The Complete Timex
TS1000/Sinclair ZX81 =1
[ROM Disassembly

includes PARTA: 0000H-OF54H &
PART B: OF55H-1DFFH

by Dr.lan Logan
& Dr. Frank O'Hara

[1T

The Complete Timex TS1000 &
Sinclair ZX81 ROM Disassembly

by Dr. lan Logan
& Dr. Frank O’Hara

Due to popular demand Melbourne House Publishers have
combined “"ROM Disassembly Part A” and “"ROM Disassembly
Part B” into one accessible volume. PART A starts page 1 through
to page 30, PART B begins again atpage 1(2 pages after page 30)
through to page 82.

Published in the United Kingdom by
Melbourne House (Publishers) Ltd.,

Glebe Cottage, Glebe House,

Station Road, Cheddington,

Leighton Buzzard, Bedfordshire. LU7 7NA

Published in Australia by

Melbourne House (Australia) Pty. Ltd.,
Suite 4, 75 Palmerston Crescent,
South Melbourne, Victoria 3205.

Published in the United States of America by
Melbourne House Software inc.,
347 Reedwood Drive, Nashville, TN 37217

The Complete Timex TS1000 &
Sinclair ZX81 ROM Disassembly
PART A: 0000H-OF54H

CONTENTS PAGE
The 'flow diagram! for PART A,..vvriicaniaciariieanacnnsn 1

The 'listing'eeeiaeiereencereecnsnas SO STNRS IR YRR 2 - 27
The 'forward references’.c.cceecercavesssostesascsssnanes 27

The: *RST D028 Jiterals!' ..ceess i e iadis saees S0 dhaknme 27
Notes on the SYSTEM VARIABLES.......cccceceriicaccnsnan oo 28 - 29
Indexesssiaaves S T R P evesoese 30

Part A copyright {c) 1982 by Dr. I. Logan.
Part B copyright (c) 1982 by Dr. I. Logan & Dr. F. Q'Hara.

Melbourne House (Publishers) Ltd. ISBN O 86161 113 6
National Library of Australia Card Number and
ISBN O 86759 124 2

A1l rights reserved. This book is copyright. No part of this book
may be copied or stored by any means whatsoever whether mechanical
or electranic, except for private or study use as defined in the
Copyright Act.

All enguiries should be addressed to the publishers.

Contents of the Sinclair ZX8! BK ROM are the copyright property of
Sinclair Research Ltd,

Note: This book should be read in conjunction with 'ZX81 BASIC
PROGRAMMING' issued by Sinclair Research Ltd. with every ZXBI.

The system variable '"labels' are those given by Sinclair Research
Ltd., but the other 'labels' have been designated by the authors.

Printed in Hong Kong by Colorcraft Ltd.

The ‘FLOW DIAGRAM’ for PART A of the 8K ROM Program

p.6 CLEAR

1 CLs
CONT

l INITIAL. COPY

. DIM
o syntax fails
—] #° Y FAST

FOR
UPPER i LIST-PROG

Gosus
GOTD
| p.1% IF
i INPUT
| LET
LOWER ‘ COPY-LINE LeST
7 T X LLIST
LOAD

 tast LPRINT
DISPLAY 6 ‘DISPLAY" NEW

NEXT
onl
s OMY PAUSE

] -

// LINE scANﬂ e
p-2t POKE

N/L-KEY / PRINT

v LINE-HUN]‘ RAND
REM

; 3
execute i / B RETAEN
RUN

NEXT-LINE SAVE
SCROLL

pile SLOW
STOP

LINE KEYS N/L-LINE UNPLOT

l,pp 7.9 . ,l(p.10

¥

[
T
~d

p.4 7

CURSCR
KEYS

——<—1

L|ADD~-CHAR

L%

p.B

NOTE: The "display’ in SLOW mode is produced by a call to ‘DISPLAY" every 1/50th. of a second.

THE 'STARYT’

The NMI generator is turned off and BC set to
the ‘top of possible RAM’

0000 START ouTt {+ FD),A

LD BC, + 7FFF

JP 03CB,RAM-CHECK
THE ‘ERROR’RESTART
0008 ERROR-1 LD HL,(CH-ADD)

LD (X-PTR),HL

JR 0056, ERROR-2

THE ‘PRINT A CHARACTER' RESTART

The code of the character to be printed is in
the A register.

0010 PRINT-A AND A
JP NZ,07F1.PRINT-CH
JP 07F5,PRINT-SP.

DEFB +FF
THE 'COLLECT CHARACTER’ RESTART

The A register is set with the character
addressed by CH-ADD. Spaces are ignored.

0018 GET-CH. LD HL(CH-ADD)
LD A(HL)
001C TEST-SP. AND A
RET NZ
NOP
NOP

THE '‘COLLECT NEXT CHARACTER’ RESTART

CH-ADD is incremented before the character
is fetched.

0020 NEXT-CH CALL 0049,CH-ADD + 1
JR 001C,TEST-SP.
DEFB +FF
DEFB +FF
DEFB +FF

THE ‘FP-CALCULATOR’ RESTART

A direct jump is made to the calculator
routine.

0028 FP-CALC. JP 199D,CALCULATE
THE ‘END-CALC’ SUBROUTINE
The byte 34 ends a RST 0028 operation.

0028 END-CALC. POP AF
EXX
EX {SP),HL
EXX
RET

THE *‘MAKE BC SPACES’ RESTART

BC spaces are made available for different
purposes.

0030 BC-SPACES PUSH BC
LD HL,(E-LINE)
PUSH HL
JP 1488,RESERVE

THE ‘INTERRUPT’ RESTART

B holds the line number and C the number of
the scan line.

0038 INTERRUPT DEC C

JR NZ,0045,SCAN-LINE
POP HL
DEC B
RET 2
SET 3C
0041 WAIT-INT. Ié? R.A
JP (HL)
0045 SCAN-LINE POP DE
RET 2
JR 0041, WAIT-INT.

THE ‘INCREMENT CH-ADD’ SUBROUTINE

The pointer CH-ADD is incremented and the
cursor ignored.

0048 CH-ADD+1 LD HL,(CH-ADD)
004C CURSOR-SO INC HL
004D TEMP-PTR. LD (CH-ADD),HL

LD AHL)

CP +7F

RET NZ

JR 004C,CURSOR-S0O

THE 'ERROR-2’' ROUTINE
L is loaded with the 'data byte'.

0056 ERROR-2 POP HL
LD L,(HL)

0058 ERROR-3 LD (ERR-NR),L
LD SP(ERR-SP)
CALL 0207, SLOW/FAST
JP 14BC,SET-MEM
DEFB +FF

THE ‘NMF ROUTINE

This routine is entered whenever a ‘SLOW’
NM interrupt occurs.

0066 NMI EX AF A'F’
INC A
JP M,0060 NMI-RET
JR Z,006F NMI-CONT.
006D NMI-RET EX AF, A'F’

RET

3
THE PREPARE FOR ‘SLOW’ DISPLAY ROUTINE 0103 78 85 03 83 (xS IMME
0107 8B 91 90 8D| N0 F
The main registers are preserved on the ¢10B 86 78 92 95| myx/u [+
stack, the NMI generator is switched off and 010F 96 88 =y
a jump is made into the display routine. (IX e
holding 0281 or 028F) The ‘token’ tables.
006F NMI-CONT EX AF.A'F 0111 (8F OB 8B 26 |'?* " " A
BEn 0115|89 39 26 A7 ['T'T A'E
PUSH DE 0119 |8F 28 34 29 {'27C O D
PUSH HL O1MD|AA 3B 26 B1 |'E V A'L
5 HL (D-FILE 0121131 2A 83 38 | L E'N'S
LD Hleelte 0125(2E B3 28 34 || 'N'C O
HALT ’ 0129|B8 39 26 B3 |'S'T A'N
UT FD)A 012D|26 38 B3 26 | A S'NA
OP (& 2 0131128 B8 26 39 | C'S AT
J {IX) 0133 ?3 %1 B3 gg ;4 lﬁ :\1 E
0139 |3D 5 2% ‘P! N
THE KEY TABLES 013D | B9 g% %% Eé' .é g % .2.
i s 0141 |38
The ‘unshifted’ character codes. 0145 27 B a5 2A B'S'PE
007E 3F 30D 28 3B |Z X C V 0149 |12A B0 3A 38 E'K'U S
0082 26 38 29 2B|A S DF 0t4D|B7 38 39 37 |'R S T R
0086 2C 36 3C 2A|GQWE 015180 28 20 37 |'8 C HR
008A | 37 3 1D 1E|RT 1 2 0155180 33 34 B9 [NOT
008E 1F 20 219 1C |3 4 5 0 0159 {17 97 34 B | * " oOo'R
0092 {25 24 23 22 (9 8 7 6 0150|266 33 A3 13 | A N'D'¢
0098 35 34 26 3A|P O I U 0161194 12 94 13 ['='» =L
009A 3E 76 31 30 | YN/ILL K 0165192 39 20 2A |D'T H E
009E 2F 2D 00 1B |J H Sp.. 0169(B3 38 B4 38 |'NT 'O S
00A2 32 33 27 MNB 016D|39 2A B 31 | T EPL
0171135 37 26 33 | PRI} N
The 'shifted' character codes. 0175 (B8 31 31 2B [T L L i
. 017938 B3 38 39 | S'T'S T
COA5 | OE 19 OF 18 |: ; 7 ! 017D|34 B5 38 31 | OP S L
00A9 | E3 E1 STOP LPRINT 0161134 BG 2B 26 | O'WF A
00AB | E4 E5 SLOW FAST 05138 BS 33 2A|S'T'N E
00BO | EO DB DD STEP <= <) Seplar 31 B1 wloLlcC
00B3 | 75 DA DE EDIT AND THEN 0191134 33 B9 20] 0 N'T D
Q0B6 | DF 72 77 TO«RUBQUT oesloE B> 37 22|10 MRE
i M e IO - GR“’}“PT'CS"’" 0193|B2 28 34 B7 |'M'F O'R
0B 1 1 L o
00CO | OD DC 79 g =FuncTIoN | 0828 3 B S| Gos U
003 | o6 1a 12 wlf.3< 0IAS|A7 2E 33 35 '8 NP
’ 01A! :
0oCE | 17 * 01AD|26 A9 31 26 [A'D'L |
The ‘function’ character codes. g}g; %% gg gé gﬁ ‘.?rg k LEJ
00CC | CD CE C1 78 | LN EXP AT KiL 01BO|38 AA 33 2A | S'E'NE
0000 | CA CB CC D1 |ASNACSATNSGN| o1BD|3D B9 35 34 | X'T"P O
0004 | D2 C7 €8 €9 | ABS SIN COS TAN 01C1|30 AA 35 37 | K'E'P R
00D8 | CF 40 78 78 { INTRND KilL KiL 01IC6|2E 33 B9 35 |1 N'T'P
o0DC |78 78 78 7B | KIL KL KL KIL 01C9|31 34 B9 37 | L O'T'R
DOEO |78 78 78 78 | KL KL KL KiL 0ICD|3A B3 38 26 | U'NS A
ODE4 | C2 D3 C4 TAB PEEK CODE 01ID1{3B AA 37 26 | V'E'R A
00E7 { D6 D5 78 CHR$ STR$ KIL 01D5/33 A9 2E AB| N'D'1 F
QOEA | D4 CB C5 USR LEN VAL 0109|288 31 B8 3A | CL'SU
QOED | DO 78 78 SQR K/L KL 01DD{33 35 31 34 | NP L O
00FO | 42 D7 41 Pl NOT INKEY$ 01E1|BS 28 31 2A [T C L E
01E5|26 B7 37 2A | A'R R E
The ‘graphic’ character codes. 01ES gg gﬁ\ 37 g% E g g r;(a
01ED 35)
00F3 | 08 0A 09 8A E ™ bl W 01F1137 33 A9 2E | R N'DI
QOF7 | 89 81 82 07 dkEE 01F5l33 30 2A 3E | N K Y
OFB (84 06 01 02 | M@E@MD 01F9|8D 135 AE g P
OOFF | 87 04 05 77 s = [l RUBOUT

4

THE ‘LOAD/SAVE UPDATE' SUBROUTINE

HL Is incremented until it matches the current
value in ‘E-LINE’.

01FC LOAD/SAVE INC HL

EX DE,HL

LD HL,(E-LINE)
SCF

SBC HL,DE

EX DEHL

RET NC

POP HL

THE DISPLAY ROUTINES:

i} Test for SLOW or FAST Mode.

The SLOW flag, Bit 6 of CDFLAG Is tested, and
a return is made if the program is in FAST
mode or ‘SLOW’ display is not available.

0207 SLOWIFAST LD HL, + CDFLAG
A,(HL)
RLA
XOR (HL)
ALA
RET NC
LD A ,+7F
EX AFA’F
LD B,+ 11

out {+ FE),A

0216 LOOP-11 DJNZ 0216,LOOP-11
OUT (+FD)A
EX AF A'F
RLA
JR NC,0226,NO-SLOW
SET 7,(HU)
PUSH AF
PUSH BC
PUSH DE
PUSH HL
JR 0229, DISPLAY-1
0226 NO-SLOW EE_? 6,(HL)

11) The main display routine.

The frame counter is first collected and
decremented. A return is made if the frame
counter reaches zero.

0229 DISPLAY-1 LD nlL_,[FRAMES]

DEC
022D DISPLAY-P LD A +7F
AND H
OR L
LD AH
JR NZ,0237, ANOTHER
RLA
JR 0239,0VER-NC
0237 ANOTHER LD B,(HL)
SCF
0239 OVER-NC LD H,A
LD {(FRAMES),HL
RET NC

The keyboard is now read, and a return is
made if a new key has been pressed.
Otherwise a display is produced.

023E DISPLAY-2 CALL
LD
LD
LD
ADD
SBC
LD
OR
OR
LD
LD
LD
RES
JR
BIT
SET
RET
DEC
NOP
SCF
0264 NC-KEY LD
CCF
RL
DJNZ
LD
LD
CP
SBC
LD
OR
AND
RRA
LD
QuT
LD
SET
CALL
LD
LD
LD
CALL
DEC
CALL
JP

026A LOOP-B

028BB,KEYBOARD
BC,(LAST-K)
(LAST-K),HL

AB

A, +02

HL,BC
ﬁ,{DEBOUNCE)

L

B.+0B

ML, + CDFLAG
O,(HL)

NZ,0264, NO-KEY
7.(HL)

0,(HL)

Z

B

HL, + DEBOUNCE

B
026A,LOOP-B
B.(HL)

AE

+ FE

ALA

B,+1F

(HL)

B

(HLLA

(+ FF),A
HL,(D-FILE)

7.H

0292, DISPLAY-3
AR

BC, + 1901

A, + F5
0285,DISPLAY-5
HL

0292,DISPLAY-3
0224, DISPLAY-1

The IX reqister is loaded with the ‘return’
address, and the main registers are
restored after a ‘siow’ display.

0292 DISPLAY-3 POP
LD
BIT
JR
LD
NEG
INC
EX
ouT
POP
POP
POP
POP
RET

IX
C,(MARGIN)
7.(CDFLAG)
i,%ZAQ,DISPLAY-d

A
AFAF
(+FE)LA
HL

DE

BC
AF

Sets up the A and B registers for the display.

02A9 DISPLAY-4 LD A +FC
LD B, + 01
CALL 0285 ,DISPLAY-5
DEC HL
EX (SP).HL
EX (SP).HL
JP {(1X)

Sets up the refresh register and waits for an
interrupt.

0285 DISPLAY-5 LD R.A
LD A, +DD
El
JP (HL)

THE *KEYBOARD SCANNING’ SUBROUTINE

The keyboard is scanned eight times and the
result built up in the HL register pair. MARGIN
is also determined.

02BB KEYBOARD LD HL,+FFFF
LD BG, + FEFE
IN AC)
OR + 01
02C5 EACH-LINE OR +EO
LD D,A
CPL
cp + 01
SBC AA
OR B8
AND L
LD LA
LD AH
AND D
LD H.A
RLC B
IN A(C)
JR C,02C5,EACH-LINE
RRA
RL H
RLA
RLA
RLA
SBC AA
AND +18
ADD A +1F
LD {MARGIN}.A
RET

THE ‘SET FAST MODE’ SUBROUTINE

The NMI generator is turned off and bit 7 of
CDFLAG is RESET. Bit 6 will remain SET if
the overall mode is SLOW, i.e. in PAUSE.

02E7 SET-FAST BIT 7 {CDFLAG)
RET Z
HALT
ouT {+FD)A
RES 7 (CDFLAG)
RET

REPORT F — No name supplied.

02F4 REPORT-F RST 0008 ERROR-1
DEFB +0E

THE ‘SAVE’ COMMAND ROUTINE

HL is set to point to the start of the program
name. There is a 6 second header and then
the bytes of the name and the program are
passed out to the cassette recorder.

02F6 SAVE CALL
JR
EX
LD
CALL
JR
DJINZ
DEC
LD
OR
JR
CALL
BIT
INC
JR
LD
CALL
CALL
JR
031E QUT-BYTE LD
SCF
0320 EACH-BIT RL
RET
SBC
AND
ADD
LD
0329 PULSES E[lJJT
032D DELAY-2 DJNZ
CALL
0332 BREAK-2 JR
LD
0336 DELAY-3 DJNZ
DEC
JR
AND
DJNZ
JR

02FF HEADER
0304 DELAY-1

030B OUT-NAME

0316 OUT-PROG.

033B DELAY-4

03A8 NAME
C,02F4, REPORT-F
DE HL

DE, +12CB

OF 46, BREAK-1
NC.0332 BREAK-2
0304, DELAY-1

DE

AD

E

NZ,02FF HEADER
031E,OUT-BYTE
7(HL)

HL
Z,030B,OUT-NAME
HL, + VERSN
031E,QUT-BYTE
01FC,LOAD/SAVE
0316,0UT-PROG.
E,(HL)

E

z

AA

+ 056

+ 04

C.A

{+ FF),A
B,+23
0320,DELAY-2
OF46,BREAK:-1
NC,03A68 REPORT-D
B,+1E
gSSS,DELAY-S

NZ,0329,PULSES

A
033B,DELAY-4
0320,EACH-BIT

THE 'LOAD’ COMMAND ROUTINE

The bytes collected from the tape are
matched against the program name and then
the program is loaded into RAM,

0340 LOAD CALL
RL
RRC

0347 NEXT-PROG CALL
JA

034C IN-BYTE LD

034E NEXT-BIT LD

0350 BREAK-3 I-f\?
out
RRA
JR
RLA
RLA

03A8 NAME

D

D

034C IN-BYTE
347 NEXT-PROG
C.+01

B, + 00

A +7F

A+ FE)

(+ FF),A

NC,03A2,BREAK-4

0361 RESTART JP

0366 IN-NAME

0371 MATCHING

037B IN-PROG. LD

0385 GET-BIT

0388 TRAILER LD
038A COUNTER

039C BIT-DONE

JR
RET
03A2 BREAK-4 LD
AND
JR

C.0385,GET-BIT
UA?:SO.BHEA K-3

D
NC,03E5,INITIAL,

LE
034C,IN-BYTE
7.D

AC
l‘;l_lZ,0371 MATCHING

(HL)
nf,ouzNExr-Pnoe

NC,0366,IN-NAME
E-LINE-hi.)
L,+ VERSN

DB
034C,IN-BYTE
(HL),C
01FC,LOAD/SAVE
037B,IN-PROG

DE

E,+94

B, +1A

E

A,(+ FE)

T7,E

AE
C,0388,TRAILER
g3EBA,COUNTER
NZ,039C,BIT-DONE
+ 56
NC,034E,NEXT-BIT

C
NC,034E,NEXT-BIT

v
Z,0361,RESTART

REPORT-D — Break pressed

03A6 REPORT-D RST
DEFB

0008,ERROR-1
+0C

THE ‘PROGRAM NAME’ SUBROUTINE

The name is checked for ‘raport C', ‘FAST’
mode is selacted and the final letter of the

name is inverted.

03A8 NAME CALL
LD
ADD
JP
POP
RET
PUSH
CALL
CALL
LD
LD
DEC

OF55,SCANNING
A,(FLAGS)
AA

M,0DSA,REPORT-C
HL

NC

HL
02E7,SET-FAST
13F8,STK-FETCH
H,D

L,E

Cc

RET M
ADD HL,BC
SET 7,(HL}
RET

THE ‘NEW’ COMMAND ROUTINE

‘FAST' mode is selected and BC is loaded
with the present value of RAMTOP.

03C3 NEW CALL O2E7,SET-FAST
LD BC,(RAMTOP)
DEC BC

THE RAM-CHECK ROUTINE

Starting with location RAMTOP-1 an attempt
is made to fill each location with 02. The
addresses are decrementad until 3FFF is
reached. Each location is then read-back until
the first address that does not fetch 02 is
found, This address is RAMTOP.

03CB RAM-CHECK LD H,B

LD LC

LD A, +3F
03CF RAM-FILL LD {HL), + 02

DEC HL

cP H

JR NZ,03CF,RAM-FILL
03D5 RAM-READ AND A

SBC HL,BC

ADD HLBC

INC HL

JR NC,03E2,SET-TOP

DEC (Hé_&

JR Z,03E2,SET-TOP

DEC (HL)

JR Z,03D5,RAM-READ
03E2 SET-TOP LD (RAMTOP),HL

THE INITIALISATION ROUTINE

The different tasks of the initialisation routine
are:

I. Set the top location in RAM to hold 3E.
ii. Set the stack pointer to point to the
next location below.
lil. Set ERR-SP to hold the address two
locations below the stack pointer.
iv. Set the | register to hold 1E.
v. Select interrupt mode 1.
vl. Set the IY register to hold ERR-NR as
its base address.
vii. Select ‘SLOW' mode,
viii. Set D-FiLE to hold PROGRAM, i.e. No
program prasent.
ix. Make a collapsed D-FILE.
x. Set VARS.
xi. CALL CLEAR command routine.
xn Put the cursor in the edit line.
xiii. Produce a ‘SLOW' display.

03E5 INITIAL LD HL,(RAMTOP)
DEC HL
] LD (HL), + 3€
; DEC HL
i, LD SP HL
DEC HL
DEC HL
iii. LD (ERR-SP),HL
LD A +1E
iv. LD LA
V. IM1
vl LD 1Y, + ERR-NR
vil, LD (CDFLAG), + 40
LD HL, + PROGRAM
vii. LD (D-FILE),HL
ix. LD B,+19
0408 LINE LD (HL), + 76
INC HL
DJNZ 0408,LINE
X, LD (VARS),HL
Xi. CALL 149A,CLEAR
0413 N/L-ONLY CALL 14AD,CURSOR-IN
xiil. CALL 0207, SLOW/FAST
PRODUCE THE BASIC LISTING

The ‘upper’ part of the display is produced by
first calling the CLS command routine, then
the BASIC program is listed from S-TOP.

The use of the ‘cursor down' key also causes
the 'upper’ part of the display to be rebuilt.

0419 UPPER CALL
LD
LD
AND
SBC
EX
JR

ADD

LD
CALL
JR
EX
CALL
DEC
JR

042D ADDR-TOP

0433 LIST-TOP

INC
LD1
LD
JR

‘cursor down’ entry point.

0454 DOWN-KEY LD
0457 INC-LINE hﬂ?C

0A2A,CLS
HL,(E-PPC)
EE.[S-TOP)
HL.DE

DE,HL
NC,042D,ADDR-TOP
HL,DE
(S-TOP),HL
09D8,LINE-ADDR
Z,0433,LIST-TOP
DE,HL
073E,LIST-PROG
(BERG)
NZ,0472,LOWER
HL,(E-PPC)
09D8,LINE-ADDR
HL,(CH-ADD)

HL,DE
HL,+S-TOP
NC,0457 INC-LINE
DEHL

A(HL)

HL

(DE),A
0413, UPPER

HL, + E-PPC
E,(HL)
HL

0464 KEY-INPUT

COPY THE EDIT-LINE

D,(HL)
HL

DE,HL
HL
09D8,LINE-ADDR
05BB,LINE-NO.
HL

5(FLAGX)
NZ,0472,LOWER
(H)),D

HL

(HLLE
0418,UPPER

The 'lower’ part of the dispiay is formed by
copying the edit-line from the workspace to

the bottom of the s¢reen.,

First floating point numbers are removed,
then the blank part of the screen is defined
and finally the edit-line is copied over with
the ‘lower’ part of the screen being expanded

if necessary.

The EDIT-INP. entry point comses into use
when EDIT is used in reply to a request for

INPUT.

046F EDIT-INP, CALL
0472 LOWER LD
0475 EACH-CHAR LD
CP
JR
LD
CALL
JR
CcP
INC
JR
CALL
CALL
LD
LD
CALL
BIT
JR
LD
cP
JR
INC
LD
LD
LD
CALL
LD
LD
LD
DEC
CP
JR
INC
EX
LD
CP
CALL
JR

0482 END-LINE

0487 EDIT-LINE
048A EDIT-ROOM

04B1 FREE-LINE

14AD,CURSOR-IN
HL{E-LINE)

A,(HL)

+7E
NZ,0482,END-LINE
BC, + 0006
OAG0,RECLAIM-2
0475,EACH-CHAR
+ 76

HL

NZ,0475 EACH-CHAR
0537,CURSOR

OA1F LINE-ENDS
HL(E-LINE)
(ERR-NR), + FF
0766,COPY-LINE
7,(ERR-NR}

NZ,04C1 DISPLAY-6
A (DF-82)

+18

20.0401 ,DISPLAY-6

{DF-S2),A

BA

GC,+01
(918,LOC.-ADDR
D,H

EL

A (HL)

HL

(HL)

HE,U4B1 JFREE-LINE

DE,HL
A (RAMTOP-hi)
+4D
C,0A5D,RECLAIM-1
048A,ED(T-ROOM

8

WAITING FOR A KEY

The syntax error pointer is set to zero and a
display is produced. Once a key has been
pressed the display is terminated. The
pressing of ‘multiple keys’ causes a jump
back to LOWER.

04C1 DISPLAY-6 LD HL, + 0000
LD (X-PTR),HL
LD HL, + COFLAG
BIT 7(HUV)
CALL Z,0229,DISPLAY-1
04CF SLOW-DISP BIT 0,(HL)
JR Z.04CF,SLOW-DISP
LD BC,(LAST-K)
CALL OF4B,D-BOUNCE
CALL 07BD,DECODE
JR NC,0472,LOWER

MODE SORTING

The differing modes give differing values for
the keys of the keyboard. These are obtained
from the key tables.

04DF MODE-SORT LD A,(MODE)
DEC A
JP M,0508,FETCH-2
JR NZ,04F7,FETCH-1
LD (MODE),A
DEC E
LD AE
SUB +27
JR C,04F2,FUNC-BASE
LD EA
04F2 FUNC-BASE LD HL, +00CC
JR 0505,TABLE-ADD
04F7 FETCH-1 LD A (HL)
CP + 76
JR Z,0528 K/IL-KEY
CP + 40
SET 7A
JR C,051B,ENTER
LD HL, +00C7
0505 TABLE-ADD ADD HL,DE
JR 0515,FETCH-3
0508 FETCH-2 LD A,(HL)
BIT 2({FLAGS)
JR NZ,0518,TEST-CURS
ADD A,+CO
CcP +EB6
JR NC,0516, TEST-CURS
0515 FETCH-3 LD A(HL}
0516 TEST-CURS CP +F0
JP PE,052D,KEY-SORT
051B ENTER LD EA
CALL 0537,CURSOR
LD AE
CALL 0528 ADD-CHAR
0523 BACK-NEXT JP 0472,LOWER

THE ‘ADD-CHAR’ SUBROUTINE

All of the RAM from (HL) to STKEND is
moved up by one byte and the character cocde
in the A register is entered into the extra

location.

0526 ADD-CHAR CALL 0998 ONE-SPACE
LD (DE).A
RET

SORTING THE CURSOR KEYS

The addresses of the ditferent routines for
the cursor keys are obtained by adding the
character code twice to the base address
0482. The address is then stacked.

0528 K/L-KEY LD A, + 78
0520 KEY-SORT LD E.A
LD HL, + 0482
ADD HL,DE
ADD HL,DE
LD C,(HL)
INC HL
LD B,(HL)
PUSH BC

CHOOSING K v. L MODE

The characters in the edit-line are read in turn.

Initially K-mode is selected but it will be
changed to L-mode unless the line holds only
the cursor or the last token is THEN. The RET
2 instruction takes the program to the cursor
key routines.

0537 CURSOR LD HL,(E-LINE)

BIT 5,(FLAGX)

JR NZ,0556,L-MODE
0540 K-MODE RES 2,(FLAGS)
0544 TEST-CHAR LD A (HL)

CP +7F

RET Z

INC HL

CALL 07B4,NUMBER

JR Z,0544 TEST-CHAR

cP + 26

JR C,0544 TEST-CHAR

cP + DE

JR Z,0540 K-MODE
0556 L-MODE SET 2,(FLAGS)

JR 0544 TEST-CHAR

THE ‘CLEAR-ONE’ SUBROUTINE

The single character (HL) is overwritien by
moving all of the RAM from {HL + 1)-STKEND
down by one byte.

055C CLEAR-ONE LD BC, + 0001

JP 0A60Q,RECLAIM-2
THE CURSOR KEY TABLE
0562 9F 05 | UP-KEY 059F
0564 54 04 | DOWN-KEY 0454
0566 76 05 | LEFT-KEY 0576
0568 7F 05 RIGHT-KEY 057F
056A AF 05 | GRAPHICS 05AF
056C Ca 05| EDIT-KEY 05C4
056E 0C 06 | NIL-KEY 060C
0570 88 05 | RUBOUT 058B
0572 AF 05 | FUNCTION 05AF
0574 AF 05 1 FUNCTION 05AF

THE CURSOR LEFT ROUTINE

0576 LEFT-KEY CALL 0593,LEFT-EDGE
: LD A(HL)
LD (HL), + 7F

INC HL
JR 0588,GET-CODE

THE CURSOR RIGHT ROUTINE
057F RIGHT-KEY INC HL
LD

A (HL)

CP +76

JR 2,059D,ENDED-2
LD (HL), + 7F

DEC HL

0588 GET-CODE LD
0589 ENDED-1 JR

THE RUBOUT ROUTINE

(HL),A
0523,BACK-NEXT

0588 RUBOUT CALL 0593,LEFT-EDGE
CALL 055C,CLEAR-ONE
JR 0589,ENDED-1

THE ‘LEFT-EDGE’ SUBROUTINE

The first character in the edit-line is tested
against + 7F, the cursor.

0593 LEFT-EDGE IBSC HL

DE,(E-LINE)
LD A,(DE)
CP +7F
RET NZ
POP DE
059D ENDED-2 JR 0589,ENDED-1
THE CURSOR UP ROUTINE
059F UP-KEY LD HL(E-PPC)
CALL 09DS8,LINE-ADDR
EX DE,HL
CALL 05BB,LINE-NO.
LD HL, + E-PPC-hi.
JP 0484, KEY-INPUT

THE FUNCTION KEY ROUTINE

05AF FUNCTION LD AE
AND + 07
LD (MODE),A
JR 059D,ENDED-2

THE ‘COLLECT LINE NUMBER’ SUBROUTINE

The subroutine is entered at LINE-NQ. with
an address in HL. If a line number Is to be
found at that position then it is returned in
DE, otherwise DE is returned with + 0000,

0587 ZERO-DE EX DE,HL
LD DE, + 04C2
05BB LINE-NO. LD A{HL)
AND +CO
JA NZ,05B7,ZERO-DE
LD D,(HL}

INC HL

LD E{HL)
RET
THE EDIT KEY ROUTINE

First the ‘lower' part of the screen is cleared,
then the flag that shows whether the INPUT
command is being followed, is tested and a
return made if the flag is set.

Next the line to be edited is located. Its
number is printed, followed by the cursor, but
before the line itself is copied into the
workspace a test for sufficient room is made.

A return is made if there is not enough
available RAM.

05C4 EDIT-KEY CALL OA1F,LINE-ENDS
LD HL, + EDIT-INP.
PUSH HL
BIT 5{FLAGX)
RET NZ
LD HL,(E-LINE)
LD (DF-GC),HL
LD HL, + 1821
LD {S-POSN),HL
LD HL,(E-PPC)
CALL 09D8,LINE-ADDR
CALL 05BB,LINE-NO.
LD A,D
OR E
RET Z
DEC HL
CALL 0AA50UT-NO.
INC HL
LD C,(HL)
INC HL
LD B,(HL)
INC ML
LD DE,(DF-CC)
LD A +7F
LD (DE),A
INC DE
PUSH HL
LD HL, + 001D
ADD HL.DE
ADD HL,BC
SBC HLSP
POP HL
RET NG
LDIR
EX DE,HL
POP DE
CALL 14A8,SET-STK-B
JR 059D,ENDED-2

THE NEWLINE KEY ROUTINE

The NEWLINE key can be used in three
separate situations and these have to be
dealt with in different ways.

The first part of the routine is common to all
situations.

The ‘lower” part of the screen is cleared. The
PRBUFF is also cleared unless the INPUT
command is being used, or the direct
command COPY.

10

The line is then scanned to check for syntax
errors. The cursor is removed and the line
number found, if present.

060C N/L-KEY CALL OA1F,LINE-ENDS

LD HL, + LOWER
BIT 5,(FLAGX)

JR NZ,0628, NOW-SCAN
LD HL,(E-LINE)
LD A,(HL)
CP +FF
JR Z2,0626, STK-UPPER
CALL OBE2,CLEAR-FRB
CALL DA2ACLS

0626 STK-UPPER LD HL, + UPPER

0629 NOW-SCAN PUSH HL

CALL OCBA, LINE-SCAN
POP HL

CALL 0537,CURSOR
CALL 055C,CLEAR-ONE
CALL 0A73,E-LINE-NO
JR NZ,064E,N/L-INP.
LD A,B

OR C

JP NZ,06E0,N/L-LINE

The second part sets up the required
parameters for the execution of a line, either
as a BASIC line or as an INPUT line.

An empty line is detected and the program
jumps back to the initialisation routine.

DEC BC

DEC BC

LD (PPC),BC

LD {DF-S2), + 02

LD DE,(D-FILE)

JR 0661, TEST-NULL
064E N/L-INP. CP +78

JR Z,0664,N/L-NULL

LD BC,(T-ADDR)

CALL 0918,LOC.-ADDR

LD DE,(NXTLIN

LD (DF-SZ), + 0
0661 TEST-NULL RST 0018,GET-CH
cP + 76
0664 N/L-NULL JP Z,0413,N/L-ONLY
LD (FLAGS), + 80
EX DEHL

The third part of the routine is the ‘line
execution lcop'. When a BASIC program is
being RUN it is this ‘looia' that leads to the
execution of the BASIC lines in their correct
order.

in the case of the INPUT command the ‘line’
Is detected as input in the LINE-RUN
subroutine,

066C NEXT-LINE LD (NXTLIN),HL
EX DE,HL
CALL 004D, TEMP-PTR
CALL OCC1,LINE-RUN
RES 1,(FLAGS)
LD A, +CO
LD (X-PTR-hi.),A
CALL 14A3X-TEMP

RES
BIT
JR
LD
AND
JR
LD
INC
LD
LD
INC
LD
INC
LD
INC
EX
ADD
CALL
JR

5,(FLAGX)
7.(ERR-NR)
Z.06AE,STOP-LINE)
H LL,(NXTLIN)

(HL)

NZ,06AE STOP-LINE
D.(HL)

HL

E(HL)

(PPC),DE

HL

DE,HL

HL,DE
OF46,BREAK-1
C,066C,NEXT-LINE

The third part of the routine is used to
produce the report at the end of a RUN, after
other direct commands and following the use

of the BREAK key.

LD
BIT
JR
LD
06AE STOP-LINE BIT
CALL
LD
CALL
LD
LD
INC
JR
CP
JR
INC
06CA CONTINUE LD
JR
DEC
CALL
LD
RST
CALL
CALL
JP

06D1 REPORT

HL, + ERR:NR
7,(HL})
Z,06AE,STOP-LINE
(HL), + 0C
7.(PR-CC)
Z,0871,COPY-BUFF
BC, + 0121
0918,LOC.-ADDR
A(ERR-NR)
EC.{PF’C)

Z2.,06D1,REPORT
+09
Né,OﬁCA.CONTIN UE
B

(OLDPPC),BC
N%,OGD1 ,REPORT

B

07E8,0UT-CODE
A, +18
0010,PRINT-A
0A98,0UT-NUM.
14AD,CURSOR:-IN
04C1,DISPLAY-6

The fourth part of the routine is involved in
the entering of a BASIC line into its correct
position in the BASIC program.

Initially a search is made to see if there is
alrpady a line with the same name number. If
a line is found then it is ‘reclaimed’.

The new line is then copied from the
workspace to its correct place in the BASIC

program.
06EQ N/L-LINE LD
LD
EX
LD
PUSH
D

L
SB8C

(E-PPC),BC
HL,(CH-ADD)
DE,HL

HL, + N/L-ONLY
HL

HL (STKBOT)
HL,DE

PUSH HL

PUSH BC

CALL 02E7,SET-FAST

CALL 0A2A,CLS

POP HL

CALL 09D8,LINE-ADDR

JR NZ,0705,COPY-OVER

CALL 09F2,NEXT-ONE

CALL OABO.RECLAIM-2
0705 COPY-OVER POP BC

LD AC

DEC A

OR B

RET 2

PUSH BC

INC BC

INC BC

INC BC

INC BC

DEC HL

CALL 099E,MAKE-ROOM

CALL 0207, SLOW/FAST

POP BC

PUSH BC

INC DE

LD HL{STKBOT)

DEC ML

LDDR

LD HL{E-PPC)

EX DE,HL

POP BC

LD (HL),B

DEC HL

LD (HL),C

DEC HL

LD (HL),E

DEC HL

LD (HL),D

RET

THE ‘LIST COMMAND ROUTINE

The ‘LIST' command will list the BASIC
program from a given line, or line zero if no
number is supplied.

The first part of the routine finds the
‘parameter’ and saves the line number in
E-PPC. The second part of the routine
repeatedly calls the OUT-LINE subroutine
until either the screen is full or the last line
has been printed.

