basic basic

FLIP-1 AN INTRODUCTION TO COMPUTER PROGRAMMING
IN BASIC LANGUAGE

2 FOK Y=1 T2 10 !
5 LET C=0 second edition
10 FOR X=1 T@ SO

20 LET F=INTC2%RNDC1)) JAMES S. COAN

30 IF F=1 THEN 60

40 PRINT "'T'3

S50 GOTY 100

598 REM C CAUNTS THE NUMBER OF HEADS

60 LET C=C+1

70 PRINT "H';

100 NEXT X

110 PRINT

120 PRINT "HEADS "3C3'"QUT QF S0 FLIPS"™
125 NEXT Y

130 END
RUN
FLIP-}

HITTTITHTTHHTTHTTTTTTTTHTHHHHHHTTTTTHTHHH THHHTTHHTT
HEADS 21 dUT @F 50 FLIPS
HTTHTHHTTHTTHTHHTTTHHHTTTTTTHHHH T THTH THHHH THH T THHH
HEADS 26 JdUT @F 50 FLIPS
HTHTTTHTTHTTHTTTTTTTTHTTHTTTHTHTHTTTHTTTTTHHHTHHHT |
HEADS 17 dUT @F 50 FLIPS
THITTTITTHTHTHTHHTHHHHHHTHTTTHHTTHTTTTTTTHHTHTTHHTT
HEADS 21 dUT QF SO FLIPS
TTHHTTTTHTHHTTHTHTHHHHTTHHTHHHTTTTTTHTHHHHTTHTHHTT
HEADS 24 JJT @F 50 FLIPS
HTHTHHHHHHHTHTTTTTTTHTTHHHHHH TTTHTTTTHTH T THH THH THH
HEADS 26 JdUT OF 50 FLIPS
HTTTTTHTTTTHHTTHTTHTHHHHTHTHH TTHHHH THTTHTHTHTTTTHT
HEADS 22 AJT @F S0 FLIPS
THTHHHHHHTHTHHHHTTTHHTHTHHHHHTHHHTHHTHHHHHHHTTTHTH
HEADS 34 JJdT IF 50 FLIPS
HTTHHTHHrTHTTTTTTHHHTTTHTTTHHTTHTHTHHHHHTTHHTHHTHT
HEADS 24 JUT IF S50 FLIPS
TFHHTHHFHHHTHTTHTHHHTHHHTTTTHHHTTTTHTTHTHHTHHTHrHT
HEADS 26 IJT OF S0 FLIPS

| B ape——— |

Basic BASIC

An Introduction to Computer Programming in BASIC Language

Hayden Computer Programming Series

COMPREHENSIVE STANDARD FORTRAN PROGRAMMING
James N. Haag

BASICS OF DIGITAL COMPUTER PROGRAMMING (Second Ed.)

John 8. Murphy

BASIC BASIC: An Introduction 1o Gomputer Programming in BASIC Language (Second Ed.)
James 8. Coan

ADVANCED BASIC: Applications and Problems

James 5. Coan

DISCOVERING BASIGC: A Problem Solving Approach
Robert E. Smith

ASSEMBLY LANGUAGE BASICS: An Annotated Program Book
lrving A. Dodes

PROGRAMMING PROVERES

Henry F. Ledgard

PROGRAMMING PROVERBS FOR FORTRAN PROGRAMMERS
Henry F. Ledgard

FORTRAMN WITH STYLE: Programming Proverbs

Henry F. Ledgard and Louis J. Chmura

COBOL WITH STYLE: Programming Proverbs
Louis J. Chmura and Henry F. Ledgard

BASIC WITH STYLE: Programming Proverbs
Paul Nagin and Henry F. Ledgard

SNOBOL: An Introduction to Programming

Peter A. Newsted

FORTRAN FUNDAMENTALS: A Short Course

Jack Steingraber

THE BASIC WORKBOOK: Creative Technifjues for Beginning Programmers
Kennelh E. Schoman, Jr.

BASIC FROM THE GROUND UP

David E. Simon

APL: AN INTRODUCTION
Howard A. Peelle

Basic BASIC

SECOND EDITION

An Introduction to Computer Programming in BASIC Language

JAMES S. COAN

Community Computer Corporation
Germantown Friends School

H

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

Library of Congress Cataloging in Publication Data

Coan, James S
Basic BASIC: an introduction to computer
programming in BASIC language.

(Hayden computer programming series)
Includes indexes.
1. Basic (Computer program language).
2. Electronic digital computers—Programming.
I. Title.
QA76.73.B3C62 1978 001.6'424
ISBN 0-8104-5107-7
ISBN 0-8104-5106-2 pbk.

77-14640

Copyright © 1970, 1978 by HAYDEN BOOK COMPANY, INC. All rights re-
served. No part of this book may be reprinted, or reproduced, or utilized in
any form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any in-
formation storage and retrieval system, without permission in writing from

the Publisher.

Printed in the United States of America

4 5 6 J B ©

PRINTING

79 80 Bl B2 B3 B84 BS

YEAR

Preface

With the increasing availability of computer access through remote terminals
and time sharing, more and more schools and colleges are able to introduce
programming to substantial numbers of students.

This book is an attempt to incorporate computer programming, using BASIC
language, and the teaching of mathematics. I believe the two activities support
each other.

Flowcharts are used throughout the text. The general approach is to begin
with short complete programs and then simply and methodically build them
into larger programs. Each new capability or new organization of capabilities
is presented to create a desired effect in a program. Details are introduced
only as they become necessary or useful for the writing of a program, rather
than as sets of facts to be memorized in case a particular situation should
ever arise. Over 125 programs are used to achieve this.

All of the elementary BASIC language capabilities are presented in the first
five chapters and Chap. 7. Chapter 6 and Chaps. 8-13 emphasize applications.
The first seven chapters may be studied in conjunction with, or at any time fol-
lowing, a first-year algebra course. Chapters 8-13 are applications oriented,
covering many of the popular topics of precalculus mathematics, with all of the
required algorithms developed in the text. Thus, this text is suitable for use
either as a supplementary text to be incorporated into existing mathematics
courses, or as the text for a course or unit to cover programmin g alone,

Appendices A and B, respectively, present information for the operation
of programs on paper tape and a few comments on error diagnosis. Appendix
C introduces two formatting capabilities that are available on some time-
sharing systems. Flowchart shapes are summarized in Appendix D. A sum-
mary of BASIC statement types is provided in Appendix E and an index of
all the programs in Chaps. 2-13 is provided in Appendix F.

Many of the problems in the book are intended to enable the student to
develop interesting mathematical concepts upon seeing the printed results of
programn RUNS. Possible solution programs are given in Appendix G for the
even-numbered problems to give the student an indication of the correctness

of his program without being required to run every program. However, par-
ticularly at the beginning, students derive greater benefit from seeing programs
run (or not run) than from any other programming activity.

1 wish to thank Germantown Friends School for its support in the prepara-
tion of this text. Thanks are due Mrs. Geoffrey Wilson for test teaching and
numerous students for test learning portions of the manuscript.

JamEes 5. CoaN
Philadelphia

Preface to the Second Edition

The First Edition of this book has been significantly enhanced by present-
ing character string handling and the use of data files. Since strings and files
involve language differences which depend on the computer, two versions are
presented. Demonstration programs are presented in Chap. 7 for both General
Electric Information Services BASIC and Hewlett-Packard BASIC,

The little used statement RESTORE is no longer discussed, and the INPUT
statement is now presented in Chap. 1.

Thanks are due to the Community Computer Corporation for assistance in
the preparation of material for this Second Edition.

Jantes S. Coan
Philadelphia

Chapter

Chapter

Chapter

Chapter

Contents

1—Introduction to BASIC

PRINT o cons
READ-DATA
System Commands
LEF
INPUT

i
1
1
1
1 o
1-6 Sample Programs

1

15 Juh Co 1o

Summary and Problems for Chap. 1

2—Writing a Program
2-1 Planning . . _ o
2-2 REM .. e Y

2-3 Flowcharting
2-4 IF-THEN

Summary and Problems for Chap. 2

3—Loops and Lists

3-1 Introduction to Machine-Made Laops
Summary and Problems .
3-2 More on Loops
Summary and Problems
3-3 Introduction to Lists =
Summary and Problems
3-4 More on Lists
Summary and Problems .

4—Computer Functions

4-1 Introduction to INT(), SQR(), ABS(), and SGN()

Summary and Problems

4-2 Reducing Common Fractions and Dimension

Conversions
Summary and Problems
4-3 Program-Defined Functions
Summary and Problems
4-4 Random Number Generator
Summary and Problems

Comma and Semicolon in PRINT Statements

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

S5—Elementary Data Processing
5-1 Introduction to Data Processing .

Suuuuna_}" and Problems

5-2 Arrays
Summary and Problems

5.3 A More Detailed Questionnaire Analyms
Summary and Problems

6—Specific Applications

6-1 Euclidean Algorithm
Problems .

6-2 ("‘ h:m 1ge Base
Froblems

(-3 T.ooking at Integers T)l-r_rl’r]w Thlet
Problems

7—Strings and Files

7-1 Introduction to Strings

7-2 Strings—The Substring Scheme
Summary and Problems .

7-3 The String Array Scheme
Summary and Problems

7-4 Introduction to Data Files

7-5 Hewlett-Packard Files
Summary and Problems

7-6 General Electric Files
Summary and Problems

8—The Quadratic Function =

8-1 Zeros : 3
8-2 Axis of Symmetry and Turing Point
8-3 Plotting the Parabola

Summary and Problems for Chap 8

9—Trigonometry

9-1 Introduction to SIN(X), CAS(X), and TAN(X)

9-2 Right Triangles and ﬁrctfmgent
Summary and Problems

9-3 Law of Sines and Law of Cosines
Summary and Problems

9-4 Polar Coordinates
Summary and Problems

10—-Complex Numbers

10-1 Fundamental Operations
Summary and Problems

10-2 Polar Coordinates
Summary and Problems

10-3 Powers and Roots
Problems

o

—Pnl unnmin] e

3
11-1 Fundamental Operations
Summary and Problems

11-2 Integral ?’ems
Summary and Problems

73
73

briri

"

.78

84
89

.91

91
93

. 93

oy
f L

98

100

101

101
103
105
106
108
109
110
114
115
121

122
122
123

125
131

132

132

133
137

138

142
143
145

147

147
149
149
151
152
153

154

154
159
159
163

11-3 Real Zeros . :
Summary and P1 oblems

11-4 Complex Zeros e
Summary and Problems

Chapter 12—MAT Instructions in BASIC

12-1 Introduction to MAT Instructions
Problems : s e

12-2 Solving a Problem
Problems

12-3 Operations and SpeLml Matrices
Summary and Problems

12-4 Solving Simultaneous Linear Equatmns
Summary and Problems

12-5 Transpose of a Matrix

Problems

Chapter 13--Elementary Probability

13-1 Introduction

13-2 Enumeration
Summary and Pr oblems

13-3 Simple Probability
Summary and Problems

13-4 Random Simulation
Problems .

13-5 Binomial Trials
Problems

Appendix A--Storing Programs on Paper Tape

A-1 Introduction .

A-2 Punching Paper Tape Off-Line

A-3 Reading Paper Tape

A-4 Getting the Computer to Punch Paper Tape

Appendix B—Error Diagnosis

B-1 Introduction .

B-2 Errors that Prevent RUN

B-3 Errors that Terminate a RUN = .

B-4 Errors that Cause Unexpected or Incorrect Results
Summary

Appendix C—Special Formatting Functions

C-1 TAB(X) .
C-2 IMAGCE Statement

Appendix D—Summary of Flowchart Shapes

Appendix E—Summary of Statements in BASIC
Matrix Instructions
Functions
Files

Appendix F--Index of Programs in Text

Appendix G—Answers to Even-Numbered Problems

Index

163

168
168
175

- 176

176
179
180

. 183

185
188
190
193
194

s o198

197
197

197
203
- 204

206
206
209
210

. 214
215

215

215

216
216

218

218

218
291

o

222

224

225

225
227

228

229

230
231
232

235
240
263

Basic BASIC

An Introduction to Computer Programming in BASIC Language

CHAPTER 1

Introduction to BASIC

In working with a computer, you, the programmer, must communicate
with the computer. In order to do that you will have to use a language that
the computer will understand. There are many languages written for this pur-
pose. The language of this text is called BASIC. The actual physical com-
munication is rather complicated and we will ignore most of the mechanics
except for the apparatus at our end of things. The device we will be using is
called a remote terminal. It will have a specific name depending on the manu-
facturer. The remote terminal has a keyboard, which is the paurt we are most
concerned about.

1-1 PRINT

No matter how complicated a particular set of instructions is, you will have
to tell the computer to put the results into some form discernible to yourself.
Therefore, let us begin with a discussion of the PRINT statement. If you want
the computer to write the following statement “THIS IS A SHORT PRO-
GRAM,” you will type on the keyboard of the terminal as follows:

10 PRINT "THIS IS A SHORT PROGRAM."
20 END

The computer, on proper instruction, will do exactly what you have set out
to do.

The two lines 10 and 20 constitute a complete program. Several comments
are in order here.

1) Note that every line in a program must begin with a positive integer.

2) The statement that we want to write out is in quotes; this may be used
to good advantage, for example, for headings and labels.

3) In many time-share systems, every program must have as its highest
numbered line the END statement. In some systems, the END statement
is optional.

2 Basic BASIC

4) Note that all the letters are capitals. The terminal you may use or may
not be restricted in this way. Note also that the letter “O” has a slash
mark to distinguish it from the digit “0.” On some terminals the reverse
is true, the digit “0” has a slash and the letter “O” does not. On some
printers one is more nearly a circle than the other or one is nearly dia-
mond shaped. You can easily determine the method used by your equip-
ment by examining some sample output on your screen or “hard copy.”

5) It is conventional although not required to use intervals of 10 for the
numbers of adjacent lines in a program. This is because any modifica-
tion in the program must also have line numbers. So you can use the
in-hetween numbere for that purpose. Tt chould he comforting to know
at this point that the line numbers do not have to be typed in order.
No matter what order they are typed in, the computer will follow
numerical order in executing the program.

6) Each line of a program is called a program statement.

You probably think of the computer as something that more commonly
produces numerical results and you are partly correct. Suppose you wish to
multiply 23.4 by 91. One way of doing this on the computer would be to
write a program like this:

10 PRINT 23. 4%91
20 END

Then on proper instruction the computer will type out the following and stop.

2129. 4
DANE

Computers vary as to the message that gets printed here. Notice the absence
of quotes. In this case you have instructed the computer to perform an opera-
tion. Had you in fact wanted 23.4 ° 91 typed out, then you would change the
program. You might write the following:

10 PRINT "23.4%91=",23. 4291
20 END

This time the result will be as follows:
23.4%91= 2129. 4
DBNE

You have succeeded in instructing the computer not only to perform an opera-
tion, but to print out the result in easily understandable form, which is desir-
able throughout mathematics. Notice the use of the comma here. The comma
may be used to separate the different parts of a PRINT statement. Used in
this way, a comma is ealled a delimiter. Notice too, that there are eight spaces
between the Cﬁii.ﬂ?y s;ign and the nunmber. A wity Lo eliminate aill bul one of
them will be explained later. There we many fine points that we will discuss
as we progress, but for now we will take it in small quantities,

If we were limited to the PRINT and the END instructions, we would
quickly retuim to using pencil and paper or an ordinary desk calculator. With-

Introduction to BASIC 3

out some additional capability, the computer would soon disappear. This
brings us to the READ and DATA statements.

PRINT
Characters in quotes will be printed exactly as typed. Computed
results will be typed as decimal numbers or as integers.

1-2 READ-DATA
The READ statement says to look for DATA as in the following:

10 DATA 23.4,91:83,19,87,94, T6s5.98,876,918
20 READ A:-B

30 PRINT AxB

35 GaTa 20

40 END

The computer ignores the DATA statement until it finds a READ, then it
takes the first nummber in the first DATA statement and assigns that value to
the first variable in the READ statement. Then, if there is a comma and
another variable in READ as in our example, the computer assigns the second
number in the DATA line to it; were there a third variable, the computer
would continue until it ran out of variables. In our program, the first time
through, A = 23.4 and B = 91. The next line says PRINT the product. Having
printed the product the computer looks for the next instruction, which is
COT® 20. This is a new one that means exactly what it says. So the computer
will GOT® line 20 and execute that instruction again. At this point the com-
puter “knows” that it has already read and used the first two numbers in
the DATA line. So it goes to the third and fourth numbers and assigns them
to A and B in order and proceeds to print the product of 83 and 19, then
goes back and assigns the fifth and sixth numbers to A and B, and so on until
it runs out of numbers in the DATA line. There may be any number of DATA
lines in a given program; all you need to realize for the time being is that a
comma must be used to separate each discrete item of data and a comma
should not be placed after the last item in a particular DATA line. Also, be
careful not to use commas to designate thousands, millions, etc. Warning: You
may not put variables or operation symbols in a DATA line. Only numbers in
decimal form are allowed so far. Here is the computer’s response to the above
program:

2129. 4
1577
B178
454, 48
BOA4168.

AUT 2F DATA IN LINE 20

4 Buasic BASIC

Note the explicit message at the completion of the print-out. This will vary
from computer to computer,

In our examples so far, we have used only multiplication (°). The other
arithmetic operations that you may use are addition (4), subtraction (=),
division (/), and exponentiation (raising to a power). There are two symbols
in common use for exponentiation: one is an upwards arrow (1), and the other
is a double asterisk (°°). Symbols used to instruct the computer to perform
some operation are called operators. The symbols listed here are specifically
designated as the arithmetic operators. The numbers on which the operation
is to be performed are called operands. Contrary to convention in algebra, the
multiplication symbol must he precent. AR in algebra must he written A ° B
for the computer. The computer assigns the same priorities to arithmetic
operations as are assigned in algebra. If there are several operations of the
same priority to be performed on the same line, the computer does them from
left to right. Several sample programs will be given soon.

READ
The READ statement looks for numbers in a DATA statement.
READ X, Y, Z looks for numbers in groups of three.

DATA

The DATA statement supplies values for the variables designated
in the corresponding READ statement. Items of data must be sep-
arated by a comma. Numbers only are allowed.

1-3 SYSTEM COMMANDS

There are two kinds of instructions of which you should be aware. We have
already discussed an instruction given by a program that you have written. We
have not yet mentioned an equally important kind of instruction, the system
command. We must realize that the computer does nothing by itself. There-
fore, there must be what is called an executive program which will respond to
your wishes. You need not worry about the executive program; it is taken care
of by the people who maintain the computer.

The first system command required is referred to as the sign-on or log-on.
The exact form of this varies from computer to computer. So we really cannot
be specific here. It simply notifies the computer that you would like to use it.

Once you are signed on, the next most important command is RUN. After
you have typed vul your program, the compuler must have a way of knowing
that you want it to execute the program. So you must type RUN and then
touch the return key on the keyboard. Only then will it respond to the pro-
grammed instructions.

