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PREFACE

Students are finding that after they have been through the intro-
ductory texts presenting BASIC they are pretty much on their own.
They may get additional bits and pieces of assistance from other fexts,
finding that each adds something to their repertoire, but there is still
all that introductory material to sort through. The present text is in-
tended for those who have been introduced to the BASIC language and
want to go further with the language. It is also intended for those who
have already learned another language (such as FORTRAN or COBOL)
and need only a brief introduction to what is for them a second or
third programming language.

A review chapter is placed at the beginning of the book for those
whose coverage of BASIC may have been somewhat limited or distant
in time, and for those who come to it with competence in one or more
other programming languages. In fact, this text can even be used by
students with no former programming experience, if tutorial assistance
is available, by a more extensive use of the review chapter.

Some extended features of BASIC are presented so that students
working on systems providing extensions will have an opportunity to
experiment with or master new techniques. Strings and files are intro-
duced in Chapters 3 and 4. Due to the variety of implementations for
use of both strings and files, two systems are presented in each area:
General Electric and Hewlett Packard.

In addition to other topics, the applications chapters cover
coordinate geometry, area, sequences and series, polynomials, graphing,
simulation, and games. These chapters may be sfudied independently
and in any order, although, where appropriate, the student may occa-
sionally be referred to another section in the text. Generally these
topics evolve from dr build on the ground of a second course in algebra
and beyond.

The topic of efficiency is treated explicitly on several occasions,
though not necessarily to the point of optimizing execution time. The
topic of structured programming is treated implicitly in that all exam-
ple programs incorporate a clear programming style with minimal un-



conditional branching and maximal use of appropriate data and control
structures. These two topics provide good stepping-off points in a
computer science course.

Appendix A presents an abbreviation of the ASCII character
codes. Appendices B and C summarize flowchart shapes and program
statements in BASIC. Appendix D is an index of the nearly 100 demon-
stration programs in the text. Some solution programs for selected
problems in the text follow these appendices.

I wish to thank Community Computer Corporation for computer
time, General Electric Information Services for assistance, and those
who commented on the first draft for invaluable suggestions.

JAMES S. CoaN
Philadelphia
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:

REVIEW OF
BASIC

1-1 Introduction

This chapter is intended to serve several purposes. The student who is al-
ready competent in BASIC will move quickly through the chapter and perhaps
write a few programs. The student who has studied BASIC, but not recently or
not extensively, will want to move more slowly and write more programs. The
student who comes to BASIC with competence in another language will be
mainly interested in the differences between the language with which he or she is
familiar and BASIC.

There are numerous implementations of BASIC available in schools, col-
leges, and businesses today. These implementations have many common fea-
tures and some differences. This chapter will concentrate primarily on those
features which are almost universally available. We will mention some of the
more common variations (you can usually determine which features are part of
your system by writing very short programs to see what works), but beyond that
the student should obtain the specific features for his system from the BASIC
reference manuals supplied by the computer center or the vendor.

It is also true that the specifications sometimes change as the people
responsible for maintaining the computer update its language capabilities. Since
these changes tend to be additions, however, programs previously tested will
usually still run.

1-2 Some Simple Programs

We can demonstrate many features of BASIC by writing a program that
will compare two numbers to determine whether the first is greater than, less
than, or equal to the second. See program CQ)MPAR.

4



2 Advanced BASIC

L1s8T
CCMPAR

24 REM 2 THIS I5 & SAMPLE PROCGKAM T
95 REM GCMPARE TWC NYMBRERS FOR ORHDER
100 READ AR

110 IF A = .01 THEN 220
120 1F A = R THEMN 1AD
130 1IF A < & THFEN 180

140 PRINT A: Y15 FAFATER THAMY™: 8
150 GOTO 100

140 PRINT A3 "15 EOUAL TC"MF A

170 GGTC 100

IR0  PRINT A; "I5 LFES5 THAN"; R
190 GOTO 100

192

194 EA

200 DATA ds s beTrlals I1+31 =152, Ns0
210 DATA  01.0

220 FEND

RN

TOMPAR

3 IS5 LESS THAN 4
1.7 IS CREATER THAM 1.1
31 15 EOQUAL TC 3
=3 I5 LESS THAnN 2
0 IS EQntaL TG O

The first item shown is LIST. This is a system command rather than a
program statement, and we type it to instruct the computer to print out the
program exactly as it stands. Next the computer automatically prints COMPAR,
which is the program name. Some computers also print the time of day and date
along with the program name. On some systems we assign program names with
the system command NAME-COMPAR. On others, to name a new program,
NEW COMPAR is typed before the program itself is. Having typed the pro-
gram name, the computer goes on to list the program itself. Let us examine the
program statements.

Read-Data

Line 100 is a READ statement. In this case we want the computer to
READ two numbers info two variables A and B. Those numbers must come
from one or more DATA statements. We provide data in lines 200 and 210.

Conditional Transfer

Lines 110, 120, and 130 are all examples of the conditional transfer in
BASIC. Line 110 is used to terminate the execution of the program itself. We
send the computer to the END statement only if the value of A is .01. This is an
example of the use of dummy data to control program execution. Lines 120
and 130 direct the computer to the appropriate PRINT statement according to
the relation between the values of A and B. BASIC also allows ‘“‘greater than”
(>), “greater than or equal to” (>=) and “less than or equal to” (<=). To test
for “not equal to” use (< >). Some systems also allow “#”’ for “not equal to.”

In place of the algebraic symbols just mentioned, some systems require
special symbols as relational operators. They are (\LT) or (LT) for “less than,”
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(\LE) or (LE) for “less than or equal to,” (\GT) or (GT) for “‘greater than,”
(\GE) or (GE) for ‘“‘greater than or equal to,” (\EQ) or (EQ) for ‘“‘equal to”
and (\NE) or (NE) for “not equal to.” The paired relational operators listed
above are not generally interchangable. The first is for certain systems, and the
second is for others. So there are three sets of possible relational operators.
You can quickly tell which works on your computer by consulting the vendor-
supplied manual or by trial and error.

Another conditional transfer is available on many systems. It is called the
computed GQTQ. It takes the form,

100 ON K GOT® n,,n,,n,, ete.
or

100 GOTO K OF ny,n,,n;, ete.
or

100 GOT® n;,n,,n;, etc, PN K

At line 100 computer control passes tolinen; if K = 1,1, ifK = 2, etc. If K
is not in the range from one to the number of line numbers named, some sys-
tems terminate with an error message, while others simply pass control to the
line after 100.

Print

Lines 140, 160, and 180 result in printed output to the terminal for the
operator to see. We may mix literal output with numerie results by enclosing
literal messages in quotation marks. Replacing semicolons in the PRINT state-
ment with commas would result in wider spacing of printed output. On many
systems, using commas to separate printed results causes the page to be divided
into five columns of 15 characters each. For terminals with only 72 character
spaces, the fifth column is 12 characters wide. Generally speaking, use of a semi-
colon to separate printed output results in closer spacing than with a comma.

Unconditional Transfer

Lines 150, 170, and 190 are examples of unconditional transfer. The
GOTQ statement in BASIC serves to name the number of the next line to be
executed. When the computer gets to line 150, the next line the computer exe-
cutes is 100. The same is true for lines 170 and 190. Generally speaking, good
programs try to minimize the number of GQT( statements. We shall see ways
to do this later.

End

The final statement in our example is the END statement. On most sys-
tems the highest numbered statement must be an END statement. After the
END statement we see the system command RUN, which is typed by us to cause
the computer to actually carry out the instructions of the program. In response
to the RUN command, the computer has printed the program name, COMPAR
(some systems will also print the date and time), followed by the printed output
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specified by the instructions of our program. (Some systems will follow pro-
gram results with information about the computer resources used by this RUN
of the program.)

Variables

In program COMPAR we used A and B as variables to name stored nu-
meric values. BASIC allows us to use every letter of the alphabet and also every
letter of the alphabet followed by a single digit. (Some systems also provide ad-
ditional symbols as variables.) Every letter or letter plus digit allows us to store
a single number at any one time in a program. However, variables may be used
over and over again to store new values as long as we have no further need for a
particular old value. In C)MPAR, the variables A and B were each used for six
different numbers.

Prettyprinting

Note the overall appearance of program COMPAR. An attempt has been
made to provide spacing within the program statements to facilitate readability
and therefore clarity of thought. The practice of indenting and spacing to
achieve this goal is called “prettyprinting.” In program COMPAR, the IF state-
ments have been indented three spaces. Spaces have been inserted in the PRINT
statements to avoid a crowded appearance. The blank REM in line 194 is used
to offset the DATA portion of the program, and the data has been grouped in
the DATA statements to show just how the values will be read in the READ
staternent. Some systems do not allow prettyprinting. However, if your system
does allow prettyprinting, you should work on developing a style of spacing to
enhance program readability. Prettyprinting becomes more and more worth-
while as programs become longer and more complex.

Arithmetic Operations

The computer is often used to perform arithmetic operations on numbers.
The operations allowed are exponentiation (**) or (1), muiltiplication (¥),
division (/), addition (+) and subtraction (-). The priorities assigned these opera-
tors are the same as those assigned in conventional algebra, that is, first exponen-
tiation followed by multiplication and division followed by addition and sub-
traction. Program (QPRATN shows a use of each of the arithmetic operators.

CPRATM

F4 REM #* THIS IS A SAMPLE PROCGRAM TO DEMOMSTRATE
93 REM 1ISE CF ARITHMETIC OPERATCRS IN RASIC

IDG P’{INT IrﬂtF‘”j I-llﬁ..*Fali, lln/ql!’ l:n‘_Hli’ lln“F‘ll

110 READ A,B

120 IF A <= 01 THEN 150

130 IF A <= ) THEN 190

lan  STOP

150 PRINT A =3 A3 A A

140 PRIMT ATHs AxHy A58, A+H, A48
170 PRINT

180 GCGTO 110

1R2

184 REM

190 DATA 1225 dsds 2580, e 15A5.2

200 DATA 0.0
a1 EFEMB
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RUN
OPRATN
ArB A%B SR A+R A=-8
A= 18RB=2
1 2 a5 3 -1
A=3B=4
Bl 12 075 T =1
A = 2 B = 40
1.09951FE+12 A0 005 42 =38
A= 1.4 B= A%.2
. J69IEE+T 21.28 2. 14T24E=2 Al h -63.8

The RUN of @PRATN produces three examples of what is called E-format.
For A = 2 and B = 40, A**B results in 1.09951E+12. That means 1.09951
times 10 to the twelfth power, or 1.09951 X 10'%?. Systems vary, but many
provide from six to nine significant digits of numeric output.

In QPRATN, line 140 is equivalent to GOTQ 210. The STQP statement
in BASIC is used to terminate execution of a program at some point other than
the highest numbered line. This line of the program is called a “logical end” to
differentiate it from the physical end.

Assignment

Thus far, the way that we have gotten numeric values to be stored in vari-
ables has been to READ values from DATA. We can also assign values directly
as follows:

3
3% X+5

100 X =3 or 100 LETX
200 Y = 3*%X+45 or 200 LETT

1

These are examples of the assignment statement in BASIC. (On some sys-
tems the LET is required. On others it is optional.) Used in this way, the equals
sign is called the assignment operator. The assignment capability greatly en-
hances the power of any programming language since it permits us to retain
values for later use. For example, we can sum up any number of data items as in
program ADD.,

apo

94 REM * THIS PHCCHAM ADDS M'IMAF IS FRIM DATA
— 100 LET 5 =0

11 RFap &

120 IF A = -.01 THEN 140

Tafh LET § = S+4

150 GETC 110

160 PRINT "S5 m 15": §

172

174 REM

1850 DATA Pls 39 113 Pdchs 913

190 DATA =-.01

N0 END

RN

ADD
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In line 100 of ADD the summing variable S is initialized at zero. (Some
implementations of BASIC automatically initialize all variables to zero when the
program is run.) We now generalize program ADD to count the number of num-
bers in the previous program. See lines 100, 130, and 140 of ADD1.

ADD

94  REM * TH1S PROGRAM ADDS AND C2UMTS
95  REM NIMABFRS FRCM DATA

— |00 LET 5 =0 = 0O
110 RFEAD A
120 IF A = -.01 THEN 150

— 130 LET C = G+l

—=140 LET 5 = 5+A
150 GGTO 110
160 PRINT "S'™ I5"3 5
170 PRINT “THERE ARE™; CF 'MMITRS"
172
174 REM
IR0 DATA 21, 39, 11.3, 24.4s 91.3
190 DATA -.0I
200 EMD
RN
ADD

54 I5 I8T.2
THERE ARE 5 M JMAFEAS

Line 100 of ADD1 is an example of a multiple assignment statement. It
allows us to assign the rightmost value to all of the variables separated by equals
signs. (Some systems require commas instead of equals signs for all but the
rightmost equals signs. Our statement 100 would be 100 LET S,C = 0 on such
a system. You may be able to assign different values to different variables on
one line, for example, 100 LETH = 4,Y = 9*K,B = 81, oreven 100 LET
HIJ = 3,T = -32.)

Input

The final statement of this review section which results in variables con-
taining numeric values is the INPUT statement. It is this statement which allows
the operator to interact with a program during execution. When the computer
executes an input statement, it prints a question mark at the terminal and awaits
information from the keyboard. If we replace READ A with INPUT A in pro-
gram ADD and remove the DATA statement, we have a program that behaves a
little like an adding machine. By printing a marker such as # followed by a
semicolon in line 130 we can type our selected numbers on the same line as
the marker, as in program ADD2,

ADD2

34 HEM #% THIS PROGRAM WORYS A LITTLE
95 REM LIKE AN ADDING MACHIME
100 PRINT "INPUT # = =-.01 TC OBTAIN TCTAL™
110 PRINT
120 LET 5 = O
— 130 PRINT "#"}
140 INPUT A
150 IF A = -.01 THEN 180

i = - ™ s &
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170 GCTO 130

180 PRIMNT '"5M I5"; 5
190  END

RIIN

ADDZ2

INPUT # = =-.01 TC CaTAIN TCTAL

#7245

#7778

#7234

#?P98. 12

#7243

#7=.01

SiM 15 298.12

Note that input statements may be used to call for several values. 100 IN-
PUT X,Y,B9 calls for three numbers to be typed, separated by commas at the
keyboard.

Summary of Sec. 1-2

We have looked at three system commands to give a program a name, in-
struct the computer to RUN a program, and to LIST a program. We have used
the following eight staiements in programs; READ, DATA, IF-THEN, PRINT,
END, STQP, LET, and INPUT. With just these statements we are able to write
substantial programs (nevertheless, the language does contain tremendous ad-
ditional power in other statements to come in the next sections). The concepts
of variable and program control have been discussed. We have looked at three
kinds of operators: arithmetic, relational, and assignment.

Problems for Sec. 1-2

1) Write a program to average numbers entered as DATA or on INPUT.

2) Write a program to find the largest and/or smallest number of a set of
DATA.

3) Write a program to repeatedly average groups of numbers.

4) Write a program to add all positive integers from 1 to n, where n is an
item of DATA.

5) Write a program to calculate n factorial. Be sure to make the value of
0! equal 1.

6) Write a program to solve equations of the form, ax + b = ex + d.

7) Write a program to solve quadratic equations, ax* + bx + ¢ = 0.

8) Write a program to find the sum of the reciprocals of the first n positive
integers.

1-3 Functions, Loops and Lists

BASIC provides computer functions or subroutines for special purposes.
INT(X), SGN(X), ABS(X), and SQR(X) are among them. On some systems the
INT(X) function takes the greatest integer not greater than X, such as 4 for 4.3
and -2 for —-1.6. Other systems simply give the integral part of X, such as 4 for
4.3 and -1 for —1.6, by removing the decimal part. For non-negative numbers,
the two are equivalent. SGN(X) becomes +1 if X is positive, zero if X is zero,
and -1 if X is negative. ABS(X) becomes X if X is non-negative and becomes -X
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non-negative. Each of these functions is useful. However, it is likely that of
the four, INT(X) is most frequently used.

One use of INT(X) is to round off numeric results. For example, to round
to the nearest integer, use INT(X+.5). To round to the nearest hundredth, use
INT(100*X+.5)/100, etc. See line 150 of program ROUND.

RO IND

94 REM # THIS PROGRAM DEMOMSTRATES A WSE CF THF
95 REM  INTE 3 FUNCTIOCN IN BASIC FOd HCUNDING
94 REM NUMBERS
100 LET E 0
110 LET X% 1.A2564
120 PRINT "RCUND™: X
130 PRINT
140 PRINT "POWER OF TENTHS", " HOUNDS TC*
— 150 LET R = INT( X*101E+.5 )/101E
160 PRINT E. R
152
164 REM * LIME 170 INCRFEMENTS THE FXPONEMT OF 10
170 LET E = E+*1
180 IF £ <= 5 THEN 150
190 E©ND
HIIN
ROUND

ROUND 1.B25464

POWER OF TENTHS RO'INDS TGO

0 e

I. Ilq

2 1-83

3 1.7924
£ 1-B256
5 1-B2564

INT(X) is also used frequently to test numbers for divisibility by other
numbers. For example:

100 IF X/10 = INT(X/10) THEN 200

transfers the computer to line 200 if X is divisible by 10, but the computer goes
to the line immediately following 100 if X is not divisible by 10. One problem
solution that uses this is that of finding all factors of a certain number. We
simply try all integers from 2 to the number and test for divisibility. If the divi-
sor goes evenly, we print it; if not, we go to the next divisor. This is left as an
exercise.

Random Mumbers

BASIC provides a routine to generate pseudo-random numbers. These are
very useful as a source of data for simulating random events. The procedure
varies somewhat from system to system. All systems provide decimal numbers
in the range, 0 to 1. One procedure introduces random numbers by using
RND(X) in a statement such as 100 LET A = RND(X). The particular ran-
dom numbers are duplicated or different from one run to the next according
to the value of X. If X is negative, then you get a different set of random num-
bers from run to run. If X is 0, then each run of the program produces the same

. R . U, . R Anndd P A 2 menttira thoan tha cat Af ¥avdar
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numbers is based on the value of X. A second procedure does not require an
argument for RND. The statement 100 LET A = RND selects a random num-
ber and assigns it to A. However, used alone it generates the same set of random
numbers from one run to the next. To obtain a different set of random num-
bers from run to run, simply introduce the companion statement 10 RANDQ-
MIZE into the program. The ability to reproduce the same set of random
numbers is useful for finding errors in the program debugging process. Once the
program has been perfected, it can then be modified to produce different results
for each run.

Most of the uses for random numbers are for numbers in some range other
than 0 to 1. So we have to do the appropriate calculations to change the range.
For example, to “roll a die” we would use 100 LET R = INT(6*RND(-1)+1)
or 100 LET R = INT(6%*RND+1). This would give integers in the range 1 to 6
inclusive. In the statement, 200 LET N = INT(A*RND+B), A specifies the
possible number of random integers and B specifies the smallest possible random
integer.

Loops

Suppose we place ten slips of paper numbered 1 to 10 into a hat and have
five people draw one slip of paper, note the number on it, and return the slip to
the hat. This we can easily do with a program, as in program DRAW.

Program DRAW and several other programs we have looked at contain
examples of repetitive steps. This is a computer loop, and BASIC provides the
FQR-NEXT statement pair to set up loops. Program DRAWO1 uses FOR-NEXT
to accomplish the same purpose as program DRAW. Note that both programs
simulate returning the slips to the hat.

DRAW

94 REM =% THIS PROGRAM SIMULATES RAMDCM DRAWING
95 REM FIVE NUMBERS FROM AMCNCG 10 WITH REPLACEMENT
100 RANDOMIZE

110 LET X = 1

120 LET R = INT( RND#*10+1] 3}

130 PRINT R:

140 LET X = X+1

150 IF X == 5 THEN 120

160 END

RUN

DRAW

& 9 6 10 8

DRAWD

G4 REM * THIS PROGRAM DIFFERS FROM DRAW
93 REM IN THAT FOR-NEXT IS5 MOW INTRCDUCED
100 RANDOMIZE
— 110 FOR X = 1 TO S
120 LET R = INT{ RND#10+1 3
130 PRINT R:
140 NEXT X
T4z
150 END
RN
DRAWDI]

= - - o & e
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Lists

Now suppose that the five people who drew slips of paper from the hat
did not replace them. We must make sure that no number is drawn twice. In
order to achieve this goal we need to be able to keep track of what numbers have
been drawn and what numbers are left. This can be done rather nicely usinga
subscripted variable called a “list.” A list, designated by a single letter, reserves
space for more than one number. At the time that we first designate a list
variable, the computer automatically reserves 10 locations (some computers re-
serve 11 by allowing zero as a subscript). We can simulate the numbered slips
of paper in the hat by establishing a 10-item list with the integers 1 through 10
stored in locations 1 through 10. This is done by the following routine:

100 FCR I = 1 TO 10
110 LET L€I} = |
120 MEXT 1

Line 110 sets up the subscripted variable L( ) so that L(1) = 1, L(2) = 2, etc,,
through L(10) = 10. If we need more than 10, we can get them by using the
DIMension statement. This is usually placed at the very beginning of the pro-
gram. For example, if we want 25 slips of paper in our hat, we would begin with
10 DIM L(25), and 25 locations would be available. Note that we could dimen-
sion for 25 and then use only 10 of them, but we cannot use more than the
DIM statement specifies. Any number of lists may be dimensioned on the same
line as: 10 DIM A(36), B(43). Systems allow a maximum number of storage
locations from a few thousand to many thousands.

Now we can develop a procedure to select five numbers at random without
replacement. For the first draw there will be 10 numbers from which to draw;
for the second draw one has been removed, leaving nine. The process is re-
peated until there remain only six from which to draw for the last draw. This
can be done with another FQR-NEXT pair. We can step backwards with FQR
J = 10 T} 6 STEP -1. We may specify all three numbers on the right of the
equals sign by variable or formula.

If we design a program that merely checks to see if the latest number has
already been drawn, then we get into a trial and error situation. And if we try
to draw 10 numbers from among 10, or worse yet, 100 from 100, the drawing
gets slower and slower as we get nearer and nearer to the last draw (adding sus-
pense and expense). For efficiency’s sake we should avoid this pure trial and
error scheme. Thus consider the following procedure for eliminating trial and
error entirely.

For the first draw we may select a number R at random from one to 10.
We may use the value of L(R) as the number on our randomly selected slip of
paper. If we draw the same value of R later on, we need a method that does not
require testing to see if L(R) has been used. We can acheive this by simply re-
placing the value of L(R) with the value of L(J) where J is the number of slips
from which the drawing is being made after each drawn number has been
printed. The important consideration here is that this scheme allows us fo use
every number that is drawn. We have taken care here to develop an efficient
algorithm to solve the problem submitted to us. See in particular line 160 in
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DiRrAWOZ2

4 REM % THIS PROGRAM SIMULATES RANDOM DRAWING WITHOUT
25 REM REPLACEMENT AND WITHOUT TRIAL AND ERRCR

26

27 REM * LINES 100-120 SIMILATE 10 SLIPS

98 REM OF PAPER IN A HAT

o9 RANDOMIZE

100 FOR T = 1 TO 10

110 LET LCI) = 1
120 NEXT 1
122

124 REM * NOW DRAW FIVE NUMRERS AT RANDGM
130 FOR J = 10 T & STEP -1

140 LET R = INTL{ RND#J+1 2

150 PRINT LC(R):

152

154 REM % NOW REPLACE THE NIJMBER JUST PRINTED

155 REM WITH THE LAST WUMBER IN THE LIST
—=1&0 LET LCRY = L{J}

170 NEXT J4

T2

180 END

RUN

DRAWOZ

2 7T 3 a4 5

We can see from a run of DRAWO2 that no number has been drawn more
than once, but one run is not a certainty. A further check can be made by draw-
ing all 10. We leave this as an exercise.

More Functions

In addition to the functions already described, the following are univer-
sally available: SIN, CQS, ATN, LOG, and EXP. SIN(X), C®S(X) and TAN(X)
give the sine, cosine, and tangent of X, where X is taken as an abstract dimen-
sionless number or the measure of an angle in radians. ATN(X) gives the princi-
ple arctangent in radians, where X is the tangent of the required number.
LPG(X) gives the natural logarithm of a non-negative X and EXP(X) gives eX.
Besides these there are other functions which may or may not be available on a
particular system. Among these will be log base 10, secant, cosecant, etc. On
some systems CLK(X) gives the present time using a 24-hour elock, and TIM(X)
gives the elapsed time of program run in seconds. It is best to consult the
manual for your system to determine the full extent of function capabilities.

Summary of Sec. 1-3

BASIC generally provides INT, SQR, SGN, ABS, SIN, CQS, TAN, ATN,
EXP, and LOG as standard functions, where trigonometric functions are based
on radian measure and exponentials use e as the base. The routine RND is avail-
able to provide random numbers. The language created loop is FPR A = B
T@ C STEP D, where the loop variable A first takes on the value of B and
increments by D until A passes C and control passes to the next line following
NEXT A which closes the BASIC loop. The default STEP value is always 1.
The list is available as a subscripted variable to allow block storage of several
numbers attached to a single letter. The DIM statement is required for sub-
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Problems for Sec. 1-3

1) Write a program to find the absolute value without using any of the
functions introduced in this section.

2) Write a program to find the greatest integer in X without using the
INT function. Be certain it works for negative numbers.

3) Write a program to roll two dice.

4) Write an efficient program to deal four 13 card hands from a standard
52 card bridge deck.

5) Write a program to store 25 random numbers in a list, print them all,
and print the largest and the smallest along with their respective
positions in the list.

6) Write a program to print all factors of an integer entered on INPUT.

7) Write a program to print prime integers in the range 2001 to 2501.

8) Find the greatest common factor for pairs of integers.

9) Find the least common multiple for pairs of integers.

10) Generate 100 integers at random from one to 10. Use a list to tabu-
late their frequency of occurrence.

11) Write a program to print a table of trigonometric values in a 10 degree
range by intervals of 20 minutes. Pick any one function.

12) Modify DRAWO2 to draw all 10 slips of paper.

13) Write a program to produce the results of CQMPAR using
SGN(A - B) and the computed GQT) statement.

1-4 User Defined Functions, Subroutines, and Arrays
User Defined Functions

Another kind of computer function is available in BASIC. It is called the
“user defined function” and has the following form:

100 DEF FNA(X) = [formula]

If the A is positioned in FNA(X), you may use instead any letter of the alphabet
as the identifier, thus designating up to 26 functions in any one program. For
example, we might want to round off results to the nearest hundredth in several
places in a program. We would then use

100 DEF FNH(X) = INT( X*100+.5)/100

and then use FNH( ), placing whatever variable we want rounded off in the
parentheses. Generally speaking, programmers place DEF statements near the
beginning of the program, and some systems require that this be done. Some
systems allow only a single argument; some allow two or more; some allow none.
We may use any variable or legal BASIC expression, including a defined func-
tion, as an argument.

Suppose we define a polynomial function, select a few values of X
between - 10 and 10 at random and round the results to the nearest tenth. See
program PRT.

Defined functions are useful whenever we wish the computer to return a
single value.
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PRT

94 REM #® THIS PROGRAM DEMOMSTRATES THE SINGLE
95 REM L INE DEFINED FUNCTION IN BASIC
99 RANDOMIZE
— 00 DEF FNP(K)
=110 DEF FMNR{K? INTC K=RND+1 3
=120 DEF FNT(K) INTC Kx§0+.5 /10
130 PRINT “X"» "FNPCX)", "FNTCFNP(X2)™
140 FOR C = 1 TO 5

JeAl*Kt3 + 4.32#%K12 - 11.72%K + 16.73

150 LET X = FNRC{(21)X-11

150 PRINT s FNPCXY: FNTC(FNPC(X))
170 NEXT C

172

180 END

RN

PRT

x FMP(X) FMTCFMPCX1)
B 1949.53 1949.5
& Bal.fal Adal«6H

-5 -245.57 ~245.5
10 A7T46.73 AT 488 .7

-8 =1363.11 ~1363.1

Subroutines

If we want the computer to return with two or more values, we cannot
use a defined function. Also, in the unlikely case that we want more than 26
functions, we need a new capability. In such cases we use a subroutine. A sub-
routine amounts to a detour in the program that returns to the statement im-
mediately following the one that caused the detour in the first place. This
capability permits a set of program statements to be accessed from more than
one point in a program. The statement pair GPSUB-RETURN accomplishes
this.

One significant use of the subroutine is to improve the flow of control
through a program. A subroutine may be used to eliminate the proliferation of
GOTQ statements by replacing them with RETURN statements where appropri-
ate. This technique often simplifies the writing of programs. Programs written
in this way are also easier to read and thus easier to correct or modify later (see,
for example, programs GRAPH2 and GRAPHS3 of Chap. 5).

Suppose that we want the product and the sum of two numbers modulo
M. We can write a subroutine that calculates and prints both values. Then we
can ‘““call” the subroutine from anywhere in the program with GOSUB n where
n is the first line of the subroutine. See lines 140 and 210 in program MQD.

MapD

94 REM * THIS PROGRAM DEMONSTRATES COSUB
95 REM WITH MODULAR ARITHMETIC

99 RANDOMIZE

100 DEF FNRC(X) = INTC RND®X+1 2

110 PRINT "FIND A%*B AND A+B MOD M*

120 PRINT "A,B.M"3

130 INPUT A, Bs M

— 140 GOSUB 500
150 PRINT
160 PRINT "NOW DO FEUR naNDEM CALCULATIONS™
170 FAR I = 1 TO 4

180 LET M = FNR(FI+1
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120 LET A = FNR{M=-1)

200 LET B = FNR(M=1)
—= 210 GO SUR 500

220 NEXT I

222

224 REM * THE STOP STATEMENT PREVENTS
225 REM ILLEGAL SUBROUTINE EMNTRY

230 S5ToOP

492

494 REM * MDDULAR ARITHMETIC SUBRCUTIMNE
S00 LET P = A%B

510 IF P = M THEN 540

520 LET P = P-M

330 GOTQ 510

540 LET S = A+B

550 IF 5 <« M THEN 5SRO

360 LET 5 = 5-M

570 GBTD 550

SB0 PRINT A3 “%"; A3 "="; P; A3 "+"; B3 "=") S3 "MOD'": M
590 RETURN

592

999  END

RUMN

MoD

FIND A+B AND A+B MOCD M
L,B,M? 2,5:4

2 %5 =4 2+ 5= 1 MCGD &
MOW DO FOUR RANDOM CALCIILATICONS
A% 2 =2 3+ 2= 1 MCD a
2 % 1 =2 2+ 1 = 3 MCD 5
1 * 3 =3 1 + 3= 4MID S
2 % 4 =8 2+ 4 =6 MCD %

Subroutines may in turn call other subroutines as in both lines 510 and
550 of MQD1. One thing to avoid in subroutines is inadvertent use of variables
that have been used elsewhere in the program. Subroutines called from other
subroutines are called “nested subroutines.” (What else?) In our example
M@D1 we have nested them two deep. Systems vary, but many have a limit on
how deep subroutines may be nested.

MaD1

4 REM * THIS PROGRAM INTREDUCES A NESTED
25 REM GOSUB INT@ PROGRAM MOD

99 RANDBMIZE

100 DEF FNRCX) = INT{ RND#X+] )

110 PRINT "FIND A%B AND A+B MOD M"

120 PRINT "A,B.M":

130 INPUT A, Bs ™

140 GosSUR 500

150 PRINT

160 PRINT "NOW DD FOUR RANDOM CALCULATIONS"
170 FOR I = 1 TO 4

180 LET M = FNRC(2)+]
190 LET A = FNR(M=-1)
200 LET B = FNR(M=1)
210 Gosue 500

220 MNEXT I

222

224 REM % THE STOP STATEMEMT PREVENTS
225 REM ILLEGAL SUBROUTINE EMTRY

230 S5TOP

492

494 REM % MODULAR ARITHMETIC SURRCUTINE
S00 LET N = A%xB



— 510
520
540

— 5350
360
580
390
age
694
700
710
720
T30
732
999
RUN
MED

1
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Gasus 700
LET P = N
LET N = A+B
GOSUR 700
LET S = N
PRINT Az %3 Bp "™=%"3 P; A; "+'} Bp "'='}
RETURMN

REM * REM REDUCES N TO A NUMBER MOD M
IF N = M THEN 730
LET N = N=-M

GOTO 700
RETIIRN

END

FIND A%B AND A+B MOD ™
AsBsM? 3, 4,5
3 % 4 = 2 3+ 4 = 2 MOD 5

NOW DO

2% 3=4 2
4 % 1 = 4 4
2 * 2= a 2
& # B = B &

+
S
+

+

FOUR RANDOM CALCHULATICNS

3 = 5 MCD B
1 = 5 MCD 9
2 = 4 MOD &
R = 4 MOD 10

55

MO0t

[

15

Some systems have a computed GOSUB statement similar in format to
the computed GOTQ. The format is:

100 @N K GOSUB n,,n,,ns, etc.

or

or

Arrays

100 GOSUB K QF ny,n,,n,, ete.

100

G(I’SUB ni,ng,ns, Q)N K

An array is simply a two dimensional list. For this we use two subsecripts
separated by a comma and enclosed in parentheses. The first subseript desig-
nates the row and the second subscript designates the column. As with lists,

we can use a subscript as high as 10 without the need for a DIM statement.

Suppose you recorded the temperature at 6AM, 12NOON and 6PM for
one week. This data could easily be stored in an array to enable a program to
carry out various calculations, for example, see program WETHR.

WETHR

94
5
100
102
104
110
120
130
140
150
152

AREM * THIS PROGRAM FINDS AVERACGE TEMPERATURE
REM TC DEMONSTRATE A USE OF ARRAYS

DIM ACRsa

3

REM * READ DATA

FOR D = 1
FOR 1

TD 5
1 TO 3

READ AC(D.I?

MEXT 1
NEXT D



16 Advanced BASIC

154 REM * CALC'ILATE AVERACGE FACH DAY

160 FOR D = 1 TO 5

170 LET T = 0

180 FOR I = 1 T 3

190 LET T = T+A(D,s I}
200 NEXT I

210 LET ACDs4) = T/3
220 NEXT D

222

224 REM % CALCULATE AVERAGE EACH READING
230 FOR I = 1| TO 3

240 LET T =0

250 FOR D =1 TO S

260 LET T = T+A(Ds 1)

270 NEXT D

280 LET Af5s1Y = T/5

290 NEXT I

292

300 PRINT UDAYSTIME™: "6AM"s “12NOON™, "&PM', "DAILY AVG"
310 PRINT

a20 FOR D =1 TC S

az2p

aza REM % KEFP TERMIMAL ON THIS LINE
325 8FM FCR THE NEXT PRIMNTED RESULT
326 REM™ WITH TRAILING COMMA 1IN LINE 330
330 FRIMNT "DAY"i D

340 FOR I = 1 TO 3

aso PRINT AtDs13,s

350 NEXT 1

aro PRINT A(Ds 4D

A0 NEXT D

agsz

ago FOR I = 1 T0 50

400 PRINT '=";

410 MNEXT I

420 PRINT

428

430 PRINT "AVERAGES" .

440 FCR I = 1 TO 3

450 PRINT ACAK21)»

460 MEXT 1

470 PRINT

472

474 REM

4R 0 DATA 27236 34 A1 5055 50,57, 48
490 DATA A3a415 37 A0, 33,28

500 END

RN

WETHR
DAYNT IME 64M 12NOON &PM DAILY AVG
DAY 1 27 a6 34 32.3333
DAY 2 40 50 55 48,3333
DAY 3 50 5p 48 50
DAY 4 43 41 a7 40.3333
DAY 5 a0 33 28 30,3333
AVERAGES 3R 420 4 40« 4

Even though the computer permits a subscript as high as 10 for rows and
for columns, it does not require that we use them all. In WETHR we used only
six rows and four columns.

Note that we used loops within loops, or nested loops, several times in
WETHR. The requirement here is that the loops must be nested entirely within
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other loops. If a program contains FPR X = A TQ B followed by FOR Y
= CTQ D, the NEXT Y statement must appear before the NEXT X statement.

Once the data is stored, it is a simple matter to obtain other information.
For example, we can find the highest temperature reading for the week as in
WETHRI.

WETHR1

94 REM = THIS PROGRAM FINDS HIGHEST TEMPERATURE
95 REM IN A FIVE DAY PERIGD USING ARRAYS

100 DIM ACs. 4D

102

104 REM #% READ DATA

110 FER D = 1 TG 5

120 FOR I = 1 Tg 3

130 READ AC(DsI1?

140 MEXT 1

150 NEXT D

152

154 REM % THE FIRST ENTRY 15 THE HIGHEST S0 FAR
160 LET H = aACl1.12

170 LET R =C = 1

180 FER D =1 TO 5

190 FER I = 1 T@ 3

200 IF A(DsI) <= H THEN 240
202

204 REM #* IF THE CURRENT ENTRY 1S5 HIGHER THEN
205 REM SAVE DATA IN Hs Rs AND C
210 LET H = A(Ds1I>

220 LET R=2D

230 LET C = 1

240 NEXT [

230 NEXT D

252

260 PRINT "“HIGHEST TEMPERATURE ='"i H
2562

264 REM * USE OF 24-HOUR CLOCK SIMPLIFIES

265 REM PRINTING THE TIME

270 PRINT "QCCURS AT': C#&600;3 '"HOURS ON DAY": R
474 REM

480 DATA 27236534  40s50s55, 50,52, 48

490 DATA  43,41,37, 30,323,228

500 END
RiJm
WETHRI1

HIGHEST TEMPERATURE = 55
OCCURS AT 1800 HOURS ON DAY 2

Summary of Sec. 1-4

BASIC allows tremendous flexibility in the user defined functions. We
may have up to 26 functions defined with DEF FNA(X) followed by an equals
sign and any legal BASIC formula.

For calculations that don’t lend themselves to function definition, such
as calculations requiring more than one value in the result, the subroutine
entered with GQSUB is available. The end of a subroutine is indicated by the
RETURN statement.

Two dimensional variables are available in BASIC. A(lJ) designates the
Ith row and the Jth column of A. For subscripts greater than 10, a DIM state-
ment is required.
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Problems for Sec. 1-4

1) Write a program to read six test scores for each of five students into an
array, one student to a row. Find the test average by student and by
test, and print the scores and the results in easily readable form.

2) Write a program to locate the maximum and the minimum point of
any function in a domain specified as input. Also specify the incre-
ments as input.

3) Write a program to set up a tic-tac-toe board and keep track of the
play of two external players.

4) Write a program to fill a square array with zeros except along the
diagonal from the upper left to the lower right corners, which should
contain ones, Print this array (called the “identity array”).

5) Write a program to produce the results of program COMPAR in Sec.
1-1 using a simple GOSUB and only one GOTQ.

6) Write a program to produce the results of program COMPAR in Sec.
1-1 using SGN(A - B) and the computed GOSUB.

7) If your system allows two arguments in user defined functions, write
a single function to allow rounding off numbers to any desired pre-
cision. Try the same thing with a single argument function. Write
a program to verify your functions.

1.5 MAT Statements in BASIC

Arrays and lists are used so routinely in programming and in mathematics
applications that most implementations of BASIC include a group of special
statements to handle them. Note that since BASIC treats lists as special arrays,
we may not use the same letter for a one-dimensional list that we use for a two-
dimensional array. Instead of reading values into the elements of an array entry
by entry with loops, we may simply use MAT READ A or MAT READ A,
B,C as long as the array or the arrays are dimensioned to be compatible with the
data. BASIC also allows us to alter the dimensions of arrays in the MAT READ
statement. MAT READ A,B(3,7),C(N,M) reads mat A according to previously
set dimensions; dimensions B to three rows and seven columns; reads the array
and dimensions C to N rows and M columns, N and M having been previously
defined; and reads that array.

MAT PRINT A prints the complete array with comma format. To get
semicolon format, MAT PRINT A; must be used. A single statemenf may
specify printing of more than one array, as in MAT PRINT A,B;C, which will
result in A being printed with comma spacing, followed by B printed with
semicolon spacing, followed by C printed with comma spacing (see program
MATO1).

MAT INPUT allows us to type entries from the keyboard of our fer-
minal with all of the dimensioning options of MAT READ. MAT INPUT
A has one additional option in some implementations of BASIC. If A is a
list, you may not know the number of entries required when the program is
written. In some systems, the function NUM takes on the number of elements
entered in the most recent MAT INPUT statement in the program.
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MATOI

94 REM % THIS PROGRAM DEMONSTRATES
95 REM MAT READ AND MAT PRINT
100 DIM AC3s4)s BC(5:103s CCH:9)
110 READ RsC
— 120 MAT READ A, B(2,5)s C(Rs0C)
- 130 MAT PRINT A, B: C
132 REM
140 DATA A3
150 DATA 102235405162 738:9 1051112
160 DATA 131415916, 17218:,19,20,21,22
170 DATA B3s2Aa:25,: 20,2 Ts28s29, 30, 31532533534

1B0 END
RUN
MATO1

1 2 3 4
5 & 7 A
Ed 10 11 12
13 14 15 15 17

18 19 20 21 =2

23 24 a5

= 27 2R

29 3o 31l

az 33 34

Other statements that may be used to assign values to the elements of
arrays are as follows:

MAT A

ZER Fills array A with zeros according to
previously specified dimensions.
MAT A = ZER(2,3) Redimensions A and fills it with zeros.

MAT A = ZER (B,C) Redimensions A and fills it with zeros.
MAT A = ZER(5) Redimensions A and fills it with zeros.
MAT A = ZER(X) Redimensions A and fills it with zeros.

