sl Working Sinclair QL

Javid Lawrence shows how the full powerof the QLcanbe
released in SuperBASIC. The QL introduces anew ¥ !
generation of high-powered home computers. With itis a

ieed for a new approach to programming.-

The anfaas covered by the programs in this book include : A ||b’ary Of praCtlcal
~home finance and tax, information storage and retrieval, g ppedde

ousehold and diary management, creat?ve graphics and s SUbrOUtmes and programs
ffactive display techniques, music, education and a &3 . R e T !

collection of smaller programs which all perform useful TR

functions but mostly show off the QL’s immense abilities.

_ All'the programs in this book are clearly explained and
written in easily identifiable modules. The same techniques

* can be copied into your own programs. We also use the

~ unique Sunshine Checksum Generator. This analyses your

- programs and ensures that errors can be avoided in entering
“them. This can save you hours of frustration.

David Lawrence is one of the most successful and popular
-computer authors. His books, for a wide range of home
" micros; have been best-sellers all over the world. He now
~ divides his time between writing for micro owners and
* broadcasting. He is a regular contributor to Popular
Computing Weekly.

6B £ NeT +00L.95 °
ISBN O0-94b408-Y4b-7

‘m ’l |||1 il
9 780946408467 "1 T

- 1SBN.0946408 46 7

AT

2634-422-9

The Working Sinclair QL

A library of practical
subroutines and programs

David Lawrence

3
o

First published 1984 by:

Sunshine Books (an imprint of Scot Press Ltd.)
12—13 Little Newport Street

London WC2R 3LD

Copyright © David Lawrence, 1984

@ Sinclair QL, QL Microdrive and SuperBASIC are Trade Marks of
Sinclair Research Ltd,

© The contents of the QL are the copyright of Sinclair Research Ltd.

@ Quill, Archive, Abacus and Easel are Trade Marks of Psion Software

Ltd.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording and/or otherwise, without
the prior written permission of the Publishers.

British Library Cataloguing in Publication Data
Lawrence, David
The working Sinclair QL.
1. Sinclair QL (Computer) — Programming
2. Super BASIC (Computer program language)
1. Title
001.64'24 QA76.8.8625

ISBN 0-946408—46—7

Cover design by Grad Graphic Design Ltd.

Crvrar Mactratinn o Qinact ITnahaec

CONTENTS

Program Notes
Introduction

1 Experimentswith Time
Anaclock
Clock
Timer
Event

2 SonetLumiére
Designer
3-D Graph
Screen
Characlers
Sound Demo
Music

Seriouser and Seriouser
Unifile
Nnumber
MultiQ

(U8]

4 Money Matters
Banker
Accountant
Budget

APPENDIX: Instructions for Use of Checksum

Generator Tables

Page
vii

iX

145
145
158
171

193

Contents in detail

CHAPTER 1

Experiments with Time

Anaclock: runs a traditionally-faced clock in high resolution — defining a
circle — Clock: provides a very different way of telling the time — Timer:
provides you with 12 timers which run concurrently and are each capable
of sounding an alarm and displaying a reminder message — Event: turns
the QL into a stopwatch capable of giving a permanent record of times for
a series of events.

CHAPTER 2

Son et Lumiére

Designer: a tool which allows line drawings far larger than a single screen
to be constructed, manipulated and displayed — 3-D Graph: using turtle
graphics to produce a clear and attractive display for complex figures —

Screen: copies the contents of the screen to a printer — the arrangement of

screen memory on the QL — Characters: designs and stores your own
customised character sets — character memory — Sound Demo: a simple
routine to permit experiments with the sound parameters — Music: allows
complex tunes to be input in a comprehensible form and played.

CHAPTER 3

Seriouser and Seriouser

Unifile: a powerful personal filing system capable of storing a wide variety
of information for instant recall — Nnumber: a program which creates a
dictionary of names and numbers for almost anything you wish, allowing
you to create invoices, stock valuations or even a calorie count of the day’s
menu — MultiQ: a multiple choice test generator.

CHAPTER 4
Money Matters

Banker: allows the user to keep a clear and continuously updated record of
a bank account over a 12-monthly period — Accountant: produces a set of
traditionally laid out accounts — Budget: stores and processes large
amounts of information about family finances and produces an analysis of

tha wictnre Aver a 1.manth neriad allawing Swhat if? daciciane tna he

Program Notes

The programs in this book have all been word processed to improve their
presentation in book form. The length of the programs has meant that it
would be quite impractical to print them at a width of 37 characters, corres-
ponding to the display generated by the QL on a standard television. In
fact, the programs extend up to a maximum of 50 characters in width, with
any carry over to the next line being indented to the same extent as the line
start. Where a line does carry over, therefore, the spaces which make up the
indentation of the second part of the line should be ignored.
Please note the section in the Introduction about how to use this book.

Debugging programs

Each program commentary includes test procedures which, if followed,
should ensure that the completed program works as specified. Should you
run into difficulties, however, there is always the Checksum Generator
program and Checksum Tables, designed to show whether the program
you haveentered is the same as that listed in the book. Full details of the use
of the program and tables are given in the Appendix.

Introduction

This book is part of one of the most successful series of microcomputer
books ever published. In 1982, when the first ‘Working Micro’ book was
issued, there were very few publishers who were prepared to believe that
ordinary micro owners wanted to use and understand their machines,
wanted to take control over them, learning to program by — program-
ming. The majority of books were filled with games and trivia or consisted
of yet another ‘Beginners’ guide to...". The prospect of a book which set
out to provide a collection of solid, useful programs and, at the same time,
to give some insight into the methods employed in serious programming,
didn’t seem likely to set the world on fire.

But I was convinced, and the people at Sunshine Books were convinced,
that the ‘Working Micro’ books were exactly what people were looking
for, that here was a huge gap in the provision of books for the growing
army of micro owners. And we were right.

Since that time, the ‘Working Micro’ books have followed microcom-
puters into almost every country where they have been sold. They have
been, or are being, translated into 14 languages. The Working Spectrum,
the first of the series, has been published in the United States and several
European countries. As the book was written and as more and more people
discovered the virtues of the Spectrum, it seemed that the approach of the
book and the power of the machine were simply made for each other.

Now the QL heralds a new generation of Sinclair machines, which do
indeed represent a Quantum Leap forwards in power, memory, and in
terms of the SuperBASIC language it runs. No book can exhaust the possi-
bilities of a machine whose capabilities would have been regarded as
science fiction a few years ago, but | have enjoyed the challenge of putting
it through at least some of its paces — so, I hope, will you.

How to use this book
You can use the book in a variety of different ways:

1) Asacollection of useful programs which you can adapt and develop for
your OWn purposes.

2) Asacollection of subroutines out of which you can construct your own
programs.

The Working Sinclair QL

_ln terms of the format of the displays generated by the programs, the book
is specifically aimed at those employing the QL in conjunction with a
standard colour television. In deciding which combination of equipment
to base a book on, [have always worked on the principle that it is easier to
adapt a program to better equipment than to try and downgrade something
which was written for a more sophisticated system. Owners of colour
monitors will not find it hard to make adjustments to make full use of the
extra screen capacity they are able to bring to bear.

However you decide to use this book, do remember that it was written as
@ boek and not just as a random collection of programs in no particular
f)rder. I very often come across readers with problems because they have
jumped into some of the more complex programs which fall towards the
enq of the book, without preparation. The earlier programs in the book
while useful and interesting in themselves, are also meant as an introduc:
tion to what comes later. Alongside the early programs goes amuch higher
level of explanation so that, by the time more complex programs are
reached, the reader has a good grasp of some of the techniques being used.

CHAPTER 1
Experiments with Time

It is always difficult to know where to start a book like this. Too complex a
program and readers may find themselves floundering before they have
picked up some of the simple pointers which will make programs increas-
ingly easy to understand as the book goes on. On the other hand, if the first
programs are too trivial, many readers may not bother to discover that
there are more substantial offerings to come.

As a result 1 have decided to stick, in this first chapter, to a set of four
programs which deal with time, and the way it may be manipulated on the
QL. The programs are relatively simple ones, but they introduce a wide
range of concepts which will be used in later and more complex programs.
Inaddition, in their use of calculation, sound and high resolution graphics,
the programs will provide a good introduction to some of the outstanding
abilities of your QL.

The programs in this chapter are:

ANACLOCK: Which runs a traditionally-faced clock in high resolution.
CLOCK: Which provides a very different way of telling the time.

TIMER: Which provides you with 12 timers which run concurrently and
are each capable of sounding an alarm and displaying a reminder message.

EVENT: Which turns the QL into a stopwatch capable of giving of a per-
manent record of times for a series of events.

PROGRAM 1.1: ANACLOCK

Program function

The purpose of this program is produce a replica of a clock face on the
screen, complete with hands which move to keep pace with the current
time. In the course of following the program through, you will learn a great
deal about the methods employed in this book, so it is recommended that

The Working Sinclair QL

}n terms of the format of the displays generated by the programs, the book
is specifically aimed at those employing the QL in conjuncli:)n with a
standard colour television. In deciding which combination of equipment
to base a book on, 1 have always worked on the principle that it is easier to
anl:?pt aprogram to better equipment than to try and downgrade something
wh]c.h was writlen for a more sophisticated system. Owners of colour
monitors will not find it hard to make adjustments to make full use of the
extra screen capacity they are able to bring to bear.

However you decide to use this book, do remember that it was written as
a book and not just as a random collection of programs in no particular
.order. 1 very often come across readers with problems because they have
Jumped into some of the more complex programs which fall towards the
em% of the book, without preparation. The earlier programs in the book
u.vhile useful and interesting in themselves, are also meant as an inlroduc:
tion to what comes later. Alongside the early programs goes a much higher
level of explanation so that, by the time more complex programs are
reached, the reader has a good grasp of some of the techniques being used.

CHAPTER 1
Experiments with Time

Itis always difficult to know where to start a book like this. Too complexa
program and readers may find themselves floundering before they have
picked up some of the simple pointers which will make programs increas-
ingly easy to understand as the book goes on. On the other hand, if the first
programs are too trivial, many readers may not bother to discover that
there are more substantial offerings to come.

As a result I have decided to stick, in this first chapter, to a set of four
programs which deal with time, and the way it may be manipulated on the
QL. The programs are relatively simple ones, but they introduce a wide
range of concepts which will be used in later and more complex programs.
Inaddition, in their use of calculation, sound and high resolution graphics,
the programs will provide a good introduction to some of the outstanding
abilities of your QL.

The programs in this chapter are:

ANACLOCK: Which runs a traditionally-faced clock in high resolution.
CLOCK: Which provides a very different way of telling the time.

TIMER: Which provides you with 12 timers which run concurrently and
are each capable of sounding an alarm and displaying a reminder message.

EVENT: Which turns the QL into a stopwatch capable of giving of a per-
manent record of times for a series of events.

PROGRAM 1.1: ANACLOCK

Program function

The purpose of this program is produce a replica of a clock face on the
screen, complete with hands which move to keep pace with the current
time. In the course of following the program through, you will learn a great
deal about the methods employed in this book, so it is recommended that
you read the accompanying commentary with some care.

s gy

The Working Sinclair QL

13:07
18:07

O

18:07 e SR
18107

Figure 1.1: Screen Dump of Clock Face.

The ideas introduced during the course of the program include:

1) Saving programs during development.
2) Initialising variables.

3) Passing parameters to procedures.

4) Control modules.

5) The use of repeat loops.

6) Setting and reading the internal clock.
7) High resolution mode (mode 4).

8) Program flow and readability.

9) Modular programming.

Module 1.1.1: Saving the program

These four lines may seem a trivial place to start, but those who have
worked with my books for earlier machines will know that this module can
save an immense amount of heartache in the development of programs.

Most people learn only by bitter experience that programs must be saved
regularly as they are developed. Sooner or later most of us reach a time
when hours of work is thrown away because of a momentary surge in the
power supply, a blown fuse or a knock to the micro or plug.'Experienced
users will have lost only some 15 minutes work because they will never have
allowed more than 15 minutes to pass without SAVFEing the program
entered thus far.

The purpose of this module is to encourage you to make regular copies
of the program you are working on by simply entering ‘psave’.

The module precedes all my own programs but, since only the program
name changes, it will not beincluded in the rest of the programs listed in the
book — but you should remember to add it.

2

¥
E
£

T

Module 1.1.1: Lines I -3

DEFine FROCedure psave

DELETE MDV1_ANACLOCK : SAVE MDVL_ANACLOCK
DELETE MDV2 ANACLOCK : SAVE MDVZ_ANACLOCH
END DEFine psave

Chapter 1 Experiments with Time

PR

B

Commentary

Lines 2 — 3: Deleting any previous version of the program before SAVEing
ensures that the ‘ALREADY EXISTS’ message is not encountered. Some
programmers adopt an even more cautious approach by numbering each
version of the program, eg ANACLOCKOI, ANACLOCKO02, etc. The
advantage of this is that, if something goes wrong during the SAVEing of
the program so that the program is lost from memory and not properly
SAVEd on the microdrive, a previous version will still be recoverable.
When the program is finished, the development versions can be erased.
Line 3 can be omitted by those who are prepared to rely on one microdrive
to store their program, but I would recommend caution since even on the
most reliable system it can be costly to have only one copy of your work.

Testing
Ensure that you have a cartridge in the drive. Enter

psave[ENTER]

and drive 1 should start up. After a moment, the light should go out on
drive | and drive 2 should start. Finally, the flashing cursor should return
to the bottom of the screen and drive 2 stop. You can now delete the three
lines in memory and reload the program from the disk by entering

new|ENTER] (erases the current program)
load mdv1__anaclock| ENTER]

When the loading process has finished, list the program and the module
should have been reinstated.

Module 1.1.2: Initialising the variables

Every program worth the name uses variables and constants, that is to say,
labels whose values can be changed during the course of the program or at
least from program to program. Very few variables absolutely must have
their values declared when the program is first run, and people often leave
it until the middle of a program, when a variable is absolutely vital, to
define their values. This can be mistaken policy because, as the program is
developed, it becomes increasingly difficult to see what the value of the
important variables is when the program first commences. In general, it is
good practice to declare at the very beginning of the program the value of

3

s

s kA

ERN Ny e

the major variables, and this process is known as ‘initialisation’, though
exceptions are often made when memory is limited — hardly a problem on
the QL. Some variables must be defined before they are used. For instance,
you can enter a line such as:

1050 T= 50

The Working Sinclair QL

in the middle of a program, without having given T any previous value, but
il you try:

1050 A=T*2

then the QL will stop with an ERROR IN EXPRESSION message — it
does not recognise the variable “T".

Another class of variables which must always be declared before they are
used are arrays, eg T(10,10) or T$(1 0,10). No use whatsoever can be made
of an array before a DIM statement has set up the space for it in the
memory. Thus even a line such as:

T(1,1)=50

which would work for a normal variable, will stop the program since the
QL has not been told the details of the array.

Module 1.1.2: Lines 2000 — 2070
2000 REMark #
2010 DEFine FROCedure initialise
2020 REMAr bk #5955 55 505555555 203555655 3
2030 minute2=0
2040 ®1l=@ : »x2=0 :
2050 m_angle=@ : h_ang
2060 e _flag=0

2070 END DEFine initialise

x
i
]

=8

Commentary

Line 2010: At the risk of boring those who are already familiar with Super-
BASIC, it is probably better to mention ‘procedures’ briefly before we go
any further, <ince all the programs which follow rely entirely on them.
Those of you who have programmed extensively on other machines
which do not possess a structured BASIC like the QL’s will know that
competent programming relies on the use of subroutines to break down a
program into manageable parts. It is the job of the programmer to know
where each subroutine is within the program and to be able to call each up
with a GOSUB command which specifies the start line number of the
subroutine. SuperBASIC provides a far superior tool for programming
known as the ‘procedure’. Once entered into memory with a start (DEFine
PROCedure) and an end (END DEFine), the name of the procedure
becomes effectively a keyword in SuperBASIC, and entering the name will

4

cause the QL to carry out the procedure. In the programs whicTn l’ollovtvi yf;l;
will find no subroutines, and in the testing procedures you will mostly
asked to test your routines by entering their procedure names — afar more

i i GOSUBs.
legant way than entering meaningless i)) »
‘ %he u‘:esynf the variables defined in this module will be described during

the course of the commentary on the main part of the program.

Chapter | Experiments with Time

Testing
Before going on, enter:
initialisel ENTER]

and the flashing cursor should return almost immc;liraicly. If younh:(\;ﬁ
iill be shown up. If for any reaso
entered any syntax errors, these wi : T
clear the memory by using RUN or CLEAR, or by storing th.e I'lz.ﬂ.f‘ f1n1she_:
program on microdrive and switching off, remember 1[? mm:lxhss ?g?;,e
i for subsequent modules. If you do not,

before trying any of the tests .

mgdules will come across variables which have not been declared and the

program will stop with an error.

Module 1.1.3: Setting the time

Before we can embark on creating a cl(?ck, we must have some mean]s::;ls]:(‘
the time. The purpose of this module is to .alluw the.user to :lri|‘:>ut t e
rent time in hours and minutes and have it stored in lhedQ ;:}:{he i
internal clock. In the course of the module we shgll be introduce ot cu-,-,
of REPEAT loops and the system variable DATES, which records

rent time and date.

Module 1.1.3: Lines 3000— 3160

TODO REMArb #5600 3R RN,

i 2| time
3 DEFine FROCedure set
:gég REMAr k%3535 %53 53 5 6 3 X 0006 3 3% 3003 0 %

Il i} AT 1,12 : PRINT "CLOCK SETTING
040 REFeat hour

1 A "HOUR (@-23):":h_temp

050 AT S,1 @ INFUT "HO

e IF h temp >=@ AND h_temp <=23 THEN EXIT
hour

@70 END REFPeat hour

3 REFeat minute o

;ggg AT 7,1 : INPUT "MINUTE (B-5%):"i1m_temp

EIBG IF m_temp>=@ AND m_temp<=5%9 THEN EXIT

minute
110 END REPeat minute
120 temp¥=DATE#
%iéﬂ time=3600%tenp$ (13 TO 14) +6@*temp¥ (16 TO
17)+temp® (19 TO 2@)

T TR

The Working Sinclair QL

3140 new_time=2600%h_temp+60%m_temp
I15@ ADATE new_time-time
316@ END DEFine set_time

Commentary

Lines 3040 — 3070 and 3080 — 3110: The purpose of these loops is to conti-
nue asking for the hour or minute to be input until a sensible value is
received — that is a value between zero and 23 for an hour, zero and 59 for a
minute. Lines 3060 and 3100 have the function of jumping out of the loop
when a valid entry is made. Note that this is not an infallible method of
proofing the program against operator error — simply pressing RETURN
without a number will stop the program on the QL. In later programs you
will see how this can be overcome but, if it does happen, simply type
RETRY and the prompt will be repeated.

Lines 3120 — 3150: The actual setting of the time on the QL is quite simple,
and can be done on two levels, either setting the whole date or simply the
time within a particular day. When the QL is first switched on, its internal
clock is set to midnight on the 1st January 1961 and it begins to count in
seconds. You can see the current result of this count by entering PRINT
DATE, because DATE is a variable set up by the QL itself to contain the
current time in seconds. Printing out DATE, however, will illustrate that
human beings do not find the time in seconds very meaningful. The QL
therefore provides a second means of reading the time, DATES. The
format of DATES is:

YYYY MMM DD HH: MM: 8§

with the month being specified in three-letter shorthand, rather than as a
number,

Not only does DATES make reading the time possible, the system pro-
vides two methods for the user to input a new time, after which the QL will
immediately reset its internal clock to the specified time.

We shall start with the shorter of the two methods, which involves
adjusting the internal clock by means of the ADATE command. The func-
tion of ADATE (Adjust DATE)is to add or subtract a specified number of
seconds from the current time. In order to accomplish this, line 3130 first
copies the current time into the variable TEMPS$. The hours, minutes and
seconds digits are then multiplied and added together in order to find the
total number of seconds, which arestored in the variable TIME. Note that,
in doing this, we can simply multiply the strings characters containing the
values, TEMP3(13 to 14) for the hours, TEMP$(16 to 17) for the minutes
and TEMP$(19 to 20) for the seconds. ‘Coercion’, or the QL's ability to
treat a string as a number when a program line requires it, takes care of the
rest. Line 3140 sets the variable NEW__TIME to the value in seconds of the
time just input by the user. Since, as we have already mentioned, ADATE

6

works by adjusting the existing time, all we have to dois to use AI?ATE and
specify the difference between TIME and NEW__TIME. This sets the
hours, minutes and seconds elements of the internal timer to what has been
input by the user — it makes no difference to the year, month and day
elements.

Chapter I Experiments with Time

Testing
Clear the screen, then type:

set__time[ENTER]

and you should be prompted to give the time in hours and mifmles. Input-
ting an invalid figure for either should result in the prompt being repeated.
After a time has been accepted, the program will stop. You can now test
what you have entered further by typing:

print date$[ENTER]

The hours, minutes and seconds should be what you have input, plus any
delay in printing them out.

Module 1.1.4: Setting up the clock face
Having input the time, we come to the drawing of the face of theclock, on
to which later modules will place the hands.

Module 1.1.4: Lines 4000 — 4120
4000 REMark #**xx EAANR
4@1@ DEFine PROCedure clock_face
4020 REMark %%k ik it iotniness
4030 CIRCLE B80,50,48

4040 CIRCLE B8@,5@,2 -

4050 FOR i=@ TO 33@ STEF 3@

% 1=B@+COS (RAD (i)) *44
:g?g y1=S0+SIN (RAD (i)) *44
4080 % 2=B@+COS (RAD (1)) *48
4070 y2=5@+SIN(RAD (i}) #48
4100 LINE x1,y1l TO x2,y2

4110 NEXT i
412@ END DEFine clock_face

Commentary

Defining a circle '
The basis of this module and the next is the technique needed ln_ pinpoint
positions around a circle. This is based on the fact that any pmn_l on the
circumference of a circle can be determined if the following pieces of
information are known:

The Working Sinclair QL

a) The radius of the circle. (RADIUS)

b) The angle that has to be travelled clockwise from the three o’clock posi-
tion to arrive at the specified point. (ANGLE)

¢) The coordinates of the centre of the circle. (CENTRE X and CENTRE
Y)

Given these three, the position will be expressed by two formulae:

X coordinate = RADIUS*COSINE(ANGLE/180*PI) + CENTRE X
Y coordinate = RADIUS*SINE(ANGLE/180*P1) + CENTRE Y

Space does not permit us to analyse here why this should be, but any good
introductory book on trigonometry will lay out the logic in [ull. If you
want to test the technique, enter the following on your machine:

10CLS

20 FOR i=0TO 359

30 x = 80+ COS(RAD(i))*350
40y =50+ SIN(RAD(1))*50
50 POINT x,y

60 NEXT i

and you will find that a very presentable circle is drawn, with its centre at
80(x), 50(y). Here, the 80 and 50 figures represent the centre of the circle (80
across, 50 up). The only thing you may not recognise is the RAD function.
In order for the QL to be able to recognise an angle it must be presented in
the form of units called radians (one radian is equal to 180/PI). The RAD
function performs the task of producing a result in radians when it is given
a figure in degrees to work on.

Lines 4030 — 4040: One large circle to define the outside of the clock, one
small one at the centre of the face, around which the hands will turn.

Lines 4050 — 4110: The circle techniques described above are used to draw
in markings every 30 degrees around the circle — ie every five minutes on
the clock face. The two points calculated for every repetition of the loop
are first of all a point on the circumference of the large circle, and then one
four pixels in towards the centre. Drawing a line between them makes a
series of neat markers around the face.

Testing
Enter

clock__face [ENTER]

and you should see the clock face drawn.

R T

Chapter I Experiments with Time

Module 1.1.5: Calculating minutes and hours

In this module we get down to the real work of the program, which begins
with the extraction and examination of the value for the current hour and
minute from the system variable DATES.

Module 1.1.5: Lines 5000 — 5130

S@0P@ REMark LEE RS 2 *

S01@ DEFine FROCedure time_values

5028 REMark ERHHR ¥

Sa3e REFeat minute_test

5040 LET temp$=DATE#$

5850 hour=temp${(13 TO 14)

Ses0 minutel=temp$(1&6 TO 17)

5870 IF minutel<>minute2 THEN EXIT minute_test
5080 IF INKEY#$=" " THEN e_flag=1 : EXIT

minute_test
5070 END REFeat minute_test
5100 minute2=minutel
5105 m_angle2=m_angle : h_angle2=h_angle
51102 m_angle ~(6#minutel)
5120 h_angle=9@- (3@*hour+S*minutel/12)
5130 END DEFine time_values

Commentary

Lines 5030 — 5090: What this loop does is continually to extract the time
from DATES and store it in the variable TEMPS. It is, of course, quite
possible to work directly on DATES but this could result in errors if the
process of slicing up the string began a fraction of a second before the hour
was about to change. If the hour changed in between lines of the program
being carried out, it would be possible to end up with a value of, say, 11.00,
when the real time was 12.00. Having extracted the value for the hours and
minutes, the loop tests the current minute against the minute value for the
last time the clock hands were moved. If the current minute is different,
then line 5070 jumps out of the loop. Inline 5080, provision is made so that
if the user presses the space bar a flag is set (the variable E__FLAG) and the
loop terminates. In the normal course of the program, this loop will simply
wait until the minute changes.

Line 5100: The new minute is stored until the next time this procedure is
called, when it will be used as the next benchmark for a change of minute.
Line 5110: The same is done for the previous angles of the hour and minute
hands. These need to be recorded in order that the existing hands can be
erased before new ones are drawn.

Lines 5120 —5130: The angles of the hour and minute hands. The QL
measures circles from a point that we would call three o’clock and moves
around anti-clockwise. Twelve o’clock is therefore — 90 and the minute

9

The Working Sinclair QL

value must be subtracted from that — six degrees per minute. The hour
angles consists of 30 degrees for each hour plus five degrees for each 12
minutes.

Testing

Enter
time__values [ENTER]

and you should almost instantaneously find that execution stops and the
flashing cursor returns. This is because the value of MINUTE2 should be
zero, and the loop will immediately stop when it samples the real time,
MINUTE2 has now been reset to the current minute, so follow the pro-
cedure again and, unless you are unlucky enough to just catch the minute
change, you should find that the QL will wait for a period before giving you
back the cursor — the wait was for the new minute to arrive. If you like,
you can print out the values of MINUTEI and HOURI, then print
DATES, illustrating that the two values have been extracted from the inter-
nal clock.

Module 1.1.6: Drawing the hands

Having calculated all the necessary figures to arrive at the time, we can now
proceed to employ the QL’s graphics capabilities to draw the hands of the
clock. 1T you do not remember the general introduction to the mathematics
of drawing a circle given earlier, you would be wise to go back and take a
quick look at it.

Module 1.1.6: Lines 6000— 6200

ODDD REMAr b 5536565 3 33655 555 35 3 36 3 36 339 %

6@1@ DEFine FROCedure hand_draw(angle,sizel,
size2,colour)

ERZD REMar b #5550 00 00k 000 000 3 05 H W%

6030 anglel=RAD (angle)

&40 angle2=RAD{angle+2@)

4HO50 angleZ=RAD(angle-20)

HB6D y1=5@+sizel*5IN(anglel)

&a70 ¥ 1=B@+sizel*¥COS(anglel)

&£080 y2=50+sizeZ*5IN(angleZ)

&£090 #2=8@+s1ze2¥COS (angle?)
6100 ¥ P+size2%¥SIN(anglel)
6110 3=80+size2#COS(anglel)

6120 INK colour

£170 FILL 1

6140 LINE x1,yl TO x2,y2 TO %x3,y3 TO x1i,yl
&£150 FILL @

6160 AT @.0 : FRINT temp#(13 TO 17)

&£17@ AT 8,469 : PRINT temp#(1Z TO 17)

10

AR skt bt

Chapter 1 Experiments with Time

6180 AT 19,0 : PRINT temp#(13 TO 17)
5190 AT 19,69 : FPRINT temp${(1Z TO 17)
6200 END DEFine hand_points

Commentary

Line 6010: Our first example of a procedure using parameters passed from
the rest of the program. The four variable names appended to the pro-
cedure name allow the program to use the same procedure for different
purposes. The four variables will be used by the procedure — in this case to
determine where to draw the clock hand, how large it should be and what
colour. In this way, exactly the same procedure can be used to draw hour
and minute hands.

Lines 6030 — 6050: These lines define three angles. Their purpose is to
allow the program to pinpoint three spots on the screen which will be the
corners of a triangular clock hand. ANGLEI is the angle of the tip of the
hand, relative to the centre of the face. ANGLE2 and ANGLE3, which are
respectively slightly ahead and behind ANGLEI, point to the two ends of
the base of the triangle. If you are not clear on this, don’t worry, all will
become plain when the hands are drawn on the screen.

Lines 6060 — 6110: If you tried the example circle program earlier, you will
recognise these lines. They plot points which are SIZE1 or SIZE2 pixels out
from the centre of the circle, in the direction indicated by ANGLEI,
ANGLE2 or ANGLE3. SIZEI represents the distance to the tip of the
hand, SIZE2 the shorter distance to the broad base of the hand.

Lines 6120 — 6150: These lines draw the hand, Its colour is passed to the
procedure in the form of the variable COLOUR. The FILL command
ensures that the completed triangle will be FILLed with the prevailing ink
colour.

Lines 6160 — 6190: As an added touch, the time is displayed in digital

format at the four corners of the screen — note that the coordinates refer to
the high resolution screen which will be set up by the next module.

Testing

To set up this module for testing would require a number of temporary
lines to be entered. Since the complete program requires only a few lines to
be added, it is recommended that you leave testing until the program is
completed.

Module 1.1.7: Making it all work together

At this stage, you may well be wondering why the program is written as it is.
Could not all of the functions we have described have been put together

11

The Working Sinclair QL

and made to run with the use of a few GOTOs. Unfortunately, that is how
many published programs are constructed. In this book you will find that
all of the programs are constructed out of clearly identifiable modules,
most of them procedures in their own right.

The reason for this is that programs written in modules can be more
easily read, they can be more easily debugged, they can be changed by
substituting modules which work more efficiently if you learn new
methods, they can beadded to by patching in more modules. There is much
1o be learned from the programs in this book, but probably the most valua-
ble lesson of all for your future programming will be the technique of
modular programming.

The current module is the key to the technique for, when all the working
modules have been entered and tested, we need one more to control the
flow of the program. In a sense, the module you are about to enter is the
program — everylhing else is merely an extension of it.

Module 1.1.7: Lines 1000— 1180

10DD REMAr b 35 5 % 5% 5 5 0605 3 5055550 296 996 3 .50 3 %
121@ REMark control loop

1@20 REMArk 9% 5 5 5 % 55 3 5 5 5 3 3 35 % 5 % ¥ 5 4 %
1030 PAFER 2 : INK 7 : BORDER @
1040 CLS : CLS#@

1050 initialise

10560 set_time

187@ INK 7 : FAFER @ : MODE 4 : CLS
1080 clock_face

1070 REFeat control

1100 time_values

111@ IF e _flag THEN EXIT control
1120 hand_draw m_angle2,40,5,0
1138 hand_draw h_angle2,30,5,0
1140 hand_draw m_angle,40,5,7
1150 hand_draw h_angle,30,5,2

1160 END REPeat control
117@ MODE 8
1180 STOP

Commentary
Line 1040: It is always a good idea, at the beginning of a program, to clear
not only the main screen but the command lines at the bottom (CLS #0).

Lines 1050 — 1060: Note how naturally the control structure develops using
the names of the modules — the control structure becomes in itself a brief
description of the program’s work.

Line 1070: The program is designed to run in high resolution mode, mode
4. In this mode, in return for halving the number of possible colours on the
screen at one time, we shall get a sharper definition of the clock face.

12

TR e T

Chapter I Experiments with Time

Lines 1090 - 1160: This loop will continue sampling the time using
TIME__VALUES and drawing the hands. Note how economical the pro-
cess is. The four lines from 1120 to 1150 first tell the HAND__DRAW
procedure to draw the current hands in black (ie erase them), then draw the
minute hand in white and a slightly smaller hour hand in red.

If at any point the program returns from TIME__VALUES with the
value of the variable E__FLAG set to 1 rather than 0 (indicating that the
user has pressed the space bar), the loop is terminated by line 1110. This use
of IF followed by a variable name is a common one which depends on the
fact that the IF statement will be carried out if the variable has any other
value than zero.

Line 1170: The final act of the program, before terminating, is to return the
screen to the lower resolution mode, mode 8.

Testing
The program should now be fully functioning. Run it, enter the time and

you should see the clock face displayed with the hands in the correct
position.

General comment

One feature of the program can really only be noticed once it has been fully
entered. If you examine the program you will notice that it contains not a
single GOTO instruction, a fact which may surprise you if you have
learned your computing on a less capable machine than the QL. This is
quite deliberate. The whole development of the BASIC language over
recent years has been in the direction of eliminating the need for GOTO.

While it is possible to carry this practice to absurd lengths (and waste
considerable amounts of memory in doing so), there are good reasons for
trying to reduce reliance on GOTO as a part of your programs. The prob-
lem with GOTO is that it is so arbitrary, an instruction to jump which does
not, when the program is read later, explain itself. Using GOTO, a pro-
gram can quickly become a mass of arbitrary jumps which are difficult to
plan or explain and, what is worse, encourage you to patch a messy pro-
gram together with GOTOs when your time would be far better spent rede-
signing it. The aim of programming on a machine which provides
REPEAT loops is Lo write a program which flows from beginning to end
without arbitrary jumps. It is not an aim to become neurotic about — some
programmers talk as if a few GOTOs in a program are a sign of brain
damage — but you will be surprised how much more satisfying the plann-
ing and execution of a program is if you can learn to make it work on the
basis of things happening until an EXIT condition is met, rather than
jumping about all over the place.

T

The Warking Sinclair QL

PROGRAM 1.2: CLOCK

Program function

One of the most enjoyable things about computers with graphic displays as
good asthe QL’s, is that they allow you to play about at displaying thingsin
new and imaginative ways. Having just entered a fairly standard clock, this
next program gives rather a different view of time. In Clock, hours and
minutes are represented by two lines which sweep from left to right and top
to bottom, dividing the screen into four rectangles of different colours.
Much of the material in Clock is similar to that in Anaclock, so the expla-
nations can be accordingly shortened.

Module 1.2.1: Initialisation

A standard initialisation module. The uses of the variables described will
be outlined in the course of the commentary on the program.

Module 1.2.1: Lines 2000 — 2070

2000 REMark *###%%udiRiiuNuiiuisnsEs

20190 DEFine PROCedure initialise

2020 REMark #5555 0555 %50 50850445 %% %

2030 minute=1@ : hour=10

2040 PAFER @ : INK 7 : CLS : CLS #@
2050 #1=20 : x2=140 : yi=86 : y2=15
2060 e flag=0

2@7@ END DEFine initialise

Module 1.2.2: Time input

The same module as was included in Anaclock.

Module 1.2.2: Lines 3000— 3180

TODD REMEr b #5555 5 010000000000

2@1@ DEFine FROCedure set_time

TOZO REMArk S mmm s 65554 5 0085 % % ¥ %

=@ cLs

40 AT 1,12 : PRINT "CLOCK SETTING"

3050 REFeat hour

30460 AT 5,1 = INFUT "HOUR (@-23

070 IF h_temp >=B AND h_temp
hour

I080 END REFeat hour

072 REFeat minute

z1@0a AT 7,1 1 INFUT "MINUTE (@-59):";m_temp
3110 IF m_temp>=@ AND m_temp<=59 THEM EXIT
minute

3120 END REFeat minute
170 temp$=DATE$

Chapter 1 Experiments with Time

140 time=34600%temp¥ (13 TO 14) +6@*temp¥ (146 TO
17)+temp$ (19 TD 2@)

150 new_time=3600%h_temp+6@%#m_temp

31460 ADATE new_time—time

zi70 CLS

3180 END DEFine set_iime

Module 1.2.3: Setting up the screen border
This module prints an hour and minute grid along the lefthand side and top
of the screen.

Module 1.2.3: Lines 4000 —4110

ADDBD REMark %555 850 550 050 330003 53 30
4@1@ DEFine PROCedure draw_framework

4020 REMark #** * *
4030 FOR i=1 TO 6@

4040 yt=88 : IF i/5=INT(i/3) THEN yt=70
24050 LINE x1+i%2-1,yt TO x1+i%2-1,yl

4060 NEXT i
4070 FOR i=1 TO 12
4080 xt=18 : IF i/3=INT(i/3) THEN xt=16

4270 LINE xt,yl—i®6+1 TOD x1,yl-i%6+1
4100 NEXT i
411@ END DEFine draw_framework

Commentary

Lines 4030 — 4060: The minute values are spaced out along the top of the
screen in white. The loop draws 60 small vertical lines at regular intervals
across the screen. These begin at X1 pixels across the screen (20) and Y1
pixels up (86). The X coordinates increase with the loop variable I and
every fifth line, when INT(I) will equal I, the line is made slightly longer by
adding 2 to the Y coordinate of the top of the line (YT). The effect of thisis
that the markers for five minutes stand out.

Lines 4070 — 4100: The same principle except that here it is the Y coordi-
nate which increases with the loop variable I, so that the lines move down
the screen, representing the hours. Every third hour line is emphasised by
drawing it slightly longer.

Testing

Type:

initialise [ENTER]
draw__framework [ENTER]

and you should see the grid drawn on the screen. You will probably note
that the tiny minute markers appear not to be perfectly spaced. The reason
for this is that in low resolution mode (mode 8), which we are using to

15

The Working Sinclair QL

obtain all the colours we want — spacing lines at small intervals leads to
some of them falling ‘in-between’ the actual pixel positions on the screen,
s0 that they are in fact moved one place to the side,

Module 1.2.4: Calculating hours and minutes

This module is parallel to the time calculation module in the last program,
though it is slightly simpler because angles do not have to be calculated.

Module 1.2.4: Lines 5000— 5120

SAOQ REMAr ke 58 55 5505020930063 36056 3 533 % %0
S5@1@ DEFine FROCedure time_values
S@20 REMAr k506 50003 5500 33555363690 39 969 36 %3

S030 minute_temp=minute

SPan REFeat new_minute

S@ase LET temp#=DATE%

5S040 hour=temp% (13 TO 14)

oe7e IF hour>11 THEN hour=hour-12

S080 minute=temp$ (16 TO 17)

5070 IF INKEY#=" " THEN e_flag=1 : EXIT
new_minute

Si1ea IF minute<>minute_temp THEN EXIT

new_minute
5110 END REFeat new minute
5120 END DEFine time_values

Commentary

Lines 5030 —5110: The only differences between this module and Ana-
clock are that here the value of the last minute acted on is stored at the
beginning of the module rather than when the loop is ended, and that the
value HOUR is never allowed to exceed 12. Anaclock, because its values
describe positions on a circle, can afford to work in 24-hour time — values
over 12 simply cause the angle of the hand to “wrap around’ the dial once.
Clock, since it works in straight lines, would quickly move off the screen if
hours with a value over 12 were generated.

Testing
As for the equivalent module in Anaclock, having initialised the program,

call the procedure once to set up the variables and then a second time to
ensure that it does wait for the minute to change.

Module 1.2.5: Displaying the time

In this module we get down to the task of displaying on the screen the
rectangles which will depict the time. What the module is intended to
achieve is the effect of a line sweeping across the screen to depict the

16

[M
1
RECTANGLE 1 N RECTANGLE 2
(RED) I (FURPLE)

T

E -
HOUR LINE I
1
N
E

Chapter 1 Experiments with Time

minutes, and another descending, which records the hours. This is accom-
plished by dividing the screen into four rectangular sections, red, purple,
blue and vellow, the edges of these rectangles representing the lines for
hours and minutes, as in Figure 1.2.

RECTANGLE 4
CYELLOW)

RECTANGLE 3
(BLUE)

Figure 1.2: The Screen Divided into 4 Rectangular Sections.

Using the variables calculated by the previous module, the LINE
command makes it a simple matter to place these rectangles exactly where
we want them on the screen.

Module 1.2.5: Lines 6000 — 6250

HODO REMArk % 55K 500 5 53500050 N)

401@ DEFine PROCedure draw_line(hour,minute)

LHD20 REMArk % %5555 5538 3 % 3 03 33 38 2% -

6030 hy=yl-hour*& : IF hour=@ THEN hy=85 .

4040 mz=x1+minute*2 : IF minute=0 THEN mx=21

£050 INK @

LD60 FILL 1

4B7@ LINE x1,yl TO x2,yl TO x2,y2 TO xl,y2 TO
®l,yl

&£080 FILL @

5H070 FILL 1

5100 INK 2

511@ LINE »l,yl TO mx-l,yI TO mx—1,hy+1 TO
ul,hy+1 TO x=1,yl

46120 FILL @

6130 INK 3

6140 FILL 1

6158 LINE mx,yl TO x2,yl TO z2,hy+1 T0 mx Jhy+1
TO mx,yl

6160 FILL @

617@ INK 1

6180 FILL 1

6190 LINE x1,hy TO mx-1,hy TO mx—1,y2 TO x1,y2

The Working Sinclair QL

TO =1,hy

6200 FILL @

6210 INK &

6220 FILL 1

6230 LINE mx,hy TO x2,hy TD %2,y2 TO mx,y2 TO
mx 4 hy

6240 FILL @

6250 END DEFine draw_line

Commentary

Lines 6030 — 6040: These lines set up the distances across the screen and
down which will represent the hours and minutes. The hour line will move
down six pixels for every hour which passes, and the minute line across two
pixels for every minute.

Lines 6050 — 6080: One of the reasons that this program is slightly simpler
than Anaclock is that we have not troubled to remember the positions at
which things were drawn for the last minute and hour. The reason for this is
that all we need to do in order to erase a previous clock face is to black out
the whole rectangle. This is accomplished by drawing a line, in black,
around the whole clock face, with FILL set. The function of FILL is to
record the coordinates between which lines are drawn and, whenever they
make up a closed area, to paint that area with the current INK colour.
Drawing a line around the face with FILL set, quickly and effectively
erases the previous face. When this has been accomplished it is important
to switch off FILL. If this is not done, the QL will become confused as to
the coordinates of the shape it is being asked to FILL when further rectan-
gles are drawn — no coordinates are forgotten until FILL is set to zero
again.

Lines 6090 —6120: The first of four sets of lines which draw the colour
rectangles which will picture the hours and minutes (see Figure 1.2). These
lines draw the upper lefthand rectangle. Lines are drawn from the top
lefthand corner, across to the position of the minute line, down to the
position of the hour line, back across to the lefthand side of the rectangle
and back to the top lefthand corner. Once the rectangle is complete, the
FILL command paints it red.

Lines 6130 — 6240: The remaining three rectangles are drawn in the same
manner. Note that in order to draw all four rectangles, we only need six
variables. X1 and Y1 represent the top lefthand corner of the clock face,
X2 and Y2 represent the bottom righthand corner. The position of the
minute line is held in MX and that of the hour line in HY. MX,HY isa point
inside the clock face where the corners of all the four rectangles meet. In
drawing the rectangles, a slight gap (MX — 1 to MX and HY + 1 to HY) is
left so that the minute and hour lines will be etched in background black.

18

T ——

Chapter 1 Experiments with Time

Testing
Type:
draw__line 6,30[ENTER]

You should see the four rectangles of roughly equal size displayed on the
screen.

Module 1.2.6: Putting it all together

Having entered all the working elements of the program, we can now con-
struct a control module to execute them in the correct order. The use of
procedures makes the module completely self-explanatory.

Module 1.2.6: Lines 1000— 1110

1PO@ REMark %555 855 5K 4 3352 1H K0 0K K
1212 REMark control loop

L1@20 REMark %555 55 3 55 3NN R NN
ieze initialise

1040 set_time

1850 draw_framework

1060 REFeat control

1870 time_values
1080 IF e_flag THEN EXIT control
1890 draw_line hour,minute

1100 END REFeat control
1110 STOF

Testing
You are now in a position to run the full program, input the time and see it
displayed.

PROGRAM 1.3: TIMER

Program function
Timer provides you with 12 flexible count-down timers, each of which can
be separately programmed to sound an alarm after a specified period and
display a short message indicating what the particular occurrence of the
alarm is for.

New techniques covered in this program:

1) The ‘menu’ module.
2) The simple use of BEEP.
3) Adjusting the time with SDATE.

The Working Sinclair QL

TIMERS
18:35:92

1> @7 :08 :08 LUAKE LIP |
2 @2:15:980 LEAVE FOR TRAIH
32 00 :00 :08

4> 15£:45:88 WATCH DANGER-MOLUSE

82 17 :280:880 PHOMHE CYRIL

11> 98 :00:00
[=lc ==y = 1=
LIAITING

Figure 1.3: Typical Display Taken from Timer.

Module 1.3.1: Initialisation

The main purpose of this module in the current program is to dimension
the two arrays TIMER and TIMERS. TIMER(1 1) will hold the alarm times
of up to 12 separate timers (numbering of arrays begins at zero, remem-
ber), while TIMERS(11,20) will hold up to 12 optional messages which may
be tagged on to a particular alarm call. Note that in defining the length of
the strings in a string array, numbering does nof begin at zero, so that the
maximum message length which TIMERS$ can contain is 20 characters, not
21 as the numbering of arrays in other respects might suggest.

Module I.3.1: Lines 2000— 2070

2000 REMark *
201@ DEFine FPROCedure initialise
2020 REMark R

2030 PAFER @ : INK 7 : CLS : CLSH@
2040 DIM timer (11}, timer#%(11,20)
2050 messagef=""

2060 sounded=0

2070 END DEFine initialise

Module 1.3.2: Formatting the time

Throughout most of this program, the current time will be displayed on the
screen. This module uses the QL’s flexible time-handling to produce a
string containing hours, minutes and seconds, in the format HH:MM:SS,
for any given number of seconds.

Module 1.3.2: Lines 6000 — 6050
&00@ REMark *x *
6@1@ DEFine PROCedure extract_tiwe (time)

20

e e A e

Chapter 1 Experiments with Time

6028 REMar k Rl bl
6838 temp_time$=DATE*(time)
&B4@ time$=temp_time# (13 TO)
&@5@ END DEFine extract_time

Commentary

Line 6030: DATES has two functions. Used on its own, it produces a string
containing the year, month, etc. Used in conjunction with an argument (a
figure in brackets following it), it returns the date and time which would
represent the number of seconds contained in the argument. Thus, if you
enter PRINT DATES(1), you will see:

1961 Jan 01 00:00:01

or the first second of the period the QL is capable of dealing with. This
facility can be used to bypass all kinds of calculations and discover the time
represented by a number of seconds.

