT I
160 CLS
170 PRINT"INPUT HUMBER OF YEARS"
180 INPUT Y
19¢ CLS
200 PRINTU"INPUT NUMBER OF TIMES A YEAR THAT
INTEREST 1S COMPOUNDED"™
210 INPUT T :
220 CLS
230 1IF T=999 THEN GOTC 380
240 IF A(=0 OR I{=0 OR Y{(=0 QR T{(=0 THEN GOTOD
340
25C LET N=Y*T
260 LET R1=1/100/T
270 LET B=A*({1+R1)**N
280 PRINT"FINAL AMOUNT =$":B;" FOR ":Y;" YEARS"
290 PRINT
300 PRINT"DO YOU WISH TC CONTINUE? YES OR NO“
310 INPUT A$
320 1IF A$="NO'" THEN GOTQ 380
330 GOTO 110
340 CLS
350 REM ERROR ROUTINE
360 PRINT'"INCORRECT DATA. PLEASE RETYPE DATA?"
370 GOTO 100
380 STOF

This program will calculate the compound interest
on an investment. It will also check for
incorrect data, with line 240. This line is a
series of logical operators, all of which must be
true or an error message will be printed.

QUESTIDNS

1. Rewrite the following program using IF...THEN
instead of the FOR loop.

63

100 FOR I=1 TO 10
110 PRINT INT(RND*I1}+1
120 NEXT 1

2. Rewrite the following program using a FOR loap
instead of the IF...THEN. It should be more
compact.

100 LET S=0

110 PRINT "SCORE: ;8§

120 LET 5=541

130 IF 5{10 THEN GOTQ 110

3. Rewrite the following program without using
any FOR statements.

100 FOR I=1 TO 5
110 FOR J=2 T0 6
120 PRINT 1,J,1+J
130 NEXT J
140 NEXT 1

B4

owerex s REM, STOP AND CONT

In this chapter, we will introduce you to a
command and its accompanying Statement, and
another statement, These items are not closgely
rclated (in Fact, one of them does precisely
nothing in the rumning of a program), but have
becen put here so you can learnt of some fine
detail, in computer programming,

From now on, when we give you an example of a
program to enter, we will not tell you to use the
command NEW tc empty memory prior to entry. This
is because it is good Programming practice to
empty memory prior to program entry.

9.1 Casual REMark

We will now tell you about the REMark statement.,
The function of the statement is to hold
information or comments that may help other
programmers viewing a listing of your program
understand its operation. The important thing to
remember is that the computer ignores these lines
completely when excuting a program.

Consider the following generalised line :
(line number) REM (Whatever you desire)
In the program below, you will sec that of the

seven lines it contains, only the final line wiil
give output :

10 REM THIS IS A SAMPLE PROGRAM THAT PROVES
THE COMPUTER IGNORES.

65

20 REM LINES STARTING WITH REM STATEMENTS.

30 REM PRINT''THIS LINE WILL FROVE LINES 10
AND 20 ARE FALSE"

40 REM LET A = 15

50 REM LET B = A/3

60 REM PRINT A,B

70 PRINT “"PROGRAM TERMINATEDY

Try running the program and observe the output ;

PROGRAM TERMINATED

As you can see, the only part of the program that
produced any output or was operated on was the
final line. This proves that the REM statement
does as we earlier said.

A STDPplng your program

You may not always wish to print "IROGRAM
TERMINATED" at the end of a program, even though
it can be a useful message. This is where the
STOP statement comes in. Like many statement and
commands in BASIC, dits function is self
explanatory. When the computer encounters this
command, execution of the program will cease.

You may use the statement as a program line or as
equivalent of the BREAK command., The difference
between STOP and BREAK is that STOP causes the
computer to remember the next line due for
execution, whereas BREAK causes execution to
cease only. When using BREAK, a sign D/(line
number) will appear at the bottom of the
screen. The line number is the next line for
execution, and the 'D' is a flag Lo let you know .
the BREAK statement has been used, A report code
' will be displayed instead of 'D' if the STOP
statement is used as a program statement, Like

ili

BREAK, STOP may be used at any time during
execution.

The value of STOP is that the computer knows
which line it was to execule next. Therefore, it
is possible for pregram execution to be continued
where it left off, and you may do this by using
the CONT statement. After STOPping a program,
type CONT to set the pregram running again.

In the case of very short programs, you will not
have much opportunity to use BREAK and CONT from
the keyboard, as the time taken to RUN the
programs is very short. If you RUN a program
that require you to enter a datum and you need
time to consider your reply (or get a cup of
coffee), then you may STOP the program,

Type in the following programs and tise the
CONTinue after the program is halted.

e.g (1) 10 PRINT "TESTING THE STOP STATEMENT"
20 STOP
30 PRINT " GONT STATEMENT DOES WHAT IT
SAYS"

After the command CONT has used, your ZX81 will
centinue to excute the next statement. Firstly,
your ZXB1 will clear the screen and then
display:-

CORT STATEMENT DOES WHAT IT SAYS

e.g (2) 10 LET A=2
20 LET B=4
30 FOR I=A TO B
40 INPUT C
50 STOP

&7

60 NEXT I

:— After you enter a number, a message 9/50 will

appear on the screen. If you use the statement

CONT, your ZX81 will execute the NEXT statement.

By adding 3 statements, you can check your input.
Try it now !!!!

e.g (3) 10 LET A=2
20 LET" B=3
30 LET (=A+B |
40 PRINT "THE SUM ISA";C
50 STOP

i~ If you use STOP at the very end of your
program. The message with report code '8' will
be displayed. But if you use then use CONT, your
ZX81 will display 0/0 . This message is
because there are no more program statements
after the line 50.

QUESTIONS

1. What will be the report code when this program
stops? And at which line will CONT restart the
program?

100 PRINT "HELLO"

110 STOP

120 PRINT "HELLQO THERE"™

2, Where will this program stop?
100 PRINT "LINE 100"

110 REM STOP
120 ERINE YLINE: T2a¢

68

CHAFTER 10 ARRAYS

As we said back in Chapter 1, one of the things
computers can do very well is remember data.
There is more than one way the computer can do
this, one of which allows for easier
manipulations than the other.

You may give each datum a variable name, but
manipulation of individual data would be
¢ifficult as you would have to know what each
variable name indicated, and this tends to defeat
the purpose of putting them in the computer in
the first place. In any case, the variable names
would take up an excessive amount of memory.

The other way, is to tcll the computer to reserve
a plece of memory, divide this piece up into as
many smaller pieces as required, give each small
piece a small label, and finally name the large
piece with one name. All this can be done with
one line of program.

Phew!!

Now, the naming of this piece of memory takes
only a small amount of space, and the labels are
numeric, requiring no space at all as the
computer counts its way along each little piece.
This leaves you with far more room te hold data,

We call these large memory pieces ARRAYS.

When forming an array, there are two rules to
remember in the naming :

1. An array name must be a single letter.

69

2. No rtwe arrays may have the same name.

As you can see, this gives you up to twenty-six
possible arrays.

10.1 Forming Arrays : DIM statement

When the computer encounters the DIM statement -
this need not be at the start of the program,
provided it is before the array is to be used -
it will perform the feats we told you about
earlier.

Below is an example of a DIM statement that will
reserve twelve spaces for data, under the general
name M. These spaces will be numbered from 1 to
12, with initial values of zero.

DIM M(12)

Put into a diagramtic form array M would look
like ;

If you wish to call or perform an operation on
the contents of an individual part — or element -
of an array then you simply state the array name
with the element in brackets afterwards.
Alternatively if you have variable that has an
integer value, then this may be used in place of
the element number.

70

Below is a program that allows you to load data
into array M, and as a check, it will then print
out the data you have loaded.

1 DIM M(12)

10 REM : THIS PROGRAM IS A TRIAL TO
ILLUSTRATE THE USE OF ARRAYS.

20 PRINT "ENTER YOUR DATAM

30 FOR 1=1 TQ 13

40 INPUT M(I)

50 NEXT 1 |

60 REM : NOW DISPLAY DATA

70 FOR I= 12 TO 1 STEF -1

80 PRINT "'DATAM ";T;9=";M(T)

90 NEXT T

NOTE the program is controlled by two

{0 SOp— NEXT loeps.

Below is a listing of a program which is called a
bubble sort. The aim is to allow you to input a
number of values into an array, and then to sort
them inte in increasing order. Examine the
program carefully and make sure you understand it
before typing it inte your 2ZX81. Then run the
program to see that it works.

10 DIM S(10)

20 PRINT " HOW MANY NUMBERS 7"
30 INPUT N

40 IF N { 10 THEN GOTO 50
42 PRINT ' THE MAXIMUM NO. {= 10"
45 GOTO 20

48 CLS

50 PRINT " INPUT YOOUR NUMBERS 7'
60 FOR 1=1 TO N

70 INPUT S(1)

80 NEXT I

90 FOR I=1 TO N-1

100 FOR J=1 TO N=I

71

110 LET X<S(J)
120 LET Y=5(J+1)

130 IF X (= Y THEN GOTO 160

140 LET §(J)=Y

1.50 EF S{I41)=¥%

160 NEXT J

170 NEXT I

180 CLS

190 PRINT "THE NUMBERS ARE IN INCREASING
ORDER"

200 FOR 1I=1 TO N

210 PRINT S(I)

220 NEXT I

230 STOP

Here is another example of a program using
arrays. It illustrates the way the elements can
be manipulated.

This is a puzzle to test your powers of logic!
You start with 9 numbers in an array, in random
order. The aim is ro get them into ascending
order in the least possible number of moves. The
only way you have ra rearrange them is to reverge
the order of some elements,
For instance, if vou have
1 5492387s¢
and reverse 3 of them you will have
451923876
Then reverse 6 of them, and you will have
329154876

NUMBERS

10 LET B=9

20 DIM aA(B)

30 FOR C=1 TO B

40 LET A{C)=C

50 NEXT C

60 FOR C=B TO 2 STEP —_i

72

70
80
90
, 100
110
120
130
140
150
160
170
180
190
200
210
220
234
240
250
260
270
280
290
300
310
324
330
340
350
360
370

LET D=INT(C*RND)+1
LET E=A(()

LET A(C)}=A(D)

LET A(D)=E

NEXT G

LET E=0

GOSUB 320

PRINT "REVERSE?"
INPUT F

IF F=0 THEN STOP
IF F{=B THEN GOTO 200
PRINT B;" MAXIMUM"
GOTO 140

LET E=E+1

FCR D=1 TO INT(F/2)
LET G=A(D)

LET A{(D)=A(F-D+1)
LET A(F-D+1)=0G
NEXT D

GOSUB 320

FOR D=1 TO B

IF A(DY{)D THEN GOTO 140
NEXT D

PRINT E;" MOVES™
STOP

CLS

FOR D=1 TO B
PRINT ﬂ(D);” H;
NEXT D

PRINT

RETURN

Lines 30 to 50 initialize the array variables to

the

numbers 1 to 9. Using the FOR loop is a very

compact and neat way of handling arrays, and it
is used a lot.

Lines 60 to 110 rearrange the elements of the
array in a raadom order. Note that lines 80 to

100

swap the values of elements C and D in the

Array.
Lines 210 to 250 reverse the elements as directed

73

by the cperator.
The subroutine in lines 320 to 370 PRINTS the
array.

10.2 Two Dimensiocnal Arrays

Section 10.1 was concerned only with generating
drrays that consisted of lists of data or one
dimensional arrays. As the one dimensional array
is related to a straight line, so the twe
dimensional array is related to a flar plane as
in a piece of paper,

Consider the following diagram

1 2 3 4 3

It shows a grid representation of 2 two
dimensional array. The numbers down are termed
'lines' and the numbers across are termed
‘columns'.

The use of two dimensional arrays is that a
single value may be held by a combination of Lwo
variables. Should

you wish ro writw a program for a 'grid' game,
then use of a two dimensional array will make
program writing easier.

You can generate a two dimensional array in a
similar fashion for one dimensional arrays, like

74

50
1O DIM A(4,5)

- where the first number denotes the number of
lines and the second denotes the number of
columns,

Loading values into the array is little different
from before, you may use a FOR....NEXT loop like
50

1 DIM A{4,5)
10 FOR N=1 TO 5
20 FOR M=1 TO 4
30 INPUT A(M,N)
40 NEXT M
50 NEXT N
60 STOP

As you see, there are two FOR....NEXT loops, one
Within the other. The loop with lines 20 to 40
is 'mested' within the loop wich lines 10 to 50.
You can nest as many loops within each other as
you like, provided they are completely contained
within each other. If, for instance the program.
Lines 40 to 50 were reversed then it would be
considered illegal by the computer.

To change just onc value in the array, use a LET
statement, with the co-ordinates of desired

element then its value, like so

10 LET a(2,3)=8

10.3 Three and more dimensions
You may have arrays with as many dimensions as

you wish although“threq?is usually the maximum
used.

75

In the same manner as we related one and two
dimensional arrays to a straight line and a flat
Plane, so we can relate a three dimensional array
to a box. The box will be divided inte an equal
number of parts, the same number as there are
elements in the arrays.

Generating such an array is simular to the
generation of a two dimensional array, as is
loading.

It is possible to wvisualize a four dimensional
array as a volume of space over a period of time,
but, it is very difficult to visualize arrays
with dimensions beyond this.

10.4 String Variable Arrays,

Just as you have arrays for numeric variables, so
you can have arrays for string variables. There
are some differences as you see from the general
form of generating the array

DIM.(String Array Name)$(number of
elements,length of elements)

1. String Array Name must consist of a single
letter followed by the $ sign.

2. In a string array, all the strings have the
sames fixed length. Therefore, the DIMension
line has a extra number(the last one), taq specify
this length.

3. A string array nawe must be exclusive, and a

program cannot contain a string variable with the
same name, i.e.

76

A$(6,5) or A$

but not both.
This differs from numeric arrays, where the names
do’ not have to bhe exclusive.

4. You can use 'slicing' techniques - discussed
in the previous chapter - may be used in string
arrays. For example

10 DIM A$(5,10)

20 LET A3(1)="123455678"

30 PRINT A$(1),A$(1,7)

40 PRINT A$(1),A$(1,2 TO 5)

50 STOP
Display 12345678 7
12345678 2345

10.5 Array Storage

It is possible to store the data contained in
array, but not directly. To store data, you must
go through the following steps

L. Set up an array and Iboad in your values using
a program such as you were shown in section 10.1
and 10,2.

2, Edit out this program. Do not use NEW, this
will also clear the array from memory.

3. Type in your program that uses the data
stored in the array, and then SAVE it (we will
show you how to do this later). The effect of
this will be to store the program and the
variables contained in the array.

4. When LOADing the program back, the array and
its variable will also be LOADed.

i

5. When you execute the program, do not use RUN,
or the variables will be cleared. Use the
statement GOTO nn instead. Where nn is the first
line number of your program.

QUESTIONS

1. Write a program that sets up a one-dimensional
numeric array of 10 elements. Store the numbers 1

te 10 in the array:- 10
in the second,

2. Write a program that
array with 5 by
te 4 in it as

numeric
numbers

Il B = D

L B b O3 ks O3

Fd B 1 =t P

(TN e I PR N T

o SN L RS B

in the first element, 9
a FOR loop.

sets up a two-dimensional
5 elements. Store the
follows:~-

Hint:- The number in X(I1,J) is ABS(I-J)

3. Set up a string array that contains the days

of the week, so that D$(1)="SUNDAY"., Using this

array, write a program which will INPUT a number
betwwen 1 and 7, then PRINT the corresponding

day.

78

aserer 11 SUBROUTINES

You are now at the stage where you have learnt
enough of the ZX81's vocabulary to write some
quite useful -programs. In this chapter, we will
introduce you to subroutines, so your program can
be more efficiently written and structured.

A subroutine is a part of a program that doecs a
task a number of times during the running of a
program, but at different stages. For example,
if you wrote a program thar required ten random
numbers at four different rimes, then it would be
laborious to type in the same series of lines
four times. An easier way would be to type in
the lines once and transfer execution to those
lines whenever the numbers were needed.

This is the function of GOSUB, the statement that
transfers execution to the subroutine. The
statement appears generally as :

GOSUB nnin
~ where nnn is the first line of the subroutine.

GOSUB always have the RETURN statement at the end
of the subroutine. The effect of RETURN is to
return execution to the program line that comes
itmediately after the GOSUB

Statement.

You may have noticed the similarity between GOSUB
and an unconditional GOTO. They are similar
initially, but the transferring of execution back
is what makes the GOSUB superior to GOTO in this
case. When the ZXB81 ancounters a GOTO, it will
not remember which line comes next in the program

74

and cannot transfer back unless at the end of the
subroutine there is another unconditional GOTO.

The following program will illustrate how the
GOSUB and RETURN statements work :

10 REM : THIS WILL ILLUSTRATE GOSUB STATEMENT
Z0 PRINT "THIS IS THE MAIN PROGRAM"

30 PRINT "I AM ENTERING A SUBROUTINE NOW"

40 GOSUB 100

SOEELES

60 PRINT "1 HAVE RETURNED TO THE MAIN PROGRAMY

/0 STGP

100 REM : THE START OF SUBROUTINE

110 PRINT '

120 PRINT "THIS IS THE START OF SUBROUTINE **
130 PRINT "CHECK THAT WHEN THIS SUBROUTINE HAS
FINISHED."
140 PRINT " I WILL BE RETURNING AND EXECUTE LINE
501!‘ !

150 PRINT "'AND THE SCREEN WILL TURNS
B ANE. scomssraimsi®

160 RETURN

The diagram below is another way of showing how
the two statements work

50 GOSUB 1000 -

@

90 GOSUB 1000
100 STOP

a0

1000 REM SUBROUTINE 1000

*
&
[

1150 RETURN

The program below will generate random integer
from 0 to 1 to simulate the tossing of a coin.

It contains two subroutines to show how they can
be used. Note that for efficiency, only one
subroutine need be used, as the two in the
program can easily be combined. Of course, a
subroutine is not strictly needed, as the program
is very short; they have only been used for
demenstration purpases.

10 REM : THIS PROGRAM WILL PRINT OUT THE
RESULTS- OF- TEN SIMULATED CDIN TOSSES.

20 RAND @

30 FOR I=1 TO 10

40 GOSUB 100

50 GOSUB 200

60 NEXT 1

70 STOF

100 LET A=INT(RND+0.5)

120 RETURN

200 IF A=1 THEN GOTO 230

210 PRINT "TOSS M;I:"= TAIL"

220 RETIRN

230 PRINT "TO0SS ";1:"= HEAD"
240 RETURN

By writing a program as a series of subroutines,
you make it more easily read :

H

GOSUB 100 signifies the place in the program
where the :
simulated tossings are taking place.

GOSUB 200 significs where the output witl be
performed.

The above program can be rewrittfen to make iE
more efficient (as we said earlier), by deleting
line 50 and inserting :

118 GOSUB 200

Try it, you should see no difference in the
output.

QUESTIONS

1. Write 2 subroutine that prints the numbers in
an array of 10 elements. Use this subroutine in
the bubble sort program in chapter 10 to print
the array every time two numbers are exchanged,
as well as at the end of the program. Then you
will be able to watch the numbers being sorted.

2. What happens if you don't RETURN from
subroutines but use a GOTO statement instesd? Try
the following program:-

100 GOSUBR 1000

1000 SCROLL

1010 PRINT 1234567890
1020 GOTC 100

To understand what 1s happening, remember that a
GOSUB statement puts the return address on the
stack, and the RETURN takes thse top address off
the stack.

8¢

cweree 2 CHARACTERS

'Characters' is a word used to encompass letters,
digits, punctuation marks and things that can

appear in strings : and they are all on the
ZX81's keyboard,

There are 256 characters in your ZX81, and they
are mostly single symbols such as A, B, C, X,
etc. Some characters represent whole words (
LET, STOP, *%, etc.)} and are called tokens. All
the characters and tokens have their own number
in the range 0 to 255, called a 'code'. By using
the functions CODE and CUR$ it is possible to
convert a character to its code and vica versa.

We will now cover these functions in more detail.