Possibly next in importance is the command SCR (SCRub or SCRatch) or

Introduction to BASIC 5

CLE (CLEar) followed by depressing the return key. (Which you use will
depend on the computer you are connected with.) Suppose you have run a
program and someone else would like to run his. The old program may be
erased by using the SCR command. So whenever you begin a new program
it might be wise to simply type SCR and touch the return key. The system
command must not be preceded by a number. There are several other com-
mands that we will take up as they seem appropriate.

RUN
Notifies the computer to execute the program instructions. Must
not have a number in front of it

SCR or CLE ~ — N &W

Notifies the computer that you are not going to use the current
program. The current program is erased from the working area of the
computer, Must not have a number in front of it.

1-4 LET

At this point you do have enough information to write quite a few
programs. However, another statement type that may be used to make life
easier is the LET statement. The LET statement may be used to assign any
number or any algebraic expression to any variable. Using a LET statement,
the last program would look like this:

10 DATA 23.4:91,83: 19,8794, 76, 5.98,876:,%18
20 READ A,B

30 LET C=AxB

40 PRINT C

50 GATa 20

60 END

RUN

2129.4
1577
8173
454. 48
804168.

@uUT 3F DATA IN LINE 20

We obtain the same results as before. In this particular program, we really
did not save anything. However, in any situation where we need to write the
value of A ° B several times or the expression is more involved, we will see
that a saving may result. There are many things that you could not do
without a LET capability.

/ 6 Basic BASIC

LET

May be used to assign explicit values to a variable as LET X = 4,56,
or may be used to assign algebraic expressions to a variable as LET
V=X*°F+ Y °G. Note: All variables on the right-hand side must
have been previously evaluated. On some computers LET is optional.
Such systems permit Z = 4.56, for example.

1-5 INPUT

The INPUT statement serves much the same purpose as the READ state-
ment in that it permits us to provide numbers for the computer to work with.
For example, 100 INPUT A will cause the computer to print a question mark
and stop at line 100. The question mark is a signal to whoever is operating the
terminal that he or she is to type the desired value for A on the keyboard and
press the carriage return key to resume the run of the program. Likewise, 100
INPUT A, B, C will call for three numbers separated by commas to be typed
at the keyboard. It is advisable to have the computer print a label so that the
operator can determine the nature of the numbers required. In the following
program, note that the semicolon at the end of line 100 enables us to type the
values for A and B on the same line as the printed label. The input numbers
15, 17 following the question mark were typed at the keyboard by the program
operator.

100 PRINT "INPUT TW@ NUMBERS:"™;

110 INPUT A.B
120 PRINT " THE NUMBERS ARE:™iA3B

130 PRINT ™ THEIR SUM IS:z™;A+B
140 PRINT "THEIR PREDUCT I5:"iA*B
150 END

RUN

INPUT TWE NUMBERS:?1353.17
THE HUMBERS ARE: 15 17
THEIR SuM IS: 32
THEIR PR@DUCT IS5: 255

DENE

INPUT
Causes the computer to request data from the keyboard.

If we want the computer to obtain a decimal value for a compound frac-
tion, there may be several programs that will do the job. Here we will have
to use our knowledge of the order of operations as determined in algebra.

Introduction to BASIC 7

Three programs follow that find a decimal value for

2/5 +3/7
3/4-1/3

10 LET N=2s/5+3/7
20 LET D=3/4-1/3
30 PRINT N/D

40 END

RUN

1.98857
DANE

10 LET F=(2/5+3/T)/¢374-1/3)
20 PRINT F

30 END

RUN

1.98857
DANE

10 PRINT (2/5+3/71)/C374=-1/3)
20 END
RUN

1-98B57
DANE

Parentheses serve as a powerful tool in grouping terms properly for the
desired results. Keep in mind that priorities are exactly as they are in algebra
and that if several operations of the same priority appear in the same line, they
are executed from left to right.

Carefully study the programs which follow to see how the placement of the

parentheses affects the results.

10 PRINT "“3/5/3/5="33/5/3/5

20 PRINT "3/(5/3/5)="313/(5/3/%)

30 PRINT "3/5/(3/5)2"13/5/(3/5)

40 PRINT "(3/5)/7(375)="31(3/5)/C¢3/5)
30 PRINT "(3/5/3)/5="1(3/5/3)/5

60 PRINT "(3/5)/3/5="3(3/5)/3/5

70 END

RUN

3/5/3/5= .04
3/(5/3/5)= 9.
3/5/¢3/5)= 1|
€3/5)/7€3/5)= |
(3/5/3)/5= .04
(3/5)/3/5= .04

DANE

10 PRINT "A="32t3+1+312+1
20 PRINT "B="352v(3+1)+312+1
30 PRINT "C="32t3+(1+3)12+1]
40 PRINT "D="32t3+1+3r(2+1)
50 PRINT "E="32¢(3+1+3)12+|
40 END

RUN

8 Basic BASIC

A= 19

B= 24

C= 25

D= 36

E= 16385
DANE

It is important to know the capacity of the computer you are working with.
Notice that according to the computer, (2/5 + 3/7)/(3/4 — 1/3) = 1.98857.
If we work that out longhand, the result would be 1.98857142. BASIC pro-
vides from 6 to 15 digits, if they are needed, depending on the computer, with
the last digit rounded off in decimal nwubers, i it is the capacity digit.

If the results require more than the digit capacity of the computer, the
computer prints in scientific notation as follows:

10 LET A=%8781.

20 LET Al1=B97é&

30 LET P=A%Al

40 PRINT As “#".ﬁ],":l:".P
50 END

RUN

BT % B376 = 8.86658E+08

DBNE

The E + 08 means “times ten to the eighth power” and the decimal number is
rounded off to the sixth digit. When the computer uses this notation, it is

called E-format. Again we get large spaces using the comma to delimit the
printed results. We will discuss this before we wind up chapter one.

A new item Al appears in the above program in line 20. There you will find
the statement LET A1 = 8976. The computer treats this as a new variable. In
BASIC you may use any letter of the alphabet and any letter of the alphabet
followed by a single digit as a variable. Some computers have additional
simple variables. Thus a large number of variables are available.

Probably the best way to learn how the computer handles scientific notation
is by experience. So, let us run a sample program to see what happens.

S PRINT *X"*Y'","@","P"»,"5"

10 DATA 1-31E+10:,2.13E+1151:16132E-05,2.83E+08
20 READ X»Y

26 LET Q=K7Y

40 LET PsX=%Y

S0 LET SsX+Y

60 PRINT KsY2Q:Ps35

65 GATe 20

70 END

RUN

Introduction to BASIC 9

X Y e] P 5
1.31000E+10 2.13000E+11 6. 15023E-02 2. 79030E+21 2.26100E+11

1.16132E-05 2.83000E+06 4. 10360E-12 32.8654 2.33000E+08

auUT a@F DATA IN LINE 20

Notice the use of Q for quotient, P for product, etc. This is a technique
that is useful not only on the computer, but throughout mathematics.

Suppose you wish to write a program to find the total cost of a purchase
in which there are different numbers of items at various prices, say 2 @ $.35,
3 @ $2.65, 11 @ $.25, 1 @ $9.49, and 35 @ $1.59. We could have many
more, but for a sample this should suffice. This program could of course be
written in several ways, but here is one possibility:

10 PRINT "ITEMS","UNIT PRICE":"COST".,"SUBTATAL"
20 DATA 25 «35: 3524655 11242535 1:F 0 495 355 1459

25 LET T=0

30 READ NsF

40 LET T=T+nN%FP

45 PRINT NasPsNEP, T

50 GaTa 30

70 EnMD

R LU

ITEMS UNIT PRICE CasT SUBTATAL
2 « 35 -7 o 7
3 2+ 65 T35 3« 65
11 25 2+ 73 11«4
1 D . 49 P 49 20.39
s 1. 59 55. 65 TEe 54

AUT 2F DATA [N LINE 30

The single figure we set out to obtain is in the lower right-hand corner. The
result is $76.54; however, the other information is bound to be useful in at
least some situations. Besides, even if we only print the right-hand column,
we do not yet know how to dispose of the first four figures in that column. If
you only want to print the right-hand column, then lines 10 and 45 may be
altered thus:

10 PRINT “SUBT@TAL”
45 PRINT T

and only that column will be printed. Notice that line 10 is executed only once
and line 45 is executed five times. The GOT@ statement in line 50 only
returns the computer back to line 30. So the computer only prints the headings
once and only lets T = 0 once.

Still, in the last program, the combination of lines 25 and 40 may seem
strange, but it will not as soon as you gain a little more insight into how the
computer works. Line 25 is said to initialize the value of T at 0, i.e., give it an
initial value of 0. When the computer executes the initializing statement, line

10 Basic BASIC

25 LET T = 0, it “says” that there is a location in the computer storage area
which this program will call T and that this program alsc requires that the
number zero be stored in that location for now. If we then say 26 LET T = 5,
then the computer will put the number 5 in that location designated as T and
zero will no longer be there. If we write a program that says 25 LET T = 0
followed by 26 LET T = T + 1, then the computer goes to the location where
it is storing the value for T, “sees” 0, adds 1 to it, and returns the result to the
location from which it just got 0, thereby replacing 0 (the old value) with 1
(the new value). So we see that in BASIC (as in other computer languages) =
does not mean “two names for the same thing.” It means, instead, thai the
number on the right is to be placed in a location whose name is specified on
the left. Thus we see that the equals sign as used here really specifies an opera-
tion for the computer to perform. So the equals sign is called an assignment
operator or a replacement operator, and the LET statement is called the
assignment statement or replacement statement.

Let us go through the program line by line. The lowest numbered line is a
PRINT statement. So, right off, the computer prints the headings. Then it
recognizes that the next statement is a DATA statement and ignores it. Line
25 assigns the value 0 to T. Then in line 30 the computer reads the first two
numbers in the DATA line. Line 40 says that the previous value of T is to be
taken out of storage and added to N times P. So, the first time through line
40, the value of T on the left will be 0 (from storage) plus the cost of two
items at $.35, or $.70, and the computer returns the value .70 to the location
in storage called T. Line 50 sends the computer back to read the next two
numbers in the DATA line and to add their product (7.95) to .70 to get 8.65.
It should be clear that we are printing the values of N, P, N times P, and T
each time we read two new numbers. This process continues until the com-
puter finds no more data. This causes the computer to terminate the RUN.,

1-7 COMMA AND SEMICOLON IN PRINT STATEMENTS

Let us look at one more capability. In two of the programs of this chapter,
the results were printed out with unnecessary great spaces. You may have
noticed that we did not have these spaces in the two programs where semi-
colons were used in the PRINT statements. We have two delimiters, i.e., we
have two signals that tell the computer how closely we want the results
printed. The 1ules are a little complicated, but in general, the semicolon
specifies closer spacing than the comma. The comma sets up zones across the
page. The number of characters in the zones does vary from computer to
computer, but 15 characters per zone is common. This zone width does
not change with the number of digits in the numbers being printed. The
semicolon sets up different sized zones depending on the number of digits
in the number and whether it is in scientific notation. Here is the pro-
gram from p. 8 again. First we run it. Then we insert a line which
replaces the comma print delimiters with semicolon delimiters. And we call
for another RUN,

Introduction to BASIC 11

10 LET A=98731.

200 LET Al=8976

30 LET P=A®xAl

40 PRINT As"*"3Als"="3P
50 END

RUN

98781. * 89 76 = BB 6658E+08

DBNE
4 PRINT A3“*';Al3"=";P
RUN

98781 . * B?76 = R-B&658E+08

9BT781. * B976 = H5.865658E+08

DANE

The output of this program is much more closely spaced. Notice that in the last
line of the printing there is a space between the ° and 8976. The compute:
leaves a space there for a 4+ sign but does not print it. If the number printed
were negative, then there would be a minus sign printed in that space. The
same holds true for the space between the = and 8.86658E + 08. Also notice
that in all program runs there is a space before the first number printed in any
line if the number is positive. However, if we write 10 PRINT “3” in a pro-
gram, then when we run the progiram, 3 will be printed in the very first
space. This is because the computer treats things in quotes differently from
the values of variables for printing purposes.

SUMMARY OF CHAP. 1

1) We now have the PRINT statement which puts results in readable form.
It may be used for titles, headings, and labels.

2) Everything in quotes will be printed just as you type it (except more
quotes).

3) Commas or semicolons may be used between the different items to be
printed to control spacing.

4) The READ statement is used to read data. Several variables may be
read with a single READ statement by separating them with commas, or they
may be read with different READ statements. Just be sure the data is in
proper order to match the READ variables.

5) The DATA statement supplies data for the READ statements. Discrete
items of data must be separated with commas.

6) The LET statement may be used to assign any value or any algebraic
expression to any variable.

7) The INPUT statement allows the operator to enter data from the key-
board in response to a question mark.

12 Basic BASIC

8) The COTO statement is used to alter the progress of the computer
during the execution ot a program.

9) The END statement may or may not be required. If required, it must
carry the highest line number in the program.

10) The system commands to date are RUN and SCR or CLE, System com-
mands must not be preceded by line numbers.

PROBLEMS FOR CHAP. 1°

1) Define the following items: BASIC, PRINT, END, READ-DATA, LET, RUN,
G@T&j, statement, system command, program, remote terminal, comma delimiter,
semicolon delimiter, scientific notation, initialize, and print zone.

2) What is the greatest number of variables permissible in a single BASIC pro-
gram thus far?

3) Which of the following are valid BASIC variables? A, XI, 1B, XA, YI12.

4) The statement was made in Chap. 1 that you cannot have the computer print
quotes by putting quotes inside quotes. Why not?

5) Write a program to add 2081, 682, 1161, and 72.03.

6) Write a program to add 1E6 and 1E — 3. Comment on the result.

7) Have the computer multiply 2E3 by 1IE — 1.

8) Have the computer print a decimal value for 24

9) Modify the purchase program on p. 9 to total the number of items.

10) Write a program that will print the sum of the first 10 counting numbers.
Put the numbers in as data.

11) Write a program that will print the product of the first 10 counting numbers.
v 12) Write a program that will multiply two binomials. In other words, for
(Ax + B)XCx + D), you will put in data in groups of four numbers (A, B, C, D), and
you want the computer to write out the three numbers that are coefficients in the
product.

v 13) Have the computer print products of fractions by putting the numerators
and denominators in as data and printing the numerator and denominator of the
product as two numbers.

J 14) Do the same for adding fractions as in problem 13).

15) Have the computer print all possible arrangements of three digits using each
once, Assign the digits in a DATA line and use semicolon spacing.

16) Write programs to print decimal values for the following:

(a) {7 g L
1/3 — 1/4
(b) 2/3 | 3/4
5/6 2/3
b R]
(c) 1/2 4 3/7 iT“'
233 —1 11/4
(d) (23,481 — 7008 N,
4.983% — 87.82 '

® Check marks (/) in front of problem numbers indicate the more difficult problems.

CHAPTER 2

Writing a Program

2-1 PLANNING

In Chap. 1 we looked at some programs and tried to analyze them, but
we did not really go into the development of the programs themselves. Pro-
grams do not just happen, they do not appear whole. They are planned and
developed with some considerable care. There are two important tools that we
will be using to help us write programs. One is a new BASIC statement type,
the REM statement. The other is flowcharting,

2-2 REM

XXX REM (REMark), where XXX is a line number in a BASIC program,
notifies the computer that what follows is to be ignored during the RUN of
the program. This means that you may write any message you like following
REM. None of what you type has any effect on the execution of the pro-
gram, but you may comment or remark upon the function of a particular
line or a group of lines or the entire program.

REM
Permits the programmer to remark or comment in the body of his
program.

EXAMPLE
118 REM THE NEXT THREE LINES PRINT THE FIRST SUM.

9 REM THIS PRGCRAM ADDS PAIRS @F NUMBERS.

2-3 FLOWCHARTING

Flowcharting, or block diagramming as it is sometimes called, is useful in
planning programs in any computer language or for that matter in planning
the solving of any problem, whether or not you are using a computer. We

13

14 Basic BASIC

introduce flowcharting by an example. Suppose we want to add the counting
numbers from 1 to 50 including 1 and 50. We will need two variables: one
for counting and the other to keep track of the sum. We want to start the
counting variable at 1 and the summing variable at 0. Then for every value
of the counting variable we want to add the counting variable to the old
value of the summing variable to get a new value of the summing variable.
Figure 2-1 represents a rough flowchart for such a process.

Figure 2-1 attempts to break the problem into its most fundamental steps.
By using a diagram of this kind, we are able to show the direction we must
follow to do the problem. We would like to have each step small enough for
the computer to handle with one BASIC statement. However, this will not
always be practical. In our example, though, it will be both practical and
reasonable to have each step be a BASIC statement. With that in mind we
redraw the diagram using statements more nearly like those in BASIC lan-
guage. At the same time we will introduce the more standard practice of
having different shapes for boxes that indicate different kinds of functions.
The shapes used for this example are listed in Fig. 2-2 and the new flow-
chart is Fig. 2-3(A).

This time we are very close to being able to write the program directly
from the flowchart. Of the statements in Fig. 2-3(A), the only one for which
we do not yet have a corresponding BASIC language statement is decision-
making. BASIC has a statement type that allows us to alter the path of the
computer through a program depending on whether an algebraic sentence is
true or false.

Start counting variable
Cat1

~

Start summing variable
SatD

Add summing variable
and counting variable

Have we done no Add 1Itr:-
all 507 counting
: variable
< VS _
Print sum

Fig. 2-1. Diagram for adding counting numbers from 1 to 50.

Writing a Program 15

Used for beginning and

Terminal :
ending of programs.

g

Indicates that a computation

Operation :
is to be performed.

Shows that a question is being asked
and a decision is being made.

Y

/ indicates that results are
PRINT to be printed and will also
READ be used to indicate the

READ statement.
@ Small circle shows that we are
going to transfer to another

statement in the program. N
will match another small circle

in the same chart.
Fig. 2-2. First five shapes
Arrowheads willindicate direction in all cases. used for flowcharting.
2-4 IF-THEN

XXX IF Z = Q THEN 230 means that if Z does equal Q, then the next
line to be executed is line number 230. If Z does not equal Q, then the com-
puter is directed to simply execute the line with the next number after XXX.

The equals sign appears in the IF-THEN statement. Used here the equals
sign is clearly not the assignment operator we defined earlier. In the IF~-THEN
statement the equals sign specifies a required relation (mathematical equality)
to exist between two numbers. Therefore, the equals sign is now designated as
a relational operator,

With the IF-THEN statement added to our growing list of BASIC state-
ments, we should be able to write the program directly from the Jowchart. See
Fig. 2-3(B). If we simply copy the program in Fig. 2-3(B) and run it, it looks
like the program below.