Line 6040: The time in hours, minutes and seconds is sliced out of the string
which was extracted by means of DATES.

Testing
Enter:

extract__time (1)[ENTER]
print time$

and you should see:

00:00:01

Module 1.3.3: Setting the time
A different module to the one used in the previous two programs. Rather
than employing ADATE to adjust the hours, minutes and seconds of
DATES to the current time, this module makes use of SDATE, which
specifies the complete set of figures for DATES, ie year, month, day, hour,
minute, second. The module consists of a series of loops used to ensure
sensible figures are input, followed by an SDATE command. Note that the
time is actually set when the user presses 'Y’ to confirm the new time, soitis
wise to enter the time a minute in advance and wait for the precise moment
to confirm it.

If you feel it important to update the whole of the date, rather than
simply the time, this module can be used to replace the time-setting
modules in the two earlier programs.

21

The Working Sinclair QL

Module 1.3.3: Lines 10000 — 10340

10008 REMark 4 * *

1P@1@ DEFine FROCedure set_time

10020 REMark RN

10028 REPeat date_set

10040 CcLS

10050 AT 1,12 = PRINT "CLOCK SETTING"

100460 REFeat year

10070 AT 5,1 : INPUT "YEAR (19B4-1999):";
year

10080 IF year>=1984 AND year<=199% THEN
EXIT year

19250 END REFeat year

10100 REFeat month

12119 AT 7,1 = INPUT "MONTH (1-12):";month

10120 1F month>=1 AND month<=12 THEN EXIT
month

10130 END REPeat month

1014@ REFeat day

19150 AT 9,1 : INPUT "DAY (1-31):"jday

10160 IF day>=@ AND day<=31 THEN EXIT day

10170 END REFeat day

121680 REPeat hour

1019@ AT 11,1 : INPUT "HOUR (@-23) hour

10200 IF hour »>=@ AND hour <=23 THEN EXIT
hour

10210 END REPeat hour

10220 REFPeat minute

10270 AT 13,1 : INPUT "MINUTE (@-5%9):";
minute

10249 IF minute>=@ AND minute<=5% THEN EXIT
minute

1@25@ END REPeat minute

1@26@ AT 15,1 : INPUT "ARE THESE CORRECT

(Y/N):"; Q¥
10270 IF @%="y" THEN EXIT date_set

10280 END REPeat date_set

10270 SDATE year ,month,day,hour ,minute,@

18300 AT 17,1 : PRINT "DATE IS NOW: ";DATES

1@31@ AT 19,1 : PRINT "press any key to
continue”

10320 FRINT INKEY#(-1}

18330 CLS

1@34@ END DEFine set_time

Testing
Enter:
set__time[ENTER]

and respond correctly to the various prompts. The module tests itself in
that the date printed out at the bottom of the screen represents the time you
have set.

22

R —

Chapter I Experimenis with Time

Module 1.3.4: Sampling the timers

This small module is an integral part of the program in that it allows the
program to enter a waiting state during which the user can make an input,
vet at the same time the program is constantly carrying on the work of
sampling the 12 timers to see if the alarm should be sounded for any of
them. We shall enter the module now, even though it will not be fully used
until several later modules have been entered, because it is an essential
subroutine for the menu module which follows.

Module 1.3.4: Lines 4000— 4160

4000 REMArk 56355 5 5 55 50 80035050 050505
401@ DEFine PROCedure waiting

AD20 REMArk 56555655 005 5 30 5305 3530 350 0 3 96 3 4
4030 REFeat test

4040 FOR count=@ TO 11

4850 IF timer (count)<DATE AND timer (count)
<>0

4060 current (timer (count))

4970 EXIT test

1080 END IF

14070 extract time (DATE)

4100 AT 3,14

4110 PRINT times$

4120 tF=INKEYS

4130 IF £$<>"" AND t#<>CHR$ (1@) THEN EXIT
test

4140 NEXT count

4150 END REPeat test
4160 END DEFine waiting

Commentary
Lines 4030 — 4150: The object of this module is simply to wait — either for

atimer to sound or for a key to be pressed. These two exit conditions can be
found at lines 4070 and 4130.

Lines 4040 — 4140: This loop shuttles through the 12 timers repeatedly.

Lines 4050 — 4080: These lines are activated if a timer has been set and the
time for an alarm to be sounded has arrived. Whether the time has come is
easily discernible from the fact that the conterits of the'timer, held in one
element of the array TIMER, are less than the contents of the system varia-
ble DATE, which holds the current time in seconds. The procedure CUR-
RENT will be entered later — its purpose is to sound an alarm.

Lines 4090 — 4110: The current time is extracted from DATE$ and printed
on the centre of a line towards the top of the screen. Other displays in the
program will be built around this.

Lines 4120 — 4130: These lines have the effect of sampling the keyboard
and leaving the main loop of the module if a key is pressed. INKEYS$ with-

23

The Waorking Sinclair QL

out a parameter attached does not interrupt program flow, it merely
catches any key which is being pressed at the moment it is executed. Later
on we shall use other forms of INKEYS to force programs to pause. Note
that the WATTING procedure only ends if the key pressed is not CHR$(10)
—the ENTER key. The reason for this is that the program relies largely on
one key entry for menus and other choices, using INKEY$ rather than
INPUT. This is necessary so that other processes, like sampling the timers,
can go on while the program is waiting for the user — something that
cannot happen with INPUT, which locks up the program until ENTER is
pressed. Some people, however, find it difficult to remember that all they
have to do is press a single key and press ENTER anyway. The filtering out
of the ENTER key here helps to reduce the annoyance of choosing an
option from the main program menu and then returning straight to that
menu when the unnecessary ENTER is pressed.

Testing
Provided that you have initialised the program, enter:

waiting [ENTER]

and the QL should do just that, displaying the current time towards the top
of the screen. The waiting state should carry on until you next press a key
other than ENTER.

Module 1.3.5: The program menu

We now come to a new technique which will play a large part in the pro-

grams within this book — the ‘menu’. In the programs which have led up to

this one, the control of the program has been left to the program itself.

Once run, a control module has taken over and dictated the flow of pro-

gram execution until the user signifies that the program is to be terminated.

This program, and many of those which follow, is different in that there is
no single direction of program flow. The program presents a variety of
possibilities to the user and it must be the user who, to a large extent,
dictates what happens. This is done by means of a module known as the
program menu, which presents the user with a list of the choices which the
program provides and allows the user to specify which is to be acted upon.
More complex programs later in the book will make use of several menus,
each reflecting the variety of choices under one main heading. For the
moment, however, we shall stick to the single menu required by this

program.

Modiile 1.3.5: Lines 3000 — 3340

TOOO REMark 535K 5555805538 508058 %1 K ¥
3010 DEFine FROCedure menu

24

Chapter! Experiments with Time

3020 REMark * *

3030 REFeat choice

3040 CLS

Ia50 AT 1,11 : PRINT "TIMER MAIN MENU"

30460 AT 5,1 : PRINT "commands available:"

Ie7e FRINT\\,"1) DISPLAY TIMERS"

080 FRINT,"2) SET TIMER"

Ieva PRINT,"3) BLANK SCREEN WAIT"

ITiee FRINT,"4) STOP"

EIRY] REFeat response

3120 AT 13,1 : PRINT "WHICH DO YOu
REQUIRE: "3

I130 FLASH 1

3140 PRINT "WAITING"

150 FLASH @

3160 waiting

3170 IF sounded=1

3180 sounded=0

3190 choice=0

1200 EXIT response

3210 END IF

3220 choice="0" % t¥%

3230 IF choice>=1 AND choice<=4

3240 EXIT response

3250 END IF

I260 END REFeat response

3270 SELect ON choice

3280 ON r~hoice=1 : display

3290 ON choice=2 : set_timer

3300 ON choice=3 : blank

3T10 ON choice=4 : RETurn

3320 END SELect
3330 END REFeat choice
%340 END DEFine menu

Commentary

Lines 3030 and 3330: This loop will continue to display the menu every time
execution returns to this module, until the user inputs the number 4. The
program will then terminate.

Lin_cs 3060 —3100: The list of the program options which will become
available as subsequent modules are entered.

Lines 3110 — 3260: This loop will repeat the prompt at line 3120 until the
user makes a valid input which the program can deal with.

Lines 3120-3160: The WAITING procedure that you have already
entered is used to accept a one-key input from the user. To help remind the
user that only a single keypress is needed, the word ‘WAITING’ is printed
on the screen with FLASH set.

Lines 3170 — 3210: These lines refer to action which will be taken if an
alarm has been sounded, as indicated by the value of the variable

25

The Working Sinclair QL

SOUNDED. The variable is reset so that it can be used again, the value of
CHOICE (the user's input) set to 0 so that the program will do nothing, and
the whole menu printed again, since it has been erased by the alarm call.

Lines 3220 —3250: T$, which is the key pressed by the user during the
WAITING routine, has ‘0" added to the front. The reason for this is that
we are about to treat T$ as a number, under the name CHOICE. If the user
has inadvertently pressed a non-numeric key, this process could either
crash the program or, if the key pressed is the name of a single letter varia-
ble, result in a spurious value being stored in CHOICE. Adding zero to the
beginning of T$ makes no difference if the input was a number, but results
in the return of zero if the key pressed was anything else. The loop is termi-
nated if the CHOICE entered was a valid one, ie in the range 1 —4.

Lines 3270 — 3340: SELECT is used to allocate work amongst the program
according to the selection made by the user.

Testing
If you now enter:

menu [ENTER]

you should see the menu displayed. It should not accept any invalid inputs,
but the only one of the options available to you is “stop’, which terminates
the program.

Module 1.3.6: Displaying the current timer settings

The purpose of this module is to print out in an orderly way the times for
which the 12 timers are currently set. At the moment, since we have not
entered the module which allows us to set the timer values, each timer will
be displayed as zero.

Module 1.3.6: Lines 11000~ 11160
11000 REMark 555555 3 3 5 3 3 3 0 5 0 505530 504 %
110108 DEFine PROCedure display

11020 REMark % 85 550550 5 5 3 5506 5 3 33633 8 8
11030 CLs

11040 AT 1,15

11252 PRINT "TIMERS"

11060 AT 5,0

11872 FOR count=@ TO 11

11080 extract_time (timer (count))
11@9@ IF count<% THEN PRINT " ";
11100 PRINT count+1;")"'times$!timer$(count)

11110 NEXT count
11120 FLASH 1

26

Chapter] Experiments with Time

11130 PRINT "WAITING"
11140 FLASH @

11150 waiting

11160 END DEFine display

Commentary

Lines 11070 - 11110: This loop prints out the contents of the array TIMER
and TIMERS. The contents of TIMER, which gives the time for each timer
in seconds, is processed by the EXTRACT__TIME module to extract the
time in hours, minutes and seconds and it is in this format that it is printed,
together with any message stored in TIMERS.

Limes 11120 11150: Like the menu, this module relies on WAITING to
put it into a waiting state until a key is pressed, following which the pro-
gram returns to the menu.

Testing
Type:

display [ENTER|

You should see the times for the 12 timers displayed, though the time for
each will be “00-00-00" and there will be no messages alongside each one
since none have been entered. The flashing ‘“WAITING’ will be displayed
at the bottom of the screen and the current time underneath the program
title.

Module 1.3.7: Calculating timer setlings

Now that we can display the timers we shall enter the two modules which
allow the user to set them. The current module is primarily designed to
accept a time in hours and minutes which will be used by the next module to
set a timer.

Module 1.3.7: Lines 7000— 7210

TOAD REMArk %% 55 % 5 5 0095 5996 5 0 3 003 % % %

7@10 DEFine PROCedure create_time

7020 REMark

7030 REFeat countdown

7040 INPUT "CDUNTDOWN (y/n)

7050 IF downg="y" OR down$="Y" DR down$="n"
OR down#="N" THEN EXIT countdown

70560 END REFeat countdown

7070 REPeat hour

7080 AT 10,8

7050 INFUT "HOUR: "3 hour

7100 IF down#="n" OR down$="N"

7110 IF hour >=@ AND hour<=47 THEN EXIT hour

27

The Working Sinclair QL

7120 END IF

7130 IF down#="y" OR down#="
7140 END REFeat hour

7150 REFeat minute

" THEN EXIT hour

7160 AT 12,0

717@ INPUT "MINUTE: "iminute

7180 IF minute>»=@ AND minute<=5% THEM EXIT
minute

7170 END REFeat minute
7200 time=hour *36@0+minute*bd
721@ END DEFine create_time

Commentary

Lines 7030 —7060: Setting of timers can be done in two different ways.
Either a time can be input at which the timer will go off (eg input 12.00 and
the timer goes off at twelve 0’clock) or a period can be specified after which
the timer will sound (eg input 1 hour and the timer will sound after one
hour). These lines ask the user to specify whether the time to be input is to
be used for a count-down or simply as a time of day.

Lines 7070 — 7140: If what is being input is a time of day, then the hour
figure can only be in the range zero to 47. This may sound like a rather
strange range to impose, but it is a simple way of allowing the user to
specify whether the alarm is to go off today or tomorrow. If the alarm is
intended for 12.00 and the time is already 19.00, there is no point in enter-
ing 12 hours, no minutes as the time, since the alarm would go off
immediately. For dales on the following day, simply add 24 hours to the
time expressed in terms of the 24-hour clock, so that 12.00 the following
day would be entered as 36. If the figure is to be the basis for a count-down
timer, no limit is imposed.

Line 7200: The time input is translated into seconds.

Testing
Type:
create__time [ENTER]

In answer to the prompt, specify that you do not want a count-down timer
and you should then be prompted for the hours and minutes. If you input
10 hours and 11 minutes, the resulting value of the variable TIME should
be 36660, and you can print out TIME to check this.

Module 1.3.8: Setting the timers

Now that we can display the state of the timers and translate an input into a
time value expressed in seconds, we can proceed to the module which
allows the user to specify the settings for the 12 timers. Note that this

28

o s i o it e

Chapter 1 Experiments with Time

module uses INPUT to obtain the three items of data it requires, so while
the module is operating the timers themselves are not being sampled and
any timer due to give an alarm will not sound until this module has been
completed.

Module 1.3.8: Lines 8000— 8310

BOAD REMar k3553 55 556 3 5 5508500000030 5 5%
8010 DEFine PROCedure set timer

8020 REMark
BO3D CLS
B8R40 AT 1,13

8050 PRINT "SET TIMER"
BBS&A REPeat response

8a7e AT 5,0

8080 INPUT "which timer (1-12):"ztnum

8@70 IF tnum>=1 AND tnum<=12 THEN EXIT
response

8100 END REPeat response

8112 tnum=tnum—1

B120 AT B,0

8130 create_time

8140 IF down#="Y" OR down$="y"

8150 time=DATE+time

8160 ELSE

8170 days=3600%24% (INT (DATE/ (3600%24)))
8180 time=days+time

B19@ END IF

8200 AT 14,0

8210 INPUT "message:";message$
82208 REPeat response

8230 AT 16,0
8240 INFUT "Is this correct (Y/N):";Q$
8250 IF @%="Y" OR Qf="y" OR QO%=

THEN EXIT response
B260 END REPeat response
827@ IF Q#%="Y" OR Q$="y"
8280 timer (tnum)=time
az29e timers$ (tnum) =message$
8300 END IF
B31@ END DEFine set_timer

Commentary
Lines 8060 — 8110: The user is invited to input a timer number in the range
I —12. Note that since the array runs from zero to 11, this value has to be
reduced by one.

Lines 8140 — 8190: If the user has specified a count-down timer, all that
needs to be doneis to add the time input by the user (stored in seconds in the
v'ariable TIME) to the contents of the system variable DATE (the current
time a_nd date expressed in seconds). If the time input is intended simply as
a straight time, these lines take the value of DATE and slice off the part

29

The Working Sinclair QL

which refers to hours and minutes, so that the number of seconds up to the
start of the current day is stored in DAYS. To this is then added the number
of seconds which make up the time input by the user. Thus what is even-
tually stored is not simply a figure representing hours and minutes but a
record of the total number of seconds since January 1st 1961 up to the
specified time on the current day or the day following.

Lines 8210 — 8300: A short message (up to 20 characters) can be attached to
any timer when it is set. These lines accept the message, confirm all the
details and then store time and message in the arrays TIMER and TIMERS.
The place in the array is dictated by the user’s choice, recorded in the varia-
ble TNUM.

Testing
Provided that you have previously initialised and set the time, you should
at this stage be able to test the module by typing:

menu [ENTER]
When you have the menu up, specify option 2 and input:
1,Y,0,1 and TEST

in response to the five prompts — ie timer 1 to be set, (Y)es to a count-down
timer, period no hours and one minute, with the message ‘“TEST" attached.
The program should now return to the menu. Now specify option 1 to
display the timers and you should find that timer 0 has been given a value
somewhere less than a minute ahead of the current time (how far ahead will
depend on how quick you have been) plus the label ‘TEST’. Don't bother
waiting for the alarm to sound as we have not yet entered the module to
achieve that.

Module 1.3.9: Sounding the alarm

We now have all the working elements of the program with the exception
that the timers cannot yet announce themselves with an alarm call. This
module and the next add that final touch, with the current module produc-
ing the sound and the next one connecting the alarm to the rest of the
system.

Module 1.3.9: Lines 5000 — 5270

SADD REMArk %555 5355 %80 58003 M3 K KM KK X
5@1@ DEFine FROCedure current (time)
SAZO REMark #3585 5 8305015350038 H R
S50z CLS

5040 now=DATE

5050 extract _time (time)

30

Chapter] Experiments with Time

5060 FLASH 1

507@ AT 5,14 : FRINT time$

5080 FLASH @

5070 AT 8,1B-LEN(timer#(count))/2
5100 PRINT timer#(count)

5110 AT 19,1

5128 PRINT "press any key to continue"
5130 REFPeat sound

5142 BEEF 0,10

5150 FOR delay=1 TO S0@

5160 NEXT delay

S17@ BEEF 0,20

o180 FOR delay=1 TO S0@

5198 NEXT delay

5200 BEEF

5210 t#=INKEY®

5220 IF DATE>now+6@ THEN EXIT sound
5230 IF t$<>"" THEN EXIT sound

5249 END REFeat sound
S25@ timer (count) =0
5260 timer# (count)=""
5265 sounded=1

527@ END DEFine current

Commentary
Line 5040: The current time is stored in the variable NOW. This will be
used later in the module to determine whether the alarm has been sounded
for one minute.

Lines 5050 — 5080: This module is called by one you have already entered,
WAITING. That module has already extracted a time from one of the
timers.and sent it to this module in the form of the parameter TIME, These
lines calls up EXTRACT__TIME to translate the time into a string. The
result is placed on the screen in flashing letters.

Lines 5090 — 5100: If there is a message in the corresponding line of the
array TIMERS, it is printed in the centre of the screen.

Lines 5130 — 5240: This loop sounds two notes, rather like a film version of
the siren on a French police car, for a period of 60 seconds. The lines from
5140 to 5200 sound two notes with a short delay between them, then turn
the sound off. Tests are then made to see whether a key is being pressed or
whether it is more than 60 seconds since the variable NOW was set. If either
of these tests is positive, the loop which sounds the alarm ends.

Lines 5250 — 5270: Having finished with the alarm, the value of the timer is
set to 0 and any associated message cleared. The variable SOUNDED is set
to I as an indication to the menu module that the screen has been cleared
while it was waiting for an input.

3

The Working Sinclair QL

Testing
Type:
menu [ENTER]

and specify a count-down timer with a period of a minute. The result
should be that at the end of the minute the alarm should sound for a period
of approximately one more minute. If you wish, you can set another timer
and this time cut off the alarm by pressing a key — the alarm may not stop
instantly due to the fact that the notes and the timing loop have to finish.
Finally, vou might like to check that the alarm still sounds when you have
the 12 timers displayed on the screen using menu option 1.

Module 1.3.10: Blanking the screen

The whole purpose of this program is that it should be left running in the
background so that it can act as a timer system. Leaving the QL switched
on to achieve this will do it no harm at all, but leaving the television set
switched on and displaying the same screen for long periods of time may
eventually cause some of the brighter parts of what is displayed to become
slightly etched upon the screen so that they appear as permanent ghosts
over whatever the screen is showing. (Don't panic about this, it's not some-
thing that’s going to happen just because you happen to leave the QL and
TV switched on for a few hours by mistake — we are talking about conti-
nual use of the same screen design over a long period).

To overcome this possible problem, the program has built into it ascreen
protection module which blanks the screen and then displays a short mes-
sagein flashing letters. Since flashing letters are not permanently displayed
on the screen, they will not cause etching on the screen in the same way as
normal lettering.

While the screen is blanked, the timers are constantly being sampled by
means of the previous module. Any alarms which arise will be sounded in
the normal way.

Module 1.3.10: Lines 9000 — 9120

FP@0 REMar k LT T =
F01@ DEFine PROCedure blank

FO2D REMArk %555 55550054 0 0 50108 3004 4 54
030 REFPeat blank_loop

F040 cLs

FO5a FLASH 1

060 AT 2,15

7070 PRINT "TIMER"

9080 waiting

7070 FLASH @

100 IF t$<>"" THEN EXIT blank_loop

7110 END REFeat blank_loop
7120 END DEFine blank

32

Chapter 1 Experiments with Time

Testing

Set up one or two timers for short periods and then call up the blank screen
state from the menu. Though you cannot see the state of the timers until
they expire, you should find that alarms are sounded in the normal way.

Module 1.3.11: The control module
Finally, the control module, which ties together what you have entered.

Module 1.3.11: Lines 1000— 1070

1000 REMark
181@ REMark control loop

1020 REMArk %% 5555 %000 050000 3K X
1830 initialise

1040 set_time

1050 menu

1050 CLS

1070 STOP

Testing
All the functions which you have already entered should now be available
when you run the program.

PROGRAM 1.4: EVENT

Program function

The final program in this chapter of experiments with time is fairly unusual
in that it seeks to turn the QL into a stopwatch, Of course the accuracy of a
microcomputer is not to be compared with that of specialist watches, but
the computer does have some advantages in that it can keep a record of the
times it has produced, perform calculations on them, and so on. The cur-
rent program is designed to time one of a series of events, to display the
series of times, with or without an identifying message attached and, for
each event, to calculate the period since the previous one. It can also, on
request, print out the list of times so that a hard copy can be kept.

New topics introduced in the course of this chapter:

1) The use of the SERI port for printed output from programs.

Module 1.4.1: Initialisation
A standard initialisation module. The variables will be discussed during
the course of the commentary on the program.

33

The Working Sinclair QL

18:47: 456 (00: P0: 1)
18:47:47 (00:00:01)

18:47: 49 (Q0: 00: 02) LORRY
(00:00: 04)
(PP:00:01)

(02:@@: 02)
1B:47:5 (P0: 00:@3) EBUS
19:48: 06 (00:00:07)

1B:48: 07 (0A:00:31)
18:48:11 (0Q:00:04) LORRY
8:48: 14 (0A: P0: 0F)

18:48: 15 (A0:@0:01) LORRY
18:48: (DA: 00: 06)
(QD:00:01)

(00: 00: 02>

18:48: 24 (DD: 0: @)

18:48: 24 (M0: 00: 0@)

18:48: 26 (00:00: 22) TANE

Figure 1.4: Output of Event being used to Time Traffic, with Heavy Vehicles

Marked.

Module 1.4.1: Lines 2000 — 2060

2000 REMar ke 5% 5555 3 5 3 000 3 550 506 3 0 00 00 2
2010 DEFine PROCedure initialise
2O20 REMark 5355555558 5 5 0005 35 0 HH XN W
2020 FAPER @ : INK 7 : CLS : CLSH#O
2040 timel=DATE

2050 printer=0

2060 END DEFine initialise

Module 1.4.2: Setting the time

The last in the series of time-setting modules. This one is the longest but,
paradoxically, the easiest to use. To the module in the last program has
been added the option to choose whether or not to reset the existing time.
Once the time has been set, a simple ‘N’ saves all the trouble of entering

everything again.

Moduile 1.4.2: Lines 3000 —3370
TOAO REMAr | %5655 0 0655 600001000 06

3010 DEFine FROCedure set_time
020 REMark %5585 3 550500 000 00000 0 3000

2030 REFeat date_set

040 cLS

3050 AT 1,1 z PRINT "DATE IS NOW: ":;DATE#

I060 AT 3,1 : INFUT "Do you wish to reset
date (Y/N):";0%

za7e IF @%<>"y" AND @%<>"Y" THEN RETurn

34

pat =l
Iee
100
3110
120

170
140
3150
2160

3170
3180
2190
200
3210
3220
3230
3240

3250
260
3270
280

1290
3300

3310
3X20
330
3340
3350
IT60

Chapter I Experiments with Time

CLS
AT 1,12 : PRINT "CLOCK SETTING"
REFeat year
AT 5,1 : INPUT "YEAR (1984-1999):";year
IF year >=1984 AND year<=1999 THEN EXIT
year
END REFeat year
REFeat month
AT 7,1 : INPUT "MONTH (1-12):";month
IF month>=1 AND month<=12 THEN EXIT
month
END REFeat month
REFPeat day
AT 9,1 : INPUT "DAY (1-31):":day
IF day>=@ AND day<=31 THEN EXIT day
END REFeat day
REFeat hour
AT 11,1 : INPUT "HOUR (@-23):";hour
IF hour >=@ AND hour <= THEN EXIT
hour
END REFeat hour
REFeat minute
AT 13,1 = INFUT "MINUTE (@-5%9) minute
IF minute>=@ AND minute<=5% THEN EXIT
minute
END REFPeat minute
AT 15,1 : INFUT "ARE THESE CORRECT
(Y/N) :": Q%
IF @#="y" THEN EXIT date_set
END REFeat date_set
SDATE year ,month,day,hour ,minute,®
AT 17,1 : PRINT "DATE IS NOW: ";DATE%#
AT 19,1 : PRINT "press any key to continue"
PRINT INKEY#{-1)

T~

I370 END DEFine set_time

Module 1.4.3: Waiting for input

This module is equivalent to the WAIT procedure in the previous program
in that it creates a waiting state. In addition, it is capable of recognising if
the user is asking for the printer to be connected or for the program to be
terminated.

Module 1.4.3: Lines 4000 — 4200

AQDD REMAr b 4% 55050 5 500 %0000 H

4010 DEFine FPROCedure wait
AO2Z0 REMark % %555 55 5% 5 %55 565 00008 63 0

4020
4040
4050
4060
4070
4080

message#
REFeat waiting
t#=INKEY®
IF t®{>""
time_values
IF t#=CHR#¥(1@)

35

The Working Sinclair QL

4090 INFUTH#@, "MESSABGE (<=15 CHARS):";
message¥

4100 IF LEN(message®)>15 THEN message#=
message$(1 TD 15}

4110 CLS #0

4120 END IF

4130 IF t#="p" OR t$="PF"

4140 printer=ABS(printer-1)

415@ ELSE

416@ EXIT waiting

4170 END IF

4180 END IF

4190 END REFeat waiting
4200 END DEFine wait

Commentary
Line 4030: This string will be used to store any message associated with a
particular event timing.

Lines 4070 — 4110: If the key pressed is ENTER, then the user is prompted

on the command lines at the bottom of the screen to input a short message
to accompany the event time, the command lines then being cleared again.

Lines 4130 —4140: If the key pressed is the letter P, then the value of the
variable PRINTER is toggled between zero and one. It's worth taking note
of this simple routine as it represents the classic way of shuttling a variable
between two values. If you have a variable X and you want to shuttle it
backwards and forwards between values V1 and V2 (where V1 is the
lower), the format is:

X=V1+V2-X
but, since our lower value is zero, it is simplified to:
X=V2-X

Lines 4150 — 4170: To arrive at this point, the key pressed must have been
anything but the letter P. The result is that the time values are updated by
the next module and the waiting state terminated.

Testing

Ensure that the program is initialised, then type:

wait [ENTER]

and the QL should go into the waiting state. If you press the P key, nothing
should visibly happen. If you press [ENTER], you should be prompted for

a message and the wait terminated. Any other key simply terminates the
procedure.

36

Module 1.4.4: Extracting time values

This module obtains all the information necessary for printing out the
current time and the period between events.

Chapter] Experiments with Time

Module 1.4.4: Lines 5000 — 5090

5800 REMark #* e
S@1@ DEFine PROCedure time_values
SO20 REMAr bk %55 55 55 5 505 H o 033N
Se30 time2=timel

Sean timel=DATE

5050 now$=DATE$

5060 period=timel-time2

Se7e time$=DATES (period)

5080 timef=time$ (13 TO)

5@9@ END DEFine time_values

Commentary

Lines 5030 — 5040: The last time recorded is shifted over to the variable
TIME2 before the current time is taken into TIME1.

Line 5050: The string NOW3 will be used for printing out the current time.

Lines 5060 — 5070: The difference between TIMET and TIMEZ2 is obtained
and translated into a time format by use of DATES.

Testing

Provided that you have initialised the program, type:

time__values [ENTER]

print time$,now$[ENTER]

You should find that NOWS roughly represents the current time, while

TIMES will represent the period since the program was last initialised and
TIMEI set equal to DATE.

Module 1.4.5: Printing the results

This module prints out the results of the previous calculations, either on
the screen alone, or to the screen and printer if this has been specified.

Module 1.4.5: Lines 6000 — 6090

&@@@ REMark * R X
6018 DEFine FROCedure print_values
HE@20 REMAr ke 3555 5 85 00 0 % 06 3300 0 3300

65020 PRINT now$(13 TO 28)!''"(";time#¥; ")
message¥

6040 IF printer=1

6058 OPEN#7,ser 1

37

The Working Sinclair QL.

6060 PRINTHS ,now® (13 TO 20) ''"("stime$;")"!!
message¥$
6a7e CLOSE#9

6080 END IF
6@7@ END DEFine print_values

COIJ?HIFIHHF}’

Line 6030: The time at which the key was pressed, the period since the last
event and any associated message are printed on the same line.

Lines 6040 — 6080: These lines open a channel of communication with the
port on the back of the QL labelled SER 1. This port is designed so that the
QL can communicate with a printer which operates according to what is
known as the RS232C protocol — and make sure your printer does work
with the QL before you buy it! Once the channel has been opened, items to
be printed which are sent along that channel by including the channel
number after the PRINT command will end up being output to the printer
rather than to the screen. In the case of this module the channel is opened
and closed for each item to ensure that it is properly closed when the pro-
gram terminates. It could equally well be opened at the beginning of the
program and closed at the end provided that no other use is being made of
the SER1 port. Note that if yvou don’t have a printer connected to the SER1
port and you call up the printer, the program will lock up.

Testing
If you performed the test on the previous module, just type:

print__values [ENTER]

and you should see what you previously printed out as NOWS$ and TIMES,
neatly formatted. If the variable PRINTER was equal to 1, and a printer
connected, the output will also go to the printer.

Module 1.4.6: The control module

The final touch, as always, is the control module, which ties the whole
program together.

Module 1.4.6: Lines 1000— 1120

1000 REMar ke 5 %5 55 5% 8 55 K 850500002
1@1@ REMark control loop

1020 REMArk % %8655 00 0 5509060319 06 5 9.9
1830 initialise

1840 set_time

10850 CLS
10460 REPeat control
1070 wait

38

1080 IF t#=CHR#(27) THEN EXIT control
1090 print_values

1100 END REFeat control

1118 PRINT #@,"Program terminated"”

1120 STOP

Commentary

Lines 1080 and 1110: One extra touch which isn’t apparent from the rest of
the program is that, if you pressed the ESCape key while in the waiting
loop, the program will stop, printing the message ‘Program terminated’ on
the command lines at the bottom of the screen.

Chapter | Experiments with Time

Conclusion

There are a number of lessons to be learned from the programs in this
chapter, not least that the uses of your QL are only limited by your imagin-
ation. But perhaps the most important lesson you can learn, if you look
back over the programs, is just how easy the design of programs becomes
when everything is contained in neat modules which can be transferred
from one program to the next. With its easy-to-use MERGE command and
the ability to save parts of programs, the QL cries out to be used in this way.
Once you have built up a sufficient library of useful routines you will find
that much of your programming becomes like fitting together a jigsaw
puzzle, except that the completed puzzle will, at least sometimes, be more
useful.

19

CHAPTER 2
Son et Lumiére

In this chapter we turn to a series of programs which will allow you to put
some of the QL’s graphical abilities to use and, in addition, to make the
most of the rather confusing sound commands.

The programs included in this chapter are:

DESIGNER: A tool which allows line drawings far larger than a single
screen to be constructed, manipulated and displayed.

3-D GRAPH: Using turtle graphics to produce a clear and attractive dis-
play for complex figures.

SCREEN: Copies the contents of the screen to a printer.
CHARACTERS: Designs and stores your own customised character sets.

SOUND DEMO: A simple routine to permit experiments with the sound
parameters.

MUSIC: Allows complex tunes to be input in a comprehensible form and
played.

PROGRAM 2.1: DESIGNER

Program function

Nodoubt we have all seen the impressive displays created by what is known
as CAD (computer aided design) software. With deft touches, the engineer
adds lines and shapes to a complex design, or erases those which already
exist. In a limited kind of way, Designer is intended to mimic that kind of
capability. While clearly not as sophisticated, it will allow you to create
complex designs which are far larger than a single screen, using the televi-
sion screen as a moving window to examine parts or shrinking the whole
area down so that it can be viewed in its entirety. Lines, circles and boxes
can be added at will or deleted, and the whole design stored on microdrive
for later use.
New concepts introduced in this program include:

41

The Working Sinclair QI

Figure 2.1: Screen Dump from Designer.

1) Graphics commands LINE, CIRCLE and SCALE.
2) Starting a program without clearing variables.

1) A user-defined flashing cursor in hi-res.

4) Storing and retrieving data on microdrives.

Module 2.1.1: Initialisation
A standard initialisation module.

Module 2.1.1: Lines 2000 — 2090

200D REMAr b %% 55535 5% 50 5 55 0 8 K5 3832 H
2010 DEFine FROCedure initialise

ZOZ20 REMArk %5555 0% 3% 5% 6 43 5 %6 6 6 % X%
2030 INK 7

2040 DIM al(1@0@,8)

2050 s1ze=2 : screen=100

2060 ex=83 : cy=50

2070 item=0@

2080 SCALE 100,0,0

2@09@ END DEFine initialise

Commentary

Line 2040: The array A will be used to store details of the lines and shapes
to be drawn.

Line 2050: The variable SIZE will record the size of the flashing cursor.
This will vary with the scale at which the design is being viewed.

42

Line 2060: The original coordinates of the cursor (cursor X and cursor Y).

Chapter 2 Son et Lumire

Line 2070: The number of lines or shapes contained within the drawing.

Line 2080: Later program sections will allow the design to be viewed at
different degrees of enlargement and in different sections. To begin with
we use the normal scaling of the machine, with 100 units on the horizontal
axis and the picture starting at position 0,0.

Module 2.1.2: A flashing cursor

In any design program, one of the [irst necessities is that the user should
know where the current drawing position is. This is usually achieved by
means of a cursor of some kind, marking the current position on the
screen. The cursor for this program consists of a small flashing cross which
can be moved over the design using the cursor control keys, without affect-
ing the contents of the screen,

Module 2.1.2: Lines 3000 — 3150

FOOD REMark %% 35 5 55 55 5 5 5 3 596565 5 5 3 6 % 2
2010 DEFine PROCedure cross

IO2@ REMark %8550 0 50 5 5 0 50500 0 033 8
Ieze OVER -1

@40 REFeat draw

I0s0 LINE cx-size,cy TO cx+size,cy
2060 LINE cx,cy-size TO cx,cy+size
In7@ FOR delay=1 TO 1@ : NEXT delay
080 LINE cx-size,cy TO cu+size,cy
090 LINE cx,cy-size TD cx,cy+size
100 FOR delay=1 TO 1@ : NEXT delay
110 t¥=INKEY#

122 IF t#$<>"" THEM EXIT draw

3130 END REFeat draw
140 OVER @
315@ END DEFine cross

Cominentary

Lines 3040 — 3130: These lines draw two short lines, to a length of SIZE, at
right angles, crossing at the current drawing position. The cursor is drawn
with OVER set in such a way that it reverses any pixels over which it passes.
Drawing the cursor twice erases it and reinstates the screen to the position
which existed before it was drawn. The two DELAY loops ensure that the
timing is such that the cursor appears to be flashing rather than merely
flickering.

Lines 3110 — 3120: These lines ensure that the cursor will continue to flash
until a key is pressed. Dealing with the input is the job of the next module.

43

The Working Sinclair QL

Testing
Type:

initialise| ENTER]
crosslENTER]

The screen should clear and you should see the small flashing cursor appear
in the cenire. Pressing any key should make the cross disappear and termi-
nate the module.

Module 2.1.3: Input of commands

Having given ourselves a flashing cursor and the ability to deiec_t the user
pressing a key, the current module allocates work amon.g tl:le various parts
of the program when a key is pressed. Its correct functioning can only be
tested when the subsequent module, the short control module,'ls added.
Most of the single commands mentioned in the commentary will not, of
course, become operative until later modules are added.

Module 2.1.3: Lines 4000 — 4270

ABOD REMArk %3508 534533 H 8 H R XU R

491@ DEFine FROCedure analyse key

4020 REMarlk * o *%

4030 IF t$=CHR#¥(192) THEN =cx-1

4040 IF t#=CHR#¥ (196} THEN —1@%screen/100
4050 IF t$#=CHR¥ (200) THEN cx=cx+1l

4060 IF t#=CHR¥(2@4) THEN c u+1@%*screen/ 100
4070 IF t#=CHR$ (208) THEN y+1

4080 IF t#=CHR¥(212) THEN cy=cy+1@*screen/100
4070 IF t¥=CHR¥(216) THEN cy=cy-1

4100 IF t#=CHR$ (22@) THEN cy=cy-10%screen/100
4110 IF t#="1"

4120 nl=cn

4130 yi=cy

4140 END IF

4150 IF tg="1"

4160

4170

::gg OR THEN line_draw
4200 OR * THEN circle_draw
4210 ' OR THEN bo:

4220 oR THEN remove

4270 IF t¥="s" OR ' THEN scaling
424@ IF t¥="m" OR t¥="M" THEN store
4250 IF t#=CHR#$(27) THEN STOP

4260 CLS #@

427@ END DEFine analyse_key

M

Chapter 2 Son et Lumiére

Commentary

Lines 4030 — 4100: The character codes given here are those of the cursor
keys. Pressing one of the cursor arrows alters the value of CX or CY, thus
moving the cursor. Using the shifted cursor keys moves the cursor 10
screen positions, regardless of the scale at which the design is being viewed.

Lines 4110 — 4140: Input of ‘1* defines the end of a line or shape to be
drawn.

Lines 4150 — 4180: Input of '!" moves the cursor immediately to the posi-
tion defined by pressing 1.

Line 4190: Input of ‘L’ draws a line between the points defined by the
pressing of 1 and the current position of the cursor.

Line 4200: Input of *C’ resulis in the drawing of a circle whose circumfer-
ence will touch points 1 and the current cursor position and whose centre
will lie halfway between them.

Line 4210: Input of ‘B’ draws a box whose upper lefthand corner is defined
by I and bottom righthand corner by the current cursor position.

Line 4220: Input of ‘D’ puts the program into the mode where individual
lines can be deleted.

Line 4230: Input of ‘S’ allows the user to change the scale or position from
which the design is viewed.

Line 4240: Input of ‘M’ stores the design on microdrive.

Line 4250: Pressing ESCape stops the program.

Module 2.1.4: The control module

The short control module needs to be entered at this point so that the cursor
move function can be tested and later modules tested as they are entered.
Note that the module makes provision for the recall of data from micro-
drives — this will be discussed in full when the relevant modules are
entered. In addition, provision is made for the user to specify whether the
program is to clear its variables or not.

Module2.1.4: Lines 1000— 1140

1000 REMAr ki %3 5% 5 % 55050 08 46 0 505 30963 363 % 4

181@ DEFine FROCedure do (fresh)

1820 REMark *% *

1a3e CLS : CLS #@ : OVER ©@

1040 IF fresh THEN initialise

1050 CLS #@

1060 INFUT #@,"Load from Microdrive (y/n): ";qf

45

The Working Sinclair QL

187@ IF g#="y" OR q$="Y"
1080 recall

189@ END IF

1100 REFeat »

1110 cross

1120 analyse_key

117@ END REFeat x

114@ END DEFine do

Commentary

Lines 1010 and 1040: The argument attached to DO is used to determine
whether the initialisation module will be called up. If the command to start
the program is DO 1, the variables will be cleared, while if it is DO 0, they
will be left intact and any existing design may be retrieved.

Testing

Start the program with DO | and vou should find that you are able to move
the flashing cursor around by means of the cursor control keys. None of
the other program functions will yet be available.

Module 2.1.5: Drawing a line

The simplest kind of addition which can be made to the design is the draw-
ing of a line between points I and 2. Like all the drawing modules, this one
draws the line with OVER set, then gives the user the opportunity to con-
firm the addition before it is finalised. Ina crowded design, adding the line
with OVER set will erase any inked pixels over which the line passes. This is
rectified when the line is confirmed or when it is erased.

Module 2.1.5: Lines 5000 — 5130

5000 REMark *%% **
S@1@ DEFine FROCedure line_draw

SOZ20 REMar ko #5555 555 550 0503 300 0 33 0 58 5 5 03
Seze OVER -1

5049 LINE x1,yl TO cx,cy

5050 INFUT #@,"CONFIRM (Y/N):";q#%
S060 IF g#="Y" OR g#="y"

S87@ OVER @

S080 type=t

5090 record

S510@ END IF
5110 LINE x1,y1 TO cu,cy

S512@ OVER ©

5120 END DEFine line_draw

Testing

Enter the following lines which will form part of a later module:
8000 DEF PROCrecord

8350 END DEFrecord

46

Chapter2 Sonet Lumiére

Now run the program and immediately press 1 to define one end of a line.
Now move the cursor and press ‘L’ (or ‘I'). You should see a line drawn
between the two points and be asked to confirm it. If you do confirm it, the
flashing cursor will return. If you do not confirm it, the line should be
erased before the cursor returns.

Module 2.1.6: Drawing a circle

This module is, in principle, no different from the last, with a shape being
drawn and confirmed by the user. Apart from the two defined points,
however, one further piece of information is required, namely the rotation
of the circle to be drawn — since it may not be a pure circle but an ellipse of
some kind.

Module 2.1.6: Lines 6000 — 6180

SADD REMAr b 55505 0000000003320 30 2
&@1@ DEFine FROCedure circle_draw

SOZ0 REMAr K 336583 53 36 35 365530953 5 303 365 36 4
&030 OVER -1

&40 ox={xl+cx) /2

&£05@ oy={yl+cy) /2

&060 ra=ABS (cy-y1} /2

&070 e=ABS (cx—x 1)/ (ABS (cy—y1) +1)

LHA80 INPUT #@,"ROTATION (@-36@): ":iro
&£090 CIRCLE ox,oy,ra,e,RAD(ro)

45100 INPUT #@,"CONFIRM (Y/N):";q¥%
6110 IF q#="Y" OR q#="y"

65120 OVER @
&130 type=2
6140 record

6158 END IF

6160 CIRCLE ox,oy,ra,e,RAD(ro)
&170 OVER @

&6£18@ END DEFine circle_draw

Commentary

Lines 6040 — 6050: The origin of the circle is discovered by adding the X
and Y coordinates of points 1 and 2 and dividing by two, thus finding a
point halfway in between.

Lines 6060 — 6070: The QL works, for the radius of its CIRCLE command,
on the Y axis, so half the distance between the two Y coordinates is calcu-
lated. Any difference between the distance between the Y coordinates and
the X coordinates will be used to supply the ‘eccentricity’ of the circle, the
degree to which it will appear stretched or squashed horizontally.

Line 6080: Having defined the shape, the circle command also requires a
figure for the rotation of that shape. Thisis input in degrees and translated
into radians using RAD.

47

The Working Sinclair QL

Testing

You should now be able to call up the circle command with ‘C* while the
program is running.

Module 2.1.7: Drawing a box

The final shape which the program is capable of drawing is a simple rectan-
gle, with its opposite corners at points 1 and 2. This module is slightly more
complex than the previous ones since there is no built-in command for the
shape and, in addition, I have included provision for it to be rotated.

Module 2.1.7: Lines 7000— 7260

TOOO REMAr b 5% %55 5 3% 0 3554506 3 3343 0 0 6 4 %
7010 DEFine FROCedure box

TO20 REMAr ko 06555 0 35 30 00K M 5006336
7030 OVER -1

7040 Hl+cu) /2
70850 y={yl+cy) /2
7060 INFUT #@,"ROTATION (@-360): ";ro

7a7@ ro=RAD (ro)

7080 raxl=ox+ (:1-0x) *COS(ro)+ (y1-oy) #SIN{ro)
7a%0 ryl=oy+(yl-oy)*COS(ro)—(x1-0x) *SIN(ro)
7100 ruZ=ox+{(cx—ox) *COS(ro)+{(yl-oy) *SIN(ra)
7110 ry2=oy+{yl-oy) #C0OS(ro)~{cx—ox) *SIN(ro)
7120 ral=ox+ (cx-ox) #COS(ro)+ (cy—oy) #*SIN(ro)
7130 ryI=oy+ (Cy-oy)*COS(ro)-(cx—-ox) #*SIN(ro)
7140 rafd=ox+ G:1-ox) *COS(ro)+ (cy—oy) *SIN{(ro)
715@ ryd=oy+(Cy—oy) *COS(ro)—(x1-ox) *SIN{ro)
7160 LINE rxl,ryl TO rx2,ry2 TO rx3,ry3 TO
. rad,ry4 TO rxl,ryl

7170 INFUT #@,"CONFIRM (Y/N):z"3q¥F

7180 IF g#="¥Y" OR q#="vy"

7190 OVER @
7200 type=3
7210 record

7220 END IF

7230 LINE rxl,ryl TO rx2,ry2 TO rx3,ry3 TO
rzd,ryd TO rul,ryl

7240 OVER @

7250 CLS #@

726@ END DEFine box

Comimentary

Lines 7040 — 7050: Because we are going to supply the option of rotating
the rectangle, its centre has to be found in the same way as for the circle.
Lines 7080 — 7150: The formulae for rotating one point around another are
as follows:

X2 =XO + XD *COS ANGLE + YD * SIN ANGLE
Y2 =YO + YD*COS ANGLE — XD * SIN ANGLE

48

i
i
.
i
i
i
i
1}
)
|

Chapter2 Sonet Lumiére

X2 AND Y2 are the X and Y coordinates which result from rotating the
point X,Y.