1. CODE : is applied to a string. This function
will give the code of the first character in the
string, or zero if the string is empty. 4s an
example of the use of this function, consider the
program below, and then run it

10 DIM A$(10,10)

20 PRINT "INPUT A STRING OF LENGTH (=
IUIF

30 FOR J=1 TO 10

40 INPUT A${1)

50 NEXT I

60 CLS

70 PRINT "STRING',“CODE"

80 FOR J=1 TO 10

90 PRINT A$(J), CODE 4$(J)

100 NEXT J

110 STOP

Line 10 will define a piece of memory sufficient

83

hold ten strings of length ten characters.

Line 80 to 100 will print out the strings you
have input, together with the code of the First
character.

2. CHR$: 1is applied to a number. This function
give a single character string whose code is that
number. The program below will print out each of
the characters of the 2X81 in sequence. This
will happen extremely quickly, but do not WOFTY,
later on we will show you how to slow it down.

10 LET A = 0

20 PRINT CHR$ A;

30/ LET & = A w 1

40 IF A < 256 THEN GOTO 20

Appendix A contains a table which lists the
characters together with their codes.

In the running of the program, vyou may have seen
the characters written in black on whirte o
inverse video, These characters may be accessed
from the keyboard as follows :

1. Press GRAPHICS - see the cursor G
appear. This signifies the computer
is in graphics mode.

2. Press the desired symbol. 1t will be
displayed in inverse video.

3. To turn the inverse video off, press
either GRAPHICS or NEWLINE.

When you ran the previous program, you will have

noticed certain patterns were displayed. These
are included to allow you to be more creative

Bé

with your output. You may alsc access these from
the keyboard like so

1. Press GRAPHICS to put the computer in
graphics mode.

2, Press SHIFT and the desired graphic
symbol.

3. To resume normal mede, press NEWLINE
or GRAFHICS,

Look carefully at the keyboard, and you will see
that all the grapbics symbols are located -on the
keys that are also 'token’ keys. As tokens have
no inverse, you get a graphics symbol when using
the above steps.

Try the following program, which is designed ro
be used in horizontal bar charts — using grey and
black.

100 PRINT "INPUT A"
110 INPUT A

120 PRINT "'INFUT B"

130 INPUT B

140 CLS

150 IF A{30 AND B{30 THEN GOTO 180
160 PRINT '"& AND B MUST BE LESS THAN 30"
170 GOTO 100

180 FOR I=1 TO A

190 PRINT "m"; (graphic A)

200 NEXT 1

210 PRINT TAB 31;'an

220 FOR I=1 TO B

230 PRINT "@" (graphic space)

240 NEXT 1

250 PRINT TAB 31;vBn

Observe line 210. This line contains a TAB
function. The purpose of this funetion is move

B85

the PRINT across the screen to the specified
column. When using TAB, you normally wish to
suppress the carraige return (or NEWLINE), and
this can be done by using a semi-celon (s). Thus
‘the general form in which TAB appears is :

PRINT TAB n;

You may TAB as far across the screen you like,
but if you use several TAB function to the same
line, then you must use increasing numbers for
each TAB, Using decreasing numbers will cause
the ZX81 to become conlused, and it will respond
by moving on to a newline.

Note : Your ZXB81 has only 32 columns ALross, 5o
if you TAB more Lhan 32 in total, then it will
move to the next line,

i.e. PRINT TAB 33; will see the output
commence one space in,
oneg line down.

Herc is another program that will show what you
can do with graphic characters. It is a game
program called TELEPORT,

Captain Kirk is lost! You know that he is on one
of the displayed stars, but which one? If you
don't locate him, and teleport him back to the
ship within 5 star-days, he will starve,

When prompted by the computer, input the
X—coordinate and then the Y-coordinate of your
guess. The computer will tell you if your guess
{coordirates 4,B) is lass than, equal to, or
greater than Captain Kirk's position (coordinates
R

TELEPQORT
(¢) by Clifford Ramshaw

86

100
110
120
130
140
150

160
170
180
190
200
210

220
230

240
250
260
270

280
280

LET X=1INT (RND%*8)

LET Y=INT (RND*8)

FOR I=PI/PI TO 3+RND*6&

PRINT AT RND#7,RND¥7 ;1

NEXT I

PRINT AT Y,X;'*";AT 3,9;"gEg"

' (3 * graphic F)

FOR T=F1/PL TO 5

PRINT AT 4,9;"X,Y? TIME:.";T

INPUT A

INFPUT B

PRINT o0 W

PRINT (">" AND A{X)T("C' AND ADX)+("=" AND
A:K);“ AV

PRINT,"'Y ",

PRINT (""" AND B<Y)+("'<' AND B>Y)4(M="'" AND
B:Y);“ BY

IF A=X AND B=Y THEN GOTO 270

NEXT T

PRINT "TOQ LATE CAPT. KIRK IS DEAD' ;CHR$ 300
PRINT AT Y,X;"R" (graphic A);AT PI-PI,10;"m"
(graphic A),TAB 9;" gy (graphic T, space,
graphiec Y)

PAUSE 100

PRINT AT Y,X;'"*''; AT PI-PT,10;"0",TAB 9;"ERY"
(graphic T,inverse Z,graphic Y),TAB 9;"s"lMp"
(graphic T, space,graphic Y); AT 4,8;"BEAMED
UP IN *";T;" TRIES"

Lines 270 to 290 simularte teleporting Captain

Kirk back to safety, using the graphic characters
you have just met,.

If you are having trouble understanding line 210,
an equivalent way of writing that would be

210
212
214
216

IF ACX THEN PRINT "
IF A>X THEN PRINT vq';
IF A=X THEN PRINT "=t;
PRINT " A"

87

Similarly for line 2300

QUESTIONS

1. Write a program which Isks if you want £o
Stop. If the first letter of the answer ig nyn
then it staps: otherwise it goes back to the
beginning. There is more than one way of Writing

88

CHAPTER 13 TWO SPEED
COMPUTER

Up until now, you have been using your ZX81 at
its slowest speed,. Even so, it has been obeying
its instructions at quite a rapid pace. AL this
'slow' speed, the computer is able to display
information and compute simultaneously.

Selection of speed is by the statements FAST and
SLOW for fast and slow speeds respectively. The
difference between SLOW and FAST is a factor of
about 4 times. |

Sometimes, you may have a program that requires
considerable computation with little output, and
this is where the faster speed becomes useful.

Also, when typing in a long program ! you may
have already noticed how long it takes for each
statement to be displayed on the screen,

Try the following program, but first type FAST
then NEWLINE, to put the computer in fast mode.

10 FOR N = 0 TO 255
20 PRINT CHR$ N;
30 NEXT N

NOTE that the program did not display anything
until the end of the program.

Now try the next program below. Observe the
computer displays while it is in INPUT mode, as
it is waiting for data.

10 INPUT A
20 PRINT A
30 GOTO 10

ag

When you wish your computer to be put back to
SLOW so you can get some output, use the same
method as for FAST, but use the statement SLOW

unstead of

FAST.

As both FAST and SLOW are statements, they can be
used as part of a program. Below is an example

containing

10
20
30

the two statements :

SLOW

FOR N = 1 TO 64

PRINT "THUIS PROGRAM ILLUSTRATES THE
DIFFERENCE BETWEEN FAST AND SLOW"

40 IF N = 32 THEN FAST
50 NEXT N '
60 GOTO 10
N.B. You may also set the computer to SLOW

(from FAST) by turning it off, then on. This has
the added advantage of clearing the computer's
memory at the same time.

90

CHAPTER 14 OUTP lUIT

This chapter will cover the ways in which you may
vary the output {(or display data) from your ZX81.
Some items in this chapter you will already be
familiar with, but for completemess we will

include them here also.

14.1 PRINTing Output :

The PRINT statement together with other
characters and functions may give varied output
in Five ways

1. A line containing PRINT only will simply
cause a blank line to be output. The computer
interprets this to mean ‘print nothing', and this
is what happens.

2. A semicolon (3) im a line containing a PRINT
statement will supress the carriage return
(NEWLLINE)}. The carriage return is the movement
of the cursor to the left hand column on the next
line. 1In effect, you get all output on the same
line (provided there is rcom) without spaces.

3. Commas after rhe PRTINT will result in the
output being divided into two columms. With more
than two variables or items to be output, your
ZXB1 will more than one line.

4. When you use PRINT AT, you are effectively

telling your ZX81 where to PRINT.
Consider the example below

PRINT AT 11, 16, '

Line Column

81

In the above example, your ZX81 will place an
asterisk on line 11, column 16, This is the
middle of the screen. Lines are numbered from O
(top) to 21 (bottom). Columns from O (extrems
left) to 31 (extreme right).

3, TAB was introduced to you in the previous
chapter, and is used to move the PRINT position
to the desired column number.

In conjuction with the five facilities above,
there are four points te remember :

1. For the items AT and TAB, it is best to
terminate with semicolons - in this case, you
will remember where the last PRINT position is.

2. Both AT and TAB , are accessed by using the
function key,

3. You cannot make your ZX81 print on the bottom

two lines, as they are reserved for commands,
INPUT, and so on.

4. When using AT, you may PRINT anywhere (except
the bottom two lines), even where there is
already some output; that already there will be
overwritten.

This program illustrates how you can format the
way your output appears on the screen. It PRINTs
numbers in a list with the decimal points
aligned. Don't input numbers with more than 8
digits before the decimal point, as the program
will not align the decimal points them. If there
are more than 2 decimal places, the number will
be truncated.

100 INPUT M
110 LET N=INT(M*100)/100
120 LET X=LEN STR${N*100)

92

130 IF ABS N{1l THEN LET X=X+1i

140 PRINT TAB 20;

150 GOSUB 1000

160 PRINT N;

170 IF N-INT N=C THEN PRINT '*.0";
180 IF N*10-IRT(N*10)=0 THEN PRINT "O';
190 PRINT

200 GOTO 100

1000 FOR Y=1 TO 10-X

1010 PRINT " ©

1020 NEXT Y

1030 RETIURN

14.2 Sereen Manipulation

There are two statements available for
manipulating the screen. They are SCROLL and CLS
(CLear Screen).

Firstly, CLS will clear the screen completely and
then put the print cursor ta the zera line, zero
column position (top left— hand corner of
screen). The program below will illustrate the
use of CLS

10 FOR N = 1 TO 22

20 PRINT "' TEST CLS STATEMENT : LINFE N

30 NEXT N

40 CLS

50 PRINT "AS YOU SAW THE SCREEN WAS CLEAREDY

The function of the SCROLL statement is to move
the whole display from line number O to 20 up one
line. Line 0 is removed from the display, and
the next line is placed on the bottom of the
current display. You need not have the whole
screen filled as the example below shows

10 CLS
20 FOR N = 1 TD 25
30 PRINT 'SCROLL DEMONSTRATIQN, LINE" ;N

93

40 TF N ¢ 5 THEN GOTO 60
50 SCROLL
60 NEXT N

14.3 PLOTting and UNPLOTting

In this section, we will introduce you to the
PLOT and UNPLOT statements. With rhese
Statements, it is possible to draw graphs,
pictures and in fact, anything you wish.

Clearly, these statements are very powerful.
Befere we show you the use of rhese statements,
it will make things more clear if we show you how
your ZX81 generates output on the screen.

Firstly, the screen is divided into pieces just
big enough for any character it positions. Since
the screen can take 32 characters across, and 22
down, there are 32 x 22 possible positions for
characters, or 704 positions,

Athough each character is made up from a matrix
of 8 x 8 dors = 64 dots total, for PLOT and
UNPLOT, the spaces normally taken up by
characters are divided up inte a 2 x J matrix,
each element of the matrix is called a pixel.
Each pixel, therefore consists of 16 dots. By
using the two statements, each pixel may be
turned off or on as desired.

You may choose your pixel by determining its x
co-ordinate and y co-ordinate. The X co-ordinate
is how far from the extreme left hand column the
pizel is; where the y co~erdinate is how far from
the bottom of the screen the pixel is. The
co-ordinates arve separated by a comma, just as in
cartesian co-ordinates. Below is =a
representation of the screen with the
co-ordinates for each corner included :

94

(0,43) (63,43)

(0,0) (63,0}

To turn on a pixel (= black) use the PLOT
Statement and follow it with the co-ordinates of
desired pixed (in brackets, of course). Turning
off a pixel is done in much the same way, but the
UNPLOT statement is used.

Examine the following program. The PAUSE
statement is new, but is simply a way of making
the computer slow down the rate at which the
compuler exccutes a program. When the PAUSE
statement is encountered, the computer pauses in
execution for a while. This statement will be
covered in more detail in the next chapter.
Another new statement is POKE . The function of
this statement is to enter a single byte of
intormation - a character code (range O to 255) -
in the address (or memory position) indicated by
the first number of the statement.

It sounds confused and not very much use, but the
statement will be fully explained in another
chapter.

10 LET X = INT(RND * 64)
20 LET Y = INT(RND * 64)
30 PLOT X,Y

40 PAUSE 50

50 POKE 16437,255

60 UNPLOT X,Y

80 GOTO 10

85

This program plots a print randomly each time you
press NEWLINE , and unplots it after about one
second. ' The delay is due to the line 40 and 50,

PLOT can also be used to plot graphs, as the
following program demonstrates.

100 FOR Y=0 TO 60
110 PLOT Y,(SQR Y)*5
120 NEXT Y

The second coordinate is multiplied by 5 merely
to fill the screen better. Next you can add axes,
and you will have a graph.

160 PRINT AT 21,21;"40r
110 PRINT AT 21,11;n20"
120 PRINT AT 21,1;"o"
130 PRINT AT 15,0 2"
140 PRINT AT 10,0;%4"
150 PRINT AT 5,0;"&"

160 FOR Y=0 TO 60

170 PLOT Y+2,(SQR Y)*5+2
180 NEXT Y '

QUESTIONS

L. Write a program which plots the graph of the
LN function.

You could also write programs which plet any of
the other functions.

2. Write a program which draws a train which
moves across the screen. You will need to
consider what the train will look like, and also
how you are going to blank out the old train
before printing the new one,

98

ourws 15 INKEY$ AND PAUSE

In this chapter you will be introduced Lo two new
and useful statements, PAUSE and INKEYS.

l5nal PAUSE

As you saw in chapter 14, the PAUSE function can
be used to slow down the execution of a program.
If you remember back to chapter 12, we showed you
how to print out all the characters of your ZX81.
We also told you that later on, we would show you
how to do it more slowly. This is one of the
functions of the PAUSE statement.

The general form of PAUSE ig
PAUSE n

- where n is the amount of time you wish to
pause, 1in terms of how many frames your
television shows in each second. Most televisions
show fifty frames/second, so PAUSE 50, will hale
execution for ome second. The upper limit of n
is 32767, which corresponds to just under eleven
minutes. If you use a value greater than 32767,
then the computer will PAUSE forever.

When the computer is PAUSEing, if you press any
key other than SPACE or pound sign, the pause
will be cut shoert, Pressing SPACE or pound sign
will result in a breal in the program as 1if BREAK
had been typed. After the computer has finished
PAUSEing the screen will flash or blink.

NOTE FOR USERS WITH 'OLD' ROMS: 1If you are

running your ZX81 in FAST mode, or using a ZX80
with the old 8K ROM, then a line containing the

a7

PAUSE, may need to be followed by
POKE 16437,255

~ Or your program may be erased, even though the
PAUSE appears to be operation normally. This does
not apply to the new 8K ROM - see note at
beginning of book.

With the PAUSE, it is possible tg program your
ZX81 as a clock, although the accuracy will not
be absolute. To obtain better value for PAUSE.
The loss of accuracy is due to the time taken for
the ZX81 to perform the other parts of the
program. '

Howevér, you could try the following program :

10 REM : DRAW THE CLOCK

20 FORI =1 TO 10

30 PRINT AT 10-10%COS (N/6% PI),10+10*SIN
(N/6%PI)N

40 NEXT 1

45 REM : DISPLAY THE TIME BY PLOTTING A

SINGLE DOT ON THE EDGE WHEN 1 SECOND IS UP

50 FOR T=0 TO 10000

60 LET A = T/30 * pP1

70 LET 8X = 21 + 18 * SIN A

80 LET SY = 22 + 18 * COS A

90 PLOT $X,SY

100 PAUSE 42

110 UNPLOT 5X,5Y

120 NEXT T

3.2 INKEY$

One of the very useful functions of your ZX81 is

INKEY$. This function scans the keyboard to see -
if any keys are being pressed. 1If a key is being
pressed, then the result is the character of that

98

key, otherwise the result is an empLy string.
Also note that the control characters do not have
their usual effect,

Below is a program that uses INKEY$, to make the
computer behave like a typewriter.

10 IF INKEY$ ¢) """ THEN GOTO 10
20 IF INKEY$ = "' THEN GOTO 20
30 PRINT IHKEY$;

40 GOTG 10

Line 10 waits for you to release a key.
Line 20 waits for you to press a key,

You must remember thar INPUT and INKEY$ are not
the same : since INKEY$ does not wait for you,
there is no need ko press NEWLINE

The program below may give you some fun, but try
to find out what it does before typing it in and
running

10 IF INKEY$ = v THEN GOTO 10
20 PRINT AT 11,14;"QUCH"

30 IF INKEY$ {)> """ THEN GOTO 30
40 PRINT AT 11,14; 004"

50 GOTO 10

INKEY$ is very useful in game programs with a
graphics display. The following game is an
example. '

You are in control of a spaceship engaged in
combat with an enemy spacehip. You must try to
destroy as many enemy spaceships as you can. If
you get destroyed, you will get another chance to
prove your skill as a fighter. After you have
lost three ships, you will be sacked - spaceships

99

cost money!!

You use the keys 6 and 7 to move up and down (in
the direction of the arrows). The key 1 fires at
the enemy. All of these are checked using the
INKEY$ function.

100 LET J=3

110 LET S§=-1

120 LET D=INT(RND*28)+3

130 LET $=S+1

140 PAUSE 20

150 LET H=11

160 LET L=INT(RND*2Q)

170 ¢cLS

180 PRINT AT H,0;' 0" (inverse =,0)

190 PRINT AT L,D;"0 " (0,inverse =)

200 IF INKEY$="1" THEN GOTO 250

210 IF RND(.4 AND ABS(H-L){2 THEN GOTO 300

220 LET H=H-(H)O)*(INKEY$ ="T7") 4+ (HC20)*(INKEYS$
=”6")

230 LET L=L+INT(RND*3)-14i(L{0)-(L>20)

240; CDTO 70

250 FOR A=Z TO D

260 PRINT AT H,A;"-N

270 NEXT A

280 IF H=L THEN GOTO 120

2580 GOTO 210

300 FOR A=1 TO D

31O PRINT AT L,D-Aj%-

320 NEXT A

330 IF H{>L THEN GOTQ 220

340 LET J=J-1

350 PRINT "YOU ARE HIT" (inverse)

360 IF J THEN GOTC 120

370 PRINT "GAME OVER" (inverse)

380 PRINT "'SCORE ";§

390 PAUSE 50

400 RUN

QUESTIONS

100

1. In FAST mode, the computer displays the screen
during a pause. Use this fact to display a random
character for a second, then wait for the user to
input which letter it was. Decrease the length of
the pause as the user's score gets higher.

2. Write a program which draws a picture of a
man. Use the keys with the arrows to move the man
arround the screen, checking if the keys are
being pressed with INKEY$. Remember to check that
the man is not moving off the screen.

101

anarrer 16 SAVING PRO‘G RAMS

16.1 The SAVE statement

By mow you will have realized that if you turn
off your ZX8l, you lose the program and all the
variables thar were in the computer at the time.
Typing in a program every time you want to usec it
is a slow and tedious task, so the ZX81 enables
you to save the program on cassette. Then, next
time you want that program, you only have to load
it back from the cassette.

To save programs in this way, you will need a
cassetfe recorder, and some cassettes. The
recorder must have a microphone and an earphone
socket, preferable 3.5mm jack sockets. You will
also need a lead to connect the computer and the
recorder. Another useful feature that your
recorder may have is a tape counter, but this is
not really necessary.

Type in a short program to practice using the
SAVE command. You will need to practice before
you save any long programs, otherwise you may
lose the program. A one line program will do to
start with. '

Find a part of the cassette that is blank.
Connect the microphone socket of the recorder to
the socket marked 'MIC' on the comptiter.

Now you are ready to save the program. You must

give the propram a name. The name may have up to
127 characters, but you should not use inverse

1:03

characters, because the computer attatches a
special meaning to inverse characters i program
names. A possible name would be "PROGRAM"

To save this on Lape, type in
SAVE "PROGRAM"
but don't press NEWLINE vet.

