The Undocumented Z80 Documented

Sean Young

Version 0.6, 20th November, 2003

Copyright Statement

Copyright © 1997, 1998, 2001, 2003 Sean Young.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

Contents

1 Introduction 1
L1 History v s oo mmena i 5889982 v namanasn gy 1
1.2 Where to get thisdocument 1
1:3 Feedback: v v smesas s s s ot oo s adn gy 1
1 ‘Changeliog = « & & @ seiss o oo oo e o v 2 2 & & B EEssEn B o2 8 & 4 1

2 Overview 3
2.1 HistorvoftheZ&80, 3
2.2 Registers. e e e 3
23 Flags. e e 4
24 Powerondefaults. 5
2.5 Pin Descriptions [T].o oo 5

3 Undocumented Opcodes 8
3l CBPrefix (b = ¢ o 5 ommwmn n o0 6w % e v B8 5 5 B memEE R G 8 % 4 8
32 DDPrefix[h] » ¢ o & mawmn 5 0 6 % % e v B R 5 5 B SR R G 8 R 4 8
3.3 ED Birefix [B] w vovowossomen n goa v v v % v w w6 b Senen m 8 6 8 o 9
34 EDPrefix|B] « o owowossonon n g a v v v % v v w6 b senen m e 6o 8 9
3.5 DDEBPrelix « o oo svevon n w o o w5 8 b oo 5 8 GEETan N @ 6 8 u 10
3.6 FDEBPrefixes . o o swevon w o wow w8 5 w5 5 & G0awsn 6 @ 6 9 o 12
3.7 Combinations of Prefixes 12

4 Undocumented Effects 13
4.1 BIT instructions o 13
4.2 Memory Block Instructions [1] 14
4.3 1/0 Block Instructions 14
44 16 Bit I/Oports 15
4.5 Block Instructions oL 15
4.6 16 Bit Additionso 15
4.7 DAA Imstruction L oo 16

5 Interrupts 17
5.1 Non-Maskable Interrupts (NMI) 17
5.2 Maskable Interrupts (INT) 17
5.3 Things affecting the Interrupt flip-flops 18
Bid. (HAUTAOSrUCEION: « cnorom 5 % % w5 5 om0 8 % 4 apones @ % % & 5 19
5.5 Where interrupts are accepted 19

CONTENTS

6

10

Timing and R register
6.1 R register and memory refresh

Other Information
7.1 FErrors in official documentation

Instruction Tables

87 iB-Bit Ioad GTOUR . & sovreos oo 5 55 5 % 5 8 8 @ £ % Suerens @ % % E 5
82 D6-Bit Load Group: . coorrs oo mom w5 v 5 om0 8 e smerns o % o
8.3 Exchange, Block Transfer, Search Group
8.4 8-Bit Arithmetic and Logical Group
8.5 General-Purpose Arithmetic and CPU Control Group
8.6 16-Bit Arithmetic Group
87 .Rotate and Shift Group o o w5 5 0 5 o e e smems 5 o5 5o
8.8 Bit Set, Reset and Test Group
819 JUMPIGEIOUET & o oon seeen s o mom m R B B B oE £ @ SSOOHDE B OE B H
8.10 Call and Return Group o
8.11 Input and Output Group

Instructions Sorted by Opcode

GNU Free Documentation License

10.1 Applicability and Definitions
10.2 Verbatim Copying o
10.3 Copying in Quantity
10.4 Modifications L
10.5 Combining Documents
10.6 Collections of Documents
10.7 Aggregation With Independent Works
10.8 Translation
10.9 Termination L
10.10Future Revisions of This License

il

21
21

22
22

24
24
25
27
28
28
29
30
31
31
32
33

34

Chapter 1

Introduction

1.1 History

Ever since I first started working on an MSX emulator, ['ve been very interested
in getting the emulation absolutely correct — including the undocumented fea-
tures. Not just to make sure that all games work, but also to make sure that if
a program crashes, it crashes exactly the same way if running on an emulator
as on the real thing. Only then is perfection achieved.

I set about collecting information. I found pieces of information on the
Internet, but not evervthing there is to know. So I tried to fill in the gaps, the
results of which I put on my website. Various people have helped since then;
this is the result of all those efforts and to my knowledge this document is the
most complete.

1.2 Where to get this document

The latest version is always available in INTEX, pdf and postscript at the follow-
ing location:
http://www.msxnet.org/tech/

1.3 Feedback

I welcome any kind of feedback. I would like to hear about any corrections or
additions you might have. Also note that there are a few flags which are still
unknown, it would be great if someone found out how they work.

You can reach me at sean@msxnet.org and my website can be found at
http://www.msxnet.org/.

1.4 Changelog

20th November 2003 (version 0.6) Again, thanks to Ramsoft, added PF
flag to OUTI, INI and friends. Minor fix to DAA tables, other minor fixes.

CHAPTER 1. INTRODUCTION 2

13th November 2003 (version 0.5) Thanks to Ramsoft, add the correct ta-
bles for the DAA instruction (section 4.7). Minor corrections & typos,
thanks to Jim Battle, David Sutherland and most of all Fred Limouzin.

September 2001 (version 0.4) Previous documents I had written were in
plain text and Microsoft Word, which I now find very embarrassing, so |
decided to combine them all and use BIEX. Apart from a full re-write,
the only changed information is “Power on defaults” (section 2.4) and the
algorithm for the CF and HF flags for 0TIR and friends (section 4.3).

Chapter 2

Overview

2.1 History of the Z80

In 1969 Intel were approached by a Japanese company called Busicom to pro-
duce chips for Busicom’s electronic desktop calculator. Intel suggested that the
calculator should be built around a single-chip generalized computing engine
and thus was born the first microprocessor — the 4004. Although it was based
on ideas from much larger mainframe and mini-computers the 4004 was cut
down to fit onto a 16-pin chip, the largest that was available at the time, so
that its data bus and address bus were each only 4-bits wide.

Intel went on to improve the design and produced the 4040 (an improved
4-hit design) the 8008 (the first 8-bit microprocessor) and then in 1974 the 8080.
This last one turned out to be a very useful and popular design and was used
in the first home computer, the Altair 8800, and CP /M.

In 1975 Federico Faggin who had had worked at Intel on the 4004 and its
successors left the company and joined forces with Masatoshi Shima to form
Zilog. At their new company Faggin and Shima. designed a microprocessor that
was compatible with Intel’s 8080 (it ran all 78 instructions of the 8080 in almost
the same way that Intel’s chip did)! but had many more abilities (an extra 120
instructions, many more registers, simplified connection to hardware). Thus
was born the mighty Z80!

The original Z80 was first released in July 1976. Since then newer versions
have appeared with exactly the same architecture but running at higher speeds.
The original Z80 ran with a clock rate of 2.5MHz, the Z80A runs at 4MHz, the
Z80B at 6MHz, and the Z80H at 8Mhz.

Many companies produced machines based around Zilog’s improved chip
during the 1970’s and 80’s and because the chip could run 8080 code without
needing any changes to the code the perfect choice of operating system was

CP/M.

2.2 Registers

The following accessable registers exist in the Z80.

!Thanks to Jim Battle <frustum@pachell.net>: the 8080 always puts the parity in the PF
flag; VF does not exist and the timing is different. Possibly there are other differences.

CHAPTER 2. OVERVIEW 4

A | F | Accumlator and Flags
BC
DE General purpose registers
HL
X Index registers
IY
PC
SP Special purpose registers
IR
AF’
g;: Alternate general purpose registers
HL’

For interrupts, there are two interrupt flop-flops, IFF1 and IFF2, and the
interrupt mode is retained. See chapter 5 for more about interrupts. Also there
is an internal register which is described in section 4.3.

2.3 Flags

The conventional way of denoting the flags is with one letter, ‘C’ for the carry
flag for example. It could be confused with the C register, so I've chosen to
use the “CF’ notation for flags. Also in previous things I've written I called the
two undocumented flags 5 and 3, but now I've changed to the same notation
used in MAME?, which is YF and XF, respectively. Note that in mnemonics
the original way is still maintained.

bit 7 6 5 1 3 2 1 0
flag | SF | ZF | YF | HF | XF | PF | NF | CF

SF flag Set if the 2-complement value is negative. It’s simply a copy of the
most significant bit.

ZF flag Set if the result is zero.
YF flag A copy of bit 5 of the result.

HF flag The half-carry of an addition/subtraction (from bit 3 to 4). Needed
for BCD correction with DAA.

XF flag A copy of bit 3 of the result.

PF flag This flag can either be the parity of the result (PF), or the
2-compliment signed overflow (VF): set if 2-compliment value doesn’t fit
in the register.

NF flag Shows whether the last operation was an addition (0) or an subtraction
(1). This information is needed for DAA.?

2http:/ /www.mame.net /
#Wouldn't it be better to have seperate instructions for DAA after addition and subtraction,
like the 80x86 has in stead of sacrificing a bit in the flag register?

CHAPTER 2. OVERVIEW 5

CF flag The carry flag, set if there was a carry after the most significant bit.

Note that the only way to read the XF, YF and NF can only be read using
PUSH AF.

2.4 Power on defaults

Matt* has done some excellent research on this. He found that AF and SP are
always set to FFFFh after a reset, and all other registers are undefined (different
depending on how long the CPU has been powered off, different for different
780 chips). Of course the PC should be set to 0 after a reset, and so should the
IFF1 and IFF2 flags (otherwise strange things could happen). Also since the
780 is 8080 compatible, interrupt mode is probably 0.

Probably the best way to simulate this in an emulator is set PC, IFF1, IFF2,
IM to 0 and set all other registers to FFFFh.

2.5 Pin Descriptions [7]

This section might also relevant even if you don’t do anything with hardware;
it might give so insight into how the Z80 operates. Besides, it took me hours to
draw this.

A1 w2 40 []410
A2[] 2 39 []4s
hal] 3 38 [Ae
Aia[] a 37 [A7
Ais[] 5 36 [4s
CLK[] 8 35 [4s
D7 34 Ay
D:[] 8 33 Az
Ds[] 9 32 [z
Ds[]10 780 CPU 31 [
+5V[]11 30 [4
D212 29 [7]GND
D7 []13 28 [1RFSH
Do []14 27 [ut
Di[15 26 [|RESET
INT]18 25 [1BUSREQ
uMI)17 24 [IWAIT
HALT[]18 23 "] BUSACK
MREQ[|19 22 [1WR
T0RQ[]20 21 [1RD

Ayg — Ag Address bus (output, active high, 3-state). This bus is used for access-
ing the memory and for 1/0 ports. During the refresh cycle the IR register
is put on this bus.

BUSACK Bus Acknowledge (output, active low). Bus Acknowledge indicates to
the requesting device that the CPU address bus, data bus, and control

4redflame@xmission.com

CHAPTER 2. OVERVIEW 6

signals MREQ, TORQ, RD and WR have been entered into their high-impedance
states. The external device now control these lines.

BUSREQ Bus Request (input, active low). Bus Request has a higher priority
than NMI and is always recognised at the end of the current machine cycle.
BUSREQ forces the CPU address bus, data bus and control signals MREG,
TORQ, RD and WR to go to a high-impedance state so that other devices can
control these lines. BUSRER is normally wired-OR and requires an external
pullup for these applications. Extended BUSREQ periods due to extensive
DMA operations can prevent the CPU from refreshing dynamic RAMs.

D7 —Dg Data Bus (input/output, active low, 3-state). Used for data exchanges
with memory, I/0O and interrupts.

HALT Halt State (output, active low). Indicates that the CPU has executed
a. HALT instruction and is waiting for either a maskable or nonmaskable
interrupt (with the mask enabled) before operation can resume. While
halted, the CPU stops increasing the PC so the instruction is re-executed,
to maintain memory refresh.

INT Interrupt Request (input, active low). Interrupt Request is generated by
I/O devices. The CPU honours a request at the end of the current in-
struction if IFF1 is set. INT is normally wired-OR and requires an external
pullup for these applications.

I0RQ Input/Output Request (output, active low, 3-state). Indicates that the
address bus holds a vailid I/O address for an I/O read or write operation.
I0RQ is also generated concurrently with M1 during an interrupt acknowl-
edge cycle to indicate that an interrupt response vector can be placed on
the databus.

M1 Machine Cycle One (output, active low). M1, together with MREQ, indicates
that the current machine cycle is the opcode fetch cycle of an instruction
execution. M1, together with TORQ, indicates an interrupt acknowledge
cvcle.

MREQ Memory Request (output, active low, 3-state). Indicates that the address
holds a valid address for a memory read or write cycle operations.

NMI Non-Maskable Interrupt (input, negative edge-triggered). NMI has a higher
priority than INT. NMI is always recognised at the end of an instruction,
independant of the status of the interrupt flip-flops and automatically
forces the CPU to restart at location 0066h.