MAT A = CON fills the array A with ones. As shown, the dimensions must
have been previously determined. CQN has all of the redimensioning options
shown for ZER.

MAT A = IDN is used only for a square array (where the number of rows
is equal to the number of columns). A is filled with ones where the row num-
ber and the column number are equal and all other locations are set equal to
zero. IDN may be redimensioned with IDN(X,X) or IDN(5,5). This is called
the “identity matrix” in matrix algebra.

In matrix algebra, addition and subtraction are defined for like-dimen-
sioned arrays as the sum or difference, respectively, of elements having the same
location. That is, if array X is the sum or difference of Y and Z, then for all
I,J we have X(I,J) = Y(I,J) £ Z(I,J). This could be done with nested loops;
in BASIC, however, we merely type:
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100 MAT X =Y + Z for addition
100 MAT X =Y - Z for subtraction

Matrix multiplication has a more complicated definition. For arrays Y
and Z, the number of columns in Y must equal the number of rows in Z. The
(R,C)th entry of X is the sum of the products Y(R,T)*Z(T,C), where T goes
from one to the number of columns in Y, which is also the number of rows in Z.
The product matrix will have the same number of columns as X and the same
number of rows as Y. A BASIC program for matrix multiplication requires
triple nested loops.

The following statement accomplishes the same result:

100 MATX = Y*Z

Note that if multiplication works for Y*Z, it will work for Z*Y only if the
arrays are square. In any case, the product has the number of rows of the left
multiplier and the number of columns of the right multiplier (see program
MATO02).

In matrix algebra, instead of dividing Y by Z, we first find the inverse of
7. The inverse of Z, written Z™', is the matrix such that Z*Z™' equals the

HMATO2

100 DIM XC10:103, ¥YC10,10%s ZC10-10), PC10,10)
10z

104 REM # READ MATRIX DIMENSIONS

110 READ I,Js KsL

120 IF J = K THEN 150

130 PRINT "PRODUCT UNDEFINED"™
140 ST@P

142

144 REM #* READ MATRIX ELEMENTS

150 MAT READ Y{I»J)s ZOH.LD

152

154 REM % INITIALIZE PRODUCT MATRIX
160 M™AT X = ZERCI.L)D

162

164 REM % MULTIPLY USING MESTED LEOFS
170 FBR T = 1 TQ J

180 FGR R = 1 T@ 1

190 FBR C = 1 TO L

200 LET XCRsC) = XK(RsCI+Y(R,TI+Z(TsC)
210 MEXT C

220 NEXT R

230 NEXT T

232

240 PRINT "USING TRIPLE MNESTED LOOFPS"™
250 MAT PRINT X:r

260 PRINT

262

264 REM * DEMOMSTRATE MAT PRODUCT IN BASIC
270 ™MAT P = ZERCI.L)D

280 MAT P = Y*IZ

290 PRINT "USING MAT MULTIPLY STATEMENT'
Jon MAT PRINT P

o2

304 REM

310 DATA 2» 3s ds 4

320 DATA 1:25 324,56

330 DATA 1523354559565 TeBsF2 101112

340 END
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RUM
HMATO2
USING TRIPLE NESTED LOOPS
a8 44 50 56
B3 98 113 128

USING MAT MULTIPLY STATEMENT
a8 44 50 56

B3 98 113 128

identity matrix. Having found the inverse of Z, we multiply Y by it. The in-
verse (if it exists) is obtained with the following statement:

100 MATX = INV(Z)

BASIC allows us to find the transpose of a matrix with the following
statement:

100 MATX = TRN(Z)

The transpose consists of an array X such that the columns of X are the rows of
7 and the rows of X are the columns of Z. Note that if the dimensions of Z are
(R,C), then the dimensions of X must be (C,R).

We can duplicate an array with

100 MATX = Z
and can multiply every entry of an array by the same number with
100 MATX = (C)*Z

where C is any legal BASIC formula.

In the last seven cases just presented, some systems use the statement
itself to dimension or redimension X, whereas others require that the program
make the dimensions of X compatible in advance.

Summary

BASIC provides a number of MAT statements that greatly simplify pro-
grams which deal with arrays. They are as follows:

MAT READ
MAT INPUT
MAT X = ZER
MAT X = CON
MAT X = IDN
MAT PRINT
MATX = Y
MATX = Y + Z
MATX = Y - Z
MAT X = Y*Z
MAT X = (C)*Y

Reads data into a variable list.

Enters data from the keyboard into a variable list.
Fills X with zeros.

Fills X with ones.

Creates the identity matrix.

Prints the contents of a variable list to the terminal.
Copies the contents of Y into X.

Enters the sum of Y and Z into X,

Enters the difference of Y and Z into X.

Enters the product of Y and Z into X.

Multiplies each entry of Y by C and enters result in X.
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MAT X = INV(Y) Enters the inverse of Y into X,
MAT X = TRN(Y) Enters the transpose of Y into X.

The first five statements above have optional redimensioning capabilities.

Problems For 1-5

1)

2)

6)

Write a program to add or subtract two arrays without using matrix
statements from this section.

Write a program to enter 25 random integers into a five by five array
and print it. Now find the largest number in each row and its column
number, and find the largest number in each column and its row
number.

Write a program to print a fimes table modulo six.

Write a program to print a times table modulo five.

MAT READ the integers one through nine into a three by three array.
Copy this into the upper left corner of a four by four array. Use the
fourth row to enter the column sums, and use the fourth column to
enter the row sums. Print the resulting array.

Write a program to create the transpose of a given matrix without using
the TRN function.



2
SOME EXTENDED

FEATURES OF BASIC

2-1 Introduction

None of the features to be discussed in this chapter is absolutely necessary
to writing programs in BASIC. Other language statements may be assembled to
achieve the same effect of each one. Some of them may not even be available on
the computer you are using. However, if yvour system does provide any of the
features presented here, you are encouraged to experiment since they save
programming effort and storage space and make programs more readable.

(Note about problems: The author has not attempted to contrive problems
which would require the reader to use the various features presented in this
chapter. Rather it is recommended that you be alert to possibilities for using
the material of this chapter in programs you will be writing throughout the rest
of the book.)

2-2 TAB

The TAB(X) function is available on many BASIC systems. TAB(X)
placed in a PRINT statement causes the printing mechanism of the terminal to
be located in the x*0 space of the current line, provided it has not already passed
that point. Note that on most systems the leftmost space is numbered zero and
the counting is modular, with the mod being typically 72 or 75, but sometimes
more, Some systems are not modular but start on a new line when the TAB
argument exceeds the system line length. An explicit number or BASIC formula
may be entered as the argument of the TAB function. If the value of the argu-
ment is not an integer, most systems use only the integer part. See program
TABO1.
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TABDI

24 REM % PRINT SCALE TC AID CCOUNTING SPACES

100 FOR I = 1 TC 5
110 FOR J = 1 TO 9
120 PRINT =3
130 NEXT J
140 PRINT '"!';
150 NEXT 1
160 PRINT
152
154 REM % PRINT IMN LOCATIONS READ FROM DATA
170 FCR K = 1 TO0 5
180 READ T
= 190 FRINT TABC(TY: “X';
200 NEXT K
210 PRINT
212

214 REM % SHOW TAR MORE THAN ONCE IN
215 REM THE SAME PRINT STATEMENT
220 READ A, Bs C
— 230 PRINT TABCAX: A3 TARC(9); *R'; TAR(CY: “Cv
234 REM
240 DATA 3s 8, 12s 28, 4R
250 DATA 2 T 15

260 END
RUM
TARD!1
--------- R e e LR
x X X X X
A B C

Examining the output of program TABO1 and counting the leftmost space
as zero, we see that the X’s are printed in the spaces numbered 3, 8, 12, 28, and
48, as designated in the DATA of line 240.

The uses of the TAB function are not limited to literal output. We may
also format numeric output or a mixture of numeric and literal output. See
program TABOZ2.

TABDZ

94 REM % TAR DEMOCNSTRATION PROCGRAM
100 DIM AC4)

102

104 REM % READ FOUR ITEM A LIST
110 FOR I = 1 TC a

120 READ ACI}

130 NEXT I

132

140 PRINT TABC153; "COMMA SPACINMNEG"
150 FOR I = 1 TOD 4

160 PRIMT ACI).

170 MNEXT 1

180 PRINT

182

190 PRINT TARC10QYF "™JSING TAB FOR 10 CHARACTER PRINT ZCNE
200 FOR I = 1 TO 4

210 PRINT TARC 10%xCI-13 >3 ACI:
220 MEXT I

230 PRINT

239

240 PRINT TA3CAY: "“SEMICCOLCN SPACING'
250 FOR T = 1 T 4

260 PRIMNT ACL):

270 MEXT 1
AEA BDTRT
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282
290 REM™
300 DATA -3, 110,404
310 END
RN
TA3032
COmMAa SPACING
-3 11 0} alh
IHSING TAR FOR 10 CHARACTFR PRIMNT ZOMES
-3 11 0 404

SEMICCLON SPACING
=3 11 0 408

Note that systems differ in the number of spaces generated by the comma
and semicolon delimiters.

2-3 Print Using

While it is possible with the string facilities available in BASIC (see Chap-
ter 3) to print output in any desired form, formatting can require tedious pro-
gramming. It is for this reason that many systems provide PRINT USING and
image statements.

PRINT USING permits the format for printing output for the current line
to be specified in yet another line. The specifications for printing are called the
image. The image can be defined in an image statement, which begins with a
colon. Very simply, a pound sign is used to specify where we want digits printed.
For pound signs placed to the right of the decimal point, zeros to the right of
the last nonzero digit are printed. For pound signs placed to the left of the
decimal point, zeros to the left of the leading nonzero digit are not printed.

One of the common uses of PRINT USING is to obtain zeros to the right
of the decimal point in printed output, since as a numeric the trailing zero is
dropped in BASIC. If we want $3.10 printed, we may use an image to force the
printing of the zero, as shown in our first demonstration program, IMAGEO1.

IMAGED1

34 REM * DEMOMSTRATES ELEMENTARY
95 REM EXAMPLE FCR PRINT 'SING
100 LET D = 3.1

110 PRINT "THIS 15 WITHOUT IMACGE"
120 PRINT "THE AMOD'INT IS5 S*: D
130 PRINT

140 PRINT *THIS IS WITH IMAGE"™
120 :THE AMCVINT 15 S#W. 08

160 PRINT "ISING 150, D

170 END
RIM
IMAGEQ1

THIS IS5 WITHOUT IMAGH
THF. AMCUNT IS5 5 3.1

THIS IS5 WITH IMACGE
THE AMOUNT IS5 S 3.10

Next we present program IMAGEQ2 to show a variety of numbers printed in a

v el d an A N i o
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IMAGE 02

94 REM # DEMOMSTRATES A VARIETY CF I[MAGES

100 : SSS#F.08F Sad.HW N . HRYW o #
102

110 FOR I = 1 TD S

120 READ X

130 FRIMT "THE NUMAFR 15" =X

140 PRINT HSING 100, XKs Ko Xa X» X» X
150 PRINT

160 NEXT 1

182

164 REM

170 DATA 1s 12 12.3, 1234.56, <01

1IEQ END

R

IMAGEOR

THE NUMBER IS5 1
£ 1.000 1.00 1. | 1 1

THE NUMBER 15 12
512.000 12.00 12 12 12 ¥12

THE NUMBER IS5 12.3
$12.300 12. 30 12. 12 12 *12

THE MUMBER [5 1234.56
£1234.560 *1234.56 1235. 1234 *1234 *1234

THE NUMBER I5 0.01
5 .00 «01 0 8] 0 0

Note that where several dollar signs appear only one of them gets printed.
The one that is printed is as far right as possible in a space that has a dollar sign
in the image. When there is not room to the right of the decimal point in the
image to print all of the digits, the excess is dropped. No rounding off is done.
Where there is not room to the left, all digits get printed anyway, and an asterisk
is printed to call attention to the fact that the number did not fit the image.

The image can be a string. In this case, the line number which calls the
image in the PRINT USING statement is replaced by the string variable that con-
tains the image, as in program IMAGEQ3.

IMAGEDA]

4 REM #* DEMONSTRATES IMAGE STORED
95 REM IN A STRING VARIARLE

100 LET IS = ""#éa.id SESHL MR
110 LET N = 23.4

120 PRINT N3 "™ IS THE NUMBER"

130 PRINT I5; "™ IS5 THE IMAGE"

140 PRINT WUSING 15 M, N

150 END
RN
IMAGEO3

23.4 [I5 THE NUMBER
HHH . HH E55#.#4 15 THFE IMAGE
23.40 £23.40

We can force the computer to print numeric output using E-format. Four
up arrows are used for this, as shown in program IMAGEQ4.
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IMAGEQ4

94 REM * PRINTS E-FORMAT

100 HEN F P FARES

110 LET N = 24.3

120 PRIMT USING 100s N

130 PRINT N3 "IS THE NUMBER"

140 END
Rum
IMAGEQ4

2.43E+01
24.3 IS5 THE NUMBER

Strings may be formatted with images also. An apostrophe must be used
to begin the printing for a string image. Then control letters E, L, R, and C may
be used to indicate fields of specific characteristics. Control character E calls for
left justification and allows the string to overflow, whereas L calls for left justifi-
cation but truncates on the right. Control character R calls for right justification
and truncates any excess, and C calls for centering the string output and truncates
on the right if there is an excess. The apostrophe is needed to delimit the con-
trol characters because any other alphabetic characters will be printed just as
they appear in the image. See program IMAGEOQ5 for a demonstration of for-
matting string output in the image.

IMAGEOS

94 REM #* DEMODNSTRATES PRINTING S5TRINGS

95 REM USING AN IMAGE STRING

100 LET IS = " 'LLLL 'RRRRR 'CCCCC 'EE"
110 PRINT IS5

120 FBR I = 1 TG 5

130 READ 535

140 PRINT USING I%s 55, 55, 55 55
150 NEXT I

152

154 REM

160 DATA THISs 15. As SAMPLE. PROGRAM
170 END
RUN

IMAGEOQS

'‘LLLL 'RRRRR *CCCccc 'EE
THIS THIS THIS THIS
I5 Is Is [5

A A A A
SAMPL SAMPLE SAMPLE SAMPLE
PROGR FR2ZGRA PROGRA PREGRAM

2-4 Logical Operations, MAX and MIN
Truth Values

Some BASIC implementations include a set of logical operations. Let’s
look at the already familiar IF-THEN statement. The statement I[F X=1 THEN
200 transfers control to line 200 only if X=1 is true. If X=1 is true, BASIC
assigns the statement X=1 a value of 1 to designate ‘true.” If X=1 is false, then
BASIC assions it a value of 0 to designate ‘false.” So we could replace our pro-
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gram statement with IF X THEN 200, and when X=1 the computer goes to 200;
otherwise control passes to the next line in sequence, provided X ecan be only 0 or 1.

We may even print the logical value of statements. If we print the value of
N/X=INT(N/X), we should get a one when X is a factor of N and a zero when X
is not a factor of N (see line 150 of program LOGIC1).

LAaGIC1

94 REM #% THIS5 PROGRAM DEMDNSTRATES THE TRUTH VALLUE
95 REM @F THE STATEMENT N/7X = INTIN/X)
100 PRINT "INPUT MN*™:
110 INPUT N
114 REM #* PRINT HEADINGS
120 PRINT "X","NAX"-"INTINSX)""TRUTH VALUE oOF"
130 PRINT TABCASIIT'NAX = INTCNsXY
140 FOR X=1 TO N
— 150 PRINT XsNARINTIN/AKI2NAK=INT(MNAXD
160 NEXT X

170 END
RN
LBGICI
INPUT NZ?&
X MNAK INTCNAXD TRUTH VALUE OF
MAK = INTINAKY

1 & & 1

2 3 3 1

3 2 2 1

4 1.5 1 ]

5 1.2 1 o

& 1 1 1

The fourth column prints the logical value of N/X=INT(N/X). As we ex-
pected, that value is one whenever X is a factor of N and zero whenever X is nota
factor of N. This gives us a novel approach for counting factors of N. See line
140 of program LOGIC2. Where available, all of the relational operators may be
used in a similar manner.

LoGgIlc2

94 REM * THIS PROGRAM COUNTS FACTORS CF INTEGERS
95 REM USING THE TRUTH VALUE OF Ns7X = INT(N/X?
100 PRINT "INPUT AN INTEGER'":
110 INPUT N
120 LET T=0
130 FCR X=1 TQ N
— 140 LET T=T+(N/XK=INTIN/X))
150 NEXT X
1560 PRINT T:"FACTCRS"

170 END
RN
LogIca

INPUT AN INTEGER?240
20 FACTORS

RUN
LaGica

INPUT AN INTEGER? 1949
2 FACTORS
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Logical Operators

The logical operators AND, @R, and NQT are available on some BASIC
systems and may be used in a wide variety of applications. One rather straight-
forward application is an extension of IF-THEN statements. We may often com-
bine several IF-THEN’s into one statement. For example, the pair,

100 IF X=3 THEN 200
110 IF ¥<2 THEN 200

becomes

100 IF X=3 0OR Y<2 THEN 200

Or the four statements,

100 IF X <> 3 THEN 130
110 IF ¥ == 2 THEN 130
120 GeTa 510

130 PRINT "MESSAGE'

become

100 IF X=3 AND Y<2 THEN 510
110 PRINT ""MESSAGE"

We can negate a statement with NQT. That is, X<>3 and NOT(X=3) are
equivalent. (When you are unsure of the order of operations, it may be best to
use parentheses if only to make the statement easier to read.) What about X and
NQT X? In this case, X is either equal to zero or it isn’t. So in the case IF NOQT
X THEN 200, control passes to line 200 for X=0 (because NQT 0 equals 1) and
passes to the next statement in sequence for all other values.

MAX and MIN

For a system which provides MAX and MIN functions, the value of A
MAX B becomes the larger of the two numbers. The value of A MIN B becomes
the smaller of the two numbers. If you don’t have these functions, then you
may use

5%(A+B- ABS(A-B)) for A MIN B and .5%(A+B+ABS(A-B)) for AMAX B

2.5 Multiple Line Defined Function

Some versions of BASIC provide multiple line user-defined functions that
permit defining of functions that require two or more program statements to
define. The first line must be DEF FN followed by the function identifying
letter and the function argument or arguments in parentheses. The last state-
ment must be FNEND, and in between there must be at least one assignment
statement with FN and the same letter specified in the DEF statement on the
left of the equals sign.

For example, we may write a multiple line function that will do modular
multiplication. The function of lines 100 through 160 in program FUNCTION
does just that.

As with other user defined functions, the multiple line function may be
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accessed at any point of the program. In this way we may often save program
space, just as GQSUB is often used to avoid repeating a set of program state-
ments. However, the defined function is accessed directly whenever its name is
used and thus it does not require a special statement to transfer control to it.
The defined function may be used in all situations where a single value is re-
quired for each parameter or set of parameters, whereas a subroutine is more
appropriate if two or more variables must be returned.

FUNGCT ION

94 REM * THIS PROGRAM DEMONMSTRATES A ]S OF THE
95 REM MULTIPLE LINE USER DEF IMED FUNCTIONM
6
a7 REM # THE FUNCTICN 15 DEFINED INM LINES 100 THHOUGH 160
100 DEF FMMIXsY:7)
110 LET P = X*Y
120 IF P < Z THEZN 150
—{ 130 LET P = P-Z
140 GOTG 120
150 LET FuM = P
160 FHEND
192
200 PRINT  "MULTIPLY A TIMES 8 MOD M TC CET"
210 READ A, Bs M
220 IF M = 0 THEM 250
230 PRINT TAB(S); A: TAB(1AY; Bi TARC(22): M3 TABC27); FHMOA.
240 GOTO 210

242

244 REM

250 DATA 1,25 3 32548 dpdsds 0,0:0
260 EMND

RN

FIIMCT IGH

MULTIPLY A TIMES B #CD M TG GET
1 2
3
3

[ B )
b & W
]



3
STRINGS

3-1 Introduction

A string is simply any set of characters that is not to be treated as a number
but is to be otherwise manipulated by the computer. The characters are referred
to as alphameric or alphanumeric, since both alphabetic and numeric symbols
may be used, as are most other symbols permitted by your terminal, even includ-
ing the nonprinting characters. It is the purpose of this chapter to outline a few
of the possible uses of strings and string variables in BASIC even though the
specifications are not uniform from system to system. The user should deter-
mine the capabilities of his or her own system before planning extensive pro-
gramming activity.

3-2 The String Simple Variable

To distinguish the string variable from the numeric variable, virtually all
systems use a trailing dollar sign ($) in the variable name for a string. Legal sim-
ple string variable names are A$, K$, B3$, and C8$. Some systems are restricted
to the 26 letters of the alphabet, not permitting such variables as B3$. Others
allow additional variables such as &$. The number of characters you are allowed
to store in one simple string varies typically from 18 to thousands. Most of the
manipulations allowed for numeric variables are allowed for string variables ex-
cept for arithmetic operations. String variables can be READ, INPUT, assigned,
printed, and compared for order. Order comparison is accomplished according
to ASCII (American Standard Code for Information Interchange) specifications,
which place the digits in order 0 through 9 ahead of the letters of the alphabet
in alphabetical order. (See Appendix A for relevant parts of the code.)

One of the uses of strings is to permit person-computer “‘conversation.”
We do not need to numerically code our answers to questions put to the pro-
gram user. If we wish to give the program operator options, the answers can be
words which the computer processes directly. If for example, we write a pro-
gram that will require a lot of yes-no answers from the keyboard, we may write

34
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a subroutine that prints the question, checks the answer fo be sure that it is
either a “YES” or a “N(,” and rerequests the answer for all other responses.

Program DECIDE uses such a subroutine repeatedly as the computer as-
sembles the information fed into it by the user. The subroutine outlined above
begins in line 800.

DECIDE

94  REM % DEMONSTHATICM PROGRAM IMTRODUCING STRINGS
25 REM  SHOWS ASSIGNMENT, INPUT. COMPARISION AND
95 REM PRINTIMNG CF STRINGS

1000 GRSIR 200

110 LET X5 = Q%

120 GOSUB 400

130 LET ¥ = @5

140 PRINT "PROGRAM MAME':

150 INPUT M5

160 PRINT
— 170 PRINT XS5; Y53 " = "3 N5
180 STOP
192
194 REM # LANGUAGE DECISION SUBRCUTINE
200 LET Q% = "FORTRAN"
210 GO3UB BOO
220 IF A% = "YES" THEN 3i0
230 LET 0% = "CoRoL"™
240 GOsUB BOO
250 IF A5 = "YES'" THEN 310

260 LET Q% = "BASIC™

270 GOSUR BOOD

280 IF AS = "YES5' THEN 310

220 PRINT “FORTRAN. COBOL OR BASIC ONLY™
ao0o0  GOTO 200

310 RETURHN

392

394 REM * MAKE "OLD - NEW" DECISION HERE
400 LET G5 = " oLD"

410 GOSUB BOO

420 IF A% = "YES'" THEM 4RO

430 LET Q% = " NEW"

440 GOSUB BOD

450 IF A% = "YES" THEN 480

460 PRINT "OLD OR NEW ONLY™
470 GOTO 400
480 RETURN
182
T84 REM * YES-NO DECISION SUBROUTINE
785 REM ENTER WITH GOSUB BOO
790 PRINT "YES OR nNp*

—B0O0 PRINT O}
BlO INPUT AS
B20 IF A%
530 IF AS
R40 GOTQ 790
B30 RETURN
999 END
RUN
DECIDE

"YES'"™ THEN 850
"MNO™ THEN 850

FORTRAN?NG

COBOLZND

BASIC?YES

@LD?YES

PROGRAM NAME?DECIDE

BASIC ALD - DECIDE
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Strings are read from data in exactly the same manner that numerics are
read from data. String and numeric data may be intermixed. Some systems re-
quire that string data be enclosed in quotes. On systems that do not require
quotes, any expression that contains a comma will have to be enclosed in quotes
anyway, since the comma will otherwise be interpreted as the end of the string.

Look at line 170 of program DECIDE. Note that the string variables are
separated by semicolon delimiters in that PRINT statement. You should see
that the printed output has no spaces other than those actually placed in string
Y$ and the literal expression “ - » by the program itself. When printing numeric
values, the computer always provides some space automatically when using semi-
colons as delimiters. When printing strings, the computer does not provide any
space automatically. We can print string characters right next to each other by
using semicolons. We can print strings in 15-character columns using commas, or
we can use the TAB function for other spacing. Some systems also provide
PRINT USING for yet another formatting capability.

We can easily construct a program to do for two strings exactly what pro-
gram COMPAR in Sec. 1-2 did for two numerics, as shown in program COMPRS.
All we want is to determine if A$ is less than, greater than, or equal to B$. Look
carefully to see what happens to the leading and trailing blanks in the strings. In
this case, the leading blank makes “ ALPHA?” less than “ALPHA”, but the trail-
ing blank in “BETA ” has no effect. Some systems will not ignore trailing
blanks. Also note that the string 0123456789 is placed in quotes. When calling
for a string read, some computers will ignore such a string unless it is in quotes
because it ‘looks like’ a numerie.

COMPRS

94 REM % THIS PROGRAM COMPARES TWO
25 REM STRINGS FOR ORDER
100 READ AS, BS

110 IF A = “STOP' THEN 260

120 IF AS = BE THEN 150

130 IF A% < BS% THEN 1RO

140 PRINT aS; " 15 GREATER THAN '3 BS
150 GATe 100

160 PRINT AS%3 " IS5 F@'IAL TO ": BS
170 GOTO 100

180 PRINT ASy " 15 LESS THAN "3 BE
190 GOTC 100

192

194 REM

200 DATA NUMERIC, ALPHABETIC

210 DATA "01234567R9", ABCDEFGHIJK
220 DATA " ALPHA", "ALPHA"™

230 DATA "BETA ", “BETA"

240 DATA ENDs END

250 DATA S5TOP. STOP

g

260 END
RUN
CCMPRS

MUMERIC I5 GREATER THAN ALPHABETIC
0123456789 IS5 LESS THAN ABCDEFGHIJK
— ALPHA 15 LESS THAN ALPHA
—BETA 15 EQUAL TG BETA
END IS EOUAL TO END
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Summary of Sec. 3-2

We have seen that the simple string variable can be used in BASIC programs
in many of the same ways that simple numeric variables can. We may use simple
string variables in READ, DATA, INPUT, PRINT, and IF-THEN statements. In
DATA and INPUT statements, some systems require quotes to delimit strings
under certain conditions.

Problems for Sec. 3-2

1) Write a program to find the highest and lowest ranking strings in a set
of data.

2) Write a program that reads two strings and then prints them in ascend-
ing order.

3) Write a program that will read three strings from data and print them in
ascending order (more on ordering strings later).

4) How many print statements would be required to print n strings in
alphabetical order using only the methods of this section?

5) Write a program to request two peoples’ names in two strings for each
person, first name first. Then have the names printed in alphabetical
order. Be sure to handle William Smith and George Smith properly.

3-3 The String Subscripted Variable

It is at this point that we must distinguish the ways in which various systems
treat subscripted string variables. There are two fundamentally distinct ways to
deal with A$(LJ) and B$(I). (Some systems don’t even permit the double sub-
seript.)

One concept, as shown in demonstration program ARRAYS$, considers
AS(L,J) as an element of a string array just as A(I,J) is an element of a numeric

ARRAYS

24 REM % THIS PRCGHAM IS5 A DEMIMSTHATICM GF

5 REM A STRING ARRAY

26

27 REM # HERE THE DIMENSIOM SPECIFIES THE NUMBER
s REM CF STRINGS THAT MAY RE STOREND IN A LIST
100 DIM ASC3)

102

104 REM % READ THE STHING LIST FHCM DATA
M0 FGR I = 1 TO 3

120 READ ASCIY

130 NEXT 1

132

134 REM # MCY PRIMT THE STRING LIST
140 FCR I = 1 TC 3

150 PRINT "ASC™; Iz ") = "p ASCI)}
150 NEXT 1

172

iTa REM

180 DATA FIRS5T, SECONDs THIRD

190 END

RUN

ARRAYS

ASC 1 ) = FIRST

AERC 2 3 = SECOND

ASC 3 ) = THIRD
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array. This makes B$(I) the Ith element of a string list called B$ which may con-
tain up to 11 strings before the DIMension statement is required.

The other concept, as shown in program SUBSTR, considers A$(I,J) as a
substring having J-I+1 characters going from the Ith to the Jth character inclu-
sive. So AS(LI) is the single Ith character. Using this concept, BS(I) is the sub-
string beginning with the Ith character and continuing to the end of the string.

The next two sections will treat these two concepts separately.

SiJRETR

94 REM = THIS PRCGRAY 15 A DEMONSTRATICN
95 REM CF AS(1.J) AS A SUISTRING

96 REWM

97 REM % IN THIS CASE THE DIMENSION SPECIFIES THE

78 REM NUMBER OF CHARACTERS IN THE STRINCG VARIABLE AS
100 DIM ASC14]

110 LET AS="THIS IS A TEST"

120 PRINT “AS = ";AS

130 FOR 1=1 TO 14 STEP 4

140 LET J=I+INTCRND(-1)%4+1)

150 PRINT "ASC"31:"s"3Ji") = *“GAS[1.J)5"'™

160 NEXT I

164 REM

170 END

RUIN

SUASTR

AS = THIS IS AT
asc :
L850 5 ]
AR 9 s 12
asd 13 »

"THIS®
S
A CTE!
'5T

h
At s [T]
i n

3-4 The Substring Scheme*

One advantage in the substring concept is that we can deal with any part or
parts of the string directly. One disadvantage is that we cannot deal with
hundreds or thousands of strings without the use of files. Strings may be read
from data. When placed in data, strings must be enclosed in quotes. The same is
true if we type more than one string to the keyboard in response to an INPUT
statement.

Generally speaking, the DIMension statement is required for string variables
to permit the computer to allocate space. For example, 100 DIM A$(10),
B3(58),A(15) provides for 10 characters in AS, 58 characters in BS, and 15
numerics in the A list, the latter showing that string and numeric dimensioning
may be intermixed.

A program to arrange the leters of a string in alphabetical order is shown
in program ALPHA. Line 100 provides for up to 72 characters in the string vari-
able A$. Line 120 uses the LEN( ) function. This function measures the actual
number of characters in the string. Note that lines 160, 170, and 180 exchange
two characters which are not in the proper order. Since BS is used for only a
single character, it need not appear in the DIMension statement. Note that
spaces have a lower ASCII code than the letter A and so appear first in the result
of program ALPHA.

*The programs of Sec. 3-4 were run on a Hewlett Packard Computer.
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ALFHA

94 REM & THIS PROCGRAM ALFHABETIZES THE
95 REM CHARACTERS OF A STRINC
— 100 DIM ASLT2]
110 INPUT AS
— 120 LET L=LENCAS)
122 REM
124 REM = LIME 150 TESTS ALL PCSSIBLE PAIARS CGF
125 REM CHARACTERS TC SEE IF THEY ARF IN CRDER
130 FCER =] TQ L=1
140 FOR J=1+1 TO L
150 IF ASCI,I]1 <= AS[J,J} THEN 190
152 REM
154 REM * IF ASCI-I) IS5 NOT LESS THAM AS(JsJ) THEN
155 REM WE EXCHAMGE THCSE CHARACTERS
— &0 LET BS=AS[I-11
—= 170 LET AS[I-I1=ASCJ,J]
— 180 LET ASLJ,J1=8S - ¥
190 NEXT J
200 NEXT i

204 REM

210 PRINT as
220 END

RUN

ALPHA

PTHE GUICK BROWN FOX JUMPS OVER THE LAZY DOG
ABCDEEEFGHHIJKLMNOODOPORRSTTUUVWEYZ

Program REVRS simply prints the characters of a string in reverse order
but keeps the string intact. Program END shows the printing of A$(I) for a
sample string.

REVRS

94 HEM #* THIS PROGRAM DEMONSTRATES PRINTING THE
95 REM CHARACTERS OF A STRING IN REVERSE ORDER
96 REM WITHEUT MODIFYING THE CONTENTS ©F

97 REM THE STRING

100 DIM ASLT2]

110 INPUT AS

120  PRINT
130 PRINT * THE STRING CONTENTS IN REVERSE QRDER:"™
134 REM

140 FOR I[=LEN{ASY TO 1 STEP -1}
150 PRINT AS(I-I1:

160 NEXT I

164 REM

170 PRINT

180 PRINT

190 PRINT " THE CONTENTS PRINTED IN TACT:™
200 PRINT AS

210 END

RUN

REVRSZ

*THIS PROGRAM PRINTS IN REVERSE

THE STRING CONTENTS IN REVERSE CRDER:
ESREVER NI STNIRP MARGORP SIHT

THE CONTENTS PRINTED InN TACT:
THIS PROGRAM PRINTS IN REVERSE



END

94

85

100
110
120
130
140
142
150
RUM
END

Strings

REM * THIS PROGRAM DEMONSTRATES THE USE OF
REM PRINT ASCI) IN THE SUBSTRING SCHEME
DIM ASC72)

INPUT AS

FOR I=LENCAS) TO 1 STEP -1

PRINT "ASC"31:") = "3ASCI]

MEXT 1

REM

END

ITHIS IS5 IT

AR
AEC
AT (
ASC
ASC
AEC
AR C
ASC
ASC(
AEC

10 2 T
IT

IT
5 IT
I5 IT

15 IT
518 IT

I5 IS IT
HIS 15 1T
THIS IS5 IT

LI T 1 T (T I T O [

=MWk und2mo
L T W I A A e
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The ability to compare strings and substrings allows us to pack several
items of information into a single string. For example, we might want to work

with the days of the week. Asshown in program WEEKA, we could use
110 LET A$ = “SUNMO@NTUEWEDTHUFRISAT”

WEEKA
94 REM % THIS PROGRAM DEMONSTRATES COMPARING A
95 REM STRING AGAINST A SUBSTRING
— 100 DIM DSL1531.,A50211]
110 LET AS=""SUNMONTUEWEDTHUFRISAT"
120 INPUT D3
130 LET D=0
— 140 FOR I=1 TQ 19 STEP 3
150 LET D=D+1
— 160 IF DS <> AS[1.1+2) THEN 1920
170 PRINT DAY #"D
I80 STOP
190 NEXT I
124 REM
200 PRINT "DAY NOT FCUNDY
210 END
RUN
WEEKA
PTLE
Day # 3

Then we could step through the string with

140 FQRI = 1T 19 STEP 3

comparing some test string with A$(I,I+2) to see if the test string matches those
three characters of AS$.
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We can even test parts of two strings. We could test the first three charac-
ters of D§ successively against groups of three characters in A$ looking for a
match by changing line 160 to

160 IF D$(1,3) <> A$(1,I+2) THEN 190

This is left for the reader to try.

It should be clear that by the use of strings we can control what is printed
in every space of the paper on our terminal. If we convert numeric values to
string variables, then we gain some added flexibility for the printing of numeric
results since these can be printed imbedded in strings to avoid extra spaces. If
you have PRINT USING, this step is not necessary.

We shall develop here the beginnings of a routine to convert a numeric to
a string. The fundamental idea is simply to pick off the digits one at a time as
numbers and use the numbers to store string equivalents in the correct positions
of a string variable. The way to get the string equivalent is to use what is called
a dummy string. In this case the dummy string to use contains all the digits.
As shown in program CONVRT, it is D$=“0123456789"". The string A$ in pro-
gram WEEKA is another example of a dummy string. If we want a ““3” stored
in the sixth position of string S$, we use the following statement:

100 LET S5(6,6) = D$(4,4)

since the “3” is really in the fourth position of D$. To get the digit “I’” in the
Jth position of S$, we use:

200 LET S$(J,J) = D$(I+1,I+1)
as shown in line 200 of program CONVRT.

CONVRT

94 REM * THIS PROGRAM COMYVERTS A NUMERIC
25 REM TO A STHING
100 DIM S5506).DSC10)
110 LET DS="0123A5K7TR9"
120 INPUT W
130 IF N=IWNTC(NY THEM 160
140 PRIMT "IMTEGFRS CNLY"
150 GOTO 120
160 PRINT "#" 3N "%
170 FOR E=5 TG O S5TEP =1
180 LET J=6-E
190 LET I=INTINAIOtE)
—= 200 LET S550J,J1=D5[1+1-1+11]
210 LET MN=N=I#%10rE
220 HNEXT E
230 PRINT "5"; S55;'s"
240 END
RYIN
CaNVRT

¥9T5310
* 975310, *
59753105

To append a string onto the end of another string, use the technique of
program CONCAT.
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COMCAT

94 REM #% THIS PROGRAM DEMOMNSTRATES CONCATENATION
100 DIM ASC50].85050]

110 INPUT AS,BS

120 PRINT "BEFORE CONCATENATION'.
130 PRINT AS.BS

1ag LET ASLLENCAF)+1]1=B%

150 PRINT

160 PRINT "AFTER CONCATENATION".
170 PRINT AS,BS

180  END

RUMN

CoMCAT

TUCONCATY » "ENATION
BEFORE CONCATENATION CoONCAT ENATION

AFTER CONCATENATION CONCATENATION ENATION

Summary of Sec. 3-4

The substring scheme permits us to look at string variables in one of the
following four ways:

A The whole string.
AS(LJ) The substring from the Ith to the Jth characters inclusive.
AS(LI) The single Ith character of the string A$.

AS(I) The substring beginning at the Ith character and continu-
ing to the end. To obtain the beginning of the string, use
AS(1,I).

We can build up new strings from parts of old ones. We can compare
strings and substrings for equality and for order.

Problems for Sec. 3-4

1) Modify ALPHA to eliminate duplicates.
2) Write a program to accept abbreviations for the days of the week and
respond with the full correct spelling.
3) As written, CONVRT will print $000001$ if we input 1 for N. Elimi-
nate these leading zeros and end up with a string only as long as needed.
4) Modify CONVRT to accept negative numbers and insert the minus sign
in the string.
5) Modify CONVRT to accept decimal numbers representing dollars and
cents.
6) Write a program to convert a numeric string to a true numeric stored in
a numeric variable.
T7) Write a program to multiply two six-digit integers and print the answer
exactly.
8) Write a program like that for problem 7, but not limited to six-digit
integers. (Allow 10- or 20-digit integers).
9) Write a program to encode and decode messages using a keyword.
10) Modify program WEEKA to test the first three characters of the input
string from line 120 against successive sets of three characters from A$.
11y In eovmbaring etvince for ordery BASIC eromnarec the fwo etrince one
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character at a time. So for nonequal strings, the first nonequal charac-
ters determine order. Therefore when comparing such strings as ‘60’
and ‘100°, BASIC will evaluate ‘60’ as greater than ‘100’. Write a pro-
gram to overcome this flaw. Be sure to also provide for proper order-
ing of strings like ‘A6” and ‘A10.’

3-5 The String Array Scheme*

Even where systems use the same general scheme, we will find differences.
Therefore we present programs here which use features found on many time-
sharing systems. Strings and string arrays may be manipulated in many of the
same ways that numerics and numeric arrays may be. That is, we may use
INPUT, READ, PRINT, assignment, and comparison for order. We generally
may not use arithmetic operations with the possible exception of addition since
some computers allow LET A$ = “ABC” + “DEF” to assign “ABCDEF” to
string variable A$. Generally speaking, we find the same dimensioning require-
ments for string arrays as for numeric arrays. So 10 DIM A$(15),B$(3,47),
C(3,8) provides for up to 16 strings in A$ (generally zero subscripts are allowed),
up to 192 strings in B$, and up to 36 numerics in C. Note that we may intermix
strings and numerics in the dimension statement. Some systems allow only one-
dimensional string arrays. The number of characters allowed in each string will
vary from system to system. The LEN( ) function, if available, evaluates the
number of characters actually stored in a string. An alternative approach uses
the CHANGE statement. CHANGE A$ TQ A places the ASCII numeric code for
the characters in the string in the list positions of A. So if A$ = “XYZ,” then
list A carries in position 1 the ASCII code for X, in position 2 the code for Y,
and in position 3 the code for Z. Moreover, A(0) will contain the number of
characters in the string A$. CHANGE also works in the other direction. Change
A TQ AS$ takes the codes stored in list A and enters the equivalent string charac-
ter in A$. With this information, we can write some sample programs.

To arrange the letters of a string in alphabetical order we may first store
the coded values in a list. We then arrange the coded values in numeric order
and convert the numeric list back to a string for printing, as shown in program
ALPHAL.

Similarly, we can reverse the order of the letters in a string with the proce-
dure of program REVRS1. Look particularly at line 150 to see that the B list is
filled in the reverse order from the contents of the A list.

We can compare strings as a means of coding information. For instance,
we can number the days of the week by storing their names as the elements of a
list—the first day stored in the first element, the second day in the second
element, and so on. We then know which number belongs to a particular string
by which subseript we use to obtain a match, as shown in program WEEKA1.

We can compare narte of ctrings hy nroner uge of the CHANCE statoment
and a list for each string being compared. Program WEEKRB1 looks at only the
first three letters of two strings in lines 190, 200, and 210.