XO and YO are the coordinates around which the point is being rotated.
XD and YD are the distances of X and Y from XO and YO respectively.
ANGLE is the angle through which the point defined by X and Y is being
rotated.

The basic rectangle, unrotated, will have corners of X1/Y1, X2/Y1,
X2/¥2 and X1/Y2. Looking at the lines and comparing them with the
formulae above, you should be able to see that they provide the rotated
coordinates for the four corner points.

Testing
Youshould now be able to press B, define a rectangle and rotate it at will, in
the same way as a circle.

Module 2.1.8: Recording a design

A program like this one is little use for anything but some passing fun
unless the design being worked on can be recorded in some way. In our
case, recording the design in an array will later allow us both to store the
data on microdrive and to delete individual lines. Lines and shapes are all
recorded by calling this module as they are entered, which is why we earlier
had to enter the two lines which begin and end this module before tests
could be made.

Module 2.1.8: Lines 8000 — 8350

BODO REMAr ko % 5 5 5 5 50 00 50500000
B@1® DEFine FROCedure record

BOZO REMark ##%558EEEEEREEREREENENRE
B0 IF item=1001

B8R40 FRINT #@, "NO ROOM FOR MORE LINES"
BOSD tE=INEEY$(-1)
8050 RETurn

8070 END IF
8080 IF type=1
B@7@ alitem,@)=type
100 atitem,!1 ¢
B11@ a(item,2
8120 atitem,3)
8170 alitem,4)
8140 END IF
8150 IF type=2

81460 atitem,@)=type
ai7e alitem,1)=oxn
8180 alitem,2)=ay
217

8200 alitem,4)=e

49

The Working Sinclair QL

B210 altitem.S)=ro
221 END IF

8230 IF type=3

8240 alitem,@)=tyvpe

8250 alitem,1)=rxnl

82460 alitem,2
8270 alitem,=
8280 alitem,d)=

8270 alitem,S
2200 atitem,6) 3
831@ alitem,7)=rx4
atitem,B8)=ry4
END IF

item=item+1
8350 END DEFine record

Commentary

Lines 8080 — 8140: If the new item is a simple line, all that needs to be done
is to record its type (1) and the start and finish coordinates.

Lines 8150 — 8220: [n the case of a circle, the coordinates of the centre, the
radius, the eccentricity and the rotation are recorded.

Lines 8230 —8330: For a box, the X and Y coordinates of all the four
corners needs to be recorded if the rotation is not to be recalculated when
the shape is redrawn.

Module 2.1.9: Redrawing a shape

Having given ourselves the ability to record a shape in an array, we now
turn to the question of retrieving a shape from an array and placing it back
on the screen.

Module 2.1.9: Lines 10000 — 10120

1000 REMar ko #5555 5 5 5 000 5 3 5 3050 803K K3 %

1@@1@ DEFine PROCedure global_draw (i)

10020 REMArk %% K 655550 5 5000 H XN

1000 IF a(i,@)=1

10240 LINE af{i,1),a(i,2) TO a(i,3),ali,4)

10252 END IF

10050 IF ati,@)y=2

10070 CIRCLE afi,1),ali,
RAD (afi,5))

10080 END IF

10070 IF a(i,@) =3

10100 LINE ati,1),a(i,2) TO a(i,3),a(i,q4) TO
a(i,s),ati,6) TO ati,7),ali,B8) TO
ali, 1}, ati,2)

1@11@ END IF

18120 END DEFine global draw

yali,3),adi, 4,

50

Chapter2 Sonet Lumiére

Testing
Run the program and draw a few shapes, stop the program with ESCape
and then clear the screen. Call up the drawing module by typing:

global__draw (0)[ENTER]
and you should see your first shape redrawn. According to the number of

shapes you originally drew, you can call up GLOBAL_DRAW with argu-
ments other than zero.

Module 2.1.10: Redrawing the whole design

With a module installed which is capable of redrawing a single line or
shape, it becomes a trivial matter to redraw the whole design.

Module 2.1.10: Lines 9000 — 9090
9000 REMar k *

991@ DEFine PROCedure redraw
GA2D REMAr k53555353 5 30 3350503603903
030 IF item>@

[040 CLs

9050 FOR i=@ TOD item-1
060 global _draw (i)
070 NEXT i

9080 END IF
9@9@ END DEFine recall

Testing

When you have entered a number of lines and shapes, stop the program,
clear the screen and type:

redraw[ENTER]

The entire design should be recreated on the screen.

Module 2.1.11: Deleting lines and shapes
Since the design is not stored as a whole but in the form of individual lines
and shapes, it is also a simple matter to give the user the option of deleting
individual items. This module displays the whole design, line by line, with
the option of deleting any line. It can also be used to redraw the design if the
screen has been cleared by stopping the program.

Module 2.1.11: Lines 11000~ 11400
11000 REMAr k853565358 5 556 5 6 3005 08 5 % 6 %% %
11210 DEFine PROCedure remove

11020 REMAr K 555 50 5000050350 5505969 0%

51

The Working Sinclair QL

11070 CLS

1104@ i=0

110850 FRINT #@, "DELETE (Y/N): ="

110460 FRINT #@,\"ESCAPE TO TERMINATE DELETE

FUNCTION"
11870 REFeat loop
11080 REFeat flashing
11070 OVER -1
11100 global _draw (1)
1111@ global _draw (1)
11120 t1#=INKEY%¥
11170 IF tis="y" OR ti$="Y"
11142 FOR i=i TOD item-1
11150 FOR k=0 TO 8
111680 ati,k)=alji+l, k)
11170 NEXT k
11180 NEXT j
11190 item=item-1
11200 EXIT flashing
11210 END IF
11220 IF t1$=CHR#%(27)
11270 OVER @
11290 FOR j=i TO item-—1
11250 global _draw (j)
11260 NEXT 3
11270 RETurn
11280 END IF
11290 IF i<
EXIT flashing
END IF
END REFeat flashing
IF ti1$<>"y" AND €1$<>"Y"
OVER @
global _draw (1)
i=i+]
END IF
11780 IF i=item THEN EXIT loop

11790 END REFeat loop
1140@ END DEFine remove

Commentary
Lines 11080 — 11320: This loop continually draws and redraws one line or
shape with OVER set to minus one, so that the item flashes on the screen.

Lines 11130 — 11210 [f the user responds with ‘Y’ to the prompt asking if
the item is to be deleted, the rest of the contents of the array above the
current item are copied down one place, wiping that item out.

Lines 11220 — 11280: If the ESCape key is pressed, the rest of the design is
drawn and the module terminates. This facility is useful for redrawing the
design if the program has been restarted with DO 0.

52

Chapter2 Sonet Lumigre

Lines 11290 -11370: Any key other than ‘Y’ or ‘y’ simply sends the
module onto the next item in the design, having drawn the current shape on
the screen.

Testing

Provided that you have entered some shapes, you should now be able to
press ‘D’ from the main part of the program to obtain this module. Con-
firm that you can page through the design you have entered, deleting items
or leaving them untouched. Pressing ESCape at the beginning of the design
should result in no change being made.

Module 2.1.12: Windows and scales

We have so far not touched at all on one of the most useful abilities of
Designer — to move the screen like a window over a large design or to
shrink a design so that it can be seen on a single screen. Normally, this is a
fairly complex mathematical manouevre but the simplicity of this module
is anindication of the power that SuperBASIC brings to bear in its graphics
commands. The lines of calculations necessary on most other machines are
reduced on the QL to a single, simple SCALE command.

Module 2.1.12: Lines 12000— 12120

12000 REMAr k50550050 50 00005303854

12010 DEFine PROCedure scaling

12020 REMark #5565 55 0 0 6 508 % 005 %% 5% % % % %

1200 INFUT #@,"SCALE (S@-1000@): ";screen
12040 INFUT #@,"ORIGIN X (@-995@): ";org
12050 INFUT #@,"ORIGIN Y (B-9950): ";org_y
12040 size=2#*screen/100

12070 IF size<2 THEN size=2

1208@ SCALE screen,org x,org y

12050 cx=org_x+1.éb*screen/2

12100 cy=org_y+screen/2

12110 redraw

12120 END DEFine scaling

Commentary

Line 12030: On start-up, the design is viewed on a scale where 100 units
would represent the height of the screen. This can be altered so that the
design can be viewed at twice the size (50 units screen height) or one hun-
dredth the scale (10,000 units screen height).

Line 12040 — 12050: We noted at the beginning that the program allows for
designs of up to 10,000 by 10,000 pixels. To begin with, the program
presents you with a view of the bottom lefthand corner of the design,
beginning at coordinates 0,0. Using the scale command, however, it is per-

53

The Working Sinclair QL

fectly possible Lo move the coordinates represented by the bottom lefthand
corner of the screen, so that a different part of the design is seen.

Line 12060: The size of the cursor must vary according to the scale at which
the design is being viewed. If the design has been been shrunk by a factor of
a hundred, a cursor which is 4/100 pixels across will not be much use.

Lines 12090 — 12100: Having rescaled the screen, the cursor coordinates
are recalculated so that they lie in the middle of the screen — note that the
screen is always 1.6 times as wide as it is high. Note that moving the screen
inrelation to the design is the fast way to move the cursor from one point to
another.

Testing

With a design entered, vou should now be able to move the screen over the
design and enlarge or shrink it.

Module 2.1.13: Storing data on microdrive

We now turn to a very important module from the point of view of this
program and, indeed, of most of the programs in the book. This module
and the next form a unit which allows data generated by a program to be
stored on microdrive and then retrieved by the program at a later date.

Module 2.1.13: Lines 13000— 13170
12000 REMark 555355 3 5 5% 5 300 33535
13010 DEFine FROCedure store

13020 REMark *¥x% *

13030 CLS

12040 AT 1,14 : PRINT "SAVE DATA"
13050 INFUTMA" NMame of data file:
130460 tfile¥="mdvl_" & file#
17078 DELETE tfile#¥

17080 OFEN_NEW #8,"mdv1_" % file¥
132090 FPRINTH#S,item

iZ100 FOR i=@ TO item—1

13118 FOR j=@ TO B
13120 FPRINT #B8,a(i,)
13130 NEXT j

13140 NEXT 1

13150 CLOSE#S

13160 redraw

1317@ END DEFine store

Comimentary

Lines 13050 — 13060: The module gives the user the chance to define the
name under which the data is to be stored. This is only possible because the
QL allows us to use a string variable as a filename when talking to to the
microdrives.

54

Chapter2 Sonet Lumiére

Line 13070: Since one object of the program is to be able to work on an
existing file, modify it and store it again, we must be careful to remove any
files of the same name before attempting to store some data, otherwise the
program will stop with an ALREADY EXISTS error message.

Line 13080: The microdrive is instructed to create a new file (OPEN__
NEW), which will be accessed along ‘48, or channel 8, by the program.
The file is to be on microdrive 1 and will appear in the directory under the
name recorded in FILES.

Lines 13090 — 13140: These lines simply print out the data stored in array,
not to the screen but to channel 8, which we have already informed the
operating system is to be directly associated with the data file we have just
opened. Note that in storing on microdrive it is important to store the
number of items to be recorded as the first item. This allows the next
module, which recalls the data, to know how many items are to be picked
up. There are other methods, such as detecting the end of file marker, but
they are none of them as fast as knowing exactly how many items are to be
obtained.

Line 13150: In order to create a valid file, we must ensure that it is properly
terminated. This is done using the CLOSE command, which also frees
channel 8 for other uses.

Line 13160: Having corrupted the screen in storing the data, the design is
recreated using REDRAW.

Module 2.1.14: Recalling the data

This is a mirror image of the previous module, in allowing data on the
microdrive to be picked up and the design which it defines to be recreated.

Module 2.1.14: Lines 14000 — 14160

14008 REMark %

1401@ DEFine FROCedure recall

14020 REMark 65555556 5 5 5 5 8 030500 0 8 9 5 % 0

1403 CLs

14040 AT 1,14 : PRINT "RECALL DATA"
is@se DIR mdvi_

14060 INPUTA\" Name of data file:":file$
14070 OPEN_IN #B8,"mdv1l_" & file$

14080 INPUTH#B,item

14090 FOR i=@ TO item—1
14100 FOR j=0 T0 8
1411@ INPUT #8,a(i,j)
14120 NEXT j

14130 NEXT i

14140 CLOSE#8

14150 redraw

1416@ END DEFine recall

55

The Working Sinclair QL

Commentary

Lines 14050 — 14060: The directory for the cartridge currently in drive 1 is
displayed and the user asked to specify which file is to be used.

Line 14070: The name input by the user is used to open an existing file
(OPEN__IN).

Lines 14090 — 14140: The information which was stored by the last module
is pulled of f the drive in exactly the same order.

Line 14150: The design whose details have been obtained is placed on to the
screen using REDRAW.

Testing

Ensure that there is a properly formatted microdrive cartridge in drive 1,
then create a simple design and use ‘M’ to store it. Stop the program, then
start it again with DO 1 to clear the memory. Answer ‘Y’ to the prompt
asking you if you wish to load from the microdrive. Give the name of the
file under which the design was stored and you should see the drive activate
and then the design recreated on the screen.

If this test is successful, the program is ready for use.

PROGRAM 2.2: 3-D GRAPH

Program function

This program is intended as a timely warning against over-reliance on the
increasing tendency of major manufacturers to make their machines the
basis of amuch broader package including software. Later in the book you
will find several examples of applications which could no doubt be simu-
lated using your Psion software, raising the question of whether you wish
1o rely solely on what you are given or retain the ability to design for
yourself.

The current program is hardly a complex one, but that is precisely the
point. In relatively few lines, it succeeds in creating a visual display of
certain types of numeric information which is far more striking than any-
thing which the excellent Easel package can produce. A full three-
dimensional graph effect is created by the elementary use of the turtle
graphics commands, giving a taste of the power they hold for more
complex applications.

New concepls introduced during the course of the program include:

1) Flexible use of DATA statements.
2) The turtle graphics commands.

56

Chapter2 Sonet Lumiére

188 UHNITS

il

’H —
I

Figure 2.2: Part of Display Generated by 3-D Graph.

Module 2.2.1: Simple line drawing

The beauty of the QL’s turtle graphics is the sheer simplicity which they
bring to the drawing of shapes, as indicated by this two-line module. Its
effect is to accept an instruction to draw a line in a certain direction for a
certain distance.

Module 2.2.1: Lines 3000 - 3050

0D REMArk %5355 5354 5 55 55 3 5 0 004 8 4 % %

3810 DEFine FROCedure turtle (angle,distance)
TO20 REMark *As @ it¥niXdsdidiniiinsy

bl d] TURNTD angle

3040 MOVE distance

IB5@ END DEFine turtle

Module 2.2.2: Describing a shape
Once it is possible to have a line drawn, it becomes a relatively simple
matter to describe most shapes, whether two or three dimensional. The
current module lays down a three-dimensional block on the screen once a
number of variables have been defined.

Module 2.2.2: Lines 2000— 2150
2000 REMAr ko 5% 0058 5 5 K% 505055553655 %3 %
201@ DEFine FPROCedure blocks

57

The Working Sinclair QL

2020 REMark * L2 224 NN
200 LINE start_x,start_y
2040 FENDOWN

2050 turtle 180,wide

2060 turtle 90,high

2070 turtle B,wide

2080 turtle 1B@,wide

2070 turtle 30,deep

2100 turtle @,wide

2110 turtle 210,deep

2120 turtle 27@,high

2130 turtle 30,deep

2140 turtle 9@,high

2150 END DEFine blocks

Commentary
Line 2030: Using the line command with a single set of coordinates moves
the graphics cursor, thus defining the start point for the shape to be drawn.

Lines 2050 — 2140: The outline of the block. It is far easier to wait until it is
displayed on the screen than to attempt to describe what is happening here.

Testing
A number of variables have to be defined and, in addition, it will be helpful
to modify the previous module temporarily in order to allow the shape
being drawn to be analysed line by line.

Enter a temporary line:

3045 tt§ =inkeyS(—1)
then type the following in direct mode:

high =20[ENTERI

wide =20[ENTER]

deep =20[ENTER]

ink 7 : paper 0 : cIsSIENTER]

start__x=40[ENTER]

start__y =40[ENTER]

blocks[ENTER]

You should see a single line drawn on the screen. Press a key and a second
line will be drawn. As you continue to press a key each time a line is drawn,
what you are seeing is the individual TURTLE instructions being carried
out by the previous module, When you have finished the test, don’t forget
to remove the temporary program line at 3045.

Module 2.2.3:The data for the program

Most of the programs in this book, as you will discover, are interactive —

58

Chapter2 Sonet Lumiére

that is to say, as they run they request information from the user and act
upon it. This is the ideal method for most purposes, but when limited
amounts of data are being processed it is quite possible that the amount of
programming involved in providing the interactive routines gets out of
proportion to the possible benefits.

One simple solution is to make use of the often neglected DATA
statement, which allows information to be recorded within the program
itself and recaptured by the program using the READ statement. The
advantage of this is that, once information has been recorded in DATA
statements, it can easily be saved with a program, or saved as a separate
section and later merged with the core of the program. It can easily be
displayed by use of nothing more complex than LIST and, of course,
changes to the data can be made by use of EDIT. The current module is an
example of how a DATA module can be laid out so that the information it
contains is easily recognisable,

Module 2.2.3: Lines 5000— 5380

SOBD REMar b %% %% % % %% H %% 0% KR H XM EKHHHH
S@1@ REMark data

SO20 REMark #%¥xddsessdsbniiiennsnssn
5038 :

S040 REMark NUMBER OF COLUMNS (1-1@)
Sas0 DATA 10

5060 :

-a7e REMark NUMBER OF BANKS (1-4)
5080 DATA 4

5090 :

5100 REMar k NAMES FOR BANES

S11@ DATA "Bank 1"

5120 DATA "Bank 2"

S1Z0 DATA "Bank I"

5140 DATA "Bank 4"

5150 :

5160 REMark NAME FOR VERTICAL AXIS
5170 DATA "VERTICAL"

5180 :

S517@ REMar k. MAXIMUM VALUE VERTICALLY
5200 DATA 100

5210 :

5220 REMark NO. OF MARKERS VERTICALLY
5270 DATA 1@

5240
5250 REMark NAME FOR HORIZONTAL AXIS

5260 DATA "Horizontal"

9270 :

5280 REMark DATA FOR BANK 1

52790 DATA 100,45,60,100,51,47,4%,40,38,%7
53200
5319 REMark DATA FOR BANE 2

S320 DATA é8,58,56,5%,51,47,41,35,29,22

The Working Sinclair QL

5330 :
5340 REMarl DATA FOR BANK 3

535@ DATA 2,4,6,9,12,15,19,23,20,15

5360 :

5370 REMark DATA FOR BANE 4

5380 DATA 2,4,6,%,12,15,19,23,20,15

Commentary

Lines 5040 — 5050: The program as currently written is intended to d_eal
with between one and four rows of three-dimensional columns. Accordlr_lg
to the number of columns in arow, the width of the individual columns will
be adjusted so that the full width of the sereen is used.

Lines 5070 — 5080: One to four rows can be displayed, each being drawn in
front of the previous row. For this reason, the program is most suited t_o
applications where there is a fair guarantee that one set of figures will
contain values which are less than those of a previous set. An example of
this might be the turnover and profit of acompany overa number of years,
where profit is always going to be less than turnover. If the front rows of a
particular display are going to be consistently higher than the b'fu:k rows,
the back rows will be effectively hidden and the display of very little use.
Lines 5100 — 5140: The names of the individual rows, or banks, will even-
tually be displayed at the bottom of the screen in colours appropriate to the
four banks.

Lines 5160 — 5230: The name to be displayed against the vertical axis and
the maximum number of units it is intended to represent. Figures input for
the height of the individual columns will be expressed as a pmponion.of
this maximum figure. The user may specify the number of units into which
the axis is to be divided.

Lines 5250 — 5260: The name to be displayed against the horizontal axis of
the graph.

Lines 5280 — 5380: The data for the 4*10 columns specified for the graph.

Module 2.2.4: Reading in the data

Having entered the data on which the graph will be bascfl. we now turn to
the module which will convert that data into variables which will be used by
the drawing routines.

Module 2.2.4: Lines 1000 — 1280

100D REMark %5655 850 48038300 H 20NN K

1@1@ REMark control
{1D70 REMArk %%%%3%8% %08 %856 H K HH U X KX

12z@ FAFER @ : CLS : CLSH#O
1940 RESTORE S@00@

60

Chapter2 Son et Lumiére

1052 READ columns,banks
1060 DIM bank¥(banks-1,20)
1970 FOR i=@ TO banks-—1
1080 READ bank#$ (i)

1070 NEXT i

1100 RESTORE S160

1110 READ v_. s¥,v_max,v_marks
1120 READ h_. s¥

1170 wide=INT(100/columns)
1140 deep=5

1150 grid

1160 RESTORE S529@

1170 FOR bank=1 TOD banks

1180 start _: S-deep*bank+wide
1170 start_y=10-deep* (bank-1} /2
1200 FOR i=1 7O columns

1210 READ high

1220 high=high*8@/v_max

1220 FILL 1 : INK bank+l : blocks
1240 FILL @ = INK @ : blocks
125 start x=start_x+wide+Z2
1260 NEXT i

1270 NEXT bank

1280 STOP

Commentary

Lines 1050 — 1090: The number of columns and banks is read from the
DATA section and the names for the four banks stored in the array
BANKS.

Lines 1100 - 1150: The DATA relating to the vertical axis and the name of
the horizontal axis is read. The width of the individual columns is calcu-
lated so that one row of columns will span one hundred graphics locations
across the screen. The variable DEEP records the amount by which an
individual column will appear to go back ‘into’ the screen, Finally the call
to GRID, the next module, will produce the framework within which the
eventual graph will be displayed. Note the RESTORE statement which sets
the READ instruction to the appropriate line for data. It is important,
when setting up your own graphs, that you do stick to the same sections
within the data module as shown in the current program. If less than four
banks are o be used, do not delete the spare lines and renumber or you may
confuse the acquisition of data.

Lines 1160 — 1270: These lines read the figures from the last section of the
data module, which represent the height of the individual columns. The
two loops ensure that the correct number of columns are created for each
bank in turn. The variables START__X and START__Y are set for each
bank so that each row of columns will start lower down and (o the left of its
predecessor. As each column is completed, START__X is incremented so
that the row will be drawn from left to right.

61

The Working Sinclair QL

Lines 1210 — 1240: The figures for the height of each column are read and
recalculated so that they conform to the maximum value laid down for the
vertical axis. The line drawing routines are now called up twice. Onthe first
call the columns are drawn with FILL set and with a different colour for
each bank — the result is a rather leatureless shape. The second call
switches off FILL and sets the INK colour to black. The result is that the
edges of the column are picked out in black, giving a three-dimensional
effect. As each column is completed, START_X is incremented so that
the row is drawn from right to left.

Testing

The module can only be tested if the reference to GRID is deleted in line
1150, since that module has yet to be entered, or if the first three lines and
the last line of the next module are entered so that there is a dummy pro-
cedure called ‘grid’ for the current module to call up.

Once that has been done, simply run the program and you should see the
four banks of columns drawn on a black screen. In comparing the height of
(he columns with the figures contained in the data module, remember that
the 3-D effect means that each bank is slightly lower than the previous one.
To find the true height of a column, you need to follow back its top surface
to the back row, since it is the front top edge of columns on the back row
which accurately represents the height of the column. This will be clearer
when the next module has been entered, giving a grid against which to
measure the columns.

Module 2.2.5: Drawing the grid for the graph

A simple module which draws lines across the screen at the intervals
specified by the user, and which labels the various axes.

Module 2.2.5: Lines 4000 — 4200

APDD REMar ke #3530 5 5 3 0 008355300303
4@1@ DEFine FROCedure arid

ADZD REMAr b #5555 003303056 9060 0 3 0 0933063 3
403@ INE 7

4040 v_unit=8@/v_marks

4250 LINE @,96 TO @,0 TO 15@0,@ TO 150,96
406@ FOR i=@ TO v_marks
4070 LINE @,10+i*v_unit TO 15@,1@+i*v_unit

4080 NEXT i

4070 AT @,12 ¢ FRINT v_max;" UNITS"

4100 v_axis$=v_axisE & " " & INT (v_masx/v_marks)
g "x" % v_marks

4110 FOR i=1 TO LEN(v_axis¥)

4120 AT i-1,35 : PRINT v_axis¥ (i)

62

i

Chapter 2 Son et Lumiére

4130 NEXT i

4148 FRINT #@,h_axis#

415@ FOR i=@ TO 3

4160 AT #0,i,20 : INK #@,i+2
4170 FRINT #@,bank$ (i)

4180 NEXT i

4190 AT #0,1,0

200 END DEFine grid

Testing

Ruu_ning the program should now result in the same display of columns,
but in this case properly labelled.

PROGRAM 2.3: SCREEN

Program function

This program is, in its original form at least, a triumph of technique over
commonsense. Its purpose is to provide a screen dump, or copy to a
printer, of the contents of the screen. This is not an over-complex task,
though the details can be a little fiddly. What it is, however, in BASIC, is
very time-consuming. The screen covers a lot of memory within the QL
(32K), and every byte — indeed every bit — has to be analysed before the
full sereen dump is achieved.

One of the major problems is that micros and printers work in different
directions. The QL, like most other micros, records the contents of the
screen in the form of 8-bit bytes, with each bit in a particular byte repre-
senting one in a line of eight pixels across the screen (in the QL it isn’t quite
this simple, but we’ll go into that later). Printers, or at least the dot-matrix
variety, are usually capable of receiving byte and interpreting it as an
instruction to print eight dots in a line — but vertically.

The result of all this is that, while the screen memory of the micro is held
in straightforward bytes and while the printer can be sent straightforward
bytes, the whole thing falls apart because, in order to print exactly what is
on the screen, the bytes in the micro’s memory have to be sliced apart and
combined with parts of others. Consider the 64-pixel square in Figure 2.3,

00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 16 77

Figure 2.3: 64-Pixel Square.

63

The Working Sinclair QL

To a typical micro, the small block represented would be stored in the
form of eight bytes, the first recording pixels 00— 07, the second 10— 17,
etc. For a typical printer to print the area represented, the information
would have to be supplied in the form of eight bytes, the first recording
00— 70, the second recording 01 — 71 etc. In the case of the QL the situation
is even worse, since, rather than recording the information in easily-
addressable blocks of eight bytes, the QL’s screen memory is arranged in
single-pixel thickness lines right the way across the screen.

Even so, with proper analysis of the screen memory bytes, and time-con-
suming translations, any printer capable of bit-mapped graphics can be
made to print out a black and white copy of the screen. The only problem is
that, for most conceivable purposes, all the work of translation is entirely
unnecessary. My co-author on several other books, Mark England,
pointed out that if, in terms of the 8*8 square of pixels printed above, the
printer were sent eight bytes containing 70— 77,60— 67,50 57, etc, it
would print out the square perfectly, except that the piece of paper would
need to be turned through 20 degrees. The resulting program takes one-
fifth the time to do exactly the same job, except that on some printers,
where the horizontal spacing between the pixels is different from the
vertical, the image may be squashed one way or another. For the sake of
completeness, both methads are included within the program, though you
are free to regard the first four modules as nothing more than an interesting
example of how to analyse the contents of an area of screen memory, and
accordingly omit them.

The arrangement of screen memory on the QL

Before we go any further, it would be wise to take a quick look at the way in
which screen memory on the QL is arranged, since it is, like previous
Sinclair machines, a little eccentric and has a major effect on the way the
program has been written,

In essence, the QL’s screen memory consists of 32K of memory (32768
bytes) which begins at address 131072. The screen which the user sees (ona
domestic TV) is 1024 pixels across, and a single line across of 1024 pixels is
represented by 128 bytes of consecutive memory. Thus a picture of screen
memory might look like this:

TOP LEFT TOP RIGHT
T 1 131199
131200 =vmemie 5 = & cwm o % i 5 2 EIENGS S & e S 131327
1175 1.7:7, SR 163711
P . Y 163839
BOTTOMLEFT BOTTOMRIGHT

64

Chapter2 Sonet Lumiére

This, of course, is the whole screen, including the areas given over to the
border and to the #0 command lines at the bottom. The part normally
used by the program is 896 pixels wide and 200 pixels high, and its start and
finish addresses are as follows:

TOP LEFT TOPRIGHT
193128 & & 0 ¢ % ERER R 4§ SEIE B BRI & 3 ST 133239
188B00 = = o o = i B B W L B SANAD £ € SuNoR 158711
BOTTOMLEFT BOTTOMRIGHT

But even this does not actually define the situation for there is no simple
one to one relationship between the bytes and the screen pixels, rather the
relationship varies according to the screen mode being employed.

In mode 8, the lower resolution mode, each group of eight pixels hori-
zontally has two bytes controlling it. The two bytes dictate four char-
acteristics about each pixel in the group — whether their colour includes
green, red, and blue, and whether they are flashing. Elementary maths
leads to an obvious conclusion here. Two bytes contain 16 bits, so, using
two bytes, there is no way in which four facts can be recorded about eight
pixels, ie 32 facts. The solution to this is that in the lower resolution mode
the pixels are grouped in horizontal pairs, so that each characteristic
applies to two pixels in a group of four double pixels. Each two memory
bytes are arranged in the following manner:

BYTE 1 BYTE2
PIXELPAIR 1/2 3/4 5/6 7/8 172 3/4 5/6 7/8
[GF] [GF] [GF] [GF] [RB] [RB] [RB] [RBI

where F records whether FLASH is set for the pixel pair and G, R and B
record whether green, red and blue are included in its colour.

In high resolution mode, where the four available colours can all be
produced from two primary colours, and the flash characteristic is not
available, there are accordingly only two pieces of information to be
recorded about each pixel, and two bytes can deal with eight individual
pixels, rather than grouping them into pairs:

BYTE 1 BYTE 2
PIXELNo. 1 2 3 4 5 6 7 8 1 23 456 78
[GHGIGIHGHGIGHGHG] [RIIRIRI[RIR]I[R][R][R]

Inthe program which follows, we take advantage of this two-byte structure
to exclude certain colours from the screen dump, thus allowing a greater

65

The Working Sirclair QL

variely of background colours. The ever-present problem with screen
dumps is how to choose the basis on which a pixel is going to be regarded as
‘set” and therefore printed — if all the colours are regarded as setting the
pixel, then only areas of the screen which are black (ie have no colour
whatsoever) will be left blank in the screen dump. For the sake of simplicity
I have chosen to look only at the second of the two bytes when choosing
pixels which will be printed. This means that in both low and high resolu-
tion, backgrounds (or lettering) of either black or green will be left blank
on the paper.

Module 2.3.1: Control

In use, this module would be altered substantially. In its present form, its
job is to fill the screen with a range of characters before calling up the
modules which carry out the screen dump.

Module 2.3.1: Lines 12000 — 12190

12000 REMAr b 555 5% 55 5 0 5 5 5 0 30 50 505

1201@ DEFine PROCedure screen

12020 REMAr b 5855 50 5 00000000300 000N

1200 FAPER @ : INK 7 : CLS : CLS#0@

12040 FOR i=1 7O 20

12@5@ PRINT "#";FILL¥(CHR¥(47+1) ,35);"*"

12060 NEXT i

12070 CIRCLE 80,50,20

12080 CIRCLE 80,50,40

12090 REFeat check

12100 INFUT #0,"0UICE OR SLOW (Q/S): ":0%

12110 IF @%="g" OR Q+="0" OR @%="s" DR Q¥%="S"
THEMN EXIT check

12120 END REFeat check

12170 CLS#O

12140 OFEN #8,ser |

12150 PRINT #8,CHR#(27);"A";CHR¥(8)

12160 THEN line_start
12170 THEN line_start_2
12180

1217@ END DEFine screen

Commentary

Lines 12090 — 12120: These lines allow the user to specify which of the two
methods of dumping the screen is to be employed — see the introduction to
the program for further explanation.

Line 12150: Any screen dump program must be aimed at a specific printer
or printers and be capable of generating the specific commands needed by
that particular machine. The current program is intended for an Epson
FX-80 dot-matrix printer. This particular sequence of characters sets the
spacing between each line of characters printed at 8/72 of an inch, remov-
ing the small gap which is normally left between each line. If you are using a

66

Chapter2 Sonet Lumiére

different printer, you will have to consult your manual as to the correct
method of achieving this or, indeed, any of the special printer commands
contained within the program. If your printer is not capable of altering the
distance between lines, you will probably find that, when solid blocks
extend over two character lines, a thin white line will be seen.

Testing

There is no effective way of testing any of these modules until the whole
screen dump routine is entered. The program is not a long one, so this
should not represent a major inconvenience.

Module 2.3.2: Stepping down the screen

The method in this first program section will be to scan the screen from left
to right in 8*8 pixel squares, thus allowing a block of eight bytes to be
translated for the benefit of the printer. Since the screen memory is
arranged in lines of one pixel thickness which cross the entire width of the
screen before beginning again on the next line down, not in neat 8*8 pixel
squares, the first need is to identify the start position in memory of each
line of 8*8 blocks.

Screen memory for the central part of the screen starts at address
133128. To move eight pixels down the screen we have to move on 1024
bytes through the screen memory — eight lines, each 128 bytes long. The
loop which determines the start of each line of 8*8 pixel squares will there-
fore start at 133129 (remember that we are using only the second of each
pair of bytes) and move through the two hundred lines of pixels down the
screen in steps of eight lines (8*128).

Module 2.3.2: Lines 4000 — 4090

4900 REMark
4@10@ DEFine PROCedure line_start

A4@20 REMark %6658 5530855050058 35 13003 % 0 3

4030 FOR 1_start=133129 T0O 133129+199%128 STEF

128+%8
4040 tp=nr
4050 read_line
a060 PRINT #8,CHR$ (27) ; "L";CHR$ (192) s CHRE (1) 5
4070 PRINT #8,t%

4080 NEXT 1_start

4@9@ EMD DEFine line_start

Commentary

Line 4060: In the case of the FX-80 printer, the sequence CHR$(27);"L"
puts the printer into bit-mapped graphics mode. CHR$(192); CHR$(1) des-
cribe the number of items of data which the printer should expect to receive
before printing a line. This is set to 448 (192+ 256*1) because we shall be
printing one vertical byte for hall the number of bits which represent the

67

The Working Sinclair QL

width of the screen. The screen is 112 bytes wide, giving 8*56 vertical lines
to be sent to the printer before one line is complete. For other printers, you
will need to know what the sequence is to enter bit-mapped mode, and
whether they accept a block of data or print each vertical line as it is
received — consult your manual.

Line 4070: The string of characters which later modules have built up,
representing the first eight lines on the screen.

Module 2.3.3: Stepping across the screen

Having found the beginning of each block of eight lines, this loop scans
across the screen in steps of two bytes, thus selecting the second of the two
bytes which refer to each group of pixels.

Module 2.3.3: Lines 3000 — 3060

ZOOD REMAr ke 5% %5 5 3 5 56 55 00 336 5 3 30 3 3

3010 DEFine PROCedure read line

TD20 REMAr ko 5550005565550 336550

030 FOR start = 1_start TO 1_start+111 STEF 2
ECLT read_bit

3050 NEXT start

IP6@ END DEFine read_line

Module 2.3.4: Stepping through eight bits

We can now identify the position of a single byte in the screen memory but,
as we have seen, that byte is of no interest to the printer, which prints
downwards rather than across. Referring back to Figure 2.3, what we have
to do is to identify eight bytes which fall in a line downwards and then to
read the 64 pixels in the form of eight downwards bytes. The first step is to
set up a loop which reads through eight bit positions.

Module 2.3.4: Lines 2000 — 2060
2000 REMark *
2010 DEFine FROCedure read_bit

2020 REMAr k365355 3 5 55 5530 50 45305500595 9 95 5
2030 FOR bit=@ TD 7

2040 read 8

2050 NEXT bit

2060 END DEFine read_bit

Module 2.3.5: Translating from horizontal bytes to vertical

The final module required by this method takes one bit from each of the
cight bytes in the block and creates a new byte out of them which is a
recording of one eight-pixel vertical line on the screen.

68

Chapter2 Sonet Lumiére

Module 2.3.5: Lines 1000— 1080

1000 REMark 6535 0 05050003303 333365
1010 DEFine FROCedure read_8

1020 REMAr k%5555 55 % 5508000083003 3 06 3 0 3 3
1025 t_byte=0

1@Z@ FOR byte=@ TO 7

1040 IF PEEK (start+bytex128) %% 2°(7-bit)
1050 t_byte=t_byte+2"(7-byte)
1060 END IF

18780 NEXT byte
1075 t#$=tf & CHR$(t_byte)
1080 END DEFine read_8

Commentary
Line 1025: T__BYTE will be used to store the vertical byte as it is built up.

Lines 1040 — 1060: These lines use the && operator to discover whether a
particular bit is set in each of the eight bytes which the loop shuttles
through. The effect of && is to compare two numbers and to return a result
consisting of a number which has a binary ‘I’ wherever both of the
compared numbers also have a binary *1°. Thus comparing:

16 — 00010000 with 127 — 01111111

the result is 16, since that is the only bit which is set in both. To find out ifa
particular bit is set within a byte, all we have to do is to compare 2°BIT
NUMBER with the byte. If the result is still 2”BIT NUMBER, then that bit
is set in the byte. The loop therefore shuttles down the eight bytes, using
these lines to detect which of the eight bits are set and adding the value of
the vertical byte. Note that though the memory is read from top to bottom,
the particular printer involved requires the pixels to be represented in the
opposite order, so the value added to the vertical byte is 2°(7 — BYTE), not
2’BYTE.

Line 1075: Having run through the eight bytes and created one vertical
byte, the value of this is added to the string which will eventually be printed
out.

Testing

If you have an Epson FX-80 printer, or one of the many other types which
have a compatible set of commands, you are now in a position to type
SCREEN, call for a slow printout and see the demonstration screen created
and dumped to the printer. Be warned that this process will take some 20

minutes or more.

If you have a printer which is not compatible with the Epson command
set, [am afraid it is a matter of adjusting the printer commands contained
within the program to your own machine. Provided that you have a bit-
mapped graphics capability, however, this should not be difficult.

69

The Working Sinclair QL

Module 2.3.6: Stepping through the lines with the sideways
method

We now turn to the first of the two modules which produce a quicker
printout by turning the image sideways, thus reducing the amount of calcu-
lation to be done. I will not go into detail in the commentary on these three
modules, since they are far simpler to follow than those for the previous
method.

Thecurrent module starts the program reading the bottom lefthand byte
of the screen. Later modules will dictate that each line is read from the
bottom of the screen to the top, a single line of bytes. Each new line will
start, therefore, on the next byte along the bottom of the screen, or rather
the next but one since we are only using every other byte. The bottom to top
lines are 200 bytes long but, as you can see from line 11060, the printer is
told to expect 400 bytes. This is because on the particular printer being
used, a better effect is gained by printing each set of pixels twice.

Module 2.3.6: Lines 11000 — 11090

110080 REMark # XX

11@1@ DEFine PROCedure line_start 2

11020 REMAr k#5555 5 59 3 35 3 9 0 3030 5000 3 0 96 30 3 %

11238 FOR 1_start=158601 TD 1586@1+111 STEF 2

11040 tH=""

11050 read_line_2

11060 PRINT #8,CHR$¥(27);"L";CHR$(144) ;CHR¥ (1)
1107@ PRINT #8,t%

11088 NEXT 1_start
11@9@ END DEFine line_start_2

Module 2.3.7: Stepping up the screen

Having established the bottom of a line of bytes to be read, all that remains
is to step up the line, jumping 128 bytes each time and placing the byte
found into T$ to be printed. In fact, as mentioned, the effect is better with
the FX-80 if each byte is printed twice,

Module 2.3.7: Lines 10000 — 10060

10000 REMArk 535 5% 5 5 55 35 536 0000 38 6 04 60

1P@1@ DEFine PROCedure read_line_2

1ODZ0 REMArbe 35555 8% 303560603 04 % 8 30K 0 8%

10070 FOR byte = 1_start TO 1_start-199%128
STEF -128

190490 t#=t$ & CHR# (PEEK (byte)) % CHR# (PEEK

(byte))
10050 NEXT byte
1@@6@ END DEFine read line 2

70

Chapter 2 Son et Lumiére

Testing

As with the previous method, but this time you will find that a column of
characters is printed across the screen every eight seconds or so.

Using the program

As it is presently set up, the program is no more than a demonstration of
the fact that a screen dump can be done. In use, it should be renumbered
with a high starting number and line increments of 1, so that it can be
merged in with the program from which you want a dump. When the
screen display is as you want it, either stop the program and enter ‘screen’
or call up SCREEN from within the program. Remember that the program
is designed to ignore green and black. If the colour combinations you have
chosen give problems, you will have to use the RECOL command to
achieve something which makes sense when translated into black and
white.

PROGRAM 2.4: CHARACTERS

Program function

Having looked at some of the high resolution capabilities of the QL, we
now turn to one slightly unusual aspect of using low resolution graphics —
a program to allow you to change the shape of the characters which the QL
prints on the screen. But before we go on to the program proper, a word of
explanation is needed about the way characters are created and printed on
the screen.

The QL’s screen, in low resolution mode (mode 8), has space for 20 lines,
each of 37 characters, a total of 740 character spaces. In other words you
could print 740 separate items on the screen, though some of them would
be the same since the QL cannot generate 740 different characters at the
same time. That 740, however, is not the end of the story. If you were to
look closely at any character on the screen you would find that it is not
composed of solid lines, like the words you are reading now, but of dots. In
fact every one of the character spaces on the screen is made up of 64 dot
positions and it is combinations of these 64 dots which make up each char-
acter the QL can display. The letter ‘A’, for instance, might be made up as
in Figure 2.4,

The dots which make up the characters are known as ‘pixels’, which is
short for “picture elements’, and they represent the smallest item which the
QL can handle on the screen, though, in mode 8, the QL will only handle
two pixels at a time.

Such complex shapes do not appear by chance, and it is clear that some-
where in the QL’s memory it must be laid down that, when you press the

71

The Working Sinelair QL

ROH 1 --) 1
2 =31
3 =)
4=y
3 --»!
6 -1
7o)
g -1

Figure 2.4: Enlargement of Letter ‘A’ as it might Appear On-screen.

key labelled “A’, the pattern of dots shown in the illustration appears on
the screen. In fact, all the characters which the QL can print are stored in
the form of numbers, in the QL’s ROM, an area called the ‘character
memory’ or ‘character ROM’. Each character is allocated nine bytes of
memory, and each of those bytes determines where the pixels shall appear
on onc--mw of the character. This done by making the value of each byte
into a picture of the row in the binary numbering system used by the QL,
where numbers are expressed in terms of powers of the number 2 rather
than the number 10, as in our normal counting.
Thus, 201300 in our usual way of counting means:

(2410°6) + (0*10°5) + (1*10°4) 4 (3*10°3) + (0*10°2) + (0*10°1) + (6*10°0)
In binary, however, the only digits allowed are ‘1’ and ‘0’, and a number
like:

11001010

means:

(2°7)+(2°6) + (2°3) +(2°1) — ignoring the zeros

A full understanding of binary is not necessary, provided that you
remember that a single byte of memory in the QL is capable of holding one
eight-digit binary number, and that all those ones and zeros are a pierfect
way of recording which pixels in a single row of a character are swut.ched
on. The letter *A’, for instance, could be represented by the eight binary
numbers:

00011000
00111100
01100110
oriri11r1itro
01100110
01100110
01100110
00000000

72

Chapter2 Sonet Lumiére

If you look closely you can still see the ‘A’ quite clearly, this time painted in
‘s rather than pixels, though you’d have a hard time recognising it as:

24,60,102,126,102,102,102,0

which is what the binary numbers are when translated into our more com-
fortable decimal system of numbering.

The point of all this is that, when you call for a character to be printed on
thescreen, the QL looks at the contents of the ‘character memory’ and uses
what it finds there to draw the character on the screen.

It follows from all of this that if it were possible to change the contents of
the character memory, the shape of the characters printed on the screen
would also change. We could have customised lettering, new graphics
characters, anything at all which would fit into the basic 8*8 character
square,

The problem, however, is that the character memory cannot be altered.
Itis part of the ROM, the ‘read only memory’ which is permanently built in
to the QL. What we can do is to copy it to somewhere else in RAM, the kind
of memory that can be changed, and then tell the ever-obedient QL that
that is where character details are now to be taken from. Having done that,
we can muck about with the character set as much as we like — and that is
the purpose of the following program.

AT
TG

Figure 2.5: Typical Display from Characters.
The display shows the screen during the character editing code, with a letter ‘A"
which has been rotated by 180 degrees.

Module 2.4.1: Initialisation

A standard initialisation module, which also calls up the next module to
transfer the character data from ROM to RAM. Note, as in previous pro-

73

The Working Sinclair QL

grams, the provision to start the program without initialising, by entering
DO 0. This is particularly important in the case of the present program
because part of the initialisation process is the setting aside of an area of
memory to hold character data. If, having set up the reserved area, the
program is initialised again, more memory will be reserved.

Module 2.4.1: Lines 11000~ 11060

11000 REMar-k 355 8505 00000 050 5005 X%
11010 DEFine PROCedure initialise

11820 REMark *®%%x

11830 DIM array(7,7)

11@84@ ch=32 : key=@ : high=0 : wide=0
1i@5@ transfer

11@5@ END DEFine initialise

Module 2.4.2: Transferring the character set

This short module is all that is needed to transfer the entire character set for
#0 into RAM and then to set up all the variables necessary to switch the
QL s attention to it. The actual switching will be accomplished by the con-
trol module since there is no need to go through the whole process of trans-
fer if the program is stopped and started again. The ease with which the
whole process can be accomplished depends on the fact that the QL keepsa
record in RAM of where the character set is to be found. This register is set
up when the QL is switched on but it can be changed to indicate another
start address.

