computer interfacing

technigues in science

computer interfacing

techniques in science

Paul E.Field O 0O 0O John A. Davies

Scott, Foresman and Company

Glenview, lllinois O London

ISBN O-b73-18112-X

Copyright ® 1985 Scott, Foresman and Company.
All Rights Reserved.

Printed in the United States of America.

Library of Congress Cataloging in Publication Data

Field, Paul E.
Computer interfacing techniques in science.

Includes index.
1. Computer interfaces. 1. Davies, John A.
II. Title.
TK7887.5.F49 1985 621.3819'5832 84-26714
ISBN D-b73-18112-X
1 2 3 4 5 6KPF-9 89 88 87 86 85
INSCB800 is a trademark of National Semiconductor Corporation

Quadrapulse is a trademark of Septor

Spectrum and ZX 81 are trademarks of Sinclair Research, Ltd.

T/S 1000, T/S 1500, T/S 2000, and T/S 2068 are trademarks of Timex Computer Corporation

TIMEX is a trademark of Timex Corporation

Z80 is a trademark of Zilog Corporation

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. Neither the authors nor
Scott, Foresman and Company shall have any liability to customer or any other person or entity withrespect
to any liability, loss, or damage caused or alleged to be caused directly or mndirectly by the programs
contained herein. This includes, but is not limited to, interruption of service, loss of data, loss of business or

anticipatory profits, or consequential damages from the use of the programs.

Contents

contents

Preface iX

1 BITS AND PIECES 1

Measurement and Control—Programming and Personal Computers—Interfacing
with Timex/Sinclair Computers—Number System Preliminaries—Numbers and
Codes

2 DIGITAL ELECTRONICS 9
Digital Signals—Integrated Circuits—Buffers and I nverters—Gates—Gating and
Decoding— Latches and Registers—C ounters— Timers— Three-State Buffers—Hard-
ware and Tools—Breadboarding

Experiments
Truth Tables of Common Integrated Circuit Chips— Truth Table of 741520 Four-
Input NAND Gate—Debounced Pulser—Digital Counter Circuits— Gating a Coun-
ter—Decoding

3 MICROCOMPUTER FUNDAMENTALS 43

The Microcomputer Buses—Microprocessor Architecture—Machine and Assembly
Language

Experiments

The BASIC USR Function and Machine Code Storage—Machine Language Arithme-
tic and Logic Operations—Machine Language Rotate Operations—Indirect Load
Machine Language Instructions—Absolute Branch I nstructions—Relative Branch
Instructions

4 INPUT AND OUTPUT PORTS 73
Device Select Pulses—Input Ports—Output Ports—The T/ S Interface Circuit

Experiments
Pulse Stretching and Bus Activity—Device Select Pulses— Device Select Pulses for
Digital Control—Input Ports—Output Ports—Programmable Input/ Output Ports

5 DIGITAL CONVERSIONS 99

Parallel-Serial Conversions—Serial Timing and Frequency C onversions— Digital-to-
Analog Conversion—Stepper Motor Control

vi

Contents

Experiments

Position Detection and Display—Detection of Rotational Speed—Rotational Position
Detection: Shaft Encoding—Stepper Motor Control—Real-Time Digital Clock—
Asynchronous Serial Communication

6 ANALOG CONVERSIONS 146

Analog-to-Digital Converters—Signal Conditioning—Transducers—Transistors—
Transistors in Digital Circuits—Operational Amplifiers

Experiments

Analog to Digital Display of RC Charging Waveform—Interfacing a Light-Sensitive
Resistor—Elastic Beam Measurements Using Strain Gauges—To Convert Voltage
Applied to a Motor to a Decimal Value—Temperature Recording and Display—
Temperature Control

7 CONTROL SIGNALS 190

APPENDICES 197
A. Z-80 Decimal Assembler—B. Component List—C. Suppliers—D. Glossary

Index 219

List of Figures

1.1 The Automated Instrument

2.1 Imverter Diagram and Truth Table
2.2 Diagram of an AND Gate

23 Switches in Series

24 Diagram of an OR Gate

2.5 Switches in Parallel

26 NAND (NOT AND) Gate and NOR (NOT OR) Gate
2.7 EXCLUSIVE OR Gate

2.8 Gating Input for Control

29 T4LS154 Schematic

2.10 Data Latch Pin-outs and Truth Tables
211 Data Latch Timing Diagrams

2.12 Decimal Counter Timing Diagram
2.13 Pin-outs of 90 and 93 Counters
2.14 74121 and 556 Pin-outs

2.15 Three-State Buffer Pin-outs

2.16 Layout of Breadboard

217 Wire Connections and Crossings
2.18 Experiment 2.1 Schematic

219 Experiment 2.2 Schematic

2.20 Experiment 2.3 Schematic

vii

2.21 Experiment 2.4 Schematic

2.22 AND from NAND Invert

2.23 Experiment 2.5 Schematic

294 Experiment 2.6 Schematic

3.1 Components of a Microcomputer
3.2 Interface Edge Connectors of TS Models
3.3 Control Logic

34 780 Architecture

4.1 One-Channel Decoder

4.2 Device Select Pulses

4.3 General Input Port

44 General Ouput Port

45 Output Timing Diagram

46 1/0 Interface Circuit

4.7 Experiment 4.1 Schematic

48 DSP“OUT C3*”

49 Absolute Decoding of Channel 3
4.10 Experiment 4.3 Schematic

4.11 Experiment 4.4 Schematic

4.12 Experiment 4.5 Schematic

413 LED Test Circuit

4.14 Experiment 4.8 Schematic

5.1 Serial Transmission of ASCII

52 UART Block Diagram

5.3 ADS558 Pin Configuration

54 Stepper PM Rotor

55 Disassembled Tin Can Stepper
56 Stepper Motor Driver Interface
57 Experiment 5.1 Schematic

58 Diagram of a Detector

59 Square Wave Diagram

5.10 Experiment 5.2 Schematic

5.11 Analog Results

5.12 Disc Patterns for Eight Directions
5.13 Experiment 5.3 Schematic

5.14 Experiment 5.4 Schematic

5.15 Experiment 5.5 Schematic

5.16 Experiment 5.6 Schematic

8.1 Successive Approximation Diagram
82 Schematic of the ADCO0804

6.3 NPN Transistor Circuit

6.4 Sine Wave

6.5 Transistor NOR Gate

68 Three-Input AND Gate

6.7 Linear Amplifier

viii

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

Inverting Op Amp

Voltage Follower Op Amp
Differential Input Op Amp
Experiment 6.1 A Schematic
Experiment 6.1B Schematic
Experiment 6.2 Schematic
Experiment 6.3 Schematic
Elastic Beam Apparatus
Experiment 6.4 Schematic
Experiment 6.5 Schematic
Experiment 6.6 Schematic

Preface

preface

Computer interfacing is the means for connecting a computer to sensors and actuators.
It is the “bridge” that spans the gap between computer science and electronic
technology. The principles of computer interfacing are relatively simple and can be
learned by anyone who has the patience and is willing to invest the time and care to
read and perform some simple step-by-step experiments. This is not to imply that
there are not very sophisticated and elaborate activities that can be accomplished once
the techniques are mastered. Rather, our point is that the technology has been so well
developed that you do not have to be a specialist to apply it.

The plan of this book is to introduce you to the concepts of computer interfacing,
assuming you have no prior experience in digital electronics. Although you may be
able to learn some by just reading, we are convinced that mastery of the techniques
will only come by doing “hands on” experiments in programming and circuit building.
To this end we have written this book to be used with a computer. In particular we
have chosen the Timex/Sinclair computers because they are very inexpensive yet very
sophisticated microcomputers. These include the ZX81, TS1000, TS1500, Spectrum,
and TS2068 models. If you are willing to make the effort to learn the subject of
computer interfacing, we strongly recommend that you make the modest investment
in a personal computer to go along with your study.

There is a saying that the only way to learn computer programming is to write
computer programs. It is equally true that the only way to learn computer interfacing
is to build interfaces. You do not have to be a computer scientist to become a
programmer nor do you have to be an electrical engineer to become an interfacer.
With the fantastic growth in personal computing over the past few years and the
promise of even greater growth in the immediate years to come, the majority of users
will be content simply to operate their computers with programs and devices
developed by others. But there are those who will discover that thereis an even greater
adventure in creating and discovering ways to use personal computers that goes
beyond “plugging and chugging.” This book is for them. It is the outgrowth of the
authors’ experience in teaching this subject to high school and university students and
teachers, industrial and government technicians, engineers, and scientists. It is the
authors’ hope that this book will be useful not only to individual students, scientists,
engineers, and hobbyists, but also to teachers in high school and beyond so that they
can introduce these techniques to their students.

In Chapter 1, we survey those aspects of scientific experimentation that pertain to
computer automation for measurement and control. We also discuss some funda-
mental concepts dealing with numbers and codes that will be helpfulin understanding
the principles developed in the rest of the book. Chapters 2 through 7 cover the various
aspects of computer interfacing in a logical sequence starting with digital electronics
(Chapter 2) and ending with a description of the control signals used for advanced
interfacing (Chapter 7). Chapters 2 through 6 consist of discussions of the principles of
the topic under consideration and a series of six experiments which serve to illustrate

x Preface

the important concepts discussed. A survey of the logical structure of the Z80
microprocessor and machine code programming is presented in Chapter 3. The
principles of input and output ports presented in Chapter 4 is built on the material
developed in the preceding two chapters. Chapter 5 and 6 apply the principles of
input/output ports. Chapter 5 deals with digital input and output and analog output
while in Chapter 6 we consider the requirements of signal conditioning for obtaining
digital input from analog signals. Asnoted above, we conclude in Chapter 7 with some
principles of the more advanced techniques used in automation.

The authors would like to express their thanks and appreciation to David G. Larsen
for his interest and cooperation. Our thanks also to Roger J. Combs for his assistance.
One of us (J.A.D.) would also like to acknowledge the Chemistry Department,
Virginia Polytechnic Institute and State University, Blacksburg, Virginia, for their
provision of facilities during the development of this book and also to the Queensland
Institute of Technology, Brisbane, Australia, for providing financial support for the
project to be completed in Blacksburg. We would like to dedicate this book to our
wives, Barbara D. and Jewell F., for their encouragement and support.

olo
bits and pieces

One purpose of computer interfacing is automation, for example, using a computer to
assist in making measurements and controlling devices. The measurement can be as
simple as determining if a device is on or off, and the control can be as simple as
turning a device on or off. Of course, both the measurement and control can be as
sophisticated as the imagination and resources of the interfacer allow. One thing that
becomes obvious as you learn the techniques of interfacing is that there are many
useful and clever things that can be done using very simple and inexpensive
techniques. A device can be as simple as a light bulb or as complicated as a robot or an
industrial plant.

The two essential elements of computers are software (programs encoded with
bits) and hardware (the pieces of equipment). Hardware consists of the electronic
circuitry and electromechanical devices that make up the computer. It includes the
integrated circuits, keyboards, video displays, disks and tape recorders, printers, and
all other such peripheral devices. Software is the collective name given to the
programs which make the hardware elements function in a coordinated way to
achieve the purposes of the user.

MEASUREMENT AND CONTROL

To the items in the list of peripheral devices we could also add scientific instruments. It
is of considerable importance to any individual in today’s high technology world,
whether high school science or vocation student, or research scientist, to appreciate
the potential for automation of scientific instrumentation and what is involved. There
are two concepts that are useful to serve as our point of departure. We shall start with
a dictionary definition of each taken from Webster's New Collegiate Dictionary
(G. & C. Merriam Co., 1980) and elaborate from there. The first is the definition of
experiment.

An experiment is an operation carried out under controlled conditions in order to discover
an unknown effect or law, to test or establish an hypothesis, or to illustrate a known law.

2 Chapter 1

Most experiments involve the operation of measurement. What is emphasized in this
definition is that those measurements must be made under controlled conditions. In
practically every experiment, measurement of some property of interest is of value
only if other experimental properties (parameters) are held constant. In many
experiments, the property to be measured is of particular interest as some (one) other
experimental property or parameter is systematically varied. The property of interest
is the dependent variable, the property which is systematically varied is the
independent variable, and those properties which are not varied are experimental
constants. Usually the data obtained from the experiment are illustrated by a graph.
The values of the dependent variable are plotted on the vertical axis versus the
corresponding values of the independent variable on the horizontal axis. The results
that are sought are often some property of this graph, such as its shape, slope
(steepness), or intercept. During the course of the experiment, not only the dependent
variable but also the independent variable and constant parameters must be measured
to ensure that they are well behaved. The experiment must be designed to control all
of the experimental conditions. In general, we can consider a scientific instrument as
an automated experiment involving the measurement and control of the required
experimental parameters.
The second definition we should consider is of the term data processing.

Data processing: the converting of raw data to machine readable form and its subsequent
processing (as storing, updating, combining, rearranging, or printing out) by a computer.

We can see from this definition that instrument automation is one aspect of data
processing. Without taking exception to this definition, it is more convenient from our
point of view to divide instrument automation into the two areas of (1) computer
interfacing and (2) data processing. Here we consider computer interfacing as both
the conversion of raw data into machine readable form for data acquisition, as well as
the conversion of machine data for instrument control. Note that we reserve the
“subsequent processing” given in the definition to be the main emphasis of the term
data processing. The distinction between the conversion of raw data and its
subsequent processing thus becomes predominately a distinction between hardware
and software. Figure 1.1 illustrates the relationship of the terms we have discussed.

PROGRAMMING AND PERSONAL COMPUTERS

We assume that you have some familiarity with personal computers. You should at
least be familiar with the more elementary BASIC programming commands, such as:
PRINT, INPUT, LET, GOTO, FOR. . NEXT, IF. . . THEN. If you have not had any
experience in writing simple BASIC programs, you can learn all you need to know
from the User Manual that comes with the computer. If you have had some
experience, you know how the computer needs to be programmed in order to perform
some desired task. In BASIC, the program consists of a numbered list of lines with a
BASIC command written on each line. This program is stored in the computer’s
memory, and when RUN is ENTERed from the keyboard, the computer executes the

Bits and Pieces

™ EXPERIMENT

CONTROL MEASUREMENT

A i
I Y

INTERFAGE

r

COMPUTER

Figure 1.1 The Automnated Instrument.

program by starting with the lowest line numbered command and executing
commands in succession of increasing line numbers unless commanded to GOTO
some other line number out of sequence.

The memory that your BASIC program is stored in is commonly called RAM
(meaning Random Access Memory) but should properly be called Write And Read
Memory (WARM). (WARM is an acronym suggested by the authors.) Itis called vola-
tile memory because it is lost when power is removed from the computer. When the
computer loses power then the memory becomes COOL (Cleaned Out Of Logic)!
Personal computers have varying amounts of memory usually measured in kilobytes,
1KB = 1024 memory locations. In addition to WARM, personal computers also have
an additional 8 KB, 16 KB, or 24 KB of nonvolatile Read Only Memory (ROM), which
holds the computer’s operating system. The operating system is also a program. Itis
the program that handles all of the business of interacting with the keyboard and the
video as well as executing your BASIC program when you enter RUN. The type of
operating system used in the simpler personal computers is called a BASIC
Interpreter. It is written in machine language, the set of instruction codes that the
microprocessor in the computer can execute. Each seemingly elementary BASIC
command consists of many instructions in machine language.

The advantage of using a so-called high level language such as BASIC is that its
commands do considerably more sophisticated operations than the simpler single
instructions of machine language. Therefore, it is much easier to write very complex
programs using BASIC. The disadvantage of high level languages is that they are
much slower (about 1000 times) than machine language routines. This is because the
machine language routines are much more specific and do not have to handle the
different contingencies that must be allowed for in the BASIC commands.

3

4 Chapter 1

A personal computer is a microcomputer that includes a high level language
operating system. It has only been in the last few years, as the prices of personal
computers have so drastically decreased, that teaching courses in microcomputer
interfacing could be done with personal computers. Until recently, schools could not
afford enough personal computers to have a workable student/computer ratio for
hands-on experience. Today, schools cannot afford not to have laboratories equipped
to teach computer interfacing. Before this recent turn of events, interfacing was taught
on small microcomputers having very limited memory and using only machine
language.

With a personal computer such as the Timex/Sinclair, the interfacer has the best of
both possible worlds. Simple machine language routines can be incorporated into
BASIC programs with the USR command. They can be used for the very fast
requirements of data acquisition, yet complicated mathematical and display opera-
tions can be performed on that data very easily using the high level language.

INTERFACING WITH TIMEX/SINCLAIR COMPUTERS

The experiments in this book have been designed to be performed with the Sinclair
ZX81, Spectrum and Timex/Sinclair 1000, 1500, and 2000 computers. The Sinclair
ZX81 was the first computer to sell for under $100 in America. When it was first
introduced it had 1 KB of WARM and an 8 KB ROM operating system. The
Timex/Sinclair 1000 is identical to the Sinclair ZX81 except that it has2 KB of WARM.
Timex subsequently marketed the TS1500 in North America with 16 KB of WARM,
and virtually the same 8 KB ROM operating system. These three models all use black-
and-white televisions for display. Throughout this book we shall refer to them as the
B&W models. The Sinclair Spectrum and the Timex/Sinclair 2088 have color display
features and considerably larger operating systems. The Spectrum has 16 KB of
WARM while the Timex/Sinclair 2068 has 48 KB of WARM. The TS2068 has a 24 KB
ROM operating system providing a total memory allocation of 72 KB for the basic
machine. We shall refer to the Spectrum and TS2000 models as the Color models.

As we shall learn in Chapter 4, there are no hardware differences between the B&W
and Color models that will affect our experiments. We have already seen that one of
the major differences in the five models is the amount of WARM memory. Therefore,
the only software difference we need to be concerned about is where to store the
machine code routines we will use with the experiments. The routines themselves will
be identical in operation, however, because there are instances when the program
needs to refer to its own location in memory, there will be some differences in the
values of the code numbers stored in the machine language programs. Fortunately, we
can use one technique for all three B&W models and a second technique for the two
Color models. We shall wait until Experiment 3.1 (Chapter 3) to give the details of the
two techniques. Suffice it to say at this point that our interfacing experiments can work
with any one of the five Timex/Sinclair computers.

In addition to the computer, the two additional pieces of equipment we will need to
perform our interfacing experiments are a “breadboard” on which to build the circuits

Bits and Pieces

and an interface buffer to connect a circuit to the computer. The breadboard is a unit
that permits easy wiring connections between circuit components. The type we shall
use is a 8.5 inch long by 2.25 inch wide polymer board having 84 rows of five solderless
wire insertion sockets arranged on either side of a center channel running lengthwise
on the board. Adjacent rows are on0.1 inch centers, and the distance between opposite
rows across the channel measures 0.3 inch. Standard Dual In-line Packaged (DIP)
integrated circuits (IC) can straddle the channel leaving four common wire insertion
sockets available for wiring connections made to each pin of the integrated circuit.
(More detailed description for wiring the socket is given in Chapter 2.) The
breadboard fits neatly either to the side or on the topside of the computer behind the
keyboard.

Interfacing experiments require some means of bringing the computer’s signal and
power lines out from its printed circuit board. The physical connection to the
computer’s lines is made through 46 contacts arranged in rows of 23 contact pads on
the top and bottom sides along the right rear edge of the computer’s printed circuit
(PC) board. We will use a 2 X 23 contact open-ended edge-connector socket having
contacts on 0.10 inch centers, which can be inserted onto the computer PC board pads
to bring the lines from the computer.

NEVER CONNECT THE EDGE CONNECTOR
TO THE COMPUTER WITH POWER ONI!!!

The edge connector should have a keyway inserted on the third pair of contacts from
its left end to ensure alignment with a slot cut into the computer PC board. The edge
connector is mounted onto a 3 inch wide by 3.5 inch high board to provide space for
the integrated circuits of the buffer circuit and cable connectors. (The circuit of an
Interface Buffer will be described in Chapter 4.) Two 14-conductor flat ribbon cables
(each 6 to 9 inches long) plug into IC sockets located at the top of the interface board.
The cables are terminated on wirewrap IC sockets for ease of insertion into the
breadboard. The wirewrap socket pins also provide physical strength to the
breadboard connection and ease of accessibility to the signals. These 28 lines bring out
all the properly buffered signals necessary for input/output interfacing to the
breadboard socket.

NUMBER SYSTEM PRELIMINARIES

Before we proceed to get into the details of digital processing and microcomputer
fundamentals in the following chapters, it will be to our advantage to summarize some
concepts of numbers. We all can understand what the value of a particular number
means, and we all know how to represent that value as a line or string of decimal digits.
For example, if you were asked to write the number “one hundred and twenty-three,”
you would write the digits 123. You would expect anyone else to understand that what
you wrote means that there is one 100, two 10s, and three 1s. The decimal number
system is as common as the fingers on your hands! The decimal system requires that

6 Chapter1

we use a set of ten quantity symbols called numerals: 0, 1,2,3,4,5,86,7,8,9; and that we
represent each number value by listing from right to left the quantity of ones, tens,
hundreds, thousands, etc. The right-most digit is the smallest or Least Significant Digit
(LSD) and the left-most digit is the largest or Most Significant Digit (MSD). Each digit
in the list is ten times bigger than its neighbor to the right. The decimal system is said to
be base 10 number system. '

When working with computers, there are times when it is necessary to use number
systems other than base 10. In fact, there are four other bases that are handy. These are:
base 2 having the numerals 0 and 1 only; base 8 with numerals0, 1, 2, 3,4,5,6,and7:
base 16 with numerals 0, . . ., 9, A, B, C, D, E, F, where we have to introduce six new
number symbols whose decimal values are A(10), B(11), C(12), D(13), E(14), and
F(15); and finally, base 256. No one is about to suggest a list of 256 unigue symbols, so
we are content to use up to three-digit decimal representation for the numerals in this
base. Unlike base 10, the four new bases are all integer powers of 2: namely, 2,2* *3,
2**4, and 2* *8 in increasing base order. The symbol **® is one way to denote a
number raised to a power. It is used in Sinclair BASIC. For example, 2* *3 means to
multiply 2 by itself three times: 2°2° 2 =8. The * symbol is used in computer
programming to indicate the multiplication sign.

The trick to dealing with the different number base systems is to apply the rules for
representing a number value in a manner consistent with your experience in using the
decimal system. A dozen will always be a dozen, that is, the number value you expect
to find in a carton of eggs; but the representation of the value of a dozen will differ in
each base: for these systems it becomes 1100 (base 2), 14 (base 8), C (base 16}, 12 (base
256}, and, naturally, 12 (base 10). The values, for example, of the digit positions in a
three-digit number are:

BASE MSD LSD
10 100 10 1
2 4 2 1
8 64 8 1
16 256 16 1
256 65536 256 1

We can also rewrite this table in a more systematic way as:

BASE MSD LSD

10 10**2 10**1 10**0
2 2%2 2'1 2%
8 8**2 8**1 8**0
16 16**2 16**1 16**0
256 256**2 256**1 256**0,

because any number raised to a power of 0 is 1. We see the value of the digit in a
particular position is the base raised to an exponent denoting that position.

Bits and Pieces

All of this new numbering is a consequence of the fact that microcomputers actually
deal with 8 and 16 base 2 (binary) digit numbers. Another name for a binary digit is bit,
and the name for an eight-bit number is byte. If we consider an eight-bit number as a
set of eight boxes and recall that each box may only hold a1 (full) or 0 (empty), we find
that we actually have the equivalent to a number base of 256. The largest possible
number is when each bit is a 1, and because the values of each box (bit) progressively
double from right to left, it will be the sum of all bit values or 255:

MSB LSB
BIT D7 D6 D5 D4 D3 D2 Dt Do
NUMBER 1 1 1 1 1 1 1 1

VALUE 126 + 64+ 32+ 16+ 8+ 4+ 2+ 1 =255

If we divide the boxes into 2 four-bit numbers, we have converted to the
hexadecimal number system (base 18):

1111 1111

and the number is represented as FF, still equal to the decimal number of 255 because
(15 X 18) + (15 X 1) = 255.
Finally, if we sort into three-bit groups, we obtain:

11 111 111
3 7 7

where although we are short one bit on the left group, we still have converted the byte
to the octal number system (base 8). The decimal value of the number is
(3X64) + (7 X8) + (7 X1) =255.

Each of these three ways of representing numbers has some useful purpose when
working with computers. We shall see the importance of binary numbers throughout
Chapter 2 and again in Chapter 3 when we describe how a computer performs
mathematical operations. Also in Chapter 3 we will use the octal number system to
illustrate the logic of the programming instructions of machine language. When we
discuss writing programs in BASIC having machine language routines in Chapter 3
and the interfacing experiments in Chapters 4, 5, and 6, base 256 numbers will prove
useful. We will not have oceasion to use the hexadecimal (usually abbreviated HEX)
system, but should point out that it is the most common system in use in the literature
because it saves space when printing lists of byte values. The HEX values use only two
digits per byte, whereas decimal and octal use three digits, and, of course, binary uses
eight digits.

NUMBERS AND CODES

Binary numbers are more than just numbers to a computer, they also serve as codes. A
code is just one set of symbols used to represent another set of symbols. The simplest
binary code is the Binary Coded Decimal (BCD) code. Here we use a set of bits to

8 Chapter 1

represent the decimal numerals. Because there are ten numerals, we need four bits in
the BCD code. In fact, BCD is identical to the hexadecimal number system except the
BCD code does not use the highest six HEX codes (numerals A through F}.

Another code uses seven bits to represent all the upper and lower case letters,
numbers, symbols, and punctuation marks used in ordinary writing. This code is the
American Standard Code for Information Interchange (ASCII; pronounced As™-key).
Actually, because seven bits allows 128 different code symbols, there are 32
nonprinting codes included in ASCIT, such as backspace and carriage return found on
a typewriter. ASCII is listed in Appendix A, Chart A.6.

One of the most important codes is the set of eight-bit numbers that forms the
instruction code for the microprocessor in the computer. This code is the machine
language of the computer. It controls the specific sequence of actions that the
microprocessor performs that we consider an operation or instruction.

The concept of coding is very important to computer operation. Of course, a code
must always be used in its proper context. It would make no sense to use a byte to
represent two (packed) four-bit BCD numbers, say 74 =01110100, when the
code expected is ASCIL, where 0 11101 00 = r. That would be like speaking
English to a German (nein? or nine? }.

020
digital electronics

DIGITAL SIGNALS

Digital signals are the signals by which microprocessors communicate with each part
of the microcomputer system: the memory, the keyboard, and the display. Digital
signals are also used for the purpose of data transfer or control between instruments,
between computers, and with the outside world.

Just how are digital signals different from our normal everyday perception of how
electronic (or any other) devices communicate with each other, and why is it
important to understand exactly the nature of digital signals?

In trying to answer such a question, first let us take a look at how information can be
transmitted. Take, for example, a temperature sensor, a common type being the
mercury in glass thermometer. As the temperature rises, the mercury expands nearly
linearly so that the mercury column rises up a graduated scale indicating the
temperature. The thermometer is an instrument which communicates information to
us, the temperature of our surroundings, visually by the length of the mercury column.
Now consider another common type of temperature transducer such as an electric
thermometer, which could use a thermocouple or thermistor as the temperature
sensor. With such a measuring instrument it is not possible for us to visualize directly
the temperature of the transducer because we cannot see the electric currents which
are flowing in the circuits connected to the transducer. Instead, use is made of
electronics to transform the electric signals to drive the needle across the scale on a
meter. Now again, as the temperature increases, the needle moves gradually across the
scale of the meter indicating ever-increasing values as the temperature rises.

The preceding discussion has described the communication of information by
means of analog signals. That is, the response of the instrument is a smooth gradual
variation of the output indicator—the length of the mercury column or the movement
of a meter needle—as the input variable, temperature, changes.

Digital signals are quite different from the above examples, and we can draw on
another everyday analogy by considering the action of the temperature or oil pressure
indicators in an automobile. These are often small red lights on the instrument panel
and should the temperature of the engine coolant become too great or should the oil
level become too low the waming lights will turn on. The situation is one of discrete

10

Chapter 2

information where at one instant of time the temperature of the coolant is apparently
quite normal and at the next instant it is not. The information from the temperature
transducer has been conveyed to us in the following manner:

WARNING LIGHT COOLANT TEMPERATURE
Not lit Normal
Lit Too hot

This instrument warning light provides us with an example of communication of
information by means of digital signals: either your coolant temperature is normal or it
is not. It is a good example of the on/off technique.

We can now consider how electric signals are transferred from one instrument to
another by electronic circuits. In the case of digital electronic signals we use only two
states to describe the type of information that is to be transmitted. We could use the
presence or absence of a voltage level in the circuit or we could use the flow of current
or no flow of current as the indicator of our two digital states. The case of current flow
extends easily from our warning light example in which the light will be lit when
current flows, and the light will not be lit when current ceases to flow.

For our future use we will take the presence or absence of a voltage level in a circuit
to indicate one or the other of the digital states and also define the voltage levels
needed to specify these two states. The voltage level corresponding to the digital
state of the light being lit will be taken as +5 V. The voltage level corresponding to
the digital state of the light not being lit will be taken as 0 V, that is, at earth or ground
potential.

Why are digital signals used as the means of communication between certain types
of electronic equipment such as microcomputers? The answer to this question is tied
up with an understanding of how electronic circuits function. It is relatively easy for
electronic circuits to distinguish, with 100% reliability, between the two digital states
corresponding to voltage levels of +5 V and 0 V, but it is not easy for electronic circuits
to distinguish with 100% certainty between two analog voltage levels such as 3.685 V
and 3.681 V. Consequently, digital microcomputers can give this sort of insurance. In
summary, digital signals will be represented by two voltage levels, namely +5V and 0
V. The reader should be aware that other voltage levels can be defined, but, for our
purposes, the above representation is sufficient.

INTEGRATED CIRCUITS

The electronic circuits that are constructed to work with digital signals take on various
functions as will be described in the later sections. Because these functions involve
many duplicated circuits, the construction of such circuits lends itself to integrated
fabrication. It is not the purpose of this text to provide an in-depth coverage on how
integrated circuits are fabricated. Suffice it to say that integrated circuits (IC) often
involve the fabrication, on a single chip of silicon, of a large number of similar circuits
such as the common-emitter transistor amplifier and other electronic circuits and
include coupling capacitors, bias resistors, and other components necessary to have

Digital Electronics

the circuit perform properly. These chips are packaged in Dual In-Line plastic (or
ceramic) packages (DIL or DIP) with typically from 14 to 40 pins in two parallel rows.
There are a few DIPs that have only eight pins but these are usually integrated analog
circuits referred to as linear ICs.

Microprocessor chips often have tens of thousands of transistors on a single chip
making up a very complex circuit. Even so, were you able to probe about inside the
circuit while it was operating, the only two voltages you would observe would be +5
V and 0 V. In actual practice, the ideal voltages of +5 and 0 V for the two digital states
are approximations only with one digital state corresponding to voltage levels above
about 3.5 V and the other digital state corresponding to voltage levels below 1.5 V.

Some other terms are often used to describe the particular digital integrated circuits
discussed in the preceding paragraphs. One term in particular is TTL, which stands for
Transistor-Transistor Logic which reflects the fact that many of the digital integrated
circuits use a pair of transistors as the basic active component. These circuits are
standardized with series numbers denoted by the 7400 series of digital ICs. They are
fast in operation with propagation times on the order of 10 nanoseconds (ten billionths
of asecond between input and output) for the simpler elements and use comparatively
large amounts of current having a rating of 16 mA per output and 1.6 mA per input.
Another series in the TTL family is the Low-power Shottky (LS) series denoted by the
74LS00 series of numbers. These ICs are about as fast as the regular 7400 series but
have one-half the current drive for outputs and one-fourth the current requirements
for inputs as the regular 7400 series.

The experiments described in this book will use almost exclusively LS integrated
circuits because of the lower amount of power consumed and hence ensure that most
experiments can be carried out using only the Timex/Sinclair power supply: one of the
prime objectives for a low-cost interface unit.

Other classes of digital integrated circuits include CMOS (complementary metal
oxide semiconductor), RTL (resistor-transistor logic), and ECL (emitter-coupled
logic). Apart from CMOS, which also draw small amounts of current, we will not have
occasion or need to use these other classes. It should be mentioned that CMOS are
capable of operating at higher voltages than TTL.

There are several hundred specific integrated circuits in the TTL family of digital
chips having Series Numbers 74XXX in the regular family and 74LSXXX in the Low-
power Schottky family where the XXX represents a two- or three-digit number. It
makes digital circuit design much easier when you realize that most of these chips fall
into one of about 12 classes. Each class performs one type of function. The following
list gives the functional names of the most common circuit classes:

Buffers/inverters

Gates

Flip-flops/latches

Shift registers
Decoders/demultiplexers
Data selectors/multiplexers
Encoders

=1 Ot O BD =

1

12 Chapter 2

8 Counters

9 Monostables
10 Digital comparators
11 Arithmetic logic units
12 Memory registers

Within each class, there are many specific ICs, each having a unique series number
and performing its function in a particular way. We shall see that each series number
circuit meets three sets of specifications. The first is the so-called pin-out diagram,
which is a schematic figure of the integrated circuit and shows the assignment of each
pin to a specific function as input, output, or power. The second is a truth table, which
gives the state of each output connection for all permutations of logic states at the input
connections. (Remember that there are only two possible logic states for inputs and
outputs.) The third set of specifications is timing diagrams. These provide information
on the time relations between changes in the logic states of input and output
connections for the integrated circuit. These specifications are available from the chip
manufacturer’s literature, such as the Texas Instruments TTL Data Book for Design
Engineers.

We shall devote the rest of this chapter to a discussion of several of the classes of
TTL LS circuits, which we will need to use and understand.

BUFFERS AND INVERTERS

A buffer means exactly what it says: a go-between, a softener of heavy blows, etc. In
microcomputing, buffers are particular types of integrated circuits used to isolate your
experimental circuits from the intricate electronic operations of the microcomputer
you are connected to (interfaced). In this way mistakes you make in your circuit
connections are unlikely to damage (“burn up” is the expression often used) your
precious microcomputer. So if the interface has been designed correctly using buffer
integrated circuits then you can experiment quite happily in the knowledge that you
can’t normally harm your micro, even if you do apply power the wrong way around to
some of your integrated circuits, which we have all done at one time or another.

The buffer integrated circuit is essentially made up of a transistor amplifier. The
transistor is a three-terminal device, which has an input lead called the base and output
and power supply leads connected to the other terminals called the collector and
emitter. The transistor action ensures electrical isolation of output signals from input
signals and is also capable of amplifying an input signal in current strength so that a
number of other transistor-type integrated circuits can be attached to it electrically
without making unfair power demands on the original signal.

A second type of buffer to consider is the NOT buffer or more simply the Inverter.
Like the noninverting buffer, the inverter only has one input and one output and a very
brief truth table. It is shown in Figure 2.1 together with the truth table. Note the
inversion circle on the output lead. This inversion circle will appear on many digital
circuit diagrams. The triangular symbol is that for an electronic amplifier or

Digital Electronics

INPUT OUTPUT

A Dc Q A Q

0 1
1 0

Figure 2.1 Inverter Diagram and Truth Table.

noninverting buffer; the inversion circle on the output indicates that when the
amplifier has a logic 1 output the inverter itself will have a logic 0 output and vice
versa. The inverter is fabricated in 2 Hex (six independent) Inverter integrated circuit
type T4LS04.

In summary, buffers can then act as current amplifiers and also as voltage inverters
(phase inverters), that is a digital voltage of +5-V input to a particular type of buffer
will result in a 0-V output from the buffer, that is the opposite digital state. Such a
buffer is called an inverter.

GATES

A knowledge of digital gates is essential to being able to understand clearly how
interfacing and experiments can be accomplished using a microcomputer. We will
spend a little time reviewing what a gate is and outline numerous examples of the use

of gates in the remainder of the book. You have already seen that digital signals are of

two values only, +5 V and 0 V. These two voltage levels can be expressed as two logic
states 1 and 0 where we will choose what is known as the positive logic equivalence,
that is:

+5 Vis equivalent to the logic state 1;
and, 0 V is.equivalent to the logic state 0.

Gates are electronic circuits which allow certain combinations of the logic states
input to the gate to produce particular output logic states.

As an example, let us consider the logic AND gate. This gate will have two inputs,
which could be labeled A and B, and an output labeled Q. The electronic symbol is
shown in Figure 2.2.

A
B

.

Figure 2.2 Diagram of an AND Gate.

13

14 Chapter 2

A7 7

SW A SW B

BATTERY ___ LAMP

Figure 2.3 Switches in Serigs,

When different combinations of digital signals are applied to the inputs A and B, the
output Q takes on only certain resultant digital states. To visualize this relationship,
consider the simple circuit of switches in series shown in Figure 2.3, which represents
an electrical analogy of the AND gate.

We will consider that an open switch is equivalent to the logic 0 state (no current
flowing) and vice versa. For the resultant output of this circuit we have a smalllamp Q,
which can either be lit or not lit depending on whether voltage is applied to it or not
(voltage will be applied to the lamp when current flows).

It should be clear that if switch A is open (0 state) and switch B is closed (the
opposite 1 state) then no voltage will be applied to Q so it will remain unlit (logic 0
state). And again if switch A is closed (logic 1 state) and switch B is open (logic O state)
then Q will still remain unlit. Only if switch A is closed AND switch B is closed will the
combination result in lamp Q being lit. This can most easily be described using a truth
table which tabulates the relationships between the inputs A and B and the output of
the gate Q. The truth table is:

AND GATE LOGIC
INPUTS OQUTPUT STATEMENT
A B Q AXB=Q

0 0 0
1 0 0
0 1 0
1 1 1 = Unique State

The last line gives the truth of the AND statement, that is, the output state is true
(logic 1 state) only if both the logic states of A AND B are true. The AND gate is
fabricated in a quad (four independent) Two-Input And Gate integrated circuit type
74L.S08, where you could use a voltmeter or logic probe to test the truth table of each
gate.

Another example is the logic OR gate, shown in Figure 2.4. The action of this circuit
is explained in the electrical circuit shown in Figure 2.5.

In this circuit the two switches are in parallel so that if either switch A OR switch B is

Digital Electronics

>

Figure 2.4 Diagram of an OR Gale.

in the logic 1 state (closed), then the lamp Q also will be in the logic 1 state (lit).
Expressed in a truth table the relationships between the logic states would be:

OR GATE LOGIC
INPUTS OQUTPUT STATEMENT
A B Q A+B=Q
0 0 0 = Unique State

1 0 1
0 1 1
1 1 1

The logic relations of the OR gate are quite different from those of the AND gate.
Use will be made of both functions later. The OR gate is fabricated in a Quad Two-
Input OR Gate integrated circuit type 74L.832,

The inverter can be combined with both the AND and OR gates to produce NAND
and NOR functions. The electronic symbols for these gates are shown in Figure 2.6a
(NAND) and Figure 2.6b (NOR) together with their truth tables.

Note that for corresponding inputs, the output of the NAND gate is opposite
(inverted) to that of the AND gate, and the output of the NOR gate is inverted to that
of the OR gate. Inversion is also referred to as negation. The Quad Two-Input NAND
gate is fabricated in an integrated circuit type 74LS00 and the Quad Two-Input NOR
gate is fabricated in an integrated circuit type 74LS02.

P4
SW A
l -4
SW B LAMP
BATTERY — Q

Figure 2.5 Switches in Paralfel,

15

16 Chapter 2

Another useful gate is the EXCLUSIVE OR gate whose circuit symbol and truth
table appear in Figure 2.7.

Examples of the applications of the above gates will be given in the next section. It
should also be noted that the number of inputs to any gate is not restricted to two only,
you can have three-input, four-input, and eight-input gates, but the unique state of
each truth table remains the same.

GATING AND DECODING

When microcomputers are used to control or interact with circuits to which they are
interfaced it becomes necessary to gate particular control signals together to activate
other integrated circuits at specific moments throughout the running of the micro-
computer program.

By gating we mean exactly the same as opening and closing a fence gate toallow or
prevent the passage of a person. In the electronic gate the action will be to prevent data
from passing from an input to an output or to allow the passage of such data. In other
words our gate will act as a control over the passage of data or “Enable” the passage of
data as indicated in Figure 2.8. Because the inputs to a gate are equivalent, the input

A ————
e
B]
NAND (NOT AND) Gate
INPUTS OUTPUT

A B Q
0 0 1
0 1 1
1 0 1
1 1 0 =Unique State

Figure 2.6a NANL (NOT AND) Gate and NOR (NOT OR) Gate.

Digital Electronics

A
) >»>—oa
B

NOR (NOT OR) Gate
INPUTS OUTPUT

A B Q
0 0 1 =Unique State
0 1 0
1 0 0
1 1 0
Figure 2.6b

that is called the data and that which is called the control is arbitrary and depends only
on the user’s point of view.

Often two different control signals will be logically combined by a gate and a
unique output signal will only exist when the control signal applied to the one input
enables the control signal applied to the other input. As has already been discussed, the
microprocessor uses control signals to access memory locations, read the keyboard,
output data to the video screen, and so on. Because the microcomputer can only
handle one task at a time, the same control signals should not be allowed to activate
two devices at once, hence it is necessary to gate certain control signals together to
provide unique combinations of signals for use by the various circuits connected all the
time to the microprocessor.

To give you an idea of how this works imagine that you have 16 different machines
in your home which are to be controlled by the microcomputer. The microcomputer
will decide when each machine should be turned on or off and how long each machine
should stay on or off. Obviously we would not want the home heater running at the
same time that the air conditioner is operating, so the microcomputer must be
provided with a unique identification code (address) for each device.

This can be accomplished through a channel selector integrated circuit such as the
four-channel to sixteen-channel 7415154 decoder/demultiplexer shown in Figure 2.9.

You will note that there are four address inputs A, B, C, and D and 16 output
channels. There are two gating control inputs, G1 and G2. Whenever both are held
low, logic 0 state, the IC will be enabled. But we have 16 output channels so how can
the microprocessor tell the decoder chip which channel should be selected?

17

18 Chapter 2

) >

INPUTS OUTPUT LOGIC STATEMENT
A B Q A<+>B = Q
00 0 When both inputs are the same,
10 1 then the output is a logic 0.
5 3 No single unique state.
11 0

Figure 2.7 EXCLUSIVE OR Gate.

This is accomplished through the four address inputs A, B, C, and D to which
different binary codes can be applied. By starting with all address inputs LOW (0 V),
channel 0 will be selected as shown below.

INPUTS CHANNEL

DCBA 01 23 456 7 8 9101112131415
0000 o111t 11t1t111 111111
0001 io0111t11 111 111111
0010 1101111111 111111
0011 1110111111 111111

4 4E 1 1 %2 1991 1F 14443140
As the binary code applied to the address inputs is sequenced through 0000 to 1111,
each channel in turn will be selected, and the output at that channel will go to the active
logic O state. All other channels will be in their inactive logic 1 state. If either or both of
the gate control inputs are in the logic 1 state then all 16 output channels will be in their
inactive logic 1 states.

The 74LS154 functions as a decoder by substituting the set of four input signals for a
set of 16 output signals (i.e., one set of symbols for another set of symbols). Of course,
the new code is just a combination of 1 zero and 15 ones but it serves to select and
activate one of 16 lines. If we wanted to transmit a sequence of data bits to any one of
the 16 output channels we could feed that data to one of the gate inputs, G1 or G2.
Then, assuming G1 was the data input line and G2 was enabled, when the address
inputs held the channel number, every logic 0 data bit and logic 1 data bit would be
output at the selected channel in sequence. This use of directing a stream of data to one
of many channels is called demultiplexing.

Digital Electronics 19

DATA ——
DATA

GATE ENABLE
OR
CONTROL

Figure 2.8 Galing Input for Control.

LATCHES AND REGISTERS

A latch integrated circuit “latches on” to a data signal and holds the logic state of the
data at its output. A latch requires an enable control input, in addition to its data input,
to signal the chip when to latch the data. This control input is either a clock or a gate
input depending on how the specific latch circuit operates. The latch IC is important
because it extends the lifetime of a data signal, which itself may be of very short
duration. The output of a latch retains the state of a previous data input until a
subsequent control pulse input causes it to reread the present logic state of the data
input line. In this respect, a latch is a one-bit memory. Such latches are called D-type

+5V 3
] A Yis—g-
CHANNEL —gw—1| B [>
ADDRESS . [
INPUTS —
: 5 —3- 16 DIFFERENT

.- DATA OUTPUT
—— CHANNELS
e B

154 >

1+ G2* Y

:

JUL >

DATA INPUT

Figure 2.9 745154 Schematic.

20 Chapter 2

latches where the D originally referred to delay but more currently is used to mean
data. D-type latches often are designed with two outputs, which are complementary
and are labeled Q and Q®. Q® is always the inverse (negation or complement) of Q;
that is, when Q is 0, Q* is 1 and vice versa. Many D-type latches also are designed with
two additional control inputs labeled Preset and Clear. Logic 0 signals on either of
these inputs take priority over the enable input and force the Q output to alogic1 and

logic 0 respectively.

CLRa 1 [g 14 Vee Q*a 1 -1 16 Qa
DATAa 2 [& 13 ctRo paTAa2 CH[P o 15 ab
CLKa 3 E-JE [12 DATAb DATAb3 CF| 2 | (1 14 Q*b
SETa 4 ['] 11 CLKb ENcd 4 [}~ L———<—_7 13 ENab
Qa 5 [} |,- —{1 10 SETb Vee 5 E%I] 12 GND
Q*a 6 [n lH g a DATAc 6 [] 11 Q%
GND 7 [-]_3 8 Qb DATAd7 E-‘- d _I l[j 10 Qc
Q*d 8 [] - 9Qd
'74 '75
{(each latch) (each latch)
memmmmemee | NPUT S mmmmme OUTPUTS - INPUTS -=----- OUTPUTS
SET CLR CLK DATA Q@ Q* EN DATA Q*
0o 1 X X 1 0 0 X Q*o
1 0 X X 0 1 1 0 1
0 0 X X 172 172 1 1 0
1 1 /7 1 1 0
1 1t 4/ o 0 1
1 1 0 X Qo Qo*

Figure 2.10 Data Latch Pin-outs and Truth Tables.

Digital Electronics 21

DATA
CLOCK/GATE
o : —
Q(7e) ! |
1]
| [
| t
Qrrm) ; =
i]
v —
POSITIVE NEGATIVE TIME
CLOCK CLOCK
EDGE EDGE

Figure 2.11 Data Latch Timing Diagrams.

The 741874 and 74LS75 D-type latches are representative of this type of circuit.
Figure 2.10 gives the pin-outs and truth tables of both. The obvious differences
between the two ICs are that the 74L874 is a Dual D-type Latch having Preset and
Clear and complementary outputs, whereas the 7T4LS75 is a Quad D-type Latch having
only complementary outputs. More significantly, these ICs illustrate the difference
between Clock and Gate data input controls. The 74LS74’s Clock latch control is
positive-edge triggered. This means that as the clock signal changes from alogicOtoa
logic 1, the data at the D input is latched at the Q output. The 74LS75’s Gate enable, on
the other hand, is active in the logic 1 state. This means that if D changes when the G
input is high (logic 1), then Q will “follow” and change also. Q is not latched until the
negative edge of G (i.e. when G changes from a logic 1 to a logic 0 and the latch is
disabled). Figure 2.11 illustrates the difference in the two latches by showing how the
Q of each responds to a busy data line. Typically, latches whose control input is a
Clock input are also referred to as flip-flops.

There are several other types of flip-flops and latches in the TTL series which we
will not consider because of their limited usefulness in computer interfacing. To
mention two by name, there are Reset-Set or R-8§ flip-flops and also J-K flip-flops,
neither of which has a Data input, but both are used in combining various control
signals to create their output signal. There are also many other series numbers which
incorporate latches that behave like those in the 74LS74 and 74L875 ICs. When several
latches are controlled by a common (single) enable signal, they are referred to as
registers. We shall use the 74LS373 Octal D-type Latch as an eight-bit register in
Chapter 4.

The difference between gating logic and clocked logic is an important distinction.
Many of the other classes of integrated circuits use one or the other of these for their
enabling technique. Generally when the enabling control input is labeled G (or EN),
the circuit is enabled as long as the control input is in its active logic state; when it is

22

Chapter 2

labeled CK, the circuit carries out its operation on the rising (positive) or falling
(negative) edge of the signal transition. Truth tables for clocked devices will have
entries for positive or negative edge-triggered control inputs represented by up-
arrows or step-ups or by down-arrows or step-downs (reading from left to right)
respectively.

COUNTERS

A counter integrated circuit counts pulses arriving at its input. Because this is a digital
counter, it would require four output lines to store a count up to 15 (decimal). The
outputs are typically labeled A, B, C, and D, where A is the least significant bit and D is
the most significant bit. Thus when an output is alogicl, A is worth I, Bis worth2, Cis
worth 4, and D is worth 8. Obviously, all four bits must be read to know the value of the
count. The major elements in the circuitry of a counter are flip-flops. The most
common 74XX and 74L5XX counters are the 90, 92, and 93 which count to base 10,
12, and 16 respectively. Actually, each of these ICs consists of two counters; one is a
binary or “divide-by-two” counter, while the other isa 5,6, and 8 counter respectively.
Because there are two counters on each IC, there are two inputs. The A output is the
output of the binary counter; when it is connected to the input of the second counter in
the circuit (labeled Input B), then all four outputs D-A hold the four-bit count. The
741890 is a decimal counter, which means it counts from 0000 to 1001 (9 in decimal).
Like the odometer in an automobile, the next count after 9 is 0. Figure 2.12 illustrates
the timing diagram of the 74LS90’s outputs when the A input receives a train of clock
pulses and output A is connected to the B input. If we read the logic states of the D-A
outputs vertically, we find the four-bit binary-coded decimal (BCD) code. There are
two important features you should observe about this timing diagram. First, count the
number of pulses at the A input and the number of pulses at the A output. You should
get ten and five respectively. Thus the output has divided the input by two: this is why
the first counter is called a “divide-by-two.” Now compare the number of pulses at
input B with the number of pulses at output D: the second counter in the 741890 is a
divide-by-five. Of course, with the two internal counters connected in series
(cascaded), the counter is a divide-by-ten.

The second observation we can make about the timing diagram in Figure 2.12 is that
the inputs are Clock inputs, which are active on the negative (falling) edge. It is not
until the input pulse falls from logic 1 to logic 0 that the counter actually advances the
logic states of the outputs. If we have two 74L.890 ICs, we can cascade them by
connecting the D output of the first to the A input of the second. Now, everytime the
first “rolls-over” and the 9 returns to 0, the second will increment its count. In this
manner we could count from 0 to 99. Each additional ‘90 added by cascading gives

A QUTPUT
B INPUT

B OUTPUT

C OUTPUT

D OUTPUT

¢ NEGATIVE EDGE

AT e
L = L1 L

Digital Electronics 23

IR N S

1 2 3 4

5

6 7 8 9 0

Figure 2.12 Decimal Counter Diagram.

another decimal digit. This is possible because it is the falling edge of the D output
which “clocks” the count of the next counter.

Unlike the 74LS90 whose D output returns to 0 after the count of 9, the 74LS93 is a
full four-bit counter. Its D output remains in the logic 0 state for counts 0 through7 and
then goes into the logic 1 state for counts 8 through 15. The pin configurations of the 90
and 93 are shown in Figure 2.13.

INB

ROa

ROb

nc
Vee
R9a
R9b

N R LN =
OO0

5

314 IN A
'h—é' 113 nc

112 QA
111 QD
—J 10 GND

] 9QB

] 8QC

80

Figure 213 Pin-ouls of °

INB
ROa
ROb

nc
Vee
nec
nc

90 and’

1 14IN A
2 Ej_g'—_:l 13 nc

3 O 1 12 QA
4 O] 1 11 QD
5 [] 10 GND
6 O] 9QB
7 O] 8QC

'93
93 Counters.

24

Chapter 2

The three counter ICs described have additional control inputs, RO(1) and R0(2),
plus an additional pair on the ‘90, R9(1) and R9(2). Various logic states placed on these
control lines will reset the counter outputs to 0 or 9. The truth tables for these controls
are:

RO(1) RO(2) R9(1) R9(2) A B C D

'90: 1 1 0 X 0 0 0 O

1 1 X 0 0 0 0 O

X X 1 1 1.0 0 1

‘92, '93: 1 1 not applicable 0 0 0 O

where X is a “don’t care” or irrelevant state. For all three ICs, for any other
combination of logic states at the reset inputs, the input pulses will be counted.

TIMERS

Like counting, one of the more widespread applications of digital electronics is timing.
A clock pulse is defined as a transition from one logic state to the other and back to the
first. A positive clock pulseis 0 V to +5 V to 0 V. A negative clock pulseis+5V to0'V
to +5 V. Clock pulses can be generated electronically with Monostable ICs or
manually with a switch. The IC is called monostable because its output is stable in only
one state. When it is triggered it goes into its unstable logic state, stays there for a brief
(determined) time, #, and then falls back into its stable logic state. In the process, of
course, it has generated a single clock pulse. There are several TTL Monostable ICs
such as the 74121, 741.S122, and 74L.S123. The duration of the clock pulse when the IC
is triggered (by another clock pulse at a control input pin) is determined by the values
of an external resistor and capacitor connected to two pins on the IC. For example, the
74121 can be adjusted to put out a pulse ranging between 40 nanoseconds and 28
seconds. The duration, ¢ in seconds, of the 'LS122 and 'LS123 clock pulses can be
calculated from the equation:

t=045+R*C

where R is in ohms and C is in farads (C must be greater than 1000 pF for the equation
to be valid). The pin configuration of the 74121 is shown in Figure 2.14a.

There is another IC which, although nota TTL chip, can be operated between +5 V
and Ground and is, therefore, TTL compatible. This IC is the eight-pin 555 Timer or
the 14-pin 556 Dual 555-type Timer shown in Figure 2.14b. The 555 can be wired to
work either as a monostable or as an astable multivibrator. Astable means that neither
logic state of the output is stable. Therefore when it jumps into a logic state of 1 it stays
for a period, #(1), then jumps into a logic state of 0, but it is not stable here either, so
after another period, #(0), it jumps back to a logic state of 1 and repeats the process all
over again. It therefore continues to vibrate back and forth between logic states. As it

Digital Electronics 25

Q* 1[0 114 Vec DSC 1 -] 14 Vee

nc 2 [(113 nc THR 2] 13 Discharge

A1 3 [[J12 nc CTL 30] 12 Threshold

A2 4 [;— 111 Rex RES 4[] 111 Control V

B 50 é:ﬁo Cex OQUT 5] 10 Reset

Q 6 [+ 4] 9 Rin TRG 6 O] 9 Output
GND 7] Lo TJ O 8nc GND7[] 8 Trigger

121 556

Figure 2.14 74121 and 556 Pin-outs.

does so, it creates a train of clock pulses. Thus, as we have seen, the astable
multivibrator is a square wave generator.

When the 555 is wired as a monostable, it requires a resistor, R(a), and a capacitor,
C. The duration in seconds of the logic 1 state, ¢, is calculated by the formula:

t=1Iin3+*R@+C
=1.1 ~R(a) = C seconds
when R is in ohms and C is in farads. Alternately, if R is in kiloohms and C is in
microfarads, then ¢ is measured in milliseconds.
When the 555 is wired as an astable multivibrator, it requires two resistors, R(a) and
R(b), and one capacitor, C. The duration of the logic 1 state, #(1), is calculated from:

t{1)= In 2+ (R(a) + R(b)) + C
Milliseconds = 0.7 = kiloohms + microfarads

and the duration of the logic 0 state, #0), is:
{(0)= In2+«R(b)+«C
with the same units as previously. The total period of one complete clock pulse is:
T =1#0) + (1),
and the frequency (f) of the square wave in hertz (cycles per second) is:
f=1/T.

If T is in milliseconds, then { is in kilohertz. We shall have use for both of these circuits
in our counting experiments.

26

Chapter 2

THREE-STATE BUFFERS

Although an output signal of an IC can be connected to several inputs, two or more
outputs cannot be connected to one input. If two outputs were connected to one input
and one was in a logic 1 state and the other in a logic 0 state, the +5 V of the logic 1
connected to the 0 V of the logic 0 would be a short-circuit and probably burn out one
of the integrated circuits. We shall see that the microcomputer needs to have many IC
output signals share a common signal lead (called a bus line) into the MiCroprocessor.
To solve this problem of connecting outputs together, integrated circuits have been
specially designed that function like switches. These ICs are called three-state buffers.
The three states correspond to the usual logic 1 and logic 0 states when the buffer is
enabled (when the switch is closed) and to a high impedance state when the switch is
open.