10 LET C=1

20 LET S5=0

30 LET S=5+C

40 IF C=50 THEW 70
50 LET C=C+1}

60 GAT3 3o

70 PRINT S
B0 END
RUN

1275

16 Basic BASIC

| Siari j

LETS=0 20 LETS=0

&

LETS=5+C d-@ 30 LETS=5+C

40 IF C =50 THEN 70

PRINT 5
END 50 LETC=C+1
60 GOTO 30
70 PRINTS
80 END
(A) (B}

Fig. 2-3. (A) Flowchart for adding counting numbers 1 to 50. (B) Pro-
gram written from flowchart.

BASIC allows us to give programs names. This requires a system com-
mand and will vary with the system tied in with vour terminal. Some systems
use the command NAME-, while others use NAME without the hyphen. After
the system command, you type the name to be used. Being able to name pro-
grams will be helpful to us here as we will be able to refer to programs by
name from now on.

We will give the last program a name, insert some REM statements to
explain the function of certain lines, and add a label to make the printed
result clearer. It is always recommended that you write programs with the
thought that someone else will be reading them and you may not be there to
do the explaining. You may even find that vou cannot understand your own

Writing a Program 17

SumMi

3 HKEM THE EXECUTIVE PRAIGRAM ALL@WS US T® GIVE AUR PHAGRAM A
NAME

S5 HREM™ THE RESTRICTIONS O NAMES VARY FRIM SYSTEM TA SYSTEM
B HEM ®kk*k

2 HEM WE AHE ADDING INTEGERS BNE THRBUGH 50 IN THIS PRAGRAM
10 LET C=1

20 LET 5=0

A0 LET 5=5+C

J8 HEM HAVE WE ADDED 50 (THE LAST MUMBER T@ BF ADDED) YET?
40 IF C=50 THEM 70

48 REM WE HAVEN'T ADDED 50 YET +#+ S@ WE ADD ANFE

50 LET C=C+1

60 GBT® 30

68 HEM WHEN C=50 wE PRINT S5 (THE SuUM) IN LINE 70

70 PRINT S

BO END

RUN

SuMil

1275

DONE

T0 PRINT "THE 5UM OF THE INTEGERS FROM @NE T@ FIFTY I5'; S
KN
SuUM1

THE 5UM @F THE INTEGERS FRé&M @NE T@ FIFTY IS 1275

DANE

programs several weeks after you write them, unless they have good REM
statements. See SUM1.

Let us do another program, similar to SUM1, where we will add all the
odd integers from 5 through 1191. This time instead of starting the counting
variable at 1, we will have to start it at 5. Since we are only interested in
odd numbers, we will have to add 2 instead of 1 each time we add the new
number to the summing variable. We will test N (the number added) each
time through the summing step to decide whether we have reached the
desired number, in this case 1191, First we draw the flowchart in F ig. 2-4.
This flowchart is very much like the one in Fig. 2-3(A). See SUM2. Again, of

s5umaz

10 LET N=5

20 LET S=0

28 HEM LINE 30 ADDS THE NEW NUMBER TO THE SUMMING VARIARLF «
30 LET 5=5+N

40 IF N=1191 THEN 70

48 REM ADD 2 IN LINE S0 F@R @DD NUMBERS

30 LET MN=N+2

&0 GATe 30

70 PRINT *5UM OF QDD NUMBERS FROM 5 TO 1191 15": s
BO END

RN

SumMz2

SUM @F @DD NUMBERS FROM S5 TO 1191 1S 355212,

DONE

18 Basic BASIC

1/—_ Start h\p

LETN=5
LET5=10

=L

LETS =5+ N @

yes

PRINT S

LET N=N+2 C END

Fig. 2-4. Flowchart for adding
odd integers from 5 to 1191

course, we use the IF-THEN statement, because we have to decide each time
we add 2 whether or not we have reached 1191,

The IF-THEN instruction is called a conditional transfer. Unless instructed
otherwise, the computer executes the statements of the program in numerical
order. The IF-THEN statement allows us to tell the computer to alter that
order of execution on the condition that an algebiaic sentence is true. If the
algebraic sentence is false, then the computer passes to the next line in
sequence. On the other hand, the GATQ statement is an unconditional transfer.

IF-THEN
XXX TF YYYYYY THEN ZZZ. If YYYYYY is true, transfer to line

ZZZ. Tf YYYYYY is false, pass to the next line after XXX.

Writing a Program 19

You may have more than one conditional transfer in the same place in a
program. This would be necessary if you wanted to test for several conditions.
Suppose in SUM2 you want to see the sum several times during the RUN.
Let us look at the sum for the first two, for N = 731, and the last two.

First we should draw a new flowchart. It is clear from the flowchart that we
have to decide each time we print the sum whether or not we have finished
or have to add 2 and take the sum again. See Fig. 2-5 and SUMS.

Note that we test N for three relations: 1) “less than 9,” 2) “equals 731,”
and 3) “greater than 1188.” We have already seen the equals sign used as a
relational operator. The two new relational operators “less than” (<) and
“greater than” (=) are introduced here.

LETN=5
LET5=10

-

LETS=S+N -‘—@

yes
no
yes PRINT /
N, S /
yes
yes
END

LETH=H+2!{—®

Fig. 2-5. Flowchart for changing program SUM2 so that
the sum is printed several times during the program.

20 Basic BASIC

SuUM3

S PRINT "5UM @F @DD"

6 PRINT "NUMBERS FRZM"

7 PRINT "“FIVE Ta@","1s5"

10 LET N=5

20 LET 5=0

28 REM LINE 30 ADDS THE NEW NUMBER T@ THE SUMMING VARLABLE.
30 LET 5=5+N

40 IF nN<9 THEN %0

50 IF N=731 THEN 20

60 IF N=11B8 THEN 90

£8 REM ApD 2 IN LINE 70 FAR ADD NUMBERS
70 LET N=N+2

BU weie S0

90 PRINT MNs35

100 IF N<1191 THEN 70

110 END

RUN

5uUm3

SuM @rfF e
NUMBERS FRAM

FIVE 14 IS
5 5
7 12
731 133952,
1189 354021,
1191 ass212.
DANE

Other relational operators are “less than or equal to” (< =), “greater than
or equal to” (> =), and “not equal to” (< >). Some time-sharing systems
require a set of alphabetic relational operators (such as EQ for =) instead of
the symbols listed above.

Some facts about flowcharts should be becoming clearer. Arrowheads along
connecting lines show the direction the computer is to follow. Rectangles and
parallelograms have only one exit arrow, but they may have more than one
entrance arrow. Diamonds have two exit arrows. Can diamonds have more
than one entrance arrow?

We said previously that we did not know how to eliminate some of the print-
ing in the SUBT@TAL column. Look at the purchase program on p. 9 again.
We had no way of preventing the computer from running out of data. Now we
can simply tack on some artificial data at the end of the DATA line, which
could not possibly be data in the problem, and use the conditional transfer to
test each time data is read to see if the computer has read the artificial data. If
the computer has read the artificial data, then we do not want to use it; but we
have a signal for the computer that it is time to print the total and terminate
the run without reading any more data. Artificial data used in this way is
called dummy data. If we are talking about prices and numbers of items, we
can use 0 or negative numbers for dummy data. Let us use O for the number
of items and 0 for the price and name the program T@TAL. See the flowchart
in Fig. 2-6.

Writing a Program 21

o)

-

LETT=0

4L

READ N, P

=T+N«P -"@

Fig. 2-6. Flowchart for using dummy data in program TOTAL.

T@ TAL

5 HEM THIS PHRAOGEAM IS5 A MADIFICATION 2F A PRAGRAM THAT WE DID
BEFARE.

10 PRINT "TaTAL CAST =5%";

20 DATA 25, +35 324655 1102252109+ 49,35, 14 59,00

21 HKREM THE DumMMY DATA IN THIS DATA LINE IS t.r

25 LET T=0

30 HEAD N.P

34 IF N=0 THEW 45

40 LET T=T+N*P

42 GIT&@ 30

43 PRINT T

70 END

A

T TAL

[BTAL C@ST =% T76.54

DanE

Look at lines 10 and 45 and then look at the printed result. These two
PRINT instructions are executed on the same printed line. This is accomplished
by using the semicolon at the end of the PRINT instruction in line 10. The
semicolon there tells the computer to wait after printing the $ until it executes
the next PRINT instruction in the program and to print that on the same line
right after the $. Again there is a single space for the plus sign which is not
printed. If the number were negative, there would be a minus sign there.

22 Basic BASIC

SUMMARY OF CHAP. 2

1) We are now able to remark about a program right in the program
itself by using REM. You should use REM statements so that whoever reads
your program can determine what they are imtended to do. It will also help
you to remember your own programs weeks or months later when you your-
self have forgotten what they will do.

2) Flowcharting will prove a very valuable process that we will use to

develop programs to solve problems.
M Tha ahilitw #02 havae tha n[\n'lnlﬂ'nr 'rrtnlr.n rlnr~'|"n"ir'|.1'l:; neinog THR_THRM and
U} Far e L uuiﬁ]\'\' LW A 4 ad r.lui‘.l‘.-l. AdbLddnhs LS LML N T PO S T 3 e o A Ly

ALl F b b R LLASLL oy - di Wy

act according to the ontcome of the decisions greatlv increases the complexity
of the problems we may solve by computer.

4) We now distinguish between conditional and unconditional transfer
statements.

5) Dummy data may be used to gain a greater control over what we can
ask the computer to do after it has read the lust item of data.

PROBLEMS FOR CHAP. 2

Unless instructed otherwise, draw a flowchart for every problem that calls for
a computer program to be written. Also use REM liberally.

1) Write a short description of each of the following terms: flowchart, dummy
data, IF-THEN, REM, conditional transfer, unconditional transfer.

2) In the program TOTAL, why did we use two 0's for dummy data? Why
couldn't we have used just one 0 since line 34 only tests to see if N == 0?

3) Bill took four tests. His marks were 100, 86, 71, and 92. What was his average
score?

4) Modify the program SUM2 to count the number of odd numbers from 5 to
1191 by first modifying the flowchart.

5) Three pairs of numbers follow in which the first number is the base and the
second number is the altitude of a triangle: 10, 21; 12.5, 8; 289, 114. Write a
program to print in good form the base, the altitude, and the area for the three
triangles.

6) Find the number of and the sum of all positive integers greater than 1000
and less than 2213 divisible by 11.

7) A man is paid 1¢ the first day on the job, 2¢ the second day, 4¢ the third day,
and so on, doubling each day on the joby for 30 days. You ure to calculate his wages
on the 30th day and his total for the 30 days

8) Write a program to print the integers from 1 to 25 paired with their reciprocals.

9) Write a program to print the integers from 75 to 100 paired with their
reciprocals.

10) Rewrite the program T@TAL to count the number of different items in the
order and print the total.

11) A customer put in an order for four books which retail at $5.95 and carry a
25% discount, three records at $3.98 with a 15% discount, and one record player for
$39.95 on which there is no discount. n addition, there is a 2% discount ailowed
on the total order for prompt payment. Write a program to compute the amount
of the order.

12) Write a program to balance a checkbook that includes the following transac-
tions: Sept. 2, deposit $9.00; Sept. 5, write a check for $3.24; Sept. 10, write a

Writing a Program 23

check for $1.98: and Sept. 17, write a check for $3.85. Assume that the balance was
$14 23 on Sept. 1. Have the computer print the balance after each transaction.

13) Write a program to find the amount of $100.00 deposited for one year in a
savings account at 4% per year compounded four times yearly. '
J 14) In the song “The 12 Days of Christmas,” gifts are bestowed upon the singer
in the following pattern: the first day she received a partridge in a pear tree; the
second day two turtle doves and a partridge in a pear tree; the third day three
french hens, two turtle doves, and a partridge in a pear tree. This continues for 12
days. On the 12th day she received 12 + 11 + -+~ + 9 4 1 gifts. How many gifts
were there all together?
J/ 15) For problem 14) have the computer print the number of gifts on each of the
12 days and the total up to that day.
J 16) George had test scores of 83, 91, 97, 100, and 89. Write a program to com-
pute his average. Have the computer count how many tests George took.
J 17) Write a program that will take more than onc sct of test scores, find the
average for cach set, and print the result before going back to read the next set of
scores.

r-‘\
il

HAPTER 3

Loops and Lists

3-1 INTRODUCTION TO MACHINE-MADE LOOPS

A computer loop may be defined as a self-repeating sequence of program
statements. This being true, loops are not new to us. Most of the programs
we wrote in Chap. 2 used a loop. In those programs we initialized a variable
with the idea that we would be adding a fixed number repeatedly and doing
something each time we added the fixed number. Let us draw a flowchart and

write a program to simply print the integers 1 through 6. See L@@P1 and
Fig. 3-1.

Start
LETX =1 10 LETX=1
PRINT X 20 PRINTX;

30 IFX=6THEN 99
LETX=X+7 | 40 LETX=X+1
50 GOTH 20

END

99 END

Fig. 3-1. Flowchart for LO@P1 for printing six integers.

Loops and Lists 25

LBar1

10 LET k=1

20 PRINT &3

30 1IF X=6 THEW 99
40 LET K=K+1

20 G@T1Te =20

29 END

RUN

Laarl

1 2 3 4 9 &
DBGNE

In LO@PL we first print the number and then test to see if we have printed
the last number in the sequence. If we have, then we stop. If we have not
printed the last number, then we add 1 and print the new number. The
results we obtain are entirely equivalent to the results we would get when we
test to see if the number we are about to print is too great before we print it.

If it is not too great, then we print it. If it is too great, then we stop. Consider
the flowchart of Fig. 3-2 and LOGP2.

Start

LET X =1

PRINT X

-

LETX=X+1

Fig. 3-2. Flowchart for LO@P2 for testing X before it is printed.

Laapz

10 LET XK=1

20 IF Xx=6&6 THEN 29
30 PRINT XA:

40 LET X=xK+1

50 GBT@ 20

9% END

RUN

LeppPz

1 2 3 4 3 &
DENE

26 Basic BASIC

FAR-NEXT

Loops are used so routinely in programming that BASIC provides a
machine-made loop. Program L@@P3 is the machine equivalent of our pro-
gram LOOP2,

Notice that the two statements 10 FOR X = 1 T@ 6 and 50 NEXT X in
LO@P3 do the work of the four statements 10, 20, 40, and 50 in L@OP2.
FOR X = 1 T@® 6 indicates doing everything between this statement and
NEXT X, beginning with X = 1 and ending with X = 6. NEXT X tells the
computer to add 1 to the old value of X and go to the beginning of the loop
again. When X = 6. LO®P3 prints 6. After it prints 6. line 50 savs NEXT X.
This means, add 1 and go to the beginning of the loop. At this point in the
RUN the value of X is 7, not 6 as you might think. Since 7 is greater than 6,
the FOR-NEXT combination instructs the computer to execute the next
instruction after NEXT X, which in program LO@P3 is END.

LaapP3

10 FOR K=1 T4 6
30 PRINT X3

S0 NEXKT X

99 END

RUN

LBaP3

1 2 3 4 5 &
DENE

A machine loop does not have to begin with 1. It may begin wherever you
require. The variable that is incremented in the machine loop may be treated
in the same way as other variables in the program. However, you are warned
against changing the value of that variable. LO@P3-+, which is a modification
of LOGP3, prints the values of X, 2 * X, X — 10, X °° 3, and X/(—3).

LBAP3+
5 PrRINT "X 2% X X-10 X3 K/A(=-3)"

10 F@R X=1 T8 &
30 PRIMT X323 X-10:Xt33X/C=-2)

50 NEXT X

99 END

RUN

LBAP3+

A 2% X XK=10 Kt3 KAC(=3)
1 2 -9 1 -« 333333
2 4 -8 8 -« 6666567
3 -] -7 27 =1

4 8 -6 64 -1.33333
= 10 =5 125 ~-1.66667
& 12 =4 216 -2

DAaNE

Notice lines 80, 100, 150, 220, 240, and 310 in program LUPDEM. They
are all of the form XXX PRINT. This statement is sometimes called the
blank PRINT. It has the eftect of directing the computer to turn up a new

Loops and Lists 27

line of paper at the terminal. In some cases, XXX PRINT serves to begin a

line; in others, XXX PRINT results in a space between lines of printed

new
output.
LUPDEM
10 REM ##THIS PRAGRAM 15 INTENDED T@ DEMONSTRATE S@ME OF
20 REM #xTHE CAPABILITIES @F THE FAR-NEXT STATEMENT PAIR
30 REM
40 PRINT "50 FOR X=14 T0 20 PRODUCES THE FALLAWING VALUES FarR X"
50 FOR X=14 T@ 20
60 PRINT X3
70 NEXT X
80 PRINT
90 REM BASIC ALLOWS US T@ INCREMENT A LO@P BY VALUES @THER THAN @NE
100 PRINT
110 PRINT "120 FOR X=1 T@ 19 STEP 2 PR@DUCES:"™
120 F@R X=1 T® 19 STEP 2
130 PRINT X3
140 NEKT X
150 PRINT
160 REM THE STEP NEED N@T INCREASE THE VALUE OF X
170 PRINT
180 PRINT "190 FOR X=345 T® 282 STEP -9 GIVES:"™
120 FOR X=345 T@ 282 STEP -9
200 PRINT X3
210 NEXT X
220 PRINT
230 REM DECIMALS ARE ALLOWED IN BASIC
240 PRINT
250 PRINT *"260 F@R X=91.5 T@ 3 STEP -15.7 YIELDS:"™
260 F@R X=91.5 T@ 3 STEP -15.7
270 PRINT X3
280 NEXT X
300 REM VARIABLES MAY BE USED T@ SET UP A MACHINE L@@P IN BASIC
310 PRINT
320 PRINT "330 LET A=5, 340 LET B=45, 350 LET C=6 AND"
325 PRINT "360 FOR V=A T@ B STEP C GIVES THESE RESW.TSs™
330 LET A=5
340 LET B=45
350 LET C=6
J60 F@R V=A T@ B STEP C
370 PRINT Vi
380 NEXT Vv
390 END
RUN
LUPDEM
50 FOR X=14 T@ 20 PRADUCES THE FOLLOWING VALUES F@R X
14 15 16 17 I8 19 20
120 F@R X=1 T@ 19 STEP 2 PRODUCES)
1 3 3 T 9 11 13 15 17 19
190 FOR X=345 T 282 STEP -9 GIVES!
345 36 3217 318 309 300 291 282
260 F@R X=91.5 T@ 3 STEP -15.7 YIELDSI
9"5 75!3 6001 44-4 EE-? I.']-
330 LET A=5, 340 LET B=45, 350 LET C=6 AND
360 F@R V=A T@ B STEP C GIVES THESE RESULTSI
5 11 17 23 29 35 41

DENE

28 Basic BASIC

[|
FOR-NEXT
F@R X = A T@ B STEP C sets up a machine loop with first num-
ber A, last number B, and increment C. See LUPDEM for detail.

Now we will look again at some of the programs in Chap. 2 and do them
with a F@R-NEXT loop. Let us redo program SUM3 and call it SUM3+.
Of course as we should expect, the printed results for SUM3+ are identical
with those of SUMB3. See the fiowchart in Fig. 3-3.