072CLLIST SET 1,(FLAGS)
0730 LIST CALL OEA7,FIND-INT.
LD AB
AND +3F
LD M,A
LD LE
LD (E-PPC),HL
CALL 09D8,LINE-ADDR
073€ LIST-PROG LD E, + 00
0740 UNTIL-END CALL 0745,0UT-LINE
JR 0740,UNTIL-END

11

THE ‘PRINT A BASIC LINE’ SUBROUTINE

The first part of the routine fetches the line
number of the ‘current cursor line’ and tests it
against the line number that it is to print. The
tine number is then printed followed by the
‘current line cursor’ if required, or a space if
not,

0745 OUT-LINE LD BC,(E-PPC)
CALL 09EA,CP-LINES
LD D, +92
JR Z,0755, TEST-END
LD DE, + 0000
RL E

0755 TEST-END LD {(BERG),E
LD A (HL)
cP +40
POP BC
RET NC
PUSH BC
CALL 0AAL.OUT-NO.
ING HL
LD A.D
RST 0010,PRINT-A
INC HL
INC HL

The second part of the routine prints the
actual line, By comparing CH-ADD & X-PTR
the routine tests to see if the syntax error
marker shauld be printed. The routine also
tests for floating point numbers and jumps
over them. When a ‘token’ is found a call is
made to the 'token printing’ subroutine. When
the cursor marker is found the appropriate
cursor is printed.,

0766 COPY-LINE LD {CH-ADD),HL
SET 0,(FLAGS)
076D MORE-LINE LD BC.(X-PTR}
LD HL.(CH-ADD)
AND A
SBC HL,BC
JR NZO77C.TEST-NUM.
LD A + B8
RST 0010,PRINT-A
077C TEST-NUM. LD HL,(CH-ADD)
LD A,(HL)
INC HL
CALL 07B4NUMBER
LD {(CH-ADD),HL
JR Z2,076D,MORE-LINE
cpP +7F
JR Z,079D,0UT-CURS.
CP +76
JR Z,07EE,OUT-CH
BIT 6,A
JR Z,079A NOT-TOKEN
CALL 094B,TOKENS
JR 076D, MORE-LINE
079A NOT-TOKEN RST 0010,PRINT-A
JR 076D,MORE-LINE
079D OUT-CURS. LD A,(MODE)
LD B,+AB

AND A

12

JR NZ,07AA,FLAGS-2

LD A(FLAGS)
LD B, + BO
07AA FLAGS-2 RRA
RRA
AND + 01
ADD AB
CALL Q7F5,PRINT-SP.

JR 076D,MORE-LINE
THE ‘NUMBER’ SUBROUTINE

This subroutine tests the character in the A
register against the ‘number marker', If a
match occurs then the value in the HL
register pair is incremented five times, so as
to either skip over the floating point number,
or to reserve 5 bytes for such a number.

0784 NUMBER CP +7E
RET NZ
INC HL
INC HL
INC HL
INC HL
INC HL

RET
THE ‘KEYBOARD DECODE’ SUBROUTINE

The different ‘key values’, held in the BC
register palir, are ‘decoded’ into the usual

81 character codes by looking-up the key
table at OO7E. (007D + 1) The character code is
specified as (HL).

078D DECODE LD
SRA
SBC
OR
LD

»>@O
S

I+
I L

jw]
n

07C7 KEY-LINE

o

7C7,KEY-LINE

z
O
rrnﬁnﬂﬂ »r

+

,+01
JR NZ,07C7,KEY-LINE
LD HL, + 007D

LD EA

HL,DE

THE ‘PRINTING’ SUBROUTINE

The two little routines WRITE-CH & WRITE-N/L
are the essential parts of the printing
subroutine. Howaver before a character can
be actually printed It I8 necessary for S-POSN
to be collected and tested, and the display
expanded if required.

The various entry points to the subroutine are
involvad with the conversion of Hex. codes to
ZXB1 charactér codes.

i) Printing digits:

07DC LEAD-SP. LD AE

AND A

RET M

JR 07F1,PRINT-CH.
07Et1 OUT-DIGIT XOR A
07E2 DIGITANC ADD HL,BC

INC A

JR C,07E2,DIGIT-INC

SBC HL,BC

DEC A

JR Z07DC,LEAD-SP.
07EB OUT-CODE LD E,+1C

ADD AE
07EE OUT-CH AND A

JR Z,07F5,PRINT-SP.
ii) Printing characters:
07F1 PRINT-CH. RES 0,(FLAGS)
07F5 PRINT-SP. EXX

PUSH HL

BIT 1(FLAGS)

JR NZ,0802,LPRINT-A

CALL 0808,ENTER-CH

JR 0805 PRINT-EXX
0802 LPRINT-A CALL 0851,LPRINT-CH
0805 PRINT-EXX POP HL

EXX

RET

iil) Testing S-POSN:

0808 ENTER-CH LD D,A

LD BC,(S-POSN)

LD A,C

CP +21

JR Z,082C, TEST-LOW
0812 TEST-N/L LD A, + 76

CP D

JR Z,0847 WRITE-N/L

LD HL,(DF-CC)

CP (HL)

LD A,D

JR NZ,083E,WRITE-CH

DEC C

JR NZ,083A,EXPAND-1

INC HL

LD (DF-GC),HL

LD C.+21

DEC B

LD (S-POSN),BC
082C TEST-LOW LD AB

CP (DF-S2)

JR Z,0835,REPORT-6

AND A

JR NZ,0812, TEST-N/L

iv) REPORT-5 — insufficient room:

0835 REPORT-5 LD L, +04
JP 0058, ERROR-3

v) Expand the display:

083A EXPAND-1 CALL

EX

vi} Writing an actual code:

083 WRITE-CH LD

INC

LD

DEC
RET

vii) Writing a N/L.

0998,0NE-SPACE
DE,HL

(HL),A

HL
(DF-CC)HL
(S-POSN-Io.)

This Is performed by decrementing the 'line
counter' and using LOC.ADDR to give the
correct values for DF-CC & S-POSN.

0847 WRITE-N/L LD

DEC
SET

JP

(B}‘, +21
0,(FLAGS)
0918,LOC.-ADDR

THE 'LPRINT-CH’ SUBROUTINE

Characters are addec one b

one to the

printer buffer. Once the buffer is full, or a NJ/L
character is sntsrad the buffer is emptied.

0851 LPRINT-CH CP
JR
LD
LD

AND

CP
LD
LD

CALL

LD
INC
LD

RET

+ 76
2,0871,COPY-BUFF
C,A

A,(PR-CC)

+7F

+5C

LA

H, + 40

Z,0871, COPY-BUFF
(HL),C

L
(PR-CC),L

THE ‘COPY’ COMMAND ROUTINE

The COPY command routine starts with the D
register being loaded with Hex.16, being the
number of lines in a full display. The Copy"D
routine is then used to output these lines to

the printer.

0869 COPY LD
LD
INC
JR

D,+16

HL, + D-FILE
HL
0876,COPY*D

In COPY-BUFF the D register is only required
to be given the value Hex.01.

0871 COPY-BUFF LD

D,+01
HL, + PRBUFF

In COPY*D a loop is set up with D being the

LD
counter.
0876 COPY*D CALL
PUSH

02E7,SET-FAST
BC

087A COPY-LOOP PUSH
XOR
LD
087D COPY-TIME OUT
POP
CALL
JR
RRA
ouT
0888 REPORT-D2 RST
DEFB
088A COPY-CONT IN
ADD
JP
JR
PUSH
PUSH
LD
CP
SBC
AND
RLCA
AND

LD
0689C COPY-NEXT LD
LD
INC
CP
JR
PUSH
SLA
ADD
ADD
LD
RL
ADD
LD
AL
SBC
XOR
LD
LD
08B5 COPY-BITS LD
RLC
RRA
LD
08BA COPY-WAIT IN
RRA
JR
LD
QuT
DJNZ
POP
JR
08C7 COPY-N/L IN
RRA
JR
LD
RRCA
ouT
POP
INC
BIT
JR
PQOP
DEC
JR
LD

0880 COPY-BRK

13

HL

A

E,A

(+ FB),A
HL

OF46,BREAK-1
C,088A,COPY-CONT

(+ FB),A
0008,ERROR-1

+0C

A+ FB)

AA
M,08DE,COPY-END
NC,0880,COPY-BRK
HL

+ I:
~TOT>
=

"8

C7,COPY-N/L

+P‘3’
(=]
mn

-

»m

POFP>PIIPPPINGLI>F

D
O+>PCr
(=]
@

>

Z PI OP®O
+
:
o

O

,08BA,COPY-WAIT
AH

(+ FB),A
08B5,COPY-BITS

HL
089C,COPY-NEXT
A+ FB)

NC,08C7,COPY-N/L

(+ FB),A

DE

E

3,E
Z,087D,COPY-TIME
gc

NZ,087A,COPY-LOOP
A, +04

14

OUT (+FB)A
08DE COPY-END CALL 0207, SLOW/FAST
B

POP
THE 'CLEAR PRINTER BUFFER’ SUBROUTINE
The printer buffer is cleared by overwriting it

with Hex.00 characters and setting the final
location to Hex.76.

08E2 CLEAR-PRB LD HL, + 405C
LD (HL), + 76
LD B, + 20
08E9 PRB-BYTES DEC HL
LD (HL), + 00
DJNZ 08ES,PRB-BYTES
LD AL
SET 7A
LD (PR-CC),A
RET

THE ‘PRINT AT’ SUBROUTINE

This routine checks the validity of the
parameters Fiven with the PRINT AT
command. if the parameters are invalid an
error |8 signalled otherwise the correct
S-POSN & DF-CC is obtained by using the
LOC.-ADDR routine.

0BF5 PRINT-AT LD A +17
SuB B
JR C,0805 WRONG-VAL
D8FA TEST-VAL. CP (DF-S2)
JP C,0835,REPORT-5
INC A
LD B,A
LD A +1F
SuUB C
0905 WRONG-VALJP C,0EAD,REPORT-B
ADD A, +02
LD C,
0808 SET-FIELD BIT 1,(FLAGS)
JR Z,0818,LOC.-ADDR

The LPRINT AT command sets the value of
PR-CC,

LD A, +5D
SUB C

LD (PR-CC),A
RET

THE ‘LOC.-ADDR’ SUBROUTINE

This Important subroutine sets the value of
DF-CC tor given values of a display location.
If the display is collapsed and thereby does
not truly hold the position then the required
line i3 expanded.

0918 LOC.-ADDR LD (S-POSN),BC
LD HL,(VARS)
LD D,C
LD A,+22
sSuB C
LD CA
LD A +76

INC B
0927 LOOK-BACK DEC ~ HL
CP {HL)
JR NZ,0927,LOOK-BACK
DINZ 0927,LOOK-BACK
INC HL
CPIR
DEC HL
LD (DF-CC),HL
SCF
RET PO
DEC D
RET Z
PUSH BC
CALL 099E,MAKE-ROOM
POP BC
LD B,C
LD H,D
LD LE
0940 EXPAND-2 LD (HL), + 00
DEC HL
DJNZ 0940,EXPAND-2
EX DE,HL
ING HL
LD (DF-CC),HL
RET

THE ‘EXPAND TOKENS’ SUBROUTINE

The character codes that are considered to

be tokens are expanded using this subroutine.
The address of each ‘expanded token’ in the
‘token table' is found using TOKEN-ADD. The
leading space is printed if specified by bit 0
of FLAGS, the letters of the token-word are
then printed and a trailing space is added if
needed,

094B TOKENS PUSH AF
CALL 0975 TOKEN-ADD
JR NC,0959 ALL-CHARS
BIT 0,(FLAGS)
JR NZ,0959 ALL-CHARS
XOR A
RST Q010,PRINT-A
0959 ALL-CHARS LD A (BC)
AND + JF
RST 0010,PRINT-A
LD ABC)
INC BC
ADD AA
JR NC,0959,ALL-CHARS
POP BC
BIT 7.B
RET Z
CP + 1A
JR Z,096D, TRAIL-SP,
CP + 38
RET C
096D TRAIL-SP. XOR A
SET 0,(FLAGS)
JP 07F5,PRINT-SP,

In TOKEN-ADD the base address of the
TOKEN TABLE is Hex.0111. The words in this
table are found in turn and when the required
word has been located a return is made with

BC pointing to the start of the word.

0975 TOKEN-ADD PUSH
LD
BIT
JR
AND
CP
JR
LD
INC
BIT
INC
JR
DINZ
BIT
JR
CcP
0992 COMP-FLAG CCF
0993 FOUND LD
LD
POP
RET
LD
ADD
RET

097F TEST-HIGH

0985 WORDS

HL
HL, + 0111
7,A

Z097F, TEST-HIGH
+ 3F

+43

NC,0993 FOUND
B,A

B

7(HL)

HL

Z.,0985 WORDS
0985 WORDS

6,A
NZ,0992,COMP-FLAG
+ 18

B.H
CL
HL
NC
A,(BC)
A +E4

THE ‘ONE-SPACE’ SUBROUTINE

Whenever a single space is required in the
program area or the display file then this

subroutine is called.
099B ONE-SPACE LD

BC, + 0001

THE '‘MAKE-ROOM’ SUBROUTINE

This routine creates BC spaces from the

location (HL).

099E MAKE-ROOM PUSH
CALL
POP
CALL

HL
OEC5,TEST-ROOM
HL
09AD,POINTERS
HL(STKEND)
DEHL

THE ‘CHANGE ALL POINTERS' SUBROUTINE

Whenever some of the pointers require to be
changed this subrcutine is called with the
amount of change in BC, and HL determining
which pointers are to be changed. All pointers
that point lower than HL will not be altered.

0SAD POINTERS PUSH
PUSH
LD
LD

0SB4 NEXT-PTR LD
INC
LD
EX
AND
SBC
ADD
EX
JR

AF

ML
HL, + D-FILE
A +08
E,(HL}

HL

D,(HL)
(SP),HL

A

HL,DE
HL,DE
(SP),HL
NC,08C8 PTR-DONE

15

PUSH DE
EX DE,HL
ADD HL,BC
EX DE,HL
LD (HL),D
DEC HL
LD (HL),E
INC HL
POP DE

09C8 PTR-DONE INC HL
DEC A
JA NZ,09B4 NEXT-PTR
EX DE,HL
POP DE
POP AF
AND A
SBC HL,DE
LD B.H
LD GL
INC BC
ADD HL,DE
EX DE,HL
RET

THE ‘LINE-ADDR’ SUBROUTINE

For a given BASIC line number this subroutine
will return the starting address of the actual
line (and the Z flag set) or the starting address
of the following line if it does not exist (C
reset).

09D8 LINE-ADDR PUSH HL
LD HL, + PROGRAM
LD D,H
LD EL

0SDE NEXT-TEST POP BC
CALL 0SEA,CP-LINES
RET NC
PUSH BG
CALL 09F2,NEXT-ONE
EX DE,HL
JR 09DE,NEXT-TEST

THE ‘COMPARE LINE NUMBERS' SUBROUTINE

The line number in {HL) is compared to the
number in BC.

09EA CP-LINES LD A(HU)
CP B
RET NZ
INC HL
LD A(HL)
DEC HL
CP C
RET

THE ‘NEXT LINE or VARIABLE’ SUBROUTINE

This subroutine very cleverly finds the start of
the rmext BASIC line or the start of the next
variable in the variable area. Line numbers are
identified by the high byte being less than
Hex.40, and the different types of variables are
identified by their differing bits 6 & 7.

09F2 NEXT-ONE PUSH HL
LD A,(HL)

16

CP
JR
BIT
JR
ADD
JP
CCF
OAQ1 NEXT + FIVE LD
JR

LD
0AO08 NEXT-LETT RLA
INC
LD
JR
JR
INC
INC
LD
INC
LD
INC
ADD
POP

OAOF LINES
QA10 BIT-5-NIL

0A15 NEXT-ADD

40
,0AO0F ,LINES

A

,0A10,BIT-5-NIL

A

,0A01,NEXT + FIVE

, + 0005
NC,0A08,NEXT-LETT
C,+1

HL

A(HL)

NC,0AD8 NEXT-LETT
0A15,NEXT-ADD

HL

HL

C.(HL)

HL

B,(HL)
HL

HL,BC
DE

+

W TBENOO

THE ‘DIFFERENCE' SUBROUTINE

This subroutine finds the difference in value
between the contents of the HL and DE
register pairs. The result is returned in the BC

register pair.
0A17 DIFFER AND
SBC
LD
LD
ADD
EX
RET

A
HL,DE
B,H
CiL
HL,DE
DE.HL

THE ‘LINE ENDS’ SUBROUTINE

The lines of the ‘lower’ screen are cieared by

this subroutine.

OA1F LINE-ENDS LD
PUSH
CALL
POP
DEC
JR

Bs(D F'SZ]

BC
0A2C,B-LINES
BC

B
0A2C,B-LINES

THE ‘CLS’ COMMAND ROUTINE

l) The B register is loaded with Hex.18, the
number of lines in the display file.

0A2A CLS LD

B, +18

ii} The address of the start of that part of the
display file that is to be cleared is found and a
test is made to see if more, or less, than

3 K. of RAM is fitted.

0A2C B-LINES RES
LD
PUSH
CALL
POP

1,(FLAGS)
C, +21
8C

0918,LOC.-ADDR
BC

LD A (RAMTOP-hi.)
CP +4D
JR C,0A52,COLLAPSE

iiiy As an expanded display file is required, a
suitable number of spaces is printed so as to
clear the specified number of lines.

SET 7(S-POSN-hi.}
0A42 CLEAR-LOC XOR A

CALL O7F5,PRINT-SP.

LD HL,{S-POSN)

LD AL

OR H

AND +7E

JR NZ,0A42,CLEAR-LOI
JP 0918,LOC.-ADDR

iv) As a collapsed display file is required a
LDIR instruction is used to copy a N/L
character the number of times specified in the
C register (formerly B). The system variable

VARS is then found and excess memory
reclaimed.
0A52 COLLAPSED LD D,H

LD E.L

DEC HL

LD C,B

LD B,+00

LDIR

LD HL,(VARS)

THE ‘RECLAIMING’ SUBROUTINES

The pointers are first changed and then the
s%eciﬂed area of RAM is reclaimed by using a
LDIR instruction to overwrite the unwanted
part of the RAM contents.

OASD RECLAIM-1 CALL OA17,DIFFER
0A60 RECLAIM-2 PUSH BC

LD AB
CPL

LD B,A
LD AC
CPL

LD CA
INC BC
CALL O0BAD,POINTERS
EX DEHL
POP HL
ADD HL,DE
PUSH DE
LDIR

POP HL
RET

THE ‘E-LINE NUMBER’ SUBROUTINE

This routine is used to find out whether the
current E-Line starts with a valid line number.
i.e. 1-9999. The pointer CH-ADD is used
temporarily to point along the E-LINE. A return
is made if the INPUT command is being
executed. The INT-TO-FP routine is called to
collect the possible number and the FP-TQ-BC

routine called to form an integer value. The
value is then tested against dec.0-10,000.
The subroutine returns via the SET-MEM
subroutine that resets STKEND.

0A73 E-LINE-NO LD

HL,(E-LINE)
CALL 004D, TEMP-PTR
RST 0018,GET-CH.
BIT 5,(FLAGX)
RET NZ
LD HL, + MEMBOT
LD (STKEND),HL
CALL 1548,INT-TO-FP
CALL 158A,FP-TO-BC
JR C,0A91,NO-NUMBER
LD HL, + D8FO
ADD HLBC

0A91 NO-NUMBER JCI; C,0D9A,REPORT-C
A

JP 14BC,SET-MEM

THE ‘REPORT & LINE NUMBER’
PRINTING SUBROUTINES

The OUT-NUM. entry point is used to print the
error report line numbers and the OUT-NO.
entry point is used for printing line numbers at
the start of BASIC lines.

0A98 OUT-NUM. PUSH DE
PUSH HL
XOR A
BIT 7.B
JR NZ,0ABF,UNITS
LD H,B
LD L,C
LD E,+FF
JR QAAD, THOUSAND
0AAS OUT-NO. PUSH DE
LD D,(HL)
INC HL
LD E,(HL)
PUSH HL
EX DE,HL
I.D E,+00
OAAD THOUSAND LD BC,+ FC18
CAL Q7E1,0UT-DIGIT
LD BC,FF9C
CALL O7E1,OUT-DIGIT
LD C,+F6
CAlLL 07E1,QUT-DIGIT
LD AL
OABF UNITS CALL 07EB.OUT-CODE
POP HL
POP DE
RET

THE ‘UNSTACK-Z' SUBROUTINE

Bit 7 of FLAGS is set during the execution of
a BASIC line but reset during syntax checking.
This subroutine calls SYNTAX-Z and then
either simply ‘returns’ using a JP (HL)
instruction during the execution of a BASIC
line, or uses a RET Z instruction to ‘return’ to
the address above on the stack during syntax
checking.

17

OACS UNSTACK-Z CALL ODA6,SYNTAX-Z
POP HL
RET 2
JP (HL)

THE ‘LPRINT” COMMAND ROUTINE

Bit 1 of FLAGS is set whenever a LPRINT
command is executed.

0ACB LPRINT SET 1,(FLAGS}
THE ‘PRINT' COMMAND ROUTINE

This routine is fairly complex but fortunately it
can be broken into simple parts.

iy Test for PRINT alone.

DACF PRINT LD A,(HL)
CP +76
JP Z,0B84,PRINT-END

ii} A loop is now set up to deal with each
constituent part of a PRINT line.

First, the next character is tested to see if it is a
‘comma’ or a 'semi-colon’.

0ADS5 PRINT-1 SUB +1A
ADC A,+00
JR Z.0B44,SPACING

iii) If the next character is an ‘AT’ it is dealt with
as follows:

Test for ‘AT’
cP
JR

+ A7
NZ,0AFA,NOT-AT

The next character is collected.
RST 0020,NEXT-CH.
The next expression is identified.
CALL O0D92,CLASS-6

A test is made for the correct separator —
a comma.

CP + 1A
JP NZ,0D9A,REPORT-C

The next character is collected.

RST 0020, NEXT-CH
The next expression is identified.

CALL 0092, CLASS-6
A test is made to see if a line is being executed
or syntax being checked. An indirect jJump i8
made to PRINT-ON if syntax is being checked.

CALL OB4E,SYNTAX-ON

18

The particulars of the two expressions are both
on the calculator stack but they need to be
switched over. This is done using a RST 0028
instruction and the literal 01.

RST 0028,FP-CALC.
DEFB + 01

{exchange, 1A72)
DEFB + 34

{end-calc.,002B)

The two expressions on the stack are then
‘loaded’ into the BC register pair by calling
STK-TO-BC.

CALL OBFSSTK-TO-BC

With the PRINT AT parameters now in BC the
usual routine can be called to set DF-CC &
8-POSN and a jump is then made to PRINT-ON.

CALL O08F5,PRINT-AT
JR 0B37,PRINT-ON

iv}) If the next character is a ‘TAB' it is dealt with
as follows:

Test for ‘'TAB'

OAFA NOT-AT CP + A8
JR NZ,0B31,NOT-TAB

The single ‘following expression’ is collected.
The syntax flag is checked and the value of the
expression ‘loaded’ intc the A register.

RST 0D020,NEXT-CH.
CALL 0D92,CLASS-6
CALL OB4E,SYNTAX-ON
CALL 0C02,STK-TO-A

The 'parameter’ is then tested and the new
values of DF-CC & S-POSN are found by calling
TEST-VAL.

JP NZ,0EAD.REPORT-B
AND +1F
LD C.A
BIT 1(FLAGS)
JR Z0B1E,TAB-TEST
SUB {PR-CC)
SET 7,A
ADD A,+3C
, CALL NC,0871,COPY-BUFF
0B1E TAB-TEST ADD A,(S-POSN-lo.)
CP + 21
LD A,(S-POSN-hi.)
SBC A, +01
CALL 08FA,TEST-VAL
SET 0, (FLAGS)
JR 0B37,PRINT-ON

v) The expression that comes next is collected
and printed by using the PRINT-STK subroutine.

0B31 NOT-TAB CALL OF55,SCANNING
CALL O0B55,PRINT-STK

vi) The routine now proceeds to check for
another expression.

0B37 PRINT-ON RST 0018,GET-CH.
Sus +1A
ADC A +00
JR Z,0B44 SPACING
CALL OD1D,CHECK-END
JP (0B84,PRINT-END

vii) The two characters ‘comma & semi-colon’
are now separated.

0844 SPACING CALL NC,088B,FIELD
RST 0020,NEXT-CH.
CP +76
RET Z
JP GADS,PRINT-1

viii} The SYNTAX-ON subroutine causes a jump
to PRINT-ON if syntax is being checked.

OB4E SYNTAX-ON CALL ODAB,SYNTAX-Z

RET NZ
POP HL
JR OB37,PRINT-ON

ix) The PRINT-STK routine collects the details of
a string from the calculator stack. A number is
dealt with by jumping to PRINT-FP, whereas a
string is dealt with in the ‘print string’ section.
First the syntax flag is read.

0B55 PRINT-STK CALL 0ACS5UNSTACK-Z
BIT 6,(FLAGS)

CALL Z,13FB,STK-FETCH
JR Z,0B68B,PR-STR-4
JP 15D8,PRINT-FP

x) The string printing routine.

The length of the string is held in the BC register
pair and the starting address of the string is
held in the DE register pair.

0B64 PR-STR-1 LD A +0B
0B66 PR-3TR-2 RST 0010,PRINT-A
0B67 PR-STR-3 LD DE,(X-PTR)
0B68B PR-STR-4 LD AB
OR C
DEC BC
RET zZ
LD A (DE)
INC DE
LD (X-PTR),DE
BIT 6.A
JR Z,0B68,PR-STR-2
CP +CO
JR Z,0B64,PR-STR-1
PUSH BC
CALL (094B TOKENS
POP BC
JR 0B67 PR-STR-3

xi) The PRINT-END routine.

The syntax flag is read and a N/L ¢character is
printed during line execution.

0B84 PRINT-END CALL OAC5UNSTACK-Z
LD A, +76
RST 0010,PRINT-A
RET

xii) The FIELD subroutine.

The appropriate value of S-POSN (and PR-CC if
required) is found.

0888 FIELD CALL OAC5,UNSTACK-Z
SET O(FLAGS)
XOR A
RST 0010,PRINT-A
LD BC,(S-POSN})
LD AC
BIT 1,(FLAGS)
JR Z,0BA4, CENTRE
LD A, +5D
sSuUB (PR-CC}

0BA4 CENTRE LD C,+11
CP C
JR NC,0BAB,RIGHT
LD C,+01

0BAB RIGHT E,ETLL 090B,SET-FIELD

THE ‘PLOT & UNPLOT’ COMMAND ROUTINES

Initially the x & y co-ordinates are fetched and
tested. Then they are converted to row & column
numbers. The value formed in the A register
distinguishes which pixel is being identified.

OBAF PLOT/UNP. CALL OBF5STK-TO-BC

LD (COORDS),BC
LD A +2B
suUB B
JP C,0EAD,REPORT-B
LD B.A
LD A +01
SRA B
JR NC,0BC5.COLUMNS
LD A +04
0BCS5 COLUMNS SRA C
JR NC,0BCA FING-ADDR
RLCA
0BCA FIND-ADDR PUSH AF
CALL 08F5,PRINT-AT
LD A(HL)
RLCA
CP +10
JR NC,0BDA TABLE-PTR
RRCA
JR NC,0BD9,SQ-SAVED
XOR +8F
0BDg SQ-SAVED LD B,A
0OBDA TABLE-PTR LD DE, +0C9E

The two operations of PLOTting and UNPLOTting

are distinguished by referring to T-ADDR and
comparing the value against the constant 0C9E
that is the value of the address of the UNPLOT
command in the syntax table.

LD A(T-ADDR)
SuB E
JP M,0BES, PLOT

19

POP AF
CPL
AND B
JR OBEB,UNPLOT
OBE9 PLOT POP AF
OR B
OBEB UNPLOT CP + 08
JR C,0BF1,PLOT-END
XOR +8F
0BF1 PLOT-END EXX
RST 0010,PRINT-A
EXX
RET

THE 'STK-TO-BC’ SUBROUTINE

This subroutine ‘loads’ two floating point
numbers into the BC register pair. The
subroutine is therefore used to pick up
parameters in the range CO-FF.

OBFS5 STK-TO-BC CALL 0C02STK-TO-A
LD B,A
PUSH BC
CALL 0C02STK-TO-A
LD EC
POP BC
LD D,C
LD CA
RET

THE ‘STK-TO-A” SUBROUTINE

This subroutine ‘loads’ the A register with the
floating point number held at the top of the
calculator stack. The number must be in the
range 00-FF.

0C02 STK-TO-A CALL 15CD,FP-TO-A
JP C,0EAD,REPORT-B
LD C, + 01
RET Z
LD C, +FF
RET

THE ‘SCROLL’ COMMAND ROUTINE

The first part of the routine sets the correct
values of DF-CC and S-POSN to allow for the
Fext printing to occur at the start of the bottom
ine + 1.

Next the end address of the first line in the
display file is identified and the whole of the
display file moved to overwrite this line.

0COE SCROLL LD B,(DF-S2)
LD C, +21
CALL 0918,LOC.-ADDR
CALL 099B,0ONE-SPACE
LD A,(HL)
LD (DE),A
INC (S-POSN-hi.)
LD HL(D-FILE)
INC HL
LD D,H
LD EL
CPIR

JP 0A5D,RECLAIM-1

20

THE SYNTAX TABLES
i) The offset table.

There is an offset value for each of the BASIC
commands and by adding this offset to the value
of the address where it is found, the correct
address for the command In the parameter table
is obtained.

0C29 8B LPRINT 0CB4
0C2A 8D LLIST 0CB7
0C28 2D STOP 0C58
0C2C 7F SLOW 0CAB
0C2D 81 FAST CCAE
0C2E 49 NEW 0C77
0C2F 75 SCROLL 0CA4
0C30 5F CONT 0C8F
0C31 40 DIM 0G71
0C32 42 REM 0C74
0C33 2B FOR O0C5E
0C34 17 GOTO 0C4B
0C35 1F GOsSuB 0C54
0C36 37 INPUT 0CED
0C37 52 LOAD 0C89
0C38 45 LIST 0C7D
0C38 OF LET 0C48
0G3A 6D PAUSE OCA7
0C3B 2B NEXT 0CE6
0C3C 44 POKE 0C80
0C3D 2D PRINT QCBA
0C3E 5A PLOT 0Co8
OC3F 38 RUN 0C7A
0C40 4C SAVE 0C8C
0C41 45 RAND 0C86
0C42 0D IF 0C4F
0C43 52 CLS 0C95
0C44 SA UNPLOT 0G9E
0C45 4D CLEAR 0C92
0C48 15 RETURN 0CS5B
0C47 6A COPY 0CB1

i} The parametsr table.

For each of the BASIC commands there are
between 3 & 8 entries in the parameter table.
The command classes for each of the .
commands are given, together with the required
separators and these are followed by the
address of the appropriate routine.

0C48 P-LET 01 CLASS-1
14 o
02 CLASS-2
0C4B P-GOTO 06 CLASS-6
00 CLASS-0
81
QE GOTQ,DEB1
0C4F P-IF 06 CLASS-6
DE ‘THEN’
05 CLASS-5
AB
oD {F,0DAB
0G54 P-GOSUB | 06 CLASS-6

0C58 P-STOP

0C5B P-RETURN

0CS5E P-FOR

0C66 P-NEXT

0C6A P-PRINT

0C6D P-INPUT

0C71 P-DiM

0C74 P-REM

0C77 P-NEW

0C7A P-RUN

QC7D P-LIST

0C80 P-POKE

0CB6 P-RAND

0C89 P-LOAD

B5
OE

DC

D8
OE

04
14

DF
05
0D

2E
OE

05

CF
0A

o1

00
E9
0E
05
14
05
BA
oD
00
C3
03

03

OE
03

07

1A

92
OE

03
OE
05

40
03

CLASS0
GOSUB,0EB5
CLASS-0
STOP,0CDC
CLASS-0
RETURN,0EDS
CLASS-4
CLASS-6

STO)

CLASS®
CLASS-5
FOR,0DB9

CLASS-4
CLASS-0

NEXT,0E2E
CLASE-S
PRINT,0ACF

CLASS-1
CLASS-0

INPUT,0EE9
CLASS-5
DIM, 1409
CLASS-5
REM,0D6A
CLASS-0

NEW,03C3
CLASS-3

RUN,OEAF
CLASS-3

LIST,0730
CLASS6
CLASS-6
POKE,0E92
CLASS-3
RAND,DEBC
CLASS5
LOAD,0340

0C8C P-SAVE | 05 CLASSS

02 SAVE,02F6
0C8F P-CONT | 00 CLASS-0

6 | conToErc
0092 P-CLEAR | 00 CLASS-0

14 CLEAR,149A
0C95 P-CLS 00 CLASS-0

oA | cLsoA24
0Ce8 P-PLOT | 06 CLASS-6

% CLASS6

% CLASS-0

0B PLOT/UNP.,0BAF
0C9E P-UNPLOT | 06 CLASS6

% BLASS S

00 CLASS-0

Qg PLOT/UNP.,0BAF
OCA4 P-SCROLL | 00| CLASSO

oc SCROLL,0COE
OCA7 P-PAUSE | 06 CLASS6

00 CLASS-0

o PAUSE,OF32
OCAB P-SLOW [00 CLASS0

oF SLOW,0F2B
OCAE P-FAST |00 CLASS-0

52 FAST,0F23
OCB1 P-COPY |00 CLASS-0

08 COPY,0869
OCB4 P-LPRINT |05 CLASSS

S‘}? LPRINT,0ACB
0CB7 P-LLIST |03 CLASS-3

g? LLIST,072C

THE *LINE SCANNING’ ROUTINE

The BASIC interpreter scans each line for BASIC
commands and as each one is found the
appropriate command routine is followed.

The different parts of the routine are:

i) The LINE-SCAN entry point leads to the line
number being checked for validity.

J 0CF7 GET-PARAM LD

21

OCBA LINE-SCAN LD {(FLAGS), + 01
CALL OA73,E-LINE-NO

il The LINE-RUN entry point is used when
replying to an INPUT prompt and this fact has to
be identified.

0CC1 LINE-RUN CALL 14BC,SET-MEM

LD HL, + ERR-NR

LD (HL), + FF

LD HL, + FLAGX

BIT 5,(HL)

JR Z.0CDE,LINE-NULL

ii) The INPUT reply is tested to see if STOP was
entered.

cP +E3

LD AHL)

JP NZ 0D6F INPUT-REP
CALL ODABSYNTAX-Z
RET F 4

iv) If appropriate, report D is given.

RST 0008,ERROR-1
DEFB +0C

THE ‘STOP’ COMMAND ROUTINE
The only action is to give report 9.

0CDC STOP RST 0008, ERROR-1
DEFB +08

v} A return is made if the line is ‘null’.

OCDE LINE-NULL RST 0018,GET-CH.
LD B, + 00
CP +76
RET Z

vi) The first character is tested so as to check
that it is a command.

LD CA

RST 0020,NEXT-CH.

LD AC

SUB + E1

JR C,0D26,REPORT-C2

vii) The offset for the command Is found from
the offset table.

LD C.A

LD HL, 4+ 0C29

ADD HL,BC

LD C(HL)

ADD HL,BC

IR 0CF7,GET-PARAM

viii) The parameters are fetched in turn by a loop
that returns to 0CF4.

The separators are identified by the test against
+ 0B.
OCF4 SCAN-LOOPLD EI(. L-)ADDR)

22

INC HL
LD (T-ADDR),HL
LD BC, + 0CF4

PUSH BC

LD CA

CcP +0B

JR NC,0D10,SEPARATOR

ix) The address of the command class routine is
obtained by reference to the command class
table at 0D16. A jump is made to the appropriate
routine.

LD HL, + 0D16
LD B, + 00

ADD HL,BC

LD C,(HL)

ADD HL,BC

PUSH HL

RST 0018,GET-CH.
RET

x) The correctness of the separator is simply
tested by the following routine.

0D10 SEPARATOR EET gﬁ18,GET-CH.
JR NZ,0D026,REPORT-C2
RST 0020,NEXT-CH.
RET

THE COMMAND CLASS TABLE

The addresses for the seven different command
classes are found from this table.

0D16 17 CLASS-0,0D2D
0D17 25 CLASS-1,0D3C
0D18 53 CLASS-2,0D6B
0D19 OF CLASS-3,0D28
0D1A 6B CLASS-4.0D85
oD1B 13 CLASS-5,0D2E
oD1C 76 CLASS-6,0092

THE ‘CHECK-END’ SUBROUTINE

Line scanning is finished when the N/L character
is reached.

THE ‘COMMAND CLASS 0 ROUTINE

An entry here will cause the zero flag to be set
prior to a call to CHECK-END.

0D2D CLASS0 CP A

THE ‘COMMAND CLASS 5 ROUTINE

The commands IF, FOR, PRINT, DIiM, REM,
LOAD, SAVE and LPRINT all have class 5 as

their iast command class. A jump is made to the
command routine directly.

0D2E CLASSS5 POP BC |
CALL Z,001D,CHECK-END
EX DE,HL
LD HL(T-ADDR)
LD C.(HL)
INC HL
LD B,(HL)
EX DE,HL

0D1D CHECK-END CALL CDAB,SYNTAX-Z
RET NZ
POP BC
0D22 CHECK-2 LD A(HL)
CP + 76
RET Z
0D26 REPORT-C2 JR OD9A,REPORT-C

THE ‘COMMAND CLASS 3' ROUTINE

The commands RUN, LIST, RAND and LLIST can
be followed by a N/L or a number,

0028 CLASS-3 CP

CALL

+ 76

0D9C,NO-TO-STK

0D3A CLASS-ENDPUSH BC
RET

THE ‘COMMAND CLASS 1’ ROUTINE

The commands LET and INPUT both require that
a variable be specified. The command class 1
routine collects the details of the variable and
stores them in the required places.

0D3C CLASS-1 CALL 111C,LOOK-VARS

0D3F CLASS-4-2 LD (FLAGX), + 00
JR NC,0D40,SET-STK
SET 1(FLAGX)
JR NZ,0D83,SET—STRLN
0D4B REPORT-2 RST 0008,ERROR-1
DEFB -+ 0f
0D4D SET-STK CALL Z,11A7,STK-VAR
BIT 6,(FLAGS)
JR NZ,0D63,SET-STRLN
XOR A
CALL ODAB,SYNTAX-Z
CALL NZ,13F8,STK-FETCH
LD HL, + FLAGX
OR (HL)
LD (HL),A
EX DE.HL
0D63 SET-STRLN LD (STRLEN),BC
LD (DEST),HL

0DEA REM RET
THE ‘COMMAND CLASS 2" ROUTINE

The value assigned to a variable ina LET
command or in reply to an INPUT Prompt is
evaluated by calling SCANNING. It the value is
appropriate then an indirect jump is made to the
LET routine at 1321.