You will have little difficulty understanding the concept of three states once you
realize that the logic 0 state (0 V) is a real condition and a legitimate signal which is
different from a “no signal” or disconnected state. A three-state device permits the
output signal of an IC to be isolated from the output connection of the device in the
same manner as if the outputlead were physically disconnected. Of course, the output
lead is not physically disconnected but electronically disconnected by means of an
extra control signal applied to the three-state device. Whereas the ordinary buffer has
one input and one output, the three-state buffer has an additional enabling control
input line that “throws the switch.” The logic state of the enable gate may beeither 1 or
0 depending on the specific series number of the IC,

The 7418125 and 7415126 are Quad Bus Buffer Gates. The ’125 is enabled by alogic
0 and the '126 is enabled by a logic 1. The pin-outs of the two ICs are shown in Figure
2.15. Many ICs of other classes are available with built-in three-state buffers. One
example is the 74LS373 Octal Latch mentioned earlier whose eight outputs are three-
state and enabled by a single control input.

10 14 Vce 10 114 Vee
SR A GO
3[] ’5312 3 '-5312

4[] 1 11 4[C] 11

5E%’ 710 5[:%’ 10

6]{l—:l 0 6L &:l 9

GND7 -] 8 GND7[1 8
125 '126

Figure 2.15 Three-State Buffer Pin-outs.

Digital Electronics 27

WMW
MWWM

HHHHH
R

Figure 2.16 Layout of Breadboard.

HARDWARE AND TOOLS

As we already mentioned in Chapter 1, the interfacing experiments require a
breadboard socket for wiring the circuits. In addition to the 64 rows of five common
tie points on either side of the center channel, there are four rows in two sections each
of 25 common tie points that run lengthwise along the outer edge of the breadboard.
These rows are used as power rails. Always wire up the socket board so that the outside
horizontal rails both at the top and bottom of the board are wired up for +5V and the
inside horizontal rails for 0 V as shown below. The connections of the tie points are
shown in Figure 2.16. Note that jumpers on the power rails must be made at the center
of the board and at one of the ends.

By using standard DIP integrated circuits, the solderless breadboarding socket
allows rapid wiring of the experiments. Insertion of the chips is not difficult aslongas
all the pins are straight. Use a little force and rock the chip across the board backwards
and forwards to seat them in the spring-loaded holes of the socket board. The chips
then insert easily in a horizontal direction symmetrically across the center channel of
the board. Four spring-loaded sockets will then be available in a vertical direction to
each pin of the chip. Use a small screwdriver inserted under the integrated circuit
chips to lever upwards gently when removing them from your socket board. Failure to
do this usually results in bent pins on the chips or punctured fingers.

Circuitry in all our experiments will be very straightforward with the use of
connecting lengths of single stranded plastic covered, 22 B & S gauge wire (0.06 mm
wire diameter). Use of at least ten colors of wire is recommended to facilitate finding
incorrect connections when all the wire connections in your circuit diagrams are color
coded. Adherence to a color code for each experiment will assist you to find and
correct wiring errors. Pay special attention to using red colored wire ONLY for +5-V
connections and if possible black wire ONLY for earth or0-V connections. In this way
it is easy to check circuits for chips inserted the wrong way around or power
incorrectly connected to the chips. The other eight colors can be used for the bus lines
and various control lines. :

28 Chapter 2

When stripping the single stranded colored wire, only leave about 5 mm (0.2 inch)
of wire exposed at either end. Too much exposed wire could lead to short circuits
when many wires are used in an experiment. A suggested color code could be:

Red +5V Power
Black 0 V Ground
Brown/Orange/Grey/White Control lines
Yellow/Green/Blue/Violet Bus lines

Cost savings can be achieved by purchasing large reels of different colored wires
rather than buying prepackaged wires cut to specific lengths. The following tools are
required:

1 Long nosed pliers
2 Wire cutters

3 Wire strippers

4 Small screwdriver

A small-tipped, 15-watt soldering iron will also be useful if you intend assembling the
printed circuit Interface Board yourself, but we envisage very little soldering for the
experiments. Other hardware involved should be relatively inexpensive parts, which
can be purchased from your local electronics store.

It is hoped that a kit of integrated circuit chips and other components will be made
available with the Interface Board to be used with this book. Y ou may have many of
the chips we recommend lying around your workbench at the present time. We would
like to emphasize that only LS chips should be used with these experiments as use of
the regular 7400 series of TTL chips will lead to too much drain on the Timex/Sinclair
power supply and loss of quality in the video picture.

If you intend to wire wrap any of your circuits for a permanent application then you
will need to purchase a wire wrap tool, wire wrap wire, and wire wrap sockets and
connectors for your circuit.

BREADBOARDING

The layout of a typical solderless breadboard has already been discussed in this
chapter. The experiments using the FDZX1 Interface Board with the microcomputer
can be performed easily by following the guidelines below.

Gather all the necessary components and integrated circuit chips as listed under
Components and as noted from the Schematic for the experiment. Next insert your
integrated circuit chips into the socket board adjacent and as close as possible to the
cables from the Interface board. The orientation of the chips should be with pin 1
nearest the left front corner of the breadboard. If you have your chip oriented in the
correct fashion then the identification key (notch or dimple in the plastic) will be on
the left side of the chip—otherwise the chip is turned around. Pin 1 is invariably
marked with a dot or notch on the integrated circuit chip. In this orientation, for a 14-

Digital Electronics

pin chip: pin1isin the lower left; pin 7, the lower right; pin8, topri ght; and pin 14, top
left corner of the chip. The +5-V power jumper from the socket board power rail to
the +5-V cable pin should be disconnected.

First, connect all GND pins of your integrated circuit chips to the 0-V rail, then all
the V(cc) pins (+5 V) to the 5-V rail of your socket board. Now, complete the rest of
wiring of the circuit schematic. It is good practice to have the schematicin front of you
at all times while wiring the circuit. Most often, the wires will jumper between the
vertical series of four holes at each of the pins of the integrated circuit chips. The
schematies have all connections to the integrated circuit chips numbered with the
appropriate pin number of the chip. An added tip would be to color code your wire
connections and tick off each wire connected on the schematic as it is inserted into the
socket board. All interfacing signals can be jumpered in a similar manner from the
cable socket pins on the breadboard.

Any resistors or other components should be inserted into the socket board in as
nearly a similar position as indicated in the schematic. For example, don’t put a resistor
used in the input circuitry (left end of your schematic) in the socket board near the
right end of your circuit; this sort of wiring leads to considerable crossing of wires and
the construction of what is loosely referred to as a “birds nest”!

Your schematic indicates wires that join and wires that cross without an electrical
connection as shown in Figure 2.17aand 2.17b respectively. Once you are satisfied that
all connections have been made, check your circuit connections, working from one
end of the socket board towards the other. By color coding and cutting your wires to
length, neat circuit wiring can be accomplished on the socket board, which greatly
enhances your understanding of the circuit layout and assists you in fault finding. It
also reduces the amount of radio frequency interference, which can degrade your
video display significantly.

Note that the solderless breadboard allows for up to four individual electrical
connections to any pin of an integrated circuit on the socket board. This is usually more
than sufficient.

We hope that you will not be intimidated by the apparent complexity of the
electronic circuits used in the experiments and will be able to construct the circuits
easily when you follow the above guidelines, carefully and logically.

|

CONNECTIONS CROSS OVER
END CROSS NO CONNECTION

Figure 2.17 Wire Connections and Crossings.

29

30 Chapter 2

Once you have successfully wired a few interface experiments, beginning with the
short simple ones in Chapter 2, then the larger circuits in Chapters 5 and 6 can be
constructed with confidence. Good luck, and always remember that you, not the
microcomputer, are the master.

CAUTION. Only plug or unplug your interface board
with the computer switched off.

It is always good practice if you ever wish to connect or disconnect the FDZX1
Interface Board from your Timex/Sinclair microcomputer to switch off the whole
unit while carrying out such an operation. This prevents the possibility of damage to
your microcomputer or Interface Board from transient voltage pulses generated
whenever circuit connections are made or broken.

EXPERIMENT 2.1
TRUTH TABLES OF COMMON INTEGRATED CIRCUIT CHIPS

COMPONENTS 1 * 74L800 quad two-input NAND gate
1 * 741502 quad two-input NOR gate
1 * 741508 quad two-input AND gate
1" 741532 quad two-input OR gate
2 * Jumper leads or logic switches
2 * 3.3-Kohm resistors
1 * LED and 470-chm resistor or lamp monitor

DISCUSSION As explained in this chapter knowiedge of the truth tables of certain integrated
digital logic chips assists greatly in understanding how logic circuits function. To determine the
truth tables of the chips use will be made of logic switches and a lamp manitor. To keep costs
down jumper wires can be used as the 0-V or 5-V logic switches and an LED in series with a 470-
ohm resistor can be used as the lamp monitor.

PROCEDURE

STEP 1 With the computer unplugged, mount the interface Board to the computer. Position
the breadboard socket on the computer case between the keyboard and the Interface Board, and
insert the cable sockets from the Interface Board at the right end of the breadboard.

STEP 2 Lamp Monitors and Logic Switches will be used throughout many of the experi-
ments in this book. You may wish to refer to Steps 1 and 2 in Experiments 4.4 and 4.5 for a de-
scription of assembling sets of eight of each. Alternatively, small printed circuit boards are com-
mercially available which plug into the breadboard and thereby save room on the breadboard.
Further references to lamp monitors will mean LEDs with current-limiting 470-ohm resistors,
and references to logic switches will mean the equivalent of power rail jumpers.

STEP 3 Wire up one of the gate chips to the +5-V and 0-V lines on your socket board (with
the power oft). These four chips all have +5 V going to pin 14 and 0 v goingto pin 7. If you mount

Digital Electronics

31

10 1 O 1 [0 O] 14 Voo
2 E@] [(] C@ 1 O 113
3L @:c D @:c @:12
4 O 0[O 0 O 1 O 1 11
51:@ u u@. M CD N E@ M 10
BV 6 fUk
GND7 [0[O O O ' 8
00 02 '08 '32

e s

+ SV _i 470

I = ' | +5V|

l — W I 1 I

|¢GND | | LED 1

L V33K | L._ YGND

+ 5V =

L __J

Figure 2.18 Experiment 2.1 Schematic.

your chips on your board so that pin 1 is in the lower left corner, then pin 14 isthe top left corner of
the chip. Pin 1 will have an indentation nearby to indicate that it is pin 1. Pin 7 then is on the lower
right corner of the chip.

STEP 4 Once the IC is connected to the power rails, plug in the computer and jumper the
+5-V and 0-V rails to the power pins on the left cable socket. Next, using jumpers to the power
rails (or using a set of logic switches), connect the gate inputs on the chip (four gates in each)
according to the table in Step 5. Do not leave any of the inputs or outputs to a gate disconnected. If
you want 0 V on an input, then jumper that input down to 0-V rail. If you want +8&8Vonaninput,then
jumper it up to the +5-V rail. In this way you do not leave the inputs to float to a potential of their
own choosing, making your truth tables look wrong.

STEP 5 Complete the truth table for each IC using the lamp monitors to display the gate
outputs:
———— OUTPUTS ————

'08 ‘00 '32 02
INFUT A INPUT AND NAND OR NOR

Gate 1 0 0
Gate 2 0 1
Gate 3 1 0
Gate 4 1 1

Note that the pin-out of the 74LS02 differs from the other three ICs. You can wirethe 74L.S00 and
then substitute the 74LS08 and 74LS32 directly, but not the 74LS02.

32

Chapter 2

EXPERIMENT 2.2
TRUTH TABLE OF 74L520 FOUR-INPUT NAND GATE

COMPONENTS 1 * 741520 dual four-input NAND gate
4 * Logic switches
4 * 3.3-Kohm resistors
1 * Lamp monitor

DISCUSSION Digital logic gates are not limited to just two inputs as will be shown in this
experiment. It is possible to have a number of inputs to any gate but the most common numbers
are two, three, four, and eight. It will also be instructive in this experiment to determine what
happens to a gate input that is left disconnected.

PROCEDURE
STEP 1 With the power jumper from the +5-V cable pin disconnected from the power rail,
remove all other chips from your socket board, and connect your 74LS20 according to the

schematic shown in Figure 2.19.

STEP 2 Verify that the truth table for the four-input NAND gate is as below, by jumpering the
inputs in sequence to 1s and Os.

INPUT D INPUT C INPUT B INPUT A QUTPUT

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 o] 1
0 1 0 1 1
0 1 1 0 1
1 1 1 0 1
1 1 1 1 0

STEP 3 Now remove the four jumper leads connected to the inputs so that each input is
allowed to float te its own potential. What output logic state do you observe? You should have
observed that the output state was a logic 0. What does that indicate about the logic states of the
inputs that have been left unconnected? It indicates that when the inputs to the chips are left
disconnected they float high; that is, they take up the Vcc potential of +5 V.

The general rule for the TTL integrated circuit chips is that unconnected inputs float high and
assume a logic 1 state,

FURTHER DISCUSSION It is as well to note that the 74LS00 series of chips can be joined
together in series with the output of one chip driving the input or inputs of succeeding chips. When
such connections are used, it is important for the experimenter to be aware that the electronics of
the devices (chips) have current limitations. The maximum a 74LS00 chip output can drive is five

Digital Electronics 33

+ 5V
3333.3K
10 7] 14 Vee 17 eacn g
2 [0] 13 < ——— + 5V
nc3 [] 12 .y =):r @-—J7
40 1 11 nc l' LED
5E—l’§ J 8 10 s GND
60 g9 GND
GND7 [] 8
20

Figure 2.19 Experiment 2.2 Schematic.,

regular TTL (7400) inputs or 20 inputs of 74LS00 series chips. This ability to drive other chipsis
referred to as the fan out. The typical maximum current drive limits are:

7400 FAMILY: REGULAR LS
Inputs —16mA —04mA
Qutputs 16 mA 8 mA
Fan out* 10 20

* within family

Because LS chips use less current than regular TTL chips, we have used them aimost
exclusively in these experiments with the Timex/Sinclair interface so that the power pack is not
overloaded.

Should you wish to use TTL chips in any of the experiments you must be aware of the extra
current loading on the Timex/ Sinclair power pack and the fact that mixing LS and TTL chips can
lead to fan out problems (that is, insufficient current drive available for one chip to drive two or
more inputs of succeeding chips).

EXPERIMENT 2.3
DEBOUNCED PULSER

COMPONENTS 1 *74LS00 quad two-input NAND gate
1 * SPDT (single pole double throw) switch
2 * 1-Kohm resistor
1 * Lamp monitor

DISCUSSION We have seen that individual clock pulses can be generated electronically with
monostable ICs. They can also be created manually with a switch. A problem is encountered in
digital electronics when switches are used to activate clock inputs on integrated circuits such as

34

Chapter 2

counters. Experimenters often wonder why the count displayed by their digital counter rarely
agrees with the number of times the switch was activated.

This observation is very important because it highlights the fact that switches are mechanical
devices and that their signals need to be conditioned so that digital circuits will respond correctly
to a key closure. The problem arises due to the mechanical nature of a switch that uses springs to
push the stationary and moving contacts of a switch mechanism into contact. The contacts tend
to bounce apart when the lever of the switch is thrown from one position to the other. This
bouncing of the contacts causes voltage pulses, the puises being directly related.to the number
of times the contacts bounce together. So even if you only move the lever of the switch once,
many pulses are produced in a short time, at least for several milliseconds.

A digital counter connected to such a switch will count each and every individual pulse
produced by the bouncing contacts and display a count that is anything but related to the number
of times the switch lever was moved. To overcome this problem the switch {or any mechanical
key closure) has to be "debounced.” One method is to use an R-S {Reset-Set) latch circuit
made from two NAND gates. Another method, often used with microcomputer keyboards, is to
write a time delay into software to wait for the bouncing process to terminate. This experiment will
demonstrate how you can construct a hardware debouncer circuit.

By referring to the schematic of the experiment, Figure 2.20, it can be seen that the output of
each of the pair of gates is returnedto one of the inputs of the other gate. The switch is connected
across the two remaining inputs, pins 1 and 5. If we assume that the situation is as shown in the
schematic we can use our knowledge of the two-input NAND gate to determine the states of the
outputs Q and Q*,

Because the switch is touching contact A, then input 1 of G2 willhave a0 applied toitsinput. If
any of the inputs of a NAND gate are 0, the output must be a logic 1 state. This logic 1 state is
applied to pin 4 of gate G2 at the same time a logic 1 is being applied to pin 5 from the 1-Kohm
pull-up resistor. Thus the output of G2 is a logic 0 showing that Q and Q* are truly opposite digital
states.

Now if the switch is moved over to contact B and momentarily touches the contact, then the
input to gate G2 on pin 5 will be a logic 0. Therefore, the output of G2 is put into a high or logic 1
state. This logic 1 state is passed back to the input on pin 2 of G1, which together with the logic 1
state on pin 1 from the pull-up resistor causes the output of G1 to go low to a logic 0 state, the
reverse of the original situation.

Now, should the switch bounce off contact B and put alogic 1 on pin 5 again there will be no
further change in the output of G2 because the other input, pin 4, is at a logic 0 state and we only
reguire one input to be a logic O state for the output to be a logic 1.

1K
+ 5V —AMr—p
A
GND B
1K
+ 5V—AA

Figure 2.20 Experiment 2.3 Schemalic.

Digital Electronics

So no matter how many times the switch (or key) bounces onthe contacts only one change of
state will occur at the outputs, that is, only one pulse is produced each time the switch is activated.
This is exactly the situation we require in digital electronics to perfect a digital counter.

PROCEDURE

STEP 1 Wire the circuit as shown allowing reasonable lengths of lead to the switch sothat it
can be operated easily.

STEP 2 Using the Lamp Monitor, probe the pins of the 74LS00 to checkthe operation of the
latch circuit and complete the following table:

SWITCH POSITION PIN 1 PIN5 PINS 2 AND 6 PINS 3 AND 4

up
Mid-position
DOWN
Mid-paosition
up

This table should verify the description given in the discussion. Obtaining the mid-position of your
switch may be a little tricky depending on the nature of the switch.

STEP 3 Leave this circuit wired on the breadboarding socket for the next experiments.

EXPERIMENT 2.4
DIGITAL COUNTER CIRCUITS

COMPONENTS 1 * 74L890 decade counter
1 * 74L593 binary counter
5* Lamp monitors
1 * Debounced switch or pulser

DISCUSSION The ability to count pulses or events is a very useful feature of all digital circuits.
There is, however, a need to display the count from a digital circuit, and this is readily
accomplished using either Lamp Monitors or numeral displays. The HP 5802 hexadecimal latch
display is the simplest to wire, but it is quite expensive. Seven-segment displays are common but
require decoder/driver chips, such as the 74LS47, to convert the four-bit number code to the
seven-segment display code.

The 74LS90 decade counter chip is an integrated circuit containing four flip-flops. The circuit
has the ability to count in binary-coded decimal (BCD) and will countto 9 before resettingto 0and
continuing its count. The outputs of the four flip-flops are available atthe pins8,9,11,and12and
are labeled C, B, D, and A, respectively. To permit the chip to countin decimal, output A at pin 12
must be wired to Input B at pin 1. Pulses from a debounced switch or pulser are input at pin 14,
Input A. Other pins available on the chip cause the countto beresetto0, RO atpins 2and 3, andto
be reset to 9, R9 at pins 8 and 7. Refer to truth table at end of Chapter 2.

35

36 Chapter 2

The 741593 binary counter chip is identical in pin-out to the 74L.S90 counter chip but its
outputs are arranged to count the full four-bit binary (i.e. hexadecimal 0 to F). The 74L.593 only
has the reset to 0 controls at pins 2 and 3 and not the Reset to 9: pins 6 and 7 have no internal
connections.

Using LEDs to display the output condition of the counter where a lit LED corresponds to the
logic 1 state and an uniit LED corresponds to the logic 0 state, the appearance of the LEDs willbe

as follows:
LIGHT EMITTING DIODES COUNT

D C B A

0 0 0 0 (o)
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 (0} 8
1 0 0 1 9
1 0 1 0 A
1 0 1 1 B
1 1 0 0 C
1 1 0 1 D
1 1 1 0 E
1 1 1 1 F

PROCEDURE

STEP 1 Wire the circuit as shown in the schematic, Figure 2.21, {with the +5-V rail
disconnected!) together with the debouncer circuit from Experiment 2.3.

STEP 2 By activating your debounced switch you should cause your counter to advance by
one count each time. If this does not happen, thoroughly check all your wiring connections.

STEP 3 Each time you throw the switch you create a logic transition. We have seen that the
count increments on a negative edge (transition from +5 V to 0 V). Note the direction you move
your switch to obtain this transition edge. Does this agree with the output of the debounced circuit
lamp monitor?

STEP 4 Now disconnect pin 2 from 0 V and connect it to +5 V. You will note that your
counter has reset to 0. If you replace pin 2 backto 0 V and repeat the sequence with pin 7, you will
see the counter reset to 9. What are the logic states of the unconnected pins 3, R0(2), and 8,
R9(1)?

STEP 5 Now disconnect from the +5-V supply, remove the 74L.590 decimal counter, and
repiace it with a 74LS93 binary counter in exactly the same position. Reconnect the +5-V power
rail, and repeat Steps 2 to 4 again. The count should now progress up to 15 or F on your display.
The reset 9 input should have no effect.

Digital Electronics

g + 5V
19 ' 470 ohm each
2 L
> ROa oD|11
l rﬂgb OC| 8
14 oB| 9 l LEDs
PULSER 1A OA |12
1 _T
1B
'90

Figure 221 Experiment 2.4 Schemalic.

STEP 6 Can you suggest a circuit modification to convert the 'LS93 o a decimal counter?
First note that you have two free NAND gates on the 74LS00. If you gate outputs B and D of the
'LS93 through the first NAND gate and invert this NAND gate output with the second NAND gate

o [

| S
2 11 T 2)
o’
s | |

'8 |9 . ,
_ 14 7
PULSER = : 12 .,

12 9

00 '00
" 13 8 10

Figure 2.22 AND from NAND Invert.

37

38

Chapter 2

and then connect this output to RO(1) at pin 2 of the 'LS93, what happens? Why? Your circuit
should look like the circuit shown in Figure 2.22.

STEP 7 By selecting any two outputs of the counter and ANDing {NAND and Invert) themto
RO, you can make the following modulus counters: 2 (with outputs A and B), 5{Aand C),6 (B and
C), 9 (A and D), 10 (B and D), and 12 (C and D).

STEP 8 You can verify the excessive bounce of a mechanical switch by substituting the
undebounced switch. Leave the common lead of the switch connected to the 0-V rail and, after
removing the jumper from pin 14 of the counter, insert one of the other switch leads into pin14.
There is no way to predict the number of bounces. If it exceeds 16 you could not know with the
present circuit. Can you suggest a way to find out if the number is less than 160 (16 * 10) withthe
components on hand? How about cascading the D output of the 'LS90to the A input of the 'LS93?
You will need eight lamp monitors.

STEP 9 Save your circuit for the next experiment,

EXPERIMENT 2.5
GATING A COUNTER

COMPONENTS 1 * 74LS93 4-bit Binary Counter
1 * 74L500 Quad Two-Input NAND Gate
1 * 556 Dual 555-type Timer
4 * Lamp Monitors
1 * Debounced switch or pulser
27 0.01 uF Capacitors
2 * 0.10 uF Capacitors
2 * 5.1-Kohm Resistors
1 * each 2.2-, 3.3-, 7.5-Kohm Resistors
2 " 10-Kohm Resistors

DISCUSSION ' In this experiment we will show how a gate can be used to stop and start a
counter. The use of such a system can be extended by using pulses of controlled length from a
monostable applied to the gate to turn the counter on and off. In this way very high frequency
clock signals can be counted by the counter.

The schematic for this experiment, Figure 2.23, explains the action of the circuit. The
controlling gate is an AND gate (NAND and Invert) whose truth table should be reviewed during
this explanation. To one input of the AND gate is connected the incoming square wave clock
frequency that is to be counted, to the other input is connected the monostable pulse. As you
remember, both inputs of the AND gate must be high (in a logic 1 state) before the output goes
high. The pulses from the clock are alternately high and low and while the monostable pulse is
kept in the low state (logic 0) the output (pin 8) of the AND gate will remain low, so in effect no
pulses from the clock will pass through to the counter.

When the monostable pulse goes into the logic 1 state, the AND gate output will gohigh every
time the clock input goes high thus passing the clock pulse through to the counter. By connecting
a pulse of known time length on to AND input pin 12, the gate can be opened for a set period and
the number of clock pulses counted for that time interval. In this manner, a digital counter canbe
made to operate as a frequency meter.

Digital Electronics

MONOSTABLE
5.1K each
10m
T = 133‘ac 10
1
10|<1 5 1314 109 12w.m 8
R(b) ASTABLE
o 5% |37 32| 5960 |y 000 Hz
1 1

| COUNTER
('90:pin 2)

0.1 4 8 7 0.01uF
“Fl‘ 6l | |l

PULSER =#— 0.01uF 0.wF V

Figure 2.23 Experiment 2.5 Schematic.

The Monostable and the square wave frequency generator (astable multivibrator) will be built
from the two 555 timers on the 556 IC. The pulse length for the monostable will be approximately
10 milliseconds with R{a) = 10 Kohm and C = 0.1 microfarad. The frequency of the astable will
be approximately 1000 Hz when R(a) and R(b) are 5 Kohm and C = 0.1 microfarad.

PROCEDURE

STEP 1 Remove the +5-V jumper from the cable socket and alter the circuit from
Experiment 2.4 as shown in the schematic, Figure 2.23. Do not forget to connect +5V and 0 V1o
the 556 chip.

STEP 2. Apply power to the circuit. The monostable trigger is active on the negative edge of
the signal from the debounced switch. Setthe switch inthe logic 1 state. Each time you trigger the
monostable, you will have to reset the switch.

STEP 3 Check whether the astable is operating. You can do this by temporarily jumpering
the output of the astable to the input A of the counter. Be sure to first disconnect the other lead to
the counter input. If the astable is running, all lamp monitors should appear to be on. Due to the
rapid counting rate, our eyes are unable to distinguish individual flashes of the LEDs, so they
appear to be lit continuously.

STEP 4 Now replace the output of the astable to the gate input of the 'LS00 and the inputto
the counter to the output of the second (inverting) NAND gate. Lift the lead from pin 2 of the
counter out of the 0-V rail to reset the counter to 0 and then replace it.

STEP 5 Trigger the monostable, and observe the count on the lamp monitors. It should be
about 10. Without resetting the counter to 0, repeat and record the count about ten times. We
obtained the following sequence of counts: 0, 11, 6,1, 12, 7, 2,13, 9, 4.

STEP 6 Calculate the difference between successive pairs of your counts. Remember that
when the second number is smaller than the first to add 16 to the second number before taking

the difference. Qur results were: 11,11,11,11,11,11,11,12, 11. Can you explain why one of our

39

40

Chapter 2

counts was 12?7 Remember that we are actually counting negative edges, and the sample taken
during the monostable enabling of the gate could occur just before the first negative edge.

STEP 7 You can change the frequency of the astable by changing the R{b) resistor value.
We got the following counts (in parentheses) for the following resistances: 10K (6 or 7), 7.5 K (8 or
9), 5.1 K (mostly 11), 3.3 K {14 only), 2.2 K{2 onily—this reaily had to be 18). The corresponding
frequencies are (assuming the monostable was 10 msec): 6500, 8500, 1100, 1400, 1800 Hz,
respectively. Of course, the uncertainty is at least 10%.

STEP 8 |If we had cascaded the 'LS90 to the 'LS93 as suggested in the last experiment our
result for the 2.2 K value of R(b) in Step 7 wouldn't have to be a guess.

SUMMARY Many examples of just how useful gates can be in controlling events will be
given later on in this book. This has been a simple experiment to illustrate the principle of a gate.

EXPERIMENT 2.6
DECQODING

COMPONENTS 1 * 7405138 three-to-eight line decoder
6 * Logic switches
8 * Lamp monitors

DISCUSSION Decoding is the means by which microcomputers can send information to
specific devices. Several bus lines of the microcomputer (called the Address Bus) are used to
output a binary number (called the Port Address or Device Code). This number is like the output of
a counter and has to be converted into a single enabling clock pulse for the device whose code
corresponds to that number. Decoder integrated circuits like the 74LS154 described in the text or
the 74L5138 used in this experiment are used to generate unique clock pulses from the address
bus.

To see how a decoder functions we will work through an experiment to demanstrate how the
device numbers are produced at the eight outputs of the decoder from the various digital codes
applied to the inputs of the decoder. The digital codes applied to the inputs are representative of
the address information put out by the microprocessor. Each of the eight output lines could then
be used to enable one of eight devices.

PROCEDURE
STEP 1 Wire the circuit according to the schematic, Figure 2.24. If you do not have a set of
logic switches, use jumper leads to +5 V and 0 V for the digital inputs, The logic state of the

outputs will be displayed by the LEDs: logic 1 when on, logic 0 when off,

STEP 2 Apply power and with the three inputs A, B, and C setto logic 0, adjust the three gate
switches to obtain a logic 0 (lamp off) state for channel 0 (pin 15). What are the settings on the

Digital Electronics

+5V
A1 O— P16 Ve ga%'.f 33 18
B 2 5—— b{115Y0 _w 1 L
c 3 O 1114 Y1 L= 2 [9 470
G2A* 4 O—q p13Y2 (= 3 10w +5V
G2B*5 O p12Y3 'LS138 | ¢ 11
G1 6 O {111 Y4 [w 4 _<12*'-—-®j
5 13 LED
y7 7 < 110 Y5 - L GND
GND 8 0 T—p19Y6 [~ 6 L 14
3.3K
'L$138 hs 2 2 < 1P
2 3 5
+5V — J?

Figure 2.24 Experiment 2.6 Schematic.

gate switches? G1 should be logic 1, and G2A* and G2B* should be logic 0. Any other
combination of the gate switches should have alil lamps on.

STEP 3 Now complete the following truth table for all the combinations of digital input code.

C B A

INPUTS ——— Y OUTPUTS ———

01 2 3 465 6 7

0 0 0O o1 1 11 1 11
0 0 1
0 1 0
o 1 1
i 0 0
1 0 1
1 1 0
1 1 1

STEP 4 Could you say with certainty that for each combination of digital input code there
was only one output line activated? Your answer should be yes. Are the outputs active high or
active low?

STEP 5 Ifthe digital inputs were connected to address lines A5, A4, and A3, complete the
following table, using the binary weights of the lines, which shows the various decimal numbers
required to activate a particular output line when A0 and A1 are always at logic 1 and A2 is always
at logic 0.

41

42 Chapter 2

ADDRESS LINE INPUTS OUTPUT LINE 74L5138
Weight: 32 16 8 2
A5 A4 A3 A Al A 601 2 3 4567

0 0 0
0 0 1

=y

3
1
19

[B o s B s B e i L IO =
ok ek ok ek
J N R Y

We will use this table in Chapter 4.

STEP 6 You should, by studying the previous table, be able to deduce (at least, partly) how
the 74L5138 decoder chip on the buffered Interface Board produces the unique device select
codes as shown on your ribbon cable connectors.

03 0

microcomputer
fundamentals

A microcomputer consists of four major components and the support logic circuitry
needed to coordinate them. The four components include (1) a microprocessor, (2) a
certain amount of memory registers ranging typically between 9 KB and 64 KB (1
KB = 1024 eight-bit registers), (3) aninput device, which is usually a keyboard, and (4)
an output device, which is typically a video monitor or television set.

A microprocessor is a very large scale integrated (VLSI) digital circuit consisting of
an arithmetic logic unit (ALU), several registers, and the subsidiary decoding, timing,
and control circuitry. Most microprocessors are 40-pin DIP ICs. There are several
different microprocessors in use currently, some of which differ significantly from the
others in the way they operate. There is one group, however, that functions similarly, is
known as the80 family, and consists of the following microprocessors: 8080, 8085, Z80,
and NSC800. To say that the 80 family microprocessors function similarly does not
mean that they are identical but that they have comparable internal registers and have
a large portion of their instruction set in common. Thus the Z80 microprocessor hasan
extensive instruction set consisting of 698 distinct operations. The 8080 has 244
operation codes, all of which are included in the Z80’s set. We shall refer to these as the
8080 subset when we discuss machine language programming in a later section.

THE MICROCOMPUTER BUSES

All microprocessors can be schematically represented as consisting of three sets of
connections exclusive of the power supply connections. Each set is a number of
parallel wires (or lines) called a bus. The three buses are known as the Data Bus, the
Address Bus, and the Control Bus. In its simplest definition, a bus is a common signal
pathway. This means that each bus line serves to carry information (digital signals)
between the microprocessor and all other components of the microcomputer. Figure
3.1 illustrates the components of a microcomputer and the connections of the three
buses. Notice in Figure 3.1 that the Data Bus is drawn with arrow heads pointing in

43

44 Chapter 3

MICRO-
PRO- ADDRESS BUS (16)

S PRI I | |]

UNIT DATA BUS ()

||110)'I"IJJI"I1—|Z_

c .y
T |
H .
L 1 ¥ [| _
- BEEEI-D Lt DISPLAY
MEMORY INPUT) [| ©oUTPUT)

Figure 3.1 Componenis of a Microcomputer.

both directions. This emphasizes the fact that the Data Bus is bidirectional; data canbe
transmitted either from the microprocessor to one of the other components or vice
versa. The Address Bus is unidirectional and transfers information from the
microprocessor to the other components. Also note that the Control Bus isrepresented
as five individual lines having two pairs going out from the microprocessor and one
bus line coming into the microprocessor. This is highly symbolic because there are
more than just five control lines on the Control Bus. It is drawn thus to emphasize on
the one hand the greater individuality of the Control Bus lines while serving, on the
other hand, as a reminder that while some of the control lines transfer signals out from
the microprocessor, there are some that transfer signals into the microprocessor. For
all the various types of microprocessors referred to previously (including those of the
80 family), it is the Control Bus lines that show the greatest variation among
microprocessors.

All so-called eight-bit microprocessors have an eight parallel line Data Bus and are
thus capable of transferring eight bits of data simultaneously. These lines are labeled
D0, D1, . . . , D7. Note that this means that the transmission of a data byte (eight bits)
makes possible 256 different “words” or codes. The Address Bus for the eight-bit
microcomputers consists of 16 parallel address lines providing for the simultaneous
transmission of 18 bits of information representing 65,536 (256 X 258) codes. We shall
see that in certain instances it is convenient to consider the Address Bus in two parts,
each of which forms one byte and which we will denote as the Low Address Bus (with
the eight lines labeled A0 through A7) and the High Address Bus (the lines labeled A8
through AlS).

For a given operation of the microprocessor each of the buses serves to provide
information that answers one of the questions What?, WhereP, When?, and How? the
action of the microprocessor’s operation is to take place. The Data Bus carries what
information is to be transferred (either to or from the microprocessor). The Address
Bus carries the information of where the data byte is to be transferred, that is, to or

Microcomputer Fundamentals

from which address. One of the Control Bus lines will signal when the data byte is to
be transferred and, depending on which one of the control lines was active,
determines how the transfer is to take place.

Because our interest is in interfacing the Timex/Sinclair models, we shall concern
ourselves only with the buses available to us. These lines are physically located at the
right rear of these computers and are available as pads, or small tin-plated strips, on the
computer’s printed circuit (PC) board. The pads are arranged in parallel rows of 23 (28
for the Spectrum and 32 for the TS2068) on either side of the PC board. One pair of the
pads has been cut out to form a keyway slot in the board. This slot serves as a keyway
guide to prevent misalignment when a PC edge connector is inserted on the board.
Figure 3.2 shows the positions of the pads and the signals assigned to each pad as
viewed from the rear of the computer. Pad 1 is to the left side as you face the keyboard
of the computer. Although the pad numbers differ on the three versions, the relative
positions of all the signals with respect to the keyway slot are the same on the B&W
models and the TS2000. Only the signals that are different from the TS2000 are labeled
on the other two versions. Pads denoted with a dash have no defined signal. The boxes
shown on the TS2000 connector are the signals actually used in the Interface Buffer
circuit described in Chapter 4. Note that these signals are all identical and that all
experiments are possible on any of the five Sinclair and Timex models. The block
labeled Interface corresponds to the connection referred to in Figure 3.1.

The easiest of the signals to identify at the interface connector are the eight data bus
lines, D7-D0, and the 16 address bus lines, A15-AQ. There are four power
connections, two of which are labeled 0 V (electrical ground), a third is the
unregulated DC supply voltage labeled +9 V, and the fourth is the regulated system
supply voltage of +5 V. The remaining 16 (or more) lines make up the Control Bus of
the Timex/Sinclair models. We shall have more to say about these signals after we take
a closer look at the Z80 microprocessor which is used in the Timex/Sinclair computer.
But we should draw attention to four of the control lines that are particularly important
to our ensuing discussion.

These four are all output control lines, meaning they originate at the microprocessor
and are transmitted to the other components of the microcomputer. Their abbrevia-
tions and labels are:

1 MREQ®, Memory Request;

2 I0ORQ®, Input/Output Request;
3 RD*, Read;

4 WR*®, Write.

As contro] signals, we note first of all that all four are active low. We shall use the
asterisk to indicate Control signals whose inactive, or quiescent, state is a logic 1 (+5
V) and whose active state is a logic 0 (0 V). The first two distinguish between the two
types of data transfer unique to the 80 family microprocessors. Whereas all
microprocessors must be able to request data transfer with the memory registers, the
80 family microprocessors have the additional capability to use the Low Address Bus
to request data transfer with an additional 258 input devices and 256 output devices.
This is not to imply that microprocessors other than the 80 family members cannot

45

GND 1 GND

A15 1 Al4 EAR 2 SPK/TAPE
A13 2 A12 A7RB 3 VAC
3 [__orf4[5v | 1
- 4 RAMCS* 5 _ 2 9V
———a==-B.mmma-KEY SLOT 6 KEY SLOT----- p— -
6 po] 7] GND 4
7 D1| 8] GND 5
8 D2l 9 PHI 8
9 10[A0 7
10 Ds|11| A1 8
1 D3|12| A2 9
12 D4|13| A3 10
13 IORQGE INT*|14 A15 11
14 GND NMI* 15 A14 12
15 VIDEO HALT* 16 A13 13
16 Y MREQ* 17 A12 14
17 V IORQ*|18 A11 15
18 U RD*|19 A10 16
19 BUSRQ* WR*|20 A9 17
—5V 20 RESET* BUSAK#* 21 A8 18
2 WAIT* 22| A7 19
+12v 22 BUSRQ* 23| A6
—12v 23 RESET* 24| A5 21
24 [Mix{25] A4 22
25 RFSH* 26 ROMCS* 23
AB 26 BUSAK* pypome* 27 RED
A10 27 A9 ROSCS* 28 GRN
_ 28 AN BNKEN* 29 BLU
I0OAS 30 _
SOUND 31 VIDEO
GND 32 GND
A B A B A B
ABOVE BELOW ABOVE BELOW ABOVE BELOW
SPECTRUM TS2000 TS1500, TS1000, ZX-81

Figure 3.2 Interface Edge Connectors of TS Models.
46

Microcomputer Fundamentals

transfer data to input and output devices, it means that they must make those devices
appear to be memory locations and use the full 16-bit Address Bus for addressing
them.

The remaining two control lines, RD® and WR*, determine the direction in which
the transfer is to take place. Because the reference point for transfer is always the
microprocessor, the Read control is used when data is to be read, or input, into the
microprocessor. Similarly, the Write control is used when data is to be written, or
output, from the microprocessor. It should be apparent that two of these control
signals (pulses) must occur simultaneously in order to determine the how of the
operation. In fact, from the interfacer’s point of view, it is more convenient to combine
them using some simple logic gates into the four alternate control signals:

1 MR*®, Memory Read;

2 MW?®, Memory Write;
3 IN*, Device Input;

4 OUT®, Device Output.

Each of these now uniquely provide both the type of transfer (memory or I/O device)
and the direction of the transfer. This combination can be made very simply with the
use of one integrated circuit. Because we wish our new control lines to be active low,
we recall from the discussion on gates in Chapter 2 that the unique output of the OR
gate is low only when both inputs are low. The 741832 IC consists of 4 two-input OR
gates and very nicely satisfies our requirements. The corresponding logic is illustrated
in Figure 3.3. We shall return to this concept more fully in our discussion of Device
Select Pulses in Chapter 4.

MICROPROCESSOR ARCHITECTURE

We now turn our attention to the logic structure, or so-called architecture, of the Z80
microprocessor. Figure 3.4 illustrates this architecture and we shall have occasion to
refer to it periodically as we proceed. The description of the architecture of a

' IN*

ouT*

WR* o

*

MREQ*

MwW*

Figure 3.3 Control Logic.

47

48 Chapter 3

INSTRUCTION REGISTER
DATA
BUS
[Ca | F | Lal r |
MREQ* ACCUMULATOR/FLAGS
IORQ * - B C . :
CONTROL RESET . B ¢
BUS RD* = D E D E’
g CLK
S GENERAL PURPOSE REGISTERS
1X R _|REFRESH
Y | |INTERRUPT
ADSSS"ESS INDEX CONTROL
PC PROGRAM COUNTER
SP STACK POINTER

ADDRESS REGISTERS

Figure 3.4 Z80 Architecture.

microprocessor amounts to a description not of the network of electronic circuits
within the integrated circuit but of the number and kinds of internal registers used to
store and manipulate the information stored in them. Examination of Figure3.4 shows
a set of various short and long boxes representing one-byte (eight-bit) or two-byte (16-
bit) registers, respectively. The figure also illustrates how the registers relate to the
Data and Address Buses. The Control Bus, on the other hand, does not tie in directly to
these registers but originates from other support circuitry within the microprocessor.
We see that in addition to the four control lines already discussed, two additional
control lines labeled Reset and ¢ {(Phi) have been included to aid in our discussion.

Each register is an internal memory register. There are additional internal registers
in the microprocessor but they are used by the microprocessor for internal
manipulation and cannot be accessed or manipulated through programming. All of
the registers shown in Figure 3.4 can be manipulated with programming instructions.
There are two sets of six general purpose registers, which serve as storage registers of
program variables although only one set is accessible at any one time. With certain
instructions, the general-purpose registers can function in the pairs BC, DE, and HL as
16-bit registers with the first-mentioned register of each pair serving as the more
significant byte. Of particular importance, the HL register pair can be used as an
address to index (point to) any memory register in external memory. The IX and IY
registers are also index registers similar to the HL pair but more versatile. They
become useful in programming techniques more advanced than are necessary for our
purposes. The Refresh and Interrupt registers are special-purpose registers whose use

Microcomputer Fundamentals

is beyond our needs. We now focus our attention on the remaining special-purpose
registers, which are of considerable importance in understanding how microproces-
sors work.

The A register is most commonly referred to as the Accumulator for the very good
reason that it is the only register in which arithmetic and logical operations can be
carried out with the general-purpose registers by the microprocessor. The results of
these operations are saved (accumulated) in this register. The only “true” arithmetic
that the microprocessor can do, besides counting, is addition and subtraction between
one of the general-purpose registers and the Accumulator. You might recall, however,
that multiplication and division really only amount to counted additions and
subtractions, respectively. The logical operations that the microprocessor performs
are all done bit-by-bit and consist of negation of A (that is, bitwise inversion, also
called complement, where each logic 1 is converted to a logic 0 and vice versa); and
ANDing, ORing, and Exclusive ORing between A and one of the general-purpose
registers, just as was described with two-input logic gates in Chapter 2. Asindicated in
Figure 3.4, most of the transfers of programmed data in and out of the microprocessor
use the Accumulator as the destination or source register.

The F, or Flags, Register is closely connected with what happens in the
Accumulator. Although it is an eight-bit register, only six of the eight bitsare active, the
other two are dummies. The six active bits are used to signify (signal) certain
information about the data byte which resulted from the last (most previous) math
instruction (arithmetic or logic). The three most important flag bits will be described,
the remaining three (Negate, Parity/Overflow, and Half Carry) are of no use for our
purposes

F7, the most significant bit of the Flag register, is the sign flag: when the result of
the last math operation resulted in the most significant bit of the result being in alogicl
state then F7 = 1. Why this is referred to as the Sign Flag requires explanation. We all
understand that the sum of two numbers of opposite sign but equal magnitude (+X
and —X) equals zero. Therefore, we can define the negative of a number as that
number which yields zero when added to the number in question. Thus, X + (—X) =
X — X =0. Now, we know that eight-bit numbers can be added, for example

11001001

What eight-bit numbers can be added to yield a sum of zero? Consider the sum:

00000001 1

+11111111 255

1 00000000 256
—256 Carry

0 Result.

49

50 Chapter 3

Notice a ninth bit (Carry) was generated. Obviously, if 00000001 = 1 then11111 111 =
—1!In fact, for the decimal range of eight-bit numbers from 0 to 255, we can consider 0
to 127 as positive numbers and 128 to 255 as negative numbers when it suits our
purpose. In binary notation, the positive numbers have D7 (the leftmost or most
significant bit of the eight-bit byte) = 0 while negative numbers have D7 = 1. There is
a simple trick for finding the negative of a binary number called the “two’s
complement of a number”: add 1 to the inverse (complement) of the number. For
example, the complement of 00000001 is 11111110; if weadd 1 (00000001) to this result
we obtain —1 or 11111111. We shall have occasion to check the sign flag when we
program the Z80.

The second important flag is the ZERO Flag on bit F6. If the result of a math
operation was eight bits of Os, then the Zero Flag s set (raised?) by becoming a logic 1.
Take care to note that if the Zero Flag is zero (F6 = 0), then the math result was not
zero!

We have already encountered the third important flag, whichis the CARRY F lag on
bit FO. The Carry Flag serves as a ninth bit for all arithmetic operations (not logical
operations because they are done bit-by-bit). Actually, the Carry Flag or Carry bitalso
serves as a BORROW bit when a subtraction is performed. We have already seen an
example of the Carry as the ninth bit created in an addition when we added1to—1.
Let's examine the Carry Flag when we subtract one byte from another. For example,

01100101 101 Minuend
— 01110010 — 114 Subtrahend
1 11110011 —13

+ 256 Carry

243 Result

But subtraction is just adding the negative of the subtrahend by taking its two’s
complement, then

0 01100101 101
+:1 10001110 142
1 11110011 243.

Notice that just as every positive number may have any nu mber of leading zeros (to its
left), every negative number must have that many leading ones.

Dealing in binary arithmetic takes some getting use to. Most personal computers are
programmed to translate bytes into decimal numbers when they are displayed to the
user. [t may make you more comfortable also to deal in decimal numbers. If you do,
then when it comes to knowing whether the Carry Flagissetto1 (or cleared to0) from
either a carry-on addition, or a borrow-on subtraction, you have to see whether the
decimal result is greater than 255 or less than0 (i.e., is negative). Remember that 255 is
the largest value a byte can have. Whenever you add two decimal bytes and the

Microcomputer Fundamentals 51

number is greater than 255, subtract 256 from the number and set the Carry Flagto 1,
Whenever you subtract two numbers and obtain a negative result, you muyst add 256 to
the result and set the Carry (borrow) Flag to 1. This has been illustrated to the right of
the binary arithmetic in the above examples.

Before describing the remaining three registers, we have to consider how the
microprocessor manages to run. The Control Line labeled ¢ (Phi) carries a continuous
train of digital clock pulses (i.e., it is a square wave). Each rising and falling edge of this
train is used electronically by the microprocessor to trigger the next appropriate event.
As a point of reference, the clock for the Z80A microprocessor can operate up to
frequencies of 4 MHz. (4 million pulses per second.) The frequency in the
Timex/Sinclair is actually 3.25 MHz. This means that each square wave is0.308 usec or
308 nanoseconds long.

The other control line we showed in Figure 3.4 was the Reset input line. When the
Reset control is made a logic 0 by momentarily grounding it with a pushbutton switch
or, as in the Timex/Sinclair, when the power is turned on to the computer, the 16-bit
Program Counter register is reset to zero.

The operation of a microcomputer starts by fetching a byte of machine code from
external memory at the memory address held in the Program Counter. The 16 bits of
the PC are placed on the Address Bus and the Control Lines MREQ® and RD* are
activated (momentarily made logic 0). The addressed memory register is enabled
and puts the contents of its eight-bit register on the Data Bus. The microprocessor
reads the byte on the Data Bus and latches it into the Instruction Register. The Program
Counter is incremented by the next appropriate ¢ (Phi) clock pulse so that it once
again is pointing to the next program byte in memory and the microprocessor
proceeds to electronically decode the instruction byte into the proper sequence of
actions appropriate to the instruction code.

It is convenient to group the train of clock pulses according to the action of the
microprocessor in executing an instruction. Each group is called a machine cycle, and,
in the 780, the shortest is four clock pulses in duration. Depending on how
complicated the instruction is, several machine cycles may be required to execute the
instruction. The set of machine cycles is called the instruction cycle. Each unique
instruction is always the same number of machine cycles and, therefore, the same
number of clock cycles when it is executed. For example, if a particular instruction
takes 18 clock cycles to be completed, then you can calculate that it will always take
18 X t (where ¢ is 308 nanoseconds on the Timex/Sinclair) or 5.54 usec to perform that
instruction.

The first machine cycle of each instruction cycle is always a Fetch operation in
which the instruction code is loaded from memory into the Instruction register. When
the microprocessor starts a new instruction it activates another Control line called M1
during the first machine cycle. We will have occasion to refer to the M1 Control signal
in Chapter 4.

There remains only one register to complete our description of the architecture of
the Z80 microprocessor. It is the 16-bit Stack Pointer register. There are many
instances when the microprocessor needs more storage space than its internal registers
can hold at any given time. This problem is solved by using external memory to store
any number of bytes in a kind of scratch pad called the Stack. This storage area is

52

Chapter 3

appropriately called a stack because for however many bytes are stored on it, the
Stack Pointer always holds the address of the last entry only. In other words, the Stack
operates like a push-down list of numbers. The last-in entry must be the first-out. The
Stack starts at a higher memory address and as bytes are appended, they are placed at
consecutively lower addresses. As bytes are recalled from the Stack, the Stack Pointer
automatically increments. Each stack operation consists in loading (PUSHing) or
removing (POPing) two data bytes. Thus, the Stack Pointer is always incremented or
decremented by two. The two bytes that are PUSHed or POPped may be either of the
register pairs: BC, DE, HL, IX, IY, or the Program Counter, PC. The more significant
by:ie (B, D, H, or Hi Address) is always stored first (at the higher stack memory
address).

MACHINE AND ASSEMBLY LANGUAGE

We have already mentioned that the Z80 microprocessor has a set of 244 of its 698
instructions, which we referred to as the 8080 subset. Because each instruction must be
decoded by the Instruction register as one byte, and a byte can be any number
between 0 and 255, it is apparent that there can only be a maximum of 256 one-byte
instructions or operation codes (opcodes). If the 8080 subset uses 244 of these 256, then
there are 12 unused bytes in the 8080 subset. For the Z80 to have 698 instructions must
mean that most of the extra (Augmented) Z80 instructions consist of more than one
byte. This is exactly the case. Four of the unused 12 opcodes are used as prefixes; that
is, when one of these four bytes is received by the Instruction Register, it signals the
microprocessor to fetch the next memory byte and decode it as an Augmented Z80
opcode. The decimal values of the prefixes for the augmented Z80 opcodes are 203,
221, 237, and 253. With these four of the 256 code values accounted for, we have only to
try to understand 252 others! Actually, we will not say much more about the
augmented Z80 instructions but confine most of our attention to the 8080 subset.

Because it is tedious to work with the opcodes as numbers, a set of abbreviations,
which serve as memory aids (mnemonics) for the machine language programmer, was
developed by the microprocessor manufacturer. These mnemonics describe each
type of operation performed. It is much easier to write a program in mnemonics and
then assemble it to the list of numbers that have to be entered into the computer
memory. The set of mnemonics is called the Assembler Language of the particular
microprocessor.

Six charts, included in Appendix A, can be cut out and glued onto cards to forma
sliding chart for assembling machine code. We shall describe the Z80 machine
language with reference to these charts. Youmay want to put the chart together before
proceeding; however, that won’t be necessary for our discussion.

The entire instruction set can be grouped into seven classes of operations. These are:

1 Math (arithmetic and logic) 8080 subset
2 Register transfer 8080 subset plus prefixes 221 and 253
3 Stack reference 8080 subset
4 Program branch 8080 subset

Microcomputer Fundamentals

5 Miscellaneous 8080 subset

6 Relative branch Z80 augmented set

7 Bit reference 780 augmented set (prefix 203)
8 Block reference 780 augmented set (prefix 237)

The first five classes are included in Chart A.1 in the Appendix. The Math ops are listed
in the three boxes in the upper half of the two righthand columns, and the Transfer ops
are listed in the three boxes in the lower right half. The second column from the left are
the Stack reference ops grouped in four boxes while the top three boxes in the leftmost
column are the program branch ops. The Miscellaneous ops are listed in the box in the
lower left corner.

The remaining three classes are included in Chart A.4. The small box in the upper
left corner contains the relative branch ops and the two large boxes list the operations
for the Bit and Block reference ops.

To give you some idea of the actual organization and logic of the eight-bit
instruction codes, we have to refer to our earlier discussion of the octal number base.
We can quickly cover half of the 8080 subset of instructions with the register Transfer
operations and the Math operations.

A register transfer operation consists of loading the contents of one register (the
source) into another register (the destination). Recall that there are eight registers
available for these one-byte transfers, namely, A, B, C, D, E, (HL), H, and L, where
(HL) is any external memory register whose addressis stored in the HL register pair at
the time. For convenience, we also refer to (HL) asregister M. Because there are eight
registers, they can be individually coded with three bitsas: B=0,C=1,D=2,E =13,
H=4,L=5,M =86, and A = 7. By dividing the eight bits of the instruction code into
three-bit octal groups {only two bits for the left group) as

X X X X X X X X
Op Code Destination Souce
type register register

and defining the Op Code type as 01, we can see the logic of the machine language
operation codes. For example, the opcode for LD A,C (read as “load A from C”) will
be

Q1 111 001
or 171 (Octal) which, on conversion to a decimal value, is
(1X 64) 4 (7X8)+ (1 X1)=121.
Find this value on the Decimal Assembler. If you have put the Assembler together,
locate the expression “LD A,” in the lower right Transfer box on Chart A.1 and pull the
slide out until the C column lines up. You should now be able to read: LD A,C121. If

you are reading from the charts, read the C column on Chart A.2 on the tenth row up
from the bottom of the chart.

53

54

Chapter 3

All64 “LD register, register” opcodes are similarly encoded except LD M,M which
is not encoded in this manner. Because it doesn’t do anything useful, the LD M,M code,
166 in octal, is used for the HALT instruction. Verify its decimal value (1 X 64 + 6 X
8 + 6 X 1) by finding it in the lower right box of Chart A.1. We have now covered
about one-fourth of the 8080 subset.

We can cover another one-fourth by understanding how the octal-based machine
code for the 8 one-byte Math operations are encoded. Recall that these are all
performed with the Accumulator register and one of the other eight registers. Notice
that there are eight of these operations, so again they can be coded with a three-bit
octal digit. These are:

MNEMONIC CODE OPERATION
ADD Ar 0 LETA=A+r
ADC Ar 1 LETA=A+r+ Carry
SUB r 2 LETA=A—r
SBC Ar 3 LET A=A —r— Carry
AND r 4 LET A = A AND r bitwise
XOR r 5 LET A = A XOR r bitwise
ORT 6 LET A = A OR r bitwise
CPr 7 LETA=Abut F=result of A—r

where ris any one of the eight registers. The Carry bit (flag) being added or subtracted
for codes 1 or 3 respectively in the list is treated as the least significant bit with seven
leading zeros. The logical operations of codes 4 -6 are bit-by-bit operations just like we
described in Chapter 2. The Compare operation, CP r, does not alter the A register’s
value but does set the flags in the F register according to the result of subtracting r from
A.