*The programs of Sec. 3-5 were run on the General Electric Information
Services time sharing system.
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ALPHA]

94 REM % THIS PRCGRAM OHDERS THE CHARAGTERS
95 HEM OF A STRING

100 DIM ACTS)

110 INPUT AS

120 CHANGEZ AS TO A

22

130 LET L = ACO)

140 FOR I = | TO L-1

150 FOR J = I+1 TO L

150 IF ACL)Y == A0S THEN 200
162

164 REM % IF OUT OF CADFR THREN FXCHANCGE
170 LET X = ACI)

180 LET ACIY = ACJ)

190 LET ACI) = X

200 NEXT J

210 MEXT 1

212

220 CHANGE A TC AS
230 PRINT AS

240 END

RN

AL PHAI

? THE G@UICK BROWN FOX JUMPED OVER THE LAZY DDGS
ABCDDEEEEFGHHIJKLMNCOCCPORRSTTINIVKEYZ

REWRS1

g4 REM % THIS PROGHAM HEYERSES THE

95 REM CHARACTERS GF A STHINEG

100 DIM ACTSIHITS)

110 INPUT A3

120 CHANGE AS TC A

122

124 REM % S5TCHE THE N'MBEH IF CHAMACTRERS IMN L AMD 3003
130 LET L = BLOY = ACQ}

140 FOR I = 1 TO L

150 LET B(L=I+1) = ACI)}
160 MNEXT 1
162

170 CHANGE B TC AS
1RO PRINT AS

120 END
RUN
REVRSI

? GOCD THINGS COME IN SMALL PACKACGFES
SEGAYCAP LLAMS NI EMOC SGNIMT DCCC

WEEKAI

L HEM *% THIS PROFHAM FINDS THE DAY NUMBER
95 REM FRCM THE DAY NAME

100 DIM ARCT)

110 ¥GR D = 1 TC 7

120 READ AS(D)

130 MNEXT D

land  PRINT  "DAY":

150 INPUT BS

I60 FOR D = | TC 7

170 IF RS <= AS(D)} THEM P00
IRD PRINT "DAY # *; D

190 5TCGP

200 MNEXT D
210 PRINT B5; "NCT FCUMND™
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212

2la REM

220 DATA SUNDAY, MOMDAYs TUESDAY, WEDNESDAY
230 DATA THIRSDAY. FRIDAY. SATIRDAY

240  END
RUN
WEEKA L

DAY? TUESDAY
pay # 3

WERKA ]

24 HEM 2 TYIS PROGRAM DIFFFERS FRCH YSEKAL RECANTSE
5 REM 1T CHECKS ONLY THF FIRST THHEE CHARACTEHS
@45 REM OF TWN STRINGS. SEF LIMES 190 10 210

100 DIM ASCTIAC(I)RI9)

102

104 WFM % READ DAYS CF THE WFEK INTC A5 LIST

110 FOR D =1TC 7

120 READ ASCD)
130 NEXT D
132

—= 140 PHINT "DAY":
150 INPUT AS
160 CHANGE BS TC 9

170 FOR I = 1 TO 7

IRD CHANGE ascIy TO A

g2

184 REM # TEST FIHST THRFE CHARACTERS
- 190 FOR K = 1 TO 3
— 200 IF A(M3) <= B(K) THFEM 240
— 210 MEXT K

220 PRINT ASCI3; ™ IS DAY #": 1

230 5TCP

240 MNEXT I

250 PRINT 353 ' NGT FRUND®™

252 .

254 REM

260 DATA  SINDAY. MONDAY. TUFSDAY. WEDMNESDAY
270 0DATA  THIRSDAY. FRIDAY, SAT/IRDAY

2R0 END

RN

WERWAT

DaY? SUMBDAE
SUMDAY IS5 DAY £ 1

We can easily construct a program to alphabetize strings by using exactly
the same approach that we use for sorting numbers except that we use sub-
scripted string arrays instead of subscripted numeric arrays, as shown in program
ORDERS$. (For more about sorting see Sec. 11-3). Note that this program stops
comparing as soon as the list is in order, an optimizing feature which obviously
leads to shorter execution time.

CRDERS

24 REM % THIS PRCOGRAM ALPHAARRTIZES

25 REM A LIST OF STRINGS

6 RFEM THE CHRREMT LIMIT IS5 200 STRINGS
100 DIM LSC200)

102

104 REM * READ DATA
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110 FCR I = 1 Tg 200

120 READ L5€1)

130 IF LStI) = "STOP" THEMN 150

140 MNERT I

pas

150 LET N = 1 = I-1

152

154 REM * THRN S5WITCH OFFs IMCREMEMT N AND SORT
140 LET 5§ = 0

170 LET N = ® =]

IR0 FOR T = 1 TO M

190 IF LECJY <= LECJ+1) THEN 240

192

194 HFEM & EXCHANGE FLEMEMTS AND TIHIRM ON SWITCY
200 LET 55 = L5¢C1)

210 LET LS{JY = L&LI+=1)

220 LET L& I+1Y = 85

230 LET 5 = 1

240 NEXT .

247

244 REM * CHFECK SWITNH D=0FFs 1=0M

250 IF 5 = 1 THEN 150

252

254 REM * THE SWITCH IS5 OFF = LIST IS5 CROERFD
260 FCR X = 1 TC 1

270 PRINT LSC(X?

280 MNEXT X

2R

284 REM

290 DATA WILLIAMS, JUMES, SMITH
300 DATA YDUNGMAN, STOP

310 END

RUM

ORDERS

JONES
SMITH
WILLIAMS
YOUNGMAN

Since strings in the scheme we are now considering may be treated as array
variables, we should realize that we may MAT READ and MAT PRINT string
arrays with all of the same options that these two statements allow for numerics.
That is, we may MAT READ A$(M,N) to redimension the array in the MAT
READ statement. And we may MAT PRINT with semicolon or comma spacing.
Use semicolon spacing with care, however, as this will result in strings being
printed with no spaces. For most systems, quotes are not required when placing
strings in DATA statements unless the string contains a comma or is a numeral.

MAT 5

94 REM * THIS PROGRAM DFMONSTHATFES MAT RFAD
95 REM AND MAT PRINT FCR STRING AZRAYS

iI00 DIM AS(S5,10)

110 READ RaC

120 MAT READ AS(H.C)

130 MAT PRINT AS;

140 PRINT

150 MAT PRINT AR,
152

154 REM

160 DATA 2.3

170 DATA THIS, 15, As SAMPLE, PROIGRAM

180 DATA WITHs STRINGs MAT RFADs AMD. MAT PRINT
190 END
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RN
MAT S

THISISASAMPLEPRIGRAM
WITHSTRINGMAT READANDMAT PRINT

THIS 15 A SaMPLE PRCGHAM

WITH STRINE MAT READ AND MAT PHRINT

Generally speaking, you need not be intimately familiar with the ASCII
code because the ASC() function gives the numeric code for the character in
parentheses. Alternatively, we may write a program to print the ASCII code for
alphanumeric characters stored in a string variable, as shown in program ASC.
Note that lines 130, 150, and 160 are used to store single characters from A$ in
the string variable B$. Some time sharing systems provide the EXT$ function.
The statement B$ = EXT$(AS,LI) would result in the Ith character of A$ being
stored in B$. Some systems use SEG$ for this. You may find numerous other
functions for working with string data available in your system.

ASC

4 REM % THIS PROGRAM PRINTS SAMPLE
25 REM ASCII CODE VALUES
100 DIM ALC9)
110 LET A% = "& :/CLABZ"
120 CHANGE AS TO A
— 130 LET BCOY = 1}
140 FOR X = 1 TO ACO)
—= 150 LET R(1Y = ACK)
— 160 CHANGE B TOD BS
170 PRINT *"*: 85F; "' BC1)
180 MNEXT X
190 END
RUN
ASC

*‘a' 54

rAY AT
€' 40
't 21
'A* &5
A &6
*Zt 90

Summary of Sec. 3-b

Tl s mbuimas manrr ko cbowad ivm nwensre AGIT TV emanifiae a ofwine ofavad Iin
PR AAGCAY OLALILEEE Liflh) A OULFLu e GEL LAALALT Uy LA A SpTCuEAATL e LVAdiag Lvess s sas

row I, column J of a string array. We may consider individual characters of the
string by using CHANGE, which places equivalent numeric codes for the charac-
ters of the string in the positions of a numeric list corresponding to the position
of the character in the string. In addition, the zero position of the list contains
the number of characters in the string.
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Problems for Sec. 3-b

1)
2)

3)

4)

Modify program ALPHA1 to eliminate duplications.

Suppose you have typed a large quantity of data consisting of peoples
names, first name first, and you suddenly find that you should have
typed them last name first and in alphabetical order. Write a program
to make the change. Your program should work whether or not you
used middle initials.

Write a program to convert a string to a numeric (even though your
computer may provide a function for this).

Write a program to accept two six-digit integers, multiply them digit
by digit, and print the exact product.

5) Write a program to accept two numbers as strings not limited to six

6)

7)

8)

digits, find the exact product, and print it.

Write a program to generate license plate number and letter combina-
tions. Establish a pattern, such as six characters with the first three
alphabetic and the last three numeric. Select a few at random to print.
Write a program to generate ‘words’ where vowels and consonants
alternate. Print a few at random.

In comparing strings for order, BASIC compares the two strings one
character at a time. So for nonequal strings, the first nonequal charac-
ters determine order. Therefore, when comparing such strings as ‘60’
and ‘100,” BASIC will evaluate ‘60’ as greater then ‘100." Write a pro-
gram to overcome this flaw. Be sure to also provide for proper order-
ing of strings like ‘A6’ and ‘A10.’
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4-1 Introduction

There are tremendous differences in file handling from system to system.
Files give a tremendous extension of power to the BASIC language in two sig-
nificant ways. First, the use of files allows us to handle far more data than we
could ever store in DATA statements of a single program because of computer
space limitations. Second, the use of files allows us to process the same data
using several different programs. We might use one program only to enter data
into a file. Another program might be used to make corrections. Another might
be used to extract a particular piece of information, and yet another might be
used to modify the data in the files. And so on and so on. There is no limit to
the number of programs which may work on the data in a single file or group of
files.

We have chosen to present here file programs on two different systems.
You will want to determine which one resembles your system before attempting
to write programs. The systems chosen here are Hewlett Packard and General
Electric since both are in common use and differ in many ways.

4-2 Hewlett Packard Files
Serial Data Files

Serial files have the advantage that they are quite efficient in the use of
computer storage space. We simply print entry after entry until all desired
entries are in the file or files. Serial files have the disadvantage that we cannot
easily go into the file to change an existing entry or insert a new entry. To do
this to a serial file. we must copv the entire contents into another file making
the changes on the way and then copy the corrected data back into the original
file. Naturally, this is a serious problem only if we are working with a large
amount of data.

Let us construct an inventory file and work on it. Suppose that for each
item of inventory we have a part name, a part number, a price, and a quantity.

A6
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Program ENTER1 will enter an initial set of inventory data into a file called
INVO1.

ENTERI

24 REM % THIS PROGRAM FENTEZS DATA [¥ AN EMPTY FILE

190 FILES INVOI

110 DIM PS[295)

120 READ PSsNsPs0

130 IF N=0 THEN 240

134 REM #+ LINFE 140 PRINTS ITEM AFTEXS I[TEM CLOSE PAGKED

135 wWFM  IN THE FILFE MAYING 1T SERIAL I8 STRUCTIRE

140 PRINT #1:PSsNaP, 0

150 GOTO 120

194 REM

200 DATA "FRAMIS"- 1001, 2. 3 1800 " INGE T 1002, 4. 41100

210 DATA "AEGILATIR S 1003, 348,900, *SLICNEP s 1004 « 04,9000
220 DATA “FRASMALATI 2" 1009 19«49 SO0 "HATSIT > 1304 10«98, 3000
230 DATA "STOP".0:.0.9

240 END

I

TNTER]

DONE

Line 100 is necessary to make file INVO1 available fo the present program.
The file must be in existence at the time the program is run. (Some HP systems
provide for ASSIGNing files during program execution.) In this case, we typed
the executive command QPEN-INVO1,50 to create the file. That command
specified 50 discrete storage blocks referred to as “sectors” or “records.” Each
of our 50 records will hold as many as 32 numerics, where one numeric occu-
pies the same space as 4 string characters. We must add one string character each
for delimiters at the beginning and end of a string and add one if the number of
characters in the string is odd. The record size varies from computer to com-
puter, and some computers allow the user to specify its length. The maximum
number of records allowed varies also.

Line 120 reads from program data statements in the usual way.

Line 130 checks for dummy data.

Line 140 prints the data as read in line 120 but to the external file instead
of to the paper on the terminal in front of us. The #1 is used because the file we
use is the first named in the files statement. If we want to print to the second
file named in a files statement, then we use PRINT #2. We can also use PRINT
#F where F is the file number. File names are separated by commas in the

FILES statement. For example,
100 FILES FILE1,FILE2 FILE3

makes three files available to the program in which this statement appears. Sys-
tems vary as to the number of files that may be named in a files statement. Most
allow at least 8.

This is the very first time that we have run a program which failed to print
anything and yet did something useful. Generally speaking, we should print
something to the terminal. To prove that the data really is in that file, we pre-
sent program READ to read the data out of file INVO1.
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= AD

9.4 ST ok ITADS INJENTISY DATA F0M A FILE
100 FILES INUM
1111 niM PSC251
120 PITYT "PAIT NAME", "PAIT ¥, "PATCE "2 JANTITY"
124 ITM o+ READ DA FACM THE FILE
— 130 REAN #1iP5sNs2s)
134 FFEVM & PHINT THT DATa TO THT TRIMIMAL
140 PRIMT PSaNsPs)
1590 ROTO 137
- |51} oy

<4

a0

PanT NAME [ETAE I RATGE DINITTTY
Faavls 1771 2.1 1409
wIDRET |an=2 Ae Al 1191
REE N_ATOH LK e a4 g0
SLICNEP 1004 « 04 3000
FRASMALATOR 1005 18. 49 300
WHATSIT 1006 10.98 3000

END-0F-FILE/END OF RECORD IN LINE 130

We get all of the information from the file and an error message to boot.
We may avoid the error message by inserting an IF END statement. We will use
105 IF END #1 THEN 160. This statement, executed just once, sets a flag so
that if line 130 tries to read nonexistent data or tries o read past the physical
end of the file, the computer will next execute line 160. Alternatively, of
course, we could have placed our own flag in the file by printing dummy data
into the file at the end of the real data.

— 105 IF END #1 THEN 150

RN

READI

PART MNAME PART # PRICE IANTITY
FRaMIS 1001 2.3 1800
WIDGET 1002 4a8 1100
REG'JLATOR 1003 3. 48 F00
SLICNEPR 1004 « 04 F000
FRASMALATOR 1005 19. 49 200
WHATSIT 1006 10«98 anao

We can now sit down and dream up little programs to process the data in
file INVO1. We might want to know the number of parts in inventory. You can
easily verify that program READ2 does that.

READZ2

94 REM * THIS PROGRAM FINDS THE TOTAL

55 REM NUMBER OF PARTS IM FILE IMVDI

100 FILES INVOL

110 DIM PSL251]

120 LET T1=0

130 IF END #1 THEN 170

140 READ #13P3,N.P.0

144 REM * RUNNING TOTAL CALCULATED IN LINE 150
150 LET T=T+0

160 GCTO 140
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170 PRINT T3"PARTS"
180 END

RN

READZ

15600 PARTS

It is left as an exercise for the reader to find the total value of inventory
with a program.

Now suppose we want to add inventory to INVO1. Using ENTER1 again
with different data will simply replace what is in INVO1 with new data. (Actu-
ally, the new data might replace only part of what is already in there, and this
result has other complications.) What we must do is read out to the end of the
data already in the file and then begin printing new data to the file at that point,
as shown in program ENTER2.

Note that program ENTERZ2 may also be used to enter data into an empty
file. We do not need a different program for this purpose. It is a good practice
to provide for printed output to the terminal in a program of this kind. We run
READI again to make sure that the new data was properly added to the end of
the file.

ENTERZ

4 REM * THIS PROGRAM ENTERS DATA INTO aM EMPTY OR
9% REM PARTIALLY FILLED SERIAL FILE
100 FILES INVOI]
110 DIM PSLR25):05L25%]
114 REM * READ TO THE END OF EXISTING DATA
— 20 IF EMD #1 THEN 150
130 READ #1:1PE.NsP:0
140 GOTO 130
l44 REM % ENTER NEW DATA INTO THE FILE
—= 150 READ PEsNs:Ps0
140 IF N=0 THEN 200
170 LET GE=FPS5
180 PRINT #1iP5:sNaPsQ
190 GATa 150
200 PRINT "LAST ITEM IS "G5
204 REM
210 DATA “"LIFTER™: 1007, .29 10000, "DROPPER" 1008, .89, 1500
220 DATA "WHOSIT",1009: 16, 12, "HOLODER"» 101024751141
230 DATA "STOP"s0.0,0

240 END
RN
ENTER2

LAST ITEm 15 HOLDER

RN

READ1

PART MNAME PART # FRICE 0IANTITY
FRAMI S 1001 2.3 1800
WIDGET 1002 Qe A 1100
REGULATOR 1003 3. 48 00
SLICNEP 1004 « 04 2000
FRASMALATOR 1005 18.49 200
WHATSIT 1006 10.98 3000
LIFTER 1007 +29 10000
DROPPER 1008 -9 1500
WHBSIT 1009 16 12

HOLDER 1010 « 47 114t
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The next area we might get into is that of making changes in file INVO1
according to business activity. We can do this with the procedures mentioned
earlier, that is, by copying the entire contents of the file into another file,
making changes on the way. However, if the amount of data becomes very
great, the time lost by this method tends to be more important than the space
saved by using serial files. Furthermore, there are many devices for utilizing ran-
dom access files more efficiently. So let’s talk about random access files.

Random Access Files

Files are serial or random access according to the structure the program-
mer creates for them. In fact, the same file may be treated as serial by one
program and random access by another. File INVO1 was serial because we
printed the data in serially. We may instead use the discrete records of the file
for specifically arranged data.

In our inventory example we might consider placing one inventory ifem on
one record. Since most of our sample data are equivalent to about 5 numerics,
this would be wasteful of computer space. However, in practice, an item of in-
ventory will contain more data, and thus it is often wise to allow more file space
than is needed at first. Then we will not have to restructure the entire storage
plan as we might if we had placed several inventory items on a single record.
In fact, if programmers anticipate that additional data may be required, they
go one step further. They incorporate the extra variables into all programs,
using zeros for numbers and empty or null strings for anticipated alphameric
data. Then the existing programs will carry all of the variables needed and will
not have to be rewritten to accommodate the new data structure. Of course,
changes will have to be made to actually utilize the newly activated variables
later. Moreover, in some situations we can use space more efficiently by storing
numerics in one file and strings in another with a scheme to link the data from
the two files to each other. That way numeric data may be MAT READ out
of the file for very easy processing.

ENTER3

94 REM % THIS PROGRAM EMTERS DATA INTO AN EMPTY
95 REM FILE IN RANDDM ACCESS FORMAT
100 FILES INVO2
110 DIM P3L23]
— 120 LET R=0
130 READ PS,N:P:0
140 IF N=0 THEN 190
— 150 LET R=R+1
-— 160 READ #1sR
— 170 PRINT #1:PS.M:P.0
180 GOT@ 130
10 PRINT RI"RECORDS USED™

194 REM

ann QATA STAAMTCSH. 1AN0T. 2. A 100 MWTRGE T . 1002, 4. 4. 1100

210 DATA "REGULATOR™,1003s3.48,900,"SLICNEP"» 1004, 04,9000

220 DATA “FRASMALATER™: 1005, 18.4%,800,"WHATSIT"» 1006, 1098, 3000

230 DATA “STOP":0:0.0

240 END
RUM
ENTER3

6 RECORDS USED
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To keep things simple, suppose that we look at a program to place one
inventory item per record, such as program ENTER3, which PRINTSs inventory
data into file INVO2.

Note that we have the computer print the number of records used to
assure us that the program has performed as expected. Lines 120 and 150 keep
track of the record to which we are going to print. Statement 160 sets a pointer
in the file to the beginning of record R. Statement 170 prints data to the file
beginning at the pointer. The pair of statements 160 and 170 may be replaced
with the single statement, PRINT #1,R;P$,N,P,Q, the difference between the
two being that if 170 attempts to print more than will fit on the record, the
excess goes on the next record, whereas PRINT #1 R;P$,N,P,Q will result in an
error message if the data to be printed will not fit on record R.

Now program READ1 may still be used to read the contents of INVO2
by changing line 100 to FILES INVO2.

In order to add data to the end of file INVO2, we have several techniques
available to us. One is exactly analogous to that for serial files. Another uses
the TYP( ) function. The TYP( ) funection ‘looks’ at the next item of informa-
tion in a file and identifies it as follows:

TYP(N) = 1 Next item is a numeric
TYP(N) = 2 Next item is a string
TYP(N) = 3 Next item is end of file
TYP(N) = 4 Next item is end of record

where N is the position that the file name occupies in the FILES statement. If
N is positive, the value 4 is never returned; to detect end of record, N must be
negative.

The TYP( ) function is used in line 150 of program ENTER4 to determine

ENTERA4

94 REM = THIS PROGRAM ENTERS DATA IMN A PARTIALLY FILLED
95 REM FILE IN RANDOM ACCESS FORM
100 FILES INVOZ2
110 DImM PSL25]
120 LET R=0
130 LET R=R+1
140 READ #1:R
144 REM = LINE 150 DIRECTS THE COMPUTER TO LINE
145 REM 130 IF WE ARE MNOT AT THE END OF DATA
— 150 IF TYP({1) <= 3 THEN 130
160 LET R=R=1
170 READ PSsNsP:.Q
180 IF N=0 THEN 230
190 LET R=R+1
200 READ #1.R
210 PRINT #11P5:NsP,0Q
220 GOTO 170
230 PRINT RI"™RECORDS "SED'
234 REM
240 DATA "LIFTER™: 100729, 10000,"0ROPPER" » 1008 .89, 1500
250 DATA "WHOASIT", 1009, 16 12"HOLDER"» 1010s.47,1141
260 DATA "STOP":0,0.0

270 END
RIIN
ENTER4

10 RECORDS 1JSED
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the first record that has an end of file (sometimes referred to as EOF) marker
and begin printing the new data on that record. Here again, as a check on the
program, we have the computer tell us how many records have been used.

Now we are in a position to explore some possibilities for editing the ran-
dom access file. Note that we selected part numbers, so that if we subtract
1000, we get the number of the record on which that part will be found. Often
in data processing it is helpful to organize data so that something about the data
tells us where to find it. This method is sometimes called “content addressing.”
It could consist of an extra item of data for file management purposes only.

Let’s write a program that allows us to go into the inventory file and
change anything but the part number. We do this with program UPDATE. The
part number is requested in line 150, and the part is found in line 200, Line
210 prints the part name and offers to make a change possible. The same is
done for the price in line 260 and for the quantity in line 310. When all infor-
mation is correct, it is re-entered into the file in line 360. The IF END state-
ment in line 130 provides for attempting to access a nonexistent record or for
attempting to access a record that has no data on it.

LJPDATE

94 REM # THIS PROGRAM EDITS AN INVENTORY FILE
100 FILES INVOZ
110 DIM PEL251.,A503]
120 PRINT "“INPUT PART WJUMBER ZERO TO OQuIT"
— 130 IF END #1 THEN 380
140 PRINT
—= 150 PRINT "PART #'"1
160 INPUT M1
170 IF N1 <= INTCN1) THEN 150
180 IF Wi=0 THEN B&0
184 REM * CALCULATE RECORD FROM PART NUMBER
190 LET R=N1-1000
— 200 READ #1:RIP5:,NsP:0Q
210 PRINT PE:
220 GOSYBE BOO
230 IF AS="YES" THEN 2&0
240 PRINT "CHANGE TO":
250 INPUT PE
— 260 PRINT "PRICE = B"3Pi
270 GDSUB 8500
280 I[F AS="YES"™ THEN 310
290 PRINT "CHANGE TO %'
J00 INPUT P
— 310 PRINT "QTY ="101%
320  GOSUB 8OO
330 IF As%="YES" THEM 360
340 PRINT "CHANGE TO"3
aso  INPUT O
354 REM #% PRINT CORRECTED INFORMATION BACK TO THE FILE
— 360 PRINT #1,RiPS:N.Ps0Q
370 GETOe 140
380 PRIMT "NO SIICH PART #"
390 GATO 140
784 REM # YES - NO E
790 PRINT "YES OR NO*™
B00 PRIMNT "™ OK":
B10 INPUT AS
B20 IF AS="YES'" THEN B850
B30 IF AS="NO" THEN BSO
Bgan GATA 790
AS50 RETURN
B60 END
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RUN
JPDATE

INPUT PART NUMBER ZERO TO QUIT

PART #21001
FRAMIS OK?YES

PRICE = & 2.2 OKNDE
CHANGE T@ £73.24
ary = 1R0OQ OK?YES

PART #71003

REGULATER OX?YES

PRICE = 5 3.48 OK?YES
aTY = 900 BK?ND

CHANGE T@?878

PART #7270

A run of READI1 confirms that the proper changes were indeed made in
the file.

100 FILES INVOZ2

RUN

READI1

PART NAME FART # FRICE QUANTITY
FRAMIS 1001 J. 24 1809
WIDGET 1092 da g 1100
REG'ILATOR 1003 ds 48 BTH
SLICNEP 1004 04 000
FRASMALATOR 1005 18.49 800
WHATSIT 1005 10.98 3000
LIFTER 1007 29 10003
DROPFPER 1003 B9 1500
WHASIT 1009 16 12
HALDER 1010 « 87 1141

Summary of Sec. 4-2

We have seen that files are serial or random access depending only on the
approach that a program takes in printing data to or reading data from the file.
In order to treat a file as random access, the data must be placed so that its lo-
cation within a record is known. Files are made available to a program with the
FILES statement. We can detect the end of data or physical end of file with the
IF END statement. Data is entered into a file with the PRINT # statement and
read from a file with the READ # statement. In addition, we may determine the
nature of the next information in the file through use of the TYP( ) function.
A file pointer can be set to the beginning of record R of file F with READ #F R
without reading any data.

Problems for Sec. 4-2

1) Arrange 10 or more strings in alphabetical order by placing them one
to a record in a file.

2) Write a program to print the contents of a file without knowing the
structure of the file.

3) Write a program to copy the contents of one file into another. See if
yvou can provide for copving ‘holes’ too.
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4) Write a program to find the first empty record and determine the num-
ber of records in the file,

4-3 General Electric Files

We actually are going to talk about external data files in this section, for
in fact, programs are files too, and the data contained in DATA statements of a
program are referred to as “internal files.”” The creation and use of data files can
be a very complex business indeed. It is the purpose of this section to present
some of the data file concepts and provide sufficient examples so that the reader
will be able to use the power of files in future programming. (Our examples will
of necessity handle only small amounts of data, as it would not be practical to
print the entire contents of very large files.)

Files of two types are available to BASIC programs. They are called
“ASCII files” and “BINARY files.” ASCII files are also referred to as “Teletype
files.” This term reflects the fact that they may be created by typing data
directly at the terminal using line numbers exactly as a program is typed at the
terminal and that they may be listed directly to the terminal just as a program
may be listed to the terminal. ASCII files may also be used by programs. Binary
files may be used only under program control and may not be written to or read
from the terminal.

ASCII Files

Data may be typed directly to the terminal. All we have to do is create a
file with the command NEW and begin typing our data as if it were a program.
Each line must have a line number followed by a space followed by our data
separated by commas. String and numeric data may be intermixed. Lines may
be corrected by retyping them. Lines may be deleted by typing the line number
followed by return. For an ASCII file to be usable at some later time, it must be
saved by typing the command SAVE.

To demonstrate some of the uses of ASCII files, we have selected the
names of the ten largest cities in the U.S. according to the 1960 census, their
rank, and the percentage change in population from 1960 io 1970. File CITY
has been created, the data typed to the terminal, and the file saved as described
above. Since this is a listable file, we do so below,

LIST CITY
CITY

100 BALTIMORE MDsHa-4+7

110 CHICAGD ILL,2s=6.3

120 CLEVELAND @HIOsBs-15.7
130 DETREIT MICH»S»=10.6

140 HEUSTON TEXAS,T»29.3

150 LPS AMGELES CALIF.3,12.2
160 NEW YORH MNaYaslas=s1

170 PHILADELPHIA PA«sas=-3+8
180 5T L@UIS MO»10,-1%9

120 HﬁSHINETHN DiCesFs=4.8

We may now write programs to access the data in file CITY. Probably the
simplest useful task we could perform would be to print the contents of the file
under program control.
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In order to make the file available to the program we use the FILES state-
ment in line 100 of program READCITY. We may read data from the external
file in a manner similar to that with which we read data from internal files. To
read from the file named in the files statement, we use READ #1 followed by
the list of variables we want. This is done in line 120 of the program. Every
time such a statement is executed, a pointer is moved in the file so that the next
read statement begins to read at the pointer. Initially, all file pointers are at the
very beginning of the file. Note that we could use READ #0 to read from the
data statement of the program. Since it is possible to attempt to read past the
end of the data in the file, we use the [F MQRE statement in line 140. As long
as there is more data in the file, line 140 in our program will direct the computer
to 120. When the data has all been read, line 140 will test false and control
passes to line 150 in this case.

READCITY

94 REM # THIS PROGRAM READS THE CONTEMTS OF FILE CITY
— 100 FILES CITY

110 PRINT "CITY"™1 TABC20)3 "RAMK'1 TAB(25)3 "% GROWTH"
~— |20 READ #1, CEsRsG

130 PRINT C3%3 TAB(20): R: TAB(25)r G

— 140 IF MORE #t THEN 120
150 END
RUN
READCITY
CITY RANK I GROWTH
BALTIM@RE MD 6 =4.7
CHICAGD ILL 2 “6+3
CLEVELAND 0HIO B =15.7
DETREIT MICH 5 ~10.6
HOUSTON TEXAS 7 29.3
LBS ANGELES CALIF 3 2.2
MEW YORK MaY. 1 =0.1
PHILADELPHIA PA. 4 =3.8
5T LOUIS MO g =19
WASHINGTON D.C. 9 =4.8

It turns out that ASCII files are always sequential (serial) in format. This
means that data must be accessed by reading from the first set of data step by
step until the desired information is obtained. There is no way to begin at some
intermediate point of the file. We can, however, add data to the end of the file
with an append statement. APPEND #1 sets the file pointer to the end of data in
the file and prepares the file for writing. For any data processing that requires
tabulating information from each line of data, the sequential nature of ASCII
files is ideal. Furthermore, ASCII files are very easy to edit from the keyboard,
as described earlier. Having seen how to read an ASCII file, we will next see how
to write to such a file with a program.

Let’s write a program to transfer the data from file CITY to file CITY1,
rearranging the data so that the order in which the cities appear in the new file
will be according to decreasing percentage growth. One way to create the new
file is with the NEW command. Once you have named the file, type 100, press
the space bar, then the return key, and save the file. Now we have to provide

access to two files in one program. This is done with the FILES statement. Up
o aiocht filee mav he namad in a FTT RS ctatamiant ae lang ac fhatw aro canavaford
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with semicolons. These files may then be designated by number according to
the order in which they are named in the FILES statement, as shown by line 100
of program GRQWTH.

Since it is easy to sort numbers in a one-dimensional list, the strategy we
will use here is to pass through the file once, entering the percentage growth for
each city in the array A as we go. Thus A(1) becomes the percentage growth of

GROWTH
94 REM * THIS PROGRAM ARRANGES TEN CITIES ACCORDING TO
95 REM GROWTH RATE USING TWO SEQUENTIAL FILES
100 FILES CITYs CITY)

110 DIM AC10), BC10)

112

114 REM * ENTER GROWTH DATA IN ARRAY A AND ORIGINAL
115 REM POSITION IN FILE CITY IN ARRAY B8
120 FOR 1 = | TO 10

130 READ #1, NS,R»G

140 LET ACI) = G

150 LET BCI) = 1

160 NEXT I

162

164 REM * BEGINNING OF SORT

170 LET N = 10

1B0 LET S = 0O

190 FBR I = 1 TO N-1

200 IF AClY == ACI+1) THEN 280

202

204 REM * EXCHANGE QUT OF ORDER DATA

205 REM AND TURN SWITCH ON

210 LET S1 = ACI)

220 LET ACI) = ACI+1)

230 LET ACI+1) = SI

240 LET 51 = BtI)

250 LET BCI> = B(I+1)

260 LET BCI+1) = SI

270 LET 8= 1

280 NEXT 1

282

290 LET N = N-1

300 IF § = 1 THEN 180

302

304 REM # GROWTH RATE IS IN ORDER NOW PRINT
305 REM DATA IN FILE CITY1

310  SCRATCH #2

320 FOR 1 = 1 TO 10

330 RESTGRE #1

340 FOR J = 1 To BCI)

350 READ #1» NS,R,G

360 NEXT J

362

370 WRITE #2, NS$:R.G

380 PRINT NS

390 NEXT I

392

400 END

RN

GROWTH

HOLISTUN TEXAS
LOS ANGELES CALIF

NEW

YORK NaY.

PHILADELFHIA PA.
BALTIMORE ™D
WASHINGTEN D-C.
CHICAGE ILL
DETROLIT MICH
CLEVELAND CHIO

Sl
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the first city in the file and A(10) becomes the percentage growth of the tenth
city in the file. Entering is done in lines 120 through 160. We store the original
position in a B array.

Now that the list is in order we know that whatever city has the percentage
growth stored in A(1) goes first in our second file and whatever city has the
growth rate in A(I) goes in the Ith position of file CITY1. However, in order to
prepare a file for printing, we must use the SCRATCH statement. That state-
ment erases whatever is in a file, prepares it for write mode, and sets the file
pointer at the beginning of the file. Since we want to write to the second file
in our FILES statement, we use SCRATCH #2 in line 310. The next complica-
tion we face is that the pointer in file CITY is now at the end of the data. We
move the pointer to the beginning of the file and keep the file in read mode with
the RESTOQRE statement in line 330. RESTQRE #N acts on the Nth file in the
FILES statement. The RESTQRE statement must be executed every time we
want to reread the file. The actual entry of the data to file CITY1 takes place
in line 370 of program GROWTH when we have found the city with the growth
rate in the Ith location of the arranged list A by reading to that city’s position
in the original file as determined by list B.

We now run READCITY on file CITY1 to confirm the contents of that

file.
100 FILES CITYIL
RUM
READCITY
CITY RANK % GROWTH
HOUSTON TEXAS 7 29«3
LB@S AMNGELES CALIF 3 12.2
NEW YORK MN+Y. 1 =0l
PHILADELPHIA PA. 4 =3. 8
BALTIMERE ™MD & =47
WASHIMNGTAN D.Cs 9 =4.8
CHICAGE ILL 2 -6+ 3
DETRAIT MICH 5 =105
CLEVELAND QHID 53 =157
ST LOUIS ™M@ 10 =19
Binary Files

Binary files are available only under program control. Whereas ASCII files
may be only sequential, binary files may be either sequential or random access.
Random access means that any data item may be accessed without reading all
data from the beginning of the file up to that data item and that data may be
written to any point in the file directly in the same manner.

An ASCII file or a binary file may be used as a sequential file as deter-
mined by the first WRITE statement which applies to that file after the file is
made available for write mode by the SCRATCH statement. To work with a
file as a sequential binary file simply use a colon (:) where the pound sign (#)
occurs in the READ, RESTQRE, SCRATCH, IF MORE and WRITE statements.
The distinetion between ASCII and binary files, regardless of sequentiality or
randomness, has to do with the code that is used to store the data on some
device peripheral to the computer, and does not generally effect the programmer

atk tha lasral AF memmsarariaag 1w 1B A QTN
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Random Access Files

Thus far we have not been concerned with how much space our data has
occupied because our files simply expanded to fit whatever we had written to
the file. We are not likely to exceed the maximum space available in a single file
for some time. However, since random access files must have a structure allow-
ing data to be placed in physical locations that will be known to us for future
access, space requirements for data storage become important. The structure of
a random access file is a little like that of a two-dimensional array except that in
a file we may intermix numeric and string data. In some situations, however, we
may choose to place numeric data in one file or group of files and related string
data in another file or group of files, with a scheme for relating the two
structures.

Random access files may be segmented into components called “records.”
We may assign the amount of storage space in each record at the time we create
the file. Storage space is measured in computer words, and storage is required
for data as follows:

1 word per numeric
1 word per 4 string characters or fraction thereof
1 word for control per string for internal computer purposes.

For example we could store 120 numerics in any file in which the product of the
number of records and the number of words per record is at least 120. Since we
are going to have control over the space in each record, we generally select some
record size that is appropriate to our data structure, just as we usually dimension
an array to fit the structure of the data we intend to store in it.

Let us begin by writing 10 random numbers to a random access file, proving
that the numbers are really there and then arranging them in increasing order by
using the random accessibility of the file to do the sorting.

First, the file must exist. The system command CREATE is required here.
Let’s provide two records which will handle 10 words each. Then our ten num-
bers will all fit on the first record. The executive command,

CRE RAND,(RAN(10,2))

accomplishes this. The numbers in parentheses specify the number of words per
record first and the number of records second. Program RNDENTER is identi-
cal to a program that would write ten random numbers to an ASCII file except
that a colon appears where a pound sign would appear in a program writing to a
sequential file and no SCRATCH statement is required.

RNMDEMTER

24 REM #* THIS PROGRAYM WRITES 10 RANDOM NUMBERS
95 REM TO A RANDOM ACCESS FILE

100 FILES RAND

110 RANDOMIZE

120 FOR I = 1 TO 10
130 WRITE :1. RND
140 MNEXT I

142

150 END

RUIN
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Note that the program generates no printed output. (It is not good general
procedure to write programs with no visible output except to prove, as with pro-
gram RNDENTER, that the program did in fact do something invisible.) We
now need a program to read file RAND. Program RNDREAD does that.

RMNDREAD

94 REM #* THIS PROGRAM READS NUMERICS FROM A&
25 REM RANDOM ACCESS FILE SEDUJENTIALLY
100 FILES RAMD
110 READ 1, A
— 120 IF A=0 THEN 150
130 PRINT A
140 G@TO 110
150 END
RUMN
RMNDAR= AD

0.220289
0.257207
0.705748
O0«T17468
O« 143835
0. 349935
0.704994
0.649726
0.974231
0.B52828

RNDREAD is like a program to read a sequential file, with one important
difference. Look at line 120. Since we didn’t put any zero values into the file,
why test for zero? We would have used the IF MPRE statement in an ASCII
file. IF MOQRE does not determine an end of data condition in a random access
file effectively because the CREATE command filled the file with binary zeros.
The SCRATCH statement will have the same effect. Thus we are able to termi-
nate our little program by reading values of A until we come up with zero.
IF MORE does determine whether or not we have reached the physical end of
the file, however. Thus in our file RAND, if we had read 20 numerics, then IF
M@RE :1 would fest false. A companion statement IF END :1 would test true
in this condition. We should be beginning to see, and will soon see even more
clearly, that the total structure of the data storage is the complete responsibility
of the programmer. We must know when we have reached the end of our real
data. We may want to count the number of data items or we may want to place
dummy data at the end of the file just as we often do for data statements of a
program.

Now let us arrange the numbers of file RAND in ascending order by
operating on the data within the file as we go. The basic sorting scheme is ex-
actly like that we just used for sorting cities and that we will use again in chapter
eleven. The only difference is that we are now comparing numbers that have
addresses in a file instead of in a list. In order to set the file pointer to the
proper location of our file, we use the SETW statement. SETW N T X moves
the pointer in file N to the beginning of the Xth word of storage counting from
the beginning of the file. This operation is totally independent of the number of
words per record. Thus if a file has nine words per record. then SETW N TO 12
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file number N. Once the pointer is set, the next read or write statement begins
reading or writing from that point. In our problem we will be reading a single
numeric value.

In program RNDSQRT, line 130 sets the pointer to the Ith word of the
file so that the [th number may be read by line 140. Line 150 sets the pointer
to the I+1st word so that the I+1st number may be read out. If they are in the
desired order, line 170 directs the computer to line 230, which causes the next
pair of adjacent numbers to be tested. Should the test in line 170 fail lines 180

ANDSORT

94 REM * THIS PROGRAM ARRANGES 10 NUMBERS IN
95 REM ORDER IN A RANDOM ACCESS FILE

100 FILES RAND

110 LET 5 = 0

120 FBGR I = 1 TO 9

—= 130 SETW 1 TO I

— 140 READ 1. A

— 150 SETW 1 TO I+1
160 READ 1, B

— 170 IF A == B THEM 230
172
174 REM #* EXCHANGE QUT OF QRDER DATA
180 SETW 1 TG 1

_.f 190 WRITE :1, B

200 SETW 1 TO I+1
210 WRITE 21s A
220 LET 5 = 1

—=230 MNEXT I
232

— 240 IF 5 = 1 THEM 110
250 PRINT *"0DONE®
260 END
RUN
RNDSORT
DONE

through 210, exchange the positions that the two values occupied in the file.
Then a switch is turned on by setting S equal to one. When the computer has
passed through the list, we test in line 240 to see if any exchanges have been
made. If there have been no exchanges, then the numbers are in order and we
have the computer print “D@NE”. In the present situation, we rerun
RNDREAD to verify that the program did in fact sort the file.