0D6B CLASS-2 POP BC
LD A (FLAGS)
OD6F INPUT-REP PUSH AF
CALL OF55SCANNING
POP AF
LD BC, + 1321

LD D,(FLAGS)

XOR D

AND + 40

JR NZ,0D9A,REPORT-C
BIT 7,0

JR NZ,0D3A CLASS-END
JR 0D22,CHECK-2

THE ‘COMMAND CLASS 4 ROUTINE

The specified variable for the FOR and the NEXT
commands are dealt with by this routine. Only

single character variables are allowed and these
are identified by their having both bits 5 & 6 set.

0085 CLASS-4 CALL 111C,LOOK-VARS
PUSH AF
LD AC
OR +9F
INC A
JR NZ,0D9A,REPORT-C
POP AF
JR OD3F,CLASS-4-2

THE ‘COMMAND CLASS 6’ ROUTINE

CLASS-6 denotes that the following expression
must yield an integer value.

The SCANNING routine evaluates the expression
antd a numeric value will give bit 6 of FLAGS
set.

0D92 CLASS-6 CALL OF55SCANNING
BIT 8,(FLAGS)
RET NZ

REPORT-C — no numeric value.

ODSA REPORT-C RST 0008,ERROR-1
DEFB +0B

THE ‘NO-TO-STK’ SUBROUTINE

During execution of a line this routine Ieads to a
number being placed on the calculator stack. If
the zero flag is reset on entry the number put on
the stack will be the result of evaluating the
‘next’ expression, but if the zero flag is set then
zero will be placed on the stack by using a

RST 0028 instruction.

0D9C NO-TO-STK JR NZ,0D92,CLASS-6

CALL ODAG,SYNTAX-Z

RET Z

AST 0028,FP-CALC.

DEFB + AQ
{stk-zero,1A51)

DEFB + 34
{end-calc.,002B)

RET

THE 'SYNTAX-Z SUBROUTINE

A simple test of bit 7 of FLAGS will give the zero
flag reset during executlon and set during
Syntax checking.

i.e. BYNTAX gives Z set.

23

ODAB SYNTAX-Z BIT
RET

THE ‘IFF COMMAND ROUTINE

At this point the value of the expression
between the ‘IF’ and the ‘THEN’ is known, and is
on the top of the calcuiator stack.

During execution the result is deleted from the
stack but the pointer DE is still available. The
logical value of (DE) is tested and a return made
if zero, otherwise the routine jumps to
LINE-NULL to execute the rest of the line.

7,(FLAGS)

ODAB IF CALL ODAB,SYNTAX-Z
JR Z,00B8,|IF-END
RST 0028,FP-CALC.
DEFB + 02
{delete, 19E3)
DEFB +34
{end-calc.,002B)
LD A,(DE)
AND A
RET Z
0DB6 IF-END JP OCDE,LINE-NULL

THE ‘FOR’ COMMAND ROUTINE
This routine is made up of the following parts:
{} If & STEP variable is given then this is found

and put on the stack, otherwise the value one
is used.

OCDBY FOR P +EQ
JR NZ,0DC6,USE-ONE
RST 0020,NEXT-CH.
CALL 0D92,CLASS-6
CALL OD1D,CHECK-END
JR ODCC,REQORDER

0DC6 USE-ONE CALL OD1D,CHECK-END
RST 0028,FP-CALC.
DEFB + A1

(stk-one,1A51)

DEFB + 34

i) (end-calc.,002B)

The 1top three values on the stack, the ‘vaiue’,
the ‘limit’ & the ‘step’ are re-ordered to give
‘limit-step-value’.

0DCC REORDER RST 0028, FP-CALC.
DEFB +CO
(st-mem-0,1A63)
DEFB +02
(delete,19E3)
DEFB +01
(exchange,1A72)
DEFB (+ €0)
et-mem-0,1A.
DEFB E 01 4
(exchange,1A72}
DEFB +34

{end-calc.,002B)

24

iii) The LET routine is used to locate an
address in the VARS area for the FOR variable.
If the variable already exists then it is
overwritten, if not then the variable is added to
the end of the VARS. The 'limit’ & the 'step’ are
then transferred.

CALL 1321,LET

LD (MEM),HL

DEC HL

LD A{HL)

SET 7(HL)

LD 8C, + 0006

ADD HL,BC

RLCA

JR C,0DEA.LMT + STEP

SLA C

CALL 099E,MAKE-ROCM

INC HL

ODEA LMT + STEP PUSH HL

RST 0028,FP-CALC.

DEFB + 02
(delete, 19E3)

DEFB +02
(delete,1SE3)

DEFB + 34
{end-calc.,002B}

POP HL

EX DEHL

LD C,+0A

LDIR

iv) The current line number is fetched,
incremented and added to the variable.

LD HL,(PPC)
EX DEHL
INC DE

LD (HL),E
INC HL

LD (HL),D

v) The NEXT-LOOQP subroutine is called to
check that a ‘looping’ is possible. I it is not
possible then NXTLIN is set to the appropriate
line number for jumping over the whole of the
FOR-NEXT loop.

CALL OESA NEXT-LOQOP
RET NC
BIT 7 (PPGC-hi)
RET NZ
LD BA{STRLEN)
RES 6.8
LD HL,(NXTLIN)
OEOE NXTLIN-NO LD A(HL)
AND + CO
JR NZ,0E2A.FOR-END
PUSH BC
CALL 09F2,NEXT-ONE
POP 8C
INC HL
INC HL
INC HL
CALL 004C,CURSOR-SO
RST 0018,GET-CH.
CP + F3

EX DE,HL

JR NZ,0EQE.NXTLIN-NO

EX DE,HL

RST 0020,NEXT-CH

EX OE HL

CP B

JR NZ,0EQE NXTLIN-NO
QE2A FOR-END LD (NXTLIN) HL

RET

THE ‘NEXT' COMMAND ROUTINE

In this routine the address of the variable is

collected from DEST. Next MEM is iocaded with
this address 50 that a RST 0028 instruction can
be used to manipulate the difterent parts of the
variable when the ‘step’ is added to the 'value’.

OE2E NEXT BIT 1,(FLAGX)

JP NZ,0048 REPORT-2

LD HL(DEST)

BIT 7(HL}

JR Z,0ES8 REPORT-1

INC HL

LD (MEM) HL

RST 0028, FP-CALC.

DEFB + EQ
{get-mem-0,1A45)

DEFB +E2
{get-mem-2,1A45)

DEFB +O0F
{addition,1755)

DEFB +CO
{st-mem-0,1AG3)

DEFB +02
{delete,19E3)

DEFB +34
{end-calc.,002B)

CALL OESA.NEXT-LOOP

RET Cc

An indirect jump is now made to the line
number given in the last two byles of the
variable.

LD HL,(MEM)

LD DE, + 000F
ADD HL.DE

LD E,(HL)

INC HL

LD D,(HL)

EX DE,HL

JR 0E86,GOTO-2

REPORT-1 — 'NEXT without ‘FOR’ error

OES8 REPORT-1 RST 0008,ERRCOR-1
DEFB 400

THE ‘NEXT-LOOP’ SUBROUTINE

This subroutine is called by both the 'FOR" and
the ‘NEXT' command routines.

When called by the ‘FOR’ routine it determines
whether or not a jump past the whole of the
FOR-NEXT loop is to be made.

when called by the ‘NEXT' command routine it
determines whether another loop is, or is not,
possible.

The routine tests the 'step’ and then compares

the ‘limit’ and the ‘value’. The carry flag is set,
or reset, as required.

0ESA NEXT-LOOP RST 0028,FP-CALC.
DEFB + E1
(get-mem-1,1A45)
DEFB + EO
(get-mem-0,1A45)
DEFB +E2
(get-mem-2,1A45)
DEFB + 32
(less-0,1ACE)
DEFB + 00
{(jump-true,1C2F)
DEFB +02, to OE62
DEFB +01
{exchange,1A72)
QE62 LMT-V-VAL DEFB +03
(subtract,174C)
DEFB +33
(greater-0,1ADB}
DEFB + 00
{jump-true,1C2F)
DEFB + 04, to 0E69)
DEFB + 34
{end-calc.,002B)
AND A
RET
0E69 IMPOSS. DEFB + 34
(end-calec.,002B)
SCF
RET

THE ‘RAND’ COMMAND ROUTINE

The FIND-INT. subroutine is called to show
whether a number was given with the RAND
command. |f not then FRAMES is used.

0E6C RAND CALL OEA7,FIND-INT.
LD AB
OR C
JR NZ,0E77 SET-SEED
LD BC,(FRAMES)
OE77 SET-SEED LD (SEED),BC

RET
THE ‘CONT’ COMMAND ROUTINE
The value of OLDPPC is fetched and used.

OE7C CONT LD HL,{OLDPPC)
JR 0E86,GOTO-2

THE ‘GOTO’ COMMAND ROUTINE

The line number is collected, tested and then
Passed to LINE-ADDR. The address returned is
loaded into NXTLIN.

0E81 GOTO CALL OEA7, FIND-INT.
LD H,B
LD LG

OE86 GOTO-2 LD AH
CP +FO
JR NC,0EAD,REPORT-8
CALL 0SD8,LINE-ADDR.
LD (NXTLIN),HL
RET

THE ‘POKE' COMMAND ROUTINE

The value to be antered is collected from the
stack using FP-TO-A and the address of the
iopcation to be filled is collected using
FIND-INT.

0E92 POKE CALL 15CD,FP-TO-A
JR C,0EAD,REPORT-B
JR Z.0E9B,POKE-SAVE
NEG

OESB POKE-SAVE PUSH AF
CALL OEA7,FIND-INT.
POP AF
BIT 7(ERR-NR)
RET Z
LD (BC),A
RET

THE ‘FIND-INT.” SUBROUTINE

The infeger value of the floating point number
on the top of the stack is found. Report B is
given if the value exceeds 65535 decimal,

OEA7 FIND-INT. CALL 158A,FP-TO-BC
JR C,0EAD,REPORT-B
RET Z

REPORT-B — integer out of range

QEAD REPORT-B RST 0008,ERROR-1
DEFB +0A

THE ‘RUN’ COMMAND ROUTINE

The line number is determined and a jump
made to the CLEAR command routine.

OEAF RUN CALL 0E81,GOTO
JP 149A CLEAR

THE ‘GOSUB’ COMMAND ROUTINE

The current line number is fetched,
incremented and stacked. The Jine number of
the subroutine is determined and the registers
set up for the TEST-ROOM subroutine.

0EB5 GOSUB LD HL,(PPC)
INC HL
EX (SP),HL
PUSH HL
LD (ERR-SP),SP
CALL 0OE81,GOTO
LD BC, + 0006

26

THE ‘TEST-ROOM’ SUBROUTINE

This subroutine tests the value of STKEND
against the stack pointer aliowing 36 bytes for
other variables. Report 4 is given if there is
insufficient room,

OEC5 TEST-ROOM LD HL,(STKEND)
ADD HLBC
JR C,0ED3,REPORT-4
EX DE,HL
LD HL, + 0024
ADD HLDE
SBC HLSP
RET C

REPORT-4 — out of RAM

OED3 REPORT-4 LD L, +03
JP 0058,ERROR-3

THE ‘RETURN’ COMMAND ROUTINE

The ‘return’ line number is taken off the ‘gosub
stack’ and tested to show that it is a real line

number. Report 7 is given if there is a mistake.
0EDS RETURN POP HL
EX (SP)HL
LD A H
cpP +3E
JR Z,0EES,REPQRT-7
LD (ERR-SP),SP

JR 0E86,GOTO-2
REPORT-7 — return without gosub

The stack is restored and report 7 given.

OEES REPORT-7 EX (SPLHL
PUSH HL
RST 0008,ERROR-1
DEFB +06

THE ‘INPUT’ COMMAND ROUTINE

A test for report 8 is made and the workspace
cleared. Then the appropriate prompt
characters are printed and the cursor marker
added. Finally a jump to LOWER is made so
that the edit-line can be printed.

OEES INPUT BIT 7 {PPC-hi.}
JR NZ,0F21,REPORT-8
CALL 14A3 X-TEMP
LD HL, + FLAGX
SET S{HL)
RES 6,(HL)
LD A (FLAGS)
AND + 40
LD BC, + 0002
JR NZ,0F08,PROMPT
LD C,+04
0F05 PROMPT OR (HL)
LD (HL},A
RST 0030,BC-SPACES

LD (HL), + 76

LD AC
RRCA
RRCA
JR C,0F14 ENTER-CUR
LD A +0B
LD (DE),A
DEC HL
LD (HL),A
OF14 ENTER-CUR DEC HL
LD (HL), + 7F
LD HL,(S-POSN)
LD (T-ADDR),HL
POP HL
JP 0472, LOWER

REPORT-8 — input as direct command

0F21 REPORT-8 RST 0008,ERROR-1
DEFB +07

THE ‘FAST' COMMAND ROUTINE

The SET-FAST routine is called to reset bit 7 of
CDFLAG, and then bit 6 is reset.

OF23 FAST CALL 02E7 SET-FAST
EE$ 6,(CDFLAG)

THE ‘SLOW’ COMMAND ROUTINE

The 'true’ slow/fast flag — bit 6 of CDFLAG is
set and a jump made to SLOWIFAST that
copies this flag to bit 7 for compute and
display.
OF2B SLOW SET 6,(CDFLAG)

JP 0207 SLOWIFAST

THE ‘PAUSE’ COMMAND ROUTINE

The parameter of the PAUSE command is
determined. Fast mode is selected for the
period of the PAUSE and the DISPLAY-P
routine called.

On returning the correct mode, SLOW or FAST,
is selected and the value of FRAMES-hi. set to
hex.FF. A jump to D-BOUNCE is then made.

Note: In the ‘unimproved’ ROM the value given
to FRAMES-hi. was determined by a SET 7,
{FRAMES-hi.) instruction and this failed to
ensure that the 15th. bit of FRAMES would
remain set as the first action of DISPLAY
routine is to decrement FRAMES.

0F32 PAUSE CALL OEA7,FIND-INT.
CALL 02E7,SET-FAST
LD H,B
LD LC
CALL 022D,DISPLAY-P
CALL 0207, SLOWI/FAST
LD {FRAMES-hi.), + FF
JR 0F4B,D-BOUNCE

THE ‘BREAK-1’' SUBROUTINE
The ‘break’ key is tested.

QF46 BREAK-1 LD A +7F
IN A+ FE)
RRA

THE 'DEBOUNCE’ SUBROUTINE

The system variable is set to its required vall

**

The forward references:

OFS5 SCANNING
111C LOOK-VARS
11A7 STK-VAR
1321 LET

13F8 STK-FETCH
1488 RESERVE
149A CLEAR

14A3 X-TEMP
14A6 SET-STK-B
14AD CURSOR-IN
14BC SET-MEM
1548 INT-TO-FP
158A FP-TO-BC
15CD FP-TO-A
1508 PRINT-FP
199D CALCULATE

of Hex.FF.
OF4B D-BOUNCE RES 0,(CDFLAG)
LD A +FF
LD (DEBOUNCE),A
RET
RST 0028 literails:
00 jump-true 1C2F
01 exchange 1A72
02 delete 19E3
03 subtract 174C
OF addition 1755
3z less-0 ADB
33 greater-0 1ACE
34 end-calc. 0028
AD stk-zero 1A51
A1 stk-one 1A51
co st-mem-0 1A63
C1 st-mem-1 1A63
c2 st-mem-2 1A63
EO get-mem-0 1A45
E1 get-mem:1 1A45
E2 get-mem-2 1A45

ek ko ek ook sk seteslesbeoto e s sk ke sk ok sk skt sk ok sk ok e ik ok

Notes on the SYSTEM VARIABLES

dec. Hex. Name. Notes.

16384 4000 ERR-NR The ‘report code’. The value is incremented before
being printed.

16385 4001 FLAGS Bit 0 — suppression of leading space.

Bit 1 — control flag for the printer.

Bit 2 — selects K or L mede,; or, F or G.
Bit 6 — F.P. number or string parameters,
Bit 7 — Reset during syntax checking.

16386 4%2 ERR-SP Points to the GOSUB stack.
4003
16388 4004 RAMTOP The top of available RAM, or as specified.
4005
16390 4006 MODE Holds the code for K or F.
16391 4007 PPC The line number of the current statement.
4008
16393 4009 VERSN Marks the start of RAM that is SAVEd.
16394 400A E-PPC The BASIC line with the cursor.
400B
16396 400C D-FILE Pointer for the display file.
400D
16388 400E DF-CC Address for the PRINT AT position.
400F
16400 181? VARS Pointer for the variable area.
16402 4012 DEST The address of the current variable within the
4013 program area.
16404 181; E-LINE The pointer for the workspace.
1
16406 4016 CH-ADD The pointer for scanning a line, either in the program
4017 area or the workspace.
16408 ig}g X-PTR The syntax error address.
16410 1313 STKBOT The pointer for the bottom of the calculator stack.
16412 ‘4‘318 STKEND The pointer for the top of the calculator stack.
16414 401E BERG A location used for many different counting purposes.
16415 401F MEM The pointer to the base of a table of floating point
4020 numbers, either in the calculator stack or the variable

area.

16417
16418
16419

16421

16423
16424
16425

16427
16429

16430
16432
16434
16436
16438

16440
16441

16443
16444
16477

16507

16509

4021
4022

4023
4024

4025
4026

4027
4028

4029
402A

4028
402C

402D

402E
402F

4030
4031

4032
4033

4034
4035

4038
4037

4038

4039
403A

403B

403C

405C
405D
407A
407B
407C
407D

DF-82
S-TOP

LAST-K

Not used.
The number of lines in the lower screen.
The current line number for the automatic listing.

The ‘key-value’ of the last key that was pressed.

DEBOUNCE The debgunce status.

MARGIN
NXTLIN

OLDPPC
FLAGX

STRLEN
T-ADDR
SEED
FRAMES
COORDS

PR-CC
S5-POSN

CDFLAG

PRBUFF

MEMBOT

Adjusts for ditfering T.V. standards,

The line number of the next BASIC line to be
interpreted.

The last line number is saved in case needed.

Bit 0 — Reset indicates an arrayed variabie.
Bit 1 — Reset indicates a given variable exists.
Bit 5 — Set during INPUT mode.

Bit 6 — Set when the INPUT is to be numeric.

Length of string variable , or a BASIC line.

Pointer for the ‘parameter’ table.
Also used to distinguish between PLOT and UNPLOT.

The random function seed value.
The counter for the frames.
The X & Y values of PLOT.

The counter for the printer buffer.
The column and line numbers for PRINT AT.

Bit 0 — set whenever a key is pressed.
Bit 6 — the “true’ fast/slow flag.
Bit 7 — the ‘copy’ of the fast/slow flag.
It will be reset when FAST is needed.

The printer buffer.

A memory arsa that can hoid 6 floating point numbers.
(mem-0, mem-5.)

Not used,

PROGRAM The BASIC program starts here.

eskeste e s seskeokeoie ok eofeokoolaoe s kst sl sk ke ok sk s ok s sk sk ok

0

COMMAND ROUTINES

CLEAR
CLS
CONT
COPY
DIM
FAST
FOR
GOSUB
GOTO
(F
INPUT
LET
LIST
LLIST
LOAD
LPRINT
NEW
NEXT
PAUSE
PLOT
POKE
PRINT
RAND
REM
RETURN
RUN
SAVE
SCROLL
SLOW
STOP
UNPLOT

RESTARTS

BC-SPACES
ERROR-1
FP-CALC.
GET-CH.
INTERRUPT
NEXT-CH
NMI
PRINT-A
START

ROUTINES

Choosing K v. L mods
Command class- 0

1
2
- 3
- 4
- 5
6

Copy the edit line

Cursor key
Display

Edit key
Initialisation

Mode sarting

Newline key

Prepare for ‘SLOW’ display

PN R R N N B DO

22
22
22
22
23
22
23

WEOHO B~

Produce a BASIC listing
RAM-CHECK

Sorting the cursar keys
Waiting for a key
SUBROUTINES
ADD-GHAR

BREAK-1

Change all pointers
CHECK-END
CLEAR-ONE

Clear tha printer buffer
Collact ling number
Compare line numbers
Debounce

Differance

E-LINE number
END-CALC.

Expand tokens
FIND-INT.

Increment CH-ADD
Keyboard decode
Keyboard scanning
LEFT-EBGE
LINE-ADDR
LINE-ENDS

Line scanning
LOAD/SAVE update
LOC.-ADDR
LPRINT-CH
MAKE-ROOM

Next line or varisble
NEXT-LOOP
NO-TO-STK

NUMBER

ONE-SPACE

Print a BASIC line
PRINT-AT

Printing

Program name
Reclaiming o
Report & line number printing
Set FAST mode
STK-TO-A

STK-TO-BC

SYNTAX-Z

TEST-ROOM
UNSTACK-Z

TABLES

Command ¢lasses
Cursor keys
Key
- function
- praphic
- shifted
- tokens
- unshifted
Syntax
- offset
- parameters

[»-RasR-r R

()

Wy oM

b B
oo

The Complete Timex TS1000 &
Sinclair ZX81 ROM Disassembly
PART B: OF55H-1DFFH

CONTENTS PAGE
The 'flow diagram for PART B'eccesssos e —— 1
The 'listing'
SOANNING: oo s s SN ST i 2
LDUK“'VARS ooooo K N B F N RS S dE e E W EEE R E R A LI I g
STK_VARt I E R R R R L I B N I I 11
16 R T e W 18
DIM LI L O B B B O B B N R R RN T R 22
'utility subroutines'....... AR AR S e e 24
PRINT"FP --------------------------------------- . a 31
CALCULATOR. . v v vnnronns R R R R R e RS G 49
The Appendix
BASIC programs for the main seriesieicesecieceae. 76
Index 4 % & % % & 4 8 9 F 4 A A AT EEE R RSP LI 82

Note: Readers of this book who are using machines fitted with the
'unimproved' ROM will have to bear the following points in mind.

¥ Three bytes were added at OEEF, hence the code formerly
at OEEF-102E 1s now at OEF2-1031.

*¥ The code at 102F-1034 was rewritten using an extra
location and is now at 1032-1038,

* The code formerly at 1035-1732 is now at 1039-1736.

* The three bytes formerly at 1733-1735 have been deleted,
hence the code formerly at 1736-10FD is now at 1737-1DFE.

AUTHORS ' COMMENTS:

The production of this book has only been possible
because of the immense help given by Dr. Frank O'Hara,
to whom floating point arithmetic is almost second
nature. I therefore wish to record my grateful thanks
to Frank.

Ian Logan, Lincoln January 1982

1 am very pleased to have been able to help Ian Logan
sort out the arithmetic of the ZX81. 1 remain amazed
at the ease with which he works out what the machine

is doing, without any help from the people who designed
the hardware or those who wrote the programs.

Frank O'Hara, London January 1982

THE ‘FLOW DIAGRAM’ FOR PART B of the 8K ROM Program

CALCULATE

p.48

SCANNING

p.2

A

LOOK-VARS

p.9

SLICING
p.15

]

DIM
p.22
LET
p.18
PRINT-FP
p.31

STK-VAR

.11

(jump-true
exchange
delete
subtract
multiply
division

to-power
< p

or
no.-&-no.
no.- | -eql
no.-gr-eq
nos.-neql
no.-grtr
no.-less
nos.-eql
addition
str-&-no.
str-l-eql
str-gr-eq
strs-neq|
str-grtr
str-less
strs-eq|
strs-add
negate
code

val

len

sin

cos

tan

asn

acs

atn

In

exp

int

sqr

sgn

abs

peek

usr

strs

chrs

not
duplicate
n-mod-m
jump
stk-data
dec-jr-nz
less-0
greater-Q
end-calc.
get-argt.
truncate
fp-cale-2
e-to-fp
series-06 etc.
stk-zero ete.

st-mem-0 etc.
L get-mem-0 etc.

2

THE ‘SCANNING’ SUBROUTINE
This subroutine is used to produce an evaluation result of the ‘next expression”.

The result is returned as the ‘last value’ on the calculator stack. For a numerical result, the ‘last value’
will be the actual floating-point number. However for a string result the ‘last value’ will consist of a set
of parameters. The first of the five bytes is unspecified, the second and third bytes hold the address of
the ‘start’ of the string and the fourth and fifth bytes hold the “length’ of the string.

Bit 6 of FLAGS is set for a numeric result and reset for a string result.

When a ‘next expression’ consists of only a single operand, e.g. ...A..., ...RND...,

...A%14,3TO 7)..., then the ‘last value’ is simply the value that is obtained from evaluating the
operand.

However when the ‘next expression’ contains a function and an operand, e.g. ...CHR3 A.._,

...NOT A.... ...SIN1..., the operation code of the function is stored an the machine stack until the
‘last value’ of the operand has been calculated. This ‘last value’ is then subjected to the appropriate
operation to give a new ‘last value’.

in the case of there being an arithmetic or logical operation to be performed, e.g. ...A+B...,
...A**B..., ...A=B..., then both the ‘last value’ of the first argument and the operation code have to
be kept until the ’last value” of the second argument has been found. Indeed the calculation of the ‘last
value’ of the second argument may also involve the storing of “last values’ and operation codes whilst
the calculation is being perfaormed.

It can therefore be shown that as a complex expression is evaluated,
eg. ...CHRS (T+A-26"INT {{T+A}/26}+38)..., a hierachy of operations yet to be performed is
built up until the point is reached from which it must be dismantled to produce the final *last value’.

Each operation code has associated with it an appropriate priority code and operations of higher
priority are always performed before those of lower priority.

The subroutine begins with the A register being set to hold the first character of the expression and a
starting priority marker — zero — being put on the machine stack.

QOF55 SCANNING RST 0018,GET-CH. The first character is fetched.
LD B,+00 The starting priority marker.
PUSH BC It is stacked.

The character is tested against the code for 'RND’ and a jump made if it does not match.

OF59 S—RBND CP +40 Is it “‘RND*?
JR NZ,0F8C,S-PI Jump if it is not so.

Unless syntax is being checked the required random number is calculated and forms a ‘last value’ on the
calculator stack.

CALL ODAG,SYNTAX-Z Test for syntax checking,

JR Z,0F8A,S-RND-END Jump if required.

LD BC,(SEED} Fetch the current value of SEED.
CALL 1520,STACK-BC Put it on the calculator stack.

RST 0028 FP-CALC. Now use the calculator.

DEFB +A1. stk-one, 1A51 The ‘last value’ is now

DEFB +0F,addition,1755 SEED+1.

DEFB +30,stk-data,19FC Put the decimal number 75

DEFB +37.exponent 87 on the calculator stack.

DEFB +16,(+00,+00,+0Q)

DEFB +04,multiply,17C8 ‘Last value’ = (SEED+1)*75.
DEFB +30,stk-data,19FC See STACK LITERALS to see how
DEFB +B80,four bytes bytes are expanded 50 as to put the
DEFB +41,exponent 91 decimal number 65537 on the

ODEFB +00,+00,+80,{+00} calculator stack.

DEFB +2E,n-mod-m,1C37 Divide (SEED+1)*75 by 65537 to give
a ‘remainder’ and an ‘answer’.

DEFB +02,delete, 18E3 Discard the ‘answer’.

DEFB +A1,stk-one,1A51 The ‘last value’ is now

DEF8 +03,subtract,174C ‘remainder’-1.

DEFB +2D.duplicate,19F6 Make a copy of the 'last value',

DEFB +34.end-calc.,002B The calculation is finished.

CALL 158A,FP-TO-BC Use the "last value’ to give the new

LD {SEED},BC value for SEED.

LD A, (HL} Fetch the exponent of ‘last value’,

AND A Jump forward if the exponent

JR Z,0F8BA S-RND-END is zero.

sug +10 Reduce the exponent, i.e. divide ‘last

LD {HL},A value' by 65536 to give the required
‘last value’.

OF8A S-RND-END JR 0F98,5-PI-END Jump past the 'PI’ routine.

The character is tested against the code for ‘PI’ and a jump made if it does not match.

OF8C S-PI CP +42 Isit 'PI°?
JR NZ,0F9D,S-INKEYS Jump if it is not so.

Unless syntax is being checked the value of "P1” is calculated and forms the ‘last value’ on the
calculator stack.

CALL ODAB,SYNTAX-Z Test for syntax checking.

JR Z,0F99,S-FI-END Jump if required.

RST 0028 FP-CALC. Now use the calculator.

DEFB +A3,stk-pi/2,1A51 The value of P1/2 is put on the

DEFB +34,end-calc.,002B calculator stack as the ‘last value’.

INC {HL) The exponent is incremented thereby

doubling the ‘last value’ giving ‘PI".

0F99 S-PI-END RST 0020,NEXT-CH Move on to the next character.

JP 1083,5-NUMERIC Jump forward.

The character is tested against the code for ‘INKEY$’ and a jump made if it does not match.

QF9D S-INKEY® CP +41 Isit INKEY3?
JR NZ 0FB2S-ALPHNUM Jump if it is not so.

The keyboard is now scanned and the parameters for the INKEY$ string calculated. A null string
will result in the BC register pair holding the value zero, whereas when a key has been pressed it
holds the value one. The DE register pair points to the appropriate character in the key tables and
that entry forms the actual string.

CAlLL 02BB,KEYBOARD Scan the keyboard & reset carry flag.

LD B,H Copy the ‘key value’ into the

LD C.L BC register pair.

LD ,C Set the zero flag when dealing with

INC D a null string.

CALL NZ,07BD,DECODE Decode the 'key value’. The carry flag is
set when only one key is pressed.

LD AD D register always holds zero.

ADC A,D A now holds the value of the carry.

LD B,D Clears the B register.

LD CA C holds zero or one.

EX DEHL The start pointer goes into DE.

JR OFED,S-STRING Jump forward.

The character is tested to see if it is alphanumeric.

OFB82 S-ALPHNUM CALL 14D2,ALPHANUM Test the character.
JR C,1025,5-LET-NUM Jump if a letter or a digit.

4

The character is tested against the code for ‘', hence identifying a decimal number without a
leading zero.

CP +1B Isita“’?
JP Z,1047.S-DECIMAL Jump forward if it is so.

The character is tested against the code for ', hence identifying the ‘unary minus’ operation.

Before the actual test the B register is set to hold the priority 9 and the C register the operation
code DB that are required for this operation.

LD BC.,+09D8 Priority 9, operation code D3.
CpP +16 Isita’"?
JR Z,1020,5-PUSH-PO Jump forward if it is ‘unary minus’.

The character is tested against the code for ‘(*, hence identifying the presence of a parenthesised
expression.

ce +10 Isita’{"?
JR NZ 0FD6,S-QUOTE Jump if it is not so.

A parenthesised expression is dealt with in a recursive manner. An error is reported if there is no
closing bracket.

CALL 0049,CH-ADDH1 Points to the next character.
CALL OF55SCANNING Call the present subroutine.
CP +11 Is the present character a '}’ ?
JR NZ,0FFF ,S-RPRT-C1 Report C if no closing bracket.
CALL 0049,CH-ADD+1 Point to the next character.
JR OFF8,5-CONT-1 Jump forward.

The character is tested against the code for * ** *, hence identifying a string of characters.

OFD6 S-QUOTE CP +8 Isita“""?
JR NZ,1002,S-FUNCT Jump if it is not so.

The parameters for this string of characters are now calculated.

CALL 0049,CH-ADD+1 Paint to the next character.

PUSH HL Save the ‘start’ address.

JR OFE3,5-Q-END? Jump past the re-entry point.
OFEQ S-O-NEXT CALL 0049,CH-ADD+1 Point to the next character.
OFE3 S-Q-END? CP +0B Is it another " * ?

JR NZ,0FFB,S-N/L-ERR Before re-entering the loop check

that the line has not been finished.

FOP DE Get the ‘start’ into DE,

AND A Ciear the carry flag.

SBC HL,DE Now find the ‘length’,

LD B.H Move the ‘length’ to the

LD C.L BC register pair.

A string result has now been identified, either an INKEY$ or a string of characters, therefore bit 6 of
FLAGS must be reset. Unless syntax is being checked the parameters of the string are put on the
calculator stack to form a ‘last value’,

OFED S-STRING LD HL,+FLAGS Make HL point to FLAGS.
RES 6,{HL) Reset this bit — string result.
BIT 7,(HL) Test for line execution.
CALL NZ,12C3,5TK-STORE Stack the parameters if executing a line,
RST 0020,NEXT-CH Move to the next character.

OFF8 S-CONT-1 JP 1088,5-CONT-3 Jump forward.

A NEWLINE character will lead to an error being reported.

OFFB S-N/L-ERR CP +76 Isita '‘N/L"?
JR NZ,0FEQ,S-Q-NEXT Re-enter the loop if it is not the end of
aline.
QFFF S-RPRT-C1 JP 0D9A,REPORT-C Jump back to give report C.

The present character must now represent a function.

1002 S-FUNCT SuB +C4 The range of the functions is changed
from C4-D7 to 00-13 Hex,
JR C.0OFFF,S-RPRT-C1 Report an error if out of range.

The function ‘NOT’ is identified and dealt with separately from the others.

LD BC,+04EC Priority 4, operation code EC.
CP +13 Is it the function ‘NOT' ?

JR Z,1020,5-PUSH-PO Jump if it is so.

JR NC,0FFF,S-RPRT-C1 Check the range again.

‘The remaining functions have priority 16 decimal. The operation codes for these functions are now
calculated. Functions that operate on strings need bit 6 reset and functions that give string resuits
need bit 7 reset in their operation codes.

LD B,+10 Priority 16 decimal.
ADD A,+D9 The function range is now D9-EB.
LD CA Transfer the operation code.
CcP +DC Separate CODE, VAL & LEN which
JR NC,101A,5-NO-T0O-$ operate on strings to give
RES 6,C numerical results.
101A S-NO-TO-E CP +EA Separate STRS & CHR$ which operate
JR C,1020,S-PUSH-PO on numbers to give string results.
RES 7.C Mark the operation codes.

The other operation codes have
bits 6 & 7 both set.

The priority code and the operation code for the function being considered are now pushed to the
machine stack. A hierachy of operations is thereby buiit up.

1020 S-PUSH-POQ PUSH BC Stack the priority and operation codes
AST OQ020,NEXT-CH before moving on to consider the
JP 0F59,S-RND next part of the expression.

The present character has been identified as being alphanumeric. If it is a letter then a variable name
has been found; however if it is a digit then a decimal number has been found.

1026 S-LET-NUM CP +26 Jump if dealing with a digit.
JR C,1047,S-DECIMAL

When a variable name has been identified a call is made to LOOK-VARS, which looks through those
variables that already exist in the variable area. If an appropriate numeric value is found then itis
copied to the calculator stack using MOVE-FP. However a string or string array entry has to have the
appropriate parameters passed to the calculator stack by the STK-VAR subroutine.

CALL 111C,LOOK-VARS Look in the existing variables for the
matching entry.

Jp C,0D4B,REPORT-2 An error is reported if there is no
exjsting entry.

CALL Z,11A7STK-VAR Stack the parameters of the string
entry/return numeric element base
address.

LD A,{FLAGS) Fetch FLAGS.

cpP

JR
INC
LD
CALL
EX
LD
JR

When a decimal number has been identified

and line execution.

+CO
C,1087,5-CONT-2
HL
DE.(STKEND)
19F6,MOVE-FP
DE, HL
{STKEND),HL
1087,S-CONT-2

Test bits 6 & 7 together.

One or both bits are reset.

A numeric value is to be stacked.
Fetch the ‘old’ STKEND.

Move the actual number.

Move the pointer to HL.

Enter the ‘new’ STKEND.

Jump forward.

the action taken is very different for syntax checking

If syntax is being checked then the floating-point form has to be calculated and copied into the actual

BASIC line. However when a line is bein
it is copied to the calculator stack to for

1047 S-DECIMAL CALL
JR

During syntax checking:

CALL
RST
LD
CALL
INC
LD
INC
EX
LD
LD
AND
SBC
LD
LDIR
EX
DEC
CALL
JR

During line execution;

106F S-STK-DEC RST
cp
JR
INC
LD
CALL
LD
LD

A numeric result has now been identified,
bit 6 of FLAGS must be set.

1083 S-NUMERIC SET

ODAB,SYNTAX-2

NZ,106F,S-STK-DEC

14D9,DEC-TO-FP
0018,GET-CH.
BC,+0006

099E, MAKE-ROOM
HL

(HL),+7E

HL

DE HL

HL {STKEND)
C,+05

A

HL,BC
(STKEND}, HL

DE,HL

HL
004C,CURSOR-S0
1083,5-NUMERIC

0020,NEXT-CH
+7E

NZ,106F,S-STK-DEC

HL
DE,(STKEND)
19F6,MOVE-FP
{STKEND),DE
{CH-ADD) HL

6,(FLAGS)

g executed the floating-point form will always be available so
m a ‘last value’.

Jump forward if a line is being
executed.

The floating-point form is found.

Set HL to point one — past the last digit.
Six locations are required.

Make the room in the BASIC line.

Point to the first ‘new’ location.

Enter the number marker character.
Point to the second location,

This pointer is wanted in DE.

Fetch the ‘old’ STKEND.

There are 5 bytes to move.

Clear the carry flag,

The ‘new’ STKEND =‘old’ STKEND — 5.
Move the fioating-point number from
the calculator stack to the line.

Put the line pointer in HL.

Point to the last byte added.

This sets CH-ADD.

Jump forward.

Move on to the next character in
turn untif the number marker
character is found,

Point to the first byte of the number.
Fetch the ‘old’ STKEND.

Move the floating point number.
Save the ‘new’ STKEND.,

This sets CH-ADD.

coming from RND, Pl or a decimal number, therefore

Set the numeric marker flag.

The scanning of the line now continues. The present argument may be followed by a (', a binary
operator or, if the end of the expression has been reached, a NEWLINE character or a command.

1087 S-CONT-2 RST
1088 S-CONT-3 cCP
JR

0018,GET-CH.
+10

NZ,1098,S-OPERTR

Fetch the present character.
Jump forward if it is not a *(*, which
indicates a parenthesised expression.

If the "last value’ is numeric then the parenthesisad expression is a true sub-expression and must be
evaluated by itself. However if the "last value’ is a string then the parenthesised expression represents
an element of an array or a slice of a string. A call to SLICING modifies the parameters of the string
as required.

BIT 6/{FLAGS)

JR NZ,108C,5-LO0P
CALL 1263,SLICING
RST DO20,NEXT-CH
JR 1088,5-CONT-3

Jump forward if dealing with a numeric
parenthesised expression.