Start]

PRINT
headings

=8

LETS=0

-~

FORN=5TQ
1191 STEP 2

<+

LETS=5+N

Fig. 3-3. Flowchart for using machine loop for
program SUM3 from Chap. 2.

Is
N < 1188?

yes

Loops and Lists 29

SUM a3+

4 REM THIS PROGRAM IS5 A MODIFICATION OF SUM3 FREM CHAPTER Twa
S PRINT "5uUM OF aDp"

6 PRINT "NUMBERS FROM™

7 PRINT "FIVE T@","I5"

10 LET 5=0

20 FBOR N=5 T@ 1191 S5TEP 2

28 REM LINE 30 ADDS THE NEW NUMBER T2 THE SUMMING VARIABLE.
30 LET 5=S5+N

40 IF N<9 THEN 90

290 IF N=T731 THEN 90

60 IF N<1188 THEN 100

90 PRINT NasS

100 NEXT N

110 END
RUN
SUM3+
S5ud @F abDD
NUMBERS FROM
FIVE TO 15
5 5
7 12
731 133952,
1189 354021.
i191 3s55212.
DONE

F@R-NEXT may be used to count the number of times the computer does
a particular operation or a set of operations. For instance, we can use a
machine loop to count the number of different items in program T@TAL of
Chap. 2 and at the same time instruct the computer to read data repeatedly.
We did not know how many items of data there were, but that does not
matter. We can simply pick a number that we are sure is greater than the
number of times we want the computer to read data. There could not possibly
be more than say 50 items.

So in TOTAL+ we can use FOR X = 1 T@ 50. Then we can test for the
dummy data each time data is read, using the conditional transfer to get the
data out of the loop and to print the results, when N is 0.

TaTAL+

S REM THIS PROGRAM IS A MBDIFICATI@N @F A PROGRAM THAT WE DID
BEF@RE

20 DATA 2,.3553,2.655 1124255159449, 35,1.59,0,0

21 REM THE DuMMY CATA IN THIS DATA LINE IS ft,71

25 LET T=0

27 FO@R X=1 T2 50

30 READ NsP

34 IF N=0 THEN 45

40 LET T=T+i*P

42 NEXKT X

45 PRINT "TOTAL C@ST = $"3; T3"THERE ARE';X-1;"DIFFERENT ITEMS"

T0 END

RUN

TOTAL +

T@TAL COST = 5 76.54 THERE ARE 5 DIFFERENT ITEMS

DANE

30 Basic BASIC

Look carefully at line 45 in TOTAL+-. This line gives the printing instruc-
tions. The counting loop calls for X to go from 1 to 50, but line 45 says print
X — 1. Since X counts the number of times the READ statement is executed,

1 is added even when the dummy data is read; but we do not want to count
the dummy data. So we have to tell the computer to subtract 1. An alterna-
tive method would be to use FOR X = 0 T@ 50. Then we could call for

printing the value of X,

The same loop may be used several times in the same program. Every time
the computer executes the FOR statement, the limits on the incremented
variable are reestablishd., Suppose in a group of five people each person took
six tests. And we want to read their scores and find the average for each
person. We can set up a loop FOR X = 1 T@ 6 and use this repeatedly until
the computer runs out of data. The flowchart appears in Fig. 3-4 and we call
the program AVG. Note that the flowchart of Fig. 3-4 contains no END box.
This is because the computer runs out of data in the READ statement and
termination is automatic. Notice in the program that each score is printed as it
is read. This is one way of keeping track of whose average is being printed on
each line in the printed results. Also note that each line of data is devoted to
the scores for one person. This makes it easy to organize the typing of data.

Set total
ati

£

READ loop
READ S
FORX=1TP6 i
PRINT
5

Add scores
NEXT X =] erroT4s

[T
/

average

Fig. 3-4. Flowchart for averaging test
scores for several people.

Loops and Lists 31

AVG

10 LET T=0

20 FBR X=1 T8 &

30 READ 5

35 PRINT 53

40 LET T=T+S5

50 NEXT X

60 PRINT "AVG='"3T/6

68 REM WE SEND THE COMPUTER BACK T@ LINE 10 T@ SET T AT ZER@
AGAIN

70 GA@T8 10

B0 DATA 65,68, 713.85,B2:,87

82 DATA 74,87-90,88.87,88

B4 DATA BB»97,91,92,90,89

86 DATA 91,83, 78,89, 79:87

88 DATA 65, T6: 6T 50 605 66

100 END
RUN
AVG
65 68 T3 BS B2 87 AVG= T6. 66617
T4 B7 0 B8 87 BB AVG= B5. 6667
BB 217 91 92 30 g9 AVG= 91.1667
g1 B3 78 B9 79 87 AVG= B4.5
65 16 &7 50 60 66 AVG= 64

BUT @F DATA IN LINE 30

SUMMARY

We see that it is not necessary for us to construct repetitive operations.
This may be done automatically with the FOR-NEXT statement pair in BASIC,

PROBLEMS FOR SEC. 3-1

Draw flowcharts for all programs unless instructed otherwise.

1) Add the counting numbers from 1 to 50 using FGR-NEXT.

2} Do problem 6) in Chap. 2 using a machine loop.

3) Do problem 7) in Chap. 2 with FOR-NEXT.

4) Do problem 8) in Chap. 2 using a machine loop.

5) Do problem 9) in Chap. 2 with FOR-NEXT.

6) Find the sum of the reciprocals of all the integers from 1 to 1000.

7) Find the sum of the reciprocals of the integers from 900 to 1000, Comparc
this number with the result of problem 6).

8) Do problem 13) in Chap. 2 using a machine loop.

9) Find the sum of the squares of the reciprocals of the integers from 1 to 1000.

10) If you were given $1.00 today, $2.00 tomorrow, $3.00 the next day, and so
on for 12 days, how many dollars would you have been given? Suppose this went on
for 30 days. Then how much? Compare this with problem 3).

3-2 MORE ON LOOPS

In program AVG in Sec. 3-1, we went through the 1read and sum loop five
times, once for each person’s test data. When we have the computer do the
same set of opeiations five times, we are actually using a loop. So let us
rewrite AVG with a loop FOR P = 1 T® 5 and call it AVGCNG.

32 Basic BASIC

AVGCNG

S F@R P=1 T@ 5
10 LET T=0

20 FOR X=1 TO &
30 READ 3

35 PRINT 353

40 LET T=T+S

50 NEXT X
60 PRINT "AVG="3T/é
70 NEXT P

BO DATA 65,68, T3:85:82,87
82 DATA T74.87-90-BR.-B7-88
84 DATA BBsFTsFisF2,50s89
B&6 DATA 91,83, T8:89, 79,87
BE DATA 65, T6: 6T7:50, 60, 66

100 END

RN

AVGCNG
63 68 73 B5 82 B7 AVG= Té. 6667
T4 87 90 88 87 88 AVG= B5. 6667
88 7 71 92 90 89 AVG= 91.1667
21 83 18 B89 79 87 AVG= 84.5
65 76 67 50 60 66 AVG= 64

DaNE

Notice that the X loop is entirely within the P loop. Loops written in this
way are called nested loops. They occur often in programming. Loops may be
nested to almost any number you may require, but the loops must be com-
pleted from within. The F@R statements and the NEXT statements must be
paired. Legal and nonlegal combinations are shown below.

Legal Illegal

FBR A=1 T2 8 FOR A=1 T0 8
FOR B=2 T3 7 FOR B=2 T3 7
FOR C=2.3 T8 6.1 FBR C=2.3 T@ 6.1
NEXT C NEXT A

FBR D=A TO B NEXT C

NEXT D FBR D=A TG B
NEXT B NEXT D

NEXT & NEXT B

Suppose we want to calculate compound interest on $2000 at 4% com-
pounded quarterly for nine years. When you take your savings account book
to the bank after the first of the year, it calculates the interest four times at
1% each time. In nine years you take the book to the bank nine times. This is
an ideal example for nested loops. One loop goes from 1 to 9, with a loop
inside going from 1 to 4. This provides a good computer model for the actual
problem. As the program is written, it is a simple matter to have the principal
printed at the end of each year. A line may be inserted between 50 and 60
to print the amouni alter each year. The program could also have been written
using FOR X = .25 T@ 9 STEP .25, or even FOR X = 1971.25 T@ 1980
STEP .25. If you want to be able to do several problems at several interest
rates, then substitute a variable, which may be assigned as data, for .01 in
line 40. See CMPINT and Fig. 3-5.

Loops and Lists

LET P = 2000 —’| F{afggﬂ —} F®${§:1

—

Compute
interest

-

Add
interest 1o
principal

PRINT NEXT Y +— NEXT Q

amount

o~

(e)

Fig. 3-5. Flowchart for finding the compound amount of $2000 after

nine years compounded quarterly.

CMPINT

B REM S5TART THE PRINCIFAL P AT $2000

10 LET P=2000

1B REM G@ F@R 9 YEARS

20 FOR Y=1 TO 9

28 REM GO@ FOUR QUARTERS EACH YEAR

30 FOR B=1 T0 4

38 HEM COMFPUTE THE INTEREST F@R THIS OQUARTER

40 LET I=.01%P

48 REM ADD THE INTEREST T@ THE PRINCIPAL

50 LET P=P+I

52 HEM #%% WE CCULD HAVE USED LET P=F+.01%P HERE
60 WNEAT Q

62 HEM AFTER FOUr QUARTEKS THE C3MPUTER GFTS TO NEaAT Y
70 NEXT ¥

80 PRINT "AFTER 9 YEARS THE AMOUNT IS $": P

90 END

RUN

CMEINT

AFTER 9 YEARS THE AMOUNT 15 & 2B61.54

DBNE

33

We may want to have the limits of one loop determined by the variable in
another loop. For instance, we can print a triangle of numbers in which each
row prints all of the counting numbers up to and including the row number.

34 Basic BASIC

We need one loop for rows and another for columns, We want the number of
columns to go from 1 to the row number. This is accomplished by program
TRAGL. Now you can do problem 14) in Chap. 2 very easily. (Of course you
could do the problem before, but it took a longer program.)

TRAG.

10 FOR R=1 18 10
20 FOBR C=1 T@ R
30 PRINT C3

40 NEXT C
S0 FPRINT
60 NEXT R
70 END
RUN
TRAGL
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 S 6 7
1 2 3 4 s 6 7 8
1 2 3 4 S 6 7 8 9
1 2 3 4 5 3 7 8 9 10
DBNE
SUMMARY

Loops may be nested inside other loops as long as we see to it that opera-
tions are done from within, much the same as we deal with sets of parentheses
within other sets of parentheses in algebraic expressions. There may be as many
loops within other loops as the problem may require up to a point. The limits
of one loop may be set by the variables of other loops. Caution is urged
against inadvertently changing the loop variable within the loop, although we
may use its value for any purpose.

PROBLEMS FOR SEC. 3-2

1) In TRAGL we printed from 1 to the row number. Write a program to print
from the row number to 10 for ten rows.

2) Print the multiplication table up to 12 x 12,

3) Print the addition table up to 12 + 12.

4) Find the compound interest on $1000 at 5% compounded quarterly for 10
years. Print the amount after each year with the year number.

5) In problem 4), have the computer print the interest cumulatively each year.

6) Print a table showing compound interests on $1000 for one, two, three, and
four years at 4%, 4%%, 5%, and 5%% compounded quarterly. Print year 1 through 4 at
the top, and put the interest rate in the first column of cach row. Put the rate in a
loop FOR R = 4 TO 5.5 STEP .5.

Loops and Lists 35

7) Redo problem 14) in Chap. 2 using nested loops.
v 8) Write a program to read 10 numbers from data, find the largest number, print
it and the position it occupied in the data line. This requires only one loop, but you
will have to read the first number directly from data outside the loop and then
have the loop begin with 2 to read the rest of the data. (This is essentially a problem
of storing values.)
v 9) Write a program to print all sets of three integers less than 20 so that they
can be the sides of a right triangle. Print no duplications, i.e., if you have the
computer print 3, 4, 5, do not print 4, 3, 5.

10) Write a program to print the integers 1 through 50 in order in 5 rows of 10
columns each.

11) Write a program to print the integers 1 through 50 in order in 10 rows of
5 columns each.
v/ 12) Print a table of the squares of positive integers 1 through 29. Label the
columns O through 9 and the rows 0, 10, and 20. Make the entry in the table be
the square of the sum of the row and column labels.

13) Have the computer print the product and the sum of all possible different
pairs of integers from 15 to 20.

3-3 INTRODUCTION TO LISTS

Recall that in Chap. 1 it was stated that when a program specifies a vari-
able, the computer sets up a location with the variable as its name. This
provides a means for the computer to store numbers for later use. You are
about to meet a very powerful extension of that concept, the computer list. A
computer list sets up not a single location for a variable, but many locations
for a variable. If we use the computer for a list of say four items (we may
have many more) and choose to call it L, the different locations of the list
will be L[1], L[2], L[3], and L[4]. If we want the list to contain the numbers
4, 9, —92, and 8, this could be accomplished by saying LET L[1] = 4, LET
L[2] = 9, LET L[3] = —92, and LET L[4] = 8. The numbers in brackets
may be thought of as subscripts and they designate at which location of the L
list the number is being stored. However, the LET statement with explicit
subscripts is not really any better than assigning a different variable for each
number. So values are usually assigned in a loop with the subscript being the
variable in the loop. In the demonstration program LIST1 we are letting S
go from 1 to 4 and reading L[S] from data. There may be several lists in the
same program. Any letter of the alphabet may be used to designate a list.
At this point we are limited to 10 or 11 items in a list, depending on the
computer. If we have 10, they are numbered 1 through 10. Some computers
start at 0.

As you can see from the RUN of LISTI1, we may use any or all of the

numbers in a list. We can print them forwards or backwmds. We can re-
arrange them at will. We may look at the numbers in any identifiable manner.
Lists are incredibly useful when you learn to handle them.

Let us use lists and loops to write all possible combinations of four digits
in one list taken in pairs with four digits in another list. First we draw a
flowchart as in Fig. 3-6. We call the program PAIRS.

36 Basic BASIC

LISTI

8 REM WE ARE READING F@UR ITEMS BF DATA WITH A LOOGP

10 FOR 5=1 To 4

20 READ LLS)

30 NEXT S

38 PRINT "WE CAN PRINT THE ITEMS @F THE LIST EXPLICITLY™

40 PRINT "™LC1) LC23 LCLC31 LLC4a)*™

50 PRINT LLL1ISLC2I5LC3IILE 4]

60 PRINT

70 PRINT *"WE CAN ALSO USE A LOBP. THE LBNGER THE LIST THE
BETTER"

B0 PRINT "BEING ABLE T@ USE A LGP IS3"

28 FOR %=1 1¢ 4

100 PRINT LLEX]s

i20 NEAT A

130 PRINT

135 PRINT

140 PRINT "WE CAN @GPERATE 0N THE MNUMBERS IN THE LIST"™

145 PRINT ™ B LLB] B=L[(B1"™

150 FOR B=1 T@ 4

155 PRINT BsLL(Bl3B=LIB]

160 NEKT B

170 PRINT

IB0 PRINT "WE CAN PRINT THE LIST BACKWARDS WITH F@R X=4 T@ 1
STEP =1

190 FOR X=4 T8 1 STEP =1

200 PRINT LLXK}s

210 NEXT X

220 PRINT

225 PRINT

230 PRINT "WE CAM RELGCATE I1TEMS IN THE LIST™

240 PRINT "250 LET Z=LL{11, 260 LET LL1)=LL2]) AND 270 LET
Lcai=z"

245 PRINT "GIVE THE FOLLOWING RESULT™

250 LET Z=LL(1]

252 REM 2*HERE WE ARE STORING THE VALUE OF LC1) IN Z

260 LET LL11=LLC2]

262 REM WE HAVE PUT THE VALUE @F LL2]1 INT® LL1]

270 LET LC2]1=Z

272 REM HERE THE @LD VALUE @F LC1] IS PUT INT® LL[Z2] FROM Z

260 PRINT "LL11 ="3LL1)

290 PRINT "L(2]) ="3LL2]

300 PRINT "LOOK CAREFULLY AT THE @RIGINAL LIST™

310 PRINT "WE HAVE EXCHANGED ITEMS @GNE AND Twa"™

320 PRINT

330 PRINT “WE CAN PUSH EVERY NUMBER UP FOUR LOBCATIOGNS IN THE
LIST™

340 F@R P=1 TG 4

350 LET LLP+al)=LILP]

360 NEXT P

370 F@R N=1 T2 8

380 PRINT LINI]E

390 NEXT N

500 DATA 4:9:-92:8

999 END

RUM

LISTI

WE CAN PRINT THE ITEMS @F THE LIST EXPLICITLY

1] LL23 LI31 LL4)

4 9 -g2 8

Loops and Lists

WE CAN ALSB USE A LO@P. THE LONGER THE LIST THE BETTER
BEING ABLE T@ USE A L@@P IS
4 9 -92 8

WE CAN OPERATE 8N THE NUMBERS IN THE LIST
B LIB} BaLIB)

1 4 4

2 ? 18
3 -32 =276
4 B 32

WE CAN PRINT THE LIST BACKWARDS WITH FOR X=4 TO@ 1 STEP -1
8 ~-92 9 4

WE CAN RELOCATE ITEMS IN THE LIST

250 LET Z=LC1)s 260 LET LL1]=LL2) AND 270 LET LIZ2]=L
GIVE THE F@LL@WING RESWT

LL11 = 9

LLE2] = 4

LA@K CAREFULLY AT THE @RIGINAL LIST

WE HAVE EXCHANGED ITEMS @NE AND Twd

WE CAN PUSH EVERY NUMBER UP FBUR L@CATI@NS IN THE LIST

9 4 -92 8 9 4 -92 8
DBNE
READ A list
and
B list

=
FORK = FORL =1

PRINT
A[K]; BIL],

NEXT K 4— NEXT L &
-+
(END_)

Fig. 3-6. Flowchart for program PAIRS for printing all combinations from
two four-item lists.

37

38 Basic BASIC

PAIRS

10 REM 20 T@ 40 READ THE A LIST

20 FOR I=1 T@ 4

30 READ ALIL]

40 NEXT I

45 REM 50 TB 65 READ THE B LIST

50 F@R J=1 T2 4

&0 READ BLJ]

65 NEXT J

67 REM HERE IS AN@THER NESTED LGP
0 F@R K=1 TO 4

80 F@R L=1 T8 4

0 FPRINT ALRIFBILI»

91 REM =% N@TICE THE USE @F THE SEMIC2LEN AND THE COMMA
i0D NEAKT L

110 PRINT

120 MNEXT K

500 DATA 123,5:,7

210 DATA 253,6:,9

999 END
RUN
PAIRS
1 2 I 3 ! 6 1 9
3 2 3 3 3 6 3 9
5 2 5 3 5 6 5 9
7 2 7 3 7 6 7 9
DONE
SUMMARY

The computer list has been introduced. A list is like a subscripted variable
in that it takes on different values according to the subscript. Each of the
numbers in a list is a variable unto itself. It may be handled in the same way
that any of our previous variables may be handled. The numbers in a list may
be rearranged. In order to exchange two numbers in a list, we first have to
store one of them in another variable.