Module 2.4.2: Lines 24000 — 24100

24008 REMark
24@1@ DEFine FROCedure transfer

24020 REMark 3358 33 5 330 00 3 580 3 33 500 3 0005

24039 char _reg=147722

24012 rom_start=PEEK_L (char_reg)

24050 user _start=RESFR (B75)

24060 char_start=user_start+11

24970 FOR i=@ TO B75 STEP 4

24080 POKE_L user_start+i,PEEK_L (rom_start+i)
240908 NEXT i

24100 END DEFine transfer

Commentary
Line 24030: This the address at which is found the two-byte register
recording the start of the character data for channel 0.

Line 24040: ROM__START is set equal to the contents of the register so
that the program will (a) know where to copy the data from and (b) know
where to tell the system to find the original characters when the program
terminates.

74

Chapier2 Sonet Lumiére

Line 24050: The RESPR command is used to achieve two things, the set-
ting aside of 876 bytes of memory in the space allocated to the procedures
and the setting of the variable USER__START to the beginning of that
area. This is the area which will be used to store the character data. The
characters which can be printed, and therefore which we can manipulate,
are 32 (space) to 127 (copyright symbol), 96 in all. Each of them requires
nine bytes to define, making a total of 864 bytes, plus 11 attached to the
beginning of the character set for internal housekeeping purposes. Note
that this allocation of memory is permanent in any one session. Loading
subsequent programs will leave the memory area reserved — to free it, you
must restart the system.

Line 24060: As indicated in the commentary on the last line, the first 11
bytes of the character data are of no use to us, so the actual characters will
start at USER__START plus 11.

Lines 24070 — 24090: The ROM character data is read, four bytes at a time
using PEEK__L and placed into the specially reserved area of RAM.

Testing

Type:

transfer[ENTER]

poke__I char__reg,user__start{ ENTER]
print 123

If everything is well, you will see 123 printed on the screen in a perfectly
normal way, even though you have instructed the system to take its char-
acter data from the reserved area of RAM. Before continuing, it might be
wise to enter:

poke__| char__reg,rom__start

to switch back to the ROM character set.

Module 2.4.3: Displaying a magnified character

The essence of this program is that it will make it easy to edit characters.
One way in which this is achieved is by printing an enlarged version of a
specified character so that a cursor can be moved around it. This module
allows the character to be specified and then prints it.

Module 2.4.3: Lines 12000 — 12270
12000 REMark #3558 555 5 5 5% 5908 2983 9421 X 00

12018 DEFine PROCedure grid
12020 REMArk 5355 55855 5 5 0 %0 6 4 3 5503 30 3 %%

75

The Working Sinclair QL

120308 REPeat screen

12040 ing=""

12050 PAPER 4 : CLS

12060 PAPER 3

12070 FOR i=@ TO 7

12080 AT i,B : PRINT " "

12090 MNEXT i

12100 PRINT FILL#(" ",9)

12118 FOR i=@ TO 7

12120 byte=PEEK (char_start+(ch-32) #9+i)
12130 FOR j=7 TD @ STEF -1

1214@ array{i,7-j)=(2"j=(byte %% 27j))
12150 NEXT j

12160 NEXT i

12170 redraw

12180 INK @ = PAFER 4

1217@ AT 12,1 : PRINT "CHARACTER NUMBER:
12200 INPUTAA\" NUMBER TO MOVE (@=REDEFINE
12210 ch=ch+q¥

12220 IF ch<32 THEN ch=32

12230 IF ch>18@ THEN ch=100

12240 IF q$="B" THEN change

12258 IF key=27 THEN EXIT screen

12260 END REPeat screen

1227® END DEFine grid

Commentary

Lines 12060 — 12090: The outline of an 8*8 box is printed in the top left-
hand corner of the screen, using inverse spaces. The character itself is
defined on an 8*9 (9 bytes of 8 bits) grid but one of the lines is reserved to
maintain the spacing between characters, so we shall work with only eight
lines.

Lines 12110 — 12170z These two loops scan each of the binary digits of each
of the eight bytes recording the character shape. The variable CH records
the number of the character to be extracted — in the INITIALISATION
module it is set to 32, or space, the first of the characters in the set. The &&
operator is used to determine whether a particular digit is *1* or ‘0".

In the program itself, the value of the loop variable J is used to create the
eight powers of 2 which can be contained in a single byte and then to test
whether they are present in the byte being examined by use of &&. Ifa ‘1" is
found, then the corresponding element of ARRAY is set to 1, indicating
the presence of a set pixel. Eventually, the next module REDRAW will be
used to draw the picture contained in ARRAY within the box, with an
inverse space where there would be a pixel — if not, a space is printed. In
this way an enlarged version of the character shape recorded in the bytes is
printed.

Lines 12200 — 12230: You can change the character on display by adding to
or subtracting from the value of CH, within the range of character codes

76

-

Chapter? Sonet Lumidre

from 32 to 127. To move on to another number simply enter a number to
add or subtract from the current value of CH (eg 10 or — 10).

Testing

This must wait for the entr 3 ichi
vy of the next module, which is used t v
enlarged character. o drawthe

Module 2.4.4: Drawing the shape

anhing.comp]%x_ here, simply a matter of printing a black space in the
appropriate position for every element which is set to 1 in ARRAY.

Module 2.4.4: Lines 15000 - 15120
1500@ REMark
15010 DEFine PROCedure redraw
15020 REMark #**

15030 FOR i=@ TO 7

*

15040 FOR j=@ TO 7

15050 AT i,j

15060 PAPER 4

15870 IF array(i,j)=1 THEN

15080 PRINT * » FARER @
15078 NEXT j

15100 NEXT i
151102 PAPER 4
15128 END DEFine redraw

Testing

You can now make a proper test of what you have entered so far. Make

sure the program is initialised, run the test suggested for the TRANSFER
module and then type:

grid[ENTER]

You shul._lld see the square drawn and the prompt for an input displayed
By entering positive or negative numbers you should be able to pagv.;
through the available characters, seeing them displayed in large format on
the screen. As with TRANSFER, it would be wise to move the character set
back into ROM before proceeding. .

Module 2.4.5: A flashing cursor

This is a straightforward module similar to the one you entered in De-

signer. The only real difference is that here what is being flashed is simply
an asterisk.

77

The Working Sinclair QL

Module 2.4.5: Lines 14000 — 14140

14000 REMark #5555 8300 55 500 300 30 0 3333393
14@1@ DEFine PROCedure flash_test

14020 REMark *H

14030 REPeat loop

14@4@ OVER -1 : INK 4

12850 AT yi,x1 : PRINT "#"

14060 FOR delay=1 TO 2@ : NEXT delay
14070 AT yl,x1 = PRINT "#"

14080 FOR delay=1 TO 20 : NEXT delay
1407@ in¥=INKEY$ (1)

14100 INK @ : OVER @

14110 IF in%<>"" THEN EXIT loop

14120 END REFPeat loop
14130 key=CODE (in%)
1414@ END DEFine flash_test

Commentary

Line 14130: It may seem odd to take the code of a string character to work
on, but this deals with a major problem encountered on my particular
version of the QL. and that is the inability to distinguish between char-
acters whose codes are 160 apart. Tests for cursor characters and function
keys are rendered a nonsense, since they also pick ordinary characters with
codes 160 less than the characters being tested for.

Testing

Type:
x1=0:yl=0[ENTER]
flash__test[ENTER]

and you should see a flashing ‘*” in the top lefthand corner, of the screen.
Press a key and the program will stop.

Module 2.4.6: Entering commands

This module combines to present a menu, to move the flashing cursor, to
ink in or erase the magnified pixels and to accept commands to manipulate
the current character. Instructions for its use are contained in the menu
itself.

Module 2.4.6: Lines 13000 — 13600

13008 REMaril #x%x%

1301@ DEFine PROCedure change

13020 REMArk 65555 553 5 45 55 005030 5 0 5 4 % 5
13030 x1=0 : x2=0 : y1=0 : y2=0
13040 AT 180,08 : CLS 2

13050 OPEN #4,scr

78

——

13060
13070
13080
13870
13100
i3110
13120
131370
13140
13150
13160
13178
13180
13190
13200
13210
13220
13230
13240
13250
13260
13278
13280
13290
13300
13310
13320
13330
13340
13350
13360
13370
13380
13390
13400
13410
13420
13430
13440
13450
13460
13470
13480
13490
13500
13510
13520
13530
13540
13550
13560
13570
13580
1359@

Chapter2 Sonet Lumiére

WINDOW #4,320,240,160,16
PAPER #4.,4 : INK #4,0

AT #4,1,0

PRINT #4,"'F1° INK IN SQUARE"

PRINT #4," 'FS5° BLANK SQUARE"
PRINT #4," "B’ BLOCK SHIFT LEFT"
PRINT #4,"I° INVERT"

FRINT #4,"'M° MIRROR"
PRINT #4,"°T° TURN"
PRINT #4,""P° PLACE IN MEMORY"
PRINT #4,"°'S° SAVE ON MICRODRIVE"
FPRINT #4,"°L° LOAD FROM MICRODRIVE"
PRINT #4," A" ANDTHER CHARACTER"
PRINT #4,"‘H’ CSIZE HEIGHT"
PRINT "'W' CSIZE WIDTH"
PRINT "ESCAPE" TERMINATE"
PRINT #4,"CURSOR ARROWS TO MOVE"
CLOSE #4
REFPeat keys
AT 12,8 : PRINT " N
PRINT " 2
CSIZE wide,high
AT 12/(high+1),4 : PRINT CHR$(ch)
CSIZE @,0
flash_test
IF %1>8 AND key=1%92 THEN x1=x1-1
IF %1<7 AND key=200 THEN x1=x1+1
IF y1>@ AND key=2@0B THEN yl=y1-1
IF y1<7 AND key=21& THEN yl=y1+1
IF key=232
array{yl,x1)=1
AT yi,x1 : PAPER ® : PRINT " "
END IF
IF key=248
array(yl,x1)=0
AT y1,x1 : PAPER 4 : PRINT " "

END IF
SELect ON key
ON key=6& : block_shift
ON key=73 : invert
ON key=77 : mirror
ON key=B4 : rotate
ON key=80 : memory
ON key=72 : high=1-high
ON key=87 : wide=wide+1-4%{(wide>2)
ON t store : EXIT keys
ON : recall : EXIT keys
ON : EXIT keys
ON key=27
POKE_L char _reg,rom_start
EXIT keys
END SELect
FAFPER 4

END REPeat keys

1360@ END DEFine change

9

The Working Sinclair QL

Commentary

Lines 13060 — 13230: The menu for the program is printed in a WINDOW
opened to the righthand side of the screen. This has the advantage of
making it easier to position the items in the menu without having to use AT,
but also ensures that the menu will not become corrupted by changes made
to the character set. All we are editing with this program, remember, is the
character set for #0— openinga new window called # 4 meansan unaffec-
ted character set.

Lines 13250 — 13290: The current character is printed underneath the 8*8
square, in the current character size. Since it is printed on the normal
screen, #0, if its configuration in memory is changed, its appearance will
change.

Lines 13310 — 13340: These lines detect the use of the cursor keys and alter
the coordinates of the flashing cursor.

Lines 13350 — 13420: The tests for the two function keys F1 and F5.

Lines 13490 — 13500: Pressing the H or W key shuttles through the legal
values for the CSIZE command. The reason for allowing the user to
change the CSIZE of the character displayed by lines 13250 — 13290 is that
the QL interprets character data differently according to the CSIZE of the
character — setting pixels in columns 1, 7 and 8 has unpredictable results.
When designing a character to be used at alarger CSIZE than 0,0 the H and
‘W keys should be used to view it at the appropriate size.

Line 13540: If the program is terminated properly, through the menu, the
address of the ROM character set is POKEd back into the register which
tells the QL where to look for character data. It is important to terminate
the program only through the menu, since otherwise running the program
again could result in the system becoming confused as to the correct value
for ROM__START and so on.

Testing

Start the program with ‘grid” and select a character. When it has been
drawn you should be able to enter ‘0’ and see the menu displayed. You
should be able to move the flashing cursor around the square without
corrupting it. Pressing the function key F1 will ink in a new pixel, while F5
will erase one. None of the other commands, with the exception of ‘A’ to
return to the previous module, will have any effect apart from stopping the
program with an error message. Note that throughout the use of this menu,
only capital leiters will be accepted as inputs, lower case letters will have no
effect.

80

-

Chapter2 Son et Lumigre

Module 2.4.7: Creating an inverse character

We now turn to a series of modules which make the task of editing a char-
acter a little easier by performing operations on the whole character, like
turning it into its mirror image or rotating it through 90 degrees. The cur-
rent module simple creates an inverse of the existing character by swapping
all the ones and zeros in ARRAY and then calling REDRAW. Any pixel
which was set will be erased, and any position which was blank will have a
pixel printed in it.

There is a difficulty about using this module, however. Although the
program gives you the ability to edit the character on the 8*8 grid, bits 7, |
and 0, that is to say the leftmost and two rightmost columns, are not used
by the QL for the character. Setting pixels in these columns can lead to
unpredictable results when the character is displayed, with chunks of it
disappearing completely. This needs to be remembered when inverting
characters, which will usually mean inking in all the pixels in those
columns. Unless you are looking for special effects, you may want to go
through the character after inversion, clearing columns 1, 7 and 8.

Module 2.4.7: Lines 17000 — 17130

17000 REMark #**
17018 DEFine PROCedure invert

17020 REMark #**%x% R R
17030 FOR i=@ TO 7

17@4@ FOR ;=@ TD 7

17050 IF array(i,j)=0
178460 array(i,jl=1
i7@7@ ELSE

17080 array(i,j)=0
17070 END IF

17100 NEXT j

17110 NEXT i
1712@ redraw
17130 END DEFine invert

Testing

Start the program with ‘grid’ and enter the edit mode. When the menu is
displayed, press ‘I and you should see an inverse character created. Now
press ‘I’ again and the character should be restored to normal. Note that
this only refers to the magnified character — not the normal-sized one to
the right of the 8*8 square. The normal-sized character will only change if
you decide to enter your edited character into memory using a later
module.

Module 2.4.8: Copying the array

Before we go on to the other routines to manipulate a character, we shall
need this one which copies an array called TEMP into ARRAY. TEMP will

81

be used as a temporary storage place when manipulations are being made
on ARRAY.

The Warking Sinclair QL.

Module 2.4.8: Lines 16000 — 16080

16808 REMark #*#*% **
16010 DEFine PROCedure array_copy
16020 REMark
16030 FOR i=0 T0 7

16040 FOR j=@ TO 7
16050 array(i,j)=temp (i,)
16060 MNEXT 3

16070 NEXT i
16080 END DEFine array_copy

Module 2.4.9: Creating a mirror image

This module takes the character displayed and ‘turns it over” as if it were
being viewed in a mirror. Unlike the INVERT module, which operated
directly on ARRAY, this one uses the array TEMP to store the result until
the transformation is completed. The reason for this is that when moving
items around within the 8*8 square, the program would be overwriting the
original contents and so would be come confused as to what had to be
moved and what had already been moved.

Module 2.4.9: Lines 18000— 18130

180AD REMar k#4555 5 5 500 3 05 30 33 3355658 3 3 3 3
18@1@ DEFine FROCedure mirror

18020 REMark 53535536358 05 5 30 0 40400000 0%
1800 DIM temp(7,7)

10040 FOR i=@ 10 7

18050 FOR j=@ TO 7
18060 IF array(i,j)=1
18070 temp (i ,7-j)=1
18080 END IF

isasa NEXT j

18180 NEXT i

i811@ array_copy

18120 redraw

1813@ END DEFine mirror

Commentary

Lines 18060 — 18080: The lines which are being read from left to right in
ARRAY are copied into TEMP from right to left. Note that thereis only a
need to copy the elements set to 1, since TEMP was filled with zeros when it
was dimensioned at the beginning of the module.

Testing
Start the program with ‘grid’ and call up the editing menu. Press ‘M’ and,

82

SR —

Chapter2 Sonet Lumiére

after a pause while the character is being copied into the array, you should
see it printed in mirrored form.

Module 2.4.10: Turning a character

If you think of the character you are editing as being printed on a sheet of
transparent plastic, then apart from holding it at an angle, everything you
could do with that plastic sheet can be accomplished by a combination of
mirroring the character and/or turning it through 90 degrees one or more
times. The current module again uses the array TEMP, but this time to turn
the character in the 8*8 square 90 degrees anti-clockwise,

Module 2.4.10: Lines 19000— 19130

1900@ REMark 555 8355 533 3 3 3550 35 500 0 0 %
1781@ DEFine FPROCedure rotate

19020 REMark
17032 DIM temp(7,7)
19040 FOR i=@ T0O 7

19050 FOR j=@ TO 7
17060 IF array(i,j)=t
i7@7@ temp (7-j,i)=1
17080 END IF

19050 NEXT i

19100 NEXT i

19110 array_copy
19120 redraw

1913@ END DEFine rotate

Comimentary

Lines 19060 — 19080: Rotation is achieved by reversing the two coordinates
I and J when an element is copied into TEMP, and also inverting J so that
7-Jisused.

Testing

Start the program with ‘grid’, call up the editing menu and then press ‘T.
After a pause, the character will be reprinted, turned through 90 degrees. If
you press “T” three more times, the character should be restored toits origi-
nal position. Try experimenting with combinations of mirror, turn and
inverse until you are familiar with their effects,

Module 2.4.11: Shifting a character left

One final simple operation is provided by this module, which allows a
character to be shifted to the left by one position. If pixels move off the
lefthand edge of the square, they reappear at the right. In fact, by rotating

the character before it is shifted and then rotating it again, characters can
be shifted in any direction within the square.

83

The Working Sinclair QL

Module 2.4.11: Lines 20000 - 20130

20000 REMark W
20010 DEFine PROCedure block_shift
20020 REMar ke 5565 553500 50 503 55 535 5 336 33 %
20030 DIM temp(7,7)

20040 FOR i=@ 70 7

200sa FOR =@ TO 7

20060 IF array (i,j)=1

20070 temp (i, ji-1+4B% (j=0)) =1
20080 END IF

20070 NEXT j

20100 NEXT 1

zZa110 array_copy

20120 redraw

20130 END DEFine block _shift

Module 2.4.12: Entering an edited character into memory

Sa far, you have been able to manipulate the magnified character in the 8*8
square until it perhaps bears no relation to the original pattern. All of this,
however, has made absolutely no difference to the normal-sized version of
the character which is printed underneath the 8*8 square. The changes you
have made have not yet been entered into the character memory and they
will not be entered until you are satisfied with what you have created. Once
you have arrived at what you want, however, this module will make the
paitern in the square into part of your customised character set.

Module 2.4.12: Lines 2100021100
21000 REMark " »
2101@ DEFine PROCedure memory

DLO20 REMAr | 5550500 55000530000
z210e3a FOR i=@ TO 7

21040 byte=0
21050 FOR j=@8 TO 7

21060 byte=byte + 2~(7-j)*(array(i,j)r=1)
2107a NEXT j

21080 POKE char_start+(ch-32)*9+i ,byte

21070 NEXT i
21100 END DEFine memory

Commentary

Line 21060: The effect of this line is to take a position in which thereisa ‘1’
in ARRAY and to translate it into a binary digit in a number which will
represent the row of eight elements, zeros and ones, in which it lies. Each
clement set to | will represent a power of 2 in the same way as when we
earlier analysed how a binary number could be used to represent one line
across the character. When each of the eight lines has been translated into a
number, it is POKEd into the character memory at a position correspond-
ing to one of the lines across the current character.

84

WAE—]

Chapter2 Sonet Lumiére

Testing

Start the program and move the character pointer on to character 65,
whichis the ‘A”. Moveinto edit mode and turn the character twice — if you
turn it only once and store it in memory you will turn the letter A into two
dots, since the top of the letter will be in the forbidden lefthand column.
Now press ‘P” and watch the screen. The ‘A’ beneath the 8*8 square is
transformed so that it is turned on its side. The QL is taking its character
information from your customised set. It is wise to remember, when edit-
ing characters, that unless you want customised lettering, it is often best to
edit either upper or lower case letters only. Making too many changes to
letters and numbers can result in a situation where you can no longer
understand what the program is saying to you!

Module 2.4.13: Storing the character set

Having edited the character set, we now want to be able to keep it so that it
may be used in future, otherwise the whole exercise is rather pointless. This
module stores your customised characters on microdrive. The module is
simpler than that employed in many other programs, since what we are
saving is an easily identifiable block of memory and it can be sent to the
microdrive with the simple use of SBYTES.

Module 2.4.13: Lines 22000— 22090
22000 REMark LA

2201@ DEFine PROCedure store
22020 REMark
22038 CLS
22040 AT 1,14 : PRINT "SAVE DATA"

22050 INPUTAA" Name of data file:"jfile#
22060 tfile$="mdvl_" & file#

22070 DELETE tfile$

22080 SBYTES "mdv1l_" & file#$,user_start,B876
22@7@ END DEFine store

Testing

Having edited a few characters and placed them into memory, call up this
module to save them on to microdrive. The only check at this moment is
that the module executes without producing any kind of error. After the
next module has been entered you will be able to reload the character set to
check that it has been properly stored.

Module 2.4.14: Reloading a character set

Having stored the character set on disk, this module performs the task of
reloading the character data, using LBYTES. Note that, in order for this

85

The Working Sinclair QL

module to work, the value of USER__START must have been set. This s,
of course, done automatically in the present program but, once you have
designed a customised character set, you will want to be abletoload it back
into memory for the use of other programs. This module will do the job for
you, provided that you have chosen the place in memory where the char-
acter data is to go, using RESPR.

Module 2.4.14: Lines 23000 — 23080
23000 REMark #xx*
23@1@ DEFine PROCedure recall

23020 REMark #**

23030 CLS

23040 AT 1,14 : PRINT "RECALL DATA"
23850 DIR mdvl_

230460 INPUT\\" Name of data file:"ifile¥
23870 LBYTES "mdvl_" % file$,user _start
23980 END DEFine recall

Testing

You should now be able to reload the character set which you SAVEd as
part of the test of the previous module by pressing ‘L’ in the character edit
mode. Before you reload what you have just saved, do ensure that you are
back with the normal (unedited) character set or it will be impossible to tell
whether different characters have been loaded from disk.

Module 2.4.15: The control module
A standard module.

Module 2.4.15: Lines 10000 — 10090

100P® REMark *
10@1@ DEFine PROCedure do (fresh)
10020 REMAr K 45645 5 535 96505 54 4308185 53 3 % %
10030 CLS : CLS#®

10040 OVER @

10050 IF fresh=1 THEN initialise
10060 FPOKE_L char_reg,user _start
10070 grid

ino8a STOP

10098 END DEFine do

Testing

The whole program should now be available to you. In addition, if every-
thing works satisfactorily here, you will know that you are safe to lift
modules out to enable you to employ customised characters in other
programs.

86

PROGRAM 2.5: SOUND DEMO
Program function

Sound Demo, consisting of two modules, can hardly be dignified with the
name of a program, It is a tool, designed to allow you to explore the QL’s
rather confusing set of sound commands and to get the most from them. 1
have refrained from giving advice as to the way the sound parameters can
be be set for the simple reason that, like the writers of the QL manual who
simply advise experiment, I have found them not to be consistent in their
ef.fccts. With Sound Demo, however, you will at least be able to experiment
with ease, rather than continually enter the relatively complex BEEP
command.

Chapter2 Son et Lumiére

SOUND DEMOMSTRAT ION
COMMANDS AVAILABLE =

a2

1>

=22

3>» A

43 Alter gradient
S»x AlLter gr‘-md iemt v
E3 Alter wrap

T Alter fuzz

Br AlLter roandom

2> Stop niote

Figure 2.6: Screen Display from Sound Demo.

Module 2.5.1: Displaying parameters

The rlnudule is designed to clear an area of screen towards the bottom and
to print out a clear display of the current settings of the various sound
parameters. The variables on which it functions will be explained during
the course of the commentary on the next module.

Module 2.5.1: Lines 2000 — 2100

2000 REMArk %% 5% 55 % 000 420555554 5K K%K
2010 DEFine FROCedure parameters

2020 REMAr ke 355558 0556050436 555555 500 3366 %
2070 BLOCK 448,45,0,155,4

2040 FAPER 4 : INKE @

2050 AT 16,0

2060 FRINT,"Fitchl=";tpl,"Fitch2=" tp2
2070 FRINT,"Grad X=";tgl,"Grad Y=”:tg£

87

The Working Sinclair QL

2080 PRINT,"Wrap = "stwr,"
2090 FRINT," Random=
21@@ END DEFine parameters

Module 2.5.2: A menu for experimenting

This is the main module, which is designed to present the user wuh"a ranlgc
of choices as to the note characteristics to be changed and Lo allow the

sounding of the results.

Module 2.5.2: Lines 1000~ 1610
1OOO REMAr b #8535 %630 K03 30 H K KN
DEFine FROCedure demo
13:& REMarbe 55 535 5 55500030 320
103 pl=5 : p2=5 : g1=0 : 92=0
104@ wr=0 : fu=0 : ra=@
1050 tpl=pl : tp2=p2
1@6@ tgl=gl : tg2=g2
1870 twr=wr : tfu=fu : tra=ra
1280 FAFER 2 = CLs 2
i} FPAFER @ : INEk .
1igﬂ AT @,7 : PRINT "SOUND DEMONSTRATION
1172 FAFER 2)
1140 FRINT\"COMMANDS AVAILABLE:

1150 FRINTN" @) Stop demn"”

1160 PRINT " 1) Sound nnt .
117@ PRINT " 2) Alter pitch l"
1180 PRINT " 3) Alter pit:h 2 ;
1190 PRINT " 4) Alter grad;ent X"
1200 PRINT " 5) Alter qradﬁent Y
1218 FRINT " &) Alter wrap;

1220 FRINT " 7) Alter fuzz .,
1230 FRINT " 8) Alter random

1240 FRINT " ?) Stop note"

1250 REFeat response

1260 CLS#O

1270 parameters

1280 REFeat number

2 f= F£(—-1)

:;;g ?i \L?’zi:’;: ;ND q#<=%9 THEN EXIT number
1218 END REFeat number

1320 gq=q¥

1330 SELect ON q

1340 ON q=@

1350 BEEF

17460 STOF

1270 ON g=1

1280 BEEF @,pl,p2

1390 tpi=pl :

1400 tql=gl :

1410 bwr=wr :

1420 tra=ra

1470 ON g=2

88

Chapter2 Son et Lumiére

1440 INFUTH®,"FITCH 1: ";pt

1450 ON g=3

1460 INFUT#@,"PITCH 2: “;

1470 ON g=4

1480 INFUT#@, "GRADIENT X: “;g1

1490 ON q=5

1500 INFUT#@, "GRADIENT Y: "3q2

1510 ON q=b

1520 INFUTH®, "WRAF (1-15): “jwr

1530 ON g=7

1540 INPUTH@, "FUZZ (@-15):";fu

1550 ON g=B

1560 INFUTH@, "RAND (-32768 to 327&67): "3
ra

1570 ON q=%

1580 BEEF

1590 END SELect

1600 END REFeat response
161@ END DEFine demo

Commentary

Lines 1030 — 1040: The initial settings for the demonstration. P1 and P2
are the two pitches. G1, G2, WR, FU and RA refer to GRADIENTS 1 and
2, WRAP, FUZZ and RANDOM.

Lines 1050 — 1070: The variables beginning with T represent temporary
copies of the active parameter settings.

Lines 1080 — 1240: There is only one main screen for the demonstration.
This menu remains in the centre of the screen at all times.

Lines 1280 — 1310: Since thereare only 10 choices on themenu, they can all
be accessed with a single key press, using INKEY$.

Lines 1340 — 1360: Pressing ‘0" results in the current note being silenced and
the demonstration terminating. If you stop the program using CTRL/
SPACE the current note will continue to sound until you enter BEEP.

Lines 1370 — 1420: Pressing ‘1’ results in the note defined by the current
parameters being sounded. The temporary copies are made at this point
because the other program functions, which allow the note parameters to
be changed, do not immediately affect the note being sounded. It is pos-
sible to change every parameter without changing the sound of the note
until ‘1" is pressed again. The temporary variables record the parameters
actually being played, while the main variables may have been changed.

Lines 1430 — 1560: Pressing ‘2’ to ‘8" gives the user the opportunity to
change one of the parameters.

Lines 1570 — 1580: Pressing ‘9" silences the current note without terminat-
ing the program.

89

The Working Sinclair QL

Testing

The only way to test the program is to play with it by entering ‘demo’ and
messing around with parameters. In practice, I renumber Sound so that it
will fit in with the next program, Music. This allows me to try out different
combinations of parameters before they are entered into a tune to be

played.

PROGRAM 2.6: MUSIC

Program function

We havealready noted, in the comments on the last program, that the QL’s
sound commands are complex and alittle confusing. The purpose of Music
is to take the effort out of the programming of simple tunes by allowing the
user to specify musical notation in an easily understood format, making
full use of the various controls possible over the notes produced. The pro-
gram adopts a ‘two pass’ approach, first processing the tune specified and
translating it into a series of numbers, then using the numbers themselves
to activate the BEEP command. The advantage of this method is that
music can be played more quickly, without gaps creeping in when large
numbers of short notes are to be played.

Module 2.6.1: A table of note values

Musically, microcomputers can be divided into two categories: those
whose sound commands are set up so that they can be programmed in a
comprehensible way, and those that aren’t. Unfortunately, the QL falls
into the latter group so, instead of being able to specify a note, either asa
number or in some kind of musical notation, a value bearing a vague (and
inverse) relation to frequency has to be used. If we are going to program
music, then we need to be able to specify notes. The table contained in these
lines of data represents my best attempt to translate two chromatic octaves
into the values used by the BEEP command. The two octaves are in C
major and represent about as far as the QL can usefully go.

Module 2.6.1: Lines 5000 — 5050

SODD REMar b %55 %55 %55 %5 K3 00336 002K
S@10 REMark note values

SO2@ REMark %% 5858 6% 365 000 60 F % 08 R ¥
Sz DATA 78,73,69,64,60,56,5%,49
5S040 DATA 42,40,37,%4,34,32,30,28
S@s0 DATA 26,24,22,20,17,16,14,13

90

i AL s 4 M 8

Chapter2 Son et Lumiére

Module 2.6.2: Initialisation
A standard initialisation module.

Module 2.6.2: Lines 2000 — 2100

2060 REP‘l?rI: R R R LS E S R e

2019 DEFine FROCedure initialise

2020 REMark #% * *

2030 DIM notes¥(1,11),play%(1 i

2030 RESTORE Spen’ | o0/)atene(7)
2052 FOR i=@ TO 1

2040 FOR ;=0 TO 11
2070 READ notes%(i, j)
2080 NEXT

2090 NEXT i
2100 END DEFine initialise

Commentary

Line 2030: NOTES% will be used to store the values of the 24 notes the
program can deal with. PLAY % will contain the tune in its final form, up
to to]0_()(? notes. TEMP will hold the values associated with a particular
note as it is translated.

Linles_ZMO-ZD'm: The 24 note values are read into the two sides on
NOTES%, representing the two octaves.

Module 2.6.3: The data for the tune

Before the program can begin to process anything, it must have a tune to
work.on‘ Tunes are entered in the form of DATA statements, for ease of
examination and editing. The notation will be explained during the course
o.l‘ th‘e commentary on the next module. Note that, due to the QL’s limita-
tion in only being able to READ strings enclosed in quotes, the whole of
each DATA line is enclosed in quotes. It would be simpler 'I‘rom the pro-
gramming point of view to enclose each item separately but would make
the entry of the tune itself far more laborious.

Module 2,6.3: Lines 6000 — 6100

GBOD REMArk 55356585 36558 0 4 % K 555355 4K ¥
6010 REMark data for tune

L0200 REMark *#% NN R

&4@3@ DATA "D2,L3,1,L1,1,L4,3,L L
6040 DATA "L@,st A8
&85@ DATA "02,L3,1,L1,1,L4,3,L4,1,8"
6060 DATA "LB,s"

6878 DATA "L3,1,0L1,1,L4,12,9,4,5,3"
6080 DATA "L3,10,L1,10,L4,9,6,8"
6070 DATA "LB,&6"

&£1@8 DATA "end"

91

The Working Sinclair QL

Module 2.6.4: Translating the tune

This is the module which performs the most laborious part of the task ‘_)f
playing a tune, the translation from the casily—understpod form?t, in
which the music is recorded in the DATA statements, into a series of
numbers which represent parameters for the BEEP command. The m_odule
looks complicated but, once analysed, it boils down to a series of simple
decisions as to what a particular set of characters in the tune DATA means
and then one or more calculations to translate that instruction into a BEEP
parameter.

Module 2.6.4: Lines 3000 —3700
TODO REMarlo #3655 5K 55833300 H W RN NN
IP1@ DEFine FROCedure process
TAPO REMarl %% 5% %% 35558330 038 0 3 3% 3%
RESTORE &£000
count=0
pitech_number=1
octave=1
next _note=0
REPeat get_note
READ temp#
IF temp$="end" OR temp#="END" THEN EXIT
get_note

3110 2

120 H

3170 REFeat slice

3140 comma="," INSTR temp#

3150 IF comma=0

T160 chars=LEN (temp¥)

170 ELSE

Z1B8Q chars=comma-1

I190 END IF

3200 t¥=temp¥(1 TO chars)

I21@ IF chars<LEN(temp#)

I220 temp¥=temp¥ (chars+2 TO)

323 END IF

3240 IF "D" % t§20

3250 temp(pit:h_number—l)=nntesl(octave‘
tE-1)

260 next_note=1

3270 END IF

IF t#(1)="0" OR t#(1)="0"
octave=t#(2)-1

END IF

IF t$(1)="L" DR tF(1}="1"
temp (7)=t#(2 TO)

END IF

IF t#="W" OR t#="w"
temp (2)=t$(2 TO)

END IF
IF t#(1)="X" OR t#(1)="x"
temp (Z)=t#(2 TD)

Chapier2 Son et Lumiére

END IF
IF t$(1)="vY" OR tE(L)="yn
temp (4)=t£(2 TO)

END IF

IF t$(1)="F" OR t#(1)="¢"
temp (S)=t$(Z TO)

END IF

IF t$(1)="R" OR t&(1)="r"
temp (&) =t# (2 TO)

END IF

IF t#(1)="F" OR t#(1)="p"
pitch_number=t#(2)

END IF

IF t§="S" OR t$="s"
temp (@) ="-1"
next_note=1

END IF

IF next _note

playZ(count,i)=temp (i}
NEXT i
count=count+1
next _note=0
END IF

IF comma=@ THEN EXIT slice
END REFeat slice
670 END REFeat get_note
Z700 END DEFine process

Commentary

Line 3040: The variable COUNT will be used to record the number of the
note currently being worked on. This is not the same as the number of the
item of DATA being read. If the tune DATA specifies a series of changes to
the note quality, such as GRAD and WRAP, these do not affect the value
of COUNT. It is only when the note value is encountered that COUNT is
incremented.

Line 3050: The number of the pitch which will be changed for each note —
for the purposes of the program, the two pitches are numbered as land2.

Line 3060: The octave in which a note (o be played will fall. The two
octaves are specified as I or 2.

.Line 3070: NEXT__NOTE is used to decide whether COUNT needs to be
incremented. If, after translation of an item from the tune, NEXT__

NOTE is set to 1, then a note has been specified and COUNT is incre-
mented.

93

The Working Sinclair QL

Lines 3090 — 3100: The whole of a DATA line is READ into TEMPS$. The
single word ‘END’ on a DATA line indicates the end of the tune.

Lines 3140 — 3230: Using the INSTR function, the program looks for the
first comma in TEMPS$, indicating the end of the first tune item. If no
comma is found then the whole of TEMP$ is taken as the item to be pro-
cessed. If a comma is found, the characters up to the comma are transfer-
red to T$, which is the item to be processed and that item is sliced out of
TEMPS so that it will not be processed twice.

Lines 3240 — 3270: If the tune item is a number, then placing a zero in front
of it will not change its value — if it is not a number then the zero will
prevent the program from crashing when we try to extract a value from it.
When a number is encountered, it is taken as an instruction to play a note
of the given value within the current octave, There are 12 notes within each
octave, each placed a semitone apart — these provide all the notes used
with an octave in western forms of music. The note value is placed into
TEMP%, from where it will be eventually transferred to ARRAY 7.

Lines 3280 — 3300: If the first letter of the tune item is O, then the following
number is taken as an instruction to reset the octave to either 1 or 2, though
note that the program thinks of themas 0 and 1.

Lines 3310 — 3230: If the first character is L, then the following number is
taken as the length of the notes to be played until further notice. The note
length must be set up at the start of the tune.

Lines 3340 — 3480: Numbers preceded by W, X, Y, F or R will be used to set
wrap, grad__x, grad__y, fuzz or random.

Lines 3490 — 3510: 0 or | preceded by P will change the pitch number which
is currently being acted upon. Note that with the program as currently set
up, you cannot change both pitch parameters between one note and the
next.

Lines 3520 — 3550: If the item consists of S, then a silence of the current
note length will be played.

Lines 3580 — 3640: The contents of ARRAY % (COUNT), the current note,
are set equal to the contents of TEMP % . Note that this only happens when
COUNT is incremented. All changes to parameters will be fed into the
same line of ARRAY %, in other words changes to fuzz, wrap, etc., will all
affect the current line, since COUNT is not incremented by them.

Line 3670: If COMMA is equal to zero then there are no more items in the
current line of DATA and another line must be read.

94

Chapter2 Son et Lumiére

Testing

Type:

initialise[ENTER]
process|ENTER]

and you should be able to complete the analysis of the tune without
generating any errors. Of course you will not hear anything yet, since we
have not added the module which actually plays the tune.

Module 2.6.5: Playing the tune

‘We now come to the module which makes it all worthwhile, since the cur-
rent module has the job of taking the values stored in ARRAY % and play-
ing a tune based on them.

Module 2.6.5: Lines 4000— 4130

A0DA REMAE ko 3303 55 305385050 H W NN
4@01@ DEFine FROCedure play (start)

4020 REMarik * W e
40=0 FOR i=start TO count-1
4040 IF play¥%{i,@)<>—1

4050 BEEF @,play%(i,0) ,play¥%(i,1},play%
(1,2),play¥%(i,3) ,play%(i,4),play%
(i,3),play%ii,s)

4060 END IF

4072 FOR delay=1 TO S@*play%(i,7)
4080 NEXT delay

4090 BEEF

4100 t#F=INKEY¥ (D)

4110 IF t$<{>"" THEN RETurn

4120 NEXT i
413@ END DEFine play

Commentary

Line 4010: This module is canea by entering ‘play’ followed by a value
which is taken as the first note in ARRAY % to be played. This allows parts
of a tune to be heard during the process of tune development. If changes
are made to a tune, these will not be registered by the PLAY module until
PROCESS has first been called to translate the changed DATA.

Line 4030: The number of notes to be played has been automatically stored
in COUNT.

Lines 4040 — 4060: The two possibilities dealt with by these lines are that a
noteis to be played or that there is to be a silence. If anoteis to be played, a
BEEP of infinite duration (BEEP 0) is commenced, using the parameters
contained in ARRAY %. If the first parameter in ARRAY(I) is minus one,
however, then a silence is called for and no note is played,

95

The Working Sinclair QL

Lines 4070 — 4080: The length of the note orsilence is dictated by the length
of the delay loop. Using the loop variable to create the length of the loop
allows more ease in specifying the note lengths than if the huge values
necessary for BEEP were used directly.

Line 4090: At the end of the period specified for the delay, any note which
is being sounded is switched off by use of BEEP without parameters
attached.

Lines 4100 — 4110: The playing of the tune can be stopped at any point by
pressing a key.

Testing

Provided that the program has already been initialised and the tune pro-
cessed, entering PLAY 0 will play the tune ‘Happy Birthday To You'.
Entering PLAY followed by a parameter other than zero will start the tune
off at another point. You can now try changing the DATA statements
which make up the tune to see what difference they make.

Module 2.6.6: The control module
A standard module.

Module 2.6.6: Lines 1000 — 1060
1000 REMark #®%5685% %% ek ren i E e e

1@1@ DEFine FROCedure do
1@20 REMark %% 55558356 5% 5 55035136 4R K

1030 initialise
1240 process
12502 play @

18468 END DEFine do

Using the program

You can use this program on its own or as a tool to supply music for other
programs. In order to do this, all you need to do is to write microdrive
STORE and RECALI modules to store the variable COUNT and the con-
tents of ARRAY%. Once a tune has been developed and processed, store
the information on microdrive. A subsequent program, which would have
to include RECALL and PLAY modules, would then summon up the con-
tents of ARRAY % from microdrive and play the tune exactly as the cur-
rent program would.

96

CHAPTER 3
Seriouser and Seriouser

At this stage in your progress you should be becoming more familiar with
the capabilities of your QL and with some of the techniques needed to put it
to work for you. The time has come, therefore, to look at some substantial
programs which will allow your QL to do what microcomputers do best —
handle, sort and retrieve information for their owners.

In doing this we shall, in some ways, be re-inventing the wheel supplied
by Psion in the form of Quill, Archive, Easel, and Abacus since as a pack-
age these four can cover most tasks imaginable. Why then write applica-
tions packages in BASIC — well there are two answers to that. First, and [
think most importantly, is the question of who runs your QL, vou or a
group of software writers you've never met. This may seem a trivial ques-
tion but the fact is that only you can decide whether you are going to run a
system which responds exactly to yowr needs, taking the best from
commercial programs and your own inventions, or whether you are going
to limit yourself entirely to what someone else thinks that you need. With-
out some practice in developing and writing your own applications, you are
going to be left with a black box which lorces you to become just another
consumer, not the creative originator that most micro owners want to be.

The second reason, however, is more immediately practical, and that is
that there is no such thing as a perfect software package for every purpose.
There will many occasions in the use of the QL when a simple BASIC
package will serve you far better for a limited purpose than a sophisticated
commercial package. The programs in this chapter are, I think, cases in
point but even if they do not fit your needs, the technigues contained
within them will allow you to tackle your own applications programming
with greater confidence.

The programs included in this chapter are:

UNIFILE: A powerful personal filing system capable of storing a wide
variety of information for instant recall.

NNUMBER: A program which creates a dictionary of Names and
Numbers for almost anything you wish, allowing the user to create
invoices, stock valuations or even a calorie count of the day’s menu.

MULTIQ: A multiple choice test generator.

97

The Working Sinclair QL

PROGRAM 3.1: UNIFILE

Program function

Unifile is a program which has been developed over the years in the
‘Working Micro® books. Readers of previous books have written to say
that they are using it in their businesses, to teach schoolchildren about the
way micros handle information, to help with clubs and voluntary organi-
sations or simply to keep track of their books and records at home. This
current version for the QL uses some fairly sophisticated and extremely
fast data structures, to make it an ideal card-index type tool for quantities
of information capable of being held in the QL’s memory at one time.

Ermtriy Hoz 1

Home : EITKRAREERS

Commonds oavailable:

"EMTER® leaves field unchoanged
Input item to replace one shown
‘DDD’ deletes uhole record
‘222 leaves record unchanged

Lhich do gou requires:s

Figure 3.1: Typical Display in Unifile’s Search Mode.
The new concepts introduced in this program include:

1) Binary searching.
2) Packing items into continuous strings.
3) Pointer arrays

Module 3.1.1: Setting up the structure of the file

Many books aimed at the home micro owner offer inferior filing programs
which are extremely inflexible in use. Itis built into the program that, every
time the user stores something, it will be under the headings, Name,
Address, Phone No., or some similar structure. The beauty of Unifile is
that, while it will certainly allow you to use such a structure, it will also let
you create other files with very different structures — perhaps with one
heading, perhaps with 10 — without making any changes to the program
itself, Unifile is what [like to call a chameleon program: one that adapts to

98

Chapter3 Seriouser and Seriouser

a variety of different uses, reacting to the user in different ways depending
on the task that it is performing at the time.

The purpose of this first module is to initialise some variables, and to
allow data to be recalled from microdrive, but most importantly to allow
the user to set up the original file exactly as desired.

Module 3.1.1: Lines 10000 — 10260

10900@ REMark *
1@21@ REMark initialise
1002@ REMark ERAEERN *an

10030 PAPER S : INK 1

12240 CLS : CLS#@

12058 AT 1,15 : PRINT "UNIFILE"

10060 INPUT\\"Load from Microdrive (y/n)";qf
10070 IF qg$="y" OR q#%="Y"

10080 recall

10090 ELSE

10100 f_total=0

10110 empty$=""

10120 INFUT\\"How many fields in a record: ";
n_fields\\

12130 DIM fields(n_fields-1)

1@14@ DIM field$(n_fields-1,15)

12150 FOR i=0 TO n_fields-1

12150 INPUT\ ("Name for field " & (i+l) &

": ")jfield#(i)

18170 INPUT "Length of field: ";fields(i)

1@180 f_total=f_total+fields(i)

ie190 NEXT i

12200 lines=INT(50000/f_total)

ip21@ DIM array$(lines,f_total)

10220 DIM new_temp$ (n_fields,38)

18238 array#(0)=FILL#¥ (CHR% (200) ,38)

18240 array#(1)=FILL$("z",100)

12250 ptr$="00000001"

10260 END IF

Commentary

Lines 10120 — 10190: Part of the secret of Unifile's flexibility. For each
‘record”, which you can think of as a filing card if it helps you, you can
define for yourself how many *fields’, or individual headings, will appear
in the record. If you were storing your record collection, you might use
headings like: TRACK, ALBUM, COMPOSER, ARTIST, LENGTH. In
this case you would specify five fields and then input the names of the five,
In future, whenever you use Unifile to store or retrieve information on
your record collection, you will be asked to input an item of information
under each of those headings. For each field, you will also be asked to
specify the length of the field in characters — in future uses of the file, you
will be limited to that number of characters when inputting information to

9

The Working Sinclair QL

the particular field. The overall names given to each field, and their max-
imum lengths, are stored in thetwo arrays FIELD$ and FIELDS, which are
dimensioned according to the specified number of fields, recorded in
N__FIELDS.

Lines 10200 — 10210: Having defined the sizes of all the fields and therefore
of the whole record, it is possible to determine how many such records will
fit into memory. | have allocated 50,000 bytes of the total memory to the
main data file, which is conservative. There are other variables, apart from
the program itself, to be stored but you will probably be able to increase the
50,000 substantially for most applications. For files containing a large
number of very short records, however, the associated variables will take
up aproportionately larger part of the memory and you may even find that
50,000 is too much for the main file. Experimentation will quickly reveal
the best figures for your particular usage.