Start the cassette recorder recording. Remember
to push down the record button as well as the
play button.

Press NEWLINE

You will now see a grey pattern on the television
screen. This 1s a 'lead-in' before the computer
sends the actual program to the recorder. After
the grey pattern, which lasts for about 5
seconds, you will see a pattern of black and
white stripes. The computer is now sending your
program to the recorder. When this has finished,
the computer should report back with 0/0. You can
stop the recorder now.

Wind back the cassette. Play the program rhat you
have just recorded. You will hear a soft buzz
(the lead-in}_ followed by a loud, high pitched
buzz (the program). If this is not what you hear,
you have done something wrong. Check the
connection between the computer and the recorder.
Or could you possibly have forgotten the record
button?

It is not just the program that is saved, but all
the variables as well., If you type a command
LET A$=""STRING"

before you save the program, then after you have

104

loaded the program, A$ will be defined, although
there 1s no program statement defining it.

16.2 Loading the program

Firstly, position the cassette at the beginning
of the program you have recorded (in the
lead-in). This is where a tape counter can help
if your recorder has one.

Connect the EAR socket on the computer to the
earphone socket on the cassette recorder.

Turn the volume teo approximately three quarters
volume. If your cassette recorder has tone
controls turn the treble high and the bass low.

Type in
LOAD "PROGRAM"
without pressing NEWLINE vet.

Start the tape recorder playing, and press
NEWLINE.

You will see black and white patterns on the
television screen, though a bit different to the
patterns you saw when recording. When this has
finished, the computer should stop with report
0/0.

If this does not happen, most likely you have the
volume wrong. If the lecad-in is noisy, then turn
down the volume a bit, otherwise turn it up. If
the lead-in is noisy, then the computer will not
realize that it is meant to be silent.

There are other things that can make the lead-in
noisy.

1. The heads on your cassette recorder may be

105

dirty. Clean them, and try again, (Methvlated
spirits on a cotton bud works well if you haven't
head cleaning fluid.)

2. Use computer quality cassettes — C10 or G12
for instance.

3. 0ld recorders are often noisy, Using a better
quality cassette may help.

4. Den't have both sockets connected at once. Use
only the microphone socket while saving, and only
the earphone socket while leading.

3. Move to a wooden table if you are using a
table with metal parts. Lifting the computer off
the table does not seem to work as well.

6. Try running the recorder on batteries to
eliminate mains hum,

7. Expensive, stereo recorders do not seem to
work as well as cheap mono recorders.

You may have a program on tape, but you can’t
remember what you called it. You can still load
It, although the computer is more sensitive to
volume if you don't knew the name, by using the
command

LDAD hray
and proceeding as before.

When you give a name, the computer looks throught
the tape until it finds a program with that name.
If there is not one there, you can stop it
looking with the BREAK key. If there is no name ,
the computer will load the next program on the
tape.

106

16.3 Using SAVE in programs.

The effect of using SAVE as a program statement
Is to automatically start the program running
from the line after the SAVE statement after it
is loaded.

For example, type in this program.

100 SAVE F'PROGRAMM
110 FOR I=1 TO 20
120 PRINT I
130 NEXT 1

Save the program, then load it back again. It
will begin to run as soon as It has finished
loading.

If you list the program, you will find that the M
in line 100 has changed to inverse. The computer
uses this as a marker. That is why you should not
use inverse characters in the program name.

107

CHAPTER 17 TOP |DOWN |
PROGRAMMING

In your programming, you will already have had
problems translating your flowchart into BASIC,
When you come to a decision box, which branch do
you write down first? The larger your program,
and the more decisions that have to be made, the
harder this problem is to sclve.

The preblem arises because a flowchart is a two
dimensional representation of the praogram. The
arrows (which show possible paths of execution)
go up and down, right and left. When you code the
program in BASIC, you have to change it to a one
dimensional representation. That is, the control
flow can only move up and down; from a low
numbered line to a high numbered line, or visa
versa.

Top down programming is a method which avoids
this problem. Right from the beginning, your
program is represented in a one dimensional list
of instructions.

This section will explain how top down
programming works, with a simple example to
demonstrate. Later, a more complex example will
be worked,

The first step, is to write down what the program
is going to do. This should include what rhe
display will look like, where this is applicable.

For example:

This program will accept a number, N, then
simulate throwing N dice. The total of the N dice
will be printed.

109

The next step is to break this task into a number
of instructions which can be performed
consecutively. For the moment, don't worry if the
computer cannot perform the Instructions. If you
can use BASIC words to describe what is to be
done, put them in: otherwise write it in English.

Example:
1. INPUT N
2. 1F N=0 THEN STOP
3. Throw a die N times, adding up the total
as you go.
4. PRINT total.

In this example, many of the steps are already in
BASIC, because it is a simple example. Usually,
most of the instructions will still be in English
at this stage. Next you have to break down the
instructions that are still in English even
further. This step is repeated until atl
instructiens are in BASIC,

The example, in instruction 3, calls for
something to be executed N times. That
immediately suggests a FOR loop. So now,
instruction 3 can be rewritten like this:

3.1 FOR ¥I=1 TO N
3.2 throw a die and add to the total
3.3 NEXT I

Now to break 3.2 down.

3.2.1 LET DIE=INT(RND*5)+1
3.2.2 LET SUM=SUM + DIE

You haven't finished yet. You need to check what
variables need to be initialized. There is cne:-
SUM L]

Now the program is finished. All that has to be

116

done is put the lines together, and renumber
them. '

100 LET S=0

110 INPUT N

120 IF N=0 THEN STOP
130 FOR 1=1 TO N

140 LET D=INT(RND*5)+1
150 LET 584D

160 NEXT I

170 PRINT S

The nexr eﬁample is a game program called
ACK-ACK. There is an aircraft flying across the
sCreen, and you are in control of a gulided
missile, with which you try to hit the plane. A
series of 10 planes makes up one game. At the end
of the game, the number of planes that escaped
your missiles is printed.

The plane will start at a randon height, and move
from right to left across the screen. The missile
starts at the bottom in the middie of the screen,
and moves up automatically. You have control of
its movement to the left and right,

Since there are to be 10 planes, a FOR loop seems
to be the best idea.

1. FOR J=1 TO 10

2. send a plane across the screen, and sz
missile up

3. NEXT J

4. PRINT the number that escaped.

Next the positions of the plane and missile need
to be defined. MISSILE can be the horizontal
poesition of the missile. It starts at’' 15, and
moves when the player says. PLANE is the vertical
position. It is randomly chosen, and does not

L]

alter. The other coordinates get smaller
automatically, so by using a FOR loop, the
control variable can be used as the other
coordinate for both the plane and the missile,
Before starting, the screen will need to be
cleared of any old missiles or planes.

LET MISSILE=15

LET PLANE=INT(RND*10)

CLS '

FOR I=20 TO O STEF -1

print a plane, and blank out last

position. -

2.6 print a missile, and blank last
position,

2.7 check if player wants to move missile,
and work out next value of MISSILE.

2.8 if the plane has been hit, print a
message, increase the score, and GOTO 3

2.9 NEXT I

M b b3 pa B
L B Lo RS e

Since the plane moves horizontally across the
screen, by printing a blank after the plane; you
will blank out the old position.

2.5.1 PRINT AT PLANE,I;"CNSaliLd] -

Blanking out the old missile is a bit more
difficult, since it can move in two positions,
One way of solving this is to print the missile,
and then straight away blank it out. This will
cause it to blink {(which can be an interesting
effect), but you will still be able to sae it.
Another possibility is to clear the screen in
each loop. For this example, we will use the
first method. To slow the blinking a little,
print the missile, then the plane, then blank out
the missile. So get rid of 2.5.1, and usge
instead:-

201 PRINT AT I,MISSILE;"'gxn"

112

2.6.2 PRINT AT PLANE,T;" pudemmennd - '
2.6.3 PRINT AT T MISSTLE; "o’

2.7 requires the use of the INKEY$ function. The
. keys with the right and left arrows are a good
choice of keys to move the missile right and

left.
2.7.1 LET C:C+(INKEY$=“8”)—(INKEY$=“5”)

(Do you understand why this works? The computer
evaluates (INKEY$="8") to 1 if it is true, and O
it it is false. So an equivalent way of writing
this would be

2.7.1 1IF INKEY$="1&" THEN LET C=C+1
2,7.2 IF INKEY$='"5" THEN LET C=C-1
but the first way 1is shorter)

There are several ways of breaking up 2.8 One way
would be:-

2,8.1 1F plane is hit THEN PRINT message
2.8.2 IF plane is hit THEN LET 8§=S5+1
2.8.3 IF plane is hit THEN GOTC 3

But a better way, that only tests once, and
therefere executes more quickly, is:-
2,8.1 IF plane is not hit THEN GOTO 2.9
2.8.2 PRINT message
2.8.3 LET S=5+1
2.8.4 GOTO 3

Now you have only to decide how to decide when
the plane has been hit. The plane and the missile
must be con the same line, so I=PLANE when the
plane has been hit. This program only checks when
the missile hits the target area of the plane
(marked "&"), that is, MISSILE=I or I+l. Reverse
these conditions to work out when the plane has

1.k

not been hit, -and you have:-

2.8.1 IF 1<¢>PLANE OR (MISSILEC>I AND
MISSILESYI+1) THEN GOTO 2.9

(If you cannot work out how to reverse the
condition, you can put MOT in Front of the
condition, as in

2.8.1 IF NOT(I=PLANE AND (MISSTLE=I OR
MISSTLE=T+1)) THEN GOTO 2.9

The only variable that needs to be initialized is
5. It starts at O.

ACK-ACK
¢ by Philip Thomas

100 LET §=0

110 FOR J=1 TO 10

120 LET M=15

130 LET P=INT{RND*1Q)

140 CLS

150 FOR 1=20 TO O STEP -1

160 PRINT AT I,M;''s™* (graphic T,Y)

170 PRINT AT P,I;"piiesssnll~." (graphic
6,+,6,6,6,6,5; minus sign,space)

180 PRINT AT I,M;m o

190 LET M=M+(INKEY$=18")_ (INKEY$="15")

200 IF I{?P OR (M{>I+1 AND M¢)>I) THEN COTO 250

210 PRINT AT P,I;''BOOOOM" (inverse)

220 PAUSE 100

230 LET 5=5+1

240 GOTO 260

250 NEXT I

260 NEXT J

270 PRINT 10-S;" ESCAPED"

Now practise programming using a top down method.
It may seem a bit strange at first, but it is

114

much casier for larger programs than
flowcharting. After a while, it will take less
stages to break steps into smaller steps.

115

CHAPTER 18 DEUGGIIN'G

You've just typed in your latest masterpiece of
BASIC programming. All your friends have gathered
round to see it work. You type RUN, and nothing
happens! Or what did happen was not what you
expected. What can you do? Well, apart from
suggesting that you test your program before you
invite you friends to watch it work, and lose
your reputation as a programmer, this chapter
will suggest several ways of getting your program
working.

Programmers call errors in their programs 'bugs'.
This scunds a lot less personal, and more as if
it was someone {or something) else's fault than
calling them ‘mistakes'. (This piece of jargon
might prove useful in saving your reputation.)
Besides, bugs Iin programs are very elusive when
you are trying to catch them, just like the real
thing. The process of catching and eliminating
bugs 1s called ‘debugging’. And if it is any
consolation, very few programs, apart from really
simple ones, have no bugs at the beginning.

You will find your program a lot easier to debug
if you have used a top-down method to design it,
and have your notes in front of you. This will
help you follow the logic of the program. There
is no easy way to debug a program; it really is
hard work. But the following methods will give
you scmewhere to start,

18.1 Catching the Bug

The first thing te do is work out what your
program did do. Often, the program will stop with

117

a report code. This can be used to help you work
cut what went wrong. The report code consists of
a number or letter, a slash, then another number,
The first number is the report code, and the
second is the line numher.

Another possibility is that your program just
kept going and going and going. This is called an
infinite loop. If you press BREAK, the program
will stop, and vou can find out where the
infinite loop is from the line number in the
report.

Alternatively, your program may have stopped
normally, but given the wrong answers. In this

. case,; you should try 'playing computer', or
'diagnostic statements'. These two techniques are
useful for finding out exactly why there is an
infinite loop too.

18.2 Report Codes

O - This is the report you will get if your
program tries to execute a line that is numbered
higher than any existing line. For instance, if
you have the line GOTO 900, when the last line in
your program is line 200, the program will stop
with report O. The line number will be the line
of the GOTO.

Usually, report O means successful completion of
the program. Unless the last line of the program
is a GUTD, a GOSUB, or a RUN statement, after
executing the last line, the computer will try to
execute the next line. If there is none, it
stops.

1 - You have used a variable in a NEXT statement
before it is set in a FOR statement. The computer

118

looked for a ceontrel variable with the name you
gave, and could only find an simple variable.

The program:-

100 LET J=0
110 NEXT J

will cause error 1. You may have a GOTO, or GOSUB
jumping to the middle of a FOR locp. Then the
NEXT statement will be executed before the FOR
statement, so¢ check where your GOTO's and GOSiUB's

g0 .

2 — This report means that you have used an
undefined variable. Check each wvariable in the
line specified in the report code. A common cause
of undefined varlables is a typing error. The
computer doesn't know that you really mean Al
when you type A.

For each simple variable, make sure it appears on
the left hand side of a LET statement before it
is used anywhere else. You cannot have a
statement like

LET X = X+1
unless X has previously been assigned a value.
Also, the progrdam

100 GOTO 120

110 LET X=0

120 LET X=X+1
is incorrect. Line 110 will not be executed

before line 120 just because it is before it
numerically.

116

All subscripted variables (except simple strings)
must dimensioned in a DIM statement befare they
are used anywhere else.

All control variables must be set up in a FOR
statement before the NEXT statement is executed.

Check all the variables, following the logic of
the program. The methods described later in the
chapter will help with this.

3 - This ervor applies only to subscripted
variables. If the subscript is too large or too
small, error 3 will result.

Note that in the ZX81, the first element in an
array is always 1, not 0O,

If you are using a subscripted variable in a FOR.
loop, check the highest and lowest values
especially. Once again, you will need to follow
the logic of the program, using one of the
methods described later.

4 — This means that your program is too large,
and the computer has used all its available
memory. Correcting this problem is a suficiently
large and important topic to deserve a chapter of
its own. {(See Chapter 19)

5 - This is the error message you get if there is
not enough toom on the screen for the print
items. You may havé tried to PRINT at a location
that is not on the screen; line 22 for example.

If you repeatedly PRINT without clearing or

scrolling the screen, you will eventually run out
of room on the screen, even if you don't fill

120

'

every line.

1f this does not apply, then your program may
have run out of memory. The computer tried to
allocate more memory for the display file, but
there was none. (See Chapter 19)

6 ~ This error is the result of ‘arithmetic

overflow'., Arithmetic overflow is the technical
term for what happens when a number is too big
for the computer to handle. The largest number
the ZXB1 can represent is approximately 10%%38.

To correct this you might be able to check the
numbers in the calculation. For instance, with
the EXP function, numbers over 83 will cause
arithmeric overflow. So before calling EXP, you
could check that its argument is not too big. For
example, use

100 IF X{=83 THEN PRINT EXP X
instead of

100 PRINT EXP X

7 — Every RETURN statement must follow a
corresponding GOSUB statement. If a RETURN is
executed when there is no return address saved on
the stack, error 7 will be the result, A
possibility is that you have used a GOTO to jump
to the subroutine instead of a GOSUB statement.

8 - This report code will never occur as the
result of a bug in a program. It cccurs 1f you
try to use the INPUT statement as a command.

121

9 - This means that the computer has executed a
STOP statement. This is not an error, so it needs
no further explanation here.

A - If you use an invalid argument to a function,
error A may result. For instance if you try to
find the squareroot of a negative number using
S5QR. Instead, you could check the number before
you call SQR, like this:-

100 IF AY=0 THEN PRINT SQR A

rather than

100 PRINT SQR A

B — If you use a number that Is yoo large or too
small as an argument to certain functions and
Statements, you may get error B. One of these
functions is CHR$. The number must be between {
and 255, so use

i00 1IF X>=0 AND X<=255 THEN PRINT CHR$ X
instead of
100 PRINT CHR$ X

To find out what range a function or statement
will accept, check the reference manual entry for
itﬁ

C - This error relates only to the VAL function.
The argument must be a string containing a valid
numeric expression. Characters, unless they arc
the name of a numeric variable, are invalid. For
example, "X" is a valid argument only if the
variable X has already been defined in a LET

122

statement,

D - This report is not caused by bugs. Either you
pressed the BRFAK key while the program was
executing, or you started an INPUT line with
STOP. Neither of these is an error.

E ~ The report E i{s not used.

o

F — Tt you use the command SAVE ", you will get
this error. You must give a program name with a
SAVE statement.

18.3 Pretend you are the computer

This is one way of working out what your program
has dene. Keeping your programming notes next to
you, follow through your program, doing whatever
the computer would do. ' -

I1f there is a GOTQ statement, then g0 to that
line. As you work, write down the values of all
the variables. If there are lots of GOTO
statements in your program, jumping all over the
place, you are going to have to be very careful
not to get muddled.

1f you have subroutines, write down the return
address on your piece of paper, every time you
get to a GOSUB statement. This is what the
computer does, effectively. When you get to a
RETURN statement, cross off the last returnp
address.

If there is a loop in your program that is

executed many times, you would be Sitting there
for years if you tried to work it through by

123

hand, Instead, you could get the computer tro
help. Suppose you have a loop like this:-

100 LET A=0

110 FOR I=1 TO 100
120 LET A=A+1

130 NEXT 1

Now, to check this loop, add these lines:-

125 PRINT I;"a ";a3m A
135 STCOP

Type the command GOTQ 100, and the computer will
print the value of 1 and A after every iteration
of the loop. It is imporarant that line 100 is
executed before the loop, else A would be
undefined. Instead, you could type the command
LET A = 0, then GOTO 110. From this you can see a
good reason to number your lines in 10's rather
than consecutively, too.

For complicated computations, you could ger the
Computer to do the arithmetic for you. For
instance, suppose the program contains the line:

100 LET A = 2%PI%R

and you have worked out that the value of R at
that stage is 12, Then you could type the command

PRINT 2%PI*12
and the computer would obediently print

75.396224,

18.4 Diagnostic Statements

These are statements you add too your program to

124

help you make a 'diagnosis' of what is wrong with
your preogram, like a doctor runs diagnostic tests
to find out what is wrong with a patient. These
may be PRINT statements that you add to find out
what the valve of a certain variable is. Or you
could add STOP statements, then leook at the
contents of any program variable, say X, by
typing PRINT X,

For example, the PRINT and STOP statements used
to test the FOR loop in the example on pretending
to be the computer, were diagnostic statements.
When you have finished debugging, the diagnotic
statements will be removed, of course.

All these methods help you find out what the
pxogram is doing. This is not going to help
uniless you have a clear idea of what it {is
supposed to be doing. That is where your
programming notes can help. They should tell you
the logic behind the program design.

If you still cannot work out what is wrong with
the program, try explaining the program to a
friend that understands BASIC. Tell him how you
think it ought to work. He may be able to see an
error in the logic or programming because he is
looking at it differently. You may be able to
return the favour sometime,

18.5 Eliminating the Bug

Having found the bug (or bugs) by any or all of
the methods described, the next step is to get
rid of it. Finding bugs is usually the mare
difficult of the two tasks, but eliminating them
is not trivial. If you make changes without
thinking about them, they are likely to have
unexpected side effects, and create more bugs.

125

The best policy is to go back and redesign the
program.

Of course there are some bugs that are so simple,
redesign is unnecessary. Mistyping a variable
name is one example. All errors in program logic
require redesign, of at least some part of the
program {a subroutine, perhaps). Redesign is like
design - it needs to be done on paper, not on the
television screen.

After debugging a program or two, you will
realize what a frustrating task it is. Well
designed programs have fewer bugs, and are easier
to debug. You will find that time spent in
designing your programs reduces the time spent
debugging,

"

18.6 Example

Here 1s an example of a program that has bugs in
it. Type it into your computer, and follow the
debugging by typing in the commands, and ‘watching
what happens.

Coin Tossing Game

In this game you start with $5. The computer will
accept a $2 bet on either heads or tails, then
tosses a coin. The game stops when you run out of
money.