PROBLEMS FOR SEC. 3-3

1) Using one READ statement in a loop, prepare a nine-element list using the
following numbers: 6, —89, 200, 31, 999, —999, 0, 1, and 18. Print out the list
across the page first in the order given, then in reverse order.

2) Fill a 10-element list with the squares of the subscripts. Print the element
number and the listed value in order in two columns down the page.

3) Prepare a 10-element list using the following numbers: 17, 18, 281, —722, 0,
—5, —16, 11, —1, and 10. Find the largest number in the list and its location. Print
them. Then exchange the largest number with the first element in the list and print
the new list with a loop.

4) Prepare one list with the numbers 6, 4, 11, 51, and 17 and another with 51,
12, 11, and 16. Now print all possible pairs using one number from each list.

5) Repeat problem 4), without printing a pair if the numbers are the same.

6) Redo program T@TAL in Chap. 2 using an N list for numbers of items and
a P list for prices. Instead of N ® P use N[I] ® P[1].

Loops and Lists 39

7) Prepare one list with the numbers 6, 11, 15, 17, 26, and 83 and another
with 15, 19, 27, 83, and 91. Have the computer form a new list that contains only
those numbers that are in both lists.

8) Using the two lists given in problem 7), create a new list consisting of all
numbers that appear in either list. If the number appears in both lists, enter it only
once in the new list.

9) LET F[1] = 1 and LET F[2] = 1, then fill the next eight positions in F so that
every entry is the sum of the previous two entries. Print the complete list. You have
Legun to form the sequence known as the Fibonacei numbers.

10} Form a 10-item list consisting of the first 10 positive odd integers in order.
Form a second list so that each entry contains the sum of all the numbers in the
first list up to and including the location number for the second list.

11) Prepare one list containing 6, 1, 3, 7, 2, and 9 and another containing 8, 2,
3,9, 7, and 4. Form a third list containing the sums of the corresponding elements,
i.e., A[I] = F[I] + S[I1.

12) Do problem 11), but enter the products in the third list.

v 13) Fill a four-element list with 9, 60, 700, and 3000. Fill a three-element list
with 7, 30, and 200. Sum up the products of all possible pairs of numbers, one
from each list.

Start)

READ
list

PRINT -
_ Forj=1+1
list FPORI =1T@9 —" T® 10

Is

yes
LI} < = L{J]

Exchange
L[, LDJ]

<
/ PRINT NEXT | f—— NExT) f—

list

END Fig. 3-7. Flowchart for arranging a 10-item list in
numerical order

40 Basic BASIC

3-4 MORE ON LISTS

We will now discuss the arrangement of a list in numerical order. If we
look at every pair of numbers in a list of numbers and they are all in numerical
order, then we are assured that the entire list is in order. Thus, we must
instruct the computer to look at all the pairs and determine whether or not
they are in order. If the pair is in numerical order, then we want the com-
puter to look at the next pair. If it is not, then we want the computer to
exchange the two numbers. We can accomplish this in the same manner as
was done in program LISTL. In other words, we store one of the numbers in
a new variable. Then we put the second variable’s value into the first variable
and the original value of the first variable into the second variable from the
storage variable. The three statements look like this:

XXX LETS=L[]
YYY LET L{]=L[J]
777 LETL{]]=S

ARANGE

10 REM WE ARE READING THE LIST FR@M DATA

20 FOR X=1 12 10

30 READ LLX]

40 NEXKT X

S0 PRINT "HERE IS THE LIST IN ORIGINAL @RDER"™
60 FBR Y=1 T@ 10

70 PRINT LLY)s

B0 NEXT Y

30 PRINT

100 REM NOW WE TEST PAIRS BF NUMBERS T@ SEE IF THEY ARE IN
BRDER

110 F@R 1I=1 T@ 9

118 REM WHY DBN'T WE SAY FOR I=1 T@ 10?2777

120 F@R J=I+1 10 10

130 IF LL1] <= L{J] THEN 300

140 LET S=LL11

150 LET LEIJ=LLCJ]

160 LET LLJI1=5

i70 REW WE HAVE REVERSED TW@ ELEMENTS @F THE LIST

IB0 REM #=%=%*+ SEE PROGRAM LISTiI #&%%

300 NEXT J

400 NEXT I

4D5 PRINT "AND HERE IS THE LIST IN @®RDER FR@M SMALLEST T@
GREATEST™

410 FOR Y=1 T@ 10

420 PRINT LLY1:

430 NEXT Y

500 DATA 65,-19,28,20,-32, T4, 19,28, 23, 43

999 END
RUN
ARANGE
HERE IS THE LIST IN DRIGINAL VURUEK

-] -19 28 20 =32 T4 19 28 23 43
AND HERE 1S THE LIST IN @RDER FROM SMALLEST T@ GREATEST
=32 =19 [19 20 23 28 28 43 T4

DANE

Loops and Lists 41

In flowcharting when we have a process of this kind, which has been used and
clearly defined, we can avoid being explicit by using a shape to indicate a
predefined process. The generally accepted shape is a rectangle with two
additional vertical lines, which appears in the flowchart of Fig. 3-7 for pro-
gram ARANGE that solves the problem we have just outlined.

In program ARANGE, the list is read in lines 20, 30, and 40. Then, for the
purpose of seeing the list in the original order, it is printed immediately in
lines 60, 70, and 80. In lines 110 and 120 two loops are set up, where the I
loop represents the first number of the pair and the J loop represents the
second number. As per line 118, why did we not let I go from 1 to 10? Had
we done that, at some point in the program the computer would have to
compare L[10] and L[10], which is not necessary. The first time through,
L[1] = 6 and L[2] = —19. The first element is not less than or equal to the
second. Thus, we want the computer to exchange these two elements. This is
done by lines 140, 150, and 160. As the computer leaves line 160, L[1] = —19
and L[2] = 6. It is relatively simple for us to have the computer print the list
every time it is necessary to exchange two elements of the list. All that is
required is to insert four statements exactly like 60, 70, 80, and 90. This is
done in program ARANGI in lines 200, 210, 220, and 230. This means that
the more numbers out of order, the more printing we might expect. Study
the printing of ARANGI carefully. Notice that after the first reversal, L[1] =
—19 and L[2] = 6 as promised.

Look at the three sets of lines: 60, 70, 80, 90; 200, 210, 220, 230; and 410,
420, 430, 440. You should recognize that these three sets of lines are identical.
BASIC provides a convenient program statement that allows us to type out
that set of lines only once and then call that set of lines from anywhere in the
program. The statement is GOSUB XXX, where XXX designates the first line
of the set of lines you would like repeated. The set of program statements
that is repeated is called a subroutine. When the computer encounters YYY
G@ASUB XXX, it initially behaves as it would for COT® XXX. However, the
computer “remembers” where it was when it left YYY and will return to the
next higher numbered line after YYY when it finishes the subroutine. In order
to achieve this, the computer must “know” when it has completed the sub-
routine. You, the programmer, must notify the computer where the end is by
inserting a line ZZZ RETURN at the end of the subroutine. Then the com-
puter will “know” that it must go to the line immediately following the G@SUB
XXX it most recently encountered,

GASUB--RETURN

YYY G@ASUB XXX sends the computer to line XXX to execute all
lines it encounters until the RETURN statement, which sends the
computer back to the line following YYY. G@SUB is especially useful
in programs where the sume set of lines is used several times.

42 Basic BASIC

REM WE ARE READING THE LIST FRGM DATA

PRINT "HERE IS5 THE LIST IN @RIGINAL @RDER"™

PRINT "HERE WE ARE ARRANGING THE LIST"™
REM M@K HE TEST PAIRS @F NUMBERS T@ SEE

REM WHY D@n'T WE 3SAY FBR

10

IF L{I]1 <= LL{J] THEN 300

FRINT "AND HERE I5 THE LIST IN BRDER FROM SMALLEST T@

I=1 Ta@

10?2272

IF THEY

REVERSED TwW@ ELEMENTS @F THE LIST
SEE PRBGRAM LISTI!

kR

DATA 6:-19:28,20,=-32s 74, 19-28:-23, 43

ARANGI
10
20 FBR X=1 T@ 10
30 READ LLX)
40 NEKT X
50
&0 FOR Y=1 10 10
70 PRINT LLYI1:
80 NEXT Y
90 PRINT
25
100

@ RDER
110 F@R 1I=1 T@ 9
i18
120 FOR J=I+1 T2
130
140 LET S=LLI1]
150 LET LLIJ=LLJ]
160 LET LLJI1=5
170 REM WE HAVE
1B0 REM k&%
200 F@R ¥=1 T8 10
210 PRINT LLY1s
220 NEXT Y
230 PRINT
300 NEXT J
400 NEXT I
405

GREATEST™
410 FOR Y=1 18 10
420 PRINT LLYIs
430 NEXT Y
440 PRINT
500
999 END
RuUmM
ARANGI

HERE IS5 THE LIST IN ORIGINAL ORDER

& -17 23 20
HERE WE ARE ARRANGING
-19] 28 20
-32 & 28 20
-32 =19 28 20
- 32 -i9 20 28
-3z -19 & 28
-32 -19 & 20
-32 =19 & 19
=32 -19 & 19
-32 -19] 19
-32 -19 & 19
-32 =19 6 19
-32 -19 & 19
=32 =12 & 19
AND

=32

-32
THE LIST
-32
-19
&
&
20
28
28
20
20
20
20
20
20

T4

74
T4
74
74
74
74
74
74
28
23
23
23
23

19

19
19
19
i%
19
19
20
28
T4
T4
28
28
28

28

28
28
28
28
28
28
28
28
28
28
Ta
28
28

23

23
23
23
23
23
23
23
23
23
28
28
T4
43

ARE

43

43
43
A3
43
43
43
43
43
43
43
43
43
T4

HERE IS THE LIST IN ORDER FR@8M SMALLEST T@ GREATEST

-19 &

[ate THN
AP Y e

19

20

23

28

28

43

T4

T

Loops and Lists 43

GasuB

10 PRINT "THIS PROGRAM IS5 INTENDED T@ DEMBNSTRATE GASUB'S
BEHAVIAUR"

20 G@sus 700

J0 FBR XK=1 T8 3

40 GA5UB 500

45 GBsSUB 700

50 NEXT X

60 GB5UB 400

70 PRINT 70

75 GB5UB 700

80 GBs3uUB 400

90 PRINT 90

5 G@5uB 700

100 LET X=4

110 G@s5uUB 500

115 G@suUB 700

120 GAsuUB 400

130 PRINT 130

135 GAsuB 700

140 GB5UB 600

150 PRINT 150

155 GAsuB 700

399 GBTa 999

400 PRINT "HERE WE ARE AT LINE"J

410 RETURN

200 PRINT "THIS IS GEBSUB S00"3X:"TIMES"™

510 RETURN

600 PRINT "CALL GA@5SUB 400 FROM GASUB &00™

610 G@sug 400

620 RETURN

700 PRINT

70 RETURN

999 END

RUN

GasuB

THIS PROGRAM IS5 INTENDED T@ DEM@NSTRATE GASUB'S BEHAVI@UR

THIS 15 GBSUB 500 1 TIMES
THIS IS5 GasuB 500 2 TIMES
THIS I5 GBSUB 500 3 TIMES

HERE WE ARE AT LINE 70

HERE WE ARE AT LINE 90

THIS IS5 GBSUB S00 4 TIMES
HERE WE ARE AT LINE 130

CALL G@SUB 400 FR@M GASUB 600
HERE WE ARE AT LINE 150

DaNE

44 Basic BASIC

Let us look at a demonstration program before we use G@SUB in ARANGI.
Go through program G@SUB line by line to be sure you see what has hap-
pened. Line 10 is reasonably clear. Line 20 says G@SUB 700. Line 700 says
PRINT and the next line is RETURN. Thus the computer generates one blank
line and goes to line 30, which sets up a loop. Inside the loop, GASUB 500
and 700 are called three times, once each for X = 1, 2, and 3. This program

ARAN G2

10 REM WWE ARE READING THE LIST FROM DATA

20 FO8R X=1 T@ 10

30 READ LLX]

40 NEXT X

50 PRINT "HERE IS5 THE LIST IN @RIGINAL @RDER™

60 GO3SUB 410

95 PRINT "HERE WE ARE ARRANGING THE LIST"

100 REM N@W WE TEST PAIRS 8F NUMBERS T@ SEE IF THEY ARE IN
@RDER

110 FBR I=1 TG ¢

{18 REM WHY D@N'T WE SAY FOR 1=1 T@ 10?2272

120 FOR J=I+1 T@ 10

130 IF LILI] <= LI{J] THEN 300

140 LET S=LL1]

150 LET LOIl=LLJ]

160 LET LEJI1=5

170 REM WE HAVE REVERSED TW@ ELEMENTS @F THE LIST

180 REM #%%% SEE PROGRAM LIST1 #&&#

200 GBsSUB 410

300 NEKT J

400 NEXT I

405 PRINT'“AND HERE IS5 THE LIST IN @8RDER FROM SMALLEST T@
GREATEST"

407 GASUB 410

408 GBTE 999

410 F@R Y=1 T@ 10

420 PRINT LIY1s

430 NEXT Y

440 PRINT

450 RETURN

500 DATA 6,-19:28520,-32, T4, 19, 28,23, 43

999 END

ARAMG2

HERE 15 THE LIST IWN ORIGINAL GRDER

& -19 28 20 -32 T4 19 28 23 43
HERE WE ARE ARRANGING THE LIST
-19 & 28 20 -32 74 19 28 23 43
-32 & 28 20 -19 T4 19 28 23 43
=32 -19 28 20 & T4 19 28 23 43
-32 -19 20 28 & 74 19 28 23 43
=32 -19 6 28 20 74 i9 28 23 43
-32 -19 & 20 28 74 19 28 23 43
-32 -19 & 19 28 74 20 28 23 43
=32 -19 6 19 20 74 28 28 23 43
-32 -19 & 19 20 28 74 28 23 43
-32 -19 & 19 20 23 T4 28 28 43
-3= -i¥ & 17 20 23 28 Ve 26 43
-32 -19 6 19 20 23 28 28 T4 43
=32 =19] 19 20 23 28 28 43 T4
AND HERE IS5 THE LIST IN ORDER FROM SMALLEST T@ GREATEST
=32 =19 & 19 20 23 28 28 43 T4

DBNE

Loops and Lists 45

is not intended to actually achieve any particular result except to give us a
chance to trace out the path of the computer through several G@SUB
statements.

You might wonder why 399 G@AT@® 999 is in there. Consider what would
happen if it were not there. Line 155 says G@SUB 700, which means go to
line 700, execute a line feed, and return. Then what? Line 400 is next. Print
“HERE WE ARE AT LINE,” and “RETURN.” RETURN where? RETURN
in this subroutine responds only to G@SUB 400 and there was no such
statement. The computer cannot execute such a set of instructions and will
print a message to that effect. So you must build a barrier in front of sub-
routines to prevent the computer from accidentally beginning without the
proper G@SUB statement. Notice that lines 500, 600, and 700 are already
protected by RETURN statements.

Now we should be ready to enter the GA@SUB concept into ARANGI. This
program is called ARANG2. Examine lines 60, 200, and 407. See the barrier
at line 408 to prevent accidentally beginning the subroutine,

SUMMARY

1) The computer list is beginning to emerge as a powerful storage area for
keeping numbers while we have the computer perform tests on numbers in
the list.

2) We can rearrange the elements in numerical order by testing all pairs
and exchanging any that are not in the required order.

3) G@SUB permits us to use the same set of program statements many
times at many different points in a program without disturbing the progress
of the computer through the rest of the program.

PROBLEMS FOR SEC. 3-4

1) Write a program to print the following numbers in decreasing numerical order:
34, —67, 10, 0, —99, 103, and 1. Count the number of times the computer has to
exchange two numbers and the number of comparisons.

2) Write a program to print the following numbers in increasing numerical order:
45, 76, —76, 45, and 98. Do not print the duplicated number, but leave it in the list.

3) Program the computer to list the numbers in order in problem 1) by comparing
elements one and two first, then elements two and three, then elements three and
four, etc. Create a switch § =0 for off and § = 1 for on. Turn the switch off, then
if an exchange is required, turn the switch on. After testing the last two elements,
look at the switch. If it is on, go through the list again. If it is off, print the list;
it must be in order. Count the number of tests and the number of exchanges.

4) Prepare a five-element list using the averages of the test scores from program
AVG in Sec. 3-1. Then arrange the averages in decreasing order and print a number
representing the position in the original list. This latter can be done by setting up
a second list containing 1, 2, 3, 4, 5, then exchanging these numbers each time the
corresponding averages are exchanged.

5) Prepare one list with the numbers 0, 6, 1, 3, 7, 2, 3, 1, 4, and 9 and another
with 0, 8, 2, 3, 9,7, 4, 1, 2, and 4. Prepare a third list with the sums of the corre-
sponding elements. So far this is similar to problem 11) in Sec. 3-3. Beginning with

46 Basic BASIC

the highest subscript, look at each entry in the sum list. If the entry is less than 10,
proceed to the nexl entry. If the enlry is more than 8, sublract 10 [rom that enlry
and add 1 to the entry with the next lower subscript. Print all three lists across the
page, one above the other, with the sum list last. What have you accomplished?
J B) On seven consecutive days the high and low temperatures were as follows:
51-71, 48-67, 50-77, 55-78, 55-76, 55-75, 49-79. Write a program using lists to find
the greatest range and the number of the day on which it occurred, the average high,
and the average low.

J 7)) Prepare two 10-element lists using the following numbers: 43, 65, 92, 38, —45,
0, 15, 61, —61, —15, 45, 54, 52, —14, 49, =3, 66, 72, 29, —1. Arrange all the
numbery in increasing numerical order,

J 8) The following test scores are given: 65, T1, 82, 63, 90, 58, 66, 67, and 68.
Program the computer to list the scores, calculate the average, and then find the
number of test scores that were above average and the number below average.
Also, find the score where there are the same number of scores above as below.

J 9) The Fibonacei numbers are generated by letting the first two numbers of the
sequence equal 1, and from there on each number may be found by taking the
sum of the previous two clements in the sequence. So you get 1, 1, 2, 3, 5, 8, 13,
cte. Prepare two lists: one with the first 10 and the other with the second 10. For
cach element from 2 to 19 find the difference between the square of the element
and the product of the elements immediately preceding and following. In other
words, print F[I] ** 2 — F[I — 1] * F[I 4+ 1].

CHAPTER 4

Computer Functions

4-1 INTRODUCTION TO INT(), SQR(), ABS(), AND SGN()

The four functions discussed in the following, will prove very useful in
BASIC.