Lines 10230 — 10240: In any program which inserts data into an array in
order, some provision has to be made for the recognition of the beginning
and end of the data when new items are being inserted. One simple method
of achieving this is to set up the file with two dummy entries which, accord-
ing to the order to be imposed, will always fall at the beginning and end of
any sensible data. The use of a string of zs for the final item is self-
explanatory, but the CHR$(200) in line 10230 needs some explanation. The
problem encountered in setting up an entry which will automatically be
seen as the first item by any alphabetical search is that, on early versions of
the QL, the string comparison facilities are a total mess. According to the
version of the QL on which the programs in this book were written, any
normal printing character outside the ranges 0—9,A —Z and a -z is actu-
ally greater than any character inside those ranges. This means that a space
(character code 32), which is normally treated as the lowest normal print-
ing character when string comparisons are done, is considered greater than
<z, normally the highest normal printing character. You can verify for
yourself whether this applies to your machine by typing:

"

print " "> "z"

1f the result is zero, then you can ignore the rest of this part of the commen-
tary and replace CHR$(200) with a space (CHR$(32)). If, however, the
result printed is ‘1", then your machine suffers from the same limitation as
mine and the space character cannot be used. CHR$(200) has been adopted
to replace the space because it is one of a limited range of characters which
are considered by the QL to be alphabetically less than the ‘0’ character. I
am less than happy about the compromise because CHR$(200) is a cursor
control character and its use may have unintended side effects on future
QL versions. It is to be hoped that the string comparison facilities will soon
have been sorted out and the space character can assume its rightful role.

100

i
t
E
:
i
i
.
i
$
:
T

Module 3.1.2: The menu

A standard menu module.

Module 3.1.2: Lines 11000 — 11360

11000 REMark 65555 50000 004 %K X 03N H
1101@ REMark menu

11020 REMArk 555005 500 000000 333500
11030 REFeat display

Chapter3

Seriouser and Seriouser

11940 PAFER 4 : INK @ : CSIZIE 1,1

11250 CLS : CLSHD

11060 AT 1,1@ : PRINT "UNIFILE" : CSIZE 0,0
11870 PRINTA\" COMMANDS AVAILABLE: "
11080 PRINTN" 1) INFPUT NEW ITEMS"
11870 PRINT " 2} SEARCH/DELETE"

11100 PRINT " 3} DATA FILES"

11110 PRINT " 4) sTOP"

11120 INFUT\" WHICH DO YOU REQUIRE: "3;Z
11130 IF (Z=2 OR Z=3) AND LEN(ptr¥)=8
11140 FRINT "NO DATA YET"

11150 t#¥=INKEY$(-1)

11160 =0

1117@ END IF

11180 SELect ON Z

11190 ON Z=1 : n_items

11212 ON Z=2 : user_search

1123 DN 7Z=3 : store

11310 ON Z=4

11320 CLS

11330 PRINT#@,"Filing system closed"
11340 STOP

11350 END SELect

11360 END REFeat display

Module 3.1.3: Storing data

As you begin to develop more complex programs, whether from this book
or on your own, you will find it more and more desirable to enter the data
file module as early as possible. The reason for this is that it is only possible
tomake proper tests of Unifile by entering fairly considerable quantities of
data. Since you are bound to make mistakes and will need to change lines,
you are faced with the prospect of having to re-enter data which may have
been corrupted time and time again as the program is being developed. The
answer is to store it on microdrive from the very earliest of stages, recalling
information from the microdrive to make your tests if necessary.

The variables contained in these two modules will be explained during
the course of the program.

Module 3.1.3: Lines 20000 — 20320

20000 REMark
28010 DEFine FROCedure store

The Working Sinclair QL

20020 REMark W
200308 CLs

20040 AT 1,14 : PRINT "SAVE DATA"
20050 INPUTAA" Name of data file:
20060 tfile$#="mdvl " % file#
20079 DELETE tfiles#

29080 OPEN_NEW #8,"mdvi_" % file%
zZeava PRINT #8,LEN(ptr#)

Zeioe IF LEN(ptr#%)<>0

20110 FOR i=1 TO LEN(ptr¥) STEF 100
20120 FRINT #B,ptr£(i TO i+29)
20130 NEXT i

20140 END IF
20150 PRINT #8,LEN(empty#%)
20160 IF LEN(empty#){>0

2017@ FOR i=1 TO LEN(empty¥) STEF 100
20180 PRINT #8,empty$(i TO i+%9%)
2015@ NEXT i

20200 END IF

20210 PRINT #8,f_total
20220 PRINT #B,lines

20230 FRINT #B8,n_fields
20240 FOR i=@ TO n_fields-1
20250 PRINT #8,field¥(i)
20250 PRINT #8,fields{i)
20270 NEXT i

20280 FOR i=1 TO (LEN{(ptr#)+LEN{(empty%))/4
20290 PRINT#B,array#® (i—-1)
20300 NEXT i

20310 CLOSE#8

20320 END DEFine store

Module 3.1.4: Recalling data

This is a standard data recall module with the necessary addition of facil-
ities to dimension arrays. You will remember from the initialisation
module that the arrays in Unifile are not of a fixed size, but vary according
to the kind of structure set up by the user, The same approach is necessary
when picking up items from microdrive. Only once the variables which
describe the structure have been recalled, can the arrays be dimensioned.

Module 3.1.4: Lines 21000— 21340

21000 REMArk 55555 55505 000 5 055334 X
2101@ DEFine FROCedure recall

21020 REMark #*#%%% *RRE
21030 CLS
21840 ptr$="" : empty$=""

210S@ AT 1,14 : PRINT "RECALL DATA"
21868 DIR mdvi_

21@7@ INPUT\\" Name of data file:";file$
21088 OFEN_IN #B,"mdvl " & file$

21@9@ INPUT #8,chars

102

21100 IF chars<>@

Chapter3 Seriouser and Seriouser

21110 FOR i=1 TO chars STEF 100
21120 INPUTH#8,temp$

211320 ptr¥=ptr¥ & temp#

21140 NEXT i

21158 END IF
211460 INPUT #8,chars
21178 IF chars<>@

21180 FOR i=1 TO chars STEF 1@0
21190 INFUT #8,temp#$

21200 empty$=empty% % temp#%
21210 NEXT i

21220 END IF

21230 INPUT #B,f_total

21240 INPUT #B,lines

2125@ INFUT #B,n_fields

21260 DIM array#(lines,f_total),fields
(n_fields-1),field$(n_fields—1,15)

21270 FOR i=0 TD n_fields—1

21280 INPUT #8,field#(i),fields (i)

21290 NEXT i

21300 FOR i=1 TO (LEN(ptr$)+LEN(empty%$))/4

21310 INPUT #B,array$(i-1)

21320 MNEXT i

21330 CLOSE#8

2134@ END DEFine recall

Module 3.1.5: Setting up a pointer

This module and the one which follows, though simple, are at the core of
the method of data storage used by this program. The problem to be faced
with all programs which hold large quantities of data, is how to insert new
items into the file. It is perfectly possible to find the right place in an
ordered file and then shift everything one place upwards to make room for
the new item. The only problem with this is that it takes rime. What we shall
do in the case of this program is to take advantage of one very fast method
of data manipulation available on the QL, string slicing. If we havea string
of 1000 characters (OLD$), a new character (NEW$) can be inserted at
position 500 by a simple line such as:

old$ = old$(1 to 499) & new$ & old$(500 to)

Clearly, this is going to be a much faster method, but how can it be adapted
to the much larger masses of information involved in a filing program,
which is far more easily dealt with by means of multi-dimensional arrays
like ARRAYS, dimensioned in Module 3.1.1. The answer commonly
adopted is to use what is known as a ‘pointer array’.

The effect of a pointer array is to allow data to be inserted into the main
file (ARRAYS)in no particular order, items simply being placed in the first
empty space, with no need to move other items to make room. The order of

103

The Working Sinclair QL

the data, in this case alphabetical order, is preserved by the fact that each
entry has an associated pointer which records its correct position in the
order. Take a look at the table given below:

ORDER OF DATA ITEMS ORDER OF POINTERS
FFF

CcCC
DDD
BBB
AAA

—_—N W R n

The data items on the left, which need to be recalled in alphabetical order,
are clearly a jumble. If we turn to the value of the pointers, however, we
can see that the correct place of each, in terms of alphabetical order, is
safely recorded, with the first pointer indicating the position of the first
item in alphabetical order (AAA), the second pointer indicating the posi-
tion of the second item in alphabetical order (BBB), and so on. To read
through the apparently jumbled file in perfect order, all we have to dois to
read the items indicated by the pointers.

‘What this module is going to accomplish is to create a four-character
pointer which a later module will place in the correct position within a
singlelongstring, PTR$ (PoinTeR$) The next module will retrieve the value
of a four-character pointer from a particular position within PTR$. How
the pointers will be used in detail will only become apparent during the
commentary on the rest of the program.

Module 3.1.5: Lines 19000 — 19060

19@0B REMar k#5535 8 5953 00050553 33 530963056 063
1991@ DEFine FuNction four$ (ptr)
19020 REMark #* * L

199830
19040 t$=FILL$("@" ,4-LEN(t$)) % t¥

19050 RETurn t#%
19@4@ END DEFine four#

Testing

Type:

print four$(1) [ENTER]

and the result should be “0001°. You should be able to enter any number up

to 9999 and see it transformed into a four-character string.

104

Vi

AR - e b A s

Chapter3 Seriouser and Seriouser

Module 3.1.6: Retrieving a pointer

Having given ourselves the ability to create a pointer which can be inserted
into astring, we turn our attention to the problem of getting a value out of
thesame string. This simple mnodule accepts an argument in the form of the
variable SS and slices out a four-character pointer from PTRS.

Module 3.1.6: Lines 18000 — 18060
180@@ REMar
1801@ DEFine FuNction p_val (ss)
1802@ REMark #*#
18030 t_ptr=ss*4

1804@ t _ptr=ptr$(t_ptr+1 TOD t_ptr+4)
1805@ RETurn t_ptr

18060 END DEFine p_val

Testing
Type:

ptr$ = "000300020001 "[ENTER]
print p__val(2)[ENTER]

The result should be ‘1°, the value of the third four-character pointer in the
string.

Module 3.1.7: A better way of searching

In thismodule, and the two that follow, we take alook at how a new entry is
added to the main file contained in ARRAYS, or rather how the correct
position for its pointer is found in the string PTR$. The core of the method
is contained here, however, because it is this module which allows Unifile
to search rapidly through a large file of entries to find the correct place to
insert a new one, or to conduct a fast search for the presence of a key entry
in the file.

The method is known as ‘binary searching’ and it can be used to drama-
tically reduce the time for searching in any programs you write which hold
long lists of ordered data. Consider the following example.

A file has been established containing 2000 names and the task is to
insert a new name into the file, in the correct alphabetical order. If we cheat
and look at the list of names, we can determine that the new name
‘YOUNGER’ should actually go into the file at position 1731, though the
computer has no way of knowing this in advance.

One thing we could dois to set the computer examining the names one by
one from the beginning. It will begin with ‘ADAMS’ and note that
‘YOUNGER’ should come after, then go on to ‘ADAMSON’ and so on.
Eventually, after examining 1732 names, the search will hit upon a name

105

The Working Sinclair QL

like ‘YOUNGMAN’ which must come after ‘YOUNGER’, so the correct
position has been found.

This is a reliable method, but how much better if the number of compari-
sons made could be cut down a little. Well, in the case of our file of 2000
names, the whole process can be accomplished by just 0 comparisons.
Here’s how it’s done.

The computer begins the search by examining the name in position 1024
of the file, because 1024 is the greatest power of 2 (2°10) which will fit into
the total number of entries (2000). The name at position 1024 is found to be
alphabetically less than ‘YOUNGER’ and so the computer adds 1024/2,
or 512, or 2°9 to the original search position, arriving at 1536. Once again,
the name at this position is alphabetically less than “YOUNGER’ so this
time 256, or 2°8 is added to 1536, making 1792. Now something different
happen because the name at position 1792 is later in the alphabetical order
than “‘YOUNGER' so instead of adding 128, or 27, it is subtracted from
the search position, giving 1664,

The search goes on, adding or subtracting decreasing powers of two to
build a search pattern that looks like this:

COMPARISON NO. POSITION ACTION
1 1024 +512
2 1536 +256
3 1792 -128
4 1644 +64
5 1728 +32
6 1760 - 16
T 1744 -8
8 1736 -4
9 1732 —2
10 1730 +1

Try it yourself for different numbers of entries and different target posi-
tions in the order — you will find that it always works.

Module 3.1.7: Lines 13000 — 13160

1300@ REMark *
13010 DEFine PROCedure binary_search (t1#%)
13020 REMar k #5635 5 3 53 50303 5 5 303 3 3 3 3 -0
13030 po=INT(LN(LEN(ptr$) /4) /LN(2))
13840 ss=2"po-1

13050 FOR i=po TO @ STEF -1

13060 IF array$(p_val (ss))<{t1$

13070 ss=s55+2"1

13080 IF ss>LEN(ptr#%)/4-1 THEN ss=LEN
(ptr$)/4-1

13850 END IF

131@0 IF array$(p_val (ss)) >t1$

106

Chapter3 Seriouser and Seriouser

13110 ss=s5—27i
13120 IF s5<@ THEN ss=0
13130 END IF

13140 NEXT i
13150 IF array${(p_val (ss))<t1% THEN ss=ss5+1
1316@ END DEFine binary_search

Commentary

Line 13030 - 13040: These two expressions find the greatest power of 2
which will fit into the number of items in the file and then set the search
pointer (SS)equal to that number. Thetotal number of items is recorded by
the length of PTR$ divided by four, since each pointer contains four char-
acters. The * — 1" in the second expression takes account of the fact that the
array is numbered from zero, not one.

Lines 13050 — 13140: This loop conducts the search, using reducing powers
of 2. The main fileis contained in ARRAY$ and the new entry in T1$. Note
that, as you would expect from previous explanations of the use of pointer
arrays, the search pointer does not scan through the main array but
through PTRS, using the P__VAL function. If the item to be compared
with the new entry is item number 500, it is the value of the pointer at
position 500 which dictates whichentry in ARRAYS$ is to be compared with
the new entry.

Lin.e .13150: In some cases the position arrived at will be 1 below the correct
position — in this case SS isincreased by 1.

Module 3.1.8: Inserting an item

This module inserts the new entry into the first available empty space in
ARRAYS, then records that position in PTRS$ at a place indicated by the
variable SS. ’

Module 3.1.8: Lines 14000 — 14150

1400@ REMark En
14@1@ DEFine PROCedure insert (ti1$)
14020 REMArk 9% 55550 5056 5 55 0 0 5 563 5036 2
14038 IF empty$<>"

14040 place=empty$(1 TD 4)
14@50 IF LEN(empty$) >4
140460 empty$=empty$(5 TO)
14070 ELSE

14080 emptys$=""

14090 END IF

i4100 ELSE

14110 place=LEN{ptr#¥)/4

14120 END IF

107

The Working Sinciair QL

14120 ptre$=ptr$(1 TO ss*4) & four$(place) %
ptr# (ss*4+1 TO)
14148 array$(place)=t1$
1415@ END DEFine insert
Commentary
Lines 14030 — 14100: In order to explain what is going on here, I'm afraid
we have to jump ahead of ourselves a little to consider how items are going
to be deleted from the file.

We have already said that one of the main advantages of using a pointer
string is that we do not have to shift all the data when a new item is being
entered — all that has to be moved is the pointers to the data, while the data
itself can simply be placed in the first empty space. But where is the first
empty space? To begin with, the answer to that question will be simple. As
each new item is entered, it can simply be placed at the end of the file. If
three items have already been entered into positions 0 to 2, the fourth item
is put into position 3. That does not, however, solve the problem of
deletions from the file. When an item is deleted, it will leave a hole in the
array and, eventually, as the program is used, the whole of the array will
consist of such holes, with no space left at the end for new items. Clearly,
the holes have to be filled.

We could retreat to the cruder method of shifting everything down to
cover the hole — a straightforward method used by other programs in the
book — but that seems to defeat the object of using a pointer array, especi-
ally since all the pointers for the moved data would have to be changed to
reflect the move.

Much simpler, and much quicker, is to work out a method which allows
the positions of holes to be recorded and to use them for new ilems of data,
since we already know that it does not matter in the least where a new item
is placed, provided that its pointer is in the right place. This recording of
holes is the job of EMPTY$, which is created by the deletion module you
will enter later. EMPTYS$ is the same in structure as PTRS$, consisting of
four-character pointers, but this time the positions recorded are those of
empty slots in the array.

With this explanation under your belt, you can see that these lines are
quite simple. If there is an empty slot in the main part of the array (indi-
cated by there being a pointer in EMPTY$) then the address of the slot is
obtained and that is where the new item is placed, the address being sliced
outofl EMPTYS$. ITEMPTYS$ contains no record of holes in the array, then
the new item is simply placed above the existing data.

Line 14130: We have already obtained the correct position of the new item
in terms of alphabetical order and it is contained in the variable SS. A new
pointer is added to PTRS$ at position SS, its contents being the address in
ARRAYS of the new data item.

108

Chapter3 Seriouser and Seriouser

Module 3.1.9: Making entries to the file

Havingentered the modules which do the real work, we can now proceed to
the one the user will have contact with when placing material into the filing
system. The function of this module is to prompt the user to input the
correct number of items, in the correct order, for each entry, to combine
those items into a single string which will fit into one line of ARRAYS and
tl}en to call up the two previous modules to insert the entry into the main
file.

Module 3.1.9: Lines 12000 — 12300
12000 REMark ##x* R s 22
12010 DEFine PROCedure n_items

12020 REMark ##% N

12030 REPeat loop

12040 REFeat confirm

12050 tig=""n

12060 CLs

12078 AT 1,14 : PRINT "NEW ITEMS"

12080 PRINT\\"Input item or ‘zzz®' to

quit.”\\

12@%@a FOR i=@ TO n_fields—1

12100 CLS#@

1211@ PRINT #@,field$ (i "

12120 PRINT #@8,\FILL$("=", fields(i))

12130 AT #8,1,0

121408 INPUT #0,new_temp# (i)

12158 IF new_temp$(i)=‘zzz’ OR new_temp$
(i)="7Z7" THEN RETurn -

12160 new_temp$ (i) =new_temp$(i) &% FILL$
(CHR# (200) ,38)

1217@ CLS #@

12180 PRINT field$(i);": ";

12190 PAPER & : INK @

12200 PRINT new_temp$(i,1 TO fields(i))

12210 PAPER 5 : INK 1

12220 :18=t15 & new_temp#(i,1 TO fields
i)

12230 NEXT i

12240 INFUT \\"ARE THESE CORRECT (Y/N): ":qg¥

12250 IF g#="y" OR q#="Y" THEN EXIT confirm

12260 END REPeat confirm

12272 binary_search (t1%)

12280 insert (tis)

122990 END REPeat loop
1230@ END DEFine n_items
Commentary

Lines 12090 —12230: These are the lines which request the input of the
individual items for the new entry. The name for each item is taken from
the array FIELD$, which was set up in the initialisation module. Each item

109

The Waorking Sinclair QL

isinputintothearray NEW_TEMP$, and padded out with character code
200 to a standard length of 38. As an aid to the user, the inputs are done at
the bottom of the screen and the maximum length of the individual field to
beentered is indicated by aline of ¢ =" signs underneath what is to be input.
Note that, as in the initialisation module, I am not entirely happy about the
use of CHR$(200) for the purposes of padding. The problem once again is
that we need to add something to the end of the string which will not makea
nonsense of its position in an alphabetically-arranged file. When I started
to write the program, each new entry was padded to a standard length with
spaces but this created the Indicrous situation that an entry of ‘A’ as the
first field of a record, was placed affer an entry of ‘AZ’, since the space
after the ‘A’ was assessed as being greater than the letter ‘Z”. If, by the time
you read this, your QL is capable of recognising that a space is alphabeti-
cally less than a letter or digit, CHR$(200) can and should be replaced by a
space.

The last line of the loop accumulates the individual fields into a single
string, T15, which, as we have already seen, is the string used for the binary
search. Each field is chopped to precisely the right length, as recorded by
the array FIELDS, which was set up in the initialisation module.

Testing

You are now in a position to test the last three modules that you have
entered. Run the program and set up a file with two fields per record, called
‘ONE’ and ‘TWO’, each three characters long. When you have finished
initialising the program and you get to the main menu, specify option 1.
You will now be faced with the display created by the current module and
asked to input item ‘ONE’. Enter ‘AAl’. The prompt will repeat for
‘TWO’and you should enter “AA2’. Repeat the process for ‘DD1’, ‘DD2’,
‘CCI’, “CC2°, ‘BBI’, ‘BB2’ to successive prompts. Now enter ‘ZZ7Z’ and
you will return to the main menu. Select option 4 to stop the program. Now
enter:

fori=0to 3 : print array$(p__val(i)):next i[ENTER]
and you should see:

AALAA2
BRIBB2

CC1CcC2
DDIDD2

1f all has worked correctly, you might like to start the program again with
GOTO 11000 and use menu option 3 to store the data you have input on
microdrive, This will make subsequent tests less onerous if the data should
become corrupted in some way.

110

i

Chapter3 Seriouser and Seriouser

Module 3.1.10: Searching for items in the file

We can now proceed (o the module which makes the program useful by
allowing the data which has been stored to be retrieved. The current
module will allow entries to be retrieved by one of four methods:

1) One by one in order from the current position.

2) By jumping forwards or backwards a specified number of items.

3) By entering a key item — the first item in the entry — for a fast search.

4) By searching for any occurrence of a combination of characters,
wherever it is within an entry.

Module 3.1.10: Lines 15000— 15660

1500@ REMark *
1501@ DEFine PROCedure user _search
15020 REMark *xx% * *

15030 s1=1
15040 cLs
15050 IF LEN(ptr#)=8

15068 PRINT\\"No data yet!'"
15070 t#=INKEY#(-1)
15080 RETurn

15070 END IF

15100 PRINTA\"Commands available:"

15110 FPRINTA" > Input item for normal search"

15120 PRINT " > "%’ first for initial search"

151370 PRINT " > Return for first item on file"

15140 PRI N " 963636 363690 369636 36 963536 36 3536 36 9638 9636 36.36 36 36 36 3 30 36 36 3 06
L

151508 INPUT "Search command: ";target#

15160 IF CODE (target#)=42

15170 target#=target#(2 TO)
15180 binary_search (target#$)
15150 si=ss

15200 target¥=""

15210 END IF
15220 REPeat main_search

15270 IF target#{>""

1524@ found=0

15250 FOR i=s1 TO LEN(ptr#¥)/4-1

15260 found=target$ INSTR array#(p_val (i)}

15270 IF found<:@

15280 si=i

15250 EXIT i

15300 END IF

15310 NEXT i

15320 RETurn

15330 END FOR i

15324@ END IF

15358 REFeat print_loop

15360 IF si1>*LEN(ptr¥)/4-2 THEN si=LEN
(ptr#)/4-2

15370 IF s1<1 THEN s1=1

111

The Working Sinclair QL

15%80 CcLS

15370 FRINT "Entry No: "3si\\

15400 start=1

15410 FOR i=0 TO n_fields—1

15420 PRINT field#(i);

1540 FAPER & : INK @

15440 PRINT array#%(p_val (sl1) ,start TO

start+fields(i})—-1)

15450 FAFER S : INK 1

15440 start=start+fields (i)

15470 NEXT i

15480 FRINTH#@," > 'ENTER’ = next TANAC
= amend"

15490 FRINT#@," > 'CCC’° = continue “#nn’
= move"

15500 FRINT#@," > “ZZZ° = guit"

1551@ INFUT#@, "Which do you require: ";q%

15520 CLS#@

15528 IF g#%="" THEN q#="#1"

15540 IF g#%="zzz" OR q#%="2Z2" THEN RETurn

1555@ IF g#¥="ccc" OR g#="CCC"

1556@ sl=s1+1

15570 EXIT print_loop

155680 END IF

15590 IF g#¥="aaa" DR q¥="AAA"

15400 amend

15618 q¥="#2"

15620 END IF

15630 IF q#(1)="#" THEN si=sil+q#(2 TO)

15640 END REFeat print_loop

15650 END REFeat main_search
1566@ END DEFine user_search

Commentary

Line 15030: S1 is the pointer to the current entry, and starts at 1 everytimea
search is begun. In normal circumstances it would start at 0, but the first
record in the main file is a dummy entry.

Lines 15050 — 15090: An error message is generated if no items have yet
been placed into the file.

Lines 15100 — 15130: This is the start-up menu for the search module. On
each search you will see it only once, when you begin. Using this menu, the
type of search to be made is specified — if you wish to change the search
type you will need to quit the current search and start again with this menu.
The term ‘NORMAL SEARCH?” indicates a search for a given combin-
ation of characters — the first record returned will be the first one in the file
which contains those characters, in any position. ‘INITIAL SEARCH’
refers to a search for a record which begins with the combination of char-
acters specified by the user. Thus, inputting “*SMI” would find any record
beginning with the letters SMI, though not always the first one. If the string

112

Chapter3 Seriouser and Seriouser

specified is not present at the beginning of any record, the record returned
will be the one occupying the place in which it would be inserted if input asa
new entry.

On a normal search, if the specified string is not found in any of the
records in the file, program execution will return to the main program
menu.

Lines 15160 — 15210: This line does all the work necessary for an ‘initial
search’, by stripping off the leading asterisk and simply calling up the
binary search module to find the correct position.

Lines 15220 — 15650: The main loop which will repeat a normal search if
the user so requests at alater menu. Note that theinitial search routine does
not fall in this loop since there is no point in repeating an initial search —
the result will always be the same record.

Lines 15230 — 15340: By this point in the execution of the module, any
input must be a string to be searched for using the normal search. This is
done quite simply by scanning records using INSTR. If an item is found,
the variable FOUND is set to its position within the record, the position is
recorded in S1 and EXIT takes program execution out of the loop. If the
end of the loop is reached with FOUND still equal to zero, the search is
terminated and the program returns to the main menu.

Lines 15350 — 15640: This loop will continue the secondary form of the
search, where the user can continue a normal search or page through the
items in the file, until the user specifies that the search is to be terminated.

Lines 15360 — 15370: Within the loop the user has the option to move
around the file by number — these lines check on subsequent passes
through the loop that the pointer has not been moved outside the valid
range for the current number of records.

Lines 15410 — 15470: These lines print out the record whose position (in the
pointer array) is indicated by the search pointer S1.

Lines 15480 — 15510: The secondary menu which appears once a record is
displayed. The user has the option to move on to the next entry, to call up
the AMEND function (not yet entered), to search further for the pre-
viously specified string, to move through the file a specified number of
records, or to return to the main program menu.

Line 15530: The ‘4’ symbol will be used as an indication that the user
wishes to move a specific number of places forwards or backwards through
the file. If ENTER is pressed on its own, Q$ is setequal to * 4 1’, which later
lines will use to move the search pointer on to the next record.

Lines 15550 —15620: Entering ‘CCC’ results in the continuation of a
normal search for the current TARGETS.

113

The Working Sinclair QL

Lines 15590 —15620: The AMEND function, which has not yet been
entered. Note that deletions are made in the AMEND mode, and, if this
results in there being nothing left in the main array but the two dummy
records, the search module is terminated.

Line 15630: Inputting a number preceded by the * 3 * sign allows the user to
move forwards or backwards through the file by altering the search pointer
S1.

Testing

If you have previously saved the series of four entries made in previous
tests, run the program and reload the entries. Specify option 2 on the main
menu and then, when the SEARCH menu appears, page through the
records by pressing RETURN. Each record should be displayed on two
lines, with the appropriate item name, eg:

ONE: AAI
TWO: AA2

When you reach the fourth record you should find that you can go no
further using RETURN. Now enter ‘4 — 1" and you should move back to
record 3. Continue to move back — you should find that you cannot move
off the beginning of the file either.

Enter ‘ZZZ’ toreturn to the main menu and specify option 2 again. This
time, respond to the initial SEARCH menu with ‘CC”. Record 3 should be
displayed — the only one to contain the characters ‘CC’. You are now on
the second SEARCH menu, so enter ‘CCC’ to continue the search. You
should find yourselfl back at the main menu since there are no more records
which contain the specified characters.

Once again, choose option 2, and this time enter ‘2’ as your search
target. Entry | should appear, since it contains the character ‘2’. Enter
‘CCC’ to continue the search and entry 2 should be printed — it also con-
tains the character 2. Continue to enter ‘CCC’ until all record entries have
been displayed and the search fails, returning you to the main menu.

Finally, choose option 2 from the main menu and enter ‘“*B” as your
search target. Entry 2 should be displayed — the only record to begin with
‘B’. Enter ‘ZZZ’ to return to the main menu and terminate the program.

You have now tested all the search functions.

Module 3.1.11: Deleting entries

The final touches to the program are added by the following two modules,
which allow entries to be changed or deleted. The deletion module is added
first, since it is used whenever an entry is changed. The overall method
involved in deletion has already been described in the commentary on the

114

Chapter3 Seriouser and Seriouser

insertion module for this program. The function of the module is
threefold, to clear an individual record, to store the address of the resulting
hole in EMPTY$, and to remove the appropriate pointer from PTRS.

Module3.1.11: Lines 17000 — 17060
17000 REMark #*%
1701@ DEFine PROCedure remove

17020 REMark =% * R

17030 array# (p_val (sl1))=""

17048 empty$=empty#$ & four$(p_val (s1))

17050 ptr¥=ptr¥(1 TO six*4) % ptr¥((si+l1)*4+1 TO)
17@04@ END DEFine remove

Commentary
Lines 17040 — 17050: Deletion is simply accomplished by slicing the rel-
evant pointer out of PTRS and recording a hole in EMPTYS.

Testing

Run the program and reload the four items from microdrive. Specify
option 4 to stop the program. Now enter:

sl =I1[ENTER]
remove|ENTER]

When the flashing cursor returns, type:
goto 11000[ENTER]

and then call up the SEARCH option. You should find that the
AA1/AA2 entry has disappeared from the file.

Module 3.1.12: Changing entries

The program would be of limited use to us il we were not able to change
existing data — this module fills that gap.

Module 3.1.12: Lines 16000 — 16340
16008 REMark
1601@ DEFine PROCedure amend
16020 REMark 4
16030 temp$=""

16040 start=1

16050 FOR i=@ TO n_fields—1

16060 CLs

16070 PRINT "Entry No: ";si\\

16080 PRINT field$(i);": *;

16070 PAPER & : INK

146100 PRINT array#(p_val (s1),start TO start

+fields(i)-1)

115

The Working Sinclair QL

16110 PAPER S : INK 1

16120 AT 10,0

16130 PRINT " Commands available:"

16140 PRINTAAY ‘ENTER* leaves field
unchanged”

16150 FPRINT " Input item to replace
one shown"

16160 PRINT " ‘DDD’ deletes whole record”

16170 PRINT " *I11° leaves record
unchanged"

16180 INFUT " Which do you require: ":;q#%

16150 IF q#="ddd" OR q#="DDD" THEN remove

RETurn

16200 IF q#%="zzz" OR g$="ZZZ" THEN RETurn

16210 IF q$c{>*"

16220 q¥=q¥ & FILL#(CHR%$(200),fields(1))

16230 q¥=q#¥(1 TO fields(i))

16240 ELSE

16250 temp¥=temp#$ % array#(p_val(sl),start

T0 start+fields(i}—1)

16260 END IF

1627@ start=start+fields (i)

16280 temp$=temp¥ & q¥

162590 NEXT i

16300 remove

16310 binary_search (temp#%)
16320 insert (temp#)

16370 sl=ss

1634@ END DEFine amend

Commentary

Lines 16050 — 16290: This loop, while it looks very similar to the loop
which prints the record in the previous module, is different in that it prints
only one item at a time.

Line 16190: Input of ‘DDD’ when any field is displayed deletes the whole
record of which that field is a part — note that an individual field cannot
simply be deleted, only replaced, since the number of items per entry is
fixed.

Line 16200: Input of ‘ZZ7’ in response to any item returns execution tothe
SEARCH module. Any changes made to previous fields in the record will
be ignored and the record will be unchanged.

Lines 16210 — 16230: 1f any input is made other than ‘DDD’ or ‘ZZZ" then
it is interpreted as being a replacement for the field displayed. The
CHR$(200) padding is added, as in the input module.

Lines 16240 — 16260: Pressing ENTER without an input copies the item
displayed without changes. If only one item is to be changed, simply press
ENTER for all the others.

116

Lines 16300 — 16330: The amended entry has been built up in TEMPS.
When the entry is complete, the original entry is deleted from the file. The
reason for this is that the changes made may have altered the correct posi-
tion of the entry in the ordered file. Once deleted, the entry is sent to the
binary search module and re-inserted. Its place in the file is copied into the
variable S1, so that the SEARCH module will know which item to display
if the position has been changed.

Chapter3 Seriouser and Seriouser

Testing

Run the program and reload the four items of data from disk. Call up the
search option and press ENTER to get entry 1 displayed. Now enter ‘AAA’
in response to the second SEARCH menu. You should see the first item
‘AA1’ displayed, together with the AMEND menu. Enter ‘AA0" and,
when the second item is displayed, press ENTER. You should now have
returned to the SEARCH maodule, and the entry should be displayed as:

ONE: AAO
TWO: AA2

Try making other changes and deleting entries. IT all works properly, the
program is now complete.

PROGRAM 3.2: NNUMBER

Program function

Not all filing is concerned with words. One of the things which microcom-
puters do best is store and manipulate figures. The current program,
Nnumber (short for ‘Name and Number”), allows you to store the names of
items, the units in which they are usually measured and an associated quan-
tity. Now, before you say that you can’t see a use for such a program,
consider the average shopkeeper or even domestic cook.

The shopkeeper has a mass of items which are called stock. All of the
items which make up the stock have names, they come in different units
(box, bottle, bag, etc) and all have a very important quantity associated
with them — their price. In order, therefore, to make a microcomputer
help with stocktaking or make out an invoice, it must remember these three
facts about each item. In the home, the foods we eat each have a name, they
come in different units (spoonsful, pounds, pinch, etc) and if we are inter-
ested in their effect on our weight, then they all have a quantity associated
with them known as ‘calories’.

These are just two examples — you can think of many more for yourself
— of theimportance of being able to record names, units and an associated
quantity for a whole variety of items.

The purpose of Nnumber is Lo allow you to create a ‘dictionary’ of items

117

The Warking Sinclair QL

— up to 1000 of them — together with the units in which they are measured
and the values associated with those units. Based on that dictionary you
will be able to construct lists of items which the program will display and
total the quantity for you, Nnumber is as easy to use in adding up the
calories for a day’s recipes as it is in providing a total price for a collection
of goods.

item: widgets

UNHITS: 18 box @ 15.95S

TOTAL: 152.5

0000000000000 0000O00000000000000000000

item: flanges

UHITS: 22 bags @ 7.5

TOTAL: 165

OoOOoOOOOOOOOOOOOOOOOOOOCOOOOOOOOOODOO0

item: gubbins

NITS: 36 pots @ 3.75

TOTAL: 135S

COoOOOO00000000000000000OO0DOOODOOOOOOOD

OUERALL TOTAL: 459.S

ANy key to return to menu

Figure 3.2: Example of Nnumber in Current List Mode.

Module 3.2.1: Initialisation

A standard module, the only thing worthy of note being that the user is
asked to specify the type of item the program will be dealing with. This will
be a name such as ‘Food item’ or ‘Stock item’. The phrase input will be
used during the course of the program to prompt the user to input another
item.

Module 3.2.1: Lines 10000 — 10100

1800 REMark AN
1@@210 REMark initialise
10020 REMark W W

18025 CLs

10030 DIM array$(100@,1,20) ,array (1000) ,
current$(100,1,2@) ,current (10@)

10068 c_list=0 : it=0@ : c_total=0

i\a7a INPUT "LODAD FROM MICRODRIVE (Y/N): ";Qf

10080 IF Q%="y" OR Q%="Y"

1@@a85 recall
iea7a ELSE
10295 INPUT "OVERALL NAME FOR ITEMS:";NAME$

19100 END IF

Commentary

Line 10030: The array ARRAYS is used to record the item name and unit
name for each of the items in the dictionary. The associated quantity for
each unit is stored in the equivalent element of the array ARRAY.

118

CURRENTS and CURRENT will serve a similar purpose to ARRAYS
and ARRAY but for the ‘current list' which is extracted from the
dictionary.

Chapter3 Seriouser and Seriouser

Line 10060: C__LIST will record the number of items in the ‘current list’ —
thelist derived from the main dictionary. It records the number of items in
the main file — in this case the dictionary.

Module 3.2.2: Menu
A standard menu module.

Module 3.2.2: Lines 11000 11400

11000 REMark N
112108 REMark menu

11020 REMAr| %% %% 35 335 56 395 955 33 36 3 36 3 300 3
110370 REPeat prompt

11040 CLs

11850 AT 1,15 : PRINT "NNUMBER"

11060 PRINT \\" COMMANDS AVAILABLE:"\\

11870 PRINT,"1) Display current list"

11289 PRINT,"2) Input to current list"

11090 PRINT,"3) Start new current list"

11100 PRINT,"4) Delete 4rom current list"

11110 PRINT,"5) Add to dictionary"

11120 PRINT,"&) Examine dictionary items"

11130 PRINT,"7) Save data to microdrive"

11140 PRINT,"8) Stop"

11150 INPUTA\" WHICH DO YOU REQUIRE: "jchoice#

11160 choice="0" % choice#

11170 cLs

11180 IF it=0 AND (choice$="1" OR choice$="4"
OR choice#="4" OR choice$="7")

11190 AT 1@,13 : PRINT "NO DATA YET"

11200 t#=INKEY# (-1)

11210 choice$="0"

11220 END IF

11230 SELect ON choice

11240 ON choice=1 : c_display

11250 ON choic : c_input

11260 ON choice=3 : c_initialise

1127@ ON 1 c_delete

11280 ON d_input

11290 ON choice=6 : d_display

11300 ON choice=7 : store

11310 ON choice=8

11320 EXIT prompt

11330 END SElLect

11340 END REFeat prompt
11358 CLS
11360 AT 10,11

119

The Working Sinclair QL

11370
11380
11390
11400

FRINT “NAME AND NUMEER"
AT 12,9

PRINT "PROBRAM TERMINATED"
STOF

Modules 3.2.3 and 3.2.4: Data files
Two standard modules.

Module 3.2.3 and 3.2.4: Lines 21000 — 22260

1000 REMArk 35553565 553 0 3 53 03 3036 33 %
21018 DEFine PROCedure store

21020 REMark %% * W *
21038 CLS

21048 AT 1,14 : PRINT "SAVE DATA"
21050 INPUTA\" Name of data file:";jfile¥
210480 tfilef="mdvl_" % file$¥

2107 DELETE tfile#

21080 OPEN_NEW #8,"mdvi_" & file¥
21090 PRINT #B,it

2118@ PRINT #8,c_list

21110 FRINT #B,NAMES

21120 FOR i=@ TO it-1

21130 PRINT #B8,array (i)

21140 FOR ;=@ TO 1

21150 PRINT #8,array#®{i,j)
21160 NEXT j

21170 NEXT i

21180 IF c_list>@

21190 FOR i=0 TD c_list-1

21200 FRINT #B,current (i)

21210 FOR j=@ TD 1

21220 PRINT #B,current®(i,j)
21270 NEXT j

21240 NEXT i

21250 END IF

21260 CLOSE#B

2127@ END DEFine store

22000 REMark % s %55 5560 54 H 0 KX XK XXX
2201@ DEFine PROCedure recall

22020 REMark ®xxx

22050 CLS

22040 AT 1,14 : PRINT "RECALL DATA"
22050 DIR mdwl_

22060 INPUTA\" Mame of data file:";file#
22078 OPEN_IN #8,"mdvi_" & file#
22080 INPUT #B,it

22090 INPUT #8,c_list

22100 INFUT #8,NAMES

22110 FOR i=0 TO it-1

2212@ INPUT #8,array(i)

22130 FOR j=0 70 1

221480 INPUT #8,array$(i,j)

120

Chapter3 Seriouser and Seriouser

22150 NEXT j
22160 NEXT i
22170 IF c_list>@

22180 FOR i=0 TO c_list-1

22190 INFUT #8,current (i)
22200 FOR =@ TO 1

22210 INPUT #8, current#$(i,j)
22220 NEXT j

22230 NEXT 1

22240 END IF
22250 CLOSE#8
22260 END DEFine recall

Module 3.2.5: Binary search

For a full commentary on this module, see the equivalent module in Uni-
file. Sorting is done on the basis of the item name in the zero column of
ARRAYS. Note that pointer arrays will not be used in the case of this
program, sothe search takes place directly on the array, not via the value of
a pointer.

Module 3.2.5: Lines 16000 — 16200
16000 REMArk #5555 5555353085 500550 85N
16010 DEFine PROCedure binary_search

1602@ REMar k N

16030 IF it=@

16040 ss5=0

160850 RETurn

16060 END IF

16070 NT(LN{it) /LN(2))
16080 “po-1

16090 i=po TD @ STEFP -1
16100 IF array$(ss,@)<tis
16110 s55=55+2"1

161280 IF ss>it-1 THEN ss=it-1
16130 END IF

16148 IF array#$(ss,@):t1¥
16150 ss=ss-2"i

16160 IF ss<@ THEN ss=0
16170 END IF

16180 NEXT i
16190 IF array$(ss,@)<t1$ THEN ss=ss+1
1620@ END DEFine binary_search

Module 3.2.6: Inserting items into the main dictionary

The principle of this module is the simpler moving of items up and down.
Only you can decide whether it would be worth your while adapting the
method to use a pointer array, as in Unifile.

121

The Working Sinclair QL

Module 3.2.6: Lines 17000— 17130

17000 REMark *#%% R
17@1@ DEFine PROCedure d_insert
17020 REMark 3555565 % 500 96 55000 50000

17030 IF it<>@ AND it:ss

17040 FOR i=it TO ss+1 STEF -1
17050 array$(i,@)=array$(i-1,0)
170460 array$(=array¥(i—-1,1)
17070 array(i)=array(i-1)

17080 NEXT i

17090 END IF

17100 array¥(ss,@)=t1¥
17110 array$(ss,1)=t2¢%
17120 array (ss) =NN
1713@ END DEFine d_insert

Module 3.2.7: Entering items for the dictionary

Considerably less complicated than the equivalent module in Unifile, this
module accepts three inputs from the user: (a) the name of the item, (b) the
name of the units in which it is measured and (c) the quantity associated
with those units.

Module 3.2.7: Lines 15000— 15270

15000 REMark *H% P
1501@ DEFine PROCedure d_input

1S@20 REMark 555 5555 00 530300030533 25 %
15030 REPeat entry

15040 CLS

15050 AT 1,6

15060 PRINT "NEW ITEMS FOR DICTIONARY"

15070 " IF it>1000

15080 AT 6,12

15098 PRINT "NO MORE ROOM"

15100 t$=INKEY$(-1)

15110 RETurn

15120 END IF

15130 REFeat confirm

15140 PRINT\\NAMES$;

15150 INPUT * ("ZZZ" to quit): ‘;ti¥

15160 IF ti$="zzz" OR ti1$="ZZIZ" THEN RETurn
15170 INPUTA"UNITS: ":t2%

15180 PRINT\"QUANTITY PER ":t2%;": ";

5190 INPUT NN

;SZBB INPUTA\"ARE THESE CORRECT (Y/N):":Qt
15210 IF O%="y" OR @%="Y" THEN EXIT confirm
15220 END REFPeat confirm

15230 binary_search

15240 d_insert

15250 it=it+1

15240 END REFeat entry
1527@ END DEFine d_input

122

Chapter3 Seriouser and Seriouser

Testing

It is now possible to make a real test of what has been entered so far.

Run the program, specify that you are not loading from microdrive and
give the name ITEM in response to the prompt for an overall name. At the
main menu, choose option 5 ‘Add to Dictionary’. When the ‘new items’
screen comes up, input the following three entries:

THING1/BOX/10

THING2/BOTTLE/20
THING3/BAG/40

These items have no particular meaning, they are purely for test purposes.
When you have input the items, return to the main menu by entering

‘ZZZ’. Now call up the data file module (option 7) to store the informa-

tion. Stop the program with menu option eight and enter:

fori=0to 2:print array$(i,0),array$(i,1),array(i):next ilENTER]

You should see this:

THINGI BOX 10
THING2 BOTTLE 20
THING3 BAG 40

Now run the program and specify that you do want to load from micro-
drive. Give the name you supplied when storing the data. When the drive
has finished, you should be able to perform the same test of the contents of
the arrays, with the same result.

Module 3.2.8: The search routine

As in Unifile, this module provides the user with the opportunity to move
through the file of dictionary items, to search for named items or to delete
items from the file. The module is simpler than that given in Unifile since it
is designed to search for whole items only, rather than combinations of
characters stored anywhere in an item. In addition, the structure of a
complete entry in Nnumber is far simpler than the structure of an item in
the main array of Unifile.

Module 3.2.8: Lines 18000 — 18400
1800@ REMark ##%

1801@ DEFine PROCedure d_display
1B@20 REMark
18030 ss=0
18040 REPeat search_prompt

18050 cLs
18060 AT 1,15
i8a7e PRINT "SEARCH"

123

The Working Sinclair QL

180880 PRINT \" ITEM NUMBER: "j;ss+1

180870 PRINT\" ";NAME$;": "parray$(ss,0)

18100 PRINT * UNIT: "j;array${ss,1}

18110 PRINT " QUANTITY PER "jarray#(ss,1);
": "jarray(ss)

18120 PRINTA\" L *H
EE 2T

18130 PRINT\" COMMANDS AVAILABLE:"

18140 PRINTA" >Item to be searched for"

18150 PRINT * >'#" then number to move
pointer”

18160 PRINT >'ENTER’ for next item"

18170 PRINT ™ >'DDD’ to delete item"

181680 >"ZZ1' to quit"

1819@ WHICH DO YOU REQUIRE: "; ti#

18200 THEN t1$="#1"

18210 "ddd" OR t1#="DDD"

18220 d_delete

18230 IF it=@

18248 EXIT search_prompt

18258 END IF

182608 tis="H#HA"

18270 END IF

18280 IF ti1$="zzz" OR t1$="77Z" THEN

18290 EXIT search_prompt

18200 END IF

183180 IF t1$(1)<>"#"

18320 binary_search

18332 END IF

18340 IF t1§(1)="4"

18350 ss=ss+t1$(2 TO)

18340 IF ss>it—1 THEN ss=it-1

18370 IF ss<@ THEN ss=0

18380 END IF

18398 END REPeat search_prompt
18408 END DEFine d_display

Testing

Simply run the program, reload the three items of data from disk and then
call up option 6 from the main menu. You should be able to page through
the items, forwards or backwards, using a number preceded by ‘#”, asin
Unifile. You should also be able to recover an item by entering the item
name — not the unit name.