RUN
RMDREAD

0« 143835
0.220289
0.257207
0.349935
0.649T726
DsT0a%94
0.705748
0.T17468
0.352828
0.974231

For our final example, let us take the data in the ASCII file CITY and

s dhmny dde e o wmnmidmen s Bla Ma Aa Hlats sermn mwaseod mlam sroser sewenkssiier so e
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must be able to specify the position of all data in the file exactly. It is usually
convenient to group the data that belongs together on a single record. In our
problem we have three variables: the city name, its rank, and its percentage
growth. The rank and percentage growth are both numerics and so occupy one
word of computer storage each. The city names are strings of different lengths
and so require different amounts of space. A reasonable approach is to allow
space for the largest string and dimension our file accordingly. Clearly LOS
ANGELES CALIF is the longest string we use. The string has four groups of
four characters and one character left over. That requires five words. We must
add one word for internal confrol plus the two for the numeries. That puts the
required space at eight words of storage per city. So we must CREATE a file
with at least 10 records at eight words per record. We do this with

CRE CITYZ2,(RAN(8,10))

In order to set the file pointer to the beginning of the Ith record where the
records contain eight words each, all we have to do is point 8(I-1)+1 words from
the beginning of the file, as shown in line 140 of program XFER. This program
transfers the data from ASCII file CITY to random access file CITY2. Notice
that there is no difficulty whatever in accessing two different kinds of file with
the same program.

XKFER

94 REM #* THIS PROGRAM COPIES DATA FROM ASCII FILE CITY
95 REM TO RANDOM ACCESS FILE CITYZ2

100 FILES CITYs CITY2

110 LET I = 0O

120 READ #1s CS5:RsG

130 LET I = I+1

132

134 REM * THE FORMULA IN LINE 140 SETS THE

135 REM PDINTER TO THE ITH RECORD IN THE FILE
140 SETW 2 T2 B®({(I-11)+1

150 WRITE 12, C5»RG

1580 IF MBRE #1 THEN 120
170 PRINT I "ENTRIES™
180 END
RLUIM
XFER

10 ENTRIES

Our final task is to arrange the cities according to rank without using a
second file and without using the technique of saving the numbers to be sorted
in an array. This program, program RANK, is very similar to RNDSQRT except
that the pointer is a formula and the read and write statements work with three
variables instead of one.

RANK

94 REM * THIS PROGRAM ORDERS CITIES ACCORDING TO RANK
25 REM IN A RANDOM ACCESS FILE

100 FILES CITY2

110 LET W1 = 0O

120 LET N 10

130 LET 5 o
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1 TO B8%(I-13+1
t1s CS54RG
1 T 8%I=+l
t1s ClE:,R1:G1

IF R == R1 THEN 250

62
150 SETHW
160 READ
170 SETW
180 READ
190
192
194 REM
200 SETW
210 WRIT
220 SETW
230 WRIT
240 LET
250 MNEXT I
252
260 LET N =
270 LET N1
280 IF S
282
290 PRINT
300 PRINT
310 END
RUMN
RANK

* EXCHAMGE OUT OF QORDER DATA
1 T B(I=1)+1

E $1s C15sR1:G1
1 T2 B#%l+]

E 21s C5sRsG

5 =1

M=1
= NI+l]
= | THEN 130

“CITIES DRDERED ON RANK"
“IN'3 N1 "PASSES"

CITIES DRDERED ON RANK
IN T PASSES

Program REDCITY 2 tabulates the results directly from the file.

REDCITY2

74 REM * THIS FPROGRAM READS THE CONTENTS OF FILE CITY2
95 REM AMD PRIMTS T2 THE TERMINAL

100 FILES CITY2
110 PRINT "CITY": TABC(203) "RANK'™3 TAB(25): "% GROWTH"

120 FBR I = 1

T8 1

0

130 SETW !} T@ B*(I-1)+1}
— 140 READ 1ls CE,RsG
— 150 PRINT CEF TABC(20): Ry TAB(263F G

160 MNEXT I
162

170 END
RUN
REDCITYZ2

CITY
MEW YERK N.Y.
CHICAGE ILL

L8S ANGELES CALIF
PHILADELPHIA PA.

DETROIT MICH
BALTIMBRE MD
HAUSTEN TEXAS
CLEVELAND 2HI18
WASHINGTCN D.C.
5T LBUIS M2

Summary of Sec. 4-3

RAMK & GROWTH
=01
=63

2.2
-3.8
=10.6
-4.7
29+ 3
'IS-?
-4.8
o =19

=0 00 =~ O LA B LD e

ASCII and binary files are used to store and to arrange both string and
numeric data. We have seen that ASCII files can be accessed either by the fer-
minal directly or by a program, whereas binary files are available only under pro-
gram control. Binary files may be either sequential or random access, but ASCII
files are only sequential. In order to make any file available to a program, the
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FILES statement must name the files we want, separated by semicolons. The
files are numbered according to the order of appearance in the files statement.
As many as eight files may be accessed by a single program simultaneously.
(Provision may be made for substituting new files for previously named old ones
within a program.)

The following special statements apply to ASCII files: RESTQRE #N
moves the file pointer to the beginning of file N and places the file in read mode.
READ #N,A,B,C$ reads values from file N for variables A,B,C$. WRITE
#N,X,B$ enters the contents of X and B$ into file N. SCRATCH #N erases
the contents of file N and places the file in write mode at its beginning. IF
M@RE #N tests for more data in file N. IF END #N tests for the end of data
condition in file N. All the above statements can be used for binary files by
changing the pound sign (#) to a colon (:). There are some differences when it
comes to random access files, however. SCRATCH :N, when applied to a
random file, fills the file with zeros, sets the pointer to the beginning of the file,
and places it in write mode. IF END and IF MORE work only at the physical
end of the file. In addition, there is a special statement for random files to place
the file pointer under program control. SETW N T() I may be used to place the
file pointer of file N at the beginning of the Ith word of the file.

Problems for Sec. 4-3

1) Enter student names followed by a fixed number of test scores in a
sequential file. Arrange the students by test average and write the re-
sults to another file.

2) Suppose you have entered a large number of names in a file, last name
first, one name to a string for alphabetizing. Write a program to print
a list of names in alphabetical order but first name first.

3) Write a program to read numerics from fwo ordered files and print a
single merged and ordered list to the terminal.

4) Write a program that will insert an item of data into an already ordered
random access file so that the new item is in order.

5) You have a random access file with unknown contents. Write a pro-
gram to determine the number of words the file contains.

6) Write a program to enter inventory data into a random access file. The
data should include, for every part, a number, name, price, quantity,
low order point, and reorder quantity. The low order point is the
quantity that should trigger reordering for that pari, and the reorder
quantity is the quantity that should be ordered. Write a program or
programs to do any or all of the following: modify quantity and or
price according to business activity, edit the low order point and re-
order quantities, process the file to find the total dollar value of the
inventory, and process the file to determine what parts must be re-
ordered and the quantities to be ordered.
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PLOTTING ON
THE TERMINAL

5-1 Introduction

There are many sophisticated mechanical plotters on the market offered
by a number of manufacturers. These generally use a pen which draws very
short (0.01 inch is typical) straight line segments as determined by a program,
The smaller the segments, the smoother the curve. However, this chapter is
limited to using the terminal itself as a plotter. There are a number of disad-
vantages to using the terminal for this purpose. Plotting is slow and may there-
fore be expensive. The graphs we get are imprecise, and we can’t easily use
graph paper. Be all that as it may, if we have no other plotter, we can get very
helpful plots from the terminal. The terminal has the advantage that it is con-
veniently available,

5-2 Plotting a Funciion

We can greatly simplify plotting by choosing a function, since functions
have the feature that for any value of x there is exactly one value for y. So,if
we think of y as increasing across the page from left to right and x increasing
down the page from top to bottom, when the plot is completed, we just turn
the paper ninety degrees counterclockwise to obtain the conventional orienta-
tion.

To plot a single function, we first locate the origin and then concern our-
selves with having the terminal mark the axes. Let’s ploty = 1 x + 3. The
basie pletiing is very simple. All thal is necessaiy is o use the TAB(N) printing
function to get the printing mechanism out to the proper location on the paper
and then print some symbol. Since the TAB function begins counting at the
left margin and we would like to have negative values available for y on the
graph, it will be necessary to move the x axis to the right. How far we move it

64
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will depend on the particular graph. We simply add some constant value to
all TAB arguments. This value is set in line 110 of program GRAPH1. If your
version of BASIC does not have a TAB(N) function, then you may put
PRINT* ”;in a loop to get the printing head to the proper spot on the paper.
We print a plus sign to indicate the origin. We will therefore have to check to
see if we are at x = 0 and then determine whether the point of the graph is to
the left or the right of zero.

GRAPHI

94 REM # THIS IS5 A RUDIMENTARY PLOTTING PROGRAM

100 DEF FNF(X) = «5%X+3

102

104 REM % K MBVES THE ORIGIN K SPACES T@ THE RIGHT
— 110 LET K = 10

120 FER X = =T T8 7

130 LET ¥ = FNF(X)

— 140 IF X <> 0 THEN 210
150 IF ¥ < =«5 THEN 1B0
152
154 REM % X = 0 AND Y »>= =.5 50 PRINT @RIGIN
160 PRINT TABCKY: *"+'}
170 IF ¥ = «5 THEN 220
180 PRINT TABC INTCY+.5)+K )3 "%'3
190 IF ¥ = =.5 THEN 160
200 GATE 220
210 PRINT TABC INTC(Y+«5)+K )3 "%"3
220 PRINT
230 HNEXT X
232
240 END
RUN
GRAPHI

*
&
*
*
L
*
*
+ %
*
*
*
*
*
&
*

GRAPH1 seems to do the job we set out to do. (Be sure to turn the re-
sults ninety degrees counterclockwise to view the graph.) However, there are
many improvements that we can make. Let’s put in a set of axes. Since the
y-axis is the line where x = 0, the y-axis provision can go after line 140 of
GRAPH1. In order to put the x-axis in, we have to check for each value of x
whether or not the plotted point is below the x-axis. This is done in line 200 of
GRAPH2. As long as we are working on the program, let’s add a little flexibility
by putting the position of the x-axis and the domain in as data. See lines 110,
130, and 600 of GRAPH2. Note that a distinguishing character is used to mark
every tenth location in each of the axes. This greatly improves the readability of
the plot. Lines 210 and 420 determine where those marks are printed.
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GRAPH2
94 REM % THIS PROGRAM PLOTS GRAPHS @F FUNCTIONS
95 REM WITH AXES PRINTED
100 DEF FNFCX) = .5%X#3
102
104 REM = THE VALUE @F N DETERMINES LENGTH OF Y-AXIS
105 REM K MBVES THE GRAPH K SPACES T8 THE RIGHT
106 REM F IS THE FIRST VALUE 6F X FOR THE PLOT
107 REM L IS THE LAST VALUE 8F X FBR THE PLOT
— 110 READ N» Ks Fs L
120 PRINT TAB(K=1)3 "X="j F
—~ 130 FOR X =F T L
140 LET ¥ = FNF(X)
150 IF X <> 0 THEN 200
152
154 REM & X = 0 SP THIS IS THE Y-AXIS
160 FER Y1 = =K TO N=K
170 GBSUR 400
180 NEXT Y1
190 GOTEe 280
192
194 REM # PBINTS @FF Y-AXIS ARE PRINTED
195 REM IN LINES 200 T8 280
— 200 IF ¥ < .5 THEN 260
— 210 IF X/10 <> INTC(X/10) THEN 240
220 PRINT TAB(K)3 "="j
230 GOTB 250
240 PRINT TABCK)3 1"
250 IF Y < «5 THEN 280
260 PRINT TABC INTCY+.5)3K )1 "4'y
270 IF ¥ « -.5 THEN 210
280 PRINT '
290 NEXT X
292
300 PRINT TABCK-133 "K =" L
310 ST@P
ag2
394 REM # SUBRBUTINE 16 PRINT Y-AXIS
400 IF Y1 = 0 THEN 490
410 IF ABSCY-Y1) < .5 THEN 470
— 420 IF Y1710 = INTCY1/10) THEN 450
430 PRINT "=
440 RETURN
450 PRINT "I'j
460 RETURN
470 PRINT g
480 RETURN
490 PRINT "4'g
S00 RETURM
so02
594 REM
== 600 DATA 25, 10, =11, 12
610 END
Three runs of GRAPH2 show a variety of results. For the first RUN of

GRAPH2, we present the line y = % x + 3 from program GRAPH1. For the
second RUN, we re-define the function in line 100 to plot the parabola, y =
-4x* - x + 8. For the third RUN, we again re-define the function in line
100 to get the graph of y = .2x3 2x* + x + b,

We have in GRAPH?2 a catisfactory hacie oraphing nrogram and the ra.
sults may be enhanced by sketching a curve through the plotted points by hand.
We can still improve on the program itself, though. Consider what the sine
graph would look like using the program as it stands. The graph would show us
little. Clearly we could do better by putting a scale capability in for both axes.
This is left as an exercise.
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RUN
GRAPHZ2
* 1
& =
%!
*1!
*
*

100 DEF FNF(X)
500 DATA 6%

RUMN

GRAPH2

Summary of Sec. 5-2

*

N e . B I

Plotting on the Terminal

100 DEF FNF(X) = -.a4%X12=-X+8
&£00 DATA 55. 40, =12, 9
RUN
GRAPHZ
*
%*
*
&
*
-------- |ssnsmnmen]ecnnan==a]
*
&
*
*

s 2kt I-B%Xr2+X+5

67
XK==-12
1
1
{
L
* !
*
LI
L] *
! *
1 *
1 *
[ — - ETN TR
! *
1 *
LE
* 1
* !
1
'
1
!
X=29

We have developed a program to use the terminal as a plotter. This ap-
pears to give us rough but satisfactory graphs for a variety of functions.

Problems for Sec. 5-2

1) Modify GRAPH2 to allow a change of scale. Allow for two different

scales for the two axes. Use the new program
following:

to plot any of the
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il

¢} ¥y = x - INT(x)
d) y = x + INT(x)
e) ¥ = vVx

2) You may have noticed that the mechanics of your terminal are such
that the vertical and horizontal scales are different, On many termi-
nals there are 10 characters per inch on the horizontal line and six
lines per inch on the vertical page. Use the scaling ability of problem
1 to provide equal scale for both axes relative to the graph.

3) Modify GRAPH2 to handle more than one function.

5-3 Plotting Using Data Stored in an Array

There are some other things we can do with plotting. For instance, we
can plot a graph that does not have to be rotated to achieve standard orienta-
tion. And we might want to plot some nonfunetion relation.

One way to achieve such a capability is to set up a computer array in such
a way that each storage location of the array corresponds to a coordinate point
of the graph. We will have some adjustment problems, however, because for an
array the “starting point”™ is the upper left corner and for a graph the “starting
point” is generally nearer the center of things. This difficulty can be handled
by shifting the “starting point” of the graph to the left and up. Also for an
array, row numbers increase from top to bottom, and the reverse is true for a
graph. This problem can be handled by putting the graph into the array “up-
side down”.

We can scan through the array inserting numbers which will later be inter-
preted to print specific characters. Let us make the graph cover an odd number
of coordinate points in each direction and make the middle element of the array
correspond to the origin of the graph. We can begin by seiting every entry of
the array to zero, to be ignored when the printing takes place. Then we use a
‘1’ to signify the origin, a ‘2’ to signify the horizontal axis, a ‘3’ to signify the
vertical axis, and a ‘4’ to signify the plotted point. This scheme will allow more
relations to be handled by using numbers greater than 4 for the additional
graphs.

All these features are incorporated in program GRAPH3. The axes are
shifted, and the y-axis is turned upside down by line 230. The y-axis is entered
in line 160. The x-axis is entered in line 170. The origin is entered at line 190,
The use of the variable L1 is to save program storage. It takes less computer
storage to set L1 equal to L + 1 and then use L1 (rather than L + 1) as long
as we need this value several times, and moreover it saves typing. On some sys-
tems, storage will not be a limitation for a program like this, but if it is, then
such a procedure is worth using. Line 220 tests to see if the coordinate position
of the array is on the graph. This depends on our choice for the value of f. If

i 13 Fla -~F MTI ATTTO
the velue of ¢ ig .5, then we get a graph just like that of program GRAPHZ.

However, by increasing the value of {, we can have more points plotted. This
tends to “fill in” the graph. Lines 110 and all other references to DD are
employed to limit the actual use to only that part of the array that seems neces-
sary for the graph requested. This will save printing time. As written, the pro-
gram causes the printing mechanism to scan the entire line. Considerable print-
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GRAPH3
24 REM #* GRAPH FROM DATA ENTERED IN AN ARRAY
100 DIM ACA8. 48)
102
104 REM * D SPECIFIES WIDTH AND HEIGHT OF GRAPH
105 REM L IS THE NUMBER OF SPACES EACH SIDE OF ZERD
106 REM T DETERMINES GRAPH RESOLUTIEN
107 REM L1 IS USED TO SAVE TYPING L+1 REPEATEDLY
110 LET D = 21
120 LET L = (D=1)/2
130 LET T = .4
140 LET L1 = L+1
142
144 REM % ENTER AXES AND ORIGIN IN THE ARRAY
150 FER I = 1 T@ D
— 160 LET AdLI«IY = 3
— 170 LET ACI.L1) = 2
180 NEXT I
- 190 LET ACLLl.L1) = 1
192
194 REM % NOW INSERT 4'S TO DESIGNATE PLOTTED POINTS
200 FOR Y = =L T@ L
210 FBrR X = =L TO L
— 220 IF ABS{ «5*X+3-Y ) > T THEN 300
— 230 LET AC X+L1 » D=-(Y+L} 3 = 4
300 NEXT X
310 NEXT Y
2
314 REM % THE VALUES ARE STORED NOW PRINT
320 PRINT TaBCLL1Ys "'v™
330 F@R Y = | T@ D
340 FOR X = 1 T@ D
350 PRINT TABC(X}3
360 IF ACX.,Y) = 0 THEN 280
370 Gesue 500
3aso NEXT X
a0 PRINT
400 NEXT Y
410 PRINT TABCLY3 '"=Y"
420 S5TeP
492
494 REM * PRINTING SUBROUTINE
s00 IF ACX.Y) = 2 THEN 550
510 IF ACXsY) = 3 THEN 580
520 IF ACXsY) = 4 THEN &10
530 PRINT *+'3
540 RETURN
350 IF (X=L1)/10 = INTC (X-L13}/10 2 THEN 590
560 PRINT *-'
570 RETURN
SB0 IF (Y-L1)710 = INTC C(¥Y-L13¥/10 3 THEN 560
590 PRINT '"!'";
600 RETURN
610 PRINT "'y
620 RETURM
692
700 END

ing time could be saved by sending the printing head back to the beginning of
the new line as soon as the last point is printed. This is left as an exercise.

Three runs of GRAPHS are presented. The first RUN is the straight line of
the first RUN of program GRAPH2; the second RUN is the parabola of the
second RUN of GRAPH2; and the third RUN is a circle with radius 10 and
center at the point (2,-3). Note that as with the graphs of Sec. 5-2, these graphs
are distorted by the fact that the space occupied by a single character on the

printed page is higher than it is wide.
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RN 130 LET T = «6
GRAPHZ 230 IF ABSC -.4%Xr2-X+8-Y ) = T THEN 300
RN
Y GRAPH3
' ¥
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110 LET b = 29
130 LET T = 5
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Summary of Sec. 5-3

GRAPH3 gives us the ability to deal with many kinds of graphs fairly
easily. The graph can be oriented in the conventional manner, and we can see
that the ability to graph more than one relation on one set of axes is a direct
extension of the current program.

Problems for Sec. 5-3

1)

2)

3)

4)

5)

6)

8)

Modify GRAPH3 to stop printing when the last character of the cur-
rent line has been printed.

Modify GRAPH3 to permit two relations to be plotted. Use your pro-
gram to find the approximate points of intersection of y = 2x?
+ x - landy = 3x + 4.

Use the ideas of GRAPHS3 to write your name. That is, store points
to be printed in an array. If you have a long name, maybe you’d
rather use the word BASIC. This exercise may be a little tedious, but
fun.

Rewrite GRAPH3 so that the origin does not have to be the center
point of the array.

We get an interesting effect if instead of plotting points, we plot spaces.
That is, where there is no point on the graph, print an asterisk, and
where there is a point, leave the location on the paper blank. Try this.
Modify GRAPHS to allow different scales for the two axes. Then plot
a large circle to see how well you can do.

On some systems, the array size allowed is limited enough to make
some plots not practical if we use the methods of this section. One
way to program around this is to notice that there is a tremendous
amount of wasted storage in each element of the array itself. Note
that for up to six relations GRAPH3 requires only a one digit number
to store the information required for graphing. Since most computers
provide at least six digits, by using each of those digits we can increase
the storage by a factor of six. Write a graphing program to use this
additional storage space.

One method for obtaining larger graphs is described in problem 7.
Another procedure would be simply to analyze the graph one line at a
time. Try this.



6
AREA UNDER
A CURVE

6-1 Introduction

Let us consider a moving object. At constant speed, the distance traveled
is simply its speed multiplied by time. If an object travels 15 feet per second for
5 seconds, it will travel 75 feet. However, it is often true that the speed of an
object is not constant. Suppose the graph of Fig. 6-1 represents an object in
nonconstant motion. The distance the object has traveled at time t is the area
under the graph from the origin to t. For Fig. 6-1 that area is a convenient
geometric shape. We get Area = A = %*EG*S = 90 fi,

-
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Figure 6-1

Now suppose a graph does not provide such a convenient geometric shape,
as in Fig. 6-2.
72
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Figure 6-2

To find the total area of such a shape, we can subdivide the area into many
smaller segments, find the area of each segment, and sum up the individual areas.
All we have to do is decide what kind of smaller segments to use and how large
they should be. Consider Fig. 6-3.

Figure 6-3

Figure 6-3 subdivides the area into rectangles so constructed that each one
falls completely within the desired area. Thus we know that the sum of these
areas will be less than the actual area. We could alternatively place the rectangles
as shown in Fig. 6-4. But that would have the opposite effect on the accuracy.
Another possibility is to construct the rectangles so that the midpoint of the top

Figure 6-4
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side is a point of the curve, as shown in Fig. 6-5. Now we have some area in-
cluded by the rectangles that is not included by the actual curve and some area
included by the curve but excluded by the rectangles. Thus we expect some
cancelling-out effect.

Figure 6-5

Let us begin by writing a program to sum up the area shown in Fig. 6-5.
In order to test the program, we can make our first function contain a known
area. We choose a semicircle derived from the circle (x - 5)> + y* = 25.
This circle has a radius of 5 and its center at the point (5,0), as shown in
Fig. 6-6A, and so the area we expect is % 7 r2or (7%5%)/2.

S
-

(0,0}

Figure 6-6A

The curve we are considering is in fact a function from 0 to 10 for x.
Solving (x - 5)* + y* = 25 for y*, we get

y? = 25 - (x -5)°

and

y =1+/25 - (x - 5)?
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For the shaded area of Fig. 6-6A, the function is
¥y = f(x) = /25 - (x - 5)2
Thus we can easily define a computer function as follows:
100 DEF FNS(X) = SQR(25 - (X-5)12))

For this problem we can begin by taking 10 intervals one unit wide. Then the
midpoint of an interval will be x -.5, and the height of the rectangle will be
FNS(X -.5). See Fig. 6-6B and program AREA1.

FNS{X—.5)

EA——

Figure 6-6B

AREA1

94 REM * THIS PROGRAM COMPARES THE AREA OF A
a5 REM SEMICIRCLE FOUND BY FORMULA AND BY
26 REM S5UMMING AREAS OF RECTANGLES.

— 100 DEF FMNS5(X) = S58R¢ 25-(X-5)t2 )
110 LET A = 3.14159%25%.5
120 FPRINT *"AREA OF SEMICIRCLE BY FORMULA ="3 &
130 LET A = 0

132
134 REM * THE LENGTH GF THE BASE IS B
140 LET B = 1
IS0 FOGR X = 1| T@ 10
152
154 REM * THE HEIGHT IS M
160 LET H = FNS(X=45)
162
164 REM * THE AREA @F CURRENT RECTANGLE IS B#H
170 LET A = A + B*H
180 NEAT X
182
190 PRINT TAB(3): "AREA BY SUMMING RECTANGLES ="3 A
200 END
RUMN
AREA1
AREA @F SEMICIRCLE BY FORMULA = 39.2699
AREA BY SUMMING RECTANGLES = 39.5499

The relative error is about .38 in 39 or about 1%. We can improve on this
by taking smaller intervals within the accuracy of the computer.

Let’s rewrite program AREAL to allow varying widths of intervals. We can
take the b = 1 out of the x loop and allow the value of b to be read from data
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Now since the width of interval will change according to the value of b, the mid-
point of the interval will be x - b/2, and the value of x must be successively
incremented by b, the interval width. While we are at it, let us allow the value of
x to have a variable range read as data. This is done in lines 140 and 160 of
AREAZ2.

AREAZ

24 REM # THIS PREGRAM SUMS RECTANGLES TO
95 REM APPROXIMATE AN AREA ALLPWING THE
96 REM WIDTH @F THE RECTANGLES T@ BE READ
97 REM AS DATA.
100 DEF FNS({(X) = SQRC 25-(X-5)¢2 )
110 PRINT ™“FReM"™, "INTERVAL", "TB". "AREA"
120 READ B
130 IF B = 0O THEN 250

— 40 READ F.T
IS0 LET A =0

— 160 FBR X = F+B T8 T STEP B

170 LET H = FNS( X-Bs2 )
180 LET A = A + B¥H

170 NEXT X

192

200 PRINT F» Bs Ts A

210 GBT® 120

212

214 REM

220 DATA 1:0:10. « 520,10
230 DATA +1s0s10, «01.0:10
240 DATA O

250 END

RUN

AREAZ2

FROM INTERVAL @ AREA

o 1 10 A9 6499
0 -5 10 39.4051
] -1 10 39.2115
0 «01 10 3%.2674

The results of AREA2 do indeed give successively more accurate approxi-

mations of the area.
Now we run AREA2 for the function,

f(x) = 2x3 - 2x* +x + 5

from - 3 to 11 for x. For a graph of this function, see Sec. 5-2.

100 DEF FNSCX) = 2%Xt3 = 2%¥12 + X + 5

220 DATA 1:=3211, +S5s=3s11

230 DATA 05:=3511

RUN

FR@M INTERVAL T8 AREA

-3 1 11 6ATS

-3 -] 11 6494.25
-3 «05 11 6500.62
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Summary of Chapter 6

We have developed a routine that approximates the area under a curve for
functions. The method used is to sum up areas of rectangles whose heights are
determined by the midpoint of the intervals. (There are several other methods,
which are left as exercises.)

Problems for Chapter 6

1)
2)
3)

4)

9)

6)

Find the area enclosedbyy = x + 3andy = x* - 8 + 17.

Find the area enclosed by y = -3x? + 4x + 2 and the liney = -3.
Another procedure for finding area under a curve is called the trapezoid
method. This is done by inscribing trapezoids instead of rectangles
under the curve. Write a program to use the trapezoid method.

Write a program that begins with a specified width and automatically
makes the subdivisions smaller until the new approximation does not
differ from the old approximation by more than some percentage error,
say .01%.

Write a program to approximate area by making the first interval the
whole domain and each subsequent interval one half the previous
interval. Have the computer stop when the percentage change is less
than, say, .01%.

A method always as accurate and usually more accurate than the trape-
zoid method is Simpson’s rule. Simpson’s rule requires an even number
of intervals and is given by the following (see Fig. 6-7):

W
A4 = 'g[f'l tAfy + 2f3 + Afa 0+ 2y F Afuy + )

Write a program to use Simpson’s rule.

,»-"‘_'_"f

fa
HJ_'J
W

Figure 6.7

T) Use the ideas of this section to find the length of the graphed line of a

continuous function instead of the area.
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COORDINATE
GEOMETRY

7-1 Points in a Plane

In the Cartesian coordinate system, points in a plane are named by ordered
pairs of real numbers. A point is labeled p(x,y), where the first number is called
the x-coordinate and the second is called the y-coordinate. As we consider the
ordered pairs of numbers associated with a point or set of points, many geo-
metric relationships unfold. For two points in a plane, we can look at the dis-
tance between them or consider the straight line they determine. For three
points in a plane, we may be interested in whether or not they fall on a straight
line, that is, are collinear. If not collinear, then three points determine a tri-
angle which has many properties of interest. We may examine many other com-
mon geometric figures such as quadrilaterals, circles, parabolas, etc. It is the
purpose of this chapter to study some of these topics, using the computer to
assist us.

7-2 Pairs of Points

Consider the two points A(3,5) and B(3, -1), as shown in Fig. 7-1. Clearly
the distance AB from A to B is six units, usually stated simply as 6. We define
the distance between two points with the same x-coordinate as the absolute
value of the difference in y-coordinates. (For two points with the same y-
coordinate, the distance is defined as the absolute value of the difference in
x-coordinates.) Thus in Fig. 7-1,

AB =156- (-1l =I5+ 1] =6.

Left only with this definition we would have a very limited ability to determine
distance. We should, however, be interested in determining distance for any
two points whatever their coordinates.

=]
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y

Al3,5)
@

X

)
Bi3, —1}

Figure 7-1

For the points A(3,5) and B(-1,2), we may find the distance by plotting
the poinfs and constructing a right triangle, as shown in Fig. 7-2.

A(3,5])

|
Iac=|5—zlma

B(-1,2) £ ——— ¢
8C =13~ (~1)[=4

Figure 7-2

Using the Pythagorean Theorem,
AB? = BC?* + AC?

or
AB = \/BC? + AC?
so that
AB = /47 + 32
AB = /25
AB = 5

It is evident that for any two points A(x;,y,) and B(x,,y,) we have the
relationships shown in Fig. 7-3.
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¥

ﬂtlli?”
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Blxp, ) = —de
BC=|xs — x4
X

Figure 7-3

Using AB = \/BC? + AC?, we get

AB = \/lxz - -"5112 + |y, - J"liz

but since the square of a number equals the square of its absolute value, we get

AB = \/{xz - x)? + (v2 - )

This is known as the distance formula.
We shall now find distances for pairs of points. The distance formula

translates readily into the BASIC statement:
200 LETD = SQR ( (X2 - X1)1t2) + (Y2 - Y1)12)

All that remains is to get coordinate pairs read into the computer and results
printed out. This is done in program DIST1.

DIST!

24 REM #% THIS PREGRAM FINDS THE DISTANCE AB
95 REM FB8R THE CEORDINATES (X1,Y1) AND (X2,Y2)
100 PRINT "T@ FIND THE DISTANCE BETWEEN TW@ POINTS"™
150 PRINT
160 PRINT “PBINT A™3
170 INPUT XlsY1
180 PRINT “PQINT B"™:
190  INPUT X2,Y2
192
194 REM #* CALCULATE DISTANCE AND PRINT IT
— 200 LET D = SQRC (X2=-X1)r2 + (Y2-Y1)r2 3
210 PRINT "DISTANCE AB ="3 D
azz
230 END
RUM
DIST1H

T@ FIND THE DISTANCE BETWEEN TWE POINTS

PBINT A?3.5
FRINT B?-1.2
DISTANCE AB = 5
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Program DIST1 works fine for a single pair of points. But suppose we
had several pairs of points. We may simply request the number of calculations
desired and use FQR-NEXT, as shown in DIST?2.

DIsT2

94 REM # FINDS DISTANCE FOR PAIRS OF PEINTS

25 REM PERMITS MBRE THAN ONE SET @F DATA

100 PRINT "T@ FIND THE DISTANCE BETWEEN TWw@ POINTS"
110 PRINT

120 PRINT *“NEW MANY PAIRS™)

130 INPUT N

132

140 FOR 1 = 1 TO N

150 PRINT

160 PRINT "“POINT A"3

170 INPUT Xis¥Y1

1280 PRINT *“P@INT B"3

190 INPUT X2.Y2

192

194 REM # CALCULATE DISTANCE AND PRINT IT
—= 200 LET D = SQRC (X2-X1)t2 + (Y2-¥1)r2 )

210 PRINT “DISTANCE AB =": D

220 NEXT 1

a2za

230 END

RUN

brsT2

Td FIND THE DISTANCE BETWEEN TW@ PEBINTS
NAW MANY PAIRS?2

PAINT A? 3.4
POINT B?0.0
DISTANCE AB = S5

PRINT A?=3.4, 5.75
PAINT B? 3.125s 2
DISTANCE AB = 7.52583

For any two points A and B, it can be shown that the coordinates of the
midpoint of segment AB are found by taking the average of the corresponding
coordinates of A and B. Thus the midpoint of AB for A(x;,y,) and B(x,,y,) is

x; + xs Y1 * Y2
2 ; 9

It is left as an exercise for the reader to write a program to give coordinates of
midpoints.

Where coordinates of two points are known, another property of interest
is the slope of the line they determine. The slope is the ratio of the change in
y-coordinates to the change in x-coordinates, or

-y
Slope = m e
X2 T Xy

Thus for A(1.3) and B(5.6).
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o 6 - 3 _ _3:
b-1 4
and for A(3,-4) and B(1,6),
6 - (-4) 10
m = — = = -5
1-3 -2

Note that slopes up and to the right are positive and slopes up and to the
left are negative. A short program can easily be written to make the above cal-

culation, as shown by program SLOPE,

SLAPE

100 PRINT "THIS PROGRAM FINDS THE SLAGPE @F AZ"™
110 PRINT

120 PRINT *“HOW MANY PROBLEMS";

130 IWMPUT N

140 F@R I = | T@ N

142

150 PRINT

160 PRINT "PBINT A™I

170 INPUT X1:Y1

180 PRINT "POINT B";

120 INPUT X2:Y2

192

194 REM % CALCULATE SLOPE AND PRINT IT
— 230 LET M = (¥Y2-Y1)/(K2-X1)

240 PRINT "SLOPE ="1 M

250 NEXT I

252

260 END

RN

SLOPE

THIS PREGRAM FINDS THE S5LOPE OF AR
HOW MANY PROBLEMS?Z2

PRINT AT0.0
POINT B?4.5
SLEPE = 1.25%

POINT A?3.6
PEINT B7?5.-3
SLAPE =-4.5

Look at line 230 in program SLQPE. Note that we instruct the computer
to perform division. When two points have the same x-coordinate, division by
zero is required, which is a mathematically, and thus computationally, unde-
fined condition. The program should be modified to test the value of x, - x,
before allowing division to take place. This is left as an exercise for the reader.

The idea that two points determine a line has been referred to several
times. It can be shown that any line in a plane can be described by an equation
of the form ax + by + ¢ = 0, where a, b, and c are constants. This is called
the general form of the equation. It can also be shown that all nonvertical lines
can be described by an equation of the formy = mx + k, where m is the slope
as defined earlier and k is the value of y when x = 0, that is, the value of ¥
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Figure 7-4

where the line crosses the y-axis, called the y-intercept, as shown in Fig. 7-4.
The formy = mx + k is called the slope-intercept form.

If we are given two points, we can find m in y = mx + k Then we can
get a value for & by solving y = mx + k for k to getk = y - mx. With a
value for m and a value for k, we can write the equation of the line in slope-
intercept form by using program LINE1.

LINE!]

24 REM % THIS PROGRAM PREDUCES THE EQUATION 8F A LINE
95 REM IN SLOPE-INTERCEPT FORM GIVEN CODRDINATES FER
96 REM TWB PRINTS ON THE LINE. THE PROGRAM USES X =
7 REM A CONSTANT F@R VERTICAL LINES

100 PRINT "EQUATIGN OF A STRAIGHT LINE IN"

110 PRINT "SLBPE-INTERCEPT FORM GIVEN TWO POINTS"

120 READ X1,Y1, X2.Y2

130 IF X1 = .001 THEN 250
140 PRINT
150 PRINT "¢ X13 "s™5 Y13 ")s("3 X235 ","3 Y23 ")
152
154 REM #* TEST FOR DEFINED SLOPE
— 160 IF X2=-X1 <= 0 THEN 190

170 PRINT "EGUATION IS: X ="3 X1

180 GA@Te 120

182

184 REM * CALCULATE SLOPE AND INTERCEPT
185 REM THEN PRINT SOLUTION EQUATION
190 LET M = (Y2=-Y1)/(X2-X1)

200 LET K = Y1 = M#xX1

210 PRINT ™EQUATION IS: Y ="3 M3 "®X+{"3 K3 ")
220 GATe 120

222

224 REM

230 DATA 3.4, Ss6» =ls6s =153

240 DATA 00150, 0.0

250 END

RUN

LINE1

EQUATI@N @8F A STRAIGHT LINE IN
SL@PE-INTERCEPT FORM GIVEN TW8 PBINTS

¢ 2 s 4 a0 5 s 6 ]
EQUATION IS: Y = 1 X+ | )
(=1 r G Yal=1 s 3 ¥

EQUATIAN IS5 X =-1
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Summary of Sec. 7-2

For two points we have found the coordinates of the midpoint of the seg-
ment they determine. We have found the distance, the slope, and the equation
of the line in slope-intercept form.

Problems for Sec. 7-2

1) Modify program SLOPE to accommodate data for which the slope is
undefined.

2) Write a program to calculate the coordinates of the midpoint for pairs
of points.

3) Modify program LINEI1 to treat a horizontal line as a special case.

4) Modify program DIST1 or DIST2 to give the distance in simplified
radical form.

5) Modify LINE1l to give the slope as a decimal, integer, or fraction
reduced to lowest terms as appropriate.

6) For an equation in slope-intercept form, have the computer give a
table of (x,y) values suitable for graphing.

7) For an equation in general form, have the computer give a table of
(x,y) values suitable for graphing.

8) For a set of n points, write a program to give equations for all pos-
sible pairs of points. Enter the n points as DATA and store them in
a 2 by n array or in a pair of lists.

9) For problem 8, have the computer eliminate duplicate points and
therefore duplicate lines in the output.

10) Write a program to write the equation of a line, given two points, in
ax + by + ¢ = 0 form. Treat vertical and horizontal lines as special
cases,

11) Modify program LINEL to find the slope and y-intercept as fractions
reduced to lowest terms, if appropriate.

7-3 Parallel and Perpendicular Lines

What happens when we hegin to think about more than one linein a plane?
Lines either intersect or they don’t. If they don’t, then the lines are parallel,
in which case their slopes are equal unless the lines are vertical, making both
the slopes undefined. If the lines intersect, then they might be perpendicular.
What about the situation for perpendicular lines? Consider Fig. 7-5.

Note that the slope of 1; is positive and the slope of 1, is negative. Thus,

My, ==~ (7-1)
and

m, = -— (7-2)
Since 1, and 1, are perpendicular, right triangles ABC and AB'C are similar and

e S {7_9%
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la

Figure 7-5

because ratios of lengths of corresponding sides of similar triangles are equal.
Since

dy
mp = - _f_ (7-4)
we get
{ /|
%" m 19
Substituting from (7-1) and (7-5) above into (7-3), we get
m; ="—1- (7-6)
ma
which gives
mymy, = -1 (7-7)

That is, for perpendicular lines having slopes m; and m,, the product of
the slopes is -1, or the slopes are negative reciprocals of each other.

We can use the parallel and perpendicular properties for a variety of prob-
lems. We can test lines to see if they are either parallel or perpendicular. We can
find the equation of a line through a fixed point parallel or perpendicular to
another line. We can write the equation of a line which is the perpendicular
bisector of a segment.

We shall now present a program to give an equation for the line through a
given point perpendicular to the line determined by a pair of given points. There
are manv conditione that we muet aereount for Siinnonce the civern nointe doafory.
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Start
PERP

READ X0, YO
solution line
to contain
this point

END

No

READ X1, Y1, X2, Y2
The points are (X1, Y1)
and (X2,Y2)

V

Print headings
and coordinates

G@SUB
equation
subroufine

Begin
equation
subroutine

Yes

Yes Calculate slope
X2 —=X{==0 and y-intercept

? of solution line

PRINT PRINT PRINT Print the
"N@T UNIQUE X=", X0 Y=":Y0 equation in
The points Solution line Solution line slope-intercept
coincide is vertical is horizontal form

%-I RETURN =

Fiaure 7-68 Flowchart Tor findinag the eoustion of a line given one ooint on
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twice. A flowchart should be helpful in organizing these conditions. See Fig.
7-6 and program PERP.