Program Design
Assign the player $5
TOSS Ask "heads or tails"

Input answer

Toss a coiln (0=Tails, 1=Heads)

IF player loses THEN take $2 fFrom his

money, and
IF he has no money THEN stop
ELSE goto TOSS

128

ELSE add $2 to his money and goto TOSS

Here is the first attempt at writing the program.
100 LET M=<5

110 PRINT '"HEADS OR TAILS?"

120 INPUT A$

130 LET C=INT (RND *2)

140 1IF C=0 THEN LET C$=""TAILS"

150 IF C=1 THEN LET C$="HEADS"

160 IF CODE A$=CODE G$ THEN GOTO 210
170 PRINT C$;" I WIN"

180 LET M=M-2

190 IF M=0 THEN STDP

200 GOTO 110

210 PRINT C$;"_YOU WIN"

220 LET M=M+2 “

230 GOTO 110

Now RUN the program. For a while, everything
seems fine, but then the program stops with error
5. If you look up what error 5 is, you will find
that it means that there is no room on the
screen, Since the program keeps writing to the
screen without ever getting rid of anything, it
soon fills the screen, and runs out of lines to
write to.

Well that's easy to fix isn't it. Just add 105
CLS, and the program will start with a fresh _
screen each toss. No need to redesign this time!
If you try that, you will discover that it
doesn't work. The propram returns to line 110
each time, so line 105 is not executed, Before
redesigning to fix that error, let's check if
there are any more bugs that can be fixed at the
same time.

Let's check that the computer isn't cheating us

out of any money. Insert a diagnostic PRINT
Statement -

127

115 PRINT M
Now RUN the program.

If you are unlucky enough to lose more often than
you win, you will find that you have a negative
ammount of money, but the game goes on. But the
design says that if a player has no money, the
game should stop.

To try and find out what is wrong, we will
pretend to be the computer, and go through the
program, starting with $1, because this is where
the problem appears ta be. So write down "M = 1"

Line 110 prints, and there is no problem there.
Line 120 waits for imput. Suppose "HEADS'" is
Input. Write down "A$ = HEADS"., Line 130 returns
O or 1 randomly. (There is a problem in checking
programs using RND in working out what will
happen for all possibilities. In this case, the
problem appears when the player loses, so try G =
0.) Write down "C = 0",

C is equal to 0, so write down C}$ = "TAILS". C is
not equal to 1, so do nothing for line 150, '"H"
is not equal to "T" so do nothing for line 160.
Line 170 1s a PRINT statement, so that is
alright. Line 180 subtracts 2 from M, so cross
out M =1 and write M = -1. M is not equal to O,
so do nothing for line 190,

That is where the problem is! The program should
have stopped there, because having a negative .
amount of money is worse’than having no money at
all:

There are a few other problems you may have
noticed. Tt is possible to input something other
than HEADS or TAILS. You will certainly lose if

128

you do, but it would be better if the program -
treated this as a mistake.

It is very difficult to step the program, other
tharn letting it stop when the screen becomes
full. You have ro press NEWLINE, then BREAK very

quickly afterwards,

These are not really bugs, but redesigning the
progam is a good chance to include improvements.

Haere is the redesigned program.

100 LET M=5
110 SCROLL

120 PRINT "MONEY LEFT '':M

130 SCROLL

140 PRINT "ANOTHER GO?'

150 INPUT A$

160 IF A$(1)="N" THEN STOP

170 SCROLL

180 PRINT "HEADS OR TAILS?M

190 INPUT A%

200 IF A$(1¢))"T' AND A$(1{))"H" THEN GOTO 170
210 SCROLL

220 LET C=INT {RND*2)

230 IF C=0 THEN LET C$="TAILS"

240 IF C=1 THEN LET G$="HEADS"

250 IF CODE A$=CODE €$ THEN GOTQ 270
260 PRINT C$;" I WIND

270 LET M=M-2

280 IF M<=0 THEN STOP

290 GOTO 110 i

300 PRINT C$;" YOU WIN“

310 LET M=M+2

320 GOTO 110

129

aeenze 19 SAVING MEMORY

Since the ZX81 has only 1K of RAM, quite often
you will find that your programs run out of
memory. There a few methods ¥Oou can use to reduce
the amount of memory your program uses. There is
a limit to how much you can compact you can make
any program, so if after doing everything you can
think of, you program still doesn't fit, you have
two choices. You can get an additional MeMmory
pack, or you can give up on that program.

19.1 Compacting the code

The first way of compacting the program 1s to
compact the code, while not affecting what it
does. Here are a few examples of equivalent _
statements, where the first is longer than the
second, You may have already thought of some of
these, and after sceing a few examples, you may
be able to think of even more.

Obviously, since REM statements have no effect,
the first thing to go is any REM statements! It
is better to have a program that is difficult to
read, but works, than one that won't work because
it runs out of memory,

1. Replace

IF X=0 THEW ...

IF NOT X THEN ...

2. Replace

131

"IF X33 THEN LET X=X-1

LET X=X-{X>3)

This works because X)3 is 1 if it is true, and O
otherwise.

3. Replace

100 IF INKEY$="5" THEN LET H=H+1
110 IF INKEY3="hH" THEN LET H=H-1

by

100 LET H=H+(INKEY$="5")}—_{INKEY$="6")
This is similar to example 2, but saves a whole
statement.

4. Use FOR loops if possible. For example

100 LET I=0

(program statements)

150 LET 1=T+1 _

160 IF T1<{=N THEN GOTO 100

should be replaced with

100 FOR I=0 TO N
(program statements)
150 NEXT T

5. If a subroutine is used only once in the
program, put ir directly into the main part of
the program. That is; replace the GOSUB statement
with the statement(s) in the subroutine, and
delete the RETURN statement.

6. Make all variable names one character long.

132

7. Often in games, you will want to print a
message and then STOP, if some condition is true,
This would usually be written like thisg:-

100 IF F{O THEN PRINT "'NO FUEL LEFTH
110 IF F<O THEN STOP

Instead of this you can make the program crash,
by using an undefined variable in the first line,
and save a line. You will get an error message
when the program stops, but you can ignore it.

100 IF T{O THEN PRINT "NO FUEL LEFT":R

(R must be a variable that is not used anywhere
else in the program).

19.2 Memory usage

If you need to save still more memory, then you
will need to know how the ZX81 stores a program
and its variables.

Each memory location is called a 'byte', and can
hold a number between 0 and 255, This means it
can coutain the code for any single character.

The memory is divided into different areas, used
for different purposes. Starting at location
16384, the system variables are stored. These are
used as 'workspace' by the computer.

Your program is stored from location 16509
onwards. For each line of the program, there are
2 bytes for the line number, and 2 bytes to store
the length of the line. Then follows the text of
the line -~ one byte is used for each character
you typed in, followed by the NEWLINE character,
which takes one byte. Keywords, like PRINT and

133

INT, take only one byte.

Within the text, numerical constants (that is,
numbers rather than variahles) are not written as
characters. Instead, they are written in binary
form (which takes 5 bytes) preceded by the
character code 126 to indicate that it is a
number. This means that every time you use a
number in the text of your statements, they use 6
bytes, no matter how large or small the number
is. However, if you have a numeric variable with
a one character name instead, it takes only one
byte,

This opens a couple of possibilities for. saving
memcry. The lines

100 LET A=5
110 LET B=5

could be replaced by

100 LET A=5
110 LET B=A

—_

with a saving of 5 bytes.

All occurences of '0' can be replaced by PI-PT,

(PI is a represented by a single character code,
66, since it is a keyword.) 'l1' can be replaced

by PI/PI. Both of these save 3 bytes.

The next area in memory is for the display file.
This gets bigger and smaller according to how
much is to be printed on the screen. If your
program has a large display, you could consider
making it smaller to save memory, and use only
the top left corner of the screen, rather than
all of it. If the program is a game that uses
graphics, it may not look as good with a smaller
display, but it could mean the difference between

134

a program that works, and one that doesn't,

Also, spaces are characters, and occupy room in
the display file. However, when you clear the
screen (CLS), all that is stored is NEWLTNE
characters. So overwriting whatever is on the
screen with blanks is not the same as clearing
the screen. If this is what your program does,
you can save memory by using CLS Instead.

The next area in memory is for storing program
variables. Each numeric variable with a one
character name takes b bytes:- one to store the
name and 5 to store the number in binary form.
For every extra character in the name, it takes
an extra byte to store the variable.

If a number is used 5 times or more in the
program, you can save space by defining a
variable that is equal to it and using that
variable wherever you would have used the number.
Suppose the number '100°' is used 5 times 1in your
program. If you added the line

100 LET 5=100

that would take 14 bytes. (Gan you see why?) It
takes &6 bytes to store the variable, and one byte
each time 'S' is used instead of '100'. That is a
total of 25 bytes. On the other hand, if you used
'100', it take 5*6 bytes, i.e. 30 bytes. That is
a saving of 5 bytes.

19.3 Overlaying
The next technique for saving space is called
overlaying, because you 'lay' one program 'over'’

ancther.

Try typing in the following program.

135

100 LET A=20
110 LET B=1¢Q

RUN the program, then delete the lines 100 and
110, Now type "PRINT A,B". The variables are
still defined, even though the program lines are
no longer in memory. This is the fact used in
overlaying.

At the beginning of a program, you usually have
variables to initialize., You can initialize these
in a separate program, RUN the program, then
carefully delete the lines of this first program.
You cannot use NEW, since this would delete the
variables you have just defined.

Now type in a second program containing the rest
of the instructions. You cannot use RUN to start
this program executing, because the variables
stored by the first program would be deleted.
Instead, you can use GOTC 1.

You can also initialize varlables in the first
program to replace numbers in the second program.
This will save memory if there are two or more
occurences of the number in the second program.

The tollowing program illustrates many of the
memory saving techniques described. It is written
twice so that you can see what changes have been
made. The first version will not fit in 1K, but
the second does.

Before looking at thée second version, try to
compact the program yourself. You will learn to
identify statements that can be compacted more
quickly than if you just read the program
through.

—_

ESCAPE FROM THE DEATH STAR

136

¢ by Clifford Ramshaw

Princess Leda has been captured by Darth Vader,
and is being kept prisoner on the death star. It
is up to you to save her from his clutches, and
bring her to safety.

When you start the game you will see a plan of
the death star on the screen. The death star has
two floors, connecred by two lifts. Princess Leda
(Ba) is on the lower floor, and you are on the
top floor. To save the princess, g0 over to her,
and then she will follow you wherever you EO .
When you get back to your space ship (VM), the
game stops,

The game also stops if you are caught by a storm
trooper, but the end is not so nice for either
you or the princess. You must avoid this at all
costs., The storm trooper's movement 1is random,
but weighted towards you.

The controls are 'Z' to move lefrt, 'C' to move
right, and 'M' to change floors. You can only
change floors if you are at a lifr,

The force be with you!

VERSION 1

100 LET W=-1 (W is your score)

110 LET W=W+1

120 LET Y=1 (Y is your vertical position)

130 LET X=3 (X is the storm trooper’'s vertical
position)

140 LET L=0 (Changes to 1 when princess is
saved)

150 LET $=15 (Your horizontal position)

160 LET H=15 (Storm trooper's horizontal
position)

170 GOSUB 100 (Print the screen)

137

180 PRINT AT X,5;"a" (Blank out storm Erooper)
190 PRINT AT Y,H;"A " (Blank our your position)
200 TIF H<(18 AND INKE¥$="C" THEN LET H=H+1

210 IF HY0 AND INKEY$=""Z'" THEN LET H=H_1

220 IF (H=1 OR H=11) AND INKEY$="M" THEN LET

: Y=Y42

230 IF Y>3 THEN LET Y=1 (Calculate yOour new

pasition)

240 IF (X=Y AND RND>.5) OR RND).7 AND S<H THEN

LET 5=5+1
250 IF (X=Y AND RND>.5) OR RND>.7 AND S>H THEN
LET 8§=5-1

260 IF (8=1 OR S=11) AND RND?>.5 THEN LET X=¥X42

270 IF X»3 THEN LET X=1 (Calculate stormtrooper's
position)

280 PRINT AT X,S;"w" (graphic A& - print

stormtrooper)

290 PRINT AT Y,H;"0"; (print your token)

300 TF L=1 THEN PRINT "a (graphic W - print the
princess if she is
following you)

310 IF 8=H AND X=Y THEN PFRINT AT 3,0;"SCORE "W

320 TF S=H AND X=Y THEN STOP (the stormtrooper

gor you!)

330 IF Y=3 AND H=18 THEN LET L=1 {you Found the

princess)

340 TF H<(>15 OR Y(>1 OR Y=0 THEN GOTO 180

350 PAUSE 50 (you have saved Princess Leia)

360 CLS

370 GOTO 110

1000 PRINT,''™=@8" (2*gr 7,gr R, gr space)

1010 PRINT,'"»s"M" (space, gr T,2%gr space}

1020 PRINT "' —— i—— "' (gr 6, space,

Y pr 6, space, B¥gr)

1030 PRINT,"asam "(3*space, gr W)

1040 PRINT = T — (20%gr 6)
1650 RETURH

VERSION 2
100 LET W=W+T (T is equal to 1 throughout the

133

program)

110 LET Y=T

120 LET ¥=3

130 LET L=PI-P3

140 LET S=15

* 150 LET H=8§

160 PRINT, gy

170 PRINT, "o !

180 PRINT ''w sesssswssns s '’

190 PRINT,'asals

200 PRINT ' e '’

210 PRINT AT X,S8;'a"

220 PRINT AT Y,H;"a."

230 LET H=H+(INKEY$="C")-(INKEY$="2")

240 TF (H=T OR H=11) AND INKEY$="M" THEN LET
Y=Y+2%(Y=T)-2%{Y{>T) '

250 IF (X=Y AND RND)>.5) OR RND).7 THEN LET
S=5+(S¢(H)-(S)H)

260 IF (S=T OR 5=11) AND RND».5 THEN LET
X=X+ 2% (X=TY=2% (> T)

270 PRINT AT X,S;"@"

280 PRINT AT Y,H;'D'",

2900 IF L THEN PRINT ''o"

300 IF S=H AND X=Y THEN PRINT AT 5,PI-PI;

"SCORE A" W; 2

310 IF Y=3 AND H=18 THEN LET L=T

320 TF H<>15 OR Y<>T OR NOT L THEN GOTO 210

330 PAUSE 50

340 CLS

350 GOTC 100

Now, before you run the program, you will have to
type the commands

LET W=-1 and LET T=1
since they are not defined in the program. To
start the program, type GOTO 1 rather than RUM,
so that these variables are not deleted.
Note that in line 300, Z is an undefined
variable. This is used to crash the program
rather than using an explicit STOP statement as
in the first version. |

139

QUESTIONS

1. If the number 10 was used 7 times in a
program, how many bytes would you save by
replacing it with the wvariable 27

2. How many times would you need to use the
number 1 to make it worthwhile defining a
variable 5 rather than using PI/PI?

3. How would you decfine an array of 10 numbers, 1
to 10 outside the main program? Define X to be
that array, then use this program:-

100 FOR I=1 TO 10
110 PRINT X(1)
120 NEXT I

to check that you have done it correctly, When
you list the program, there should be only these
3 lines of code.

140

CHAPTER 20 MACHINECODE
PROGRAMS

20.1 Introduction :

This chapter does not aim to teach you to write
machine code, but will show you how to enter a
machine code program into your 2ZX81.

The advantages of machine code are that it uses
a lot less memory, and executes much faster than
a BASIC program that does the same things,
Against this, machine code is much more difficult
to write, and requires considerable understanding
of the way the computer works. BASIC is a
compromise between machine code (which humans
have trouble understanding) and English (which
the computer cannot understand). The computer
must first interpret what the BASIC statements
mean, and this takes extra time. As you will see,
machine code is very compact, so takes very
little memory.

Machine code consists of 2 digit hex instuctions.
(Hex is an abbreviation of hexadecimal, which
refers to the base 16 number system). Hex uses
the digits O to 9 and the letters A to F.

You need to place the hex instructions at a
location that you know the address of, so that
you can tell the computer where to start. You
cannot put the instructions in the middle of a
BASIC program. Try to type in anything but a
BASIC statement, and the computer will not accept
L,

One place you can put machine code is in a REM

statement at the beginning of your program.
Frograms. are always stored starting at location

141

16509. The first thing stored is the line number,
which takes two bytes (or locations). Next the
length of the line is stored, taking another two
bytes. The REM takes another byte, so the
contents of the REM statement will be stored
starting from location 16514,

The REM is used to reserve the memory that will
be used to store the instructions. You can put
any characters you like in the REM; one character
for each byte in the machine code program. Then
you can use a BASIC program to POKE the machine
code instructions into the REM statement.

Here is a BASIC program that does exactly that.

100 REM 11111111111111111111111111111111
(32 1'g)

110 LET 8§ = 16514

120 FOR 1I=0 TO 31

130 SCROLL ~ - -~ =

140 GOSUB 500

150 PRINT I;"=rjag;n - n,

160 INPUT A%

170 IF A$="" THEN GQOTO 700

180 LET v=16%* CODE A%+ CODE A$(2) - 476

190 POKE §+1,V

200 GOSUBR 5300

210 PRINT A$

220 NEXT 1

230 STCP

300 LET V=PEEK {5+1)

510 LET H=INT (V/16)

520 LET L=V-16%*H

330 LET A$=CHRS$ (H+28) + CHR$ (L+28)

540 RETURN

If you RUN this program, the screen will display
0 = iD -}

and wait for input. The 1D is what is currently

at the Oth position in the REM statement. 1D is

142

the hex code for the character '1', which is what
you put in the REM statemenc. You can change this
to anything you like, by inputting the hex code.

For instance, you could input the values

00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, O,
o¢, op, OE, OF, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 14, 1B, 1¢, 1D, 1E, IF.

If you now LIST the program, the contents of the
REM statement has changed. It now containg the
first 32 characters in the character set.

20,2 Line Renumbering

We will now use the program to put something
useful inte the REM statement. The following
machine code subroutine will renumber the line of
your program. This is useful if you are
developing a program and find that you want to
insert a line between two consecutively numbered
lines.

RUN the program again, entering the values:

11, A2, 40, 21, 64, 00, 1A, 3D, FE, 75, CO, 13,
14, FE, 27, DO, 017 oA, 0O, 09, EB, 72, 23, 73,
23, 4E, 23, 46, 09, EB, 18, E6.

Now, to execute this subroutine, type the command
PRINT USR 16514,

The USR function tells the computer to execute
the machine code subroutine beginning at location
16514, When it has finished, it will print
whatever is in the BC registers (a special
location in memory).

143

It you LIST the program you will find that not
only has the contents of the REM statement
changed again, but now the lines 500 to 540 have
been renumbered. Before you RUN the program
again, you will have to change lines 140 and 200
to GOSUB 240. This is because the program
renumbers the lines, but does not change the GOTOQ
and GOSUB statements.

Carefully delete lines 110 onwards, and type the
command CLEAR. You have, in line 100, a machine
code subroutine that will renumber the lineg of
whatever program you have in memory. You can SAVE
it on cassette, and LOAD it before you develop a
program. Take care not to use line number 100 or
any number less. than 100. The REM statement must
be the first in the program, else you won't know
where the subroutine begins. If you have a line
100 in your program, you will overwrite the
machine code.

20.3 Mcmory Left

Here is another useful machine code subroutine,
that will tell you how much memory you have left.

This is shorter than the line renumbering
subroutine, Type in the BASIC program, but this
time you will need only 13 1's in the REM
statement. Also, change line 120 to

120 FOR I=0 TO 12
Enter these valuas
7, ED, 5B, 1C, 40, FD, 62, 39, ED, 52, E5, C1, C9.
Now if you type

PRINT USR 16514

144

the amount of memory left will be printed.

You can also use this subroutine within BASIC
programs. For instance if you had the line

150 IF USR 16514 £ 50 THEN STOP

The program would STOP if there were less than 50
bytes of memory left.

QUESTION
Why wouldn't youn use

100 REM),inverse 6,RND,5,... etc.
rather than typing in a BASIC program ta POKE
11,A2,40,21 etc into the REM statement? (11 is
the character code of ')', A2 is the code of

‘inverse 6', 40 is the code of 'RND', etc)

Hint:- Consider which character you would use for
hex 64.