RD Read (output, active low, 3-state). Indicates that the CPU wants to read
data from memory or an 1/0 device. The addressed 1/0 device or memory
should use this signal to place data onto the data bus.

RESET Reset (input, active low). Initializes the CPU as follows: it resets the
interrupt flip-flops, clears the PC and IR registes, and set the interrupt
mode to 0. During reset time, the address bus and data bus go to a high-
impedance state, and all control output signals go to the inactive state.
Note that RESET must be active for a minimum of three full clock cycles

CHAPTER 2. OVERVIEW 7

before the reset operation is complete. Note that Matt found that SP and
AF are set to FFFFh.

RFSH Refresh (output, active low). RFSH, together with MREQ, indicates that the
IR registers are on the address bus (note that only the lower 7 bits are
useful) and can be used for the refresh of dynamic memories.

WAIT Wait (input, active low). Indicates to the CPU that the addressed memory
or [/O device are not ready for data transfer. The CPU continues to enter
a. wait state as long as this signal is active. Note that during this period
memory is not refreshed.

WR Write (output, active low, 3-state). Indicates that the CPU wants to write
data to memory or an 1/O device. The addressed 1/O device or memory
should use this signal to store the data on the data bus.

Chapter 3

Undocumented Opcodes

There are quite a few undocumented opcodes,/instructions. This section should
describe every possible opcode so you know what will be executed, whatever
the value of the opcode is.

The following prefixes exist: CB, ED, DD, FD, DDCB and FDCB. Prefixes
change the way the following opcodes are interpreted. All instructions without
a prefix (not a value of one the above) are single byte opcodes!, which are
documented in the official documentation.

3.1 CB Prefix [5]

An opcode with a CB prefix is a rotate, shift or bit test/set/reset instruction.
There are a few instructions missing from the official list, which are usually
denoted with SLL (Shift Logical Left). It works like SLA, for one exception: it
sets bit 0 (SLA resets it).

CB30 SLL B
CB31 SLL C
CB32 SLL D
CB33 SLL E
CB34 SLL H
CB35 SLL L
CB36 SLL (HL)
CB37 SLL A

3.2 DD Prefix [5]

In general, the instruction following the DD prefix is executed as is, but if the
HL register is supposed to be used the IX register is used instead. Here are the
rules:

e Any usage of HL is treated as an access to IX (except EX DE,HL and EXX
and the ED prefixed instructions that use HL).

IWithout the operand, that is.

CHAPTER 3. UNDOCUMENTED OPCODES 9

e Any access to (HL) is changed to (IX+d), where ‘d’ is a signed displace-
ment byte placed after the main opcode — except JP (HL), which isn’t
indirect anyway. The mnemonic should be JP HL.

e Any access to H is treated as an access to IXh (the high byte of IX) Except
if (IX+4d) is used as well.

e Any access to L is treated as an access to IX1 (the low byte of IX) Except
if (IX+d) is used as well.

e A DD prefix before a. CB selects a completely different instruction set, see

Section 3.5.

Some examples:

Without DD prefix
LD H, (HL)

LD H,A

LD L,H

JP (HL)

LD DE,O

LD HL,0

With DD prefix
LD H, (IX+d)
LD IXh,A

LD IX1,IXh

JP (IX)

LD DE,O

LD IX,0

3.3 FD Prefix [5]

This prefix has the same effect as the DD prefix, though IY is used instead of IX.
Note LD IX1,IYh is not possible: only IX or IY is accessed in one instruction,

never both.

3.4 ED Prefix [5]

There are a number of undocumented EDxx instructions, of which most are
duplicates of documented instructions. Any instruction not listed has no effect
(same behaviour as 2 NOP instructions).

The complete list except for the block instructions:

ED40 1IN B, (C)
ED41 0OUT (C),B
ED42 SEC HL,BC
ED43 LD (un),BC

ED44 NEG
ED45 RETN
ED46 IM O
ED47 LD I,A

ED48 1IN C,(C)
ED49 0OUT (C),C
ED4A4 ADC HL,BC

ED60 1IN H,(C)
ED61 0OUT (C),H
ED62 SBC HL,HL
ED63 LD (nn),HL
ED64 NEG**
ED65 RETN**
ED66 IM 0O**
ED67 RRD

ED68 1IN L, (C)
ED69 0OUT (C),L
ED6A ADC HL,HL

**Undocumented instruction

CHAPTER 3. UNDOCUMENTED OPCODES 10

ED4B LD BC, (un) ED6B LD HL, (nn)
ED4C NEG** ED6C NEG**

ED4D RETI ED6D RETN™"

ED4AE IM o** ED6E IM o**
ED4F 1D R,A ED6F RLD

ED50 1IN D, (C) ED70 1IN (C) / IN F,(C)**
ED51 0OUT (C),D ED71 0OUT (C),0**
ED52 SEC HL,DE ED72 SBC HL,SP
ED53 LD (un),DE ED73 LD (nn),SP
ED54 NEG** ED74 NEG**

ED55 RETN™* ED75 RETN**

ED56 IM 1 ED76 IM 1**
ED57 LD A,I ED77 NOP**

ED58 1IN E, (C) ED78 1IN 4,(C)
ED59 0OUT (C),E ED79 O0OUT (C),A
ED5A ADC HL,DE ED7A ADC HL,SP
ED5B LD DE, (nn) ED7B LD SP, (un)
ED5C NEG** ED7C NEG**

ED5SD RETN™* ED7D RETN**

EDSE IM 2 ED7YE 1IM 2**
EDSF LD AR ED7F NOP**

The ED70 instruction reads from I/O port C, but does not store the result.
It just affects the flags like the other IN x, (C) instructions. EDT1 simply outs
the value 0 to I/O port C.

The ED63 is a duplicate of the 22 opcode (LD (nn) ,HL) and similarly ED6B
is a duplicate of the 2A opcode. Of course the timings are different. These
instruections are listed in the official documentation.

According to Gerton Lunter?:

The instructions ED 4E and ED 6E are IM 0 equivalents: when FF
was put on the bus (physically) at interrupt time, the Spectrum
continued to execute normally, whereas when an EF (RST 28h) was
put on the bus it crashed, just as it does in that case when the Z80
is in the official interrupt mode 0. In IM 1 the Z80 just executes a
RST 38h (opcode FF) no matter what is on the bus.

All the RETI/RETN instructions are the same, all like the RETN instruction.
So they all, including RETI, copy 1FF2 to IFF1. More information on RETI and
RETN and IM x is in section 5.3.

3.5 DDCB Prefix

The undocumented DDCB instructions store the result (if any) of the operation
in one of the seven all-purpose registers, which one depends on the lower 3 bits
of the last byte of the opcode (not operand, so not the offset).

2gerton@math.rug.nl

CHAPTER 3. UNDOCUMENTED OPCODES 11

000 B
0ol C
010 D
011 E
100 H
101 L
110 (none: documented opcode)
111 A

The documented DDCBO0106 is RLC (IX+01h). So, clear the lower three bits
(DDCB0100) and something is done to register B. The result of the RLC (which
is stored in (IX401h)) is now also stored in register B. Effectively, it does the
following:

LD B, (IX+01h)
RLC B
LD (IX+01h),B

So you get double value for money. The result is stored in B and (IX+401h).
The most common notation is: RLC (IX+01h),B
I've once seen this notation:

RLC (IX+01h)
LD B, (IX+01h)

That'’s not correct: B contains the rotated value, even if (IX401h) points
to ROM. The DDCB SET and RES instructions do the same thing as the
shift/rotate instructions:

DDCB10CO SET 0, (IX+10nh),B
DDCB10C1 SET 0, (IX+10nh),C
DDCB10C2 SET 0, (IX+10n),D
DDCB10C3 SET 0, (IX+10n),E
DDCB10C4 SET 0, (IX+10n),H
DDCB10CB SET 0, (IX+10n),L
DDCB10C6 SET 0, (IX+10h) - documented instruction
DDCB10C7 SET 0, (IX+10h),A

So for example with the last instruction, the value of (IX410h) with bit 0
set is also stored in register A.

The DDCB BIT instructions do not store any value; they merely test a bit.
That’s why the undocumented DDCB BIT instructions are no different from
the official ones:

DDCB d 78 BIT 7, (IX+d)
DDCB d 79 BIT 7, (IX+d)
DDCB d 7A BIT 7, (IX+d)
DDCB d 7B BIT 7, (IX+d)
DDCB d 7C BIT 7, (IX+d)
DDCB d 7D BIT 7, (IX+d)
DDCB d 7E BIT 7,(IX+d) - documented instruction
DDCB d 7F BIT 7, (IX+d)

CHAPTER 3. UNDOCUMENTED OPCODES 12

3.6 FDCB Prefixes

Same as for the DDCB prefix, though TY is used instead of IX.

3.7 Combinations of Prefixes

This part may be of some interest to emulator coders. Here we define what
happens if strange sequences of prefixes appear in the instruction cycle of the
7.80.

If CB or ED is encountered, that byte plus the next make up an instruction.
FD or DD should be seen as prefix setting a flag which says “use IX or IY in
stead of HL”, and not an instruction. In a large sequence of DD and FD bytes,
it is the last one that counts. Also any other byte (or instruction) resets this flag.

FD DD 00 21 00O 10 NOP NOP NOP LD HL,1000h

Chapter 4

Undocumented Effects

4.1 BIT instructions

BIT n,r behaves much like AND r, 2% with the result thrown away, and CF flag
unaffected. Compare BIT 7,A with AND 80h: flag YF and XF are reset, SF is
set if bit 7 was actually set; ZF is set if the result was 0 (bit was reset), and
PF is effectively set if ZF is set (the result of the AND leaves either no bits set
(PF set - parity even) or one bit set (PF reset - parity odd). So the rules for
the flags are:

SF flag Set if n = 7 and tested bit is set.
ZF flag Set if the tested bit is reset.

YF flag Set if n = 5 and tested bit is set.
HF flag Always set.

XF flag Set if n = 3 and tested Dbit is set.
PF flag Set just like ZF flag.

NF flag Always reset.

CF flag Unchanged.

This is where things start to get strange. With the BIT n, (IX+d) instruc-
tions, the flags behave just like the BIT n,r instruction, except for YF and XF.
These are not copied from the result but from something completely different,
namely bit 5 and 3 of the high byte of IX+d (so IX plus the displacement).

Things get more bizarre with the BIT n, (HL) instruction. Again, except for
YF and XF the flags are the same. YF and XF are copied from some sort of
internal register. This register is related to 16 bit additions. Most instructions
do not change this register. Unfortunately, I haven't tested all instructions yet,
but here is the list so far.

ADD HL,xx Use the high byte of HL, ie. H before the addition.

LD r, (IX+d) Use high byte of the resulting address IX+d.

13

CHAPTER 4. UNDOCUMENTED EFFECTS 14

JR d Use high byte target address of the jump.

LD r,r’ Doesn’t change this register.

Any help here would be most appreciated!

4.2 Memory Block Instructions [1]

The LDI/LDIR/LDD/LDDR instructions affect the flags in a strange way. At every
iteration, a byte is copied. Take that byte and add the value of register A to it.
Call that value n. Now, the flags are:

YF flag A copy of bit 1 of n.

HF flag Always reset.

XF flag A copy of bit 3 of n.

PF flag Set if BC not 0.

SF, ZF, CF flags These flags are unchanged.

And now for CPI/CPIR/CPD/CPDR. This instruction compares a series of bytes
in memory to register A. Effectively, it can be said it does CP (HL) at every
iteration. The result of that compare sets the HF flag, which is important for
the next step. Take the value of register A, substract the value of the memory
address, and finally substract the value of HF flag, which is set or reset by the
hypothetical CP (HL). So,n = A - (HL) - HF.

SF, ZF, HF flags Set by the hvpothetical CP (HL).
YF flag A copy of bit 1 of n.

XF flag A copy of bit 3 of n.

PF flag Set if BC is not 0.

NF flag Always set.

CF flag Unchanged.

4.3 1/0 Block Instructions

These are the most be bizarre instructions, as far as flags is concerned. Ram-
soft found all of the flags. The out instructions behave differently than the in
instructions, which doesn’t make the CPU very symmetrical.

First of all, all instructions affect the following flags:

SF, ZF, YF, XF flags Affected by decreasing register B, as in DEC B.

NF flag A copy of bit 7 of the value read from or written to an I/O port.

CHAPTER 4. UNDOCUMENTED EFFECTS 15

And now the for OUTI/OTIR/OUTD/OTDR instructions. Take state of the L
after the increment or decrement of HL; add the value written to the I/O port
to; call that k for now. If k > 255, then the CF and HF flags are set. The PF
flags is set like the parity of k bitwise and’ed with 7, bitwise xor'ed with B.