INT(X) is used in two ways. In some computers, INT(X) determines the
greatest integer not greater than X. For example, if A = INT(43.2), then
A = 43; if A = INT(6), then A = 6; and if A = INT(—2.3), then A = —3. In
other computers, INT(X) truncates the number X, ie., it simply removes the
decimal part. So if A = INT(—2.3), then A = —2.

SQR(Y) computes the non-negative square root of Y. For example, if B =
SQR(16), then B = 4,

Some computers will not compute if B = SQR(—16). However, if we have
many values for which we want the square roots and some happen to be
negative, we can instruct the computer to take the square root of the absolute
value of Y. BASIC provides ABS(Y) for just such occurrences. For example,
ABS(18.3) = 18.3, and ABS(—24.61) = 24.61. So we can use SQR(ABS(Y)) for
the problem above.

A fourth BASIC function which you may not have much call for right now
is SGN(N). SGN(N) is 4-1 if N is positive, 0 if N is 0, and —1 if N is negative.
The number in parentheses is called the argument of the function. Note that
the argument may be an explicit number, a variable, another function, or any
algebraic expression. Study the demonstration program ASIS to see how the
computer handles these functions.

INT(X) computes the greatest integer of X.

SQR(X) computes the positive square root of X.

ABS(X) computes the absolute value of X.

SCGN(X) is +1 if X is positive, 0 if X = 0, —1 if X is negative,

A=

48 Basic BASIC

ASI1S

10 PRINT "X":"ABSCX)", "SQRCABSCAI I "INTCX)I " "SENIAI"
20 READ X

30 PRINT KsABSC{K)»SARCABSIHI I INTLRY, SGNIR]D

40 DATA -899913.,-35.2,-.032

50 DATA 0,.032,23.412,83%91"

&0 GAT@ 20

70 END

RUN

ASIS

Hy ABS(X) SARCABSC(X)) INTCX) SENCX:
-299913, Booo1a, QAR £37 -EQ9913. -1
-35.2 35.2 5.93296 -36 -1
--UBE FQSE -I?BBEE '1 'I
0 0 4] 0 D
.032 . 032 . 178885 0 |
23.412 23.412 4.B386 23 1
B391 B391 21. 6024 8391 1

@uT @F DATA IN LINE 20

One common use of INT() is for factoring integers. We can look at the
quotient of two integers, and if that is an integer, then the denominator is a
factor. For example, 65/5 = INT(65/5); therefore 5 is a factor of 65. So in
order to find the greatest factor, all we have to do is start with the integer, one
less than the number we are trying to factor, and test to see if it divides with-
out remainder. If it does, we use the conditional transfer and send the com-
puter to a PRINT statement. If it does not, we let the computer subtract 1 by
using a loop and try again. If we start at N, we will get N/N = INT(N/N) the
first time through even for prime numbers. Let us also print N is prime if it is.

Start
READ FORD =N —1
T 2 STEP —1

Is
D a factior?

N
6
PR! NT

/ prime /

Fig. 4-1. Flowchart for factoring integers.

e

NEXT D ‘1

Computer Functions

PRIMEL
i0 READ N
20 FOR D=nN-1 T@ 2 STEP -1}

30
40
50
60
70
B8O
90
100
110
RUN

IF N/7D=INTC(N/D) THEN 70
NEXT D
PRINT N:"I5 PRIME"™
GaTe 10
PRINT D3"™IS THE GREATEST FACT@R @F"IN
GeTe 10
DATA 1946519495 1009, 1003
DATA 11001,240511
END

PRIME1

973 1S THE GREATEST FACT@R OF 1946
19 49 I5 PRIME
1009 IS PRIME

a9

15 THE GREATEST FACTOR OF 1003

3667 IS5 THE GREATEST FACT@R @F 11001

120
i1

auT

IS5 THE GREATEST FACTGR OF 240
I5 PRIME

BF DATA IN LINE 10

49

So we stop at 2 rather than 1. First we draw the flowchart in Fig. 4-1, then

write the

program PRIMEIL.

In PRIMEL the computer tested 1949/D with 1947 different values for D
before it decided that 1949 is prime. That is a lot of tries. Whenever reasonable,
we should try to improve the efficiency of our program. What do we know
about factors of integers? We know that the smallest possible factor is 2. So the
greatest could be N/2. For 1949 then, we can reduce the number of tries to
975. But we also know that if we try all possible divisors down to the square
root of the number we are trying to factor, then the quotients will also be less

FRIM

10
20
30
40
S0
&0
70
80
20
100
110
RUN
PRIM

E2

READ N
F@R D=2 T@ S5QR(N)
IF N/D=INTC(N/D) THEN 70
NEXT D
PRINT N3;™I5 PRIME"™
Gate 10
PRINT N/Ds*'1S THE GREATEST FACT@R @F"IN
Gate 10
DATA 194651949, 1009, 1003
DATA 11001,240,11
END

E2

973 15 THE GREATEST FACTOR @F 1946
1949 15 PRIME

100
59

9 IS PRIME
1S THE GREATEST FACT@R @F 1003

3667 IS5 THE GREATEST FACT@R @F 11001
120 I5 THE GREATEST FACT@R @F 240

i1

aur

15 PRIME

@F DATA IN LINE 10

50 Basic BASIC

than the square root. So we might try FOR D = N — 1 T@ SQR(N) STEP —1.
Well, SQR(1949) is approximately 44 and this means 1904 tries, which is much
worse. But why not go from 2 up to SQR(1949)? Now we have only 43 tries
and if we do get divisibility for other numbers, we will have the smallest
factor and we can get the greatest factor by dividing the number by its small-
est factor. This seems worth making the necessary changes in PRIMEL. Only
lines 20 and 70 require changing. Line 20 is the line which sets up the loop
to test for divisibility and line 70 is the PRINT statement. In the PRINT
statement we want N/D printed now, whereas we wanted D printed before.

- w w P

SUMMARY

Four computer functions were introduced.

1) INT(A) evaluates the greatest integer of A.

2) SQR(B) finds the positive square root of B.

3) ABS(C) computes the absolute value of C.

4) SGN(D) becomes +1 if D is positive, 0 if D is 0, and —1 if D is negative.
The value in parentheses is called the argument of the function.

PROBLEMS FOR SEC. 4-1

1) Modify PRIME2 to write all pairs of factors.

9) Modify the program in problem 1) to print no duplications.

3) Write a program that will print only prime factors of integers.

4) Write a subroutine that will perform the work of ABS(), without using
another computer function.

5) Write a subroutine that will perform the work of SGN(), without using
another computer function.

6) Write a program to print all different pairs of factors of the following set of
integers: 711, 991, —991, 453, —654, 1009, —1009, 9001.

7) Write a program to print all of the prime positive integers less than 100, Do
not let the computer try numbers divisible by 2.

8) Print the prime integers from 1000 to 1500. Do not let the computer test the
even numbers.
J 9) For cach of the following pairs of numbers, find two numbers so that the
sum of your two is the first number in the given pair and the product is the second
number in the given pair: 3, 2; 7, 12; 11, 28; —11, 28; 3, —28; 76, 1003; T, 8;
34, 289.

4.9 REDUCING COMMON FRACTIONS AND DIMENSION
CONVERSIONS

.
melarmren it THenankbinee
P e

We are finally ready to reduce fractions to lowest terms. Look at problems
13) and 14) in Chap. 1. There, if we had added 5/6 and 7/8 we would have
gotten 82/48. Since, however, it is customary to reduce [ractions, we would

like to get 41/24.

Computer Functions 51

All we have to do is find the largest factor of the numerator that is also a
factor of the denominator. Only this time we have to go all the way to 2. So
we will use the procedure of program PRIMEL. First we should prepare a
flowchart. See Fig. 4-2. We simply find the greatest factor of the numerator
and see if it is also a factor of the denominator. If it is, fine. If it is not, then
we go back and find the next greatest factor of the numerator and test to see
if that is a factor of the denominator. If it is, fine. If not, we go back again
and look for the next factor of the numerator. If we get all the way to 2
without a number that is a factor of both numerator and denominator, then
we print the fraction as it was given. See program REDUCE.

We should try to pick the largest factor of the smaller number to reduce
the number of tries the computer has to execute.

Dimension Conversions

We find the INT() function useful in simplifying dimensioned numbers
to simplest form. Suppose we change 93 in. to feet and inches. By hand we
would divide 93 by 12 and the whole number in the result would be in feet.
Then the remainder would be in inches. The problem would appear as follows:

T
12)93
84

9

and we would say 7 ft 9 in. with no difficulty. We can easily get the 7 by
using INT(93/12), but it is an exercise in mathematics to get the 9. Let us
look at the division problem in more detail:

7.75 75
129300 129.00
84 8.4

9.0 60
8.4 60
60 00

.60

00

We see that if we divide 12 into the remainder after integer division, we get
the decimal portion of the result if we divide by 12 by decimal division. That is,

9/12 = 93/12 — INT(93/12)

for this problem. Or in general, for N divided by D and calling the remainder
R we get

R/D = N/D — INT(N/D)
Multiplving both sides by D we get
R=N-—INT(N/D)* D

52 Basic BASIC

Start

READ
N, D

+

FORP=NTQ
2 STEP —1

IsPa

PRINT
factor of D?

N/P,D/P

PRINT
N,D
Fig. 4-2. Flowchart for reducing common fractions.
REDUCE
10 READ Na.D
20 FOR P=N T@ 2 STEP -1

30
40
50
&0
70
B8O
30
100
110
120
130
140
150
RUN

IF N/P=INT(N/P) THEN 70O
NEXT P
PRINT w"/"D
Gara 10
IF D/P=INT(D/PY THEN 90
GaTe 40
FRINT n"/7"0"="WN/P"/"D/P
GaTe 10
DATA Ss6
DATA B2, 48
DATA 3s4
DATA 36,48
END

REDUCE

5
82
3
36

auT

-
s 48 = 4] £ 24
£ o4
/48

n
[A]
Y
I

8F DATA In LINE 10

So all we

Computer Functions 53

need is a program statement LET R = N — INT(N/D) °® D. See line

20 in program DEMREM.

DEMREM
3 PRINT “HUMEHﬁTHR";"DENEMINRTEH";"REMﬁINDER"."INTEEER QU3TIENT"
10 READ NsD
15 REM FIND THE REMAINDER WHEN ‘N ° IS DIVIDED BY 'D°
20 LET R=N-INT(N/D)*D
30 PRINT NsDsRs INTCNSD)
40 GAT2 10
50 DATA 93,12, 100,25, 365,52, 365, 7
52 DATA 365, 12, 52, 135 52805 440, 55, 6
60 END
RuUN
DEMREM
NUMERATOR DENGMINATAR REMAINDER INTEGER QUBTIENT
93 12 9 7
100 25 4] 4
365 52 1 7
365 7 1 22
365 12 S 30
32 13 0 4
5280 440 0 12
35 & 1 9
QUT @F DATA IN LINE 10

Now we can easily convert numbers in inches to feet and inches. First see
the flowchart in Fig. 4-3 and then the program CAONVRT.

LETF LET I

= INT (1/12) =|—Fx12
PRINT
ILF 11

Fig. 4-3 Flowchart for converting
numbers in inches to feet and inches.

54 Basic BASIC

10 READ 1

20 LET F=INTC(LI/12)

30 LET Il=I-F=®12

40 PRINT I"™INCHES ="F"FEET "II"INCHES"
45 G878 10

50 DATA 9.86,47,37:947, 4B0

60 END
RUN
ConNVRT
9 IMCHES = 0 FEET ? INCHES
Bé INCHES = 7 FEET 2 INCHES
47 INCHES = 3 FEET 11 INCHES
37 INCHES = 3 FEET 1 INCHES
947 INCHES = 78 FEET 11 INCHES
480 INCHES = 40 FEET 0 INCHES
PUT OF DATA IN LINE 10

SUMMARY

1) We can now find the greatest common factor of two integers and thus
reduce fractions to lowest terms.

2) We have seen that the INT() function may be used to break quotients
up into their integer part and their decimal part less than 1.

3) We can find the remainder in a division problem by using R = N — INT
(N/D) ° D. This allows us to convert dimensioned numbers, such as inches,
to feet and inches.

PROBLEMS FOR SEC. 4-2

1) Write a program to add two simple fractions and print the sum reduced to
lowest terms.

9) Improve the efficiency of program REDUCE by putting the smaller number in
the P loop in line 20.

3) Write a program to convert improper fractions to mixed numbers.

4) Convert inches to yards and feet and inches.

/ 5) Write a program to multiply two fractions, converting the result to a mixed
number in reduced form.
/ 6) Convert dollars in decimal form to the equivalent in coins.

7) Do problem 5) for adding two fractions.

8) For each of the following pairs of numbers, find the greatest common factor:
190, 1083; 27, 35; 27, 36; 16, 34; 12, 30.

9) For each of the following pairs of numbers, find the least common multiple:
190, 1083; 25, 745; 187, 34.

10) Prepare a list consisting of the first 10 Fibonacci numbers. Find the greatest
common factor for every pair in the list, prepare a list of these with no duplications,
and print them.

J/ 11) Write a program to find the greatest common factor of sets of three numbers
assigned as data.

Computer Functions 55

4-3 PROGRAM-DEFINED FUNCTIONS

Suppose we have $56.31 in a savings account bearing 4%% interest com-
pounded monthly and we hear of a bank that is offering 4%% compounded
quarterly. Should we change banks? We did work with compound interest
earlier, So this should be a matter of doing two calculations in the same pro-
gram. Let us leave the $56.31 in each bank for 10 years and see if there is
enough difference to change banks. For compounding monthly, we use the
yearly rate divided by 12, and calculate and add the interest 12 times per year.
For quarterly compounding, we use the yearly rate divided by 4, and calcu-
late and add interest four times per year. In this case, use one loop for the
years and a 1 to 12 loop for monthly compounding and a 1 to 4 loop for
quarterly compounding, both inside the same 1- to 10-year loop. The flowchart
in Fig. 4-4 should help to sort out this plan.

Since the intent is to develop several concepts in this program that will
require changing the printing, the variables will be printed individually on
separate lines. This technique may often save typing when you anticipate

Start

Initialize

principal —Pl FOR \'f_l; 179

onboth rates

Compute
new principal
for this year
at4.5%

L

Compute
new principal
for this year
at4.75%

L

NEXT Y

<L

PRINT
headings
and P's

Fig. 4-4. Flowchart for computing END
compound interest at two rates.

56 Basic BASIC

making changes as you develop a program. Thus in program BANKI1 lines
130 and 150 are printed with semicolons at the end so that the printing can
be placed at the ends of those lines from PRINT instructions on other lines.
The values of the different principals will be printed, according to instructions,
on lines 140 and 160.

Note: On some computers line 10 of BANK1 would be written as 10 LET
E.PL=1)

We can certainly obtain the information we want from the RUN of this
program in its present form. Clearly, we would get more interest by changing
banks. You will have to decide whether it is worth switching. Even so, let us
see what we can do to simplify the results. For instance, when we talk about
money, most of us tend to round off to the nearest cent. So we should be able
to have the computer do that too. We could multiply by 100 and then take
the greatest integer, but that would give 8823 for P and we want dollars and
cents. Let us then divide by 100 again and get 88.23. However, we really
want 88.24 because the .007 is more than one half a cent. We can obtain this
by adding .5 after we multiply by 100, then taking the greatest integer and
dividing by 100 again. Adding .5 to positive numbers from .5 to .99 results in
numbers from 1.0 to 1.49, and sends positive numbers from .01 to .49 into
numbers from .51 to .99. When we take INT(the sum), the result increases by
1 for numbers .5 or more and is unchanged for numbers less than .5. Thus

BANK 1

10 LET P=P1=56.31

20 FBR Y=1 T@ 10

22 REM FOR TEN YEARS

30 FOR M=1 TG 12

32 REM COMPBUND MBNTHLY AND CBMPUTE INTEREST
40 LET I[=P#4.5/7100/12

530 LET P=P+I

60 NEXT M
62 REM THAT FIGURES THE INTEREST FOR THIS YEAR CBMPBUNDED
MBNTHLY

70 FOR @=1 T 4

72 REM CBMPOUND QUARTERLY

B0 LET L1=Pl*4.75/100/4

90 LET Pi=FPl+11

100 NEXT @

102 REM THAT TAKES CARE @F THE GQUARTERLY INVESTMENT FOR THIS
YEAR

108 REM NOW T CEMPUTE THE NEXT YEAR

110 NEXT ¥

120 PRINT "FOR TEN YEARS"™

130 PRINT "84.5% COMPBUNDED MBNTHLY ««s"3

140 PRINT P

150 PRINT "@4. 75% COMPOUNDED QUARTERLY .. .™}

160 PRINT P1

F999 END

RUN

BANK 1

FBR TEN YEARS
@4.571 COMPAUNDED MOMTHLY... BE.2374
@4. T5% CE@MPAUNDED QUARTERLY ... 90.2943

DBNE

Computer Functions 57

RAOUND

10 READ X

20 LET vY=INT(X=100+.3)7100

JO0 PRINT Y.X

40 DATA 2.31462,2.34999,2.35001, 382, 61 7+« 346,3.86149E-02
50 GA@T8 10

60 END

RUN

RaumD

2.31 2.31462
2.35 2.34999
2.35 2. 35001
3g2 agz
617+ 35 &1 7.346

QUT @F DATA IN LINE 10

we have a rounding function all our own as follows:
LETY = INT(X ° 100 + .5)/100

Let us try this with a few numbers to see that it actually works, before we
inseit it in our banking problem. See ROUND. (It may often be wise to perfect
a technique in a smaller uninvolved program before trying it in a longer more
complicated one. There should be fewer sources of error in the final program.)

ROUND works out well. However, we often have more than one variable
that we want to round off. BASIC has a way of doing this. We may define
any function of our own using DEF FNA(X) = ZZ7Z77Z77Z7Z7Z77Z7, where X is
a dummy variable. It simply holds a place where we will later enter the
variable for which we want the function evaluated. The format of our round-
ing function looks like this:

XXX DEF FNH(Z) = INT(Z ® 100 + .5)/100

XXX is the line number of the statement number of the DEFining statement
in a BASIC program. We may substitute any letter of the alphabet for H.
Thus, we may for example, DEF FNI() and DEF FNJ() for other func-
tions in the same program. The third letter is the one that identifies which
function we are calling for. We may define another function that rounds off
to tenths as ZZZ DEF FNT(G) = INT (G °® 10 + .5)/10 and whenever we call
for FNT(), we round off to tenths. Let us see how this works out in program
DEF().

DEF

XXX DEF FNA(X) = (any legal BASIC expression). BASIC pro-
vides a program-defined function. It begins with FN followed by a
third letter which is used to identify the function. (Some computers
allow more than one argument.)