PERP

94 REM # THIS PREGRAM ATTEMPTS T@ WRITE AN EQUATION

25 REM FOR A STRAIGHT LINE CONTAINING THE GIVEN POINT
95 REM (X0,¥0> AND PERPENDICULAR T@ THE LINE

97 REM DETERMINED BY THE GIVEMN PDINTS (X1,Y1)

98 REM AND (X2:Y2).

100 READ XO.Y0

1149 IF X0 = .00 THEN 800
120 READ X1.¥1, X2,Y2
130 PRINT

140 PRINT "LINE THROBUGH (™3 X03 *»"3 YOz """

150 PFRINT "PERPENDICULAR T@ THE LINE THROUGH POINTS
160 PRINT "™c'"p X13 "a"3 Y13 "),(0"3 X23 """} Y23 ™y
170  PRINT " EQUATIOGN IS5: '"»

180 G@SsSUB 500

190 GBT@ 100

492

494 REM % SUBROUTINE T0 DETERMIME AND PRINT EQUATION
5300 LET ¥V = v2-Y1

310 LET H = X2-Xt

520 IF ¥V <= O THEN 540

530 IF H == 0 THEN 590

532

534 REM * THE TWQ GIVEN POINTS COINCIDE
540 PRINT "NOT UNIGQUE"

550 RETURN

560 IF H == 0 THEN 810

262

564 REM #* SOLUTION LINE IS5 HERIZONTAL
570 PRINT "¥Y ="13 YO

380 RETURN

582

584 REM #* S0LUTIEGN LINE 15 VERTICAL
590 PRINT "X ="3 X0

600 RETURM

602

604 REM % DEFINED NON-ZERD SLBPE

&10 LET M = V/H

620 LET MO = =-1/M

630 LET K = YO - MO%X0

&40 PRINT "y ="3 MO3 "#X+("3 K3 "¢

650 RETURN

652

TO04 REM

TIO DATA 122, ApTrAsTs Ay s =1s95 4,5

T20 DATA 5, -2 badisths=Bs ds 8, 18s5,=11,5
T30 DATA .001,0

BO0O END

RUMN

PERP

LIME THROUGH ¢ 1 s B2 )
PERPENDICULAR TO THE LINE THRDUGH POINTS
{ 4 s T Yol 4 s T b}

EQUATION IS5: NOT UNIOUE

LINE THROUGH ¢ 4 +» 3 )
PERPENDICULAR TQ THE LINE THROUGH P@INTS
-1 r 9 Y2 4 - 3

EQUATION I5: ¥ = 1.25 *X+ (-2 3
LINE THROUGH ¢ 5 2 =2 b

PERPENDICULAR TO THE LINE THROUGH POINTS
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LINE THRBUGH ( 3 » 8 ]

PERPENDICULAR TO THE LINE THRBUGH PBINTS

€ 1B s 5 Yal-11 +» 5 3
EQUATION IS: X = 3

Summary of Sec. 7-3

We have examined pairs of lines in a plane. If they are parallel and non-
vertical, their slopes are equal. If two lines are perpendicular and neither is
vertical, the product of their siopes is - 1.

Problems for Sec. 7-3

1) Change program PERP to write the equation of the new line parallel
to the line determined by the given pair of points.

2) Write a program to give the equation of the perpendicular bisector of a
segment, given its endpoints.

3) For two pairs of points entered as DATA, have the computer deter-
mine if the specified lines are parallel or perpendicular., Be sure to
permit vertical lines.

4) For two lines given in ax + by + ¢ = 0 form, have the computer
determine whether the lines are parallel, perpendicular, or neither,

7-4 Point of Intersection of Two Lines

We can define two lines to work with in several ways. One is to give a pair
of points to define each line. Another is to give an equation in the form y =
mx + k by specifying m and k& for each line. Yet another is to give equations in
the form ax + by + ¢ = 0 by specifying (a,b,c) for each line. We may become
more familiar with the general form by working with data for equations in the
form (e,b,c).

Given two lines,

I
=

a1x +0,y te = (7-8)

and
a,x + by + ¢, =0 {?“9]

and the need to find the point of intersection, we must find a coordinate pair
(x,y) that fits both equations. That is, we have to solve the equations simultan-
eously. Since the computer does not ““do algebra,” we will have to.

Rearranging the above equations, we get

ax + b,y = -¢ (7-10)
G,x + by = -4 (7-11)
Multiplying Eq. (7-10) through by ~a, and Eq. (7-11) by a, gives
@@ X ~ a0,y = ajc (7-12)
aa1x + a b,y = -a,0, (7-13)

Adding Eqgs. (7-12) and (7-13) produces
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aybyy - a3y = azcy - ay0 (7-14)
Factoring, we get

y(@ by - ayby) = azcq - ay0, (7-15)
Dividing both sides by a; 6, — a;b; leaves

asCy — 1€y
- 7-16
d 216, - axb, ( )

Following a similar procedure to solve for x, we get

by - bacy

= 7-17
baa; - bya; e
Let’s write a program to use the above results to find the point of inter-
section, if it exists. Note that in Egs. (7-16) and (7-17) the denominators are
equal. So we may use the BASIC statement,

180 LETD = AI*B2 - A2%Bl

This will allow us to divide the numerators from Eqgs. (7-16) and (7-17) by D to
obtain the values for y and x, respectively, unless D happens to equal zero. This
situation would require division by zero, which means that the value is either
indeterminant or undefined depending on whether the numerator is zero or not.
Thus, if the value of D is not zero, we have a unique intersection, which we may
calculate using Eqgs. (7-16) and (7-17). If D equals zero, we may obtain more
information about the two lines as outlined in the following discussion.
D = 0 means the following:

a b, - a by, =0 (7-18)
and therefore
a,b; = a2 b, (7-19)
which may be written
;—i - g—z (7-20)

To see the significance of this, let’s look at the original equations, (7-8)
and (7-9). They area,;x + b;y + ¢; = Oanda,x + by + ¢, = 0. Solving
each for y we get:

X (]
o are R T7-21
¥ 5, "B (7-21)
and
a,Xx c
y = £ R 2 {7_22)



90 Advanced BASIC

Now the equations are in y = mx + k form. Notice that the slope of line 1 in
Eq. (7-21) is -a,/b, and of line 2 in Eq (7-22) is -a; /b, unless b, or b, is zero.
Clearly by multiplying both sides of Eq. (7-20) by -1 we get

T OO (7-23)
b by

Since the two sides of Eq. (7-23) are the slopes of the lines in Eqs. (7-21) and
(7-22), that makes line 1 parallel to line 2. To sum up, if D = 0, then the lines
are paraiiel and ihere is no soiution uniess &, or b, is zero.

Now suppose that either &) or &, is zevo when D — 0. LOOKRIng ai &g.
(7-19), if by = 0 then either a; or b, is also zero. Now, if Eq. (7-8) is not
meaningless, that means that b, must also be zero. If b, and b, are both zero,
we get

@x ey =0orx=-— (7-24)
I
Cz

a;x + ¢ =0 orx =-— (7-25)
a

in which case both lines are vertical because x is constant. If what we are look-
ing for is the point of intersection, there won’t be any unless the two equations
define the same line, in which case all points on one line will also lie on the other.

We really have three levels of information to test for. First we want to
know if the lines intersect in a single point. If they do intersect in a single point,
then we want the coordinates of that point. If they don’t intersect in a single
point, then it is useful to know whether or not they are vertical, because if one
1s, they both are. And finally, we can determine whether or not they coincide.
If they coincide, the solution is indeterminant. If they do not coincide and
are parallel, we say the equations are inconsistent. A flowchart should help to
sort out all of the above considerations. See Fig. 7-7 and program PQINT.

Start
PAINT

v

READT

to determine
end of dato
condition

END

Fiagura 7-7 Flowrhart for nraaram POIMT (cant' A cm mowd mamol
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two equu tions
Prinf headmg

and the
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general form

D=A1%B2—-A2%B{
Calculate the value of
the denominator fo be
used later

PRINT

"VERTICAL"

No

O

PRINT

I'PﬂRﬂLLEL"

pR

Yes

PRINT
NEIN-
VERTICAL"

Is
Ci/Bl= CE/'EIE

Yes

PRINT
"COINCIDENT"

A

v

Nl =A2%Cl — A1 %C2

N2=B! ¥C2 — B2 %!
=N2/D

Y =Ni/D

calculate solution

v

F‘RINT "SPLUTION [S:

mnon LI

Co S
uutpuf coordingtes
of solution point

i3
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PAINT

94 REM % THIS PROGRAM FINDS THE PRINT @F INTERSECTION
95 REM FGR TWO LINES GIVEN IN AX+BY+C=0 FORM. HANDLES
26 REM INDETERMINANT AND INCZNSISTENT CASES.

100 READ T

110 IF T = O THEN 500

112

114 REM % READ COEFFICIENTS FOR BOTH LINES

120 READ Al.Bl:.Cl. AZ2,B2,C2

130 PRINT
132

i34 REMC.DOINT THEEDUATIEME
140 PRINT TABC103)3 "LINES™
121 FIRiret PR AL ! D12
t60 PRINT TABCIOYF "AND™
170 PRINT A23 "=®X+('"p; B2} ")®Y+(™p C23 ") = 0O

172

174 REM % IF Al%B2-A2%Bl <> 0 THEN THERE IS5

175 REM A UNIQUE SOLUTION

180 LET D = Al1%B2 - AZ2%B1

190 IF D <= O THEN 300

192

194 REM #*= WE COULD TEST FGR B2 = 0O WITH THE SAME RESULT
200 IF Bl = 0O THEN 240

210 PRINT "NEN-VERTICAL "3

220 IF Ci1/B1 = C2/B2 THEM 2BO

230 GOTE 260

240 PRINT "™WERTICAL ™3

250 IF Ci1/Al = C27A2 THEN 280

260 PRINT *™PARALLEL"™

270 GAT@ 100

280 PRINT ™C@INCIDENT™

290 GATE 100

292

294 REM # SELUTION EXISTS - CALCULATE AND PRINT IT

a00 LET N1 = A2%C1 - Al%C2

310 LET N2 = B1#C2 - B2=%*C|

320 LET X N2/D

330 LET ¥ MN1SD

340 PRINT "SOLUTIEN IS: ¢™r X¥ ","31 Y3 "¢

350 GeTe 100

asz

394 REM

400 DATA  1» lelasls 2,222

410 DATA  1» 1,223 4A35s6

420 DATA 1. JaOsds TaDe=8

430 DATA 1 S23:10: 10:62=3

440 DATA O

e [ Ll

ar

1)

RS I N L
FRLITL F Lrgpy I

non

200 END
RN
POINT
LINES
1 *X+( 1 IkY+( ] ¥ = 0
AMD
2 #wx+l 2 YRY+( 2 Yy = 0
MENM=VERTICAL COINCIDEMNT
LINES
1 #x+( 2 TEY+( 3 Y = 0
AMD
4 X+ 5 TkY+( & Y = 0

SALUTIAN I5: € 1 =2 )
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LINES

3 *X+{ O IRY+( 4 Y= 0
AMND

T *X+{ O 1Y+ (=8 ) = 0

VERTICAL PARALLEL

LINES

B #X+0 3 ¥+ 0 10 Yy = 0
AMND

10 *X+0 A YRY+( =1 Y= 0

NAN-VERTICAL PARALLEL

Summary of Sec. 7-4

We have found the intersection of two lines for which the equations are
given in standard form. Consideration has been given to the special cases of
parallel and coincident lines.

Problems for Sec. 7-4

1) Write a program to find the intersection of two lines with equations
given in slope-intercept form.

2) Write a program to find the intersection of two lines given two points
on each line.

3) Write a program to find the distance from a point to a line, given the
equation of the line inax + by + ¢ = 0 form. You may use

lax + by + c|

d'] + b2

d =

4) Write a program to find the distance from a point to a line, given two
points on the line.

7-5 Three Points in a Plane

If we are given two points, we know that they lie on a straight line, but if
we are given three points, they may or may not lie on a straight line, that is, they
may or may not be collinear, If they are not collinear, there are many questions
we may ask.

Let us look at three points, A(x,, ¥1), B(x,, ¥;) and C(x3, ¥3), to deter-
mine if they are collinear. Suppose for the moment that if they are, the line
containing them is not vertical. One way to see if they are collinear is to look
at the slope of AB and the slope of BC. If the two slopes are equal, then the
points are on a single line.

Now suppose that we select points (1, 2), (1, 4) and (2, 3) as DATA.
Clearly the slope cgleulation will produce an undefined condition due to an
attempt to divide by zero. We need to check for equal x-coordinates. We need
only check x; = x, and x, = x3. If x; = x,, what about x; - x,? Notice
that x; - x, would be zero. Now we see that if (x; - x;)(x; - x3) = 0,
then either AB or BC, or both, are vertical segments. Or, to put it another way,
if (x; - x2)(x2 - x3) is not zero, then neither AB nor BC is vertical, and it is
safe to instruct the computer to calculate the slopes of both segmenis. See
especially line 190 in program CQLIN.
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4 REM % THIS PREGRAM DETERMINES WHETHER @R N@T
95 REM THREE P2INTS IN A PLANE ARE COLLINEAR.
96 REM IT ALLOWS FOR PBINTS IN A VERTICAL LINE.
100 READ T

1o IF T = 0 THEN 900

120 PRINT

130 READ Xls¥1, X2:Y2, X3:Y3

140 PRINT "¢*5 X113 "a"3 Y13 ")2')

150 PRINT '"(™3 X235 “,"3 Y23 ") AND '

160 PRINT '"C"3 X35 "™ Y3» ")

iTH OLET Bl o= Hi=RA=2

180 LET D2 K2=-H3

184 REM # IF D1%D2 NON-ZERG THEN NEITHER
IBS REM SEGMENT IS5 VERTICAL

— 190 IF D1#D2 <> O THEN 300
200 IF D1 == O THEN 400
210 IF D2 == D THEN 400
212

214 REM % AT THIS PRINT BBTH SEGMENTS ARE VERTICAL
220 PRINT "VERTICALLY COLLINEAR"
230 GBTe 100

292

294 REM * CALCULATE BBTH SLOBPES

300 LET M1 = (Y1-Y2)/D1

310 LET M2 = (¥Y2-Y3)/D2

a2

314 REM % IF SLOPES N@T EQUAL THEN PRINTS NON-COLL INEAR
320 IF MiI <= M2 THEN 400

330 PRINT '"COLLIMNEAR™

340 GBT@ 100

400 PRINT "NON=-CALLIMEAR*

410 G8Te 100

492

494 REM

S00 DATA 1. BsS5s DTy =9510
510 DATA 1. 1,2 KR 527
520 DATA 1. 122 124, 2,3
530 DATA 1s S22, Ss=3s 5:50
540 DATA O

900 END

RUN

CALIN

L - - Y2 O s 7 } AND (-9 » 10 )
COLLINEAR

1 » 2 Y.L 3 s 4 > AND ¢ 5 » 7 )

NOM-CBLLINEAR

1 » 2 PIER A | s 4 Y AND € 2 s 3 )
NAN-COLLINEAR

{5 » B J»0 5 =3 Y AND € 5 » 50 b1
VERTICALLY COLLINEAR

Triangles (The Noncollinear Case)

It should be clear that if three points in a plane are noncollinear, they are

wnwtinae ~Af n fwinmals Mhat hatineg tha aneon sirn lhoaasra o orlvala smaver anllandias ~F
VA bdieiad AL R Uk ALAaRjmkis A RAGAN ASRLAE WAL RelAoey YA LAAAFA AL TF AARAAL JAL TP LAAIAL L WINARL WAL

properties to consider. To name only a few possibilities, we can calculate the
area using Hero’s formula; we can test to see if the triangle is acute, right, or
obtuse; we can find the centroid where the medians intersect; we can find the
orthocenter where the alfitudes intersect; and we can find the lengths of the
altitudes.
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Suppose we first look for a right triangle. There are at least two proce-
dures we might use. One is to test the lengths of the three sides using the
Pythagorean Theorem, ¢> = a> + b®. Another is to test the slope of each pair
of sides to see if their product is -1 or if one side is vertical and another is hori-
zontal. Either procedure will be instructive. Let’s first investigate Pythagoras
with the aid of Fig. 7-8.

Blxp, yo!

Alxy,yy)

Clxz,y3)

Figure 7-8

When we consider ¢ = ¢®> + b? we assume that the hypotenuse has
length ¢. Suppose we find that ¢ is the length of the hypotenuse or that b is.
The only safe bet is to test them all. This could be done by putting the follow-
ing in an IF-THEN statement to test if AB is the hypotenuse for points A(x;,

1), B(X2,¥2) and C(x3, y3):
(X1 - X2)12 + (Y1 - Y2)12 = ((X2 - X3)12 + (Y2 - Y3)12)
+ ((X8 - X1)12 + (Y3 - Y1)12)

and by then putting in two similar statements to see if BC or CA might be the
hypotenuse. Such a procedure ought to work, but this statement is excessively
long and cumbersome and we aren’t really using the power of the computer to
do repeated operations. It seems worthwhile to devise a way of storing the co-
ordinates so that we can use computer loops to move around the triangle instead
of writing new statements for each side being considered. That seems to suggest
subseripts and lists. So instead of X1, X2, and X3 we are going to use X(1),
X(2), and X(8). And for Y1, Y2, and Y3 we use Y(1), Y(2), and Y(3), as shown
in Fig. 7-9.

Often when trying a new procedure on a new program, it is a good idea to
do the work piecemeal. If we put a lot of new things into a program simulta-
neously, errors are harder to find than if we go in steps. Consider program
PYTHI1 for simply reading coordinates in and printing them out.
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B(X(2), Y{2))

ALX(1), Y (1))

a
wcnmm,ﬂzﬂ]

Figure 7-9

PYTH1

94 REM #* THIS IS5 A TRIAL PROGRAM T@ SIMPLY READ

95 REM CO@RDINATES FBR THE VERTICES OF A TRIAMNGLE
6 REM AND PRINT THEM BUT AGAIN USING AN X LIST
27 REM F@R X COBRDINATES AND A Y LIST FBR Y

98 REM CPBRDINATES

100 DIM XC3), YC(3)

110 READ T

120 IF T = 0 THEN 900
130 PRINT

132

134 REM % READ CEERDINATES IN LINES 140 T@ 160
140 FBR P =1 TQ 3
_*{150 READ X{(P}s Y(P)
160 NEXT P
162
164 REM * PRINT COORDINATES IN LINES 170 T@ 190
170 PRINT  "™¢"3 XC13p ",'3 YO120 "™)s"g
H+{IBG PRINT ™ (*x X(2)3 ",™3 YC{2)>1 ") AND "3
190 PRINT "™y XC32r "“.™3 Y{3)3 ")
200 G@Te 110

T92

T94 REM

B0O0 DATA s 1s2» Ss=1» 6215

810 DATA 1» Os Ds Os3s 4,0

220 DATA O

200 END

RUN

PYTHI

¢ 1 s 2 ¥s 5 s=1 Y AND € & s 15 )
(0 s 0 s O s 3 } AND € 4 s 0 )

To consider each side in turn as a possible hypotenuse, we want to work
our way around the triangle. First we will use the distance from point 1 to point
2, then the distance from point 2 to point 3, and finally the distance from point
3 to point 1. See the columns labeled “Hypotenuse’ in Table 7-1.
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TABLE 7-1
Hypotenuse ist Leg 2nd Leg
Segment Points Segment Points Segment Points
AB 1,2 BC 2,3 CA 3.1
BC 23 CA 3,1 AB 1,2
CA 3.1 AB 1.2 BC 2.3

Looking at Table 7-1, we see a progression across, from points 1 and 2 to
points 2 and 3 and then to points 3 and 1 for hypotenuse AB. For hypotenuse
BC, we go from points 2 and 3 to points 3 and 1 and then to points 1 and 2.
This pattern is completed by considering CA as the hypotenuse. If we can sim-
ply go 1-2-3-1-2-3, we can get all of the pairs we need using loops and subseripts.

Consider the following four lines of BASIC code:

200 F@R P = 1 TG 3
210 LET X{P+3)
220 LET Y{P+3)
230 NEXT P

X(P)
Y(P)

1]

These four lines have the effect of copying the three points 1, 2, and 3
into locations 4, 5, and 6, respectively, of the X and Y lists. This will enable us
to organize the testing of each side in turn for being the hypotenuse of triangle
ABC, as shown in TABLE 7-1. See lines 200 to 230 in PYTH2.

94 REM #* THIS PREGRAM STORES THE CORDIMNATES BF THE
95 REM VERTICES @F A TRIANGLE IN THE FIRST THREE
96 REM ELEMEMTS @F X AND Y LISTS AND DUPLICATED
97 REM IM THE NEXT THREE ELEMENTS @F THOSE LISTS
98 REM T@ FACILITATE USE OF SUBSCRIPTS AND L@BPS
99 REM T8 TEST PROPERTIES OF THE TRIANGLES.

100 DIM X{(6)s Y(6)

110 READ T

120 IF T = 0 THEN 900
130 PRINT

132

134 REM * READ COORDINATES IN LINES 140 TO 160
140 FER P = 1 TR 3

150 READ X{P}, Y(P}
160 MNEXT P
162

144 REM % PRINT CAORDINATES IN LINES 170 T 190
170 PRINT  "™C™3 XCUXF *»"3 ¥YC133 "),™3

180 PRINT "™{'™3 X<2)3 ","3 Y233 ") AND ™3

190 PRINT "C¢"™p X{3Xr “,";3 Y(3>»3 "¢

194 REM * DUPLICATIGN TAKES PLACE IN LINES 200 TD 230
rEDU FBR P = 1T 3

./ 210 LET XC(P+3) = X(P)
ﬁ"EEG LET Y(P+3) = Y(P)
230 NEXT P
232

234 REM * WE PRINT THE CONTENTS @F THE X AND Y LISTS
235 REM F@R DEMENSTRATION PURPBSES ONLY
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240 PRINT "VALUES OF X LREK LIKE THIS IN THE X LIST"
250 F@R P =1 T8 &

260 PRINT XC(P)3
270 NEXT P

280 PRINT

282

290 PRINT "WALUES @F Y LOGK LIKE THIS IN THE Y LIST™
300 FBR P = 1 T@ 6

310 PRINT Y(P)}

320 NEXT P

330 PRINT

aa2
340 GETO 110
T92
e KM
BOO DATA 1» 152, S5s=1s Gy 15
B1O0 DATA I» Qs 0s Oz 3s 40
B20 DATA O
900 END
RN
PYTH2
1 s B s 0 5 =1 Y AND ( & s 15 )
VALUES BF X LOOK LIKE THIS IN THE X LIST
1 5 & 1 5 &
VALUES GF ¥ LOGEK LIKE THIS IN THE Y LIST
2 -1 15 2 =1 15
[ s+ 0 Yo O s 3 Y AND € 4 s 0 b
VALUES BF X LO@K LIKE THIS IN THE X LIST
4] 0 4 1] 1] 4
VALUES BF ¥ LPOK LIKE THIS IN THE Y LIST
0 3 0 0 3 0

Now all that remains is to calculate the lengths of the sides of the triangle
and to store them in such a way that we may test in sequence around the tri-
angle, trying each side as possible hypotenuse. This is accomplished by lines 300
to 350 in PYTH3. Note that line 340 does for the lengths of sides what 210 and
220 do for the coordinates of the vertices.

PYTH3

94 REM * THIS PR@GRAM DETERMINES FROM THE CORBRDINATES
95 REM @F THE VERTICES OF A TRIANGLE WHETHER OR

96 REM MNOET IT IS5 A RIGHT TRIAMGLE

100 DIM X<6)s YC&): DC&)

110 READ T

120 IF T = 0 THEN %00

130 PRINT

132

134 REM % READ COORDINATES IN LINES 140 TO 180
a0 F@R P = 1 TO 3

150 READ XC(PYs YL(P)

160 MNEXT P

162

164 REM # PRINT COORDINATES IN LIMES 170 T@ 190
170 PRINT ™c™3 XC133 "a'3 YC133 ™)™

B0 PRINT M'r X{2)y "aTr YI2)r M) AND "

190 PRINT "{"": XC3)3; ","p Y(3)3 """

192

194 REM * DUPLICATI®N TAKES PLACE IN LINES 200 TO 230
200 F@R P =1 TBD 2

210 LET XC(P+3) = X(P)

220 LET Y(P+3) = Y(P)

230 NEXT P
232
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294 REM % ENTER LENGTHS IN THE D LIST IN THE

295 REM SAME FGRMAT AS USED FOR COORDIMATES IN
296 REM THE X AND Y LISTSy THAT IS5 - DUPLICATED
300 F@R J =1 TO 3

310 LET A = XCJ)=XKCJ+12
_./ 320 LET B = YC(JI-YC(J+12
320 LET D€JY = SORC Ar2+4Br2 )
340 LET DCJ+3) = DOJ)
350 NEXT J
asa
394 REM #% N@W TEST EACH SIDE FOR BEING A HYPOTENUSE
400 F@R P = 1 TOQ 3
410 IF D(P)*2 = D(P+1312 + DC(P+2)+2 THEN 500
420 NEXT P
422

424 REM * IF THE TEST FAILS FOR ALL THREE SIDES THEN

425 REM WE HAVE A N@N-RIGHT TRIANGLE

430 PRINT "NOT A RIGHT TRIANGLE"

440 GETE 110

492

500 PRINT "“RIGHT TRIANGLE W1TH HYPOTENUSE DETERMINED BY"
S10 PRINT “POINTS: (™3 XC(PY¥3 "»"3 YC(P>3 "> AND '3

520 PRINT "(¢"3 XCP+11 Y"1 Y(P+1): "V

530 G@Te 110

a2

T94 REM

800 DATA 1+ 1:2» S5a=1s 6215

810 DATA 1. O0x0s Os3s 420

820 DATA O

00 END

RUMN

PYTH3

(1 s 2 )1{5 s=1 Y AND ( 6 s 15 )
NBT A RIGHT TRIANGLE

(0 » 0 Y2 O s 3 ) AND € 4 +» 0 b
RIGHT TRIANGLE WITH HYPBTENUSE DETERMINED BY
POINTS: ¢ O r 3 ) AND ( 4 s O )

Summary of Sec. 7-5

We have examined sets of three points for collinearity. We have looked at
the triangle formed by noncollinear points to determine whether or not it is a
right triangle. In order to do this, we have devised a technique of storing co-
ordinates in lists to take advantage of repeatable program statements using
loops.

Problems for Sec. 7-5

1) In program CQLIN, provide for treating points on a horizontal line as
a special case.

2) Write a program to find the intersection of two altitudes of a triangle.

3) Write a program to find the intersection of two medians of a triangle.

4) Modify program PYTH3 to classify triangles as acute, equiangular,
right, or obtuse.

5) Have the computer print all Pythagorean Triples for a hypotenuse less
than 101. Pay particular attention to efficiency here.

6) Write a program to determine if four points are collinear.

7V Write a program to determine if n points are collinear.
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8) Write a program to compute the area of a triangle given the co-
ordinates of the three vertices and using Hero’s formula:

A =+\/s(s - a)(s- b)(s - c) where s=(a+b +c)2

9) Write a program to calculate the area of a triangle by finding the
length of an altitude using the methods of Sec. 7-4.
10) Write a program to test triangles for right triangles by determining the
slope of 2ll three sides to see if the produect is -1 for any pair. Vou
will have to treat vertical lines as a special case.

ilj iven iiiree noncoilinear points, find the center and radius of the
circle they determine.



8
POLYNOMIALS

8-1 Introduction

A real polynomial in x can be defined as any expression that can be
written in the following form:

a,x" + an_lx”_l L ﬂzx2 + a4;x t+ ap

For a given value of x,n is a non-negative integer and the &’s are constant
values, Examples of polynomials are

2x; 3x? + 2; 4; 5x!l + 3x% - 2

The highest exponent of x, called n, is the degree of the polynomial,

Polynomials are of interest to the mathematician and scientist alike.
The distance an object travels in a gravitational field is described by a second
degree polynomial, for example. We will now explore some ways in which
the computer may be programmed to evaluate polynomials and make some
comparisons.

Regardless of the final procedure to be used to evaluate a polynomial,
we will probably want to store the coefficients in a list. If you have zero sub-
scripts available, this is a perfect fit because the subseript of the coefficient is
equal to the exponent on x in each term. If you don’t use zero subscripts,
simply adjust the variable used for exponents. We arbitrarily select 3xt +
9x3 - x? + Bx + 3 for our first example. The degree of the example is
four, and hence there are five coefficients. The coefficients and the degree of
the polynomial may be entered as data.

One procedure for evaluating a polynomial is to use a BASIC language
function such as

100 DEF FHPC(X) = P(SY®Xra4+PCaY*Xt I+P(3)*X12+P(2)%X+P(1}

This defined function will work fine for any fourth degree polynomial. For a

P ——
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degree less than four we could fill in with zeros, but for degrees more than
four, we would have to retype the line. We are also limited by line length
when DEFining a function on some computer systems. Others allow multiple
line DEFinitions. So while the DEF capability is very useful in some situa-
tions, we might give some thought to developing another procedure for evalu-
ating a polynomial.

Note that the exponent of x is one less than the subscript of the list co-
efficient in each term of the DEF statement. (They are the same if you use
zers subscripts.) Even p{2i*x can be written p{2)*x 71 and p{1) can be wrii-
ten p(1)#x10 (unless ¥ = 0), This suggects the following loop:

g 00D
a00 LET P2 = P(C1)

310 FER I = N+1 TO 2 STEP =1

azo LET P2 = P2 + PLIX*Xr(I=-1)
330 NEXT I

This four line routine has the desirable feature that it requires no change for
handling polynomials of differing degree.

Suppose we give some thought to the number of operations we are in-
structing the computer to perform. Look at line 320. There we can see an
addition and a multiplication and an exponentiation. For positive integers as
exponents, exponentiation amounts to successive multiplication. That means
for an exponent of I — 1 there will be I ~ 2 multiplications plus the multi-
plication of the coefficient. That makes I -~ 1 multiplications for that line.
If we take another look at 3x* + 2x® - x? + 4x + 3 and count the number
of operations, we get four additions and 10 multiplications for our fourth de-
gree polynomial (not accounting for how the computer might handle the ex-
ponent one as a special case). For a 10*" degree polynomial there would be
10 additions and 55 multiplications.

Programmers often try to improve the efficiency of their programs because
of the limitations of the computer and the size of the job to be done or purely
for the challenge involved. Notice that in any polynomial, beginning with the
second term, each term has x as a factor one less time than the previous term.
This suggests some sori of successive factoring, as shown by the following:

3x* + 2% = (8x + 2)aB
(8x + 207 - x% = ((3x + 2)x - 1)x?
((8x + 2)x - 1)x? + 4x = (((8x + 2)x - 1)x + 4)x
((3x + 2} = 1)x + 4)x + 3 = (((3x + 2)x - 1)x + 4)x + 3

Thus our original polynomial 3x* + 2x® - x2 + 4x + 3 can be written in the
following form:

(({3x + 2)x - 1)x + 4)x + 3

This is called nested form.
Now there are only four multiplications and four additions called for in a

fourth degree polynomial. Of course, a saving of six multiplications is not much
to a computer, but the saving accumulates as the degree of the polynomial in-
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creases and as the number of times we evaluate the polynomial increases. Con-
sider the following routine:

400 LET P3 = PIN+1)

410 FOR I = N T 1 STEF -1
420 LET P3 = P3I%X + PC(I)}
430 NEXT I

We have another four-line routine that is more efficient than the first one.

We now have three procedures for evaluating polynomials. The first is a
defined function, the second is a loop which evaluates the polynomial using ex-
ponents term by term, and the third is a loop which uses nested form. Let’s
assemble these three procedures into a program so that we can compare some
values. As we expected, we see that all values do check out by looking at the
output of program PQLYO01.

POLYOI

24 REM #* THIS PREGRAM EVALUATES POLYNOMIALS BY THREE

25 REM METHODS DEF. TERM BY TERM AND MESTING
96

97 REM # SET UP DEFINED FUNCTION

100 DEF FNPLX) = P(SI#XtA+PLa)=Xt3¢PLI4Xr24P(2)%X+P(1)
102

104 REM = READ DATA

110 READ N

120 FOR I = N+1 T@ 1 STEP -1

130 READ P(I1)

140 NEXT I

142

144 REM * PRINT HEADINGS

150 PRINT "X", "“"FNP{X)", "EXP LROP". "WESTING"
160 FBR X = 1 T@ 10

192

194 REM * CALCULATE BY DEF

200 LET Pl = FNPCX)

292

294 REM * CALCULATE USING EXPONENTS IN A LOBP

295 REM TERM BY TERM

0o LET P2 = PC1D

310 FOR I = N+#1 TO 2 STEP =1

20 LET P2 = P2 + PCId)®Xr(]1=1)

330 MEXT 1

agz

394 REM % CALCULATE USING NESTING

400 LET P3 = PI{N+1)

410 FER I = N T@ 1 STEP =1

420 LET P3 = P3%X + P(1)

430 MEXT 1

492

494 REM = PRINT RESULTS

S00 PRINT X Pls P2, P3

510 MNEXT X

s512

514 REM

520 DATA 4, 3, 2, =1s 5, 3

530 END

RUIN

PELYOI

x FMPCX)Y EXP LOOP NESTING
1 12 12 12
2 T3 73 T3
a 306 a0e a0&
4 203 903 903
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5 2128 2128 2128
& 4317 4317 4317
T TB7B TETB TRETE
8 13291 13291 132921
2 21108 21108 21108
10 31953 31953 31953

Problems for Sec. 8-1
1) Write a program to tabulate the number of additions and multiplica-

tions for varying degrees of polynomial in order to compare nesting
with a one line DEF or with a loop which uses exponents.

2) Write a program to multiply two polynomials.

3) Write a program to add polynomials. Be sure to avoid leading zero co-
efficients.

4) Do problem 3 for subtraction.

5) Write a program to give ordered pairs (x,p(x)) suitable for graphing the
polynomial p(x).

6) Write a program to find zeros of a second-degree polynomial using the
quadratic formula.

8-2 Finding a Real Zero of a Polynomial

Now that we are set up to evaluate a polynomial, we can explore some ap-
plications. One important consideration where polynomials are concerned is to
find values of x for which the value of the polynomial is equal to zero. If we
designate a polynomial as p(x) (read p of x) and set y equal to p(x), then we
may think in terms of polynomial equations and their graphs. The zeros of a
polynomial are the values of x where p(x) = 0. For real zeros they are the val-
ues of x where the graph of the polynomial equation crosses the x-axis. How-
ever, in the case of nonreal zeros, while the value of p(x) will be zero, the graph
of the polynomial equation in the x-y plane will not cross the x-axis. Of course,
we are familiar with special mathematical procedures for solving certain poly-
nomials. For instance, all second-degree polynomials may be solved by the
quadratic formula. We will look here at more general solutions.

It can be shown that every nth degree polynomial has exactly n complex
zeros. So one approach to finding zeros is to simply try values of x until n are
found which give p(x) = 0. Such a procedure is feasible only with the aid of a
computer because of the tedious calculations required. Even so, the approach
can be very complicated indeed. We will simplify our job for now if we begin by
looking only for real zeros. A most valuable aid to finding zeros of any contin-
uous function y = f(x) is the principle that if f(x,) and f(x,) are of different
sign, then there are an odd number of zeros in the interval from x; to x,. For
real values of x it should be clear that if f(x;) > 0, the point (x,, f(x;)) on the
graph is above the x-axis, whereas f(x;) < 0 makes (x,, f(x,)) below the x-axis,
and the graph of a continucus function must cross the x-axis somewhere in
between.

There is a variety of ways to isolate increments in which real zeros may be
found. Let us set up a procedure whereby we have control over where the com-
puter searches for intervals within which zeros may be found. We can store co-
efficients in a list, select limits within which to search, and have the computer
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step through the specified region, trying pairs of values for x to see if f(x,; )*f(x,)
is positive, If it is not, then we have azero between x; and x, or either x, or x,
is a zero. If we always find f(x, )% (x,) positive, there are numerous possible
reasons. We may not have included the zeros in our limits, or we may have had
the computer search such large increments that the graph crosses the x-axis an
even number of times, or the graph may just touch the x-axis at a minimum or
maximum point and never cross the x-axis (the point at which it touches, how-
ever, is still a zero of the polynomial), or there are no real zeros. We must bear
all of these problems in mind as we construct and operate a program.

In program ZER(01, line 120 reads the degree of the polynomial and line
140 reads the coefficients. Line 280 tests for sign change. The subroutine
which starts at line 800 evaluates the polynomial by nesting. Line 840 checks
for exact zeros. The general procedure here is just as valid for any continuous
function as it is for polynomial functions. Note that we could use the graphing
of Chapter 5 to assist us in finding regions where we might expect to find zeros.

ZERODI

94 REM % THIS PROGRAM SEARCHES FOR A SIGN CHANGE
95 REM IN THE VALUE GF A POLYNGMIAL FUNCTION
100 DImM  PC1S)
110 PRINT “POLYNOMIAL 151

— 120 READ N
130 FBR I = N+1 T@ 1 STEP -1

— 140 READ PCI)
150 PRINT P(I)2
160 NEXT I
162
170 PRINT
180  PRINT

190 PRINT ™"FIRS5T. LAST. STEP"™:

200 INPUT Fs Ls S

210 PRINT

220 LET X0 = F

220 GOSsSUB 800

240 FOR X = F+5 TO L STEP 5

242

244 REM # S5AVE THE VALUE OF THE FUNCTION AT THE
24% REM BEGINWNING OF THE INTERVAL

250 LET Y1 = P3
260 LET X0 = X
270 G@SUB BOO
— 280 IF Yi%P3 > 0 THEN 320
290 PRINT *SIGN CHANGE:*
300 PRINT "P("™; %=5F "™3="3 Y13 "AND PC"3 X3 *1="3 P3
310 STOP
320 MNEXT X
322
330 PRINT “NO SIGN CHANGE FCUND"
340 STOP
Y92

794 REM % LINES 800 To B30 EVALUATE BY NESTING
— 800 LET P3 = FP{N+1)
B10 FOR I = N TO 1 STEP -1

R20 LET P2 = P3I%X0 + P{I)

B30 NFXT I

5az2

8234 REM * CHECK FOR EXACT ZERD
— B40 IF P3 <> O THEN B8RO

850 PRINT

BAO0 PRINT X003 ™15 A ZERC™

B70 STOP

BE0 RETURN
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BEB4 REM

890 DATA 3, 12223+ 4
200 END

RUN

ZERPO1

PGLYNOMIAL IS 1 2 3 4

FIR5Ts LAST:, STEF? =10,10.1

S5IGN CHANGE &
P{-2 ¥==-2 AMD P(=1 3= 2

Interval Halving

Now we have an interval in which we expect to find a zero. We would like
to make that interval smaller and smaller to get successively better approxima-
tions of a zero. We can simply evaluate the polynomial at the midpoint of the
interval found in program ZER@01 and check for a change of sign against one
endpoint. If a change in sign is found, we bisect and repeat. If a change in sign
is not found, then the change must occur between the midpoint and the end-
point not tested above; therefore we bisect that interval and repeat. After each
bisection the interval is smaller and the midpoint is a better approximation of
the zero. This process is accomplished in lines 400 to 550 of program ZER()02.

The process needs a stopping place. We need a test of the accuracy of the
current approximation that works for roots very close to zero and far away from
zero, a test, moreover, that is compatible with the precision of the computer,
We would like to get six significant digits in our results. We label the endpoints
of the interval x; and x,. If we test [x; - x,|against 107, we will not get six
significant digits for x, and x, when they are very close to zero. For x; and x,
large in magnitude, say 100,000, we would require a machine with 12-digit pre-
cision. These problems are avoided by using relative error and testing [x; - x,|/
(Ix3] + |x,]) against 107, See line 450 in program ZER(02.

ZERDD2

24 REM *= THI1S PROGRAM SEARCHES FCR APFROXIMATE ZERCOS
25 REM IN THE INTERVALS FOUNMD IN PROGRAM ZERDO!

100 DIWM  PC13)

110 PRINT ™POLYNOMIAL 15"

120 READ N

130 FBR 1 = N+1 TO 1 STEP =1

140 READ PCI)
150 PRINT PCI)s
160 NEXT I

162

170 PRINT

180 PRINT

190 PRINT "FIRS5Ts LAST. STEP"™)
200 INPUT Fs L» S

210 PRINT

220 LET X0 = F

230 GOSUB BOO

240 FOR X = F+5 T L STEP 5

250 LET ¥1 = P3
260 LET X0 = X
270 GAsUBE 800

280 IF Y1%P3 = 0 THEN 320



290 PRINT **SIGN CHANGE1"

300 PRINT "PC™3 X=51 "3="3 Y13 "AND P("3 X3
310 GaTe aoo0

20 NEXT X

age

A30 PRINT "NO SIGN CHANGE FoUunD®

3a0 S5ToOP

3s2

394 REM * LINES a00 THROUGH S50 CARRY OUT INTERVAL
395 REM HALVING. INTERVAL BOUNDARIES ARE X1 AND X2
396 REM EXACT ZEROS ARE FOUND IM LINE BaO
—400 LET X1 = X=-5

410 LET X2 = X

420 LET y2 = P3

4282

424 REM = HALVING TAMES PLACE IN LIMNE 430
430 LET X0 = {(X1+X21/2

440 GAsSUB BO0O0

450 IF ABS(X1=-X2)/(ABSCX1Y+ABS(X2)) > 1E-6 THEN 500
4460 PRINT

"*g 470 PRINT ™"APPROXIMATE ZERO:™

480 PRINT *PC™1 X031 ")=""p P3

490 STOP

S00 IF ¥1*P3 > 0O THEN 530

510 LET X2 = X0

S20 GOT@ 420

530 LET X1 = XO

540 LET ¥1 = P3

-550 GBTe 430

T92

794 REM #* EVALUATE BY NESTING

800 LET P3 = PiN+1)

BID FOR I = N TO 1 STEP =1

B20 LET P3 = P3*X0 + P(I)

830 NEXT I

832

840 IF P3 == (0 THEN BEO

B50 PRINT

260 PRINT X0 "IS A ZERO™

B70 5Tar

880 RETURN

BE2

284 REM

B90 DATA 3s 125354

200 END

RN

ZEROOZ2

POLYNOMIAL IS T 2 3 4

F[RSTJ LASTI STEP? ‘2:‘1:-1

SIGN CHANGE:
P{=1.T7 }==-0.233 AND P(-1.4

APPREXIMATE ZERO:

Polynomials

P{-1.65063 )=-4.TH32E-6

Summary of Sec. 8-2

We have used the principle that if f(x;) and f(x,) are of opposite signs,
there must be a value of x between x,; and x, such that f(x) = 0 if we are to
find intervals within which zeros exist for polynomial functions. We have fur-
ther reduced interval size by successive halving to obtain approximate zeros. All
of the methods used here can easily be applied to other finite continuous func-

tions as well.