HF and CF Both set if ((HL) + L > 255)
PF The parity of ((((HL) + L) & 7) xor B)

INI/INIR/IND/INDR use the C flag in stead of the L register. There is a
catch though, because not the value of C is used, but C + 1 if it’s INI/INIR or
C - 1ifit's IND/INDR. So, first of all INI/INIR:

HF and CF Both set if ((HL) + ((C + 1) & 255) > 255)

PF The parity of (((HL) + ((C + 1) & 255)) & 7) xor B)
And last IND/INDR:

HF and CF Both set if ((HL) + ((C - 1) & 255) > 255)

PF The parity of (((HL) + ((C - 1) & 255)) & T) xor B)

4.4 16 Bit I/O ports

Officially the Z80 has an 8 bit I/O port address space. When using the 1/0
ports, the 16 address lines are used. And in fact, the high 8 bit do actually have
some value, so vou can use 65536 ports after all. IN r,(C), OUT (C),r, and
the Block I/0O instructions actually place the entire BC register on the address
bus. Similary IN 4, (n) and OUT (n),A put A x 256 + n on the address bus.

The INI/INIR/IND/INDR instructions use BC after decrementing B, and the
OUTI/O0TIR/OUTD/O0TDR instructions before.

4.5 Block Instructions

The repeated block instructions simply decrease the P C by two so the instruction
is simply re-executed. So interrupts can occur during block instructions. So,
LDIR is simply LDI + if BC is not 0, decrease PC by 2.

4.6 16 Bit Additions

The 16 bit additions are a bit more complicated than 8 bit ones. Since the Z80
is an 8-bit CPU, 16 bit additions are done in two stages: first the lower bytes
are added, then the two higher byvtes. The SF, YF, HF, XF flags are affected
as by the second (high) 8 bit addition. ZF is set if the whole 16 bit result is 0.

CHAPTER 4. UNDOCUMENTED EFFECTS 16

4.7 DAA Instruction

This instruction is useful when you're using BCD values. After an addition or
subtraction, DAA corrects the value back to BCD again. Note that it uses the
CF flag, so it cannot be used after INC and DEC.

Stefano Donati from Ramsoft! has found the tables which describe the DAA
operation. The input is the A register and the CF, NF, HF flags. Result is as

follows:

Depending on the NF flag, the ‘diff’ from this table must be added (NF is
reset) or substracted (NF is set) to A.

CF | high | HF low diff
nibble nibble
0 0-9 0 0-9 00
0 0-9 1 0-9 06
0 0-8 * a-f 06
0 a-f 0 0-9 60
1 * 0 0-9 60
1 * 1 0-9 66
1 * * a-f 66
0 9-f * a-f 66
0 a-f 1 0-9 66

The CF flag is affected as follows:

CF | high low CF’
nibble | nibble
0 0-9 0-9 0
0 0-8 a-f 0
0 9-f a-f 1
0 a-f 0-9 1
1 * o 1

The NF flags is affected as follows:

NF | HF low HF”?
nibble
0 * 0-9 0
0 * a-f 1
! 0 * 0
! 1 6-f 0
! 1 0-5 1

SF, YF, XF are copies of bit 7,5,3 of the result respectively; ZF is set ac-
cording to the result and NF is always unchanged.

Ihttp://www.ramsoft.bbk.org/

Chapter 5

Interrupts

There are two types of interrupts, maskable and non-maskable. The maskable
type is ignored if IFF1 is reset. Non-maskable interrupts (NMI) will are always
accepted, and they have a higher priority, so if the two are requested at the
same time the NMI will be accepted first.

For the interrupts, the following things are important: Interrupt Mode (set
with the IM 0, IM 1, IM 2 instructions), the interrupt flip-flops (IFF1 and
IFF2), and the I register. When a maskable interrupt is accepted, a external
device can put a value on the databus.

Both types of interrupts increase the R register by one, when accepted.

5.1 Non-Maskable Interrupts (NMI)

When a NMI is accepted, IFF1 is reset. At the end of the routine, IFF1 must
be restored (so the running program is not affected). That’s why IFF2 is there;
to keep a copy of IFF1.

An NMI is accepted when the NMI pin on the Z80 is made low (edge-
triggered). The Z80 responds to the change of the line from +5 to 0 — so the
interrupt line doesn’t have a state, it’s just a pulse. When this happens, a call
is done to address 0066h and IFF1 is reset so the routine isn’t bothered by
maskable interrupts. The routine should end with an RETN (RETurn from Nmi)
which is just a usual RET, but also copies IFF2 to IFF1, so the IFFs are the
same as before the interrupt.

You can check whether interrupts were disabled or not during an NMI by
using the LD A,T or LD A,R instruction. These instructions copy 1FF2 to the
PF flag.

Accepting an NMI costs 11 t-states.

5.2 Maskable Interrupts (INT)

If the INT line is low and IFF1 is set, a maskable interrupt is accepted —
whether or not the the last INT routine has finished. That’s why you should
not enable interrupts during such a routine, and make sure that the device that
generated it has put the INT line up again before ending the routine. So unlike
NMTI interrupts, the interrupt line has a state; it’s not a pulse.

17

CHAPTER 5. INTERRUPTS 18

When an INT is accepted, both IFF1 and IFF2 are cleared, preventing
another interrupt from occurring which would end up as an infinite loop (and
overflowing the stack). What happens next depends on the Interrupt Mode.

A device can place a value on the databus when the interrupt is accepted.

Some computer systems do not utilize this feature, and this value ends up being
FFh.

Interrupt Mode 0 This is the 8080 compatibility mode. The instruction on
the bus is executed (usually an RST instruction, but it can be anything.
The I register is not used. Assuming it a RST instruction, accepting this
takes 13 t-states.

Interrupt Mode 1 An RST 38h is executed, no matter what value is put on
the bus or what value the I register has. Accepting this type costs 13
t-states.

Interrupt Mode 2 A call is made to the address read from memory. What
address is read from is calculated as follows: (I register) x 256 + (value
on bus). Of course a word (two bytes) are read, making the a address
where the call is made to. In this way, you can have a vector table for
interrupts. Accepting this type costs 19 t-states.

At the end of a maskable interrupt, the interrupts should be enabled again.
You can assume that was the state of the IFFs because otherwise the interrupt
wasn’t accepted. So, an INT routine always ends with an EI and a RET (RETI
according to the official documentation, more about that later):

INT:

EI
RETI or RET

Note a fact about EI: a maskable interrupt isn't accepted directly after it,
so the next opportunity for an interrupt is after the RETI. This is very useful;
if the INT line is still low, an interrupt is accepted again. If this happens a lot
and the interrupt is generated before the RETI, the stack could overflow (since
the routine would be called again and again). But this property of EI prevents
this.

DI is not necessary at the start of the interrupt routine: the interrupt flip-
flops are cleared when accepting the interrupt.

You can use RET instead of RETI, depending on the hardware setup. RETI
is only useful if you have something like a Z80 PIO to support daisy-chaining:
queueing interrupts. The P10 can detect that the routine has ended by the op-
code of RETTI, and let another device generate an interrupt. That is why I called
all the undocumented EDxx RET instructions RETN: All of them operate alike,
the only difference of RETT is its specific opcode which the Z80 PIO recognises.

5.3 Things affecting the Interrupt flip-flops

All the TFF related things are:

CHAPTER 5. INTERRUPTS 19

IFF1 IFF2

CPU reset 0 0

DI 0 0

EI 1 1

Accept INT 0 0

Accept NMI 0 -

RETI/N [FF2 - All the EDxx RETI/N instructions
LD A,I/LD A,R - - Copies IFF2 into PF flag

If you're working with a Z80 system without NMIs (like the MSX), you can
forget all about the two separate IFFs; since a NMI isn’t ever generated, the
two will always be the same.

Some documenation says that when an NMI is accepted, IFF1 is first copied
into IFF2 before IFF1 is cleared. If this is true, the state of IFF2 is lost after a
nested NMI, which is undesirable. Have tested this in the following way: make
sure the Z80 is in EI mode, generate an NMI. In the NMI routine, wait for
another NMI before executing RETN. In the second NMI IFF2 was still set, so
IFF1 is not copied to IFF2 when accepting an NMI.

Another interesting fact is this. 1 was trying to figure out whether the
undocumented ED RET instructions were RETN or RETI. [tested this by putting
the machine in EI mode, wait for an NMI and end with one of the ED RET
instructions. Then execute a HALT instruction. If IFF1 was not restored, the
machine would hang but this did not happen with any of the instructions,
including the documented RETT!

Since every INT routine must end with ET followed by RETI officially, It does
not matter that RETT copies IFF2 into IFF1; both are set anyway.

5.4 HALT instruction

The HALT instruction halts the ZR80; it does not increase the PC so that the in-
struction is re-executed, until a maskable or non-maskable interrupt is accepted.
Only then does the Z80 increase the PC again and continues with the next in-
struction. During the HALT state, the HALT line is set. The PC is increased
before the interrupt routine is called.

5.5 Where interrupts are accepted

During execution of instructions, interrupts won't be accepted. Only between
instructions. This is also true for prefixed instructions.

Directly after an EI or DI instruction, interrupts aren’t accepted. They're
accepted again after the instruction after the EI (RET in the following exam-
ple). So for example, look at this MSX2 routine that reads a scanline from the
keyboard:

LD C,A
DI

IN A, (OAAh)
AND OFOh

ADD A,C

CHAPTER 5. INTERRUPTS 20

ouT (OAAL) ,A
EI

IN A, (0ASh)
RET

You can assume that there never is an interrupt after the EI, before the
IN A, (OA9h) — which would be a problem because the MSX interrupt routine
reads the kevboard too.

Using this feature of EI, it is possible to check whether it is true that inter-
rupts are never accepted during instructions:

DI
make sure INT is active
EI
insert instruction to test
INT:
store PC where INT was accepted
RET

And yes, for all instructions, including the prefixed ones, interrupts are never
accepted during an instruction. Only after the tested instruction. Remember
that block instructions simply re-execute themselves (by decreasing the PC with
2) so an interrupt is accepted after each iteration.

Another predictable test is this: at the “insert instruction to test” insert a
large sequence of EI instructions. Of course, during execution of the EI instruc-
tions, no interrupts are accepted.

But now for the interesting stuff. ED or CB make up instructions, so in-
terrupts are accepted after them. But DD and FD are prefixes, which only
slightly affects the next opcode. If you test a large sequence of DDs or FDs, the
same happens as with the EI instruction: no interrupts are accepted during the
execution of these sequences.

This makes sense, if you think of DD and FD as a prefix which set the “use
IX instead of HL” or “use 1Y instead of HL” flag. If an interrupt was accepted
after DD or FD, this flag information would be lost, and:

DD 21 00 00 LD IX%,0

could be interpreted as a simple LD HL,O if the interrupt was after the last
DD. Which never happens, so the implementation is correct. Although I haven’t
tested this, as I imagine the same holds for NMI interrupts.

Chapter 6

Timing and R register

6.1 R register and memory refresh

During every first machine cycle (beginning of an instruction or part of it —
prefixes have their own M1 two), the memory refresh cycle is issued. The whole
IR register is put on the address bus, and the RFSH pin is lowered. It unclear
whether the Z80 increases the R register before or after putting IR on the bus.

The R register is increased at every first machine cycle (M1). Bit 7 of the
register is never changed by this; only the lower 7 bits are included in the
addition. So bit 7 stays the same, but it can be changed using the LD R,A
instruction.

Instructions without a prefix increase R by one. Instructions with an ED,
CB, DD, FD prefix, increase R by two, and so do the DDCBxxxx and FD-
CBxxxx instructions (weird enough). Just a stray DD or FD increases the R
by one. LD A,R and LD R,A access the R register after it is increased (by the
instruction itself).

Remember that the block instructions simply decrease the PC with two, so
the instructions are re-executed. So LDIR increased R by BC times 2 (note that
in the case of BC = 0, R is increased by 10000h times 2, effectively 0).

Accepting an maskable or non-maskable interrupt increases the R by one.

After a hardware reset, or after power on, the R register is reset to 0.

That should cover all there is to say about the R register. It is often used
in programs for a random value, which is good but of course not truly random.

21

Chapter 7

Other Information

7.1

Errors in official documentation

In some official Zilog documentation, the are some errors. Some don’t have all
of these mistakes, so your documentation may not be flawed but these are just
things to look out for.

The Flag affection summary table shows that LDI/LDIR/LDD/LDDR instruc-
tions leave the SF and ZF in an undefined state. This is not correct; the
SF and ZF flags are unaffected (like the same documentation says).

Similary, the same table shows that CPI/CPIR/CPD/CPDR leave the SF and
HF flags in an undefined state. Not true, thev are affected as defined
elsewhere in the documentation.

Also, the table says about INI/0OUTD/etc “Z=0 if B <> 0 otherwise Z=0";
of course the latter should be Z=1.