Because the Accumulator register is always involved in the Math ops, the operation
code needs only to specify which Math op code and what other register is to be used.
The Octal partition is:

X X X X X X X X
Op code Math Register
type operation code

where the Op Type code for Math ops is 10. For example, the op code for ADC A,E
(read as “Add E with Carry to A”) would be

10 001 011

or 213 (octal) and 139 (decimal).

There is similar order for the rest of the machine code but for codes beginning with
octal digits 0 and 3 are arranged somewhat differently. We leave the remainder of
octal decoding of the 8080 subset to the interested reader. The point of this discussion,
besides introducing over half of the machine code in the easiest way, is to illustrate just

Microcomputer Fundamentals

how the Instruction Register of the microprocessor can analyze the eight bits of an
instruction. By reading the first two bits (octal 1 or2), it can decide how tointerpret the
remaining six bits as register and/or Math op codes in two sets of three bits.

We now turn our attention to the other types of machine language instructions
available. You may have noticed that in addition to the eight columns for registers A, B,
C,D, E, M, H, and L, there are three other columns in the Transfer and Math columns
on Chart A.2 which are labeled N, X, and Y. The references to N {number) are called
immediate references where the number N is the byte immediately following the
instruction in the program listing. This second byte of the instruction is called an
operand and allows the constant N to be incorporated directly into the program.
Notice that it is a constant and not a variable. Once it is incorporated into the program,
it cannot be changed without changing the program. For example, suppose at some
point in your program (say at memory location MEM = 16540) you knew that register
A held some number from which you wanted to subtract the number8. You would use
the instruction SUB N, <8>>, and your program list would include:

ADDRESS LABEL MNEMONIC CODE

16539 MEM—1 : :
16540 MEM SUB N 214
16541 MEM +1 <8> 8
16542 MEM+2 ' :

These instructions are two-byte instructions where the first byte is the op code and the
second byte is the operand.

If you look over the other boxes on Chart A.1 you will also find some instructions
which include a double N or NN reference. If you guessed that these are three-byte
instructions consisting of an op code followed by two operands, you were right. There
are two ways the NN reference is used. In the direct form, you can load any register
pair with a two-byte number. The register pairs that you can load immediately include
BC, DE, HL, as well as the Stack Pointer, SP, and the Index registers, IX and IY. Your
program list, again at some memory address, MEM, would read:

MEM—1 : :
MEM LD HLNN 33
MEM+1 <N(Lo)> 130
MEM+2 <N(Hi)> 64
MEM+3 : :

where the first operand byte (130 in the example) is loaded into the low register (C, E,
L, etc.) and the second operand byte (the one at the higher memory address, the
number 84 in the example) is loaded into the high register. The second way that the
NN byte is referenced is in parentheses as, for example, LD A,(NN). This is the
indirect form. In this form, (NN) refers to the contents (one byte) at the memory
address NN. Whenever you encounter one or two Ns in the Assembler Language it
reminds you that the instructions have one- or two-byte operands which must be
included in the program list immediately following the opcode.

55

56 Chapter 3

We noted earlier that there are also Math and Transfer instructions, which refer to
columns labeled X and Y. These are just abbreviations for the Index registers IX and
IY. All of the instructions that reference the Index registers belong to the Z80
Augmented set and not the 8080 subset. This means that the opcode is preceded in the
program list with a prefix byte. You might recall that the IX and IY registers can
perform every operation that the HL register pair performs. If you examine these
instructions, you will note that they have the same opcode as the corresponding HL
instruction and that they differ only in having a prefix. The other difference between
HL and the Index registers is that in indirect references, (HL) = M, (IX) = X, and
(IY) =Y, a relative displacement from the indexed memory address must be
specified. This is summarized in the third box in the second column on the right in
Chart A.l. On the slide table, Chart A2, the prefix is denoted by a p and the
displacement by a d. Thus, these are three-byte instructions of the form, for example,
for LD (IX+d),A:

MEM—1 : ;

MEM IX Prefix 221
MEM+1 LD (HL).A 119
MEM+2 Displacement —128to+127
MEM+3 : ;

Note that the displacement is given in two's complement notation as we discussed
earlier. Thus, not only can we reference the memory location pointed to by the IX or
IY register, but any memory location spanned by the displacement value without
changing the value of the Index register. If you specifically wanted to reference the
address held in the Index register, you would have to give a displacement of zero.

The remaining Math ops include the 16-bit ADDs and both 8- and 16-bit increment
(add 1 to the current value) and Decrement (subtract 1) instructions. A particularly
useful set of Math instructions cover the Rotate operations. The 8080 subset includes
four of these, which operate on the Accumulator. The Z80 Augmented set has seven of
these Shift/Rotate instructions, which can operate on any of the ten registers: A, B, C,
D, E, H, L, M, X, and Y. These augmented instructions use the prefix 203 and include
the four Rotate ops of the 8080 subset. Each of the seven types is most easily described
by the diagram in the upper right box on Chart A 4. The data bits of the register are
shifted one bit position to the right or left, with some of the instructions including a
ninth bit (the Carry flag) in the operation. Note the redundancy between the first four
in this box on the A column and the box on Chart A.1 without the prefix. The remaining
four Math ops include the decimal adjust accumulator (DAA), complement the
accumulator (CPL), set (to logic 1) the Carry flag (SCF), and complement (change its
logic state) the Carry flag (CCF). (Except for DAA, these are self-explanatory. The
DAA is a binary-coded decimal operation of little immediate interest.)

The Stack operations are all two-byte Transfer operations whose descriptions are
straightforward. The EX mnemonic stands for “Exchange” and corresponds to a swap
between the registers specified (direct or indirect). The PUSH and POP operations
were discussed previously and are of significant use for saving and restoring values of
the registers with the Stack.

Microcomputer Fundamentals

The major branching instructions include Jumps (like GOTO in BASIC), Calls (like
GOSUB in BASIC), and Returns (just as in BASIC at the end of a subroutine). These
instructions are either unconditional (JP NN, CALL NN, RET) or conditional. The
decision for the conditional branches are made on the Flag register bits with two
choices (1 or 0 for the particular Flag bit). These are shown in the left tablein Chart A.2
and the corresponding box on Chart A.1. The two-byte operand for the Jumps and
Calls are the specific memory address (Lo address byte first, Hi address byte
second).The RET are one-byte instructions because the return address of a Call is
automatically PUSHed onto the Stack when the Call is executed and automatically
POPped off the Stack when the Return instruction is executed.

The Restart instructions, RST X, are one-byte Call subroutine instructions having
fixed address destinations. These instructions automatically branch to High Address0
and Low Address 0X0 (Octal base!) where X is the RST number 0 through 7. These
instructions are of little utility to the user of a Timex/Sinclair because their destinations
are in the ROM using dedicated subroutines.

We have already seen that the 8080 subset consists of 244 opcodes and that of the 12
unused codes (out of the 258 possible ones), the Z80 Augmented set used four for
prefixes. The remaining eight are also used in the 780 Augmented set but without
prefixes. These are shown in the upper left corner of Chart A 4. Six of the eight are
branch instructions having a very important distinction from those just described in
the 8080 subset. These six branch opcodes arerelative jumps. Whereas it was necessary
to given an absolute (two-byte, NN) memory address for the destination of the 8080
jump opcodes, JP; the relative jumps, JR, use a one-byte displacement operand from
the current value of the Program Counter. Because the Program Counter will point to
the next opcode in the program after it has fetched the operand byte from memory,
that memory address becomes the reference or zero point for the relative jump. We
have seen that a one-byte number can, when convenient, be treated as a positive or
negative number. In calculating the displacement this technique is used for the relative
jumps. For example, a jump of ten locations forward in the program is +10 while a
jump of ten locations backward will be 256 — 10 = 246. Therefore, from the PC
reference point, a relative jump can be executed up to +127 memory locations
forward and — 128 = 256 — 128 = 128 locations backward.

The advantages of the relative jump compared to the absolute jump are twofold. It
saves program space by using fewer bytes, and more importantly, the routine that
contains a relative jump is independent of absolute location in the program and canbe
relocated without having to respecify the destination address.

Of the six relative jump opcodes, one is unconditional and four are Flag conditional
with branching occurring on Nonzero, Zero, Noncarry, or Carry. The sixth, DJNZ, is
also conditional but instead of depending on a Flag bit, it is made on the value held in
the B register. Each time a DJNZ instruction is executed, the B register is decremented,
and the decision to branch is based on whether B is Nonzero. If B is Nonzero then the
jump is made, otherwise the next opcode to be executed is the one following the
DJNZ. This is a particularly useful instruction and is comparable to the BASIC
FOR ... NEXT command for repeating a sequence of instructions a number of times
(equal to B) when the displacement operand is negative, before proceeding.

The remaining two unprefixed instructions of the Z80 Augmented set are register

57

58 Chapter 3

transfer instructions. EX AF,AF’ exchanges the current accumulator and flags registers
with the alternate pair, while EXX exchanges the current six general-purpose registers
with their alternate counterparts. The values stored are preserved and can be
recovered on the next exchange instruction.

The six so-called Miscellaneous instructions of the 8080 subset are shown in the
lower left box of Chart A.1. The NOP instruction is a do-nothing or “no operation”
useful for allocating space in memory or using up time in execution. The EI, DI, and
HALT instructions are of significance for Interrupt servicing where external devices
can pulse the Interrupt Control line and cause the microprocessor to branch out of the
program it is currently executing. EI (Enable the Interrupt) and DI (Disable the
Interrupt), permit or prevent the Interrupt control line from activating the micro-
processor. HALT stops the program with recovery only possible by either pulsing the
Reset Control line, or from a pulse on the Interrupt Control line after the HALT
instruction has been executed, and this only provided that the Interrupt had been
enabled (EI) previous to the HALT. This latter technique is used excessively by the
Timex/Sinclair B&W models in SLOW mode.

The last instructions are the most essential ones for the Timex/Sinclair interfacer.
Although many versions of BASIC on 80 family microcomputers include commands
INP and OUT, the Timex/Sinclair does not. We must use the IN A,(N) and OUT
(N),A machine instructions in BASIC USR (User) routines if we wish to communicate
with external devices. These are two-byte instructions whose second byte (operand) is
the device code. We shall have more to say about these instructions in Chapter 4.

Now that we have surveyed the range of machine language instructions, we shall
conclude our discussion of the Z80 microprocessor by referring to the Table included
on Chart A.3. As we noted previously, each machine instruction takes a definite
amount of time to execute. This time, ¢, is measured in number of clock cycles, where
the actual duration of each clock cycle depends on the speed at which the
microprocessor operates (308 nanoseconds per clock cycle on the Timex/Sinclair
B&W models operating at a frequency of 3.25 MHz). There will be occasions when we
need to know specifically how long a portion of a program takes to execute. By
referring to the clock cycles table, the time can be computed by summing the #s for
each instruction in the routine. All Z80 instructions are given in the table. The three
columns in the left box of the table cover single register reference, indirect register pair
reference, and direct register pair reference instructions. The various branch
instructions and the remaining instructions are given in the right box of the table. Note
that for the conditional branches, the number of clock cycles depends on whether the
decision is or is not met.

EXPERIMENT 3.1
THE BASIC USR FUNCTION AND MACHINE CODE STORAGE

DISCUSSION The USR function allows machine language routines to be executed from a
BASIC program. In the Timex/Sinclair, this function calls a machine language subroutine. The
format of the USR function can be putintoa LET command; for example, the format we will use is:

Microcomputer Fundamentals

LET L = USR M

where ### is the BASIC program line number. Although any variable can be used, we have used L
because it is the same key as LET, =, and USR. The argument of the function, M, is the starting
(destination) address in memory of the machine language subroutine.

After the USR function has been executed, the value assigned to the variable L equals the 16-
bit value held in the microprocessor's BC register pair on return to the BASIC program. If the
BASIC program recalculates L into two bytes by the following lines:

150 LET B = INT(L/256)
160 LET C = L — 256*B

we can recover the contents of registers B and C. Recall that the decimal value ofa 1 6-bitnumber
is obtained by the equation:

L = 256*(MSBy) + LSBy

where L is the 16-bit decimal value, MSBYy is the more significant decimal byte (register B in our
case), and LSBy is the less significant byte (register C).

We noted in Chapter 1 that different addresses have to be used for the B&W and Colormodels.
This is primarily because the only simple way to SAVE and LOAD machine routines on the B&W
models is by storing them within a BASIC program. The particular address M = 1 6514 is uniquein
the B&W computers (ZX81, TS1000, and TS1500) because it is the first memory location
available “inside" the BASIC program. The B&W operating system always starts storing a BASIC
program at memory location 16509. Five bytes are used to hold the line number (two bytes), the
length of the line (two bytes), and a command code (one byte). If we make the first line of the
BASIC program a REM statement followed by as many bytes (or character spaces, because
each character uses one byte) as are needed to store the machine language subroutine(s), the
first character will be at memory address 16514(B&W). The space occupied by a REM statement
is ignored by the BASIC interpreter when the program is RUN. Editing the rest of the BASIC
program does not change the address locations of the code andthe entire programincluding the
machine language routine(s) can be SAVEd on cassette. Machine code can be easily SAVEd and
LOADed with the Color models. Therefore, it is easier to store the machine language routines at
the top of memary where the operating system cannot disturb it. To keep our instructions simple,
we will store our machine code at the same addresses inthe TS2000 and the Spectrum. Because
top of memary for the 16K Spectrum is 32767, we have selected address 32130 as the starting
address of our routines for the Color models. The advantage to using this address is more
apparent if the separate high and low bytes of the B&W and Color addresses are compared:

MODEL ADDRESS LOW ADDRESS BYTE HIGH ADDRESS BYTE

Baw 16514 130 64
Color 32130 130 125

Thus only the high address byte will be different in our machine code listings when an absolute
address is referenced.

59

60 Chapter 3

BASIC PROGRAM

1 REM 123456789 123456789 1234567890 (for B&W models)
1 CLEAR 32129 {for Color models)
10 LET Z = 0

20 PRINT ¢ NUMBER OF BYTES? »

30 INPUT N
40 LET M = 16514 (for B&W models)
40 LET M = 32130 {for Color models)

50 PRINT ‘“ ENTER CODE: »
60 FOR I = M TO M+N-1

70 IF Z <> 0 THEN GOTO 100
80 INPUT B

90 POKE I,B

100 PRINT I; “=" ;PEEK I
110 NEXT I

120 PAUSE 33333

130 LET 2 = 1

140 LET L = USR M

150 LET B INT (L/256)

160 LET C = L — 256*B

170 PRINT “B = *»;B, “C = *’;(C

PROCEDURE

STEP 1 ENTER the BASIC program. Throughout the rest of the experiments, differences for
the B&W and Color models will be indicated with the same line number listed twice as shown in
this listing. DO NOT enter the statements “for . . . models" into the BASIC line. The number of
bytes that need to be allocated in the REM statement are shown in groups of ten {counting the
space) with all digits shown in the last group before <<ENTER>>. The CLEAR # command for the
Color models protects the memory above that address from the operating system.

STEP 2 Ourfirst project is to verify that the USR function returns the Band C register values.

To do this, we need a simple machine language subroutine to Load Immediate BC with a pair of
numbers and return to BASIC. The instruction we need is: LD BC,NN. Our subroutine will be:

INSTRUCTION DECIMAL

ADDRESS MNEMONIC CODE
B&W / Color
16514 /32130 LD BC,NN 1
16515/32131 < N> 201
16516 /32132 <N> 1
16517/32133 RET 201

How many bytes long is the subroutine? Your answer should be 4.

STEP 3 RUN the BASIC program. Respond to “NUMBER OF BYTES?" with 4 and ENTER.

Microcomputer Fundamentals

STEP 4 Now respond to "ENTER CODE:" by ENTERIing each ot the four numbers of the
machine language subroutine in succession. The program will print your entries on the screen so
you can check your entries against the list. If you make a mistake, press BREAK and reRUN.

STEP 5 After your program is entered correctly, press any key (other than BREAK)to get out
of the PAUSE 33333 command at line 120. What do you observe for the values of Band C printed
on the screen? You should have B=1 and C = 201.

STEP 6 Whal is the distinction between the 1s at addresses 16514/32130 and 16516/
32132 and the 201s at addresses 16515/32131 and 16517/321337 Which are opcodes and
which are operands?

STEP 7 ReRUN the program but choose different numbers for the values at addresses
16515/32131 and 16516/32132.

STEP 8 LIST the program. If you are using a B&W model, what do you observe inthe REM
statement? Look up the codes for the first four characters in the Appendix of your User's Manual.
SAVE the BASIC program on cassette for the rest of the experiments in Chapter 3.

SUMMARY In addition to verifying that the USR function returns the value of the B and Cc
registers, we have seen that a machine language program works like a subroutine and returns to
the BASIC program on a RET instruction. The experiment also illustrates the Immediate Load
register Transfer machine language instruction.

EXPERIMENT 3.2
MACHINE LANGUAGE ARITHMETIC AND LOGIC OPERATIONS

DISCUSSION We have said that all arithmetic and logic operations are performed on the
Accumulator with any one of the other registers (including the Accumulator itself). Moreover, the
various bits in the Flag register are altered as a resultof these operations. Because we have seen
that we can obtain the contents of registers B and C from the BASIC USR function, we need a
scheme for transferring the A and F bytes to B and C so that we can observe the results of the
math ops. The AF register pair can be placed on the Stack with a PUSH AF instruction. Once on
the Stack, these bytes can be placed in BC with the POP BC instruction.

The ten Arithmetic and Logic operations found in the upper right box of Chart A1 will be
investigated. In particular, the Flag register bits will be examined and related to the operation
executed. The Flag bits are:

F7 F6 F5 FA F3 F2 F1 FO
MINUS ZERO NEGATE X HALF X EVEN CARRY
CARRY PARITY/
OVERFLOW

where X means the value of the bit is unassigned and indeterminate.

61

62 Chapter 3

PROCEDURE
STEP 1 |LOAD the BASIC program from Experiment 3.1 if it is not already in memaory.

STEP 2 Todisplay the binary values of B and C 0 that the individual bits can be examined,
add the following lines to your BASIC program:

200 DIM B(8)

210 LET B§=*« »

220 DIM C(8)

230 LET C$§=« »

240 FOR J=8 TO 1 STEP -1

250 LET B(J)=INT (B/2**(J-1))
260 LET B=B-B(J)*(2**(J-1))
270 LET B$=B$+STR$ (B(J))

280 LET C(J)=INT (C/2**(J-1))
290 LET C=C-C(J)*(2**(J-1))
300 LET C$=C$+STR$ (C(J))

310 NEXT J

320 PRINT B§,C$

330 PRINT TAB 16; “ MZ--—-- c”

This routine will take about 30 seconds to run. SAVE the BASIC program on cassette for use in
subsequent experiments.

STEP 3 The firstinstruction we shall examineis the XOR A, which performs an exclusive OR
on A with A. The subroutine we need is:

INSTRUCTION DECIMAL

ADDRESS MNEMONIC CODE

B&W / Color

16514 /32130 LD AN 62
16515/32131 <N> 255
16516/32132 XOR A 175
16517 /32133 PUSH AF 245
16518 /32134 POP BC 193
16519/32135 RET 201

RUN your program and ENTER the six codes of the subroutine as in Experiment 3.1, After you
have compared your listfor correctness, remember to press any key (except BREAK) to continue
past line 120.

STEFP 4 Make up a chart with headings:

<16515/32131> <C7> <C6> <CO0>

oP A{INITIAL) A(FINAL} MINUS ZERO CARRY
XOR 255 0 0 1 0
127

Microcomputer Fundamentals 63

Your results should have been as shown in the first line where A{INITIAL) is the byte in the
subroutine at address 16515/32131, A(FINAL) is the value of B printed on the screen, and the
Flag bits are from the binary digits of C printed on the screen and underlined by M, Z, and C,
respectively.

STEP 5 You can substitute other numbers into A by changing the operand on line

16515/32131. Rather than reloading the subroutine each time just to change one number, a new
number can be POKEd directly by typing (without a line number)

POKE 16515,127 <ENTER> (B&W)
POKE 32131,127 <ENTER> (Color)

then rerun the program by ENTERIng:
GOTO 60
After doing this, fill out your chart.
STEP 6 Repeat Step 5 several times, each time change the number to be lcaded into A.
What can you conclude about XOR A? You should observe that it always CLEARS the Aregister
and sets the Flags for a value of zero.

STEP 7 Now change the operation in line 16516/32132 from XOR to ADD A A by

POKE 16516,135 <ENTER> {B&W)
POKE 32132,135 <ENTER> {Color)

and
GOTO 60 <ENTER=>

Try several numbers again as in Step 5.

STEP 8 Repeat Step 7 using other opcodes for the Arithmetic and Logic ops until you are
satisfied you understand the resulis of each. Continue recording your results in your chart so you
can review them as you progress. In particular, of what special value is the operation OR A? You
should find that the flags are properly set for the number in the A register without altering the
number. This is especially useful because the Transfer ops do not alter the flag bits.

STEP 9 To carry out these ops with two different registers, we need a new subroutine to load
two registers. RUN your BASIC program, and enter the eight codes for the following subroutine:

INSTRUCTION DECIMAL

ADDRESS MNEMONIC CODE
B&W / Color
16514 /32130 LD BC,NN 1
16515/ 32131 <N> 127

16516/32132 <N> 128

64

Chapter 3

16517 /32133 LD AB 120
16518/32134 ADD AC 129
16518/32135 PUSH AF 245
16520/ 32136 POP BGC 193
16521 /32137 RET 201

Write down your results in a chart having the headings:

<16516/32132> <16515/32131> <C7> <C6> <CO0>
OP A(INITIAL) C(INITIAL) A(FINAL) MINUS ZERO CARRY
ADD 128 127 255 1 0 0

You should have the results shown.

STEP 10 You can POKE different values for C and B into locations 16515/32131 and
16516/32132 and also change the operations in location 16518/32134 but remember to use the
operations for the A,C registers.

EXPERIMENT 3.3
MACHINE LANGUAGE ROTATE OPERATIONS

DISCUSSION There are essentially two types of rotate operations: the eight-bit rotate in which
the Carry bit is in parallel with either D7 or DO (depending on direction of rotation), and the nine-bit
rotate in which the Carry bit is in series with the eight bits of the register. The Carry bitis the only
Flag affected by the Rotate and Shift instructions. As was pointed out earlier, the four rotates on
Chart A.1 belong to the B080 subset and are also repeated in the upper right box of Chart A.4 (A
column) when they are used in the Z80 Augmented set and require the Prefix 230. The only
difference between them is the time of execution. If you look on the Timing Table (Chart A.5) you
will find that the prefixed Rotates take 8t and the 8080 subset Rotates take 4t

PROCEDURE
STEP 1 Load the Basic program from Experiment 3.2 if it is not already in memory.
STEP 2 We can examine the 8080 rotates using almost the same subroutine we first used in
Experiment 3.1 by loading an immediate operand into A and ORing it to set the Flags based on its

value. This is because the Transfer ops do not affect the Flags but the Math ops do. RUN the
BASIC program and load the following 7 codes:

INSTRUCTION DECIMAL

ADDRESS MNEMONIC CODE
B&W / Color
16514 /32130 LD AN 62

16515/ 32131 <N> 129

Microcomputer Fundamentals

16516 /32132 OR A 183
16517 /32133 RLCA 7
16518/32134 PUSH AF 245
16519/32135 POP BC 193
16520/ 32136 RET 201

STEP 3 Make up a table to record your cbservations using the headings:

<16515/32131> <C7> <C6> <CO0>
OF A{INITIAL) A(FINAL) MINUS ZERO CARRY
RCLA 129=10000001 00000011 1 0 1

Your results should be identical to the first line shown.
STEP 4 Change the rotate instruction to RRCA by

POKE 16517,15 <ENTER> (B&W)
POKE 32133,15 <ENTER> (Color)
GOTO 60 <ENTER>

and record your results.

STEP 5 Repeat Step 4 with the RLA and RRA operations POKEd into location 16517 /32133
Make special note on the results of the Carry flag compared to the RLCA and RRCA ops. You
might also want to change the initial A value in 16515/32131 to 128 and 1 to verify your results.

STEP 6 The Z80 Augmented Rotates can be studied with a subroutine that returns the B
register and the Flags register. Note carefully the Transfer ops because these Rotates are notin
the Accumulator but directly in the register itself (B for our case). RUN the BASIC program and
enter the following 9 opcodes:

INSTRUCTION DECIMAL

ADDRESS MNEMONIC CODE

B&W / Color

16514 /32130 LD B\N 6
16515/ 32131 <N=> 129
16516 /32132 XOR A 175 {Clears A and F)
16517 /32133 Prefix 203
16518/32134 RLC B 0
16519/32135 LD AB 120
16520/ 32136 PUSH AF 245
16521 /32137 POP BC 193
16522 /32138 RET 201

STEP 7 Complete your table from Step 3 making enough changes in cperations at 16518/
32134 and values at 16515/32131 toc complete your understanding. Remember to work from
the B column of Chart A.5.

65

66

Chapter 3

EXPERIMENT 3.4
INDIRECT LOAD MACHINE LANGUAGE INSTRUCTIONS

DISCUSSION The LCAD instruction transfers the contents of one register (Source) to another
register (destination). We have seen that there are two kinds of LOAD instructions: direct and
indirect. Besides the microprocessor's registers, the source register can be any memory register.
When the memory register is part of the program list, we have called the transfer an immediate
load because the source register is the operand of the opcode. These transfer instructions are
called direct Joads because the source register is identified directly by name as eitherr(A, ... L)
or N. The indirect load is a transter instruction where the source register is identified by the 16-bit
register pair that holds (points to) the address of the source register. The mnemonics for indirect
load are written with parentheses around the 16-bit address, such as LD A,(BC) and LD A,(NN)
where the second load is an immediate indirect transfer and (NN) is a two-byte operand of the
opcade holding the address whose contents (one byte) is to be loaded into register A.

One of the extra capabilities of the HL register pair compared to BC and DE is a two-byte
transfer. The operations LD HL,(NN) and LD {(NN),HL are immediate indirect transfers where Lis
loaded from, or loaded into, respectively, memory location NN. The microprocessor then
increments NN to NN+ 1 and transfers the contents of that location from or to register H. There
are six other opcodes of the form LD (HL),rand LD r,(HL). The latter are given as column M onthe
lower right table in Chart A.2,

PROCEDURE

STEP 1 Load the BASIC program from Experiment 3.1. If program 3.3 is already inthe com-
puter either delete lines 200-330 or ignore the additional printout.

STEP 2 Forourindirect loads, we need to use memory locations that are protected from the
BASIC interpreter. In the B&W models, these are the unused character spaces in the REM
statement on line 1 of the BASIC program. Because 30 locations have been reserved, the highest
memory register available is 16543. In the Color models, there are at least 638 locations
CLEARed, therefore the unused bytes following the machine code up to 32767 are available.

STEP 3 |If you are using a B&W model, then enter the following BASIC command:
PRINT PEEK 16543 (B&W)

You should obtain 28{B&W) which is the character code for zero (the last character in the REM
statement). Now enter:

POKE 16542,37+128 (B&W)
and POKE 16543,28+128

LIST your program. The last two characters in the REM statement should still appear as $and 0
but in inverse video.

If you are using a Color model, enter:

POKE 32158,47 (Color)

Microcomputer Fundamentals

and POKE 32159,48
then PRINT PEEK 32158; PEEK 32159

The numerals 9 and 0 should appear on your display.

STEP 4 We can write a subroutine to load these values into L and H using the LD HL,(NN)
instruction. Of course, we will need to then transfer H and L to B and C if we are to have them
returned by the USR function. For the B&W computer models, the address NN=16542 must be
rewritten as two bmes or a base 256 number, equal to 64(MSBy) and 158(LSBy) because
64*256+158=16542. For the color computer models, the address NN=32158 equals
125(MSBy) and 158(LSBY).

STEP 5 RUN the BASIC program, and enter the following six codes,

INSTRUCTION DECIMAL

ADDRESS MNEMONIC CODE
B&W / Color
16514 /32130 LD HL.{NN) 42
16515/32131 <Lo N> 158
16516/ <HIN> 64
/32132 <Hi N> 125
16517 /32133 PUSH HL 229
16518/32134 POP BC 193
16519/32135 RET 201

B and C should return with the values we POKEd in Step 3.

STEP 6 The rest of the INDIRECT transfers are one byte, or single register, loads. To use the
(HL) or M opcodes, we will keep using location 16542/32158, RUN the BASIC program, and
ENTER the following seven codes:

INSTRUCTION DECIMAL

ADDRESS MNEMONIC CODE
B&W / Color
16514 /32130 LD HL,NN 33
16515 /32131 <LoN> 158
16516/ <Hi N> 64
/32132 <Hi N> 125
16517 /32133 LD B,(HL) 70
16518/32134 INC HL 35
16519/32135 LD C,(HL) 78
16520/32136 RET 201

B and C should return with the values you found in Step 5 except reversed.

67

68

Chapter 3

STEP 7 To transfer data from one of the microprocessor's registers to a memory register,
both the destination and address and the contents of the byte to be transferred have to be loaded
directly in the subroutine. RUN the BASIC program, and ENTER the following seven codes:

INSTRUCTION DECIMAL

ADDRESS MNEMONIC CODE
B&AW / Color
16514 /32130 LD BC,NN 1
16515/32131 <Lo N> 158
16516/ <HiN> 64
/32132 <HIi N> 125
16517 /32133 LD A(BC) 10
16518 /32134 INC BC 3
16519/32135 LD (BC)A 2
16520/32136 RET 201

What values for B and C should be printed on the screen? This will be address 16543/32159. If
you LIST the B&W program, the two last characters in the REM statement should now both be the
number 9 in inverse video.

EXPERIMENT 3.5
ABSOLUTE BRANCH INSTRUCTIONS

DISCUSSION The branch opcodes of the 8080 subset include unconditional and conditional
Jumps, Calls, and Returns. Because the Timex/Sinclair USR function implements the uncondi-
tional CALL, we have in essence been performing the three-byte CALL instruction by providing
the 16-bit destination address as the argument of the USR function in BASIC. Of course, all the
subroutines have also used the unconditional Return opcode as well. We shall examine the
absolute JUMP instructions with the understanding that subroutine Calls and Returns operate ina
similar manner.

PROCEDURE
STEP 1 Load the BASIC program used in Experiment 3.2.
STEP 2 RUN the program, and enter the following 16-byte subroutine:

INSTRUCTION DECIMAL

ADDRESS MNEMONIC CODE
B&W / Color
16514 /32130 LD AN 62

16515/32131 <N> 1

16516/32132
16517/32133
16518/32134
16519/32135
18520/
/32136
16521 /32137
16522 /32138
16523/32139
16524 /32140
16525/ 32141
16526/32142
16527 /32143
16528/32144
16529/32145

ADD AN
<N>

JP NZ NN
Lo Addr.
Hi Addr,
Hi Addr.
PUSH AF
POP BC
RET
PUSH AF
LD AN
<N>
POP BC
LD B.A
RET

Microcomputer Fundamentals

198
128
194
140

64
125
245
193
201
245

62

85
193

71
201

Note that the routine will return A=85 (alternate 0s and 1s in binary) if it makes the jump,
otherwise the value will be A{lnitial)+ 128. The Flags will have the same values irrespective of
whether or not the jump was made and will reflect the conditions at the time of the jump decision;
that is, onthe surm of A{Initial)+ 128. Make a table such as the following to record your results. The

first entry should be as shown:

<16515/32131>

oP
JP NZ,

A(INITIAL)

1

STEP 3 Using the same branch operation;

POKE 16515,255
POKE 32131,255
and GOTO 60
then POKE 16515,128
POKE 32131,128
and GOTO 60

Record your results for each case.

 c
A(FINALY M Z C
1 0 0

<C>

(B&W)
{Color)

(B&W)
(Colar)

STEP 4 Now change the branch operation of JP Z NN by

POKE 16518,202
POKE 32134,202

(B&W)
{Color)

and repeat the three values for A(Initial) as in Steps 2 and 3.

69

70 Chapter 3

STEP 5 Repeat Step 4 using JP NC,NN ({210); followed by JP C,NN (21 8),JP P,NN (242); and
JP M,NN (250). When you have finished, your table should have all the infermation to verify the
following summary table:

BRANCH DECISION FOR A= N+ 128
N= 1 255 128
A=129 127 0

OPS: JP NZ Yes Yes No
JP Z No No Yes
JP NG Yes No No
JPC No Yes Yes
JPM Yes No No
JPP No Yes Yes

STEP 6 In the table given above, you will see that the NC/C and M/P results are identical.
The only way they could be made to differ onan ADD instruction is by obtaining a resuit in A(Final)
which would set the Zero flag and not set the Carry flag. This condition is not possible foran ADD
operation if A(Initial) is nonzero. If you wanted to see a distinction between JP C,NNand JP P,NN,
how would you modify the subroutine? Try replacing ADD AN with SUB AN and repeating the
two jump instructions for the three different values ot Allnitial) used previously.

EXPERIMENT 3.6
RELATIVE BRANCH INSTRUCTIONS

DISCUSSION If you examine the relative jumps for the Z80 Augmented instructions, you will
note that there are four unconditional jumps based only on two flags: Zero and Carry. Because
they use a one-byte operand, the relative jumps (including the unconditional jump, JR d, and the
decrementing jump, DJNZ) can only jump forward up to 127 locations and up 10 128 locations
backwards. Recall that the one-byte operand is interpreted as a two's complement number and
that the displacement is relative to the Program Counter. At the time of the branch decision, the
Program Counter equals the address of the byle following the operand (or two more than the jump
opcode).

PROCEDURE

STEP 1 Load the BASIC program used in Experiment 3.5.

STEP 2 We can write a subroutine similar to the one in Experiment 3.5 but use the condi-
tional relative jump instruction instead of the corresponding absolute jump. Because this willbe a

Microcomputer Fundamentais

forward jump to a higher memory address, it willillustrate a positive operand. To illustrate a jump
backwards, we will substitute the unconditional relative jump for the second RET and jump back
to the first return instruction. RUN the BASIC program and load the following 16 codes:

INSTRUCTION DECIMAL

ADDRESS MNEMONIC CODE

B&W / Color

16514 /32130 LD AN 62
16515/32131 <N> 1
16516 /32132 ADD AN 198
16517 /32133 <N> 128
16518/32134 JR NZd 32
16519/32135 <d> 3
16520/32136 PUSH AF 245
16521 /32137 PCP BC 193
16522 /32138 RET 201
16523/32139 PUSH AF 245
16524 /32140 LD AN 62
16525/ 32141 < N> 85
16526 /32142 POP BC 193
16527 /32143 LDBA 71
16628 /32144 JRd 24
16529 /32145 <d> 248

STEP 3 Before pressing any key to get past the PAUSE command, verify the displacement
operands at addresses 16519/32135 and 16529/32145. In the first case, because address
16520/ 32136 is the zero displacement and we wish to jump to 16523/32139, the operand value
should be 3. In the second case, 16530/32146 is zero reference, 16529/32145 is —1 or 255,
16528/32144 is —2 or 254, then the RET at 16522/32138 is —8 of 248. Note that the sum of the
absolute values of the negative number and its two's complement is always 256.

STEP 4 Your results for this subroutine should be the same as those obtained in Experiment
35.

STEP 5 As we noted earlier in this chapter, the DJNZ instruction uses register B as a
countdown register. The most typical applications of this instruction are similar to the NEXT
command in BASIC, where a preceding LD BN instruction would correspond to the BASIC
command: FOR V = N to0 STEP — 1. We wantto verify that Bis zeroon return from the subroutine
and that the loop was executed B(Initial) times. LOAD the BASIC program from Experiment 3.1, 01
delete line 330 from the BASIC program used inthe last experiment because register C will not be
loaded from the F register.

STEP 6 RUN the BASIC program and ENTER the following 7 codes:

71

72 Chapter 3

INSTRUCTION DECIMAL
ADDRESS MNEMONIC CODE

B&W / Color

16514 /32130 LD BC.NN 1
16515/32131 <C> 0
16516/32132 255
16517 /32133 INCC 12
16518/ 32134 DJNZ d 16
16519/32135 <d> 253
16520/32136 RET 201

Your results should be B=0 and C=255.

STEP 7 Calculate the time delay involved in the DJNZ loop by finding the number of clock
cycles each instruction in the loop uses from Chart A.3. The INC C instruction takes 4f and the
DJNZ d instruction takes 8tfor all butthe lasttime it is executed. Therefore, a total of 1 2t times 255
clock cycles are used in the loop. For a f of 300 nanoseconds, the time delay is 12*255*0.3 or 920
microseconds, which is approximately 1 millisecond {0.001 seconds).

SUMMARY These experiments have illustrated most of the types of machine language
instructions of the 8080 subset and some of those from the Z80 Augmented set. The BASIC USR
function is a very useful command and permits the use of machine language subroutines to
achieve executions about 1000 times faster than the BASIC interpreter. Other subroutines can be
written to demonstrate those instructions that have not been covered. It should also be noted that
as many subroutines as desired can be called from a BASIC program simply by changing the
argument (destination address) of the USR function.

04 o

input and output ports

DEVICE SELECT PULSES

At the end of Chapter 3 we saw that there are two machine codes that are used to
transfer a byte between the A register and an external device. The opcode mnemonics
are IN A,(N) and OUT (N),A. These are two-byte instructions whose one-byte
operand, (N), is an indirect reference to the device address. The device address is an
eight-bit code which appears on the Low Address bus, AT-AO0, during the execution of
the instruction. Because the device code is eight bits, it is possible to have a maximum
of 256 input device addresses and 256 output device addresses. Another name for a
device is port and another name for a device address is port address. A peripheral
device, such as an instrument for measurement or control, or a support device, suchas
a printer, may require more than one portin order to operate. For example, the printer
is an output device, but there may be conditions that the computer must know before
it transfers the code of a character to be printed such as: I's the printer on? Is the printer
out of paper? Is it busy still printing the previous character? Notice that each of these
conditions is binary (yes or no) and therefore each needs only one bit to inform the
computer of its condition. This type of I/O interaction is referred to as handshaking.
Up to eight conditions could form one byte, which would be transferred INto the
computer before it tried to OUTput the next character to be printed. Thus, a printer as
a peripheral device might have an input port as well as an output-port.

We saw in Chapter 2 that eight bits, such as a device (port) address, can be decoded
so that only one output channel of a decoder is uniquely activated. This allows the
conversion of eight simultaneous signals in parallel on the Address Bus into a single
pulse which is active ONLY when a specific (1 out 0f258) eight-bit code is present. We
shall refer to this single pulse as a Device Code. We can illustrate a one-channel
decoder with the 74LS30 eight-Input NAND gate shown in Figure 4.1. In this figure,
four inverters of a TALS04 IC are used in conjunction with a74LS30 eight-input NAND
gate to decode the low address bus. Because the unique state of a NAND gate hasa 0
output only when all inputs are in a logic 1 state, then the Device Address43 (decimal)
will be the only possible combination of 1s and Os on the low address bus that will
cause the output of Device Code 43°. Note that the asterisk indicates that the device

73

74

Chapter 4

LOGIC STATES

AT g L

A6]

1 1

DEVICE ADDRESS A5 — ,
00101011 Ad

=43 pelil D> 1 @:—0 DEVICE CODE 43*
A2 —0—D01—

1 1
A1

1 1
A0

Figure 4.1 One-Channel Decoder.

code is active low (a logic 0). For all 255 other addresses on lines A7-A0, the output of
the NAND gate will remain at a logic 1.)

This scheme is perfectly adequate if an interface design requires only one device
code. If our interface design needs to create more than one port address then we can
choose one of the multichannel decoders such as the 8-channel 74L.S138 studied in
Experiment 26 or the 16-channel 74154 described in Chapter 2. Whatever the
decoding scheme used, it answers the question of where? concerning the data transfer,
but leaves unanswered the questions of when? and how? Recall that earlier in Chapter
3 we saw that there are control signals generated by the Z80 microprocessor which can
be combined with OR gates to generate the control I/O signals IN® and OUT®. These
I/0 control signals answer the questions of when and how. If we are to obtain a single
signal which will activate a particular device, then a logical combination of the device
code and the I/O control pulse must be produced. This final result is the Device Select
Pulse (DSP). Because the IN* and OUT® control pulses are active low and most
decoders also produce an active low channel output, the most common method of
creating the Device Select Pulse, using the unique state of a gate,isto OR (for an active
low DSP) or NOR (for an active high DSP) the device code with the /O control pulse.
The choice made depends on the logic requirements of the device itself. Each device
code can be combined with both I/O control pulses as shown in Figure 4.2. In the
figure, different gates are shown to illustrate opposite active states for the Device
Select Pulses: IN 43° (active low) and OUT 43 (active high). Note that it is impossible
for the 1/O control pulses to occur at the same time because the control lines R D® and
WR® cannot be generated during the same machine cycle of an instruction.

The concept of Device Select Pulse generation is one of the most important
concepts of interfacing. We can summarize with the following statements:

1 The machine language instructions IN A,(N) and OUT (N),A transfer a data
byte from and to, respectively, a port having a one-byte address, N.

Input and Output Ports

2 To form the Device Select Pulse that activates a particular port, the eight bits
of the port address occurring on the Low Address bus must be decoded toform
a unique Device Code Pulse.

3 Depending on the direction of transfer, the Device Code must be logically
combined with either IN® or OUT® control pulses to form the Device Select
Pulse.

INPUT PORTS

An input port is a peripheral device, which, when activated by its Device Select Pulse,
transfers a byte onto the Data Bus. The microprocessor accepts the data byte and loads
it into the Accumulator register. Implied in this process is the condition that the output
lines of the input port in question and those of all other input ports are connected in
parallel to the data bus. We saw in Chapter 2 that the outputs of digital devices cannot
be connected together unless they are connected through three-state buffers. Also
implied in the data transfer from an input port is that there is valid data available at the
port when the microprocessor executes the IN A,(N) opcode. Typically, the
peripheral device and the microcomputer act independently of each other—each
carrying out its own functions without regard to the other—until the moment of
transfer. This type of operation is referred to as asynchronous. In order to preserve the
data byte generated by the input port, a set of eight latches must be incorporated in the
circuitry of the input port. The three main components of an input portare, therefore,
the data source or generator, a data register which may be gated (enabl ed) by the data
generator, and a three-state buffer. Figure 4.3 shows the block diagram of a
generalized input port.

The data source is a general device that generates a data byte; it may be as simple as
a set of eight switches each of which selects a logic 0 or 1 state. More advanced data
generators will be described in Chapters 5 and 6. The register is not necessarily
separate from the data generator. The point of including it as a separate comp onent of
an input port is to emphasize that the data must be held long enough to be acquired by
the microcomputer. (Of course, a set of switches serves as its own register.) The Ready

N —= gy

o LI T

IN 43*

]
|| -’02 OUT 43

ouT*

Figure 4.2 Device Sefect Pulses.

75

76 Chapter 4

(RDY) output of the data generator is called a Flag. Data generators usually have such
a control line to be used to indicate the presence of valid data. It may be used as
indicated in Figure 4.3, or it might be used as a separate input port (one bit) for the
computer to determine the presence of valid data. The three-state buffer is an essential
element on any (and all!) input port. If it is already incorporated into the data
generator, an additional three-state buffer is not necessary. This would be determined
by the specifications of the particular data generator. Figure 4.3 also shows
schematically how the Device Select Pulse is created. The connections to the Address,
Data, and Control Buses of the computer shown are typical for every input port.
Further refinements to an input port, in addition to the previously mentioned second
input port for the Ready flag, might include an output port to clear the register and/or
trigger the data generator to start another generator cycle.

OUTPUT PORTS

As opposed to input ports, output ports are passive. There is no need to isolate output
ports from the data bus with three-state buffers because they do not attempt to load
the data bus with information; that is, they are receivers not transmitters. The
important point with output portsis that each requires a register to “latch” and hold the
data byte intended for it. (Recall that the data on the Data Bus is valid only for a few
microseconds at best.) The need for a Device Select Pulse as the gate enable control
signal to the output port’s latch should be apparent. Figure 4.4 shows the block
diagram of a generalized output port. Asin the case of the input port, the output port is

REGISTER THREE-
8 DATA| STAT
™ CLK LINES | BUFFER D7 — DO
EN
DEVICE u
DATA —_—
| fror oevice | [
SOURCE DEVICE A7 — AD
DECODER
»

Figure 4.3 General Input Port,

Input and Output Ports

DATA 8 DATA HEﬁ!I'ng R

SINK | LINES D7 — DO

EN

DEVICE
SELECT
PULSE

pevicel T l&—o— —

cobe DEVICE
DECODER| A7 — A0

Figure 4.4 General Ouput Port.

activated by a unique Device Select Pulse created from the Device Code and a
Control Pulse. The control pulse, OUT?, is generated in turn from the microprocessor
signals IORQ* and WR*® on execution of the instruction OUT (N),A. The data byte
transferred from the computer’s Accumulator register to the device whose address
code, N, is the operand of the instruction in the machine language program. Once the
data byte being transferred is latched into the device's register, the outputs of the
register will hold the byte until the next OUT instruction to this device address is
executed.

The sequence of events for output (or input) can be put into perspective by
examining the timing diagram of the process. This is shown in Figure 4.5. The first six
lines in Figure 4.5 are the various control signals from the Z80 microprocessor. The
Clock input,¢ (Phi), is the fundamental timing control and operates at a frequency of
395 MHz in the Timex/Sinclair. M1 is the control output that signals the start of a new
instruction: this is always the fetch operation, which places the program counter, PC,
on the address bus to read the next opcode from memory. The memory read, MREQ*
and RD®, puts the opcode on the Data Bus. When the opcode is the OUT (N),A
instruction, the next operation is a second memory read to obtain the operand from
memory. The third operation in sequence is to place the operand value, which is the
device address code, on the low Address Bus and the value stored in the A register on
the Data Bus. After one clock cycle these buses are stable, then the control signals
TIORQ® and WR* are activated. The entire process takes 11 clock cycles in accordance
with the ¢ value given in Chart A3. In this type of timing diagram, the individual
Address and Data Bus lines are grouped together and show only when their respective
signals change. The values of the bus lines for each change are indicated by the labels

77

78

Chapter 4
, M1 (FETCH) | MEM READ 10 WRITE |
dhapupipEpipigipipipginipinl
: 1 ! ‘
LA ! : !
- I ' '
IORQ* ' i] i
: : ! '
mrear L[1 [:
[] [] 1]
RD¥* : | I - I | ')
1 [} L]]
3] 1]
w7 e g
ADDRESS N \ : \
Bl X_Pc_X_R ?(PC e N N
]] L] :
DATA — 6> o> 2 >

Figure 4.5 Output Timing Diagram.

shown, such as PC and N on the address bus and OUT, N, and A on the data bus. The
timing diagram for an IN A,(N) instruction would be similar except the RD* control
line would be activated rather than the WR*® line. In either case, the actual transfer
takes place in the time interval when the OUT® or IN* pulse is low.

THE T/S INTERFACE CIRCUIT

We are now in position to understand the requirements for constructing an interface
circuit for a Z80 microcomputer such as the Timex/Sinclair. To perform Input/Out-
put we need the eight data bus lines, D7-D0, and the eight lines of the low address bus,
A7-AQ. The Z80 control signals needed are input/output request (IORQ®), read
(RD*), and write (WR®), which will be gated to create IN®* and OUT?®. Because the
drive capability (fan out) of these signals is limited to less than 2 milliamps, it should be
apparent that the first consideration should be to buffer them to increase their current
drive. In bringing these buffered signals out of the computer so that they may be
readily available for experimental interfacing, it would be convenient to also have
available a selection of Device Codes. With these available, it would not be necessary
to decode the address bus each time we wished to construct an input or output port.

The circuit for a Buffered I/0 Interface is shown in Figure 4.6. Five integrated
circuits are used. The 7415244 is a three-state Octal Buffer used to increase the drive of

+5v GND

14 'L§138
. 7 .
- Ll s 7 RIGHT CC
'L832 14 7 Py i s 7 INT'} 8
'LS138 16 B 3 10 6 |C43 g
cC Y5 AT
‘LS244 20 10 3 11 5|c3s, |10
L8245 20 10 o 12 4 |Ca7, | 11
4 13 3jc1e |12
5, G2aY2 AQ
6 5 14 2[C11,4,{13
4['LS00 G2bY1
—l 6 15 1|C3 14
—G1 Y0 A5
'L§244
78 6 14
A0 =
13
“
15
A e i
A3 18
228 17 3
Ad
218 4 16
A5 =
%55 8 12
198 11 9
A7 :
0, LEFT CC
— 8 .
19 |1 'LS00 7louTt
12 6| IN¥® [}
10 1./ e A3
8 LS00| 13 g 5 DGD? 10
- X 4| D4 11
1B bs
+5V 3 Dzm 12
4B,5B
] Do
GND 2|Do 113
1| [ed 1l+5v [14
4A 2 18 anD
> 17
oy S5A 3 PJ\
16
D2 A4 N
9A 5 15
0B A 14
D4 10A 6
- BA 7 13
7A 8 12
D6
1A 9 11
D7
‘L5245
s HA . =
M1 * 20A, . 1
15A 4 13)'LS32
& i
b ::A 2
Dﬁ —————
R 1 |'Ls32 3

Figure 4.6 1/0 Interface Circuit,

79

80 Chapter 4

the eight low address lines. Because its three-state capability is not required, the enable
inputs at pins 1 and 19 are permanently enabled by grounding to a logic 0 state. The
7415245 is an Octal Bidirectional Bus Driver IC. As indicated, each bus line is
equipped with two three-state buffers in opposition. The eight buffers in one direction
are enabled by logic 1 while the eight buffers in the opposite direction are enabled bya
logic 0. The direction control is located on pin 1. This IC is completely disabled for
either direction by a logic 1 on pin 19. Because no advantage is gained by disabling the
IC, pin 19 is permanently grounded toalo gic0. The problem faced with interfacing to
the Bidirectional Data Bus is when to change its direction. As we noted with output
ports, data that is output is passive and causes no conflicts with other components of
the computer. It is when the Data Bus is to be “turned around” and input into the
computer from the outside that care must be taken. The problem that has to be solved
is how to avoid conflicts due to constraints imposed by the computer’s hardware and
software. In particular, the Timex/Sinclair uses several device codes for input and
output in controlling the video, cassette recorder, and the special Sinclair Logic IC.
The real problem, however, is that the device codes are only decoded using address
lines A0, Al, and A2. Therefore, any device code of the binary form XXXXXABC will
activate the Sinclair port that is coded for ABC no matter what the value of XXXXX!
This type of decoding is called relative as opposed to the absolute decoding we have
described previously. The decimal device codes listed in the operating system
program in ROM are 251, 253, 254, and 255. Their corresponding octal values are 373,
375, 376, and 377, respectively. The advantage of listing their octal values is to show
that only the three bits of the least significant octal digit vary. As a consequence, for
example, all device codes 006, 0186, . . . , 366 will also activate the device whose code is
376. Because the Timex/Sinclair software always outputs a 3 for the most significant
octal digit on the low Address Bus for its internal devices, our solution is to turn the
Data Bus buffers around for input only when the IN A,(N) is executed for devices not
having an octal 3XX address code; in other words, only deviceshaving N = 0XX, 1XX,
or 2XX octal codes can change the direction of the Data Bus buffers of the 741.§245.
These addresses in decimal will all be less than 192. The NAND gate with inputs of A6
and A7 will have a logic 0 output only when device addresses of 192 or greater occur
on the low Address Bus. The second NAND gate acting as an inverter to the first
NAND gate keeps the OR gate output at logic 1, which in turn keeps the Data Bus in
the output direction. For values less than 192 on the low Address Bus, the Data Bus
buffer OR gate will be a logic 0 only when the IN® control signal is also a logic 0.
Therefore, only IN A,(N) with N less than 192 will reverse the Data Bus buffer.
Two OR gates are used in the Interface circuit to create the IN®* and OUT® control
pulses from IORQ® and RD* and WR® as was previously discussed. The fourth OR
gate of the 74LS32 IC is used to create a response control pulse from the
microprocessor when it receives an interrupt request. We shall defer discussion of
interrupt operations to Chapter 7 except to note that the Z80 uses the IORQ*® line
during an MI (the first machine cycle of an mstruction) as the indication it has received
an interrupt request. Recall that an M1 cycle is always a read from memory (MREQ)
operation (opcode fetch) and would never generate a IORQ pulse otherwise. The

Input and Output Ports

Interrupt request control is an input line to the microprocessor and does not need
buffering. It is taken directly from the computer’s edge connector to the Interface’s
cable connector.

The remaining circuitry of the Interface is not necessary but, as we mentioned
earlier, is desirable. This is the Device Code generator implemented with a 7415138
three-to-eight Line Decoder. Although the 7415138 has only three data inputs, italso
has three gating inputs all of which must be in their active logic state for the IC to
decode its data inputs. One gate, G1, is active high, and the other two gates, G2A*® and
G2B®, are active low. By using the outputs of two NAND gates to combine two pairs
of address lines, A7 with A6 and Al with A0, we can obtain six address inputs for the
741.5138. The NAND gate output that combines A7 with A6 is the same as described
for the Data Bus direction control. In this way, the 74LS138 can never decode
addresses above 191 because they could never operate as input ports because of the
direction control on the Data Bus buffer. The NAND gate that combines address lines
Al and A0 is connected to gate G2B®. For G2B® to be enabled by the NAND gate, it
follows that A1 and A0 must both be in a logic 1 state. Address line A2 is connected to
gate G2A°. The remaining address lines, A3, A4, and A5, are used as the data input to
activate one of eight channels at the outputs of the IC. The active channel output goes
to a logic 0 when selected with the rest of the channel outputs at a logic 1. The de-
coding therefore yields octal device codes ON3, 1N3, and 2N3 at each channel where
N is the three-bit value (0 to7) of address lines A3-A5. This means that this decoding
is also relative. These values in decimal are shown in Table 4.1.

Channels 6 and 7 are not shown in Table 4.1 because only the first six channels are
brought out to the cable connector. Note that each row differs from the next row by 8
(corresponding to the middle octal digit) and that each column differs by 64
(corresponding to the most significant octal digit). The least significant octal digit is 3
in all cases. The value of 3 was chosen because the only other values possible, using one
NAND gate to combine two of the three lowest address bits to gate G2B* and the third
bit to gate G2A®, were 5 and 6. Either of these choices would conflict with the internal
device codes, whereas 3 is the Sinclair Printer device code (for both output and input
for handshaking) and cannot cause conflict. The 1/0 Interface has been “piggy-
backed” onto the Sinclair Printer interface and both operated without any problems.

TABLE 4.1 1/0 INTERFACE DECIMAL
DEVICE CODES

CHANNEL DEVICE CODES

(A5,A4,A3) (AT.AB) 0 1 2
0 3 67 131
1 11 75 139
2 19 83 147
3 27 91 155
4 35 99 163
5 43 107 17

81

82

Chapter 4

The 170 Interface circuit can be constructed on a3” X 3%" predrilled board having
holes drilled on 0.10” centers in both directions and using wirewrap sockets to mount
the ICs and cables. A wirewrap PC edge connector is also mounted but must be cut
from a larger (more than 23 pairs of contacts) unit to allow for open ends to fit onto the
computer board. The list of components for the Interface board and the experiments
is given in Appendix B. The authors found the wirewrapped unit adequate; however, a
fair amount of interference caused more video picture noise than desirable. A printed
circuit board that eliminates this problem is available. Addresses of suppliers for the
board and other components are given in Appendix C.

EXPERIMENT 4.1
PULSE STRETCHING AND BUS ACTIVITY

COMPONENTS 1 * 74121 Monostable
1 * Lamp monitor
1 * 22-Kohm resistor
1 *1.0-uF capacitor

DISCUSSION The 74L5138 three-to-eight Line Decoder in the 1/0 Interface circuit relatively
decodes the eight bits of the low Address Bus at all times. We saw in Table 4.1 that each channel
is activated by three different addresses. It is important to understand that the decoder does not
distinguish between memory references and 1/0 device references. Because the low Address
Bus lines are always changing as the computer program sequences through memory, every
address from the program counter that matches the decoder channels will activate that channel
output. Because each low address is accessed by the program on the average of one time in 256,
then we would expect to see practically continuous activity on each channel. However, each
pulse is too short to be seen by an LED probe unless its duration can be “stretched" to a period
long enough to see:roughly from the approximate 1-microsecond pulse to about 10 milliseconds,
or 10,000 times.