0224
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Problems for Sec. 8-2

1) Find a zero for any or all of the following:
a) x> + 6x* - 49x + 66
b) x* + 2x® - 18x? - 14x + 24
c) ¥ + 11x? - 68x - 672
d) 2x° + 3x% + 4x - 5
e)

x° + 13x% - 37x® - 457x% + 492x + 2340
£y &% + 2x% - 11x - 12
g) x° + 4.8x* - 4.2¢%® - 29.6x% + 7.2¢x + 28.8

2) Modify ZER(OZ to search for ali reai zeros automatically after the val-
ues of F, L, and S have been specified. Be sure to stop if all zeros have
been found without further testing values of x.

3) Modify ZER(MO2 to use linear interpolation instead of interval halving
to obtain approximate zeros.

4) Modify ZER(QO2 to find zeros for any continuous function rather than
just a polynomial function.

8-3 Synthetic Division to Get Further Zeros

We present the Remainder Theorem, Factor Theorem, and synthetic divi-
sion as aids to finding zeros after a first zero is known.
The Remainder Theorem

If p(x) is divided by (x - z), the remainder is the value of the polynomial
when 2 is substituted for x.

p(x) _
a-z W ey

That is, p(x) divided by (x - 2) yields a quotient polynomial plus a remainder.
Multiplying through by (x - 2) we get:

p(x) = (x - z)g(x) + r
and when z is substituted for x that produces:
p@) = (- 2)q@) +r
or simply
p@E)=r
Factor Theorem

We note that when the value of r is zero, we have p(z) = 0, and that makes
z a solution of the equation p(x) = 0 or a zero of the nolvnomial  Sinece the re-
mainder is zero after dividing by (x - 2), it follows that (x - z) must be a
factor of p(x), or

plx) = (x - 2)q(x)

Having found the first zero using the procedure of Sec. 8-2, we need only find
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q(x) and then use the procedure of 8-2 on it, repeating until all real zeros are
found.

Synthetic Division

We now develop the synthetic division algorithm using x* + 5x® +
9x* + 8x + 4 divided by x + 2 as an example. It is this division that will
enable us to find ¢ (x) above. We begin by performing the division “long hand””;

2 + 3x2 + 3x + 2
x+ 2% + 5x® + 9x% + 8x + 4
x4+2x3
3x® + 0x?
3x3+6x2

3x? + 8
3x2 + 6x

Notice that a great many things will always be written twice. We will always
“bring down” 9x2 and 8x and 4. For division by x + 2, we will always get x*
and 3x® and 3x? and 2 repeated. So let us eliminate these repetitions and
compress the problem vertically:

x3 + 3x% + 3x
x + 2)x* + 5x3 + 9x?
2x3+6x'1

3x? + 3x? + 2

-

s

+ o+ |+

Now if we line things up properly, there is no need to write the x’s and their
exponents. And there will always be an x in the divisor, so we don’t need that.
Let’s condense again:

1+ 3+
+21 +5+9+8+ 4
2+6+6+4

3+3 + 2

+ 2

O O | w

Since the coefficient of the first term of the quotient is always the same as the
coefficient of the first term of the original polynomial, we can make the bottom
line of figures exactly agree with the top line by simply bringing down the first
figure. Now we eliminate the top line to get:

+91 +5+9+8+ 4
B 2+6+6 + 4

1+3+3+2
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Recognizing that subtraction is the same as “changing the sign and adding,” we
can change the 2 to a -2 and add instead of subtracting. That leaves us with:

- 201 +5+9+8+4
-2-6-6-4
+ 3+ 3+ 2
The sequence of operations is as follows: Bring down Lhe 1, multindy the 1 by

9, and write it under the 5. Add 5 and -2 to get 3. Multiply the 3 by -2 and
write it down under the 9. Add 9 and -6 to get 3. Multiply 3 by -2 and write it
down under the 8. Add 8 and -6 to get 2. Multiply 2 by -2 and write it down
under the 4. Add 4 and -4 to get a remainder of 0. Division done by this
algorithm is called “synthetic division.”

Since synthetic division is an iterative process, it is especially suited to the
computer. Notice that most of the process consists of multiplying and adding.
Not only is that an iterative process, but it is the same iterative process used for
evaluating polynomials by the nesting method. All that is required to adapt the
subroutine 800 in program ZER(02 to synthetic division is to store the sub-
totals along the way in an appropriate list element. This is done in line 820 of
program DIVIDE. Look at program DIVIDE and compare subroutine 800 in
it with the subroutine 800 in ZERQ02.

DIVIDE

24 REM # THIS PROGRAM USES SYNTHETIC DIVISIOM
100 DIM PCIS)Ys GC15)

110 READ M

120 PRINT "P{X)=";

130 FER 1 = N+1 TO 1 STEP -1

140 READ PU(I}
150 PRIMT P(I):
160 NEXT 1

162

170 PRINT

180 PRINT "ODIVIDE BY X-"3

190 INPUT X0

200 PRINT "RUOTIENT "3

210 GOSUB BOO

220 s5Terp

792

794 REM # THE DIVISION TAKES PLACE IN LINES BOO TO 830
795 REM * NOTE THE SIMILARITY TO NESTING
BO0 LET P3 = DEN+13 = P(N+13}

810 FOR I = M TO 1 STEP -1

— 820 LET Q¢1) = P3 = P3#%X0D + P(I}
B30 MNEXT 1
Bag

B34 REM #* PRINT RESULTS
B4D FOR 1 = N+! TO 2 STEP -1

850 PRIMT QCIX:

B60 MEXT I

BA&2

B70 PRINT "REMAINDER ="3 @€13
BEO RETURN

BEZ

B84 REM

890 DATA 4, 12529854

900  END
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RN
DIVIDE

PiXi= 1 S5 9 8 a4
DIVIDE BY X-? -2
QUOTIENT | 3 3 2 REMAINDER = 0O

Program DIVIDE works well, but why use a program to perform division
in the first place? Why not simply use program ZER(M02 to look for zeros until
we find all of them? It is true that program ZER(02 would easily find -2 as a
zero of f(x) = x* + 5x* + 9x® + 8x + 4, but then what? Program ZER(02
will find no further zeros. We may use the results of a run of program DIVIDE
to see why.

The output of program DIVIDE above tells us that

x% o+ Bx? + 9x? + 8x + 4= (x + 2 + 3x2 + 3x +2)

So -2 is a zero of our function f(x) = x* + 5x* + 9x? + 8 + 4. Next we
wantazeroofg(x) = x° + 3x% + 3x + 2. Let’s use program ZERQO02 to find
that zero.

Egﬂ DATA 3- 13,32
RUN
ZERDOD2

POLYNOMIAL IS5 1 3 1 2

FIRST» LASTs STEP? -5s5s1

-2 15 A ZERD

A run of ZER(QO02 with the new data reveals why we could not have found one
of the other zeros. We now see that -2 is a zero of the function f twice and our
program had no way of determining that fact. Values that oecur more than once
as zeros are called multiple zeros. Why wouldn’t ZER(®O02 find the other two
zeros? Let’s divide g(x) by (x + 2) and find out.

B30 DATA  3s 13532
RN
DIVIDE

PiXy=1 3 3 2

DIVIDE BY X-? -2
QUATIENT 1 1 1 REMAINDER = 0O

Thus one factored form of our original polynomial is
(x + 2)(x + 2)(x% + x + 1)

The first two factors tell us that -2 is a zero twice and analyzing the third factor
using the quadratic formula tells us that the final two zeros are nonreal numbers.
They are -+ + 3iv/3 and-% - 3i/3.
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Thus we see that the ability to divide polynomials by (x - 2) wherez is a
zero of the polynomial function makes more information available to us than we
would have if we limited ourselves to the procedures of program ZER(Y02. The
ability to divide enables us to find multiple zeros and, where we are able to
divide so that the quotient polynomial is a quadratic, we are able to determine
nonreal zeros. We note that caution must be exercised when dividing by ap-
proximate zeros. Each succeeding division will be susceptible to additional error.

% oo oo e 2 D
THREIITANTR AT 4NN
==

0o

¥l
(W

=
-

,,,,,,
polynomial by (x - z)to obtain a new polynomial with one less zero. Synthetic
division has been shown to duplicate the steps of evaluating a polynomial by the
nesting method and so enables us to easily perform the division indicated by the

results of the factor theorem. This enables us to find multiple zeros and, in
some cases, nonreal zeros.

Problems for Sec. 8-3

1) Write a program to find the zeros of third-degree polynomials by find-
ing the first zero and then finding the remaining zeros by using the
quadratic formula.

2) Incorporate synthetic division into program ZERQO02 so that when-
ever a zero is found, the division is performed and a search is begun for
the next zero.

3) Use the methods of this section to find as many zeros as possible for
the problems of problem 1 in Sec. 8-2.

8-4 Miscellaneous Aids
Integral Zeros

It can be shown that for an nth degree polynomial with zeros z,,
Zp1s .- - s 22, 21 that the following is true:

{x E zﬂ)[x = zu-—I}“*{x = 3‘2}{x E zI]
= @px" + @y X"+ ...t ax + @

Considering the product of n binomials on the left we can see that (-z,) -
(-2n-q) - .. (-22)(-2;) is the constant term in the product which must equal the
constant term on the right, or go. If there is at least one integral zero and g, is
an integer, that means that all integral zeros of a polynomial must be factors of
ay. So we could write a program somewhat simpler than ZER(O01 that would
search only for integral zeros by first determining all integral factors of a;. In
program ZER(01 we used p (1) for a,.

Descartes’ Ruie of Signs

Consider the polynomial x> + 8x + 1. It should be clear that no matter
what positive value we might try for x, we can never make x2 + 8x + 1equal
zero because x* and 8x are both positive for x positive. Thus in searching for
real zeros we need not consider any positive numbers. The same is true for
-942 - 5x - 1. Now. what about x2 + 3x - 1?7 Can there be more than one



Polynomials 113

positive value of x for which x> + 3x - 1 = 0?7 No! Consider as another
example x* + 1, There is no positive replacement for x to make x> + 1 equal
to zero, and likewise there is no negative replacement for x that makes x> + 1
equal to zero since x* would have to equal -1. That tells us that since x? + 1
is a second-degree polynomial and has two complex zeros, they must both be
nonreal. Descartes observed all this and more and left us with Descartes’ Rule
of Signs.

We may define the variation v in a sequence of numbers as the number of
changes in sign found by comparing successive pairs of adjacent numbers. For
example, for the sequence 1, 3, 4, -8, 2, the value of v is 2. There is no change
for 1 to 3 or 3 to 4. There is one change for 4 to -8 and for -8 to 2. If zeros
appear in the sequence, we drop them. The sequence -2, 8, 0, 5, -3, 6 becomes
-2, 8,5,-3, 6 in order to determine the number of variations, which is 3.

Descartes’ Rule of Signs says that for

@, x" + @, X"+ ... a1x + @

the number of positive zeros depends on the number of variations in the se-
gquence, a, @4, ..., @1, @, in the following manner. If v is the number of
variations, then the number of positive zeros is either v orv - 2o0rv - 4, ete.,
but not less than zero. This may be written v - 2i where i is a positive integer.

It turns out that we may find a corresponding number for negative zeros
by finding positive zeros for p(-x). Substituting -x for x will change the sign of
all terms which have an odd exponent for x. Thus if p(x) = -4x° - 3x* +
bx” - 2x® + x - 3, the value of v is 4 and there must be 4 or 2 or 0 positive
zeros, Now we find that p(-x) = +4x° - 3x% - 5x° - 2x? - x - 3 and
that v is 1. Thus there must be exactly one negative zero. For example, in
3x° - 2x% + x* - 2% + 5x? - x + 1, we might expect to find as many as
six positive zeros, but under no conditions would we look for negative zeros
since p(-x) = 8x° + 2¢x° + x* + 2x® + 5x* + 1, which gives zero varia-
tions. All of this gives us a great deal of information. Sometimes the informa-
tion is exact, as when we get 0 or 1 as the number of variations. At other times
we get only a guide, as with x* + 2x* + 2x + 1, which has no positive real
zeros and three variations for p (-x), which gives 3 or 1 negative real zeros. A
solution of the problem will yield one negative zero and two nonreal zeros in
this particular example.

Problems for Sec. 8-4

1) Write a program to produce polynomials of random degree when zeros
are all random integral values.

2) Write a program to produce an nth degree polynomial given n integral
Zeros.

3) Modify program ZERQO01 to find all integral zeros by having x go from
—dg to ap STEP SGN {ﬂu).

4) In problem 3, how many additions and multiplications would be re-
quired in a; = 100 for nesting compared to the use of exponents, not
counting the loop operations?

5) Modify program ZERMO01 to find all integral zeros by having x take on
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6)

7

8)

9)

Advanced BASIC

Analyze the number of operations called for in problem 5 as compared
to problem 3 for selected values of ay.

Write a routine to use Descartes’ Rule of Signs which merely prints the
number of possible zeros in each of the following categories: complex,
positive, negative, and zero. Be careful about zero coefficients.
Incorporate the routines of problem 7 in ZERQO2 so that the com-
puter stops searching if it has found enough positive zeros and if it has
found enough negative zeros, Be sure to have the program check for
both positive and negative possibilities.

An upper bound may be placed on zeros by finding a non-negative
value of z such that after dividing by (x - z), all nonzero terms in the
third line of the synthetic division are of the same sign, provided the
leading coefficient of p (x) is positive. A lower bound may be found by
taking the negative of the upper bound for p(-x). Write a program to
find upper and lower bounds.



S

SEQUENCES AND
SERIES

9-1 Sequences

A sequence is simply a list of numbers. It is, of course, a natural for use in
computers, although a computer list may not be essential for a particular
application.

Sequences come in two kinds, finite and infinite, Obviously we will only
be able to evaluate a finite number of terms for any sequence used in a computer.

We routinely work with sequences. The set of counting numbers is a
sequence, as is the set of odd integers and the set of even integers. If we were to
consider 10 random numbers, they could constitute a sequence. It is more usual
that the numbers in a sequence follow some relatively simple pattern. One such
sequence you’ve probably seen goes 1,1, 2, 3, 5, 8, where every number from
the third on is the sum of the previous two. This is called the Fibonacei sequence.
The numbers in this sequence have widespread significance in mathematics, art,
and nature. We can easily write a program to compute elements of this sequence,
store them in a list, and print them, as shown in Program FIBO1. One can
generate a Fibonacci type sequence by selecting any two integers for F(1)
and F(2).

FIBOI

g4 REM #* THIS PROGRAM PRINTS THE FIRST
95 REM 30 FIBONACCI NUMBERS

100 DIM F(30)

102

104 REM % ST@RE THE NUMBERS IN A LIST

110 LET FCl1) = F(2) = 1|
120 F@R A = 3 TP 30

130 LET FI{X) = FI{X-1) + F{X-2)
140 NEXT X
142

115
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144 REM # NBW PRINT THE LIST

IS0 FBR X = 1 T9 30

160 PRINT F(X)»

170 NEXT A

172

IB0 END

RUN

F1BO1
1 1 2 a 5

8 13 21 34 55

BY 144 233 ar7 &10
og7 1527 2584 a181 4745
10946 17711 28657 463568 75025
iZi353 iFs4ais 3iT6L Sia33% 8 32340

Probably one of the simplest sequences is the set of counting numbers. It
begins 1, 2, 3,.... This is an example of an “arithmetic sequence.” An arith-
metic sequence is one in which we get from one term to the next by adding a
constant, called the common difference. The general form for the nth term of
such a sequence is f,, = #; + (n - 1)d, and we will discuss this later. For the
counting sequence,d = 1.

Some sequences are motivated by physical problems. Suppose you are
200 feet from a fixed point. How long will it take to reach that point if you
cover half the remaining distance every minute? It should be clear that you can-
not ever reach that point, because at every minute along the way fhere is still a
distance separating you from the point and half of that is still a nonzero distance.
So there is always a distance remaining, and you can only cover half of it in the
next minute, However, it is also clear that at some point you can reach out and
touch the point. So we might ask how long it will take to be within six inches.
Consider program HALF,

HALF

24 REM * THIS PROGRAM HALVES DISTANCE

75

96 REM * [NITIAL CCNDITIONS - 200 FEET AT TIME ZEROD
100 LET O = 200

110 LET T = 0O

ez

114 REM * NOW COVER HALF THE REMAINING DISTANCE
115 REM EVERY MINUTE

120 LET T = T+|

130 LET D = D#®C1/2)

140 IF b = &/12 THEN 120

150 PRINT "“DISTANCE ="j D3 "“FEET"

160 PRINT "IN'3 T3 "MINUTES"

170 END

RUN

HALF

DISTANCE = 0.390625 FEET
IN 9 MINUTES

If we change HALF to look at the intermediate values of D, we get an
example of another common type of sequence. Consider program HALF1.

135 PRINT T2 D
R
HALF 1
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100

50

25

12.5
£.25

3. 125
1.5625
0.78125
0.390625
DISTANCE = 0.390625 FEET
IN 9 MINUTES

I = T T v w ]

Each term in the sequence is calculated by multiplying the previous term
by a constant. In our problem the constant is % Such sequences are called
“geometric sequences.” The constant term is called the “common ratio.” The
nth term of a geometric sequence can be found by the formula ¢, = t,r® =~ 1),
where r is the common ratio.

A common situation described by a geometric sequence is compound
interest. If you put money in a savings account, the bank adds interest to the
account at regular intervals, and the amount becomes the principle for the
next interest period. If the interest rate per interest period is r, we get the
amount at the end of that period as p + pr, which equals p(1 + r), and at the
end of n periods we get p(1 + r)". If you put $100 in a bank for one year at
9% interest compounded monthly, the rate for each interest period would be
.05/12, and the number of interest periods would be 12, Consider Program INT.

INT

94 REM #* THIS PRAOGRAM CALCULATES CBMPEUND
5 REM INTEREST BY F@RMULA

100 READ N

110 FER 1 = 1 T@ N

120 READ Ps» Rts N1, Y

130 LET R = RI/NI1

140 LET N = Ni=Y

150 LET A = P%(1+R/100)N

160 FRINT *"$*"3 P» "AT") RI13 "X FER™® Y} "“YEARS"™
170 PRINT "COMFBUNDED"» N1» "TIMES ANNUALLY BECGMES 5"™) A
180 PRINT

190 NEXT I

192

194 REM

200 DATA 3

210 DATA 100, 5S5» 4 2
220 DATA 100, 5» 12, 2
230 DATA 100, S5 365, 2
240 END

RUN

INT

£ 100 AT 5 % FE@R 2 YEARS
COMPOUNDED 4 TIMES ANNUALLY BECOMES £ 110.449

£ 100 AT 5 X FOR 2 YEARS
CEMPOUNDED 12 TIMES ANNUALLY BECAMES 5 110.494

$§ 100 AT 5 T FER 2 YEARS
COMPAUNDED 365 TIMES ANNUALLY BECGMES % 110.516

For some sequences we are merely given a formula. For example, consider
the sequence for which the nth term is (2n - 1)/(2n + 1). We see the first 20
terms in program SEQO1.
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SE@D1

94 REM # THIS PREGRAM PRINTS 20 TERMS @F THE

95 REM SEGQUENCE (2=2N-1)/(2%N+1)
100 DEF FHNSCNY = (2%N-1) / (2%N+1)
110 FER 1 = 1 T@ 20

120 PRINT FNSCIds 2%I-13 "/"3 2%1+1
130 NEXT I

132

140 END

RUN

sEant

0.333333 1 7 3

Uels 4 F 3

D.T14286 S 57

OTTTTTB TSS9

o.818182 9 /7 11

0-H46154 11 7 13

0.B66667 13 7/ 15

0.BE2353 15 7 17

08924737 17T 7 19

D.904762 19 7 21

0913043 21 7 23

0.92 23 5 25

D.925926 25 / 27

0.931034 27 /4 29

0.935484 29 7 31

D.9393%94 31 s 33

0.942B857 33 /7 15

D. 945946 as 7/ 37

0.94BTI1E a7 /4 a9

D.95122 392 /7 4l

Summary of Sec. 9-1

Sequences are defined as lists of numbers. Sequences may be motivated
by a study of some natural phenomenon or simply an interest in the relation-
ships of numbers.

Problems for Sec. 9-I

1)

2)
3)
4)
)

6)

Beginning with the second Fibonacci number, and continuing to the
eishteenth term of the sequence find (a) the square of the term,
(b) the product of the immediately preceding and the immediately
following terms, and (c) the difference of the numbers obtained in (a)
and (b).

For at least 25 Fibonacci numbers, find, for all possible pairs, the
greatest common factor.

For at least 15 Fibonacci numbers, print the ratios of adjacent terms.
Have the computer print at least 20 elements of a general Fibonacci
sequence making f(1) = 1 and f(2) = 3, or any f(1) and f(2) you
prefer.

For a general Fibonacci sequence like that in problem 4, print the
ratio of adjacent teriiis.

For a general Fibonacci sequence like that in problem 4, print the
square of each term from the second to the next to last, the product
of the one just before and the one just after, and the difference of
these results.

7) Find the accrual to $1000 after seven years at 6% interest compounded

T L I . . . S, T DL
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8) Find how many minutes it will take for you to get to within six
inches of a point if you start 200 feet away and every minute you
cover one-third of the remaining distance.

9) Suppose that a rubber ball is known to bounce to three-fourths of the
height from which it is dropped. If the ball is dropped from 10 feet,
how many bounces will it take to bounce back less than one inch?

10) If you were to place one grain of rice on the first square of a chess
board, two grains on the second, four grains on the third, doubling
the number from each square to the next, how many grains would
you have to place on the 64th square? (Could you?)

11) Print a few terms of any of the following:

(@) 2n + 3 (d) n"
(b) 2n* - n + 1 (e) n?/™
(¢) 2"/n? (f) (1 + 1/n)"

9-2 Convergence and Divergence

Looking at the sequences of the last section and the results of the prob-
lems, we can see some differences. Note that for the Fibonacci sequence, the
numbers get larger and larger, and for the sequence in which the distance is halved
each minute, the terms get closer and closer to zero. For the sequence generated
by (2n - 1)/(2n + 1), the terms seem to get closer and closer to one. The later
two sequences are examples of converging sequences, and the Fibonacci sequence
is an example of a diverging sequence.

If a sequence converges on some value, then that value is called the limit of
the sequence. In the formal study of limits, methods are developed for deter-
mining whether or not a sequence has a limit and for finding the limit if it does
exist. However, we will take a somewhat informal approach here.

The limit of a sequence of values s,, 54, . . . 5, is denoted by

lim s,

A —+ea

Thus fors,, = (2n - 1)/(2n + 1), we write:

) 2n - 1
lim =1
i —»oo ZH + '1

Note that there is no integer for which (2r - 1)/(2n + 1) actually equals one,
but the larger n gets, the closer to one the value of (2n - 1)/(2n + 1) becomes.
We can get some insight into the behavior of sequences by looking at a few terms,
even if that insight is that we need to look at still more terms. In order to be
certain about the properties of some sequences, you should pursue a formal
study of limits. However, one clear benefit of using the computer is that we
may look at hundreds or even thousands of terms without tedious hand calcu-
lations. Of course, one way to save computer time is to print only those values
that we are interested in seeing. Sequences converge and diverge at vastly
different rates. Therefore don’t be too quick to infer too much from just a few
terms.

We can look at lim (- 2)' by writing a very short program to print some
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LIMOL

94
95

100
110
120
130
13z
140
150
160
Rl
LIM

1
2
3
&
5
&
7
B

REM * THIS PROGRAM PRINTS SAMPLE VALUES
REM FOR THE SEGQUEMNCE 5 = (-3/5)tH
DEF FMLCHY = (=3s5)tH
FOR I = {1 TG 10
PRINT I3 FNLCID
NEXT I

PRINT 100F FNL<1003
PRINT 1013 FMLC101)
EMD

01

-0.6
0«38
~0.216
O.12956
=0.07776
D.046656
-2.799236E-2
1.67962E~-2

g =-1.0077T7E-2

10

6« D4AB62E -3

100 6.53319E-23

10

1 =3.91921E-23

Looking at just the first 10 terms we can see that each term is closer to

zero than the one
negative. For the

before and that the values alternate between positive and
one-hundredth term, we get 6.5 X 107?? and for the one-

hundred and first term we get -3.9 X 107, making us more and more confi-
dent that the limit is zero.

Not all converging sequences converge on zero. Consider lim (2 + %”].

We can see that (%

i R

)" converges on zero, and therefore 2 + (Jg)" converges on

2 + 0, or 2. Look at program LIMO2, and see how much faster it converges
than program LIMO1.

LiMo2

94

95

100
110
120
130
132
140
RUN

REM % THIS PROGRAM PRINTS SAMPLE VALUES
REM FOR THE SEQUENCE 5 = (2401/5)tH)
DEF FMLCHY = (2+(1/5)tH)
FBR I = 1 T8 10

PRINT I3} FNLCI}
NEXT I

EMD

LiMO2

- ) =} O L L 0D =

o

2.2
2.04
2.008
2.0016
2.00032
2. 00006
2.00001
2.
2.

2.

It should be clear that if any number n such that |n| < 1 is raised to
higher and higher powers, the closer to zero n is, the faster the result approaches
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We will look at an example of divergence before we leave this section.
Suppose that we have a magic ball that bounces to 110 percent of the height
from which it is dropped. If we drop this ball from 10 feet, after one bounce it
reaches 11 feet. After the second bounce, it reaches 12.1 feet, etc. How high
will it go after 10 bounces? See program BOUNCE.

BAUNCE

P4 REM * THIS PR@GRAM PRINTS HEIGHTS FOR A BALL
95 REM RECGVERING 110% @F ITS HEIGHT EACH BOUNCE
100 LET H = 10

1to FE@rR I = 1 T8 10

120 LET H = H#*1.10

1320 PRINT I5 H

140 NEXT 1

142

150 END

RUM

BEUNCE

[ B

2 12.1

3 13.1

4 l4.641

S 16«1051

& 17-T156

T 19. 4872

8 21.4359

9 23.5795

10 25.9374a

Summary of Sec. 9-2

We have been judging divergence and convergence of sequences by looking
at successive terms.
Problems for Sec. 9-2

1) Compare the convergence of (- igg )" with (110 )

2) Print a few terms of 1 + (2)" and (1 + ($))".

3) Write a program to give enough terms of (2 + (n - 2) [n?) to decide on

convergence.
4) Write a program to examine any or all of the following:

2 + 3n -1
n
n-1
(n + 1)(n - 2)

n
(a)

(b)

(c¢) 1/n!
(d) 1 - 1/8!' + 1/5! + ... + (-1)™y2n - 1)!
(e) (1 + (1/n)")

sm(n}

(f)
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_ (@ ++5) - (1 - V5)
2"\/5
Verify this for a reasonable number of terms.
9-3 Series

A series is what you get if you write the terms of a sequence with plus
signs between them. In other words, a series is the sum of a sequence, Thus the
series for Lhe counting sequence is

1+2+3+4+5+-

Fy

The sum of the first five terms is 15. Note that if we look at successive sums, we
can form yet another sequence called the sequence of partial sums. For the
counting sequence, we get

1,1 +2,1+2+3, 1+2+3+4,1+2+3+4+5 -
(R P _.r"k A

Y Y N
1 3 6 10 15 ---

We could look at the series associated with that sequence and so on without end.
For some series, we can evaluate the sum by formula, and for others, to do
so is difficulf. It is even possible to evaluate the sum by forrula for certain
infinite sequences,
Looking at an arithmetic series of n terms, we see that

Sp =8 +(t +1d)+ (4 +2)+ ...+ (t; + (n - 1)d) (8-1)
and looking at the same series in reverse order we see that
Sp =y +(n-1Dd)y+ ...+ (& + 2d) + (¢; + 1d) + 1 (8-2)
Adding (8-2) to (8-1) we get
25, = (2t + (n - 1)d) + ...+ (2, + (n - 1)d) + (2t; + (n - 1)d)
+ (2t + (n - 1d)

which is therefore twice the sum s,,. Note that 2{; + (n - 1)d occurs n times.
Thus we get 2s, = n(2t; + (n - 1)d) or 2s, = n(t; + (t; + (n - 1)d).
Since the nth term is¢; + (n - 1)d, we get 2s,, = n(t, + {,) or

sp = (R[2)(t; + t,)

This gives us a choice for finding the sum of an arithmetic series. We may
use either the formula, or add terms as we generate them in a computer loop.
For a geometric series we have

L T, ST TR et v r i (=1} P
L7 I L S Yo Ty s
Multiplying both sides by r we get
rs, = fr+ bt v bt o+ L+ " (8-4)

Subtracting (8-4) from (8-3) we get
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§ =gl
Sn - tl 1 =

Again we have the choice of finding the sum by formula or by having the
computer add terms as it generates them,

We can get some idea about how the arithmetic and geometric series
behave by picking two terms and treating them as the first and second terms for
both kinds of sequences. This is done for two pairs of terms in two runs of
program GEQARI.

Note that in both cases the sequence of sums for the arithmetic sequence
seems to diverge. In fact, all arithmetic sequences for d <> 0 diverge and so
do their associated sequences of sums. We can see that one of the geometric
sequences diverges and the other seems to converge. All geometric sequences
and their associated series for which |r| < 1 converge.

which simplifies to

GEBARI

94 REM * THIS PROGRAM PRINTS VALUES FOR GEOMETRIC AND
95 REM ARITHMETIC SEQUENCES AND SERIES WITH THE SAME
96 REM FIRST TWO TERMS

100 PRINT "“FIRST TW@ TERMS"3

110 INPUT AC1)s AC2)

120 LET S<13 TC1Y = GC1Y = AC1)

130 LET G(2) = A(2)

132 _

134 REM * FIND COMMON DIFFERENCE F@R ARITHMETIC SEQUENCE
140 LET D = AC2) - ACD)

142

144 REM #* FIND COMMON RATIE@ FOR GEOMETRIC SEQUENCE

150 LET R = G(2)/GC1)

160 PRINT “TERM", "GE@ SEQ@", "GE@ SERIES".

170 PRINT "™ARITH SEQ", "ARITH SERIES"

172

174 REM #* STORE SUCCESSIVE VALUES IN LISTS

180 FOR 1 = 2 T@ 10

190 LET G(I) = GC(I-1)=*R

200 LET SCIY = SCI-1) + GCID

210 LET ACI) = aACI-1) + D

220 LET TCIY = TCI-1) + ACL)

230 HNEXT I

232

234 REM * PRINT RESULTS

240 FE@R I = 1 Te 10

250 PRINT I+ GCIYs 5¢12, ACLI)s TCI1D

260 NEXT I

262

270 END

RUMN

GEBARI

FIRST TW@ TERMS?1.8

TERM GE® 5EQ . GE@ SERIES ARITH SE@ ARITH SERIES
1 1 1 1 1
2 a e 2 3
3 4 7 3 &
4 8 15 4 10
5 16 3l 5 15
& az &3 & 21
7 64 127 7 28
8 128 255 8 36
9 256 311 9 45
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HLM

GERARIT

FIRST Twe@ TERMS5?4,3

TERM GED 5£0 GED SERIES ARITH 3EQ ARITH SERIES
1 4 4 4 4
2 3 T 3 7
3 2.25 P25 a2 9
4 1.6B75 10.9375 1 10
5 1.26562 12.2031 a 10
T « 711914 13-BA47 -2 T
B «533%238 14.3782 -3 4
9 -460452 14.?935 -4 D
id « 300337 1Seuyy -3 =5

Looking at the formula for the sum of a geometric sequence,

1 S o
Sn=t1 1"r

we can see for |r| << 1 that r" gets closer and closer to zero as n gets larger
and larger. Thus 1 - r”" gets closer and closer to one, thatis, lim 1 - r® = 1,

ii—+oD

I i t(lurn t( s )
1mm &5 e =
el r:l—i>rcl--a1 1-r 1 1 ~-r

Thus for an infinite sequence with |r] < 1,

1
S=t1(1_r)

Finally, we will look at some other series in the next section.

and

Summary of Sec. 9-3

We have defined a series as what we get by replacing commas with plus
signs in sequences. We can find the successive sums of a series, which is the
sequence of partial sums. For an arithmetic series the nth sum iss,, = (n/2) -
(t; + t,), and for a geometric series the nth sum is s, = ¢;(1 - r™)/(1 - 7).

Series either converge on some real number value or they diverge. All
arithmetic series diverge, and geometric series diverge for a common ratio greater
than or equal to 1 or less than or equal to - 1.

Problems for Sec. 9-3

1) For the magic ball bounding to 110 percent of its height in Sec. 9-2,
find the total distance traveled before reaching the height of the tenth
houneo

2) Find the sum of the first n positive integers for the following values of
n: 10,100, 1000, and 10000.

3) In the song “The Twelve Days of Christmas,” gifts are bestowed upon
the singer in the following pattern: the first day she receives a partridge
in a pear tree; the second day two turtle doves and a partridge in a pear
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tree; the third day three French hens, two turtle doves, and a partridge
in a pear tree. This continues for 12 days. On the twelfth day she
receives 12 + 11 + -+ + 2 + 1 gifts. How many gifts were there
altogether? Note that the figure asked for here is the twelfth term of
the sequence of partial sums of the sequence of partial sums of the
sequence of positive integers.

9-4 More on Series

There are many series that have importance in the field of mathematics
which are neither arithmetic nor geometric.
It can be shown that the cosine is the sum of an infinite sequence:

x2 x4 xln*ﬂ

= S il — A A B N T —
cos(x) = 1 + Fif=1) n - 2)! +

2! 4!

While this is a very tedious calculation by hand, it is relatively simple with the
aid of a computer program. As with finding zeros for polynomials, we use a
relative comparison to decide when to stop (see line 180 of program CQSINE).
However, in the case of polynomial evaluation, we were using the value at the
midpoint of an interval which we knew contained the true value. In that case we
had a measure of relative error. In the present situation we have somewhat less
information. We have only the sum of n terms to compare with the sum of
n - 1 terms. Thus we are saying that the magnitude of the most recent term is
small enough to stop summing. When the magnitude of the most recent term is
very small compared to the sum so far, we may expect the error to be small also,
but not necessarily as small. We have not attempted to measure the cumulative
effect of the remaining terms, although methods exist for evaluating it.

CASINE

94 REM #* THIS PROGRAM APPROXIMATES COSINE X
95 REM USING TERMS OF A SERIES

100 PRINT ™"FIND COSINE QF™2

110 INPUT X

120 LET 851 = 5 =N =F = 1

130 PRINT NJ 5

140 LET N M+ 1

150 LET S5t = 5

152
154 REM * F IS5 THE VALUE OF FACTORIAL 2#N-2
160 LET F = F#( 2%N-2 )*({ 2%N-3 )
170 LET § = 5§ + ({=1)t(N+1) * Xt{ 2%¥N-2 }/F I
—= 180 IF ABS(S5-51)/CABSCS)+ABS(512)) > 1E-6 THEN 130
190 PRINT "BY COMPUTER COSINE FUNCTION'S COSCX)
200 END
RUMN
COSINE

FIND CRSINE @F? 1.57
1 1

2 -0.23245

3 2.07055E-2
4 =9.45914E-5
5 B.20947E-4
& T.95873E-4
T T«96341E-4
8 7.96335E-4
Y

BY COMPUTER CESINE FUNCTION 7.96334E-4
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Similarly it can be shown that
3 xS i 2n-1
Ainfx) =% = b= oy * FIYTN e
() 3! 5! 1) (2n - 1)
Evaluation of this is left as a problem.

Problems for Sec. 9-4

1) Write a program tfo calculate sin{x) using the series in this section.
2) Each of the following series approaches pi as n increases.

o B s VI
(3;4(1 § ol it = "es )

1 1 1
{b}ﬁ F+2—1+_“+n—2'

{c} 8(l+_.1_+ +...___..]Z_...._.
1* 8 Y @~

Write a program to compare convergence for each of the above,
3) The constant e, whose value is approximately 2.718, is of importance
in calculus, It can be shown that

PO T 1
o0 1! 21 o

and

both approach e as n increases. Compare convergence for the two
different methods of calculating e.

4) One method of approximating pi is to select random points in a square
and find how many of them fall within a quarter circle whose radius is
a side of the square. The number of points that fall within the quarter
circle should be proportional to the area. The area of the quarter circle
is %{ﬂrz , whereas the area of the square is r?. Thus four times the ratio
of circle to square should approximate pi. This is a variation of the
Monte Carlo method. Write a program to select from 1,000 to 10,000
such points to obtain an approximate value for pi.
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MATRICES

10-1 Introduction

A matrix is simply a rectangular array of numbers. As such, an array is a
set of numbers arranged in rows and columns. This is, of course, exactly the ar-
ray we have been using whenever we have used subscripted numeric variables in
BASIC. A matrix may also consist of a single row or a single column. Such
arrays are sometimes called “row vectors” and “‘column vectors.”

It is the purpose of this chapter to study some of the properties of matri-
ces and see some applications. We will not concern ourselves with theorems and
their proofs. A brief review of Sec. 1-5 at this time might be helpful.

Matrices may be studied in a totally abstract setting, but it is useful to
have a concrete example. Suppose that we are operating the Framis Corpora-
tion, which employs three salesmen (it could be 300): Brown, Jones, and Smith.
Brown, Jones, and Smith are selling clevises, hammer handles, shoehorns, and
whipsockets. In a given week the three salesmen turn in orders for merchandise
as shown in Table 10-1a.

One fundamental piece of information is the amount of money brought in
by each salesman. To calculate that we need the prices as shown in Table 10-1b.
We can find subtotals by multiplying the price of an item by the number of
items. The subtotals are shown in Table 10-2a. Now to obtain each salesman’s
total, we simply add across the rows to get the figures shown in Table 10-2b.

TABLE 10-1a ARRAY S

Hammer
Salesman  Clevis handle Shoehorn Whipsocket

Brown 30 800 50 20
Jones 50 31 40 10
Smith 0 500 50 90

127
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TADLE i1U-za

Hammer
Salesman  Clevis handle Shoehorn  Whipsocket
Brown 530 $312.00 £24.50 $ 75.80
Jones 50 12.08 19.60 37.90
Smith 0 195.00 24.50 341.10

TABLE 10-1b ARRAY P

TABLE 10-2b ARRAY M

ftemn Price Salesman  Dollar sales
Clevis $1.00 Brown $442.30
Hammer Jones 119,59
handle 0.39 Smith 560.60
Shoehorn 0.49

Whipsocket 3.79

To make the discussion easier, we label the array of Table 10-1a as S, the
array of Table 10-1b as P, and the array of Table 10-2b as M. Thus to get
M(1,1), we add the products S(1,I)*P(I,1), for I going from one to four, and to
get M(2,1), we sum the products S(2,1)*P(I1,1), for I going from one to four.
That makes M(J,1) the sum of the products S(J,I)*P(1,1) for J going from one to
three and for I going from one to four. If the P array had had a second column,
such as the salesmen’s commission per item, we could carry out the above pro-
cess for the second column, getting M(J,K) by summing up the produets
S(J,I)*P(1,K), for K going from one to the number of columns in P, J going from
one to the number of rows in S, and I going from one to the number of columns
in S. Note that the number of columns in S must equal the number of rows in
P and that the product array has the number of rows in S and the number of
columns in P. This is exactly the definition for matrix multiplication. There-
fore, instead of constructing triply-nested loops to perform the algorithm de-
scribed above, we take advantage of the BASIC matrix multiplication statement
(see line 290 of program SALES1). To make the run of the program more
readable, we have used string lists to provide labeling.

SALES!

Fa REM % THIS PROGRAM CALCULATES SALES T@TALS

95 REM USING MATRICES

100 DIM S5C3:4), P(as 13y MC3»1)s 15C4)s 55033

110 MAT READ S5, P, I%. 5%

112

114 REM #* PRINT RAW DATA IN LINES 120 THROUGH 260

XX P TR RS AR P Saa ARrs F e akl
[ ih Ay BT T IR T W I ON L)

130 FeR 1 = 1 T8 4

140 PRINT IZC(I),
150 NEXT I

152

160 FPR I = 1 T2 3
170 PRINT SEC(I).

180 FBR J =1 70 4
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190 PRINT SCIsJd)s
200 NEXT J
202
210 MNEXT I
220 PRINT
222
230 PRINT "ITEM"™s *"PRICE"
240 FOR I = 1 TO 4
250 PRINT 1S5(I3s P(Is1}
260 MNEXT I
270 PRINT
272
274 REM #* CALCULATE TOTALS IN LINE 290
280 PRINT "SALESMAN®™, *"DOLLAR SALES"
282
—= 290 MAT M = 5%P
300 FOR I = 1 T@ 3
310 PRINT SE(I)s MCIs1)
320 NEXT I
azeg
324 REM
330 DATA 30, BOO, 50, 20
340 DATA 50s. 31, 40. 10
350 DATA Qs 500, 50s %0
ase
3a0 DATA 1 39, 49, 3.79
52
370 DATA CLEVIS: HAMMER HAWDLE
380 DATA SHPE HORN. WHIPSDCKET
iga
390 DATA BROWM, JOMNESs SMITH
400  END
RUMN
SALES!
SALESMANMITEM CLEVIS HAMMER HAMDLE SHOE HORN
BROWN 30 800 50
JANES 50 31 40
EMITH o 500 50
ITEM PRICE
CLEWIS 1
HAMMER HANDLE (039
SHEE H@RN 0.49
WHIPSOCKET 379
SALESMAN DOLLAR SALES
BROWN 442.3
JONES 119.59
SMITH 9606

129

WHIPSOCKET

20
10
90

It may strike you that SALES] is rather long, and indeed it is. However,
most of the program is devoted to producing nicely formatted output. If all that
is required is the three dollar amounts at the end of the printout, that can be
done with an extremely short program having just one calculation statement and
one print statement, as shown in program SALES2.