145

CHAPTER 2t SYSTEM VARIABLES

The ROM - the part of the memory you camnot alter
- is really a program. It tells the computer what
to do with your BASIC programs — how they are
stored and executed, what is legal and what is
not, how to perform mathematical calculations.
Just like your programs, the 'system' needs
variables to store information about the state of
the computer.

These variables cannot be stored in ROM, because
the values change and the contents of ROM cannot
be changed. Bytes 16384 to 16508 - over 200 bytes
of your 1K RAM - are reserved for use by the
system., Some of these variables can be useful to
you. Some give you information that can be used
in programs. Others can be changed (using POKE)
to make the computer do something that cannot be
done in BASIG.

21,1 Using system variables.

Most system variables are 2 bytes long, so you
have to PEEK at two locations to see what is in
the variable. The location with the higher
address contains the most significant part of the
variable. Remember that a byte can hold a number
up to 256, so the following expression will
return the value of the variable.

PEEK X + 256 * PEEK (X+1)
Poking a value V into X takes two statements.

POKE X,V — 256 * INT (V/256)
POKE X+1,INT (V/256)

147

21.2 The var;ab}esh

16388 and 16389 - RAMTOP

These addresses contain the address of the first
byte after the BASIC system; that is, after your
program, its variables, and all the stacks used
during the execution of the program. Normally
this is the last byte of the memory.

When the computer CLEARs the memory, it only
checks as far as RAMTOP. As far as it is
concerned, this is the last byte of the memory.
If you POKE a lower value into RAMTOP, you will
reserve a space that can be used for machine code
routines. Then the routines will not be deleted
by NEW, CLEAR or RUN.

CL5S uses RAMTOP to determine how much Memory
there is. If there is more than 3.25K, then 1K is
automatically reseved for the display file, If
there is less memory than this, the display file
will take up only as much memory as i5 absolutely
necessary. After CLS has been executed, this is
25 bytes for 25 newline characters. CLS must be
executed after the POKE for this to have any
effect.

16398 and 16399 DF-CC

(Display File - Current Character)

These addresses contain the address in the
display file of the current character. That is
the character that is at the position that will
be printed at next. This character is the one
that will be overwritten when you next print
something.

Here is a program, SCRAMBLE, that uses these

locations. You have to fly your plane down one of
the ditches, shoot the enemy base, and fly out of

148

the

ditch and to safety to the right of the

screen. DF-CC is used to see if your plane is
about to crash into the wall of a diteh or the
enemy base. The controls are:- '

Q - up

A ~ down

M - forwards

N - backwards

V - fire _
SCRAMBLE

C by Clifford Ramshaw

100
110
120
130
140

150
160
170

180
190

200
210
220

230
240
250
260
270
280

LET X=PI-PI

LET Y=X

LET H=X

PRINT

PRINT " E¥ans B8 ans EEEED" (3%gr A3 sp,2% gr A
3 sp,b*gr A)

PRINT " ROE; paalB o0 bmmmm ' (3%gr A,4 sp, gr A

4 sp,3*%gr A)

PRINT ' BRI 4 oo (B o0 nq BN (4%gr A,3 Sp, gr A
4 sp,3*gr A)
PRINT ' (W s n s Boacammm' (4%gr A,3 sp, gr A

4 sp,3%gr A)

PRINT "B anssscann®B" (3%gr A,9 sp,3%gr A)
PRINT "B¥Bannsna®, a@' (3%gr A,6 sp,gr R, .
gr E, sp, 3%gr A)

(15 * gr A)

FRINT AT Y,X:
LET X=X4PI/PI . (INKEYS$-="'M"') — (INKEY$=""N"
AND X)PI-P1)*2

LET Y=Y+ (INKEY$="A") — (INKEY$="Q" AND
Y>PI-PI)

IF X)VAL"14" AND H THEN PRINT "WRLL DONE™
(inverse);(

IF X>VAL"14" THEN LET X=PI-PI

PRINT AT Y,X;

LET A$=CHR$ PEEK(PEEK 16398 + 256%PEEK 16399)
PRINT n)'n;

149

290 IF A$="W'"" THEN STOP

300 IF A$="=" OR A$=" THEN GOTO 900
310 1F INKEY$(>"Y" THEN GOTOQ 210

320 PRINT e i PR

330 IF Y=6 AND X<(9 THEN GOTO 900

340 CLS '

350 GOTO 130

900 PRINT AT 6,9;"sf" {graphic Y,T)
910 LET H=PI/PI

920 IF X < VALY9" THAN GOTO 2i0

You can also POKE DF-CC. This will cause the
FRINT output to be stored at the location you
POKE inte it.

16418 - DF-8Z

Normally there are two lines at the bottom of the
screen that you cannot print to. One is used to
accept input, the other is blank. You can
increase or decrease this number by poking the
new number into DF-§Z.

If you use an INPUT statement whije there are no
spare lines at the bottom of the sCcreen, the
System will crash. Remember to POKE 2 into DF-87Z
before an input statement.

Try this program.

100 FOR I=1 TQ 25

110 PRINT TAB 20;1
120 NEXT 1

Now include this line
30 POKE 16418,0
and RUN the program again, (Note that poking this

~address in a command has no effect, You must hava

150

the statement in a program.)

16436 and 16437 - TFRAMES

This variable can be used for timing. In fact
that is what PAUSE uses. Fach time a [rame is
scnt to the television, FRAMES is decremented by
19

RAND O uses FRAMES to decide where RND should
start in its sequence of pseudo random numbers.

16444 to 16476 — PRBUFF

This is where the line that will be sent to the
printer is stored. {16476 is a newline
character.).

If you haven't a printer attatched, this area
will not be used. USR routines can be stored here
in that case, without taking any usable memory
Erom your program. Routines stored here will be
SAVEd and LOADed too.,

As mentioned in chapter 19, memory is divided
into different areas, which are used for
different things. The systems variables area is
the only area that remains the same size all the
time. All other areas contain only enocugh room
for the information they must contain. This means
that their starting addresses change constantly,
The computer keeps track of where each area
begins and ends in variables in the system
variables area.

16396 and 16397 - D-FILE -~ contain the first
address in the display file. '

151

16400 and 16401 " ~ VARS — is the bepinning of the
area that the program variables are stored in.

16404 and 16405 - E-LINE is the beginning of the
area that is used to store 'the line that is
currently being typed in or edited, There is also
some workspace in this area.

There are also variables defining the stacks. The
stacks grow and shrink during the execution of
the program.

You cannot work out exactly how much memory you
have free, except with a machine code program.
However, using E-LINE, you can get an
approximation. '

PRINT 17408-PEEK 16404 - 256%PEEK 16405
If this returns a value that is approximately

150, you are running out of memory. 150 hytes is
approximately what is needed by the stacks.

152

CHAPTER 22 BEYOND GRAPHIGS

One of the things that the program in ROM does is
define the character set, that 1s what each
character looks like. If you know how this is
done, you can change the character set with a
short machine code program. Unfortunately, you
cannot define your own characters because the
defintion must be in ROM, not RAM.

The system knows where to look for the character
definition by looking at the contents of a
"register called the Interrupt Vector. (The book
*MACHTNE PROGRAMMING MADE SIMPLE' explains the
function of registers. Price and ordering details
dre at the back of this book.) A machine code
program can change the contents of this register
so that the characters change. These characters
are more or less random, depending on what the
contents of the ROM is at the location you tell
the computer te look. :

The assembly listing of a program to do this is:-

LD A,n
LI T;A
RET

n is a number between 0 and 31, Every pair of
numbets defines the same character set. That is O
and 1 are the same character set. 30 and 31
define the ususal character set.

Here is a program which displays each character
in each character set in turn. They are displayed
very large so you can see them better. If you
think the program is too slow, runm it in fast

. mode.

100 FOR S=0 TO 15

110 LET A$="B" (graphic space)
120 LET B$="ra

130 FQR X=0 TO 63

140 PRINT V“"CHARAGTER SET Wl
150 FRINT *"CHARACTER Hex

160 PRINT " +4+44+++++++"

L70 FGR L=0 TO 7

180 LET V=PEEK(512*%S+L+8%X)

190 LET P§$="14v

200 LET D=256

210 FOR K=0 TOQ 7

220 LET D=D/2

230 LET C$=B3%

240 IF V<D THEN GOTO 270

250 LET C$=A%
260 LET v=V-D
270 LET P$=P$+C$
280 NEXT K . y
290 PRINT P§+14"
300 NEXT I,

310 PRINT "4+++4+++++4"
320 PAUSE 60

330 CLS

340 NEXT X

350 NEXT §

Now if you have decided which character set you
want, you will need to use it in a program. Start
your program with

100 REM YOOOTAN
110 POKE 16515, 2%s
120 IF USR 16514 THEN CLS
9980 POKE 16515,30
9990 IF USR 16514 THEN CLS

(s is the number of the character set, as
displayed in the previous program. TAN is the

154

function, not three charactérs.)
Now type these commands

POKE 16516,237
POKE 16517, 71

The REM statement now contains the machine code
program to change the contents of the Interrupt
Vector.

Your program should go between the lines 120 and
9980. Remember that you cannot write messages
when you are using an alternative character set —
the message will be totally unintelligable.

You can use any lines that call USR 16514 instead
of lines 120 and 9990

Here is a program which uses character ser 5. You
are a marathon runmér in an obstacle race along a
beach. Below you is the sea, and along your path
are many holes. If you fall into a hole, or run
into the sea, ther you are out of the race.

The controls are:-
M - up
Z - down

100 REM YQOOTAN

110 POKE 16515, 10

120 IF USR 16514 THEN CLS

130 FOR X=PI-PI TO 30

140 FOR Y=PI-PI TQ PI+INT(PI*BRND)
150 PRINT AT Y,X;" " (praphic space)
160 NEXT Y

170 FOR Y=Y TO 6

18Q PRINT AT Y, X;"pu

190 NEXT Y

200 NEXT X

210 FOR X=PI/PI TO 15

Py

220 PRINT AT INT(5*RND),PY+(27%RND) ; 'ru

230 NEXT X :

240 LET Y=PI/PI1

250 LET X=-Y

260 PRINT AT Y,X:' v (graphic space)

210 LET Y=Y-(INKEY$='"M") + (INKEY$=""Z")

280 LET Y=Y*(Y)P1-PI)

290 LET X=X4PI/PT

300 PRINT AT Y,X;" v

310 IF X=30 THEN RUN

320 IF PEEK(PEEK 16398 4+ 256*PEEK 16399)=128 THEN
GOTO 260

330 POKE 16515,30

340 IF USR 16514 THEN CLS

Before RUNning this program, type in the
commands: -~

POKE 16516,237

POKE 16517,71
Also note that spaces have been redefined. If you
PRINT AT 10,8 then the character you print will
be preceded by 7 of character O in the character
sel you are using.

QUESTIONS

1. Which character set is used if you type
POKE 1651531
RAND USR 16514

2. Look for another character set, and replace
the characters in the program above.

156

APEENDIK A CHARACTER SETI-

The Eollowing is a table which lists the
characters together with their codes :—

CODE CHARACTER

0 " space 32 “
i 18 33 5
2 m 34 b
6 ia A
7 :: 39 B
8 B 40 C
q = 41 (]
11 H 43 F
12 44 G
£3 $ 45 H
14 : 46 I
15 ? 47 J
16 (48 K
17) 49 L
14 > 30 i
10 ¢ 51 N
70 s 52 0
21 + 53 P
22 - 34 Q
73 * 35 R
24 / 36 5
25 : 57 T
26 \ 58 U
2 £ 59 v
28 0 60 W
29 1 61 X
30 2 62 Y
31 3 63 z
’ 64 ' RHD
65 INKEY$
66 | P1
NOTE : THE CODE BETWEEN 67 TO 111 ARE NOT
USED...... v
117 Cursor up
LE3: cursor down

114 cursetr left

115
116
117
118
119

120

121
122
123

124 -

125
176
123
128
i29
130
131
132
L33
134
135
136
137
138
139
140
140
141
142
143
144
145
146
147
148
149
i)
151
152
153

cursor right

GRAPHICS
)3
NEWLINE
RUBOUT

FUNGTION

" not used

not used
not used
not used
number
CUTSOT

ENBUESRADEEN

inverse
inversa
inverse
inverse
inverse
inverse
inverse
inverse
inverse
inverse
inverse
inverse
inverse.
inverse
inverse
inverse

K / L mode

LA

=

S o [T WL S N I

- 3 |

oy

2154
155

156
157
158
159
160
161

162 -

163
164
165
166
167
168

i 169

170
171
172
1:7.3
174
175
176
177
178
179
180

181

182

183

184

: 185

186
187
188
189
50
191
192
193
194

inverse
inverse
inverse
inverse
inverse
inverse
inverse
inverse
Inverse

‘inverse

inverse
inverse

inverse
.inverse

inverse
inverse
inverse
inverse
inverse

inversa.

inverse
inverse

‘inverse
inverse
"inverse
; Inverse
. ‘nverse

itverse
inverse

_ inverse

inverse
inverse
inverse
inverse
inverse
inverse
inverse

- inverse

AT

.. TAB

Nhﬁﬁa*ﬂﬂﬂmmﬁ"'UOZE"-.F’?QL;HZE)HIMDQW:I?\DDJMIIBU&MMH-Q-

195 not used 236 GOTO

196 CODE | 237 GOSUB
197 . VAL 238 INPUT
198 LER 239 . LOAD
199 SIN 240 LIST
200 COS 241 LET
201 TAN 242 PAUSE
202 iSN 243 NEXT
303 Ags | 244 POKE
282 LNN 245 PRINT
246 PLOT
206 EXP - 247 RUN
gg; ;g; 248 SAVE
: 249 RAND
209 SGN 250 IF
210 ABS 251 CLS
gié : EEEK - 252 UNPLOT
212) ~ 253 CLEAR
: 254 RETURN
214 CHR$ 255 COPY
215 HOT B
216 - - *¥
217 OR
218 AND
719 = 0 F
220 =
221 ()
594 THEN
223 TO
294 STEP
995 - LPEINT
I06 LLIST
297 STOP
298 SLOW ' ; ’
229 - FAST |
230 - NEW
| ' SCROLL
299 CONT
233 DIM
234 REM

235 FOR

5PP£NDI}{ 2 OPEHATOR
PRIORITY

OFPERATOR PRIORITY
Subscript,slicing I
All functions 1E
Fk 10
— (negative sign) 9
*,/ 8
+,- 4]
PRGN 5
NOT 4
AND 3
OR | -2

161

weeznix ¢ APPLICATIO NS |

Financial - Cheque bock balancing

This program will help you keep your cheque book
in order.

There are 3 transactions that the program will
process. When the computer prints "TRANSAGCTION?'
. you can type :

C to write a cheque

D to deposit to your cheque account

5 Lo reconcile a statement with the cheques
written.

X to exit from the program,

Now each Eransaction will be explained more
fully.

C. You will be asked "“AMOUNT?". Type in the
amount of the cheque, and the computer will
display infermation about your account which
should be recorded on the butt of the cheque:-
balance brought forward, deposits since the last
cheque, the amount of this cheque and the
resulting balance.

Next you will be asked "NO?", Type in the number.
of the cheque - a number between 1 and 24 that
will identify the cheque. Don't use a number that
you have used since the last statement
reconciliation, nor a number thar was an
unpresented cheque in the last statement
reconciliation.,

D. You will be asked "DEP. AMT?', Type in the
amount deposited to the account,

163

5. First you will be asked "NUMBER?". Type in the
number of the first cheque on the statement. Next
you will be aslked "AMOUNT?", so type in the
amount of that cheque. If there are mare cheques,
type "Y' in response to "MORE?" and repeatr the
process of entering cheque number and amount for
each cheque,

When there are no more cheques, enter "N" and the
computer will print a list of unpresented
cheques, together with their total.

Bank Charges - enter any bank charges, interest
etc as a cheque, but give the number as 0., 0 is
not a legal cheque number because it is used
exclusively for this purpose. :

You will need to do a statement reconciliation
every 24 cheques at least, or you will run out of
numbers for the cheques. This is because of
limitations of the size of the ZX8i's menory, If
you have more memory, you can make the following
changes to allow 99 chegues.

140 DIM A$(200)
5710 FOR X=PI/PT TO 199 STEP Z

Also you could improve the prompts. The program
does no error checking. You could print a warning
if you write a cheque that leaves a riegative
balance. You could check for repeated cheque
numbers. ~

100 LET Y-10
110 LET Z-2
120 LET B=2-Z
130 LET T=B

164

140
150
160
170
180
190
200

4000
4010
4020
4030
4040
40350
4060
4070
4080
4085
4090
4095

4100
4110
4120
4130

5600
5610
5620
5630
53640
5650
5660
5670
2680
5690
3700
5710
5720

9230

DIM A$(40)

LET D=B-B

CLS

PRINT "TRANSACTION?"
INPUT X$

CLS

GOTO GOPE X$*y+y

PRINT "AMOUNT?"
INPUT X

CLS

PRINT “B.F.4';B,"DEPa"; D, "CHEQUE 4"'; X

LET B=B+D-X

PRINT "BALa';B,"NO.?"

INPUT N

CLS

IF N THEN LET A$(Z*N+PI/PT)=STR$ INT(N/Y)
IF N THEN LET A$(Z¥N+Z)=STR$ (N-~INT(N/Y)*Y)
IF N THEN LET T=T4X

GOTO 150

PRINT "'DEP AMT?'
INPUT X

LET D=D+X

GOTO 160

CLS

PRINT "NUMBER?!

INPUT X

LET A$(Z*X+PI/PL TO Z¥X+Z)="an

PRINT "AMOUNT?"

INPUT X

LET T=T-X

PRINT "MORE?"

INPUT X$

IF X$="Y'" THEN GOTO 5600
CLS

FOR X=PI/PT TO 39 STEP 2

IF A$(X)<{)>"a" THEN PRINT A$(X TO X+PI/PI);
”ﬂ”;

NEXT X

165

5740 PRINT "TOTALA";T
5750 GOTO 170

Line 200 contains an expression you may not have
met before. It is called a 'computed GOTO!' -
meaning that the line number has to be computed
before the GOTO can be executed. S$o the program
does not always jump to the same line.

CODE X3 returns the character code of the firsc
letter in the string you input. If you input "po
this is 41. Y is used to save memory. It is
always 10. So when you input "D", the program
jumps to line 4100.

166

Educational - Geometry test

This program will ask questions related to
geometry — what is the circumference of a circle
of radius 37 - for example. Tt will accept any
number within .5 of the correct answer as right.
Note that you do not have to calcuate the answer;
you can enter an arirhmetic expression.

The program is in two parts. The first part sets
up the vocabulary of the program. A$ contains the
words used. Sentences are defined by the starting
position of each word. These positions are stored
in the REM statement at line 100, A$(56) is rhe
first letter of '"WHAT'. A$(61) is the first
letter of *18', and so on. Each sentence contains
9 words,

100 REM 123456?390123&55?890123456?890123456_
{36 characters)

110 FOR I=0 TO 35

120 SCROLL

130 PRINT T;"a=>al:

140 INPUT J

150 POKE 16514+1,J

160 NEXT 1

170 LET A$="SURF&CE¢&RE&aCIRCUMFERENCEAVULUMEh
'CTRCLE sSPHERE, RADTUS JWHAT ;18 , THE ,0
FAWITHA!

RUN this program and enter the following numbers

56, 61, 64, 14, 68, 12, 35, 71, 49
56, 61, 64, 9, 68, 12, 35, 71, 49
56, 61, 64, 1, 9, 68, 12, 42, 49
56, 61, 64, 28, 68, 12, 42, 71, 49

Now delete lines 110 onwards, and enter thig
program.

167 .

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

1000
1010

2000
2010

3000
3010

4000
4010

Bon'
dele

The
ANy
sent
to ¢
coul

CLS

LET Q=INT (RND*4) + PI/PI
LET M=INT (RND*20) +2

GOSUB Q*1000¢

FOR 1=Q-0Q TO 8

LET J=PEEK (16505 +Q*9 + I)
PRINT A${J);

IF A$(J)="a" THEN GOTO 210
LET J=J+PE/PI

BOTA 1370

NEXT 1

PRINT M;"?