Module 3.2.9: Deleting an item

The direct equivalent of the delete module in Unifile, but, once again, the
method of storage employed here makes for greater simplicity.

Module 3.2.9: Lines 19000 — 19090

19@00 REMark LR R
19@1@ DEFine FROCedure d_delete

124

Chapter3 Seriouser and Seriouser

17020 REMArk 5% %535 58 85555050080 NN
17032 FOR i=ss TO it-1

19840 array#(i,@) =array$(i+1,0)
19050 array$(i,1)=array$(i+1,1)
19060 array (i)=array(i+1)

17870 NEXT i
19080 it=it-1
19@09@ END DEFine d_delete

Testing

Run the program, reload the data, call up option 6 from the main menu,
and enter ‘DDD” against one of the entries. You should find that it is
removed from the file.

Module 3.2.10: Copying items into the current list

The purpose of Nnumber is not simply to keep a dictionary of items and
their associated quantities, but to use that dictionary as the basis on which
temporary lists can be constructed. The modules which follow are there-
fore designed to allow the user to add items to the ‘current’ list, to display
that list, to delete single items from it or to delete the whole list in one
operation. The current module allows the copying of items from the main
dictionary into the current list.

Module 3.2.10: Lines 13000— 13350
1300@ REMark o

1301@ DEFine PROCedure c_input

13020 REMark #3556 555 33555008 5 5 5 05 504 % 0
13030 REPeat c_prompt

13040 cLs

130502 AT 1,4

13060 PRINT “CURRENT LIST ADDITIONS"

13870 IF c_list=101

13080 AT 10,5

13098 FRINT "CURRENT LIST NOW FULL"

13100 t#=INKEY#(-1)

13110 EXIT c_prompt

13120 END IF

13130 PRINT\ANAME®#:" (°ZZ1°' to quit): “;

13140 INPUT ti%

13150 IF t1%$="zzz" DR ti1$="ZZIZ"

13160 EXIT c_prompt

12170 END IF

13180 binary_search

13170 IF array$(ss,@)<>t1¥

13200 PRINTANAMES$; " ";t1%;" unknown."\
"Please check."

13210 tF=INKEY$(-1)

13220 EXIT c_prompt

13230 END IF

125

The Working Sinclair QL

1324@ PRINTA"UNITS: "sarray#(ss,1)
13250 PRINT\"NUMBER OF “;array$(ss,1);
" UNITS: "3
132460 INFUT qu
1327@ INPUT\"Are these correct (Y/N): ":0%
13280 IF @F%="y" OR U$="Y"
1329@ current${c_list,@)=array#¥(ss,d)
13300 current¥(c_list,1)=qu & " " % array#
(55,1}
1371@ current{c_list)=qu*array(ss)
13320 c_list=c_list+1
13370 END IF

13340 END REFPeat c_prompt

1335@ END DEFine c_input

Commentary

Lines 13180 — 13230: These lines perform a check to see if the item input by
the user, which is to be placed into the current list, is present in the main
dictionary. This is done by calling up the binary search module to obtain
the position at which the item would be inserted into the dictionary. The
actual contents of the dictionary at this point are then compared with what
the user has input. If the item input by the user is in the dictionary then the
two items will be the same, otherwise an error message is printed and the
module terminates.

Lines 13240 — 13260: Having found the item in the dictionary, the module
prints out the units in which it is normally measured and asks how many of
those units are to be included.

Lines 13270 — 13330: The user is requested to confirm the accuracy of the
entry before it is added to the current list, contained in the variables CUR-
RENT$ and CURRENT. Note that the quantity stored in CURRENT is
not the quantity per unit taken from the dictionary, but the total quantity
for the number of units specified by the user.

Testing
Run the program and reload the data from disk. Call up option 2 on the
main menu. Enter the following items and numbers of units:

THINGI,1

THING2,2

THING3,3

Now try to get the module to accept “THING4’, which is not present in the
dictionary. You should receive an error message asking you to check the
item name. Press any key and you will return to the main menu. Before you
do anything else, call up option 7 — this will store the current list you have
just created, along with the main dictionary. Finally choose option 8 to
stop the program.

126

Chapter3 Seriouser and Seriouser

Now enter the following line in direct mode:
for i=0to 2:print current$(i,0),current$(i, 1),current(i): next il ENTER]

You should see this:

THINGI 1BOX 10
THING2 2BOTTLE 40
THING3 3BAG 120

Module 3.2.11: Displaying the current list

The sole purpose of this module is to print the entries which make up the
current list, one by one on the screen. After each entry, the user is required
to press a key before the next is displayed. This is because the list will
normally be longer than the screen itself and the user will not want the list
to scroll up off the screen faster than it can be read. At the end of the list,
the total of the associated quantities for the contents of the current list is
given.

Module 3.2.11: Lines 14000 — 14180
14008 REMark R
14018 DEFine PROCedure c_display
14020 REMArk 5555 5% 5550 5 505965 9 5 3 30 3 3 4
1480 IF c_list>@

14040 CLS

14250 c_total=0

14050 FOR i=@ TO c_list-1

14070 FPRINT NAME# "scurrent® (i @)

14080 FPRINT "UNITS: scurrent®(i,1);" @ "3
current (i) /current$(i 1)

14070 FRINT “TOTAL: "icurrent (i)

14100 FRINT "ooooooooooo0000000000000000000
ooooooo"

14110 t¥=INKEY¥(-1)

14120 c_total=c_total+current (i)

14130 NEXT i

14140 PRINT "OVERALL TOTAL: ":c_total

14150 PRINT\"Any key to return to menu"

14160 t#=INKEY®(-1)

14170 END IF
14180 END DEFine c_display

Module 3.2.12: Deleting items from the current list

This is a simplified version of the kind of search module used for the main
dictionary.

Module 3.2.12: Lines 20000 — 20370

20000 REMArk 555055 50 50 0 05050563 355 385 36 % % %
20010 DEFine PROCedure c_delete

127

The Working Sinclair QL

20020 REMark #*%x%xs AR
20030 count=0
20049 REPeat c_prompt

20050 IF c_list=@ THEN EXIT c_prompt

20040 CLS

20070 AT 1,8

20080 PRINT "CURRENT LIST DELETION"

20079 PRINTAA"ITEM NUMBER "j;count+1;" OF "3
c_list

20100 FRINT\current#(count ,®)

20110 FPRINTAcurrent$(count,1);" @ ";current
(count) /current$(count , 1)

20120 PRINTA\" COMMANDS AVAILABLE:"

20130 PRINT\" >'DDD° = delete"

20140 PRINT " >’ENTER’ = next item"

20150 PRINT " >7II1° = quit"

20168 PRINT " >'#" + number to move pointer"

2e17@ INFUTA"WHICH DD YOU REQUIRE: ";Q%

20180 IF Q%="zzz" OR Q$%="2Z2"

20190 EXIT c_prompt

20200 END IF

20218 IF Q%="" THEN Q%="#1"

20220 IF Q$(1)="#"

20230 count=count+ Q%(2 TO)

20240 END IF

20250 IF @%="ddd" OR @%="DDD"

20260 FOR i=count TO c_list-1

20270 current#(i @) =current#(i+1,0)

202680 current${i,l)=current$(i+1,1)

20290 current (i)=current (i+1

20300 NEXT i

20310 c_list=c_list-1

20320 IF c_list=0 THEN EXIT c_prompt

20330 END IF

20340 IF count>c_list—1 THEN count=c_list-1

20350 IF count<@ THEN count=0

20340 END REPeat c_prompt
28370 END DEFine c_delete

Testing

Run the program and reload the data file containing the current list. Call
up option 4, ‘Delete from Current List’, from the main menu. You should
now be able to page through the three items in the current list and delete one

— the fact that it has been deleted may be checked by displaying the current
list.

Module 3.2.13: Initialising the current list

For many applications, the need will be to construct a current list, obtain
the total involved, and then quickly move on to a fresh list. This simple
module wipes out the contents of the current list in one operation.

128

Module 3.2.13: Lines 12000 — 12060
12000 REMark #*% LA g

12010 DEFine PROCedure c_initialise
12020 REMark 585555 %5 5 %58 53 363 0 3050863 0 58 %
12070 DIM current$ (100,1,20)

12040 DIM current (10@)

12050 c_list=0

1206@ END DEFine c_initialise

Chapter3 Seriouser and Seriouser

Testing
Run the program, reload the datafile which includes the current list and
specify option 3, ‘Start Fresh List’, from the main menu. The main menu
should be almost instantly re-printed. Now try calling option 1 from the
main menu. Once again, all that happens is that the main menu reprints
itself — the display module has been called but since there is nothing to be
displayed, execution immediately returns.

1f this test is completed satisfactorily, the program is complete and ready
for use.

PROGRAM 3.3: MULTIQ

Program function

In the final program in this chapter, we turn to the worthy subject of edu-
cation for alittle bit of fun. I’'m not entirely sure how much you can learn
about your chosen topic using this program, but it is fun to use, and makes
answering questions addictive. Not only that, the program is a star in its
own right, for an earlier version of MultiQ on the Sinclair Spectrum was
the first program (at least according to the press hand-out) to set alisteners”
quiz on radio in Britain.

MultiQ is, as the name suggests, a multi-purpose program that can at
one moment be a language tutor and the next be quizzing you on abstruse
points of 19th century history. It does all this by creating random answer
tests of the type increasingly used in public examinations, setting a ques-
tion and providing five possible answers, only one of which is correct. A
running score is kept, providing an assessment of the user’s knowledge on
the current topic. Of course, the main work is on the part of the program-
mer, since not only does the program itself have to be entered, there is also
the small matter of entering alarge enough body of questions to ensure that
the tests are meaningful.

Module 3.3.1: Initialisation

As with all the multi-purpose programs in this chapter, this module
includes provision for describing the type of file to be handled in the cur-
rent session.

129

The Working Sinclair QL.

Figure 3.3: MultiQ’s Command Menu.

Module 3.3.1: Lines 10000 — 10240

1000 REMAr ke 36963 3 56 55 5 5 3 5 3 55 58 58 38 8 5 3 5 ¥

10010 REMark initialise

10D2@ REMArk 555 %3 5 060 56 5 396 3 6.6 3 6 35 3 % 3

ieeza FAFER Z: INK @

10040 DIM name#(1,2@) ,qu{d),array¥(497,1,20),
q_type#(2,20) ,n_type(1,9)

1@@sa right=@ : total=@ : IT=0

10050 CLS : CLS#D

109072 INFUTA"LDAD FROM MICRODRIVE (Y/N): ";0%
10080 IF Qf="y" OR Q#="Y"

10098 recall

19100 ELSE

12110 REFeat check

@120 CcLS

18120 AT 1,12 = PRINT "TEST STRUCTURE"
12140 INPUTAN"NAME FOR ANSWER: ":;T1#
10150 INPUT\"NAME FOR QUESTION: “:;T2#%
10160 INFUTAN"Are these correct (y/n): ";0%
12170 IF Q%="Y" OR @%="y" THEN EXIT check
10180 END REFeat check

10190 q_type# (@) ="No type"

10200 n_types=1

10210 name# (@) =T1%

10229 name$ (1) =T2%

1@2=0 types

10240 END IF

Commentary

Line 10049: The array NAMES will be used to record the general names
given by the user to questions and answers, QU will be used in the setting of
random tests, ARRAY3 will hold the main file of questions and answers,

130

Q__TYPES will hold the names of types which may be allocated to ques-
tions and answers and N__TYPE will store the number of each type in the
main file.

Chapter3 Seriouser and Seriouser

Lines 10110 — 10180: MultiQ, as we have already noted, sets tests, ie it asks
questions and displays possible answers. These lines enable the user to give
a general title to questions and answers. If the program were to be used for
the purposes of learning French, for instance, you might call the question
‘ENGLISH WORD’ and the answer ‘EQUIVALENT FRENCH WORD'.

Module 3.3.2: The menu

A standard menu module.

Module 3.3.2: Lines 11000 — 11330
11000 REMAr k5% %5 55608 506000 0 9 5% % 258 5 % 56 % 5 % %

11@21@ REMark menu
TLID2D REMAr b %5 %% %% %5 5 3 0 330 203 3 20 2 4 %

112=@ REFeat display

11040 FAFER 3 : INK @

1105@ CLS : CLS#@

11040 AT 1,16 ¢ FRINT "MULTI@"

11@7@ FPRINTAN" COMMANDS AVAILABLE: "
11080 PRINTN" 1) INFUT NEW ITEMS"
11090 FRINT " 2) ENTER NEW TYFES"
11100 PRINT " 3) SEARCH/DELETE"
1111@ PRINT * 4) GENERATE QUESTIONS"
11120 PRINT " S) DISPLAY OR RESET SCORE"
11170 FRINT " &) DATA FILES"

11140 FPRINT " 7) STORP™

1115@ INFUTA" WHICH DO YOU REQUIRE: ";Z
1116@ IF (Z»2 AND Z<7) AND 1T=0

11172 FRINT "NO DATA YET"

11180 T#=INKEY (-1)

1117@ =0

11200 END IF

1121@ SELect ON Z

11220 ON : n_items

1123@ ON : types

11240 ON : search

11250 ON : questions

1126@ ON : score

11270 ON : store

11280 oN

11270 CLS

11700 FRINT#@,"Classroom closed"
11310 STOF

11320 END SELect

END REFeat display

131

The Working Sinclair QL

Module 3.3.3: Setting question types

Inthe course of entering later modules you will discover that MultiQ makes
provision for two different levels of difficulty in the tests that it sets. It does
this on the basis of question types. Turning again to the example of using
the program as a French language tutor, it is clearly possible to divide up
the kinds of words being displayed into different grammatical groups, like
verbs, nouns, adjectives and so on. If an English word is displayed whichiis
averb, and of the five possible French answers only one is a verb, the test is
a great deal easier than if all five of the possible answers were verbs. The
purpose of the current module is to allow the user to define up to 10 types
into which questions or answers will fall, with the facility to tag a type on to
aquestion as it is entered. When MultiQ later comes to set a test, it will ask
whether the user wishes possible answers to questions to be drawn only
from the same type as the correct answer or from the whole stock of
answers.,

Module 3.3.3: Lines 12000 — 12210

12000 REMArk #6550 5 55 00 508 5 0 6 %05 6 %
1201@ DEFine FROCedure tvpes

12020 REMArk: #6655 45550 50 3004 6 35X HEREN
1200 REFeat loop

12040 CLS

12050 AT 1,16 : PRINT "TYPES"

12060 PRINTM\" Types so far:"\\

12070 FOR i=@ TO n_types—1

2080 FRINT " "1i4+13") "iq_type# (i)
12090 NEXT i

12100 IF n_types=10

12118 FRINTA\"NO RODM FOR MORE TYFES."
12120 T#=INKEY#¥ (1)

1210 RETurn

12140 END IF

12150 FPRINTAN"INFUT *Z2ZZ° TO GUIT OR:-"
12160 INFUTAN"INPUT NEW TYFE: ";0%
12170 IF @%="zzz" THEN RETurn

12180 q_typefin_types)=0%

12190 n_types=n_types+1

12200 END REFeat loop
12210 END DEFine types

Testing

You should now be in a position to run the program and enter up to 10
question types. You can confirm that the types have been accepted by stop-
ping the program and typing:

fori=0to 9:print q__type$(i):next ii[ENTER]

132

Module 3.3.4: Binary search

A standard search module, working alphabetically on the basis of the
answers to questions. Note that, as you will discover when you enter the
new items module in a moment, each answer is preceded by a single char-
acter (0 —9) to indicate which type it is. The file will therefore be sorted first
of all on the basis of types and, within types, on the basis of the alphabeti-
cal order of answers.

Chapter3 Seriouser and Seriouser

Module 3.3.4: Lines 14000 — 14200

14000 REMark p——
14@1@ DEFine PROCedure b_search
14020 REMark EEH R
14070 IF IT=0

14040 s55=0

14050 RETurn

140260 END IF

14070 po=INT(LN(IT) /LN (Z2))
14080 ss=2"po-1

140°0 FOR i=po TO @ STEF -1

14100 IF array$(ss,@)<T1¢
14110 ss=ss+271

14120 IF ss>IT-1 THEN ss=IT-1
14130 END IF

14140 IF array$(ss,@):T1$
14150 s5=s55-271

14160 IF s5<@ THEN ss=0
14170 END IF

14180 NEXT i
14190 IF array$(ss5,@)<T1¥% THEN ss=ss+1
1420@ END DEFine binary_search

Module 3.3.5: Inserting an item
A standard insert module.

Module 3.3.5: Lines 15000 — 15130

1SOOD REMArke 56555 5 5 5 5% 5 5 3 33 3635 3 54 0
15010 DEFine FROCedure insert

1S@20 REMArl 5% %% 5 5 M 55 300 M 5543
150830 IF IT<>@ AND IT>:ss

15040 FOR i=IT TO ss+1 STEF -1
15850 array¥(i @ =arrayf(1-1,@)
15060 array#(i,l)=array$(i-1,1}
i5e7e NEXT 1

15880 END IF
15070 array¥(ss,0)=Tl#¥
15100 array¥(ss,1)=T2%
15110 IT=IT+1
15120 update
1513@ END DEFine insert

133

The Working Sinclair QL

Module 3.3.6: Keeping track of types

We have already entered the module which allows types to be recorded but
we also need to give the program the ability to record how many of each
type there arein the file and where each group of types starts. The record of
how many of each type there are is dealt with by the input module, which
simply adds | to the relevant element in the array N__TYPE. This module
is called whenever a new entry or deletion is made. Its purpose is to record
in the other side of N_TYPE the cumulative totals of types from 0—9.
Eventually the answers will be arranged in type order within the main file,
so knowing the total of items which fall under types 0 to 2, for instance,
tells us where the items under group 3 start.

Module 3.3.6: Lines 16000 — 16080

16000 REMArlc %% 5% %% 5 05 054 5 8 4 053 5 % X1 ¥ 1%
16@1@ DEFine FPROCedure update

16020 REMari %555 505055080 003 4300305
16030 su=0

16049 FOR i=@ 7D 9

16050 n_type(1,i}=su

16060 su=su+n_type(d,i)

16070 NEXT 1

16@8@ END DEFine update

Module 3.3.7: Entering a new item

A straightforward module which allows the user to enter a new question
and answer, then attach a type to it.

Module 3.3.7: Lines 13000 — 13320

1300@ REMar k W

13@1@ DEFine FPROCedure n_items

13020 REMar k%5550 5% 5000 5 5 536 5 303 36 3909 0 3 %
13028 REPeat loop

13040 CLs

13050 AT 1,15 : PRINT "NEW ITEMS"

13060 IF IT=500

13872 PRINTAN"NO MORE ROOM*"

12@e80 TH#=INKEY#$

13050 RETurn

17100 END IF

13110 FRINTA"INFUT ITEM OR "ZZZ' TO GQUIT:"\\
name¥(@);": ";

13120 INFUT T1%

13130 IF Ti1#="zzz" OR T1#="Z7Z" THEN EXIT loop

1314@ PRINT name#(1);": ";

1315@ INFUT T2#%

13160 PRINT\"TYPES:"

1717@ FOR i=@ TO n_types-1

13180 PRINT " "3zi+1;") "i;q_type#(i)

17198 NEXT 1

134

Chapter3 Seriouser and Seriouser

13200 INFUTA"Which is it: ";t3

132190 t3=t3-1

13220 IF t3<@ OR t3>n_types THEN t3=0
13270 PRINT "Type: ":q_type#(t3)
13240 INFUTN "ARE THESE CORRECT (Y/N): ";0f
13258 IF O%="y" OR OF="Y"

132460 n_type(@,t3)=n_type(D,t3)+1
13278 Ti$=t3 & T1%

13280 b_search

13278 insert

1Z308 END IF

13310 END REFeat 1loop
13320 END DEFine n_items

Commentary

Line 13260: The element of the array N__TYPE representing the type
specified for the current question and answer is increased by 1. It is this
array, as we have seen, which is worked on by the UPDATE module in
recording where each group starts in the array.

Testing

You should now be able to run the program, specify types and then call up
menu option 1 to begin entering questions and answers. To verify that
items are being received correctly, enter the following data:

QUESTION ANSWER TYPE
Q111 Alll 3
Q222 A222 2
Q333 A333 1

and then quit the program. Now type:
fori=0to 2:for j=0to l:print array$(i,j):next j:next i[ENTER]
You should see:

0A333
Q333
1A222
Q2
2A333
Qill

Module 3.3.8 and 3.3.9: Storing data
Now that items of data can be entered, it is time to enter the two standard
modules which will store and recall items.

135

The Working Sinclair QL

Modules 3.3.8 and 3.3.9: Lines 22000 — 23220

22000 REMark * x
2201@® DEFine FROCedure store
22020 REMark * AR

22030 CcLs

22049 AT 1,14 : PRINT "SAVE DATA"

22050 INPUTAA" Name of data file:";file#
22060 tfile$="mdvi_" % file#

22079 DELETE tfiles%

22080 OPEN_NEW #B8,"mdvi_" & file#

22090 FRINT#8,IT

22100 FOR i=@ TO {

22110 PRINT#8,name# (i)

22120 FOR j=@ TOD 9

22170 FPRINT #8,n_type(i,j)
22140 NEXT j

22150 FOR j=@ TO IT-1

221460 FPRINT#B,array#%(j,i)
22178 NEXT 3

22180 NEXT i

22190 FOR i=@0 TO 9

22200 PRINT #8,q type#(i)

22210 NEXT 1

22220 CLOSE#8

22270 END DEFine store

2TABD REMArk %5555 555 055 00130300000 %
23@1@ DEFine PROCedure recall

2302@ REMark 855 %5 %505 555065 53 38830 %
23020 CLS

23040 AT 1,14 : PRINT "RECALL DATA"
23050 DIR mdvi1_

23060 INPUTAA" Name of data file:";file#¥
23070 OFEN_IN #8,"mdvl_" % file#¥
2zZe80 INFUT#B,IT

2z078 FOR i=0 70 1

2Z100 INFUT#8,name¥ (i)

23110 FOR j TO 9

23120 INPUT #8,n_type (i,)
27170 NEXT j

23140 FOR j=@ TO IT-1

27150 INFUT #B,array$(j,1)
22160 NEXT J

2178 NEXT i

2180 FOR i=0 TO 9

23190 INFUT #8,g_type¥f (i)
23200 NEXT i

23210 CLOSE#B

23220 END DEFine recall

Module 3.3.10: The user search

A simple search module which allows the user to search backwards and
forwards through the main file, displaying and, after the next module is

entered, deleting items.

136

Module 3.3.10: Lines 20000 — 20360
DODBD REMark 55 %5 %5 5055 M 0556526 205 %%
20@1@ DEFine FROCedure search

20020 REMArk %5 % %% %6 4 850 506400222255
20030 55=0

20040 REFeat search_prompt

Chapter3 Seriouser and Seriouser

20050 CLs

20060 AT 1,15

2007 FRINT "SEARCH"

20080 PRINT \" ITEM NMUMBER: "j3ss+1

zeev0 FRINT " ":pame$¥(@):": "jarray#(ss,0,2
TO)

20100 PRINT " ";name$(1):": "sarrayf(ss,1}

20110 FRINT " Type: ":iq_type¥(larray¥(ss,0,1)}

20120 FIRT TN " 0060306096 0600 M5 M
LR

20170 FRINTA" COMMANDS AVAILABLE:"

20140 FRINT " ‘#° then number to move
pointer"

20150 PRINT ™ >'ENTER’ for next item"

20160 FRINT " ‘DDD° to delete item"

20170 FPRINT " >'IIZ" to quit"

20180 INFUTA" WHICH DO YOU REQUIRE: "; Tif

20170 IF Ti#="" THEN T1$="#1"

20200 IF Ti¥="ddd" OR T1#="DDD"

20218 d_delete

20220 IF IT=0

20230 EXIT search_prompt

20240 END IF

20250 Tis="H#A"

20260 END IF

20270 IF T1#="zzz" OR T14="ZZZ"

20280 EXIT search_prompt

20290 END IF

20z00 IF T1F(1)="4"

20310 ss=ss+T1#(2 TO)

2032 IF ss>IT-1 THEN ss=IT-1

20330 IF s5<@ THEN ss5=0

20z40 END IF

20350 END REFeat search prompt
20360 END DEFine d_display

Testing

Run the program and recall the data you have stored on microdrive. Using
menu item 3 you should be able to page forwards and backwards through
the items.

Module 3.3.11: Deleting an item
A standard deletion module.

137

The Working Sinclair QL

Module 3.3.11: Lines 21000 — 21100

21000 REMAr | #5565 500 05 00 0 X X 4N K XX K

21010 DEFine FROCedure d_delete

ZIDZO REMAr ko 65 5 55 55 355 5553556305900

21070 n_type(@,array¥(ss,®,1}-1)=n_type(d,
arrayf¥i(ss,@,1)-1)-1

21040 FOR i=ss TO IT-1

21050 array¥(i,@)=array$(i+1,0)

21040 array¥(i,1)=array$(i+1,1)

21070 NEXT 1

21080 IT=17-1

21050 update

21100 END DEFine d_delete

Testing

Follow the procedure as for the previous module but enter ‘DDD’ against
one or other of the items. You should find that the specified item has been
removed.

Module 3.3.12: Setting questions

We now turn to the modules which constitute the novelty of MultiQ by
setting the multiple choice tests. The current module handles the visible
part of the process, the display of the questions and possible answers and
the user’s choice of correct answer.

Module 3.3.12: Lines 17000 — 17450

17000 REMAr ke 5555 3 5.5 36 3563 3.5 50 33630 36 3636563538

1701@ DEFine FPROCedure questions

17D20 REMar ke 56555 5 55 36 30536 3635 330 3 36 136 4698236

17020 CLS

17040 AT 1,15 : PRINT "QUESTIONS"

17050 PRINT\\"Do you wish answers to be drawn"”

17060 PRINT "from one type only (harder) or
from"

17070 FRINT "the whole stock (easier)?"

17080 PRINT\A" 1) one type only"

17070 PRINT " 2) all types"

17102 INFUTA"Which: "3rq

1711@ IF rg<1 DR rq»2 THEN rq=2

1712@ REFeat loop

1717@ r_select

17140 CLs

17150 PRINT name#(1); array¥(qu(q_pos),1)

1716@ PRINT\\\\name# (@ »

1717@ FOR i=0 TO 4

17180 PRINT " "3i+13") "jarray¥(qu(i),Q,2
T

1719@ NEXT i

138

Chapter3 Seriouser and Seriouser

17200 REFeat check

7210 INFUTA"Which 1s the right answer: ";ra

17220 IF ra*@ AND ra<é THEN EXIT check

17238 END REFeat check

17240 IF ra—-1=q_pos

17250 CLS

17260 FLASH 1 : CSIZE 2,1 : FILL 1 : INK 7

STRIF 7

17270 CIRCLE 82,55,15,2,0

17280 INE 2

17290 AT 4,11 : PRINT "RIGHT!'"

17300 T#=INKEY#(-1)

17310 FLASH @ : CSIZE @,@ : FILL @ : INK @
: PAPER T : STRIP 3

17320 right=right+1

17330 ELSE

17Z40 FRINT\"Sorry, that’'s wrong"

17350 FRINTA"The correct answer was ";

17360 UNDER 1

17370 FRINT array#(main_q,0,2 TO)

1738@ UNDER @

17390 END IF

17400 total=total +1

17410 AT 18,@

17420 INFUT "Any more (y/n);: ";0%

174=0 IF Q#F<>"Y" AND B$<>"y" THEN EXIT loop

17440 END REFeat loop
1745@ END DEFine guestions

Commentary

Lines 17050 -17110: We have already noted that MultiQ is capable of
setting two levels of test. These lines allow the user to specify whether
possible answers are to be drawn from the whole file or from the same type
as the correct answer.

Lines 17170 — 17230: The question and the five possible answers, which
will be selected by the next module, are displayed. The positions of the five
possible answers are held in the array QU, and the position of the correct
answer within QU is recorded by the variable Q__POS.

Lines 17240 - 17390: If the user’s chosen answer, as represented by the
variable RA, corresponds with the correct answer’s position (Q__POS),
then the screen flashes the enlarged word ‘RIGHT” in the centre of the
screen. The variable RIGHT, which records the number of right answers,
is incremented by 1. If the wrong answer is given, the user is informed that
the answer is wrong and told what the correct answer was.

Lines 17400: TOTAL, the variable which records the total number of ques-
tions asked, is incremented by 1.

139

The Working Sinclair QL

Module 3.3.13: Selecting the random questions

Having given ourselves the ability to display the questions and answers, we
turn to the considerably more complex matter of selecting the questions
and answers. Before the detailed commentary, we shall take a general look
at the method involved.

What we want is to select one question and its corresponding correct
answer and then fill thearray QU with five numbers, representing the posi-
tions in the main file of the five potential answers, including the correct
answer. The main question and answer are [irst chosen randomly from the
entire file and the number of the question in the main array placed in a
random position within the array QU.

Having placed the main question into QU, four alternative answers have
now to be found. Depending on whether the user wants the easy or harder
form of the test, the four alternative answers will be selected either from
the whole of the main file or from that section which contains answers
whose type is the same as that of the main answer. The four answers are
chosen randomly from the appropriate section of the file, with checks
being made that the same answer is not included twice and that no answer is
included which appears to be identical to the correct answer.

Module 3.3.13: Lines 18000 — 18320

18000 REMar b %4665 % 5% 5 55 5 5 8 855056135430
18010 DEFine FROCedure r_select

18020 REMAr k#5455 % % 5 0 3 3 50 3 385 5% % % %
180370 start=0 : finish=IT-1

18040 main_q=RND(start TO finish)
18050 c_type=array¥(main_q,@,1)
18050 IF rg=1

18070 start=n_type(l,c_type)

18080 finish=start+n_type(D,c_type)-1i
18070 IF finish-start<4

18100 start=0

18110 finish=IT-1

18120 END IF

18130 END IF

18140 q_pos=RND (4)
18150 quiq_pos)=main_q
181460 FOR i=@ TO 4

18170 IF i<>q_pos

18160 REFeat choose

18190 duplicate=0

18200 duff=RND (start TO finish)

18210 IF array#(duff,®,2 TO)=array#(main_q,
@,2 TO) THEN duplicate=1

18220 IF i@

18230 FOR ;=@ TO i-1

18240 1IF array#(duff,@,2 TO)=array#(qu

(j),@,2 TO) THEN duplicate=1

140

Chapter3 Seriouser and Seriouser

NEXT 3
END IF
IF duplicate=0@ THEN EXIT choose
END REFeat choose
qu i) =duff
END IF
NEXT 1
8I20 END DEFine r_select

Commentary

Line 18030: START and FINISH represent the range of the file from which
random selections of questions will be made. Originally they are set so that
the whole file is included.

Line 18040: The main question and answer are selected and their position
stored in MAIN__Q. The type of the answer is recorded by the variable
C_TYPE.

Lines 18060 — 18130: IT the user has specified the harder type of test, then
START and FINISH are reset so that they point to the beginning and end
of the group of questions of the same type as the main question. If it turns
out that there are less than five questions in that group, so that it would be
impossible to choose five different answers, START and FINISH are
again set to the beginning of the file. If you specify the harder form of the
test and find that the program does not provide it, the probable reason is
that there are no answers of the same type as the main question.

Lines 18140 — 18150: The position in the main array of the main question is
placed in a random position with QU.

Lines 18160 — 18310: This loop chooses the four alternative answers from
the part of the file indicated by START and FINISH, each temporarily
stored in the variable DUFF. Within the loop, checks are made comparing
the new answer with the correct answer, which may be anywhere in QU and
the answers previously placed in QU. Note that it is not sufficient simply to
check that the same answer from the main file is not duplicated. Two ques-
tions from different parts of the main file may well have identical answers.
By the end of the loop, QU contains the positions of five different answers
within the main file.

Testing

The only effective way to test these modules is to enter a sufficient body of
dala to allow tests to be generated. The best short test would be Ffirst to
register two question types, entitled TYPE 1, TYPE 2...TYPE 6. Now
enter a series of questions in the form Q1, Q2...Q10, with answers in the
form A1,A2...A10. The type for the first five questions should be TYPE 1,
with the remaining questions as TYPE 2...TYPE 6. This provides one set

141

The Working Sinclair QL

of questions capable of generating the harder form of the tests, and five
others with only one question each.

Call up the random question generator and specify the harder form of
the test. You should find that you can continue to answer questions and to
be correctly informed as to whether your answers are right or wrong. When
a question from the first five is chosen, the five answers should be in the
range 1 — 5. When other main questions are chosen, you should be able to
see that the answers are drawn from the whole of the file of 10 questions.

Module 3.3.14: Calculating the score

The final touch we shall give the program is to enable it to calculate a
meaningful score for the tests. This is not quite as easy as it seems, sinceit is
not just a matter of taking the number of right answers as a percentage of
the total. If the user simply specifies the first answer for each test, on
average that will be the right answer once in every five questions. A straight
score of 20% may well indicate that the user has absolutely no clue as to the
correct answer. The solution adopted is to subtract one-fifth of the total
questions (the number that could be expected by sheer chance) from the
right answers and to express that figure as a percentage of four-fifths of the
total number of questions.

Module 3.3.14: Lines 19000— 19180

19000 REMaAr ke o s 80 s 05500330
19@1@ DEFine FROCedure score

17@2@ REMark * ¥ o
17070 CLs

17040 AT 1,15 : PRINT "SCORE"

19@50 IF total=@

19060 PRINTAA" ND SCORE YET"
17@70 TE=INKEY¥(-1)
19080 RETurn

17070 END IF

17100 FRINT \\"TOTAL ANSWERS: ":total

1911@ FRINTA"CORRECT ANSWERS: ":iright

19120 FRINT\"SCORE: "3;INT(((right-total/5)/
(total*.8))*100) ; "

179130 INFUTAN\"Do you wish to reset score

(y/n): 3
1914@ IF Q%="y" OR QF="Y"
17150 total=0
1716@ right=0

19170 END IF
191B@ END DEFine score

Testing
Run the test for the previous module again. When you have answered a few

142

=)

Chapter3 Seriouser and Seriouser

questions, go back to the main menu and call up the score module. You
should find that the score you are given makes rough sense, even though it
will not be easy to relate it exactly to the number of right answers you have
given. You should also be given the option to zero the score and start a new
test from scratch.

If performance on this test is satisfactory, the program is ready for use.

143

CHAPTER 4
Money Matters

In this final chapter we turn our attention to one important aspect that we
have so far overlooked, the QL and money. It is a subject which cannot
realistically be ignored because microcomputers deal so superbly with
financial matters. The sums involved are seldom vast — or if they are then
it is unlikely that they are being dealt with on an inexpensive micro — and
the calculations involved are usually simple — a matter of addition and
subtraction as money comes in and goes out.

The real advantage of the microcomputer, however, is not simply that it
can deal with money, for so can the human brain: the microcomputer can
store information, retrieve it quickly and then present it in such a way that
it can be immediately understood.

The three programs in this chapter are:

BANKER: Allows a clear record of all payments into and out of a bank
account for a 12-month period. Optional printout of monthly accounts.

ACCOUNTANT: Produces a clear set of traditionally laid out accounts
from a set of figures.

BUDGET: Stores and processes large amounts of information about
family finances and produces a revealing analysis of the picture over a
12-month period. Allows ‘what if” decisions about possible expenditure to
be explored.

PROGRAM 4.1: BANKER

Program function

The object of this program is to allow the user to keep a clear and conti-
nuously updated record of a single bank account, the names of payments,
their date and the amount, including the ability to specify not only single
payments, but recurring expenses or receipts, no matter how irregular the
period. The program is designed to deal with an account for the period of
one calendar year and will output either to the screen or to a printer.

145

The Working Sinelair QL

STATEMENT FOR FEBRUARY

BALANCE C/F: 1000. 00
ITEM roTaL

250. 00

= S7.97

= B2.56
RATES - 98.45 511.02
GAS = 45.12 465.90
GROCERI =, 6.78 409.12

SINCLAIR &1 o 1@.12

Figure 4.1: Monthly Statement Prepared by Banker.

Module 4.1.1: Initialisation
A standard initialisation module.

Module 4.1.1: Lines 1000— 1150

1000 REMark ##%#%#s#debriienssssann

1210 REMark initialise

1020 REMark RN

1030 PAPER 2 : INK 7

io30 CLS : CLS#@

10582 sum = @ : PA=0 : space#$=Ffill$(" " 8)

1060 cle#=fill$(" ", 37)

127@ DIM payment#$(499,15) ,p_month$(499,11),
amount (499 ,1)

1280 RESTORE

1070 DIM mo$(11,%)

1100 FOR i=@ TO 11

1110 READ mo* (i)

1120 NEXT i

1130 INPUT "LOAD FROM MICRODRIVE (Y/N):":;Q%

1140 IF @%="Y" OR G%="y" THEN recall

1150 DATA ANUARY ", "FEBRUARY " , "MARCH" , "APRIL",
“MAY" , "JUNE", "JULY", "AUGUST" , "SEPTEMBER",
"OCTOBER" , "NOVEMBER" , "DECEMBER"

Comimentary

Line 1070: The array PAYMENTS will be used to store the names of
payments. P__MONTHS$ will contain a special string, explained later,
which records the months in which the particular payment is made. The
numerical array AMOUNT will store the amount of each payment and the
day of the month on which it is made.

Lines 1080 — 1120: Thisloop reads the names of the months of the year into
the array MOS.

146

Chapter4 Money Matiers

Module 4.1.2: The program menu
A standard menu module.

Module 4.1.2: Lines 2000 — 2330

200@ REMark
2010 REMark menu

2020 REMArk %353 5555 58053 5 568 060 6%
2030 REPeat prompt

2040 PAPER 2 : INK 7

2050 CLs

2060 AT 1,15

2070 PRINT "BANKER"

2080 PRINTA\" COMMANDS AVAILABLE:"
2070 PRINT\\,"1) NEW PAYMENTS"

Z10@ PRINT,"2) EXAMINE/DELETE PAYMENTS"
2112 PRINT,"3) PRINT STATEMENT"
2120 PRINT,"4) SAVE FILE"

2138 PRINT,"5) STOP"

2140 INPUTANA" WHICH DD YOU REGQUIRE
2150 IF PA=@ AND (Z=2 OR ZI=3 OR I=4)
2160 PRINT\\,"SORRY, NO DATA YET"
2170 T#=INKEY#$ (-1)

2180 =0

2190 END IF

2200 SELect ON Z

2210 ON I=1 : new_entries

2220 ON Z=2 : search

2230 ON I=3 : statement

2240 ON I=4 : store

2250 ON Z=5 : EXIT prompt

2260 END SELect

2278 END REFeat prompt

2280 CLS

2290 AT 10,15

2300 PRINT "BANKER"

2310 AT 12,8

2320 PRINT "CLOSED FOR BUSINESS"
2330 STOF

Module 4.1.3: Entering new items

This is a more complex input module than we have been used to so far, for
the simple reason that the entries themselves are more complex. For each
item recorded, five facts need to be known: whether the payment is a credit
or a debit (money received or money paid out), the name of the payment,
the amount, the months in which the payment is due, and the day of the
month on which the payment is made.

Module 4.1.3: Lines 3000 — 3660

FODD REMark %558 555 05 5 006 0055 3 3 3 3% %
3I@10@ DEFine PROCedure new_entries
T@20 REMark 88555550088 313 5 5053303 33 33 4

147

The Working Sinclair QL

I03@ REPeat n_prompt

040
P50
2060
=070
080
3070
3100
3110
2120
3130
3140
3150
3160
3170
3180
3190
3200
321@
3220
3230
3240
3250
3260
3270
3280
3290
308
3310
3320
3330
740
3350
3360
3370
3380
3370
400
110
420
3430
440
3450
34460
3470
480
490
I500
3510
3520
3530
3540
3550
3560

148

CLS
AT 1,14
PRINT "NEW ITEMS"
REFeat CREDIT
PRINTA\"1) CREDIT"\"2) DEBIT"
INFUT\"WHICH DO YOU REQUIRE: ";CD
IF CD=1 OR CD=2 THEN EXIT CREDIT
END REPeat CREDIT
CLs
AT 1,14
FPRINT "NEW ITEMS"
CD=CD-1
IF CD=0
FRINT\"CREDIT ITEM"
ELSE
PRINT\"DEBIT ITEM"
END IF
INPUT\"NAME OF FAYMENT: "jtpay#
INPUTN"AMOUNT: ";tpay
IF CD=1 THEN tpay=tpay#*-1
rec_m$=""
FOR i=0 TO 11
AT 11,0
INFUT (mo#(i)&" (Y/N): "):tm#
IF tm&="Y" DR tm&="y"
rec_m¥=rec_m$¥ & "1"
ELSE
rec_m¥=rec_m¥ & 0"
END IF
AT 11,0
PRINT cl#
MNEXT 1
AT 11,0
PRINT "TO BE PAYED IN: "j
FOR i=1 TO 12
IF rec_m# (i) u
PRINT !'mo#{(i-1)!
END IF
NEXT i
INPUTAA"DAY DF FAYMENT (8-31) sday
INFUT\"ARE THESE CORRECT (Y/N): ":T#%
IF T#="y" OR T#="¥Y" THEN EXIT n_prompt
FRINTA"NOT REGISTERED"
T#=INKEY¥(-1)
END REFeat n_prompt
count=FA
REFeat loop
IF dayramount (count,1)
payment#{count+1)=tpay#¥
p_month#{count+1)=rec_m$
amount (count+1,@)=tpay
amount (count+1,1)=day
EXIT loop

Chapter4 Money Matters

3570 END IF

3580 payment$ (count+1)=payment £ (count)
3590 p_month# (count+1)=p_month# (count)
600 amount (count+1,@)=amount (count ,@)
610 amount (count+1,1)=amount (count, 1)
3620 count=count-1

3630 IF count<@ THEN EXIT loop

3640 END REFeat loop
650 PA=FA+1
366@ END DEFine new_entries

Commentary
Lines 3030 — 3480: The overall loop which allows the user to confirm or
reject the information input.

Lines 3070 — 3200: The program clearly needs to know whether the item is
to be paid out or received, debit or credit. This is recorded in the form of
the variable CD (Credit/Debit), and an appropriate heading placed on
the screen.

Line 3230: If the user has specified a debit item, ie a payment out of the
account, the amount input is multiplied by minus one.

Lines 3240 — 3420: The months in which the payment is to be made are
input in response to a series of prompts. For each of the 12 months, a
character is added to the temporary string REC__MS. If the payment is to
be made in the corresponding month, the character added is a ‘1°, other-
wiseitis a ‘0. The FOR loop beginning at line 3380 prints out the names of
the specified months as recorded in REC__MS$, so that the user can
determine that they are the months intended.

Lines 3500 — 3640: This is the loop which inserts a new item into the main
file, in order of day of payment. The technique is a very simple one. Start-
ing with the last entry, the loop compares the day on which the new
payment is made with the day of payment of the item in the main file. If the
day of payment in the main file is less than the day of payment for the new
item, then the new item is inserted in the space following the item in the
main file. If the item in the main file has a day of payment after the day of
payment for the new item, the loop shifts the existing item one space up the
file. In this way, as it scans down the file, it carries a spare line with it until
the correct location for the new item is found. Note that this technique
means that the first element in the main file, element zero, is always left
unused, acting as a buffer so that the loop will always know when the
beginning of the data has been reached.

Testing

Run the program and call up option 1 from the menu. Enter a new item as
follows:

149

The Working Sinclair QL

Debit (option 2 on the prompt)

Name: TEST

Amount: 100

Months: FEBRUARY/MAY/AUGUST/NOVEMBER

Day: 15

After a pause you should return to the main menu. Stop the program by
using menu option 5. Now type:

print payment$(1),p__month$(1),amount(l ,0),amount(1,1)
The result should be:
TEST 010010010010 — 100 15

Module 4.1.4: Formatting a number

Before we can go on to enter the module which prints out the stalemer.u of
the account, two short modules must be dealt with. The first of them will })e
used to translate numerical data into a standard format so that it C-a!'l easily
be printed in columns, with decimal points neatly aligned. In addmf)n, we
need to overcome the rather annoying limitation that (on early versions at
least) the QL kicks into what is called ‘scientific notat ion’ for any valueless
than0.1. Try PRINT 0.09 on your machine and you will see what I mean —
what is displayed on the screen is 9E — 2, or 9 multiplied by 10to the power
— 2. Thisis a ludicrous situation for a machine aimed to some extent at the
business market, since it means the QL cannot be relied on to print out
pence (or cents, or centimes, or...) in a normal format. Fortunately there
are ways round the problem and this module illustrates one of them.

Module 4.1.4: Lines 8000— 8170

BOA@ REMark * *
B@1@ DEFine FuNction format#% (nn,type)
BO20 REMAr k965 55655 056 365635 9 5 336 5 0 330 96963 %

B@30 LOCal i,n

B8040 n=INT (ABS (Nn*10@) +5E-2)

B@SQ nE=""

80460 FOR i=6 TO @ STEP -1

ea7e n¥=n¥ & INT(n/1@"i)

BOBO n=n-10"1i ®*INT(n/10"i)

=1] NEXT 1

B10@ FOR i=1 TO 4

B11@ IF n¥(i)<>"@" THEN EXIT 1

B120 n¥(i)y=" "

8130 EMND FOR i

8140 n¥=n¥(1 TO LEN(n¥)-2) % "." & n¥{(LEN(n¥)
-1 T

8150 IF type=1 THEN RETurn n¥

B14@ IF type=2 THEN RETurn n#%(4 TO 5)

B17@ END DEFine format#

150

Chapter4 Money Matters

Commentary

Line 8030: Since the procedure may be called from within a loop, the loop
variable I is declared as a local variable — any changes made to it will not
affect its value anywhere else in the program.

Line 8040: The number being sent to the module, NN, is multiplied by 100
to remove any decimal fraction. In addition, since rounding errors were
encountered when the module was first used, resulting in figures like
12.99999999999 being produced rather than 13, a tiny decimal fraction is
added, and then the integer of the resultant number taken — the effect of
this is that the correct whole number is always produced.