A monostable integrated circuit such as the 74121 can be used to monitor pulse activity. Using
the pulse to be observed as a trigger, the monostable iC generates a pulse of duration determined
by an external resistor and capacitor connected to two pins of the |C. The product of units of
resistance in ohms and capacitance in farads is a time constant in units of seconds. The digital
circuitis called a Monostable because its output is stable only in one logic state; that is, when it is
triggered, its output Q goes into an unstable state of logic 1 for a determined period and then
returns to its stable logic 0 state. Monostable ICs typically have complementary outputs Q and Q*.

Input and Qutput Ports

Ve] &

PROBE <& L o Al
4]0 121 | o t -
a - 470

B Q* —@—wn— +5V
R _C LED

11 '_] 10
+ 1.0uF
22K

+5V

Figure 4.7 Experiment 4.1 Schematic.

PROCEDURE

STEP 1 Wire the 74121 circuit as shown in the Schematic. The period for the monostable
pulse in milliseconds is 0.7 * R(Kohms) * C(microfarads). Using a 22-Kohm resistor, a capacitor
between 0.1 xF and 4.7 uF yields a visible flash on the LED. The 74121 is not made in an LS
version: however, there is sufficient power to support the circuit using the regular TTL IC.

STEP 2 Insert the probe from pin 3 into the ground (O V) rail while observing the LED.
Because the unconnected pin 3 floats to a logic 1 before grounding, inserting the probe into the
0-V rail creates a negative edge, which triggers the monostable. You should have observed the
LED flash.

STEP 3 Now remove the probe from the 0-V rail. Did the LED flash? Probably. The pulse
should be a positive edge as pin 3 floats from 0 to +5 V, and therefore should not trigger the
monostable. However, the mechanical bounce as the wire was withdrawn caused a triggering
negative edge.

STEP 4 Rather than inserting the pin 3 probe into the 0-V rail, just touch it to one of the 0-V
rail sockets. Every time you make contact the LED should flash. Sometimes when you break
contact it may not; this will occur whenever the bounce is shorter than the monostable period.

STEP 5 Successively insert the probe into the cable sockets labeled C3, C11,...,C43.1n

each case you should observe that the LED appears to remain on. This indicates constant activity
on the address bus.

STEP 6 Probe the IN* and OUT* cable sockets. Remember that the Timex/Sinclair uses
1/0 devices and therefore these signals are also active.

STEP 7 Leave the monostable circuit wired for Experiment 4.2,

83

84 Chapter 4

EXPERIMENT 4.2
DEVICE SELECT PULSES

COMPONENTS 1 * 74L802 Quad Two-Input NOR Gate
1 * 741832 Quad Two-Input OR Gate
From Experiment 4.1:
1 * 74121 Monostable
1 * 22-Kobm resistor
1 * 1.0-uF capacitor
1 * Lamp Monitor

DISCUSSION Inthis experiment we shall examine the unigueness of a Device Select Pulse. We
saw in Experiment 4.1 that the device decoder has constant activity on its channel outputs and
that the control signals are also very active. Actually, all we could verify is that pulses on these
lines occur at least once every 15to 30 milliseconds, otherwise we would have observed the LED
flicker. To determine whether a channel pulse from the decoder and one of the control pulses (IN*
or QUT") occur simultaneously, we will have to gate the two signals and examine the output of the
gate. This output signal will be a Device Select Pulse. We can create a DSP by programming the
BASIC USR function and observe the result as a flash on the LED.

PROCEDURE
STEP 1 If you have not already done so, wire the 74121 circuit from Experiment 4.1.
STEP 2 Mount a 74LS02 on the breadboard, and connect pin14to+5Vandpin7to0V.
STEP 3 Complete the NOR connections to the cable pins of OUT* and C3* and to the
Monostable as shown in Figure 4.8. The output at pin 4 is the DSP OUT C3. The output at pin 6

after inversion is OUT C3*.

STEP 4 Load the following BASIC program:

10 REM 1234567890 (for B&W models)
10 CLEAR 32129 (for Golor models)
20 LET L = USR 16514 (for B&W madels)
20 LET L = USR 32130 (for Color models)

s JL U

ouT 6) a2
. 4 2 74121/pin 3
c* 1 1

Figure 4.8 DSP “OUT C3*"

Input and Output Ports
STEP 5 Enter the following machine language subroutine:

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC
B&W / Color
16514 /32130 211 OUT (N}LA
16515/32131 3 (N)
16516 /32132 201 RET

by ENTERing each of the following direct POKE commands:

POKE 16514,211 (B&W)
POKE 16515,3

POKE 16516,201

POKE 32130,211 (Color)
POKE 32131,3

POKE 32132,201

STEP 6 Observe the LED as you press RUN and ENTER. You should see the LED flash.
Repeat a few times.

STEP 7 Now change the device code in the subroutine to 3 + 64 = 67 by ENTERIng:

POKE 16515,67 (B&W)
POKE 32131,67 (Color)

RUN the program again. Did you see the LED flash? You should have because C3* is relatively
decoded with a modulus of 64

STEP 8 Repeat Step 7 only change the device code to 3 + 64 + 64 = 131.

STEP 9 Repeat Step 7 once more, thistime using 3 + 64 + 64 + 64 = 195, The LED should
not have flashed because the 1/0 Interface decoder does not decode addresses greater than
191 where both A6 and A7 are logic 1s.

STEP 10 Mount a 74L532 on the breadboard next to the NOR gate IC. Connect the power
pins: +5 V at pin 14 and 0 V at pin 7. Wire the OR and (rewire) the NOR gates according to the
schematic shown in Figure 4.9,

STEP 11 Connect pin 1 of the NOR gate (74LS02), OUT 3, to the Monostable probe, pin 3 of
the 74121, ENTER the following commands:

POKE 16515,3 (B&W)
POKE 32131,3 (Color)
and RUN.

You should observe the LED flash for the absolute Device Select Pulse OUT 3. Move the
Mongstable probe to NOR gate pin 1, QUT 67, and RUN, No flash should be observed.

85

86 Chapter 4

A7
A6
c3*
ouT*

Figure 4.9 Absolute Decoding of Channel 3.

STEF 12 Verify the following Pulse Table by changing device codes in the subroutine and
alternately probing pins 1 and 4 of the NOR gates.

DEVICE CODES NOR GATE QUTPUTS

<16515/32131> Pin1 Pin 4
3 PULSE None

67 None PULSE
131 None None

STEP 13 Exchange the wire connections at A7 and A6 of the cable connector. What DSPs
are now available at NOR outputs 1 and 4? Your answer should be OUT 3 and QUT 131
respectively. Can you make another Pulse Table? These last four steps illustrate absolute
decoding. In all subsequent experiments, we shall confine our device codes to the six codes
below address 64 and thereby avoid port conflict due to the relative decoding of the | /O Interface
circuit. If you need more than six port addresses, then by proper absolute decoding as in this
experiment, you can have up to 18 available device codes from the |/Q Interface.

EXPERIMENT 4.3
DEVICE SELECT PULSES FOR DIGITAL CONTROL

COMPONENTS 1 * 74LS74 Dual D latch
1* 741532 Quad Two-input OR gate
1 * Lamp monitor

DISCUSSION Although most of our interest in interfacing is generally related to data
acquisition, the DSP can also function as a control pulse for some external device. Even though
the instructions IN A,(N) and QUT (N),A involve transfer of a data byte between a port and the
Accumulator, we may choose to ignore the data byte and rely only on the uniqueness of the DSP

Input and Output Ports

to perform some operation. The DSP can be used to activate some digital device such as arelay
to turn on or turn off a high voltage lamp or motor or any other ON/OFF device.

PROCEDURE

STEP 1 We can illustrate any ON/QFF device by using a D latch having both PReset and
CLear control inputs, such as the 74L574 |C. Wire the circuit as shown in the schematic, Figure
4.10.

STEP 2 Load the following BASIC program:

10 REM 1234567890 (for B&W models)
10 CLEAR 32129 (for Color models)
20 LET L = USR 16514 (for B&W models)
20 LET L = USR 32130 (for Color models)

30 PRINT “OFF” ;

40 PAUSE 33333

50 LET L = USR 16520 (for B&W models)
50 LET L = USR 32136 (for Color models)
60 PRINT “ON * ;

70 PAUSE 33333

80 GOTO 20
1
C3*)
IN*
- 470
S
+5V .4 Q_5__®_W_. +5V
7
! C
" 1
c1* 6
ouT*

Figure 4.10 Experiment 4.3 Schematic.

88 Chapter 4
STEP 3 Load the following subroutine:

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC
B&W / Color
16514 /32130 219 IN A(N)
16515 /32131 3 (N)
16516 /32132 201 RET
16520/32136 211 OUT (N).A
16521 /32137 1 N)
16522/32138 201 RET

by direct POKEs as done previously. Note the memory gap from 16517 /32133 to 16519/32135.
STEP 4 When you apply power to the breadboard the LED may or may not turn on. RUN your

program. Press any key (except BREAK) to change the state of the 74LS74 output to the LED.

Note that both IN* and OUT* can be used as output control pulses (DSPs) to operate the ON/OFF

device. A TTL level to high voltage solid state relay device will be discussed in Chapter 6.
STEP 5 Modify the input subroutine with the following instructions:

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC
B&W / Color
16516 /32132 79 LD CA
16517 /32133 6 LD B,N
16518/32134 0 N
16519/32135 201 RET

by direct POKEs.
STEP 6 Add the following line to your BASIC program:
35 PRINT L

STEP 7 RUN the revised program. The value of L is the value input into the Accumulator.
What consistent value is printed after each QFF? It should be 255. Can you explain? Your answer
should be that because there is no data at port 3 the value received by the computer is the same
as unconnected TTL inputs or all logic 1s, hence the decimal value of 255,

Input and Output Ports

EXPERIMENT 4.4
INPUT PORTS

COMPONENTS 1 * Eight-switch DIP and 16-pin Wirewrap socket
1 * 74LS02 Quad Two-Input NOR Gate
1 * 74L8373 Three-state Octal Latch
8 * 3.3-Kohm resistors

DISCUSSION We have already seen that an input port must be connected to the Data Bus
through three-state buffers. We also noted that it might be desirable that the data from the input
port be latched so that it is stable when the computer addresses the port. Although there are many
TTL ICs that can be used to build an input port, the 74LS373 is a particularly versatile choice. Itis
a 20-pin IC composed of eight individual data latches with three-state outputs sharing an active
high gate latch enable control, EN, and an active low three-state output control, OC*. The truth
table is:

oc* EN D Q
0 0 X Qo
0 1 0 0
0 1 1 1
1 X X Z

Inthe table, X indicates a “don't care” or irrelevant state, Z represents the high impedance state,
and QO corresponds to the previous value of Q latched before the gate enable control was
disabled.

In Experiment 4.5, a second 74LS373 will be implemented as an output port and used withthe
input port constructed in this experiment. We shall use switches as the data source and therefore
do not require the latching capability of the IC. As shown in the schematic, Figure 4.11, the gate
enable for latch control is permanently activated by connecting pin 11 to +5 V.

PROCEDURE

STEP 1 Tofit an output port on the breadboard in addition to the input port, the components
must be placed carefully. Place the first cable socket at the far end of the breadboard. Working
towards the other end, leave one row spacing between components: mount the 74L502 IC, the
second cable socket, the 74LS373, and the 16-pin wirewrap socket with the DIP switches
plugged into the wirewrap socket.

STEP 2 Bend the leads of the eight 3.3-Kohm resistors perpendicular to the resistor body
right next to the ends of the resistor body. Insert the resistors between the +5-V power railand the
DIP switch socket pins on the back side of the breadboard. This will keep the resistors out of the
way of the rest of the wires. Run small jumpers from the front side of the DIP switch socket pins to
the 0-V rail at the forward edge of the breadboard.

STEP 3 Run +5V and 0 V to pins 14 and 7 of the 74LS02, and pins 20 and 10 of the
7418373, respectively. Complete wiring the rest of the circuit shown in the Schematic.
Remember to connect pin 11 of the 74LS373 to +5 V and pin 11 of the 74L502 to 0 V.

89

90 Chapter 4

+5V :
295 % g ; 3 20| 10
each " T T
_ 3 2 DO
4 5
W,
| 1 [D1
- | D2
- _18 9 D3
- 13| o2 54
- 14 |15 o5
. 17 16 -
- 18 19 D7
! EN OC*
3.3K b Z2 3 1
each [f
+ 5V e +5V

STEP 4 Loadthe

Figure 4.11 Experiment 4.4 Schematic.

following BASIC program:

REM 1234567890
CLEAR 32129

LET L = USR 16514
LET L = USR 32130
PRINT L

PAUSE 33333

GOTO 20

(for B&W models)
({for Color models)
(for B&W models)
{for Color models)

STEP 5. Using direct POKE commands, enter the following machine language subroutine:

DECIMAL INSTRUCTION

ADDRESS CODE
B&W / Color
16514 /32130 219
16515/32131 3
16516/32132 6
16517 /32133 0
16518/32134 79

16519/32135 201

MNEMONIC

IN A,(N)
(N)
LDBN
N
LDCA
RET

Input and Output Ports

STEP 6 Set all switches in the same position on the DIP switch. RUN the program. What
value was printed on the screen? It should have been either 0 or 255.

STEP 7 Set all switches in their opposite positions. Press any key (except BREAK) to get
past line 40. If 0 was printed in Step 6, then you should have 255 printed on the screen now or vice
versa.

STEP 8 You can use this input port as an eight-bit binary-to-decimal converter. Try various
switch settings remembering to press any key to continue.

STEP 9 Save this circuit for Experiment 4.5.

EXPERIMENT 4.5

OUTPUT PORTS

COMPONENTS 1 * 74L8373 Three-state Octal Latch
8 * LED type MV-50 or T-3/4
1 * 16-pin wirewrap socket
8 * 470-ohm resistors
1 * 74LS02 Quad Two-Iinput NOR Gate (from Experiment 4.4)

DISCUSSION Refer to Discussion in Experiment 4.4 if you are not familiar with the 74L5373
Octal Latch. We have seen that an Qutput port is a set of latches activated by an Output Device
Select Pulse. We shall use the 74LS373 as the eight latches needed to receive a data byte output
by the computer. In this case, we do not need the three-state capability of the 74LS373 because
the latch outputs will be used to drive light-emitting diodes. The schematic for the output port is
given in Figure 4.12. Because the three-state output control at pin 1 is active low, it is permanently
enabled by connecting it to the 0-V rail. The Device Select Pulse for the Gate Enable is made with
one NOR gate.

PROCEDURE

STEP 1 The LEDs specified in the Components list are to be inserted directly into opposite
pins of a wirewrap socket such that the leftmost LED connects between pins 1 and 16, the
rightmost LED connects between pins 8 and 9, etc. The diameters ofthe plastic case (bubble) for
the LEDs specified are less than 0.10 inch in order to fit eight of them side by side without
crowding. All LED cathodes should be on one side (pins 1-8). The surest way of determining
which lead of the LED is the cathode and which is the anode is to test each one. In the space
available on your breadboard, set up the circuit shown in Figure 4.13. Insert each LED between
points A and C, if it lights up then the lead at C is the cathade. If the LED does not light, swap leads.
If it still doesn't light and you know the rest of your circuit works, then it is defective. Test all eight
LEDs as you insert them into the wirewrap socket.

STEP 2 Mount the LED wirewrap socket on the extreme end of your breadboard. There
should be enough room left 1o mount the 74LS373 between the LED socket and the DIP switch

91

92 Chapter 4

+ 5V fr—— T 3
470 .l 2 l ~
each 23 2 10
2 3
: Do
5 2 D1
6 7

373

o

D2
) @ il 9 8 D3
12 13
r—@ Q D > D4
1
11— & s
U-@ DG
| @ 19 18 D7
) EN OC*
40 2 2 11 g ‘
aa\‘;h o028 YT
+5 Cn*

Figure 4.12 Experiment 4.5 Schemalic,

470 Ohm

+5V
A ep © GND

Figure 413 LED Test Circuit.

socket of the input port. Insert the eight 470-ohm resistors between the rear edge + 5-V power rail
and the LED socket pins 9-16 as was done with the DIP switch resistors in Experiment 4.4.

STEP 3 Complete wiring the circuit for the Output Port according to the Schematic, Figure
4.12. As with the switches on the Input Port, all connections to the LEDs are made on the back
side of the wirewrap socket except the short ground {0 V} jumpers to the cathodes.

STEP 4 Enter the following BASIC program:

10 REM 1234567890 (for B&W models)
10 CLEAR 32129 (for Color models)

20
30
30
40
50
50
60

INPUT I

POKE 16523,1
POKE 32139,1
PRINT I; “
LET L = USR 16514
LET L = USR 32130
GOTO 20

Input and Output Ports

(for B&W models)
(for Color models)

(for B&W models)
(for Color models)

STEP 5 Load the following machine language subroutine using direct POKEs:

DECIMAL
ADDRESS CODE
B&W / Color
16514 /32130 58
16515/32131 139
16516/ 64
/32132 125
16517 /32133 211
16518/32134 3
16519/32135 201

INSTRUCTION

MNEMONIC

LD A,(NN)
{Lo N)

{Hi N)

{(Hi N}
OUT (N)A
(N)

RET

STEP 6 To transfer a byte fromthe BASIC program to the machine language subroutine, we
use memory location 16523/32139 as a storage register; in the B&W program, this is the last
location in the REM statement. Line 30 POKEs the value of the byte which is input as the variable |
into this storage register. The first instruction in the machine language subroutine then “peeks”
the same memory location where the two-byte operand of the instruction provides the address:
139 + 64*256 = 16523 for B&W models; and 139 + 125*265 = 32139 for Golor models. RUN
the BASIC program and INPUT any number between 0 and 2565. The LEDs should give the binary
equivalent of the decimal value. Thus a value of 170 will give the binary value of 10101010 where
the 1s will be lighted LEDs.

STEP 7 We are now ready to combine the input port with the output port. Enter the following

BASIC program:

10
10
20
20
30
40
50

REM 1234567890
CLEAR 32129

LET L = USR 16514
LET L = USR 32130
PRINT L; “ 7 ;
PAUSE 33333

GOTO 20

{for B&W modeils)
(for Golor madels)
(for B&W models)
{for Color models)

93

94 Chapter 4
STEP 8 Using direct POKEs, load the following machine language subroutine which reads
the value of the switches of the input port, writes the value to the output port, and alsoreturns the
value to the BASIC program as the variable L:

DECIMAL INSTRUCTICN

ADDRESS CODE MNEMONIC
B&W / Color
16514 /32130 219 IN A,(N)
16515/32131 3 {N)
16516 /32132 211 OUT (N),A
16517/32133 3 (N)
16518/32134 6 LD BN
16519/32135 0 N
16520/32136 79 LD CA
16521 /32137 201 RET

STEP 9 RUN the BASIC program. The LEDs should display the switch setting, and the
decimal number should be printed on the screen. Select a different switch setting, and press any
key (except BREAK) to repeat the loop.

SUMMARY Lamps are generic output ports, and switches are generic input ports. Any other
digital data sink {output) or source (input) can be emulated by lamps and switches respectively.

EXPERIMENT 4.6
PROGRAMMABLE INPUT/OUTPUT PORTS

COMPONENTS 1 * 74L520 Dual Four-Input NAND Gate
1 * 8255 Programmable Peripheral Interface
8 * Logic switches (from Experiment 4.4)
8 * Lamp monitors (from Experiment 4.5)

DISCUSSION The 8255 Programmable Peripheral Interface (PPl) is one of a series of
programmable very large scale integrated (VLSI) circuits designed to operate with a micro-
processor. The PPI consists of three 1/0 ports (designated A, B, and C) controlled by a Control
Qutput Port. It is programmable in the sense that a data byte, called a contro/ word, output to the
Control Port from the microprocessor, is used to configure each of the | /O ports as either an input
or an output port. Each 1/0 port is composed of eight data latches having three-state outputs.
Ports A and B always function as eight-bit ports. Port C functions as two four-bit ports (designated
C Upper and C Lower) or as individual control bits in conjunction with certain programmed
configurations of Ports A and B.

The PPlis a 40-pin DIP. Thirty-two pins are used in groups of eight for Ports A, B, and C, and for
the Data Bus. Of the remaining eight, two pins connect to +5 V and ground (0 V), and one pin,
RESET, when in the logic 1 state configures all three 1/0 ports as latched output ports. The last
five pins are used for device selection. These include RD* (connectedto IN*), WR™ (connected to
OUT*), a1 and a0 which connect to two address lines of the Address Bus (not necessarily
Address Bus lines A1 and A0 as we shall see below), and CS* (Chip Select) which for
Accumulator I/Q is used to enable the PPI with a decoded pulse from the other six Low Address

Input and Output Ports
Bus lines. There are four distinct devices in the PPI; namely, the Control Port and ports A, B,and C.
Two address bits must be used in order to distinguish the four ports. The truth table for device
selection is:

Cs8* a0 a1l PORT SELECTED

0 0] 0 A

0 0 1 B

0 1 0 C

0 1 1 Caontrol

1 X X Three-State

The PPl can operate in three distinct modes, designated Modes 0, 1, and 2. In Mode 0, each
I/0 port can be either a latched output port or an unlatched input port. In Mode 1, Ports A and B
may be either latched output ports (as in Mode 0) or latched input ports. As we noted in the
chapter text, a latched input port requires additional control (handshaking) bits: one bit called
STroBe to cause the gating of the latch of an input port; another called Input Buffer Full to indicate
that data has been latched into the input port; a third bit called Output Buffer Full to latch the output
port; and a fourth bit called ACKnowledge to enable the three-state outputs of an output port.
These additional bits are assigned to certain bits of Port C when either Port A or B is configured as
a latched input port in Mode 1 or 2. Table 4.2 summarizes the effect of the three modes on the
three ports. In Mode 2, Port A can be configured as a bidirectional (that s, both input AND output)
port. We shall not have occasion to investigate Mode 2 operation and will leave discussion of its
operation for more advanced texts.

TABLE 42 PPl MODES

PORT A PORT B PORT C
MODEQ Latched Output Latched Qutput Latched Qutput
OR OR OR

Unlatched Input Unlatched Input Unlatched Input

MODE 1 Latched Output Latched Qutput PC7.0OBF*(A)l /O
OR OR PCBACK*{A):I/O
Latched Input Latched Input PC5IiBF(A).I/O

PC4:STB*(A)I/O
PC3INTR*(A)
PC2:5TB*(B).ACK*(B)
PC1:BF(B):0BF*(B)
PCOINTR*(B)

MODE 2 Latched Output same as PC7:same as Mode 1

AND Mode 0 OR PCE: "
Latched Input Mode 1 PCS: "
PC4: "
PC3: *

PC2:same as Mode 0/1
PC1: "
PCO: "

95

96

Chapter 4

The control word data byte output to the Control Port of the PP performs two functions. If the
most significant bit of the control word, D7, is a logic 1, the control word is used to program the
mode of the PPl and configure each 1/Q port as either an input or output port. The bitwise
structure of the control word for mode format (D7 = 1) takes the form:

D7 D6 D5 D4 D3 D2 DA DO
Mode ACU PortA PortCU ModeB,CL PortB Port CL
1 0 0 1=| 1=| 0 1=| 1=I
0 1 0=0 0=0 1 0=0 0=0
1 X

It D7 of the control word is a logic O, individual bits of Port C can be Set (toalogic 1) or Reset (toa
logic 0). This is of particular importance for Modes 1 and 2. The control word then takes the bit
format:

D7 De Db D4 D3 D2 D1 DO
---NOT USED--- Port C Bit Select 1=S8SET
0 X X X (Bit value 0-7) 0=RESET
PROCEDURE

STEP 1 Mount the DIP switches and resistors on the end of the breadboard, then mount the
LED socket and resistors next to the DIP switches as in previous experiments.

STEP 2 Mount the two ICs on the breadboard with the 74LS20 located between the two
cable sockets. Wire the circuit as shown in the Schematic, Figure 4.14. According tothe decoding
scheme used, verify that C3 = Port A, C11 =Port B, C19 = Port G, and C27 = Control Port.

STEP 3 ENTER the following BASIC program:

10 REM 1234567890 (for B&W models)
10 CLEAR 32129 tfor Color models)
20 LET L = USR 16514 {for B&W models)
30 LET L = USR 16518

20 LET L = USR 32130 {for Color models)

30 LET L = USR 32134
40 PAUSE 33333
50 GOTO 30

STEP 4 Determine the control word for formatting the PP for Mode O with Port A as input and
Ports B and C as outputs. You should determine the following binary word:

D7 D6 D5 D4 D3 D2 D1 DO
1 0 0 1 0 0 0 0

which is 144 in decimal.

Input and Output Ports 97

-
D7 »|2? PA7te 1 8LoGic
D8 —351 [39 1 SWITCHES |
029 30 40 33K
D4 8265 —A—
31 1 [+5V |
D3 ol
oo 32 2 | "l l
s =T
Do DO PAO
PB7 |2 TalAMP .
en I 8 LAMP
55, MONITORS
2 __& rm_‘"" Y
5 21 I |
IN® 36 RD* 20 I ® |
ouT* —WR* <L
8 19 | |
A4 ———al
9 18 | \
A3 a0 ——
10 i I
PBO = . 5
PC7
L 12
1 + 5 2 . 13
c3* — 0] '20 Y2 cs* L
Ci1* i 9 35 —"'"_16
4’20 - 15
C27* — PCOf——

Figure 4.14 Experiment 4.6 Schematic.

STEP 5 Enter the following machine language subroutine using direct POKES:

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC
B&W / Color
16514 /32130 62 LD AN
16515/32131 144 N
16516 /32132 211 QUT (N),A

165617 /32133 27 (N)

98

Chapter 4

16518/32134 219 IN A,(N)
16519 /32135 3 (N)

16520 /32136 211 OUT (N)A
16521 /32137 11 (N)

16522 /32138 201 RET

STEP 6 RUN your BASIC program. Set the DIP switches for some value, then press any key
{(except BREAK). The LEDSs should light according tothe switch setting. If they do not, remove the
RESET line at pin 35 from Ground momentarily and then reinsert it into the 0-V rail. Continue
looping by pressing any key to get past the PAUSE in line 40.

SUMMARY This cursory look at a programmable integrated circuit should servetoillustrate the
power and potential of these devices. Two points are of immediate interest to the interfacer: first,
there is a cost savings of about 33% using one 8255 instead of three 74LS3731Csto achieve the
same purpose; and second, both physical space on a circuit board is saved and fewer
connections are required using the VLSI chip.

O 9 O
digital conversions

Once you have constructed an input port using switches and an output port using
lamps, you have accomplished the first step in interfacing a computer to the outside
world. The most important fact to realize is that any digital input signal can be
substituted for the switches of your generic input port. Similarly, any digital output
device can be substituted for the LEDs of the generic output port. Bear in mind that
the input port still needs its three-state buffers and the output port still needs its latches,
and that both have to be selected with a unique Device Select Pulse generated from the
Device Code of the Address Bus and the proper Control Bus pulse (IN® or OUT?®).

There are many signals which are digital. Of course, these signals always
correspond to some binary condition such as On/Off, Up/Down, True/False,
Left/Right, Over/Under, Opened/Closed, etc. It is always necessary that input
devices convert their binary conditions to the +5-V and 0-V signals to be interfaced to
the computer input port. A very common example of a digital data source is a set point
determination of temperature, pressure, extension (length), etc., where one bit of
information is all that is needed. The one-bit signal indicates, for example, that a
temperature is exceeded or not—exactly like a thermostat. With an eight-bit input
port, eight individual set points can be monitored by the computer. When the
computer reads the data bits of the input ports, it can make a decision based on the
status of each bit. If those bits are thermostat set points, then the computer can use the
individual bits of an output port to control heater relays, circulator motor switches,
indicator lights, etc. The problem then is to convert the +5 V or 0 V of the output port
bits to power levels appropriate to handle the output devices. We shall cover several
methods for doing this in this chapter and in Chapter 6.

Before discussing digital input and output further, we should note that the other
type of signals one encounters in the outside world are analog signals. These are signals
whose values vary continuously over their operating range rather than having just two
(binary) states. For example, the thermometer is an analog device whereas the
thermostat is a digital device. Any signal that can be read with a pointer on a scale is an
analog signal. There are hybrid integrated circuits which convert between an analog
signal and an eight (or 10 or 12) bit number proportional to the value of the analog
signal. These are called Analog-to-Digital (ADC) and Digital-to-Analog (DAC)
converters. We shall discuss analog to digital conversions in Chapter 8. In the rest of
this chapter, we shall consider the various ways that digital signals are used.

99

100 Chapter 5

PARALLEL-SERIAL CONVERSIONS

We have seen that data can be transmitted to an output port and received from an
input port as an eight-bit byte, or in other words, over eight parallel wires (the Data
Bus). It is also possible to transfer data over one data line (actually two wires with one
wire serving as the electrical common potential between the transmitter and receiver).
Instead of sampling eight lines in parallel simultaneously, the data on one wire is
sampled serially at successive times. Serial transmission has several practical
advantages over parallel transmission not the least of which is the cost of the wire when
long distances are involved. Of course, for large distances the pair of wires provided
by the telephone system is the most widely used data transmission network.

When data is transmitted serially, there are several possible ways that the
information can be encoded. One of the oldest methods is Morse code made up of dots
and dashes. In this method, the information was transmitted as bursts of a tone with a
dash being three times longer than a dot, and periods of silence between the tone
bursts of a character (alphabetic letter, numeral, symbol, etc.) equalto the interval of a
dot and between characters equal to a dash. The more common method since the
teletypewriter replaced the telegraph key is with the American Standard Code for
Information Interchange (ASCII) mentioned in Chapter 1. Each character is encoded
in seven bits as shown in Appendix Chart A8. In terms of TTL signals, logic 1 and 0
states correspond to +5 V and 0 V respectively. When an ASCII character is
transmitted serially, each bit lasts for the same period of time with one immediately
following after another. If we were to use the tone analogy of Morse code, then a dot
tone would be a logic 1 and a dot rest (of silence) would be a logic 0. The duration of
the bits is determined by the bit rate, that is the number of bits that are transmitted in 1
second. For example, if the bit rate is 100 bits per second (bps) then the time duration
of each bit is 10 milliseconds. Another term you may hear applied to bit rate is Baud
rate. This term comes from the field of international radiotelegraphy which defined
the Baud rate in terms of the shortest tone bursts of Baudot code {a five-bit, 32-
character code similar to the seven-bit, 128-character ASCII code). When all bits have
the same duration, bit rate is equivalent to Baud rate.

Before considering the various methods other than TTL signal levels used in serial
data transmission, we should first consider how the parallel data byte from the
microcomputer is converted into a serial string of bits. Within the 7400 series of ICs,
there are several types of ICs called shift registers which perform these conversions.
They are distinguished as parallel in-serial out (PISO) and serial in-parallel out
(SIPO). Examples are the eight-bit registers 74LS165 and T4LS164 respectively.
(There are also serial in-serial out and parallel in- parallel out shift registers.) The shift
registers operate as a set of (eight) cascaded data latches where the Q output of the
first latch is connected to the D input of the second latch and so forth. Alllatches have
their clock inputs connected in common and may also have a common clear input. One
of the first large scale integrated (LSI) circuits to be produced, which performed both
conversions, was the Universal Asynchronous Receiver Transmitter (UART). The
UART is not a TTL IC; however, it operates between +5 V and 0 V and therefore is
TTL compatible. In addition to the input and output data lines, these circuits require
timing (clock) inputs. The UART has additional control inputs and outputs whose

Digital Conversions

functions are more easily understood once the conventions of serial transmission have
been described.

In asynchronous serial transmission of data, only two wires are used as mentioned
above. Because the only information that can be passed is over the data line, the
receiver has no other means of synchronizing with the transmitter; that is, the receiver
cannot know beforehand when the transmitter is going to start; therefore, the
transmission is said to be asynchronous. Between the transmission of characters, the
data line is held in the logic 1 state. To synchronize the receiver with the transmitter,
the first bit transmitted is always a logic 0 “start” bit. Following the start bit, the data
bits are transmitted in order with the least significant bit sent first. Following the seven
data bits (for ASCII code), an error-checking bit called the parity bit may be
appended, finally one or two stop bits in the logic 1 state conclude the transmission of a
character. In all, a maximum of 11 bits per ASCII character are transmitted. The
timing diagram for the transmission of the ASCII character “C” (1000011) at 110 Baud
is illustrated in Figure 5.1.

The schematic and pin assignment of a UART is shown in Figure 5.2. In the
diagram, each of the small rectangles corresponds to either a data latch or a set-reset
flip-flop. The three-state buffers are self-explanatory. The frequency of the clock
signals for the receiver and the transmitter operate at 18 times the bit rate and are
usually tied to a common clock generator. Five programming bits permit formatting
for the data transmission: two bits of the data word inputs select the length of the data
word between 5 (00 at pins 37 and 38) and 8 (11 at pins 37 and 38) bits; inclusion of a
parity bit is determined by the logic state of pin 35; even or odd parity is selected by
the logic state of pin 39; the number of stop bits (one or two) is determined by the logic
state of pin 36. Three status bits from the receiver indicate the various reception errors
at pins 13, 14, and 15. We give only a brief description of the UART here in order to
familiarize you with the terms. We shall examine a newer IC, the 8251, which is more
computer compatible (i.e. programmable), in Experiment 5.8.

There are several other concepts concerning serial data transmission which we shall
enumerate here in order to complete an introduction to the topic. There are three
commeon transmission modes that are encountered in serial data transfer. These modes
are: (1) Simplex in which only two wires connect the terminals and the data transferis

L

110 BAUD »»———-=a 9.09 msec

- 0.1 sec o
LSB MsB
ol — - il
START DATA PARITY STOP
BIT BITS BIT BITS

Figure 5.1 Serial Transmission of ASCH,

101

102

Chapter 5
o5 SERIALOUT
24
— SET | SET >, END OF TRANSMISSION
38 "] [EN 5 DATA STROBE
DATAWORD1 —» e=" LSB IN
DATAWORD2 Slal™™ ™~ ----L27
PARITYSEL. 9~~~ 1013 p —---_%:
NOPARITY 354----| UART s
sToPBITS 5%~ $ [T7e3, PARALLELIN
CONTROL STB. i_;..'gﬁ' 5 el
16x TXCLK. = --- ...g
TX BUF EMPTY % SET I MSB IN
+5V o CLR|CLR
_G':; 3] 5 LsBOuUT
e =
RESET f; g*
WORDSTATUS T CLR] -
OVERRUN ERROR =+ 8 -
-~)
FRAME ERROR 11.:;_ - I L PARALLEL OUT
PARITY ERROR =~ P -
16x RCCLK. -~ o .
DATARECEN - _ 1
RESET DATA RDY CLRHE MmsBOUT
20
SERIAL IN

Figure 5.2 UART Block Diagram.

only in one direction, that is, one terminal is always the transmitter and the other is
always the receiver; (2) Half duplex in which two wires connect the terminals but data
can be alternately transferred in either direction (not at the same time!) with each
terminal operating alternately as a receiver and a transmitter; and (3) Full duplex in
which two pairs of wires connect the terminals and allow simultaneous data transfer in
both directions. We shall see shortly that full duplex transmission is possible over one
pair of wires (telephone connection) if the bits being transmitted are tone bursts of
sufficiently separated frequencies rather than DC logic levels.

In addition to the method of transmitting data serially with TTL level signals (logic
1 =+5V, logic 0 =0 V), there are three other methods which have various advantages
relating to noise immunity, speed, power, or convenience. The three methods are (1)
current loops, (2) RS-232¢ voltage standard, (3) and frequency shift keying (FSK).
Again, our immediate interest is to introduce the concepts rather than exhaustively
cover the topic. In the serial transmission of data via a current loop, the pair of wires
used in simplex or half duplex mode rely on the existence of a current flow to indicatea
logic 1 state and the absence of current flow to indicate a logic 0 state. Data can be
transmitted up to 5 miles (8 km) on a current loop. The standard for the current is
either 20 mA or 60 mA, depending on the system design. The voltage applied to the

Digital Conversions

wires is whatever it takes to provide the specified current—usually between 12and 18
V.

We should note that the pair of transmission wires referred to in serial transmission
is either a twisted pair or coaxial cable. Both of these techniques increase noise
immunity of the transmitted signals by reducing the amount of induced pickup from
external sources.

The RS-232¢ is a voltage standard supported by the IEEE (Institute of Electrical
and Electronic Engineers). The logic levels are defined as a voltage between +5 and
+15 V for the logic 0 state and a voltage between —5 and —15 V for the logic 1 state.
Data can be transmitted up to 50 ft without significant signal loss. To convert between
TTL and RS-232 signal levels, the MC1488 and MC1489 Quad Driver and Quad
Receiver integrated circuits have regular TTL inputs and outputs respectively.
Connection of these ICs to a power supply providing the RS-232 voltages (typically
+9 V and —9 V) gives RS-232 level outputs (driver) and accepts RS-232 inputs
(receiver). In addition to the voltage level specification, the arrangement for the
terminal connection is defined by the standard to consist of a 25-pin connector with the
various signals defined as shown in Table5.1 (not all pins defined). In many cases only
the three (*) signals are used for asynchronous serial transmission.

The third method of serial transmission is the FSK technique used primarily for
telephone transmission. There is no practical limit to the distance because the
telephone system manages the signal conditioning. The frequency range of ordinary
telephone lines lies between 300 and 3300 Hz. The logic levels are defined in terms of
tone bursts of specified frequencies. Devices used to convert a digital signal (TTL,
current, or RS-232 standard) to the proper transmission frequency (tone) are called
Modulators, those devices which convert a received frequency back to a digital signal
are known as Demodulators. The combined device used for two way communication
of serial data is referred to as a Modem (MOdulator-DEModulator). For full duplex

TABLE 51 RS-232 PIN ASSIGNMENT

PIN NUMBER FUNCTION

1 Frame Ground
2 Serial Data Cut
3 Serial Data In
4 Request to Send Flag
5 Clear to Send Flag
B Data Set Ready Flag
7 Data Signal Comman
8 Carrier Detect Signal
9 +12-V Power
10
15
17
20
22

*

—12-V Power
Synchronous Transmit Clock Signal
Synchronous Receive Clock Signal
Data Terminal Ready Flag
Ring Indicator Signal

24 External Transmit Clock

103

104 Chapter 5

operation with a modem, the receive and transmit frequencies are different as shown
in the following table:

Frequencies (Hz) for Full Duplex Transmission
Logic 1 Logic 0

Send/Qriginate mode 1070 1270

Receive/Answer mode 2025 2225

This requires that one terminal operate in the Originate mode and the other operate in
the Answer mode. Because this is full duplex operation, both terminals can send and
receive, but agreement must be established between them. Thus terminal #1 operating
in the Originate mode will send (modulate) its data at the lower frequency band and
receive data from terminal #2 (demodulate) the higher frequency band. Terminal #2
will modulate its transmission on the higher frequency band and demodulate its
reception from the lower frequencies. It might be noted that the less expensive
modems are equipped for receive mode only.

SERIAL TIMING AND FREQUENCY CONVERSIONS

We have considered the transmission of data encoded into serial strings of bits but
there is still another way of transmitting serial information. Whereas the serial
communication described in the preceding section concerned bit rates with each bitin
the string having an equal duration, it is also possible to transmit data on a single data
line (really a twisted pair of wires) where the length of the time the data bit is, say, in
the logic 1 state proportional to the value of the data. This type of digital conversion is
the software equivalent of the gated digital counter or frequency converter examined
in Experiment 2.5. Recall that two signals can be gated and fed to the input of a
counter. If one of the signals is a monostable pulse of known duration and the other is
an astable pulse of unknown frequency then we can determine the frequency of the
astable based on the number of pulses in the known time of the gating monostable
pulse. On the other hand, if the astable frequency is known, then the duration of the
monostable pulse can be determined from the count.

A similar experiment can be performed with a computer by using the computer in
place of the digital counter. For example, a computer could measure the duration of a
monostable pulse by triggering the monostable, such as the 555 timer or one in the 7400
series, using an output Device Select Pulse and then immediately start to read the logic
state of the monostable through a one-bit input port. The computer program would
consist of reading the port and incrementing an eight- (or 18-) bit counter if the logic
level were 1, and then staying in a program loop (i.e., jumping back to read the input
data bit and increment the count) until the monostable pulse fell back to a logic0. If
either the resistor or the capacitor in the RC timing circuit of the monostable were a
transducer whose value depended on some physical property such as temperature or
pressure, then the count stored by the computer would be proportional to the value of
the physical property. The advantage of this type of conversion is its simplicity in

Digital Conversions

hardware. Its disadvantages are the need for more sophisticated software and the long
conversion times (typically several milliseconds). If the physical property changes
more rapidly than the conversion time, the method is impractical. These problems are
typical of the trade-offs between hardware and software always faced by the
interfacer in designing and developing a measurement device.

The same interfacing technique can be used to measure the frequency of an astable
(that is, of a square wave generator) again using the computer as the counter. This
procedure requires that the program be written to examine the one-bit input port
repeatedly until it observes the edge (positive or negative) of a square wave pulse.Ina
manner similar to the preceding description the computer then stays in a counting loop
until it finds the subsequent opposite edge. By sampling the duration of the high pulse
of the square wave and then sampling the duration of the low pulse of the square wave,
the two counts can be converted to times by determining how long the program loop
takes per count. Once the times are calculated, the frequency of the square wave is
obtained as the reciprocal of the period. One interesting application of this method is
the measurement of an unknown capacitance by insertion into the RC circuit of a 555
Timer astable circuit. The disadvantage of the method is the relative slowness of the
computer operating in the microseconds per count range compared to that of a digital
counter which can operate in the tens of nanosecond range.

We can conclude this section on timing and frequency conversions of a digital signal
by pointing out that the gated counter could be directly interfaced to a computer
rather than to seven-segment displays. If the counter consisted of two cascaded binary
counters (74LS93s) then the computer could read the outputs of the pair as an eight-bit
input port. Each additional cascaded pair of counters would form an additional input
port. We shall defer further discussion of inputing measurement data until Chapter 8
when we consider analog-to-digital conversions.

DIGITAL-TO-ANALOG CONVERSION

The microcomputer is often required to deliver analog information to the outside
world for the purpose of providing data, for example, to deflect the pointer of a meter
or the pen of a recorder, or for providing proportional control of instruments such as
turning on a heater or opening a valve to some partial setting. To do so requires
conversion of information from digital form into analog form. Again use canbe made
of readily available integrated circuits such as the type AD558 Digital-to-Analog
Converter (Analog Devices) shown in Figure 5.3.

The conversion process for all intents and purposes can be regarded as a precision
voltage divider. Actually, the DAC first produces a current proportional to the digital
value using an internal precision resistor network (called a R-2R ladder), this signal is
then fed to an internal current-to-voltage amplifier to obtain a proportional voltage.
Many other DAC ICs produce a current output and require an additional current-to-
voltage (operational) amplifier. By having a built-in amplifier, the AD558 is
particularly convenient to use. The supply voltage to the DAC mustbe larger than the
maximum analog output voltage to allow reaching the full scale output voltage of the

105

106 Chapter 5

Do 10 L] 16 V out
D1 2E/‘A—I_ J—1]1 15V sense
D2 3]:-/"5% = 3w 14 V select
3 41/ H"?_ D 3 113 A GND
D4 5EfE-L- g fj 12 D GND
Dss[:-/'sj R ...T___jﬁVoc
D67I:IJ,|_ ¥ Lirer] (E 0cs*
D7 8[GATE(] 9CE*

Figure 5.3 ADS558 Pin Configuration.

analog output. The digital range from 0 to 255 provides an analog voltage range from
0 V to either 2.55 V or 10.0 V. Each bit of the digital data is converted to a signal
proportional to its binary weight: from the least significant bit {(D0) with a weight of
one unit to the most significant bit (D7) with a weight of 128 units. Foreach1V of V
the LSB has a unit weight of 0.0039 V (1/255) and an MSB weight of 128 times the unit
weight, or 0.0039 * 128 = 0.502 V. Thus the DAC adds to the analog output voltage a
precise voltage corresponding to the weight of the bit for each bit that is in a logic 1
state. For example, with a reference voltage of 2.55 V, the decimal value of 123 in

binary is:
Bit weight(V): 128 064 032 0.16 008 0.04 002 0.01
Data bit position: D7 D6 D5 D4 D3 D2 D1 DO
Binary data (100): 0 1 1 1 1 0 1 1

Analog output, V =0.64 + 0.32 +0.16 + 0.08 + 0.02 + 0.01 =123 V.

The full scale voltage (all eight digital 1s} is 2.55 V. If higher voltage outputs are
required, then it is possible for the supply voltage to be operated from a 12-V power
supply to output an analog voltage range from 0 to 10.0 V (i.e. the binary weight of the
least bit [unit weight] is 0.039 V). Can you show that the analog voltage on the 10-V
range for the digital decimal value of 123 would be 4.804 VP Again we stress that for
the low cost interface a single power supply is a prime requirement, so reference
voltages less than +5 V will be used in our experiments. These can be easily obtained
from the +5-V supply voltage. This is not too serious a disadvantage as circuitry is
often at hand to boost the voltage, for example, by using an oscilloscope or operational
amplifier.

Because the DAC functions as an output port and only receives information from
the microcomputer, the only control signals required are the OUT® signal wired to the
Chip Enable (CE®) input together with the Device Code wired to the Chip Select

Digital Conversions

(CS*) input. When these two active low pulses are produced by the machine language
program in the microcomputer then the eight-bit digital data is latched into the input
buffer of the DAC and converted to an analog voltage at the output pin for use by
other devices. The latching action occurs only when the gating control signal makes
the transition from its enabled to its disabled state. This means that aslong as the latch
is enabled, the analog output reflects the data at the D inputs.

The supply voltage, V ., can be from +5 V to+15 V. The reference voltage, V _,
for the analog output can be wired for either a 0 to2.55-V range or a0to+10-V range.
The data inputs are TTL compatible irrespective of the supply (or reference) voltage.
Besides connections to the two control pins, the supply voltage, and the ground pins
(one for the digital and one for the analog signals), other connections to the DAC
include the Data Bus connections of D0 to D7, the analog signal output pin, and two
analog feedback resistor input pins. Connections to these three pins will be described
in the experiments. Because the time required to make a conversion is 1.0 micro-
seconds and a machine language routine takes about 2 microseconds to perform an
OUT instruction, there is no need to provide time delays to permit the DAC enough
time to produce a valid analog output from a digital input byte.

STEPPER MOTOR CONTROL

A stepper motor is a digital device which can be actuated by the parallel bits of an
output port. Permanent magnet (PM) stepper motors are the simplest to understand
and use with a microcomputer. We will consider only PM steppers in this survey. A PM
stepper motor consists of a cylindrical permanent magnet rotor attached to the
rotation shaft. The rotor body is magnetized around its circumference with alternating
strips of north and south poles lying along the length of the cylinder. The number of
strip poles is one of the determining factors in how many degrees of rotation the rotor
turns for each step. A view of the rotor is shown in Figure 5.4. The stator, which is
positioned around the circumference of the rotor, consists of two coils of wire housed
in a metal sheath or case. In the less expensive steppers, known as “tin can” stepper
motors, the stator cases are made in two interlocking sections of pressed sheet metal.
When assembled, the case forms a “donut” with solid walls for its two sides and outer

ALTERNATE
PERMANENT
MAGNETIC
POLES

Figure 5.4 Stepper PM Rotor.

107

108 Chapter 5

perimeter and sets of alternating teeth around its inner perimeter. Four wires extend
from the case corresponding to the two ends of the two coils wound inside the stator
case. The number of coils determines the number of phases of the motor.

Each alternate pair of teeth in the stator case can be imagined as a flattened nail bent
into a square ring with its ends situated beside each other. If you were to wrap a coil of
wire through the square and pass an electric current through the coil then you would
have an electromagnet with one end of the “nail” as north pole and the other end as
south pole. If a large set of these “nails” were laid side by side in a circle and the wire
coil was wrapped inside them, you would have a stator case where every other tooth
was a north pole and the other alternating set were south poles. If the PM rotor were
arbitrarily positioned inside the stator, it would rotate to align its north poles with the
south pole teeth, and vice versa. The number of teeth that form the inside perimeter of
the stator case is the other determining factor in how many degrees of rotation (step
size) will be involved in a single step. An exploded view of a tin can stepper is shown in
Figure 5.5. The stepper illustrated has a stack of two stator cases positioned side by
side around the rotor. This type of stepper is a four-phase motor.

The teeth of the one stator case are positioned around the rotor to lie halfway
between the positions of the teeth of the other stator. If we assume that there are 24 (12
pairs) teeth on each stator and 12 bar magnets around the circumference of the rotor,
then the smallest step will be 360 degrees/48 = 7.5 degrees. For example, suppose
current is run through one of the coils in each stator case so that the 12 electromagnet
poles of each stator are as shown in the following chart.

Rotor front; 5 n S n S n
Stator #1: N: & N 8 N S N
Stator #2: N S N S N 8
Rotor rear: s n] n 5 n

Now suppose we run the current in stator #2 coil in the opposite direction, that is swap
the ends of the coil at the voltage terminals. The poles in stator #2 would be reversed,
and the rotor would turn to line up with the new positions, as shown in the following

chart.
Rotor front: n s n s n S
Stator #1: N 8 N S N :§ N
Stator #2; 8. N: S N S: N:
Rotor rear: n s n) n s

Careful observation of the difference between the first and second charts shows that
the rotor moved one-quarter of the distance between two of the like poles of stator #1.
Because there are 12 like poles wrapped around the circumference, then the rotor
moved 1/4 of 1/12 or 1/48 of a full turn of 360 degrees.

Rather than disconnecting the coil leads to run current in the opposite direction, the
two coils in each stator case are wired for the current to flow in opposite directions.

Digital Conversions

END CAP

STATOR COILS STATOR COILS
#2

HOUSING

Figure 5.5 Disassembied Tin Can Stepper.

However, current only ever flows in one coil of each stator at a time; otherwise their
electromagnetic effects would cancel each other out. If we label each of the coilsina
stator as A and B, then we have to know the sequence of allowing current to flow
through the four coils 1A, 1B, 2A, and 2B with the restriction that if 1A is turned on,
then 1B must be turned off, etc. This is obviously a binary condition, and we can
represent an “on” with a logic 1 and an “off” with a logic 0. The sequence for stepwise
rotation is shown in the following table.

Direction; CLOCKWISE COUNTERCLOCKWISE
Coils: 1A 2A 1B 2B 1A 2A 1B 2B
Start position: 0 1 1 0 0 1 1 0
Ist Step: 1 1 0 0 o 0o 1 1
2nd Step: 1 0 0 1 1 0 O 1
3rd Step: 0 0 1 1 1 1 0 0
4th Step: 0o 1 1 0 o 1 1 0

By the 4th step we have returned to the same binary pattern as the start position so
subsequent steps just repeat the pattern. If you look closely atthe patternsequence, you
will see that the four bits are shifted to theleft for the clockwisedirection andtotheright
for counterclockwise. Whena bit isshifted off one end of the patternitis broughtbackin
on the other end. Because our computer has an eight-bit data output allwe havetodois
write the pattern of four bits twice. For example, the following machine language
routine is an endless loop which would continuously run a stepper motor connected to
output port #3 which latches data bus lines D7-D4.

START LD AN :Stepper byte is
51 ‘binary 00110011.

LOOP QUT (N),A :Activate stepper through
3 :output port device code 3.

RAL :Shift the bits for clockwise

108

110

Chapter 5

(or) RAR ‘(for counterclockwise).
CALL DELAY :Atime delay subroutine
Lo Address :because the stepper cannot
Hi Address respond fast enough.
JR :Stay in endless loop
LOOP+7 248 by jumping back —8to LOOP.
DELAY :Address of DELAY subroutine.

Stepper motors are power devices capable of performing work. The current drive of
the outputs of a TTL latch is not large enough to drive the coils of the stepper. To
interface a stepper motor, a power source of several ampsat the operating voltage of the
motor isnecessary. The TTL signals canbe used to control transistor switches having the
proper current rating. Transistors such asthe NPN D40K (General Electric) are capable
of handling a current load (per coil) of 2 A at 30 V. Onelead from each of the four coils s
connected to the power supply. The otherlead from each coil is connected to one side of
the NPN transistor switch (collector) with the other side of the transistor switch
(emitter) tied to the common side (ground) of the power supply. The TTL signal is
connected to the base of the transistor. When the TTL signal is a logic 1, the switch is
closed, and current from the power supply flows through that coil. A schematic used by
the authors with astepper operatingfroma5-V power supplyand drawing(.5 A percoil
(12 ounce inch torque rating) is shown in Figure 5.6. Further discussion of transistor
drivers is in Chapter 6.

e seame=n

+5V ! : 1A
5 IE S | o
—lbo a8 [1]
D3 6 10 | ! : “E
D2~ 3| 75 [15 -
D1 3| 16] r— -
Do EN "“TL.K'; 1B
| I -
DEVICE prsssssn
SELECT . | & |28
PULSE L. ___ M~ +—
A4
56K D4OK 1N914
+ POWER SUPPLY —

Figure 5.6 Stepper Motor Driver Interface.

Digital Conversions

EXPERIMENT 5.1

POSITION DETECTION AND DISPLAY

COMPONENTS 1 *Joystick control with four 100-Kohm potentiometers or two 50-Kohm
potentiometers
1 * 556 Dual 555-type Timer
1 * 74L532 Quad Two input OR Gate
1 * 7415125 Bus buffer
4 * 1-Kohm resistors
2 * 0.2-uF capacitors
2 * 0.01-uF capacitors

DISCUSSION In this experiment we shall examine the technique of digital data acquisition by
timing conversion from resistance transducers. Control ofthe motion of adot onthe video screenin
both the X and Y coordinate directions determined by the position of a joystick is an extremely
useful experiment having applications in graphics techniques and,of course, games. Althoughthe
commonly available joysticks use potentiometers which tend to be highly nonlinear, the following
experiment will result in a well defined X-Y borderbuta somewhat questionable set of diagonals.
Center point of the joystick is the center of the screen.

The means of converting the position of the joystick tothe position ofadotonthevideoscreenis
accomplished in a very simple manner. As the top of the joystick control moves, the wipers on the
potentiometers connected to the base of the joystick change position and vary the resistance of
each potentiometer, As the schematic shows, each pair of potentiometers, one pair referredto as
the YY' pair and the other pair as the XX’ pair, is connected to the RC (timing resistor and capaci-
tor) input of one of the two 555-type timers configured as monostables.

In this mode each monostable pulse will have a period that depends on the value of Rand C
in its timing network. Because C is fixed at 0.2 uF, variation of R, which is dependent on joystick
position, will vary the time period. By having the microcomputer measure the time interval pro-
duced by the X pair separately from the time interval produced by the Y pair, timing counts can
be obtained which can then be plotted as X and Y values on the video screen.

The time interval of each timer is determined by triggering both timers simultaneously with a
device select pulse (OUT 3*) applied to the trigger inputs, pins 6 and 8, of the two timers and then
polling the outputs of eachtimer, pins 5and$9, respectively,through atwo-bitinput portto determine
the exact instants that each output falls back to a logic 0.

The microcomputer does this by inputting the state of the two timer cutputsthroughthree-state
bus buffers of the 74LS125. One input is gated to data bus line DO and the other to databuslineD7.
Thus by inputting the states of the data bus lines into the accumulator register A, the
microprocessor can check which timer's output fell first and note the time of the first fall while still
maintaining a count for the second timer. By converting each timeto adisplacementintheXand Y
directions, a position on the video screen can be PLOTted.

PROCEDURE

STEP 1 Inspect the four (or two) patentiometers controlied by your joystick. Opposite pairs
should be wired in parallel, as shownin the schematic. Note the 1 -Kohm limiting resistors wired to
each potentiometer and make sure thatthe +5V goes to each pair of potentiometers separately
(don't try to save money by only using one or two 1-Kohm resistors, as the case might be).

111

112

Chapter 5

STEP 2 Wiretheremainder of the circuit as shown in the schematic, Figure 5.7, notforgetting

to wire +5 V and 0 V to all integrated circuit chips used. Apply power after the circuit has been
checked.