INPUT R

IF ABS(R-A)).5 THEN GOTO 270
PRINT "YES, ;A L
GOTO 280

PRINT "NO, '";A

PRINT "PRESS N/L WHEN READY"
INPUT X$

GOTG 110

LET A=2%PT*MH
RETURN

LET A=PT¥M¥M
RETURN

LET A=4/3%P1*M*M
RETURN

LET A=PI*M*M*tM/3
RETURN

t use RUN to start the program. This would
te A$. Use GOTO t instead. '

questions in the program could be replaced by
others by redefining the vocabulary and
ences. The subroutines work out the answers
he questions. If you have more Memory, you

d have more than 4 questions.

168

Games - Hot air ballcon

This is a graphics game. You must try to blow the

hot

air ballpon to the top of the screen. You do

this by keeping your token (at the bottrom of the
s¢reen) directly underneath the balloon,

As your score increases, the difficulty of
blowing the balloon upwards increases too.

100
110
120
130
140
150
160
170
180
190
200

210
220
230
240
250
260
270
280
290
300
310
320
330
340

PRINT "DIFFICULTY? (>=0)¢
INPUT G

LET A=16

LET $=0

LET D=32

LET F=(S+0)*20 ™

IF F<{3 THEN LET F=3

FOR H=40 TO 4 STEP -1

CLS |

PRINT AT 20,A;'" "™ (inverse +)}
LET A=A + (A(31)*(INKEY$="8") —

(INKEY$="5")%(A>0)

PLOT D,H

LET D=D+(RND*S)—2+2*((D(Z)—(D}ﬁﬂ))
IF F THEN LET F=F-1

IF A%2<{D-3 OR A*23D+3 THEN GOTO 280D
1F NOT F THEN LET H=1s1

IF H>40 THEN GOTO 300

LET H=H+1

MEXT #

LET S=§-2

LET S$=5+1

PRINT

PRINT "SCOREa";S

PAUSE 200

GOTO 140

169

Games - Galaxian
This is a 1K version of the arcade game.

There is a fleet of enemy fighters above you,
Suddenly, one dives at you, guns blazing! Can you
shoot him before he shoots you or crashes into
you? You can only shoot the fighter that is
diving at you. If you miss him, he will come back
and dive again.

The game ends when you have shot the entire
fleet, or you are hit.

The contrels are:-

L - left
C —~ right
M - fire

100 LET V=10

110 LET 5=PI/PI

120 LET G:==5

130 LET X=4+5%3

140 LET Y=PI-PI

150 PRINT TAB X;

160 FOR I=PI/PI TO 5-8

170 PRINT "Wwa''; (gr T,gr 4,space)

180 NEXT I ’

190 LET G=G+(INKEY$="C") - {INKEY$Z“Z”)*(G)PI{PI)

200 PRINT AT V,G;"-ulen' (sp, gr Q,gr 4,sp);
.ol b S & T W L

210 LET XaX8(¥e3)-(¥4)

220 LET Y=Y+PI/PI

230 PRINT AT Y,X;"%" (gr Y,gr 1)

240 1IF Y=V THEN GOTO 360

230 IF RND¢.8 THEN GOTO 300

260 FOR I=Y+P1/PI TO V¥

270 PRINT AT 1,X;"8't (gr B)Y;AT I,X;"a"

280 NEXT I

170

290
300
310
320
330
340
350
360
370

380
390
400
410

IF X=G THEN COTO 380
IF INKEY$<)"M" THEN GOTG 190

FOR 1=V-P1/P1 TO PI/PI STEP —PI1/PI
PRINT AT 1,G;"e" (gr 8);AT I1,G;'"al
NEXT I

IF G(>X AND G{)X+PI/PI THEN GOTO 190
LET $=54+PI1/PI

CLS

IF 5{35 AND (ABS(X-G)>PI/PI OR Y{)V) THEN
GOTO 130

PRINT 8§

PAUSE 50

CLS

RUN

=171

Games - Space Rendezvous

You are in conmand of the small space craft on
the launchin pad. You must refuel your ship in
midspace - a difficult manouver that only the
most experienced commanders would dare attempt.

Enter the gravity value for your location

" (between 0.1 and 0.6 is best — 0.6 is VERY
difficult), As you move, your fuel supply
diminishes. Watch the fuel indicator below the
ground. :

Contreols are:-—

X — down
W — up

D - right
A

-~ left

100 LET X=PI/PI
110 LET Y=11

120 LET A=X

130 "INPUT G

140 ERINT AT 12 . FI-PI : 11 S R R T Ty TR 1"
(gt W,gr 6,gr Q,14%gr A

150 PRINT " e’ (15%gr 6)
160 LET F=58

170 PRINT AT Y,X;v,."

180 LET Y=Y+G+(INKEY$="X")~ (INKEY$="W" AND
Y)PI/PT)

190 IF Y>11 THEN LET Y=i1 _

200 LET X=X+(INKEY$="'D** AND X<15)-(INKEY$="1a0
AND X)PI-PT)

210 LET F=F-(INKEY${)")

220 PRINT AT Y,X3")"";AT PI-PI, A ', .M

230 LET A=A+VAL"M, 5"

240 IF A>15 THEN LET A=PI_P]

250 PRINT AT FI-PI,A;"ma'" (gr W,gr 4)

260 UNPLOT F/2,16

270 IF F<=PT—PI THEN GOTO 500

172

280 IF INT(Y+.S5)¢)>PI-PI THE GOTOC 170
290 IF X=A OR X=A+PI/PI THEN GOTO 500
300 IF X+PI/PIK)>A THEN GOTO 170

. 310 PRINT, ,"WELL DONE",“SCORE: '';G*10*F
320 PRINT,,,,""CRASHED" (inverse)

173

Artificial Intelligence — Gomoku

This program demonstrates how the computer can be
used to perform the same functions as the human
mind., That is, the computer can appear to be
intelligent.

This program plays the game Gomoku. This game is
played on a 19 x 19 grid usually. Each player
takes turns to put a plece on the grid. The aim
Is to get 3 pieces in a row - horizontally,
vertically or diagonally.

This program uses an 8 x 8 grid, and plays
defensively. The computer checks which is the
longest string that your piece forms, and blocks
that string,

10 REM™gm™ (gr S,gr D,gr 1,)

20 FOR T=PI/PI TO 8

30 PRINT AT I,T-T3T;"...0.... " (8 .'s); AT
1<, 13T

40 NEXT 1

1000 INPUT M

110 LET X=M -

120 GOSUB 900

130 IF X$()"." THEN GOTO H*H
140 PRINT "@'" (inverse 0)

300 LET B=PI-PI

310 FOR 1=B TO PI

320 LET C=B-B

330 LET X=M

340 LET O=PEEK(16514+1)

350 LET X=X-D

360 GOSUB 900

370 IF X3{)" " (inv 0) AND D{B-B THEN GOTO 420
380 LET C=C+(D{B-R)

390 IF X4=""," AND DJB~B THEN LFT R=X

174

400 IF X$<>" " (inv 0) AND D)>B-B THEN LET D=-b
410 GOTO 350

420 IF C{B THEN GOTO 460

430 LET B=(C

440 LET J=X

450 IF X$<>'",™ THEN LET .J=R

460 NEXT 1 _

470 IF B>I THEN STOP

300 LET X=J

310 GOSUB 900

520 1IF X$()".'" THEN GOTD 550
530 PRINT "X

540 GOTO H*H

550 X=INT(RND*H*H)

360 GOTO 510

900 PRINT AT INT(X/H), X-H*INT(X/H);

910 LET X$=CHR$. PEEK(PEEK 16398+256*PEEK 16399)
920 RETURN

If you RUN this program you will flnd undefined
variables. So type in:-

LET H=10
LET R=0

Now type GOTO 1 to start the program.

If you have more than 1K, then you can add a Few
extra lines to inmprove the program.

160 LET #=10
170 LET R=0D

These lines will stop the undefined variables
when you RUN the program.

470 IF B=Pi{/PI THEN GOTO 550

175

This will make the program more friendly. Instead
of blocking every move you make, if you put down
a piece that has no neigbours, it will make a
random move. '

Other changes could be made. You could print a
message when the game finishes. :

If you have pieces like this:-

0 000
the computer may add

0 000X
leaving you a winning move. You could add more
checks to prevent this. You could make the
computer play a more aggressive game too. It does
not check if there is a winning move it can make
at the moment either.

f

176

REFERENCE
MANUAL

Your ZX81 recognizes many ‘'keywords'; words which
have a special meaning in BASIC. There are two
kinds of keywords:— functions and statements.

STATEMENTS can be used either as commands or in
programs. (INPUT is the only exception; it can
only be used in a program.) Statements tell the
computer to do something - PRINT something or RUN
A program, for instance.

FUNCTIONS cannot be uszed by themselves. A
function must be part of a statement. For
instance, SQR 9 calculates the squarerocot of 9.
Tt returns the value 3, and you can use SQR 9
wherever you would use 3. Just as it would not
make sense to type just '3' into the computer, it
does not make sense to type SQR 9. The computer
would not know what you meant it to do with the

g

The 9 in SQR 9 is called an argument or operand.
Many functions require arguments., They may be
numbers or strings, depending on the function.

In this section, all functions and statements
recognized by your ZX81 are explained. They are
arranged in alphabetical order, to make a
complete, easy-to-look-up ZX81 BASIC Reference
Manual.

177

ABS

This function must bec given a number. 1ts walue
ig the value of the number for a positive number,

or the negative of the number if the number is
negative.

For example ABS -2 is equal to 2; ABS 2 is egual

to 2; and ABS 0 is equal to 0. To see what ABS
does , run this program.

100 PRINT "X","ABS X
110 FOR I=-5 TO 5

120 PRINT I,ABS 1

130 NEXT I

i7%

AND

There are three different ways of using AND:

1. It can be used in the condition of an
IF...THEN statement, like this:-

IF DATE=25 AND MONTH$="DECEMBER"
THEN PRINT "MERRY CHRISTMASH

Both the conditions must be true before the
message will be printed. In other words, the
function AND in this case implies a repetition of
the IF - you could think of it asg
IF TODAY IS THE 25th
AND TF 1IT'S DECEMBER
THEN IT MUST BE CHRISTMAS.

but in programming vou only need the one. 'IF*
statement.

As many AND statements (and OR statements) can be
linked together in one IF ... THEN line as
desired,

If neither of the conditions is true, or just one
of the conditions is true then MERRY CHRISTHMAS
will not be printed.

example program:

100 INPUT X

110 IF X>=0 AND ¥{10 AND X = INT X THEN GOTO 140
120 PRINT"THAT WAS NOT A DIGIT"

130 RUN

140 PRINT "THAT WAS A DIGIT"

150 RUN

In order to qualify as a digit, the number you

k3

180

input has to fulfill three conditions:— it has to
be greater than or equal to zero, less than ten,
and an integer number. Try a few different

. numbers and see that this is what the AND does.

2. AND can also be used as a numeric operator, as
in the following statement.

LET A = 2 AND B

This is equivalent to these tuwo statements
LET A = 2
IF B = O THEN LET A = D

That is, if the second operand (in this case B)
is zerc, then A is assigned zero, otherwise it is
assigned the value of the first operand (in this
case 2),

This is because the AND treats the second number
as a logical value being TRUE or FALSE - whether
the number is TRUE or FALSE depends solely on
whether the number are non—zero (TRUE) or zero
(FALSE),

3. The AND statement can be used to link a string
and a number (with the number being used as a
logical value of TRUE or FALSE).

The first operand must be a string. This use of
AND works in the same way as the second use of
AND described above.

e.g. LET A} = B$ AND C

The second operand must bhe a number, or numeric
variable, which will determine whether it is TRUE
that A$ = B$, or FALSE that A$ = B$ (in which
case A$ will be equal to "),

A} will be the null string if C is zero; any

181

other value of C will make A% be equal to B§

example program:

100 PRINT *''"WHAT IS YOUR NAME?"
110 INPUT B}

120 PRINT “'WHAT 1S YOUR AGE?"
130 INPUT C

140 LET A$ = B$ AND C

130 PRINT ""HELLOA" ; A$ s, 1

If you input your age as zero, then your name
will not be printed, {(because A% is the null
string) otherwise your name will be printed.

182

~ ARCCOS (ACS)

The ARCCOS function computes the angle (&)
between the hypotenuse (H) and one side (X) of a
right angle triangle. Its argument is the ratio
of the lengths of these sides,

ARCCOS(X/H} = A
The angle is given in radians. A radian is
approximately 57 degrees. (To be exact, 180
degrees = PI radians),

The opposite of ARGCOS is COS, so

COS A = X/H :
Since CO8 always returns a value between -1 and 1
(because the hypotenuse is longer than or equal
to the other side) rhe ARGCOS of a value not in
this range is undefined. You will get error & if
the number is not a valid argument.

This program given will plot the ARCCOS function.
10O PRINT AT 6,0;13n

110 PRINT AT 11,0;%2"

120 PRINT AT 16,0;]*

130 PRINT AT 21,1;0—1"

140 PRINT AT 21,11;"0"

150 PRINT AT 21,21;'ivw

160 LET X=-1

170 FOR Y=3 TO 42

180 PLOT Y,INT(ARCCOS(X)*10)
190 LET X=X+.05

200 NEXT Y

183

'ARCSIN (ASN)

The ARCSIN function computes an angle (A) in a
right angle triangle. Its argument is the ratio
of the lengths of its hypotenuse (H)} and the side
oppesite the angle (Y)

A = ARGSIN (Y/H)
The angle is given in radians. A radian is
approximately 57 degrees. (To be exact 180
degrees = PI radians).

The opposite of ARCSIN is SIN.

SIN A = Y/H '
The ratio Y/H must be between -1 and 1 since the
hypotenuse of a right angle triangle is longer
than or the same length as the other sides. 1f
you give the 'ARCSIN function an argument outside
this range, you will get error A.

This program will plot the ARCSIN function
100 PRINT AT 6,0;"3n

110 PRINT AT 11,0;n2"

120 BRINT AT 16,0;v1"

130 PRINT AT 21,1;"-1n

140 PRINT AT 21,11;non

150 PRINT AT 21,211

16¢ LET X=-t

170 FOR Y=3 TO 42

180 PLOT Y,INT(ARCSIN(X) * 10)
190 LET X=X+.05

200 NEXT Y

184

'ARCTAN (ATN)

The ARCTAN function computes an angle in a right
angle triangle. Its argument is the ratio of two
sides, neither of them Lhe hypotenuse. The ratio
Is given adjacent side (X) to the opposite side

(Y).

A =

ARCTAN (X/Y)
The angle is
P1 radians.)

given in radians. (180 degrees equal

This program will plot the ARCTAN function.

100
110
120
130
140
150
160
170
180
190
200

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

LET ¥ =-2

AT
AT
AT
AT
AT
AT

16,031
11,0310
6,0;1!1”
21,2302

21,12;m0m

21,2257

FOR X = 4 TO 50
PLOT X,INT (ARCTAN(Y)*10 +20)
LET Y=Y+.1

NEXT X

185

BREAK

The BREAK key (on the same key as SPACE) will
interrupt the program that is running. It will
return the report code D, and the line at which
it was interrupted.

The BREAK is not recognized in some situations.
If the computer is waiting for input from the

keyboard, the key will be recognized as a SPACE.

To continue running Erom where the program
stopped, use the GONT command {see CONT).

186

CHRS$

The computer stores characters as numbers. It has
a code which it uses to convert from one to the
other. The CHR$ function enables you to find out
what character corresponds to a code number.

Code numbers are between 0 and 255. If you call
the funtion with an argument outside- this range,
you will get error B. '

The following program will print all the
characters and their corresponding codes.

100 FOR X=0 TO 255

110 PRINT AT 21,0;X;"A";CHR$ ¥
120 SCROLL °

130 NEXT X

You will notice that next to quite a few numbers
there are question marks. 15 is the code for '?'.
Some of these are numbers that are not used, the
others correspond to unprintable characters, like
the newline character for instance.

Key words also have code numbers. For instance,
the key word PRINT has code number 245,

187

The CLEAR statement removes all variables, and
frees the space they occupied. All variables

become undefined.
Try this to see what clear does. Type in:-

100 LET A$=""HELLO THERE"

Now RUN the program. 1f you now type PRINT A$,
the message "HELLO THERE" will appear.

Now type CLEAR, then PRINT A$. This time vyou will
get an error message. The error code 2 means thar
an undefined variable has been used.

Your program.is still there though. Just RUN it
again, and A$ will be in memory once again.

g

158

CLS

The CL5 statement clears the screen, and the
display file, Your program and its variables are

not

etfected.

example program

100
110
120
130
140
150
160

PRINT “GOING...

PAUSE 50

PRINT "GOING...

PAUSE 50
FRINT "GONE*f
PAUSE 10

CLS

Because this command clears the display flle, it
frees the memory that was occupied by the file,
This is useful if you have a lot printed on the
screen, and your program is running out of
memory.

189

CODE

This function is given a string as its argument.
The value of CODE is the character code of the
First character in the string. 1f the string is
empty ("' is the empty string) then CODE is
ZBFrG.

For example, CODE "STRING" is equal to 56,
because the code of 'S' is 56. CODE Y5 TOPY 45
also 56, and so is any other word beginning with
'S'- .

example pregram
100 LET X = 1

110 FOR Y=1 TO 20

120 PRINT X

130 LET X=X+1

140 NEXT Y

150 PRINT "D YOU WANT ME TO COUNT HIGHER?™
160 INPUT A% ;
170 IF CODE A$¢>H2 THEN STO
180 CLS '

190 GOTO 110

If you type in "YES" or "YV gy anything else

beginning with "Y', the program will keep going;
otherwise it will stop.

130

COS

If you give the COS function an angle (in
radians) it will calculate the ratio between the
hypotenuse (H) and the side adjacent to the angle
(X) for a right angle triangle.

COS A = (X/H}

The number returned will be between -1 and 1,
because the hypotenuse will be at least as long
as the other side,

This program will plot the function,
100 PRINT AT 6,0;"1"

110 ‘BRINT AT 11:,05m0M

120 PRINT AT 16,0;"-1v

130 PRINT AT 21,1;"0o"

140 PRINT AT 21,11;'2"

150 PRINT AT 21,21;"4n

160 PRINT AT 21,31;"6"

170 FOR X = 0 TO 6 STEP .1

180 PLOT X*10+2,INT{COS(X)10+20)
190 NEXT X

Note that the angle is in radians, not degrees. A
radian is approximately a7 degrees. The precise
conversion is:

180 degrees = PI radians.

191

CONT

This statement causes the program to continue
running after it has stopped. When a program
stops, a report is given to tell you why it
stopped. The report will be of the form P/Q,
where P is a letter or number, and Q is the line
number.

If P is 9, then the program stopped at a STOP
statement. If you use the CONT command, the
program will restart at the line after the STOP
statement.

example program.

100 PRINT "TYPRE 1| TO CONTINUE'
110 INPUT A

120 IF A{>1 THEN STOP

130 PRINT "CONTINUING..."

140 GOTO 100

If you don't type 1, you will get the report
9/120. When you type CONT, the program will
continue at line 130,

If P is not 9, then the program will continue at
the line where it stopped. If the program stopped
because of a programming error, this will
probaply mean that it will stop again
immediately. Usually this facility will be used
after a BREAK.

182

This command does nothing if you haven't a
printer attatched to your ZX81., If you have a
printer, it will send a copy of whatever is on
the screen to the printer. You can stop the

printer at any time by using the BREAK key, and
you will get report code D,

Sometimes, 1f you execute this statement without

a printer attatched, the computer might get
stuck. The break key will fix this problem.

193

There are two forms of DIM:- one for numeric
arrays and another for string arrays.

1.. DIM X€a.,bBuwz)

This will delete any array called X which already
exists, and set up a new one. The letters Allse o2
have been used to represent numbers. They are the
dimensions of the new array. For example DIM
X(5,6) would set up & two dimensional array (a
table) with 5 rows and é columns.

The new array will have all values set ro zero.
This feature could be used to zero an array in
the middle of a program.

An array cannot be used until it has been
dimensioned in a DIM starement.

It is possible to have both an array and a
variable called X. The computer will be able ra
tell which is which, because the array will have
to be referenced using subscripts. Tt is not a
very good idea though, because you might get
confused when reading the program.

example program
100 DIM X(3,3)

110 FOR I=1 TO 3
120 FOR J=1 TO 3
130 LET X(T,J)=1%*J
140 NEXT J

150 NEXT 1

L6C FOR I=1 TO 3
170 FOR J=1 TO 3~

19¢

180
190
200
210
220
230
240
250

The
can
DIM

24

PRINT X(I,J);» 1,

NEXT J

PRINT

NEXT I

IF HOT X(1,1) THEN STOP
DIM X(3,3)

PRINT

GOTO 160

first DIM statement is nedessary before you
access the array. The effect of the second
statement is toc zerc the array.