Meodify the parameters of the ‘last value’,
Move on to consider the next character.

If the present character is indeed a binary operator it will be given an operation code in the range
C3-CF Hex., and the appropriate priority code.

1098 S-OPERTR LD BC,+00C3

CP +12
JR C,10BC,S-LOQP
SUB +16

JR NC,10A7.S-HIGH-OP

ADD A,+0D

JR 1085,S5-END-OP

10A7 S-HIGH-OP CP +03

JR C,1085,5-END-OP

SUB +C2

JR C.10BC.S-LOOP
CcpP +06

JR NC,10BC.S-LOOP
ADD A+03

10B5 S-END-OP ADD AC

LD C.A

LD HL,+104C
ADD HL,BC
LD B, (ML}

Set default priority zero and the
operation code offset to C3.

Compare the character against the lowest
operator. Jump if out of range,

The ranges of the operators are changed
from 12-18 & D8-DD to FC-FF, 00-02
& C2-C7 Hex.

Jump forward with 00-02 & C2-C7.
The original range 12-15 is now

19-0C Hex,

Jump forward.

Leave the original range 16-18

as 00-02 Hex.

The original range C2-C7 is now

00-05 Hex.

Again jump if out of range.

Test the upper limit.

Again jump if out of range.

The original range C2-C7 is now

03-08 Hex.

The offset C3 is added to give the range
of operation codes C3-CF Hex.

The pointer to the priority table.

i.e, 104C+C3=110F the first address.
Index into the table.

Fetch the appropriate priority.

The main loop of this subroutine is now entered. At this stage there are:

A “last value' on the calculator stack.

The starting priority marker on the machine stack below a hierachy, of unknown size, of
function and binary aperation codes. This hierachy may be null.

The BC register pair holding the ‘present’ operation and priority, which if the end of an

expression has been reached will be priority zero,

Initially the ‘last’ operation and priority is taken off the machine stack and is compared against the
‘present’ operation and priority.

tf the ‘present’ priority is higher than the last’ priority then an exit is made from the loop as the
‘present’ priority is considered to bind tighter than the ’last’ priority.

However if the priorities are less binding then the operation specified as the last’ operation is
performed. The "present’ operation and priority go back on the machine stack to be carried round

the loop again. In this manner the hierachy of functions and binary operations that have been queued
are dealt with in the correct order.

10BC S-LOOP POP DE

LD AD

Get the ‘last’ operation and griority.
The priority goes to the A register.

cpP
JR
AND
JP

PUSH
PUSH
CALL
JR

LD
AND

LD
AST
DEFB
DEFB
JR

B
C,10ED,S-TIGHTER
A

Z,0018, GET-CH.

BC

DE
ODAB.SYNTAX-Z
Z,10D5,S-SYNTEST
AE

+3F

BA
0028,FP-CALC.
+37,fp-calc-2,19E4
+34,end-calc.,0028
10DE,S-RUNTEST

Compare ‘last’ against ‘present’.
Exit to wait for the argument.

Are both priorities zero?

Exit via GET-CH. thereby making
‘last value’ the required result.

Stack the ‘present’ values.

Stack the 'last’ values briefly.

Do not perform the actual operation
if syntax is being checked,

The ‘last” operation code.

Strip off bits 6 & 7 to convert the
operation code to a calculator-offset.
It is required in the B register.

MNow use the calculator.

Perform the actual operation.

It has been done.

Jump forward.

An important part of syntax checking involves the testing of the operations to ensure that the nature
of the ‘last value’ is of the correct type for the operation under consideration.

1005 S-SYNTEST LD
XOR
AND

10DB S-RPRT-C2 JP

AE
(FLAGS)
+40

NZ,0DYA,REPORT-C

Get the ‘last’ operation code.

This tests the nature of the ‘last value’
against the requirement of the operation.
They are to be the same for correct syntax.
Jump if syntax fails.

Before jumping back to go round the loop again the nature of the ‘last value' must be recorded in

FLAGS.

10DE S-RUNTEST POP
LD
SET
BIT
JR
RES

10EA S-ENDLOQP POP
JR

DE
HL,+FLAGS

6,(HL)

7,E
NZ,10EA,S-ENDLOOP
6,(HL)

BC

10BC,5-LOOP

Get the ’last’ operation cade,

Point to FLAGS.

Assume result to be numeric,

Jump forward if the nature of ‘last value’
i5 numeric.

It is string.

Get the ‘present’ values into BC.

Jump back,

Whenever the operations bind tighter, the ‘last’ and the ‘present’ values go back on the machine stack.
However if the ‘present’ operation requires a string as its operand then the operation code is modified

to indicate this requirement.

10ED S-TIGHTER PUSH
LD
BIT
JR
AND
ADD
LD
cp
JR
SET
JR

1102 S-NOT-AND JR

cP
JR
SET

110A S-NEXT PUSH

DE

AC

6,(FLAGS)
NZ,110A,5-NEXT
+3F

A,+08

CA

+10
NZ,1102,5-NOT-AND
6.C

110AS-NEXT
C.10DB,S-RPRT-C2

+17
Z,110A,SNEXT
7.C

BC

The “last’ values go on the stack.

Get the ‘present’ operation code.

Do not modify the operation code if
dealing with a numeric operand.
Clear bits 6 & 7.

Increase the code by OB Hex.

Return the code to the C register.

Is the operation 'AND’ ?

Jump if it is not so.

‘AND’ requires a numeric operand.
Jump forward. o

The operations -,*,/,** & OR are not
paossible.

Is the operation ‘+* ?

Jump if it is so.

The other operations yield a numeric
result.

The ‘present’ values go an the stack.

AST 0020,NEXT-CH Move on to consider the next character
in the expressian.
Je OF59,5-RND Start by testing against "RND’.

THE PRIORITY TABLE

address priority operation address priority operation

110F 06 - 1116 05 =
1110 08 * 1117 05 <>
(RAR 08 / 1118 05 >
1112 0A » 1119 05 <
1113 02 OR 111A 05 =
1114 03 AND 1118 06 +
1115 05 <=

THE ‘LOOK-VARS SUBROUTINE
This subroutine is called whenever a search of the variable area is required. The subroutine is entered
with CH-ADD painting to the first letter of the variable name as it occurs in the BASIC line, either in
the program area or the work space.

The subroutine initially builds up a discriminator byte, in the C register, that is based on the first letter
of the variable name. Bits 5 & 6 of this byte indicate which type of variable is being handled.

The B register is used as a bit register to hold flags.

111C LOOK-VARSSET 6.(FLAGS) Presume a numeric variable.
RST O0018,GET-CH. Get the first character into A.
CALL 14CE,ALPHA Is it alphabetic?
JP NC.0D8A,REPORT-C Give an error report if it is not so.
PUSH HL Save the pointer to the first letter.
LD CA Transfer the letter to C.
RST 0020 NEXT-CH Get the 2nd character into A.
PUSH HL Save the pointer to the 2nd character.
RES 5,C Start with bit 5 reset.
CP +10 Is the 2nd character a “(* ?
JR Z,1148 V-RUN/SYN Separate arrays of numbers.
SET 6,C Now set bit 6.
CP +0D Is the 2nd character a ‘$?
JR Z,1143,V-STR-VAR Separate all the strings.
SET 5,C Now set bit 5.

Now find the end character of a variahle name which has more than one character.

1139 V-CHAR CALL 14D2,ALPHANUM Is the character alphanumeric?
JR NC,1148,V-RUN/SYN Jump when the end is reached.
RES 6.C Mark the discriminator byte,
RST 0020,NEXT-CH Get the next character.
JR 1139,V-CHAR Go back to test it.

Simple strings and arrays of strings require that bit 6 of F LAGS is reset.

1143 V-STR-VAR RST 0020,NEXT-CH Move CH-ADD on past the ‘$".
RES 6,(FLAGS} Reset the bit 6 to indicate a string.

Now test the syntax flag.

1148 V-RUN/SYN LD B,C Copy the discriminator to B.
CALL ODABSYNTAX-Z Test for syntax checking.

10

JR
LD
AND
SET
LD
JR

NZ,1156,V-RUN
AC

+E0

7,A

C.A
118A,V-SYNTAX

Jump forward if executing a line.
Move it to A for manipulation.
Drop the character code part.
Indicate syntax by setting bit 7.
Restore the discriminator to C.
Jump forward.

A BASIC line is being executed so make a search of the variable area.

1156 V-RUN LD

1159 V-EACH LD
AND
JR
CcP
JR

RLA

ADD

JP
JR

POP

PUSH
PUSH

116B V-MATCHES INC
116C V-SPACES LD
INC

AND

JR
cP
JR
OR
cp
JR
LD

CALL

JR

117F V-GET-PTR POP
1180 V-NEXT

EX
POP
JR

The variable name was not present in the variable area.

1188 V-80-BYTE SET

PUSH
CALL

HL,(VARS)
A,(HL)

+7F
Z,1188,V-80-BYTE
c
NZ,1180,V-NEXT

AA
P,1195,V-FOUND-2
C,1195,V-FOUND-2

DE

DE

HL

HL

A,(DE)

DE

A

Z,116C,V-SPACES
(HL)
Z,116B,V-MATCHES
+80

(HL)

NZ 117F, V-GET-PTR
A,(DE)
14D2,ALPHANUM
NC,1194,V-FOUND-1

HL
BC
09F2,NEXT-ONE

DE,HL

BC
1159,V-EACH

7,B

The syntax path re-enters here.

118A V-SYNTAX POP
RST
cp
JR
SET
JR

The matching variable has been found in the variable area.

DE
0018,GET-CH,
+10
Z,1199,V-PASS
5.8
11A1,V-END

Pick up the VARS pointer.

The 1st letter of each variable.
Match on bits 0-6.

Jump when the ‘80-byte’ is reached.
The actual comparison.

Jump if the 1st ietter does not
match the discriminator byte,
Rotate A leftwards and then double
it to test bits 5 & 6.

Strings and array variables.

Simple numeric and FOR-NEXT
variables.

Get the pointer to the 2nd character.
Put it back.

Save the variable pointer.

Go on to consider the next character.
Fetch each character in turn,

Point to the next.

Is the character a ‘space’ ?

Ignore the spaces.

Make the comparison.

Back for another if it does match.
Will it match with bit 7 set?

Try it.

Jump if it does not match after all.
Get the next character.

Is it alphanumeric?

Jump if the correct entry has been
located in the variable area.

Fetch the variable pointer.

Save B & C briefly.

DE will then point to the next
variable in the variable area.
Transfer the pointer to HL.

Get B & C back.

Round the loop again.

Indicates — no variable found.

Drop the pointer to the 2nd character.
Fetch the present character.
Isita‘(’"?

Jump forward.

Indicate not dealing with an array.
Jump forward.

1

1194 V-FOUND-1 POP DE Drop the saved variable pointer.

1195 V-FOQUND-2 POP DE Drop the 2nd character pointer.
POP DE Drop the first letter pointer.
PUSH HL Save the ‘last’ letter pointer.
RST O018,GET-CH. Fetch the current character.

1f the matching variable name has more than asingle letter then the other characters must be passed-over.

1189 V-PASS CALL 14D2,ALPHANUM Is it alphanumeric?
JR NC,11A1,V-END Jump when the end of the name is
reached, otherwise test again.
RST 0020,NEXT-CH Fetch the next character.
JR 11949,V-PASS Go back to test it.

The exit-parameters require to be set.

11A1 V-END POP HL HL holds the ‘first’ or the ‘last’ letter
pointer.
RL 8 Rotate the whole register.
BIT 6B The zero flag is specified.
RET Finished,

The exit-parameters for the subroutine are:

The system variable CH-ADD points to the first character after the variable name as it occurs in the
BASIC line,

If no matching variable name was found in the variable area then:

i The carry flag is set. %
i The zero flag is set when the search was for an array variable.
i The HL register pair points to the first letter of the variable name.

If the search yielded a matching entry in the variable area then:

i The carry flag is reset.
il The zero flag is set for both simple string variables and all array variables.
il The HL register pair points to the letter of a single lettered variable name, or the last character
of a long variable name, as it occurs in the variable area.

Bit 6 of the C register is reset when dealing with an array of numbers and set when dealing with an
array of strings.

Bit 7 of the C register is reset during line execution and set during syntax checking.

THE ‘STK-VAR' SUBROUTINE

This subroutine is usually used either to find the parameters that define an existing string entry in the
variable area, or to return in the HL register pair the base address of a particular element of an array of
numbers. When called from DIM the subroutine only checks the syntax of the BASIC line.

Note that the parameters that define a string may be altered by calling SLICING if this should be
specified.

Initialty the A and B registeres are cleared and bit 7 of the C register is tested to determine whether
syntax is being checked.

11A7 STK-VAR XOR A Clear the array flag.
LD B,A , Clear the B register for later.
BIT 7.C Jump forward if syntax is being

JA NZ,11F8,SV-COUNT checked.

12

Next, simple strings are separated from array variables.

BIT 7.(HL) dump forward if dealing with an
JR NZ,11BF SV-ARRAYS array variable,

The parameters for a simple string are readily found.

INC A Specify a simple string,

11B2 SV-SMPLES INC HL Move along the variable entry.
LD C.ARL) Pick up the iow length counter.
INC HL On one.
LD B,{HL} Pick up the high length counter.
INC HL On one.
EX DE HL Transfer the start pointer to DE.
CALL 12C3,STK-STORE Pass these parameters to the stack.
RST O0018,GET-CH. Fetch the present character.
JP 125A,SV-SLICE? Jump to see if a ‘slice’ is required.

The base address of an element of an array is naw found. Initially the ‘number of dimensions’ is
collected.

118F SV-ARRAYSINC HL Go past the total length counter,
INC HL
iNC HL
LD B,{HL) Collect the ‘number of dimensions’.
BIT 6,C ' Jump forward if dealing with an
JR Z,11D1,SV-PTR array of numbers,

If an array of strings has its ‘number of dimensions’ equal to ‘1’ then such an array can be handled
as a simple string.

DEC B Decrease the ‘number of dimensions’.
JR Z,11B2,5V-SMPLES Jump if the number is now zero,

Next a check is made to ensure that in the BASIC line the variable is followed by a subscript.

EX DE HL Save the variable pointer in DE.
RST 0Q018,GET-CH. Get the present character.

cp +10 Isita“f’?

JR NZ,1231,REPQORT-3 Report the error if it is not so.
EX DE HL Restore the variable pointer.

For both numeric arrays and arrays of strings the variable pointer is transferred to the DE register
pair before the subscript is evaluated.

11D1 SV-PTR EX DE HL Variable pointer into DE.
JR 11F8,SV-COUNT Jump forward.

The following loop is used to find the parameters of a specified element within an array.
The loop is entered at the mid-point — SV-COUNT —, where the element counter is set to zero.
The loop is accessed ‘B’ times, this being, for a numeric array, equal to the number of dimensions

that are being used, but for an array of strings ‘B is one less than the number of dimensions in use
as the last subscript is used to specify a ‘slice’ of the string.

1104 SV-COMMA PUSH HL Save the ‘counter’.
RST 0018,GET-CH. Get the present character.
POP HL Restore the ‘counter’,
CP +1A Is the present character a*,’ ?
JR Z,11FB,SV-LOQP Jump ta consider another su bscript.
BIT 7.C If a line is being executed then

JR Z1231,REPORT-3 there is an error.

BIT
JR
cP
JR
RST

RET

6.C
NZ,11E9,5V-CLOSE
+11
NZ,1223,SV-RPT-C
0020,NEXT-CH

13

Jump if dealing with an

array of strings.

is the present character a ‘)" ?
Report an error if it is not so.
Move CH-ADD to point to the next
character in the BASIC line.
Return as the syntax is correct.

For an array of strings the present subscript may represent a ‘slice’, or the subscript for a ‘slice’ may
yet be present in the BASIC line.

11E8 SV-CLOSE

11F1

SV-CH-ADD

Enter the loop here.

11F8 SV-COUNT
11FB SV-LOOP

120C SV-MULT

CP
JR

P
JR
RST
DEC
LD
JR

LD
PUSH
RST

POP
LD
CP
JR
RST
cp
JR

cP

JR
PUSH
PUSH
CALL
EX
CALL

JR
DEC

CALL
ADD

POP
POP

DJNZ

+11
£,1259,SV-DIM

+DF
NZ,1223SV-RPT-C
0018,GET-CH.

HL

(CH-ADD) HL
1256,SV-SLICE

HL,+0000
HL
0020,NEXT-CH

HL

A.C

+CO
NZ,120C,SV-MULT
0018,GET-CH.

+11
Z,1258,SV-DIM

+DF
Z,11F1,8V-CH-ADD
BC

HL
12FF,DE (DE+1})
{SP},HL

DE,HL
12DD,INT.-EXP1

C,1231,REPORT-3
BC

1305,HL=HL*DE
HL,BC

DE
BC

11D4,SV-COMMA

Is the present character a }* ?

Jump forward and check whether there
is another subscript.

Is the present character a ‘'TO' ?

It must not be otherwise,

Get the present character.

Point to the preceding character.
Make CH-ADD point to this location.
Evaluate this ‘slice”,

Set the ‘counter’ to zero.

Save the ‘counter’ briefly.

Makes CH-ADD point to the next
character.

Restore the ‘counter’.

Fetch the discriminator byte.

Jump unless checking the syntax for
an array of strings.

Get the present character.

Isita‘) ?

Jump forward as finished counting
elements.

Isita ‘“TO'?

Jump back if dealing with a ‘slice’.
Save the dimension-number counter
and the discriminator byte.

Save the element ‘counter’.

(et a ‘dimension-size’ into DE,

The ‘counter’ moves to HL and the
variable pointer is stacked.

The ‘counter’ moves to DE and the
"dimension-size’ to HL.

Evaluate the next subscript.

Give the error if out of range.

The result of the evaluation is
decremented as the ‘counter’ is to
count the elements occurring before
the specified element.

Multiply ‘counter’ by ‘dimension-size’.
Add the result of 'INT.-EXP1'-1 to the
‘present counter.

Fetch the variable pointer.

Fetch the dimension-number counter
and the discriminator byte.

Keep going round the loop until

‘B’ equals zero.

The syntax flag is checked before arrays of strings are saparated from numeric arrays.

BIT

7,C

Syntax or line execution?

14

1223 SV-RPT-C JR NZ,128B,SL-RPT-C Repart the error if checking syntax.
PUSH HL Save the ‘counter’.
BIT 6,C Jump forward if dealing with
JR NZ,123D,SV-ELEMS an array of strings.

When dealing with a numeric array the present character must be a ‘)’.

LD B,D Transfer the variable pointer to
LD C,E the BC register pair.
RST 0018,GET-CH. Fetch the present character.
CcpP +11 Isita’)’ ?
IR 2,1233,SV-NUMBER Report an error if it is not so.
Give report 3.
1231 REPORT-3 RST 0008,ERROR-1 Subscript out of range.
DEFB +02

The address of the location before the actual floating-point number can now be calculated.

1233 SV-NUMBERRST (020,NEXT-CH Move CH-ADD on one location.
POP HL Fetch the 'counter’.
LD DE,+0005 There are 5 bytes to each element.
CALL 1305,HL=HL*DE Compute the total number of bytes.
ADD HL,BC Add this number to the variable

pointer, thereby HL will point ta the
location before the required element.
RET Finished with numeric arrays.

When dealing with an array of strings the length of an element is given by the last dimension-size.
The appropriate parameters are calculated befare being put on the calculator stack.

1230 SV-ELEM$ CALL 12FF,DE{DE+1) Fetch the last ‘dimension-size’.

EX (SP),HL The variable pointer goes on the
stack and the 'counter’ to HL.

CALL 1305HL=HL*"DE Multiply ‘counter’ by ‘dimension-size’.

POP BC Fetch the ‘variable pointer’.

ADD HL,BC This gives HL pointing to the location
before the actual element.

INC HL So point to the start of the string.

LD B, Transfer the last ‘dimension-size’

LD CE to BC to form the length.

EX DE,HL Transfer the start pointer to DE.

CALL 12C2,STK-ST-0 Pass the parameters to the

calculator stack.

There are three possible forms of the last subscript. The first is illustrated by A3(2,4 TO B), the second
by A%(2) {4 TO 8) and the third by A$(2} which is the default value indicating that the whole string
is required.

RST 0018,GET-CH. Get the present character.

cP +11 tsita ‘) ?

JR Z,1259,5V.DIM Jump if it is so.

CcP +1A Isita''?

JR NZ,1231,REPORT-3 Report an error if it is not so.
1256 SV-SLICE CALL 1263,SLICING Use SLICING to modify the parameters.
1259 SV-DIM RST O0020,NEXT-CH Get the next character.
125A SV-SLICE? CP +10 Isita“("?

JR Z,1256,SV-SLICE Jump back to evaluate the ‘slice’.

RES 6,{FLAGS) Indicate a string result.

RET Finished with arrays of strings.

THE ‘SLICING’ SUBROUTINE

15

The present string can be sliced using this subroutine. The subroutine is entered with the parameters of

the string being present on the top of the calculator stack.

Initially the syntax flag is checked and the parameters of the string are fetched only if a line is being

executed.

1263 SLICING CALL ODABSYNTAX-Z

CALL NZ13FBSTK-FETCH
The possibility of the ‘slice’ being ’{)’ has to be considered.
RST 0Q020,NEXT-CH
cpP +11
JR Z,128E SL-STORE

Before proceeding the registers are set up as required.

PUSH DE

XOR A

PUSH AF

PUSH BC

LD DE,+0001

RST 001B,GET-CH.
POP HL

The first parameter of the ‘slice’ is now evaluated.

cP +DF

JR Z,1292,SL-SECOND
POP AF

CALL 12DE,INT.-EXP2
PUSH AF

LD D,B

LD E,C

PUSH HL

RST 0018 GET-CH.
POP HL

ce +BF

JR Z,1292,51-SECOND

cP
1288 SL-RPT-C JP

+11
NZ,0D9A,REPORT-C

There is no second value to the ‘slice’ under consideration.
LD H,D
LD L,E
JR 12A5,SL-DEFINE

The second parameter of the ‘slice’ is now evaluated.

1292 SL-SECOND PUSH HL
RST 0020,NEXT-CH
POQP HL
CcP +11

Check the syntax flag.
Collect the parameters if a line is
being executed.

Get the next character.
isita’}'?
Jump forward if it is so.

The ‘start’ goes on the stack.

The A register is cleared and also
saved on the stack.

Save the ‘length’ briefly.

Assume that the ‘slice’ is to begin with
the first character,

Get the first character into A,

Put the ‘length’ into HL.

Is the present character a ‘TQ' ?

The first parameter by default will be
the current value of DE, i.e. ‘1".

At this stage A will hold zero.

BC will hold the first parameter and
A will hold Hex.FF if there has been an
‘out of range’ error.

Transfer the first parameter to the
DE register pair.

Save the ‘length’ briefly.

Get the present character.

Restore the ‘length’.

Is the present character a ‘TQ'?
Jump forward to consider the

second parameter.

Is the present charactera ’)’' ?

There must be a closing bracket.

The last character of the ‘slice’ is
also the first character,
Jump forward.

Save the “length’ briefily.

Get the next character.
Restore the 'length’.

Is the present charactera *)’ ?

16

2,12A5,SL-DEFINE
AF

12DE,INT.-EXP2
AF

0018,GET-CH.

H,B

L.C

+11
NZ,128B,SL-RPT-C

The 'new’ parameters are now defined.

12A5 SL-DEFINE POP
EX

ADD

DEC
EX

AND
SBC
LD
JR
INC
AND
JP

LD

LD
12B9 SL-OVER POP

RES

When a line is being executed this subroutine enters the

the parameters of the string,

12BE SL-STORE CALL
RET

AF
(SP}HL

HL,DE

HL
{SP}LHL

A

HL,DE

BC,+0000
C.1289,SL-OVER
HL

A
M,1231,REPORT-3

B.H
CL
DE
6,(FLAGS)

ODAB,SYNTAX-Z
Z

THE ‘STK-STORE’SUBROUTINE

Jump if there is no second parameter.
If the first parameter was in range

A will hold zero, otherwise Hex. FF.
BC will hold the second parameter.
Save the error register again.

Get the present character.

The value held in BC is the last
character of the “slice’,

Is the present character a ‘)’ ?

Report the error if it is not so.

Fetch the error register.

Second parameter goes on the stack
and the start goes to HL.

Add the first parameter to the start
of the string.

Go back a location to get it correct.
The ‘new start’ goes on the stack and
the second parameter to HL.
Prepare for subtraction.

Finds the ‘new length’,

By default the ‘new length’ is zero.
A ‘negative slice’ is a null string.
Add the inclusive byte,

Now test the error register.

Jump if there was an ‘out of range’
error whilst in INT.-EXP2.

Transfer the ‘new length’ to the

BC register pair,

Get the ‘new start’ from the stack,
Ensure a string is indicated.

STK-STORE subroutine directly so as to stack

Check the syntax flag and return if
syntax is being checked.

This subroutine passes the values held in the A, B, C, D and E registers to the calculator stack. The
stack thereby grows in size by 5 bytes.

Although this subroutine could be used to transfer floatin

transfer the parameters of strings.

Note that the A register is used as a flag to show whether the

g-point numbers it is, however, only used to

string is a simple string or part of an

array of strings. However this flag would appear to be redundant in the final program.

12C2 STK-STO XOR A
12C3 STK-STORE PUSH BC
CALL 19EB, TEST-5-SP
POP BC
LD HL,(STKEND)
LD (HL),A
INC HL
LD (HL),E
INC HL
LD {HL),D

Clear the array flag.

Save the BC register pair briefly.

Is there room for the 5 bytes?
Restore BC.

Fetch the current vatue of STKEND.
Pass the array flag.

On ane.

Pass the low address pointer.

On one.

Pass the high address pointer.

INC HL
LD {HL),C
INC HL
LD {HL).B
INC HL

LD {STKEND},HL
RES 6.(FLAGS}
RET

THE ‘“INT.-EXP* SUBROUTINE

17

On one.

Pass the low length counter.

On one.

Pass the high length counter.
Onone,

Save the value in HL as STKEND,
Show that the ‘last value’ is a string.
Finished.

This subroutine returns to the calling routine the evaluation result of the ‘next expression’ as an
integer value held in the BC register pair. The subroutine also tests this result against a limit value
supplied in the HL register pair. The carry flag becomes set if there is an ‘out of range’ error.

The A register is used as an error register and holds Hex.00 if there has not been a previous error and
Hex.FF if there was an error when the subroutine was last called.

12DD INT.-EXP1 XOR A
12DE INT.-EXP2 PUSH DE
PUSH HL
PUSH AF
CALL 0D92,CLASS6

POP AF

CALL ODAB,SYNTAX-Z
JR Z,12FC,I-RESTORE
PUSH AF

CALL OEA7 FIND-ENT.

POP DE
LD AB
OR ¢
SCF
JR Z,12F9,I-CARRY
POP HL
PUSH HL
AND A
SBC HL,BC
12F9 I-CARRY LD AD
SBC A+00

12FC I-RESTORE POP HL
POP DE
RET

THE ‘DE,(DE+1)' SUBROUTINE

Clear the error register.

Save both DE and HL for the duration
of the subroutine.

Save the error register briefly.

The ‘next expression’ is evaluated to give
a 'last value’.

Restore the error register.

Jump forward if syntax is being
checked.

Save the error register briefly.

The ‘last value’ is compressed into the
16 bits of the BC register pair.

Get the error register into D.

Test the evaluation result.

Presume the error condition,

Jump if evaluation result is zero.
Copy the ‘limit value’. This will be
either ‘dimension-size’, ‘DIM-limit’
or ‘string length’.

Prepare for the subtraction.

Make the test,

Fetch the error register.

If there is no error and no previous
errar then A holds zero and carry
is reset,

Otherwise A holds Hex.FF or FE, and
carry is set.

Restore the HL and DE

register pairs.

Finished.

This subroutine performs the construction — LD DE,{DE+1) — and returns HL pointing to DE+2.

12FF DE{DE+1) EX DE,HL

INC HL
LD E,(HL}
INC HL
LD D,(HL}
RET

Use HL for the construction.
Paints to ‘DE+1".

in effect — LD E,{DE+1}.
Points to ‘DE+2'.

In effect — LD D,{DE+2}.
Finished,

18

THE ‘HL=HL* DE’ SUBROUTINE

Unless syntax is being checked this subroutine performs the multiplication as stated.

Overflow of the 16 bits available gives ‘'REPORT 4. This is not exactly the true situation but it implies
that the machine is not large enough for the task envisaged by the programmer.

1305 HL=HL"DE CALL ODA6,SYNTAX-Z

RET 7

PUSH BC

LD 8,410

LD AH

LD ¢C,L

LD HL,+0C00

1311 HL-LOOP ADD HLHL

Return if syntax is being
checked.

BC is saved.

Itis to be a 16 bit multiplication.
A holds the high byte,

C holds the low byte.

Initialise the result to zero.
Double the result.

JR C,131A HL-OVER Jump if overflow.

RL C Rotate bit 7 of C into the carry.

ALA Rotate the carry into bit 0 and
bit 7 into the carry flag.

JR NC,131D,HL-AGAIN Jump if the carry flag is reset.

ADD HL,DE Otherwise add DE in once.

131A HL-OVER JP C,0ED3,REPORT-4 Report the overfiow error.
131D HL-AGAIN DJNZ 1311,HL-LOOP Until 16 passes have been made.
POP BC Restore BC.
RET Finished.

THE "LET" COMMAND ROUTINE
This is the actual assignment routine for both the LET and the INPUT commands.

When the destination variable is a newly declared variabie then DEST will point to the first letter
of the variable name as it occurs in the current BASIC line. Bit 1 of FLAGX will be set,

However if the destination variable has been used previously then bit 1 of FLAGX will be reset and
DEST will point for a numeric variable to the location before the five bytes of the existing number;
and for a string variable to the first location used by the existing string. The use of DEST in this
manner applies to simple variables and to the elements of arrays.

Bit 0 of FLAGX is reset if the variable name indicates an array variable.

Initially the current value of DEST is collected and bit 1 of FLAGS tested.

1321 LET LD HL {DEST} Fetch the present value of DEST.
BIT 1,(FLAGX) Jump if dealing with an existing
JR Z,136E,L-EXISTS variable.

A new variable is being used so the length of the name is found.

LD BC,+0005 Assume a numeric variable.
132D L-EACH-CH INC BC For each character of a name:
132E L-NO-SP INC HL Move along the name,
LD A, (HL}) Put the character in the A register.
AND A Is the character a ‘space’?

JR Z,132E,L-NO-SP Ignore any spaces in a name.
CALL 14D2,ALPHANUM Is the character alphanumeric?
JR C,132D,L-EACH-CH Jump back for another if it is so.
cp +0D Is the present character a ‘$’ ?

JP Z,13CB,L-NEWS Jump as dealing with a new string

variable — a simple string.

The appropriate amount of room for the variable name and its value is made available in the work
space. The characters of a long name, with the exception of the first letter, are transferred. The
last letter is ORed with Hex.80.

RST

PUSH
LD
DEC
LD
SUB
LD
LD
JR

1348 L-CHAR INC
LD
AND
JR
INC
LD
DINZ
OR
LD
LD

1359 LSINGLE LD
XOR
POP

The work space is now cleared up to the current entry and this entry is included in the variable area.

CALL

0030,BC-SPACES

DE
HL.{DEST}
DE

AC

+06

B,A

A.+40
Z2,1369,L-SINGLE
HL

A {HL)

A
Z2,134B,L-CHAR
DE

{DE),A
134B,L-CHAR
+80

(DELA

A+80
HL,(DEST)
{HL)

HL

13E7,L-CLEAR

Make the appropriate amount of free
space available in the work space.
DE points to the 2nd new space.
Pointer to the start of the name.

DE points to the 1st new space.

Get the size of the variable.

The minimum size is 6.

B equals the number of extra letters.
Prepare to mark the first letter.
Jump forward if name is short.

For each letter of a long name:

Put the character in the A register.
Again ignore any spaces,

Jump back if it is a ‘space’.

For each location in the waork space.
Transfer the character of the name.
Unti! the whole name is done.
Prepare to mark the last letter.

Now mark it.

Prepare 10 mark the first letter.
Pointer to the start of the name,
Mark the first letter as is required,
Fetch the pointer to the 2nd free
location.

Clear the work space from E-LINE to
(HL} & include the new entry in the

variable area by changing the pointers.

An RST 0028 instruction is used to ‘delete’ the ‘last value’ on the calculator stack. However this

value is not averwritten.
1361 L-NUMERIC PUSH

RST
DEFB
DEFB
POP

HL

0028,FP-CALC.
+02,delete, 19E3
+34 end-calc.,002B
HL

Save the pointer to the location
after the ‘value’ of the variable.
Now use the calculator.

This moves STKEND back five
locations.

Restore the painter.

The HL register pair is made to point to the first location of the ‘value’ of the variable.

LD
AND
SBC
JR

BC,+0005

A

HL,BC
13AE,L-ENTER

There are 5 locations.

Prepare for subtraction.

HL now points to the first location.
Jump forward to enter the value.

Enter here if dealing with a variable name that has already been used. Bit 6 of FLAGS is tested to
separate numeric variables from string, or array of string variables.

136E L-EXISTS BIT
JR

6.(FLAGS)

Z,137A,L-DELETES

Jump forward if dealing with a
string variable.

The new numeric value overwrites the old value, but first the HL register pair must be set to point
‘one location past’ the old value.

19

LD DE,+0006 Six bytes for a numeric variable.
ADD HL,DE HL now points one past.
JR 1361,L-NUMERIC Jump back to do the actual overwriting,

The parameters of the string variable are fetched and simple string variables separated from array of
string variables,

137A L-DELETES LD HL,{DEST) Fetch the start pointer.
LD BC.{STRLEN) Fetch the length counter.
BIT 0,(FLAGX) Jump if dealing with a
JR NZ,1387,L-ADDS simple string,

The new string must not be a null string.

LD A.B High length counter.
OR C Low length counter.
RET 2z Return if the string is nuli.

The next stage involves making available an appropriate amount of room for the new string in the
work space.

PUSH HL Save the start painter.

RST 0030,BC-SPACES Make room in the work space.

PUSH DE Save the pointer to the 2nd space.
PUSH BC Save the length.

LD D.H HL holds the address of STKBOT - 1.
LD E.L

INC HL HL now points to STKBOT.

LD (HL),+00 A space is entered,

LDDR All of the new locations are now set t0

zero {except the 1st space).

The pointer to this ‘new’ area in the workspace is saved whilst the parameters of the ‘new’ string are
fetched from the calculator stack.

PUSH HL Save the ‘new’ area pointer.
CALL 13F8,STK-FETCH Feteh the parameters,
POP HL Restore the pointer,

The length of the string is now compared to the @mount of room that has been made available for it.

EX {SP)HL ‘Length’ of new area to H{,
‘Pointer’ to new area to stack.

AND A Prepare for subtraction,
SBC HL,BC Find the difference in the lengths,
ADD HL,BC Add it back.
JR NC,13A3,L-LENGTH Jump if the ‘new’ string will fit,
LD B.H The procrustean shortening of a
LD c.L string that is too long.

13A3 L-LENGTH EX (SP),HL ‘Length’ of new area to stack.

‘Painter’ to new area to HL.

As long as the new string is not a null string it is copied into the workspace. Procrustean lengthening
is achieved by only moving the number of characters specified in the BC register pair.

EX DE,HL ‘Start’ of string to HL.
‘Pointer’ to new area to DE,
LD A,B Test the ’length’ of
CR C the new string.
JR Z,13AB,L-IN-WS Jump forward if a nuil string.
LDIR The string is copied to the area reserved

for it in the work space.

21

13AB L-IN-W-S POP BC ‘Length’ of new area.
POP DE Pointer to the 2nd space.
POP HL The pointer to the start of the element
in the array.

The string is now copied from the work space to its specified place in the variable area.
Note: Also used to transfer numeric values.

13AE L-ENTER EX DE HL Change pointers over,
LD A.B There is no need to move a string
OR C or number that has 'no length’
RET <Z attributed to it.
PUSH DE Save the address of the element.
LDIR Move the string or number.
POP HL The address of the element is in HL.
RET Finished with array variabies.

When a new string is to replace an old string the new string is entered as if it were a totally new
variable before the old copy of that variable is reclaimed.

1387 L-ADD$ DEC HL HL is made to point to the
DEC HL variable name of the old copy of the
DEC HL string in the variable area.
LD A (HL) The name goes into the A register.
PUSH HL The pointer to the name is saved.
PUSH BC The length of the old copy is saved.

The new string is copied into the work space and included in the variabie area by calling L-STRING
before the old copy is reclaimed.

CALL 13CE,L-STRING Add the new string to the variables.
POP BC The length of the old copy.

POP HL The starting address of the old copy.
INC BC The total length of a string

INC 8C variable is given by adding three

INC BC to the number of characters.

JP 0AG0,RECLAIM-2 Exit by jumping to RECLAIM-2 which

reclaims BC bytes starting at {HL}.
A totally new string variable is added to the variable area as follows:

The variable’s name is collected from the BASIC line and marked as representing a simple string.

13C8 L-NEW$ LD A 460 Prepare for the marking of the name.
LD HL,(DEST} Fetch the address of the name.
X0OR {HL) Mark the name.

The parameters of the string are fetched and the appropriate amount of room is made for the string
in the work space.

13CE L-STRING PUSH AF Save the name.
CALL 13F8STK-FETCH Fetch the parameters of the string.
EX DE HL Switch over the pointers.
ADD HL,BC Find the end of the new string + 1.
PUSH HL Save the pointer to the 'end + 1°.
INC BC Add three to the number of
INC BC characters to make the full length
INC BC that is required.
RST 0030,BC-SPACES Make the room in the work space.
EX DE,HL End of the work space in DE.

POP HL Restore ‘end + 1’ of string.

22

The new string can now be copied into the room prepared for it in the work space. The ‘length’ is
calculated and added to the variable.

DEC BC Move the new string and

DEC BC one extra byte.

PUSH BC Save the count of the bytes.
LDDR Copy the string to the work space.
EX DE HL The location before the string to HL.
POP BC Restore the count,

DEC BC The length of the new string.

LD (HL),B Enter high-length.

DEC HL Back gne.

LD (HL),C Enter low-length.

POP AF Restare the variable name.

All of the work space before the location painted ta by the HL register pair is reclaimed and the
variable name is entered into the “80 byte’,

13E7 L-CLEAR PUSH AF
CALL 14C7,RECLAIM-3

Save the variable name briefly,
Reclaim the work space up to (HL}.