STEP 3 TheBASIC program is quite straightforward. Whenthe programreturns fromthe USR
subroutine called atline 30, the variable L hasthe 16-bit count of the B and C register pair returned
automaticaliy. The BASIC variable C has its value determined by the contents of memory locations
16561-16562/32177-32178. The values of the variables so formed are scaled tofit onthe video
screen. NOTE: You may have to change these scaling factors yourselt if the potentiometers inthe
joystick you use are much different from the values stated in this experiment.

Load the BASIC program.

BASIC PROGRAM

10 REM 123456789 123456789 123456789 123456789 1234567890
(for B&W models)

20 FAST

30 LET L = USR 16514

40 LET C = PEEK 16561 + 256 * PEEK 16562

T

10 CLEAR 32128 (for Color models)

30 LET L = USR 32130

40 LET C = PEEK 32177 + 256 * PEEK 32178

* % B

50 LET N 33333

60 LET X = L/11.5

70 LET Y = C/20

80 PLOT X,Y

90 PAUSE N

95 GOTO 20

100 FOR M = 16514 TO 16557 {for B&W models)

100 FOR M = 32130 TO 32173 {for Color models)

110 INPUT N

120 POKE M,N

130 PRINT M; “=" ;PEEK M;

140 NEXT M

STEP 4 Inspection of the machine language program will show that after inputting the states
of the data lines at location 16524/32130, the accumulator is ANDed with the contents of E.
Register E holds a mask having the decimal value 129, whichin binary is 10000001, As can be seen
from the binary representation there s a logic 1 state at each of the positions correspondingto DO
and D7, the two lines we wish to check.

Two loops are set up: the first loop waits until the first timer output has fallen to 0 while
incrementing the BC pair counter register each time round the loop, the second loop saves the
count of the first timer while continuing to increment the BC counter until the second timer output
has falien to 0.

Finally on exiting from the loops a check is made on which timer output fell first: the X orthe Y. If

Digital Conversions 113

. 1 LA | = I “L h.:'x“ -1 5 ZT\-.\S
100K;each ;: |2] seee 3, | LTT DO
et iniaiatey ‘S L .01 _
.—W\:'\m-—- —w— 4|_Ls uF
1 1 .2p|.F 01 ”F
JOYSTICK ey 12 1
3] sseb [5[~ 6 D7
13 e i :
ouT* —5)32) 10{ |8
ca* 19 8
IN* 10) '32

Figure 5.7 Experiment 5.1 Schematic.

the Y timer fell first, then the routine starting at 16547 /32163 exchangesthe contentsofBCandHL
before returning to the BASIC program.

Load the machine language routine by ENTERing RUN 100 andsupplyingthe decimal values of
the machine code.

MACHINE LANGUAGE PROGRAM

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC COMMENT
B&W / Color _
16514 /32130 211 OUT (N).A Trigger the monostables
16515/ 32131 3 (N) -at Port 3.
16516 /32132 30 LD, E,N :Set the mask for both
16517/32133 129 N :D7 and DO to logic 1.
16518/32134 33 LD HL NN ‘HL points to address at
16519/32135 176 LoN 16560 or 32176 to tell which
16520/ 64 Hi N timer quit first.

/32136 125 Hi N

16521 /32137 1 LD BC,NN :Zero the 16 bit counter
16522 /32138 0 N
16523/32139 0 N
16524 /32140 219 IN A,(N) -Read the monostable levels
16525/ 32141 3 (N) :from Port 3.
16526/ 32142 163 AND E :Set the Flag register for A.

16527 /32143 40 JRZd ‘I both timed out then jump

114 Chapter 5

16528 /32144 12 d 1o 16541/32157.
16529/32145 3 INC BC Increment the count.
16530/ 32148 187 CPE :Are both still high?
16531 /32147 40 JRZd :Yes. Jump back to 16524/
16532 /32148 247 d :32140 and keep counting.
16533 /32149 95 LD EA :No. Save a new mask
16534 /32150 119 LD (HL),A 'to show which one quit.
16535/ 32151 35 INC HL :Save the count low byte
16536 /32152 113 LD (HL),C :at 16561/32177, and
16537 /32153 35 INC HL ‘the high byte at 16562/
16538/ 32154 112 LD (HL}B 32178 for BASIC program.
16539/32155 24 JRd Jump backto 16524/32140
16540/ 32156 239 d ‘keep count of second timer.
16541 /32157 43 DEC HL ‘Arrive here when both timers
16542 /32158 43 DEC HL ‘have quit.
16543/ 32159 126 LD AHL :Get mask from 16560/32177.
16544 / 32160 31 RRC :Did DO(X) quit before D7(Y)?
16545/ 32161 56 JRC,.d If not, then skip to 16557/
16546 /32162 10 d :32163 to return to BASIC.
16547 /32163 42 LD HL,(NN) 'If so, then Load HL with X
16548 /32164 177 LoN .count stored at
16549/ 64 Hi N 116561-2 or

/32165 125 Hi N :32177-8.
16550 /32166 229 PUSH HL :Swap BC and HL by reversing
16551 /32167 197 PUSH BC ‘them on the stack.
16552 /32168 225 POP HL ‘Now HL has the Y count,
16553/32169 193 POP BC :and BC has the X count.
16554 /32170 34 LD (NN}),HL :Save the X count
16555/32171 177 LoN ‘low byte at 16561/32177
16556 / 64 Hi N :high byte at 16562

/32172 125 Hi N 1or 32178.
16557 /32173 201 RET :Back to BASIC.

STEP 5 RUN the program. If your Timex /Sinclair responds by printing B/(line number), you
will need to change the value or values of the divisors in line 60 and/ or 70 of your BASIC program,
because the values to be PLOTted are out of range.

STEP 6 If your variable values are not too large, a dot should appear in the center of your
screen. Continue your program by putting it in a BASIC loop with a time delay of a second by
changing line 50:

50 LET N = 80

Trace out the limits of your joystick control in the X and Y directions. A rectangle should result.

STEP 7 Investigate the nonlinearities of the diagonals. These are due to the logarithmic
variation of most commonly available potentiometers.

Digital Conversions

SUMMARY A joystick control has been constructed using a minimum of inexpensive
components. Alternate applications include varying resistances alongthe X andY directions ofa
plane such as found in potentiometric X-Y flat bed recorders, or a pantograph arrangement for
digitizing from a two-dimensional plane. Other extensions of the use of this control are left to the
imaginations of the readers.

EXPERIMENT 6.2
DETECTION OF ROTATIONAL SPEED

COMPONENTS 1 * Slotted optical limit switch, type OPB861 (TRW)

1 * Opaque disc (see Figure 5.8)

1 * 74LS32 Quad OR Gate

1 * 74L5244 Octal buffer

1 * DAC558 Digital-to-Analog Converter

1 * LM358 Dual QOperational Amplifier

1 * Transistor, type D40K (G.E.) or equivalent

1 * 150-ohm resistor

1 * 10-Kohm resistor

1 * 3-V permanent magnet DC motor

1 * 3-V DC power supply or batteries (Do not use the Timex/Sinclair power
supply for driving the motor.)

DISCUSSION Rotational speed measurement is a useful measurement that can be made
digitally. It requires a minimum of hardware coupled with the versatility of the microcomputer to
provide rapid acquisition of rotor speed. Applications include both RPM (revolutions per minute)
detection as in the case of a motor, or measurement of linear flow with a turbine, such as an
anemometer for wind speed measurement. An alternate method for measuringthe speedofa DC
motor will be studied in Experiment 6.4.

The speed of the motor can be controlled within certainlimits by the voltage appliedtothe motor.
The voltage applied to the motar can, in turn, be controlled by the microcomputer using a digital-to-
analog converter {DAC) to convert an eight-bit number to a proportional analog voltage. The
analog voltage output of the DAC cannot drive the motor directly because it cannot provide
sufficient current to the motor windings. However, by using an operational amplifier {op amp) to
control a high gain power transistor between the DAC and the motor, the voltage of the motor's
power supply can be controlled and the speed can be varied.

An optical sensor using an encapsulated infrared active LED and phototransistor separated by
a narrow air gap or slot and shown in Figure 5.8, willbe usedto measurethe speed of the motor. The
detector has four leads to power the LED and pick up the current output from the phototransistor,
these connections are shown inthe schematic, Figure 5.10. When a thin cardboard or plastic disc
having a small notch or gap in its perimeter is mounted onthe rotorshaftandinsertedintothe slot of
the detector, the phototransistor will conduct current only when the notch is aligned with the
detector light beam. As the rotor turns, the disc will rotate, and, whenthe opague section coversthe
LED, the phototransistor will turn off.

In this experiment we will use the microcomputer to control the speed of a small DC motor with
the DAC driver and to time its interval of rotation with a phototransistor detector. A look at the
waveform produced by the detector will assist inthe description of just how the measurement will

115

116 Chapter 5§

MOTOR SHAFT
NOT TO SCALE

)] DISC
I™1="™"M
I :;1“ ’E: i
1
| I U N | . "
3 2 il _
2 3 3 mm|
1 4 —
(bottom) | J 5-10 cm DIAMETER
OPB861 3 2
OPTICAL LIMIT SWITCH 4 1

Figure 5.8 Diagram of a Detector.

be made. As the phototransistor turns on and conducts current, a voltage will be produced as
shown in Figure 5.9. Obviously the time for one revolution is the time interval from one "on” time to
the next succeeding "on” time. Once the time for one revolution, called the period, has been
determined, the number of revolutions per minute (RPM) can be determined from the formula

RPM =60/T

where T is the time for one revolution measured in seconds. For example, if T was measuredtobe
10 msec, then

RPM = 60/0.010 = 6000 RPM

In order for the microcomputer to know when a period has elapsed it must first detect a rising
pulse "turn on." Remember, the microcomputer is not synchronized to the speed of the motor so it

TIMED INTERVAL

VOLTAGE
OouUTPUT

t t

Figure 5.9 Square Wave Diagram.

Digital Conversions

might turn on its measurement program in the middle of the transparentsection. Tocorrectforthis,
we will cause the microcomputer to detect a rising edge and then go and time the interval between
two successive falling edges. This will give us a reproducible value for the period T.

It would not be unusual, however, to expect variations in the speed of the motor, so one single
value measured by the microcomputer might not be representative of the speed. This can be
remedied by taking ten samples of the period and calculating the average period using a BASIC
program.

The scheme then is to set the speed of the mator and start the microcomputer timing program,
time the next period between falling edges, then jump back to BASIC to calculate the average
period and print out a result. The ten values of period measured will be stored as adecimal countin
the memory area of the REM statement allocated tothefile ofdatavalues. These addressescan be
stored in the HL register pair; the number of periods to be measured can be storedinthe Bregister,
and the counter used to time the period will be the count stored in the DE register pair.

To detect a rising edge, the pulse produced by the photodetector is fed to databusline D7 viaa
three-state buffer which is enabled by the IN 3 device code. The state of D7, once input to the
accumulator register of the Z80 microprocessor, can easily be checked for a high or low state by
rotating the accumulator to the left into the carry flag. If D7 were a 1 (the “turned on" state) when
input, then when the accumulator was rotated left, a 1 would have been moved out of bit 7 into the
carry flag of the status register. (Recall thatthe carry flagisthe LSB of the Flagsregister andsoacts
like a ninth bit of the accumulator.)

Ifthe microprocessor now checks for a logic 1 it will know when bit 7 wenthigh and immediately
trigger the timing circuit to start on the nextfalling pulse, thatis, when bit 7 falls to 0. The program will
then wait until the next succeeding falling pulse before stopping the counter and transferring the
count values into the file space of memory. The BASIC program can pick up the count valuesfrom
memory and operate on them to produce the final result.

PROCEDURE

STEP 1 Wire the circuit with the power switched off, as shown in the schematic, Figure 5.10.
Position the optical limit switch at the end of the socketboard. The LM358 operational amplifier is
connected as a “voltage follower” circuit. In this configuration, the DAC output feeds the
noninverting (+) input of the op amp which in turn applies a voltage to the base of the (Darlington)
DAOK transistor driver. With the collector of the transistor connected to the 3-V power supply, the
greater the voltage applied to the base of the transistor, the greater the amount of current that
can flow from the collector (C) to the emitter (E) of the transistor). The voltage at the emitterthen
feeds the DC motor but also feeds back to the inverting {—) input of the op amp. As a voltage
follower, the op amp uses the feedback signal to maintain equal voltages at both its + and —
inputs by constantly adjusting its output to the base of the transistor,

STEP 2 Carefully attach the disc to the motor spindle so that it is centrally mounted (not
eccentrically) and with a minimum of wobble.

STEP 3 Mountthe motor ontheedge of astable base boardthat canbe elevated using awood
blocktofitinto the narrowgap of the detector. The base board should belong enoughto beweighted
down because the high speed of the motor will tend to vibrate and move the board. Make sure that
the detector lies along a radius through the center of the motor spindle for the most reliable
operation.

STEP 4 Connecta separate power supply tothe motororusetwo heavy duty low-voltage (3V
total) DC batteries, some of the small 3-V motors candrawupto 0.5 A Ifbatteries areused, they can
be used to weigh down the motor baseboard.

117

118 Chapter 5

EBC
D3 —— AD558

| 8] o

ouT* 74L.8244: + 5V pin 20
C3* 18 __~12 GND pin 10

IN* 2 311

Ci1»

DC MOTOR

LT e I 7]

OPBB861

Figure 5.10 Experiment 5.2 Schematic.

STEP 5 Load the BASIC program into the Timex/Sinclair microcomputer. Line 30 of the
BASIC program calls the subroutine at lines 150-190to select the speedofthemotor by outputting
the variable V to the DAC at Port 11 with the USR function at address 16572/32188. The motor
speed machine routine is called with the USR function at address 16514/32130 from line 40. The
rest of the BASIC program averages the values stored by the microprocessorin memory locations
16552/32168 through to 16572 /32188 and displays the results.

Ten pairs of bytes are held in consecutive memory locations 16552/32168-16571/32187,
these are the 16-bit counts of the number of times the microprocessor wentthro ughthe INCrement
subroutine in the machine language program. Each increment takes 11,15 microseconds each
time it is executed. Knowing this figure the BASIC program can calculate the RPM figure directly.
Each pair of values is PEEKed by the BASIC program at line 70 and added to the sum Sin line 80.
This is repeated until all values are added in when the program moves ontoline 100 and calculates
the final average speed.

BASIC PROGRAM

10 REM 123456789 123456789 123456789 123456789 123456789

123456789 12345 (for B&W models)
10 CLEAR 32129 (for Color models)
20 FAST (for BAW modeis)
30 GOSUB 150
40 LET L = USR 16514 (for B&W models)
40 LET L = USR 32130 {for Color models)
50 LET 8 = 0
60 FOR A = 16552 TO 16571 STEP 2 (for B&W models)

60 FOR A
70 LET C
80 LET 8§ =
90 NEXT A
100 LET R = 6E8/(11.15%8)

32168 TO 32187 STEP 2

S +C

110 PRINT V; “YIELDS SPEED = " ;
120 GOTO 20

150 PRINT “DAC VALUE = " ;
160 INPUT V

170 POKE 16573,V

180 LET L = USR 16572

170 POKE 32189,V

180 LET L = USR 32188

190 RETURN

200 FOR M = 16514 TO 16566
200 FOR M = 32130 TO 32182
210 INPUT N

220 POKE M,N

230 PRINT M; “=" ;PEEK M, ;
240 NEXT M

INT R;

Digital Conversions 119

(for Color models)

PEEK A + 256 * PEEK(A + 1)

“R.P-H_ n

(for B&W models)

(for Color models)

(for B&W models)
(for Color models)

STEP 6 The machine language program itself was fairly well covered in the Discussion
section of this experiment. Load the machine code by ENTERing RUN 200.

MACHINE LANGUAGE PROGRAM

DECIMAL INSTRUCTION
ADDRESS CODE MNEMONIC

B&W / Color
16514 /32130 133 LD HL,NN
16515/32131 168 LoN
16516/ 64 Hi N

/32132 125 Hi N
16517 /32133 6 LD BN
16518/32134 10 N
16519/32135 17 LD DE,NN
16520/ 32136 0 Lo N
16521 /32137 0 Hi N
16522 /32138 167 AND A
16523 /32139 219 IN A(N)
16524 / 32140 3 N
16525/ 32141 7 RLCA
16526 /32142 48 JR NC,d
16527 /32143 251 d
16528 /32144 219 IN A(N)
16529 /32145 3 N
16530/32146 7 RLCA

COMMENTS

:Point to start of counts
file at 16552/32168.

:Number of file entries.

‘Zero time counter.

‘Read D7 bit from

Port 3.

:Shift it into Carry bit.

JIf light is out then jump back
:to 16523/32139, stay in loop.
Jflight is on then read it

‘from Port 3 again.

:Shift D7 tothe Carry bit.

120 Chapter 5

16531 /32147 56 JRCd If light is still on then
16532 /32148 251 d ;jump back to 16528/32144.
16533 /32149 19 INC DE ‘Arrive here on negative
16534 /32150 219 IN A(N) :edge. Update count in DE
16535/ 32151 3 N :and read D7 until
16536 / 32152 7 RLCA :light goes orragain
16537 /32153 48 JRNGC,d :by jumping back to
16538 /32154 250 d :16533/32149,
16539 /32155 19 INC DE :Count while the light
16540/ 32156 219 IN A{N) remains on to get the
16541 /32157 3 N :count of a complete
16542 /32158 7 RLCA ‘revolution by jumping
16543 /32159 56 JR Cd :back to 16539/32155.
16544 /32160 250 d
16545 /32161 115 LD (HL).E :Done. Save the count low byte
16546 /32162 35 INC HL tinthe memory file,
16547 /32163 114 LD (HL),D :and the count high byte
16548 /32164 35 INC HL iin the adjacent location.
16549 /32165 16 DJNZ d :Have all 10 counts been made?
16550 /32166 224 d :No. Go to 16519/32135.
16551 /32167 20 RET :Yes. Go back to BASIC.
16552 /32168 0 NOP :20 byte Data Table.

to " i
16571 /32187 0 NOP ‘End of Table.
16572 /32188 62 LD AN :Load motor speed value
16573 /32189 0 N :obtained from BASIC
16574 /32190 21 QOUT (N),A :into DAC register
16575/32191 11 N :at Port 11,
16576/32192 201 RET :Back to BASIC subroutine,

STEP 7 Double check your machine code and hardware electrical connections then RUN
your program. Enter a DAC value of 96. You may have to helpthe motor startrunning by rotatingthe
disc with your finger.

STEP 8 Successful measurement of the speed of the motor will be indicated by a sensible
answer printed on the video screen. If you have alignment problems with your disc in the narrow
gap, it is possible to produce a number of spurious pulses each cycle (or period) giving rise to a
higher speed than expected and a nonsensible result. If you suspect spurious pulses, carefully
adjust the physicallocation of your detector with respect to the rotating disc. You should be ableto
adjust out any inconsistencies.

STEP 9 Checkthe linearity of your motor to applied DC voltage. Figure 5.11 shows theresults
we gbtained by measuring the output of the DAC (curve A), the output of the opamp (curve B), and
the motor speed (curve C) as a function of the number outputted to the DAC. Notice that curves B
and C are straight lines over most of the range of values. We made four measurements per DAC
value at intervals of 32 between 64 and 255. Above V = 192 the speed tends to flatten. Below
V = 64 our motor tended to run in spurts, and sensible measurements could not be taken.

Digital Conversions

B (VOLTS + 1)
1.2t0 3.5

A(VOLTS)

/ C (X10000 RPM)

0 64 128 192 255
Figure 5.11 Analog Results.

STEP 10 Savetheresults of this experiment for Experiment 6.4 in which you could make use
of the speed versus applied voltage relationship obtained here.

SUMMARY The determination and control of rotational speed are very useful measurementsin
science and engineering applications. The correspondence between the application in this
experiment and Experiment 5.1 illustrates how different transducers can beimplemented usingthe
same digital timing technigue. In this experiment, we have illustrated both digital output for analog
conversion and digital input. For lower speeds the transparent and opaque disc sections can be
proportioned differently or several sections of each can be laid out on the disc. Experiment 5.3
illustrates additional applications of this technique for digital data acquisition.

121

122

Chapter 5

EXPERIMENT 5.3
ROTATICNAL POSITION DETECTION: SHAFT ENCODING

COMPONENTS 3 * Slotted optical limit switch, type OPB861 (TRW)
3 * Transparent plastic discs (see Figure 5.12)
1 * 740532 Quad Two-Input OR Gate
1 * 74L5244 Qctal Three-state Buffer
3 * 330-ohm resistors
3 * 10-Kohm resistors

DISCUSSION Therotational or angular position of a shaftis often useful or necessary information
in an experiment. Some examples are the determination of wind direction with a weather vane, the
position of a valve, or the setting of a control knob. The determination of an angular position canbe
made digitally with optical sensors and sectioned transparent discs mounted on the shaft to be
measured. Because the precision of the position doubles with each additional bit input, the
maximum number of bits for an eight-bit input port would limit the precision to 360/256 or 1.4
degrees. Of course, higher precision would be possible using more bits and more than one input
port to read the position. In many cases, such high precision is not needed. For example, the eight
major compass directions of a weather vane require only three bits.

The design of the three discs and their alignment is shown in Figure 5.12. Because they are
mounted on a common shaft, reading the bit pattern for a particular directionis done by readinga
logic 1 if the disc is transparent in that direction or reading a logic Oifitis opaque in thatdirection.
One important factor in encading direction is how to detect the positions reliably when one bit is
uncertain. If we write the bit pattern for the eight directions by referring to Figure 5.12, the following
table is obtained:

w
OO0 = - D I
o T o S N G Y o B o T m

where the north direction {N) is repeatedto make it easier tocompare codes for adjacent directions.
The first observation we make is that the normal sequence of binary counting is not obtained. The
encoding obtained is known as the Grey code. Its distinctive differenceisthat only one bitchanges
its value between adjacent directions, Therefore, ifthe weather vane should pointexactly between
Wand NW, for example, only the middle bit would be uncertain. Whether the optical sensor detected
a logic 1 or logic 0 for the middle bit would still let the computer decode the direction within the
precision of one-eighth of the circle.

The circuit to interface the shaft encoder to the microcomputer is very simple. The collectors of
the three sensors are each connected to a three-state buffer. The three-state buffers are enabled
by Device Select Pulse (IN 3)* obtained by ORing IN* and Device Code 3. The emitters of the

Digital Conversions

Figure 5.12 Disc Patterns for Eight Directions.

sensors are grounded, and their LEDs are connected to the power supply through current limiting
resistors. The circuit is shown in Figure 5.13.

PROCEDURE

STEP 1 Prepare three 2-inch (50 mm) diameter discs from thin (1/186 inch or less) clear
plastic sheet either by removing the protective paper for the transparent secticns or by masking
{tape or paint) each opaque section as shown inFigure 5.12. Alignthemontheshaftto be encoded.

DISC A
OPBB&61

DISC B
OPB861

o —5 T
oy 18 2
1| |19
Ca#
IN* —2 3

Figure 5.13 Experiment 5.3 Schemalic.

124

Chapter 5

A shaft made from a 1/8 inch (3 mm) X 2 (or 3) inch machine screw using washers and maching
nuts against both faces of each disc will provide firm mounting and allow for easy alignment. This
shaft can then be coupled to any shaft of interest.

STEP 2 The sensors can be mounted around the circumference of the discs at any position
as long as the orientation of each disc to its sensor is as showninFigure 5.12. Forexample, aboxor
cylinder housing with the sensors at positions of 3, 6, and 9 o'clock (right angles) can be used. The
ends of the housing can then serve as shaft bearings if necessary.

STEP 3 With the +5-V power rail disconnected from the supply, wire the circuit as shownin
the schematic.

STEP 4 The program to acquire the data is very straightforward. The position code obtained
from the least three bits of Input Port 3 are returned from the USR subroutine and assignedtothe
variable P in line 20. Line 30 is the method to branch in Sinclair BASIC based on the value of P.
Standard BASIC uses the command: ON P GOTO 50,60, . . . etc. The PAUSE at line 120 times
readings about once every 5 seconds. Twenty-tworeadings will be obtained before you willhaveto
input CONTIinue. You could insert a line 25 SCROLL if desired to make continuous readings.

The machine language subroutine is equally simple. Becausethe value of the BCregister pairis
carried back to BASIC, itis initialized to 0. The input port is read and ANDed with 00000111 to zero
the five most significant bits of the value read into the accumulator. The value of the leastthree bits
are loaded into register C (B will be 0) and returned as the BASIC variable P.

Load the BASIC program. RUN 200 and enter the decimal code of the machine language
routine.

BASIC PROGRAM

10 REM 123456789 (for B&W models)
10 CLEAR 32129 (for Color models)
20 LET P = USR 16514 (for B&W models)
20 LET P = USR 32130 (for Color models)

30 GOTO 40+10*P

40 PRINT ‘“NORTH"

45 GOTO 120

50 PRINT ‘ NORTHWEST"
55 GOTO 120

60 PRINT *“ SQOUTHWEST?”
65 GOTO 120

70 PRINT ¢“WEST"”

75 GOTO 120

80 PRINT “NORTHEAST”
85 GOTO 120

90 PRINT ¢ EAST”

95 GOTO 120

100 PRINT *“SOUTH'®’
105 GOTO 120
110 PRINT *“ SOQUTHEAST”
120 PAUSE 300

Digital Conversions

130 GOTO 20
200 FOR M = 16514 TO 16522 {for B&W models)
200 FOR M = 32130 TO 32138 (for Color models)
210 INPUT N
220 POKE M,N
230 PRINT M; “=" : PEEK M, ;
240 NEXT M
MACHINE LANGUAGE PROGRAM
DECIMAL INSTRUCTION
ADDRESS CODE MNEMONIC COMMENTS
B&W / Color
16514 /32130 1 LD BCNN :Zeroregisters for BASIC
16515/32131 0 Lo N variable P.
16516 /32132 0 HiN
16517 /32133 219 IN A,(N) :‘Read Optical sensors
16518/32134 3 N :at Port 3.
16519/32135 198 AND AN :Zero all bits but
16520/32136 7 N :D2, D1, and DO.
16521 /32137 79 LD CA :Put in register C.
16522 /32138 201 RET Take it back to BASIC

STEP 5 Having checked the software and hardware (detector and circuit), RUN your pro-
gram.

STEP 6 Casually rotate the shaft and check it out for proper encoding. Note the position of
due north, etc.—you might mount a short pointer on the shaft made from a piece of breadboarding
wire wrapped around the shaft.

STEP 7 Align one of the section boundary lines of one of the discs with its sensor. Rotate the
disc just enough on either side of the boundary to read adjacent compass points. What directions
would you obtain if the disc were encoded in binary instead of the Grey scale?

STEP 8 You may want to save this interface and use it with the stepper motor in Experiment
5.4. The combination of thetwo experimentsis lefttothe reader. twould be a simple matter to builda
wind speed anemometer using Experiment 5.2 and a wind direction indicator with Experiment 5.3.

EXPERIMENT 5.4
STEPPER MOTOR CONTROL

COMPONENTS 1 * Stepper motor [e.g., Quadrapulse 8AU0705 (Septor) (5 V, 0.85 A/coil,
48 steps/rev) |
1 * Power supply for coils of stepper motors
4 * Driver transistors [e.g., D40K {GE) (2 A, 30 V)]
1 * 74LS75 Quad Latch
1 * 74LS02 Quad NOR Gate

125

126

Chapter 5

DISCUSSION Robotics are gaining inimportance and the control of movementin robots is most
often accomplished using stepper motors. Various stepper motors are available in the
marketplace; we chose one which worked from 5 V and drew 500 mA per coil, atotalof 1 ADCat5
V, hence the need for a DC power supply to drive this part of the experiment.

We have already seen that the rotor of the motor is stepped by applying pulses to one of each
pair of the four coils in the sequence 0110 and then rotating the sequence to the right or left by one
bit, depending on which direction you wish the motor to rotate. You will note that the
microprocessor instruction set contains an ideal instruction with which to carry out this
procedure; the RRCA (Rotate Right the Contents of the Accumulator) or the RLCA instructions.
Each time such an instruction is executed and output, the motor will step one position to the right
or left.

The interface uses a 74LS75 four-bit latch to hold the four-bit word output from the
accumulator register of the Z80 microprocessor. The latch is enabled by the device select pulse
generated by the 74LS02 NOR gate. The latch drives the bases of the four transistors connected
to the four coils of the stepper motor. When the latch output is low (O state) the base of the
transistor has insufficient bias to cause the fransistor to conduct so the collector output of the
transistor stays high at near 5V 5o no (or very little) current is drawn through the coil. When the
latch output is high (1 state) the base of the transistor is forward biased, and the transistor
conducts so bringing the collector voltage down to near 0 V and placing nearly 5V across the coil.
The coils are activated and apply a magnetic force to the rotor which causes the motor to
advance one step around.

Robot arms used to demonstrate the principles of robotics have at least six degrees of
freedom. Each degree of freedom would have a stepper motor attached to control movementin
that particular plane of motion, for example, arm rotation, elbow bending, wrist twisting. Each
motor would have similar interface circuitry activated by different device select pulses. To putthe
robot arm in a particular position starting from a known reference position would require a
sequence of instructions to each motor telling it how many steps it would have to take to reach the
designated position.

In this experiment you will accomplish the setting of the stepper motor at a particular position,
but once again you will be able to visualize more complex situations.

PROCEDURE

STEP 1 You will have previously constructed the transistor driver circuitry needed to drive
the stepper motor. This circuitry will depend somewhat onthe specifications of the stepper motor
you purchase or have available. Most power transistors however can have their bases driven
directly by the output of a TTL latch chip if not by an LS latch chip. So even if you have 24-V coils
(and need a 24-V supply) on your stepper motor, your driving transisters could be driven from the
latch chip.

STEP 2 Wire the circuit as shown in the schematic, Figure 5.14, making certain that the
positive (+) volt line from your motor DC power supply is not connected to the +5-V line of the
Timex/Sinclair unit. Do however make sure that a GND, 0V, line is connected between the two
supplies. Wire your 74LS02 quad NOR gate to produce the device select pulse OUT 3(an active
high device select pulse).

STEP 3 Insert your program, and check both hardware connections and the software
program.

ca*

ou

5V
& 5| [12 &

Digital Conversions 127

7 i
D3 75 |2 :
55 6 10 » TO MOTOR COILS VIA
3 15)} POWER TRANSISTOR DRIVERS
D1 D Q _""_"': (REF. FIG. 5.6)
DO 2 16 :
T

Tl

Figure 5.14 Experiment 5.4 Schemalic.

BASIC PROGRAM

10
10
20
30
30
40
50

60
70
80

60
70
B8O

90
100
110
120
120

REM 123456789 123456789 123456789 1234567 (for B&W models)
CLEAR 32129 (for Color models)
FAST (for B&W models)
LET L = USR 16515 {for B&W models)

LET L = USR 32131

{for Color models)

PRINT AT 14,0; “ENTER NUMBER OF STEPS REQUIRED”

INPUT DC
* k x X
POKE 16514,DC
LET L = USR 16521
PRINT PEEK 16550
* ok k%
POKE 32130,DC
LET L = USR 32137
PRINT PEEK 32166
¥ k k X
LET N = 33333
PAUSE N
GOTO 40
FOR M
FOR M

16515 TO 16548
32131 TO 32164

(for B&W models}

{for Color models)

{for B&W models)
{for Color models)

128 Chapter 5

130 INPUT N

140 POKE M,N
150 PRINT M;
160 NEXT M

MACHINE LANGUAGE PROGRAM

ADDRESS

B&W / Color
16514 /32130
16515/ 32131
16616/ 32132
16517/
/32133
16518/32134
16519/32135
16520/ 32136
16521 /32137
16522 /32138
16523/
/32139
16524 /32140
16525/ 32141
16526/
/32142
16527 /32143
16528 /32144
16529
/32145
16530/32146
16531 /32147
16532 /32148
16533/32149
16534 /32150
16535/ 32151
16536 /32152
16537 /32153
16538/32154
16539 /32155
16540/ 32156
16541 /32157
16542 /32158
16543/ 32159
16544 /32160
16545 /32161
16546 /32162
16547/ 32163
16548 /32164

; PEEK M, ;

DECIMAL
CODE

< >
33
166
64
125
54
51
201
33
166
64
125
58
130
64
125
50
147
64
125
6
0
126
17
255
100
211
3
29
32
253
21
32
250
15
16
242
119
201

INSTRUCTION
MNEMONIC

LD HL,NN
LoN

Hi N

Hi N

LD (HL),N
N

RET

LD HL,NN
Lo N

Hi N

Hi N

LD A,(NN)
Lo N

Hi N

Hi N

LD (NN)A

Hi N

Hi N

LD BN

N

LD A (HL)
LD DE,NN
LoN

Hi N

QUT (N),A
N

DECE
JR NZd
d

DECD
JRNZd
d

RRCA
DJNZ d

d

LD (HL),A
RET

COMMENT

‘No. steps POKEd by BASIC
:Address pointer of bit
:pattern mask stored

:at 16550.

:or 32166.

:Load mask at 16550/32166.
:Mask = 00110011,

:Back to BASIC line 40.
:Address points to mask

:at 16550/32166.

‘Get number of steps
-at address 16514/32130

‘Put number of steps into
-subroutine at 16531/32147

‘Load number of steps into B.
‘Loaded from 16527/32143.
:Put mask into accumulator.
:Set up delay counters

‘in register E

:and register D.

:Send bit pattern to

:stepper at Port 3.
:Countdown E

!Is E zero?

‘No, go back to 16538/32154.
Yes, now countdown D.

s D zero?

‘No, then countdown E again.
‘Rotate mask for next step.
:Are all steps in taken?

:No, goto back to 16533.
‘Yes, then save current mask
:and go back to BASIC.

Digital Conversions

16549/ 32165 0 NOP
16550/ 32166 < > MASK

STEP 4 Switch on your DG power supply to your stepper motor, and check that the motor is
held. The rotor should resist your attempt to move it. Next RUN your program, and input how many
steps you wish the motor to take. Try two or three steps first.

STEP 5 The program accepts this input and pokes the decimal value into memory location
16514/32130 where the machine language program collects it and transfers it to register B,
which is used as a counter for the number of steps. The machine language program outputs the
code 51 decimal, 00110011 in binary, which is the sequence of bits required by the motor cails.
The program then executes a time delay before rotating the accumulator contents to the right at
memory location 16544 and outputting another step. This carries on until register B is 0
whereupon the Z80 instruction DJNZ is executed and the code of the last step is stored in
memaory before the program returns to BASIC to wait on ancther entry.

STEP & The nextentry picks up the previously stored code for the position of the moter and
starts stepping from the last remembered position.

STEP 7 Change the code of the instruction RRCA to that for RLCA at memory location
16544/32150, and note that the motor steps in the reverse direction.

STEP 8 Determine how many steps per revolution for your stepper motor. Our motor had 48
steps per revolution. You might observe at the first run that the motor is unsure which direction to
step. This is due to the code 51 decimal being used. The motor at switch on may not be lined up for
this particular code; however, the motor is brought into synchronization quickly and then
continues stepping in the correct direction.

STEP 9 Any unusual problems, such as missing out a step when rotating, could be due toa
faulty drive transistor. These can be checked by connecting a voltmeter to the collector of each
transistor in turn and noting as you step through at least four steps slowly, that the collector should
go down to near 0 V as well as come back up to near 5 V. If one or more do not show this behavior,
they should be replaced and the motor coils should be checked as well.

SUMMARY Stepper motor control is an important interfacing experiment, but it requires more
than the basic equipment most of our experiments have utilized. This experiment also
demonstrates the need for using discrete components, the transistors, to control power devices
which draw heavy currents of 0.5 A or more. Much interfacing requires this level of sophistication.

EXPERIMENT 5.5
REAL TIME DIGITAL CLOCK

COMPONENTS 1 * 58167 Digital Clock IC
1™ 32.768-KHz miniature crystal
1 * 741502 Quad Two-Input NOR Gate
1 * 74L5373 Three-state Octal Latch
2 * 20-pF capacitors (preferably polystyrene)
1 * 0.1-uF capacitor

129

130

Chapter 5

DISCUSSION In many experiments, especially ones which monitor slowly changing data
continually or over relatively long periods of time, it is desirable to acquire the data as a function of
real time. By real time we mean actual clock time or time of day. When we refer to slowly changing
data, we mean slowly with respect to the speed of the microprocessor, so readings of once per
second or longer might be considered slow. For example, monitoring temperature, pressure, or
wind velocity and direction does not typically require data acquisition more than once every 15
sec to provide more than enough information to produce essentially continuous data. Witha real-
time clock we also have the option of using the computer as either a stopwatch or lapse timer.
Many experiments can be designed where the start and stop controls for some event can be
performed by triggering the computer toread a real time and calculate the difference. Accuracies
of 0.01 seconds in BASIC programs or even milliseconds in machine language should be
achievable.

The integrated circuits used in the manufacture of digital clocks can be interfaced to the
computer to provide time readings however there are also microprocessor-compatible ciock ICs,
which are very easy to interface. The MM58167 is a 24-pin CMOS IC (National Semiconductor)
typical of the latter. Its timing is controlled by a quartz crystal, It is a calendar clock made up of
eight counter registers which keep the month (1 to 12), day of month (1 to 28, 30, or 31 depending
on month), day of week (1 to 7), hours (0 to 23), minutes (0 to 59), seconds (0 to 59), fractions of
seconds (0.00 to 0.99), and milliseconds (0 to 9). There are also eight presettable latches
corresponding to the eight counters which can be used for alarm-type functions, The chip
interfaces eight data lines directly to the Data Bus of the microcomputer. To access any one of
the 16 counter or latch registers, there are five address input lines which would ordinarily be
connected to the computer's Address Bus. Each counter and latch is thus treated as a separate
input/output port. There are also eight additional control registers, which function as individual
ports to bring the total count up to 24, The Device Codes (Port Addresses) are givenin Table 52
We will confine our attention to only those ports related to the counters and a few of the controls.
Moare advanced interfacing of the alarm latch ports can be performed as an advanced project
using the manufacturer's data sheet.

The data byte transferred between the ¢clock and the microprocessor is encoded in BCD
(binary-coded decimal). The more significant four bits (D7-D4) contain the tens and the less
significant four bits (D3-D0) contain the ones of the time unit. For example, 4 e held in the hours
register (counter or latch) is 16 (= 12 + 4) and is encoded in BCD as 0001 (value 1) and 0110
(value 6) giving 00010110 as the byte with the decimal value {for BCD 16) of 22. The number 22
would be output to Clock Port 4 (hours counter) to set the time for 4 em. As another example, the
largest value in the minutes and seconds registers would be 59: the byte value for BCD 89 is
01011001 or 89 (64 +16 + 8 + 1).

Because the Timex/Sinclair decodes the address bus lines relatively, we cannot interface the
MM58167 directly to the Address Bus. As shown in Figure 5.15, the address ports can be selected
with five latches wired as an output port. The clock is interfaced as two separate ports; the
7415373 latch will be the address port that selects the desired clock register as the firstport. The
data transfer either to orfrom the addressed clock register is the second port. In programming the
computer to read (input) or set (cutput) the calendar/clock registers, we will first output to the
clock address port the code to select a register, and then input/ output the data from/to the clock
data port.

Digital Conversions

TABLE 52 CLOCK DEVICE CODES

PORT ADDRESS DEVICE CODE FUNCTION
A4 A3 A2 A1 AD Decimal
0 0 0 0 0 0 Counter: milliseconds
0 0 0 0 1 1 Counter; 0.XX seconds
0 0 0 1 0 2 Counter; seconds
0 0 0 1 1 3 Counter. minutes
0 0 1 0 0 4 Counter: hours
0 0 1 0 1 5 Counter: day of week
0 0 1 1 0 6 Counter: day of month
0 0 1 1 1 A Counter; month
0 1 0 0 0 8 Latch: miliseconds
0 1 0 0 1 9 Latch: 0.XX seconds
0 1 0 1 0 10 Latch; seconds
0 1 0 1 1 11 Latch: minutes
0 1 1 0 0 12 Latch: hours
0 1 1 0 1 13 Latch: day of week
0 1 1 1 0 14 Latch: day of month
0 1 1 1 1 15 Latch: month
1 0 0 0 0 16 Control: alarm status (Input)
1 0 0 0 1 17 Control: alarm mask (Qutput)
1 0 0 1 0 18 Control: reset counter select
1 0 0 1 1 19 Control: reset latch select
1 0 1 0 0 20 Control: counter read status
1 0 1 0 1 21 Control: “"GO" command
1 0 1 1 0 22 Control: Standby
1 1 1 1 1 al Control: Test

PROCEDURE

STEP 1 WARNING: When handling the CMOS clock chip, be careful to prevent static
discharge. Before applying power to your circuit, make absolutely certain that all input pins are
connected. Failure to observe either of these precautions may resultin permanent damage to the
IC.

STEP 2 With the +5-V power rail disconnected, wire the circuit as shown in the schematic.

STEP 3 We shall use several short BASIC and machine language programs to test the
action of the calendar/clock. Our first interest is to test whether the clock is running. To do this,
the BASIC program will read the seconds register and display the reading on the screen. The
value of the register will be held in the USR variable, L, as two BCD digits. Lines 30 and 40 convert
the byte to the tens and units values, T and U respectively. Recall that the two four-bit values are
equivalent to a hexadecimal number, hence the integer value of L/16 yields the T value and the
remainder, L — 16*T, yields the U value, Load the following BASIC program.

131

132

Chapter 5
vV
Vol L
3 2
18 19
4 B 5
17 Q 18
7| '373 |6
et 9 .
13 12
b — X
14 15
o — X
EN oC*
2
c3* 1 1 1
3]'02] J?
ouUT*
IN*
11%
© 11213
DO L 5
D1 " 16 6
17 7
b2 18 8
5% 20 53167) vov
D8 = 2 J_
D7 22 1 0.01 uF
14 Xtal
x--—
24| 32 L l 20 pF each
+5V

Figure 5.15 Experiment 5.5 Schematic.

Digital Conversions

BASIC PROGRAM

10 REM 123456789 123456789 123456 (for B&W models)
10 CLEAR 32129 {for Color models)
20 LET L = USR 16514 (for B&W models)
20 LET L = USR 32130 {for Color models)
30 LET T = INT(L/16)

40 LET U = L — 16*T
50 PRINT T;« ;U

60 GOTO 20
100 FOR M = 16514 TO 16528 (for B&W models)
100 FOR M = 32130 TO 32144 {for Color models)

110 INPUT N

120 POKE M,N

130 PRINT M; “=» ;PEEK M
140 NEXT M

STEP 4 The machine language subroutine loads the clock address port, Device Code 3,
with Seconds Register address, Address 2, and then inputs the value from the seconds counter
into the microprocessor's accumulator. The value is transferred to the C register after zeroing the
B register for return to BASIC. Use RUN 100 to load the machine code for the subroutine.

MACHINE LANGUAGE PROGRAM

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC COMMENTS
B&W / Colfor
16514 /32130 62 LD AN :Load Seconds Counter address
16515/ 32131 2 N ‘into Accumulator,
16516/32132 211 OUT (N)LA ithen load it into the Latch
16517 /32133 3 N :at Port 3.
16518/ 32134 219 IN A,(N) ‘Read the counter value
16519/32135 11 N from Port 11.
16520/32136 6 LD B,N :Zero the B register.
16521 /32137 0 N
16522 /32138 79 LD C.A :Put the counter value into C
16523 /32139 201 RET :Return BC value to BASIC.
16524 /32140 62 LD AN :‘Load GO command register
16525/ 32141 21 N
16526 /32142 211 OUT (N).A ‘to Port 3.
16527 /32143 3 N
16528/ 32144 201 RET :Return to BASIC.

STEP 5 A second subroutine at addresses 16524/32140-16528/32144 was also loaded
in Step 5. This subroutine uses the GO command register at address 21. By addressing this port,
the clock registers for the seconds, fractions of seconds, and milliseconds are zeroed. Ordinarily

133

134

Chapter 5

this subroutine would be used to synchronize the clock with real time. We use it here justtoclear
these counters.

STEP 6 Check your wiring once more, then connect power to the socket board. NowENTER
the direct command:

LET L = USR 16524 {B&W)
LET L = USR 32140 (Color)

to clear the seconds registers and then ENTER RUN.

STEP 7 The program should list the time readings until the display has filled the 22 lines of
the screen. If you do not observe about one to ten readings per second, power down and check
out the circuit and program. You can delete or insert REM at the beginning of lines 110and 120
and RUN 100 to reread the machine code.

STEP 8 Enter the direct command FAST, and then RUN. The screen will blank and reappear
in a few seconds with the next 22 readings. How many seconds did it take? Because BASIC runs
about four times faster in FAST mode (in the B&W models), your list should contain about four
readings per second.

STEP 9 Because both B and C are returned as a 16-bit value to the USR variable, we can
revise the machine language subroutine to read and return two counter registers. By selecting
the seconds fraction counter and the milliseconds counter at clock addresses 1 and 0,
respectively, we can time how fast the BASIC routine takes to make a reading. RUN 100 (make
sure lines 110 and 120 have been restored), and load the following code.

MACHINE LANGUAGE ROUTINE

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC COMMENTS
B&W / Color
16514 /32130 62 LD AN :‘Load address for
16515/ 32131 1 N :0.XX seconds counter
16516/32132 21 OUT (N),A ‘to latch port.
16517 /32133 3 N
16518/32134 219 IN A,(N) :Input 0.XX seconds
16519/32135 11 N :counter from clock.
16520/32136 71 LD B,A :Save it in register B.
16521 /32137 62 LD AN :Load address for
16522 /32138 0 N :milliseconds counter
16523/32139 211 OUT (N),A ‘to latch port.
16524 /32140 3 N
16525/32141 219 IN A(N) :Input 0.00X counter.
16526 /32142 11 N
16527 /32143 79 LDCA ‘Save it in register C.

16528 /32144 201 RET ‘Pass BC back to BASIC.

Digital Conversions

STEP 10 To convert the value assigned to L into BCD digits, add the following lines to your
BASIC program.

BASIC PROGRAM

25 LET B = INT(L/256)
30 LET C = L - 256*B
35 LET T - INT(B/16)
40 LET H = B — 16*T
45 LET M = INT(C/16)
50 LET U = C —16*M

55 PRINT “.” ;T;H;M;U
Lines 25 and 30 split the 16-bit value of L back into the two bytes that were in registers Band C
and assigns them to the BASIC variables B and C. The lines following then evaluate the BCD

digits in each byte as before. The U variable should be 0 because the milliseconds counter only
stores one digit.

STEP 11 If your computer is a B&W model, it should still be in FAST mode. Enter RUN, When
the display reappears, the 22 values should all be different. Write down the list of numbers, and
use your computer to take the difference between adjacent pairs by ENTERing PRINT (n2) —(n1),
etc. Note that when the second number, (n2), is smaller than (n1), you have to add 1ton2to
account for a rollover of the seconds counter. We found most of the differences were between
0.35 and 0.37 sec with the TS1000 but whenever there was a 0 in one of the digits the difference
was 0.25. Apparently the BASIC interpreter processes a zero faster than a nonzero value. We can
conclude that it takes 370 msec to execute the nine lines of the BASIC loop. An average
difference of 0.08 sec on the TS2068 seems toindicate thatthe Color models run four times faster
than the B&W models in FAST mode.

STEP 12 The final program will read all the counters of the calendar/ clock, store the values
in memory locations 16535/32151 to 16542/32158 at the end of the machine language routine,
and display them each time any key (except BREAK) is pressed. ENTER the following BASIC
program.

BASIC PROGRAM

10 REM 123456789 123456789 123456789 123456789
(for B&W models)

20 LET L = USR 16514
30 FOR M = 16535 TO 16542

* X X X
10 CLEAR 32129 (for Color models)
20 LET L USR 32130
30 FOR M 32151 TO 32158

* %k *
40 LET N PEEK M
45 GOSUB 200
50 PRINT “ : ;T;U;

* 0

135

136 Chapter 5

55 NEXT M

60 PRINT

65 PRINT “ M / D(W) H :M :5 .XX X0»
70 PAUSE 33333

75 GOTO 20
100 FOR M = 16514 TO 16534 (for B&W models)
100 FOR M = 32130 TO 32150 (tor Coler models)
110 INPUT N

120 POKE M,N
130 PRINT M;*“ = .PEEK M
140 NEXT M

150 STOP

200 LET T = INT(N/16)
210 LET U = N — 16*T

220 RETURN

STEP 13 Toread all eight counters, the machine code subroutine calls another subroutine.
It uses register B as a countdown to know when all eight registers have been input. It also uses B
1o determine which register to input. Recall that the DJNZ d instruction decrements register B to
test whether to jump or not. Load the following code by ENTERing RUN 100.

MACHINE LANGUAGE SUBROUTINE

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC COMMENTS
B&W / Color
16514 /32130 33 - LD HL,NN :Point HL to start of
16515/ 32131 151 LoN :data file at memory
16516/ 32132 64 Hi N ‘location 16535/32151
16517 /32133 6 LD BN :Set B to count down
16518732134 8 N ‘the 8 counter registers.
16519/32135 205 CALL NN :Subroutine to read and
16520/32136 141 Lo N ‘store a counter register
16521 /32137 64 Hi N -at address 16525/32141.
16522 /32138 16 DJNZ d :All counters read?
16523/32139 251 d :No. Jump back to 16519/32135.
16524 /32140 201 RET ‘Yes. Return to BASIC,
16525/32141 120 LDAB :Subroutine to read:
16526 /32142 214 SUBN ‘Clock register address
16527 /32143 1 N :equals B-1.
16528 /32144 211 OUT (N)A ‘Load clock address
16529/ 32145 3 N :at latch port.
16530732146 219 IN A(N) ‘Read data from clock
16531 /32147 1 N -at port 11.
16532 /32148 119 LD (HL),A Store data in file.
16533/ 32149 44 INC L :Point to next file entry.

16534 /32150 201 RET ‘Return to 16522/32138.

Digital Conversions 137

STEP 14 RUN the program. You should still be in FAST made (on a B&W model) and should
see a display of all eight counters. Of course, they have not been set to give the true time. A
convenient way to load the counters is to add a small USR routine to the REM statement following
the data file. Load the following machine code by modifying line 100 to:

100 FOR M = 16543 TO 16551 (for B&W models)
100 FOR M = 32159 TO 32167 (for Color models)

and then ENTERing RUN 100.
MACHINE LANGUAGE ROUTINE TO SET COUNTERS

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC COMMENT
B&W / Color
16543/ 32159 62 LD AN :Set up Clock address
16544 /32160 7 N :starting with Months.
16545 /32161 211 OUT (N),A :Latch address at
166546 /32162 3 N :port 3.
16547 /32163 62 LD AN :Set up to load the counter
16548 /32164 1 N :counter with data.
16549 /32165 211 OUT (N),A :and output it to the
16550/ 32166 11 N :clock at port 11,

16551 /32167 201 RET :Return to BASIC.

STEP 15 The counters can be individually loaded with the proper date and time by giving the
direct commands:

POKE 16544, (Counter Address) (B&W)
POKE 16548, (Data)
LET L = USR 16543
POKE 32160, (Counter Address) (Color)
POKE 32164, (Data)
LET L = USE 32159

where the two quantities in parentheses will be numbers: the Counter Address value is obtained
from Table 5.2 and the Data value must be determined according to the date you are setting. We
need only set from the months to the minutes counters and then execute the GO command to
synchronize to real time. Thus we need only load five counters. For example, suppose we wish to
synchronize on Monday, November 14 at 10:22 a; then the five pairs of POKEs will be:

REGISTER MONTH DATE WEEKDAY HOUR MIN
(Counter Address) i 6 5 4 3
Settings NOV 14 MON 10 22
BCD 11 14 1 10 22
Binary 00010001 00010100 00000001 00010000 00100010

(Data) 17 20 1 16 35

138

Chapter 5

To synchronize to real time, the address register of the GO command, 21, can be POKEd at
16544 /32160. No data is required so we do not care what value is at 16548/32164. Type the USR
call:

LET L
LET L

USR 16543 (B&W)
USR 32159 {Color)

and wait for the second hand of the clock you are using as a standard toreach the time you have
set, then press ENTER. Now ENTER RUN. Each time you press a key, the date and time will be
displayed.

EXPERIMENT 5.6
ASYNCHRONOUS SERIAL COMMUNIGATION

COMPONENTS 1 *8251 USART IC
1 * 556 Dual Timer IC
1 = 74L800 Quad Two-Input NAND Gate
2 * 330-ohm resistors
2 * 15-Kohm resistors
2 * 0.1-pF capacitors
2 * 0.01-uF capacitors
1 * Lamp Monitor

DISCUSSION The Timex/Sinclair is a particularly good computer to use in a real measurement
situation as a data acquisition and experiment control device because its modest cost permits
dedicating it to a single instrument or experiment. An interface circuit can be developed for the
particular apparatus and attached to the computer on a permanent (or semipermanent)basis. In
such cases, a host computer would be available which has larger memory capacity, disk storage
for data files, graphics and printer capabilities that would be too expensive to dedicate to one
measurement apparatus. It is then highly desirable to be able to have the one or more dedicated
microcomputers communicate with the host computer. We have seen that communication
between computers up to 50 ft apart is easily achieved using a pair of wires in an RS-232 serial
link.

In this experiment, we shall demonstrate how such communication is possible using a TTL
compatible parallel/ serial converter designed specifically for use with computers. Like the 8255
programmable peripheral interface studied in Chapter 4, the 8251 USART is also programmable
in the sense that command control data can be sent to the chip to configure it for specific
transmitting and receiving conditions. This is in contrast to the UART described earlier in this
chapter, which had to be hardwired where the selection of number of stop bits, data word length,
parity, etc. were pin inputs which had to have logic 1s or 0s wired to the chip.

The 8251 Programmable Communication Interface IC is a 28-pin TTL compatible Universal
Synchronous/Asynchronous Receiver/ Transmitter {(USART). The pin-out diagram of the IC is
shown in the schematic for the experiment, Figure 5.16. The USART is a clocked device requiring
TTL level (+5 V) frequencies. There are three separate clock input pins: the transmitter clock,
TxC* at pin 9, the receiver clock, RcC* at pin 25, and the internal clock, CLK at pin 20. Typically
the transmitter and receiver clocks would be connected to the same frequency source. The

Digital Conversions
- 27 Re, 13
28| ' g9 LED Probe
D3 DTR f—X +5V ‘
5 23 14| [10
D4 5 RTS 1_8- X 9 1
D5 TMT |—= X
7 17 556b
D6 5 CTS 76 < 11 "
—_— D—
D7 2], 2ohg X [8
A3 ——-—ECID-_THY i 0.01pF
ouT* 3 WR* RRY 2—21 l 0.1pF
N* — RD* DSR|—x
| o] D +5V —,15K each
8
'00 10 20 4 .3
T— 3 11 %y > B
2| 00 cs* 25 5| 5562 |53
3 RESET 4
C3* 6 7| |6
'00 .01uF
c11* —2 l o l 0.1uF =
+ 5V

Figure 5,16 Experiment 5.6 Schemalic.

frequency of the internal clock must be at least 30 times greater than the frequency (bit rate) of
either the transmitter or receiver. There are eight data pins for parallel transfer of data between
the chip and the computer, which are connected directly to the data bus of the computer, and two
data pins for serial communication: the serial receiver, RcD at pin 3, and the serial transmitter,
TxD at pin 19. The powertothe ICis+5Vat V., pin 25,and 0 V or ground at pin 4.There are eight
additional control input or output pins whose use as various conditional flags are of more
importance for synchronous, rather than asynchronous, communication. These are shown as not
connected (nc) in Figure 5.16.

The five remaining pins of the 8251 are control pins. Four of these, WR*, RD*, CS" and C/D",
serve to select between the two 1/0 ports of the IC. One of these ports is used to write out a
command instruction and to read in a status byte. The other port is used to load the data byte to
the transmitter and to read the data byte from the receiver. WR* and RD* determine the direction
of the transfer and are connected to QUT* and IN* of the computer's control bus, respectively.
The C/D" input selects between the Command Port (logic 1 input) and the Data Port (logic O
input). The Chip Select input, CS*, must be connected through the NAND gates shown in the
schematic so that it is activated by any one of the four Device Select pulses: IN “CommandPort,”
OUT “Command Port," IN "Data Port,” QUT “Data Port." If we select device code 3 for the Data
Port and device code 11 for the Command Port, then address line A3 can be used to activate the

139

140

Chapter 5

C/D" pin because A3 is a logic 0 when device code 3 is present on the Address Bus and a logic 1
when device code 11 is present.