Lines 8060 — 8090: Using powers of 10 to divide the number successively,
individual digits can be be identified. Thus, if the number were 1234, divid-
ing by 10°3 would produce 1. Subtracting the thousand, which has already
been analysed, 234 divided by 10°2 produces 2, and so on. Each digit is
stored in N§ asit is extracted. Since the loop runs from 6 to O in powers of 10
(1,000,000 to 1), the resulting string will be seven digits long, with leading
zeros if the number being worked on is less than 1,000,000.

Lines 8100 —8130: The number in NS is scanned to see whether it has any
leading zeros. If so, they are replaced with spaces.

Line 8140: N§ is translated back into a number with a decimal fraction by
adding a decimal point before the last two characters — in effect, dividing
by 100 but doing the operation on a string so that the QL cannot go into
scientific notation. In addition, if the original number had no decimal frac-
tion, it will now have “.00’ tagged on to the end, ensuring a standardised
format. Note, however, that the resultant string can only accurately con-
tain a figure of up to 99,999.99 due to the limitation to seven digits — it
could easily be adapted to cope with more than this but the range is suffi-
cient for the current program.

Lines 8150 —8160: The module will be used to format two types of
numbers, the day of payment and actual cash values. What kind of format
it will return for a given number will depend on the value sent in the form of
the parameter TYPE.

Testing
To extract a number from the module, simply enter:
print format$(XX,type) [ENTER]

where XX is the number you want formatted and TYPE is either 1 or 2, If
youset TYPE to 1, youshould get an eight character string, including lead-
ing spaces and two characters after the decimal point. If TYPE is 2, the
format will be two characters, including a leading space for values under 10.

151

The Working Sinclair QL

Module 4.1.5: Dealing with negative numbers

One further problem, when it comes to formatting numbers, is raised by
negative quantities. It is quite possible simply to place minus signs in front
of them on the screen, but this does not stand out and so can lead to incor-
rect interpretation. A much clearer and more unambiguous method is to
print the numbers, or their backgrounds, in red, and this is the solution
adopted here when output is made to the screen. On the other hand, the
program can also output astatement to the printer, which would not recog-
nise such colour instructions — in this case, a simple minus sign must be
used.

Module 4.1.5: Lines 7000— 7170

TADD REMArk %% %555 550 5 0 R M MR RN
79010 DEFine PROCedure colour (flag)
FO20 REMAr b %3550 5 000 5 5 3030 0 300333
70370 IF hard=0

Chapter4 Money Matters

open#5,scr__[ENTER]
colour — I[ENTER]
print #5,1234[ENTER]

You should find that the number has been printed in white lettering on a
red background, since the parameter sent to the procedure was negative
Now try ‘colour 1’ and you should find the number printed on a ycllo“:
background, indicating a positive number. Before moving on, type
‘close # 5. The use of channel 5 will be explained shortly. e

Module 4.1.6: Displaying the statement

Though there are more modules to come, the final task for the main part of
the programis to take the items which have been entered using the previous
module and compile them into a statement for any specified month of t.ile
year. The statement will include a calculation of the balance carried for-
ward from previous months, and will also display in full all the payments

7840 IF flag: =@
7050 FAPER #5,6 1 INK #5,0
7060 ELSE

7870 FAFER #5,2 : INK #5,7
7880 END IF

7098 END IF

7100 IF hard=1

7110 IF flag>=0

7120 PRINT #5," ":

7130 ELSE

7140 PRINT #5,"-"3

7150 END IF

716@ END IF

717@ END DEFine colour

Commentary

Lines 7030 — 7090: HARD is the variable which indicates whether printer
output is required (hardcopy). This extended IF will only be acted upon
when output is to the screen. The number which is about to be printed is
sent to this module, which accepts it under the name FLAG. If FLAG is a
positive number, the paper colour is set to yellow and the ink to black. If
flag is negative, the colour is white ink on red paper. Explanation of the # 5
contained in the commands will be kept until the commentary on the foll-
owing module.

Lines 7110 — 7160: These lines are acted upon in HARD equals 1, indicat-
ing that output is to be to the printer. In this case a space is printed in front
of positive numbers and a minus sign in front of negative ones.

Testing
Type:

152

for the month and the continuing balance created by each payment.

Module 4.1.6: Lines 6000 — 6560

6000 REMar e *HR
6010 DEFine FROCedure statement

020 REMArk 5% % 5 555 5 505 55 96505596 8 2636

L0320 PAPER & : CLS : INK @

L0409 INFUT \\" OUTFUT]
4058 IF hard$="Y" OR hZEd:EESIER B
L0608 OPEN #5,ser1

6a70 hard=1

&@a8a ELSE

5@5@ OPEN #5,scr_

6102 hard=0

6110 END IF

6120 REFeat check

6130 INPUTA" NUM) - 3 "
Cis etk BER OF MONTH (1-12): i mo
4150 IF mo>=@0 AND =

L1460 END REFeat chec:lD HHTHEN EXIT check
a17@ CLS

&18@ PRINT#S, " 2 b

b et s "STATEMENT FOR “;mo$ (mo)

6200 IF mo>®@

6210 FOR J=1 TO mo

6220 FOR i=1 TO PA

6230 IF p_month#(i,J)="1"

4240 sum=sum+amount (i ,0)

&25a END IF

6260 NEXT 1

&278 NEXT J

&£2B@ END IF

6290 PRINTH#S,\" BALANCE C/F: ";

153

The Working Sinclair QL

6300 colour sum

6310 FRINT #5,format#®(sum,1)

6320 colour 1

6330 IF NOT hard THEMN UNDER #5,1

6340 PRINT#5,\" ITEM
TOTAL "\\s

&350 IF NOT hard THEN UNDER#S5,0

6360 IF hard THEN PRINT #5," "i

6370 FOR i= 1 TO PA

£=80 IF p_month# (i ,mo+1)="1") G
&390 PRINT #5,format$ (amount (i,1),2); H
&£100 T#=payment$(i) & cl¥

6410 PRINT #5,T#(1 TO 15);" "3

6420 colour amount (i ,@) o
6430 FRINT #5,format®(amount (i ,@),1)3 B
6440 colour 1

&£450 sum=sum+amount (i ,@)

6460 colour sum

&470 PRINTH#S, format# (sum,1)

6480 colour 1

£470 IF hard=@ THEN T#=INKEY¥(-1)

&£500 END IF

6510 NEXT i

56520 CLOSE #5

&530 AT 18,0 .
£540 PRI&T\"ANY KEY TO RETURN TO MENU
&£550 T#=INKEY¥(-1)

6560 END DEFine statement

Commentary . .
Lines 6040 —6110: You have already had notice that at some polr‘n a de(l:;-
sion has to be taken as to where the output of_the program is going m. e
sent — to the screen or to the printer. These lines accomplish the ci:::;e;
Throughout this module all output is made‘to c_hannr] number_ 5: : fl
these lines do is decide whether that channel is a line ol'com!numc'c.xtmn o
the screen or to the printer. The printer, as we have seen in earlier pro-
grams, is accessed through the SER1 port, whereas ltge screen, whenhopen;
ing a channel, is simply called SCR__. Note that, if you do not avc'u
printer connected, you should not try to output data to SER1 as you wi
lock up the QL.

Line 6190; The variable SUM will be used to hold the balance in the
account — both the balance carried forward and the balance after each
item. .

Lines 6200 — 6280: Provided that the statement is not for the first month, in
which case there is no balance to be carried forward, the.ﬁf: two loops scan
the whole of the payments list once for each month _vhlch pfecedes the
month of the statement. In this way, each payment 1:& examined to see
whether it is made in any of the preceding months, in which case theappro-

154

Chapter4 Money Matiers

priate amount is added to the total in SUM. By the end of the two loops,
SUM contains the full total of any changes in the balance since the beginn-
ing of the year. (Keeping a complete balance, including any monies which
were in the account at the beginning of the year, can be easily achieved by
entering the balance from the end of the previous vear as a payment on |st
January.)

Lines 6300 - 63320: An example of the use of the two short modules just
entered, which will deal with the print colour and formatting of SUM.

Lines 6330 - 6350: Like the colour characteristics, the UNDER char-

acteristic means nothing to the printer and is only sent when the screen is
being used.

Lines 6370 — 6510: This loop scans through the complete list of payments,
while the extended IF from lines 6380 to 6500 selects only those which have
a‘1”inthe relevant position of the string recording the months in which the
payment is to be made. When a payment is to be made in the month
specified for the statement, the loop prints out the day, AMOUNT(1, 1),
the name, PAYMENTS(I), the amount of the payment, AMOUNT(I,0),
and finally the balance the payment produces, obtained by adding the
amount to the previous total in SUM. Notice that each time a number is to
be printed, it is sent to COLOUR and FORMATS$ to ensure that the correct
colouris set and that the number is in the correct format. When outputisto
the screen, a key must be pressed before each item is displayed — thisis to
prevent the statement scrolling quickly upwards off the screen if there are

too many lines of information.
Testing

Run the program and enter some test data. You should find that yougeta
display something like the example given at the beginning of the program.
Try the statement for different periods of the year to ensure that the
module can cope with the different months.

Module 4.1.7: Saving data

A standard data storage module.

Module 4.1.7: Lines 9000— 9180

70@@ REMar k L

9@10 DEFine PROCedure store

9020 REMark 223 LS
7030 CLS

9040 AT 1,14 : PRINT "SAVE DATA"
7050 INPUTAN" Name of data file:"s;file#
050 tfilef="mdvi_" % file#

155

The Working Sinclair QI.

@70 DELETE tfile#

080 OPEN_NEW #8,"mdvi_" % file®¥
892 PRINT#8,PA

7100 FOR i=1 TO FA

9110 PRINTH8 ,payment ¥ (i)
9120 PRINT#8,p_month# (i)
9130 FOR J=0 TO 1

9140 PRINT#8,amount (i ,J)
9150 NEXT J

160 NEXT i
9170 CLOSE#8
918@ END DEFine store

Module 4.1.8: Loading data
A standard data recall module.

Module 4.1.8: Lines 10000— 10170

10000 REMArk 5% 50655 0 00 08 333 300005 % 3 %
19@1@ DEFine FROCedure recall

10020 REMark %% %555 555053005008 HX %
10030 CLS

19240 AT 1,14 : PRINT "RECALL DATA"
10058 DIR mdvl

10040 INPUTAA" Name of data file:
iee7@ OPENM_IN #8,"mdvi_" % file¥
10080 INFUTHE,FA

10090 FOR i=1 TO PA

";file¥

18100 INFUT#8 ,payment & (i)
18110 INFUTHE,p_month#$ (i)
12120 FOR J=@ TO 1

10130 INFUTHB, amount (i ,J)
18140 NEXT J

12150 NEXT i
12160 CLOSE#8
1@17@ END DEFine store

Module 4.1.9: Changing and deleting items

Asin Nnumber, a simple user search module, which allows the user‘to scan
backwards and forwards or delete an item, though the delete function will
not be available until the next module has been entered.

Module 4.1.9: Lines 4000 — 4340

4000 REMark *%#

4910 DEFine FROCedure search

A@2Z0 REMar ko %500 5 5 500100000 30033
4030 count=1

4040 REFeat display

3050 cLS
4060 FPAPER @
156

il

Chapter4 Money Matters

4070 BLOCK 448,90,0,0,0

4980 FRINTA"PAYMENT: “;payment#(count)
4032 PRINT "AMOUNT : amount (count ,@)
4100 FPRINT"MONTHS: "

411@ FOR i=1 TO 12

4120 IF p_month# (count ,i)="1"

4130 FRINT 'mo%(i-1)!

4140 END IF

4150 NEXT i

4160 PRINTA"DAY OF PAYMENT: "samount (count, 1)
4170 FPAPER 2

4180 AT 10,0

4190 PRINT " COMMANDS AVAILABLE: "

4200 PRINTA" 'ENTER" > NEXT ENTRY"
4210 PRINT * ‘DDD " > DELETE ENTRY"
4220 PRINT ‘#° THEN NUMBER > MOVE"
4230 PRINT " “ZIZC > RUIT"

4240 INFUTA" WHICH DO YOU REQUIRE: ":0%
4250 ddd” DR Q#%="DDD" THEN remove
4250 zzz" OR Q$="ZZZ" THEN EXIT display
4270 THEN Q#%="#1"

4280 IF Q#(1)="#"

4290 count=count+Q%(2 TO)

4300 END IF

4310 IF count>PA THEN count=FA

4320 IF count<1 THEN count=1

4330 END REFeat display
4340 END DEFine search
Testing

Though you cannot delete items, you should be able to page backwards
and forwards through any material you have in memory.

Module 4.1.10: Deleting items

A standard delete module, collapsing the file down on to the deleted item.

Module 4.1.10: Lines 5000 — 5100

SOOD REMArk 555 55555 5.5 593355 5658 4 5%
S@10@ DEFine PROCedure remove

SO20 REMArk 5355655 558 6536555650 5 M58 %535
5030 FOR i=count TO PA

S040 payment# (i) =payment®(i+1)
5050 p_month$ (i)=p month$(i+1)
50560 amount (i ,@) =amount (i+1,@)

5870 amount (i ,1)=amount (i+1,1)
Sesa NEXT i

5078 PA=PA-1

5100 END DEFine remove

157

The Working Sinclair QL

Testing
You should now be able not only to page through your material but to
delete items at will. The program is now complete and ready to use.

PROGRAM 4.2: ACCOUNTANT

Program function

The second program in this final chapter is more complex than Banker. Its
function is to keep two sides of a simple set of accounts, setting them out in
the traditional format, with some items standing alone and others clearly
divided into groups representing different types of expenditure. Separate
screens are produced for the credit and debit side of the accounts, with the
overall balance of the account displayed.

DEBIT

HOUSE
MORTGAGE 250 .98
RATES o8 .45

SIMNCLAIR GL

CREDIT BALAMNCE IS a.aa
OUERALL BALAMNCE IS — 12332.56
PRESS AHMNY KEY TO QUIT

Figure 4.2: Account Prepared by Accountant.

Module 4.2.1: Initialisation

A standard initialisation module.

Module 4.2.1: Lines 1000— 1070

1000 REMAr ke 353553 3 333 58 30 3 3 3396 369 3 3 3 38 36 3

101@ REMark initialise

1020 REMArK % %5555 505506060 335 300 3 2 M

1@3a FAFPER 4 : INK B

1040 CLS : CLS#@

1050 DIM account#{(1,499,15) ,account(1,45%9),
cand (1)

1060 INPUTN"LOAD FROM MICRODRIVE (Y/N): ":0%

170 IF @%="Y" OR @%f="y" THEN recall

Conunentary
Line 1050: The two sides of the accounts, credit and debit, including the

158

i
§
i
i
i
|
{

Chapter4 Money Matters

names associated with each payment, are stored in the two sides of the
arrays ACCOUNT and ACCOUNTS. Up to 500 items can be stored on
both sides, although it would be be quite feasible to increase the size of the
arrays if more space were recuired.

Module 4.2.2: The main menu
A standard menu module.

Module 4.2.2: Lines 2000— 2410
2000 REMArk #5055 5000000

201@ REMark menu
2020 REMArk 58385550 55 00 5 000 3 10 504

2030 REPeat menu

2040 PAFER 4 : INK @

2050 CLs

2040 AT 1,13

2070 UNDER 1

2080 PRINT "ACCOUNTANT"

2090 UNDER @

2100 PRINTN\AA"COMMMANDS AVAILABLE: "

2110 PRINTA" 1) INPUT NEW HEADINGS"

2120 PRINT " 2) CHANGE/DELETE I[TEMS"

2130 PRINT " 3) PRINT ACCODUNTS"

2140 PRINT * 4) DATA FILES"

2150 PRINT * 9) STOP"

2160 INPUTA"WHICH DO YOU REQUIRE: ":Z

217@ IF cand(@)=0 AND cand(1)=@ AND (Z=2 OR
I=3 OR I=4)

2180 PRINTAA" SORRY, NO DATA YET"

21790 =0

2200 T#=INKEY#$(-1)

2210 END IF

2220 SELect ON Z

2230 ON Z=1 : TYPE : heading

2260 ON Z=2 : TYPE : search

2290 ON Z=3 : TYPE : output

2320 ON Z=4 : store

2340 ON Z=5

2350 CcLs

23460 AT 10,13

2370 PRINT "ACCOUNTANT"

2380 PRINT #@,"Frogram Terminated"

2370 STOP

2400 END SELect

2410 END REFPeat menu

Module 4.2.3: Credit or debit?

Unlike Banker, several parts of this program need to know whether acredit

159

The Working Sinclair QL

or debit item is being specified, so the routine to request this information is
included in a separate module, the ilem type being recorded in the variable
CORD(C or D).

Module 4.2.3: Lines 30003110

TOOD REMArk %% 55 55 5 55 0000960050 01 0000 13 %
IP1@ DEFine PROCedure TYPE

3020 REMark #*x *

3030 REFeat check

3040 PRINTA\\" 1) CREDIT"\" 2) DEBIT"
3050 INFUTA"WHICH IS 1T7: "j;cord

I0460 IF cord=1 OR cord=2 THEN EXIT check

3070 END REPeat check

I080 cord=cord-1

3070 cord¥="CREDIT"

3100 IF cord=1 THEN cord$="DEBIT"
3110 END DEFine TYPE

Module 4.2.4: The type of item

This module is trivial in itself but it gives a clue as to why this program is
bound to be longer than something like Banker. The purpose of the module
isto allow the user to specify which of three types anitem about to be input
falls under. The three types are:

1) A single item: All that is required for this is the name of the item and the
amount. When the eventual account is printed out, individual items will
have their names printed on the lefthand side and the amount associated in
the main column of figures on the right.

2) A main heading: It is this type which allows groups of items to be
specified within the overall account. If you were using the program to
prepare domestic accounts, for instance, you might set up ‘CAR’ asa main
heading for a group of items including items like tyres, fuel, repairs and so
on. In the eventual account, the name of the main heading will be printed
on the lefthand side but there will be no amount printed against the main
heading itself.

3) Subheadings: As illustrated under (2) above, each main heading can
have a list of items following it, which are part of a separate group. In the
accounts, the names of subheadings will be printed under their relevant
main heading, inset from the left, while the amount associated with each
subheading will be printed to the left of the main column of figures.

Module 4.2.4: Lines 4000 — 4200
QBB REMAr k59855535356 5540 X 00X KX
401@ DEFine FPROCedure heading
4A2@ REMark R L

160

»Chapter4 bexer Matters

493@ REPeat h_loop

40240 CLs

485@ AT 1,14 : PRINT "NEW ITEMS"
4050 PRINT\\cord#

4@7@ PRINTA\"Is the item:"

av8@ PRINTA\" 1) A single item”
497@ PRINT " 2) A main heading"
4100 PRINT " 3) A sub-heading"
411@ FRINT " (Input "@° to quit)"
4120 INFUT\"Please specify: "i;h_type
4130 SELect ON h_type

414@ ON h_type=@ : EXIT h_loop
4150 ON h_type=1 : single

4160 ON h_type=2 : single

4170 ON h_type=3 : sub_head

4180 END SELect

4170 END REFeat h_loop
4200 END DEFine heading

Testing

Having entered all the parts of the program which do not employ any cal-
culation, it is probably best if you run the program and quickly test the
menu. If you specify that you wish to input a new item, you should be asked
whether it is a credit or a debit, and then asked to specify the type — though
that is as far as you can go. The only other menu function which will have
any effect is option 5 to stop the program. The menu itself should stop you
from accessing the functions to alter data or print the accounts, since no
data has yet been entered.

Module 4.2.5: Entry of single items and main headings

Two separate modules take care of the input of subheadings on the one
hand (see the next module), and single items or main headings on the other.
Itisimportant, in understanding later parts of the program, that you try to
follow the way in which the items are stored and the special indicator char-
acters which record the item type.

Module 4.2.5: Lines 5000 — 5210

SOOD REMar ke #5555 5 5 5 5 95 556 5 3 9 % % % % % % % %
S@1@ DEFine PROCedure single

SO20 REMArk %% 55055056 35 36 0 33 05 3 5 % 0%
o030 INFUT\"Name of item: "iname$
5040 IF h_type=1

S@5e INFUT "Amount for i1tem: ";amount
5050 END IF

S@70 INFUT "Is this correct (Y/N): ";0%
Ses IF Q#<>"Y" AND Q%<>"y"

Se%a FRINT\"NOT REGISTERED"

S100 T#=INKEY#(-1)

161

The Working Sinclair QL

5110 RETurn
5120 END IF
5130 IF h_type=1

5140 name$f="7%4" & name¥
5150 ELSE

5160 name¥F="#" % name¥
S165 amount=0

S17@ END IF

5180 account#(cord,cand(cord))=name%
5190 account (cord,cand{cord))=amount
5200 cand(cord)=cand{cord)+1

5210 END DEFine single

Commentary

Lines 5040 —5060: As mentioned in the introduction to the previous
module, main headings have no money figure associated with them, so
these lines accept a figure only for single items.

Line 5130 —5170: There are no separate storage areas for the different
types of item, apart from the credit and debit sides of the arrays. Later
parts of the program will determine the item type by looking at a special
indicator character attached to the beginning of the item name. This will be
“Op* for a single item and *** for a main heading.

Lines 5180—5200: You have already met the variable CORD, which
records whether an item is a credit or a debit. Here CORD is used to decide
on which side of thearrays ACCOUNT and ACCOUNTS the new item isto
be placed. In addition, we need to keep a record of the number of items on
the credit and debit sides, since these will normally be different. This is
done by the array CAND (C and D). The array was declared in the initiali-
sation module and has only two elements, CAND(0) and CAND(1), cor-
responding to the credit and debit sides of the main arrays. Once again, the
value of CORD is used to indicate which of the two elements of CAND is to
be used. Applying this, we can see that when reference is made to:
ACCOUNT (CORD,CAND(CORD))
1 2 3

what is meant is:
1) An element in the numeric array ACCOUNT.
2) On the side indicated by the value of CORD, ie credit or debit.
3) The first empty element on that side, determined by what is already

stored.

Testing

Run the program and call up the new entry option. Specify that you wish to
enter a main heading on the credit side, then enter TEST MAIN for the
item name — no value should be requested. Now specify a single item on

162

the credit side, with the name TEST and the value 100. Now do exactly the
same thing but on the debit side of the accounts.
Stop the program from the menu and enter, in direct mode:

Chapter4 Money Malters

print account(0,0),account(1,0),account$(0,0),account$(1,0)[RETURN]
You should see:
0 0 *TEST MAIN *TEST MAIN

Now perform the same procedure for line | of the arrays, eg
ACCOUNT(0,1) ete. You should see:

100 100 Y TEST % TEST

Finally, print out the value of CAND(0) and CAND(1) — both should
equal 2.

Module 4.2.6: Entering a subheading

The question of entering a new subheading is not quite as simple as that for
a single item. For each new subheading that is entered, a check has to be
made for the presence of the relevant main heading and the item placed
next toits main heading rather than simply tagged on to the end of the items
previously stored.

Module 4.2.6: Lines 6000 — 6260

SDDD REMAr ke %355 555 505 530300 40 % KR RN
4@1@ DEFine FROCedure sub_head

6020 REMark NN * **

6030 REFeat check

6040 INFUT "Main heading: ":isearch#

6050 search#="%" % search¥

L0460 FOR pl=0 TO candl(cord)-1

L0709 IF account#$(cord,pl)=search¥ THEN
EXIT pl

6080 NEXT pl

L0790 PRINT "Heading not found."

4100 T#=INKEY# (-1}

6110 RETurn

6120 END FOR pl

6130 INPUT "Name of sub-heading: "iname#

&140 INFUT "Amount: "jamount

6150 INPUT\"Are these correct (Y/N): ":Q%

61460 IF Of="Y" OR @$="y" THEN EXIT check

6170 END REFeat check

5180 name$="%" % name¥

6190 FOR i=cand{cord)+1 TO pl+2 STEF -1
6200 account#(cord,i)=account¥(cord,i-1)

163

The Working Sinclair QL.

4210 account (cord,i)=account (cord,i-1)
6220 NEXT i

6230 account#(cord,pl+1)=name#

L2480 account (cord,pl+1)=amount

&250 cand (cord)=cand {(cord}+1

626@ END DEFine sub_head

Commentary

Lines 6040 — 6120: The name of the relevant main heading is requested and
a check is made of the items already in the file that the heading actually
exists — if not, an error message is printed and the program returns to the
menu. Note the use here of both NEXT and END FOR, to provide a
section of program which is only executed if the loop finishes normally. If
an object is found, the EXIT command jumps to the END FOR, nof to the
NEXT.

Lines 6190 — 6250: As previously mentioned, the whole point of a subhead-
ing is that it should appear in the main accounts as part of a group printed
under the relevant main heading. In order to achieve this simply, the
method employed is to store it in the file next to its main heading. The
position of the first item following the main heading has already been
found by the FOR loop at line 6060, so all that needs to be done is to move
up all the items above that point and place the new item into the array
directly after its main heading — note that this means that the latest
subheading is always the first item under its relevant main heading.

Testing

Input the items specified for the test of Module 4.2.5, then call up the new
entry module again to place a new subheading on the credit side, named
TEST SUB, with a value of 200. Do the same for the debit side.

Enter the following in direct mode:

for i =0 to 2:print account(0,i),account(l,i),account$(0,i), account$(1,i):
nexti[RETURN]

You should see:

0 0 *TEST MAIN *TEST MAIN
200 200 $TEST SUB $TEST SUB
100 100 %TEST %TEST

Print out the values of CAND(0) and CAND(1) — these should both be 3.

Module 4.2.7: Data files — store

Since the data for Accountant is fairly complex to use, it is probably wise to
enter the data file module at this point to eliminate the need for constant

164

S

re-entry of data when testing. Once the module has been entered, enter and
save the data specified for the test of the previous module. Both modules
are completely standard.

Chapter4 Money Matters

Module 4.2.7: 11000— 11170

11000 REMark #* *

11210 DEFine FROCedure store

11020 REMAr ko 5555550 5 5 KR 50800000335
11030 CLS

11040 AT 1,14 : PRINT "SAVE DATA"
11058 INPUTAA" Name of data file:";file#
11060 tfile$="mdvl " % file¥

11070 DELETE tfile$

11080 OPEN_NEW #8,"mdv1_" % file¥
11072 FOR side=@ TO 1

111008 FRINTH#B,cand (side)

11110 FOR i=@ TO cand(side)-1
11120 PRINTHB, account#$ (side,i)
11130 PRINT#8,account (side,i)
11140 NEXT i

1115@ NEXT side
11160 CLOSE#8
1117@ END DEFine store

Module 4.2.8: Data files — recall
Module 4.2.8: 12000— 12160

12008 REMar k
12010 DEFine FROCedure recall

12020 REMAr k55 565506 35 3 3 330 53000 5009 39
1280 cLs

12040 AT 1,14 : PRINT "RECALL DATA"
12050 DIR mdvl_

12060 INPUTM\" Name of data file:";files¥
12070 OPEN_IN #8,"mdvi_" % file#

12080 FOR side=@ TO0 1

12070 INFUTH#8,cand (side)

12100 FOR i=@ TO cand(side)-1
1211@ INPUTHB, account¥(side,i)
12120 INFUT#8,account (side,i)
12130 NEXT i

12140 NEXT side
12150 CLOSE#B
12160 END DEFine recall

Module 4.2.9: Changes to items

A standard module with some added features to take account of the fact
that some items do not stand alone but as part of groups of items under a
common main heading.

165

The Working Sinclair QL

Module 4.2.9: Lines 7000 — 7420

TOOD REMArk 585355 536 3 5 3 356300 3 0 3 555 0 30
701@ DEFine PROCedure search

TOZ20 REMArk #5555 0 505 %05 000068 8 X85
7020 count=0

7040 REPeat display

7850 CLS

7060 FAFER @ : INK 7

7070 BLOCK 448,70,0,0,0

7e8@ temp¥=account# (cord,count)

7a5a IF temp#(1)<>"#" THEN PRINT\\temp#(2 TO)

71@e0 IF temp#(1)="#" THEN hh¥=temp#(2 TO)

7110 IF temp#(1)="3"

7120 PRINTANhhE

713@ FRINT\temp$(2 TO)

7148 END IF

7150 IF temp#(1)<:>"#" THEN PRINT formats#
(account (cord,count))

7160 FAFER 4 : IMNK @

717@ AT 8,1

7180 FRINT " COMMANDS AVAILABLE: "

7170 PRINTA" "ENTER” > NEXT ITEM"

7200 PRINT ‘CCC” > CHANGE AMOUNT"

7210 PRINT " ‘#° NUMBER > MOVE PDINTER"

7220 FPRINT " ‘DDD° > DELETE ITEM"

7230 PRINT " “ZIZ° > RETURN TD MENU"

7240 INPUTA" WHICH DO YOU REGUIRE: ";0%

7250 ="DDD" OR ="ddd" THEN REMOVE

726@- "IZI" OR O% " THEN EXIT display

727@ THEN O#="#1

7280 IF OF (1)="#"

7290 count=count+@F(2 TO)

7300 END IF

7310 IF count:cand(cord)-1 THEN count=cand
{cord)-1

7320 IF count<@® THEN count=0@

7330 IF D%="ccc" OR @$="CCC"

7340 INFUT "Amount to be added: ":;amount

7350 INFUT "Is that correct: ":r#

7360 IF r¥="y" DR rf="Yy"

7370 account (cord,count)=account (cord,

count)+amount

7380 END IF

739@ END IF

7400 IF cand{(cord)=0 THEN EXIT display

7410 END REFeat display
7420 END DEFine search

Commentary

Lines 7060 — 7070: For the purposes of the search module, the upper part
of the screen, on which the items will be printed, will be coloured black,
and the simplest way to accomplish thisis to have the QL draw a block over
the top of the screen.

166

Chapter 4 Money Marters

Lines 7090 — 7150: If the item recalled from the file is asingle item, thenitis
printed — though stripped of the indicator character which is tagged on to
the beginning of the name. If the item is a main heading, not only is it
printed, but its name is stored in HH$ so that it can be printed out above
any of its subheadings which follow. If the item is a subheading, HH$ is
printed, followed by the subheading, stripped of its indicator character.

Lines 7330 — 7390: Apart from deleting items, changes can be made to the
value associated with a heading. This is done by entering a positive or
negative figure by which the value of an item may be changed — not an
absolute value which the item s to take. The advantage of this is that most
changes will result in the need to add amounts to existing items as further
expenditures or receipts are made under items which already exist. Thus, if
an extra £100 is to be spent on car repairs, for which there is already a
heading, all that needs to be done is to page through the file to that heading
and enter ‘100",

Testing

Run the program and call up the data which you have previously stored on
microdrive, Now call up option 2 from the menu and check that you can
page through the three items, finally returning to the menu again. Call up
option 2 again, and this time try adding to or subtracting from the two
totals you have previously entered. Paging through the items again should
reveal that you have successfully altered their values.

Module 4.2.10: Deleting items

One final facility to be added in relation to existing items is deletion. In the
case of Accountant, the deletion module is more complex than previous
examples of the type. The reason for this is the existence of the groups
formed around main headings. While there are no difficulties associated
with the deletion of a single item or a subheading, what happens when a
main heading is deleted? The answer, obviously, is that not only has the
main heading to be taken out, but also all the subheadings associated with
it — otherwise the account would become clogged with subheadings not
attached to a main heading, making nonsense of the account.

Module 4.2.10: Lines 8000 — 8200
8000 REMark *x *

8010 DEFine FROCedure REMOVE

BO2@ REMArk %5555 5 53 55500 K00 H K K4

s83a pl=count : group=1

8040 IF account$(card,pl,l)="#"

8050 REPeat d_loop)
(sl -1 IF account$ (cord,pl+group,i)="#

167

The Working Sinclair QL

aga7e group=group+1
anan ELSE

8070 EXIT d_loop
8100 END IF

8110 END REFeat d_loop

8120 END IF

8130 FOR k=pl TO cand(cord)-group

8140 account (cord, k)=account (cord, k+group)
B815@ account# (cord, k) =account¥ (cord, k+group)
8160 NEXT k

B170@ cand{cord)=cand (cord) —group

8180 account¥(cord,cand (cord))=
B17@ account (cord,cand (cord)) =@
B820@ EMD DEFine REMOVE

Conmumentary

Line 8030: The position at which the deletion is to take place is sent from
the previous module in the form of the variable COUNT. This is transfer-
red for the purposes of the current module to PL. The variable GROUP
records how many items need to be deleted. It is initially set to 1, and will
only be increased if the item to be deleted is a main heading with subhead-
ings attached.

Lines 8040 — 8120: These lines will only be activated if the item specified
for deletion is a main heading. The loop scans down the following entries,
counting how many of those items which follow are preceded by a ‘§$,
indicating that they are sub-items for the main heading. The result of the
count is kept in GROUP.

Lines 8130 — 8160: A typical loop to collapse an array and delete an item.
The difference here is that instead of copying item X into space X - 1, and
therefore copying each element down one place, items are transferred
GROUP places, thus deleting GROUP items, or the number of itemsin the
group based around a main item.

Testing

Following the test procedure or the previous module, you should not only
be able to page through the items and alter them, you should also be able to
delete items. If you delete the item labelled MAIN TEST, you should find
that SUB-TEST disappears with it.

Module 4.2.11: Formatting a number

With the exception that this module does not need to be able to format
dates in two character format, this module is identical to that used and
commented on in Banker.

168

Module 4.2.11: Lines 10000 — 10160

Chapter4 Money Matters

10000 REMAr K #8583 0 95 0000530303 336 33 9 5 3454
1@@1@ DEFine FuNction format#® (nn)

1002@ REMark A

10030 LOCal i,n

10040 n=INT(ABS (nn*100) +5E-2)

105 nE=""

10040 FOR i=6 TO @ STEF -1

10070 n¥=n¥ & INT(n/1@"1i)

10080 n=n—1@"i*INT (n/1@"i)

18070 NEXT i

12100 FOR i=1 TO 4

i@i1ie IF n¥(i)<> " THEN EXIT i

12128 nE(i)y=" "

ie13@ END FOR 1

12140 n$¥=n¥(LEN(n%¥) -6 TO LEN(n%)-2) & "."
% n¥(LEN(n#¥)-1 TO}

10150 RETurn n#¥

12160 END DEFine format#

Module 4.2.12: Displaying the accounts

After all the preparation, the one module which makes sense of the whole
thing, by displaying the account in its final form. Like the equivalent
module in Banker, it looks complex, but, once you have seen the display,
you will quickly see why everything is arranged as it is. Note that, unlike
Banker, this module does not make provision for a printer output. Given
the simplicity of the print output and the absence of colour controls it
would be a simple matter to copy the techniques used in Banker across to
the program if you require a hardcopy.

Module 4.2.12: Lines 9000 — 9460

F@0@ REMar k 9NN
@10 DEFine PROCedure output
F020 REMar k LR TR

v 1] CcLs

7040 tt=@0 : ss=0
7052 AT 1,15 : PRINT cord#
F060 FOR 1=@0 TO cand(cord)-1

F07@ IF account#(cord,i,1)="%" THEN FRINT
Fasa IF account#(cord,i,1}="#" THEN FRINT
7070 PRINT accountf¥(cord,i,? TO);

7100 IF account® (cord,i,l THEN FRINT
2110 IF account# (cord,i,1

2120 tt=tt+account (cord,i}

7130 FRINT " e

?140 IF account¥(cord,i,1)="% THEN FRINT
F15@ PRINT format# {(account{cord,i))

169

The Working Sinclair QL

9160 IF account¥(cord,i,1)="%" THEN ss=ss+
account (cord,i}

2170 END IF

2180 IF ss<>@ AND account#(cord,i+1,1)<>""

7190 PRINT » e "

200 FRINT " b |

5210 PRINT format#(ss)

9220 ss=0

5230 END IF

2240 T#=INKEY¥ (-1)

3250 NEXT i

5260 PRINT * —_—
9278 PRINT "TOTAL: "3
2280 PRINT format#(tt)

3290 t2=0

7300 FOR i=0 TO cand(l-cord)

3312 IF account$(l-cord,i,1)<:"#"
320 t2=t2+account (1-cord,i)
9330 END IF

2340 NEXT i
350 IF cord=1

9340 cord2%="CREDIT"
9370 ELSE
7380 cord2%="DEBIT"

2390 END IF

3420 PRINT\cord2%;" BALANCE IS ";format#(t2)

410 FPRINTA"OVERALL BALANCE IS ";

420 IF (tt—t2)#(1-2#(cord=1))<@ THEN PRINT "-"j3
9430 PRINT format#$(tt—t2)

2440 PRINT\"PRESS ANY KEY TO QUIT"

9450 T$=INKEY$(-1)

9460 END DEFine account

Commentary

Line 9040: The variable TT will be used to store the running total for the
account as it is printed. SS will hold sub-totals for groups of sub-items.

Lines 9070 — 9090: These lines print the item name. For a main item, one
blank lineis printed first to separate it from what has gone before, while for
a subheading, the two spaces inset the item name by two spaces.

Lines 9130 — 9150: These lines deal with the printing of the amounts for
single items and subheadings. Subheadings will be printed at the twenty-
first position along the line, single items at position 30. If the item being
dealt with is a subheading, then the sub-total for the items in the current
group is stored temporarily in SS.

Lines 9180 — 9230: This IF operates only when a group is being processed,
asindicated by the fact that SS is not equal to 0, and the next item is not part
of the group — ie the group is complete. Theeffect of theloop is to print the
total for the group in the main column of figures at position 30 along the
line.

170

Line 9240: Only one item is printed at a time. This is to prevent the top part
of the account scrolling off the top of the screen before it can be read. For
cach fresh item, a key must be pressed.

Chapter4 Money Matters

Lines 9290 — 9340: These lines scan the opposiie side of the accounts to the
one currently being printed and obtain a total of the figures in the variable
T2.

Lines 9350 — 9430: The final items to be output are the total of the opposite
side of the account and the balance of the account,

Testing

Reload the data you have previously stored on disk and simply call up
option 3 on the main menu. Remember that to print out the whole account
you will need to press a key for each item — the whole account will not
appear immediately. If this test is successfully performed, the program is
ready for use.

PROGRAM 4.3: BUDGET

Program function

Budget, the final program in this book, is, for most readers, one of the
largest programs they will ever enter (or want to enter for that matter).
From letters I receive about earlier and less capable versions, however,
entering the program seems to be a worthwhile chore, given the results.

There is nothing terribly complex about Budget, it’s just that it is
designed to carry a great deal of data and perform a range of calculations
on this data which help reveal a household financial picture over a rolling
12 month period. As I said at the beginning of this chapter, one of the
strengths of the micro is its ability to present figures in an orderly and
comprehensible fashion. Budget illustrates well a second strength, and that
is that, when large bodies of data are being handled, it becomes possible to
perform fairly straightforward calculations which would defeat most
people working manually and yet which, when performed, open up new
and enlightening ways of looking at the data.

The purpose of Budget is to allow the user to input figures for income
and up to 60 monthly payments (regular or irregular) and to have an
analysis performed upon them which will reveal the monthly balance of
income over expenditure, the cumulative balance over the year, the
average budget allocation needed to meet commitments over the year and
any shortfall, from month to month, of the average budget payment
compared to actual payments to date. In other words, Budget presents a
straightforward picture of how the user’s finances will appear over the year
ahead. In addition, however, Budget is designed (o be a ‘what il” tool,

171

The Working Sinclair QL

Chapter4 Money Matters

which allows the user to speculate about the effects of changes through the 12178 FOR i=0 TO 11

year without corrupting the original data. This is achieved by means of a 10180 READ month# (i)
set of ‘shadow arrays’ into which entries can be made, and the same 109150 month® (i)=month% (i) & " u
analysis carried out, with no effect on the original data. To simpli 16206 CNEXT L
3 plify the i i "
] § d (Y/M): ":qf
matter of entry, the whole of the current data on the ‘real’ side of the arrays {gg;g :gPl;I;‘\.y"Lg:dq;;ﬁn:“mxcru rive 9
can be copied into the ‘hypothetical’ side with a single keystroke, so that 10230 recall
only changes relative to the real data have to be entered. 10240 ELSE
When all is said and done, really the only wa 3 : 10250 REFeat check
SonisoF tiaipni b bo eiter o ¥ y way to understand the attrac 10260 INPUT\" Current month number: "iq
5 2 stoenteritan u_sen.Anhour s playing with the program 1827@ IF gq»=1 AND q<=12 THEN EXIT check
will demonstrate just how much it can tell you about your finances. 10280 END REFeat check
| 10290 curr_m=q-1
10300 year=curr_m+11
10305 test_data:GO TO 11000
12310 income
10320 new_headings

10338 END IF

18348 DATA "JANUARY","FEBRUARY","MARCH" ,"APRIL",
"MAY*, "JUNE" ,"JULY", "AUGUST" , "SEFTEMEER" ,
"DCTOBER" , "NOVEMEER" , " DECEMBER"

Module 4.3.2: The program menu
A standard menu module.

Figure 4.3: Part of Analysis Screen from Budget.

Module 4.3.2: Lines 11000 — 11470
1100@ REMark *#

= ey . . 3 U
Module 4.3.1: Initialisation :i:ég ZE::::; ::i;inni&i**!»iiinfﬁ*nlu
The size of this module should be sufficient to convince you of the 11@3@ REPeat loop
complexity of the program. The use of the arrays and variables will be “u;g :s;ER (9rraall
described during the course of the program commentary. i:gbm AT 1,16 : PRINT "BUDGET"
11070 PRINTA\\"Commands available:"
Module 4.3.1: Lines 10000 — 10340 11080 PRINTA\" 1) Display monthly analysis"
10000 REMar ke %55 555055000 5005 05333 35435 9 11058 PRINT " 2) Changes"
18@1@ REMark initialise 11108 PRINT " 3) New budget headings"
10020 REMark 555 5 % % 5 5% 536 5 438 35 8 5 536 30 % 1111@ PRINT " 4) Delete budget heading"
19@3@ INK @ : PAPER 4 : CLS 11120 PRINT " S) Reset hypothetical data”
10040 DIM payment#(1,59,14) 11130 PRINT " &) Reset month"
10050 DIM payments(1,59,11) 11140 PRINT " 7) Store data”
19068 DIM monthly(1,59) 11150 PRINT " 8) Change to "3
10@7@ DIM paytotals(1,11) 11160 IF real=0
ieese DIM b_balance(1,11) 11178 PRINT "hypothetical";
18090 DIM balance(i,11) 11180 ELSE
10100 DIM income_1(1,11) 1119@ FRINT "real":
1@11@ DIM income_2(1,11) 11200 END IF
10120 DIM month$(11,9) 11210 PRINT " data"
19138 DIM y_budget (1) 11220 PRINT ") Stop" ‘)
10140 DIM items (1) 11230 INPUT\\"Which do you require: "3z
191580 real=0 11240 SELect ON =z
10160 RESTORE 11250 ON z=1 : display
11272 ON z=2 : changes
172

173

The Working Sinciair QL

11290 ON z=3 new_headings

1110 ON =z remove

11Z32 ON =z reset_data

11350 ON z= reset_month

11370 ON z= store

11390 DN = : real=1-real

11410 ON =

11420 CLS

11430 AT 18,146 : FRINT "BUDGET"
11440 PRINT #@,"Program terminated"
11450 STOF

11460 END SELect

11470 END REFeat loop

Commentary

Line 11040: The variable REAL will be used to indicate whether the real or
hypothetical datais being worked on at the moment. From the user’s point
of view, this is made plain by the fact that when working with real data the
screen will be green, and when working with the hypothetical figures this
will change to cyan.

Lines 11150 — 11210: Just a small touch, this, but a nice one nevertheless.
Since the program can only change between the two states of dealing with
real and hypothetical data, this particular option on the menu indicates
which of the two will be accessed by choosing option 8, eg if the program is
currently in the real data mode, the prompt will read:

Change to hypothetical data
and vice versa.

Module 4.3.3: Short functions

In the course of this program, we shall be calling on a number of trivial
functions or procedures. Rather than dignify them all with a module of
their own, we shall adopt the expedient of a single module consisting of
four short sections. They will be briefly commented on here, but their real
usefulness will only become apparent when they are used.

Module 4.3.3: Lines 25000 — 25260

25000 REMark * HHER
25@1@ REMark short functions

25020 REMark *¥* *

25030 DEFine FuNction i_m

25040 LOCal i_m

25050 i_m=i-12#(i>11)

25060 RETurn i_m

25070 END DEFine i_m

25080 L

25090 E)EF:ne FPROCedure table (temp$)

174

Chapter4 Money Matiers

25100 space : PRINT temp#; : space
25110 PRINT

25120 END DEFine

25130 H

25148 DEFine FROCedure table2 (temp)
25150 OVER 1

25160 FRINT FILL#%(" ",16+5%(i-start));
25170 OVER @

25180 form_print (temp) : space
25190 PRINT

25200 END DEFine tablel

25210 H

25228 DEFine PROCedure space

25230 PAFER @

25240 PRINT " *;

25250 FAPER real+4

25260 END DEFine space

Commentary

Lines 25030 — 25070: This function is intended to cope with the problem
which arises when the start of the year, as the program sees it, does not
correspond to the start of the calendar year. If the program is currently
starting from August and looking 12 months ahead, problems will be
encountered in program loops which scan the year, when the transition is
made from December to January, a move from month 5 to 6 as far as the
program is concerned but from 12 to 1 (or rather 11 to 0) as far as any data
goes which is stored in arrays from January to December. The simple
answer adopted here is that all loops in this program completely ignore the
transition from December to January. If they are to start in December,
they count 12, 13, 14, etc. This function is given the job of providing a
variable to replace the loop variable, which is assumed to be I, with another
which willcount 12, 1, 2, etc.

Lines 25090 —25120: A formatting aid. When it comes to printing out a
table, this procedure will accept a heading and print an inverse space
immediately before and after it, thus facilitating building up columns. To
do this it calls up SPACE, described below.

Lines 25140 —25200: In the absence of a TAB facility in SuperBASIC, a
good simulation can be arrived at with OVER. This module will print a line
of spaces on the current printing line, with OVER set. This has the effect of
moving the print position to the right without corrupting anything which is
already on the screen. The module assumes that it is being called from a
loop with the loop variable I, and the position on the screen will depend on
the value of two variables, I and START.

Lines 25220 —25260: These lines print an inverse or black space used in
laying out tables,

175

The Working Sinclair QL

Testing
1) If you set the value of I directly by entering:
i=x[ENTER] (where X is a number between 0 and 23)

vou should find that PRINT I_M will print out the value of I, less 12if [
was greater than 11.