The INI/INIR/IND/INDR/OUTI/OUTD/OTIR/OTDR instructions do affect
the CF flag (some official documentation says they leave it unaffected,
important!) and the NF flag isn't always set but may also be reset (see
4.3 for exact operation).

When an NMI is accepted, the IFF1 isn’t copied to IFF2. Only IFF1 is

reset.

In the 8-bit Load Group, the last two bits of the second byte of the LD
r, (IX + d) opcode should be 10 and not 01.

In the 16-bit Arithmetic Group, bit 6 of the second byte of the ADD IX,
pp opcode should be 0, not 1.

IN x, (C) resets the HF flag, it never sets it. Some documentation states
it is set according to the result of the operation; this is impossible since
no arithmetic is done in this instruction.

22

Bibliography

[1] Mark Rison Z80 page for !CPC.
http://www.acorn.co.uk/~mrison/en/cpc/tech.html

[2] YAZE (Yet Another Z80 Emulator). This is a CPM emulator by Frank
Cringle. It emulates almost every undocumented flag, very good emulator.
Also includes a very good instruction exerciser, and is released under the
GPL.
ftp://ftp.ping.de/pub/misc/emulators/yaze-1.10.tar.gz

[3] Z80 Family Official Support Page by Thomas Scherrer. Very good — your
one-stop Z80 page.
http://www.geoclities.com/SiliconValley/Peaks/3938/z80. home.htm

[4] Spectrum FAQ technical information.
http://www.worldofspectrum.org/faqg/

[5] Gerton Lunter’s Spectrum emulator (Z80). In the package there is a file
TECHINFO.DOC, which contains a lot of interesting information. Note that
the current version can only be unpacked in Windows.
ftp://ftp.void. jump.org/pub/sinclair/emulators/pc/dos/z80-400.zip

[6] Mostek Z80 Programming Manual — a very good reference to the Z80.

[7] Z80 Product Specification, from MSX2 Hardware Information.
http://www.hardwareinfo.msx2.com/pdf/Zilog/z80.pdf

23

Chapter 8

Instruction Tables

8.1 8-Bit Load Group

Symbolic Flags Opcode M T
Mnemonic Operation SF ZF YF HF XF PF NF CF 76 543 210 Hex Bytes Cycles States Comments
1D r,r? r+«—r? s = = = = s » = 01 1 T EE 1 4 r,r' Reg
LD p,p’ p—p’ * * o o o ¢ e+ =+ 11011 101 DD 2 2 8 D00 B
o1 p p? 0oL C
LD q,q’ q+—q’ e o o o o o e« o 11111 101 FD 2 2 8 00 D
01 g g 011 E
LD r,n r+«n « = » » & = @+ « 00 r 110 2 2 7 100 H
— n — 101 L
LD p.n P « = » o = o o 11 011 101 DD 3 3 11 111 A
00 p 110
— n —
LD g,n g+<n e o = o o o o = 11111 101 FD 3 3 i1 p,p’ Reg
00 g 110 000 B
— n — 001 C
LD r,(HL) r«—(HL) s & & & & & o = 01 T 110 1 2 7 010 D
LD r,(IX+d) r«(IX+d) e = » = e « « 11 011 101 LD 3 5 19 011 E
01 r 110 100 IXh
—d — 101 IX1
LD r,(IY+d) r«~(I¥+d) e # e e e e e o 11 111 101 FD 3 5 19 111 4
01 r 110
—d —
LD (HL),r (HL) «—1 * ¢+ o @+ ¢ e+ o = 01110 r 1 2 7 q,9" BReg
LD (Ii+d),r (IX+d)+~T ® » & ® =« « s s 11 011 101 DD 3 & 19 000 B
01 110 r o1 C
—d — Q10 D
LD (I¥+d),r (I¥tdl«r e = = » = e « « 11 111 101 FD 3 E 19 011 E
01 110 r 100 IYh
—d — 101 IYl
LD (HL) ,n (HL} +—n s + & & =+ s e = 00110 110 386 2 3 10 111 A
— n —
ID (Ii+d),n (IX+d)~mn e e ® e e e e = 11 011 101 DD 4 [19
00 110 110 38
—d —
— n —
LD (I¥f+dj,n (I¥td)=—n e = » » = e @« = 11 111 101 FD 4 5 19
00 110 110 38
— d —
— n —
LD 4, (BC) A—(BC) s« & & & & & s = (00001010 OA 1 g ¥
LD A,(DE) A<—(DE) s = o & s o @ = 00011010 14 1 2 7
LD A, (nn) A+ (nn) * * o o o ¢ o = 00111 010 3A 3 4 13
— n —
S S
(continued)

CHAPTER 8. INSTRUCTION TABLES 25

Symbelic Flags Opcode M T
Mnemonic Operation SF ZF YF HF XF PF NF CF 76 543 210 Hex Bytes Cycles States Comments
-
-
L

LD (BC),A (BC)—& e & & & s = « 00 000 010 02 1 2 7
LD (DE),A (DE)+—A . e s = e 00 010 010 12 1 2 7
LD (nn),A (nn)+—A .- s s = @ . e« 00 110 010 32 3 4 13

+— n —

— o —

101 101 ED 2 2 9

LD A,T AT T 1] o | IFF2 0 = 11
01 010 111 &7

LD AR A—R I]] o | IFF2 0 e 11 101 101 ED 2 2 9
01 011 111 EF

LD I,A I—4 =« »« =« s« s = s+ = 11101 101 ED 2 2 9
01 000 111 47

LD R,A R—4 . e s = @ . « o 11 101 101 ED 2 2 9

01 001 111 4F

8.2 16-Bit Load Group

Symbolic Flags Opcode M T
Mnemonic Operation SF ZF YF HF XF PF NF CF 76 543 210 Hex Bytes Cycles States Comments
LD dd,nn dd«—nn = o o o o = o o 00 dd0 001 3 3 10 dd Reg
— n — 00 BC
— n — 01 DE
LD IX,nn Ii+nn = o o + o = o o 11011 101 DD 4 4 14 10 HL
00 100 001 21 11 3P
— n —
p T « CEonn]
LD IY,nn I+—nn s &« s & s = o o 11 111 101 FD 4 4 14
00 100 001 21
— n —
p Rt « oy J
LD HL, (nn) H+(nnt+1) e o ¢ o o o o o 00101 010 24 3 [16
L+—(nn) — n —
— n —
LD dd,(nn) ddh«(nn+l) e e« e e e e e e 11 101 101 ED 4 5} 20
dd1l«(nn) 01 ddi 011
TR - BEE g]
C e - Bk g]
LD IX,(nn) I¥h—(nntl) e e« e e e e e 11 011 101 DD 4 5] 20
IX1+(nn) 00 101 010 24
C TR » BE¥ g]
— n —
LD IY¥,(nn) IYh+(nn+l) = « = = « = = « 11 111 101 FD 4 5] 20
I¥1l+(nn) 00 101 010 24
— n —
Tt - BEE g]
LD (mn),HL (nn+1)—H e o o & o e e o 00 100 010 22 3 =3 16
(nn) —L —n —
— n —
LD (nn),dd (on+1)—ddh e = s s s e = = 11 101 101 ED 4 6 20
(nn) —ddl 01 ddo 011
— n —
— n —
LD (on),IX (ant1l)—IXh e « = = e e e« 11 011 101 DD 4 <] 20
(nn) —IX1 00 100 010 22
— N~
— N~
LD (on),IY (mnt1)—IYh e e« e » e e e e 11 111 101 FD 4 5] 20
(nn) —IV1 00 100 010 22
— N~
— n —
LD SP,HL SP—HL e o« o o o o o o 11 111 001 F9 1: 1 6
LD SP,IX SP—IK « o« s & e+ = o o 11 011 101 DD 2 2 10
11 111 001 F9
LD SP,IY SP+—1IY e o o + o = o o 11 111 101 FD 2 2 10

11 111 001 F9

(continued)

CHAPTER 8. INSTRUCTION TABLES 26

Symbolic Flags Opcode M T
Mnemonic Operation SF ZF YF HF XF PF NF CF 76 543 210 Hex Bytes Cycles States Comments
PUSH gqq (SP-2)—qql e e e e e e e 11 qqg0 101 1 3 11 qq Reg
(8P-1) +—qgh 00 BC
SP+—B8P-2 01 DE
PUSH IX (SP-2)+I¥l e = « s = = « s« 11 011 101 ID 2 4 =) 10 HL
(8P-1) —IXh 11 100 101 EB 11 AF
SP+—B8P-2
PUSH IY (SP-2)+—IVl e« = « s = = « s« 11 111 101 FD 2 4 16
(8P-1) —IVh 11 100 101 EE
SP+B8P-2
POP qgq qgh+(SP+1) e e e o e e e e 11 gql 001 1 3 10
qql—(SP)
SP—3P+2
POP IX IXh+(SP+1) e e @« o o o e e 11 011 101 LD 2 4 14
IX1+—(SP) 11 100 001 Ei
SP—3P+2
POP IV IYh«(SP+1) e e @« o o o e e 11 111 101 FD 2 4 14
IY1—(SF) 11 100 001 Ei

5P+—3P+2

CHAPTER 8. INSTRUCTION TABLES

8.3 Exchange, Block Transfer, Search Group

Symbolic Flags Opcode M T
Mnemonic Operatien SF ZF YF HF XF PF NF CF 76 543 210 Hex Bytes Cycles States Comments
EX DE,HL DE-—HL e« o * » = =+ e = 11101011 EB 1 1 z
EX AF,AF’ AF—AF’ ©« o o e o e e e 00001000 OB 1 1 4
EXX BC++BC? = = s = s = s = 11011001 D9 1 1 4
DE-—DE’
HL—HL’
EX (8P),HL H«—(SP+1) « & ¢ o o = o o 11 100 011 E3 1 E 19
L (SP)
EX (SP),IX IKh—(SP+1) e e e e e = e e 11 011 101 DD 2 5 23
TX1++(SP) 11 100 011
EX (SP),IY IVh—(SP+1) e e e e e = e e 11 111 101 FD 2 8 23
IY1++(SP) 11 100 011
LDI (DE)—(HL) e o [* 0]*[' 0 e 11101 101 ED 2 4 16
DE<DE+1 10 100 000 40
HL+—HL+1
BC—BC-1
LDIR (DE)—(HL) o o % 0]*0® 0 e 11 101 101 ED 2 5 21 if BCHO
DE<DE+1 10 110 000 BO 2 4 16 if BC=0
HL—HL+1
BC—BC-1
Repeat until
BC=0
LDD (DE)—(HL) o o % 0]* ' 0 e 11 101 101 ED 2 4 16
DE<DE-1 10 101 000 48
HL—HL-1
BC—BC-1
LDDR (DE)—(HL) o o [* 0 J*0® 0 e 11 101 101 ED 2 5 21 if BC#O
DE—DE-1 10 111 000 B8 2 4 16 if BC=0
HL—HL-1
BC—BC-1
Repeat until
BC=0
CPI A-(HL) Pttt L e 11101101 ED 2 4 16
HL—HL+1 10 100 001 A1
BC—BC-1
CPIR A-(HL) Pttt L e 11101101 ED 2 5 21 if BC#0 and
A (HL)
HL—HL+1 10 110 001 BL 2 4 16 if BC=0 or
BC—BC-1 A=(HL)
HRepeat until
h=(HL) or
BC=0
CPD 4-(HL) PPN 1 e 11101 101 ED 2 4 16
HL—HL-1 10 101 001 49
BC—BC-1
CPDR. A-(HL) PRI 1 e 11101401 ED 2 5 21 if BC#0 and
A (HL)
HL—HL-1 10 111 001 B9 2 4 16 if BC=0 or
BC—BC-1 A=(HL)
Repeat until
A=(HL) or
BC=0
Note: IPF i= 0 the result of BC-1=0, otherwise PF is set.

2pF is 0 only at completion of the instructicm.
32F is set if A=(HL), otherwise ZF is reset.
See section 4.2 for a descriptionm.