POP AF Restore the variable name.
DEC HL Now point to the ‘80 byte’,
LD {HL),A Overwrite with the variable name,

The system variable E-LINE is set to equal STKBOT and hence clears the wark space and an ‘80" is
entered into the extra location at the end of the new string.

LD HL,(STKBOT)
LD {E-LINE) HL

Get the pointer STKBOT.
Make E-LINE equal STKBOT.

DEC HL The extra byte after the new string.
LD {HL),+80 Make the new ‘80 byte'.
RET Finished adding a new string.

THE 'STK-FETCH' SUBROUTINE

This subroutine collects either a five byte floating-point number, or a set of parameters that define
a string, from the calcutator stack. These five bytes represent the current “last value’,

13F8 STK-FETCH LD HL,{STKEND) Get STKEND.
DEC HL Back one,
LD B,(HL) The fifth value,
DEC HL Back one,
LD C,(HL) The fourth value.
DEC HL Back one,
LD D,{HL) The third vaiue,
DEC HL Back one.
LD E,{HL} The second value.
DEC HL Back one,
LD A{HL) The first value,
LD {(STKEND),HL The new value for STKEND.
RET Finished.

THE ‘DIM’ COMMAND ROUTINE

The routine starts with a search of the variable area to ascertain if a variable with the same variable
name already exists. If such a variable is found then it is deleted by reclaiming the bytes involved.

The size of the new array is calculated and the appropriate amount of room is made available in the
variable area. The parameters of the variable are entered and all of the elements are set to zero.

1409 DIM CALL

140C D-RPORT-C JP
CALL
JR
RES
CALL
CALL

141C D-RUN JR
PUSH
CALL
CALL
POP

111C,LOOK-VARS
NZ,0D9A,REPORT-C
ODABSYNTAX-2
NZ,141C,D-RUN
6.C

11A7 STK-VAR
0D1D,CHECK-END
C,1426,D-LETTER
8C
09F2,NEXT-ONE
0AG60,RECLAIM-2
BC

The initial parameters of the variable are set.

1426 D-LETTER SET
LD
PUSH
LD
BIT
JR
LD

1434 D-SIZE EX

7.C

B.+00

BC

HL,+0001

6,C
NZ,1434,D-5IZE
L,+05

DE,HL

23

Look for an existing variable.

Give report C as there is an error.
Jump forward to D-RUN uniess
syntax is being checked.

Presume a numeric array.

Check the syntax further.

Exit via CHECK-END.

Jump if no existing variable.

Save the variable name.

Find the start of the next variable.
Reclaim the bytes of the existing variable,
Restore the variable name.

An array variable name has bit 7 set.
Make the dimension counter zero.
Save the counter and the name.
Element length for an array of strings.
Jump if dealing with an

array of strings,

Element length for a numerical array.
Element length is to be in DE,

The following loop is passaged for each dimension that is specified in the BASIC line. The total
number of bytes required for the elements of the array is built up in the DE register pair.

1435 D-NO-LOOP RST
LD
CALL
P
POP
PUSH
INC
PUSH
LD
LD
CALL
EX
RST
CP
JR

0020,NEXT-CH
H,+40
120D,INT.-EXP1
C,1231,REPORT-3
HL

BC

H

HL

H,8

LC

1305, HL=HL"DE
DE HL
0018,GET-CH.
+1A
Z,1435,D-NO-LOQP

The final values of the parameters are calculated.

ce
JR
RST
POP
LD
LD
LD
INC
INC
ADD

ADD

JP
PUSH

+11
NZ,140C,D-RPORT-C
0020,NEXT-CH

BC

AC

LB

H,+00

HL

HL

HLHL

HL,DE

C.DED3,REPORT4
DE

Move CH-ADD on one byte.

Set a ‘limit-value’.

Evaluate the parameter,

Give an error if out of range.
Restore the counter and the name.
Stack the result of INT.-EXP1.
Increase the dimension count.

Save the counter and the name,
Result of INT.-EXP1 is

required in HL.

Check that enough RAM is available
and transfer the byte total to DE,
Get the present character.

Isita’,’?

Jump back if there is another dimension
to be included.

Isita’}" ?

Jump if there has been an error.
Move CH-ADD on one byte.
Restore the counter and the name,
Move the variable name to A.
Move the dimension counter to L.,
Clear the H register.

Increase the dimension count by
two and then double the result to
obtain the number of bytes required
for the parameters.

Add to this the number of bytes
required for the elements.

‘Out of RAM’ if result too great.
Save the element-byte total.

24

PUSH
PUSH
LD
LD

BC
HL
8.H
CcL

Save the counter and the name.
Save the ‘total’,

Move the ‘total’ to the

BC register pair,

The appropriate amount of room is now made in the variable area.

LD
DEC
CALL
INC

HL,(E-LINE)

HL

099E , MAKE-ROOM
HL

The parameters are now entered.

LD
POP
DEC
DEC
DEC
INC
LD
INC
LD
POP
INC
LD

{HL},A
BC
BC

The elements of the array are all set to zero.

LD
LD
DEC
LD
POP
LDDR

H,D

LE

DE
(HL),+00
BC

The ‘dimension-sizes' are now entered.

147F DIM-SIZES POP

LD
DEeC
LD
DEC
DEC
JR

RET

BC
(HL),B

NZ,147F,DIM-SIZES

THE 'RESERVE’ SUBROUTINE

Fetch E-LINE.

Point to the ‘80 byte’.

Make BC spaces before the ‘80 byte’.
Make HL point to the first space.

Enter the variable name,
Fetch the ‘total’ and
decrease it by three to give
the required number.

Now point to the second location.
Enter the low-total.

Point to the third location,

£nter the high-total.

Fetch the 'dimension counter’.
Point to the fourth location.
Enter the counter.

HL is made to point to the last

byte.

DE now points to the last but one.
Enter a ‘zero".

Fetch the element-byte total.

Enter a ‘zero’ into all the other bytes
and finish with HL pointing to the
byte before the first element.

Get the last dimension-size,
Enter the high byte.

Go back ane location.

Enter the low byte.

Go back another location.
Decrease the dimension counter.
Repeat the operation until the
counter reaches zero.

Finished.

This subroutine is a continuation of RST 0030,BC-SPACES, and is used to increase the size

of the work space by the number of bytes specified.

1488 RESERVE

LD
DEC

HL,(STKBOT)
HL

CALL D99E,MAKE-ROOM

Fetch the current value of STKBOT.
Make HL point to the last location of
the current work space.

Create BC spaces in the work space
before the last location.

25

INC HL HL points to the 1st new space.
iNC HL HL points ta the 2nd new space.
POP BC Fetch the old value of E-LINE
LD {E-LINE),BC and restore it unaltered.
POP BC Restore BC, the number of new spaces.
EX DE HL Now DE points to the 2nd new space.
INC HL Make HL point to the last location
of the work space once again,
RET Finished.

THE ‘CLEAR’ COMMAND ROUTINE

This routine ‘clears’ the variable area.

149A CLEAR LD HL,(VARS) Fetch the current value of VARS.
LD (HL),+80 Make this byte the ‘80 byte’.
INC HL Point to the next location.
LD (E-LINE) HL Make E-LINE point to this location.

THE ‘X-TEMP* SUBROUTINE
This subroutine ‘clears’ the work space.

14A3 X-TEMP LD HL,(E-LINE) Fetch the current value of E-LINE.

THE "SET-STK-B° SUBROUTINE

This subroutine ‘places’ an ‘empty’ calculator stack at the position pointed to by the HL register pair.

14A6 SET-STK-B LD (STKBOT),HL Set the bottom of the stack.
14A9 SET-STK-E LD (STKEND),HL Set the top of the stack.
RET Finished.

THE ‘CURSOR-IN’ SUBRQUTINE

This subroutine sets the workspace to hold a line cansisting of only the cursor marker and the
NEWLINE characters. The lower screen is set to be two lines in size and the calculator stack is cleared.

14AD CURSOR-IN LD HL,{E-LINE) Fetch the current value of E-LINE.,

LD {HL),+7F Enter the cursor marker.

INC HL Move to the next location.

LD (HL),+76 Enter the NEWLINE character.

INC HL Make HL point to the next location.

LD (DF-8Z},+02 Lower screen is to be two lines.

JR 14A6,SET-STK-B Jump back to clear the calculator stack.
THE ‘SET-MEM’ SUBROUTINE

This subroutine makes MEM paint to MEMBOT and returns STKEND pointing to the top of the
calfculator stack.

14BC SET-MEM LD HL,+MEMBOT Make HL point to MEMBOT.
LD (MEM),HL Make MEM point to MEMBOT.
LD HL,{STKBOT) Make HL.point to the bottom of the
calculator stack,
JR 14A9,SET-STK-E Jump back to make STKEND once

again refer ta the calculator stack.

26

THE ‘RECLAIM-3' SUBROUTINE

This subroutine ‘clears’ the work space from its start to the location before that pointed to by the HL
register pair.

14C7 RECLAIM-3 LD DE,(E-LINE)
JP OASD,RECLAIM-1

Fetch the current value of E-LINE.
Jump back to perform the clearance.

THE ‘ALPHA’ SUBROUTINE

This subroutine returns with the carry fiag set if the present value of the A register denotes a valid
letter of the alphabet.

14CE ALPHA CP +26
JR 14D4, ALPHA-2

Test against Hex. 26. The code for ‘A,
Jump forward.

THE 'ALPHANUM® SUBROUTINE

This subroutine returns with the carry flag set if the present value of the A register denotes a valid

digit or letter.

14D2 ALPHANUM CP +1C Test against Hex. 1C. The code for 0,
14D4 ALPHA-2 CCF Complement the carry flag.
RET NC Return if not a valid character code.
CP +40 Test against the upper limit.
RET Finished.

THE ‘DECIMAL TO FLOATING-POINT SUBROUTINE

As part of syntax checking decimal numbers that occur in a BASIC line are converted to their
floating-point forms. This subroutine reads the decimal number digit by digit and gives its result as a
‘last value’ on the calculator stack.

Firstly any integer part is converted.

14D9 DEC-TO-FP CALL

1548,INT-TO-FP

Forms a 'last value’ of the integer.

If the next character is a *.", then consider the decimal fraction.

CP +1B Is the character a '." ?
JR NZ,14F5,E-FORMAT Jump forward to see if it is an 'E".
RST 0028,FP-CALC. Now use the calculator.
DEFB +A1,stk-one,1AH1 Find the floating-point form of the
DEF8 +CO0,st-mem-0,1A63 decimal number “1°, and save it in
DEFB +02,delete,19E3 the memory area.
DEFB +34,end-calc.,002B

14E6 NXT-DGT-1 RST QO020,NEXT-CH Get the next character.
CALL 1914,STK-DIGIT if it is a digit then stack it.
JR C,14F5 E-FORMAT If not jump forward.
RST 0028,FP-CALC. Now use the calculator.
DEFB +EQ,get-mem-0,1A45 For each passage of the loop, the
DEFB +A4 stk-ten,1AB1 number saved in the memary area is
DEFB +05,division,1882 fetched, divided by 10 and restored.
DEFB +CO0,st-mem-0,1A63 i.e. going fram .1 to .01 to .001 etc.
DEFB +04,multiply,17C8 The present digit is multiplied by
DEFB +0F,addition, 1755 the ‘saved number’ and added to the
DEFB +34,end-calc.,002B ‘last value’.
JR 14E5,NXT-DGT-1 Jump back to consider the next

character.

27

Next consider any ‘E-notation’, i.e. the form xEm where m is a positive or negative integer.

14F5 E-FORMAT

1608 SIGN-DONE
1509 ST-E-PART

1511 E-FP

cP
RET
LD

RST
CP

JR

CP

JR
INC
RST
CALL

RST

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
RET

+2A
NZ
{(MEMBOT},+FF

0020,NEXT-CH

+15
Z,1508,SIGN-DONE
+16
NZ,1509,ST-E-PART
{MEMBOT)
0020,NEXT-CH
1648,INT-TO-FP

0028,FP-CALC.
+E0,get-mem-0,1A45
+00,jump-true, 1C2F
+02, 10 15611,E-FP
+18,negate, 1 AAD
+38,e-to-fp, 155A

+34 end-calc.,002B

THE ‘STK-DIGIT' SUBROUTINE

Is the present character an 'E' ?
Finished uniess it is so.

Use the first byte of ‘mem-Q’ as a
sign-flag.

Get the next character.

Isita '+ ?

Jump forward.

Isita’-"?

Jump if neither '+ nor ’~".
Change the sign of the flag.

Point to the first digit.

Use this subroutine to stack the whole
of the exponent, i.e. ABS m.
Now use the calculator.

Fetch the sign-flag.

Jump if the sign-flag denotes ‘+".

Negate the value of the exponent.
The ‘last value’ is given the result
of x*10**m.

Finished.

This subroutine simply returns if the current value held in the A register does not represent a
digit but if it does then the floating-point form for the digit becomes the ‘last value’ on the

calculator stack.

1514 STK-DIGIT

CP
RET
CcP
CCF
RET
suB

+1C
C
+26

C
+1C

THE 'STACK-A" SUBROUTINE

Is the value Hex.1C ¢

Return if not in range.

Is the value Hex.26 ?
Complement the carry flag.
Return if not in range.

Replace code by the actual digit.

This subroutine gives the floating-point form for the absolute binary value currently held in the

A reqister.

151D STACK-A

LD
LD

C.A
B,+00

THE ‘STACK-BC’' SUBROUTINE

Transfer the value to the C register.
Clear the B register.

This subroutine gives the floating-point form for the absolute binary value currently held in the

BC register pair.
1620 STACK-BC

LD
PUSH
RST

|Y,+ERR-NR
BC
0028,FP-CALC.

DEFB +AD stk-zero,1A51
DEFB +34,end-calc.,002B

POP
LD
LD
AND

BC
{HL),+91
AB

A

Re-initialise the |Y register pair.
Save BC briefly.

Use the calculator.

Put zero on the stack so as to
reserve 5 bytes. {Last value = 0}
Restore BC.

Set exponent to 17 decimal for a
16-bit number, and then test
whether B is in fact zero.

28

JR NZ,1536, NORML-FP

Jump forward when B is non-zero.

LD (HL),A Else, zero to exponent byte.

OR C Return if C is also zero as the
RET 2 ‘last value’ is to be zero.

LD B.C Transfer C to B.

LD C.{HL) Clear the C register,

1D (HL),+89 Set exponent to 9 decimal for an

1536 NORML-FP DEC (HL)
SLA C
RL B

JR NC,1536, NORML-FF

8-bit number.

Normalize the floating-point form by
shifting C & B left until a set

bit is found. The exponent is
decremented on each laop.

SRL B Now shift B & C right, resetting the
RR C set bit for a positive number.

INC HL Point to the 2nd byte.

LD {HL),B Copy over the B register.

INC HL Point to the 3rd byte.

LD (HL),C Copy over the C register,

DEC HL Return with the HL register

DEC HL pair pointing to the exponent.

RET Finished.

THE 'INTEGER TO FLOATING-POINT' SUBROUTINE

This subroutine returns a ‘last value’ on the calculator stack that is the result of converting an integer
in a BASIC line, i.e. the integer part of a decimal number or the line number, to its floating-point form,

Repeated calls to NEXT-CH fetch each digit of the integer in turn. An exit is made when a character
that is not a digit has been fetched.

1548 INT-TO-FP PUSH AF Save the first digit — in A.
RST 0028,FP-CALC. Use the calculator.
DEF8 +AO0,stk-zero,1AB1 The ‘last value' is now zero,
DEFB +34,end-calc.,002B
POP AF Restore the first digit.

Now a loop i3 set up. As long as the character is a digit then its floating-point form is found and
stacked under the ‘last value’, The ‘last value’ is then multiplied by decimal 10 and added to the ‘digit’
to form a new 'last value” which is carried back to the start of the loop.

154D NXT-OGT-2 CALL 1514,STK-DIGIT If the character is a digit then

RET C stack its floating-point form.
RST 0028,FP-CALC. Use the calculator,
DEFB +01,exchange, 1A72 ‘Digit’ goes under ‘last value’.

DEFB +A4,stk-ten,1A51 Define decimal 10.

DEFB +04,multiply,17C6 ‘Last value” = ‘last value’ * 10.
DEFB +0F,addition, 1755 ‘Last value’ = ‘last value’ + ‘digit’.
DEF8 +34,end-calc.,0028
RST 0020,NEXT-CH
JR 154D NXT-DGT-2

Next character goes into A.
Loop back with this character.

THE ‘E-FORMAT TO FLOATING-POINT’ SUBROUTINE
{Offset 38 — see CALCULATE below: ‘e-to-fp")

This subroutine gives a ‘last value' on the top of the calculator stack that is the result of converting
a number given in the form xEm, where m is a positive or negative integer. The subroutine is entered
with m at the top of the calculator stack and x underneath m,

The method used is to find the absolute value of m, say p, and to multiply or divide x by 10**p
according to whether m is positive or negative.

29

To achieve this, p is reduced by 7 for as iong as possible and then by 1 until it is exhausted. Since p is
usually less than decimal 38, no more than 8 loops are commonly taken.

i Once again the first byte of mem-0 is used as a sign flag. It shows whether multiplication or
division by 10* *p is required.

156A e-to-fp RST
DEFB
DEFB
DEFB
DEFB
DEFB

0028,FP-CALC.

+2D ,duplicate,19F6
+32,less-0,1ADB
+C0,st-mem-0,1A63
+02,delete, 19E3
+27.,abs, 1AAA

Calculator Stack

X, m

X, M, m

x, m, {1/0) Logical value of m,
x,m,{1/0) Store sign flag in

X, m first byte of mem-Q.
X, P p=ABS m,

i Now the main loop is entered, It starts by testing p to see whether it is exhausted.

1560 E-YET DEFB
DEFE
DEFB
DEFB
DEFB
DEFB

+A1,stk-one, 1AB1
+)3,subtract,174C
+2D,duplicate, 19F6
+32,less-0,1ADB
+00,jump-true, 1C2F
+22, to 15687,END-E

, 1

r

oo

-

-1
1/0)

.‘?

- b ok amb
-

r
[

X X X M X X

TTD o

iii Next p is reduced by 7 if possible, by 1 otherwise; and 10**7 or 10** 1 is put on the calculator

stack preparatory to multiplying or dividing.

DEFB
DEFB
DEFB
DEFB
DEFB
CEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
167A E-ONE DEFB
DEFB
DEFB

+2D,duplicate, 19F6
+30,stk-data,19FC
+33,exponent 83
+40,(+00,+00,+00)
+03 subtract,174C
+2D,duplicate, 19F6
+32, less-0,1ADB
+00,jump-true,1C2F
+0C, to 157A,E-ONE
+01,exchange,1A72
+02,delete, 19E3
+01,exchange,1A72
+30,stk-data, 19FC
+80,four bytes

+48 exponent 98
+18,+96,+80, (+00)
+2F,jump,1C23
+04, to 15670,E-M/D
+02 delete, 13E3
+01,exchange,1A72
+A4, stk-ten, 1 AS1

x, p-1, p-1
x, p-1,p1.6

x, p-1, p-7

X, p-1, 07, p-7
x, p-1, p-7, (1/0}
X, p-1, p-7

x, p-1, p-7

x, p-7, p-1

X, p-7

p-7. x

p-7, x, 10**7

p-7. x, 10**7
p-7, x, 10**7
X, p-1

p-1, x

p-1, x, 10

iv The sign-fiag is collected and tested thereby showing whether to multiply or divide by 10**i,
where i=1 or 7.After the arithmetic operation a jump is made back to E-YET.

157D E-M/D DEFB
DEFB
DEFB
DEFB
DEF8
DEFB
1583 E-DIV DEFB
1584 E-EXC DEFB
DEFB
DEFB

+E0,get-mem-0,1A45
+00,jump-true, 1C2F
+04, to 1583,E-DIV
+04,multiply,17C6
+2F ,jump,1C23

+02, to 1584,E-EXC
+05, division, 1882
+01,exchange,1A72
+2F jump, 1623
+DA, to 1560,E-YET

pi, x, 10%*i, (1/0)
p-i, x, 10**i

p-i, x, 10**i

pi, x*10*%i

p-i, x*10**i

p-i, x*10*%*i

p-i, x*10**-i
x*10** +/-i, p-i
x*10** +/-, pi
x*10** +/-i, p-i

30

v An exit is made from the subroutine with the required ‘last value’.
1687 END-E DEFB +02,delete,19E3 x*10**m
DEFB +34 end-calc.,002B
RET

THE ‘FLOATING-POINT TQ BC’ SUBRQUTINE

This subroutine is called from four different places for various purposes and is used to compress the
floating-point “last value’ into the BC register pair.

1t the result is too large, i.e. greater than 65535 decimal, then the subroutine returns with the
carry flag set, if the ‘last value’ is negative then the zero flag is reset,

The low-byte of the result is also copied to the A register.

158A FP-TO-BC CALL 13F8,STK-FETCH Get the ‘last value’.
AND A Is the exponent zero?
JR NZ,1595,NOT-ZERO Jump if it is not so.
LD BA Set B to hold zero.
LD C.A Set C to hold zero.
PUSH AF Save the carry and the zero flag.
JR 15C6,FBC-END Jump forward,

Once the special case of zero has been excluded, the upper limit is considered by comparing the
value of the exponent against Hex.91.

1595 NOT-ZERQ LD B.E 1st byte of mantissa to B.

LD EC 3rd byte of mantissa to E.

LD C,D 2nd byte of mantissa to C.

sug +91 Reduce the exponent by 145 decimal.

CCF Complement the carry flag.

8IT 7,B The zero flag complements the sign bit,
i.e. NZ for -ve numbers.

PUSH AF Save the zero and the carry flags.

SET 7.B Restore the true numeric bit,

JR C,15C6,FBC-END Jump to the end if the exponent is
too great.

Note that the exponent byte e holds 128 decimal plus the true exponent, e’

So far the cases of the exponent byte being zero, or greater than 144 decimal, have been dealt with.
The exponent byte is currently in the A register and now has the range -144 to -1 decimal which
corresponds to the true exponent e’ range of -127 to 16 decimal.

Numbers whose true exponent is in the range 1 to 8 decimal, will compress into a single register,
whereas an exponent in the range 9 to 16 requires two registers. Numbers whose true exponents are
negative will vanish.

INC A Range is now -143 to 0 decimal.
NEG Range is now 143 to 0 decimai.

cP +08 Define the true exponents 9 to 16
JR C,15AF SHIFT-TST and jump forward with them.

LD EC Move 2nd byte of mantissa to E.

LD C.B Move st byte of mantissa to C.

LD B,+00 Clear the B register.

SUB +08 Range is now 135 to 0 decimal here.

Note that if the A register now holds zero it means that no shift of BC is needed (e’ is 8 or 16 dec.).
Otherwise the A register gives the length of the shift right needed. If the shift is to be greater than 8
places then the number will vanish (for true exponents -127 to -1).

15AF SHIFT-TST AND A

15B5 SHIFT-BC

15BC IN-PLACE

15C6 FBC-END

LD
LD
RLCA
JR
SRL
AR
DEC
JR
JR
INC
LD
OR
JR
POP
SCF
PUSH
PUSH
RST
DEF8
POP
POP
LD
RET

DA
AE

Z,15BC,IN-PLACE
B

C

D
NZ,15B5,SHIFT-BC
NC,15C6,FBC-END
BC

AB

C
NZ,15C6,FBC-END
AF

AF

BC
0028,FP-CALC.
+34 end-calc.,0028
BC

AF

AC

THE ‘FLOATING-POINT TO A’ SUBROUTINE

31

If zero then no shift is needed.
Transfer shift counter to D.

Prepare 9th/17th bit for

reunding up.

Jump if A was zero; no shift.

Shift B 8 C right D times to

produce the correct number.
Decrement the shift counter.

Loop until D becomes zero.

End if no rounding-up needed:

else round up.

Test if number naw equals 65536 dec.
i.e. BC now zero — out of range.
Jump if in range.

Fetch zero and carry flags.

Set carry flag as out of range.

Save the zero and carry flags.

Save the result briefly.

Use the calculator,

This makes HL point to STKEND - 5.
Restore the result.

Restore the zero and the carry flags.
Copy over the low byte of the result.
Finished,

This short but vital subroutine is called at least & times for various purposes. |t uses the previous

subroutine, FP-TO-BC, to get the ‘last value’ into
tests whether the modulus of the number rounds
returns with the carry flag set. Otherwise it returns wi
nearest integer, in the A register, and the zero flag set
to imply that it was negative.

15CD FP-TC-A

1508 FP-A-END

CALL
RET
PUSH
DEC
INC
JA
POP
SCF
RET
POP
RET

158A,FP-TO-BC

C

AF

B

B
Z,15D9,FP-A-END
AF

AF

tom

the A register where this is possible. It therefore
ore than 255 and if it does the subroutine

th the modulus of the number, rounded to the
to imply that the number was positive, or reset

Compress the ‘last value’ into BC.
Return if out of range already.
Save the resuit and the flags.
Again it will be out of range

if the B register does not hold zero.
Jump if in range,

Fetch the result and the flags.
Signal the result is out of range,
Finished — unsuccessful.

Fetch the result and the flags.
Finished — successful,

THE ‘PRINT A FLOATING-POINT NUMBER® SUBROUTINE

This subroutine is calied by the PRINT command routine at 0B61 and by STRS at 1BDS, which
converts 10 4 string the number as it would be printed. The subroutine prints X, the ‘last value’ on the
calculator stack. The print format never occupies more than 14 spaces. The subroutine first calculates:

n=INT (le" — .5)'!09102} . where e’ is the true exponent.

The number of digits before the decimal point of X is always n, n+1 or n+2.

Next the subroutine calculates:

m = INT {10** {8-n}* ABS X+.5

print buffer in mem-2 to mem-4.

), the decimal representation of which is stored in an ad boc

32

The 8 most significant digits of X, correctly rounded, are printed out from m; 1 or 2 leading zeros
in m as needed ensure that the correct number of digits are printed before the decimal point {without
the leading zeros of course); trailing zeros are suppressed; and E-format is printed if needed.

So many cases are possible that it is best to try examples, referring to the ZX81 manual as needed.

i First the sign of X is taken care of:

It X is negative, the subroutine jumps to P-NEG, takes ABS X and prints the minus sign.
If X is zero, X is deleted from the calculator stack, a ‘0’ is printed and a return is made from

the subroutine.

If X is positive, the routine just continues.

150B PRINT-FP RST
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LD
RST
RET

15EA P-NEG DEFB
DEFB
LD
RST
RST

15F0 P-POS DEFB

0028,FP-CALC.
+20,duplicate, 19F6
+32 less-0,1ADB
+00,jump-true, 1C2F
+0B, to 15EA,P-NEG
+2D,duplicate, 19F6
+33,greater-0,1ACE
+00,jump-true,1C2F
+0D, to 16F0O,P-POS
+02,deiete, 19E3
+34,end-calc., 0028
A+1C
0010,PRINT-A

+27,abs, 1AAA
+34,end-calc.,002B
A +16
0C10,PRINT-A
0028,FP-CALC.
+34,end-calc.,002B

Use the calculator.

X, X

X, (1/0) Logical value of X.

X

X

X, X

X, (1/0) Logical value of X.

X

X Hereafter X' = ABS X.

Enter the character code for ‘0",
Print the ‘Q’.
Finished as the ‘last value’ is equal to zero.

X' X'=ABS X,

X’

Enter the character code for *-',
Print the *-".

Use the calculator again.
Exit with HL painting to the exponent
byte of X'.

ii The number n is calculated and stored in mem-1, to be recalled for use after the ‘print buffer’
has been set up. Note that e’ is obtained by subtracting Hex.80 from the full exponent e
presently addressed by the HL register pair. In fact 128.5 decimal is subtracted all at once. ft
and log of 2 to base 10 are both stacked as immediate data by calling ‘stk-data’ at 19FC.

LD
CALL
RST
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

A (HL)
151D,STACK-A
0028,FP-CALC.
+30,stk-data, 19FC
+78,exponent 88
+00,+80,(+00,+00)
+03, subtract, 174C
+30,stk-data, 19FC
+EF,exponent 7F
+1A,+20,+9A,185
+04, multiply,17C6
+24,int, 1C46
+C1,st-mem-1,1A63

Fetch the exponent e of X'.
X, e

Use the calculator.

X', e, 128.5 (dec)

X',e’-5
X', e-.5, log 2 (base 10}

X', {e’-.5)*log 2
X',n
X,n {n is copied to mem-1}

iii Next m is calculated, providing enough digits to give a print buffer from which the 8 most
significant digits of X, correctly rounded, can be printed out.

DEFB
DEFB
DEFB
ODEFB
DEFB

+30,stk-data, 19FC
+34,exponent 84
+00,(+00,+00,+00)
+H03,subtract,174C
+1B,negate, 1AAD

X,n8

X', n-8
X', 8-n

DEFB
DEFB
DEFB
DEFB
DEFB

+38,e-to-fp,155A
+A2, stk-half,1A51
+0F ,addition, 1755
+24,int,1C46
+34,end-calc., 0028

33

10" *(8-n)*X"
10"*(8-n)*X", .5
10**{8-n)*X'+.5
m

m

Ten digits from m are now stored in mem-3 and mem-4 in reverse order. This means that up to

2 leading zeros are stored {since m has 8 to 10 di
number of digits are printed before the decimal i

LD
LD
LD

HL,+406B
{HL),+90
B,+0A

Perform the following loop 10 times.

1615

1620

NXT-DGT-3 INC

HL

PUSH HL

PUSH
RST
DEFB
DEFB
DEFB
DEFB
CALL
OR

POP
POP
LD
DINZ

Pass over any |eading zeros.

INC
LD
PUSH

162C GET-FIRST DEC

LD
CcpP
JR

BC

0028,FP-CALC.
+Ad4 stk-ten, 1A51
+2E.n-mod-m,1C37
+01,exchange, 1A72
+34,end-calc., 0028
15CD,FP-TO-A
+90

BC

HL

(HL),A
1615,NXT-DGT-3

HL

BC,+0008

HL

HL

A, (HL)

+490

Z,162C GET-FIRST

Round up the digits if necessary.

1639

SBC
PUSH
LD
ADD
PUSH
ROUND-UP POP
INC
LD
ADC
DAA

PUSH
AND
LD
SET

HL,8C
HL

A, {HL)
A,+6B
AF

AF

HL

A, (HL)
A,+00

AF
+OF
(HL),A
7.(HL}

gits} and this will ensure that the correct

Address of last byte of mem-2.
Marker byte Hex.90 — see 1620 below,
B will count the 10 digits.

Each byte of mem-3 and mem-4.
Save the pointer.

Save the digit-counter.

Use the caiculator.

m, 10

m mod 10, INT (m/10}

INT (m/10), m mod 10

A will hold m med 10.

Add left nibble of Hex.9 to each digit;
this ensures full carry on half carry
after DAA.

Restore the digit-counter.

Restore the pointer.

Store this digit in the buffer.

Until 10 digits have been stored.

Point one-past the end of mem-4.
Looking for 8 digits.

Save the pointer,

Pass over any leading zeros; the
first non-zero digit will be the
first digit of X to be printed.
Jump back if digit is zero.

Point to the Sth digit; use it to

round up 8th digit; first save the
pointer here, then add Hex.6B.

(68 + 95 = 0100 Hex. & carry set)
Save the carry flag.

Restore the carry inside loop.
Increment the pointer.

Get the digit and round it up by
adding in the carry.

Set the carry if the digit becomes

10 decimal.

Save the new carry.

Remaove the left nibble of the digit.
Store the digit.

This changes Hex.00 to Hex.80 and
prevents any final 0's after the decimal
from being printed. {see 164B, MARKERS)

4

JR

POP
POP

Enter six marker bytes.

LD
164B MARKERS LD

DEC

DINZ

Z,1638,ROUND-UP

AF
HL

B,+06

(HL),+80

HL
164B,MARKERS

Go far any carry ripple or further
final zeros.

Discard the carry.

Restare the pointer to the 9th digit.

These six markers will end output
by setting the overflow flag after
DEC and INC — see 16C4 and 16CA
below.

Note that the markers are in the 6 locations which precede the 8 significant digits of the number; so
they will end the output even after 13 digits are printed; a marker will turn inte a ‘0’ when its left

nibble is cleared.

v The digits can now be printed.
RST 0028,FP-CALC,
DEFB +02 dslete,19E3
DEFB +E1,get-mem-1,1A45
DEFB +34,end-calc.,0028
CALL 15CD,FP-TO-A
JR Z.165B8,SIGND-EXP
NEG

1658 SIGND-EXP LD EA
INC E
INC E
POP HL

165F GET-FST-2 DEC HL
DEC E
LD A,(HL)
AND +0F
JR Z,165F GET-FST-2
LD AE
SuB +05
CcP +08
JP P,1682,E-NEEDED
CcP +F6
JP M,1682,E-NEEDED
ADD A,+06

Use the calculator.
Delete the Q) left an the stack.
Get the number n from mem-1,

Put ABS n into the A register.
If n positive (2 flag set}, jump.
Else, negate A.

A now holds true n; copy to E.

E now holds n+2,

(et the pointer to one-past the end
of mem-4.

Find first non-zero digit of X

again, thus passing over the 1 or 2
leading zeros that may be present;
decrease E to ensure that the correct
number of digits before the decimal
are printed.

Put count back into A: at this point
-5 and 12 are the critical values of
the counter.

Subtract 5; -10 and 7 are now the
critical values; i.e. the jump to
E-NEEDED will now occur, unless A
is less than B, or greater than 245.
{245 dec. is-11 in 2's comp.)

Add 6, giving the true critical values,
i.e. -4 and 13.

Note that A now contains the correct number of digits before the decimal in X, and that these
digits will be printed in full if they are not more than 13 decimal, whife up to 4 initial zeros will be
printed after the decimal if A is negative, Qutside that range E-format wiil be needed.

JR
JP

LD
1678 OUT-B-CHS CALL

DJINZ

JR

Z,16BF,OUT-ZERO

M,16B2,EXP-MINUS

B.A

1600, 0UT-NEXT
167B,0UT-B-CHS
16C2, TEST-INT

If A holds zero then go and print

a ‘0’ and continue into decimal part.
If A is minus then go and print the
‘decimal-point” and the digits.

A is paositive, so transfer to B.

Print B characters.

Then jump forward to test whethet
just an integer, or a ‘decimal-point’
is needed.

E-format is required.
1682 E-NEEDED LD B.E

CALL 16DO,OUT-NEXT
CALL 16C2,TEST-INT

LD A +2A

RST O0Q10,PRINT-A

LD AB

AND A

JP P,1698,PLUS-SIGN
NEG

LD B.A

LD A +16

JR 169A,0UT-SIGN
1698 PLUSSIGN LD A, +15
169A QUT-SIGN RST O0010PRINT-A

LD AB
LD B,+FF
169E TEN-MORE INC B
SUB +0A
JR NC,169E, TEN-MORE
ADD A, +DA
LD CA
LD A.B
AND A

JR Z,16AD BYTE-TWO

CALL 07EB,QUT-CODE
16AD BYTE-TWQ LD AC

CALL 07EB,OUT-CODE

RET

Decimal format is required.

16B2 EXP-MINUS NEG

LD B.A

LD A,+1B

RST OO010,PRINT-A
LD A+1C

16BA QUT-ZEROS RST 0010,PRINT-A
DJNZ 16BAOUT-ZERQS
JR 16CB,TEST-DONE

The special case of the ‘exponent’ being zero.

16BF OQUT-ZERO LD A+IC
RST OO10,PRINT-A

THE ‘'TEST-INT* SUBROUTINE

B now contains the correct integer to
follow 'E’ of E-format.

Print the first digit.

Test whether there are more non-zero
digits, in which case a ‘decimal-point’
will be needed.

Enter the character code faor ‘E’.
Print the ‘E”.

Transfer the ‘exponent’ integer to A.
Set the flags.

If positive, jump and print a ‘+*.
Else, change its sign.

Transfer back to B, briefly.

Enter the character code for *-'.
Jump forward,

Enter the character code for “+'.
Print the sign character,

Transfer the ‘exponent’ back to A.
Now reduce A mod 10 to give B equal
to tNT (A/10}); initialise 8 to -1

{2°s comp.) and increment it each
time A is decreased by 10.

After the loop, restore the last 10

to A; and store A in the C register,
Transfer the ‘tens’ to A.

Test to see if there are any ‘tens’,
Jump forward if no ‘tens’.

Print the first digit.

Fetch the ‘unit’ digit.

Print the digit.

Finished with E-format.

A was negative but in range for simple
printing so the format is .000...dddd
with up to 4 zeros,

B will count out the zeros.

Enter the character code for *.' .
Now print the 'decimal-point'.

Enter the character code for ‘0.
Print the ‘0’

Until B reaches zero.

Exit via TEST-DONE to print the
digits until they also are finished.

Enter the character code for ‘0.
Print the ‘0" and continue with
TEST-INT to print the decimal part.

If the next digit to be printed is a ‘marker’ byte then the subroutine returns, otherwise the
decimal point is printed and the subroutine enters TEST-DONE.

16C2 TEST-INT DEC (HL)

INC {HL)

This gives PE (overflow/parity flag
set) if (HL) was Hex.80.
PE is kept, incrementing to Hex.80.

35

36

16CA4 RET PE So a 'marker’ byte forces a return.
LD A,+1B Enter the character code for ’.",
RST OO010,PRINT-A Now print the ‘decimal-paint’.

Note that the decimal point is not printed if the number is an integer, all printed, or if there is just one
digit to go before the ‘E' of the exponent part.

THE ‘TEST-DONE' SUBROUTINE

The digits in the ad hoc print buffer, mem-2 to mem-4, are printed in turn until a ‘marker’ byte
is found.

16C8 TEST-DONE DEC {HL) Test the digittosee if itisa
INC (HL) ‘marker’ {see TEST-INT).

16CA RET PE Return when a ‘marker’ is found,
CALL 18DQ,QUT-NEXT Print the digit.
JR 16C8, TEST-DONE Jump back to consider the next digit.

THE ‘OUT-NEXT' SUBROUTINE

This subroutine prepares the current digit for printing, passes it to OUT-CODE and moves the pointer
to the next digit.

1600 OUT-NEXT LD A,(HL) Fetch the present digit,
AND +HOF Mask off any unwanted bits.
CALL 07EB,OUT-CODE Pass the digit for actual printing.
DEC HL Move the pointer back an address.
RET Finished.

THE ‘PREPARE TO ADD’ SUBROUTINE

This subroutine is the first of four subroutines that are used by the main arithmetic operation routines
— SUBTRACTION, ADDITION, MULTIPLICATION and DIVISION.