BIM X$(a,b..z)

This works similarly to numeric arrays. Any
string or string array will be deleted, so it is

not

possible to have both a string and a string

arvay with rthe same name.

All
You

strings in an array must be the same length.
can pad with blanks, if you want different

length words in an array.

example program

100
110
120
130
140
150
160
170
180
190
200
210

You

DIM D$(7,6)

LET D$(1)=""MON'
LET P$(2)="TUES"
LET D$(3)="WEDNES"

LET D$(4)='"THURS"

LET D$(5)=""FRIN

LET D$(6)=""SATUR"

LET D§{7)="5UnN"

INPUT N

PRINT D$(N); DAY

PAUSE 100

GOTO 180

can see from this that the strings are

automatically padded with blanks.

105

EDIT

The EDIT mode enables you to change lines without
having to rype the entire line again.

When you are typing in a program you will notice
an inverse) sign between the line number and the
text on one of the lines. This is the current
line. You can uvse rthe vp and down arrows (shifted
7 and 6) to change the current line.

If you now type EDIT (shifred 1), the current
line will be reprinted below the listing of the
program. (If you type EDIT and nothing happens,
it is because you have run ocut of memory. Type
CL5 HEWLINE, then try again).

You can now move the cursor left and right in
this line using the right and left arrows
{shifted 8 and 5). The RUBOUT key will delete the
character or key word immediately preceding the
cursor. You can iusert a character or key word at
the position of the cursor by just typing it.

You are automatically in EDIT mode when typing in
a new line. This means that you can use the edit
commands (right and™left arrows, rubout and
insert at cursor position) to edit the line you
are typing in.

When you have finished editing the line, type NEW
LINE, and it will be inserted in the program in.
the correct position according to line number. If
there is already a line with that line number,
the old line will be deleted.

You can change the line number while you are
editing. If you do, you will find that vou have

185

two copies of the line when you finish. When you
ask to edit a line, a copy of the line is made ;
it is not automatically removed from the program.,

197

EXP

The EXPonential function computes e**X where X ig
the argument given to the function. EXP always
returns a positive number, since e = 2,71826 (and
all powers of it are therefore positive). The EXP
function gets large very quickly, so if you give
it a number preater than 83 it will cause an
arithmetic overflow,

This program will plot the EXP Function

100 PRINT AT 15,0;"1¢
110 PRINT AT 10,0;"2"
120 PRINT AT 21,1;"—4"
130 PRINT AT 21,11;9-2n
140 PRINT AT 21,21;"0"
150 PRINT AT 21,31;m2»
160 LET X=-4

170 FOR Y=2 TD 62

180 PLOT Y,INT(EXP(X)*5 1+2)
190 LET X=X+.1

200 NEXT Y

198

FAST

Your ZX81 has two speeds of operation - fast and
slow. When first switched on, the computer will
be in slow mode. The FAST command changes it into
fast mode.

In slow mode, the display file is constantly
being written to the acreen. Computations are
done during the spaces betrween writing the
display file.

In fast mode, the computer forgets about the
SCreen except when it has nothing else to do;
that is, during a PAUSE or while waiting for
INPUT data from the keyboard. This means that the
screen is blank while computations are being
done, but the computer works about 4 times
faster.

100 LET X=0
110 GOSUB- 500

120 CLS

130 FAST

140 LET X=100

150 GOSUB 500

160 STOP

500 FOR I=X TO X+40
510 PRINT I,

520 NEXT 1

530 RETURN

Note the difference between the times ir takes to
compute the numbers to be printed in fast and
slow modes.

199

FOR...TO

A FOR statement must be used in conjunction with
a NEXT statement later in the program.

100 FOR X=1 TO 10
110 PRINT X
120 NEXT X

In this program, the X is called the 'control .
variable'. If X had been previously used in the
program, the previous X would.be deleted.

When line 100 is executed, X is set to 1 (the
first number specified). When time the program
comes to the NEXT statement, it looks for a
contrel variable called X. This variable is
incremented by 1, and then tested to see if it is
smaller then the limit (the second number
specified). If it is larger than the limit, the
program continues at the statement after the NEXT
statement. Otherwise it jumps to the statement
after the FOR statement.

An equivalent way of writing this program would
be:— :

100 LET X=1

110 PRINT X

120 LET X=X+1

130 IF X<€=10 THEN GOTO 110

You can see from the program that the control
variable may be used within the loop in the same
way that any other variable.

If the program romes to a NEXT statement, and the

variable name is wrong, there are two errors you
may get. Error 1 means that the variable with the

200

name you gave is not a control variable; it is an
ordinary {simple) variable., Error ? means that
there is no variable with the name you gave,

i

2401

FOR..TO.. STEP

A FOR statement must be used in conjunction with
a NEXT statement later in the program.

100 FOR X=10 TQ 1 STEP -1
110 PRINT X
120 NEXT X

In this program, the X is called the 'conrrol
variable®'. If X had been previously used in the
program, the previous X would be deleted.

When line 100 is executed, X is set to 10 (the
first number specified). When time the program
comes to the-NEXT statement, it looks for a
control variable called X. This variable is
incremented by the value of step (in this case
—-1), and then tested to see if it is between the
start value and the limit (the second number
specified). If it is not in this range, the
program continues at the statement afrer the NEXT
statement. Otherwise it jumps to the statement
after the FOR statement.

If there is no step value, the computer assumes
1.

An equivalent way of writing this program would
be:-

100 LET X=10

110 PRINT X

120 LET X=X-1

130 IF X>=1 THEN GOTO 110

You can see from the program that the control
variable may be used within the loop in the same
way that any other variable.

26?2

It the program comes to a NEXT statement, and the
variable name is wrong, there are two errors you
may get, Error 1 means that the wvariable with the
name you gave is not a control variable; it is an
ordinary (simple) variable. Error 2 means that
there is no variable with the name you gave.

203

'GOSUB

A GOSUB statement puts the line number of the
next line in the program on the 'COSUB stack!',
then jumps to the line specified in the
Statement. When a RETURN statement is
encountered, the last line number to be put on
the stack is taken off, and the computer executres
that line,

example program
160 INPUT N
110 GOSUB 1000
120 PRINT H

1000 IF N<O THEN RETURN ,
1010 LET N=50QR N
1020 RETURN

This program will calculate the square root of
the number that is input. If the number is lass
than zero, the program will not change the value
of N,

There are two RETURN statements in the program,
but only one of them will be encountered.

Another way of writing this would be:—
100 INPUT N

110 GOTO 1000

120 PRINT N

1000 IF N{O THEN GOTO 120
1010 LET N=SQR N
1020 GOTO 120

The advantage of using a subroutine is that it
can be used in several places in tha program, and

204

it will always return to the line after the
calling statement,

A subroutine can be entered at any point. For
example, if you didn't want to test that N was
greater than zero, you could put:-

110 GOSUB 1010

The line number can be a variable or mathematical
expression too.

example program
100 INPUT N

110 GDSUB 1000%N
120 GOTD 100

:‘-

1000 PRINT “SUBROUTINE 1'¢
101C RETURN

2000 PRINT ''SUBROUTINE 2"
2010 RETURN

3000 PRINT "SUBROUTINE 3
3010 RETURN

This program will goto subroutine l, 2 or 3,
depending on your input. If you input a number
greater than 3, it will stop with report code 0,

because there is no line number greater than
3010'

If your program tries ko execute a RETURN
Statement without having executed a COSUB
Statement, there will be ne line number on the
stack for it to jump to. This will cause an
error, and the computer will stop execution with
report code 7.

205

GOTO

The GOTQ statement causes the Program execution
to jump to the line number specified in the
Statement. This number can also be given by a
variable or matematical expression. 1f the line
does not exist, it will start execution at the
next line with a greater line number than the one
given. If the line number given is greater than
any number in the program, execution will stop,
Wwith report code 0.

example program
100 INPUT N

110 GOTO N

120 PRINT 120"
130 PRINT 130"
150 PRINT 140w
160 GOTO 100

Try entering a few different numbers and see what
happens,

If your number is less than 100, the computer
will wait for another number to be input. IF it
Is larger than 160, execution will stop.

L€ you inpat 1910, you will keep the computer busy
until you press the break key. That is called an
Infinite loop, because the program would just
keep GOing TO 110 forever.

206

GRAPHIC

By typing GRAPHIC (shifted 9), you enter graphics
mode, and a lot of different characters are
available to you. You will notice thar the CUrsor
changes to an inverse G. Press GRAPHIC again, and
you will be back inte letter moda.

In graphics mode, all the numbers and letters are
printed inverse (white on black), Symbols like
ty= etc are also printed inverse by pressing the
appropriate key with the shifr key held down.
Sonme keys have special graphics characters
printed in the bottom left corner. These are
obtained in graphics mode by pressing the shifted
key. :

example program

100 PRINT ""PFR" (graphics E;E,5)
110 PRINT ¢ (graphics R,R,1)
126 PRINT "[(M" .(graphics 8,space)
130 PRINT "@MB}" (graphics Q,8,4)

That will draw a picture of a man,

07

IF...THEN...

The 1IF starement enables the computer to make
decisions. The format of rthe statement ig:-—

IF condition THEN Statement

If the condition isg true {or ﬁnn—zern) then the
statement following the THEN will be executed,
This statement can be anything at all; even
another IF statement, '

example program

100 INPUT AGE

110 IF AGE>21 THEN PRINT "YOU ARE AN ADULT™
120 PRINT “GOOD BYE"

The computer regards "true" and "non~zero" as the
same thing. When it performs a comparison (like
AGE>21) the ZXB1 returns either a 1 (if the
comparison holds) or a 0O (if the comparison does
not hold). For this recason, there is no need to
perform a comparison to see if a variable is
zero,

IF R<>0 THEN statement
is exactly the same as

IF N THEN statement.

208

INKEY$

The INKEY$ function reads the keyboard to see if
any key is being pressed. The result is the
character being pressed if there is one key being
pressed, otherwise it is the empty string (v),
If there is no key being pressed, the conmputer
does not wait; it keeps going regardless.

example program

100 LET T=0

110 LET A$=INKEY$

120 IF A$¢>"" THEN GOTO 200
130 LET T=T+1

140 GOTO 110

200 SCROLL

210 PRINT AT 20,0;"TIMEA";T,A$
220 GOTO 100

While you do not press any key, the computer is
still busy; it is counting the time until YO
press the next key.

209

INPUT

The INPUT command causes the program to halt
execution until you inpuft the data on the
keyboard. When you finish the input, press
NEWLINE and rhe program will continue., If ¥You are
in fast mode, the display file will appear on the
screen while waiting for input.

1. INPUT X
The program waits for a numerie input. You can

Input a number (such as 12) followed by a
NEWLINE. Then 12 will be assigned to X.

If you input a letter (like Y)Y, the computer will
look for a variable Y. If there is one, X will be
assigned the value of X. If there is not, you
will ger, error 2. That is, an undefined variable
has been used.

If the first thing you input is STOP, the program
will stop with report D.

example program

100 LET X=30

110 INPUT Y

120 PRINT 'ty EQUALSAM; Y
130 RUN

Try a few different inputs. For example, try X (a
defined variable), and another letter that is not
& variable name.

2. INPUT X$
This enables you to input a string variable to
the program. When it is waiting for a string

210

Input, the computer will put a ' " " gt the
beginning of the string. Alsc, STOP will not stop
the program as it did In the case of numeric
input.

example program
100 FOR I=1 TOD 20
110 INPUT X3

120 PRINT X$

130 NEXT 1

211

INT

The INTeger function returns the integer part of

the number that is its argument, It always rounds
down. For example INT 2.9 = 2 , even though 3 is

closer to 2.9.
example program

100 FOR 1 = 1 TO 20

110 LET X=RND*100 :
120 PRINT "INT (";X;") = ";INT X

130 NEXT 1

212

This function must be given a string as its
argumant. It returns the length of the string.

For example;-

The length of '"" ' is 0, The length of
"“"STRING" is 6.

example program

100 PRINT "ENTER A WORD™
110 INPUT A$

120 PRINT A$

130 PRINT "THAT WORD HASA';LEN A$; "ACHARACTERS"

LET

The LET statement assigns a value to a variable,
It operates in slightly differant ways for
numeric and string variables,

1, LET X=Y

Y can be a number, a variable, or an expression
that evaluates to a number, involving both
numbers and variables, A variable cannot be used
in the program until it has been assigned a value
in either a LET or an INPUT statement.

example program

100 LET X=2

110 LET Y=X .

120 LET 2=Y+X _

130 PRINT X,Y,Z
140 LET 2=2*%(Z+X)+Y
150 PRINT 2z

In line 140, Z is used in a statement assigning
something to itself. That is alright, as long as
Z has been defined previously,

2a. LET Z$=X3$

After the assipnment, Z$ will be the same length
as X$. X$ may be of the form A$+B$. That will
cause B$ to be added to the end of A}
(concatenated).

example program

100 LET Z$=""ABCDEF"
110 LET Y3$=2z3%

120 PRINT 2$,Y$

130 LET Y$="DEF"

214

140 PRINT Y$
150 LET X$=Z$+Y$
160 PRINT X$§ ~ -~ =

Note that in line 130, Y$ becomes 3 characters
long, even though it was 6 characters long
previcusly.

2b. LET A$(1 TO 3)=B$

In this case, if B$ is longer than 3 characters,
only the first 3 will be used (truncation}. If B
is less than 3 characters long, spaces will be
put in the remaining places.

example program

100 LET X$="11234567890"

110 LET X$(1 TO 3)-"ABCDEF"
120 PRINT X3

140 LET X$(4 TO 9)=trxyzn
150 PRINT X§

2c. LET X§$(3)=2Z%

Now consider a dimensioned string array. Suppose
X3 is a 3 by 5 array. Then if Z$ is less than 5
characters, X$(3) will be padded out with spaces
to make 5 characters. If Z$ is more than 5
cahracters, it will be Eruncated to fit into

X$(3)

example program

100 DIM X$(3,3)

110 LET X$(1)="JANUARY"
120 LET X$(2)="MAY"

130 LET X$(3)=X$(1)

140 FOR 1=1 TO 23

150 PRINT X$(I1);u.
160 NEXT 1

215

LIST

The LIST command sends a listing of the
program to the television screen,
starting at the line number you
specify,

LIST line number

The line number is optional. 1f you
don't give a line number, the listing
will begin at the beginning of the
program.

If your program is toe long for the
screen, it will fit as much as possible
on the screen, then stop with repart
code 4 or 5.

After a list command, the current line
is the line specified in the command.

Try typing in a few program lines and
experiment with the LIST command.

218

LLIST

"The LLIST command sends a listing of the program
to the printer, starting at the line number you
specify.

LLIST line number

The line number is optional. If you don't give g
line number, the listing will begin at the
beginning of the program.

After a LLIST command, the current line is the
line specified in the command.

If you haven'r ;3 printer attatched, this command
should do nething. However, the computer can gek
stuck. If this‘happens, pressing the BREAK key
will fix things. You can stop the printer at
-anytime with the BREAK key. It will give report
code D,

217

LOAD

The LOAD command is used to load programs that
have been saved on cassette back into the
computer, T ER

If you know the name of the program, you can type

LOAD "name"

and computer will look for a program called
""name" on the tape.

If you can't remember what the name of the
program, you can type

LO&D [RLN]

and the computer will load the next program on
the tape into Memory.

Next, start the cassette playing, and press
NEWLINE. (Make sure the ear socket of the
computer is connected to the ear socket of the
cassette first!)

While the program is loading you will be able to
see on the sCreemn CLwo patterns: one corresponding
to the silence between programs, and the other
Corresponding to the program. (If you listen to
the tape, you will be able to hear the difference
too).

After a while rthe computer should stop, and
report 0/0. If it doesn'r, press the BREAK key.
The most likely thing to have gone wrong is that
the volume is wrong, so try again at a different
volume level. It is more sensitive to the volume
it you haven't given the name of the program.

218

The LN function returns the natural logarithm of

the number you give. That is the logarithm to the
base e. :

IE LN X = A, then e**p = X,

Since e is poitive (approximately 2.7) X can
never be negative. If you input a negative
number, then you will get an error report, A.

example program

100 PRINT AT 6,0;'"3"

110 PRINT AT 1t,0;02n

120 PRINT AT 16,0;v1n

136 PRINT AT 21,10;''tQ"
140 PRINT AT 21,20:"20"
150 PRINT AT 21,30;"30%
160 FOR X=.5 TO 30 STEP .5
170 PLOT X*2,INT{LN X *10)
180 NEXT X

This will plot the LN function.

219

LPRINT

The LPRINT statement is like a PRINT statement,
but the printer is used instead of the television
screen. You can use all the special commands
{commas, semicolons, and tabs) just as in the
PRINT statement. For a full explanation of these,
see PRINT. ;

The text is not printed immediately. It is
printed when a new line of text is started. So &
line will be printed if it becomes full, or if
the statement doesn't end with a comma or
semicolon. If a TAB or comma needs a new line,
the old line will be sent to the printer.

The way LPRINT works is to store whatever is to
be printed in a buffer. The buffer is one line
long, so whenever the new items won't fit in the
buffer, the buffer {s emptied by sending it to
the printer.

The BREAK key will stop the LPRINT statement., If
you haven't a printer attatched, LPRINT should
have no effect, bhut if the computer gets stuck,
the BREAK key will remedy this,

example program

100 LPRINT " , 1121 it 3u IRIFAL

110 LPRINT

120 LPRINT "t4'; 50, ng,

130 PRINT "THAT LINE WILL NOT BE PRINTED YET"
140 PAUSE 100

150 PRINT "IT WILL BE PRINTED HOW!

220

NEW

This command clears all the program variables,
and the program out of memory. You use this
command just before entering a new program to get
vrid of the old program.

To see what it does, Eype in a few lines of code,
and LIST them to make sure they are there. Now
Lype the command NEW. If you try to list the
program now, you will find nothing there.

721

NEXT

A NEXT statement must be used in conjunction with
a FOR statement before it in the program.

100 FOR X=10 TO 1 STEP -1
110 PRINT X
120 NEXT X

In this program, the ¥ is called the 'control
variable'. If X had been previously used in the
program, the previous X would be deleted.

When line 100 is exccuted, X is set to 10 (the
first number specified). When time the program
comes to the NEXT statement, it loocks for a
control variable called X. This variable is
incremented by the value of step (in this case
-1), and then tested to see if it is between the
Start value and the limit (the second number
specified). If it is not in this range, the
Program continues at the statement after the NEXT
statement. Otherwise it jumps to the statrement
after the FOR statement.,

An equivalent way of writing this program would
be s~

100 LET X=10

110 PRINT X

120 LET X=X-1

130 IF E}:l THEN GOTQ 110

You can see from the program that the control
variable may be used within the loop in the same

way that any other variabie,

If the program comes to g NEXT statement, and the
variable name is wrong, there are two errors you

222

may get. Error 1 means that the variable with the
name you gave is not a control variable; it is an
ordinary (simple) variable. Error 2 means that

there is no variable with the name you gave,

223

NOT

NOT can be used in two different ways:

1. It can be used in the condition of an 1F..THEN
statement, like this:-

——

IF NOT A$=B$ THEN PRINT "NOT THE SAME"
This does exactly the same thing as
IF A$<{>B$ THEN PRINT "NOT THE SAME"

If the condition after the NOT is true, then the
message won't be printed. The message will only
be printed if the condition is false.

example program

100 INPUT A$

110 INPUT B$

120 IF "NOT A$=B$ THEN GOTG 150
130 PRINT “THEY ARE THE SAME"
140 GOTQ 100

150 PRINT "NOT THE SAME"

160° GOTO 100

2. NOT can be used as a numeric operator.
LET X=NOT Y
is equivalent to the following

LET X=0
IF ¥=0 THEN LET X=1

If ¥ is 0, then X is assigned 1, otherwise, X is

224

assigned 0. NOT treats Y as a logical value -
TRUE {(non-zero} or FALSE (zerc) - and X is
assigned the opposite logical value,

225

OR

There aré¢ two ways of using OR:-

1. It can be used in the condition of an
IF...THEN statement. For instance,

IF (it is raining) OR {(there are dark
clouds)
THEN (take umbrella).