CHAPTER 8. INSTRUCTION TABLES

8.4 8-Bit Arithmetic and Logical Group

Symbelic Flags Opcode M T
Mnemonic Operation SF ZF YF HF XF PF NF CF 76 B43 210 Hex Bytes Cycles States Comments
ADD A,r A—B+r T TTTTvwoT T 1o T 1 1 4 r Reg
ADD A,p A—A+p I 1 1T I T vwo [11 o011 101 ID 2 2 8 000 B
10 P 001 ¢
ADD A,q Al+q T 17 0 [[vo [11111 101 FD 2 2 8 010 D
10 q 011 E
ADD A,n A R+n T 1 1 T 1wo [11 110 2 2 7 100 H
— 1 — 101 L
ATD &, (HL) A+—A+(HL) I 1 L [[vo [410[000 110 1 2 7 111 A
ADD A, (IX+d) A—A+(IX+d) T 1 I I T vo [11 o011 101 ID 3 5 19
10 110
— d — P Reg
ADD A, (IV+d) A—A+(I¥+d) T 1 1T [P vwo [11 111 101 FD 3 5 19 000
10 110 001 C
—d — 010 D
ADC A,s A+—ht+s+CF [T T wo [001 011 E
SUB s Ae—h-s] I T J Vw1 | 100 IXh
SBEC A,s A—A-s-CF T 11 1 1T w1 | 101 IX1
AND s A—Ans I 1 [t JpPFO O 111 A
OR = A—Avs] [o] PFO O
I0R s A Res I 1 T o lpPpo o0
CP s A-s j VTP VE LT g Reg
INC r rer+l i 1 I VF O 1 1 4 000 B
INC p p—ptl [] VF O e 101 DD 2 2 8 001 ¢
010 D
INC q qe—q+l T 1 1T T T Vvwo e 101 FD 2 2 8 011 E
100 IYh
INC (HL) (HL)+—(HL) +1 B] VF 0 e 100 1 3 11 101 Ivl
INC (IX+d) (IX+d) — (IX+d)+1 E 1 E jE % VF 0 e 101 DD 3 6 23 111 A
[100]
+ B
INC (IY+d) (IY+d)—(Iv+d)+1 [] [[] VF 0 e 11 111 101 FD 3 6 23
00 110
— d —
DEC m mem-1 T 1 1T I JT VW1 e 101
Note: IYF and XF flags are copied from the operand s, not the result A-s

s is any of r, p, q, m, (HL), (IX+d), (I¥+d) as shown for ADD. The indicated bits replace
the [000] in the ADID set above
m is any of r, p, q, (HL), (IX+d), (IV+d) as shown for INC. Replace [100] with in opcode

8.5 General-Purpose Arithmetic and CPU Con-
trol Group

Symbolic Flags Opcode M T
Mnemonic Operation BSF ZF YF HF XF PF NF CF 76 B43 210 Hex Bytes Cycles States Comments
DAA T T 1T I 1T PF e« T 00100 111 27 1 1 4 Decimal adjust
accumulator
CPL A— 1 . . I 1] « 1 « 00 101 111 2F 1 1 4 Compliment
NEG A—0-A I 1 1 1 1 vw 11] 11101 101 ED 2 2 8 Negate
01 000 100 44
CCF CF—CF o o [P 127" « 0 | 00111 111 3F 1 1 4
SCF CF—1 « o« [* 0" e 0 1t 00110 111 37 1 1 4
NOP « *« = = o e = e 00000 QOO OO 1 1 4
HALT * * = o o o ¢ ¢ 01110 110 76 1 1 4
p1? IFF1,2+0 e e ® ® e » e e 11 110 011 F3 1 1: 4
ET® IFF1,2+—1 e e = = e e e @« 11 111 011 FB 1 1 4
ot ® o o » e o o o 11101101 ED 2 2 8
01 000 110 46
v 14 e & + e+ e = e+ « 11101 101 ED 2 2 8
01 010 110 &6
I 2¢ e o s s = & = s 11101101 ED 2 2 8
01 011 110 BE
Note: YF and KF are copied from register A.

?HF is like CF before the imstructiom.
3o interrupts are accepted directly after EI or DI.
4This instruction has other undocumented opcodes .

CHAPTER 8. INSTRUCTION TABLES

8.6 16-Bit Arithmetic Group

Symbolic Flags Opcode ¥ T
Mnemonic Operatiomn SF ZF YF HF XF PF NF CF 76 543 210 Hex Bytes Cycles States Comments
ATD HL,ss HL—HL+tss e o [“[°1° e 0 [' 00sslo00L 1 3 11 ss Reg
ADC HL,ss HL—HL+ss+tCF [! 1! 12 {2 12 vF! o]! 11 101 101 ED 2 4 16 00 BC
01 ssl 010 01 DE
SBC HL,ss HL+—HL-ss-CcF [' |' 1% [® 12 vF' o |' 11 10f 101 ED 2 4 16 10 HL
01 ss0 010 11 8P
ADD IX,pp IX—IX+pp e o 71717 o 0 ' 11011 110 DD 2 4 16
00 ppl 001 pr Reg
ADD IY¥,qq I¥—IV+qg e o 21717 e 0 [' 11111 110 FD 2 4 16 00 BC
00 ppl 001 01 DE
INC ss ss+—ss+1 e o o o o o e o 00ss0011 1 1 6 10 IX
INC IK IX—IX+1 e« « o o & e e e 11011101 DD 2 2 10 11 SP
00 100 011 23
INC I¥ I¥—IV¥+1 s s« &« & & s s s 11111101 FD 2 2 10 gq Reg
00 100 011 23 00 BC
DEC s= s5+—s8-1 * & & & & e e e 005ssl011 1 1 5] 01 DE
DEC IX IX—IX-1 e « o o s e e e 11011101 DD 2 2 10 10 IV
00 101 011 2B 11 8P
DEC IY I¥—I¥-1 e =« & & s e e e 11111101 FD 2 2 10
00 101 011 2B
Note: J'Flag is affected by the 16 bit result.

2Flia.g is affected by the high-byte addition.

CHAPTER 8. INSTRUCTION TABLES

8.7 Rotate and Shift Group

Symbolic Flags Opcode il T
Mnemonic Operation SF ZF YF HF XF PF NF CF 76 543 210 Hex Bytes Cycles States Comments
RLCA 7=l & o { 0§ o 0] 00000111 07 1 1 4
RLA CFe{7—0H & &« [0 | = 0] 00 o010 111 17 1 1 4
RRCA 7o « « [0O [« 0] 00001111 OF 1 1 4
M7—olslcrl . :
RRA .._[01.0]00@111111F 1 1 4
BLC r {7—oH 1 1 [o]P0] 11001 044 CB 2 2 8 r Reg
00 T 000 B
RLC (HL) 7ol 1T 1 [o]P0] 11001 011 CB 2 a 15 001 C
00 110 010 D
Lok
BLC (TX+d) 7 1 [o] P o0] 11 011 101 DD 4 6 23 011 E
11 001 011 CB 100 H
—d — 101 L
00 110 11 &

BLC (IV+d) " 1 1 I o 1P 0] 11 111 101 FD 4 8 23

11 001 011 CB

— d —
00 110
BLC (TX+d),r T+ (TX+d) 1 1 [o | PFo] 11011 101 DD 4 6 23
RLC T 11 001 011 CB
(I¥+d) 1 — d —
[¢]4] T
BLC (I¥+d),r T (I¥+d) 7 1 [o] P o0] 11 111 101 FD 4 6 23
RLC T 11 001 011 CB
(I¥+d) 1 — d —
00 T
AL m [CFle{T—oK 1 1 7 0] P 0] 010
REC m 7—o 1 1 7 0]P0] [oo1]
7ol Fr
BR m 7—0 1 1 [0o]P0]
SLA m [CFlH{7—0M-071 | [0 | PR 0]
SLL m T—0R171 [[0 | PF 0]
SBA m P7—=0] 1 1 [0] %P 0] 101
SAL m 0+{7—=0 171 1 o0]P0] 111
BLD 7 1 [o] PFo e 11101 101 ED 2 3 18
01 101 111 6F
RED 7 1 [0 | PF O e i1 101 101 ED 2 5 18

01 100 111 67

Note: m is one of r,(HL),(IE+d),(I¥+d). To form new opcode replace of BLCe with shown code.

CHAPTER 8. INSTRUCTION TABLES

8.8 Bit Set, Reset and Test Group

Symbolic Flags Opcode il T
Mnemonic Operation 5F ZF YF HF XF PF NF CF 76 b43 210 Hex Bytes Cycles States Comments
BIT b,r ZF— T, T 1"t 71" o e« 11001011 CB 2 2 8 r Reg
01 b r 000 B
BIT b, (HL) ZF— (HL}y VT 1L 1 1t o e t100L 044 B2 3 12 o0l ¢
01 b 110 010 D
BIT b, (IX+d)? ZF— (IZ4+d)p [* 7 7' 1 [*]! 0 « 11 011 101 DD 4 5 20 011 E
11 001 011 CB 100 H
—d— 101 L
01 b 110 111 4
BIT b, (IT+d)® ZF— (I¥+d) [*] 7" 1 [* ' 0 e 11 111 101 FD 4 5 20
11 001 011 CB
— d —
01 b 110
SET b,r ry —1 « & + = » = o o« 11 001 011 CB 2 2 8 b Eit
b r 000 0
SET b, (HL) (HL)y —1 e = & s s & e & 11001011 CB 2 4 15 o001 1
b 110 010 2
SET b,(IX+d) (IX4d)p—1 e e e o e e e 11 0i1 101 DD 4 8 23 011 3
11 001 011 CB 100 4
—d— 101 5
b 110 110 6
SET b,(I¥+d) (I¥4dp—1 e e = o e e e 11 111 101 FD 4 6 23 111 7
11 001 011 CB
— d —
b 110
SET b, (IX+d) ,r re (IX+d) e « o« » e o e o 11011101 DD 4 8 23
r, —1 11 001 011 CB
(IX+d) «—1 PR |
i » «r
SET b, (I¥+d) ,r re(I¥+d) s + & » s s s & 11 111 101 FD 4 8 23
ry, —1 11 001 011 CB
(IV+d) 1 — d —
b r
RES b,m my —0 e & o = o o o o [10]
Note: 'See section 4.1 for a complete description.

?Instruction has other undocumented opcodes.
m is one of r, (HL), (IX+d), (I¥+d). To form RES instruction, replace with [10].

8.9 Jump Group

Symbolic Flags Opcode M T
Mnemonic Operation B3F ZF YF HF XF PF NF CF 76 543 210 Hex Bytes Cycles States Comments
JP nn PCe—mn e = = = o o « o 11 000 011 C3 3 3 10 cc Condition
— n — 000 NZ
— n — 001 Z
JP cc,nn if cc * o & o o o o o 11 cc 010 3 3 10 010 NC
PO+—mn «— n — 011 C
— n — 100 FO
JR e PC+—PC+te « » = » » s« « 00011 000 18 2 3 12 101 PE
erig =D 110 P
111 M
JR ss,e if == « ®» o o & o o o 00 1=s 000 2 3 12 if ss is true
PC+—PC+e — g2 — 2 2 7 if s= is false
JP (HL) PC+—HL « & & & & & & & 11 101 001 E8 1 1 4
JP (IX) PC—IX = o o o & e « o 11 011 101 DD 2 2 8 ss Condition
11 101 001 E® 11 C
JP (I¥) PC—IY s o & o o« o o« o 11 111 101 FD 2 2 g 10 NC
11 101 001 E8 oL Z
00 NZ
DINZ e B—E-1 s o e o & e e« o 00010 000 10 2 2 8 if B=0
if B#0 — e-2 —
PC—PC+e 2 3 13 if B#0
Note: e 1s a signed two-compliment in the range -127, 129.

e-2 in the opcode provides an effective nmumber of PCte as PC is incremented by two prior to
the addition of e.

CHAPTER 8. INSTRUCTION TABLES

8.10

Call and Return Group

Symbolic Flags Opcode M T
Mnemonic Operation SF ZF YF HF XF PF NF CF 76 B43 210 Hex Bytes Cycles States Comments
CALL nn (8P-1)—PCh e o =« + o + o o 11001101 CD 3 E 17
(sP-2)+—PC1 — n —
SP+—3P-2 — n —
PC+—nn
CALL cc,nn if cc is trues o = & e o o e e 11 cc 100 3 3 10 if cc is false
(8P-1)+—FCh — n — 3 E 17 if cc is true
(8P-2)—PC1 — n —
SP+—35P-2
PC+—mn
RET PC1+—(SF) e = o o = o o o 11001 001 C8 1 3 10
PCh«— (3P+1)
SP+—3P+2
RET cc if cc is true & & & & & & & & 11 cc 000 1 1 5 if cc is false
PC1+—(3P) 1 3 11 if cc is true
BCh+—(3P+1)
SP+—3P+2
RETT! PC1+— (5P} « o & s s s « e 11 101 101 ED 2 4 14 cc Conditiecn
BCh+—(8P+1) 01 001 101 4D 00D NZ
SP—5P+2 0oL Z
RETN? PC1+— (5P} s o & s s ¢ « o 11 101 101 ED 2 4 14 010 NC
BCh+—(3P+1) 01 000 101 45 011 C
SP—5P+2 100 PO
IFF1—IFF2 101 FE
110 P
111 o
RST p (8P-1)+—FCh e e o+ o o o o o 11 t 111 1 3 11 t P
(8P-2)—PC1 000 Oh
SP+—35P-2 001 8h
PC+—p 010 10h
011 18h
100 20h
101 Z8h
110 30h
111 3&h
Note: T RETI also copies IFF2 into IFF1, like RETN.