This particular subroutine prepares a floating-point number for addition, mainly by replacing the sign
bit with a true numerical bit, 1, and negating the number {2’s complement) if it is negative. The
exponent is returned in the A register and the first byte is set to Hex.00 for a positive number and
Hex.FF for a negative number.

16D8 PREP-ADD LD A, (HL) Transfer the exponent to A.
LD {HL),+00 Presume a positive number.
AND A If the number is zero then the
RET 2 preparation is already finished.
INC HL Now paint to the sign byte.
BIT 7.(HL) Set the zero flag for positive number,
SET 7.{HL} Restore the true numeric bit.
DEC HL Point to the first byte again.
RET 2Z Positive numbers have been prepared,

but negative numbers need to be 2's
complemented.

PUSH BC Save any earlier exponent.

LD 8C,+0005 There are 5 bytes ta be handled.

ADD HL,BC Point one-past the last byte,

LD B.C Transfer the 'S’ to B.

LD CA Save the exponent in C.

SCF Set carry flag for negation.
16EC NEG-BYTE DEC HL Point to each byte in turn.

LD AHL) Get each byte.

CPL One’s complement the byte.

a7

ADC A,+00 Add in carry for negation.
LD {HL),A Restore the byte.

DJNZ 16EC,NEG-BYTE Loop the ‘G’ times,

LD AC Restore the exponent to A.
POP BC Restore any earlier exponent.
RET Finished.

THE ‘FETCH TWO NUMBERS’ SUBROUTINE

This subroutine is called by ADDITION, MULTIPLICATION and DIVISION to get two numbers
from the calculator stack and put them into the registers, including the exchange registers.

On entry to the subroutine the HL register pair points to the first byte of the first number and the
DE register pair points to the first byte of the second number.

When the subroutine is called from MULTIPLICATION or DIVISION the sign of the result is saved
in the second byte of the first number.

16F7 FETCH-TWO PUSH HL HL is preserved,
PUSH AF AF is preserved.
Call the five bytes of the first number — M1, M2, M3, M4 & MS5.
and for the second number — N1, N2, N3, N4 & N5,
LD C,(HL} M1 to C.
INC HL Next.
LD B,{HL} M2 to B.
LD {HL),A Copy the sign of the result to (HL).
INC HL Next.
LD AC M1 to A.
LD C.{HL) M3 to C.
PUSH BC Save M2 & M3 on the machine stack.
INC HL Next.
LD C.{HL) M4 to C.
INC HL Next.
LD B,(HL) M5 to 8.
EX DE,HL HL now points to N1.
LD DA M1 to D.
LD E,(HL) N1 to E.
PUSH DE Save M1 & N1 on the machine stack.
INC HL Next.
LD D,{HL} N2 to D.
INC HL Next,
LD E,(HL} N3 to E.
PUSH DE Save N2 & N3 on the machine stack.
EXX Get the exchange registers.
POF DE N2toD'&N3toE".
POP HL MitoH & N1t L.
POP BC M2toB' & M3to C'.
EXX Get the original set of registers.
INC HL Next.
LD D,(HL} N4 to D.
INC HL Next.
LD E.{HL) N5toE.
POP AF Restore the original AF.
POP HL Restore the original HL.
RET Finished.
Summary : Mt — M5 arein: H’, B, C’, C, B.

N1 — N5 arein: L°, D, E’, D, E.
HL points to the first byte of the first number.

38

THE 'SHIFT ADDEND’ SUBROUTINE

This subroutine shifts a floating-point nurnber up to 32 decimnal, Hex.20, places right to line it up
properly for addition. The number with the smaller exponent has been put in the addend position
befare this subroutire is called. Any overflow to the right, into the carry, is added back into the
number. If the exponent difference is greater than 32 decimal, or the carry ripples right back to the
beginning of the number then the number is set to zero so that the addition will not alter the other

number {the augend).

171A SHIFT-FP

1722 ONE-SHIFT

1736 ADDEND-O

1738 ZEROS-4/5

AND
RET
CP
JR
PUSH
LD

EXX
SRA
RR
RR
EXX
RR
RR
DJINZ
POP
RET
CALL
RET

EXX
XOR
LD
LD
LD
EXX
LD

RET

A
z

+21

NC,1736,ADDEND-0

BC
B.A

L
D
E

D

E

1722, 0NE-SHIFT
BC

NC
1741,ADD-BACK
NZ

A
L,+00
DA
EL

DE,+Q000

if the exponent difference is zero,
the subroutine returns at once.

If the difference is greater than
Hex.20, jump forward.

Save BC briefly.

Transfer the exponent difference to
B to count the shifts right.
Arithmetic shift right for L',
preserving the sign marker bits.
Rotate right with carry D°, E’,
D&E.

Thereby shifting the whole five bytes
of the number to the right as

many times as B counts.

Loop back until B reaches zero.
Restore the original BC.

Done if no carry 1o retrieve.

Retrieve carry.

Return uniess the carry rippled

right back. {In this case there is nothing
to add)

Fetch L', D" & E’.

Clear the A register.

Set the addend to zero in D', E°,

D & E, together with its marker byte
{sign indicator} L', which was
Hex.00 for a positive number and
Hex.FF for a negative number.
ZEROS-4/5 produces only 4 zero bytes
when called for near underflow at 1833.
Finished.

Nate: The original 8K ROM had 3 further bytes in this subroutine, immediately after the EXX at the
label ADDEND-0 {address 1733 in the old ROM), namely LD AH; SUB L; & LD H,A. These
bytes would seem to have been a mistaken attempt to counteract the effect of bytes 177D — 177F
below. In fact they caused errors in subtraction and, through the LN function at byte 1D15, in
exponentiation and SQR as well. These three bytes were simply omitted when the program was
fmproved. |t is interesting to note also that the hardware add-on, fitted to some ‘unimpraoved’
machines worked by changing the instruction LD H,A to a DAA instruction and thereby prevented
any corruption of the H register.

THE 'ADD-BACK’ SUBROUTINE

This subroutine adds back into the number any carry which has overflowed to the right. In the
extreme case, the carry ripples right back to the left of the number.

When this subroutine is called during addition, this ripple means that a mantissa of 0.5 was shifted a
full 32 places right, and the addend will now be set to zero; when called from MULTIPLICATION, it
means that the exponent must be incremented, and this may result in overflow.

1741 ADD-BACK

INC
RET

E
NZ

Add carry to rightmost byte.
Retum if no overflow to left.

JR NZ,174A ALL-ADDED

INC D

RET NZ

EXX

INC E

INC D
174A ALL-ADDEDEXX

RET

39

Continue 1o the next byte.
Return if no averflow to left.
Get the next byte.

Increment it too.

Jump if no overflow,
Increment the fast byte.
Restore the original registers.
Finished.

THE ‘SUBTRACTION’ OPERATION (Offset 03 — see CALCULATE below: “subtract’)

This subroutine simply changes the sign of the subtrahend and carries on into ADDITION. Note that
HL points to the minuend and DE points to the subtrahend. {See ADDITION for more details.)

174C SUBTRACT LD A,(DE}

AND A
RET 2

INC DE

LD A,(DE)
XOR +80
LD (DE}A
DEC DE

Get the exponent byte of subtrahend.
Test whether zero.

If so, return.

Point to the sign byte.

Transfer the sign byte to A.

Change the sign bit.

Replace the byte.

Peint to the exponent byte again.
Continue on into ADDITION.

THE ‘ADDITION’ OPERATION (Offset OF — see CALCULATE below: ‘addition’)

The first of three major arithmetical subroutines, this subroutine carries out floating-point addition of

two numbers, each with a 4-byte mantissa and a 1-b
numbers at the top of the calculator stack are

yteé exponent. In these three subroutines, the two
added/multiplied/divided ta give one number at the top

of the calculator stack, a 'last value’. HL points to the second number from the top, the
augend/multiplier/dividend. DE points to the number at the top of the calculator stack, the
addend/multiplicand/divisor. Afterwards HL points to the resultant ‘last value’ whose address can also

be considered to be STKEND - §,

ADDITION first calls PREP-ADD for each number, then gets the 2 numbers from the calculator stack
and puts the one with the smalier exponent into the addend position. It then calls SHIFT-FP to shift
the addend up to 32 decimal places right to line it up for addition. The actual addition is done in a
few bytes, a single shift is made for carry {overflow to the left) if needed, the result is 2's

complemented if negative, and any arithmetic overflow is re
TEST-NORM to normalize the result and return

the second byte.

17556 addition EXX

CALL 16D8PREP-ADD

CALL 16DB,PREP-ADD

JR NC,1769,SHIFT-LEN

PUSH HL
EXX
PUSH DE
PUSH HL
LD B,A
EX DE,HL
LD C.A
CP 8
LD AB
LD B.C
EX DE HL
1769 SHIFT-LEN PUSH AF
SUB =B

ported; otherwise the subroutine jumps to
it to the stack with the carrect sign bit inserted into

Exchange the registers.

Save the next literal address.
Exchange the registers.

Save pointer to the addend.
Save pointer to the augend.
Prepare the augend.

Save its exponent in B.
Exchange the pointers,
Prepare the addend.

Save its exponent in C.

If the first exponent is smaller,
keep the first number in the
addend position: otherwise
change the expanents and the
pointers back again.

Save the larger exponent in A.
The difference between the exponents
is the length of the shift right,

40

1790 TEST-NEG

1783 ADD-REP-S

CALL
CALL
POP
POP
LD
PUSH
LD
LD
ADD
EXX
EX
ADC
EX
LD
ADC
LD
ARA
XOR
EXX
EX
POP
RRA
JR

LD
CALL
INC
JR
EXX
LD
AND
EXX
INC
LD
DEC
JR

LD
NEG
CCF
LD
LD
CPL
ADC
LD
EXX
LD
CPL
ADC
LD
LD
CPL
ADC
JR
RRA
EXX
INC

JP
EXX

16F7,FETCH-TWO
171A,SHIFT-FP
AF

HL

{HL},A

HL

LB

H.C

HL,DE

DE,HL
HL,BC
DE . HL
AH
AL
LA

L

OE HL
HL

NC,1780,TEST-NEG

A,+01
171A,SHIFT-FP
{HL}
Z,1783,ADD-REP-6

AL
+80

HL

(HL)A

HL
Z,17B9,GO-NC-MLT
AE

E.A

AD

A +0
DA

AE
A+00
E.A
AD

A.+00

NC,17B7 END-COMPL

{HL)

Z,1880,REPORT-6

Get the two numbers fram the stack.
Shift the addend right.

Restore the larger exponent.

HL is to point to the result.

Store the exponent of the result.
Save the pointer again.
M4to L& MStoH,

{see FETCH-TWQ).

Add the two right bytes.

NZtoH & N3to L',

(see FETCH-TWQO).

Add left bytes with carry.

Result back in D'E’.

Add H’, L’ and the carry; the
resulting mechanism will ensure
that a single shift right is called

if the sum of 2 positive numbers
has overflowed left, or the sum of 2
negative numbers has not overflowed left.
The result is now in DED'E’.

Get the pointer to the exponent,
The test for shift (H’, L" were
Hex.0Q for positive numbers and
Hex.FF for negative humbers}.

A counts a single shift right.

The shift is called.

Add 1 to the exponent; this may
lead to arithmetic overflow.

Test for negative resuit: get

sign bit of L’ into A {this now
correctly indicates the sign of

the result}.

Store it in the second byte

position of the result on

the calculator stack,

If it is zero, then do not

2's complement the result,

Get the first byte.

Negate it,

Complement the carry for continued
negation, and store byte.

Get the next byte.

One’s complement it.

Add in the carry for negation.
Store the byte.

Proceed to get next byte into the

A register,

One's complement it.

Add in the carry for negation.

Store the byte.

Get the last byte.

One's complement it.

Add in the carry for negation.

Done if no carry.

Else, get .5 into mantissa and add 1
to the exponent; this will be needed
when two negative numbers add to give
an exact power of 2, and it may lead to
arithmetic overflow.

Give the error if required.

1787 END-COMPL LD

EXX

D,A

17B9 GO-NC-MLT XOR A

JR

1828, TEST-NORM

41

Store the last byte.

Clear the carry flag.
Exit via TEST-NORM.

THE ‘PREPARE TO MULTIPLY OR DIVIDE" SUBROUTINE

This subroutine prepares a floating-point number for multiplication or division, returning with carry

set if the number is zero, getting the si

in the number by the true numeric bit, 1.

17BC PREP-M/D SCF

DEC
INC
RET

INC
XOR

SET
DEC
RET

(HL)
(HL)
2

HL
(HL}

74HL)
HL

gn of the result into the A register, and replacing the sign bit

Set the carry flag.
Test the exponent byte.

If the number is zero, return with both
the zero and the carry flags set.

Point to the sign byte.

Get sign for result into A (like signs give
plus, unlike give minus); also reset

carry flag.

Set the true numeric bit.

Point to the exponent again.

Return with carry flag reset.

THE ‘MULTIPLICATION’ OPERATION (Offset 04 — see CALCULATE below: ‘multiply’)

This subroutine prepares the first number for multiplication by calling PREP-M/D, returning if it is
zero; otherwise the second number is prepared by again calling PREP-M/D, and if it is zero the
subroutine goes to set the result to zero. Next it fetches the two numbers from the calculator stack
and multiplies their mantissas in the usual way, rotating the first number (treated as the multiplier)
right and adding in the second number {the multiplicand) to the result whenever the muitiplier bit is
set. The exponents are then added together and checks are made for overflow and for underflow
{giving the result zero). Finally, the result is normalized and returned to the calculator stack with the
correct sign bit in the second byte.

17C6 multiply

XOR

CALL
RET
EXX
PUSH
EXX
FUSH
EX
CALL
EX
JR
PUSH
CALL
LD
AND
SBC
EXX
PUSH
SBC
EXX
LD

JR

A

17BC,PREP-M/D
C

HL

DE

DE.HL
17BC,PREP-M/D
DEHL
C.,1B30,ZERO-RSLT
HL
16F7,FETCH-TWO
A.B

A

HLHL

HL
HL,HL

B,+21
17FB,STRT-MLT

A is set to Mex.00 so that the sign

of the first number will go into A.
Prepare the first number, and return
if zero. {Result already zero.)
Exchange the registers.

Save the next literal address.
Exchange the registers.

Save the pointer to the multiplicand.
Exchange the pointers.

Prepare the 2nd number.

Exchange the pointers again.

Jump forward if 2nd number is zero.
Save the pointer to the result.

Get the two numbers from the stack,
M5 to A {see FETCH-TWO]).

Prepare for a subtraction.

Initialise HL to zero for the result.
Exchange the registers.

Save M1 & N1 {see FETCH-TWO).
Also initialise H'L" for the result.
Exchange the registers,

B counts 33 decimal, Hex.21, shifts.
Jump forward into the loop.

42

Now enter the multiplier loop.

17E7 MLT-LOOP JR

ADD
EXX
ADC
EXX
17EE NO-ADD EXX
RR
RR
EXX
\|R
RR

17F8 STRT-MLT EXX
RR
RR
EXX
RR
RRA
DJINZ
EX
EXX
EX
EXX

NC,17EE,NO-ADD
HL,DE

HL.DE

c
C

17E7,.MLT-LOOP
DE HL

DEHL

Next add the exponents together.

POP
POP

LD
ADD

JR
AND
180E MAKE-EXPT DEC
CCF

BC

HL

AB

AC

NZ,180E MAKE-EXPT
A

A

Jump forward to NO-ADD if no carry,
i.e. the multiplier bit was reset;

Else, add the multiplicand in

D'E’'DE {see FETCH-TWO) into the
result being built up in H' L"HL.

Whether multiplicand was added

or not, shift result right in

H'L'HL, i.e. the shift is done by
rotating each byte with carry, sa that
any bit that drops into the carry is
picked up by the next byte, and the
shift continues into B"'C"CA.

Shift right the multiplier in

B'C’CA (see FETCH-TWO & above}.
A final bit dropping into the carry
will trigger another add of the
multiplicand to the result.

Loop 33 times to get all the bits.
Move the result from:

H'L'HL to D'E"DE.

Restore the exponents — M1 & N1.
Restare the pointer to the exponent byte.
Get the sum of the two exponent

bytes in A, and the correct carry.

If the sum equals zera then clear

the carry; else leave it unchanged.
Prepare to increase the exponent by
Hex.80.

The rest of the subroutine is common to both MULTIPLICATION and DEVISION,

1810 DIVN-EXPT RLA
CCF
RRA

JP

JR
AND
1819 OFLW1-CLR INC
JR
JR
EXX
BIT
EXX
JR

1824 OFLW2-CLR LD
EXX
LD
EXX

P,1819,0FLW1-CLR
NC,1880,REPORT 6

A
A

NZ,1824,0FLW2-CLR
C,1824,0F LW2-CLR
7,D

NZ,1880,REPORT-6

{HL)A

AB

These few bytes very cleverly make
the correct exponent byte.

Rotating left then right gets the
exponent byte (true exponent plus
Hex.80) into A.

if the sign flag is reset, no report of
arithmetic overflow needed.

Report the averflow if carry reset.
Clear the carry now,

The exponent byte is now complete;
but if A is zero a further check for
overflow is needed.

If there is no carry set and the

result is already in normal form

{bit 7 of D' set) then there is overflow to
report; but if bit 7 of D’ is reset, the
result is just in range, i.e. just under
285127,

Store the exponent byte, at last.
Pass the fifth result byte to A for the
normalization sequence, i.e.

the overflow from L into B'.

43

The remainder of the subroutine that deals with normalization is common to all the arithmetic routines.

1828 TEST-NORM JR
LD
AND
NEAR-ZERO LD
JR
1830 ZERO-RSLT XOR
1831 SKIP-ZERQ EXX
AND
CALL
RLCA
LD
JR
INC
LD
DEC
JR

182C

NC,183F NORMALIZE
A (HL)

A

A,+80
Z,1831,5KIP-ZERO

A

D
1738, ZEROS-4/5

(HL),A
C.1868,0FLOW-CLR
HL

(HL},A

HL
1868,0FLOW-CLR

The actual normalization operation,

183F NORMALIZE LD

1841 SHIFT-ONE EXX
BIT
EXX
JR
RLCA
RL
RL
EXX
RL
RL
EXX
DEC

JR

DJNZ
JR

B,+20

7.0
NZ,1859,NORML-NOW
E

D

E

D

(HL)

£,182C,NEAR-ZERO

1841,SHIFT-ONE
1830,ZERQ-RSLT

Finish the normalization by considering the ‘carry’.

1859 NORML-NOW RLA
JR
CALL
JR
EXX
LD
EXX
INC
JR

NC, 1868, 0F LOW-CLR

1741,ADD-BACK

NZ,1868,0F LOW-CLR
D,+80

(HL)
Z,1880,REPORT-6

If no carry then normalize now.

Else, deal with underflow {zero result}
or near underflow

(result 2** -128):

return exponent to A, test if A is
zero (case 2**-128) and if so
produce 2% *-128 if number is normal;
otherwise produce zero.

The exponent must then be set to
zero {for zero} or 1 (for 2**-128).
Restore the exponent byte.

Jump if case 2** -128.

Otherwise, put zero into second

byte of result on the calculator

stack.

Jump forward to transfer the result.

Normalize the result by up to 32
decimal, Hex.20, shifts left of
D’E’DE {with A adjoined} until bit 7
of D' is set, A holds zero after
addition, so no precision is

gained or lost; A holds the fifth
byte from B* after muitiplication

or division; but as only about 32
bits can be correct, no precision

is lost. Note that A is rotated
circularly, with branch at carry...
..eventually a random process.

The exponent is decremented on
each shift.

If the exponent becomes zero, then
numbers from 2** -129 are rounded
up to 2** -128.

Loop back, up to 32 times,

If bit 7 never became 1 then the
whaole result is to be zero.

After normalization add back any
final carry that went into A.

Jump forward if the carry does not
ripple right back.

If it should ripple right back then
set mantissa to 0.5 and increment
the exponent.

This action may lead to arithmetic
overflow (final case).

The final part of the subroutine involves passing the result to the bytes reserved for it on the calculator
stack and resetting the pointers.

1868 OFLOW-CLR PUSH HL

INC

HL

Save the result pointer.
Point to the sign byte in the result,

44

EXX
PUSH
EXX
POFP
LD
RLA
AL
RRA
LD
INC
LD
INC
LD
INC
LD
POP
POP
EXX
POP
EXX
RET

DE

BC
AB

(HL)

(HL),A

REPORT-6 — Arithmetic overflow

1880 REPORT-6 RST
DEFB

0008, ERROR-1
+05

The resuit is moved from its present
registers, D'E'DE, to BCDE; and
then to ACDE.

The sign bit is retrieved from its
temporary store and transferred to
its correct position of bit 7 of the
first byte of the mantissa.

The first byte is stored.

Next.

The second byte is stored,

Next.

The third byte is stored.

Next.

The fourth byte is stored.

Restare the pointer to the result.
Restore the pointer to second number.
Exchange the registers.

Restare the next literal address.
Exchange the registers.

Finished.

THE ‘DIVISION’ OPERATION ({Offset 05 — see CALCULATE below: 'division’)

This subroutine first prepares the divisor by calling PREP-M/D, reporting arithmetic overflow if it
is zero; then it prepares the dividend by again calling PREP-M/D, retuming if it is zero. Next it fetches
the two numbers from the calculator stack and divides their mantissas by means of the usual

restoring division, trial subtracting the divisor from the dividend and restoring if there is carry,

otherwise adding 1 to the quotient. The maximum precision is obtained for a 4-byte division, and after

subtracting the exponents the subroutine exits by joining the later part of MULTIPLICATION.

1882 division EX
XOR

CALL
JR

EX
CALL
RET
EXX
PUSH
EXX
PUSH
PUSH
CALL
EXX
PUSH
LD
LD
EXX
LD
LD
XOR

DE.HL
A

17BC.PREP-M/D
C,1880,REPORT-6

DE,HL
17BC,PREP-M/D
c

HL

OE
HL
16F7,FETCH-TWO

HL
H,B
LC

HC
LB
A

Exchange the pointers.

A is set to Hex.00, so that the sign of
the first number will ga into A.
Prepare the divisor and give the
report for arithmetic overflow if it

is zero.

Exchange the pointers.

Prepare the dividend and return if

it is zero (result already zero).
Exchange the registers.

Save the next literal address.
Exchange the registers.

Save pointer to divisor.

Save pointer to dividend.

Get the two numbers from the stack.
Exchange the registers.

Save M1 & N1 on the machine stack.
Copy the four bytes of the dividend
from registers B’C’CB (i.e. M2, M3,
M4 & M5; see FETCH-TWO) to the
registers H' L"HL.

Clear A and reset the carry flag.

Now enter the division loop.

18A2 DIV-LOOP

1882 DIV-START

LD

JR

RLA
RL
EXX
RL
RL
EXX
ADD
EXX
ADC

EXX

JR
SBC
EXX
SBC
EXX
JR
ADD
EXX
ADC
EXX
AND
JR

18C2 SUBN-ONLY AND

18C9 NO-RSTORE
18CA COUNT-ONE

S8C
EXX
SBC
EXX
SCF
INC
JP
PUSH

JR

LD
LD
EXX
LD
LD
POP
RR
POP
RR
EXX
POP
POP
LD
SuB

JP

B,+DF

18B2,DIV-START

C

C
B

HLHL
HL,HL
C.18C2,SUBN-ONLY
HL,DE

HL,DE

NC,18C9,NO-RSTORE

HL,DE

HL,DE

)
18CA,COUNT-ONE
A

HL,DE

HL.DE

B
M,18A2,DIV-LOOP
AF

Z,18B2,DIV-START

1810,DIVN-EXPT

45

B will count upwards from -33 to -1,

2's complement, Hex,DF to FF, looping
on minus and will jump again on zero
for extra precision.

Jump forward into the division loop

for the first trial subtraction.

Shift the result left into B'C’'CA,
shifting out the bits already there,
picking up 1 from the carry

whenever it is set, and rotating

left each byte with carry to

achieve the 32 hit shift.

Move what remains of the dividend
left in H' L’HL before the next

trial subtraction; if a bit drops into the
carry, force no restore and a bit for the
quotient, thus retrieving the lost bit and
allowing a full 32-bit divisor.

Trial subtract divisor in D'E’DE

from rest of dividend in H'L’HL;
there is no initial carry (see

previous step).

Jump forward if there is no carry.
Otherwise restore, i.e. add back the
divisor. Then clear the carry so that
there will be no bit for the

quotient {the divisor 'did not go').

Jump forward to the counter.

Just subtract with no restore and

go oh to set the carry flag because

the lost bit of the dividend is to

be retrieved and used for the
quotient,

One for the quotient in B°C’ CA.

Step the loop count up by one.

Loop 32 times for all bits.

Save any 33rd bit for extra precision
(the present carry).

Trial subtract yet again for any 34th bit;
the PUSH AF above saves this bit too.
Now move the four bytes that form
the mantissa bytes of the result

from B'C'CA to D'E'DE.

Then put any 34th and 33rd bits into
B’ to be picked up on normalization.

Restore the exponent bytes, M1 & N1.
Restore the pointer to the resuit.

Get the difference between the two
exponent bytes into A and

set the carry flag if required.

Exit via DIVN-EXPT.

46

THE ‘INTEGER TRUNCATION TOWARDS ZERQ’ SUBROUTINE
{Offset 36 — see CALCULATE below: ‘truncate’)

This subroutine (say | (X} } returns the result of integer truncation of X, the ‘last value’, towards zero.
Thus, 1 (2.4) is 2 and | (-2.4) is -2. The subroutine returns zero if the exponent byte of X is less than
Hex.81 {mod X less than 1]). it returns X if the exponent byte is Hex.AD or greater (X has no
significant non-integral part). Otherwise the correct number of bytes of X are set to zero and, if
needed, one more byte is split with a mask.

18E4 truncate

18EF X-LARGE

LD
CcP
JR
LD
LD
IR

SuB
RET

NEG

A(HL)

+81
NC,1BEF,X-LARGE
(HL),+00

A, +20
18F4,NIL-BYTES

+AD
P

Now the bits of the mantissa can be cleared.

18F4 NIL-BYTES

PUSH
EX
DEC
LD
SRL
SRL
SRL
JR

1900 BYTE-ZERO LD

1905 BITS-ZERO

190C

LESS-MASK

1812 IX-END

DEC
DINZ
AND

JR
LD
LD
SLA
DJINZ

AND
LD
EX
POP
RET

DE

DE,HL

HL

B.A

B

B

B
Z,1905,BITS-ZERO
(HL}L+00

HL
1900,BYTE-ZERC
+07

Z1912,1X-END
B.A

A+FF

A

190C, LESS-MASK

{HL)
{HL},A
DE,HL
DE

Get the exponent byte of X into A.
Compare e, the exponent, to Hex.81.
Jump if e is greater than Hex.80.

Else, set the exponent to zero;

enter 32 decimal, Hex.20, into A

and jump forward to NIL-BYTES to
make all the bits of X be zero.
Subtract 160 decimal, Hex.AQ, from e.
Return on plus — X has no significant
non-integral part, {If the true exponent
were reduced to zero, the ‘binary point’
would come at or after the end of the
four bytes of the mantissa.)

Else, negate the remainder; this gives
the number of bits to become zero
{the number of bits after the

‘binary point’).

Save the current value of DE (STKEND).
Make HL point one-past the 5th byte.
HL now points to the 5th byte of X.

Get the number of bits to be set to

zero into B and divide it by 8 to give

the number of whole bytes

implied.

Jump forward if the result is zero.

Else, set the bytes to zero; B

counts them.

Get A (mod 8): this is the number of
bits still to be set to zero.

Jump to the end if nothing more to do.
B will count the bits now.

Prepare the mask.

With each loop a zero enters the

mask from the right and thereby a mask
of the correct ‘length’ is produced.

The unwanted bits of {HL) are lost

as the masking if performed.

Return the pointer to HL.

Return the painter to DE, (STKEND),
Finished.

47

THE CALCULATOR TABLES
The table of constants:
This first table holds the five useful and frequently needed numbers zero, one, a half, a half of pi and

ten. The numbers are held in a condensed form which is expanded by the STACK LITERALS
subroutine, see below, to give the required floating-point form.

data: constant: when expanded gives:
exp. mantissa: {Hex.)
1915 stk-zero DEFB +00 zero 00 00 00 00 QO
DEFB +B0
DEFB +00
1918 stk-one DEFB +31 one 81 00 00 00 00
DEFB +00
191A stk-half DEFB +30 a half 80 00 00 00 00
DEFB +00
191C stk-pi/2 DEFB +F1 a half of pi 81 49 OF DA A2
DEFB +49
DEFB +0F
DEFB +DA
DEFB +A2
1921 stk-ten DEFB +34 ten 84 20 00 00 00
DEFB +20

48

The table of addresses:

This second table is a look-up table of the addresses of the 61 decimal, operational subroutines of the
calculator. The offsets used to index into the table are derived either from the operation codes used
in SCANNING, see 10BC etc., or from the literals that follow an RST 0028 instruction.

offset label address offset label address offset label address
1923 | 00 | jump-true 2F 1940 ! 16 | str-less 03 1977 | 2A | strs D5
1C 1B 18
1825 | 01 | exchange 72 194F | 16 | strs-eql 03 1979 | 2B | chrs 8F
1A 1B 1B
1927 | 02 | delete E3 1951 | 17 | strsadd 62 197B | 2C | not D5
19 1B 1A
1929 | 03 | subtract 4C 1953 | 18 | negate AQ 197D | 2D ! duplicate F6
12 1A 19
192B | 04 | multiply C6 1955 | 19 | code 06 197F | 2E{ n-mod-m 37
17 1C | o
192D | 05 | division 82 1957 | 1A | val A4 1981 | 2F | jump 23
18 18 1C
192F {06 | to-power E2 || 1959 | 1B | fen 11 1983 | 30 | stkdata FC
1D 1C 19
1931 (07 | or ED 195B | 1C | sin 49 1885 | 31 | dec-jr-nz 17
1A iD 1C
1933 (08 | no.-&no. F3 195D | 1D | cos 3E 1887 | 32 | less-0 DB
1A 1D 1A
19356 |09 | no.-l-eql 03 195F | 1€ | tan 6E 1989 | 33 | greater-0 CE
18 1D 1A
1937 | OA| no.-greq 03 1961 [1F | asn c4 198B | 34 | end-calc. 2B
1B 10 00
1939 | OB | nos.-neql 03 1963 | 20 | acs D4 198D | 35 | get-argt. 18
1B 1D 1D
193B | OC | no.grtr 03 1965 | 21 | atn 76 198F | 36 { truncate E4
1B 1D 18
193D | OD | no.-less 03 1967 | 22 In Ag 1891 | 37 | fp-cale-2 E4
1B 1C 19
193F | OE | noseql 03 | 1968 |23 | exp 5B 1993 | 38 | e-to-fp bA
1B 1C 15
1941 | OF | addition 56 196B | 24 | int 46 1995 | 39 | seriess06 7F
17 1C etc. 1A
1943 | 10 | str-&-no. F8 196D | 25 | sqr DB 1997 | 3A | stk-zero 51
1A 10 etc. 1A
1945 | 11| str-leql 03 196F | 26 | sgn AF 1989 | 3B | st-mem-0 63
1B 1A ete. 1A
1947 | 12 | str-greq 03 1971) 27 | abs AA 199B | 3C{ get-mem-0 45
18 1A etc. 1A
1949 | 13 | strs-neql 03 1973 | 28 | peek BE
1B 1A
194B | 14 | strgrtr 03 || 1975 | 28 | usr o
18 1A

‘Note: The last four subroutines are multi-purpose subroutines and are entered with a parameter that is
& copy of the righthand five bits of the original literal. The full set follows:—

Offset 39 : series-0B, series-08 & series-0C.

Offsat 3A : stk-zero, stk-one, stk-half, stk-pi/2 & stk-ten.

Offset 3B : st-mem-0, st-mem-1, st-mem-2, st-mem-3, st-mem-4 & st-mem-5.

Offset 3C : get-mem-0, get-mem-1, get-mem-2, get-mem-3, get-mem-4 & get-mem-5,

Note: TABLE-CON EQU 1915
TABLE-ADD EQU 1923

49
THE ‘CALCULATOR’ SUBROUTINE

This subroutine is used to perform floating-point calculations. These can be considered to be of
three types:

i Binary operations, e.g. addition, where two numbers in floating-point form are added together
to give one ‘last value’,

ii. Unary operations, e.g. sin, where the last value’ is changed to give the appropriate function
result as a new ‘last value'.

iii. Manipulatory operations, e.g. st-mem-0, where the ‘last value® is copied to the first five bytes
of the calculator’s memory area.

The operations to be performed are specified as a series of data-bytes, the literals, that follow an
RST 0028 instruction that calls this subroutine. The last literal in the list is always ‘34" which leads
1o an end to the whole aperation.

In the case of a single operation needing to be performed, the operation offset can be passed to the
CALCULATOR in the B register, and operation ‘37, the SINGLE CALCULATION aperation,
perfarmed,

It is also possible to call this subroutine recu rsively, i.e. from within itself, and in such a case it is
possible to use the system variable BERG as a caunter that controls how many operations are
performed before returning.

The first part of this subroutine is complicated but essentially it performs the two tasks of setting the
registers to hold their required values, and to produce an offset, and passibly a parameter, from the
literal that is currently being considered.

The offset is used to index into the calculator’s table of addresses, see above, to find the required
subroutine address.

The parameter is used when the multi-purpose subroutines are called.
Note: A fioating-point number may in reality be a set of string parameters.

189D CALCULATE CALL 1B85,STK-PNTRS Presume a unary operation and therefore
set HL to point to the start of the ‘last
value’ on the calculator stack and DE
one-past this floating-point number

{(STKEND).
19A0 GEN-ENT-1 LD A,B Either, transfer a single operation
LD (BERG),A offset to BERG temporarily, or, when

using the subroutine recursively pass the
parameter to BERG to be used as a

counter.
19A4 GEN-ENT-2 EXX The return address of the subroutine is
EX {SP},HL stored in H' L’, This saves the pointer
EXX to the first literal. Entering the

CALCULATOR at GEN-ENT-2 is used
whenever BERG is in use as a counter
and is not to be disturbed.

19A7 RE-ENTRY LD (STKEND),DE A loop is now entered to handle each
literal in the list that follows the calling
instruction; so first, always set STKEND.

EXX Go to the alternate register set, and

LD A(HL) fetch the literal for this loop.

INC HL Make H’ L’ point to the next literal.
19AE SCAN-ENT. PUSH HL This pointer is saved briefly on the

machine stack.

SCAN-ENT, is used by the SINGLE
CALCULATION subroutine to find the
subroutine that is required.

50

AND A
JP P,19C2,FIRST-38

Test the A register.

Separate the simple literals from the
multi-purpose literals. Jump with
literals 00 — 38.

LD DA Save the literal in D.

AND +60 Continue only with bits & & 6.

RRCA Four right shifts make them

RRCA now bits 1 & 2.

RRCA

RRCA

ADD A +72 The offsets required are 39 — 3C,

LD LA and L will now hold double the
required offset.

LD AD Now produce the parameter by

AND +1F taking bits 0,1,2,3 & 4 of the
literal; keep the parameter in A.

JR 19D0OENT-TABLE Jump forward to find the address of
the required subroutine.

19C2 FIRST-38 CP +18 Jump forward if performing a

JR NC,19CE,DOUBLE-A unary operation.

EXX All of the subroutines that perform

LD BC,+FFFB binary operations require that

LD DH HL points to the first operand and

LD E,L DE points to the second operand (the

ADD HL,BC ‘last value’) as they appear on

EXX the calculator stack.

19CE DOUBLE-A RLCA As each entry in the table of addresses
LD LA takes up two bytes the offset

1900 ENT-TABLE

LD

DE,+TABLE-ADD

praduced is doubled.
The base address of the table,

LD H,+00 The address of the required table

ADD HL,DE entry is formed in HL,; and the

LD E,.(HL} required subroutine address is

INC HL loaded into the DE register pair.

LD D,(HL)

LD HL+RE-ENTRY The RE-ENTRY address of 19A7 is

EX (SP),HL put on the machine stack underneath

PUSH DE the subroutine address.

EXX Return to the main set of registers.

LD BC,(STKEND-hi.) The current value of BERG is
transferred to the B register thereby
returning the single operation offset.
(See COMPARISON at 1803}

19E3 delete RET An indirect jump to the required

THE 'DELETE’ SUBROUTINE (Offset 02: ‘delete’)

subroutine.

This subroutine contains only the single RET instruction at 19E3, above. The literal ‘02’ results
in this subroutine being considered as a binary operation that is to be entered with a first number
addressed by the HL register pair and a second number addressed by the DE register pair, and the

result produced again addressed by the HL register pair.

The single RET instruction thereby leads to the first number being considered as the resulting ‘last
value’ and the second number considered as being deleted. Of course the number has not been
deleted from the memory but remains inactive and will probably soon be overwritten.

THE ‘SINGLE OPERATION’ SUBROUTINE (Offset 37: ‘fp-calc-2')

This subroutine is only called from SCANNING, see page 2, and is used to perform a single
arithmetic operation. The offset that specifies which operation is to be performed is supplied to the
calculator in the B register and subsequently transferred to the system variable BERG.

b1

The effect of calling this subroutine is essentially to make a jump to the appropriate subroutine for
the single operation.

19E4 fp-calc-2 POP AF Discard the RE-ENTRY address.
LD A{BERG) Transfer the offset to A.
EXX Enter the alternate register set.
JR 19AE, SCAN-ENT., Jump back to find the required address;

stack the RE-ENTRY address and jump
to the subroutine for the operation.

THE 'TEST 5-SPACES’ SUBROUTINE

This subroutine tests whether there is sufficient room in memory for another 5-byte floating-point
number to be added to the calculator stack.

19EB TEST-5-SP PUSH DE Save DE briefly,
PUSH HL Save HL briefly.
LD BC,+0005 Specify the test is for b bytes.
CALL OECH,TEST-ROOM Make the test.
POP HL Restore HL.
POP DE Restore DE,
RET Finished.

THE 'MOVE A FLOATING-POINT NUMBER’ SUBROUTINE (Qffset 2D: ‘duplicate’)

This subroutine moves a floating-point number to the top of the calculator stack {3 cases) or from the
top of the stack to the calculator's memory area {1 case). It is also called through the calculator when

it simply duplicates the number at the top of the calculator stack, the ‘last value’, thereby extending
the stack by five bytes.