There are three cases when you should take your
umbrella:-

1- if it is raining.
2— if there are dark clouds
3~ if it is raining and there are dark clouds

That is the way OR works,

The only time that you need not take ake your
umbrella is if both of the conditions are not
Lrue. .

example program

100 INPUT X

110 IF X<0 OR X>255 THEN GOTO 140

120 PRINT X,CHR$(X)

130 GOTO 100

140 PRINT X3' IS5 OUTSIDE THE RANGE'

150 GOTO 100

In this example OR is used to check that X lies

within the range 0 to 255,

2. OR can also be used a numeric operator.

226

LET X=2 0OR A

If A is 0, then X will be assigned the value 2.
Otherwise X will be assigned 1. This is
equivalent to

LET X=1
IF A=0 THEN LET X=2

The second number is treated as a logical value
by the OR. It has either a TRUE (non-zero)} or
FALSE (zero} wvalue.

example program
100 INPUT A
110 LET X=2 OR A
1208 PRINT X
130 GOTO 100

You can try inputing different values of A and
check how the OR works.

227

'PAUSE

The PAUSE statement stops the program for the
number of frames specified. {(One frame is 1750
second). If you are in fast mode, the display
file will be displayed during this time. If a key
1s pressed, the PAUSE will be cut short, and the
program continue immediately.

For example, a PAUSE 50 statement will make the
program wait for 1 second before continuing with
the next statement.

If the number is more than 32767, it effectively
means "PAUSE until a key is pressed”. If you
don't press a key, the program will wait Fforever!

example program

100 PRINT "HOW LONG DO YOU WANT TO PAUSE (IN
SECONDS)} 2?1

ti0 INPUT N . . _

120 PAUSE N*50

130 PRINT "THAT WAS '";N;" SECONDS"

The next program will show how the 'PAUSE
forever' works.

100 PRINT “PRESS A KEY WHEN YOu ARE READY"

110 PAUSE 35000
120 PRINT "HELLO. SO YOU ARE READY NOwWn»

228

" The PEEK function returns what is stored at a
particular address in memory. You can PEEK at

addresses in both the ROM (Read Only Memory) and
the RAM (Random Access Memory).

The ROM is the list of Instructions that enable
the ZX81 to understand BASIC. They are written in
machine code, so you will not ba able to
understand the instructions. Buf ¥ou can have a
look ar them if you like,

example program
100 FOR X-=0 TO 20
110 PRINT PEEK X
120 NEXT X

That will PRINT the contents of the firse 21
locations (or bytes) in the ROM.

The RAM is the part of memory that the program
and all the program variables are stored in. The
addresses are from 16384 to 17407. You can store
values directly in the RAM using POKE and
retrieve the value with PFFK.

example program

100 FOR X=17300 TG 17320
110 INPUT ¥ = 7
120 POKE X,Y

130 NEXT X

140 FOR X=17300 TO 17320
150 PRINT PEEK X

160 NEXT X

When typing in numbers, make sure they are
between 0 and 255, (See POKE).

229

PI(TT)

The value of this function is 3.141592653. Ten
digits of it are stored in the computer, but only
8 will be displayed. It requires no argumenls,

example program
100 INFUT D
110 PRINT D*PI/180

This program will convert the number of degrees
you input to radianms. '

Make sure you usc the key marked T ; 1f you type

in PI, the computer will think you mean a
variable, and tell you it is undefined.

230

PLOT

The ZX81 divides up the screen in two ways. There
are 21 by 31 character positions that you can
PRINT to. Each of these poaitions Is also divided
into four 'pixels'. You can black in any of these
pixels with the PLOT statement.

The pixels are numbered from 0,0 at the bottom
left hand corner to 63,43 at the top right hand
torner. Note that this numbering is different to
the numbering of the PRINT postions, which start
from 0,0 in the top left hand corner.

Check what happens when you print to a position,
and then PLOT one of the four pixels 1in that
pesition with this program.

100 PRINT AT 10,0;"0123"
110 PAUSE 50
120 PLOT 0,23

All of the character disappears, at that
position, but neighbouring print positions are

not affected.

You can use the UNPLOT statement to change a
pixel from black to white again.

231

POKE

The POKE command stores the number you give it at
a particular address.

POKE 17300,100
will store 100 at location 17300..

There are two types of memory In the ZX81:- RAM
(Random Access Memory) and ROM (Read Only
Memory). What is in the ROM is unalterable.

The addresses of the RAM are 16384 to 17407.
However you cannot POXE indiscriminantly. The
computer uses some of these addresses as a
'working pad', to keep track of the state of the
system. If you POKE some of these, the computer
may crash.

example program

100 FOR X=17300 TO 17320
110 INPUT Y

120 POKE X,Y

130 NEXT X

140 FOR X=17300 TO 17320
150 PRINT PEEK X

160 NEXT X

You can input any number from —255 to 255, buc 1f
the number is negative, the computer will add 266
to it and store that number. A number cutside
this range will cause error B.

You will not get an error if you try to POKE into

the ROM. It will just have no effect. A number
outside the range © to 65535 will cause error B.

232

'PRINT

The PRINT command is followed by a list of items
to be written to the display file. The items in
the list are separated by commas or semicolons.
If you are in slow mode, the items will appear on
the television screen immediataly, otherwise they
will appear next time the display file is
written. (See FAST and SLOW).

The items will printed at the current print
position. This is a location in the display file,.
The memory address of this locatrion is stored in
a4 specially reserved location in memory.,

The items in the list can bhe:-

1. A numerical expression.

This will be evaluated, and the answer printed.
If the number is negative, a minus sign (-)
will precede the digits. :

1f the number is greater than 10*%*13, or less
than —10%%13, it will ke written in scientific
notation. It will alse be in scientific notation
if it is between -10%%_5 and 10%*_.5_, For example,
2 % 10%*%14 would be written 2Es14,

The number will be printed without trailing zeros
after the decimal point. For example 2.0000 will
be writcen 2.

2. A string expression.

If there are any key word tokens in the string,
they will be expanded out in full, including
preceding and trailing blanks.

233

The ' token (shifted Q) will be written as ",

Any unprintable characters will be printed ' ?
'+ 1f string includes any of the character codes
that are unused, they will also print as ' ? ',

If the string does not fit on omne line, it will
be continued on the next line.

3 TAB x

This moves the print position to column x, 1f »
is less than 32. If it is5 more than 32, then a
multiple of 32 is subtracted from x antil it is
less than 32. x must be between 0 and 255, or
program execution will stop, and you will get
error B,

The effect of this is to print the next item at
X, as long as TAB is followed by a semicolon.

—_

4. Nothing
This is used when all you want to do is move the
print position. '

A SEMICOLON leaves the print postion where it
is after printing the item, 50 the next item will
be printed immediately after tt,

A COMMA moves the print position the minimum _
number of columns to leave it in column O .or L6
So if the last item finished at column 18, and
was followed by a comma, the next item will begin
at column 0 of the next lime. If the item
firished at column 15, so that the print position
is column 16, a new line would be started. The
comma moves the print position at least 1 places

1f the PRINT starement doesn't end with a comma.

234

©r semicolan, the print position will be left at
column G of the next line. So the effect of the
Statement FRTNT with no items is to move the
print position down one line.

example program

100
110
120
130
140
150
160
170
190

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

"A AND B SEPARATED BY A SEMICOLON'
I‘I‘A" ; 'IIBI‘I

'"A AND B SEPARATED BY & COMMA™
AV R

"TESTING THE TAB';

TAB 20;"TAR 20"

TAB 100;"TAB 100"

EXP 50,EXP —50

235

-PRINT AT

The 2X81 divides the screen into 21 by 34
squares, any of which can contain s character,
You can specify any one of these positions in a
PRINT AT statement, and the FRINT items will be
printed, starting at that position.

The PRINT irems are the same as an ordinary PRINT
Statement, and semi colons and commas have the
same effect too. (see PRINT).

example program.
LOO FOR Y=0 TO 21
110 PRINT AT VY,V;Y
120 NEXT>Y

The position specified must be on the screen, or
you will get error B. That is, the First number
must be between O and 21, and the second must be
between 0 and 31,

The two numbers speciying the position are
separated by a comma. These must be followed by a
semi colon.

236

‘RAND

The RAND command is used in conjunction with the
RND" function. It affects the 'randomness® of RND.

RED is not really a random number generator,; but
It is pretty good. It is called a ‘pseudo-random'’
function. '

RAND x

X 18 a number between 0 and 653535, Except for 0,
by using the same Xy you can force the random
functien to start at the same place each time.
That means that RND will glve the same sequence
of numbers each time. So much for random numbers!

example program
100 FOR N=1 TO 5
110 FOR I=1 TO 3
120 RAND N

130 FOR J=1 TO 5
140 PRINT RND,
150 NEXT J

160 PRINT

170 PRINT e =
180 NEXT 1

190 PAUSE 100
200 CLS

210 NEXT N

You can see that you get the same sequence of
numbers each time,

RAND © or RAND (they mean the same thing) work
differently. It causes RND to act more randomly
than using a number. Tt will cause the RND

237

function to start at a different place each rime,
depending on the number of frames that have been

displayed on the television soc far. That comes
closer to being random than before,

"100 FOR I=1 TO 3
110 RAND .

120 FOR J=1 TQ 5
130 PRINT END,

140 NEXT J
150 PRINT
160 PRINT
170 'NEXT 1

238

REM

The REM statement can be followed by any sequence
of characters except newline. It will have no
effect on the running of your program, but will
appear in the listing,

This can be useful when you are saving and
loading programs on tape so that you remember
what name you gave the program. You could put
details of how the program works into a REM
statement, so fthat when you come back to it some
time later, you will be able to understand what
the program does.

example program

100 REM PROGRAM TO PRINT THE NUMBERS FROM 1 TO 10
110 FOR X=1 TO 10

120 PRINT X

130 NEXT X

239

RETURN

A RETURN statement can only be executed if there
has already been a corresponding GOSUB statement
executed. Otherwise the computer will stop with
report code 7.

A GOSUB statement puts the line number of the
next line in the program on the 'GOSUB stack!',
then jumpe to the line specified in the
statement. When a RETURN statement is
encountered, the last line number to be put on
the stack is taken off, and the computer executes
that line,

example program
160 INPUT N
110 GCGSUB 1000
120 PRINT N

1000 IF B0 THEN RETURN
1010 LET N=SQR N
1020 RETURN

This program will calculate the square root of
the number that is input. If the number is less

than zero, the program will not change the value
of N.

There are two RETURN scatements in the program,
but only one of them will be encountered.

Another way of writing this would be:-
100 INPUT N

110 GOTO 1000

120 PRINT N

1000 IF N<O THEN GOTO 120

240

1010 LET N=SQR N
1020 GOTO 120

The advantage of using a subroutine is that it
can be used in several places in tha program, and
it will always return to the line after the
calling statement.

251

RND

The RED function returns a psuedo-random number
between O and 1. It is 'psuedo-random’, because
it generates a definite sequence of numbers.
Using the RAND statement, you can force the
RND to use the same sequence of numbers again and
again. (see RAND)

You can use the function as if it really were
random though. The numbers appear to be random.

example program owm o a
160 LET N=INT(RND*6+1)
110 LET M=INT (RND*64+1)
120 PRINT M;"'an'';N

130 PRINT "TOTAL=p';MsN

This program will simulate throwing two dice, and
print the rotal. :

247

RUN

The RUN statement deletes the variables left in
memory by the previous program, and starts the
currcnt program.

You can follow RUN by a line number. This will
cause the program to start execution at the line
you specify. If you don't say which line to start
at, the computer will assume that you mean the
f1rst line.

RUN does not clear the screen. You can use it in
4 program to start the program again; for
instance at the end of a game Lo start the game
again.

example program
100 PRINT "LINE 1/
110 RUN 1.50

150 PRINT "LINE 2"
160 RUN 100

You type RUN to start the program. Then the
computer will just keep alternately printing linec
1l and 1ine 2. If instead you type RUN 150, it
will start by printing line 2.

—_

2543

The SAVE statement is used tao record the program

and its variables on cassette. You must give the
program a name before saving it,

The procedure to save a Program on cassette is as
follows:—)

l. Type SAVE "PROGRAM" y but don't press NEWLINE
yet. The word between the quotes will be the name
of the program when it is on cassefte.

2. Connect the microphone socket of the cassette
player to the microphone socket on the computer.
Put the cassette in, positioned at a blank part

of the tape. Start the cassette player recording,

3+ Press NEWLINE. For a few seconds, the
television screen will be grey. This is a lead in
to the preogram. Then the television screen will
be covered with black and white stripes. This is
the program. After a while, the computer will
report back with 0/0. It has finished now, and
your program is saved on cassette. If you rewind
the tape a little way, and play it back, you will
hear a high pitched buzz, followed by a softer -
buzz. The loud buzz is the recording of your
program, and the soft buzz is the lLead in.

To load the program back into the computer, ¥you

use the LOAD statement. For an explanation of how
to use this statement, look under LOAD.

244

SCROLL

The SCROLL statement scrolls the display file up
cne line. That is, every line is moved up one
line. The first line is lost, and the new last
line is completely empty.

The print position is moved to the beginning of
the last line.(The print position is where the
next item will be printed.)

example program
100 INPUT A%
110 PRINT a$
120 SCROLL

130 GOTO 100

245

SGN

The SGN function returns 1 if the number is

positive, —1 if the number is negative, and 0 if
the number is O.

That is
IF X<0 THEN LET SCN=-1
IF X>0 THEN LET SCH=1
IF X=0 THEN LET SGN=0

example program ' %
100 INPUT X :

110 PRINT AT 20,0;"SGN ";X;" IS "i8GN X

120 SCROLL

130 COTO toO

246

SIN

If you give the SIN function an angle (in
radians} it will ecalculate the rario between Lthe
hypotenuse (H) and the side opposite the angle
(Y) for a right angle triangle.

SIN 4 = (Y/H)

The number returned will be between -1 and 1,
because the hypotenuse will be at least as long
as the other side. :

This program will plot the function,
100 PRINT AT 6,0;1v

110 PRINT AT 11,0;"o"

120 PRINT AT 16,0;v-1"

130 PRINT AT 21,1;"o"

140 PRINT AT 21,11;m2v

150 PRINT AT 21,21;v4v

160 PRINT AT 21,31;uwén

170 FOR X = O TO 6 STEP .1

180 PLOT X*1042,INT{SIN(X)10+20)
190 NEXT X

Note that the angle is in radians, not degrees. A
radian is approximately 57 degrees. The precise
conversion is

180 degrees = PI radians.

247

SLOW

Your ZX81 has two speeds of operation - fast and
slow. When first switched on, the computer will
be in slow mode. The FAST command changes it into
fast mode. The SLOW command changes it back to
slow mode

In slow mode, the display file is constantly
being written to the screen. Computations are
done during the spaces between writing the
display file. ;

In fast mode, the computer forgets about the
screen except when it has nothing else to doj;
that is, during a PAUSE or while walting for
INPUT data from the keyboard. This means that rhe
Screen is blank while computations are being
done, but the computer works about 4 times
faster,

100 LET X=0
110 GOSUB 500
120 ©Ls

130 FAST

140 LET X=100
150 GOSUB 500
160 SLOW

170 GOSUB 500
180 STOP

500 FOR I=X TO X+40
510 PRINT 1I,
520 NEXT 1

530 RETURN

Note the difference between the time it takes to
- compute the numbers to be printed in fast and
slow modcs,

248

SQR

The SQR function, returns the squareroot of rthe
number you give it. Taking the squareroot of a
number is the opposite of squaring it
(multiplying it by itself).

To work out a squareroot, for instance SQR G,
think of a number which, multiplied by itself
gives 9. The answer of course is 3,

SQR (A*A) = &

You cannot have a squareroot of a negative
number, since 1f you multiply a negative number
by itself, you still get a positive number, If
you give the SQR function a negative number, you
will get error B.

example preogram

100 PRINT AT 21,21;"40n
110 PRINT AT 21,11;"20"
126 PRINT AT 21,1:vQ"
130 PRINT AT 15,0520
140 PRINT AT 10,0;%4n
150 PRINT AT 5,0;"6"

160 FOR Y=0 TO 60

170 PLOT Y+2,(SQR Y)*542
180 NEXT Y

This program will plot the SQR function on the
screen. There are really 2 answers for every
number you give the SQR function; one postitive
and the other negative. That is because 3*3 is 9,
and so is -3%-3. The ZX81 will only give the
positive answer.

249

The program will STOP executing, and report code

9 will be printed. If you then rype CONT, the
program will begin again at the next line.

example program

100 PRINT "TO STOP, TYPE §"

110 INPUT A%

120 IF A$<(>"S" THEN GOTO 160

130 STOP :

140 PRINT "THE PROGRAM STARTED AGAIN AT . LINE 140"
150 GOTO 100

160 PRINT "THE PROGRAM DID NOT STQPY

170 GOTO 100

This program will enable you to see what happens
when you STOP, and then press CONT,

250

'STR$

The STR$ function is given a number and it
returns thestring of characters that would be
displayed if the number was a PRINT item. For
instance STR$ -4 = g,

That means that the two statements
PRINT -4

and
PRINT STR$ -4

will do exactly the same thing.

example program

100 LET Ag=mn

110 INPUT X

120 LET A$=A$+STRS X
130 SCROLL

140 PRINT A$

150 GOTO 110

A$ will be a string containing all the numbers
you input one after the other.

2o

"TAN

If you give the TAN function an angle (in
radians) it will calculate the ratio between the
side adjacent to the angle (X) and the opposite
side (Y) for a right angle triangle.

TAN A& = (Y/X)

This program will plot the function.
100 PRINT AT 6,0;"1" -
110 PRINT AT 11,0;"O"

120 PRINT AT 16,03 -1V

130 PRINT AT 21,1;"o"

140 PRINT AT 21,11;"2%

150 FRINT AT 21,21;m4n

160 PRINT AT 21,31;"6"

170 FOR X = O TO 6 STEP .1
180 IF ABS{TAN X)<2 THEN PLOT
X510+2, INT(COS{(X)*10+20)

190 NEXT X

The resriction is necessary in line 180 because
TAN X becomes infinite when X is an odd multiple
of PI/f2.

Note that the angle is in radians, not degrees., A
radian is approximately 57 degrees. The precise

conversion is

180 degrees = PI radians.

252

UNPLOT

The

UNPLOT stratement is_ﬁsed after a PLOT

statement to blank out a '"pixel' after the PLOT
function has blacked it in.

The

screen is divided into 04 by 44 pixels,

numbered from 0,0 in the bottom left hand corner
to 63,43 in the top right hand corner. There are
4 pixels for every character position.

example program

100
110
120
130
140
150

Try

INPUT Y
INPUT X
FLOT Y,X
PAUSE 50
UNPLOT Y,X
GOTO 100

inputting numbers for which there is no

screen position, and see what happens. You should

get

an error message, B.

293

USR

This function is used to call machine code
subroutines. You give the starting address of the
subroutine as a parameter. The value returned is
whatever was in the BC register pair when the
subroutine completed.

To use this function, you will first need ro
enter a machine code routine. Chapter 20 shows

you how to do this.

1f the address you give is larger than 653535 or
less than 0, you will get error B,

254

VAL

The VAL function is given a string as its
argument, and returns the VALue of the string
when evaluated as a numeric expression. For
instance VAL "445" = 9,

The string to be evaluated may contain variables,
but there are more rules about its use then:-

1. Tf you.are using VAL in a larger arithmetic
expression, then it must be the first item. For
instance, 7 — VAL"X" must be rewritten, - VAL
"7

2. If VAL is used as a co-ordinate in a PRINT AT,
PLOT or UNPLOT statement, it must be the firsr

co~ordinate, For instance, you cannot have PRINT
AT 4,VAL "yn,

Note that these rules apply only if there are
variables in the VAL argument.

example program
100 INPUT A%

110 PRINT "VAL ";A$;" IS ";VAL A$
120 GOTO 100

You can type in numeric expessions, like & + SQR
10. Try typing this, before you RUN the program.

LET X=5 (without a line number).
GDTO 100

Now input X, and the number 5 will be printed.
You can also use X in expressions now.

255