The RESET input at pin 21 is active high. Ordinarily it is connected to 0 V except when the
circuit is first powered. Then it must be activated by raising the pin to +5 V¥ momentarily. When the
8251 is reset, it takes the first command output to the Command Port to be a Mode Command. Al
subsequent commands are interpreted as instructions. When the Cornmand Port is input to the
computer, the Status Word provides eight bits of information on the status of the IC. The
significance of the bits in the Mode Command, Instruction, and Status Word are given in Table 5.3.
We shall examine how these command bytes are implemented in the experiment,

PROCEDURE

STEP 1 Mount the three ICs on the breadboard with the 8251 between the other two and the
74L.500 nearest the cable connectors. With the +5-V power rail disconnected, wire the circuit as
shown in the schematic, Figure 5.16. Note that the serial output of the transmitter is tied to the
serial input of the receiver. This connection makes the USART send to itself. Obviously, in a real
situation, these pins would be connected to another USART.

STEP 2 The 555-type timers of the 556 IC have been wired as astable oscillators to
generate the clock frequencies required by the 8251. The frequency connected to the CLK input
at pin 20 of the 8251 should be greater than 10,000 Hz. The calculated value is 14,500: however, it
was measured at 11,600 due to the large uncertainty of the capacitor value. The frequency wired
to the TxC and RcC inputs should be around 300 Hz for a bit (Baud) rate of 300. The only
requirement is that the CLK frequency be at least 30 times the TxC and ReC frequencies. If you
have an oscilloscope available, you might check these frequencies before proceeding.
Otherwise, if later you find the circuit does not work, you can use the gated counter circuit of
Experiment 2.5 to check the frequencies.

STEP 3 The BASIC program consists of four parts corresponding to the four activities:
initialize, check the condition of the USART, transmit a character, and receive a character. Each
part of the BASIC program has a corresponding machine language routine that will be described
in Step 4. The initialization routine consists of inputting the message to be transmitted and
programming the USART at lines 20-70. Lines 80-150 form a FOR-NEXT loop, which

TABLE 5.3 COMMAND PORT BYTES

OUT AFTER RESET OUT SUBSEQUENT IN
DATA BIT MODE INSTRUCTION STATUS
D7 #Stop bits: Synch. Hunt Data Set Rdy
D6 11=2,10=11/2 Internal Reset Synch. Detect
01=1, 00 NA.
D5 Even Parity Request to Send Framing Error
D4 Select Parity Error Reset Qverrun Error
D3 Word length: Send BREAK char. Parity Error
D2 11=8,10=7 Enable Rc Tx Empty
01=6,00=5.
D1 Bit Rate: Ready Data Term. Ac Ready
Do 11=/64,10=/186 Enable Tx Tx Ready

01=/1, 00=38ync.

Digital Conversions

successively transmits each character in the message. The check routine at lines 90 and 100
and the subroutines at lines 240-340 and 210-230 reads the Status byte and decodes it to
determine the state of the Error flags and the Ready flags. None of the error flags inhibit the
USART. If an error is detected, a number is printed to indicate which error flags were set. The error
flags are checked and reset if necessary after each character in the message is received. The
ready flags are also decoded and used at lines 110 and 120 to decide whether to receive or
transmit a character. If the transmitter is ready (H=1) and the receiver is not ready (G=0) then
the next character is transmitted. If neither is ready, the program locps back and reads the flags
again. It will stay in this loop until the Tx or Rc flag is set. If both are set, the program will not branch
but proceed to input the received character at line 130. When all characters have been
transmitted and received the program will accept another message.
Load the following BASIC program.

BASIC PROGRAM

10 REM 123456789 123456789 1234567890 (for B&W models)

10 CLEAR 32129 (for Color models)
20 LET L = USR 16514 (for B&W models)
20 LET L = USR 32130 (for Color models)

30 PAUSE 10

40 LET L = USR 16519
40 LET L = USR 32135
50 CLS
60 PRINT “ ENTER MESSAGE”

70 INPUT C$

80 FOR K = 1 TO LEN C$

90 LET L = USR 16524

90 LET L = USR 32140
100 GOSUB 240

110 IFF =1 AND H = 1 AND G = O THEN GOSUB 210
120 IF G = O THEN GOTO 90

130 LET L = USR 16535

130 LET L = USR 32151

140 PRINT AT 1,K; CHR$ L

150 NEXT K

160 PRINT AT 21,0;
170 INPUT A §

(for B&W models)
(for Color models)

(for B&W models)
(for Color models)

“MORE? (Y OR N)”

180 IF A$=«Y” THEN GOTO 50
180 LET L = USR 16538 (for B&W models)
190 LET L = USR 32155 {for Color models)
200 STOP

* k % k

210 POKE 16531, CODE C$(K)
220 LET L = USR 16530
* x % *

210 POKE 32147, CODE C$(K)

({for B&W models)

(for Color models)

141

142 Chapter &

220
* ok
230
240
250
260
270
270
280
290
300
310
320
330
340
400
400
410
420
430
440

LET L = USR 32146

* % £ ¥ ¥ * k %

RETURN
LET L
LET E

L — 64*INT (L/64)
INT (L/8)

PRINT AT K+1,0; “ERROR=" ;E
IF E>0 THEN LET P = USR 16519
IF E>0 THEN LET P = USR 32135

LET F = L — B#*E
LET G = F — 4*INT (F/4)

(for B&W maodels)
(for Color models)

PRINT AT K+1,10; “TE=" ;F; “ RR=” ;G; “ TR=" ;H

LET H = ¢ — 2*INT (G/2)
LET G = (G — H)/2

LET F = (F — (2*G + H))/4
RETURN

FOR M = 16514 TO 16543
FOR M = 32130 TO 32150
INPUT N

POKE M,N

PRINT M;“ =» ;PEEK M, ;
NEXT M

STEP 4 The machine code listed below should now be entered using RUN 400. it consists of
six separate subroutines beginning at addresses 16514/32130, 16519/32135, 16524/32140,
16530/32146, 16535/32151, and 16539/32155, These subroutines perform the foliowing
respective tasks: initial Mode command, clear Error flags and enable receiver and transmitter
instruction, read the status word flags, load a character into the transmitter, read a character from
the receiver, and reset the USART. Study the Comments in the listing to understand how each
subroutine performs.

MACHINE LANGUAGE PROGRAM

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC
B&W / Color
16514 /32130 62 LD AN
16515/32131 77 N
16516 /32132 211 OUT {N),A
16517/32133 11 N
16518/ 32134 201 RET
16519/32135 62 LD AN
16520/ 32136 21 N
16521 /32137 211 OUT (N),A
16522 / 32138 11 N
16523 /32139 11 RET
16524 /32140 219 IN A,(N)
16525/ 32141 11 N

COMMENTS

:Mode Command Byte: 01 0011 01
:1 Stop-No Par-8 bits-/1
:Load in Command Port

:at Port 11.

‘Return to BASIC for PAUSE
Instruction Byte: 00010101
:Error reset-Tx & Rc enable
:Load in Command Port

.at Port 11.

:Done with Initialization.
‘Read the Status Word

:from Command Port 11.

Digital Conversions

16526 /32142 79 LD CA :Put it in register C

16527 /32143 6 LD BN :and zero register B.
16528 /32144 0 N

16529/ 32145 201 RET ‘Return BC value to BASIC.
16530/ 32146 62 LD AN ‘Transmit Subroutine:

16531 /32147 o N :character to transmit
16532 /32148 21 OUT (N},A ‘loaded into Data Port
16533/32149 3 N :at Port 3.

165634 /32150 201 RET :Done.

16535/ 32151 219 IN A(N) ‘Receive Subroutine:
16536/ 32152 3 N .get character from Data Port
16537 /32153 24 JRd :Load it into BC by

16538 /32154 243 d ;jumping to 16525/32141.
16539 /32155 62 LD AN :‘Reset USART:
16540/32166 85 N :Instruction byte 01010101
16541 /32157 211 QOUT (N)A ‘loaded into Command Port
16542 /32158 11 N -at Port 11.

16543 /32159 201 RET :‘Back to BASIC.

STEP 5 Read through the BASIC listing and observe how the machine routines are related.
The following REMark statements may help youinterpret the action at the indicated line numbers.
Do not load these into the computer.

256 REM Have to give USART enough time to implement Mode command before cutputting
Instruction command.
75 REM K is the position of the current character in the message.
115 REM F = 1 means that the transmitter is empty; H =1 means the transmitter will accept
a character; G = 0 means the receiver has not received a character.
185 REM This subroutine will internally reset the USART so that when the BASIC program is
run again, the Mode Command will be accepted without having to reset with pin 21.
215 REM The operand of the LD AN machine instruction at 16531/26732 is the value of the
character at position K in the message.
245 REM L is initially the value of the Status Word. Itis converted to be the value of bits D5-D0.
255 REM E is the value of the three error flags at bits D5, D4, and D3. it can range fromOto 7
depending on which flags are set to logic 1.
285 REM Here F is the value of bits D2, D1, and DO.
205 REM Here G is the value of bits D1 and DO.
305 REM Here H is the value of bit DO, the Tx Ready flag.
315 REM Now G becomes the value of bit D1, the Rc Ready fiag.
325 REM Now F becomes the value of bit D2, the Tx Empty flag.

STEP 6 There are three error flags on bits D5, D4, and D3 as shown in the third column of
Table 5.3. The framing error flag is set {to a logic 1) if the receiver does not detect a stop bit. The
overrun error flag is set when the computer does not read a received character before the next
oneis received. The parity error flag is setif the parity bitreceived plus the number of received bits
in the logic 1 state is 1 (0) when even (cdd) parity is selected.

STEP 7 Apply power to the circuit. Now perform an external reset of the IC by removing the
jumper wire at pin 21 from the 0-V rail, momentarily connecting it to the +5-V rail, and then
reconnecting it to the 0-V rail.

143

144

Chapter &

STEP 8 Enter RUN. Then input (between the quotes which appear on the bottom line of the
screen) a message of fewer than 20 characters. As each character is transmitted, it will appear
on the second line of the screen. Before it is transmitted the ERROR flag value will be printed on
the next line along with the three binary values of the TE (transmitter empty), RR (receiver ready),
and TR (transmitter ready) flags. The value of the ERROR flag should be 0. The RRflag will first be
0, then will change to 1 as the character is displayed.

STEP 9 If you do not successfully send and receive the message or if the flags do not all
become 1s, press the BREAK key, power down the circuit, and recheck your hardware and
software.

STEP 10 If you successfully sentand received, answer “Y" to send a second message. This
time change to graphics mode (press Shift 9) and type in your message. If you are using a B&W
model, the message should appear with inversed (white on black) letters. You should receive it
with inversed letters. If you are using a Color model, the only characters you can send ingraphics
mode are R, §, T, and U. You should also receive what you send: Answer "N" after it has been
received.

STEP 11 The Mode Command can now be changed to transmit seven-bit characters
(D6-D0) instead of eight bits as criginally programmed by ENTERing the direct command

POKE 16515, 73 (B&W)
POKE 32131, 73 (Color)

and then ENTERing RUN. Verify the value 73 from the first column of Table 5.3.

STEP 12 Repeat Steps 9 and 10. With a B&W model, you should observe that white on black
characters are received as black on white. This is because the code value for the inversed video
is greater than the normal character by 128, that is bit D7 is a logic 1 for inversed video. With a
Color model, the graphics characters R, S, T,and U are the only four that are printable characters
when 128 is subtracted from their codes; you should receive the characters !, ”, #, and §,
respectively.

STEP 13 Repeat Steps 11 and 12 by programming the Mode Command word for six and five
bits per character. With a B&W model, verify that when the character FAST {Shift F) (=11100101)
is loaded into the transmitter that the characters received and displayedare 9 (=00100101) and
the graphics character on the five key (=00000101), respectively. If you are using a Color model,
verify that when the character RESTORE (Extended S) (=11100101) is transmitted that the
characters received are e (=01100101), % {(=00100101), and ? (=00000101). {The question
mark is printed in default because the codes between 0 and 31 are nonprinting in this model.)

STEP 14 POKE 16515/32131 with the Command Mode byte to give two stop bits, no parity,
eight-bit character length, and a divide-by-1 Baud rate; 11001101 = 205. RUN and enter any
message. Observe the LED on the serial line. You should see it dim each time a character is
transmitted. Now POKE 16515/26716 with the Command Mode byte to send/receive at1/16 of
the Tx/Rc clock. The byte is 11001110 = 206. The rate will now be about 18 bits per second or
slightly less than two characters per second. When you transmit, the LED will clearly show the
logic levels change as the bits are transmitted. Observe the flag states displayed onthe screen as
the character flashes the LED.

Digital Conversions

STEP 15 Finally, POKE 18515/32131 to change the Baud rate to 1/64: 11001111 = 207.
Change line 110 in the BASIC program to:

110 IF H =1 AND G = O THEN GOSUB 210

Now send a message. Observe the flag states displayed as the LED indicates the character bits
being sent. You will likely observe that by ignoring the transmitter empty flag, TE (variable F), the
program runs fast enough at this Baud rate to read one character twice. Restore line 110 and
repeat.

SUMMARY Because of its programmability, the USART is a very versatile and convenientICto
use with a computer for serial communication. Where two computers are available, a very good
project is 1o develop the software to have them communicate serially; at the relatively low Baud
rates used in this experiment, a distance of 10 feet between computers should be feasible. Note,
however, that although the character code used by the Timex/Sinclair 2000 model is ASCII, the
character code of the other models is not. Also, the same clock should drive both units, and the
Ground rails of the two terminals must be connected.

145

O 6 O

analog conversions

ANALOG-TO-DIGITAL CONVERTERS

One of the more useful tasks of microcomputers is to acquire data. In most cases, data
occurs as an analog signal or voltage (that is, a signal or voltage that varies in a
continuous fashion such as the mercury in a glass thermometer rises continuously as the
temperature increases). Analog data can vary relatively slowly such as that produced
by a temperature sensor and gathered over long periods of time, or they can vary
relatively fast, like that produced by current flowing in an electrical circuit at the
instant of switch on. Digital microcomputers can only accept data in digital form so we
must transform the continuously varying analog data into the discrete steps of digital
data. We have already seen how the reverse process is accomplished using digital-to-
analog converter integrated circuits.

There are several techniques used to convert an analog signal to an equivalent
digital signal having a binary value proportional to the analog voltage. We shall
consider the technique known as the successive approximation method. In this
technique, the analog voltage signal is compared in a series of steps to digital voltages
having values which are exactly one-half of the previous step. For an eight-bit
converter there are eight steps. Figure 6.1 illustrates the first four steps in a successive
approximation conversion. It starts with the most significant bit in the first step and
sets the digital voltage to one-half of the voltage range of the converter. If the analog
voltage is greater than the digital voltage, then the most significant bit is set to a logic 1;
if it is less, then the bit is set to alogic0. The digital voltage is stored if the bit is a logic 1.
For the second and subsequent steps, one-half of the digital voltage of the previous bit
is added to the stored value of the digital voltage and compared to the analog voltage.
For each step that the digital voltage is greater than or equal to the analog voltage, the
bit value is set to a logic 1 and the voltage weight is added to the stored digital voltage.
One distinctive advantage of the successive approximation method is that the time
required for all conversions is the same and does not depend on the magnitude of the
analog signal. The binary weight of the voltage of each bit per volt of the full scale of
the converter’s range is:

Analog Conversions 147

1
o 15/16
718
1
2 |s T 13/16
3/4
1
11/16
1} 0
1 5/8
b 9/16
110 0 42
1
7= 7118
1 3/8
— 5/16
1lolo
1 174
i 3/16
1/8
1
— 1/18
ololofo
D7 D6 D5 D4 °

Figure 6.1 Successive Approximation Diagram.

MBS LSB

Binary Digits: D7 D6 D5 D4 D3 D2 D1 DO
Voltage Weight: .5000 2500 .1250 .0625 .0313 0156 0078 .0039

What if you wish to convert an analog voltage of 7.30 V into eight-bit digital form?
You could alter the LSB weighting to 0.039 V so that the total range now becomes 10.00
V, but in so doing the resolution of the converter is reduced. What is meant by the term
resolution? It means just how closely the Analog-to-Digital Converter (ADC) can
represent an analog voltage in digital form. For example, the 5-V full scale converter
could not distinguish clearly between two analog voltages, say equal to 1.668 and 1.675
V, because its limit of resolution is 0.02 V and these values differ by less (0.007 V) than
the resolution. If it is important in your measurement situation to achieve higher
resolution and an extended voltage range also, then you must use ADCs that provide
more bits. For example, a 5-V, 12-bit ADC will resolve down to a sixteenth of 0.02 V
equal to 0.00125 V or 1.25 mV. The LSB voltage weighting is now equivalent to 1.25

148 Chapter 6

mV with the MSB voltage weighting still being equivalent to 2.58 V. When it is realized
that an eight-bit converter can achieve a 1 in 256 resolution or an accuracy of 0.4% then
use of such simple integrated circuits in science laboratory experiments is justified—
where often other errors completely swamp the 0.4% resolution of the converter.

The converter chip which will be used in the experiments is the ADC0804 which
requires a 5-V supply. It uses an internal reference voltage derived from the 5-V power
supply and provides a resolution of 0.02 V. The schematic block diagram and pin
assignment is shown in Figure 8.2. It is easily interfaced to a microcomputer requiring,
besides the power and data bus connections, a clock derived from an external RC
timing circuit, and two Device Select Pulses: one to start the conversion and the second
to read the data by enabling the three-state data outputs once the conversion is
completed. A third output control pin is available on the chip, referred to as the
INTR®, which is the End Of Conversion (EOC) flag. When finished with a conversion
of the analog voltage appearing at the input, the ADC signals that it has finished the
conversion by taking the EOC pin low.

When interfacing the converter to a microcomputer there are two approaches
which can be made for inputting data to the microprocessor. One approach is to poll
the EOC flag and when it goes low, activate the three-state outputs of the converter to
transfer the data to the microcomputer data bus. This approach, however, requires
further hardware (a one-bit input port) to sense the EOC flag. A second approach is to
allow the microcomputer itself to wait a period slightly longer than the conversion
time of the converter (the ADC0804 is rated at 100 microseconds) and then input data
which would then be valid at the time. The second approach will be adopted here as it
is an example of the substitution of software for hardware.

cs*1Hp _D_-)20 V+:Vref
RD* 2 [g ! []19 CLKR
WR* 3 [- 13 []18 DO
I HsHs.V 17 D1
CLKIN 4 [L[H_s._/s;j
INTR* 5 M g)_ I A4 pe D2
LIF L L[15 D3
Vin + GE} DI+ A A:I
Vin— 7 [E' JeHTR™ o4
FIRH &N
IMch13 ps
AGND 8 (g e H NS P
Vref/2 9 [] FlaH RMep12 e
DGND 10 O _lm N S 11 D7

Figure 6.2 Schematic of the ADC0804,

Analog Conversions

TABLE 6.1 MACHINE LANGUAGE ROUTINE FOR ADC
START. LDCDELAY A timing delay byte is

N ‘loaded into register C.
LD HL,STORE HL holds pointer address
Lo N '‘where converted data will
Hi N ‘be stored.
QUT A(N) :Start ADC0804 conversion.
N ‘Device code for ADC0OB04
WAIT, DECC :By decrementing C and
JRNZWAIT jumping around loop until
d 'C Is zero we wait.
IN (A)N ‘Input data from ADC0804 latches
N :Device code for ADC0804.
LD (HL)A :‘Load memory with data.
RET :‘Return to BASIC.
STORE, NOP ‘Data storage location

The ADC0804 has been specifically designed to interface readily with microcom-
puter systems. In the case of the Timex/Sinclair which uses a Z80 microprocessor, the
necessary control signals are simplified by connecting IN® to the IC’s RD*® pin, OUT*
to the WR*® pin, and a Device Code connected to the CS® (Chip Select) pin. The chip
internally ORs the Device Code with the appropriate control pulse (OUT® or IN*) to
start the conversion or enable the three-state data buffers, respectively. Which way
round would you place the control signals to start the conversion and then read in the
latch contents to the microcomputer using Device Code 3? Y ou should use (OUT 3)*
in your program to start the conversion and (IN 3)* to enable the three-state buffers
and read in the contents of the ADC data latches. A simple machine language program
is listed in Table 8.1, which could be used with the ADC0804 to input a single data
value.

This program would have to be combined with a BASIC program as in previous
cases with the converted value of the analog input voltage being stored at the memory
location labeled STORE. Do not forget to allow an extra character in your REM
statement to leave this memory location free for data. By using PRINT PEEK in your
BASIC program, the contents of the memory location can be displayed on your TV
screen in decimal form. We shall leave further description of the A-to-D converter
software and hardware to the experiments.

SIGNAL CONDITIONING

When we described the conversion of an analog signal to a digital value we assumed
the ADC could read the signal from our measuring device. That is, we figured that the
analog voltage would be between 0 and +5 V and that a resolution of 0.02 V was
sufficient. We have seen that the way to improve the resolution is to use an ADC that
converts to more than eight bits. But what about an analog signal that ranges between0
and only +1 V? Besides, where do we obtain the analog signals in the first place?

149

150

Chapter 6

These two questions are closely related and we shall spend the rest of this chapter
trying to answer them.

Transducers It is obvious that we need an electrical signal in order to be able to
convert that (analog) signal to a digital value. Many of the interesting measurements
are not electrical. For example, sound, temperature, pressure, length, light, force,
motion, magnetic field, and strain, to name a few, are definitely not electrical. All of
these quantities are continuously variable and are therefore what we have been calling
analog signals. What we need are devices that can translate these signals into electrical
signals which vary in an exactly analogous manner to the quantity of interest: in other
words, the electrical analog of the signal. This is where the term analog electronics
originated. The devices we are looking for are called electrical transducers.

There are two types of electrical transducers. Those that convert some physical
property into an analog electrical signal are known as sensors, and those that convert in
the opposite direction, that is an analog electrical signal into some other physical
phenomenon, are called actuators. Can you think of the electrical transducers for
sound? A microphone is a sensor and a loudspeaker is an actuator. This raises another
point about transducers that has to be considered. Some transducers can only detect
changes in a physical property while others can detect unchanging or constant values
of the physical property. The former are dynamic transducers and the latter are static
transducers. For instance, a microphone really measures the changing pressure of the
air created by sound. It is a dynamic pressure transducer; you cannot use it to measure
a static pressure such as atmospheric pressure. To measure a static pressure we need a
transducer that can measure the force acting on a specified area.

Up to this point we have said that electrical transducers convert a nonelectrical
physical property into an electrical signal. We have not specified what kind of
electrical analog signal. There are several that are possible. An analog voltage is
perhaps the most obvious electrical signal, but transducers are made that also convert
to analog resistance, capacitance, inductance, current, and a few other electrical
properties. By means of various circuits, these properties must first be converted to
voltages in order to use an analog-to-digital converter. The more common transducers
are listed in Tables 6.2 and 6.3 which give examples of sensors and actuators in terms of
the physical property and the corresponding analog electrical property.

TABLE 6.2 COMMON ELECTRICAL SENSORS

PROPERTY VOLTAGE CURRENT RESISTIVE CAPACITIVE INDUCTIVE
Mechanical Piezoelectric Switch Strain gage Pressure Generator
head Variable
transformer
Thermal Thermocouple, Diode RTD ? ?
Bolometer Transistor Thermistor
Light Photocell Photomultiplier Photoresistor ? ?
Photodiode
Phototransistor
Magnetic Magnetorestrictor Hall effect ? ? Search coil

Chemical Electrode ? Con duétivity Di poln‘ieter Susceptibility

Analog Conversions

TABLE 6.3 COMMON ELECTRICAL ACTUATORS
PROPERTY VOLTAGE CURRENT RESISTIVE CAPACITIVE INDUCTIVE

Mechanical Piezoelectric Switch ? ? Motor
Solenoid
Thermal Thermopile ? Heater ? 2
Light ? Lamp ? ? ?
LED
Magnetic ? Coil ? 7 ?
Chemical Eiectroplate ? ? ? ?

Now that we have seen how it is possible to convert a physical property
measurement to an analog voltage, we are faced with the fact that most transducers
will not produce large enough voltages to span the range of the ADC. It would be of
little value to have a 0 to 5 V range with a resolution of 0.02 V and then find the
transducer voltage to provide a maximum signal level of 0.10 V. If that were the case,
the only digital values we could obtain would be the numbers from 0 to 5. In addition
to this problem, we also have to consider that the transducer itself and the wires
carrying the signal from the transducer are subject to noise pickup (spurious electrical
voltages) from the surroundings, like static pops and hum on a radio. If our signal is
small then the noise pickup can represent a sizable signal itself impressed on the signal.

To solve these remaining problems, we shall describe some of the practical means
that can be used to condition a signal and make it possible to achieve good analog-to-
digital conversions.

Transistors Most of this signal conditioning involves amplifying small voltages
until they are large enough to be handled by analog-to-digital converters. Other forms
of signal conditioning involve current amplification and noise reduction. The mention
of the word amplification means that amplifiers are involved in this process of signal
conditioning and the first type of amplifier we will consider is the transistor amplifier.
We will confine our description of transistors to one type only, the NPN common
emitter, and confine the frequency range of operation of our circuits to below about
500 KHz. In this way we can make a number of simplifying assumptions about the
operation of the transistor amplifying circuits.

The NPN transistor is a three terminal device. Its terminals are called the emitter,
the base, and the collector. To get some idea how a transistor operates, consider the
circuit shown in Figure 6.3. As with the integrated circuits that we have discussed up to
this point electronic circuits always need to be turned on. Transistors are no exception
to this rule (because they tend to be the major element inside digital circuits). The
transistor is switched on by applying a positive voltage +V gcto the collector terminal
of the transistor. So far so good because this is just what we have been doing with our
integrated circuit chips. But that’s not the whole story because the digital integrated
circuit chips which contain transistor amplifying circuits have had their circuits
designed by a team of electrical engineers. Now what we have to show you is not only
how to switch the transistor on but also how to design it into an electronic circuit to
produce an amplified signal. This is not such an easy task as might first appear. The

151

152 Chapter 6

O Vce
——0 OUTPUT
B
SIGNAL EQ N
SOURCE SiE) (bottom)
O GND

Figure 6.3 NPN Transistor Circuit.

transistor you buy from your local store differs, sometimes significantly, from a
transistor of the same type which your friend bought from another store. So how cana
circuit be designed to take into account such large variations? Well we can try by
adopting a number of empirical rules which work quite well for most silicon NPN
transistors which you wish to use as amplifying devices.

Just before we proceed, are you quite sure what an amplifier is? Probably, even if
you are young or older, because everyone has heard the amplified sound from
someone’s hi-fi system at some time or another (any advances on 2 aM. in the
morning?). The electronic amplifier (a number of transistors) enlarges the small
voltages produced by the tone arm on a record player, or magnetic pickup on a
cassette recorder, to much larger voltages which can drive the magnet coils inside
those very large loudspeaker boxes.

So back to the transistor amplifier; the empirical rules which can be used with some
success are as follows:

1 Choose a transistor based on the amount of current required by the device
connected to the output. For example, an analog-to-digital converter would
only require a low power transistor, say less than 50 mA, because the con-
verters usually have a relatively high input impedance. Should you have a
digital-to-analog converter which has to drive the coils of an electrical motor,
you may have to choose a transistor which passes a large current, say 5 A, to use
in your amplifying circuit.

2 Next choose a collector resistance so that the voltage drop across the resistance
will be about one-half the supply voltage at the expected current drain of your
amplifier. Again, for example, assume that you wish to operate the transistor

Analog Conversions 153

at a current level of 5 mA, from a battery supply (V oc) of 12 V. Then by using
Ohm’s Law, the value of resistance R(C) can be calculated as follows:

R(C) = Vi /21 = 12E3/10 = 1.2 Kohm

3 Calculate a value for R(E) that will allow for about a 1 V potential drop from
the emitter E to the ground line. A preferred value of 220 ohms should be
reasonable. Choose C(E) to be from 10 uF up to 47 uF if you can afford it.
C(E) and R(E) are used to stabilize the circuit operation against thermal
runaway.

4 The values of R(B1) and R(B2) can now be chosen. The resistors themselves
should be of the order of ten times the size of R(C) and then must be chosen in a
ratio that will put the base potential about 0.6 V above the emitter potential.
So if the emitter potential was about 1 V, the base potential needs to be about
1.8 V. All we need to do is select R(B1) + R(B2) to be about 15 Kohm into a
ratio to drop the 12-V supply line down to 1.8 V at the base. This turns out to be
a ratio of

10.4/160r65:1 (104 +16=12)

R(B1) could then be chosen close to 13 Kohm and R(B2) chosen close to
9 Kohm. Preferred values of resistors would probably be 12 Kohm and 1.8
Kohm.

5 Switch on and check to see that the voltage at the collector C is about one-half
the supply voltage, for instance 4.5 V to 8.5 V might be a suitable range. Mea-
sure the voltage between the base and emitter which should be close to 0.8 V.
There is a direct relationship between the voltage drop from the base to the
emitter and the voltage appearing at the collector. Should your transistor be
so far from the normal that your amplifier cannot approach any of our empiri-
cal rules then you need to fall back on the last resort! Yes, you guessed it, re-
place R(B2) with a variable resistor and adjust it until the voltages agree with
our rules! You can always remove it from your circuit later on and measure it
with an ohmmaeter and then replace it in the circuit with a fixed resistor closest
to its value.

So now you have a transistor amplifier turned on and adjusted to provide
amplification. The amount of amplification is governed to a certain extent by the value
of R(C); by making R(C) larger you increase the gain (amplifying factor or
amplification) of the transistor amplifier. But there is a limit to the amount of the
increase, which is dependent on the size of the signal you wish to amplify.

The amplification occurs on a small voltage input signal applied to the base which is
output as a much larger voltage signal at the collector. The ratio of the two signals is
referred to as the gain of the amplifier, where the voltage gain

A(V) = Qutput Voltage/Input Voltage

154

Chapter 6

Let us assume that the input signal is varying with time, say a sinusoidal waveform.
In sound such a waveform can be produced by whistling or singing a pure note. Many
electronic signals are sinusoidal in nature. The sinusoidal amplitude.is often defined by
measuring the peak to peak (P to P) amplitude as shown in Figure 6.4. An incoming
signal of amplitude 20 mV P to P to an amplifier of gain 100 times will produce an
output signal of 2 V P to P. This is what we term voltage gain.

Transistors are often described by their current gain characteristic as well, which
we can define here as

A(l) = Output Current/Input Current

The output current would be, in the case of the sinusoidal input current, the varying
current component in the collector resistor, R(C). This varying current can be
represented by the term delta I{C). The varying current signal producing this change
appears in the base circuit of the transistor amplifier and so can be designated delta
I{B), the change in the base current. The current gain, A({I), can now be written as

A(l) = Delta |{C)/Delta |(B) = Beta

Beta is called specifically the common emitter current gain of the transistor and also is
equivalent to another term often used by manufacturers and engineers called h(FE).
Typical values for beta range from 50 to 300.

We haven't spent any time talking about the different configurations of transistor
amplifiers, but there are two other amplifying circuits different from the one we have
described called common base and common collector (or emitter follower) transistor

+V
—
0 TIME
-V
PEAK TO PEAK

Figure 6.4 Sine Wave.

Analog Conversions

amplifiers. {It is not intended that this be an exhaustive text on transistor electronics, so
we suggest that you look up additional texts to follow this matter in greater detail.)

The common base transistor uses the emitter lead as the input terminal and retains
the collector lead as the output terminal. The current gain of this amplifier
configuration is notable, namely

A(l) = Delta I{C)/Delta I(E) = Alpha

Alpha is the current gain of the common base transistor amplifier. Typical values for
alpha range from 0.9 to 0.99.

The common emitter amplifier circuit has another interesting feature called phase
inversion, which is of use in designing digital electronic circuits. This occurs when a
rising voltage on the base causes a falling voltage on the collector of the transistor, and
vice versa. The collector is in opposition to the base. Two waveforms are said tobe in
opposition when they are 180 degrees out of phase. The transistor amplifier is called
“common emitter” because the emitter lead E is common to the circuit containing the
input signal and to that containing the amplified output signal (see Figure 6.3).

Another aspect of signal transfer often overlooked is the fact that there are two
cables or wires connecting the signal source to the amplifier and two wires connecting
the amplifier to the output device. One lead is often referred to as the live lead because
its potential fluctuates with respect to the second lead which is usually referenced to
ground potential. In many instances the second lead is the earth shield around a central
wire conductor as in coaxial cables which are much preferred for transporting
electrical signals over long distances. By earthing or grounding the external braiding
you minimize electrical interference with the inner conductor. Nevertheless, you
always need the two leads even though one of the leads (the ground) is common to
both the input and output signal wires.

The only components in Figure 6.3 that we haven’t yet explained are the coupling
capacitors C(C). These capacitors are used when the signal is varying with time to
couple the signal into (and out of) the amplifier without the dc (direct current)
voltages being able to leak through. Remember, capacitors do not allow dc to pass
through but they do allow ac to pass. In the case of dc amplifiers the coupling
capacitors have to be dispensed with and the transistor circuits modified to take
account of temperature drift of the transistor characteristics. In our approach,
amplification of dec signals can be handled by integrated circuit amplifiers, op amps,
because of their very small drift characteristics. This will be treated in the next section.

In signal conditioning you will tend to find transistors being used when output
signal currents need to be amplified significantly {of the order of amps) to drive heavy
electrical machines, motors, robot arms, etc. We have already seen one such example
used for the stepper motor interface discussed in Chapter 5.

Transistors in Digital Circuits We have already discussed using the transistor as
an amplifier (That is, one where a varying input signal is made very much largerasa
varying output signal). The transistor, however, can be operated in another mode
apart from that of amplification, that is, it can act as a switch.

155

156 Chapter 6

If you think back to the rules we laid down for the transistor as an amplifier, one of
them was that there had to be 0.8 V potential between the base and emitter for the
transistor to operate as an amplifier. You can think of this base emitter potential as a
controlling potential, because if the potential difference is reduced below about0.4 V
you will find virtually no current flowing through the collector resistor R(C) (refer to
Figure 6.3). Using Ohm's Law on resistor R(C), if there is no current flowing through
the resistor there can be no potential drop across it. If there is no potential drop across
it then the collector end of the resistor must be at the same potential as the power
supply end. In other words the collector of the transistor is at the high potential of the
power supply V¢ and the transistor is in fact turned off.

If we now increase the potential between the base and emitter to about 0.8 V, we
find that the maximum current allowed by the circuit components is flowing through
R(C) and of course the transistor. Under these conditions the voltage drop across R(C)
is a maximum or, in other words, the collector is at the minimum potential allowed by
the circuit; that is, it is at a low potential and the transistor, we say, is full on. The
potential is usually very close to 0 V. In effect then we can make the transistor look like
a switch by applying voltages less than 0.4 V to the base to turn it off and greater than
0.8 V to turn it on. You could use a square wave input signal to the base, through a 1-
Kohm resistor, of amplitude 5 V to switch the transistor on and off continuously.

Transistors can be combined to produce digital gates such as the NOR gate shown
in Figure 8.5. If Vo = +5 V = logic 1 state and GND = 0 V = logic 0 state, then the
truth table for this circuit is:

INPUTS OUTPUT

A B Q
0 0 1
1 0 0
0 1 0
1 1 0
—WA—0 Vee
OUTPUT Q
INPUT A
INPUT B
GND

Figure 6.5 Transistor NOR Gate.

Analog Conversions

Vee
INPUTS OUTPUT
A D
B
c

Figure 6.6 Three-input AND Gate.

This is identical to the truth table for a NOR gate. The natural characteristic of the
common emitter amplifier of inversion and amplification enables them to be used as
NAND and NOR gates as well as AND and OR gates. The current amplification of the
transistors allows the output Q to drive many more amplifiers, each being a part of
another gating circuit. You may now begin to understand the reasons for some of the
terms used in digital IC work.

Further development of transistors for use in digital gates led to the manufacture of
multiple emitter type transistors such as the three-input AND gate circuit shown in
Figure 6.6. The inputs A, B, and C are either at 0 V or V ¢ volts. The output D will
appear as in the following truth table:

INPUTS ~ OUTPUT

A B C D
0 0 o0 0
1 0 0 0
0o 1 0 0
1 1 0 0

Whenever any of A, B, or C inputs are low, the base is at a much higher potential than
the emitter so the transistor conducts heavily (switched on) and the collector voltage is
low (D). Only when A, and B, and C are at +5 V will the transistor turn off and the
potential at the collector rise to +5 V (high). This again indicates how multiple input
gates can be constructed.

Operational Amplifiers This term has been used for many years to describe
electronic amplifiers that have very high gain (say, in excess of 1000 times). In modern
times transistor amplifiers have been fabricated into integrated circuits often referred
to as linear integrated circuits. The symbol of such a circuit is given in Figure 6.7. The
amplifier has two inputs, labeled — and +, referred to as the inverting input and
noninverting input, respectively. The other single lead is the output lead. These
integrated circuits are characterized by very high open loop gain, usually greater than
10,000 times, are manufactured in DIL (DIP) packages, and have very low drift and
high input impedance (draw very little current from the input signal).

157

158 Chapter 6

INPUTS OUTPUT
+

Figure 6.7 Linear Amplifier.

Discussion of how these circuits can be made into amplifiers can begin by
considering the ideal operational amplifier (op amp). This ideal op amp has the
following features: infinite open loop gain, infinite input impedance, and zero drift.
To see how such an amplifier can produce a voltage gain consider the circuit shown in
Figure 6.8 called an inverting amplifier.

Based on the ideal op amp characteristics, an input current I{I) will flow through
R(I) then R(F) to the output, due to the fact that the input resistance is infinite. Also if
we assume that the gain of the amplifier is infinite, then the value of V(I) must be 0,
(otherwise there would be an infinite output voltage). The value of V(I) in practice
approaches 0. The voltage gain of the closed loop is:

V(out)/V(in) = A(V) = —R(F)/R())

The negative sign indicates a phase inversion between input and output signals as was
explained with the common emitter amplifier. The term closed loop refers to the use
of the feedback resistor R(F) closing the loop from the output circuit to the input
circuit. When precision resistors are used for R(F) and R(I) in an op amp whose gain is
greater than 1000 times, the above relation can provide accurate predictions of the
voltage gain of the amplifier—something that has been difficult to predict accurately
with discrete transistor amplifiers.

When an amplifier is required with a high input impedance and no phase reversal
between the amplified output signal and the input signal, then the noninverting
amplifier should be used with the signal applied to the noninverting + input.

R(F)
R(1) —VVW—
o v s
V(In)I V(l) I —0
+ t Vout)

! T g

Figure 6.8 Inverting Op Amp.

Analog Conversions

A further op amp circuit which can be very useful in signal conditioning
applications is the voltage follower illustrated in Figure 6.9. This amplifier is in fact a
unity gain amplifier and requires no input or feedback resistors. The output waveform
is an exact copy of the input waveform showing that there is no phasereversal between
the input and output signals. The circuit characteristics exhibit high input impedance
(draws negligible current from input signal) and very low output impedance
(produces significant current in the amplified output signal). Such amplifiers are
useful as current amplifiers or buffers.

In practice many op amp chips are operated from dual (bipolar) power supplies of
around +12 V. Such chips would not be practical to use in our experiments with the
Timex/Sinclair because of the need to provide additional power supplies. More
recently, however, single voltage op amps have been produced which can work from
+5 V only. We have obviously seized on this opportunity and carried out any signal
conditioning needed in our experiments with single voltage op amps such as the
LM358 which features high input impedance, very small drift, and high gain. They are
used in the experiments involving strain gauges. They could be used in any
experiments involving transducers which output only small dc voltages and very small
currents, such as thermocouple thermometers.

We conclude this survey on signal conditioning in relation to op amps by describing
their ability to reduce electronic noise present in input signals. Thermocouples are
transducers which are sensitive to noise, and, by incorporating them in an op amp
circuit, we can minimize the noise present by the inherent common mode rejection of
the differential input op amp circuit shown in Figure 6.10. The thermocouple
produces only a small potential per degree change in temperature of about 20
uV/Celsius degree. Using an amplifier of gain 1000 times this voltage can be amplified
to a usable level. With such high gains, however, the noise is amplified the same
amount as the signal. If the noise in the signal contains main frequency “hum,” this
alternating noise signal is present in both signal wires (the + and —) at the same time
so that amplification of the noise takes place equally but with opposite phase. The
signal on the other hand is producing a difference voltage between the inputs which is
amplified with the — signal having been phase reversed. This adds to the + signal at
the output. The Common Mode Rejection Ratio (CMRR) of a circuit is defined as:

CMRR = Differential Gain/Coemmon Mode Gain

V{out)

V(in) ©

Figure 6.9 Voltage Follower Op Amp.

159

160

Chapter 6
R(2) 100K
R(1) W\
W\ e
100 Each —0
o W p~ V(out)

R@) |
R(4) 100Kl

Figure 6.10 Differential tnput Op Amp.

THERMOCOUPLE
JUNCTIONS

The differential gain can be calculated from the ratio of the two resistors, R2/R1. The
common mode gain can be measured directly with a voltmeter. Common mode
rejection ratios greater than 100 are acceptable.

EXPERIMENT 6.1
ANALOG-TO-DIGITAL DISPLAY OF RC CHARGING WAVEFORM

COMPONENTS 1 * 74LS32 Quad Two-Input OR Gate
1*74LS74 D latch IC
1 * ADC0804 Analog-to-Digital Converter
1 * 10-Kohm resistor
1 " 5.1-Kohm resistor
1 * 0.47-uF capacitor
1 * 150-pF capacitor

For optional second part of experiment:
1 * Oscilloscope
1 * AD558 Digital-to-Analog Converter

DISCUSSION When current flows from a constant voltage source through a resistor and into a
capacitor, the electrical charge is stored inthe capacitor. Gensider the analogy to a water system
supplying water at a certain pressure (voltage) through a pipe (resistor) connected to closed tank
(capacitor). When a valve on the pipe is opened (a switch in the circuit is closed), water flows
through the pipe at a certain rate, gallons per minute (current), determined by the size of the pipe
(resistance). The initial pressure in the tank is 0 but starts to build up as the water (charge) is
stored. As the pressure in the tank increases the rate of flow decreases until the pressure in the
tank eguals the pressure of the water supply and the water stops flowing. In the electrical circuit,
the analogous situation corresponds to charging a capacitor. Because the rate of charging at a
given moment is proportional to the amount of charge stored at that moment, then the increase
(or growth) in voltage with time depends on the percentage of the total change. Such growth
processes are exponential. In such processes, the time required to charge the capacitor up to the
voltage of the supply obviously depends on the values of the resistance and the capacitor. A time
constant defined as

Analog Conversions
TAU(seconds) = R(ohms) * C(farads)

is the time it takes for the voltage to reach 63% of its full value (actually 1 —1 /e where e is the
base of natural logs; e = 2.71828).

In this experiment the Timex/Sinclair will be used to control the switching on of a circuit to
charge a capacitor through a resistor. The computer will store converted values of the analog
voltage developed across the capacitor as the charging process proceeds. The charging
process should be exponential and a table of acquired values stored in memory can be displayed
on the video screen. The circuit used to charge and discharge the capacitor is similar to the one
used in Experiment 4.3 for turning an LED on and offand is repeated in the schematic, Figure 6.11.

PROCEDURE

STEP 1 Wire the circuit as shown in Figure 6.11 making sure that the power is disconnected
between the Timex/Sinclair and the +5-V power rail. Resistor values are not critical, and values
close to 4.7-Kohm or 5.6-Kohm resistors could be used in place of the 5.1-Kohm resistors. You
will need space for three integrated circuit chips, so mount them as close to the cable socket as
possible so that a fourth chip can be added later. Note that the differential input to the ADC0804
has been made single ended by grounding the negative input at pin 7.

STEP 2 Two device pulses are required to drive the 74L574 D latc:h, and these are derived
from the 74LS32 Quad OR Gate as shown in Figure 6.11.

+5V
20 1047
1 18
o 2 17 o
IN* = D1
QuUT* 16 D2
5 15
[12 11 K D3
8] ol O o
' 4 5.1K 6 13 o
< ———y .
+svaA T Q24 o.47uF 7 12 D6
c19* 7| '74 8 1 o7
&l
10 b
1 i 4] [19
L9 8 ~ 10K

Figure 6.11 Experiment 6.1A Schemalic.

161

162 Chapter 6

STEP 3 Load the following BASIC program:

10

10
20
30
30
40
50
50
60

70
90

REM 123456789 123456789 123456789 123456789 123456789
123456789 123456789 123456789 123456789 123456789

123456789 123456789 1234567890 (for B&W models)
CLEAR 32129 (for Color models)
FAST (for B&W models only)
LET L = USR 16514 (for B&W models)
LET L = USR 32130 tfor Color models)
CLS

FOR A = 16538 TO 16616 STEP 4 tfor B&W models)
FOR A = 32154 TO 32232 STEP 4 tfor Color models)
PRINT; TAB(8 — LEN “A”); PEEK A; TAB(16-LEN “(A+1)”),
PEEK (A+1); TAB (24 — LEN “(A+2)”); PEEK (A+2); TAB
TAB (32 —LEN “ (A+3)”); PEEK (A+3)

NEXT A

PRINT “ALL IN”

***Note line number space left here.”**

150
160
160
170
180
190
200

STOP
FOR M
FOR M
INPUT N

POKE M,N

PRINT M; “=» ; PEEK M, ;
NEXT M

16514 TO 16537 (for B&W models)
32130 TO 32153 (for Color models)

It your Timex/Sinclair has 2K of W/R memory then the programs above will fit into the memory
space. However, if you have only 1K of W/ R memory then the few suggestions made in Chapter 2
should enable you to load the software without too much difficulty.

STEP 4 The following machine language routine is loaded in the usual manner by
ENTERing RUN 160 and inputting the decimal codes for the routine.

MACHINE LANGUAGE PROGRAM

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC COMMENT
B&W / Color
16514 /32130 1 LD BC,NN
16515 /32131 20 Lo N :Register C holds timing byte
16516/32132 79 Hi N ‘Register B holds count of events
16517 /32133 33 LD HL,NN :Starting address
16518/32134 154 Lo N :of Data Table

16519/ 64 Hi N :at 16538

Analog Conversions

/32135 125 Hi N .or 32154,
16520/32136 219 IN {N)A :Device code 19 sets Q high
16521 /32137 19 N ‘to charge capacitor.
16522/32138 211 QUT A(N) :Device select pulse to begin
16523/32139 3 N :conversion of the ADC.,
16524 /32140 13 DECC :Delay loop: wait for
16525/ 32141 32 JRNZd :conversion to complete.
16526 /32142 253 d :Loop to 16524/32140 20 times.
16527 /32143 14 LD C.N ‘Yes. Restore C count.
16528/32144 20 N
16529 /32145 219 IN (N),A :Read ADC
16530/ 32146 3 N from Port 3.
16531 /32147 119 LD (HL).A ‘Store converted value in memaory.
16532 /32148 35 INC HL ‘Point to next file location.
16533 /32149 16 DJUNZ d s B=07?
16534 /32150 243 d :No. Jump to 16522/32138.
16535 /32151 211 OUT (N),A :Discharge capacitor for
16536 /32152 19 N ‘the next run
16537 /32153 201 RET :Return to BASIC
16538/ 32154 FILE START :The first location in the

.data file

STEP 5 Inspect the two programs above to see just how they interact. Line 30 calls the
machine language program which starts at memory location 16514/32130. The machine
language program initializes the BC register pair in one three-byte instruction with register C
holding the timing byte for the time delay routine and register B holding the number of data values
to be collected by the converter, Register B was used because of the Z80's special instruction
DJUNZ which automatically decrements register B and tests the zero flag. It uses a two's
complement negative displacement to jump back to do another conversion and saves one byte of
code, namely DEC B. Note that the code used in the above example is relocatable code—that s,
the program could be run in any part of available W/R memory.

The program then initializes the HL register pair to mark the beginning of the area of W/R
memory reserved for data and labeled “FILE START.” Line 16520/32136 charges the capacitor
using a device select pulse and then starts the converter allowing for atime delay of 20 * 14 clock
cycles = 86.15 usec before generating a further device select pulse at memory location
16529/32145 to input the converted data. The final device select pulse at memory location
16535/32151 discharges the capacitor ready for the next run.

STEP 6 Reconnect the power to the circuit and check that no integrated circuits are
significantly overheated. Start by ENTERing RUN. After a short time four columns of acquired
data will appear on the video screen. The time constant of the RC circuit can now be determined.
To make an absolute determination, the time to make successive readings has to be calculated
using the total number of clock cycles in the loop from 16522/32138 to 16534/32150
{(dependent on the value put into register C) multiplied by the time for one clock cycle (0.3077
usec). For example, look at your table of values and determine the maximum digital value to
which the capacitor charged. Assume that the charging process was exponential so after one
time constant the voltage should have increased to 0.63 of the final value. If your final value was
220 decimal, for example, then the value of voltage across the capacitor after a time interval
equal to one time constant (TAU) would be 0.63 * 220 or about 139 decimal. Now find how many

163

164 Chapter 6

samples were taken to obtain that value and multiply by the total time per sample.
If your count was 30 samples, then one time constant would be equal to

30 * (time for one sample, see Step 4) = 30 * 82.77 usec = 2.48 msec

Because the time constant TAU = R*C, then we can determine C if R is known.
Suppose R = 5.1 Kohm, then

C=TAU/R=(2.48 X10—3)/(61 X 103)=048 X 10—6F

or
C =048 uF.

STEP 7 You can POKE a different timing byte into register C at memory location
16528/32144 and then repeat the experiment to observe the effects. You can also try different
values for R and C.

STEP 8 It would be more appropriate to make use of the BASIC programming facilities
provided by the computer to plot a graph of voltage versus time on the video screen or on the
screen of an oscilloscope. We shall leave the video display routine for the remaining experiments.
in the rest of this experiment we shall describe how to interface an oscilloscope to display the
acquired data. If you do not have an oscilloscope at your disposal, we suggest you read through
the steps to understand how the display can be achieved.

STEP 9 The tabulated data collected by the analog-to-digital converter and stored in a file in
W/R memory will be output to a digital-to-analog converter. The analog output will be used to
drive the vertical Y channel of an oscilloscope and display the charging curve of the capacitor.
Some simple software steps will be introduced to make the program run more smoothly under
operator control. Wire the additional circuit shown in Figure 6.12.

STEP 10 Add the following lines to the BASIC PROGRAM:

100 LET N = 33333

110 PAUSE N

115 CLS

120 FAST (for B&W models only)
130 LET L = USR 16619

130 LET L = USR 32135 {for Color models)
140 PRINT *“PROGRAM HAS CONCLUDED”

150 STOP

and change the following two lines to read:

* W kK
160 FOR M = 16619 TO 16639 (for B&W models)
200 FOR M = 16619 TO 16639

Analog Conversions

to OSCILLOSCOPE

(for Color models)

+5V
1] |2 @
1
Do 2
D] — =] |16
D2 3 15
D3 ____i| 14
D4 5 558
D5]
D6 7 13
D7 8| |
9 10
OUT*
Ci1*
Figure 6.12 Experiment 6,18 Schematic.
x Xk Xx x
160 FOR M = 32135 TO 32155
200 FOR M = 32135 TO 32155
® X Xk X
STEP 11

Now load the decimal code for the following machine language routine which

performs the digital-to-analog conversion of the stored data. RUN 160 and input the decimal

codes.

MACHINE LANGUAGE PROGRAM

ADDRESS

B&W / Coflor
16619/32135
16620/ 32136
16621/
/32137
16622 /32138
16623/32139
16624 /32140
16625/ 32141

DECIMAL
CODE

33
154
64
104
6
79
126
211

INSTRUCTION
MNEMONIC

LD HL,NN
LoN

Hi N

HiN

LD BN

N

LD A{HL)
OUT (N),A

COMMENT

:Data Table starting

:address

:at 16538

:or 32154

:Register B holds the
:number of values in the file.
:Place the value in Register A
:Output it to the DAC for

165

166 Chapter 6

16626 /32142 11 N .conversion to analog.
16627 /32143 35 INC HL :Point to next value.
16628/32144 16 DJNZ d :Done all data (B=0)?
16629/ 32145 250 d :No. Jump to 16624/32140.
16630/ 32146 205 CALL NN ‘Yes. Callthe ROM subroutine
16631/ 187 LoN
/32147 176 LoN
16632 /32148 2 Hi N test for key closure.
16633/ 124 LD AH ‘Make up a mask for
/32149 122 LD AD
16634 / 133 ADD L ‘when key 4 is pressed.
/32150 131 ADDE
16635 /32151 254 CPN
16636/ 230 N :B&W model code for key 4
/32152 11 N :Color model code for key 4.
16637 /32153 200 RET Z ‘Return to BASIC
16638/ 32154 24 JRd :Key 4 was not pressed so
16639/32155 235 d :continue displaying the file

STEP 12 Note the simple interfacing required for this integrated circuit chip. Device select
address 11* could be used to drive this DAC together with OUT*, because the DAC will be
receiving information from the processor. If you have only 1K of W/R memory, you may have
difficulty placing the whole program in memory so a number of word-saving actions will have to
be taken.

STEP 13 Now that you have loaded both your machine language program and your BASIC
routine, switch on your oscilloscope and center the trace. Use a voltage range of about 0.5V/cm
and switch the vertical or Y input to ac. Set the horizontal time base of the oscilloscope to 10
msec/cm until you have a picture on the screen of the oscilloscope. Then adjust 1o a different
time base to obtain the most satisfactory trace.

STEP 14 RUN your program. As inthe first part of the experiment, the table of voltage values
will appear on your screen and will remain there until you press any key, whereupon BASIC line
110 will finish execution and the video screen will clear while the Z80 commences execution of
the next machine language program called by the USR routine at line 130.

STEP 15 Now thatthe secend machine language program, which starts at memory location
16619/32135, is being executed you should observe on your oscilloscope screen a plot of
voltage on the vertical scale against time on the horizontal scale. The trace should be
exponential. If you do not have such a plot, check all the oscilloscope settings including the
automatic triggering setting. If you still do not have a picture and you are absolutely sure that the
oscilloscope is not faulty, you need to check your machine language program and hardware.

STEP 16 The system should run automatically and will only return to BASIC when the 4 key
is pressed. See machine code section from memory location 16630/32146 to 16639/32155,
which makes use of a BASIC subroutine contained inthe ZX81/1000/1500 ROM at location 699
(2 * 256 + 187) and the Spectrum/2068 ROM at location 688 to detect key closures. In this case,
key 4 has been selected as the code that will cause the return on zero instruction to be executed

Analog Conversions

at memory location 16637/32153. This stops the charging curve from being displayed on the
oscilloscope screen and returns control to the BASIC program at line 140, Note how use can be
made of any of the self-contained Sinclair subroutines held in the BASIC ROM, by using a direct
CALL instruction in your own machine code.

STEP 17 From the known properties of exponantial charging curves for resistor capacitor
networks as outlined in the first part of the experiment, determine the time constant from the
picture on your oscilloscope screen.

STEP 18 If you do not have access to an oscilloscope you might like to try your hand at
programming the Timex/Sinclair microcomputer to plot your table of voltage values. You can
adapt one of the programs given in the following experiments.

SUMMARY You have now used your microcomputer to collect data and display the data on
another instrument. I is also possible to send the analog signal produced by the digital-to-analog
converter to a chart recorder and obtain a permanent record of the experiment.