SALES2
100 DIM S€3:4%: PC4s12s MCO321)
110 MAT READ 5. P
- 290 MAT M = S5%*P
310 MAT PRINT M
330 DATA 30, 800, 50, 20
340 DATA 50. 31s 40, 10
350 DATA 0. 500, 50, 90
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360 DAT-A 1.! !39! 0491 J-Tg
400 END

RUN

SALES2

A442. 3
119.59
560.6

Theve ave many properties of matrices which come to light through the
process of just experimenting with different relationships. So it is recommended
thai you do as many probiems as possible and that you work on problems of
your own throughout this chapter.

Summary of Sec. 10-1

Matrices are not only convenient as storage areas for data, they possess
mathematical properties that are both interesting and of practical value. The
mathematics of matrix algebra is fairly complex, containing numerous abstract,
involved, and intricate theorems. The thrust of our work will be to use familiar
properties to develop new facts.

Problems for Sec. 10-1

1) Asmanager of the Framis Corporation of this section, you are interested
only in total sales. Create a row vector T to contain the sales totals by
item for the week. Then find T*P and print it.

2) MAT READ the integers 1 through 12 into both a column vector C and
a row vector R. Find R*C and C*R and print them both.

3) Write a program to print integer powers of an array. How must the
number of rows and columns be related for this?

4) A light fixture manufacturer makes three different fixtures requiring
parts as shown in the table and wishes to make 800 of fixture A, 200
of fixture B, and 1,500 of fixture C. Write a program to find how
many bulbs, switches, meters of wire, and serews will be needed.

A B C

Bulbs 3 1 4

Switches 1} 1 2

Meters of wire 9 2 3

Screws 15 8 12

5) Find any or all of the following products:

(@1 0 0|1 2 3] ()0 1 Off1 2 3
1 0 014 5 6 01014 5 6
1 0 0|7 8 9 01 0]|7 8 9



Matrices 131

6) Find the result:

30 800 50 20| [1.00]

[1 1 1] |50 31 40 10| (-] .39
0 500 50 90 49

3.79

and compare with the results of problem 1.

10-2 Solving Simultaneous Linear Equations Using MAT INV

The matrix equation,

-&I bl C1 X dl
a; by c3 ||y |=| d2 (10-1)
a3 bg Cy = dg

can be multiplied out on the left side to obtain

.ﬂl."l.' + D,y + €12 dl
@yx + bay + c32 | = | da (10-2)
a3x by + c32 dg

We say that two matrices are equal if each entry of one equals the corresponding
entry of the other. (Each entry of a matrix is often referred to as an element of
the matrix.) For MAT A = MAT B that means A(I,J) = B(LJ) for all values of
I and J. Therefore, we may say that

ﬂlx + biy + c12 = dl

I
(=5
x

a,x + bgj’ + 0a2 = [10'3}

i
=~
[A%]

asx + bg}' + a2

Equation (10-3) constitutes a system of three linear equations in three un-
knowns. Actually Egs. (10-1), (10-2), and (10-3) are simply three different ways
of writing the same equality.

We want to solve the set of equations (10-3). It will be easier to discuss
the solution if we assign variables to the matrices of Eq. (10-1) as follows:

a, I'J'] Cy X dl
C = s bg Ca S = y K= dz
i3 ba €3 4 dg
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Mairix C may pe referred to as the coefficient matrix, S the solution matrix, and
K the matrix of constants. Now we may rewrite Eq. (10-1) in the form

C*S = K (10-4)

and proceed to solve for S.

It would be very convenient if we could just divide both sides by C. But
it turns out that the division of one matrix by another is not an easily describ-
able process. However, division by C is equivalent to multiplication by the in-
veige of O and the inverse of O if il exists, is easily obtained in BASIC.

Before we use an inverse to solve simultaneous linear eanatinns let’s look
more closely at just what the inverse of a matrix is. The inverse of a matrix C
is the matrix C™' such that the product of C and C™! is the identity matrix. The
identity matrix has the same number of rows as columns and is filled with zeros
except for the upper left to lower right diagonal, which is filled with ones. Note
that in order for a matrix to have an inverse, it must be square.

Let’s find, for example, the inverse of

b 6
)
We are looking for a matrix with entries a, b, ¢, and d such that
a b 5 6 1 0

[c d}l[?’ 3}:[0 1]
Finding the product on the left we get

ba + 7Tb 6a + 8b 10

[ﬁﬂ + 9d 6c + Sd:IE [U 1]

If two matrices are equal, then their corresponding entries are equal. So we get
the following four equations with four unknowns:

ba + Tb = 1 ba + Bb = 0
5¢ + 7d = 0 bc + 8d =1
We can easily solve these equations to get @ = -4, b = 3, ¢ = 3.5, and d =

-2.5. Therefore,

-

oo 2 [ o) 1o 1]

[5 6‘|‘1 NE R

l7 8] |35 -25]

We can easily verify this with the demonstration program MATINV. (Note
that the computer in some cases, unlike our example here, is susceptible to slight
roundoff errors when the MAT INV statement is used.)

Now to get back to solving simultaneous linear equations. We had the

or
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MAT INV

94 REM * THIS IS A PREGRAM TO DEMONSTRATE MAT INV
100 DIM XC(2s23s AC2s22)s P(2:2)
110 MAT READ A

120 MAT X = INVIA)

122

120 PRINT "“QRIGINAL MATRIX"™
140 MAT PRINT A

150 PRINT

152

160 PRINT "INVERSE MATRIX"™
170 ™MAT PRINT X

180 PRINT

182

190 PRINT "™THE PRODUCT I5™
200 MAT P = X=#A

210 MAT PRINT P

212

214 REM

220 DATA Ss6s 728
230 END

RLUN

MAT INV

GRIGINAL MATRIX

5 &
T 8

INVERSE MATRIX

=4 3
3.5 2.5

THE PRBDUCT 1S

1 o
o 1

matrix equation,C* S = K. Now
Cl#C*g = C1#K (10-5)

and a matrix times its inverse gives the identity matrix, sometimes designated L
Thus C™'#*C = I. The identity matrix has the property that for any matrix M
with dimensions compatible with the dimensions of I,

I*M = M*] = M
Thus Eq. (10-5) becomes
I*S = CT'*K
or
§=C*K

and we have solved Eq. (10-4) for S, which was our purpose. It is now a relatively
simple matter to write a program (see program SQLVE) to solve the system,

X+ By = g = P
3x - 3y +2z = 3 (10-6)

A as 4 b Theay == O
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SELVE

94 REM % THIS PROGRAM SOLVES SIMULTANEGUS LINEAR
95 REM EQUATIONS USING THE MAT INV STATEMENT
100 DIM CU3,32s SC351)s KC321), N(3,3)

110 MAT READ Cs K

120 MAT N = INVIC)

130 MAT S = N*K

140 PRINT ™S@LUTIBNS:™

150 MAT PRINT S

152

154 REM

iAD DAaTh 12Pml

170 DATA 2,3,8

" i
REIRS

AL
RUN
S2LVE

SOLUTIBNS:

|
2
kK

In program SQLVE, the column vector,
1
S =12
3
translates back to x = 1,y = 2, and 2 = 3. We may now substitute these
values in Eq. (10-6) to verify that they do in fact solve the system of equations.

Summary of Sec. 10-2

We have seen that sets of simultaneous linear equations may be solved by
considering an equivalent matrix equation C*S = K, where C is the coefficient
matrix, S is a column vector which contains the values of the variables in the
original set of linear equations, and K is a column vector containing the constant
terms in the original set of linear equations. We may solve for S by finding the
inverse of matrix C, so that S = C™'*K. The inverse may be found with the
BASIC statement MAT I = INV(C). For systems of simultaneous linear equa-
tions having a unique solution, MAT C will always be square, which is one of the
requirements for having an inverse.

Problems for Sec. 10-2

1) Let
4 -4 4
A=11T L T
=3 B -8

Find the print A™, A*A™"  and A7 #A,
2) Let

2= 1]
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Find B! and print it. Verify by hand-computing the inverse of B.
Find and print B¥B™' and B~ #B.
3) Solve for x and y:

-2x - by = -16
- x + 4y = 31
4) Solve for x, y, and 2:
2x - 9y - 5z = 2
T7x - 6y + bz = -3b
9x - 6y + 5z = -39
5) Solve for x, ¥, and 2:
32 ¥4y 2=
bx - 6y + 3z = 8
3x + 4y + z = -3
6) Solve for w, x,y, and z:
6w + 3x + By + 5z = -12
«Jur+ bx = Yeu2=m T
8w +x + 3y + 6z = 31
-2w - 4x + 4y - Tz = -6
7) Solve forw, x, y, and z:
-3w + 6x - 5y - z = -32
w+ 9x - by - 22 =9
w+ 6y + bz = 2
~-Tw + 4x - y + bz = -86
8) Solve forx, y, and z:
2x + 4y - 3z = -11.9
-9x - 3y = 58.5
-9x + 8y + 5z = 66.6
9) Solve for v, w, x, ¥y, and 2:
Tv + Bw - 3x - ¥y + 9z = 26.3
-9 + 2w + 9x + by + z = 91.1
-3v + 4w + 5x + bz = 62.9
6v - 8x - 2y - 6z = -55.6
-3 - 9w + bx + Ty + 3z = -25.9
10} Let
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1 -2 3 2 -4 0
A=|5-1-2] andB=1]-3 1 2
0 3 4 5 2 -5

Find and print (A*B)™! and B™1#A™!
11) Write a program that can solve sets of simultaneous linear equations
having different numbers of equations. Provide an item of data that is

- g i [ * - ' - -
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11

SOME TOPICS
OF STATISTICS

11-1 Introduction

The possibilities for using the computer to analyze and summarize large
amounts of data are virtually unlimited. This chapter will introduce just a few
fundamental statistical calculations.

11-2 Average, Variance, and Standard Deviation

One of the most common measures of statistical information is the average
or arithmetic mean. The average is the sum of the measures divided by the num-
ber of measures. In some cases the mere task of counting the number of mea-
surements may be a job in itself. So we can even use the computer to do the
counting for us. All that is necessary is to append an item of artificial data as a
flag to stop counting and calculate the average, as shown in program AVG.

AVG

94 REM # THISZ PROGRAM COUNTS DATA AND
95 REM CALCULATES AVERAGE

100 LET N =T =0

110 READ D

—= 120 IF O = .01 THEN 160
130 LET N = N+l
140 LET T = T+D
150 GaTo 110
160 PRINT * MEASUREMEMTS"3 N

170 LET A = T/N

190 PRINT "AVERAGE MEASURE™: A

492

494 REM

500 DATA 98Bs B0s T3s 92 17 B4 83s 79 87 73
510 DATA 99 63, 63, 92, Bls 93, 47, 53, B9, 100
520 DATA 98, Tla T3s .01

530 END t

.
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RUMN
AVG

MEASUREMENTS 23
AVERAGE MEASURE BO.23478

The average for a set of data gives no idea of the spread or dispersion of
the data. The average of zero and 100 is 50, and the average of 49 and 51 is also
50. We could get some idea by having the computer find for us the largest and

the smallest measures, Even that information couid be misieading, since the
largest measure could be much larger than the next largest, or the smallest could
be much smaller than the next smallest. One way to gain some insight into the
distribution of the measures is to find the average of the amount by which each
measurement differs or deviates from the average of the measures. There is a
flaw here, however, as some will deviate by a positive amount and some will
deviate by a negative amount, thus cancelling each other out. Using mean ab-
solute deviation would avoid this difficulty. However, expressions involving
absolute value are difficult to work with algebraically, and statisticians thus find
the average of the squares of the deviations. This figure is called the ‘“sample
variance.” In order to write a formula for variance, we use the Greek letter
sigma, Z , Which indicates summation. Defining average using summation nota-

tion looks like this:

"
X

i=1
A =
n

The average A is the sum of all values of x; for / going from 1 to the number of
measurements, which is n, divided by the number of measurements. We define
variance in terms of the average as follows:

Zn; (x; - A}z
s i=1

n

Even the variance, which gives an indication of how measurements are distrib-
uted, doesn’t indicate actual dispersion. It indicates the square of dispersion.
Thus we take the square root of V, getting a number called ‘“‘standard
deviation™:

S (@ - A)?
i=1

§? =
n

and

S (- 4)
i=1

n
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Now if we try to apply a computer program directly to the formula for S?, we
soon find that we will have to READ the DATA twice, once to find the average,
and again to get each value of x; = A. This is not a problem for small amounts
of data, but since it can be avoided, let’s do so.

It can be shown that

— EE s

1

i=i 1 2 _ A%

2, i
n n i=1

This means that we can, alternatively, have the computer sum up the squares of
the measures rather than the squares of the deviations. This can easily be incor-
porated into program AVG. See lines 150 and 210 of program VAR.

VAR

4 REM * THIS PROGRAM CBUNTS DATA AND CALCULATES
95 REM THE AVERAGE. VARIANCE AND STANDARD DEVIATION

100 LETN=T=T1 =0

110 READ D

120 IF D = .01 THEN 170
130 LET WM = N+l

140 LET T = T+D

— 150 LET T1 = T1 + D2
160 GOTE 110
170 PRINT ™ MEASUREMENTS"3 N
172
180 LET A = T/N
190 PRINT * AVERAGE MEASURE": A
192
200 LET Al = TisN

— 210 LET V = Al - A2
220 PRINT ™ VARIANCE"s V
222
230 LET 5 = SGRMV)
240 PRINT "STANDARD DEVIATION®"F S
492
494 REM
500 DATA 98s B0, 73, 92, 77, B4, 83, 79, BT, 73
510 DATA 99, 63, 63, 92, Bls 93 47, 53, B89. 100
320 DATA 98, Tls, T3s 01
5330 END
RUM
VAR

MEASUREMENTS 23
AVERAGE MEASURE B0.3478
VARIANCE 202.314
STANDARD DEVIATION 14.2237

Summary of Sec. 11-2

In this section, the average, or arithmetic mean, variance, and standard
deviation have all been defined. We have written programs to calculate the
average and standard deviation.

Problems for Sec. 11-2

1) Modify program AVG so that the computer tells us the highest and
the lowest measures.
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2) Modify program VAR so that we get the deviations of the largest and
smallest measures from average in terms of the number of standard
deviations. (If the largest measure is 91 for an average of 70 and the
standard deviation is 7, then the largest measure would be three stan-
dard deviations from average.)

3) Often in practice we use what is called the “weighted average.” Sup-
pose that tests count three quizzes and that the final exam counts two
tests. Find the weighted average for quiz marks 70, 80, and 73, test
marks 63, 82, and 91, and a final exam of 83.

4) Generate 100 random numibeirs ivom 1 to 201. Calculaie ilie average
and standard deviation.

5) Generate 100 random numbers from -100 to 100 and calculate the
average and standard deviation.

6) Devise a scheme without reading data twice for finding accurately
the average and standard deviation for the following data: 9999.12,
9999.36, 9999.64, 10000.03, 10000.41, 9999.83, 9999.51, 9999.13
and 10000.08. Due to roundoff error, many programs will give a large
standard deviation for the above data. (Hint: we can simply measure
differences from 10000 instead of from zero.)

11-3 Median

The median is the middle value. Sometimes the median is presented as an
item of statistical information, such as median income or median weight. If
there are an even number of data items, then the median is the average of the
middle two values. One reason for using the median is that it tends to be less
affected by a few widely dispersed items of data than the average. There are
no particularly difficult ealculations required to find the median. What does
have to be done, though, is to first arrange the data in numerical order. Thus
let us develop an ordering routine.

There are many, many ways of ordering. Some ordering procedures are
very elaborate and some are very simple. As the number of items to be sorted
increases, the need for efficiency increases. The study of sorting is a fascinating
and intriguing one. However, we hesitate to become too involved at this time.
We will instead develop an ordering routine that works with only a little atten-
tion to efficiency and defer a more sophisticated study of ordering for another
time and place.

If we test every adjacent pair of numbers in a list and find that they are
in order, then we know that the entire list is in order. This is called a “bubble
sort.” If we find any adjacent pair that is not in order, then we can direct the
computer to exchange those two elements so that they are in order. If every
time that we make such an exchange, we turn a switch on by letting S = 1,
then we ean defermine af the end of checking through the list that an exchange
has been made and that the list might not be in order yet. If after scanning the
entire list we find that switch S is still zero, then we know that no exchange has
been made and the list must be in order. After the first scan through the list,
we know that the number at the end of the list is the highest or lowest depend-
ing on which order we specify. That is, it is the number that will be there when
the lict ie finallv ardered Thie we do not need o rheel the antive lict the nevt
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ORDER

94 REM #* THIS PROGRAM ORDERS UP TO 200 MUMBERS
100 DIM LC200)

g2
104 REM #= READ AND COUNT DATA
110 LET I = 0
120 LET I = 1I+1
130 IF I <= 200 THEN 150
140 PRINT *“CURRENT LIMIT 15 200 NUMBERS™
150 STeP
160 READ L(CI)Y
170 IF LCIY <> .01 THEN 120
180 LET N = I = E=1
184 REM * TURN SWITCH OFF AND BEGIN SORT
190 LET S = 0O
200 LET N = N=1
210 FOR J = 1 TG N
— 220 IF L¢JY == L{J+1) THEN 270
222
224 REM * EXCHANGE ELEMENTS AND TURN SWITCH BN
230 LET 51 = L¢J)
240 LET LCJY = LOJ+1)
250 LET LCJ+1) = 51
— 260 LET 5 = 1
270 NEXT J
are

274 REM #* CHECK SWITCH
275 REM 5 = 0 S50ORT CEMPLETE
276 REM 5 = 1 GS5@RT N@T COMFLETE
— 280 IF 5 =1 THEN 190
aga2
284 REM % THE LIST IS IN BRDER = PRINT IT
290 FOR X = 1 T@ I

300 PRINT LCXX2
310 NEXT X

492

494 REM

500 DATA 98 BOs 732 92, T7. B4, 83, 79, BT 73
510 DATA 99, 63s 632 92y Bls 93» 47, 53, B9 100
520 DATA 98Bs Tls 73, .01

330 END

RUN

@RDER

100 99 98 98 93 92 92 B9 BT B84 83 81 80 79 TT T3 T3 T3
Tt 63 63 53 a7

Note that in line 220 we check for greater than or equal to. What would
happen if we only checked for greater than? If there are two equal numbers in
the list, the switch will always get turned on and cause the routine to be re-
peated endlessly. In program RDER we have done two things in the interest
of efficiency. We do not scan that part of the list that we know to be in order,
and we quit when we know the entire list is in order.

There are other things that may be done to improve the efficiency of
program QRDER. One is to sort “up” the list as well as “down.” However,
in spite of these precautions, the general procedure here is satisfactory only for
relatively small amounts of data. If we are to order thousands or hundreds of
thousands of data items, then there are far more efficient algorithms which we
would have to use. The fundamental weakness in the procedure we have used
is that on each pass the computer checks only one less pair of data items than
on the previous pass. Much can be gained by partitioning the data to be ordered

in such a way that only a small fraction of the data need be scanned each time
an item ie blaced in ite final enot in the lier Haowever ciieh nracediiree genarallss
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If all we want is the median, then there is no need to actually print the
data in order. The middle number for I odd is L(INT(I/2)+1) or L(INT((I+1)/2)).
See line 320 of program MEDIAN.

MEDIAN

94 REM % THIS PROGRAM FINDS THE MEDIAN FOR
95 REM AN DDD MUMBER OF DATA ITEMS
100 DIM LC200)

iid LET 1 = O
120 LET I = I+1
H Y IF | == 20U THEM 150
140 PRINT *“CURRENT LIMIT IS 200 NUMBERS"
150 ST@P
160 READ L¢I}
170 IF LCI) <> .01 THEN 120
180 LET N =1 = I-1
190 IF Ms2 == INTINA2Y THEN 220
200 PRINT "N EVEN"
210 STOP
220 LET 5 = 0O
230 LET N = N=1
240 FOR J = 1 TO N
250 IF LCJY == LCJ+1) THEN 300
260 LET 51 = Lt{J)
270 LET LC¢JY = LCJ+1)
280 LET LCJ#1) = 51
290 LET § = 1
300 MNEXT J
310 IF § = | THEN 220
ale
— 320 PRINT "MEDIAN"F LC INTCCI+1372) )
492
494 REM

500 DATA 98s BOs T3, 92, 77, B4, B3, 79 BT7s 73
S10 DATA 99, &£3, &3, 92, Bls 93, 47, 53, 8%, 100
S20 DATA 98, Tls T3: 01

530 EMND

RUN

MEDI AN

MEDIAN 81

As written, MEDIAN does not properly account for an even number of
data items.

Problems for Sec. 11-3

1)

2)

Modify program MEDIAN to allow for both even and odd numbers of
data items.

Modify @RDER so that it can be used to arrange in either ascending or
descending order determined by an INPUT request.

Modify MEDIAN as in problem 1 and print the largest, smallest, and

average value.

'al o T wnwm A | F— 1in ] tha m i
Oenerate 100 random numbers from 1 to 100 and find the median,

As written, program QRDER is efficient for a set of numbers in which
only the first number in the list is out of order. But suppose only the
last number is out of order. Then the program is slow. We can im-
prove it by inserting an upward sort, taking the number that belongs
at the top of the list up to the top in one pass and then not scanning

bl mdmrntmint Aamies T scswmoawnts fhio ctarmn Imnta Fhaa wes s



Some Topics of Statistics 143

11-4 Coefficient of Linear Correlation

Very often people have a set of data consisting of two or more figures for
each object of the study and would like to know if there is a relation between
them. For example, suppose we have test scores for five people for whom we
also have IQ scores, as shown in Table 11-1. We would like to know if one score
is a good predictor of the other score.

TABLE 11-1 1Q's and Test Scores
for Five People

[[e] TEST
110 80
105 84
134 92
128 71

92 83

There is a variety of formula and techniques for finding correlations. We
present here a computational formula for finding the degree of linear correlation
between two sets of data, X and Y.

M M n
HZ XIYI = Z XJ Z Y:
- 3 i=1 i=1 i=1 (11 1)
A2 n2VyVy

where ry is the linear correlation coefficient, Vy is the variance of the X data,
and Vy is the variance of the Y data.

Let’s look at the correlation coefficient for the data of Table 11-1. See
program CQRREL. The correlation is about .03. That may safely be taken to
indicate that there is no correlation between these two sets of data. That is, I1Q
is unrelated to the test score. We can see by inspection that no obvious pat-
tern is present.

We can get some idea of how the value of r is affected by various patterns
in the data by simply using CORREL with a variety of data. We present two
additional runs for your observation.

CORREL

94 REM * THIS PROGRAM CALCULATES CORRELATI@N COEFFICIENT
100 LET N =5=51=52=T1=1T2=20

110 PRINT "IA TEST SCe@RE™

120 READ X»Y

130 IF X = 0 THEN 220

140 PRINT X3 TABC6)F Y

150 LET N = N+l

152

154 REM # SUMMATIONS DENE IN LINES 160 THROUGH 200

160 LET S = 5 + X=*Y

170 LET 51 = S51+X
180 LET 52 = 52+Y
190 LET Tl = T1 + Ke¢2
200 LET T2 T2 + Y2

ol

210 GeTe 12
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214 REM * VARIANCES CALCULATED IN LINES 220 THROUGH 270
220 LET Al = S51/N

230 LET A2 = S52/N

240 LET B1 = TI/N

250 LET B2 = T2/N

260 LET V1 = S@R( Bl - Alr2 )

270 LET V2 = S0RC B2 - A2t2 )

272

280 LET R = ¢ N#5 - S1#52 )/( (Nr234V1V2 )
290 PRINT

300: CORRELATION = F.AWF
310 PRINT USING 300s R

b EE]
Wl &

314 REM
320 O0ATA 110280, 105.034, 134,70
330 DATA 12BsT1s 92, 83s 0, 0O
340 END
RUMN
CORREL
1a TEST SCORE

110 80

105 B4

134 92

128 71

92 83
CORRELATION = 027
RUIMN
CORREL
e TEST SCORE

134 9g

128 B4

1o 83

105 BO

a2 71
CORRELATIAON = .230
RUN

CORREL

1a TEST SCBRE

1 -2

2 -3

4 -5

5 -6

CORRELATION = #%-1.000

We can see that correlation coefficients range from -1 to .930 in the
sample of runs. It turns out that -1 to 1 is the true maximum range. A coef-
ficient of one indicates perfect correlation. A coefficient of zero indicates no
correlation, and a coefficient of negative one indicates perfect negative correla-
tion. Generally, values between -.40 and .40 are considered to indicate that the
variables are unrelated, whereas for -1 to -.9 and for .9 to 1 the variables are

considered {o be axiremely closely related in 2 linear fashion. The larger the
number of data items we use to calculate the value of r, the more reliable its
value. For a small amount of data, the coefficient is more likely to be affected
by a single stray or inaccurate item of data.

Often it may happen that we have more than two sets of data with which

to work. With a slight modification of CORREL, we can easily find the linear
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correlation coefficient for columns 1 and 2, 1 and 3, and 2 and 3 for the data
shown in Table 11-2. See program runs labelled WEATHER. The program is
actually CORREL with the READ statement modified as shown in each run.
An alternative approach would be to RESTQRE the data and use the entire
program as a subroutine three times.

TABLE 11-2 Run Table Showing Normal, Record High, and Record Low
Temperatures for 24 Selected Dates of the Year

Narmal High Low Normal High Low

32 61 4 32 63 5
46 81 14 53 o 27
33 61 2 34 63 -2
58 90 35 63 20 37
36 68 11 41 86 10
68 97 44 72 98 44
74 102 52 76 o8 56
62 89 34 55 89 34
76 97 56 74 94 b6
50 84 30 44 72 21
71 a7 49 67 93 44
39 68 11 33 60 7

120 READ XsYsZ 120 READ XsZ,Y 120 READ ZsX»Y

RUN RUN RUN

WEATHER WEATHER WEATHER

X Y X Y X Y

32 61 a2 4 61 4

az 63 a2 5 63 5

46 81 a6 14 B1 14

53 g1 54 27 91 27

33 &1 a3 2 61 2

34 63 a4 -2 63 -2

58 20 58 35 50 as

63 90 63 37 90 a7

a6 68 36 11 68 11

al B& al 10 B& 10

68 27 &8 44 97 44

T2 98 T2 44 98 a4

74 102 74 52 tog  s2

76 98 T4 55 98 56

62 89 &2 34 B89 34

55 B9 55 34 89 34

76 97 76 54 g7 56

74 94 74 56 94 56

50 B4 50 30 B4 30

a4 72 44 21 72 21

71 97 71 49 97 49

67 23 67 44 53 44

39 68 a9 B 68 1

a3 60 a3 7 60 7

CORRELATION = 9244 CORRELATIGN = .984  CORRELATION = .920

For correlation normal to high, we get .944; for normal to low, we get
.984; and for high to low, we get .920. These all indicate a high degree of linear
correlation.
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If we were to require the correlation coefficients for all pairs of columns
for more than three columns, it is a bit awkward to use the method we used in
program WEATHER. It would be alot cleaner to read all the data into an array
and manipulate the column subscripts to get all possible pairs. This is left as an
exercise.

Summary of Sec. 11-4

relation coefficient. This is also referred to as the Pearson r. Values close to
Zefo indicate a 10w degree of linear correlaiion, whereas vaiues with absoiuie
value close to one indicate a high degree of linear correlation.

Problems for Sec. 11-4

1) Write a program to generate 25 pairs of random numbers and compute
the correlation coefficient. What value do you expect? Run the pro-
gram several times.

2) Write a program to calculate the correlation coefficient for the integers
2 through 100 and the number of factors.

3) Do problem 2 for prime factors not including 1.

4) Write a program to find correlation coefficients for all pairs of columns
by first reading the data into a single array as deseribed in the section.
Use the following data:

a b C d
39 12 2 1978
43 8 5 1749
25 4 1 1462
22 4 1 1288
21 11 11 1241
21 7 3 1176
32 10 2 1086
37 7 12 1026
18 2 1 1003
30 10 3 971
o) For the data given, find any or all of the following linear correlations:
(a) azand b a b
ﬂ’:g e i 1 1.04631
4 2 16.5958
(d) @ and b
(e)  and log (b) 3 84.0632
4 266.206
9 651.343
6 1353.51
7 2512.56
8 4294.3
9 6890.5
10 10519
11 15424
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SIMULATION AND
GAMES

12-1 Introduction

The ability of the computer to store information, generate random num-
bers, and make decisions makes it well suited for simulations of all kinds. Com-
puters can be programmed to play games. Programs can be written to simulate
business activity, social phenomena, and numerous activities in the physical
sciences, Computers can be used to conduct gambling enterprises, schedule
classes, and manage production schedules, Some situations are dealt with by
having the computer investigate all possible alternatives. Other situations are so
complex that a procedure must be found that enables the computer to make a
best reasonable decision which may not be the best possible decision. For
example, it is possible to write an unbeatable tic-tac-toe program. However, the
game of chess allows so many possible sequences of moves that it is impossible
to write a program for existing computers to investigate them all.

The purpose of this chapter is to present a few examples of simulation and
to suggest areas for further investigation.

12-2 Lines at the Bank

As the manager of a new bank branch, you are interested in knowing what
to expect in the way of teller requirements. You are presented a bank that has
five windows. As a preliminary trial, you make the following estimates and
assumptions:

1. Assume that there is always a customer waiting with a four-minute
transaction when the bank opens at 9 am.

2. Always open two windows at 9 am.

3. Customers will tolerate only as many as 10 persons per line; thus when
all lines are full, a new window must be opened.

P —
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4. During every minute of the day one or two or no customers will enter
with equal probability.

5. Every customer after the first has transactions that will last one, two,
or three munutes with equal probability.

6. A new customer upon enfering the bank goes to the line with the
fewest persons. In case of a tie, the customer takes the line closest to the door.

7. The bank closes at 3 pm.

Our job now is to wrile a4 computer program that veacis to each of the
restrictions above and keeps track of the day’s business. One possible simulation
is to use two arrays—one from the customer’s point of view and one from the
window’s point of view. Both arrays have five columns, one per window. The
customer array has 10 rows to allow as many as 10 people in line. The window
array has four rows, The first row contains a ‘1’ to signify that the window is
open and a ‘0’ to signify that the window is closed. The second row contains the
number of people in line for that window. The third row contains the number
of people served since the run began. The fourth row contains the number of
minutes that the window has been open. The customer array contains the
number of minutes each customer in line will take.

In program LINES, all loops FOR W1 = 1 T 5 scan all five windows.
Lines 200 and 210 open two loops to keep track of time. H stands for hours
and M1 stands for minutes of that hour. Line 240 looks to see if a window is
open, and line 250 adds one minute to open time for the window. Line 260
looks to see if anyone is in line at the open window. Lines 390 through 500
search for the line having the fewest people, Numerous other relevant comments
appear in the REM statements of program LINES,

LINES

24 REM #* THIS PROGRAM SIMULATES LINES AT
95 REM TELLER WINDBWS OF A BANK

96

7 REM #* ARRAY L IS THE CUSTBMER ARRAY
98 REM ARRAY R IS5 THE WINDOW ARRAY

100 DIM LC10s52 RC455)s ABC4)

105 RANDOMIZE

110 ®MAT READ AS

120 MAT R = ZER
130 ™MAT L = ZER
132

134 REM # BPEN WINDOWS 1 AND 2 BY PLACING A

135 REM | IN ROW | BF COLUMNS 1 AND 2 IN ARRAY R
140 LET RC1s1) = RC1:2) = 1

142

144 REM # THE FIRST CUSTOMER ENTERS WITH A

143 REM FOUR MINUTE TRANSACTION

150 LET LC1-1) = 4

160 LET R€2.1) = 1

162

164 REM % SET UP LOAPS T@ KEEP TRACK OF TIME
2G0 FOR H =0 70 %

210 FBR M1 = 1 TQ &0

220 LET T = 50%H + M|

222

224 REM #® THIS LA@A@P ADJUSTS TIME FOR
225 REM CUSTOMERS AND WINDAWS

230 FAR W1 = 1 7@ 5

240 IF RC1-W1Y = 0 THEN 350

250 LET RCAWIY = RCASWI1I+]



260
262
264
265
270
280
282
284
290
300
310
320
age
324
330
340
350
352
354
360
a70
a72
T4
380
382
384
385
390
400
410
420
430
432
434
435
440
450
460
452
500
510
520
530
532
540
550
560
5472
564
570
530
590
600
610
620
622
630
640
650
652
80O
810
820
830
840
850
860
870
880
890
900
Q72

Simulation and Games

IF R(2,W1) = 0O THEN 350

REM # THERE 15 A LINE
REM REDUCE FIRST PERSON'S TIME
LET LC1-W1) = LC1,W1d=1

IF LE1sWLY == 0 THEN 350

REM #* END OF TRANSACTIOGN - M@VE PEQOPLE UP IN LINE

FOR P= | TO R(2,W1)-1

LET LC(PsW1) = LC(P+1:W1}
NEXT P
LET LC R{2sW12sWl » = O

REM #% @NE MORE TRANSACTION - GNE LESS PERSBN

LET RC3sW1)
LET RC2,4W1)
NEXT W1

RC3sW13+1]
RC2:W1)-1

Bon

REM # ENTER 0. 1 @R 2 CUSTOMERS
LET © = INTC( RNDC(=-1)%3 )
FBR C1 = 1 TO C

REM #* SELECT TRANSACTION TIME
LET Tt = INTC RNDC=13%3+1 )

REM #* NOW FIND THE SHERTEST LINE WITH
REM LESS THAN TEW PEOPLE
LET N = R(2,1})

LET M1 = 1

FOR W1 = 2 T@ 5
IF RClaW1lY = O THEN 4&0
IF RC(2,W1Y = N THEM 440

REM * CURRENT LINE IS5 SHORTER
REM SAVE WINDOW # AND # OF PEOPLE
LET N = RC2.WI1)
LET NI = WI
NEXT Wi

IF N == 9 THENM 590
FOR W1 = 1 T@ 5

IF RClsW1d = 0 THEN 570
NEXT Wl

PRINT "ALL WINDBWS FULL AT T3 "MINUTES"

MAT PRINT R3:
5TaP

REM #* BPEN ANGTHER WINDOW
LET RC12W1) = 1
LET N1 = W}
LET RC2:N1Y = ROZ2,N1I+1
LET L¢ R{2sN1XsN1 3 = T1
NEXT C1
NEXT mM1

Gasuye s00
MEXT H
5ToP

PRINT TAZC11): "AT THE END @F"™r Ts/603 '"HOURS"
PRINT " WINDOW NO. OME WG THREE FOUR
FAR 1 = 1 T2 4

PRINT AZC(I)s

F@rR J =1 T8 5

PRINT TABCIS+{J-12%623 R{l.J)3

NEXT J

PRINT
NEXT I
PRINT
RETURN

FIVE"™

149
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974 REM

980 DATA '"1=0PEN 0=CLOSED"s " PEOPLE IN LINE"™
990 DATA " PEOQPLE SERVED"™, " MINUTES OPENED™
999 END

RUN

LINES

AT THE END OF 1 HOURS

WINDDW NO. BNE TWe THREE FOGUR FIVE
1=8PEN 0=CLOSED 1 1 0 i} 0
FEGPFL IiN LINE 4 4 O G )
PE@PLE SERWED 231 25 0 0 0
MIMIITES APCMED £0 L] ] o] L]
AT THE END OF 2 HOURS
WINDBW NO. BNE TWE THREE FOUR FIVE
1=PPEN 0=CLBSED 1 1 0 0 0
PEBPLE IM LINE 8 8 0 o 0
PEGPLE SERVED 59 52 0 0 0
MINUTES @PENED 120 120 0 o} 0
AT THE END BF 3 HOURS
WINDAW NO. @NE TWa THREE F8UR FIVE
1=8PEN O0=CLGSED 1 1 0 o 0
PEAPLE IN LINE @ 9 0 0 0
PEAPLE SERVED 92 79 0 o 0
MINUTES @PENED 180 180 0 s} o
AT THE ENMD OF 4 HOURS
WINDAW NO« @MNE Twa THREE FOUR FIVE
1=GPEN 0=CLGSED 1 1 1 0 0
PEGPLE IN LINME 1 0 0 0 o
PEAPLE SERWED 122 108 23 0 0
MINUTES QPENED 240 240 50 0 0
AT THE END OF S HOURS
WINDEW NG. BNE TWE THREE FQUR FIVE
1=0PEN 0=CLASED 1 1 1 0 0
FEQFLE IN LINE 1 1 1 0 ]
PEAPLE SERWVED 148 131 36 0 0
MINUTES @PENED 300 300 110 0 o
AT THE END @F &6 HOURS
WINDOW NO. BMNE Twe THREE FBUR FIVE
1=BPEN 0=CLOSED 1 1 | 0 ]
PEOPLE IN LINE 1 1 ] 0 0
PEGPLE SERVED 178 153 51 ] 0
MIMUTES GPENED 360 360 170 a 0

The run shows that ten minutes into the fourth hour the third window
was opened. We can see that at the end of the day there was one person waiting
at window 1, which had served 178 people during the day. Window 2 also had
one person in line, but had served only 153 customers. Similarly, the third win-
dow had served 51 customers and left none in line at the end of the day’s
business.

While the results of LINES provide some interesting information, there are
virtually unlimited possibilities for extracting more information and for testing
changes in the original list of assumptions and estimates.

There have been no provisions for closing a window. We might want to
close a window due to lack of activity or to allow employees time to lunch, In
practice, bank tellers close windows but service those customers already in line.
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Program LINES does not provide for having a window closed with people
standing in line. We could use a “-1” in the window array to signify this
condition.

It is fairly obvious that the assumption of random arrival of customers
is an oversimplification of the true pattern. Clearly, large numbers of people
conduct bank business during their lunch hour. Not only does the arrival of
customers vary during the day, but it varies with the days of the week and of
the month. Fridays tend to be heavier, and the first of the month is heavy.

The limit of 10 persons per line was thus arbitrary and perhaps unrea-
sonable as an absolute limit. The program could be modified to open a new
window when all the lines contain 10 customers, but when all windows are
open and all lines contain 10, then we should allow the lines to grow.

In practice, a new customer generally steps into the shortest line, but
the customer is not obligated to stay there. Thus we could make provision in
our simulator for customers to move to a faster moving line. (We know from
experience that fast-moving lines immediately become slow-moving lines when
we step into them and slow-moving lines immediately become fast-moving lines
when we step out of them.) This points up the fact that although a customer
enters a line based on the number of customers in it, what he really cares about
is how long he has to wait. We could add a row to the window array giving
maximum waiting time so far. We could cause a certain waiting time to trigger
opening a new window.

As the program is written, when a new window opens only new customers
may enter that line. Generally when a new window opens, a whole bunch of
people swarm into the new line. Sometimes the new line quickly exceeds the
old lines in length. We could modify the simulation of LINES to allow an
orderly shift of customers from all lines to a newly opened window.

It is easy to see that we could go on and on at great length, making our
simulation program more and more like what we believe to be the real life
activity. What about drive-in windows, automatic tellers, ete,?

Based on many runs of simulations like this, a business person is in a better
position to make decisions about hiring, opening hours, business procedures, and
other aspects of management than he would be without the computer. Once we
are convinced that a simulation is realistic, then we can experiment with innova-
tive procedures using computer results to warn us of poor changes without
actually having to use customers as guinea pigs.

Similar simulations could be set up for toll booths, grocery store check-
outs, post offices, gas stations, and stores and businesses of all kinds.

Summary of Sec. 12-2

We have looked at a much simplified set of rules for lines at the tellers’
windows of a bank and written a program to imitate the activities of bank
customers for a sample business day. Random numbers are used to simulate the
random nature of the arrival of people at the bank and the random nature of
transactions. Arrays have proved very useful for keeping track of many of the
activities of our banking model. We recognize that simulations usually must be
simplifications of the real activity under study.
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Problems for Sec. 12-2

The possibilities for making changes in program LINES and developing
other models are so varied and so numerous that no attempt will be made to
enumerate a specific set of problems. Instead you should select one or more of
the improvements outlined in this section and implement them, along with any
changes not mentioned that you would like to make. You should obtain several
runs of your final program to get a range of results. Experiment with differing
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12-3 Magic Squares

Magic squares have provided entertainment and been the source of wonder
for more than a thousand years. They have been considered to have magic
powers and therefore have been used to keep away evil spirits. Magic squares are
square arrays of numbers (usually integers) so arranged that all row sums equal
all column sums and these equal each of the sums of the elements of the two
main diagonals.