2 This instruction has other undocumented opcodes.

CHAPTER 8. INSTRUCTION TABLES

8.11 Input and Output Group

Symbolic Flags Opcode M T
Mnemonic Operation SF ZF YF HF XF PF NF CF 76 543 210 Hex Bytes Cycles States Comments
IN A A—@@ e« « « + = o =+« e« 11011011 DB 2 3 11 r Reg
+— n — 000 B
N r,(C) r—(C) I I I o [PF 0 e 11 101 101 ED 2 3 12 001 C
01 r 000 010 D
IN F,(n) —(C) I I I o [PF O e 11101101 ED 2 3 12 011 E
01 110 000 70 100 H
NI (HL) —(C) Pttt 1101100 BD 2 4 16 101 L
HL—HL+1 10 100 010 A2 11 4
B—B-1
INIR (HL) «—(C) ot o [* o0 [37%1% 11101 100 ED 2 5 21 if B#0
HL+—HL+1 10 110 010 B2 2 4 16 if B=0
B+B-1
Repeat until
B=0
IND (HL) —(C) Tttt gt 11100100 BB 2 4 16
HL+—HL-1 10 101 010 AA
B+—B-1
INDR (HL) —(C) o 1t o]* o J®1%1% 11101100 ED 2 5 21 if B#0
HL+—HL-1 10 111 010 BA 2 4 16 if B=0
B—B-1
Repeat until
B=0
OUT (n),A (n)<—A e = o ¢ o o ¢ o 11 010 011 D3 2 3 11
+— n —
ouT (C),r ()1 *« « « = + = + o 11 101 104 ED 2 3 12
01 r oo0L
OuT (C),0 (C)=—0 e o o o o o o o 11101101 ED 2 3 12
01 110 001 71
OUTI (C)— (HL) Tt 2 11100100 BB 2 4 16
HL+—HL+1 10 100 011 A3
Be—B-1
OTIR (C) «—(HL) o 1t 0o]* 0o] 1*1% 11101100 ED 2 5 21 if B#0
HL+—HL+1 10 110 011 B3 2 4 16 if B=0
B—B-1
Repeat until
B=0
OUTD (C) — (HL) Tttt PR 1w101100 B2 4 16
HL+—HL-1 10 101 011 AB
B—B-1
OTDR (C) —(HL) ot o {* o 37%1% 11101 100 ED 2 5 21 if B#0
HL+—HL-1 10 111 011 BB 2 4 16 if B=0
B—B-1
Repeat until
B=0
Note: 1 flag is affected by the result of B«—B-1 as in DEC B.

w

NF is a copy of bit 7 of the transferred byte.
This flag is bizarre, see section 4.3.

Chapter 9

Instructions Sorted by
Opcode

Any instruction marked with

* {s undocumented,

00 NOP 2D LEC L EA
0lnn LD BC,nn 2E n 1D L,n BB
02 LD (BC),A 2F CPL EC
03 INC BC 30 e JR NC, (PC+e) ED
04 INC B 3l nn 1D SP,nn EE
0B DEC B 32 nn 1D (nn),A EF
06 n LD B,n 33 INC SP 60
o7 RLCA 34 INC (HL) 61
08 EX AF,AR? 35 DEC (HL) 62
09 ATD HL,BC 36 n 1D (HL),n 63
0A LD 4,(BC) a7 SCF 64
0B DEC EC 38 e JR C, (PC+e) 65
oc INC ¢ 39 ATD HL,SP 66
oD DEC C 3 nn 1D &, (nn) &7
0E n LD C,n 3B DEC 3P 68
oF RRCA 3c INC A 69
10 & DINZ (PC+e) 3D DEC A GA
i1 nn LD DE,nn 3E n 1D A,n GB
12 LD (DE).A 3F CCF ac
13 INC DE 40 1D E,B 6D
14 INC D a1 1D E,C 6E
15 DEC D 42 1D B,D 6F
16 n LD D,n 43 1D B,E 70
17 RLA 44 1D B,H 71
18 e JR (PC+e) 45 1D B,L 72
19 ATD HL,DE 46 LD B, (HL) 73
1A LD 4, (DE) a7 1D B,4 74
1B DEC DE a8 1D C,B 75
ic INC E L] 1D c,C 76
1D DEC E 4ah 1D C,D 77
1E n LD E,n 4B 1D C,E 78
iF RRA ac 1D C,H 79
20 e JR NZ, (PCte) 4an 1D C,L TA
21nn LD HL,nn 4E 1D C, (HL) TB
22nn LD (mn),.HL 4aF 1D C,A 7c
23 INC HL =] 1D D,E 7D
24 INC H Bl 1D D,C TE
2B DEC H B2 1D D,D 7F
26 n LD H,n &3 1D D,E 80
27 DAA B4 1D D,H 81
28 e JR Z,(PC+e) &b 1D D,L 82
29 ATD HL,HL &6 1D D, (HL) 83
2Ann LD HL, (nn) &7 1D D,4 84
2B DEC HL E8 1D E,B 85
2ac INC L =] 1D E,C 86

34

=
=
[o e Y e o o = = = i = e i x|

~roEtarErERD R s ER D

5

CHAPTER 9. INSTRUCTIONS SORTED BY OPCODE

B

e~ EmEmDom =

vew 8

e EmmD a®

wm
[==]
Q
E Daodes ~FOHOOOHDEeEDbEBR@BE ~HFOHDOQHDBE DB bBDB>b -
o &
e

o
=-1
:—Ehmmcompﬁr‘mmcow
|
—

CALL NZ,(nn)
PUSH EC

ATD A,n

R3T OH

RET Z

BIT

EIT

—

HL)

= = EoaEEmED e
= B =
b e B

-

fe e = el e B B I S ol <l e e B o

l—':ﬁmUOw.‘an—'mmUﬁw
L
—

(HL)
Bx

D
Ex
He
L*
(HL) =
Ax

[2=]
|
—

[==]
=)
—

[==]
=
—

[l el el el o = N B o i B B B = = 1 R

rmrtEmmoooEarEmoO W

BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
RE3
RE3
RE3
RE3
RE3
RE3
RE3
RE3
RE3
RE3
RES

RE3
RES
RE3
RE3
RE3
RE3
RE3
RE3
RE3
RE3
RE3
RE3
RE3
RE3

o s} =] jas]
53 = £l £
[st [[

s} o] s} =] s}
|4 | 3 g 2] =
L) [[[st

WWRHNMBMBBRMPER,ERPEPRERRPROO0OCO0DOO00]~~~ 0®0 @S D00 M M0 a s s b s s s s s G0 00 00 L0 G0 00 00 L) BRI R B B BD B RS
(BNt == R = L= B == P N == e = R e R s L == B o = T == e N = = = L = i = = e N o= = I s I i == B P = = = L= B == e N == I . R T == P o= = L= B == e N o = = Y . = T = = |

CHAPTER 9. INSTRUCTIONS SORTED BY OPCODE

CB2A RES 3,D CEE4 SET 4,H DDEE d 1D E, (IX+d)
CB9B RES 3,E CBES SET 4,L DDeo LD IXh,B#+
CB9C RES 3,H CEE8 SET 4, (HL) DD&1 LD IXh,C
CB2D RES 3,L CBE7 SET 4,4 DD&2 LD IXh,D*
CB9E RES 3, (HL) CBES SET &6,B DD&3 LD IXh,E+
CB9F RES 3,4 CEE9 SET E,C DD&4 LD IXh,IXh«
CBAD RES 4,B CEEA SET E,D DD&S LD IXh,IXl«
CBAL RES 4,C CEEE SET E,E DD&s d LD H, (IX+d)
CBA2 RES 4,D CBEC SET 6,H DD&7 LD IXh,A#*
CBA3 RES 4,E CEED SET E,L DDes LD IX1,B+
CBA4 RES 4,H CEEE SET &, (HL) DD&g LD IX1,C
CBAS RES 4,L CBEF SET E,4 DD6A LD IX1,D#
CBAB RES 4, (HL) CEFO SET 6,B DDEE LD TX1,E+
CBAT RES 4,4 CEF1 SET 6,C DD&C LD IX1,IZh«
CBA8 RES &5,B CBF2 SET 6,D DDED LD IX1,IXl%
CBAS RES E,C CEF3 SET 6,E DDEE d 1D L, (IX+d)
CBAA RES E,D CEF4 SET 6,H DDEF LD TIX1,A
CBAB RES 5,E CBF5 SET 6,L DD70 d LD (IX+d),B
CBAC RES E,H CEF8 SET 6, (HL) DD71 d LD (IX+d),C
CBAD RES E,L CBF7 SET 6,4 DD72 d LD (IX+d),D
CBAE RES &, (HL) CBF8 SET 7,B DD73 d 1D (IX+d),E
CBAF RES E,4 CBF9 SET 7,C DD74 d 1D (IX+d) ,H
CEEOQ RES 6,B CEFA SET 7,D DD75 d LD (IX+d),L
CBEL RES 6,C CEFB SET 7,E DD77 d LD (IX+d),A
CBB2 RES 6,D CBFC SET 7,H DDy LD A,TXh#*
CEE3 RES 6,E CEFD SET 7,L DD7D LD A,TX1=
CEB4 RES 6,H CEFE SET 7, (HL) DD7E d LD A, (IX+d)
CBBS RES 6,L CBFF SET 7,4 DDa4 ADD A,TXh=
CEE& RES 6, (HL) CCnn CALL Z, (nn) DD85 ADD A,TX1#
CBE7 RES 6,4 CDnn CALL (nn) DDas d ADD &, (IX+d)
CBB8 RES 7,B CEn ADC A,n DDac ADC A,TXh#
CEE9 RES 7,C CF RST 8H DDED ADC A,TX1#
CEEA RES 7,D Do RET NC DDEE d ADC &, (IX+d)
CBEB RES 7,E D1 FOP DE DDo4 SUB IXh+
CBEC RES 7,H D2nn JP NC, (nn) DDas SUB IX1+
CEED RES 7,L D3 n OUT (n),A DDo9s d SUB (IX+d)
CBBE RES 7, (HL) D4dnn CALL NC, (nn) Dpec SBC A,TXh#
CEEF RES 7,4 DE TUSH DE DDeD SEC A4,TX1#
CBCO SET 0,B DEé n SUB n DDSE d SBC 4, (IX+d)
CBC1 SET 0,C D7 BST 10H DDA4 AND IXh#

CBC2 SET 0,D D8 RET C DDAS AND TX1%

CBC3 3ET 0,E D9 EXX DDAG d AND (IX+d)
CBC4 SET 0,H DAnn JP C, (on) DDAC X0R IZXh«

CBCS SET 0,L IB n IN &, (n) DDAD X0R IX1+

CECE SET 0, (HL) ICnn CALL C, (nn) DDAE d XOR (IX+d)
CBC7 SET 0,4 DDO9 ATD IX,EC DDB4 OR IXh=

CBC8 SET 1,B D19 ATD IX,DE DDBS OR IX1=

CBC9 SET 1,C D21 n 1D IX,nn DDBE d OR (IX+d)
CECA SET 1,D D22 n LD (nn),IX DDBC CP IXh*

CBCB SET 1,E D23 INC IX DDBD CP IXl=

CBCC SET 1,H D24 INC IXh* DDBE d CP (IX+d)
CECD SET 1,L D25 DEC IXh#* DDCE d 00 RLC (IX+d),B*
CBCE SET 1, (HL) DD26 n LD Tih,n* DDCE d 01 RLC (IE+d),C*
CECF SET 1,4 D29 ATD IX,IX DDCB d 02 RLC (IX+d),D#
CEDO SET 2,B DD2A nn LD IX,(an) DDCE d 03 RLC (IX+d),Ex
CED1 SET 2,C DD2B DEC IX DDCE d 04 RLC (IE+d),He
CED2 SET 2,D DD2C INC IX1=* DDCB d 05 RLC (IX+d),L#
CED3 SET 2,E DD2D DEC IXl= DDCE d 08 RLC (IX+d)
CBD4 SET 2,H ID2E n LD IX1l,n* DDCE d 07 BLC (IE+d),A*
CEDE SET 2,1 ID34 4 INC (IX+d) DDCE d 08 RRC (IX+d),Bs
CED6 SET 2, (HL) DD3E 4 DEC (IX+d) DDCE d 09 RRC (IX+d),Cs
CBD7 SET 2,4 DD36 d n 1D (IE+d),n DDCE d 04 BRRC (IE+d),D*
CED8 SET 3,B D39 ATD IX,SP DDCE d OB RRC (IX+d),Ex
CED9 SET 3,C D44 LD B,IXh= DDCB d OC BRRC (IX+d),H=
CEDA SET 3,D DD45 1D B,IX1= DDCE d 0D RRC (IX+d),L*
CBDB SET 3,E DD4s d 1D B, (IX+d) DDCE d OE RRC (IE+d)
CEDC SET 3,H LD4c 1D C,IXh= DDCB d OF BRRC (IX+d), A=
CEDD SET 3,L DD4D 1D C,IX1= DDCE d 10 RL (IX+d),B*
CBDE SET 3, (HL) DD4E d 1D C, (IX+d) DDCE d 11 RL (IK+d),Cx
CEDF SET 3,4 DDE4 LD D, IXh= DDCB d 12 BL (IX+d) D=
CBEQ SET 4,B DDES 1D D,IX1= DDCE d 13 RL (IX+d),E*
CBE1 SET 4,C DDE6 d 1D D, (IX+d) DDCE d 14 RL (IE+d) ,H#
CBE2 SET 4,D DDEC 1D E,IXh* DDCB 4 16 BRL (IE+d),L*
CEE3 SET 4,E DDED 1D E,IX1* DDCB d 16 RL (IX+d)