EXPERIMENT 6.2

INTERFACING A LIGHT-SENSITIVE RESISTOR

COMPONENTS 1 * Photoresistor (CdS:3 Megohm dark)
1 * ADCO0804 Analog-to-Digital Converter
1 * 1-Kohm resistor
1 * 10-Kghm resistor
1 * 150-pF capacitor

DISCUSSION Light-sensitive resistors are relatively inexpensive components that can provide
a large enough change in resistance to produce a digital detector of a “light—no light" situation.
They can be used, for example, in a burgular alarm or any other application involving the breaking
of a light beam. By interfacing the photoresistor to an analog-to-digital converter, it is possible to
detect slight changes in light intensity as well as the "“full on—full off” situation. Applications can
be as diverse as observing clouds passing over a solar collector or detecting change in a
chemical experiment where you wish to monitor a color change in a titration experiment. By using
filters in front of the light-sensitive resistor it is possible to detect specific color changes.

The photoresistor used in this experiment decreases its resistance as the intensity of light
incident on its window increases. The signal of a resistance transducer must be conditionedtoan
analog voltage in order to interface it to an analog-to-digital converter. The circuit used to
transform the resistance to a voltage is shown in Figure 6.13. The decreasing resistance of the
photoresistor allows a larger current to flow through the 1-Kohm resistor and produces, by Ohm's
Law, a larger voltage drop which is fed to the + input, pin 6, of the analog-to-digital converter for
conversion into a digital value.

PROCEDURE

STEP 1 Wire the experiment as shown in the schematic diagram ensuring that the
transparent window is directed at the source of light you wish to monitor.

167

168 Chapter 6

+ 5V
2] |10 &
C3* L 8 DO
IN* < 7 by
ouT* S 16 D2
5 15
X S
g| 0804 [b3
X —_—— D4
+5V . ¢ L —
1K 7 12 D6
PHOTO- 8 1
RESISTOR D7
L T
10K

l 150 pF

Figure 6.13 Experiment 6.2 Schematic.

STEP 2 If you have a voltmeter on hand, check the voltage output by the sensor by
measuring across the 1-Kohm resistor. With no light you should have near zero voltage and with
full light you should read a voltage near 5 V—showing that your light-dependent resistor circuit is
functioning.

STEP 3 Load the BASIC program and the machine language routine in the usual manner,
The machine language program must take care of controlling the converter as well as providing
file space for the values of voltage, proportional to lightintensity, which are input fromthe ADC. In
this experiment the values input to the file will be plotted out by the BASIC program so you can
detect movement over the detector. The machine language program is similar to that in
Experiment 6.1, but the BASIC program has been altered to aliow for plotting the values obtained.
Because the converter only supplies the set of values proportional to the light intensity, these can
be plotted on the vertical Y axis. To provide a graph of movement, the BASIC program providesa
horizontal time displacement via the variable K as shown in lines 150 through 180.

BASIC PROGRAM

10 REM 123456789 123456789 123456789 123456789 123456789
123456789 123456789 123456789 123456789 123456789
1234567890 (for B&W models)

20 FAST

30 LET L = USR 16514

40 FOR A = 16542 TO 16618 STEP 4
x ko K

10 CLEAR 32129

30 LET L = USR 32130

40 FOR A 32158 TO 32234 STEP 4
X X Ak

Analog Conversions

(for Color models)

50 PRINT ; TAB (6 — LEN “A”); PEEK A; TAB(16 -
LEN “(A+1)"); PEEK (A+1); TAB(24 — LEN “(A+2)"); PEEK
(A+2); TAB(32 — LEN “(A+3)"); PEEK (A:3)

60 NEXT A

70 PRINT *“ALL IN”
80 LET N = 33333
90 PAUSE N

100 CLS

110 LET A = 16452
110 LET A = 32158
120 FOR X = 0 TO 63
130 LET Y = INT((PEEK A)/6)
140 PLOT X,Y

150 LET A = A + 1
160 NEXT X

170 PAUSE N

180 STOP

MACHINE LANGUAGE PROGRAM

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC
B&W / Color
16514 /32130 1 LD BC,NN
16516/32131 20 LoN
16516/32132 79 Hi N
16517 /321383 33 LD HL,NN
16518/ 32134 161 LoN
16519/ 64 Hi N

/32135 125 HiN

16520/ 32136 17 LD DE,NN
16521 /32137 255 LoN
16522 /32138 2 Hi N
16523/32139 211 QUT (N),A
16524 /32140 3 N
16525/ 32141 13 DECC
16526/ 32142 32 JRNZd
16527 / 32143 253 d

16528/ 32144 14 LDCN

(for B&W models)
(for Color models)

COMMENT

:Delay counter for ADC.
‘Number of data points.
:Data Tabie starting address
:at location 16545/32161

:Delay counter between data
.acquisitions.

:Start ADC conversion with.,
‘puise to Port 3.

:Loop 20 times for delay.

:Done?

:No. Jump back to 16525/32141.
‘Yes, Restore counter.

169

170 Chapter 6

16529/ 32145 20 N

16530/ 32148 219 IN A(N) ‘Read ADC value from

16531 /32147 3 N :Port 3.

16532/ 32148 119 LD {HL) A :Store data value in memoaory.
16533/32149 35 ING HL :Point to next entry in table,
16534 /32150 27 DEC DE ‘Time delay between values.
16535/ 32151 122 LD AD s DE counter zero?

16536/ 32152 179 ORE

16537 /32153 32 JRNZd ‘No. Keep counting down

16538/ 32154 251 d by jumping back to 16535/32151.
16539/ 32155 16 DJNZ d ‘Table full (B=0)7?

16540/ 32156 235 d ‘No. Jump to 16520/32136 again.
16541 /32157 201 RET ‘Yes. Return to BASIC.

STEP 4 RUN your program. If you wish to abserve your hand motion over the photoresistor
and have the results of the movement recorded on the video screen, you will need to synchronize
the movement of your hand with the pressing of the ENTER key after the RUN key has been
pressed. This may take a little practice.

STEP 5 Having stored data, presumably about your hand movement over the photoresistor,
then by pressing any key on the board, the Timex/Sinclair will respond by coming out of the
pause loop and displaying a plot of your hand movement over the photoresistor on the video
screen.

STEP 6 You can vary the timing constant in register C (location 16515/32131) to some
larger value to obtain the data over a longer period of time.

EXPERIMENT 6.3
ELASTIC BEAM MEASUREMENTS USING STRAIN GAGES

COMPONENTS 2 " Strain gages; resistance = 120 ohms Type CEA-06-125UW-120 (Mea-

surements Group)

2 * 120-ohm 1/4-watt resistors matched to +1%

1 *LM358 Dual Bi-FET op amp

1* ADC0804 Eight-hit Analog-to-Digital Converter

1 * each 10-, 16-, 33-Kohm resistor

1* 150-pF capacitor

1" 0.47-uF capacitor

1 * Hacksaw blade and C-clamp

DISCUSSION Strain gages are resistance transducers made up of fine wire grids which are
mounted rigidly to the surface of the object under study. When a stress, in the form of a force or
pressure, is applied to the object the induced strain causes the surface to yield (elongate in some
direction) to a degree dependent on its elastic properties. As the surface yields, the resistance of
the strain gage changes. Strain gages are used extensively in engineering applications to
measure stresses in structures as diverse as airplanes and bridges. Because the extent of strain
is very small, the corresponding signal generated by the transducer is also very small. In addition,

Analog Conversions
+ 5V
+5V 20l [10 &
18
DO
17
s D1
— D2
15 D3
14
0804 |——— D4
13
— D5
12
D6
L D7
)! 4 19
10K
== 150 pF

Figure 6.14 Experiment 6.3 Schematic.

the resistance of the strain gage also depends on the ambient temperature which introduces
additional errors in the signal,

The technique to convert the resistance to an analog voltage for analog-to-digital conversion
employs the Wheatstone bridge. The Wheatstone bridge is a network of four resistors laid out ina
square with each resistor forming one side of the square and connected atthe corners to two of
the others (see Figure 6.14). When a voltage is applied to diagonally opposite corners and the
resistances are adjusted such that the voltage drop across the other diagonal is zero, then the
bridge is balanced. At balance, the product of the two resistances in opposite sides is equal tothe
product of the other two resistances. From this relationship:

R(1)*R(3) = R(2)*R(4).

If any three values are known, the fourth can be calculated.

By placing the strain gagesintwo of thearms of a balanced Wheatstone Bridgeit is possible to
put the bridge out of balance as the elastic straining force is increased. A high input impedance
FET (Field Effect Transistor) amplitier can then be used to measure the out of balance voltage
and produce a larger voltage proportional to straining force. This voltage can then be converted
to digital form for the microcomputer by using an analog-to-digital converter.

In the first part of the experiment, a simple mechanics experiment is performed on the
deformation of an elastic body to a deforming force. The deformation foilows a simple relationship
referred to as Hooke's Law:

171

172 Chapter 6
F=kX

where F is the deforming force, X represents the displacement of the elastic body from its
equilibrium position, and k is the elastic constant of the body. In the second part of the experi-
ment, we investigate the damped harmonic oscillation of the elastic beam. The use of strain
gages enables us to measure the disturbance from equilibrium of an elastic body by measuring
the change in resistance as the strain in the elastic body changes.

PROCEDURE

STEP 1 Strain gages should be obtained with a resistance as close toa preferred range of
resistor which you have available to you, or if at all possible close to a value of precision resistor
which you might have in stock. Resistor values such as 100, 120, and 150 ohms should be
suitable. The strain gages we used had a measured resistance of 109 ohms so we used 110-ohm
high stability resistors initially in the arms of the bridge. We were able to complete the experiment
using ordinary 1/4-watt carbon resistors by altering the values of R(F) and R(G) to bring the
output of the amplifier to mid-range approximately 1.9 V with a load of 50 g on the elastic beam.
Some trial and error may be necessary but an ordinary volt-ohmeter should be sufficient to
enable you to set the values of components for satisfactory operation of your circuit.

Attach your strain gages to the elastic beam (hacksaw blade) a day or two before you
anticipate carrying out the experiment, The strain gages were glued to a hacksaw blade on either
side at the same distance from an end. Aliow about 6 inches (15 centimeters) from an end to the
clamp or fulcrum about which the hacksaw blade will be strained. Glue the strain gages as close
to this point as possible and epoxy glue the leads to the blade to prevent flexing. Roughen the
blade with No. 01 sandpaper or equivalent and wipe down with alcohol prior to gluing. This
arrangement of strain gages doubles the change for straining (doubles the change in resistance)
and still compensates for temperature changes. Use shielded twin core cable to connect the
gages to the circuitry on your socket board. Twist the leads from each gage and join the two
shielding braids at the gage end. There should be no need to ground the hacksaw blade or the
shielding itself, or attach the braid to the hacksaw blade.

STEP 2 If at all possible match your Wheatstone bridge resistors as closely as possible to
each other and to the resistance of the strain gages. If you have high stability resistors of the
values required on hand, use them in the bridge arrangement,

STEP 3 Suspend a 50-g weight about 6 inches (15 centimeters) from your fulcrum and allow
the system to come to equilibrium (see Figure 6.15). Using a voltmeter at the output of the LM358
amplifier, pin 1, measure the dc voltage. If the value you measure is grossly different from about 2
V, adjust the resistor, R(G), by about 1-Kohm increments until you bring the output voltage to
about 2 V.

STEFP 4 It your strain gages and resistors are so out of balance that a reading of 2 V cannot
be obtained, reduce the gain of the amplifier significantly by putting R(F) = R(G) = 1 Kohm and
look for an output of about 2 V. Now siowly increase R(F) and adjust the value of R{G) to keep the
bridge on an output of about 2 V while the gain resistor, R(F), is increased. Any mismatch of R(F)
and R(G) will lead to increased noise, but the averaging routine in the machine language program
should eliminate most of the noise from that source. With sufficient gain your analog-to-digital
converter will give a reasonable digital output per 1 g of weight.

Analog Conversions

TOP VIEW

- 15 cm 2

NOT TO SCALE

SIDE VIEW

. HACKSAW BLADE
— % e == —

STRAIN GAGES

CLAMP

Figure 6.15 Elastic Beam Apparatus.

STEP 5 The software we have used will display a decimal value corresponding to the
deflection voltage output from the amplifier. Inspection of the machine language program will
show a machine code averaging program as well as a fairly long time delay loop between
readings. The time delay loop occurs between 16522/32138 and 16529/32145. Afterthe analog-
to-digital converter has been started with a device select pulse at memory location 16544/
32180, the system makes use of the Z80 instruction DJNZ to time out a small delay loop to allow
the converter time to complete the conversion. DJNZ automatically decrements register B,
loaded at location 16542/32158, until register B is 0. DJNZ also requires the calculation of a
relative displacement in this case just back one location, or counting the displacement as
position 255, the displacement becomes 2656 — 1 = 254.

The averaging routine commences at location 16563/32179 where register C is loaded with
the number 4 (that is the number of times registers D and E will be rotated to the right through
carry). Because the number of readings taken (16) was loaded at 16548/32164 (17 —1)and
registers D and E contain the sum of the readings, rotation to the right by one bit is, in effect,
division by 2, then by four times is division by 16, so that the result left in the E register is the
average of the 16 readings. It is this value that is loaded into memory for later retrieval by the
BASIC program. The BASIC program makes use of the tabulation procedure adopted in other
programs. Setting the BASIC variable N to a number greater than 32,768 causes an indefinite
PAUSE period (on the B&W models) that is terminated by pressing any key. Load the following
BASIC program and machine language routine.

173

174 Chapter 6

BASIC PROGRAM

10 REM 123456789 123456789 123456789 123456789 123456789
123456789 123456789 123456789 123456789 123456789

20
30
40

10
30
40

50

60
70
80
20
100
110
120
120
130
140
150
180

123456789 123456789 1234567890

FAST

LET L USR 16514

FOR A = 16579 TO 16599 STEP 4
* ¥ %k %

CLEAR 32129

LET L = USR 32130

FOR A = 32195 TO 32215 STEP 4
* ok % %

PRINT

It

(for B&W models)

{for Color models)

TAB(4 - LEN STR$ PEEK A):; PEEK A; TAB(12 — LEN STR$

PEEK (A+1)); PEEK (A+1); TAB(20 — LEN STR$ PEEK (A+2));
PEEK (A+2); TAB(28 — LEN STR$ PEEK (A+3)); PEEK (A+3)

NEXT A
PRINT “ALL IN”

LET N=33333

PAUSE N

CLS

GOTO 30

FOR M = 16514 TO 16577
FOR M = 32130 TO 32193
INPUT N

POKE M,N
PRINT M; «“=»
NEXT M

; PEEK M, ;

MACHINE LANGUAGE PROGRAM

DECIMAL INSTRUCTION
ADDRESS CODE MNEMONIC

B&W / Color
16514/32130 33 LD HL,NN
16515/32131 195 LoN
16516/ 64 Hi N

/32132 125 Hi N
16517 /32133 6 LD BN
16518 /32134 20 N
16519/32135 17 LD DE,NN
16520/ 32136 255 Lo N
16521 /32137 4 Hi N
16522 /32138 29 DECE
16523 /32139 32 JR NZ d
16524 /32140 253 d

(for B&W models)
(for Color models)

COMMENTS

:Pointer to Data Table
:starting address at
‘location 16579

or 32195,

‘Number of entries

in Data Table,

:Delay counter between
rreadings = 4 * 255
:=1020.

:Begin delay countdown.

16525 /32141
16526 /32142
16527 /32143
16528/ 32144
16529/32145
16530/32146
16531 /32147
16532 /32148
16533/32149
16534 /32150
16535 /32151
16536 /32152
16537 /32153
16538 /32154
16539 /32155
16540/ 32156
16541 /32157
16542 /32158
16543 /32159
16544 /32160
16545/ 32161
16546 /32162
16547 /32163
16548 /32164
16549/ 32165
16550/ 32166
16551 /32167
16552 /32168
16553 /32169
16554 /32170
16555/ 32171
16556/32172
18557 /32173
16558/32174
16559 /32175
16560 /32176
165661 /32177
16562 /32178
16563/32179
16564 /32180
16565 / 32181
16566 / 32182
16567 /32183
16568 /32184
16569 /32185
16570 /32186
16571 /32187
16572/32188
16573 /32189
16574 /32190

21
122
131

32
248

24

115
35
16

239

201

17

197

20
211
19
16

254

14
17
13
40
10
167
219
19
131
95
48
246
20
24
243
14

203
26
203
27
13

249
193
123

47

DECD
LD AD
ORE
JRNZd
d

JRd

d

LD (HL).E
INC HL
DJNZ d
d

RET
NOP

LD DENN
LoN

Hi N
PUSH B
LD BN
N

QUT (N),A
N

DJNZ d
d

LD C,N
N
DECC
JRZd

d

AND A
IN A(N)
N

ADD E
LD EA
JRNCD
d

INCD
Jrd

d
LDCN
N

p

RRD

P

RRE
DECC
JRNZd
d

POP BC
LD AE
CPL

Analog Conversions

:Is DE zero?

:No. Goback to 16522/32138.
‘Yes. Jump over End of
‘Routine to 16538/32154.
:Store the data average.
:Point to next Table entry.
:Collected 20 averages?

‘No. Jump to 16519/32135.
‘Yes. Back to BASIC.

‘Initialize sum of 16
readings per data
:point to zero.
:Save data counter.
:‘Load wait counter.

:Start ADC conversion
‘with pulse to Port 19.
‘Wait for ADC to finish.

‘Number of readings to be
:averaged =17—1 =16.
‘Collected 16 readings?
Yes. Jump to 16563/32179.

:No. Clear the carry flag.
:Read ADC at Port 19.

:Add sum of readings,
:and store new sum.
:Carry overflow from E?
:‘No. Go back to 16550/32166.
‘Yes. Collect overflow in D
:for 16 bit sum, then go
‘back to 16550/26771.
:Set up divide-by-2

-for 4 times = 1/16.

:Get average of readings
:by dividing by 16 with
‘Right Rotates of D and E.

‘Done with division?
‘No. Go to 16565/32181.
‘Yes. Restore data counter.

175

176 Chapter 6

16575/ 32191 95 LDEA
16576/32192 24 JRd ~Jump to End of Routine
16577 /32193 210 d :at 16532/32148.

STEP 6 Add different weights and record the decimal output. A graph of output versus
added weight should yield a very good straight line.

STEP 7 The strain gages attachedto a hacksaw blade as an elastically strained system can
be used to display the damped simple harmonic motion of a vibrating system. Pay particular
attention to the positioning of the fulcrum of the beam and the rigid clamping of the stationary part
of the beam. We noted that if the stationary part of the beam was not firmly fixed to the bench,
secondary oscillations occurred which tended to mask out the original motion {(and led to some
strange results). We also noted that if the wires connecting the strain gages to the bridge were
allowed to flex, errors in your graph could result. Check that your bridge output is correctly
adjusted when the system s not vibrating. Difficulties experienced at this point could be due to not
being able to balance the bridge, again use a small value trim pot (10 ohms) in series with one of
your fixed resistors and adjust it until your bridge is balanced.

STEP 8 The machine language program is identical to that used for the elastic beam apart
from changes to the major time delay loop to allow a sample time of a few seconds of the damped
moticn to be taken and the extending of the data file from 20 readings to 70 readings. Modify the
machine language program by executing the following direct commanas:

POKE 16518,70 (B&W)
POKE 16521,12
POKE 32134,70 (Color)

POKE 32137,12

STEP 9 The BASIC program is extended appreciably. The table length in line 40 has been
extended to 16649/32265. The larger file of values can then be plotted on the video screen with
the program commencing at line 200. To allow for the small range of output voltages and for the
fact that smaller weights can cause smaller deflections, the first 20 values are scrutinized to
determine the maximum and minimum values of the excursions of the bridge when the hacksaw
blade is displaced from equilibrium and allowed to oscillate. From these values the factors
required to produce full screen deflection for the first oscillation with the equilibrium position on
the midscreen line can be calculated. V is the midscreen deflection factor and W is the scaling
factor.

The program will not run if you have the system in equilibrium so that the denominator term in
line 300 becomes 0 hence the need for line 310 and 390. The Timex/Sinclair would otherwise
break the program and return to the video screen with the error report:“out of range.”

Add the fellowing lines to the BASIC program:

40 FOR A = 16579 TO 16649 STEP 4 (for BAW models)
40 FOR A = 32195 TO 32265 STEP 4 (for Color models)
200 LET A = 16579 (for B&W models)
200 LET A = 32195 {for Color modeis)
210 LET M = PEEK A

220 LET X = M

230
240
240
250
260
270
280
290
300
310
320
320
330
340
350
360
370
380
390

Analog Conversions

LET N = M

FOR A = 16580 TO 16599 ' (for B&W models)
FOR A = 32196 TO 32215 (for Color models)
LET M = PEEK A

IF M > X THEN LET X = M
IF M < X THEN LET N = M
NEXT A

LET V = (X + N)/2

LET W = 42/(X — N)

IF X — N <= 0 THEN GOTO 390

LET A = 16579 (for B&W models)
LET A = 32195 (for Color models)
FOR K = 0 TO 63

LET Y = INT(((PEEK A) — V)* W) + 20

PLOT K,Y

LET A=A+ 1

NEXT K

STOP

PRINT “YOU ARE IN EQUILIBRIUM START THE OSCILLATION AND
RUN AGAIN”

STEP 10 Attached a weight on the beam with adhesive and depress it from its equilibrium
position. The experiment can be performed using various weights and defiections. By measuring
the amount of the first deflection and the time of decay, the damping constants of the system can
be determined.

STEP 11 Type in RUN and just after you press ENTER, release the elastic beam.

STEP 12 A damped simple harmonic waveform should appear on your screen. Measure-
ments can be made directly or handled by additional software. If a picture does not appear, the
problem is most likely in your additional software so go back and check everything again.

EXPERIMENT 6.4

TO CONVERT VOLTAGE APPLIED TO A MOTOR TO A DECIMAL VALUE

COMPONENTS 1 * ADC0804 Eight-bit Analog-to-Digital Converter

1 * 3-v DC motor plus 3-V power supply or batteries
1 * LM358 Dual Op Amp

1 * 1-Kohm resistor

2 * 10-Kohm potentiometers

1 * 150-pF capacitor

1 * 1.0-pF capacitor

1 * DC voltmeter

177

178 Chapter 6

DISCUSSION Knowledge of the relationship between motor speed and applied voltage would
enable the motor be be used as a tachometer or, if a fan blade were attached tc the shaft, as an
indicator of air speed. Because the maximum voltage that can be applied tothe motoris only 3V,
use will be made of the characteristics of the analog-to-digital converter to adjust its reference
voltage and zero offset to cause the full scale digital output of the converter, 0 to 255, to
correspond to the 0 to 3 V range.

The reference voltage adjustment and zero offset circuitry is shown in Figure 6.16. The values
of the two potentiometers are not critical, values between 1 Kohm and 10 Kohm should be
acceptable. The voltage applied to the motor is fed directly tothe V+input, pin 6, of the converter.
When the program is run, the voltmeter will give a reading of the applied voltage and the
microcomputer will display the decimal equivalent on the video screen.

Once the system is calibrated, the microcomputer could be used to convert the decimal
values directly to voltages and plot a table for you.

PROCEDURE

STEP 1 Connect the circuit as shown in the schematic using a separate dc source to power
the motor. If a power supply is to be used rather than batteries, you must ensure that the voltage
output to the motor is strictly limited to below 5 V to protect the input of the converter from
excessive voltage,

+

on

<

s |

2l
la

ca* L Do
IN* 2 —1—;-—— D1
ouT* 3 . D2
X -—?- 15 D3
+ 3V POWER SUPPLY 9| 0804 | 14 i
7 12 656
11
DC MOTOR 8 D7
4 19
_ 3 10K
+5V I_ == 150pF
6.2K each l

Figure 6.16 Experiment 6.4 Schematic.

Analog Conversions
STEP 2 Load the BASIC program and the machine language routine.

BASIC PROGRAM

10 REM 123456789 123456789 123456789 12345 (for B&W models)
20 FAST
30 LET L = USR 16514
40 FOR A = 16543 TO 16547

* k& ¥ *x
10 CLEAR 32129 (for Color models)
30 LET L = USR 32130
40 FOR A = 32159 TO 32163

* ¥ x X
50 FRINT A
60 NEXT A
70 STOP
80 FOR M = 16514 TO 16541 (for B&W models)
80 FOR M = 32130 TO 32157 (for Color models)
90 INPUT N

100 POKE M,N
110 PRINT M; “=" ; PEEK M, ;
140 NEXT M

MACHINE LANGUAGE PROGRAM

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC COMMENTS
B&W / Color
16514 /32130 1 LD BC,NN :Load counters for
16515/32131 20 LoN :converter delay and
16516 /32132 4 Hi N :number of measurements.
16517 /32133 33 LD HLNN :Pointer to starting
16518 /32134 159 Lo N -:address of Data Table
16519/ 64 Hi N :at location 16543

/32135 126 Hi N ;or 32159,

16520/ 32136 17 LD DE,NN :Delay counter between
16521 /32137 255 LoN -data measurements.
16522 /32138 2 Hi N
16523732139 211 QUT (N)LA :Start ADC conversion
16524 /32140 3 N -with pulse to Port 3.
16525 /32141 13 DECC ‘Wait for conversion.
16526 /32142 32 JRNZd ‘Long enough time?
16527 / 32143 253 d :No. Jumnp back to 16525/32141.
16528 /32144 14 LDCN :Yes., Restore delay counter.
16529/ 32145 20 N

16530/ 32146 219 IN A,(N) :Read ADC from

179

180 Chapter 6

16531 /32147 3 N Port 3.

16532 /32148 119 LD (HL),A :Store value in table
165633/32149 35 INC HL :and point to next entry.

16534 /32150 27 DEC DE :Start waiting between

16535/ 32151 122 LD AD :measurement,

16536 /32152 179 ORE

16537 /32153 32 JRNZd :‘Downcount finished?
16538/32154 251 d :No. Jump back to 16534 /32150.

16539/ 32155 16 DJINZ d :All measurements taken?
16540/32156 235 d :No. Jump back to 16520/32136
16541/32157 201 RET :Yes. Return to BASIC,

STEP 3 Connect the voltmeter across the motor with the positive lead connected to the
converter input to measure the input voltage directly.

STEP 4 Increase the voltage applied to the motor until it begins torevolve. RUN the program
and record the decimal display and the voitage applied. if no value is recorded, then adjust
potentiometer 1 until a reading is obtained.

STEP 5 Increase the voltage to the maximum recommended and RUN the program again. If
the decimal values displayed do not show the maximum value of 255, then alter potentiometer 2
until a value of 255 is obtained, If the decimal value displayed is 255, then decrease potentiometer
2 until a reading of 254 is obtained. This should result in a full scale decimal reading for your 3-V
motor when running at maximum speed.

STEP 6 Now continue the experiment recording values of voltage and decimal count over
the full speed range of your motor and check your results for linearity.

STEP 7 Check the stall speed voltage by reducing the voltage applied to the motor slowly
from the value needed to start the motor initially. At one voltage the motor will stop running. The
difference between the stall voltage and start voltage represents the amount of energy your
power source needs to supply to the motor windings to overcome friction, inertia, and magnetic
flux losses.

STEP 8 Compare the results of this experiment with those obtained in Experiment 5.2,
where you determined the relationship between applied voltage and rotational speed of the dc
motor.

EXPERIMENT 6.5
TEMPERATURE RECORDING AND DISPLAY

COMPONENTS 1 * AD590 Temperature sensor
1* ADC0804 Analog-to-Digital Converter
2 * 10-Kohm ten-turn potentiometer
1 * 10-Kohm resistor
1 * 5.1-Kohm resistor

Analog Conversions

1 * 10-uF capacitor
1 * 150-pF capacitor

DISCUSSION Temperature is an often sought after measurement, whether it be for monitoring
the temperature in your home, greenhouse, fish tank, or the outside weather. Using modern
semiconductor technology and your Timex/Sinclair microcomputer, both control and sensing of
temperature is easily accomplished together with the ability to display the information on the
video screen. Once again only a minimum of electronic components are required along with your
interface unit.

The temperature sensor type AD590 is a low-cost solid state sensor which produces an
output current equal to 1 pA (1E-6 ampere) per degree Kelvin change intemperature, that is the
output current at 300K (degrees Kelvin) = 27 C (degrees celsius) = 81 F (degrees Fahrenheit) is
300 * 1 uAor 300 gA. Sucha current can flow through a resistor to produce a potential drop which
is also proportional to temperature,

This variation of voltage with temperature is another example of analog information and before
we can make use of such information we must convert the analog signalinto a digital signal using
the ADCO08B04 analog-to-digital converter. This converter is quite useful because "offsetting”
voltages can be applied to its minus input {pin 7) and its voltage referenceinput (pin 9)to change
the range of input analog voltage over which the converter will operate.

+ 5V r
jouF T 20 |10 <&

18
17
16
15
[14
13
12
11

c19*
IN*
ouT*

I

0804
10K each

v

+5V

_ ADS590 l ‘5 |

>
m-qd:r.olonmm-h

4 19

(bottom) 10K

51K

$ 150 pF

Figure 6.17 Experiment 6.5 Schemalic.

181

D1
D2
D3
D4
D5

D7

182 Chapter 6

By checking the schematic diagram, Figure 6.17, you will see that the ADS590has been placed
in series with a 5.1-Kohm resistor. This is not a critical value and the experiment will work equally
well with a 4.7- or 5.6-Kohm resistor. You should be able to calculate, using Ohm's Law, that the
voltage drop across the 5.1-Kohm resistor wil be 1.53 V at 300K, By adjusting the trim pot
connected to pin 7 of the ADC0804 to give a voltage of 1.35 V and by adjusting the trim pot
attached to pin 91to give a voltage of 0.245V, a satisfactory range of values should be achieved.
Note that careful adjustment of this latter trim pot is required. A reading below about 0,1 V will
produce no worthwhile data, while values above 0.27 V may cause the converted digital
temperature values to at first decrease as the temperature rises.

PROCEDURE

STEP 1 Arrange your components on the socket board close to the bus end of the board to
leave room for the addition of more chips in the next experiment. Wire your components with the
power disconnected according to the schematic shown in Figure 6.17.

STEP 2 In the experiment, successive temperature values will be recorded and placed in
W/R memory in a file 63 bytes long. When the file is filled, each new value added will displace the
earliest entered value, providing a continually updated file for display on the video screen. By
checking the machine language pragram you will see that the first task of the program is to clear
the file space in memory by exclusive ORing, XOR A (setting to 0), each memory location, This
subroutine should only be executed once when you first runthe program so a RETurn instruction
has been provided at memory location 16525/32141. The second USR routine starts the
machine language program at location 16526/32142 which starts the conversion with an QUT
19 Device Select Pulse. The first task of this data collection program is to update the file and make
space for the acquired eight-bit byte from the converter. Afterthis adjustment in the file has taken
place the next converted value will be ready to input at location 16520 using an IN 19instruction.
The value is then stored on file and the machine language routine returns to BASIC to await the
next command to collect a temperature vaiue. This command is initiated after a PAUSE time set
by the BASIC program.

Load the BASIC program and the machine language routine.

BASIC PROGRAM

10 REM 123456789 123456789 123456789 123456789 123456789
123456789 123456789 123456789 123456789 123456789 123456

20 FAST ' (for B&W models)
30 LET C = USR 16514

* Kk ok %
10 CLEAR 32129 (for Color models)
30 LET C = USR 32130

* % ¥ %
40 LET N = 33333
50 PRINT “PRESS ANY KEY TO START RECORDING TEMPERATURE
60 PAUSE N
70 LET L = USR 16526 (for B&W models)
70 LET L = USR 32142 _ (for Color models)

80

130
140

130
140

150
160
170
180
190
200
210
220
230
240
240
* *
250
260
270
280

CLS

* % X X
PRINT PEEK 16556
LET A = 16556

*x x X X
PRINT PEEK 32172
LET A = 32172

* *
FOR X = 0 TO 63
LET Y
PLOT X,Y
LET A = A+ 1
NEXT X
LET N = 300
PAUSE N
CLS
GOTO 70
FOR M = 16514 TO 16547
FOR M = 32130 TO 32163
* & k & ¥ k * %
INPUT N
POKE M,N

INT({((PEEK A)/4) — 20)

PRINT M; “=" ; PEEK M, ;

NEXT M

MACHINE LANGUAGE PROGRAM

DECIMAL INSTRUCTION
MNEMONIC

ADDRESS CODE
B&W / Color
18514/32130 33
16515/32131 172
16516/ 64

/32132 125
16517 /32133 22
16518/32134 63
16519/32135 175
16520/ 32136 119
16521 /32137 35
16522 /32138 21
16523/32139 32
16524 /32140 250
16525/ 32141 201
16526/ 32142 211
16527 /32143 19
16528 /32144 33

LD HL,NN
LoN
HiN
Hi N

LD D.N

N

XOR A
LD (HL),A
INC HL
DEC D
JRNZd

d

RET

OUT (N),A
N

LD HLNN

Analog Conversions 183

(for B&W models)

(for Color models)

(for B&W models)
(for Color models)

COMMENTS

:Clear Table subroutine.
:Pointer to Table starting
-address at 16556

or 32172,

:Number of entries.

:Zero accumulator.
:Load the Table with 0's.

‘Table filled?

:‘No. Go to 16519/32136.
*Yes. Return to BASIC.
:Start ADC conversion with
‘pulse to Port 18.

:Point to first entry in Table

184 Chapter 6

16529/32145 172 LoN :at location
16530/ 64 Hi N 16556 or

/32146 125 Hi N :32172.
16531 /32147 22 LD D,N :‘Number of entries.
16532 /32148 63 N
16533/32149 126 LD A (HL) :Get first entry.
16534 /32150 35 INC HL
16535/ 32151 78 LD C,(HL) :Get next entry,
16536 /32152 119 LD (HL),A ‘Bump entry back.
16537 /32153 121 LD AC :Hold next entry.
16538/ 32154 21 DECD :Downcount entries,
16539/ 32155 32 JRNZd :All moved back one?
16540 /32156 249 d :No. Go to 16534/32150.
16541 /32157 219 IN A,(N) ‘Yes. Read the ADC
16542 /32158 19 N -at Port 19,
16543 /32159 33 LD HLNN :Point to first entry
16544 /321860 172 Lo N :at location 16556/32172.
16545/ 64 Hi N

/32161 125 Hi N
16546 /32162 18 LD (HL)A :Store new entry there.
16547 /32163 201 RET :Go back to BASIC.
16556 /32172 : NEWVAL

STEP 3 With the temperature of the sensor near 300K check the voltage input to pin 6 of the
ADCO0804. Use a digital voltmeter if available and check that a voltage close to 1.5 Vis noted.lfa
voltage very different from this is observed, you need to check the polarity orientation of your
AD590 and the value of the series resistor just in case you putina 510-ohm resistor or a 51-Kohm
resistor.

STEP 4 With 1.5V on pin 6, adjust the voltage on pin 7 to 1.35 V and that on pin 910 0.245 V,
then RUN your program and check the decimal value printed out. A value close to 80 should be
cbserved. This value is only an example, as variations in component values could cause
significant variations and you can adjust the range anyway with the trim pots. If you keep
obtaining values 255 or 0, then the chances are that the trim pot attached to pin 9 needs careful
adjustment around the suggested value to bring your decimal readout into range.

STEP 5 We obtained decimal readout values close to 80 and were able to increase this to
about 180 using the heat from a 12-V light bulb.

STEP 6 After careful adjustment of the voltages you can use the sensor and microcomputer
to track temperature changes ot about one degree K. A good quality thermometer could be used
to calibrate your system and the BASIC program could then be easily altered to read out
temperatures in degrees Kelvin, Celsius, or Fahrenheit. This is left as an exercise for the readers.

STEP 7 Save your circuit and program if you are going to continue with the next experiment.

Analog Conversions

SUMMARY This experiment indicates how useful laboratory measurements can be made
using a minimum of components with your microcomputer and demonstrates how visual
information can be displayed on the video screen.

EXPERIMENT 6.6
TEMPERATURE CONTROL

COMPONENTS 1 * AD590 Temperature sensor
1 * 74L532 Quad OR Gate
1 * 74LS74 Latch
1 * ADC0804 Analog-to-Digital Converter
2 * 10-Kohm trim pots
1 * 10-Kohm resistor
1* 150-pF capacitor
1 * Solid state relay: Sigma 226 or equivalent. TTL input - ac mains output 2A
1*12-V 12-watt bulb
1 *12-V ac transformer or equivalent

DISCUSSION Experiment 6.5 described how the temperature of an environment could be
sensed and the collected data displayed on your video screen with the aid of a microcomputer.
There are many instances in the world around us when the control of temperature between set
limits is also of importance, for example, in maintaining the temperature of a greenhouse or ofan
oven.

In this experiment, we demonstrate the principles involved in automatic control using high
power devices. Various temperature control schemes can be visualized, one where the
temperature is maintained constant within £1 degree and another where the temperature is
allowed to cycle betwesn set temperature limits which might be 10 or 20 degrees apart or
whatever the operator and system determine.

We will pursue the second suggestion above because it highlights the software required by the
microcomputer to seek out limits set by an operator and provides us with the means of
automatically keeping the temperature between set values by turningon and off a solid state relay
which in turn controls the current flowing through a low voltage bulb. If the bulb is placed in
contact with the temperature sensor then the sensor will heat up when the bulb is turned on and
cool down when the bulb is turned off.

The solid state relay itself is an example of current technology because a dc input voltage of
between 3and 30V (such asthe TTL logic 1 state of +5 V) can control an ac output voltage of 110
to 240 V RMS at 1 or 2 A. This indicates how most household machines can be controlied by your
microcomputer.

CAUTION: In many parts of the world ac mains voltages are at a level of 240 V RMS, and it is
illegal for a person without an electrician’s certificate to wire equipment to mains-operated
machines. It is also potentially lethal to experiment with such circuits. We strongly advisereaders
of this book to seek qualified assistance should you wish to interface your househoid machines to
your microcomputer. None of the experiments in this book are to be used with mains-operated
machines.

185

186

Chapter 6

With this caution in mind, we have found that our experiments that involve the use of ac
voltages work quite satisfactorily from 12 or 15 V ac. So the reader should have no fear of
receiving an electrical shock from carrying out any of our experiments.

PROCEDURE

STEP 1 If you are performing this experiment following Experiment 8.5, then you will only
need to add the extra components indicated in the schematic, Figure 6.18, Otherwise, wire the
total circuit, mounting the components in the same physical position as shown in the schematic.
In this way there should be sufficientroom on the socket board to plug in your solid state relay.

STEP 2 If you have saved the program from the previous experiment, you should load it
again and modify the BASIC program from line 40 through to line 120 and EDIT line 130: 56 10 86;
line 140: 56 to 86; line 230: 70 to 120; line 240: 53 to 83; line 280: 53 to 83. This procedure should
save you some programming time. You must then of course RUN 240 and enter the machine
language program for this experiment.

BASIC PROGRAM

10 REM 123456789 123456789 123456769 123456789 123456789
123456789 123456789 123456789 123456789 123456789
123456789 123456789 123456

20 FAST (for B&W models)

30 LET C = USR 16514

* % *x ok
10 CLEAR 32129 (for Color models)
30 LET C = USR 32130
* ok ¥ ¥
40 PRINT “ INPUT HIGH TEMPERATURE LIMIT"
50 INPUT H

+ 5V _|'|4 m
9

Q
74
13
ouT *
5 11 130, L
s
ca* o 10T + —| Mx100
10| a2 DB SOLID STATE
IN* LAMP RELAY
12V50W
12V AC - @
TRANSFORMER

Figure 6.18 Experiment 6.6 Schematic.

60
70
80

90
110
110
120
130

90
100
110
120
130

140
150
160
170
180
190
200
210
220
230
240
240
250
260
270
280

CLS

Analog Conversions

PRINT *‘INPUT LOW TEMPERATURE LIMIT'’

INPUT W
* ® ¥ X
POKE 16573,H
POKE 16574,V
LET L = USR 16517

LET D = USR 16531
LET A = 16575
* % ¥ k¥

POKE 32189,H
POKE 32190,W%
LET L = USR 32133
LET D = USR 32147
LET A = 32191

* k kK
PRINT PEEK A
FOR X = 0 TO 63
LET Y
PLOT X,Y
LET A = A + 1
NEXT X
LET N = 300
PAUSE N
CLS
GOTO 120
FOR M = 16514 TO 16572
FOR M = 32130 TO 32188
INPUT N
POKE M,N

INT(((PEEK A)/4) — 20)

PRINT M; “=” ; PEEK M, ;

NEXT M

MACHINE LANGUAGE PROGRAM

DECIMAL
ADDRESS CODE

B&W / Color
16514/32130 211
16515/32131 3
16516 /32132 201
16517 /32133 33
16518/32134 191
18519/ 64

/32135 125
16520 /32136 22

INSTRUCTION
MNEMONIC

OUT (N),A
N

RET

LD HLNN
Lo N

Hi N

Hi N

LD DN

(for B&W models)

(for Color models)

(for B&W models)
{for Color models)

COMMENT

:Clear controller latch
at Port 3.

‘Back to Basic

‘Clear Table subroutine.
:Pointer to Table starting
-at location 16575

:or 32191.

‘Number of entries.

187

188 Chapter 6

16521 /32137 63 N
16522 /32138 175 XOR A :Zero accumulator.
16523/32139 119 LD (HL),A :Load Table with 0's.
16524 /32140 35 INC HL
16525/ 32141 21 DECD
16526 /32142 32 JRNZd ‘Table filled?
16527 / 32143 250 d ‘No. Go to 16522/32138.
16528 /32144 219 IN A (N) ‘Yes. Enable controlier
16529/ 32145 3 N Jlatch at Port 3.
16530/ 32146 201 RET :Back to BASIC.
16531 /32147 211 OQUT (N),A :Start ADC conversion with
18532 /32148 19 N ‘pulse to Port 19,
16533/32149 33 LD HL NN :at location 16575/32191.
16534 /32150 191 LoN
16535/ 64 Hi N

/32151 125 Hi N
16536 /32152 22 LD D,N :Number of entries.
16537 /32153 63 N
16538/32154 126 LD A,(HL) :Get first entry.
16539 /32155 35 INC HL
16540/ 32156 78 LD C(HL) :Get next entry.
16541 /32157 119 LD (HL),A :Bump entry back,
16542 /32158 121 LD AC ‘Hold next entry.
16543 /32159 21 DECD :Downcount entries,
16544 /32160 32 JRNZd :All moved back one?
16545/32161 249 d :No. Go to 16539/32155,
16546 /32162 219 IN A(N) Yes. Read the ADC
16547 /32163 19 N :at Port 19,
16548/ 32164 33 LD HL,NN :Paint to first entry
16549 /32165 191 LoN :at location 16575/32191.
16550/ 64 Hi N

/32166 125 Hi N
16551 /32167 119 LD (HL)A :Store new entry there.
16552 /32168 33 LD HL NN :Point to HILIM at
16553/ 32169 189 LoN ‘location 16573/32189.
16554 / 64 HiN

32170 125 Hi N

16555/32171 86 LD D,(HL) :Get HILIM.
16556 /32172 35 INC HL :Get LOLIM at
16557 /32173 94 LD E,(HL) 16574/26775.
16558 /32174 35 INC HL :Get NEWVAL at
16559/32175 126 LD A(HL) first Table entry.
16560/32176 187 CPE
16561 /32177 56 JRCd Is NEWVAL < LOLIM?
16562 /32178 4 d :Yes. Jump to 16567 /32183.
16563 /32179 186 CPD :No.
16564 /32180 48 JRNCd ‘Then is NEWVAL > HILIM?
16565/32181 4 d ‘Yes. Jump to 16570/32186.
16566 / 32182 201 RET :No. Then back to BASIC.

16567 /32183 219 IN A,(N) :Turn on controller at

Analog Conversions 189

16568 /32184 3 N ‘Port 3 and

16569 /32185 201 RET :go back to BASIC.
16570/ 32186 211 OUT {N).A Turn off controller at
16571 /32187 3 N :Part 3 and

16572 /32188 201 RET :go back to BASIC.
16573/32189 SIS HILIM :

16574 /32190 g LOLIM

16575/32191 c NEWWVAL

STEP 3 In the machine language program we have used two additional device select
pulses, CUT 3*and IN 3%, to clear and presetthe 74LS74 latch controller. Note that when the latch
is preset, at memary locations 16528/32144 and 16567 /32183, an LED probe at pin 9 should
light up, and when it is cleared, at memory locations 16514/32130 and 16570/32186, the LED
should turn off. This LED can therefore be used to check whether your solid state relay is being
turned on and off by the program.

STEP 4 Sixty-three temperature values are collected and stored in the file of data starting at
memory location 16575/32191. The BASIC program then picks up values from the datafile, lines
150 and 160, and displays the data on the video screen. When the microcomputer is switched on
the data file locations in W/R memaory contain random data, therefore the program clears the file
locations using the small routine from memory locations 16517/32133 to 16530/32146 before
PLOTting the data. This is the reason why a solid black line appears on your video screen at the
commencement of your program. This is an important feature because when collecting data you
want to make sure that no values in the file have been inserted randomly by the system.

STEP 5 To start this experiment, check your circuit connections and program, and turnon
the ac supply to the bulb. RUN the program. The bulb, if it was on should go off, as confirmed by
the LED. The screen now asks you for a high temperature set limit so insert a value of about 140
decimal. This is stored as variable H. The program then asks for an input for the low temperature
limit which is stored as variable W. Choose a value about 110 decimal. These values will be
determined by the range to which you adjusted the analog-to-digital converter to respond. If you
have any difficulties at this paint refer to Experiment 6.5 procedure on how to adjust the inputs to
the converter.

STEP 6 After the low temperature set limit has been inserted, the program should continue
and plot the temperature values as they are input to the converter. The time between readings is
governed by the PAUSE time delay atline 200. To make the PAUSE time longer increase Nuptoa
maximum of 32767,

STEP 7 Vary the low and high set limits to visualize how simple a procedure it is using a
microcomputer ta control an industrial process.

SUMMARY This experiment has been an example of automatic control where the microcom-
puter senses temperature and relays instructions back to a heating system to maintain the
temperature between set limits. The experiment also demonstrated how versatile a microcom-
puter system could be in altering set limits in any industrial process.

190

O/ O

control signals

We have seen that the signals of the microcomputer consist of the data bus, the address
bus, and the control bus. Figure 3.2 showed the three different interface connectors of
the Timex/Sinclair computer models. At that time, our interest was in those signals
necessary for Input/Output interfacing; namely, the data bus, the low address bus,
and those control signals used to create IN* and OUT®, We observed that these signals
were all available at the same positions relative to the keyway slots on all three
connectors. There are additional control bus lines on these conmectors whose
description we have deferred until now. Some of these are Z80 microprocessor control
lines while some are unique to the particular model of computer, that is the particular
model’s hardware and operating system. All but two of the control signals on the B& W
models (TS1500, TS1000, and ZX-81) are Z80 microprocessor control lines. The
additional connections on the Spectrum and TS2000 models are all operating system
control lines which we shall not consider. The two operating system control lines on
the B&W interface connector are ROMCS® (23B) and RAMCS® (2A). These are
memory enable signals: Read Only Memory Chip Select and Write and Read Memory
Chip Select, respectively. They can be used to disable the on-board memory ICs by
forcing their logic levels into the logic 1 state, thus permitting external memory to be
addressed. The two main reasons for needing this capability are: first, managing
memory blocks that have been relatively decoded when additional memory is added,
and second, bank switching memory blocks sharing the same nominal addresses.
Further description of this technique is left to more advanced texts.

The Z80 microprocessor is a 40-pin IC. Eight pins for the data bus, 16 pins for the
address bus, and two pins for +5-V and 0-V power inputs leave 14 pins for control
signals. All of the Z80 microprocessor control lines are available on the interface
connector of the B&W models and include the following signals:

< IORQ* (15A) < RFSH* (23A)
<MREQ* (14A) > BUSRQ* (20A)

< RD* (16A) < BUSAK™ (18A)
<WR* (17A) > WAIT™ (19A)
< M1* (22A) < HALT* (13A)
> PHI (6B) > NMI* (12A)

> RESET* (21A) > INT* (11A)

Control Signals

You should recognize those in the left column as control signals we have previously
described. The first four are used to generate the four unique control pulses for device
and memory selects: IN*, OUT*, MEMR®, and MEMW?*. The latter three are related
to the timing operations of the microprocessor. PHI is the externally generated clock
signal which controls each operation—it is the heartbeat of the computer. In addition
to directly driving the microprocessor, PHI is also available on the interface connector
to allow other devices to be synchronized with the Z80. M1 is the signal that marks the
first machine cycle of each instruction; that is, the fetch operation when the
microprocessor is performing the memory read operation to load its instruction
register with the next program instruction from memory. The RESET line is the
external control signal, generated by a pushbutton or on power up, that forces the
microprocessor to reset its program counter to 0 and restarts the entire system. Except
for RESET?®, all of these signals were illustrated in the output timing diagram in
Chapter 4, Figure 4.5.

The control signals shown in the right column have only been mentioned
incidentally, if at all, up to this point. The dynamic memory refresh signal, RFSH*, is
also referenced in Figure 4.5, although it is not shown directly. This special controlline
allows dynamic memory ICs to be addressed during the third and fourth clock cycles
of the M1 machine cycle. It is illustrated in the Address Bus line of Figure 4.5 by the
caption R. By placing the address held in its Refresh (R) register on the address bus
and triggering the RFSH control pulse, the Z80 allows dynamic memory to be
refreshed. Dynamic write-and-read memory must be addressed in this manner about
once a millisecond or its contents will be lost. We shall see below that this consideration
must be kept in mind when interfacing a computer that uses dynamic memory.

With the exception of the RESET and PHI lines, all of the control lines we have
encountered have been lines whose signals are output from the microprocessor. This is
also the case for the HALT® and BUSAK® lines. However, the remaining four control
lines are inputs to the microprocessor that are generated externally. The outputs were
marked in the list with the bra symbol—<(“less than” sign) and the inputs are shown
with the ket symbol—> (“greater than” sign). Because the output signals are
generated outside of the microprocessor, it is possible for them to occur at any time;
that is, they will be asynchronous unless they are somehow controlled by the PHI line
or some other clocking control line. There are many cases in interfacing where control
signals come in pairs. One signal “asks” and the other “answers.” Typically, the signal
that asks is called a request and functions as a stimulus; the signal that answers is called
an acknowledge and functions as a response. Whether you refer to these control lines
as ask/answer, request/acknowledge, or stimulus/response, the concept is the same.
The four signals: INT*, NMI*, WAIT*, and BUSRQ" are all request inputs to the
MiCroprocessor.

BUSRQ* and BUSAK®* are the most obvious pair of request/acknowledge control
signals in our list. Although they would be very difficult to implement successfully ona
personal computer because of the complexity of the operating system, they are of
interest because they illustrate one of the more advanced applications in interfacing
known as Direct Memory Access (DMA). These signals are necessary when two
microprocessors share common memory registers (addresses) in a master-slave

191

192

Chapter 7

relation. It should be obvious by now that only one microprocessor can use the address
bus, data bus, and control bus lines at any given moment. This situation arises when
large blocks of memory data are to be transferred between computers as fast as
possible and the usual serial or parallel methods are not fast enough. The master
microprocessor, which controls the transfer, places a logic 0 on the BUSRQ* line of the
slave microprocessor which ordinarily controls the memory. When the slave
microprocessor is ready to relinquish its buses, it puts all its address, data, and
(relevant) control lines into a high impedance state (three stated) and then triggers its
BUSAK?® line. The master microprocessor interprets this response as a signal to
commence using the shared bus lines. When it has completed its transactions, the
master microprocessor relinquishes the shared buses and removes the logic0 from the
BUSRQ* line. The return of the BUSRQ® to a logic 1 state signals the slave
microprocessor to resume operation.

The WAIT® input is another control line that is used in memory management.
Although it is a request input to the microprocessor, it is a response to the MEMR*®
{memory request) that is usually implemented by the memory address decoding logic
of the computer. Its function is to effectively slow the microprocessor down enough to
give the memory ICs sufficient time to read or write their contents onto the data bus.
Many memory ICs are manufactured whose response times are slower than the
microprocessor’s operating speed. For example, a Z80 operating at4 MHz allows only
250 nanoseconds for a memory IC to respond to its memory select pulse { the decoded
memory address signal and read or write control pulse). If the response time of the
memory is longer than 250 nanoseconds, the microprocessor must be requested to
wait. When the WAIT?® line is brought to a logic 0, the microprocessor’s timing is
altered by adding clock cycles between the second and third clock cycle of the current
machine cycle. When the WAIT® is brought back to a logic 1, then the microprocessor
resumes with the third clock cycle. The one instance that extra WAIT states are of
particular interest to the interfacer is when IN and OUT machine language
instructions are executed. In these instances, the Z80 automatically inserts one WAIT
state in these instructions to allow for the slower response times of peripheral
devices.

Throughout the experiments in Chapters 4, 5, and 6, we have assumed that
whenever an input port was ready to provide a data byte that the computer would be

‘ready to take it. This may not always be the case. For example, when the computer has

other tasks to perform in addition to servicing a particular input port, it may be busy
when the port needs to be serviced. We have already mentioned some of the
considerations of synchronizing the actions of a port with those of the computer when
the concept of handshaking was discussed. We saw that handshaking signals were
individual lines connecting a peripheral device and the computer. Each line can
function as a one-bit input port to indicate the status of some aspect of the device. In
Chapter 3, we learned that individual bits that indicate the status of an operation are
called flags. The Flags (F) register of the microprocessor was described as a set of
individual bits which provided the Z80 with information on the arithmetic and logical
operations such as the zero or nonzero status of the accumulator (A register), whether

Control Signals

a carry bit was used or not. In Chapter 4 other flags were described in terms of whether
a port was ready to provide or accept data, which were called Ready or Busy flags,
and which indicated by a logic 1 or 0 the status of ready/not ready, or busy/not busy,
or ready/busy. Finally, in Chapter 8, we saw that there is an End of Conversion
(EOC) flag assigned to one of the pins of the ADC0804 analog-to-digital converter
IC. In this instance, the manufacturer of the IC labeled the pin as “INTR*” which
stands for “INTerrupt Request.”

The INT* and NMI® are both request control inputs to the Z80 microprocessor.
They are interrupt requests which serve to literally interrupt the computer while it is
doing something else. They differ from each other in that the microprocessor can be
programmed to ignore the INT* signal but it can never ignore the NMI* input. The
two machine language commands that control the INT® line are EI (Enable Interrupt)
and DI (Disable Interrupt). The terminology for being able to ignore the INT*® signal
is that it can be masked, that is, prevented from being seen. The NMI* stands for
“Non-Maskable Interrupt.” The distinction between a request and a flag is fairly
subtle. A flag signal is passive. It indicates the status of whatever it is supposed to moni-
tor, but it does not provoke any action on its own. It simply waits to be read by an
interrogating device such as the microprocessor. A request signal, however, is active.
It triggers the device it communicates with (such as the microprocessor) into some
form of action. The acknowledge signal from a device may function either passively
or actively. Thus the flag can be used to initiate action by functioning as a request.

Before getting into the details of interrupts, we shall finish our account of the rest of
the control signals with the HALT® flag. The HALT® line is brought into a logic0 state
when the machine language instruction HALT is executed. It would seem strange to
even have such an instruction if it were not possible to have the computer resume
operation. The halt state of the computer is more like an interminable wait state than it
is a power off state. The important point is that if the computer receives an interrupt
request when it is in the halt state it will resume operation. The HALT® line is an output
control line from the microprocessor and can be used as a flag to other peripheral
devices to indicate the state of the microprocessor.

There are several kinds of interrupt requests. Suppose you are at home in your
comfortable easy chair reading an entertaining book (maybe that’s where you are
right now). The telephone rings. You finish the sentence you are reading, place your
bookmark in your book, and go to answer the phone. As you pick up the telephone
receiver, the front door bell rings. Before you go to the front door you first have to ask
the person on the phone to hold. Now you can answer the door, then you can get back
to the phone, and finally, providing there are no more interruptions, you can return to
your first task of reading your book. The computer can be interfaced to operate in the
same fashion. When the computer receives an interrupt request it completes the
machine language instruction it is currently executing, just as you finished the sentence
you were reading when the phone rang. After the last clock cycle of the present
instruction cycle, it acknowledges the interrupt. Because there is no specific control
line dedicated to an Interrupt Acknowledge signal, the Z80 implements an INTA* by
executing an IORQ® pulse during an M1* pulse. Because the first machine cycle is

193

194 Chapter 7

always a memory read and never an input/output request, the two pulses are unique
and can be ORed together to form the INTA® control output. The next thing the
microprocessor does is to disable the interrupt request line so that no additional
interrupts can be made. The TS Interface circuit shown in Figure 4.6 shows the INTA®
control line.