2) Type:

real =0 [ENTER]
table ("Name") [ENTER]

you should see the word echoed back with an inverse space before and after
(this is also a sufficient test of SPACE).

3) Type:

start = 1{[ENTER]
i=2[ENTER]
print:table2 (123)[ENTER]

and you should see ‘0123’ printed near the centre of the current printing
line.

Module 4.3.4: Entering figures for income

Thisis a straight forward module which stores income under two headings,
main and additional, in the arrays INCOME__1 and INCOME__2.

Module 4.3.4: Lines 20000 20160

20000 REMArbs %555 5% 8 55550 05899969428 %93

20010 DEFine FROCedure income

Z0@20 REMark 5 6659600 6 006008 3% 6 3 06 0 %K

e, [t | CcLS

20040 AT 1,13 = FPRINT "CHANGE INCOME"

20050 FRINTA" Input "\’ to leave unchanged"\\
20060 FOR i=curr_m T0O year

20070 INFUTN (month%(i _m) % ": Main (" %
income_l{real,i_m) % "): ");qf

20080 IF q#{>"\"

20050 income_1 (real,i_m)="@" % g%

22100 END IF

20110 INFUT (month#%(i_m) % ": Additional ("
% income_2(real,i_m) % "): "):iqg¥

20120 IF q#<{>"\"

2130 income_2(real ,i_m)="0" % q%

20142 END IF

20150 NEXT i
2016@ END DEFine income

176

i
i
i

Chapterd Money Matters

Commentary

Line 20060: CURR_M is the variable which holds the number within the
calendar year of the current month. YEAR is simply CURR_M plus 11.

Lines 20070 — 20140: The module is later used when resetting the program
to start at a new month, so provision is made for the input of \ (a key
conveniently near ENTER) to leave a figure unchanged. Otherwise, the
user is prompted with the month name and asked to supply the two income
figures for that month. Note the use of I__M to translate the I loop, which
may run from 11 to 22, into a value in the range 0— 11. Apart fromI_M,
the position in which the data will be stored is determined by the value of
REAL, which dictates whether the real or hypothetical halves of the arrays
are (o beaccessed.

Testing

Run the program, answering N to the prompt to load from microdrive, and
you should be prompted for 24 income figures. When you have finished
entering them, the program will stop witha BAD NAME error as it tries to
call a procedure you have not entered yet. Type:

for i =0to 11:print income__1(0,i),income__2(0,i):next i

You should see the income figures you have entered displayed.

Module 4.3.5: Entering payment headings

Just as the program needs to know the income figures when it starts up, it is
hardly going to be much use without some information as to the payments
to be made. This procedure can be called at any time when the main pro-
gram has been entered but is always called first when the program is RUN
and data not loaded from tape.

Module4.3.5: Lines 16000 — 16270

1ADAD REMArk 5555 5 5 5 5 55 3 05 53 3635
16401@ DEFine PROCedure new_headings
16@20 REMark 5% 55353 95 55 303003 0330300 0 0 36
160370 REPeat nh_loop

16040 CLs

16@50 AT 1,6 : PRINT "INFUT OF NEW FAYMENTS"

16060 PRINT\\" Precede name with a "*° if
you do"!"not wish it to be budgeted."

16070 PRINT\"Enter ‘ZZZ ' as name to quit."

16080 INFUT\"Name for new payment: ";g¥

16090 IF q#%="zzz" OR q%="ZZI1"

16100 update

16110 EXIT nh_loop

16120 END IF

16170 IF items(real)=60

177

The Working Sinclair QL

16140 FRINTNA" No room for more data
16150 t$=INKEY$(-1)

161£0 RETurn

16170 END IF

16180 CLS

16150 PRINT\" PAYMENTS FOR "j;q#\\

16200 FOR i=curr_m TO year

16210 PRINT month#(i_m)3

16220 INPUT payments(real,items(real),i_m)
16230 NEXT i

16240 payment$ (real ,items(real))=q% &

16250 items (real)=items(real)+1

162608 END REPeat nh_loop

1627@ END DEFine new_headings

Commentary

Line 16060: The meaning of this prompt will not be obvious until you have
some experience of the program. We have already noted that one of the
functions of the program is to provide an average figure per month to cover
all the bills which must be met during the course of a year. It is possible,
however, to exempt a bill from this budgeting process. Take, for example,
the situation where you intend to go on holiday at the end of the current
12-month period, at a cost of £500, knowing that in that month you will
receive a holiday bonus, also of £500. The bonus is duly entered under
additional income and the holiday as a payment. The result is that the
average budget figure for each of the next 12 months is increased by £42, so
that, by the end of the 12 months, the holiday will have been paid for. This
is clearly not what you want, since there is no need to budget in advance for
the holiday. In this case, the payment for the holiday is entered, but the
payment name is preceded by a “*’, as asignal to later parts of the program
that the associated bill is not to be included when calculating the average
monthly budget.

Line 16100: The next module you will enter, which performs the calcula-
tions on the bare figures you provide.

Line 16220: Thearray PAYMENTS will hold the amounts entered for each
bill. There are three dimensions to the array:

1) The side of the array (real or hypothetical).

2) The number of the payment (0— 59). The number of payments regis-
tered on each side of the array is held in the two element array ITEMS.

3) The month (0—11).

Line 16240: The name of the payment is held in PAYMENTS, which is
padded with spaces to ensure standardised length of payment names when
they are printed in later tables.

178

Chapterd Money Matters

Testing
If the program has been initialised, you should be able to type:

new__headings [ENTER]
and be prompted to input a heading. Respond with:
TEST1

followed by a series of monthly payment figures, corresponding to the
number of the month.

‘When you are prompted for the next payment name, enter ‘zzz" and the
procedure will terminate, Now type:

print payment$(0,0) [ENTER]
fori=0to 11:print payments (0,0,i):next i
print items(0)

You should see the payment name, the numbers from 1 to 12 and finally the
number |, indicating that ITEMS(0) records asingle item on the real side of
the arrays.

Module 4.3.6: Data files — store

A standard module, this is given at this early stage because, of all the pro-
grams in this book, Budget is probably the most tiresome to have to re-
enter data manually for. Note that not all of the arrays dimensioned when
the program is initialised are saved. The reason for this is that most of them
are derived from the income and payments figures you have already
entered. Rather than saving them, it is more economical simply to save the
income and payments and recalculate the rest when the data is reloaded.

Module 4.3.6: Lines 26000 — 26260

26000 REMark * Eaad
26010 DEFine PROCedure store
26020 REMark # * -

26030 cLs

26040 AT 1,14 : FPRINT "SAVE DATA"

26050 INPUTA\\" Mame of data file:":file#
26060 tfiles="mdvl " & file¥

26070 DELETE tfile#

26080 OPEN_NEW #8,"mdvi_" % file¥

26070 PRINT #8,curr_m : PRINT #8,year
26100 FOR i=@ 70 1

26110 PRINT #B,items{i)

26120 IF items(i}<>0

26170 FOR j=B@ TO items{i)-1
26140 PRINT #8,payment# (i, i)
26150 FOR k=@ TO 11

179

The Working Sinclair QL

26160 FRINT #8,payments (i, j, k)
26170 NEXT k

26180 NEXT i

26170 FOR j=@ TO 11

26200 FRINT #8, income 1 (i,j)
2621@ FRINT #8,income 2(i,j)
26220 NEXT j N
26230 END IF

26240 NEXT i
26250 CLOSE#8
2626@ END DEFine store

Module 4.3.7: Data files — recall

A standard module. Note the call to the UPDATE module, which you have
not entered yet, but which will fill out the arrays with figures derived from
the income and payments stored on the microdrive.

Module 4.3.7: Lines 27000 — 27260

27000 REMAr |k 5856055000030 00002 H R
27@1@ DEFine FROCedure recall

27020 REMark #% %655 % 55555055 X% 0K XNNN
27030 cLs

27040 AT 1,14 : PRINT "RECALL DATA"
27050 DIR mdvl_

27060 INPUTAN" Name of data file:";files$
27070 OFEN_IN #8,"mdvl " % file¥
27080 INFUT #8,curr_m,year

27090 FOR i=0 TO 1

27100 INFUT #B,items (i
27110 IF items(i)<>@

27120 FOR j=@ TO items (i)-1

27130 INPUT #8,payment$ (i, i)
27140 FOR k=@ TO 11

27150 INFUT #B8,payments (i,],k)
27160 NEXT I

27170 NEXT j

27180 FOR j=0 TO 11

27190 INFUT #B,income_1(i,j)
27200 INPUT #8,income 2(i,3)
27210 NEXT

27220 END IF

2723 NEXT i

27240 CLOSE#8
27250 update
27260 END DEFine recall

Module 4.3.8: The calculations
All the important calculations for the program are carried out by this pro-

180

cedure. There is nothing complex about what is done, it is simply cumber-
some, since the payments must be scanned in totally separate ways — once
along the months from 0 to 11 and once in order of payments, from 0 to a
possible 59. Be warned that, when the program holds the maximum
number of payments, this procedure takes some considerable time to
complete.

Chapter4 Money Matters

Module 4.3.8: Lines 14000 — 14290

14000 REMar k55555 5 500005 % 9030033 0303

1401@ DEFine FROCedure update

14020 REMar ks #5555 005 03 3 1 3059 03 8 36 36 6 5 %

14@3@ FLASH 1 : PRINT "CALCULATING" : FLASH @
14040 IF items(real)=@8 THEN RETurn

14050 y_budget (real)=0 : cum_budget=0

14060 cum=@

14070 FOR i=0 TO items(real)-1

14080 y_total=0

14090 IF payment#{real ,i,1)<>"*"

14100 FOR i=@ TO 11

14110 y_total=y_total+payments(real,i,j}

14128 NEXT j

14138 monthly(real ,i)=y_total /12

14140 y_budget (real)=y_budget (real)+
y_total/12

14150 END IF

14160 NEXT i
14170 FOR i=curr_m TO year

14180 paytotals(real ,i_m)=0

14170 FOR =@ TO items(real)-1

14200 paytotals(real ,i _m)=paytotalsireal,

i_m)+paymentsireal,j,i_m)
1421@ IF payment#¥(real,j,1)<>"%"
14221 cum_budget=cum_budget+payments
(real ,j,i_m)

14270 END IF

14240 NEXT j

14250 b_balance(real ,i_m)=y budget (real)*
(i—curr_m+1)-cum_budget

14260 cum=cum+income_1(real ,i_m)+income 2
(real,i_m)-paytotals(real,i_m)

14270 balance{real ,i_m)=cum

14280 NEXT 1
14290 END DEFine update

Commentary

Line 14030: As a reassurance that the program is not locked up, the word
CALCULATING is flashed on the screen while this procedure is being
carried out.

Lines 14070 — 14160: For each payment (the I loop), the payments made in
each month (the J loop) are added together in the temporary variable

181

The Working Sinclair QL

Y__TOTAL. One-twelfth of this total payment over the year is savedin the
corresponding line of the array MONTHLY, which records what the
monthly budget figure for each payment is. In addition, the same figure is
added to Y__BUDGET, which will, by the end of the 1 loop, hold the total
of the average monthly payments for all of the bills — ie the overall average
monthly payment. Note that line 14090 excludes any bills whose names
begin with **’ from this process.

Lines 14170 — 14280; These lines deal with figures which will apply to each
month separately. For each month of the year, the J loop adds together all
the payments to be made in that month and stores them in the array PAY -
TOTALS. Within the same loop, CUM__BUDGET keeps track of the
total of payments made on items which are included in the average budget.
Each time the J loop ends, CUM__BUDGET will hold the total payments
on budgeted items since the year (as represented by the I loop) began.

Line 14250: The array B__BALANCE is used to record how much, in any
particular month, the actual payments on budgeted items are ahead or
behind the amount put aside in the average monthly budget. For instance,
if alarge budgeted payment is to be made at the end of the year, one-twelfth
ofl it will be put aside in each of the preceding months and a large surplus
will build up in B__BALANCE. The contents of B__BALANCE for each
month are calculated by taking the average monthly budget figure
(Y_BUDGET), multiplying it by the number of months since the year
started and then subtracting all the payments to date on budgeted items
(CUM_BUDGET).

Lines 14260 — 14270: The cumulative balance, ie how much has been saved
out of income since the beginning of the year, isstored in BALANCE. It is
calculated by adding the income figures each month to the temporary
variable CUM and subtracting the total payments.

Testing

It is not really practical to test this module until we have entered the next
series, which allows the figures to be dumped out in the form of a table.

Module 4.3.9: Formatiing a number

We have already looked, in the preceding programs in this chapter, at the
problems of formatting a number, The current module is simpler than
those which have gone belore, because Budget works only with integer
numbers up to 9999,

Module 4.3.9: Lines 24000 — 24130

20000 REMark 5305555555 958 3 9393336 30 6 6 %
240108 DEFine PROCedure form_print (nn)
2AD20 REMar ke 855 %60 00 33 03033 %

182

Chapter4 Money Matiers

24030 LOCal i,n
24040 n=INT (ABS (nn) +5E-2)

24050 nE=""

24060 FOR i=3 TD @ STEP -1
24070 n¥=n¥ & INT{(n/10"i)
24080 n=N—10"i®#INT(n/1@0"i)

240290 NEXT i

24100 IF nn<@ THEN PAFER 2
24110 PRINT n#;

24120 PAPER real+4

24138 END DEFine four

Testing
Type:

real =0[ENTER]
form__print I[ENTER]

The result should be the printing of ‘0001’ on a green background.

Module 4.3.10: Printing a heading for a table

Inamoment, weshall be entering the main display module of the program,
or rather two main display modules. Since both parts of the display need a
heading for three-monthly columns, a separate module for this purpose is
included.

Module 4.3.10: Lines 23000 — 23110
23008 REMark
23@1@ DEFine FROCedure table_top
23020 REMark
23030 LOCal i

23040 CLsS

23250 FAPER @ : INK 7

23060 PRINT "MONTHS "y

23070 FOR i=start TO start+2

23080 PRINT month#(i_m, 1 TO 3};" “;
23070 NEXT i

23100 PAPER real+4 : INK @

2311@ END DEFine table_top

Commentary

Lines 23070 — 23090: The I_M function is used to print out the first three
letters of the names of three months, starting with the value held in
START.

Testing

Provided that the program has been initialised, thus loading the month
names into MONTHS, type:

183

The Working Sinclair QL

table__top(0)
and you should see MONTHS, JAN, FEB and MAR spaced out across the
top of the screen in inverse lettering.

Module 4.3.11: Displaying the payments . l
We have now entered all that we need in order to be able to print out an
orderly table of the payments which the user has recorded.

Module4.3.11: Lines 12000— 12380

12008 REMark %%kt kX a2 x s

i lay
2@1@ DEFine PROCedure disp
:“géu REMAr ke 3555 533 360 3900000 36 00 309036360 3 30 3
3 CLS .
igg;g AT 1,13 2 PRINT "BUDGET DISFLAY
IEDSB REFPeat check

o
12060 INFUTA\\ "Number of month to star
start)
1z7@7@ 1F start>=1 AND start<=12 THEN EXIT
check

12080 END REPEattcTecb
=start-— ~
:g?gg ?;a::a:t—1?¥(5tart3=turr7m)J=[urr7mﬁu
THEN start=curr_m-3
12110 start=start+12%(start<@) il
12120 INPUTA"ANnalysis unly (Y/N): ;QEIE \
1217@ IF q#="y" OR g#="¥" THEN analy

RETurn -
1214@ FOR i=@ TO 45 STEF 15
12150 table_top)
12160 FAFER @ : INE 7
12170 FRINT " B
12180 PAFER 4+real : INK @
i219@ AT 1,0
OR j=@0 TO 14
:gg?g g IF i+j=items(real) THEN EXIT 3
22 space s
izﬂZ: PRINT payment¥(real,i+il);
22
40 space
}ggﬁﬂ FOR k=start TO start+2 s etz
12260 form_print payments (real ,i+j,k-12
*(k>11))
12270 space
NEXT k
:gggg form_print (monthly (real ,i+3j))
12300 space : PRINT]
231@ END FOR Jj . .
:Zgiﬂ PAPER @ : PRINT FILL#%(, 3603
12338 FAFER real+4
4@ tF¥=INKEY¥(-1) .
13§SB IF i+j=items(real) THEN EXIT i
184

i
§

Chapter4 Money Matters

12360 END FOR i
12Z7@ analysis
1238@ END DEFine display

Commentary

Lines 12050 — 12110: The start month number for the three-monthly dis-
play is received into START. Since Budget works on a single 12-month
period, trying to start a table in the last month, or the month before, would
produce anonsense, wrapping around to the beginning of the year. For this
reasom, if the START given is not a full three months before the current
month, it is reduced — eg if the current month is July and the requested

start is May, this will be reduced to April, so that April, May and June will
be represented.

Lines 12120 — 12130: The next module will provide for the printing of an
analysis of the figures displayed by the current table. These lines allow for

the user to dispense with the display of individual bills and gostraight to the
analysis.

Lines 12140 — 12360: This loop allows the full 60 bills to be screened in four
successive displays.

Lines 12150 - 12180: The top of the table is printed, and an extra heading
on the right of the screen — B — under which wi

ill be placed the average
monthly budget for each item.

Lines 12200 - 12310: These two embedded loops print the name of each
payment on the left of the screen, then the figures for the three months,
using SPACE to separate the items on each line.

Testing
If you have entered some data, type:

goto 11000

and call up option 1 on the menu. Specify a month and you should see an
orderly presentation of any bills you have entered. The display will termi-
nate with an error when you press a key, since the next module is called at
the end of this one. Perform the test again, but this time use the menu ta
change to the hypothetical half of the array toensure that the figures in that
half are properly displayed. Now that you can display the results of
changes easily, it would be wise to check modules like NEW__HEAD-
INGS to make sure they work on both sides of the arrays.

Module 4.3.12: Displaying the analysis

As mentioned in the the commentary on the last module, once the figures
for payments have been displayed, the program then goes on to display the

185

The Working Sinclair QL

analysis which was carried out by the UPDATE module. The short func-
tions we have already defined make the printing of the new table a very
simple matter. A list of headings is printed using TABLE, then TABLE2
prints the columns of corresponding figures for the three months covered.

Module 4.3.12: Lines 13000 — 13270

13000 REMark %% N
13@1@ DEFine PROCedure analysis

1 ZO20 REMAr k4535 00055 0 0533956006060 038 %
12030 table_top

13040 AT 1,0

13050 table "MONTHLY TOTAL "

13060 table "BUDGET "

13870 table "BUDGET BALANCE"

13080 table "MAIN INCOME 2

13090 table "SUPP. INCOME "

13100 table "TOTAL INCOME "

13110 table "MONTH BALANCE
13120 table "CUM. BALANCE
13130 FOR i=start TO start+2

13140 AT 1,0

13150 table2 (paytotals(real,i_m))

13168 table2 (y_budget (real))

13170 table? (b_balance(real,i_m))

13180 table? (income_i (real,i_m))

13190 table2 (income_2(real,i_m)}

13200 table2 (income_1(real,i_m)+income_2
(real ,i_m))

13210 table? (income_1(real,i_m)+income_ 2
{real,i_m)-paytotals(real,i_m})

13220 table? (balance(real,i_m)

13230 MNEXT i

13240 PAPER @ : PRINT FILL#$(" ",37)3

13258 PAPER real+4
13260 t4$=INKEY$(-1)
13270 END DEFine analysis

Testing

The test conducted on the previous module can now be continued through
to the display of the analysis of the ligures you have entered. Remember
that this is your first real check of the working of the UPDATE modaule, so
do ensure that figures displayed make some sense.

Module 4.3.13: Reset__data

So far, we have not really experimented much with the hypothetical
capabilities of the program. When you do start to use those capabilities,
you will sometimes find that you have built up such a body of changes that
getting back to a semblance of the real situation will involve a lot of tire-

186

some deletion. This module relieves you of that need by simply copying the
real half ul" the arrays over into the hypothetical half so that you c-an start
your experiments with a clean slate.

Chapterd Money Matters

Module 4.3.13: Lines 15000 15190

1500 REMAr b 55 550505655 5 5 5 00 55 3360 59463 5 39
15@1@ DEFine FROCedure reset data
1SD2D REMark #5555 55 5 5 5K 5 %55 % X % K %% ¥
15838 y_budget (1) =y_budget (@)

15040 FOR i=@ TOD items(@)-1

15050 payment® (1,i)=payment$(0,i)

15060 monthly (1,i)=monthly (@,i)

i15@e7e FOR 5=0 TO 11

15ese payments(l,i,j)=payments(@,i,j
15090 NEXT T pay e

15100 NEXT i
15110 FOR i=0 TO 11

15120 paytotals(i,i)=paytotals(@,i)
15130 b_balance(1,i)=b_balance(®,i)
15140 income_1(1,i ncome _1(@,i)
15150 income_2(1,i 1n:nm572(ﬂ,i3
15160 balance(1,i)=balance(@,i)
15170 NEXT i

15180 items (1)=items (@)

1519@ END DEFine reset_data

Testing

You will need to have made some entries on the hypothetical side of the
arrays and _chccked that they have been registered. Call up menu option 5
ar_ni then display the hypothetical figures. They should now be identical
with the real figures.

Module 4.3.14: Changing the month

The program will not be of much use if it is always going to be stuck on the
same 12-month period, so this module makes provision for the start month
to bealtered as time passes. The array simply accepts payment and income
figures for the new months which have come in at the end of the period. If
the change were from May to July, figures for next May and next Ju.ne
would be requested for each payment heading and also for main and
supplementary income.

{l/;gdu[e 4.3.14: Lines 17000 17320

DO REMAIr k5005563638 36 536 3 5 3 4 063 0 50 9606 306 9
1701@ DEFine PROCedure reset_month
17020 REMArk #9506 055 5 0005000000005 00

187

The Working Sinclair QL

17072 CLS
17040 AT 1,13 : PRINT "UFDATE MONTH"

17050 REPeat check

17860 INFUTA\\"Number of new month (1-12): "3
month2

17@7@ IF month2>=1 AND month2<=12 THEN EXIT
check

1708@ END REFeat check
17998 monthZ2=month2-1
17188 IF month2=curr_m

17110 PRINT* Program already on that month”
17120 t¥=INKEY$ (-1}
171370 RETurn

17140 END IF ;
17150 IF month2<curr_m THEN monthZ=month2+12

17160 FOR i=curr_m TO month2-1

17170 CcCLs

17180 AT 1,13 : FRINT "UFDATE MONTH"

171%@ PRINT\\"Input amounts for next "jmonth¥
Ci_m)s\\

17200 FOR j=@ TO items(real)-1

17210 FRINT payment#(@,j)s" ("jpayments

@,i,i_mlz™): "3

17220 INFUT payments(@,3,i _m)

17270 NEXT 3

17240 INFUT\"Main Income: "jincome 1(@,i _m)

17250 INFUT\"Additional income: "jincome_ 2
(@,1_m)

17260 NEXT i

1727@ curr_m=month2-12% (month2>11)
1728@ year=curr_m+l1

17290 real=0o0

17300 update

17310 reset_data

1732@ END DEFine reset _month

Commentary

Lines 17160 — 17260; These two loops shuttle through all the available
payments, displaying the figures they were set for in what is now the pre-
vious year and inviting new figures.

Testing

Call up option 6 from the menu and specify the next month to the ‘current
month. You should be invited to give one complete set of payment income
figures for the new end of Budget’s year. You will also find, in usil:lg the
display function, that the year start and end have been adjusted
accordingly.

188

Module 4.3.15: Making changes

The first of a series of four modules which, together, allow changes to be
made to existing income or payment headings. The purpose of the current
module is merely to determine whether income or payments are to be
changed.

Chapter4 Money Matiers

Module4.3.15: Lines 18000 — 18130

1B@D@ REMark % 5 5 5 55 38 5383 3 3 5.3 330 3 4 2 9% %

18@10 DEFine PROCedure changes

18020 REMark %% 5% %5555 5555355519852 3%

18830 CLs

18040 AT 1,15 : PRINT "CHANGES"

18050 PRINTA\" Do you wish to change figures
for:"

18060 PRINTA" 1) A payment"\" 2} Income"

18070 INFUTA" Which do you require: ";z2

18080 SELect ON z2

isese ON z2=1 : change_payment

18100 ON z2=2 : income

18110 END SELect

18120 IF z2=1 OR z2=2 THEN update

18138 END DEFine changes

Testing

The module can be tested as far as income goes since it uses the income
entry module entered earlier. Call up changes and specify income. You
should be invited to give new main and additional figures for each of the
coming 12 months.

Module 4.3.16: Checking a payment name

Several previous programs, like Nnumber and Accountant, have needed
provision to check that items requested by the user are in fact present in the
file. Budget includes a separate module to make this check, returning the
results of the search to the next module in the form of the variable
FOUND.

Module 4.3.16: Lines 22000 — 22150
22000 REMArk #5535 555 508 558 3505 55 0056 30 56 0 4
22010 DEFine PROCedure find (g%)

22020 REMark EE T2 2

220380 found=0

22040 q¥=q% & FILL$(" ", 14-LEN(q#$))
22050 FOR place=@ TO items(real)-1

22060 IF g¥=payment$(real,place)

22070 found=1

272080 EXIT place

22090 END IF

189

The Working Sinclair QL

22100 NEXT place

22110 PRINT\" Item not found, please check
with"\" monthly display."

22120 t#=INKEY# (-1}

22138 RETurn

22140 END FOR place
22158 END DEFine find

Module 4.3.17: Changing the figures for a payment

This module is similar to the one used to change income. Monthly figures
for the specified payment heading are displayed and the user is invited
either to confirm or change them.

Module 4.3.17: Lines 19000— 19150

170@0@ REMark * *

19010 DEFine PROCedure change_payment

17020 REMar ko #5353 35 % 5 3 5 3 00 30 30 60 %% % 6%

17030 INPUTA\"Payment to be changed:

172840 find (g#%)

19058 IF NOT found THEN RETurn

19060 CcLS

17@78 PRINT\" "ipayment¥(real,place)

17080 FRINTA" Input new amount or "\’ to
leave. "\\

19098 FOR i=curr_m TO year

iq¥

19102 INFUT (month$(i_m) & "(" & payments
(real ;place,i_m) & "): "};q¥

19118 IF qg$<>"\"

19120 payments (real ,place,i_m)="0" & qg¥

19130 END IF

1914@ NEXT i
1915@ END DEFine change_payment

Testing

Just as you were able to change income figures, you should now be able to
call up menu option 2, specify a payment heading and re-enter the figures
for that payment.

Module 4.3.18: Deleting items

The final module of the main program allows an entire payment heading,
itsname and the 12-monthly figures associated with it, to be removed from
the file.

Module 4.3.18: Lines 21000— 21160

21000 REMArk %35 % % 5% 55 55 3 530350 300 3 3 %
2101® DEFine FROCedure remove
21020 REMark L
21078 CLS

21040 AT 1,14 : PRINT "DELETIONS"

190

21050 INPUTA\\" Name of payment to be deleted: *
H=EZ

21060 find (g¥%)

21070 IF NOT found THEN RETurn

21080 items(real)=items(real)-1

21098 FOR j=place TO items(real)-1

Chapter 4 Money Maiters

21100 payment# (real, j)=payment#(real, j+1)

21110 FOR k=@ TO 11

21120 payments (real, j, k) =payments (real ,
J+1,k)

211Z0 NEXT k

21140 NEXT 3
21158 update
2116@ END DEFine remove

Testing

YOI..l should now be able to delete payment headings by calling up menu
option 4. If this facility works correctly, the program is ready for use.

191

APPENDIX

Instructions for Use of Checksum
Generator Tables

The following short program is designed to act as a check that the program
you have entered is the same in every important respect as those from
which the programs in this book were listed out. It does this by reading the
program file from microdrive and successively adding and subtracting the
values of the characters which make up each line of the program, excluding
spaces. The values produced are known as ‘checksums’ and, if a program
line is copied correctly from one program to another and examined by the
same checksum generator, it should produce the same checksum — if there
is an error it should be indicated by a difference in the checksums. It is
possible to make changes in a line which will result in the same checksum
being calculated for it, but it is unlikely that this will happen often.

If you wish to check your program against the tables, you will have to
load the Checksum Generator into memory and then place a cartridge
bearing the program to be checked in drive 1. Run the Checksum Genera-
tor and supply the program name. You will also be asked to supply the start
and finish lines for the table. This will allow you to select either a specific
module(s) or to enter 1 and 99999 (an impossibly high line number) to
generate a table for the whole program.

The tables are laid out in modules, with the start line of each module
marked. Line numbers are not included for the tables since this would
make them impossibly large. To read the table, find the module you want,
then read each line of the table from left to right. Since the tables in the
book and the tables you will generate will be of the same format, you
should have no difficulty in comparing them.

If the tables are exactly alike, it is highly probable that the program is
entered correctly in every respect. If you come across lines where the
checksums differ between your table and that contained in the book, go to
the offending line and compare it very carefully with what is contained in
the listing in the book — you will probably find that there is an error. Note
that differences in spacing will not result in differences in checksums —
spaces are ignored. If you cannot find any difference, there is always a
small possibility that last-minute changes during the production of the
book have somehow not been recorded in the checksum table, so that the

193

The Working Sinclair QL

checksum in the book refers to a line which has been subsequently
changed. We make every effort to ensure that this does not happen but it is
wise to bear in mind this possibility if you cannot find a difference and the

program runs correctly.

Checksum Generator

100 REMark 55 58 5565 50 0 0550 0
101@ REMark control

1020 REMArk #5555 555 5 5 5 5 % % 55 50 503 0 5 %5
1838 INK 7 : PAPER 3 : CLS

1040 count=0

1050 INPUT "Name of program: ":program#f

10560 INPUTA"Start Line: ";start
1870 INFUTA"Finish line: ":finish
1060 program$="mdvl_" % program$

1878 INPUTA"Printer output (Y/N): "jhard#$

1120 hard=hard#="Y" OR hard#$="y"
1110 IF hard

1120 OFPEN #7,serl

1130 ELSE

1140 OFPEN #7,scr

1150 INK#7,7 : PAFPERH#7,3
1160 CLS#7

117@ END IF

1180 PRINT#7,"CHECKSUM TABLE FOR ":program#
1190 PRINT#7 ,\"Start line is "jstart
1200 PRINTH#7 ,\"Finish line is ";finish\\

1210 OFEN #B8,program$

1228

1230 H

1240 REFeat lines

1250 INPUT #8,line$

1260 line_number=line#

1270 IF line number >finish THEN EXIT lines
1280 IF line_number >=start

1290 analyse

1700 check_print

1310 END IF

1320 IF EOF (#8) THEN EXIT lines
1330 END REFeat lines

1340 2

1350]

1360 FRINTH#7 : CLOSE #7

1370 CLOSE #8

2000 REMark »

2010 DEFine PROCedure check_print
2020 REMArk %% 5656 000 000 00330003302 3

2030 IF line_number/10@@=INT (line_number/1002)

2040 PRINTH7 ,A\1line_number;
R e e e s s st
2050 count=0

2060 END IF

194

AN\

2a70
2080
2090
2100
2110
2120
2130
2140
2150
3000
inie
Inze
3030
3040
3050
3060
3870
Ip8e
3090
3100
3110
3120

Appendix

number$=" " &% checksum
number $=number $ (LEN (number $) -4 T0O)
PRINT#7, !number %;
count=count+1
IF hard AND count=é
count=0
FRINT#7
END IF

END DEFine check_print
REMar k *HH
DEFine PROCedure analyse

REMark #

checksum=0
FOR i=1 TO LEN{line#%)
IF line$(i)<>" "
IF i/2=INT(i/2)
checksum=checksum+CODE (l1ine# (i})
ELSE
checksum=checksum—CODE (1ine® (i))
END IF
END IF
NEXT i

313@ END DEFine analyse

CHECKSUM TABLES
Anaclock IDAD sessEssEsERsResRenuREE
-3 -7e@ -5 68 15
-315 128 25 -51 -292
s 3% s1 18w 07

-32 a7 7

4 144 -6 158 -94
-1e2 181 -1e1 &1 -95
53 =2

SODE sesesEsmrsssssRnnanannen
-5 -84 -7 38 -81
® 7 -55 27 -78 -184

-58 -302 -105 17 -8 =1 =a

4008 srrrErsRREEIEETEEREEREEE
-6 -1

-8 112 -&B
ba -as 65 -e7 115

128 =8 113 -6l a1 62

-9 -65 -134 =55 119 -58
59 -24

s
—aa
218 s
139 Hreanannrnrnnsns
sil 20
a7
B L L LT TR TP —
o 45 -147 -47 -32 &7
2] -3a4 199 =z 72 Ba
152 92 s2 87 1@
a7 1 -a2 sB -l
LTI T R - 8, TN 168
e S il ey 13 38 29 30 27

-1

14

a8 a7 52

-31
186
&5

69
B

122
-18

197

107
-a5

o4
-1@
-155

53

195

The Working Sinclair QL

00O sxErrErEEsEEREEEEEREE
g

-46 -2 a8
] 27
B2 aa 12
a7

SORB sasrrsrnsresssnsensns
-a7 -7
153

o

5@ 77 -117
| s

@4

Designer

93
3156
-aa

12000 *wesss
198

o8 -i@é
as -ie=

11008 sasxss
ag

126
161
25

124 -178
ar a4y
-4

3-D Graph

armermsssEssEREE
48 118 174
-184 275 138
a8y 111 a3
EP T

-43 a5
35 1T

TOAM sesssssasnescnsaninnnenn
-4 141 -a6 114
28 a9 a8

-27 -1e@ -99

11002 ssaarsnnn
an 149 -4 -213 -183
PRt s -17 -1@7

12000 sarsrnsrrsrnnnssnnriary
-47 116 45 -as@ -212
51 -51 -4 93 -

26 -132 -9@ -49 238
-

Characters

19000 sraerrsiEn .
-4% 8@ -47 -26% 2%
54 -3 -39 -83 -188

-124
59

~103

]

a4
54

&5

~a6 -223

Appendix

=32

97 -43 -19 185
187 172 -92 14
-144 -75 -99

74 -42 -1SA .-136 147
332 181 47 204
-1e@ -99

192 46 -11%
14 -14a 28

111 -a5 -118
-126 -S6 28

B -AM ek -
-219 -24 S8

160
197

232 292
12

162 17
-~

The Working Sinclair QL

338
-23

~262
-138
~104
-123
101

-46 177 -A4 -Zi1 -15@ -194

19 118 259 Sss 1@ 123
-z6 -1p& a7 47 29 9@
a7

198

LT Ty
26 -153 1es
-98
“106 211 -147 -84

-184
Nnumber
pr—
i -39 -47 -126 -388 -183
-3 245 -&1 ~47 -198 -112
107
vennan
2 -118

-229

-63 -1z@
-58 -109

ssarien
-182 -236 -&1

109

-45
—&60 ~9a -t

s6 71 25 -182 -101
arEEERERREressaReRLssn.
113 -48 99 -141 -8k
-2 5B -95 -89 -98
-6m 97 -9

-11e
196
-199
-41

-216
-102

-89 59 -7 37 -99

-sa 118
-8 37
-1a9 -3
245 -12
-11e 197

39 -117

-79 -53 -103

T1ODD sesesrsssnsesstsrnnsnres
-49 191 -47 -128 -214 -129

-207 13 20 -1S1 -144 =92
-23F -2 -168 -144 49 49
-25 -?07 -38 -172 -182 43

45 -1@8 -122 21 -191 -10@

Appendix

133 80
-138 -181
-112 -11@
209 174
-0 Se

12008 *

-105
181

15000 sereses.
-44 186 42 97 -143 -®@
-85 55 -98 -113 -125 -i11
-6 -47 -99 -98

16000 seneses
123
En

38 -111 -137 @1

-23@ -BS -16 -93 -1&d -89

~I17 -TA8 249 -155 146 -9&
o0

199

The Working Sinclair QL

wrearrrrnanns
-3 214 111
59 B8 178 a9
-302 -14 sz S

-2 -4 -4 -2 335 A
28 77 R 197 11 143
se 83 124 25 58 as
& 52 1o-281 -1T@ -219

-239 25 29 eh -77
ar 229 a4 55 se

200

1BARD sesrmrrnrrnrn

47 189 -47 -1zm
-128 -182 187 -19&
| 70 15 a7
-1e@ 97

ea

eassnsnunannny

-2 -33 338 67

-38 128 &1 125 24 -182
77 12 148 @5 32 -17%
36 67 =2 el e

-98 -95 -236 -84 7
&5 164 -1@ I3 32 s@
57

19000 ssrree
7

a7 179
-179 -278 ~158
-105 -284 -181
-10@

a6 -119 -213 -128
~206 21 -178 -183 -228
-22 a7 a8 128 23
—99

B e
-45 -118 -232 -292
-126 -18@ -178 -91 -22@ -222
-155 47 -a@ -120 59

Budget

a1 57 301 -63
205 -291 2% 4
~&& -111 37 i8S

-288 126 -128 -8@

A% -2a8 -31 -202
-112 -216 -175 -9
228 1 148 193

189 es 124 192
-77 -81

17000 sessesensesssneny
-a7 228

-165 -287 =z
-155 232 -207

17 33 -223
147 -141 220
-287 -zB7 -335
~781 15 se

-124 -1@1 -98 -97

14000 srexnsessnereransnn
-45 121 43 -429
-117 -85 -i82 146 -

47 -143 -170 -103

-1
-214
EX

-11e

-a@ a8 -38 -181 -121 162
188 181 -148 -114 57]

-11% -188 S5 -12% s -2

earnsnenny
B4

1
82

122
155
a7

Appendix

-A8 -121 -234
189 a6 B
-47 -17@ 124

~182 -163 -105
47 -48 -48

—6% -101

15
~145
182

as
-721
~101

~108
38
~108

381
53

201

&

&& 69, 76
A

Accountant 158
ADATE 6
Anaclock 1
B

Banker 145
BEEP 32,87,95
Binary 69, 72, 84
Binary search 106,112,126
Budget 171
C

Channel 154
Character memory 72,73
Characters 71
Checksum Generator 194
Circle defining 7
CIRCLE command 47
Clock 14
CLOSE 55
Command lines 12
Control module 12
CSIZE 80
D

DATA 61,91,92
DATE 6
DATES 5,6,9,21

Deleting items from arrays 115, 167

Designer 41
Directory 56
E

ENTER 24
Event 33
EXIT 13
F

Field 99, 116
FILL 11, 18
Formatting a number 151
G

GOTO 12, 13
I

Indicator characters 162
Initialisation 3,42
INKEY$ 23
INPUT 24
Inserting intoarrays 109, 147, 161
INSTR 94, 113
Internalclock 6
Inverting characters 81
L

LBYTES 85

Loadingdatafrommicrodrive 55

M
Menu 24
MERGE 39

203

The Working Sinclair QL

Microdrive 3
Mirroringacharacter 82
Mode 12,13,15,71
Modular programming 12
Multig 129
Music 90
N
Negative numbers 152
Nnumber 117
Note values 91
0
OPEN__IN 56
OPEN_NEW 55
OVER 43,46,176
P
PEEK L 75
Pixel 71
Pixel colours 65
Pixels

spacing of 16
Pointer array 103
Printer 35,63,66,67,154
Procedures 4

passing parameters (o 11
Program format X
R
RAD 8,47
RAM 73
RECOL 71
Record 99
REPEAT 5,13
RESPR 75, 86
RESTORE 61
RETRY 6
ROM 73
Rotationofashape 47
Rounding errors 151
R5232C 38
204

S

Savingtheprogram 2
SBYTES 85
SCALE 53
Scientific notation 150, 151
Secreen 63
Screen memory 64
Screen protection 32
SCR__ 154
SDATE 21
SER1 38, 154
Setting the time 5,21,34
Shiftingacharacterleft 83
Sound Demo 87
Storing data on microdrive 54
Stringarray 20
String comparison 100
T

TAB 176
3D Graph 56
Timer 19
Transferring thecharacterset 74
Turning a character 83
Turtle graphics 56
U

UNDER 155
Unifile 98
Userdefined cursor 43,77
w

WINDOW 80

Other titles from Sunshine
SPECTRUM BOOKS

Artificial Intelligence on the Spectrum Computer

Keith & Steven Brain
Spectrum Adventures
Tony Bridge & Roy Carnell

ISBN 0 946408 37 8

ISBN 0 946408 07 6

£6.95

£5.95

Machine Code Sprites and Graphics for the ZX Spectrum

John Durst
ZX Spectrum Astronomy

Maurice Gavin

I1SBN 0 946408 51 3

ISBN 0 946408 24 6

Spectrum Machine Code Applications

David Laine

The Working Spectrum
David Lawrence

Inside Your Spectrum

Jeff Naylor & Diane Rogers
Master your ZX Microdrive
Andrew Pennell

COMMODORE 64 BOOKS

ISBN 0 946408 17 3

ISBN 0 946408 00 9

ISBN 0 946408 35 1

1SBN 0 946408 19 X

Graphic Art for the Commodore 64

Boris Allan

ISBN 0 946408 15 7

£6.95

£6.95

£6.95

£5.95

£6.95

£6.95

£5.95

DIY Robotics and Sensors on the Commodore Computer

John Billingsley

I1SBN 0 946408 30 0

Artificial Intelligence on the Commodore 64

Keith & Steven Brain

ISBN 0 946408 29 7

Simulation Techniques on the Commodore 64

John Cochrane

ISBN 0 946408 58 0

£6.95

£6.95

£6.95

Machine Code Graphics and Sound for the Commodore 64

Mark England & David Lawrence
Commodore 64 Adventures
Mike Grace

ISBN 0 946408 28 9

ISBN 0 946408 11 4

Business Applications for the Commodore 64

James Hall

ISBN 0 946408 12 2

Mathematics on the Commodore 64

Czes Kosniowski

1SBN 0 946408 14 9

£6.95

£5.95

£5.95

£5.95

Advanced Programming Techniques on the Commodore 64

David Lawrence

ISBN 0 946408 23 8

£5.95

205

Commeodore 64 Disk Companion

David Lawrence & Mark England 1SBN 0 946408 49 1 £7.95
The Working Commodore 64

David Lawrence 1SBN 0 946408 02 5 £5.95
Commodore 64 Machine Code Master

David Lawrence & Mark England 1SBN 0 946408 05 X £6.95
Machine Code Games Routines for the Commodore 64

Paul Roper ISBN 0 946408 47 5 £6.95
Programming for Education on the Commodore 64

John Scriven & Patrick Hall ISBN 0 946408 27 0 £5.95
Writing Strategy Games on your Commodore 64

John White ISBN 0 946408 54 8 £6.95

ELECTRON BOOKS

Graphic Art for the Electron Computer

Boris Allan ISBN 0 946408 20 3 £5.95
The Working Electron

John Scriven ISBN 0 946408 52 | £5.95
Programming for Education on the Electron Computer

John Seriven & Patrick Hall ISBN 0 946408 21 1 £5.95

BBE COMPUTER BOOKS

Functional Forth for the BBC Computer

Boris Allan I1SBN 0 946408 04 | £5.95
Graphic Art for the BBC Computer

Boris Allan ISBN 0 946408 08 4 £5.95
DIY Robotics and Sensors for the BBC Computer

John Billingsley ISBN 0 946408 13 0 £6.95
Artificial Intelligence on the BBC and Electron

Keith & Steven Brain ISBN 0 946408 36 X £6.95
Essential Maths on the BBC and Electron Computer

Czes Kosniowski ISBN 0 946408 34 3 £5.95
Programming for Education on the BBC Computer

John Scriven & Patrick Hall ISBN 0 946408 10 6 £5.95
Making Music on the BBC Computer

lan Waugh 1SBN 0 946408 26 2 £5.95
206

DRAGON BOOKS

Advanced Sound & Graphics for the Dragon

Keith & Steven Brain ISBN (} 946408 06 8 £5.95
Artificial Intelligence on the Dragon Computer

Keith & Steven Brain I1SBN 0 946408 33 5 £6.95
Dragon 32 Games Master

Keith & Steven Brain ISBN 0 946408 03 3 £5.95
The Working Dragon

David Lawrence ISBN () 946408 01 7 £5.95
The Dragon Trainer

Brian Lloyd ISBN 0 946408 09 2 £5.95

ATARI BOOKS $

Atari Adventures

Tony Bridge 1SBN 0 946408 18 | £5.95
Writing Strategy Games on your Atari Computer
John White ISBN 0 946408 22 X £5.95

Artificial Intelligence on the Sinclair QL

Keith & Steven Brain 1SBN 0 946408 41 6 £6.95
Introduction to Simulation Technigues on the Sinclair QL
John Cochrane I1SBN () 946408 45 9 £6.95
Developing Applications for the Sinclair QL

Mike Grace 1SBN () 946408 63 7 £6.95
Mathematics on the Sinclair QL

Czes Kosniowski ISBN 0 946408 43 2 £6.95
Quill, Easel, Archive and Abacus on the Sinclair QL

Alison McCallum-Varey 1SBN 0 946408 55 6 £6.95

Inside the Sinclair QL
Jeff Naylor & Diane Rogers 1SBN 0 946408 40 8 £6.95

GENERAL BOOKS

Home Applications on your Micro
Mike Grace ISBN 0 946408 50 5 £6.95

207

Sunshine also publishes

POPULAR COMPUTING WEEKLY

The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best-selling software and books and up-to-the-
minute details of the latest games. Other features in the magazine include
regular hardware and software reviews, programming hints, computer
swap, adventure corner and pages of listings for the Spectrum, Dragon,
BBC, VIC 20 and 64, ZX 81 and other popular micros. Only 40p a week,
a year’s subscription costs £19.95 (£9.98 for six months) in the UK and
£37.40 (£18.70 for six months) overseas.

DRAGON USER

The monthly magazine for all users of Dragon microcomputers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year's
subscription (12 issues) costs £10 in the UK and £16 overseas.

MICRO ADVENTURER

The monthly magazine for everyone interested in Adventure games, war
gaming and simulation/role-playing games. Includes reviews of all the
latest software, lists of all the software available and programming
advice. A year's subscription (12 issues) costs £10 in the UK and £16
overseas.

COMMODORE HORIZONS

The monthly magazine for all users of Commodore computers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news. A year’s subscription costs £10 in the UK
and £16 overseas.

For further information contact:
Sunshine

12—13 Little Newport Street
London WC2R 3LD

01-437 4343

Telex: 296275

Printed in England by Commercial Colour Press, London E7.

209

NOTES

NOTES NOTES

NOTES