Of course, this feat can be accomplished by simply entering the same
number in each position of the array, but this is trivial and of little interest. The
simplest magic square of real interest is the following three-by-three magic square:

8 16
3 o i
4 9 2

Note that all integers from 1 through 9 have been used and that the magic sum is
15. It turns out that while we can rotate this to get a total of eight different
positions, there is no other arrangement of these integers that will produce a
magic square, even though there are 45,360 possible different arrangements.
The magic sum can be found for integers 1 through n* by the formula,

n® +n

2

5=

An odd order magic square from 3 up can be generated by a procedure
called the De la Loubere method. For a 5 X 5 magic square, this method pro-
duces only one magic square, but millions are possible. The De la Loubere
method uses the integers 1 to n* for an nth-order magic square and may be
described with the following set of rules:

1. Begin by entering a ““1” in the center column of the first row.

2. Always move diagonally up one and to the right one and enter the next
larger integer there unless the move (a) is the move immediately following an
entry that is a multiple of the order of the magic square, in which case the new
number goes directly beneath the previous one, or, (b) takes us out the side of
the square, in which case the new number goes to the extreme left of the new
row, or, (c) takes us out the top of the square, in which case the new number
goes to the bottom of the new column.

3. Proceeding in this way, n* should always be placed in the middle
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In program MAGIC for n = 5, the middle column is determined in line
160, and the row is set to 1 in line 170 so that the first entry in line 190 follows
rule 1 above. Line 210 checks to see if the condition in rule 2a has occurred.
Line 250 checks for the condition of rule 2b, and line 300 checks on rule 2c.
Line 200 determines the stopping point as per rule 3.

MAGIC

4 REM #= THIS PRBGRAM GENERATES @DD @RDER
95 REM MAGIC SGUARES BY THE DE LA LBUBERE
96 REM METHED
100 DIM M({4T.A4T)
110 PRINT "“WHAT 0DD SIZE"}
120 INPUT N
130 IF N/72 = INT(N/2) THEN 110
140 MAT M = ZERU(NsND
150 LET Cl1 = O
— 160 LET C INTINA2Y+1
—= 170 LET 1
IB0 LET C1 = Cl#+1
— 190 LET M(RsC» = CI
— 200 IF C1 = Nt2 THEN 330
— 210 IF C1/M <> INTCCL/N) THEN 240
220 LET R = R+l
230 GeT@ B0
240 LET ©C = C+1
— 250 IF C <= N THEN 290
260 LET C = 1
2790 LET R = R=1
280 GOTO 180
290 LET R = R-1
— 300 IF R > 0 THEN 180
310 LET R = N
20 GATe 180

A
o

330 PRINT
340 LET T = 0O
342

344 REM * ADD ONE COLUMN TO FIND MAGIC NUMBER
350 FAR 1 = 1 T@ N

360 LET T = T+M(Is1)

370 NEXT I

ara

480 PRINT "MAGIC NUMBER IS"3 T
390 PRINT

400 MAT PRINT My

410 END

RUN

MAGIC

WHAT BDD SIZE?S

MAGIC MUMBER IS5 &5

17 24 ! B 15
23 5 T 14 15
4 & 13 20 a2
10 | 5= 19 21 3
1 18 25 2 e

As written, this program will arrange and print magic squares up to 47 by
47. Of course, we can’t print 47 numbers across the page. So we would have to
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Problems for Sec. 12-3

1) The magic squares of this section used 1 as the first number. It is easy
to show that beginning with any integer will also produce a magic
square, Modify program MAGIC to allow beginning with any integer.
Be careful about rule 2a.

2) Another way to generate odd order magic squares may be described as
follows. Place the first number in the array position directly beneath
the centfral element, and proceed down one row and to the right one
column unless this move: (a) takes you both out the bottom and out
ihie righii side of ihe square, in which case the new eniry goes in posi-
tion (2,n), or (b) takes you out the bottom of the square, in which
case the new entry goes to the top of the new column, or (c) takes you
out the right side of the square, in which case the new entry goes to the
extreme left in the new row, or (d) the new location is already occupied,
in which case the new entry goes in the second row directly below the
previous entry. (Note that this may take you out the bottom.) Write
a program to generate this type of odd-order magic square.

3) Squares of the type described in problem 2 can also be generated by
beginning with any integer. Modify your program for problem 2 to
do this.

4) There are 880 different 4-by-4 magic squares using the integers 1
through 16. One of them can be generated by the following simple
procedures: MAT READ the integers 1 through 16 into a 4-by-4 array
and then make these exchanges:

A(1,1) = A(4,4)
A(22) = A(3,3)
A(3,2) = A(2,3)
A4 1) = A(14)

Write a program to do this.

12-4 Games

There are hundreds of games which may be played with computers. There
are games played with cards, dice, dominoes, and numbers. There are hoard
games and two- and three-dimensional tic-tac-toe. Programs have been written
to play casino gambling games and to simulate slot machines, There are programs
which simulate horse races. Programs can be written to play word games such as
Hangman or Geography using strings and files. Using computer files, game-
playing programs can be devised which modify siratesy depending on conse-
quences of previous decisions. It is not the purpose of this section to present
any comprehensive or systematic study of games or game strategy. Rather, it is
the purpose of this section to arouse the sleeping giant of gamesmanship that

may lie within the reader by exploring two examples.
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Battle of Numbers

The game, Battle of Numbers, begins with two integers, such as 63 and 11,
where one should always be somewhat larger than the other. Two players take
turns subtracting an integer in the range 1 to 11 from 63 and subsequent new
remainders. The last player to subtract loses. The feature that makes this game
intriguing is that usually the first player may assure a win by applying proper
strategy on the very first move. Working out the strategy is fairly straightforward
if we look at the last few moves. Suppose it is your turn, and you may subtract
up to 11 from 15. If you subtract 2 leaving 13, you win because your opponent
must leave you a number in the range of 2 to 12, subtracting in the range 11 to 1.
Now it is your turn again and you can be assured of leaving your opponent a “1,”
which he must subtract, thereby losing. Now one pair of plays earlier you can
assure yourself of leaving your opponent with 13 by leaving 25 and before that
37, and so forth. That is, you want to leave (11 + 1)i + 1, or one more than
an integral multiple of one more than the largest number you are allowed to
subtract. For subtracting in the range 1 to e, then leave (@ + 1) i + 1. This
means that if the human player goes first in competition with the computer, the
human can always win except when the original larger number is one more than
an integral multiple of the largest subtractable number. However, one slip-up,
and the computer can always win.

Thus in our game with 63 as the starting total and 11 as the maximum
subtractable integer, divide 63 by 12 to get 5 as the integral quotient. Since 5
times 12 is 60, if we are faced with 61 we can’t win and should subtract some
random integer. But since we are not faced with 61, we want to leave our
opponent with 61 by subtracting 2. No matter what our opponent does, we will
leave 49, then 37, then 13, then 1. The calculations and testing here are done in
lines 370 through 410 of program BATTLE. Note that lines 280 through 320
assure that the human player inputs a number in the range 1 to a. If you would
like to play the game, but don’t want to type the program, many timesharing
systems include the game under the name BATNUM.

BATTLE

94 REM #* THIS PROGRAM PLAYS BATTLE @F NUMBERS

100 PRINT TABC15)3 "BATTLE @F NUMBERS"

105 RANDGMIZE

110 PRINT *"D@ YBU KNOW THE RULES":

120 INPUT AS

130 IF AS = "YES"™ THEN 180

140 PRINT "WE TAKE TURNS SUBTRACTING AN INTEGER IN THE™
150 PRINT "INTERVAL | T@ S@ME NUMBER A FR@M AN@THER NUMBER"
160 PRINT "B WITH THE DIFFERENCE LEAVING B F@R THE NEXT"
170 PRINT "TURN. THE LAST PERS@EN T@ TAKE L@SES."

150 PRINT "HERE WE G@. #%x"

182

184 REM * SELECT RANGE AND STARTING NUMBER

185 REM THE RESTRICTING COMSTANTS HERE ARE ARBITRARY
190 LET A = INTC RNDC-1)#14+7 )

200 LET B = INT( RNDC-1)*T77+41 )

210 PRINT

220 PRINT "INTERVAL = 1 T@"» A

230 PRINT

240 PRINT “STARTING TOTAL I35"3 B

250 PRINT
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260 PRINT "You GO':
270  INPUT P

272
274 REM % CHECK FOR AN INTEGER IN THE LEGAL RANGE
275 REM LESS THAN OR EGQUAL T@ THE REMAINING TOTAL
280 IF P <= INTCPY THEN 310
290 IF INTCC(P=127A) <> O THENW 310

—{ 300 IF P == B THEN 330

310 PRINT "ILLEGAL ™MQVE"
320 GBTo 250
330 LET B = B-P

340 IF B = 0 THEN 370

A50 FRIMT Pxamw § OWin meam?t

350 5TOP

o ARET b e R R

B0 LET C = B = ( CA+1)*I+1 )
—{ 390 IF C > 0 THEM 420

400 LET C = INTC( RNDC=1)#A+1 )

410 IF B8=C = 0 THEN 400

420 LET B = B8-C

430 PRINT "1 TAKE": C

440 IF B = 0 THEN 470

450 PRINT “LEAVING A TOTAL QOF™: B
460 GOATES 250
ATD  PRINT  "f%f YO WIN %%

480 END
RN
BATTLE

BATTLE OF MNIUMBERS
DA YO KN@W THE RULES? YES
HERE WE GO. #®%%

INTERVAL = 1 TO 20
STARTING TOTAL 15 &%

Yau Go? 4
I TAKE &
LEAVING A TOTAL OF 58

: Yau Gar Is
I TAKE 7
LEAVING A TOTAL OF 235

YOU GE? 14
I TAKE &
LEAVING A TOTAL IF 16

Y@l Ga? 15
I TAKE 1
dkk YOU WIN &%

The Knight’'s Tour

The game of chess is played on a square board having 64 smaller squares,
eight on aside. The various pieces belonging to the two sides are assigned specific

moves. The knight moves in an L.shaped path, meving one
direction and two squares in a direction perpendicular to the first move. Thus
from a position near the center of the chess board, a knight may move to any of
eight possible positions. If the knight occupies position (3, 4), then he may
move to any one of the following: (4, 6), (4, 2), (2, 6), (2, 2), (5, 5), (5, 3), (1, 5)

or (1, 3). In general, if the knight occupies position (r, c), then he may move to

N SMATIAYEA 1T AT
'Jhiwl-u Aad HI.I.J
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any of the following: (r + 1,¢ + 2),(r + 1,¢ - 2),(r - 1,¢ + 2),(r - 1,
c-2),0F+2,¢c+1),F+2,¢-1),(r-2,¢c+1)o0r(r-2c- 1),
unless the new position is off the board. An ancient and intriguing challenge is
to move the knight about the board in such a way that it visits all 64 squares of
the chess board exactly once.

This is a difficult feat, known as the Knight’s Tour, but it can be done. We
will here contrive only to select moves randomly until the knight reaches a
dead end due to the fact that all reachable squares have already been visited. We
use an 8-by-8 array B to simulate the board. Initially all entries are zero to
indicate open positions. We will place the move numbers in the squares as the
knight moves about the board. The 8-by-2 array U stores all eight possible
moves from the present position as described in the previous paragraph. These
eight moves are scanned for legal use in lines 220, 230, and 240 of program
TOUR. Note that INT ((R1 - 1)/8) = 0 in line 220 is equivalent to (O<R1

TAUR

o4 REM * THIS PROGRAM CARRIES OUT A RANDIM
95 REM HKNIGHT'S TOUR T@ DEAD END

100 DIM B(B,BYT(2:8),UC8,2)

110 MAT B = ZER

120 M™MAT READ U

130 LET M = 1

140 PRINT "™BEGIN WHERE™S

150 INPUT R. C

160 LET B(RsC) = M

170 MAT T = ZER

172

174 REM % K1 CBUNTS THE NUMBER @F LEGAL MBVES
180 LET K1 = 0O

182

184 REM #® ENTER ALL LEGAL MBVES IN T ARRAY
190 FBR T = 1 T2 B

200 LET R1 = R + U(T»12

210 LET C1 = C + UCT.2)

220 IF INT¢ (R1=-12/8 ) <> 0 THEN 280
230 IF INTC (Cl-13/8 ) <> 0 THEN 280
240 IF BCR1.Cly <> O THEN 280

250 LET K1 = Ki+l

250 LET TClsK1) = R

270 LET TC(2sK1l) = CI

280 NEXT T

282

230 IF K1 = 0 THEN 350

a9z

294 REM * SELECT A LEGAL MBVE AT RANDAM
300 LET T = INT{ RND(-1)*Kl+]1 I

310 LET R = TC(1,T2)

320 LET C = T(2,T)

330 LET M = M+1

340 GOATA 1&0

3a2

as0  PRINT "GOT T@"r M
350 PRINT "PRINT IT"»
70 INPUT AS

380 IF A% <> "“YES"™ THEN 420
390 MAT PRINT BJ

392

394 REM

400 DATA 152, 1,-2, =1s2s =1,-2
410 DATA 251, Z2s=1s =2sls =2»-=1
420 END

TAUR
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BEGIN WHERE?4:4

GBT To 41
PRINT IT?YES
o g 15 0 0 24 39 0
14 11 i} 7T 38 0 0 25
0 16 9 12 v} 26 23 40
10 13 18 I & ar 0 0
17 0 5 36 27 a2 41 a
0 1) 2 19 3z 35 28 o
0 o a 4 0 30 21 34
0 3 0 al 20 a3 0 29

AND R1<9). If a move is found to be legal, then we enter it into the T array.
When all legal moves are in the Array T, K1 is the number of legal moves. If
K1 is zero, then the knight has reached a dead end and we may print the four
or not. We present a flowchart in two parts. Figure 12-1 details the sorting out
of legal next moves. Figure 12-2 shows where a legal move chosen at random
is incorporated into the tour.

Summary of Sec. 12-4

We have seen programs to play Battle of Numbers and simulate the
Knight’s Tour. In the first case there is a guaranteed strategy which we exploit
in our program. In the second case we have not employed strategy of any kind
but merely progress from step to legal step at random with no procedure for
maximizing results.

Projects for Sec. 12-4

Some of the projects listed will require considerable study and planning
before the actual coding of the program takes place. Be sure to allow a reason-
able amount of time should you attempt any of the longer projects. Some of
the solution programs can be very long indeed. The reader needn’t feel limited
to projects proposed here.

1) Modify the game of Battle of Numbers so that the last person to take
away wins. Be sure to change the computer’s strategy.

2) Write a program to play the game of Nim.

3) Write a program to play Tic-Tac-Toe. First decide whether or not you
want an unbeatable program.

4) Write a program to play three-dimensional Tic-Tac-Toe.

o) Write a program to lengthen the knight’s tour by backing up every time
the knight hits a dead end.

6) Write a program to play the game of Geagraphy uging strinas and filog,
In this game two players take turns naming places where the first
letter of the new place must be the last letter of the last place named.

7) Write a program to make the computer the dealer in a blackjack game.

8) Write a program to play craps.

9) Write a program to simulate a Roulette-wheel.
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MAT B=ZER
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Figure 12-1 Flowchart for keeping track of Knight's Tour.
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Figure 12-2 Flowchart for selecting moves at random for Knight's Tour.



APPENDIX A
ASCII Character Set Printable on Model 33

CODE CHARACTER CODE CHARACTER

az b4 2]
a3 I &5 A
34 L 66 B
a5 v &7 C
36 £ 68 D
a7 z 59 E
38 & 70 F
39 b 71 G
40 ( 72 H
41 3 T3 1
42 * T4 J
a3 + 75 K
44 » T6 L
45 - 77 M
46 . 78 N
a1 7 T9 )
48 Q 80 P
49 1 81 a
50 2 gz R
51 3 B3 5
52 4 B4 T
53 5 B85 u
54 ] Bé& )
55 T B7 W
56 g B8 A
57 9 89 Y
58 1] 90 L
59 3} 21 (
60 < 92 N
&1 x g3 ]
62 = 94 t
63 ; 95 -

N@TE SPECIAL CHARACTERSH

LINEFEED @R CTRL J 10
FORMFEED @R CTRL L 12
RETURN @R CTRL M 13
SPACE a2

161
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Summary of Flowchart Shapes

Used for beginning and ending of program.
Terminal

Indicates data entered into the computer or resulis
returned by the computer.

Input
Qutput READ MAT READ READ#
PRINT MAT PRINT READ:
INPUT MAT INPUT WRITE#
WRITE:
Indicates that a decision is being made.
IF XXXXXX THEN Yy
Indicates a sequence of program statements not in-
e ilatin cluded in the flowchart. May be used for GOSUB
process statement.

Connector. Indicates transfer from one statement to
@ another other than the next higher numbered
statement in the program. N matches another N

elsewhere in the same flowchart.

Used for anything not already specified.

Operation

Opens loop NEXT X

Closes loop LET
RETURN
STQP

162
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Summary of Statements in BASIC

NOTE: Not all statements which appear in this appendix will run on all systems
and the list here does not cover every statement for some systems.

END

PRINT

PRINT USING n

READ

DATA

GOTY n

ON X GOTQ ny,ny,n3,
efc., or

G(I'TQ" X mF Ry,Ma,N3,
etc., or

GOTQ ny,n,, ns,ete.,
ON X

LET

REM

It is the highest numbered statement of every BASIC
program. It is optional on a few systems and re-
quired on most.

Prints values of variables, calculated values, and
literal expressions inside quotes. Spacing is con-
trolled by commas, semicolons, and TAB. More
spacing functions are available on some systems.

Prints according to format specified in line n.

Specifies printing for PRINT USING statements.

Enters values stored in DATA statements into vari-
ables named in the READ statement. All legal
BASIC variables (string and numeric) may be read
in a single READ statement by separating them
with commas.

Stores values for READ statements. Items of data
must be separated by commas. Some systems re-
quire that strings be in quotes.

Names n as the next line number to be executed by
the computer.

Computed GOT@ goes to the line number in the xth
position in the list of line numbers ny, n,, 13, ete.
If available, one of these should work. They are
not interchangeable.

Assignment statement. The word LET is optional on
many systems. Stores the value on the right of an
equals sign in the variable named on the left. May
be used to assign string variables. Multiple assign-
ment is available on most systems.

Permits the programmer to remark upon the program
in the program itself without affecting the pro-

b



IF THEN n

FORX=ATQ B
STEP C

NEXT X

GOSUB n

@N X GQ}SUE Ny, Nq, 3,
ete., or

G@'SIIB X &}F RNy, N5,
ete,, or

G@'SUB X ';aN ny, Ny, Ny,
ete.

RETURN

DEF FNA(X) =

DEF FNA(X)

FNEND
STQP

DIM A( ),B$( ). ...

INPUT

RESTQRE

RESTQRE*
RESTORE$

Appendix C

gram operation. Some systems allow ’ to serve the
same purpose.

Tests the truth of an algebraic sentence placed be-
tween the IF and the THEN. Sends the computer
to line n if the sentence is true. Control passes to
the next line if the sentence is false.

Opens a machine loop with first value for X at A, last
number B, and increment C. If C is omitted, the
siep defaulis o an inerement of 1,

Closes machine loop. Sends the eomputer to the
corresponding FOR statement to increment and
test X.

Sends the computer to a subroutine beginning at line
n. Upon executing a RETURN statement, the
computer returns to the line immediately follow-
ing GOSUB n.

Computed GOPSUB goes to the subroutine beginning
at the xth line number in the list. Upon executing
a RETURN statement, control goes to the line
immediately following this statement. If avail-
able, one of these should work, They are not
interchangeable.

Closes all subroutines.

Program-defined function. The letter pair FN desig-
nates that a function is called for. The function
name is A, and the argument is X. Any letter of
the alphabet may be used. Some systems permit
multiple arguments separated by commas.

Opening line of a multiple-line program-defined
function. Several arguments may be permitted,
separated by commas. A value must be assigned
to FNA in the lines to follow.

Closing statement of a multiple-line, program-defined
function.

Execution of the STQP statement causes termination
of the RUN at that point.

Declares dimensions for one- or two-dimensional
numeric arrays or string arrays or both. One
number is required in the parentheses for a list
and two numbers separated by a comma are
required for a two-dimensional array.

Same as READ except that data is to be typed on the
keyboara of the remote terminal.

Restores all data in the program. The next item of
data to be read will be the very first data item in
the program.

Restores numeric data only,

Restores string data only.



RESTQRE n
CHANGE A$TOQ A

CHANGE A TQ A%

RANDQMIZE

MAT READ

MAT PRINT

MAT INPUT

MATC = A * B
MAT A = B + C
MAT A =B - C
MAT A = (K)*B

MAT A = ZER
MAT A = CON
MAT E = IDN
MAT X = INV(A)
MAT A = TRN(B)
SQR(X)

ABS(X)

SGN(X)
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Restores all data from line n on.

Stores the ASCII code of the characters of the string
A$ in the array A with the length of the string in
characters stored in A(0).

Stores a string in A$ with length specified in A(0)
and characters determined by the ASCII code
stored in the array elements of the A list.

Causes the random numbers generated in successive
runs of the same program to vary.

MATRIX INSTRUCTIONS

Enters data into numeric and string arrays. Several
arrays can be read in the same MAT READ state-
ment by separating the array names with commas.

Prints the array(s) listed, separated by commas or
semicolons. The delimiter used specifies spacing
for the preceding array. Numeric and string arrays
are allowed.

Enters data into an array (string or numeric) from the
keyboard. Some systems allow more than one
array listed here; others do not.

Enters the product of A and B into array C.

Enters the sum of B and C into array A.

Enters the difference of B and C into array A.

Multiplies each entry of B by the scalar K and enters
the result into A.

Creates the zero matrix (fills each entry of A with
zero). ZER may be followed by redimensioning
specifications in parentheses.

Fills each element of A with 1. CQON may be fol-
lowed by redimensioning specifications in
parentheses.

Forms the identity matrix E. E must be square. All
elements with equal row and column numbers are
1 and all other elements are 0. IDN may be fol-
lowed by redimensioning specifications in
parentheses.

Finds the inverse of A and entexs it in X (if it exists).

Fills A with the transpose of B.

FUNCTIONS

Computes the non-negative square root of X. X must
be non-negative.

Computes the absolute value of X,

Returns the value 1 for X positive, 0 for X equals
zero. and - 1 for X negative.
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IN'T(X) Returns integer part of X. For some systems this is
the mathematically greatest integer function. For
others, the computer simply chops off the digits
to the right of the decimal point. (The results
are the same for non-negative numbers.)

RND(X) Generates a random number. In some systems the
set of random numbers accessed is determined by
the value of X. Some systems generate the same
sel ©f numbers each time the piogram is run,
whereas others provide a different set and sl
others provide an option. See RND below.

SIN(X),CQS(X),TAN(X) Computes the sin, cos, or tan of X, where X must be
in radians.

ATN(X) Computes the arctan of X. ATN(X) is in radians.
The program must be written to determine the
correct quadrant for the result.

LOG(X) Computes the logarithm of X using base e.
EXP(X) Computes the number whose LOG base e is X.
TAB(X) Moves the printing mechanism to the (X + 1)st posi-

tion of the carriage unless the printing mechanism
is already past that point, in which case there is

no effect.

ASC( ) Returns the ASCII code for the character placed in
parentheses.

LEN(A%) Returns the number of characters in the string A$.

EXT$(AS,1,9) String extract function. Isolates a substring in A$
from the Ith to the Jth character inclusive.

NUM Returns the number of elements typed in response to

the most recent MAT INPUT statement executed
in the program.

DET Returns the determinant of the most recent matrix
for which the inverse has been found with the
MAT INV ( ) statement. No argument required.

RND Returns a random number. The numbers will be the
same on successive runs of the program if the
RANDQMIZE statement is not present in the pro-
gram and different on successive runs if the
RANDQMIZE statement is present.

FILES
Hewlett Packard Files

FILES Names files to be used by the present program and
makes them available for access. File names are
separated by commas.

READ #N,R Sets the file pointer to the beginning of the Rth
record of the Nth file named in the files statement.



READ #N;
MAT READ #

PRINT #N,R

PRINT #N;

MAT PRINT #

IF END #N THEN n

TYP(N)

FILES

READ #N,

WRITE #N,

IF MORE #N

IF END #N
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variable list, this statement reads values from the
file to the variables.

When followed by a variable list, this statement reads
from the file at a point previously established.

Reads values from a file with the same options al-
lowed for READ #.

Sets the file pointer in the Nth file named in the files
statement to the beginning of the Rth record and
erases the contents of that record. In addition,
when followed by a semicolon and a variable list,
this statement causes the contents of the variables
to be printed into the file.

When followed by a variable list this statement
causes the contents of the variables to be printed
wherever the file pointer has been previously set.

Prints values from a matrix to a file with the same
options as for PRINT #.

When executed, this statement sets a flag. If at any
later time an attempt is made to read past the end
of data or past the physical end of the file or to
print past the physical end of the file, control
passes to line n.

The TYP (N) function takes on values from 1 to 4,
depending on the nature of the next information
in the file. TYP(N) becomes 1 for number, 2 for
string, and 3 for end of file. If the argument is
negative, the value 4 will be returned for end of
record.

General Electrie Files

Names files to be used by the current program and
makes them available for access. File names are
separated by semicolons.

ASCII Files

Reads data from the Nth file named in the program
into the variables of the variable list following the
comma.

Writes data from the variable list following the
comma to the file. The variables in the list may be
separated by semicolons or commas to achieve
corresponding spacing in the file.

Determines whether or not there is more data in the
file.

Determines whether or not the end of the file has
been reached.
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SCRATCH #N

RESTORE #N

Appendix C

file by setting the file pointer to the end of the
Nth file and placing the file in write mode.
Sets the pointer of the Nth file to the beginning of
the file, erases the file, and places it in write mode.
Sets the pointer of the Nth file to the beginning of
the file and places it in the read mode.

Binary Sequential Files

Binary sequential files may be processed by all of the above statements by
substituting a colon (:) for the pound sign (#). Binary files should be less ex-
pensive to work with; however, ASCII files are very convenient due to the fact
that they may be listed at the terminal.

READ :N,
WRITE :N,
IF MORE :N
IF END :N
SCRATCH :N
RESTORE :N

SETW N TQ X

Random Access Files

Same as ASCII.

Same as ASCII.

Tests true, except when the file pointer is at the
physical end of file.

Tests false, except when the file pointer is at the
physical end of file.

Places the file pointer at the beginning of the file and
fills the file with binary zeros.

Places the file pointer at the beginning of the file
without altering the contents of the file.

Places the file pointer to the Xth word of file N. To
access a random file by record, the formula
W#*(R - 1) + 1 places the pointer at the begin-
ning of the Rth record if there are W words per
record.



Program

ADD
ADD1
ADD2
ALPHA
ALPHA1
AREA1
AREAZ2
ARRAYS
ASC
AVG
BATTLE
BQUNCE
CITY
CQLIN

CQMPAR
COMPRS$
CQNCAT
CONVRT
CQRREL
COQSINE

DECIDE
DIST1
DIST2
DIVIDE
DRAW

DRAWO1
DRAWO2

END

ENTER1
ENTER2
ENTER3

ENTER4
FIBQ1

FUNCTIQN

GEQARI

GRAPH1
GRAPH2
GRAPH3
GROWTH

HALF

IMAGEO1-
IMAGEO05

INT
T.IMNONT

APPENDIX D

index of Programs in Text

Description

Adds Numbers fromData. . .. .. .. .....
Adds and Counts Numbers from Data . . . . .
Adds Numbers from Input . .. .........
Arranges Characters of String . .. .......
First Use of Change Statement .. .......
Area by Summing Rectangles . .. .......
Areal with Variable Interval Width . .....
Demonstrates a String Array . . .. ... ... .
Prints Sample ASCIICodes . .. .. . ... ...
Averages Numbers from Data . .. .. .. ...
Plays Battle of Numbers . . . .. .........
Prints Successive Heights for a Magic Ball .

First GEDataFile . ... .. ...

Determines Colinearity of Three Points

maPlane . . .. . . i o v e e e s

Compares Two Numeries .. ........ ...
Program COMPAR with Strings . . . ... ...
Appends One String on Another . . ... ...

Converts Numeric to String . . ... ... .. 4
Calculates Linear Correlation Coefficient
Compares Computer cos(x) Function and
Series Evaluation . ........ 000000

First Demonstration of Strings .. .. .....
Uses Distance Formula for Two Points . . . .
Finds Distance for Several Pairs of Points . .
Demonstrates Synthetic Division . . . .. ...

Draws 5 Numbers at Random from 10 with

Replacement .. ...........0 0.

Draws with FOR-NEXT . .......
Draws Numbers from 10 Without

Replacement .. ...... ... ...

Prints A$(I) in Substring Scheme . .

Prints Data Serially in File INVO1 (HP) . . . .
Adds Data to File INVOL (HP) . ........

Prints Data to Random Access File

INNVOZTHPY . ...ocovovnnmommoe bin a0 a0s A
Adds Data to File INVO2 (HP) .........
Prints the First 30 Fibonacei Numbers . . . .

Demonstrates Multiple Line Defined

FUunction . . . v v v v o v e vt m o me s aeas

Compares Geometric and Arithmetic

Sequences and Series . . . ... ... ...
Bare Plot, No Axes, OriginOnly. . .. .. ...

Graphl with Axes. . ... ...... ...
Plotting from an Array with Axes
Orders Contents of City into File
CITY1 (GE)
Halves Remaining Distance of Separation

Demonstrates Print Using . . ... ... .. ...

Computes Compound Interest by Formula .

Printe Pawere of {—2/5)

..............

.....................

Section
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Program

LINES
LYGIOL
LOGIC2

MAGIC
MATS$
MATO1

MATO2
MATINY
MEDIAN
MQD
MOD1

@PRATN
@ORDER
@RDERS$
PERP

PQINT

PQLYO01
PRT
PYTH1

PYTH2
PYTH3

RANK
READ
READ1
READ2

READCITY
REDCITY2
REVRS
REVRS1
RNDENTER

RNDREAD
RNDSQRT
RQUND
SALES1
SALES?2
SEQO1
SLOPE
SQLVE

SUBSTR
TABO1

TABO2
TQUR
UPDATE
VAR
WEATHER

Description

Simulates Bank Teller Window Activity
Frinis Truth Valwes .. o o5 o ws v v o s
Gets Factors Using Truth of

N/X=INT(N/X) .. .. .. .. ... . .. .....
Prints Odd Order De La Loubere Magic
BIAUBPEE v it o ov. i i 3% &% b Ve i 2% s
Demonstrates MAT READ and MAT PRINT
for String Arrays .. ................
Demonstration MAT READ and MAT
PRINT

.........................
..........
i 5 oy ey e sm

1 larmanotra oo VLN TET
At “iW ¥

T AAA RS ARAI L LA L) ATAL R & ALY F . o s s 4 om & owm m om s s w

Finds Median for Odd Number of Data . . . .
Modular Arithmetic with One Subroutine .
Modular Arithmetie with Nested
Subroutines . . . .. .. ..

Uses t,*, /[ +— ... ... ..
Orders Numbers from Data, .. ...... ...
Alphabetizes Names in a String Array . . . . .
Equation of Line Given Point and Points

on Perpendicular Line . . .. ...........
Finds Intersection of Two Lines in
AXABYHOmD WOrm .. o o v ow o a6 o5 o

Compares Values of F(X) by Three Methods
Demonstration of User Defined Function .
Reads and Prints Coordinates of Three
POINES v saae s o o5 5e o5 F §
Sets Up Three Points in Six List Positions . .
Checks Three Points for Vertices of

Right Triangle . .. .................
Arranges the Contents of File CITY2 (GE)
Reads File INVO01 (HP)
Reads with IF END Trap (HP). . ... .. ...
Finds Number of Parts in Inventory File
INNOT CHE Y o oo wmmme e s
Reads File CITY (GE)
Reads Contents of File CITY2(GE) . .. ...
Prints String in Reverse Order . .. .. .. ...
Reverses Characters of a String Using Change
Writes 10 Random Numbers to Binary File
RAND (GE)
Reads File RAND (GE)
Arranges Contents of File RAND (GE) . . . .
Rounds to Various Precisions
Matrix Demonstration . . .. .. .........
Sales1 Stripped to Bare Essentials
Prints Ratios of Successive Odd Integers . . .
Finds Slope of Lines Given Two Points . , .
Solves Simultaneous Linear Equations Using
MAT INV
Demonstrates A$({I,J) As a Substring .. ..
Demonstrates Tab Printing of String

Charactere

..............

...............

.....................

..............

..........

.......

.......................

Prints Numerics Using the Tab Function . . .

Knight's Tour—Prints at Dead End . . . . . ..
Edits Inventory File INVO2(HP) ... .. ...
Calculates Variance and Standard Deviation
Calculates Linear Correlation for
Temperature Data . . ... .............

Section

12-2
2-4

2-4

12-3

3-3B

1-5

Tk
AT

11-3

GOCOCO b  BIBI GO Cn

e
[w]
& 5

PP cococo
-
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Program Description Section

WEEEKA Matches String and Substring . ......... 3-3A
WEEKA1 Finds Day Number from String Day . .. ... 3-3B
WEEKB1 WEEKA1 Checking Only First Three

Letters of InputString . . . . ........... 3-3B
WETHR Array Demonstration with Weather Data . . . 1-4
WETHR1 Array Demonstration with Weather Data . . . 1-4
XFER Transfers Contents of City to Random

FilaCITY2 (BB . .. 0 son sonmon mon sonan 4-3
ZERQO1 Search for Change of Sign in Polynomial

Ponetion . o0 on w6 i aw o ot @ i e e s B8-2
ZERQO2Z Uses Interval Halving to Find an Approxi-

mMate Zero v .ou son o5 50 40 miw ww wm te wn 8-2
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ABS(X) function, 7

Algorithm, 10

Alphabetization, 42

AND, 29

Append statement, 55

Area, T2

Arithmetic mean, 137

Arithmetic operators, 4

Arithmetic sequence,
116

Arithmetic series, 122

Array; numeric, 15, 127

string, 34

ASCII code, 31, 35, 40,
44

ASCII files, 54

Assignment operator, 5

Assignment statement, 5,
31, 40, 47

ATN(X) function, 11

Average, 137

Axes, 64, 68

Battle of numbers, 155f
Binary files, 54, 57
Bubble sort, 140

Cartesian coordinates, /8
Census, 54
CHANGE statement, 40
Chess, 156
Circle, 74
CLK(X) function, 11
Coefficient matrix, 132
Coefficients, 101
Coinciding lines, 90
Collinear points, 78
Column vector, 127
Comma delimiter, 3, 33
Common difference, 116
Commeon ratio, 117
Compound interest, 117
Computed G(QDSUB state-
ment, 15

INDEX

Computed GQTQ state-
ment, 3
Computer functions:
ABS(X), 7
ASC(I$), 44
ATN(X), 11
CLK(X), 11
CPS(X), 11
DEF, 12
EXP(X), 11
BXTS$( ), 44
INT(X), 7,8
LEN(AS), 35, 40
LOG(X), 11
MAX, 29
MIN, 29
NUM, 18
RND, 9
RND(X), 8
SEGS$( ), 44
SGN(X), 7
SIN(X), 11
SQR(X), 7
TAB(X), 23, 64
TAN(X), 11
TIM(X), 11
TYP(N), 51
CON, 19
Concatenation, 39
Constant matrix, 132
Content addressing, 52
Continuous function,
104
Convergence, 119
Correlation coefficient,
linear, 143, 146
CQS(X) function, 11
Cosine, 126
CREATE command, 58,
61

DATA statement, 2, 43
Degree of a polynomial,
101

182

De la Loubere, 152
Delimiter; comma, 3, 25,
33
in a file, 47
semicolon, 3, 25, 33
Descartes’ Rule of Signs,
112f
DIM statement, 10, 35,
40
Dispersion, 138
Distance, 72, 78f
Distance formula, 80
Divergence, 119
Dummy data, 2, 47, 48,
59, 137
Dummy string, 38

Efficiency, 10, 42, 46,
102, 140

E-format, 5, 26

END statement, 2

EQF, 52

Error, 75, 112,125

Error message, 48, 51

EXP(X) function, 11

EXT$( ) function, 44

Factor Theorem, 108
Fibonacci sequence, 115
Files, 46, b4
ASCII, 54
binary, 54, 57
random access, 50, 57f
sequential, 57
serial, 46, 55, 57
teletype, 54
FILES statement, 47, 55
FNEND statement, 29
Formatting, 25
FQR-NEXT statement, 9
Functions, computer, see
Computer functions
Funection, mathematical,
64



Games, 147, 154-159
Geometric sequence, 117
Geometric series, 122
G@SUB statement, 13
GQTQ statement, 3
Graph, 64

Hero's formula, 100
Hypotenuse, 95

Identity matrix, 19, 132

IDN, 19

IF END statement, 48,
59

IF MQRE statement, 55

IF-THEN statement, 27

Inconsistent equations,
90

Indeterminant solution
391

Initialization, 6

INPUT statement, 6, 31,
40

Integral zeros, 112

Interest, compound, 117

Intersecting lines, 84

INT(X) function, 7, 8

INV, 21, 131

Inverse of a matrix, 132

Knight's tour, 156ff
LEN(A%) function, 35,
40

LET statement, 5, 40
Limit of a sequence, 119
Linear correlation coef-
ficient, 143, 146

List, 10
LIST command, 2
Logical operators:

AND, 29

QR, 29

NQT, 29
Logical value, 28
LPG(X) function, 11
Loops, 9

nested, 16

Magic squares, 152ff
MAT equals, 21
MAT INPUT, 18
MAT PRINT, 18, 43
MAT READ, 18, 43
Matrix, 127
coefficient, 132
constant, 132
identity, 19, 132

I ndex

Matrix algebra, 19
MAX function, 29
Median, 140
Midpoint, 75, 81
MIN funection, 29
Monte Carlo, 126
Multiple assignment
statement, 6
Multiple zeros, 111

NAME command, 2

Nested form of a poly-
nomial, 102, 110

Nested loops, 16

NEW command, 2, 54

Noncollinear points, 94

Nonreal zeros, 104

NOQT, 29

NUM function, 18

Operators
arithmetic, 4
assignment, b
logical, 27
relational, 2, 3

OR, 29

Ordering data, 140

Origin of a graph, 64

Parabola, 66

Parallel lines, 84

Pearson r, 146

Perpendicular bisector,
85

Perpendicular lines, 84

Plot, 64

Plotters, 64

Pointer, 51, 55, 59

Polynomial, 12, 101

Polynomial equation,
104

Prettyprinting, 4

PRINT statement, 2, 40,
47,81

PRINT USING state-
ment, 25

Pseudo-random numbers,
8

Pythagorean Theorem,
95

Quadratiec formula, 104,
111
Quotes, 33, 35

Radians, 11
Random access files, 57,
58

183

Random numbers, 147
RANDQMIZE statement
9
READ statement, 2, 31,
40, 55
Record of storage, 47, 58
Relational operators, 2f
REM statement, 4
Remainder Theorem,
108
RESTQRE statement, 57
RETURN statement, 13
Right triangle, 79, 84, 95
RND function, 9
RND(X) function, 8
Row vector, 127
RUN command, 3

¥

SAVE command, 54
Scale, 66
SCRATCH statement, 57
Sectors of storage, 47
SEG$( ) function, 44
Semicolon delimiter, 3,
33
Sequence; arithmetic,
116
defined, 1156
Fibonacci, 115
geometric, 117
of partial sums, 122
Sequential files, 57
Serial files, 55
Series; arithmetic, 122
defined, 122
geometric, 122
SETW statement, 59
SGN(X) function, 7
Significant digits, 5
Similar triangles, 85
Simpsons’ rule, 77
Simulation, 147
Simultaneous linear
equations, 88, 131
SIN(X) function, 11
Slope, 81
positive, 82
negative, 82
Slope-intercept, 83
Solution matrix, 132
Spacing; comma, 43
semicolon, 43
Standard deviation, 137,
138
Statements:
APPEND, 55
ASSIGN, 47
assignment, 5, 31, 40
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Statements (continued)
CHANGE, 40
computed GQSUB, 15
DATA, 2, 43
DIM, 10, 35, 40
END, 2
FILES, 47,55
FNEND, 29
FOR-NEXT, 9
GOSUB, 13
GQTQ, 3
IF EIND, 48, 59
IF MQRE, 55
IF-THEN, 27
image, 25
INPUT, 6, 31, 40
LET, 5, 40
MAT, 18,19
multiple assignment, 6
PRINT, 2, 31, 40
PRINT USING, 25
RANDQMIZE, 9
READ, 2, 31,40, 55
REM, 4
RESTQRE, 57
RETURN, 13
SCRATCH, b7
SETW, 59
STQP, 5
WRITE, 57

STQP statement, 5

Index

Storage, 59, 68
String, 25, 31
dummy, 38
null, 50
SQR(X) function, 7
Subroutine, 13
Subsecripted variable, 10
Synthetie division, 109
System command, 2
CREATE, 58, 61
LIST, 2

T A RATH (nl
IMsadvieh, o

NEW, 2, 54
@PEN, 47
RUN, 3
SAVE, 54

TAB(X) function, 23, 64
TAN(X) function, 11
Teletype files, 54
TIM(X) function, 11
Transfer; conditional, 2
unconditional, 3
Trapezoid method, 77
Trial and error, 10
Triangles, similar, 85
TRN, 21
Truth values, 27
TYP(N) funetion, 51

Undefined condition, 82

Undefined slope, 84, 97
Undefined solution, 89
User-defined function,
12
multiple line, 29

Variables, 4
numeric, 31
string, 31
subscripted numervic,
10
subscripted string, 24
Variance, 138, 142
Variation, 113
Vector; column, 127
row, 127

WRITE statement, 57

¥-axis, 65, 68
X-coordinate, 78

Y -axis, 65, 68
Y-coordinate, 78

ZER, 19

Zeros; integral, 112
multiple, 111
nonreal, 104
real, 104
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