19F6 MOVE-FP CALL 19EB,TEST-5-SP A test is made for room.
LDIR Move the five bytes involved.
RET Finished.

THE ‘STACK LITERALS' SUBROUTINE {Offset 30: 'stk-data’}

This subroutine places on the calculator stack, as a ‘last value’, the floating-point number supplied
toitas 2, 3, 4 or b literals.

When called by using offset “30" the literals follow the ‘30" in the list of literals; when called by the
SERIES GENERATOR, see below, the literals are supplied by the subroutine that called for a series
1o be generated; and when called by SKIiP CONSTANTS & STACK A CONSTANT the literals are
obtained from the calculator’s table of constants (1915-1922).

In each case, the first literal supplied is divided by Hex.40, and the integer quotient plus 1 determines
whether 1, 2, 3 or 4 further literals wiill be taken from the source to form the mantissa of the number.
Any unfilled bytes of the five bytes that go to form a 5-byte floating-point number are set to zero.
The first literal is also used to determine the expanent, after reducing mod Hex.40, unless the
remainder is zero, in which case the second literal is used, as it stands, without reducing mod Hex.40.
Inv either case, Hex 50 is added to the literal, giving the augmented expanent byte, e {the true
exponent e’ plus Hex.80). The rest of the 5 bytes are stacked, including any zeros needed, and the
subroutine returns.

19FC STK-DATA LD H,D This subroutine performs the
LD L,E manipulatory operation of adding a
‘last value’ to the calculator stack;
hence.HL is set to point one-past the
present ‘|last value’ and hence point to
the result.

52

19FE STK-CONST CALL

1A14 FORM-EXP

1A27 STK-ZEROS

EXX
PUSH
EXX
EX

PUSH
LD
AND
RLCA
RLCA
LD
INC

LD

LD
SUB
INC
INC
LD
LDIR
POP
EX
EXX
POP
EXX
LD
XOR
DEC
RET
LD
INC
JR

19EB, TEST-5-SP
HL

{SPLHL

BC
A, (HL)
+CO

C.A
c

A,(HL)

+3F
NZ,1A14,FORM-EXP
HL

A,(HL)

A,+50

(DE),A

A,+05
c

HL
DE
B,+00

BC
{SP), HL

HL

BA

A

B

Z

(DE),A

DE
1A27,STK-ZEROS

THE "SKIP CONSTANTS' SUBROUTINE

Now test that there is indeed room.
Go to the alternate register set and
stack the pointer to the next

literal.

Switch over the resuit pointer and the
next literal pointer.

Save BC briefly.

The first literal is put into A

and divided by Hex.40 to give the
integer values 0, 1, 2 or 3.

The integer value is transferred to

C and incremented, thereby giving
the range 1, 2, 3 or 4 for the number
of literals that will be needed.

The literal is fetched anew, reduced
mod Hex.40 and discarded as
inappropriate if the remainder is
zera; in which case the next literal

is fetched and used unreduced.

The exponent, e, is formed by the
addition of Hex_80 and passed to the
calcutator stack as the first of the
five bytes of the result.

The number of literals specified

in C are taken from the source

and entered into the bytes of the
result.

Restore BC.

Return the result pointer to HL
and the next {iteral pointer to
its usual positionin H" & L'.

The number of zero bytes required
at this stage is given by 5-C-1;

and this number of zeros is added
to the result to make up the
required five bytes.

This subroutine is entered with the HL register pair holding the base address of the calculator’s table
of constants and the A register holding a parameter that shows which of the five constants is being

requested.

The subroutine performs the null operations of loading the five bytes of each unwanted constant into
the locations 0000, 0001, 0002, 0003 and 0004 at the beginning of the ROM until the requested

constant is reached.

The subroutine returns with the H1 register pair holding the base address of the requested constant

within the table of constants,

tA2D SKIP-CONS AND A
1A2E SKIP-NEXT RET 2

PUSH

AF

The subroutine returns if the

parameter is zero, or when the requested

constant has been reached.
Save the parameter.

53

PUSH DE Save the result pointer.

LD DE,+0000 The dummy address.

CALL 19FE,STK-CONST Perform imaginary stacking of an
expanded constant.

POP DE Restore the result pointer.

POP AF Restore the parameter.

DEC A Count the loops.

JR 1A2E SKIP-NEXT Jump back to consider the value of

the counter.

THE ‘MEMORY LOCATION’ SUBROUTINE

This subroutine finds the base address for each five byte portion of the calculator's memory area to or
from which a floating-point number is to be moved from or to the calculator stack. |t does this
operation by adding five times the parameter supplied to the base address for the area which is held

in the HL register pair.

Note that when a FOR-NEXT variable is being handled then the pointers are changed so that the
variable is treated as if it were the calculator’'s memory area (part A, pp.23-25).

1A3C LOC-MEM LD C.A Copy the parameter to C.
RLCA Double the parameter.
RLCA Double that result,
ADD AC Add the value of the parameter to give
five times the original value.
LD C.A This result is wanted in the
LD B,+00 BC register pair.
ADD HL,BC Produce the new base address.
RET Finished.

THE ‘GET FROM MEMORY AREA’ SUBROUTINE {Offsets EO to E5: ‘get-mem-0' to ‘get-mem-5)

This subroutine is called using the literals EOQ to E5S and the parameter derived from these literals is
held in the A register. The subroutine calls MEMORY LOCATION ta put the required source address
into the HL register pair and MOVE A FLOATING-POINT NUMBER to copy the five bytes involved
from the calculator's memory area to the top of the calculator stack to form a new ‘last value’.

1A45 get-mem-0 PUSH DE Save the result pointer.
etc. LD HL,(MEM} Fetch the pointer to the current
memory area {see above}.
CALL 1A3C,LOC-MEM The base address is found.
CALL 19F6MOVE-FP The five bytes are moved.
POP HL Set the result pointer.
RET Finished.

THE ‘STACK A CONSTANT’ SUBROUTINE (Offsets AO to A4: 'stk-zero’, 'stk-one’, ‘stk-half’,
‘stk-pif2' & ‘stk-ten’)

This subroutine uses SKIP CONSTANTS to find the base address of the requested constant from the
calculator’s table of constants and then cails STACK LITERALS, entering at STK-CONST, to make
the expanded form of the constant the ‘last value’ on the calcuiator stack.

1AB1 stk-zero LD H,D Set HL to hold the result pointer.
etc. LD L.E
EXX Go to the alternate register set and
PUSH HL save the.next literal pointer.
LD HL,+TABLE-CON The base address of the calculator’s

table of constants.

EXX Back to the main set of registers.
CALL 1A2D,SKIP-CONS Find the requested base address.
CALL 19FE.STK-CONST Expand the constant.

EXX

POP HL Restore the next literal pointer.
EXX

RET Finished.

THE ‘STORE IN MEMORY AREA" SUBROUTINE (Offsets CO to CS5: ‘st-mem-0’ to 'st-mem-5)

This subroutine is called using the literals CO to C5 and the parameter derived from these literals is
held in the A register. This subroutine is very similar to the GET FROM MEMORY subroutine but
the source and destination pointers are exchanged.

1A63 st-mem-0 PUSH HL Save the resuit pointer.
etc. EX DE . HL Source to DE briefly,

LD HL,(MEM) Fetch the pointer to the current
memary area.

CALL 1A3C,LOC-MEM The base address is found.

EX DE HL Exchange source and destination
pointers.

CALL 19F6 MOV-FP The five bytes are moved.

EX DEHL ‘Last value’ +5, j.e. STKEND to DE.

POP HL Resuit pointer to HL.

RET Finished.

Note that the pointers HL and DE remain as they were, pointing to STKEND-5 and STKEND

respectively, so that the ‘last value’ remains on the calculator stack. | required it can be removed
by using ‘delete’.

THE '‘EXCHANGE' SUBROUTINE (Offset 01: ‘exchange’}

This binary operation ‘exchanges’ the first number with the second number, i.e. the topmost two
numbers on the calculator stack are exchanged.

1A72 EXCHANGE LD B,+05 There are five bytes involved.
1A74 SWAP-BYTE LD A, (DE) Each byte of the second number.
LD C,{HL) Each byte of the first number.
EX DE,HL Switch source and destination.
LD {DE),A Now to the first number.
LD (HL),C Now to the second number.
INC HL Move to consider the next pair
INC DE of bytes.
DJNZ 1A74SWAP-BYTE Exchange the five bytes.
EX DE HL Get the pointers correct as the number
5 is an odd number.
RET Finished.

THE 'SERIES GENERATOR’ SUBROUTINE {Offsets 86, 8B & 8C: 'series-06', 'series-08’
& ’‘series-0C’)

This important subroutine generates the series of Chebyshev polynomials which are used to
approximate to SIN, ATN, LN and EXP and hence to derive the other arithmetic functions which
depend on these {COS, TAN, ASN, ACS, ** and SQR).

The polynomials are generated, for n=1, 2,. .-, by the recurrence relation:

T syl = 22T (2} - T,.1(2) , where T_(z} is the nth Chebyshev polynomial in z.

55
The series in fact generates:

Ty 2T, 2T2, 2T _, . where nis 6 for SIN, 8 for EXP and 12 decimal, for LN and ATN.

The coefficients of the powers of z in these polynomials may be found in the Handbook of
Mathematical Functions by M. Abramowitz and |.A. Stegun {Dover 1965), page 795,

BASIC programs showing the generation of each of the four functions are given here in the Appendix.

In simple terms this subroutine is calied with the “last value’ on the calculator stack, say Z, being a
number that bears a simple relationship to the argument, say X, when the task is to evaluate, for
instance, SIN X, The calling subroutine also supplies the list of constants that are to be required (six
constants for SIN). The SERIES GENERATOR then manipulates its data and returns to the calling
routine a ‘last value’ that bears a simple relationship to the requested function, for instance, SIN X.

This subroutine can be considered to have four major parts:—

E. The setting of the loop counter:

The calling subroutine passes its parameter in the A register for use as a counter. The
calculator is entered at GEN-ENT-1 so that the counter can be set.

1A7F series-06 LD B.A Move the parameter to B.
etc. CALL 19A0,GEN-ENT-1 In effect an RST 0028 instruction
but sets the counter.

il The handling of the 'last value’, Z;

The loop of the generator requires 2*Z to be placed in mem-0, zero to be placed in mem-2 and
the ‘last value’ ta be zerg.

calculator stack

DEFB +2D,duplicate, 19F6 Z 7

DEFB +0F addition, 17565 2*Z

DEFB +CO0,st-mem-0,1AB3 2*7 mem-0 holds 2*2
DEFB +02delete, 19E3 -

DEFB +AQ,stk-zero,1A51 0

DEFB +C2,st-mem-2,1A83 0 mem-2 holds 0

iii. The main loop:
The series is generated by looping, using BERG as a counter: the constants in the calling
subroutine are stacked in turn by calling STK-DATA,; the calculator is re-entered at
GEN-ENT-2 50 as not to disturb the value of BERG; and the series is built up in the form:

B{R} =2*Z*B(R-1) - B{R-2) + A(R), for R=1, 2,...,N, where A{1), Al(2),..., AIN)} are the
constants supplied by the calling subroutine (SIN, ATN, LN and EXP) and B{0) = 0 = B{-1).

The {R+1}th loop starts with B{R) on the stack and with 2*Z, B{R-2) and B{R-1) in mem-0Q,
mem-1 and mem-2 respectively.

1AB9 G-LOOP DEFB +2D,duplicate, 19F6 B{R), B{(R)
DEFB +EQ,get-mem-0,1A45 B{R), B{R}, 2*Z2
DEFB +04,multipty,17C6 B{R}, 2*B(R)*Z
DEFB +E2,get-mem-2,1A45 B{R}), 2"B(R)*Z, B8(R-1)
DEFB +C1,st-mem-1,1A63 mem-1 holds B{R-1)
DEFB +(3,subtract,174C B{R], 2*B(R)}*Z-B{R-1)

DEFB +34 end-calc.,0028

The next constant is placed on the calculator stack.

CALL 19FC,STK-DATA B{R), 2*B{R)*Z-B(R-1}, A(R+1)

56

The Calculator is re-entered without disturbing BERG.

CALL 19A4,GEN-ENT-2

DEFB +0F ,addition,1755 B{(R), 2*B(R}*Z-B{R-1)+A(R+1}
DEFB +01,exchange,1A72 2*B{R}*Z-B{R-1)}+A(R+1}, B(R)
DEFB +C2st-mem-2,1A63 mem-2 holds B{R)

DEFB +02, delete,19E3 2*B{R}*Z-B{R-1}+A(R+1} = B{R+1)
DEFB +31,dec-jr-nz,1C17 B{R+1)

DEFB +EE, to 1A89,G-LOOP

iv. The subtraction of B{N-2):
The ioop above leaves B{N} on the stack and the required resuit is given by B{N) - B{N-2).

DEFB +E1,get-mem-1,1A45 B(N), B(N-2}
DEFB +03,subtract,174C B(N)-B{N-2)
DEFB +34,end-calc.,002B

RET Finished

THE 'UNARY MINUS’ OPERATION (Offset 18: ‘negate’)

This subroutine performs its unary operation by changing the sign of the ’last value’ on the calculator
stack.

1AAD negate LD A (HL} Fetch the exponent, e.
AND A Test it.
RET 2 Return if the ‘last value’ is zero.
INC HL Point to the sign byte.
LD A.(HL} Fetch the sign byte.
XOR +80 Change the sign bit.
LD (HL)A Return the sign byte.
OEC HL Set the result pointer.
RET Finished.

THE "ABSOLUTE MAGNITUDE’ FUNCTION (Offset 27: ‘abs’)

This subroutine performs its unary operation by ensuring that the sign bit of a floating-point number
is reset.

1AAA abs INC HL Point to the sign bit of the ‘last value'.
RES 7.{HL) The bit must be reset always.
DEC HL Set the result pointer.
RET Finished.

THE ‘SIGNUM’ FUNCTION (Offset 26: 'sgn’)

This subroutine handles the function SGN X and therefore returns a “last value’ of 1 if X is positive
zero if X is zero and -1 if X is negative.

[

1AAF sgn INC HL Paint to the sign byte of the present
‘last value’,
LD A (HL) Fetch the sign byte,
DEC HL Point to the exponent.
DEC (HL) Test the exponent byte; the zera
INC (HL} flag is set for zero.
SCF Set the carry flag.
CALL NZ,1AEOQ,FP-0/1 If the value is not zero then call

FP-0/1 with carry set to give a
‘last value” of 1.

57

INC HL Paint to the sign byte again.
RLCA The sign bit of X is passed into the
RR (HL) carry, and hence into the result.
DEC HL Set the result pointer,

RET Finished.

THE ‘PEEK’ FUNCTION (Offset 28: ‘peek’)

This subroutine handles the function PEEK X. The ‘last value® is unstacked by calling FIND-INT. and
replaced by the value of the contents of the required location.

1ABE peek CALL OEA7,FIND-INT. Evaluate the ‘last value’, rounded to the
nearest integer; test that it is in range
and return it in BC.
LD A,(BC) Fetch the required byte.
JP 151D,5TACK-A Exit by jumping to STACK-A.

THE "USR’ FUNCTION (Offset 29: ‘usr’)

This subroutine handles the function USR X. The value of X is evaluated, a return address is stacked
and the machine code executed from location X.

1AC5 usr CALL OEA7 FIND-INT. Evaluate the ’last value’, rounded to the
nearest integer; test that it is in range
and return it in 8C.

LD HL,+STACK-BC Make the return address be that of the
PUSH HL subroutine STACK-BC.

PUSH BC Make an indirect jump to the

RET required location.

Note: It is interesting that the |'Y register pair is re-initialised when the return to STACK-BC has been
made, but the impaortant H' L’ that holds the next literal peointer is not restored shouid it have
been disturbed.

THE ‘GREATER THAN ZERO’ OPERATION (Offset 33: ‘greater-0°}

This subroutine returns a ‘last value' of 1 if the present ‘last valuge' is greater than zero and zero
otherwise. It is also used by other subroutines to ‘jump on plus’.

1ACE GREATER-0 LD A, {HL) Fetch the exponent byte.
AND A Test it.
RET Z Return if the ‘last value’ is zero.
LD A +FF Jump forward to LESS THAN ZERO
JR 1ADCSIGN-TO-C but signal the opposite action is needed.

THE ‘NOT* FUNCTION (Offset 2C: ‘not’)

This subroutine returns a ’last value’ of 1 if the present ‘last value' is zero and zero otherwise. It is
also used by other subroutines to ‘jump on zero’'.

1ADS NOT LD A {HL} Fetch the exponent byte.
NEG Negating and complementing ensure
CCF that the carry is set only if the ‘last value’

is zero; this gives the correct return.
JR 1AEQ,FP-0/1 Jump forward.

58

THE ‘LESS THAN ZERO* OPERATION (Offset 32: ‘less{)

This subroutine returns a ‘last value’ of 1 if the present 'last value’ is less than zero and zero otherwise.
It is also used by other subroutines to ‘jump on minus’.

1ADB lessQ XOR A Clear the A register.
1ADC SIGN-TO-C INC HL Point to the sign byte.
XOR ({HL) The sign bit is collected and stored
DEC HL in the carry; when entered from
RLCA GREATER-0 the opposite sign goes to
the carry.

THE “ZERO OR ONE’ SUBROUTINE

This subroutine gives the ‘last value’ as zero if the carry flag is reset and the value 1 if it is set.

1AE0 FP-O/ PUSH HL Save the result pointer.
LD B,+05 There are five bytes.

1AE3 FP-ZERO LD (HL),+00 Enter zero on each loop.
INC HL Move to next byte.
DINZ 1AE3,FP-ZERO Until the five bytes are done.
POP HL Restore the result pointer.
RET NC Return the zero if carry reset.
LD (HL},+81 Return 1 if the carry flag is
RET set.

THE '‘OR’ OPERATION (Offset 07: ‘or’)

This subroutine performs the binary operation ‘X OR Y’ and returns X if Y is zero and the
value 1 otherwise.

1AED or LD A (DE) Fetch the exponent of the second
AND A nurmber; test it and return with the
RET Z first number as the ‘last value’ if it
18 Zera.
SCF Set the carry flag and jump back to
JAR 1AEQ,FP-0/1 give the 'last value’ as 1.

THE ‘'NUMBER AND NUMBER’ OPERATION {Offset 08: ‘no.-&-no.’}

This subroutine performs the binary operation ‘X AND Y' and returns X if Y is non-zero and the
value zero otherwise.

1AF3 no.-&-no. LD A,(DE)} Fetch the exponent of the second

AND A number; test it and return with the
RET NZ first number as the ‘last value’ if it

is hot zero.
JR 1AEQ,FP-0/1 With the carry flag reset, jump back to

give the ‘last value’ as zero,

THE ‘STRING AND NUMBER’ OPERATION (Offset 10: 'str-&-no."}

This subroutine performs the binary operation ‘A8 AND Y’ and returns AS if Y is non-zero and a
null string otherwise.

1AF8 str-&-no. LD A(DE)
AND A
RET NZ

Feteh the expanent of the number;
test it and return with the string as the
‘last value” if it is not zero.

PUSH
DEC

XOR

DEC
LD

POP
RET

DE
DE
{DE),A

(DE),A
DE

Save the pointer to the number.
Point to the 5th byte of the string
parameters i.e. length-high.

Clear the A register.

Length-high is now set to zero.
Point to length-low.

Length-low is now set to zero.
Restore the pointer.

Return with the string parameters
baing the ‘last value’.

THE ‘COMPARISON’ OPERATIONS (Offsets 09 to OE & 11 to 16: ‘no.-1-eqgl’, ‘no.-gr-eq’,
‘nos.-neql’, ‘no.-grtr’, ‘no.-less’, ‘nos.-eql’, ‘str-l-egl’, ‘str-gr-eql’, ‘strs-neql’, ‘str-grtr’, ‘str-less’
& ‘strs-eql’}

This subroutine is used to perform the twelve possible comparison operations. The single operation
offset is present in the B register at the start of the subroutine.

1B03

1B0B

1B16

1821

1B2C

1B33

no.- -eql LD
etc.
suUB
BIT
JR
DEC

EX-OR-NOT RRCA

JR
PUSH
PUSH

CALL

POP
EX
POP

NU-OR-STR BIT
JR

RRCA

PUSH

CALL

JR
STRINGS

PUSH

CALL

PUSH
PUSH

CALL

_POP
8YTE-COMP LD
OR
EX
LD
JR
OR
SECND-LOW POP

JR

RRCA

AB

+08

2A
NZ,1BOB,EX-OR-NOT
A

NC,1816,NU-OR-STR
AF

HL

1A72 EXCHANGE
DE

DE HL

AF

2,A
NZ,1B21,STRINGS

AF
174C,SUBTRACT
1B54,END-TESTS

AF
13F8,STK-FETCH
DE

BC
13F8,STK-FETCH
HL

AH

L

(SP),HL

AB
NZ,1B3D,SEC-PLUS
c

BC

Z,1B3A,BOTH-NULL

The single operation offset goes to
the A register.

The range is now 01-06 & 0S-0E.
This range is changed to.

00-02, 04-06, 08-0A &

OC-OE.

Then reduced to 00-07 with carry set
for ‘greater than or equal to’ &

‘less than', the operations with
carry set are then treated as their
complementary operations once the
values have been exchanged.

The numerical comparisons are now
separated from the string comparisons
by testing bit 2.

The numerical operations now have
the range 00-01 with carry set for
‘equal’ and "nat equal’.

Save the offset.

The numbers are subtracted for the
final tests.

The string comparisons now have the
range 02-03 with carry set for ‘equal’
and ‘not equal’.

Save the offset.

The lengths and starting addresses

of the strings are fetched from the
catculator stack.

The length of the second string.

Jump unless the second string is null.

Here the second string is either null
or less than the first.

60

POP
CCF
JR

1B3A BOTH-NULL PQP

tB3D SEC-PLUS

1B4D FRST-LESS

1850 STR-TEST

1B54 END-TESTS

JR
OR
JR

LD
Sus
JR
JR
DEC
INC
INC
EX
DEC
JR
POP
POP
AND

PUSH
RST
DEFB
DEFB
POP
PUSH
CALL
CALL
POP

RRCA

CALL
RET

AF

1B50,STR-TEST

AF

1B50,STR-TEST

c
Z,1B4D,FRST-LESS

A,(DE)

(HL}
C.1B4D,FRST-LESS
NZ,1B33,SECND-LOW
BC

DE

HL

{SP),HL

HL
1B2C,BYTE-COMP
BC

AF

A

AF

0028,FP-CALC.
+A0,stk-zera,1A51
+34,end-caic., 0028
AF

AF

C,1JAD5,NOT
1ACE,GREATER-0
AF

NC,TAD5,NOT

The carry is complemented to give
the correct test results.

Here the carry is used as it

stands.

The first string is now null, the
second not.

Neither string is null, so their

next bytes are compared.

The first byte is less.

The second byte is less.

The bytes are equal; so the lengths,
are decremented and a jump is

made to BYTE-COMP to compare the
next bytes of the reduced strings.

The carry is cleared here for the
correct test results.

For the string tests, a zero is
put on to the calculator stack.

These three tests, called as needed
give the correct results for all
twelve comparisons. The initial
carry is set for ‘not equal’ and
‘equal’, and the final carry is set
for '‘greater than’, ‘less than' and
lequaii.

Finished.

r

THE "'STRING CONCATENATION’ OPERATION (Offset 17: ‘strs-add’)

This subroutine performs the binary operation'A8+B$'. The parameters for these strings are fetched
and the total length found. Sufficient room to hold both the strings is made available in the work

space and the strings are copied over. The result of this subroutine is therefore to produce a tempaorary

variable A3+B$ that resides in the work space.

1B62 strs-add

CALL
PUSH
PUSH
CALL

POP
PUSH
PUSH
PUSH
ADD
LD
LD
RST
CALL

POP
POP
LD
OR
JR
LDIR

13F8,STK-FETCH
DE
BC
13F8,STK-FETCH

HL

HL

DE

BC

HL,BC

B.H

C.L
0030,BC-SPACES
12C3,STK-STORE

8C

HL

AB

C
Z,1B7D,0THER-STR

The parameters of the second string
are fetched and saved.

The parameters of the first string
are fetched.

The lengths are now in HL and BC,
The parameters of the first string
are saved.

The total length of the two strings is
caleulated and passed to BC,

Sufficient room is made available.
The parameters of the new string are
passed to the calculator stack.

The parameters of the first string are
retrieved and the string copied to
the work space as long as it is not

a null string.

61

1B70 OTHER-STR POP BC Exactly the same procedure is followed
POP HL for the second string thereby
LD A.B giving “A$+B%’.
OR C
JR Z,1B85,STK-PNTRS
LDIR

THE ‘STK-PNTRS’ SUBROUTINE

This subroutine resets the HL register pair to point to the first byte of the ‘last value’, i.e. STKEND-5,
and the DE register pair to point one-past the ‘last value’, i.e. STKEND.,

1885 STK-PNTRS LD HL,{STKEND) Fetch the current value of STKEND.
LD DE,+FFFB Set DE to -b, 2's complement.
PUSH HL Stack the value for STKEND.
ADD HL,DE Calculate STKEND-5.
POP DE DE now holds STKEND and HL holds
RET STKEND-b.

THE ‘CHR$’ FUNCTION {Offset 2B: "chrs')

This subroutine handles the function CHR® X and creates a single character string in the wark space.

188F chrs CALL 15CD,FP-TO-A The ‘last value’ is compressed into the

A register.

JR C,1BA2,REPORT-B2 Give the error report if X was
greater than than 255 decimal, or

JA NZ,1BA2,REPORT-B2 X was a negative number.

PUSH AF Save the compressed value of X.

LD BC,+0001 Make one space available in the

RST 0030,BC-SPACES work space.

POP AF Fetch the value,

LD {DE),A Copy the value to the work space.

CALL 12C3,STK-STORE Pass the parameters of the new string
to the calculator stack.

EX DE.HL Reset the pointers.

RET Finished.

REPORT-B2 - integer out of range

18A2 REPORT-B2 RST 0008,ERROR-1
DEFB +0A

THE ‘VAL' FUNCTION (Offset 1A: ‘val’)

This subroutine handles the function VAL A3 and returns a ‘last value’ that is the resuit of evaluating
the string as an arithmetical expression.

1BA4 val LD HL{CH-ADD} The current value of CH-ADD is
PUSH HL preserved on the machine stack.
CALL 13F8,STK-FETCH The parameters of the string are fetched;
PUSH DE the starting address is saved; one byte
INC BC is added to the length and room made
RST 0030,BC-SPACES available for the string {+1) in the work

space.

POP HL The starting address of the string goes

to HL as a source address.

62

LD
PUSH
LDIR

EX
DEC

RES
CALL
CALL

POP

SET
CALL

POP
LD
JR

{CH-ADD),DE
DE

DE.HL

HL

(HL),+76
TAFLAGS)
0D92,CLASSH
0D22,CHECK-2

HL
{CH-ADD),HL
7{FLAGS)

OF55,5CANNING

HL
{CH-ADD} HL

1B85,5TK-PNTRS

THE ‘'STRS' FUNCTION (Offset 2A: “strs’}

The pointer to the 2nd new space goes
to CH-ADD and the machine stack.
The string is copied to the work space,
together with an extra byte.

Switch the pointers.

The extra byte is replaced by a
NEWLINE character.

The syntax flag is reset and the string
scanned for correct syntax.

A check is made that the end of a line
has been reached.

The starting address of the string is
fetched and copied to CH-ADD.

The flag is set for line execution,

The string is treated as a ‘next expression’
and a 'last value’ produced.

The original value of CH-ADD is
restored.

The subroutine exits via STK-PNTRS
which resets the pointers.

This subroutine handles the function STRE X and returns a ‘last value’ which is a set of parameters
that defines a string containing what would appear on the screen if X were displayed by a

PRINT command.

1BD5 strs LD
RST
LD
LD
PUSH
LD
LD
LD
PUSH
LD
PUSH

CALL

BC,+0001
0030,BC-SPACES
(HL),+76
HL,(S-POSN)
HL

L+FF
(S-POSN) HL
HL,{DF-CC}
HL
(DF-CC},DE
DE

16D08,PRINT-FP

DE
HL,(DF-CC)
A

HL,DE

BH

CL

HL
(DF-CC),HL
HL
{S-POSN),HL

12C3,STK-STORE

DE,HL

One space is made in the work

space and a NEWLINE character put
into the location after it.

The current value of S-POSN is
preserved on the machine stack,

The column number of the PRINT
position is set to a high value.

The current value of DF-CC is

preserved on the machine stack.

The pointer to the NEWLINE

character becomes the destination
pointer of the PRINT operation. A copy
is saved on the machine stack.

The ‘last value’, X, is now printed out in
the work space and the work space is
expanded with each character as DF-CC
points to a NEWLINE character.

In effect now the start address.

Now the NEWLINE character is one-past
the end of the string and hence the
difference is the length.

Transfer the length to BC.

Restore the original value of

DF-CC.

Restore the original value of

S-POSN.

Pass the parameters of the new string to
the caleulator stack.

Reset the pointers.

Finished.

63
THE ‘CODE’ FUNCTION (Offset 19: ‘code’)

This subroutine handles the function CODE AS and returns the ZX81 code of the first character in
AR, or zero if A3 should be null.

1C06 code CALL 13FB,STK-FETCH The parameters of the string are fetched.
LD A.B The length is tested and the A
OR C register holding zero is carried forward
JR Z,1COE,STK-CODE if A is a null string.
LD A {DE) The code of the first character is put
into A otherwise,
1COE STK-CODE JpP 151D, STACK-A The subroutine exits via STACK-A

which gives the correct ‘last value’.

THE 'LEN’ FUNCTION {Offset 18: 'len’)

This subroutine handles the function LEN A% and returns a ‘last value’ that is equal to the length of
the string.

1C11 len CALL 13FB,STK-FETCH The parameters of the string are fetched.

JP 1620,STACK-BC The subroutine exits via STACK-BC
which gives the correct ‘last value’.

THE ‘DECREASE THE COUNTER’ SUBROUTINE (Offset 31: ‘dec.jr-nz’)

This subroutine is only called by the SERIES GENERATQR subroutine and in effect is a ‘DJINZ’
operation but the counter is the system variable, BERG, rather than the B register.

1C17 dec-jr-nz EXX Go to the alternate register set and

PUSH HL save the next literal pointer on the
machine stack,

LD HL,+BERG Make HL point to BERG.
DEC {HL) Decrease BERG.
POP HL " Restore the next literal pointer.
JR NZ,1C24,JUMP-2 The jump is made on non-zero.
INC HL The next literal is passed over.
EXX Return to the main register set.
RET Finished.

THE ‘JUMP" SUBROUTINE (Offset 2F: 'jump’)

This subroutine executes an unconditional jump when called by the literal ‘2F’. 1t is also used by the
subroutines DECREASE THE COUNTER and JUMP ON TRUE.

1C23 JUMP EXX Go to the alternate register set.
1C24 JUMP:2 LD E (HL) The next literal (jump length) is put
in the E' register.

XOR A The A register is cleared.
BIT 7E If E’ is negative, indicating a backwards
JR Z,1C2B,NEW-ADDR. jump then Hex.FF is formed in the
CPL A register instead of the Hex.00.

1C2B NEW-ADDR. LD DA Hex.00 or Hex.FF goes to D.
ADD HL,DE The registers H’ & L’ now hold the
EXX new next literal pointer.

RET Finished.

64

THE "JUMP ON TRUE’ SUBROUTINE (Qffset 00: ‘jump-true’)

This subroutine executes a conditional jump if the ’last value’ on the calculator stack, or more
precisely the number addressed currently by the DE register pair, is true.

1C2F jump-true D A,(DE) Fetch the exponent,
AND A Test it.
JR NZ,1C23,JUMP Make the jump on true, or more

precisely, on not-false.

EXX Ga to the alternate register set.
INC HL Pass over the jump |ength,
EXX Back to the main set of registers.
RET Finished.

THE ‘MODULUS’ SUBROUTINE {Offset 2E: ‘n-mod-m’)

This subroutine calculates N {mod M), where M is a positive integer held at the top of the calculator
stack, the “last value’, and N is an integer held on the stack beneath M,

The subroutine returns the integer quotient INT {N/M) at the top of the calculator stack, the ‘last
value’, and the remainder N-INT (N/M) in the second place on the stack.

This subroutine is called by PRINT-FP ta reduce N mod 10 decimal, and during the calculation of a
random number to reduce N mod 65537 decimal.

1C37 n-mod-m RST
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

0028,FP-CALC.
+C0,st-mem-0,1A63
+02,delete, 19E3
+2D,duplicate, 19F6
+E0,get-mem-0,1A45
+05,division, 1882
+24,int,1C46
+£0,get-mem-0,1A45
+01,exchange,1A72
+C0,st-mem-0,1A63

mem-0 holds M

"

N
N
N
N
Nr
N
N
N

2L =2

, M
. N/M

. INT {N/M})

, INT {N/M}, M

N, M, INT (N/M}

N, M, INT (N/M} mem-0 holds INT (N/M)

DEFB +04 multiply,17C6 N, M*INT (N/M}

DEFB +03,subtract,174C N-M*INT {N/M)

DEFB +E0Q,get-mem-0,1A45 N-M*INT {(N/M}, INT (N/M)
DEFB +34,end-calc.,002B

RET

THE ‘INT” FUNCTION (Offset 24: ‘int’)

Finished.

This subroutine handles the function INT X and returns a ‘last value’ that is the ‘integer part’ of the
value supplied. Thus INT 2.4 gives 2 but as the subroutine always rounds the result down INT -2.4

gives -3.

The subroutine uses the INTEGER TRUNCATION TOWARDS ZERO subroutine at 18E4 to produce
| {X} such that | {2.4) gives 2 and | {-2.4) gives -2. Thus, INT X is given by 1 {X) for values of X that
are greater than or equal to zero, and | {X)-1 for negative values of X that are not already integers,
when the result is, of course, | {X].

1C46 int AST 0Q028,FP-CALC. X
DEFB +2D,duplicate, 19F6 X, X
DEFB +32,less-0,1ADB X, {1/0)
DEFB +00,jump-true, 1C2F X
DEFB +04, to 1CAE X-NEG X

For values of X that have been shown to be greater than or equal to zero there is no jump and | {X) is
readily found. -

DEFB +36,truncate,18E4 I X}
DEFB +34 end-calc.,002B
RET Finished,

When X is a negative integer | (X) is returned, otherwise | {X}-1 is returned.

1C4E X-NEG DEFB +2D,duplicate, 19F6 X, X
DEFB +36,truncate,18E4 X, | {X)
DEFB +CO0,st-mem-0,1A63 X, 1 {X) . mem-0 holds | {X)
DEFB8 +03,subtract,174C X-l {X)
DEFB +EO,get-mem-0,1A45 X-1{X), 1 (X)
DEFB +01,exchange,1A72 i (X)), X-1 (X}
DEFB +2C,not,1ADS 1 {X), (1/0}
DEFB +00,jump-true,1C2F 1 {X)
DEFB +03, to 1CH9.EXIT 1{X)

The jump is made for values of X that are negative integers, otherwise there is no jump and 1 {X)-1
is calculated.

DEFB +A1 stk-one,1A51 1{X), 1
DEFB +03subtract,174C 1{X)-1

In either case the subroutine finishes with;

1C59 EXIT DEFB +34 end-calc.,0028 1 {X)or | {X)-1
RET

THE ‘EXPONENTIAL’ FUNCTION (Offset 23: 'exp’}

This subroutine handles the function EXP X and is the first of the four routines that use
SERIES GENERATOR to produce Chebyshev polynomials.

The approximation to EXP X is found as follows:

i X is divided by LN 2 to give Y, so that 2 to the power Y is now the required result.
ii. The value N is found, such that N=INT Y.
il The value W is found, such that W=Y-N, where 0<=W <=1, as required for the series
to converge.
iv, The argument 2 is formed, such that Z=2*W-1.
v. The SERIES GENERATOR is used to return 2**W.,
i, Finally N is added to the exponent, giving 2* *{N+W}, which is 2**Y and therefore the
required answer for EXP X.

The method is illustrated using a BASIC program in the Appendix.
1CEB EXP RST 0028,FP-CALC. X

Perform step i.

DEFB +30,stk-data,19FC X, 1/LN 2
DEFB +F1,exponent 81
DEFB +38,+AA,+3B,+29

DEFB +04 muitiply,17C6 X/ILN2=Y
Perform step ii.
DEFB +2D duplicate,19F6 Y. Y
DEFB +24,int,1C46 Y,INTY=N
DEFB +C3st-mem-3. 1AB3 Y, N mem-3 holds N

Perfarm step iii.
DEFB +03,subtract,174C Y-N=W

66

Perform step iv.

DEFB
DEFB
DEFB
DEFB

+20,duplicate, 19F6
H)F ,addition, 17556
+A1,stk-one,1A51
+03,subtract,174C

W W
2*W

2*W, 1
2*'W-1=2

Perform step v, passing to the SERIES GENERATOR the parameter ‘8’ and the eight constants

required.

DEFB
1 DEFB

DEFB
Z DEFB
DEFB
3. DEFB
DEFB

4. DEFB
DEFB
5. DEFB
DEF8
6. DEFB
DEFB
p & DEFB
DEFB
8. DEFB

DEFB

+88 series-08, 1A7F
+13,exponent 63
+36, (+00,+00,+00)
+58 exponent 68
+65,+66,(+00,+00)
+9D,exponent 6D
+78,+65,+40,{+00)
+A2 exponent 72
+60,+32,+C9,{+00}
+E7,exponent 77
+21,+F7 +AF +24
+EB,exponent 78
+2F,+B0,+B0,+14
+EE,exponent 7E
+7€,+B8B,+94 158
+F1,exponent 81
+3A,+7E,+F8.+CF

At the end of the last loop the ‘last value’ is 2" *W,

Perform step vi.

DEFB
DEFB
CALL

JR
JR
ADD
JR
1C99 REPORT6-2 RST
DEFB
1C9B N-NEGTV JR

suB

JR
NEG
1CA2 RESULT-OK LD
RET
1CA4 RSLT-ZERO RST
DEFB
DEF8
DEFB
RET

+E3,get-mem-3,1A45
+34,end-cale., 0028
15CD,FP-TO-A

NZ,1C98B,N-NEGTV
C1C99,REPORTS-2

A (HL)
NC,1CA2,RESULT-OK
DO08,ERROR-1

+05
C,1CA4,RSLT-ZERQ

(HL)
NC,1CA4,RSLT-ZERO
(HL),A
0028,FP-CALC.
+02,deiete, 19E3

+AQ,stk-zero, 1A51
+34,end-calc.,002B

2**W, N

The absolute value of N mod 256
decimal, is put into the A register,
Jump forward if N was negative.
Error if ABS N greater than 255 dec.
Now add ABS N to the exponent.
Jump unless e greater than 255 dec.
Otherwise report the overflow.