CHAPTER 9. INSTRUCTIONS SORTED BY OPCODE

[T+ PO« PRy« PRy« P o PR« PR+ P o P o PR« Py PR o P o P PR o T o PO P o PR o PR o Py o P o PR o PO P o P o PO o P+ PR o P o PR PR+ P o PR+ PR+ PR o PR o PO PO+ P o PR« PR P o PR o PR« PR o P o PR o PR o TR o PR o PR PR o PR o PR o PR o PR o VR o P o P o P o P o P P o P o PR PR o P o PR PR+ PR+ P+ PR Y

EEEREEEEERE

SBRL
SEL
BIT
BIT

EIT
BIT
BIT
EIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

(IX+d) , A%
(IX+d) ,B*
(IX+d) ,Cx
(IX+d) D=
(IX+d) ,E*
(IX+d) ,H*
(IX+d) ,L*
(IX+d)
(IX+d) , A%
(IX+d) ,B=
(IX+d), C*
(IX+d),D=*
(IX+d) ,E=
(IX+d) , Ha
(IX+d), L=
(IX+d)
(IX+d), A=
(IX+d) ,B=*
(IX+d),Cx
(IX+d),D*
(IX+d) ,E*
(IX+d) ,H=
(IX+d), L=
(IX+d)
(IX+d), A%
(IX+d),B=
(IX+d), O
(IX+d),D=*
(IX+d) ,E=
(IX+d) , Hw
(IX+d), L=
(TX+d)*
(IX+d) , A
(IX+d),B=*
(IX+d),C=
(IX+d), D
(IX+d) ,E=
(IX+d) ,H=
(IX+d),L*
(IX+d)
(IX+d), A%
0, (IX+d) =
0, (TX+d) =
0, (IX+d) *
0, (IX+d) =
0, (IX+d)
0, (IX+d) *
0, (IX+d)
0, (IX+d)#
1, (IX+d) *
1, (IX+d) *
1, (IX+d) =
1, (IX+d) *
1, (IX+d) *
1, (IX+d) =
1, (IX+d)
1, (IX+d) *
2, (IX+d) *
2, (IX+d) =
2, (IX+d) *
2, (IX+d) =
2, (IX+d) =
2, (IX+d) *
2, (IX+d)
2, (IX+d) =
3, (IX+d) *
3, (IX+d) =
3, (IX+d)»
3, (IX+d) =
3, (IX+d) =
3, (IX+d) =
3, (IX+d)
3, (IX+d) *
4, (IX+d)

[+ TR PO o PO o PRy + WY o PRy o PO o P o PR+ PRV PO o P o PR+ Py o PR P o PO o Ty o PR+ P o P o PR o PR w P o VY o P o PR o VRO o PR PN o P o PR o Py PR+ VY o P o Y o TR+ VY o P o P o VRO + WY w PR P o Y o PR o PR PR o P o P o PR o VROV + PR o P o P VRN + PR P o P o Y o WY PR o P o Y o PO o PR+ PV PR+ PR o Y # TR o TR o T

RE3

4, (IX+d)*
4, (IX+d)*
4, (IX+d)*
4, (IX+d)*
4, (IX+d)*
4, (IX+d)

4, (TX+d)
B, (TX+d)*
5, (IX+d)*
B, (IX+d)*
B, (IX+d)*
5, (IX+d)*
B, (IX+d)*
5, (IX+d)

5, (IX+d)*
8, (IX+d)*
6, (IX+d)*
6, (IX+d)*
8, (IX+d)*
8, (IX+d)*
6, (IX+d)*
8, (IX+d)

8, (IX+d)*
7y (IX+d)*
7, (IE+d)*
7, (IE+d)*
7, (TX+rd)
7, (IE+d)*
7, (IE+d)*
7, (IX+d)

7, (IE+d)*
0, (IX+d) ,B*
0, (IE+d),C*
0, (IX+d) ,Dx
0, (IX+d) ,Ex
0, (IE+d) ,H*
0, (IX+d) ,L#
0, (IX+d)

0, (IX+d) , A*
1, (IX+d) ,B#
1, (IX+d) ,Cx
1, (IX+d) ,Dx
1, (IX+d) ,Ex
1, (IX+d) ,Hx
1, (IX+d) ,Lx
1, (IX+d)

1, (IX+d) , A%
2, (IX+d) ,Bx
2, (IE+d) ,C*
2, (IX+d) ,Dx
2, (IX+d) ,Ex
2, (IX+d) ,H*
2, (IX+d) ,L#
2, (IX+d)

2, (IE+d) , A%
3, (IX+d) ,Bx
3, (IX+d) ,Cx
3, (IX+d) ,Dx
3, (IX+d) ,Ex
3, (IX+d) ,Hx
3, (IX+d) ,Lx
3, (IX+d)

3, (IX+d) ,Ax
4, (IX+d),Bx*
4,(IX+d) ,Cx
4, (IX+d),Dx
4, (IX+d) ,Ex
4,(IX+d) ,He
4, (IX+d),Lx
4, (IX+d)

4, (IE+d) , A*
5, (IX+d) ,Bx
B, (IX+d) ,Cx
5, (IX+d) ,D*

[= O = -l =l = =TI =Tl =i =i =T = = T = e O - -l =T == T = T == = R =R T = e = Il =T = I = T =R = R = = R = T = R i = -l = = S = = R = i e = - =TI =T = R = T =T = = T = =

SET

SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

5, (IX+d) ,Ex
5, (IE+d) ,H#
B, (IX+d) ,L*
5, (IX+d)

&, (IX+d) A%
6, (IX+d) ,B*
6, (IX+d) ,C#
6, (IX+d) ,D*
6, (IX+d) ,Ex
6, (IX+d) ,H#
6, (IX+d) ,L*
6, (IX+d)

6, (IE+d) , A%
7, (IE+d) ,B*
7, (IX+d) ,C*
7, (IX+d) ,D*
7, (IX+d) ,E#
T, (IE+d) ,H#
7, (IX+d) ,L#
7, (IX+d)

T, (TE+d) A%
0, (IX+d) ,Bx
0, (IX+d) ,Cx
0, (IX+d) D=
0, (IX+d) ,Ex
0, (IX+d) ,Hx
0, (IX+d) ,L*
0, (IX+d)

0, (TX+d) ,Ax
1, (IX+d) ,B*
1, (IX+d) ,C#
1, (IE+d) ,D#
1, (IX+d) ,Ex
1, (IX+d) ,H#
1, (IE+d) ,L#
1, (TX+d)

1, (IE+d) , A%
2, (IE+d) ,B#
2, (IX+d) ,Cx
2, (IX+d) ,D*
2, (IX+d) ,Ex
2, (IX+d) ,H#
2, (IX+d) ,L*
2, (IX+d)

2, (IE+d) , A%
3, (IX+d) B
3, (IX+d) ,Cx
3, (IX+d) ,D*
3, (IX+d) ,E#
3, (IX+d) ,Hx
3, (IX+d) ,L*
3, (TE+d)

3, (TX+d) A%
4, (IX+d) ,B*
4, (TE+d) ,Cx
4, (IX+d) ,Dx
4, (IX+d) ,Ex
4, (I¥+d) ,Hx
4, (IX+d) L=
4, (IX+d)

4, (TX+d) ,Ax
&, (IX+d) B+
B, (IX+d) ,C*
B, (IX+d) ,D*
5, (IX+d) ,E*
B, (IX+d) ,Hx
B, (IX+d) ,L*
B, (IE+d)

B, (IX+d) A%
6, (IX+d) ,B*
6, (TX+d) ,Cx
6, (IX+d) ,D#
6, (IX+d) ,E#
6, (TX+d) ,Hx

CHAPTER 9. INSTRUCTIONS SORTED BY OPCODE

ED43
ED44
ED45
ED46
ED47
ED48
ED49
ED4A
ED4B

ED4D
ED4E
ED4F
EDEO
ED51
ED52
ED53
ED54
EDSS
ED56
EDE7
ED58
EDE9
ED5A
EDEB

EDED
EDSE
EDEF
ED80
ED61
ED62
ED83
ED64
EDB5
ED&6
ED87
ED68
ED89
EDGA

[T+ PO PR+ PR+ P o PR+ PR+ TR+ PR+ PR 4 T}

SET 6, (IX+d),L*
SET 6, (IX+d)
SET &, (IX+d) ,A*
SET 7, (IX+d),B*
SET 7, (IX+d),C*
SET 7, (IX+d),Dx
SET 7, (IX+d),E*
SET 7, (IX+d) ,H*
SET 7, (IX+d),L*
SET 7, (IX+d)
SET 7, (IX+d) ,A4*
POP IX

EX (SP),IX

PUSH IX

JB (IK)

LD 8P,IX

SBEC A,n

RET 18H

RET PO

POP HL

JP PO, (mn)

EX (SP),HL

CALL PO, (nn)
PUSH HL

AND n

R3T 20H

RET PE

JP (HL)

JP PE, (mn)

EX DE,HL

CALL PE, (un)

IN B,(C)

ouT (C),B

SBC HL,EBC

LD (nn),BC

NEG

RETN

IM O

LD I,A

IN C,(C)

ouT (2).C

ADC HL,EC

LD BC, (nn)

NEG*

RETI

IM 0%

LD R,A

IN D,(C)

ouT (C),D

SBC HL,IE

LD (nn),DE

NEG*

RETN#*

IM 1

LD &,T

IN E,(C)

ourT (2),.E

ADC HL,DE

LD DE, (nn)

NEG*

RETN=*

IM 2

LD &,R

IN H,(C)

ouT (C),H

SBC HL,HL

LD (nn),.HL

NEG*

RETN#*

IM 0=

RRD

IN L,(C)

ourT (2),L

ADC HL,HL

n

n

[sTRY TRy TR]

o

I

LD HL, (nn)
NEG*

RETN*

IM O

RLD

IN F,(C)» / IN (C)*
OUT (C),0%
SBC HL,SP
1D (nn),3P
NEG*

RETHN#*

IM 1%

IN &,(C)
OUT (C),A
ADC HL,SP
LD SP, (nn)
NEG*

RETN*

IM 2%

1DI

CPI

INI

OUTI

LCD

CPD

IND

OuUTD

LDIR

CPIR

INIR

OTIR

LDDR

CPDR

INDR

OTDR

X0R n

RST 28H
RET P

FPOP AF

JP P, (om)
DI

CALL P, (mn)
FUSH AF

OR n

R3T 3CH
RET M

1D 5P,HL
JP M, (nn)
EI

CALL M, (mn)
ADD IY,EC
ADD IY,DE
1D IY,nn
1D (nn),IY
INC IY

INC IYh#
DEC IYh#*
1D IYh,n=*
ADD IY,IY
LD IY, (un)
DEC IY

INC IY¥l#
DEC IY1l=*
LD IY¥1l,n=*
INC (I¥+d)
DEC (IY+d)
LD (IY+d),n
ADD IY,SP
LD B,IYh*
1D B,I¥1l=
1D B, (I¥+d)
LD C,IYh=*
1D C,I¥1=*
1D C, (I¥+d)

=9

[=SN =Tl =T = T = N = =

=9

[=T = T = T = = I = =TI =TI =R =T = T = < = T = = =

LD D,IVh*
LD D,IVl*
LD D, (I¥+d)

E,IYTh*
E,IT1*
E, (I¥+d)
IYh,B+
IYh,Cx
IYh,Dx
IYh,E+
I¥h, IVhe«
IYh,IY1%

1D H, (I¥+d)

RLC
RLC
RLC
RLC
RLC
RLC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RL

RL

IYh,Ax
IY1l,B«
I¥1l,Cx
IY1l,Dx=
IY1l,E*
IY1l,IYh+
IY¥1,I¥1x
L, (IY+d)
IV1l,Ax
(IY+d) ,B
(Iy+d),C
(IY+d) ,D
(IY+d) ,E
(IV+d) ,H
(IY+d) ,L
(IY+d) A
&,T¥h*
A, TY¥1x
A, (IV+d)
&, T¥hw*