Of course, the computer needs a program to perform every task it does. The main
task, comparable to your reading a book, is called the background program. The
interrupt program, called a service routine or foreground program, is a subroutine that
must be CALLed when an interrupt request is acknowledged. Just as you wouldn’t
answer the front door when the telephone rings, the computer must know where (the
address in memory) to go. There are three ways that microprocessors can determine
how to execute a service subroutine. These are:

1 Multi-level/priority interrupts
2 Single-line/Polled interrupts
3 Vectored interrupts

The Z80 microprocessor can be programmed to implement any of the three types.
There are three machine language instructions having the mnemonics, IM0, IM1, and
IM2, meaning Interrupt Mode 0, 1, and 2, respectively. When the microprocessor is
reset, it is automatically placed in Interrupt Mode 0 and the interrupt is disabled.

A multi-level (or multi-line) interrupt capability simply means that there is more
than one interrupt request line to the microprocessor. Because the Z80 has both the
INT* and the NMI® lines it is multilevel. (The 8085 and NSC800 have several such
lines.) The microprocessor must have some means of deciding priority in case two
lines are simultaneously triggered. In the present case, the NMIrequest gets automatic
priority. The microprocessor also knows where to call the NMI service subroutine: it is
at decimal address 102.

Considering the INT® input, we find that the INT line can function either as a single
line or a vectored interrupt. We shall consider the vectored mode first. A vector is a
pointer arrow which gives a direction. As applied here, the vector will be a machine
language instruction which tells the microprocessor where to call the service routine.
This mode is obtained by executing the IMO instruction. In Mode 0, the micro-
processor expects to receive an instruction on the data bus from the device that
initiated the INT® pulse. It expects the instruction at the time it responds with the
INTA?® signal (i.e., the INTA*® pulse can be used actively to clock the instruction byte
from the device on to the data bus). Several devices may share (using logically ORed
signals) the INT* line. The usual method of vectoring is to “jam” one of the eight
restart, RST X, instructions onto the data bus. Under the conditions of a vectored
interrupt, the jammed vector is read from the data bus and placed in the
microprocessor’s instruction register. Because the RST X instruction function as one-
byte CALLs to one of the decimal addresses: 0, 8, 16, 24, 32, 40, 48, or 56; there are eight
possible interrupt service routines. Note, however, that RST 0 would be equivalent to
a pushbutton RESET.

Vectored interrupts can also be performed in Mode 2 using the IM2 instruction. In
this case, the vector is the low address in a look-up table of addresses. The high address

Control Signals

of the table is held in the I register of the Z80. The table holds the subroutine call
addresses. Because 128 pairs of addresses (high and low address bytes) can be stored
in a table having the same high address (I register contents), Mode 2 vectors allow for
extensive interrupting capabilities.

The Mode 1 interrupt capability of the Z80 is a true single line interrupt that can be
implemented by the IM1 instruction. In this mode, when the INT® line is activated
with a logic 0 pulse, the microprocessor automatically performs a RST 56 instruction.
Thus without having a vector jammed onto the data bus, the program calls the
subroutine at decimal address 56. Mode 1 interrupts are obviously the simplest to
implement. They also are the most limited, because only one service routine can be
called. This does not mean that the system is limited to only one interrupting device.
When it is desirable or necessary for more than one device to be able to interrupt the
computer, the request lines can be logically ORed together to drive the INT® line.
Because the computer can only call one service routine, that routine must consist of a
means of determining which device originally triggered the request. This is done by
“polling” each device through an input port and having each device set a flag to
indicate that it triggered the request. Once the device is identified the subroutine can
cause an additional branch in the program to service the particular device.

It should be noted that because all the branching in interrupt servicing, whether
vectored or polled, is by means of subroutine calls, once the device has been serviced,
a return instruction is all that's required to have the computer resume its background
task. Of course, if the microprocessor’s registers are used in the service routine, their
contents must be saved and restored (pushed and popped) before returning to the
background program. It should also be recalled that when an interrupt request is
received by the microprocessor, the INT* line is immediately disabled. Therefore at
some point in the interrupt service routine the EI instruction must be executed in order
to re-enable the interrupt line. Usually, the EI instruction is given just before the RET
instruction when the service routine has been completed. In some cases, however, it
may be necessary to have the EI instruction executed as soon as possible in order not to
lose an interrupt request from another device. This is an extremely treacherous
condition because the computer can become “interrupt bound” and spend its time
trying to service interrupts which are interrupting interrupts. One final comment
about the EI instruction is that the microprocessor enables the interrupt line after the
instruction following the EI instruction. Thus, if that is the RET instruction, the
interrupt bound condition can never develop because the computer will always be in
the background program when an interrupt request is received.

It may strike you that interrupt interfacing is a complicated affair. If so, you are in
agreement with the authors. We have surveyed these topics in order to provide you
with some background material on these aspects of interfacing. The techniques are
rather advanced and not easily implemented. This is particularly true in reference to
the Timex/Sinclair B&W models because they use both the INT® (192 times for each
NMI*) and NMI® (50 to 60 times per second) lines to provide the video display. We
included the INT® and INTA® lines on the /O Interface board for advanced projects
which go beyond the scope of this book. In our experience, the best method for
interfacing interrupts is the simplest. One of the simplest ways, particularly in a

195

196 Chapter 7

measurement laboratory or household environment, where service requests are
relatively slow, is to use an external clock to drive the interrupt once a second. If you
are interested in learning more about Z80 interrupt interfacing, you might be
interested in the book listed below.

Reference

Field, Paul E.: Computer Assisted Home Energy Management, Howard Sams Publishing,
Indianapolis, 1982,

o appendix a O

Z-80 decimal assembler

The Z-80 Decimal Assembler consists of six (6) 3” X 5” charts labeled Al through A8.
In their final form, charts Al and A4 (instruction mnemonics) form an envelope
opened at its right end. The other four charts form two slides which insert into the
envelope. Charts A2 (decimal code table) and A3 (timing table) are printed onreverse
sides of one slide and charts A5 (decimal code table) and A8 (code conversion table)
are printed on reverse sides of the second slide.

To assemble the Assembler, you willneed a3” X 5” index card, six3” X 5" sheets of
clear laminating plastic of the type used to protect documents, rubber cement,
scissors, a razor knife, and a metal-edged ruler.

STEP1 Carefully cut out the four charts by trimming along their outer borders with scissors. If
desired, the charts may be reinforced by mounting them on index cards with rubber cement.
Doing each chart in succession, remove the backing from a piece of the laminating film and
carefully align the right edges of the chart and film. Let the film contact the chart ina smooth right
to left motion. Be careful that the chart doesn't jump up to the film due to electrostatic attraction.
Rub over the entire surface to ensure complete contact, and trim the excess lamination.

STEP2 Use the razor knife to remove the “windows” marked “cut out” oncharts A1 and A4.
Use the ruler to guide the knite. Three or four light scribes work better than one deep cut. For best
results, trim each window to leave just a trace of its border. When cutting, place the ruler over the
window to prevent tearing. Use scissors to cut out the thumb slots on the right edge of each cover
chart,

STEP 3 Remove in one piece the three-sided border of each slide card by cutting from the
top, left end, and bottom of each. This border is about 5/16 inch wide. Keep the borders with their
respective slide charts. Now measure off a similar 1/4 inch three-sided border from the index
card and cut it out.

STEP 4 Using rubber cement, mount each slide border tothe back side of the corresponding
cover card. Finally, clean all excess cement from the backside of each cover and cement the
1/4-inch border between the cover borders. Note that the top edge of one cover joins the bettom
edge of the other cover. To complete the job, you may want to bind the three sealed edges with
1/2-inch Scotch brand “Magic” tape. Insert the two slides back-to-back and work in and out to
remove any excess rubber cement.

197

CHARTS A1 AND A2

Z-80 Decimal Assembler

BRANCH STACK
LT SF,HL 249 WD A,
LD SP,IX 221 249 ADC A,
LD 5P, I1 253 249 suB
£BC A,
o ER(SF) AL AND 4
(VW] é EX(SP), 1K 221 227 XOR ».
- F EX(SP},IY 253 227 oR 5
m : EX DE,HL 235 SCF 55 cP b
= < CCF INC
] i FUSH AF 745 nEC L
o @» PUSH BC 197 -128 £d <127
w3 NE ,HH (PUSH DE 213 0 <H <255 ADD HL,|
e Z,88 PUSH HL 220 M= (ML) D 1%, | 3
T 56 u [weaw o PUSH IK 221 229 X={Ix4d) p = 221 aop I¥, | S u
182 3 |com H PUSH TY 253 229 Y-{1¥+d) p = 253 me | 3 2
= T o | PO, NN N REC u
25 S | PE,MW 3 POF AF 241 LD A, (BC) | 2
=g B, NN POP BC 193 LD &, (DE) 26 LD __,NN
== M NN FOP DE 209 LD A, (KH) 58 r~
[POP HL 225 LD (BC) A 2 LD A,
w % IP (WL} 213 poP IX 221 225 LD (DE),A 18 LD B,
== JB (IN) 221 233 BoP I¥ 253 225] LD (NN} A 50 wc,
o JP (I¥) 253 233] woe| %
= § EL 751 LG HL, (1) 47 L E,.| O
v i 8 243 LD I, (NN} 221 &2 H,| 5
M~ 1N A, {N) 219 LD IY, (NN} 253 42 we,| ¢
: oUT (H),A 211 LD (NN} ,HL 4 LD (L),
HALT 118 LD (NN),IX 221 34 LD (1x+d),
p HOP o} LD (WN),IY 253 34 LD (Li+d},
Copyright 1983 CONTROL TRANSFER
by F. E. Field
¥pl34d Xpl24d M 134 L 133 H 132 E 131 D 130 C 129 B 128 A 133 N 198
Yplazd Kpls2d M 142 L 141 H 140 E 139 D 138 C 137 B 136 A 143 ¥ 206
¥p150d Kpl50d M 150 L 149 H 148 E 147 D 146 C 145 B 144 A ISL N 214
Ypl58d Xpl38d M 158 T 157 W 156 B 155 D 154 C 153 B 152 A 133 N 722
Ypl66d Xpl66d H 166 L 165 H 164 E 163 D 162 C 161 B 160 & 167 N 230
Ypl74d Xpl74d M 174 L 173 H 172 E 171 D 170 C 169 B 168 A 175 1 18
YplB2d Xpl82d M 182 L 181 H 180 E 179 D 178 G 177 B 176 A 183 W 246
Yp190d Kpl90d M 190 L 189 H 188 E 187 D 186 C 185 B 184 A 151 ¥ 254
Y p52d X p5zd M SZL 4H 36 E 28D 20C I2B LA 80
¥p53d XpSIdM 53 L 45H 3TE 29D 21¢C 138 54 6l
RET CALL JP 200 203 193
RET CALL JF 192 196 194 SF 57 HL &1 DE 2% B 9
RET CALL JP 200 204 202 = pal 5P p5? DE pi5 BC 09
RET GALL JF 208 212 210 IY pil sP p57 DE p25 BC p9
RET CALL JP 216 220 218 IY p35 X p33 SP 51 HL 35 DE 19 BC 23
RET CALL JP 224 228 226 IY pad IX p43 3P 5§ HL &3 DE 27 BC 11
RET CALL JF 132 136 234
RET CALL JP 240 Zu& 242 IY p33 IX p33 5P 49 HL 33 pE 17 BC 1
RET CALL JP 248 251 150
vpl26d Xpl26d N 126 L 125 W 124 E 123 D 122 C 121 B 20 & 127 W 62
¥ pfod X p70d M FOL 69 H ‘4B E 671D GEC G5B 6a A ILH 6
Yplad X piBA M FBL TTH TEE 15D 74C 13B 72 A T9H 14
Y p86d X860 M B L B85 H BaE A3 D B2C B8l E BOA BN 22
¥poid X piéd M 94 L 93 M 92E 9L D 90C 69 B BB A 93 W 30
Ypl02d Xpl02d M 102 L 101 H 100 E 99D 98 C 97 B 06 A LI N 38
Ypl10d Xpll0d M 110 L 109 H 108 E 107 D 106 € 105 B 104 A 111 46
117 H 116 E 115 0 114 € 113 B 112 A LIS K 54
Lp117dHpl16dEpLl 5dDpl14dCpLl 3dBpl12dApl 1 9dHpShd
Lpl17dRpl16dEp] | 3dDp114dCpl13dBpl1 24Ap119dNpSd

199

~-

Z-80 Decimal Assembler 201

CHART A3

¥l [0 a0d
51 1 RENd
ait Tvigijano/er |
51 TR 0R8/Da¥
sTn 42" gav
£z st 8 |smu/ias
0 n g 118
ez ¢l v'vig|us/1od
¥'1 01| TH'E0 X2 ¥l |W/1aEd| ot 9 €z 11 ¥ [030/DKI
W'Y a1 |4V AV X2 moos o1 5] 61 L [v |vam ¥
a1 R S] ar €2 sl 7" (as) xa
|zt & i ar o1 9 T'as @1
va||le1 @ zarg | vt 01 01 HN'T a1
(afxy &r 149 i1 ot o1 vo |0z e1 0T = (AN}~ a1
THD 250 1z 91 91 n2o1d [
g=3 yml anal »ETw4 |'puesun 61 £ t'v | & ¥ [am
aanToRqy TwooTIFpUcy LX T 43 [{xfX) (TH) (da) 1 |pwousaniny
HOLLOMELEHT /2" STTIAD AMD

Z-80 Decimal Assembler 203

CHARTS A4 AND AS

16 BIT 7, CY—07-D0++D7 (7]
DISPLACEMENT 4 BIT 4, pO-+D T -DO+-CY RRC
(d) RELATIVE kH BIT 5| o CT++D7-DO+CY RL | 4
To BC = OPCODE 40 BIT 4, 2 C¥+DT DO CY x| B
ADDRESS + 2] BIT 3| . CY4=+D7 =D 0+0 SLA) &
56 BIT 2, 3 ; DT+ 7-D0CY SRA | @
8 BIT 1, Q-+ 7-DOCY SRL
217 BIT 9,
F REGISTER SET 7 : 7
BIT FLAG CONDITION SET 6, PREFIX{P): 203 &) 7]
7 HINUS SIGN D7 = 1 SET 54| w -128 = d = 127 L
6 ZERD A-0 SET 4,| 3 0 < N < 255 &) 2 i
4 HALF CARRY AFTER DAA OP set 3.f 'y M = (HL} atl Fr 2
3¢ EVEN PARITY AFTER LOGIC 3 SET 2,| 2 K% = 2N B A __ 2| 3 o,
OVERFLOW 2's CPL. ARITH SET 1, ¥« _ = 253 P d __ 1 2
1 CARRY AFTER ARITH OF SET O, 1] 5
-~
=B
OUTT 163
ouTD 171
OTIR 179
OTDR 187
NEG & ADC HL| 4
SBC HL,| ©
RRD 103 LD (NN} B
RLD mif |wo) ¥

YA126X~126M 1261 125H 124E 1230 12IC L21B 1204 1277 6X% 6 6L SH 4E 3D ic 1B 0a 7
yw118X*1184 L18L 117H 116E 115D 114C L1138 L1ZA 11974 14%* 14M 141 138 12E 1o 1oc 9B Ba 15
Ya110x+110M 110t L09H LOS8E 107D 106C 1058 1044 111Y* 22Ke 22M 221 21H 20E 190 18C 17B 16a 23
yA102%*102M 1021 LOIH 100E 93D 98C 978 964 1077* JOK% 30M 20L 254 28E 270 26C 258 Z4a 31
Y+ G4X% S4M G4L 930 92E 91D . %0C B9 BBA 95Y* 38X~ I8M 38L 3TH IEE 15D 34c 338 314 39
Y% BeX* B6M S6L 85H B4E 83D 82C BB S0A B7Y* 46X* 46M 46L 45H A4E &30 &2c 4LB 4DA 47
y+ 78X~ 7BM 78L 77H F6E 75D T4C TIB 724 79Y* 6I¥* 62M 6ZL 6HIH 60E 59D s8¢ 57B 56A 63
y= 70X+ TON TOL 694 6BE 67D 66C 638 GhA 71

Y*254Xn254M 254 253H 252E 251D 250C 2698 248A 255T*190X*190M 1%0L 18Y8 188E 1870 1B6C 1B5B 1B4A 191
YR246XRIG6H 246L 245H 264E 243D 241C 241B 240A 267Y*182%%182M 1821 181H 18QE 175D L78C 1778 176A LB3
YAZIRXA238M 238L 237H 236E 235D 234C 233B 2324 239Y*17444174M 174L 1730 172E 171D 170C 1658 16BA 175
YA230X4230M 230L 2296 228E 227D 226C 225B 2244 23LY*I6BA¥LGEM 166L 165H 164E 1630 162C 1618 160A 167
Y#222X%222M 2221 221H 220E 219D 21AC 2178 216A 2I3T#1582%1564 L58L 157H 156E 155D 154C 1538 152A 159
y*214X*214M Z14L 2134 212E 211D 210C 2098 208A 215YA150X*150M 1SOL L&GH L4SE 1470 166C L45B 144a 151
YA2O6X*206M 206L Z05H 204E 2030 202C 201B 2004 ZOTY*L4ZX4142H 1421 141H 140E L3SD 138C 1378 1364 143
Y4198XN198M 198L 197H 196E 195D 194C 1938 1924 199¥#134X*134M 1341 1330 132E 131D 130C 1298 1284 135

104 96E BBD 8OC 72B 64A 120
L05H 97E 89D BIC 73B 65A 121

e

sPL22 HLLO& BE 90 BC T4
SPL14 HL 98 DE B2 BC 66
SPLLS HL 99 DE 83 BC 67
5P123 HLLOT DE 91 BC 75

CHART A6

Z-80 Decimal Assembler

0vv19 0004 0%RE 0040 ovz 0d ST 40 1Ea @ - ° 2 / sn Is |4
wElS 0003 vt 0030 wiz 02 vl 20 ~ u ¥ N < . o 08 |2
gvZEs 000D BZEE 0000 807 04 €1 ao 1 w [W - = 5 ¥ |4
L6 0002 TLOE 0020 61T 00 T 20 H 1 Y 1 > ’ gd 44 |2
9505y 000E 9182 0090 9i1 0% n &0 3 E] 1 Az ' + osa LA |4
09607 00OV 0952 00YQ 091 O o1 ¥ z 3 H r : + Es 4T \Vg
voR9t ODOE wOEZ 0060 wrl 0B] £ 1 I3 I & { Wa I8 ag
9LTE 0008 g¥0Z 0080 gz1 08 g B0 x u X H 8) HYD SU |8
21982 000L TELT 00LO T ot L] L & M) L , @3 1 ;E
97592 0009 9EET 0090 9% 0% 9 S0 a] A Fi 9 3 His OV 9§
o8v0z o0gos | ©8zT oose | o os | 5 %0 A e n 8 s % WA bh(sH
YRE9T 000% hz01 00%0 LI LI 1] E] P L a] $ vwa 108 |v
98221 000E 9L QOE0 g of £ €0 L El s 2 £ # €00 x1d |E
618 0002 715 0020 e OF T W0 a q g g z « 2o WIS |Z
9607 QDO 9z 0010 91 ol 1 10 B |] o] ¥ i 1 100 WOS T
0 0000 0 0000 o o0 ¢ o 4 . 4 8 g ewde 3G WM |0
90 ¥X3H 230 XER y3d %AW | DE0 X3H £ L 17 L 13 Z 1 o
51010 %34 LSWId

SHO1SHAAROD

TVHIDED ~ TYHIDETVXEH

LNVHD 3000 1128¥

205

o appendix b O
component list”

EXPERIMENT NUMBER

CHAPTER2 CHAPTER4 CHAPTERS5 CHAPTER 6
COMPONENT 123456 123456 123456 123456

INTEGRATED CIRCUITS

74LS00 1-111- -1-11- ----- 1

74LS02 l-a==- -1-11- ---11-

74LS08 p

74LS20 ala=== === 1

74L532 loce=- =11=--- la==-1
74L874 -—1--- y |,
74LS75 SRS, T

74L390 —TE

74LS93 e i I

74121 G .

74LS125) [P——

7418138 2= =m==- 1

74L3244 _PlEse

74L3373 -==12- -———-1-

g2 m===- 1

8251 . mmme- 1

556 -——=1- 1-=---1

ADS558 i, p [ppp——
ADCOB0O4 111111
LM3s58 —le=—- --11--
MM58167 -mm=]le

CRYSTAL

32768 Hz e

RESISTORS

120 ohm (matched) . (—
150 ohm o e

330 ohm —B==2

470 ohm 111541 111-88 2 ----- 1 --==- 1
1.0 Kohm ——P--- fommm- -l---=
3.3 Kohm 24-w== ---888

4.8 Kohm P p—

207

208 Appendix B

EXPERIMENT NUMBER continusd

CHAPTER2 CHAPTER4 CHAPTERS5 CHAPTER®6
COMPONENT 123456 123456 123456 123456

5.1 Kohm -———=-2- l1---1-
10 Kohm -——=1- -13--- 111111
15 Ketmw - - 2
22 Kohm 11----
10 Kohm (Potentiometer) -=e222
CAPACITORS

22 pFPolystyrene -———2-
150 pF Diso 111111
0.01 uF Diso 2----2
0.10 uF Disc -——=12
0.2 uF Dise Bacnua
0.47 uF Diso lelawa
1.0 uF Tantalum i i
10.0 uF Tantalum E— |
POWER EQUIPMENT
Transistors/D40K(GE) or MPSU45 -1-4--
3-Vde Power supply or batteries =le=m=a -1----
Stepper motor power supply e
Transformer/l2-Vao Seo. P |
TRANSDUCERS
LED/MVS50 111548 111-48 2 = ====- i s 1
Switch/8 DIP --=111
Switoh/SPDT --111-
Joystiok/4*100 Kohm | S
Optical limit awitch/TRW OPB861(Arrow) -13---
DC motor/3-V Perm. magnet (Radio Shack) =l==== —a- 1--
Stepper motor/e.g., BAUO705 (Septor) ---1--
Photoresistor/CdS 3-Megohm dark (Radio Shack) -1----
Strain Gage/e.g., CEA06125UW120 (Meas. Group) --2---
Temperature Sensor/AD590 (Analog Devices) --==11
Solid State Relay/e.g., Sigma 226 (Allied) @ = —ccoe- 1
Lamp/12V,50watt _____ 1
HARDWARE
¥Wirewrap IC sockets/16 pin ---122
Opaque disc, 5-10omdiam. ' =l----
Transparent diso, 5-10 cm diam. -=3-==
Haoksaw blade I, [P
C Clamp -——l-=-
" Number listed is the quantity required for the particular experiment indicated by the chapter and

experiment number column. Total required for all experiments is the largest number sntered In the

row for the particular item. Refer to experiment description for any special comments concerning
a compenent,

o appendix c O
suppliers

GENERAL ELECTRONIC CONPONENTS
AND INTEGRATED CIRCUITS

DIGI-KEY CORP. JRD MICRODEVICES
P.O. Box 677 1224 §. Bascom Ave.

Thief River Falls, MN 58701 San Jose, CA 95128
800-346-5144 800-538-5000
ADVANCED COMPUTER PRODUCTS JAMECO ELECTRONICS
P.O. Box 17329 1355 Shoreway Road
Irvine, CA 92713-7329 Belmont, CA 94002
800-854-8230

ALLIED ELECTRONICS ARROW ELECTRONICS
4235 28th Ave. 4801 Benson Ave.

Marlow Heights, MD 20748 Baltimore, MD 21227

SPECIALTY MANUFACTURERS

ANALOG DEVICES MEASUREMENTS GROUP
P.O. Box 280 P.O. Box 27777

Norwood, MA 02082 Raleigh, NC 27611

SEPTOR **CROUP TECHNOLOGY, LTD.
4805 Ripley Dr. P.O. Box 87

El Paso, TX 79922 Check, VA 24072

oo TIMEX/SINCLAIR interface buffer and experiment kits

209

210

0 appendix d o
glossary

A Accumulator register.

ACCESS TIME The time required to read a memory location.

ACCUMULATOR A special-purpose register in which the results of arithmetic and logic
operations are stored.

ACIA Asynchronous Communications Interface Adapter. See UART.

A/D (“A to D”) Analog to Digital: the process where an analog signal is converted to its
digital representation.

ADC Analog-to-Digital Converter: a device which performs an A/D.

ADDRESS The number representing a specific memory location.

ADDRESS BUS The set of parallel signal lines used by the processor to select the source or
destination for data transfer.

ALGORITHM A step-by-step specification for the solution of a problem.

ALPHANUMERIC Relating to the alphabetic, numeric, and symbolic printable characters
as distinguished from graphics and control characters.

ALU Arithmetic Logic Unit: a device which performs the fundamental mathematical
manipulations of a digital processor.

ANALOG A type of signal capable of assuming any value within its operating range.

AND The logic operation defined by the condition that only if all premises (inputs) are true
is the conclusion {output) true,

ARCHITECTURE The composition, function, and relationship of the logic elements of a
device.

ASCII (“as-key”) American Standard Code for Information Interchange: a seven-bit code
for alphanumeric and control characters.

ASSEMBLER A computer program which converts the assembly language of the micro-
processor into machine code.

ASSEMBLY LANGUAGE The word-oriented mnemonic form of the microprocessor
instruction set.

ASYNCHRONOUS An event or device which is not synchronized with the processor clock.

BAUD RATE Serial transmission rate in bits per second assuming the bit duration is
constant.

BCD Binary-Coded Decimal: the four bit binary representation of the decimal numerals 0-9,

BENCHMARK PROGRAM A program used to measure the performance of a computer
under well-defined conditions.

BIDIRECTIONAL Signal transmission in either direction in a wire.

Glossary

BIDIRECTIONAL PRINTING Capable of printing lines either forward or backward.

BINARY COUNTER A device having outputs of assigned binary weight (1, 2, 4, ete.) which
provides a sequential count of an input signal transition.

BINARY NUMBER A number whose digits double in value; composed of the numerals
0 and 1.

BIT Contraction of BINARY DIGIT. The positional value of a bit is a power of 2
(i.e, 2**n for n =0, 1, 2, etc.) counting from right to left.

BREADBOARD Any device used to mount and interconnect electronic components for
prototype circuit development.

BOOLEAN LOGIC An algebra named after George Boole using quantities that take values
of TRUE and FALSE and consisting of the operations AND, OR, NOT, etc.

BOOTSTRAP A program used for starting the computer which usually sets up the I/0O
devices and loads the operating system.

BOUNCING The mechanical vibration of switch contacts on closure causing many pulses
to be transmitted on the signal line.

BRANCH To select between alternate routes, as in the flow (sequence of instructions) in a
program.

BUFFER An intermediate signal conditioner between the transmitter and receiver of a
signal.

BUG An error in either a circuit (hardware) or a program (software). See DEBUG.

BUS A common signal carrier, typically applied collectively to a set of functional signals
such as the Data Bus, Address Bus, or Control Bus.

BYTE A group of eight contiguous bits. A byte can represent 256 different values.

C The abbreviation for the Carry flag.

CALL The instruction mnemonic to transfer the program to a subroutine.

CARRY A status bit in the FLAGS register of the microprocessor which indicates whether
a carry (borrow) has been created in an arithmetic operation.

CHANNEL A nonspecific term denoting a data path between devices.

CHIP A small rectangular silicon die cut from a wafer. Integrated circuit packages are
commonly called chips.

CHIP SELECT The ENABLE control input line on an integrated circuit.

CLEAR The control input line or the corresponding signal which places the output of a
device in the logic 0 state. Compare to SET and RESET.

CLOCK A square wave generator (oscillator) used as a reference timing source. Also the
signal derived from such a device.

CLOCK PULSE A complete signal transition from one logic state to the other and back
again, either Positive (0-1-0) or Negative (1-0-1}.

CLOCK RATE The frequency of a clock.

CMOS (“sea-moss”) Complementary MOS, a fabrication technology for chips having very
low power consumption.

CODE A representation of one set of symbols by another set, one set typically being a binary
number representation.

COMPILER A program which translates high level language commands (source code) into
machine code (object code). The object code is then capable of being executed. Compare
to INTERPRETER.

COMPLEMENT To change the state of a bit.

CONTROL BUS The set of individual signal lines used by a processor to implement the
means and timing of data transfer.

CPU Central Processing Unit, the computer module in charge of fetching, decoding, and
executing machine code instructions.

211

212 Appendix D

CR Carriage Return, the printer action that brings the print position to the left margin; the
corresponding ASCII control character.

CROSSTALK Interference between two signals.

CRT Cathode Ray Tube, the phosphor display tube used in video equipment.

CRYSTAL The quartz crystal whose piezoelectric properties provide very accurate fre-
quency generation for clock timing.

CURRENT LOOP A serial communication technique using the presence or absence of
current flow in a twisted pair of wires for digital data.

D The abbreviation for a Data input or output line or signal.

D LATCH A type of flip-flop which functions as a one-bit memeory device,

D/A (“D to A”) Digital to Analog, the conversion of a digital number into a signal level
proportional to its binary value.

DAC Digital-to-Analog Converter, a device which performs a D/A.

DATA BUS The set of parallel lines that carry the information being processed by the
microprocessor.

DEBOUNCE To eliminate the signal fluctuations generated in mechanical switching.

DEBUG To seek and eliminate the errors in a circuit or a program.

DEC Decrement, the instruction mnemonic to decrease the contents of a register by one,

DECODE To convert an n bit parallel input to select (activate) one of a maximum of 2°*n
independent outputs,

DEMULTIPLEX The technique in which a common source can be selected to supply one
of many destinations.

DEVICE CODE The eight-bit address of an I/0 port or the corresponding decoded clock
pulse.

DEVICE SELECT PULSE The clock pulse generated from the device code and an input
or output control pulse that is used to activate an I/0O device.

DIGITAL Having discrete states. Compare to ANALOG.

DIGITAL ANALYZER An instrument used to troubleshoot digital circuits by detecting
logic states and timing characteristics.

DIODE An electronic device which allows current to flow in only one direction.

DIP (“dip”™) Dual In-line Package, an integrated circuit casing characterized by two parallel
rows of leads (pins) on 0.1 inch spacing.

DIP SWITCHES A set of switches which can be inserted into a DIP socket.

DISABLE To prevent from functioning. Compare with ENABLE.

DISK Any disc-shaped magnetic storage medium.

DISKETTE Any small flexible disk contained in a protective jacket and commonly used
with personal computers.

DISPLAY A computer output device used to display information.

DMA Direct Memory Access, a technique for very fast data transfer in which a processor
temporarily relinquishes control of its memory to another processor.

DOS (“doss”) Disk Operating System, an operating system program which implements a
disk system for off-line storage.

DOT MATRIX The technique for printing characters using a rectangular array of dots.

DOUBLE PRECISION Program implemented arithmetic in which numbers are stored
using twice as many bits as usual.

DRIVE Any electromechanical device used to access different segments of off-line memory
storage, such as tapes or disks,

DRIVER A current amplifier used to increase the power of a signal. Also a program which
controls a peripheral device.

DUMP To transfer the contents of memory to an off-line storage device.

Glossary

DUPLEX A bidirectional serial communications link between two terminals. See FULL
DUPLEX and HALF DUPLEX.

DYNAMIC MEMORY A type of R/W memory IC characterized by high density which
requires recurrent addressing to be maintained. See REFRESH.

ECHO To send the code of a received character back to the device that transmitted it.

EDITOR A program designed to facilitate entry and modification of text, especially in
reference to programming.

EMULATE To simulate in real time.

ENABLE To permit to occur. Also the corresponding circuit input functioning either as a
Clocked or Gated control.

ENCODE To output a unique n bit value based on which one of 2**n independent input
lines is activated.

EPROM (“E-prom”) Erasable Programmable Read Only Memory, nonvolatile static
memory stored in an integrated circuit which can be erased and rewritten.

EXECUTE To perform or carry out.

F The FLAGS register of the 80 family processors consisting of independent bits which
reflect the status of the most recent arithmetic/logic operation.

FETCH To retrieve, hence to obtain an instruction from memory; the first step in a
computer instruction cycle.

FLAG A one-bit status indicator signifying one of two possible states: plus/minus, ready/
busy, ete. Used by microprocessors to make branching decisions.

FLIP-FLOP A digital electronic device having one or more inputs plus a clock input and
one independent output which reflects the status of the input(s) at the time of the last
clock input signal.

FLOPPY DISK See DISKETTE.

FLOWCHART A diagrammatic representation of a program.

FORTH An intermediate level programming language characterized by the use of a
parameter stack and a return stack.

FULL DUPLEX A serial communications link between two terminals in which both can
simultaneously receive and transmit information.

F/V Frequency-to-Voltage, the conversion of an analog signal to a voltage proportional to
its frequency.

GATE A digital electronic circuit or corresponding input signal which controls the flow of
information between the input and output of a device.

GND Ground, the zero voltage potential to which all other voltage levels in a circuit are
referenced; not necessarily earth potential.

H A suffix used with numbers to signify hexadecimal base.

HALF DUPLEX A serial communications link between two terminals in which either can
transmit but not simultaneously.

HALT The state of a computer in which program execution is suspended. Recovery is
possible either by Reset or Interrupt.

HANDSHAKING A synchronizing technique for data transfer between two devices using
request and acknowledge control signals.

HARDWARE The circuitry and physical components of a device.

HEX Shortened form of hexadecimal, the base 16 representation of four-bit numbers using
the numerals 0-9 and the letters A-F for the decimal values of 0-15.

HIGH BYTE The more significant byte of a 16-bit number corresponding to bit positions
8-15.

HIGH LEVEL LANGUAGE Any programming language having easily invoked commands
which perform complex tasks, such as ALGOL, APL, BASIC, C, COBOL, FORTRAN,
PASCAL, and PL/1.

213

214 Appendix D

IC Integrated Circuit, an electronic circuit etched on a silicon chip. Also the package
containing the chip.

IEEE (“I triple E”) Institute of Electrical and Electronic Engineers, a professional society
active in establishing standards of signal assignment and tolerance.

IMMEDIATE ADDRESS A mode for accessing memory in which the memory location is
explicitly specified.

INC Increment, the instruction mnemonic to increase the contents of a register by one.

INDEXED ADDRESS A mode for accessing memory in which the memory location is
specified by a displacement from a base (index) address.

INDIRECT ADDRESS A mode of accessing memory in which the memory location is
specified as the contents of a register pair.

INDEX REGISTER A 16-bit register whose contents can be added to a displacement
specified by an instruction to form an address. The 780 has two index registers denoted
IX and IY.

INITIALIZE To specify the conditions and start-up values of all relevant parameters at the
beginning of a process or program.

I/O Input/Output, the signals, devices, or programs associated with connecting a computer
system to its surroundings.

INSTRUCTION The simplest single task a microprocessor can perform as represented by
a one-byte operation code. The basic classes of instructions include mathematical, transfer,
and test operations.

INSTRUCTION CYCLE The sequence of events performed by a computer in carrying
out an instruction. The cycle consists of a Fetch (memory read) step followed by Decode
and Execute steps.

INT Interrupt, a control input to the microprocessor used by some peripheral devices to
asynchronously request service.

INTERFACE The hardware and software required to connect a computer to another
device.

INTERPRETER A program which translates high level language commands into machine
code as it executes them. Compare to COMPILER.

INTERVAL TIMER An electronic device which outputs a signal at specified time intervals.

IR Instruction Register, the eight-bit register in the processor which stores the instruction
after it is fetched from memory.

J-K FLIP-FLOP A type of flip-flop which has two control inputs which are interdepen-
dent,

JP Jump, the instruction mnemonic to branch either conditionally or unconditionally by
changing the value of the Program Counter register,

KEYBOARD The group of switches encoded as alphanumeric symbols and used as the
primary input port in microcomputers.

LATCH See D LATCH.

LCD Liguid Crystal Display.

LD Load, the instruction mnemonic for the transfer of data to a destination register from
a source register.

LED Light Emitting Diode, a diode which emits colored light when current flows through
it.

LF Line Feed, the printer action that advances the print position vertically without changing
its horizontal position; the corresponding ASCII control character.

LOOP A sequence of instructions which are repeated more than once before the linear flow
of the program is resumed.

LOW BYTE The less significant byte of a 16-bit number corresponding to bit positions 0-7.

LSB Least Significant Bit, the binary digit having a weight (positional value) of 2**0 or 1.

Glossary

LSI Large Scale Integration, used in referring to integrated circuits having between 500
and 5000 transitors.

M Any memory register whose address is held in the HL register pair of an 80 family
processor, also denoted by “(HL).” The abbreviation for the Sign flag (Minus).

MACHINE LANGUAGE The set of binary codes that form the instruction set of a micro-
processor.

MAINFRAME A very large computer supporting many terminals.

MASK To obscure. Also a binary code used as a pattern to selectively set or clear individual
bits in a binary number.

MASKABLE INTERRUPT Interrupt request control input line which must be enabled via
an instruction and may be disabled with an instruction.

MASS STORAGE Off-line storage media characterized by very large capacity and relatively
slow access times and typified by tapes and disks.

MEMORY The digital devices that store binary information in registers.

MEMORY MAP A table showing the allocation of regions of system memory for various
programming functions in terms of the limiting addresses.

MEMORY MAPPED I/O An addressing technique in which I/O devices are accessed as
memory registers.

MICROCOMPUTER A computer system consisting of a microprocessor, memory, sup-
porting digital logic circuitry, and I/0 interfaces.

MICROPROCESSOR An LSI circuit which functions as a CPU.

MINUS FLAG The sign bit in the Flags register of the processor used to indicate (by a
logic 1) a negative value (MSB = 1) resulting from an arithmetic operation.

MNEMONIC A memory aid, the shorthand notation of a word describing the action of a
machine code instruction. Examples include LD, JP, INC, etc.

MONITOR A program implementing the fundamental set of commands required to operate
a computer system.

MOS (“moss”) Metal Oxide Semiconductor, a fabrication technology used in producing
most LSI and VLSI chips.

MOSFET (“moss-fet”) MOS Field Effect Transistor, a type of transistor having a Gate,
Source, and Drain rather than a Base, Collector, and Emitter.

MSB Most Significant Bit, the bit in the leftmost position of an n bit number and having the
weight (positional value) of 2*®(n—1).

MSI Medium Scale Integration, used in referring to integrated circuits having between
50 and 500 transistors.

MULTIPLEX The technique where many sources share a common destination. To select
one from many.

MUX Abbreviation for MULTIPLEX.

NAND (“nand”) The NOT AND logic operation where the result is the negation (com-
plement) of that obtained by the AND operation.

NC Non-carry, the abbreviation for the complement of the Carry flag.

NESTED One routine contained within another routine.

NIBBLE Usually four bits, the lower or upper half of a byte.

NMI Non-Maskable Interrupt, an interrupt request control input line which is permanently
enabled and cannot be disabled by software.

NMOS (“N-moss”) The negative channel MOS technology introduced after positive channel
MOS.

NOISE Random transients or other interference on a signal. .

NOP (“no-op”) No Operation, the instruction mnemonic that alters no registers.

NOR The NOT OR logic operation in which the results of an OR operation are com-
plemented.

215

216 Appendix D

NOT The logic operation of complement in which the state of each bit is changed.
NUMBER CRUNCHING Slang expression for performing arithmetic intensive operations.
NZ Nonzero, the abbreviation for the complement of the Zero flag.

OCTAL The base 8 representation of three bit numbers using the numerals 0-7.

OP AMP Operational Amplifier, an electronic circuit which functions as a very high gain
de amplifier.

OPCODE Operation Code, the byte of machine code that distinguishes the instruction
from prefixed or suffixed bytes used as operands.

OPEN COLLECTOR An older circuit technique used to connect outputs together for
bussing signals, now replaced by three-state devices.

OPERAND The byte(s) in a machine code instruction following the opcode that provide
data or address information for the proper execution of the instruction.

OPTO-COUPLER See OPTO-ISOLATOR.

OPTO-ISOLATOR A device which converts current pulses to light flashes and then
converts the light back to current so that two systems can remain optically coupled but
electrically isolated from each other.

OR The logic operation defined by the condition that only if all premises (inputs) are false
is the conclusion (output) false,

OVERFLOW A flag bit used to indicate that an arithmetic result is too large.

OVERVOLTAGE PROTECTION Circuitry to protect a device from undesirable surges
in the ac power line voltage.

P Abbreviation for the parity flag bit. Also the abbreviation for the complement of the
Minus (sign) flag (i.e., Plus).

PACKED BCD Storage of two four-bit binary-coded decimal digits into one eight-bit
register.

PARALLEL The processing, transmission, or storage of two or more bits or signals
simultaneously.

PC Program Counter, the 18-bit processor register which holds the address of the next byte
to be fetched by the processor. Also an abbreviation for Printed Circuit.

PERIPHERAL Any device connected to a computer that functions as a data source or sink.

PIN COMPATIBLE Describes connectors whose leads (or pins) have identical functions,
especially in reference to ICs,

PIO Programmable Input/OQutput device, an interface IC which multiplexes the data bus
to two or more eight-bit ports that can be configured as input or cutput by commands
from the processor.

POINTER An address held in a 18-bit register that defines a unique location in memory.

POLLING A scheduling technique for 1/O devices where the computer interrogates each
device in turn to determine if servicing is required.

POP The instruction mnemonic to load a register pair with two bytes from the stack.

PORT An input or output device identified by a specific address or device code.

PPI Programmable Peripheral Interface, see PIO.

PROGRAM A sequence of instructions or commands which results in the execution of an
algorithm or task.

PROGRAMMING LANGUAGE The set of commands, functions, and statements that can
be used to write a program. See HIGH LEVEL LANGUAGE.

PROM Programmable Read Only Memory, strictly a read only memory that can be
programmed by a user only one time; commonly an EPROM.

PROM PROGRAMMER An addressing device used to write binary data into a PROM or
EPROM; may or may not be a computer peripheral.

PROPAGATION DELAY The time required for an input signal to translate into an output
signal.

Glossary

PULL UP RESISTOR A circuit technique to hold a line at a specific voltage while still
limiting the amount of current drawn,

PULSE A change in voltage or current level which lasts for a short period of time.

PULSER A switching device used to transmit debounced (clock) pulses.

PUSH The instruction mnemonic to load the two bytes from a register pair into the next
available locations on the stack.

R The dynamic memory Refresh pointer register in the Z80 microprocessor.

RAM Random Access Memory, an addressing method where the contents of any location
can be read from or written to independent of any other location. Contrast to Serial Access
as with tape. Also the conventional reference to R/W memory.

REAL TIME A simulation of any activity in a time scale commensurate with the time of
occurrence of the real process.

REFRESH To restore the memory contents by addressing, a requirement of dynamic R/W
memory ICs on a period of about 2 msec.

REGISTER A set of parallel latches having a common clock input and forming an n bit
storage location; the storage locations in a microprocessor and memory.

RELATIVE ADDRESSING A method of memory addressing which adds a two’s com-
plement displacement to the current PC address to determine the particular location.
RELATIVE DECODING A method of address decoding which does not use one or more

of the more significant address bits.

RELOCATABLE CODE A machine code routine which uses only relative addressing and
holds no absolute addresses and therefore is independent of the segment it occupies in
memory.

RESET To restore conditions to their initial values.

RET Retum, the instruction mnemonic to terminate a subroutine.

RISE TIME The time required to complete the low-to-high transition of a pulse usually
measured between the 10% and 90% levels of the waveform.

ROM Read Only Memory, nonvolatile static memory ICs programmed during manufacture;
cannot be programmed by the user.

ROTATE An operation that shifts the bits of a number one position to the left or right,
passing the MSB to the LSB or vice versa.

ROUTINE A self-contained portion of a program forming part of the main program.

RS-232 A serial communications Standard defining the signals of a 25-pin connector and
bipolar voltage signal levels,

RUN To execute a program.

R/W Read/Write, the type of volatile random access memory ICs. Also the processes that
transfer data from or to memory, respectively.

SCRATCHPAD A block of R/W memory set aside to hold temporary or intermediate

data.

SERIAL The processing, transmission, or storage of data in time sequential order.

SET The control input line or the corresponding signal which places the output of a device
in the logic 1 state, sometimes referred to as Preset. Compare to CLEAR and RESET.
SHIFT An operation that shifts the bits of a number one position to the left or right without

exchange between the MSB and LSB as in ROTATE.

SIGN BIT The MSB of a binary number. See TWO’S COMPLEMENT.

SIMPLEX A one-way serial communications link between a transmitter and receiver.

SP Stack Pointer, the 16-bit register in the processor that holds the address of the next
available lecation on the stack.

SSI Small Scale Integration, used in referring to integrated circuits having fewer than 50
transistors.

STACK The region in R/W memory used by the microprocessor to store the return

217

218 Appendix D

addresses of subroutines and data PUSHed from the register pairs. The Stack is a last-in
first-out build-down list.

SUBROUTINE A self-contained portion of a program not situated in the main program
but accessible from any point in the main program.

THREE-STATE The digital electronic logic that utilizes the ordinary logic states of 0 and 1
and the additional high impedance output state that functions like an unconnected output.

TRANSIENT A spurious indeterminate signal.

TRANSISTOR A solid state electronic device having three terminals (Base, Collector, and
Emitter) capable of amplifying current.

TRUTH TABLE A table listing the output values of a circuit as a function of all possible
combinations of input values.

TWO’'S COMPLEMENT - A mathematical method of expressing positive and negative
binary numbers in which the negative of a number is formed by complementing the
number and adding 1.

UART Universal Asynchronous Receiver Transmitter, an IC used in serial data communica-
tions consisting of parallel-to-serial and serial-to-parallel shift registers and supporting
control logic signals.

VARIABLE A symbolically named quantity which may assume assigned values.

VECTORED INTERRUPT A mode of interrupt servicing in which the device passes
information to the processor specifying the address of its service routine.

V/F Voltage-to-Frequency conversion. See F/V,

VOLATILE MEMORY Memory circuits which lose their contents when power is removed.

VLSI Very Large Scale Integration, used in referring to integrated circuits having in excess
of 5000 transistors.

WAIT An internal state entered by a processor in the absence of a synchronizing control
signal.

WARM Write And Read Memory, the preferred acronym for volatile R/W memory because
sensible data must be written prior to being read.

WIREWRAP A circuit construction technique in which connections of leads are made by
spiral windings of wire on square posts.

Z The electrical symbol for impedance measured in ochms, the ac counterpart to dc resistance.
Also the abbreviation for the Zero flag.

O index o

ADC, 147

AND, 14

ASCII, 8, 100

A register, 73
Accumulator register, 49
Address Bus, 40, 44
Analog-to-Digital, 146
Absolute address, 57
Absolute branch, 68
Absolute decoding, 80
Actuators, 150, 151

Air speed, 178

Alpha current gain, 155
Amplification, 151, 153
Amplifier design, 152
Analog data, 146
Analog properties, 150
Analog electronics, 150
Analog signals, 9, 99
Answer mode, 104
Argument, 59

Assemble, 52

Assembler language, 52
Astable, 25, 105, 140
Asynchronous, 75
Asynchronous serial, 101, 138
Augmented instructions, 56
Automatic control, 190
Average, 117

Averaging routine, 174

BASIC, 2

BASIC ROM, 167

BCD, 8, 22

Baud rate, 100

Baudot code, 100
Background program, 195
Base, 151

Beta current gain, 154
Bidirectional, 44, 80, 95
Binary arithmetic, 50
Binary numbers, 7
Binary weight, 147

Bipolar power supply, 159

Bit, 7

Branching instructions, 57

Breadboard, 4
Breadboarding, 28
Buffer, 12, 159
Built-in amplifier, 105
Burglar alarm, 167
Bus activity, 82

Bus, 43

C

CLEAR statement, 60
CMOS, 11

Carry bit, 64

Carry flag, 50

Control Bus, 43
Channel number, 18
Chip enable, 106

Chip select, 106

Clear, 20

Clock, 51

Clock cycles, 58

Clock input, 77
Coaxial cable, 103, 155
Collector, 151
Collector resistance, 152
Color change, 168
Command word, 139
Common base, 155
Common collector, 155
Common emitter, 155

Common mode rejection, 159-160

Complement, 49
Complementary, 20
Computer interfacing, 2

219

220

Index

Conditional branch, 57
Control output port, 94
Control signals, 17, 191
Control word, 94
Converter, 148

Counter, 22, 38
Coupling capacitors, 155
Current amplifiers, 159
Current gain, 154
Current loop, 102

D

DAC, 105, 115, 168

DC power supply, 128

DIL, 11

DIpP, 5, 11

DI instruction, 194

DJNZ instruction, 57

DMA, 193

DSP, 74

D-type latch, 19, 20

Data Bus, 43

Decimal Assembler, 53
Device Code, 40, 73

Device Select Pulse, 73, 74, 84
Digital-to- Analog, 105
Damped harmonic motion, 172, 176
Data acquisition, 86

Data bits, 101

Data processing, 2

Data source, 75

Debounced, 34

Debounced pulser, 33
Decimal number, 5
Decoder, 17, 73

Decoding, 18, 40

Dedicated instrument, 138
Dedicated microcomputer, 138
Demodulator, 103
Demultiplexer, 17
Differential input, 159
Digital circuit classes, 11-12
Digital device, 87

Digital gates, 156

Digital input, 99

Digital microcomputers, 146

Digital signals, 9, 99
Direct instruction, 66
Direct, 55

Disable, 80

Disable interrupt, 58
Dynamic transducers, 150

E

EI instruction, 194
EXCLUSIVE OR, 16
End-of-Conversion flag, 148
Edge connector, 5

Elastic beam, 171-172
Electrical interference, 1568
Electrical transducers, 150
Electronic amplifier, 152
Electronic noise, 159
Emitter, 151

Empirical rules, 152

Enable, 16, 80

Enable interrupt, 58
Exchange operations, 58
Experiment, 1

Exponential process, 160-161
External memory, 51

F

FDZX-1, 28

FSK, 102, 103

Flags register, 193

Fan out, 33

Feedback resistors, 159
Fetch, 77

Flag bits, 83

Flag registers, 49
Foreground program, 185
Frequency conversion, 104
Full duplex, 102

Grey code, 122
Gates, 13
Gating, 16, 38

General purpose register, 47
Greenhouse temperature, 185

H

HALT, 194

HALT instruction, 58
HL register, 48, 53
Hooke's Law, 171-172
Half duplex, 102
Handshaking, 73, 193
Hardware, 1, 27
Hexadecimal, 7

High address bus, 44
High level, 4

Host computer, 138
Household machines, 185

I register, 196

1/0 Interface, 81

1/0 control pulse, 74
IC, 5

IN instruction, 47, 73, T4
INT, 194

IORQ, 45

Index register, 48, 56
Instruction register, 51
Interface Board, 28
Interrupt register, 48

1 deal op amp, 158
Immediate, 55, 66
Indirect, 55, 68

Input, 58

Input port, 73, 75, 89
Instruction cycle, 51
Instruction set, 52
Integer power, 6
Integrated signals, 10
Interface, 45

Interface buffer, 5
Interfacing, 4

Internal memory register, 48
Interpreter, 3

Interrupt, 194

Interrupt acknowledge, 194

Index

Interrupt request line, 58, 195
Inverse video, 68

Inversion circle, 12

Inverters, 12

Inverting input, 158

Joystick, 111

Keyway, 5, 45
Kilobyte, 3

LED cathode, 92

LET command, 58

LS series, 11

Load instruction, 59
Latch, 19

Light sensitive, 167
Linear IC, 157

Logic operations, 61
Loudspeaker, 150

Low address bus, 44, 73

M

M1, 77, 191

MR, 45

MREQ, 45

MW, 47

Morse code, 100
Machine cycle, 51
Machine language, 3, 61, 64
Mask, 194

Math operations, 54, 56
Maximum value, 176
Mechanical bounce, 83
Memory register, 48, 53
Microcomputer, 43
Microphone, 150
Microprocessor, 11, 47

221

222 Index

Mnemonics, 52, 66 Parity bit, 101
Mode, 195 Port Address, 40, 73
Modem, 103 Program Counter, 51, 57
Modulator, 103 Parallel-serial, 100
Monostable; 24, 82, 111 Peak-to-peak, 154
Motor, 87 Peripheral device, 73
Motor speed, 115 Permanent magnet motors, 107
Multi-channel decoders, 74 Personal computer, 2, 4
Multi-level, 195 Phase inversion, 155
Multiple emitters, 157 Phototransistor, 115
Piggy-backed, §1
Pin out, 12
N Poll, 148, 196
Position detection, 111
N and NN bytes, 55 Positive edge, 21
NAND, 15 Positive logic, 13
NMI, 194 Positive numbers, 50
NOR, 15, 158 Potentiometers, 111
NPN, 151 Prefix, 52
Negation, 15, 49 Preset, 20
Negative numbers, 50 Programmable, 94
Noise, 102, 103, 151 Programming, 2
Non-inverting input, 158 Pulse stretching, 82
R
O
RAM, 3
OR, 14 RAMCS, 191
OUT instruction, 73, 74, 77 RC charging, 160
Ohm’s Law, 153, 158 RD, 45
Octal, 7 REM statement, 59
Opcode, 53 ROM, 3
Operand, 55 ROMCS, 191
Operating system, 3 R8232, 102, 103
Operational amplifier, 106, 115, 157 Refresh register, 48
Optiecal sensor, 115 Radio frequency, 29
Originate mode, 104 Random data, 189
Oscilloscope, 106, 164 Real time, 130
Out, 47, 58 Receiver, 138
Output port, 73, 78, 92 Register, 19, 48
Output timing, 192 Register transfer, 53

Relative branch, 70
Relative decoding, 80

P Relative displacement, 56
Relative jump, 57
PCB, 5, 45 Relay, 87
PEEK, 93 Relocatable code, 183
POKE, 63 Relocated, 57

PPI, 4 Request, 192

Reset, 51, 140, 191
Resolution, 147

Restart instruction, 57
Rising edge detection, 117
Robot arms, 126
Robotics, 126

Rotate operations, 56, 64

SAVE, 80

Sign flag, 49

Sinclair printer, 81
Spectrum, 4

Stack Pointer, 51
Scientific instrument, 2
Sensors, 150

Serial data, 101

Serial iming, 104

Serial transmission, 100
Set limits, 186-187

Shaft encoding, 122

Shift registers, 100

Signal conditioning, 149
Simplex, 101

Single-line interrupt, 195
Software, 1

Solderless breadboard, 27
Solid state relay, 188
Speed, 135

Stack, 52

Stack operations, 56

Start bit, 101

Static transducers, 150
Stepper motor control, 107, 126
Stepper motor supply, 110
Stepper motor program, 109-110
Stop bits, 101

Strain gage, 159, 171
Successive approximation, 146
Switches, 34

Synchronous, 138

T
T/S Interface circuit, 78
TS 1000, 4
TS 1500, 4

Index

TS 2068, 4

TTL, 11

Tachometer, 178
Teletypewriter, 100
Temperature control, 185
Temperature drift, 155
Temperature recording, 181
Temperature sensor, 181
Temperature set limits, 190
Thermal runaway, 153
Thermocouples, 159
Three-state buffers, 26, 75, 89
Three-state octal latch, 92
Time constant, 160-161
Time delay, 72, 183
Timers, 24, 111

Timing diagram, 12, 77
Titration, 168

Tools, 27

Transducers, 150

Transfer operations, 63
Transistor amplifier, 151
Transistor current, 152
Transistor switch, 110, 155
Transistors, 151
Transmitter, 138

Truth table, 12, 14, 30
Twisted pair, 103

Two’s complement, 50, 56

UART, 100

USART, 138

USR function, 58, 84
Unconditional branch, 57
Unity gain amplifier, 159

v
VLSI, 94
Vectored interrupts, 195
Vectoring, 195

Voltage follower, 117, 159

223

224 Index

w Y4
WAIT, 163 780, 45
WARM, 3 ZB0 control lines, 191
WR, 45 ZX81, 4
Wheatstone bridge, 141 Zero flag, 50
Weather vane, 122 |
What?, 44

When and how?, 44
Where?, 44, 74