The result is to be zero if N is less
than -255 decimal.

Subtract ABS N from the exponent as
N was negative,

Zero result if e less than zero.

Minus e is changed to e.

The expaonent, e, is entered.

Finished: ‘last value’ is EXP X.

Use the calculator to make the

‘last value' zero.

Finished, with EXP X = 0.

THE ‘NATURAL LOGARITHM' FUNCTION (Offset 22: ‘in’)

This subroutine handles the function LN X and is the second of the four routines that use

SERIES GENERATOR to produce Chebyshev polynomials.

The approximation to LN X is found as follows:

iv.
v,

vi,
vil.

1CAS

X is tested and report A is given if X is not positive.

67

X is then split into its true exponent, ', and its mantissa X" = X/{2*"e’}, where X' is greater
than, or equal to, 0.5 but still less than 1.
The required value ¥1 or Y2 is formed. If X’ is greater than 0.8 then Y1 =e’*LN 2 and if
otherwise Y2 = {e’-1)"LN 2.
| X" is greater than 0.8 then the quantity X'-1 is stacked; atherwise 2* X'-1 is stacked.

Now the argument Z is formed, being, if X' is greater than 0.8, Z = 2.5* X’-3; otherwise
Z=5"X"'-3, In each case, -1<= Z <=1, as required for the series to converge.

The SERIES GENERATOR is used to produce the required function.

Finally a simple multiplication and addition leads to LN X being returned as the ‘last value’.

In RST

Perform step i.

DEFB
DEFB
DEF8
DEFB
DEFB
RST

DEFB

Perform step ii.

1CB1

VALID DEFB
DEFB
DEF8
LD
LD
CALL
RST
DEFB
DEFB
DEFB
DEFB

Perform step iii.

1CD2

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
INC

RST

GRE.8 DEFB

0028,FP-CALC.

+20,duplicate, 19F6
+33,greater-0,1ACE
+00.jump-true,1C2F
+04, 10 1CB1,VALID
+34,end-calc,,002B
0008,ERROR-1

+09

+A0,stk-zero, 1A51
+02 delete, 19E3
+34,end-calc.,002B
A{HL)

(HL},+80
151D,STACK-A
0028,FP-CALC.
+30,stk-data, 19FC
+38,exponent 88
+00, (+00,+00,+00})
+03,subtract,174C

+01,exchange, 1A72
+2D,duplicate, 19F6
+30,stk-data, 19FC
+FD,exponent 80
+4C,+CC +CC+CD
+03,subtract,174C
+33,greater-0,1 ACE
+00,jump-true, 1C2F
+08, to 1CD2,GRE.8
+{01,exchange,1A72
+A1 stk-one, 1A51
+03,subtract, 174C
+01,exchange,1A72
+34 end-calc., 0028
{HL)
0028,FP-CALC.
+01,exchange, 1A72

Give report A — invalid argument.

X, 0 The deleted 1 is overwritten
X with zero.
X

The exponent, €, goes into A.
X is reduced to X'.

The stack holds: X‘, a.

X', e

X', e, 128 (decimal}

X, e

e, X'
e, X, X
e’, X', X',0.8 idecimal}

e, X', X'-0.8
e, X', (1/0)
g, X'

e, X'

X, e

X, e, 1

X', e-1

e’-1, X'

e-1, X
Double X' to give 2*X'.
e’-1,2*X’
X', e

2* X', e’-1

— X’ large.
— X’ small.

68

DEFB
DEFB
DEFB
DEFB
Perform step iv.
DEFB
DEFB
DEFB

DEFB

DEFB

Perform step v.
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB

+30,stk-data, 19FC
+F0,exponent 80

+31,+72,417,+F8
+04, muitiply,17C6

+01,exchange,1A72
+A2 stk-half,1A51
+03,subtract, 174C
+A2 stk-half, 1AB1

+03,subtract,174C

+2D,duplicate, 19F6
+30,stk-data,19FC
+32 exponent 82
+20,{+00,+00,+00)
+04 multiply,17C6
+A2,stk-half,1A51

+03,subtract,174C

X,e', LN 2
2*X’,e-1, LN 2
X, e*LN2=Y1

2°X°, (e-1)*LN 2=Y2

Y1, X' — X’ large,
Y2, 2*X — X’ small.
Y1, X', .5 (decimal}

Y2, 2*X'..56

Y1, X-5

¥2,2*"X'-56

Y1, X-5,.56

Y2, 2*X-5, .5

Y1, X'-1

Y2,2*X' -1

Y, X'-1, X'-1

Y2, 2*X-1, 2* X -1

Y1, X'-1, X'-1, 2.5 {decimal)
¥2,2%X-1,2*X'-1, 25

Y1, X'-1,25*X"-25
Y2, 2*X-1, 5" X'-2.5
Y1, X'-1,25*X"-25, .5
Y2,2*X’-1,5*X"-2.5, .8
Y1, X-1,25*X'-3=2
Y2, 2*°X'-1,5*X-3=2

Perform step vi, passing to the SERIES GENERATOR the parameter ‘12" decimal, and the

twelve constant required.

DEFB
1. DEFB
DEFB
2. DEFB
DEFB
3. DEFB
DEFB
4. DEFB
DEFB
5. DEFB
DEFB
6. DEFB

DEFB
7 DEFB
DEFB
B. DEFB
DEFB
9. DEFB
DEFB

+8C series-QC,1ATF
+11,exponent 61
+AC, (+00,+00,+00)
+14,exponent 64
+09, (+00,+00,+00}
+56 exponent 66
+DA +A5,(+00,+00)
+58,exponent 69
+30,+C5,(+00,+00)
+5C,exponent 6C
+90,+AA,{+00,+00)
+8E ,exponent 6E
+70,+6F +61,(+00)
+A1.exponent 71
+CB,+DA,+96,(+00)
+Ad exponent 74
+31,+9F +B4,(+00)
+E7, exponent 77
+A0,+FE,+5C,+FC

Y1, X'-1,20rY2,2*°X-1, 2

69

10. DEFB +EA, exponent 7A
DEFB +1B,+43,+CA,+36
11. DEFB +ED.exponent 7D
DEFB +A7,+9C +7E,+5E
12. DEFB +FQ,exponent 80
DEFB +6E,+23,+80,493

At the end of the last loop the ‘last value' is:

either LN X'/{X’-1} for the larger values of X’
ar LN (2*X")/(2* X"-1) for the smaller values of X'.

Perform step vii.

DEFB +04 multiply,17C6 Y1=LN {2**e'}), LN X*

Y2=LN {2**{e’-1)}, LN {2*X")

DEFB +0F,addition,1755 LN ((2**e'}* X’} = LN X
LN(2**(e-1}*2*X’} = LN X

DEFB +34,end-calc.,002B LN X

RET Finished: 'last vatue’ is LN X.

THE "REDUCE ARGUMENT’ SUBROUTINE (Offset 35: 'get-argt.’)
This subroutine transforms the argument X of SIN X or COS X into a value V.

The subroutine first finds a value Y such that:
Y = XH2*P1} — INT {X/{2"PI1} + 0.5) , where Y is greater than, or equal to, -.5 but less than +.5.

The subroutine returns with:
V=4*Y if -1<=4*Y<=1

— Case i
or, V=24*Y if 1<4*Y<2 — ¢ase .
or, V=-4*Y-2 if -2<=4*Y<-1. - caseiii.

In each case, -1<=V <=1 and SIN {P[*V/2) = SIN X.

1D18 get-arqgt. RST 0028,FP-CALC. X
DEFB +30,stk-data,18FC X, 1/{(2*P1)
DEFB +EE,exponent 7€
DEFB +22,+F9,+83 +6E
DEFB +04,multiply,17CB X/{2*P1)
DEFB +2D,duplicate,19F6 X/H2*P1), X/(2*PI)
DEFB +A2 stk-half,1A51 X/(2*Pl1), X/{12*P1}, 0.5
DEFB +OF addition,1755 X/(2*P1), X/{2*P1}+0.5
DEFB +24,int,1C46 X/(2*PI}, INT {X/(2*P1}+0.5}
DEFB +03,subtract,174C X/(2*P1)-INT (X/(2*P1)+0.5) =Y

Note: Adding 0.5 and taking INT rounds the result to the nearest integer.

DEFB +2D duplicate, 19F6 Y, ¥

DEFB +0F,addition,1755 2*Y

DEFB +2D,duplicate, 19F6 2°Y,2*Y

DEFB +0F addition,17556 4*Y

DEFB +2D.duplicate,19F6 4*Y,4*Y

DEFB +27,abs,1AAA 4*Y, ABS (4™Y)
DEFB +A1,stk-one,1A51 4*Y, ABS (4*Y), 1
DEFB +03,subtract,174C 4*Y, ABS (4*Y)-1=Z
DEFB +2D,duplicate,19F& 4*vy, 2,2

DEFB +33,greater-0,1ACE 4*Y,Z,(1/0)

DEFB +CD,st-mem-0,1A63 Mem-0 holds the result of the test.

70

DEFB +00,jump-true,1C2F 4*y, 2z

DEFB +M, to 1D035,Z2PLUS 4*y, 2

DEFB +(2,delete,19E3 4*Y

DEFB +34 end-calc.,002B 4*Y =V — case|,
RET Finished.

If the jump was made then continue.

10358 ZPLUS DEFE +A1 stk-one, 1A51 4*y Z. 1
DEFB +03,subtract,174C 4*Yy, Z-1
DEFB +01 exchange,1A72 Z-1,4*Y
DEFB +32,less-0,1ADB Z-1, (1/0)
DEFB +00,jump-true,1C2F Z-1
DEFB +02, to 1D3C,YNEG Z-1
DEFB +18.negate,1AAQ 1.Z
1D3C YNEG DEFB +34 end<alec.,0028 1-Z=V — caseii.
Z-1=V — caseiii.
RET Finished.

THE ‘COSINE’ FUNCTION (Offset 1D: ‘cos’)
This subroutine handles the function COS X and returns a ‘last value’ that is an approximation to COS X,
The subrouting uses the expression:
COS X = SiN (PI"W/2) , where -1<=W<=1,
In deriving W from X the subroutine uses the test result obtained in the previous subroutine and stored

for this purpose in mem-0. It then jumps to the SINE subroutine, entering at C-ENT, to produce a
“last value’ of COS X.

103E cos RST 0028,FP-CALC. X
DEFB +35,get-argt.,1D18 Vv
DEFB +27.abs,1AAA ABS V
DEFB +A1, stk-one, 1A51 ABS V, 1
DEFB +03,subtract,174C ABS V-1
DEFB +ED,get-mem-0,1A45 ABS V-1, (1/0)
DEF8 +00,jump-true,1C2F ABS V-1
DEFB +06, to 1D4B, C-ENT ABSV-1=W

If the jump was not made then continue.

DEFB +18,negate,1AAQ 1-ABS V
DEFB +2F,jump,1C23 1-ABS V
DEFB +03, to 1D4B,C-ENT 1-ABSV =W

THE "SINE’ FUNCTION (Offset 1C: ‘sin’)

This subroutine handles the function SIN X and is the third of the four routines that use SERIES
GENERATOR to produce Chebyshev polynomials.

The approximation to SIN X is found as follows:

i The argument X is reduced and in this case W = V directly.
Note that -1 <=W<=1, as required for the series to converge.
i The argument Z is formed, such that Z=2*W*W-1.
iii. The SERIES GENERATOR is used to return (SIN (PI*W/2))/W.
iv. Finally a simple multiplication gives SIN X.

1D49 sin RST 0028,FP-CALC. X

Perform step i.
DEFB

+35,get-argt., 1018

"

w

Perform step ii. The subroutine from now on is common to both the SINE and COSINE functions.

104B C-ENT DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

+2D,duplicate, 19F6
+2D,duplicate, 19F6
+04,multiply,17C6
+2D,duplicate, 19F6
+0F ,addition, 1755
+A1,stk-one, 1A51
+H03,subtract,174C

W, W,

W W W

W, W*w

W, W'W, w*w
W, 2*W*W

W, 2°W*W, 1

W, 2*"W'W-1=2

Perform step iii, passing to the SERIES GENERATOR the parameter ‘6" and the six constants

required.

DEFB
1. DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

@ ¢ B oW N

+86,series-06,1A7F
+14 ,exponent 64
+E6,{+00,+00,+00)
+5C exponent 6C
+1F +0B,(+00,+00)
+A3,exponent 73
+8F ,+38,+EE (+00}
+E9,exponent 79
+15,+63,+BB,+23
+EE exponent 7E
+92,+0D,+CD+ED
+F1,exponent 81
+23,+6D,+1B,+EA

w,Z

At the end of the last loop the ‘last value’ is {SIN {Pi*W/2))/W.

Perform step v.

DEFB

DEFB
RET

+04, multipiy,17C6
+34 ,end-calc.,0028

THE ‘TAN’ FUNCTION {Offset 1E: ‘tan’)

SIN {P1*W/2) = SIN X {or = COS X)

Finished: ‘last value’ = SIN X.
or
{‘last value’ = COS X).

This subroutine handies the function TAN X. The subroutine simply returns SIN X/COS X, with
arithmetic overflow if COS X=0 .

1D6E tan RST
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
RET

0028,FP-CALC.
+2D,duplicate, 19F6
+1C,sin, D49
+01,exchange,1A72
+1D,cos,1D3E

+05 division, 1882

+34 .end-calc.,002B

THE "ARCTAN’ FUNCTION (Offset 21: ‘atn’)

X

X, X
X, S5iIN X

SIN X, X

SIN X, COS X

SIN X/COS X=TAN X

Report arithmetic overflow if needed.
TAN X

Finished: 'last value’ = TAN X,

This subroutine handles the function ATN X and is the last of the four routines that use SERIES
GENERATOR to produce Chebyshev polynomials. It returns a real number between -P1/2 and Pl/2,
which is equal to the value in radians of the angle whose tan is X,

72

The approximation to ATN X is found as follows:

i The values W and Y are found for three cases of X, such that:

if-1<X < then W=0 & Y=X - case i.
if 1<=X then W=PI/2 & ¥Y=-1/X - case ii.
if X<=-1 then W=-Pi/2 & Y =-1/X — case i,

In each case, -1<=Y <=1, as required for the series to converge.

ii. The argument Z is formed, such that:
if -1<X<1 then Z=2"Y*Y-1
if 1<X then Z=2%Y*Y-1
if X<=-1 then Z=2*Y*Y-1

2*X*X-1 - case i,
2HX*X)-1 —caseii.
2H{X*X}-1 — caseiii.

iii. The SERIES GENERATOR is used to produce the required function.
iv. Finally a simple multiplication and addition give ATN X.

Perform stage i.

1BD76 atn LD A(HL) Fetch the exponent of X,

CP +81

JR C.1D89,SMALL Jump forward for casei: ¥ = X,

RST 0028,FP-CALC. X

DEFB +A1, stk-one, 1A51 X1

DEFB +18,negate, 1AAQ X, -1

DEFB +01,exchange,1A72 -1, X

DEFB +05 division,1882 -1/X

DEFB +2D,duplicate, 19F6 -1X, -1/X

DEFB +32,less-0,1ADB /X, (1/0)

DEFB +A3,stk-pi/2,1A51 =1/X, {1/0), P1/2

DEFB +01,exchange,1A72 -1/X, Pt/2, (1/0}

DEFB +00,jump-true,1C2F -1/X, P1/2

DEFB +06, to 1D8B,CASES Jump forward for case ii: Y = -1/X

W="PI|/2

DEFB +18,negate, 1AAQD -1X, -P1/2

DEFB +2F,jump,1C23 -1/X, -P1/2

DEFB +03, to 1D8B,CASES Jump forward for case iii: Y = -1/X

W= -Pi/2

1D83 SMALL RST 0028,FP-CALC. Y

DEFB +AQ,stk-zero,1A51 Y,0

Continue forcasei: W=0

Perform step ii.

1D8B CASES DEFB +01,exchange,1A72 W, Y
DEFB +2D,duplicate, 19F6 W, Y
DEF8B +2D,duplicate, 19F6 W, Y
DEFB +04,multiply,17C6 W, Y,
DEFB +2D,duplicate, 19F6 W, Y
DEFB +0F,addition,1755 W.Y
DEFB +A1 stk-one,1AS51 WY
DEFB +03,subtract,174C W, Y,

Perform step iii, passing to the SERIES GENERATOR the parameter ‘12" decimal, and the twelve
constants required.

DEFB +8C,series-0C,1A7F wY?Z2
1. DEFB +10,exponent 60
DEFB +B2,{+00,+00,+00)

2. DEFB +13exponent 63
DEFB +0E,(+00,+00,+00)
3. DEFB +55,exponent 65
DEFB +E4,+8D,(+00,+00}
4, DEFB +58,exponent 68
DEFB +39,+BC,{+00,+00)
5. DEFB +5B,exponent 6B
DEFB +38,+FD,(+00,+00)
6. DEFB +9E,exponent 6E
DEFB +00,436,+75,{+00)
7. DEFB +AQD,exponent 70
DEFB +DB,+E8,+B4,(+00)
8. DEFB +63.exponent 73
DEFB +42,+C4,(+00,+00}
9. DEFB +EG6,exponent 76
DEFB +B5,+09,+36,+BE
10. DEFB +ES,exponent 79
DEFB +36,+73,+1B,+5D
11. DEFB +EC.exponent 7C
DEFB +DB,+DE,+63,+BE
12, DEFB +FQ,exponent 80
DEFB +61,+A1,+B3,+0C

At the end of the last loop the ‘last value' is:

ATN X/X — casei.
ATN (-1/X}{-1/X} — caseii.
ATN (-1/X}(-1/X} — caseiii,

Perform step iv.

DEFB +04 multiply,17C6 W, ATN X — case .
W, ATN {-1/X} — case ii.
W, ATN {-1/X} — case iii.
DEFB +0F,addition,1755 ATN X — all cases now.
DEFB +34.end-calc.,002B

RET Finished: ‘last value’ = ATN X.
THE "ARCSIN’ FUNCTION (Cffset 1F; ‘asn’)
This subroutine handles the function ASN X and returns a real number from -P1/2 ta P1/2 inclusive
which is equal to the value in radians of the angle whose sine is X. Thereby if Y = ASN X then
X=SINY.
This subroutine uses the trigonometric identity:

TAN (Y/2) = SIN Y/{1+COS Y}

to obtain TAN (Y/2} and hence {using ATN) Y/2 and finally Y,

1DC4 asn RST 0028,FP-CALC. X
DEFB +2D,duplicate, 19F6 X, X
DEFB +2D,duplicate,19F6 X X, X
DEFB +04 multiply,17C6 X, X*X
DEFB +A1,stk-one,1A51 X, X*X, 1
OEFB +03,subtract, 174C X, X*X-1
DEFB +18,negate, 1AAQ X, 1-X*X
DEFB +25,qr,1DDB X, SAR {1-X*X)
DEFB +A1,stk-one, 1AS51 X, SOR (1-X*X), 1
DEFB +QF,addition,1755 X, 1+#8AR {1-X*X)
DEFB +05, division, 1882 X/{1+SQR {1-X*X}} = TAN (Y/2)

74

DEFB +21,atn, 1076 Y/2

DEFB +2D,duplicate,19F6 Y/2, Y2

DEFB +0F,addition,1755% Y =ASN X

DEFB +34end-calc., 0028

RET Finished: ‘last value’ = ASN X.

THE "ARCCOS’ FUNCTION (Offset 20: ‘acs’}

This subroutine handles the function ACS X and returns a real number from zero to Pl inclusive which
is equal to the value in radians of the angle whose cosine is X.

This subroutine uses the relation:

ACS X =PI/2- ASN X

1DD4 acs RST 0028,FP-CALC. X
DEFB +1F,asn,1DCA4 ASN X
DEFB +A3,stk-pi/2,1AB1 ASN X, P1/2
DEFB +03subtract,174C ASN X-P|/2
DEFB +18,negate,1AAD PI/2-ASN X = ACS X
DEFB +34,end-calc.,002B
RET Finished: ‘last value' = ACS X.

THE ‘SQUARE ROOT’ FUNCTION (Offset 25: 'sqr’)

This subroutine handles the function SQR X and returns the positive square root of the real number X
if X is positive, and zero if X is zero. A negative value of X gives rise to report A — invalid argument
{via In in the EXPONENTIATION subroutine}.

This subroutine treats the square root operation as being X**.5 and therefore stacks the value .5 and
proceeds directly into the EXPONENTIATION subroutine,

1DDB sgr RST 0028,FP-CALC. X
DEFB +2D duplicate,19F6 X
DEFB +2C,not,1ADS X, (1/0)
DEFB +00,jump-true,1C2F X
DEFB +1E, to 1DFD,LAST X

The jump is made if X = 0, otherwise continue with:

DEFB +A2 stk-half,1AB1 X, b
DEFB +34 end-calc.,002B

and then find the result of X**.5.

THE "EXPONENTIATION’ OPERATION (Offset 06: ‘to-power’)

This subroutine performs the binary operation of raising the first number, X, to the power of the
second number, Y.

The subroutine treats the result X**Y as being equivalent to EXP (Y*LN X). |t returns this value
unless X is zero, in which case it returns 1if Y is also zero (0" *0 =1}, returns zero if Y is positive and
reports arithmetic overflow if Y is negative.

1DE2 to-power RST 0028,FP-CALC.
DEFB +01,exchange,1A72
DEFB +2D,duplicate, 19F6
DEFB +2C,not,1AD5
DEFB +00,jump-true, 1C2F
DEFB +07, to 1DEE XISO

-

<< << <X
X X X X X <
o

- = -
-
———
—
=3
o
—

75

The jump is made if X = 0, otherwise EXP (Y* LN X) is formed.

DEFB +22,In,1CA9

DEFB +04,multiply,17C6
DEFB +34 end-calc.,002B
JP 1C5B,EXP

Y,LN X
Giving report A if X is negative.
Y*LN X

Exit via EXP to form EXP {(Y*LN X}.

The value of X is zero so consider the three possible cases involved.

1DEE XISO DEFB +02 delete,19E3
DEFB +2D,duplicate,19F6
DEFB +2C,not,1ADS
DEFB +00,jump-true,1C2F
DEFB +09, to 1DFB,ONE

The jump is made if X =0 and Y = 0, otherwise proceed.

DEFB +AQ,stk-zero,1AbH1
DEFB +01,exchange,1A72
DEFB +33 greater-0,1ACE
DEFB +00,jump-true,1C2F
DEFB +06, to 1DFD,LAST

Y
Y, ¥
Y, (1/0)
Y

Y

Y,0
Y
{1/0)

-

-

0
0
0
0

The jump is made if X = 0 and Y is positive, otherwise proceed.

DEFB +A1,stk-one,1AB1
DEFB +01,exchange,1A72
DEFB +05,division,1882

The result is to be 1 for the operation.

1DFB ONE DEFB +02,delete,19E3
DEFB +A1 stk-one,1A51

Now return with the ‘last value’ on the stack being 0**Y.

1DFD LAST DEFB +34 end-calc.,0028
RET

Q0.1

1.0

Exit via ‘division’ as dividing by zero
gives ‘arithmetic overflow'.

(1/0)
Finished: last value' isQ or 1.

76

APPENDIX

BASIC PROGRAMS FOR THE MAIN SERIES

The foliowing BASIC programs have been included as they give a good illustration of how Chebyshev
polynomials are used to produce the approximations to the functions SIN, EXP, LN and ATN.

The series generator:
This subroutine is called by all the ‘function’ programs.

500 REM SERIES GENERATOR, ENTER
518 REM USING THE COUNTER BERG
520 REM AND ARRAY-A HOLDING THE
530 REM CONTANTS.

540 REM FIRST VALUE IN Z.

550 LET M@=2*2Z

560 LET M2=0

570 LET T=9

580 FOR 1=BERG TO 1STEP -1

590 LET M1=M2

600 LET U=T"M@-M2+A(BERG+1-I}
610 LET M2=T

620 LET T=U

630 NEXT |

648 LET T=T-M1

650 RETURN

660 REM LAST VALUE INT.

In the above subroutine the variable are:

2 — theentry value.
T - theexitvalue,
M@ — mem-Q
M1 — mem-1
M2 — mem-2
I — the counter for BERG.
U — atemporary variable for T.
Al1) to
A(BERG) — the constants.
BERG — the number of constants to be used.

To see how the Chebyshev polynomials are generated, record on paper the valuesof U, M1, M2 and T
through the lines 55@ to 630, passing, say 6 times, through the loop, and keeping the algebraic
expressions for A{1} to A{6) without substituting numericai values. Then record T-M1. The multipliers
of the constants A{1} to A(6) will then be the required Chebyshev polynomials. More precisely, the
multiplier of A(1) will be 2* T, (Z}, for A(2) it will be 2*T, {Z} and so on to 2*T, (2} for A(S} and
finally T, (Z} for A(B).

Note that T,(Z)=1, T,(Z)=Z and, for n>=2, T _(Z}=2*Z"T_ (2)-T, ,(2).

77
SIN X

19 REM DEMONSTRATION FOR SIN X
20 SLOW

30 DIM A(B)

40 LET A(1)=-.000000003

50 LET A(2)=0.000080592

60 LET A(3)=-.000068294

70 LET A(4)=0.004559008

80 LET A(5)=-.142630785

9¢ LET A(6)=1.276278962

100 PRINT

118 PRINT “ENTER START VALUE IN DEGREES”
120 INPUTC

130 CLS

140 LET C=C-10

15@ PRINT “BASIC PROGRAM”, “ROM PROGRAM"
160 PRINT "o —mmmmmo o o
170 PRINT

180 FORJ=1TO4

199 LET C=C+10

200 LET Y=C/36@-INT {C/360.+.5)

210 LET W=4*Y

220 IF W>1 THEN LET W=2-W

230 IF W<-1 THEN LET W=-W-2

240 LET 2=2"W*"W-1

250 LET BERG=6

260 REM USE “SERIES GENERATOR”
279 GOSUB 550

280 PRINT TAB 6; “SIN “;C;” DEGREES"
299 PRINT

300 PRINT T"W,SIN (P1*C/180)

318 PRINT

320 NEXTJ

330 GOTO 190

NOTES:
i. As it stands the above program requires more than 1K of RAM.

ii. When C is entered this program calculates and prints SIN C degrees, SIN (C+10} degrees,
SIN {C+20) degrees and SiN {C+3@) degrees. It also prints the values obtained by using the

ROM program. For a specimen of results, try entering these values in degrees: —
0; 5; 100; -B0: -260; 3600; -7200.

iii. The constants A{1) to A(6) in lines 4@ to 90 are given (apart from a factor of %} in Abramowitz
and Stegun Handbook of Mathematical Functions (Dover 1965) page 76. They can be checked
by integrating (SIN (P1*X/2)}/X over the interval U=0 to PI, after first multiplying by
COS (N*U} for each constant {ie. N=1,2,....6) and substituting COS U=2*X"*X-1. Each resuit
should then be divided by PI. (This integration can be performed by approximate methods
e.g. using Simpson’s Rule if there is a reasonable computer or programmable calculator
to hand.)

78

EXP X

10 REM DEMONSTRATION FOR EXP X
20 SLOW
30 LETT=¢ {This makes T the first variable.)
43 DIMAI(B)
5@ LET A(1)=0.000000001
60 LET A{2)=0.000000053
70 LET A{3)=0.000001851
80 LET A{4)=0.000063453
990 LET A(5)=0.001235714
180 LET A(6)=0.021446556
119 LET A(7)=0.248762434
128 LET A(B)=1.456999875
130 PRINT
140 PRINT “ENTER START VALUE"
156 INPUTC
160 CLS
176 LET C=C-10
18@ PRINT “BASIC PROGRAM”, “ROM PROGRAM"
190 PRINT“ 2 e o
208 PRINT
218 FORJ=1TOA4
220 LET C=C+10
239 LET D=C*1.442695041 (O=C*{1/LN 2);EXP C=2%*D)
240 LET N=INTD
259 LET Z=D-N (2**(N+Z} is now required).
260 LET Z=2"Z-1
270 LET BERG=8
280 REM USE “SERIES GENERATOR"”
299 GOSUB 550
308 LET V=PEEK 16400+256*PEEK 16401+1 (V=(VARS}1)
310 LET N=N+PEEK V
320 IF N>255 THEN POKE 16384,5 (Gives report 6, arithmetic overflow;
330 IF N<@THEN GOTO 360 program stops).
340 POKEV,N
3P GOTO3719
360 LETT1-8
378 PRINTTAB11;"EXP".C
388 PRINT
399 PRINTT,EXPC
400 PRINT
410 NEXTJ
420 GOTO 139

NOTES:
I The above program requires more than 1K of RAM.

ii. When C is entered this program calculates and prints EXP C, EXP (C+10), EXP (C+20} and
EXP {C+30). It also prints the values obtained by using the ROM program.
For a specimen of results, try entering these values:— 0; 15; 65 (with overflow at the end};
-100; -40.

iii. The exponent is tested for overflow and for a zero result in lines 320 and 33@. These tests are
simpler in BASIC than in machine code, since the variable N, unlike the A register, is not
confined to one byte.

iv. The constants A{1} to A(8) in lines 5@ to 120 can be obtained by integrating 2** X over the
interval U=0 to PI, after first multiplying by COS (N*U) for each constant (i.e. for
N=1, 2,...,8} and substituting COS U = 2*X-1. Each result should then be divided by PI.

LN X:

79

19 REM DEMONSTRATION FOR LN X
20 SLOwW
30 LET D=0 (This makes D the first variable).
49 DIM A{12)
5@ LET A(1)=-.0000000003
60 LET A{2)=0.0000000020
70 LET A(3)=-.0000000127
80 LET A(4)=00000000823
90 LET A(5)=-.0000p0538%
198 LET A(6)=0.0000035828
118 LET A({7)=-.0008243013
128 LET A(8)=0.0001693953
130 LET A(9)=-.0012282837
140 LET A{10)=0.0084766116
150 LET A(11)=-.0818414567
168 LET A(12)=0.9302292213
170 PRINT
180 PRINT "ENTER START VALUE"
199 INPUTC
200 CLS
218 PRINT “BASIC PROGRAM"”, “ROM PROGRAM"
220 PRINT "——— o — M ————
230 PRINT
249 LET C=SQR C
250 FORJ=1TO4
26 LET C=C*C
270 |IF C=@ THEN POKE 163849 {Gives report A, invalid argument;
280 LETD=C program stops).
29¢ LET V=PEEK 16400+256*PEEK 16401+1
300 LET N=PEEK V-128 {N holds e°).
310 POKE, V,128
320 IFD<=0.8 THEN GOTO 360 (D holds X'}.
330 LET S=D-1
340 LET Z=25"D-3
350 GOTO 390
3680 LET N=N-1
370 LET S$=2*D-1
388 LET 2=5*D-3
3990 LET A=N"0.6831471806 {R holds N*LN 2).
408 LET BERG=12
419 REM USE “SERIES GENERATOR”
4290 GOSUB 550
430 PRINTTABB:“LN “.C
440 PRINT
450 PRINT S*"T+R,LN C
480 PRINT
47¢ NEXTJ
4890 GOTO 170

NOTES:

ii.

The above program requires more than 1K of RAM.

When C is entered this program calculates and prints LN C, LN (C**2}, LN {C**4} and

LN {C*"*8}. It also prints the values obtained by using the ROM program.

For a specimen of results, try entering these values:— 1.1; 0.9; 300; 0.004; 1E5 {for overflow}
and 1E-5 (for report A).

The constants A{1) to A(12) in linas 5@ to 16@ can be obtained by integrating 5* LN
(4*(X+1)/5)/{4* X-1) over the interval U=0 to P1, after first multiplying by COS (N*U) for
each constant (i.e. for N =1,2...,12) and substituting COS U= 2* X-1. Each result should then
be divided by Pi.

80

ATN X:

1@ REM DEMONSTRATION FOR ATN X
280 SLOW
30 DIM A(12)
49 LET A(1)=-.0000000002
50 LET A(2)=0.0000000010
60 LET A(3)=-.0000000066
70 LET A(4)=00000000432
80 LET A(5)=-.0000002850
90 LET A(6)=0.0000019185
100 LET A{7)=-.0000131076
11@ LET A(8)=0.0000928715
1280 LET A{9)=-.0006905975
138 LET A{10}=0.0055679210
149 LET A{11)=-.08529464623
150 LET A{12)=0.8813735870
160 PRINT
176 PRINT “ENTER START VALUE”
188 INPUTC
189 CLS
200 PRINT “BASIC PROGRAM®, "ROM PFIOGRAM”
218 PRINT “ S
220 PRINT
230 FORJ=1TO4
249 LET B=J*C
258 LET D=B
260 IF ABSB>=1 THEN LET D=-1/B
270 LET Z=2*D*D-1
280 LET BERG=12
200 REM USE "SERIES GENERATOR"
300 GOSUB 550
318 LET T=D"T
320 {F B>=| THEN LET T=T+PI1/2
330 IFB<=-1THEN LET T=T-PI/2
340 PRINTTABE&;”ATN":B

350 PRINT

360 PRINTT,ATNB {ar PRINT T*188/P1,ATN B*180/PI
370 PRINT to obtain the answers in degrees)
380 NEXTJ

399 GOTO 169

NOTES:

The above program requires more than 1K of RAM, |

When C is entered this program calculates and prints ATN C, ATN (C*2), ATN (C*3} and
ATN (C*4}.

For a specimen of results, try entering these values:— 0.2; -1: 10 and -100. The results may
be found more interesting if converted to yield degrees by multiptying the answers in line
360 by 180/P1.

For those readers who are using an unimproved ROM it is interesting to note the resutts given
by entering 4.2E9 and then 4.3E9.

The constants A(1) to A{12} in lines 4@ to 15@ are given (apart from a factor of %) in
Abramowitz and Stegun Handbook of Mathematical Functions {Dover 1965) page 82. They
can be checked by integrating ATN X/X over the interval U=0 to PI, after first multiplying by
COS (N*U} for each parameter {i.e. for N=1,2,..., 12} and substituting COS U=2"X*X- 1
Each result should then be divided by PL.

a1

An alternative subroutine for SIN X:

Itis fairly straightforward to produce the full expansion of the Chebyshev polynomials and this can
be written in BASIC as follows: '

b5@ LET T=(32*2%2¢Z2*Z*Z-49*2*Z2"Z2+18*2)*A(1)
+H16°2*Z*2*Z2-16"2* 242} *A(2)
+(B*Z*2*2-6*Z)*Al3)
+(4*Z"Z-2)* Al4)}
+H2*Z)*A(S)
+A(6}

568 RETURN

This subroutine is called instead of the SERIES GENERATOR and can be seen to be of & similar
accuracy.

An alternative subroutine for EXP X:
The full expansion for EXP X is:

550 LET T=(12B*Z2*Z*2*2*2*2*Z-224*2*2°2*2*Z+112*2*2*2-14*2)*A(1}
HEARZIZAZIZHZAT-O6NZH 22 2+3B* 2 Z- 2V A(2)
H3I2*Z*Z* 22 2-40* 2 2 2410 Z)* A(3)
+H16"Z*Z*Z*Z-16*Z2*Z+2)*Al4)
+(B*Z*Z*Z-8*Z)*Al5)
+{4"Z*Z-2)* A(B}
H2"Z)" A7)
+A(8)

56@ RETURN

It is left as an exercise for the reader to produce the alternative subroutine for LN X and ATN X.

82

INDEX — Functions, Operations, Subroutines, and Tables.

ABSOLUTE MAGNITUDE
ADD-BACK

ADDITION

ALPHA

ALPHANUM

ARCCOS

ARCSIN

ARCTAN

CALCULATOR

CALCULATOR TABLES

CHR§

CLEAR

CODE

COMPARISON

COSINE

CURSOR-IN

DE, (DE+1)

DECIMAL TO FLOATING-POINT
DECREASE THE COUNTER
DELETE

DIM

DIVISION

E-FORMAT TO FLOATINGPOINT
EXCHANGE

EXPONENTIAL
EXPONENTIATION

FETCH TWQO NUMBERS
FLOATING-POINT TO A
FLOATING-POINT TO BC

GET FROM MEMQRY AREA
GREATER THAN ZERD
HL=HL"DE

INT

INT.-EXP

INTEGER TO FLOATING-POINT
INTEGER TRUNCATION TOWARDS ZERO
JUMP

JUMP ON TRUE

LEN

LESS THAN ZERO

LET

LOOK-VARS

MEMORY LOCATION
MODULUS

MOVE A FLOATINGPOINT NUMBER
MULTIPLICATION

NATURAL LOGARITHM

NOT

NUMBER AND NUMBER

283

28
28
74
73
71
49

47/48

Fe0T82Y

2280oaBRRBBEII

83&2

OR
QUT-NEXT

PEEK

PREPARE TO ADD
PREPARE TO MULTIPLY OR DIVIDE
PRINT A FLOATINGPOINT NUMBER
PRIORITY TABLE
RECLAIM-3

REDUCE ARGUMENT
REPORT-6

REPORT-B2

RESERVE

SCANNING

SERIES GENERATOR
SET-MEM

SET-STK-B

SHIFT ADDEND

SIGNUM

SINE

SINGLE OPERATION

SKIP CONSTANTS
SLICING

SQUARE ROOT

STACK-A

STACK A CONSTANT
STACK-BC '

STACK LITERALS
STK-DIGIT

STK-FETCH

STK-PNTRS

STK-STORE

STK-VAR

STORE IN MEMORY AREA
STRING AND NUMBER
STRING CONCATENATION
STRS

SUBTRACTION

TABLE OF ADDRESSES
TABLE OF CONSTANTS
TAN

TEST 5-SPACES
TEST-DONE

TEST-INT

UNARY MINUS

USR

VAL

X-TEMP

ZERO OR ONE

The book for the programmer
that needs those answers
about the Timex TS1000/Sinclair
ZX81 ROM.

Dr. Logan and Dr. Frank O’Hara
have examined all routinesin
the ROM and comment on
each one. This book is a must for
the experienced programmer.

Part A covers all functions that
can be used except forthe
floating point calculator.

Part B covers all the routines
involved in the ‘evaluation of
an expression’ and a detailed
explanation of the floating-
point calculator’,

MELBOURNE HOUSE PUBLISHERS
ISBN 0 86161 113 6