A, TV

A, (TY+d)
&, T¥hw*

A, TV

A, (IY+d)
IYh#

IY1*
(IV¥+d)

4, T¥h*

A, IV1*

A, (IY+d)
IVh#

I¥1x
(IV+d)
IVh#

I¥1x
(IV+d)
ITh*
IY¥1lx
(IY+d)
IYh*
IY¥1lx
(IY+d)
(I¥+d) ,B*
(I¥+d),C%
(IY+d) ,D#
(IY+d) ,Ex
(IV+d),H*
(IY+d) ,L#
(IY+d)
(I¥+d), A%
(I¥+d) ,B*
(IY+d),Cx*
(I¥+d),D*
(I¥+d) ,Ex
(IY+d) ,H*
(I¥+d),L*
(IY+d)
(I¥+d), A%
(I¥+d) ,B=*
(I¥+d) ,C*

CHAPTER 9. INSTRUCTIONS SORTED BY OPCODE

[T+ PO« PRy« PRy« P o PR« PR+ W o P o PR« Py PR o P o P PR o PO o PO« P o PR o PR o Py o P o PR o PO P o P o PO o P+ PR o P o PR PR+ Py o PR+ PR+ PR o PR o PO PO+ P o PR« PR P o PR o PR« PR o PR o PR PR o TR o PR o PR PR o PR o PR o PR o PR o T o PO o P o P o P o P PR o P o PR PR o P o PR PR+ PR+ P+ PR Y

EEEEEEEEEEEERE

SBRL
SEL
SRL
SBL

SREL
SREL
BIT
EIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

(I¥+d) ,Dx
(IY+d) ,Ex
(I¥+d) ,Hx
(I¥+d),L*
(IY+d)
(I¥+d) , A%
(I¥+d) ,B*
(I¥+d) ,Cx
(IY+d) ,D*
(I¥+d) ,Ex
(I¥+d) ,Hx
(IY+d) ,L*
(I¥+d)
(I¥+d) , Ax
(IY+d),B=*
(I¥+d),Cx*
(I¥+d),D*
(IY+d) ,E*
(IY+d) ,H=
(I¥+d),L*
(IY+d)
(IY+d), A=
(IY+d),B*
(I¥+d),Cx
(IY+d),D=*
(I¥+d) ,E=
(IY+d) , Hw
(I¥+d),L*
(I¥+d)
(IY+d), A%
(IY+d),B=*
(I¥+d),Cx*
(IY+d),Dx*
(IY+d) ,E*
(I¥+d),H=*
(IY+d), L
(IY+d)*
(I¥+d), A=
(I¥+d),B*
(IY+d),C*
(IY¥+d),D=*
(I¥+d) ,E=
(IY+d) ,H=
(I¥+d),L=*
(I¥+d)
(IY+d) , A%
0, (T¥+d) *
0, (I¥+d) =
0, (I¥+d) =
0, (T¥+d) *
0, (I¥+d) *
0, (I¥+d)=
0, (IY+d)
0, (I¥+d) *
1, (T¥+d) =
1, (T¥+d) *
1, (T¥+d) *
1, (I¥+d) *
1, (I¥+d) =
1, (T¥+d) *
1, (I¥+d)
1, (I¥+d) =
2, (I¥+d) *
2, (I¥+d) *
2, (IT+d) =
2, (I¥+d) *
2, (I¥+d) *
2, (IT+d) =
2, (IY+d)
2, (I¥+d) =
3, (IT+d)»
3, (I¥+d) *
3, (I¥+d) *
3, (IT+d)»

[+ TR PO o PO o PRy + WY o PRy o PO o P o PR+ PRV PO o P o PR+ Py o PR P o PO o Ty o PR+ P o P o PR o PR w P o VY o P o PR o VRO o PR PN o P o PR o Py PR+ VY o P o Y o TR+ VY o P o P o VRO + WY w PR P o Y o PR o PR PR o P o P o PR o VROV + PR o P o P VRN + PR P o P o Y o WY PR o P o Y o PO o PR+ PV PR+ PR o Y # TR o TR o T

3, (IV+d)*
3, (IY+d)*
3, (I7+d)

3, (IV+d)*
4, (IY+d)*
4, (Iv+d)
4, (IV+d)
4,(IV+d)*
4, (IT+d)*
4, (I¥+d)*
4, (I¥+d)

4, (IV+d)
B, (IT+d)*
B, (I¥+d)*
5, (IT+d)*
B, (IT+d)*
5, (IT+d)*
5, (IT+d)*
B, (IT+d)

5, (IT+d)*
6, (I¥+d)*
8, (IT+d)*
8, (IT+d)*
6, (I¥+d)*
6, (IT+d)*
8, (I¥+d)*
8, (I¥+d)

6, (IT+d)*
7, (I¥+d)*
T, (I¥+d)*
7, (IT+d)*
7, (I¥+d)*
7, (I¥+d)
7, (IT+d)*
7, (I¥+d)

7, (I¥+d)*
0,(IYT+d) ,Bx
0, (I¥+d),Cx
0,(IY+d),Dx
0, (I¥+d) ,Ex
0, (IT+d) ,Hx
0, (IY¥+d),Lx
0, (I¥+d)

0, (IT+d) ,Ax
1, (I¥+d) ,Bx
1, (IY+d),C*
1, (IY+d),Dx
1, (I¥+d) ,Ex
1, (IY+d) ,H*
1, (IY+d),Lx
1, (I¥+d)

1, CIY+d) , A%
2,(IY+d) ,Bx
2, (I¥+d) ,Cx
2, (IY+d) D+
2,(IT+d) ,Ex
2, (IY¥+d) ,Hx
2, (IY+d) ,Lx
2, (IY+d)

2, (ITY+d) , Ax
3, (IY+d) ,Bx
3,(IV+d) ,Cx
3, (IT+d) ,Dx
3, (IY+d) ,Ex
3, (IY+d) ,H*
3, (IY+d),Lx
3, (IY+d)

3, (IY+d) , A%
4, (I¥+d),Bx
4, (I¥+d),Cx
4, (T¥+d) ,Dx
4, (IY+d),Ex
4, (I¥+d),H*
4, (T¥+d) ,Lx

[= O = -l =l = =TI =Tl = =i =T = = = T = R = -l =T == T = T == = R =R = T e -l =TI =R = I = T =R = R = = R = = T = = T = T = = S = R = ol = =T = T = R = R = = P = = R = =

SET

SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

4, (IY+d)

4, (IY+d) A%
B, (IY+d) ,B*
5, (IY+d) ,Cx
&, (IY+d) D=
E, (IY+d) ,Ex
B, (IY+d) ,Hx
5, (IY+d) ,L*
5, (IY+d)

B, (TY+d) ,A*
6, (IY+d) ,Bx
6, (IY+d) ,C#
6, (IY+d) ,D#
6, (IY+d) ,Ex
6, (IY+d) ,H#
6, (IY+d) ,L#
6, (I¥+d)

6, (IY+d) A%
7, (IY+d) ,B*
7, (IY+d) ,Cx
T, (IY+d) ,D#
7, (IY+d) ,Ex
7, (IY+d) ,H«
7, (IY+d) ,L#
7, (IY+d)

7, (T¥+d) ,Ax
0, (IY+d) ,B*
0, (TY+d) ,Cx
0, (I¥+d) ,D*
0, (IY+d) ,E*
0, (IY+d) ,Hs
0, (T¥+d) ,L*
0, (T¥+d)

0, (IY+d) , A%
1, (IY+d) ,B#
1, (IY+d) ,Cx
1, (IY+d) ,D#
1, (IY+d) ,E#
1, (I¥+d) ,H#
1, (IY+d) ,L*
1, (I¥+d)

1, (IY+d) A%
2, (IY+d) ,B*
2, (IY+d) ,C#
2, (IY+d) ,D*
2, (IY+d) ,E*
2, (IY+d) ,H#
2, (IY+d) ,L#
2, (IY+d)

2, (IY+d) A%
3, (IY+d) ,B*
3, (I¥+d) ,C*
3, (IY+d) ,D*
3, (IY+d) ,Ex
3, (I¥+d) ,Hx
3, (IY+d) ,L*
3, (IY+d)

3, (TY+d) ,Ax
4, (IY+d) B+
4, (TY+d) ,Cx
4, (IY+d) ,D*
4, (IY+d) ,Ex
4, (TY+d) ,Hx
4, (I¥+d) ,L*
4, (IY+d)

4, (TY+d) ,Ax
B, (IY+d) ,B*
5, (IY+d) ,C
B, (IY+d) ,Dx
E, (IY+d) ,Ex
5, (I¥+d) ,Hx
5, (IY+d) ,L*
B, (IY+d)

B, (IV+d) ,A*

CHAPTER 9. INSTRUCTIONS SORTED BY OPCODE

FDCB 4 FO SET &, (I¥+d),B* FDCE 4 F8 SET 7,(IY+d),B+ FDE1 POP IY
FDCB d F1 SET &, (IY+d),C* FDCE 4 F9 8ET 7,(IY+d),Cx FDE3 EX (8P),IY
FDCB 4 F2 SET &, (I¥+d),D* FDCE 4 FL SET 7,(I¥+d),D# FDEE PUSH IY
FDCB 4 F3 BSET &, (I¥+d),Ex FDCE 4 FB SET 7,(IY+d),Ex FDES JP (IY)
FDCB d F4 SET &, (IV+d) ,H* FDCE 4 FC 8ET 7,(IY+d),H« FDF9 LD 5P, IY
FOCB d FE SET 6, (I¥+d),L* FDCE 4 FD SET 7,(IY+d),Lx FE n CPn
FDCE d F& SET &, (IV+d) FDCE 4 FE SET 7, (IY+d) FF R3T 38H

d d

F7 SET 6, (IV+d),A* FDCB d FF SET 7, (I¥+d),A*

Chapter 10

GNU Free Documentation
License

Version 1.1, March 2000

Copyright (©) 2000 Free Software Foundation, Inec.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written doc-
ument “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially
or noncominercially. Secondarily, this License preserves for the author and pub-
lisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

10.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this

41

CHAPTER 10. GNU FREE DOCUMENTATION LICENSE

License. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”.

A *Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject.
(For example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
whose contents can be viewed and edited directly and straightforwardly with
generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not “Transparent”
is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, I TEX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML designed
for human modification. Opaque formats include PostSeript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and /or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

10.2 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in
all copies, and that vou add no other conditions whatsoever to those of this

CHAPTER 10. GNU FREE DOCUMENTATION LICENSE

License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

10.3 Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and
the Document’s license notice requires Cover Texts, vou must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify vou as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, vou
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If yvou publish or distribute Opaque copies of the Document numbering
more than 100, vou must either include a machine-readable Transparent copy
along with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard net-
work protocols. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that vou contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

10.4 Modifications

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things

in the Modified Version:

e Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You

CHAPTER 10. GNU FREE DOCUMENTATION LICENSE

may use the same title as a previous version if the original publisher of
that version gives permission.

e List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has less than five).

e State on the Title page the name of the publisher of the Modified Version,
as the publisher.

e Preserve all the copyright notices of the Document.

e Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

e Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

e Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

e Include an unaltered copy of this License.

e Preserve the section entitled “History”, and its title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

e Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

e In any section entitled “Acknowledgements” or “Dedications”, preserve
the section’s title, and preserve in the section all the substance and tone
of each of the contributor acknowledgements and/or dedications given
therein.

e Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

e Delete any section entitled “Endorsements”. Such a section may not be
included in the Modified Version.

e Do not retitle any existing section as “Endorsements” or to conflict in title
with any Invariant Section.

CHAPTER 10. GNU FREE DOCUMENTATION LICENSE

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at yvour option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties — for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but vou may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

10.5 Combining Documents

You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in
the various original documents, forming one section entitled “History”; likewise
combine any sections entitled “Acknowledgements”, and any sections entitled
“Dedications”. You must delete all sections entitled “Endorsements.”

10.6 Collections of Documents

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

CHAPTER 10. GNU FREE DOCUMENTATION LICENSE

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copyving of that document.

10.7 Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyvright is claimed for the compilation. Such a com-
pilation is called an “aggregate”, and this License does not apply to the other
self-contained works thus compiled with the Document, on account of their be-
ing thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one quarter of the entire aggregate,
the Document’s Cover Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear on covers around
the whole aggregate.

10.8 Translation

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but
you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original
English version of this License, the original English version will prevail.

10.9 Termination

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Anyv other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10.10 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

CHAPTER 10. GNU FREE DOCUMENTATION LICENSE

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License "or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, vou may choose any version
ever published (not as a draft) by the Free Software Foundation.