58 Basic BASIC

DEF ()

20 DEF FNH(H)=INT(H%100+.5)/100

A0 DEF FNT(TI=INTC(T*10+.5)/10

40 PRINT P nE g O EMHOK Y Y Ms FNTOXSY Y
45 READ X= Y

50 PRINT XY K /Y FRNHCX/Y I FNTORSYD

&0 DATA 121121053, 3, 4:6s11.2,3.125,8.6324

T0 GATY 45

B0 END
R
DEFC)
X Y AAY FNHOXKAY) FHTCAST S
1 11 2.09091E~-02 « 09 el
10 3 3.33333 3.33 3.3
3 &4 « 75 « 715 «B
& 11-2 «+ 235714 « 04 « 5
3. 125 B. 6324 « 362008 = 35 « 4

@ul @F DATA IN LINE 45

Now we can alter our compound interest program BANK1. We only need
to change two lines and insert the DEF statement. It is common practice to
put all DEF statements at the beginning of the program. Let us also put in
dollar signs (§).

2 DEF FNHC(X)=INT(A%100+.53/100
140 PRINT "S"FNH(P)
160 PRINT "S$"FNH(PI1)

RUN
BANK 1

FAR TEN YEARS
84.5% COMPRUNDED MBNTHLY...3% BB.2Z24
@4.75% COMPOUNDED QUARTERLY.-.3 90.29

DANE

The results in the above program are rounded off to the nearest cent and
the dollar signs make it clear that we are dealing with money. However, it
would be even better if we could line up the decimal points. If your version
of BASIC does not provide a computer function to override the semicolon
spacing, you may write youwr own subroutine that will allow vou to place
results exactly where you want them printed. In our particular problem all we
want to do is move the first number three spaces to the vight. But we might
then want o move them both fwiber (o the nghic 5o let s take the thne W
develop a subroutine.

What we we trying to do is to gain control over the number of spaces
between items of printed output. This implies getting the computer to print
diflerent numbers of spaces according to om need. This suggests putting XXX

Computer Functions 59

PRINT “ ”; in a loop and letting the high number be a variable that equals
the number of blank spaces required. The following subroutine will print X
spaces.

500 FORS=1TO X
510 PRINT “ ™;

520 NEXT §

530 RETURN

In BANKI1, no matter where we place the numbers, we will have to put the
first number three spaces further to the right than the second number. We
may now accomplish the required spacing by first printing according to line
130 and then setting a reasonable value of X followed by G@SUB 500. Upon
getting the computer to print according to line 150, we next LET X = X — 3
put in three fewer spaces and G@SUB 500 again. Finally, we must be sure
that we do not let the computer enter the subroutine accidentally. Should this
happen, the computer will attempt to execute the RETURN statement when
there was no prior G@SUB to direct it. To avoid this we can use 490 G@T@
9999. However, BASIC has the statement XXX ST@P for just such a situation,

STAP
XXX STOP is equivalent to XXX GATG 9999 when 9999 is the
END statement.

Below we list the latest changes, and name the resulting program BANK2,
The entire program is listed to see where things fit together. As you can see
the results are aligned in the RUN.,

¥

132 LET X=4

138 GOSUE 500
156 LET X=X-3
158 GBSUEB 500
490 STapP

500 F@R 5=1 T@ X
210 PRINT " '3
220 NERT 5

530 RETURN

RUN
BANKZ2

F@rR TEN YEARS
84.5%1 COMPOUNDED MONTHLY . f BE.24
B4. 752 C@MPOUNDED QUARTERLY+ss $ 90.29

D@NE

60 Basic BASIC

BANKZ2

2 DEF FNHC(X)=INTC(X*100+.5)/100

10 LET P=F1=56.31

20 FOR Y=1 T@ 10

22 REM FOR TEN YEARS

30 FOR M=1 Te 12

32 REM COMFAUND MBNTHLY AND CEMPUTE INTEREST
40 LET I=P*4.57100712

50 LET P=P+I

60 NEXT M
62 HREM THAT FIGURES THE INTEREST FOR THIS YEAR COMPOINDED
MONTHL Y

70 FOR Q=1 TO 4

72 REM CAMPRUND GQUARTERLY

BO LET I1=Pl%4.75/100/4

90 LET Pl=P1+11

100 NEXT @

102 REM THAT TAKES CARE BF THE OQUARTERLY INVESTMENT FOR THIS
YEAR

108 REM N@Ww TO COMPUTE THE MEXT YEAR

110 NEXT Y

120 PRINT "FOR TEN YEAKS"

130 PRINT "84.5% COMPOUNDED MONTHLY «+ o5

132 LET X=4

138 G@5UB 500

140 PRINT "S$"FNH(P)

150 PRINT "B4.75%2 COMPBUNDED CQUARTEKLY «« ™3

156 LET Xx=X-3

158 GBSUB 500

160 PRINT "“S"FNHC(FI1)

490 ST@P

500 FBR S5=1 TO A

310 PRINT ™ '3

520 NEXT S

530 RETURN

9999 END

RUN

BANKZ

FBr TEN YEARS
84,57 COMPRUNDED MONTHLY ««. % BB.24
@4. 7953 COMPOUNDED OUARTERLY... % 90.29

D@NE

Now as long as we have the spacing subroutine available, let us try several
values of X in line 132 and see what happens.

132 LET K=10
RUN
BANK 2

FBR TEN YEARS

24.5% COMPAUNDED MBNTHLY =« 5 B8.24
84. 752 COMPOUNDED QUARTERLYs .. £ 90.29
DA@NE

132 LET X=20
RUN
BANK 2

Computer Functions 61

FBR TEN YEARS

84.5% COMPOUNDED MBNTHLY .. $ BB.24
@4. 75T COMPAUNDED GUARTERLY s« £ 90.29
DBNE

132 LET X=3

R

BANKZ

FBR TEN YEARS
84.51 COMPAUNDED MBONTHLY .. 5 BB.24
@4. 752 COMPAUNDED QUARTERLY«+«5 90.2%

DBNE

Note: See Appendix C for TAB() and PRINT USING formatting
functions.

SUMMARY

1) The program-defined function DEF FNA(X) has been introduced. This
allows us to have the computer perform the same function on different
variables.

2) The STPP statement may be used to terminate the RUN of a program
at places other than the physical end of the program. The end of a program
specified in this way may be referred to as the logical end.

3) We have constructed a subroutine that enables us to control more pre-
cisely than with the semicolon or comma the spacing of printed results by
putting “ ”: in a loop. This gives more versatility of format.

PROBLEMS FOR SEC. 4-3

1) Find the square roots of the integers from 11 to 23. Print the integer, its
square root, and its square root rounded off to the nearest thousandth and to the
nearest tenth with appropriate labels.

2) How much money will you have in the bank, if you deposit $5 at the begin-
ning of every month for 25 years in a savings account which pays 4%% compounded
monthly?

3) Define a function for Y = --3X2 4 7X — 3. Print pairs of values for
X = —4 to 5.

4) Do problem 2), but for daily compounding. Ignore leap year; use 12, 30-day
months.

/ 5) Set up a table of amounts that $100.00 will be at the end of 5, 10, 15, and
20 years at 4%, 4%%, 4%%, and 5% per year compounded monthly. Put the rates in
a rate loop. Print the years across the top and the rates in the first column of each
TOW.

J/ 6) Write a program to compare $99.00 compounded monthly at 4%%, quarterly
at 5%, and daily at 4%% for 15 years. Print with the decimal points lined up.

7) Define a function for Y = 3X 4 4. Print pairs of values for X and Y for
X = —5 bto 5.

8) Define a function for Y = 2X? 4 8X — 1. Print pairs of values for X and Y
for X = —6 to 2.

62 Basic BASIC

4-4 RANDOM NUMBER GENERATOR

The last computer function we will consider in this chapter is RND(X).
Often in programming we want numbers to try out a new program. Also, there
are many events in mathematics and science that occur at random. If we do
not have any real data or we want a very large number of numbers, it is
desirable to have the computer pick the numbers for us. This can be done in
BASIC with the computer function RND(X).

RND(X) picks at random a decimal fraction between 0 and 1. It will not

miale M oA 1 NMarmanding an tha nGmﬁuinv thha waliza nf by B MRS, R
Palas W Ul A, awrUpeedaldalipy W e VUG UGG, Wil Vdide UL o a0 WNING LT,

but there must be a number in parentheses. If the argument does not affect
the numbers generated, it is called a dummy argument. Some computers use
the argument to determine the numbers generated. Computers vary as to the
actual set of random numbers generated. Some have a fixed set of numbers that
is the same every time RND() is used in the same program. Such a random
number generator is called a pseudo random number generator. Others give a
different set of numbers each time you run the same program. Program
RND(1) is a short routine that prints a few random numbers.

RNDC1)

10 FBR X=1 T8 10
20 PRINT RNDC3),
30 NEKXKT X

40 END

RN

RNDC1)

« T8B345 « 865051 + 595169 « 285522 «B56583

6.9 TH32E-02 « 209305 « 12793 « 383804 « 651 428

DANE

Before we get very far trying to use RND(Z) we realize that numbers
between 0 and 1 do indeed limit us greatly as a source of data. Suppose we
want data selected from 1 to 10. First we might try to multiply the random
number by 10 before taking the INT() function. Let us try it in RND(2).

RNDC2)

I0 FBR X=1 T8 20
20 PRINT INTC10%RND{1)}?}
30 NEXT X

40 END

RUN

KDL
3 5 5 2 6 3 1 0 2 3 9 4
2 2 6 3 9 4 3 4

Computer Functions 63

Program RND(2) seems only to give integers 0 through 9. However, RND(Z)
will never take on 1 as a value, and therefore multiplying by 10 will never yield
10 as the product. But we can add 1 to each of the above integers and both
include 10 and exclude 0, which is exactly what we set out to do. The 1 can
be added either before or after taking INT(). We get 1 to 10 in program
RND(3).

RNDC3)

10 FBR X=1 T@ 30
20 PRINT INTC1O=RNDC1)+1)3

30 NEXKT X

40 END

RUMN

RND{C 3)
5 8 4 3 3 3 7 5 5 10 9 1]
B 7 1 7 1 8 3 4 2 10 9 |
1 -] -] 1 a 3

DBNE

If we want decimal numbers from 1 to 11, not including 11, all we have to
do is leave out the INT(), as in RAND3+.

RAMND 3+

10 F@R X=1 T8 10

20 PRINT 10%RNDC(9)+13
30 NEXT X

40 END

RUN

RAND3+

10.0205 306177 T 18546 4. 55652 1- 66971 8.00%28

2.02798 F.0B411 5. 25247 Bs 753757
DANE

Now we have a way to determine the interval in which the numbers are
picked. If we can get 1 to 11 with 10 * RND(Z) + 1, we ought to be able to
get 1 to 100 with 99 ®* RND(Z) + 1.

RND(X)
XXX LET Y = RND(X) will assign at random a number between 0
and 1 to Y. We can get integers from 1 to A with INT(A « RND(X)

+1).

64 Basic BASIC

Now, what shall we do with randomlv assigned numbers? The possi-
bilities are endless. We could put some in a list and arrange them in numerical
order. Remember ARANGE? Instead of reading data, we can use randomly
assigned numbers. This time, let us not print the list after every exchange,
but only after it is in order. How about picking integers from 1 to 2507 This
will require INT(250 ® RND(1) + 1). This time let us rewrite the program to
look at successive adjacent pairs in the list. This method was outlined in
problem 3) of Sec. 3-4. As we have the computer look at each pair, we have
it decide whether the first is less than or equal to the second. If it is, then we
do not exchange—exactly as in ARANGE. But if the first is greater than the
second, we cail for the exchange. However, there is no guarantee that the list
is in order after the first time through. So we have to turn on a switch after
each exchange. Then after the computer has gone through the list comparing
1 and 2, then 2 and 3, then 3 and 4, etc., we have it check the switch. The

Start
FORX =1
TD 10
& LET L(X)
=[NT (250+
RMND{1)+ 1)
Turn a0
NEXT X ———+ switch off —" Fﬁ:;; ; L
LETS=10
Exchange no
L{h and L(1 + 1)| R
See ARANGE
‘L yes
Turn
switch on NEXT |
LETS=1
PRINT
END list
—_— 1 in order

Fig. 4-5. Flowchart for arranging a list of numbers assigned from
RND() using comparison of adjacent pairs.

Computer Functions 65

name of the switch can be any number of things, but here we will use S. If
S = 0, the switch is off. If S = 1, the switch is on and we tell the computer to
look at the list again. If the switch is off, we want the computer to print the
ordered list. Under what conditions do you think this will be the most efficient
ordering technique? The name of this program is ARANG3 and its flowchart is
in Fig. 4-5.

ARAMG2

10 F@R X=1 T8 10

20 LET LIXI=INTC(250%*RNDC1)+1)

40 NEXT X

58 REM TURN THE SWITCH arFrF!!?
60 LET 5=0

70 FOR I=1 T@ 9

BO IF LLI] <= LLI+1] THEN 130

90 LET K=LLI]

100 LET LLIJ=LLCI+1]

110 LET LLI+1]1=K

120 LET 5=1

121 REM #%%% TURN THE SWITCH @N #%%
130 NEXT I

138 REM 15 THE SWITCH @nN??

140 IF S5=1 THEN &0

142 REM IF THE SWITCH IS @FF THERE WERE N@ EXCHANGES AND
143 REM THE LIST IS5 IN @RDER

145 PRINT "THE NUMBERS IN ORDER'
150 F@R X=1 T@ 10

160 PRINT LLX13

170 NEXT X

180 END
RIUN
ARANG3
THE NUMBERS IN @RDER
12 67 75 98 109 161 162 199 221 231
DBNE

The program looks fine, but nobody could prove that we really used the
ordering routine to put the list in order, because we do not know what the
original list was. So let us put back the routine that prints the list as it is
formed.

5 PRINT "HERE 15 THE LIST AS IT IS5 BEING FORMED#*%#%"
30 PRINT LCX)3

42 PRINT

RUN

ARANG4

HERE IS THE LIST A5 IT 15 BEING F@RMED*®%%

24 156 216 22 64 65 195 210 129 i1
THE NUMBERS IN ORDER

11 22 64 65 F4 129 156 195 210 216
DaNE

Fine! Now we believe it. We have just put 10 random numbers in order.
It is about time we found out how to create longer lists.

66 Basic BASIC

DIM

We can usually get 10 (or 11) elements in a list. If we want longer lists
we simply notify the computer that we wish to specify a greater dimension for
our list. The BASIC statement is XXX DIM L[Z], where Z is the highest sub-
script in the list. Computers vary. Some allow a variable in parentheses, while
others require an explicit integer. If you do not know how long the list is
going to be, simply pick a number larger than you think you will need. You
need not use every location in the list. Let us dimension a list in ARANG4 up

to 75 and use 20 locations to see how a longer list looks,

2 DIMLCTS)

T LET N=20

10 F@R X=1 T N

M FBR I =1 T N-1
150 F@R X=1 T@ N
RUN

ARANGS

HERE IS5 THE LIST A5 IT IS5 BEING FORMED%%=%
41 246 236 83 248 119 107 195 BS 128 134 25

73 23 27 204 il1 208 122 24]

THE NUMBERS IN DRDER

25 217 41 13 B3 B5 23 107 1kt 119 122 128
134 195 204 208 236 241 246 248

DaNE

The program seems to work nicely. Let us try a few other numbers.

7 LET N=5
RUM
ARANGS
HERE 1S THE LIST AS IT IS BEING FORMED®:%x%
71 Bé& & 141 172
THE NUMBERS IN @RDER
& Ti B6& 141 172
DAME

For N = 25 we list the entire program with all the changes we have made.
Notice that when we made the original change we put lines 10, 70, and 150
in terms of N so that we would not have to retype them each time we made a
minor change in the length of the list. See ARANGS.

L

w
JLLVL

XXX DIM A[24], B[75], L[33] dimensions three lists. The A list
has 24 as its highest subscript, B has 75, and L has 33. You may
dimension as many lists as will fit on one line,

Computer Functions 67

ARANGS

2 DIM LL75]

S PRINT "HERE IS5 THE LIST AS IT IS5 BEING FORMED##*%"
7 LET N=25

10 FBR X=1 T@ N

20 LET LIX]I=INT(250%RNDCLIY+1)
30 PRINT LI{X1:

40 NEXT A

42 PRINT

58 REM TURN THE SWITCH AFF!!!
60 LET 5=0

70 FAR I=1 TO N-1

80 IF LCI) <= LL1+1] THEN 130
0 LET K=L(1]

100 LET LLIJ=LLI*1]

110 LET LLI+1]=K

120 LET 5=1
121 REM ##%% TURN THE SWITCH @N #*%
130 NEKXKT I

138 REM IS THE SWITCH ON??

140 IF 5=1 THEN &0

142 REM IF THE SWITCH IS5 8FF THERE WERE N@ EXCHANGES AND
143 REM THE LIST IS IN @RDER

145 PRINT "THE NUMBERS IN @RDER"™

150 FOR X=1 T@ N

160 PRINT LLX13

170 NEXT X

180 END

RUN

ARANGS

HERE 15 THE LIST A5 IT IS BEING FORMED*%%
107 195 85 130 138 38 1z 209 127] 15 168
5 138 162 109] 98 44 & 18 177 30 213
138

THE NUMBERS IN @RDER

5 5 & 15 18 30 a8 44 75 85 28 107

109 112 127 130 138 138 138 162 168 177 195 209

213
DANE

We will now generate random data for one other type of problem. If it is
4 o'clock, 10 hours later it will be 2 o’clock. This concept contains the seed
of the development of modular arithmetic. First let us write a little program
to take random times and add random numbers of hours. The random times
must be numbers from 1 to 12. The random numbers of hours could have
virtually any range, but 1 to 36 will do. The flowchart of Fig. 4-6 should
help to organize the problem. We can determine the number of computations
with a loop. Here we are picking 10 pairs of numbers, with T for time and
H for hours. Then we add them and check to see if the sum is less than or
equal to 12. If the sum is less than or equal to 12, we want to have the sum
printed as the time. If the sum is greater, we want to subtract 12 and check to
see if the result is less than or equal to 12, ete. After the sum is printed we
want the computer to return and pick another pair and repeat the same process
until 10 pairs of numbers have been picked and processed. See CL@ACKI.

68 Basic BASIC

i Start }

-l
FORP =1 ’. LETT = INT
TP 10 (12+«RND{1) + 1)
LETH = INT
(36 « RND(1) + 1)
LETS=T+H
LETS=5—12
NEXT P
END

Fig. 4-6. Flowchart for adding hours to times and computing times for
program CLPCK.

Now, if we want to change the number picked for hours, we can change
line 30 to 30 LET H = INT(12 ®* RND(1) + 1) and get the same range for
both T and H. But then we would have two lines using exactly the same
function:

20 LET T = INT(12 ®° RND(1) + 1)
30 LETH = INT(I12 ° RND(1) + 1)

This situation is a candidate for the program-defined function:
DEF FNC(Z) = INT(12 ® RND(Z) + 1)
Then lines 20 and 30 are

20 LET T = FNC(1)
30 LET H = FNC(1)

Computer Functions 69

CLACK1

10 FOR P=1 TO 10

20 LET T=INTCLI2%RND(1)+1)

30 LET H=INTC(36%RNDCI1)+1)

40 LET 5=T+H

50 IF 5 <= 12 THEN BO

60 LET 5=5-12

70 G3Te 50

BO PRINT H"HOURS FROM™T"@'CLACK IT WILL BE"S5"0'CLACK™

90 NEXT P
100 END
RUN
CLaCK1
8 HAURS FROM 6 @'CLACK IT WILL BE 2 @ "CLACK
33 HE@URS FRaM 9 @'CLeCK IT WILL BE 6 g*CLack
27 HOURS FR@M 5 @'CLAcCK IT WILL BE 8 8 *'CLeCK
33 HABURS FROM 5 @°'CLeCK IT WILL BE 2 @ "CLaCK
31 HBURS FRaM 9 @°'CLeCK IT WILL BE 4 @*CLACK
ae HOURS FR&M 12 @'CLOCK IT WILL BE 8B @"CLACK
2 H@URS FR@&M 9 @'CLeCK IT WILL BE 11 @*'CLacK
28 HBURS FR@GM 4 @'CLOCK IT WILL BE B @ "CLACK
8 HAURS FROM 10 @'CLPCK IT WILL BE & @ "CLACK
4 HBURS FREM 11 @'CLACK IT WILL BE 3 8 'CLACK

DBNE

In CLOCK2 we change lines 20 and 30 and insert line 5 to define FNC()
and list the program in full.

CLBCKZ

5 DEF FNCCZ)=INTC12%RND(Z)+1)

10 FOR P=1 T@ 10

20 LET T=FNCC(1)

30 LET H=FNCC(1)

40 LET 5=T+H

50 IF 5 <= 12 THEN BO

60 LET S5=5-12

70 GAT@ 350

80 PRINT H"H@URS FROM"T"@°*CLBCK IT WILL BE"5"@'CLOCK"
0 NEXT P

100 END

RUN

CLeckz

6 HAURS FROM 6 @'CLACK IT WILL BE 12 @"CLOCK
7 HBURS FRAM 8 @'CLOCK IT WILL BE 3 @ "CLACK
7 HBURS FR@M 12 @'CLack IT WILL BE 7 @'CLOCK
8 HBURS FROM 3 @'CLacKk IT WILL BE 11 @°*CLOCK
5 HB3URS FramMm 7 @'CLack IT WILL BE 12 @'CLBACK
4 HAURS FREM 4 @'CLACK IT WILL BE B @ 'CLACK
7 HBURS FRE2M 5 @'CLACK IT WILL BE 12 @'CLACK
4 H@URS Froam 11 @'CLeCK IT WILL BE 3 @'CLack
11 HBURS FROM 3 @'CLACK IT WILL BE 2 @ *"CLACK
10 HOURS FROM 12 @'CLABCK IT WILL BE 10 @'CLack

70 Basic BASIC

Modular Arithmetic

From the clock program we can easily develop the concept of modular addi-
tion. The biggest difference between modular addition and the last program is
that for modulo 12 addition mathematicians define the set of integers as {0, 1,
2,3,4,5,6,7,8,9, 10, 11}, dropping 12 and appending 0. Now we may not
allow sums of 12 as before. So we will have to change line 50 to test for less
than or equal to 11 not 12. But we must not change line 60 which subtracts
12. Why? Since we defined a function in CLOCK2, we need change only line 5
to generate integers from 0 to 11. As we wrote CLACK], we would have had
to change two lines. Of course, we will have to change the printing and name
the new program M@D12.

mapiz

5 DEF FNCCZI=INTCI2%RNDCZ))
10 F@R P=1 10 10

20 LET T=FNCC1)

30 LET H=FNCC13

40 LET 5=T+H

S0 IF S5 <= 11 THEN 80 MAMDI12
60 LET S=5-12
70 GAT1B S0 S DEF FNCCZ)=INTC12%KND(Z))
B0 PRINT H"+*I*'='5"MpD 12" 10 F2¢ P=1 TO 5
90 NEXT P 20 LET A=FNCCD)
100 END 30 LET B=FNCC1)
RUN 40 LET 5:=A+B
Mani2 SG PRINT A"smpgw= w3
60 GOSUB S00
; + 6 = 1 MBD 12 70 LET 5=A%d
8 + 5 = 1 M@D 12 B0 PRINT A"%"B"= "
2 + 9 =11 M@OD 12 85 GOSUB 500
8 + 6 = 2 MBD 12 87 PRINT
10 + 8 = 6 MaD 12 90 NEKT P
i + 1 - MBD 12 490 STOP
1 + 3 = 4 Mep 12 500 IF 5 <= 11 THEWN 530
7 + 11 = 6 MOD 12 510 LET $=5-12
10 + 9 = 7 Map 12 520 GOTD S00
1 T = B Man 12 530 PRINT sS"MCD 12 s
540 RETUxN
DBNE 9999 END
iEUN
MAMD 12
10 + 4 = 2 MaD 12 10 % a = 4 won 12
! + 2 = 3 MOD 12 1 * 2 = 2 MO 12
3 + 1 = 7 MOD 12 6 * 1 = 6 MOp 12
3 + 10 = 1 MDD 12 3 * 10 = 6 MDD 12
1 + 10 = 11 MOD 12 1 = 10 = 10 Mobp 12

DONE

on, multiplication 5 bound to follow. Suppose we mul-
tiply 5 by 7. We are accustomed to getting 35. But for M@D12 we only allow
0 through 11, so we subtract 12 and get 23, which is still too large. Subtract
12 again to get 11. Thus we are going to use the subtraction routine in the

multiplication part of M@DI12 also. This is a CG@ASUB situation. In the flow-

I‘;.i:ll’!'lﬂv-n . .‘..-L-'l:ﬁ

AAd A RA Bk G L RSN

Computer Functions 71

chart of Fig. 4-7, the GOSUB predefined process is the subroutine of lines 50,
60, and 70 in M@D12, Of course, there are more changes in printing. We call
the program MAMDI12 (Multiply and Add MoD 12).

Start

Get two num-

FORP =1 ’
TOS -bers 0 to 11

A, B

<&

LETS=A+8B

b

PRINT
Ai’f + JiB

G@SUB 500

<+

LETS=A-B

<+

PRINT
Hif & i:B

o+

NEXT P GpSUB 500

Fig. 4-7. Flowchart for adding and multiplying mod 12 for program
MAMD12.

SUMMARY

Two major expansions in our programming capability have occurred in this
section. We are now able to generate random numbers in any range we like.
They can be limited to integers or they can be decimal numbers. And lists
may now be dimensioned to the length that we require. We have also used the
CEOSUDB statement to good advantage in a modular withmetic program.

72 Basic BASIC

PROBLEMS FOR SEC. 44

1) Print a list of 30 randomly assigned numbers from 2.00 to 20.00 with tenths
and hundredths permitted but no digits to the right.

2) Print a list of 25 integers from —200 to 200 assigned by a random number
function in increasing order.

3) Print the list in problem 2) to guarantee that there are no duplications. In
other words, if you generate a number that has already been used, generate another.

4) Prepare a list of the first 18 Fibonacci numbers. For all nonequal pairs find
the greatest common factor. Enter the greatest common factors in a list with no
duplications and print the result.

5) Prepare a list of the first 20 Fibonacci numbers. For 1 = 2 to 19 print F[I] *® 2
—FlI —11° F[I 4 11

6) Use three lists to add two 20-digit numbers. Use one list for each number and
enter the digits one by one as elements in the list. Use the third list as the sum list.
Be sure to carry if the sum of the two corresponding digits is 10 or more.

7) Do problem 6) using two lists instead of three,

v 8) Use three lists to multiply two 10-digit numbers digit by digit. (Could this
be done with two lists?)

9) Modify program MAMDIZ2 to find the remainder after dividing the value of
S by 12 to replace the subroutine that uses successive subtraction,

10) Write a program to do arithmetic mod 5 and mod 6, five problems each.
Put 5 and 6 in a data line and write one random function so that it generates 0 to 4
for mod 5 and 0 to 5 for mod 6.

11) Have the computer print the addition table and the multiplication table for
mod 6.

12) Have the computer do subtraction mod 7.

13) Write a program in which the mod and the number of problems are selected
at random, and the problems are generated with random data.

14) Have the computer generate pairs of integers and find the greatest common
factor. .

15) Have the computer generate sets of three integers and find the greatest
common factor.

16) Generate pairs of integers and find the least common multiple.

17) Generate sets of four integers and treat them as coefficients of two binomials

and find the three coefficients of the product; ie., generate A, B, C, and D
in (AX 4 B){CX 4 D) and find E, F, and C in EX °° 2 4+ FX -+ G, Print all
five numbers in two groups, one group for A, B, C, and D and another for E, F,
and G.
v 18) Form two 20-element lists with integers in the same range. Form two other
lists. One list is to contain all numbers that appear in both lists, i.e., the intersec-
tion of the two lists. The other list is to contain a number if it is in either of the
original two lists, but only entering it once if it is in both lists. In other words, find
the union.

19) Fill a 25-element list with the first 25 positive odd integers. Fill a second
25-¢lement list with the sum of all the entries of the first list up to and including
the subscript number of the second list.

20} Modifsy CTACK o hondle times in hours and minutcs

R | ARLAALs LALRSL A AL AR o R AEA AR L

CHAPTER 5

Elementary Data Processing

5-1 INTRODUCTION TO DATA PROCESSING

One of the very common uses of computers is for data processing. There is
no clear cut definition for data processing that distinguishes it from other
kinds of computer activity. In a sense, all computer work is data processing,
However, data processing often implies that the computer is being used to
sort, collate, tabulate, and/or otherwise process data. Such activities as process-
ing questionnaires fall in this category.

Tabulating One Item

Let us ask some families how many television sets they have in their homes.
The answers will be numbers, one number per family. We can set up a list so
that the first element counts the number of families with one set and the Nth
element counts the number of families with N sets. Before we begin counting,
there will be zero families having each number of sets. So we will have to
initialize each element of the list at 0. Then when the number for a family is
read, we will add 1 to the element in the list corresponding to that number of
television sets. If the first family has one set, then we have the computer look
at T[1]. T[1] =0 to start, and adding 1 makes T[1] = 1. The next time a
family has one set we have the computer add 1 to T[1], and then T[1] will
equal 2. The process is repeated until all data is read. We will have to use
dummy data, since we want to print the results only after we have tabulated
all data. We can draw a simple flowchart. See Fig. 5-1.

Of course we could allow for a larger number of sets by simply using a
longer list. We could have provided for zero sets by letting T[1] tabulate 0,
T[2] tabulate 1, T[3] tabulate 2, etc. Then line 60 in program TV'S would read

60 LET T[N+ 1] = T[N + 1] + 1

because, when N is 0, you want T[1] and when N is 1, you want T[2], etc.
Or we could use 0 subscripts if they are available.

Basic BASIC

-

Initialize
four-item
listali0's

PRINT : PRINT
headings list
LET T[N] END

=T[N] + 1

Fig. 5-1. Flowchart for tabulating number
of television sets per family.
TW'3

10 F3k I=1 TO 4
20 LET TLIl=0

30 WNEXT 1

31 AEM EACH ELEMENT IN THE LIST 1S NOW ZFR3
40 HEAD N

49 nEM TEST FOR THE END JF DATA

S50 IF N==-1 THEN 40

59 HEM INCREASE THE TABULATING ELEMENT FOBR N SETS BY ONF

60 LET TINI=TI[NI+1

M GOTO 40

80 FRINT "N@. OF TV'S","NO. OF FAMILIES"

8% REM N@W PRINT THE NUMBER OF SETS AND THE NUMEBER OF FAMILIES

20 FGR I=1 TO 4

100 PRINT 1-.T0L12

110 NEAT I

498 REM EACH ITEM OF DATA 15 THE NUMBEK OF TV'S IN ONE FAMILY

500 DATA e Jadr o2 13010122040 130120 8ia 1301 lalsdislsds2s
2,[,2

510 DATA 2:!:3-3:2:2:]:|.|l|.|IE:2:::|:4:4:2:&:]:4:2r4:2:!JEJI

520 DATA -1

999 END
RUN
TV'S
Was OF Tw-s MU« UF FAMILIES
1 20
2 15
3 8
4 9

Elementary Data Processing 75

There are some more things that we can do with TV'S. We might have the
computer count the number of families or count the total number of television
sets. These figures may be computed as the data is being read. There can be a
counting statement LET C = C + 1 somewhere between lines 50 and 70, and
there can be a summing statement in the same part of the program. LET § =
S + N will total the number of sets. Then as long as we have the total number
of sets and the total number of families, we might just as well compute the
average number of sets per family. These are left as exercises.

Tabulating Several Items

With just a few modifications TV'S can be extended to handle data pertain-
ing to several different things.

Suppose in taking a census, we ask not only how many television sets the
family has, but also how many cars, homes, and bathrooms. All that is neces-
sary is to have four counting lists instead of one. We need one list for each
item being counted. In lines 10, 20, and 30 we initialize four lists at 0 for up
to eight items in any one category. This could be more or less for any par-
ticular problem. We check for dummy data in line 50 and then update the
four lists in lines 60 through 90. In the printing routine, I determines the
element number in each list and so is the number of items in each list. T(I]
is the number of families that have I television sets, C[I] is the number of
families that have I cars, etc. See program TCHB.

From the results we see that there were nine families with one car, seven
families with two television sets, etc. We could also do more data processing
in TCHB. We could find the average number of cars per family, etc.

Tabulating Yes—No Answers

We are not limited to numerical quantities. Suppose you were to question
each of your classmates about courses they want to take. If you ask, “Do you
want to take chemistry?” and the answer is “no,” you can call that 0, and sim-
ilarly call “yes” 1. Let us ask people if they want to take the following courses:
chemistry, physics, French, Spanish, calculus. If someone says he wants to
take chemistry, French, and Spanish, his data will be: 1, 0, 1, 1, 0. We can use
one list to count all courses. The first element of the list will count people who
want to tuke chemistry, the second will count people who want to take French,
ete. Before reading any data, we will have to initialize each element of the list
at 0. Then after reading the fast person’s data, we want the list to be
1.0, 1, 1, 0, which can be done by adding the number representing yes or no
to the number alveady in that location of the list. We can get the computer to
read the data in groups of five by using a loop FOR R = 1 T@ 5, with the
READ statement and the tabulating statement inside. The real works of the
program will be the tabulating statement

LET C[R] = C[R] + K

where R is the loop available and goes from 1 to 5 for each person’s data. If
R = 1, the comse is chemistiy; it R = 2, the course is physics, ete. Where K is

76 Basic BASIC

TCHB

10 FBR I=! T80 E

20 LET TLI)=CLI)=HCL11=BLI1=0D

30 WNEXT I

3t REM ALL TABULATING LISTS ARE INITIALIZED AT ZER®
40 READ T.CsHsB

4% HREM CHECK F@R DuUMMY DATA

50 IF T=-1 THEN 110

59 REM 60 T@ 90 ENTER THE LATEST DATA IN THE FOUR LISTS.
60 LET TLTI=TILTI1+1

70 LET CLCI=CLC1+1

B0 LET HLHI=HLHI+]

20 LET gfoli=pfods

100 GBT@ 40

109 REM HEKE THE HEADINGS ARE PRINTED

110 PRINT "NUMBER, TV*Ss CARS, HOMES,BATHS"

119 REM HERE THE RESULTS ARE PRINTED

120 Far I=1 Ta 8

130 PRINT ISTCIXSCCINSHCOINIBII)

140 NEXT 1

349 REM EACH GROUP 2F FAUR NUMBEHRS IS FaR ONE FAMILY- TsCsHsB
330 DATA 12lsls0102515152535251525 4532585 4,22155
3533 DATA Erlrlr:}h!r11113121Ir]:E;I:l:IJ]:E;]:I:I
360 DATA 2s2:25 6515 1s 15 45 3, A 22 62 V225 1222 2+2:2,8
365 DATA 2s151:2:-1,0.0:0

400 END

RuUN

TCHBE

NUMBER, TV'S, CARS, HOMES,BATHS
1 5 9 12 3
2 7 5 4 5
3 2 1 0 2
4 2 1 0 1
5 0 v} 0 1
6] 0 0 2
1 0 0 0 0
B8 0 0 0 2

UANE

0 this person does not want to take the cowrse, and where K is 1 he does. So
when K = 0, the tabulating statement adds 0 to the previous value in the C
list, which does not change the number there. This is what we want for the
person who does not want to take the comise. However, if K = 1. then the
tabulating statement adds 1 to the previous value of the entiy in the C list,
which is exactly what we want the computer to do for a person wanting to
tuke the course. Again the dummy data is —1.

From CAURSI, we can easily see that seven people want to take chemistry,
five people want to take physics, ete.

One last thing we might try to consider in this section is getting larger
amounts of data in a program similar to C@URSI. Suppose you want to see
what results might look like for say 500 people. Well, you could ask 500
peopic and then type vl all ihat data. Or you couid generate random data,
with the understanding that the results will be random and may not simulate
the real situation. However, knowing that the numbers will be random will
help you spot serious errors if there are any. For 500 people and random data,
each course should draw about 250 yeses, I the results show 96 or 600 yeses

Elementary Data Processing 77

Couksl

10 FOx I=1 Td 5
20 LET CCIl=0
30 NEAT I

40 FO:ix R=1 TO 5
50 <EAD K

60 IF K=-1 THEN 100
70 LET CLOrRI=CLrI+K
80 NEXT R

0 GOTO 40

100 PRINT "“CHEMISTRY"™: "FHYSICS", “FRENCH": "SFANISH*, "CALC'L1I1S"

110 F3w 1=1 TB 5

120 PRINT CLI.

130 NEXKT I

990 HEM DATA IS5 IN OKRDEK CHEMISTRY PHYSICS FRENCH SPANISH
CALCYILIS

995 (EM '1* MEANS YES 'O MEANS NO

1000 DATA 1,0s15150s0s05 1015015151515 150s05121205151505041

1010 DATA Os1s120s15000,0s1500151:05150514150:05151,05050s1

1020 DATA 0,051,05151,0,150,0

1100 DATA -1

9999 END

RUN

CBURS1

CHEMI STRY PHYSICS FRENCH SPANI SH CALCULUS
7 5 T & 6

DANE

in some course, then you must search for the error. One nice thing about using
random data is that you do not have any data to type in. So in CAOURS] we
may eliminate lines 1000, 1010, 1020, and 1100. Now the REM statements
are not quite relevant. Line 60 can be deleted as we are not testing for dummy
data and line 50 is deleted as we are not going to read data anymore. Line 90
will be taken care of by putting in a loop 1 to 500 to simulate 500 people. To
get random numbers 0 or 1 we need INT(2 ®° RND(1)). The initializing, the
tabulating, and the printing of C@QURSI1 can be used in the new program
C@URS2, where the results are reasonably close to 250.

SUMMARY

We have seen lists used to analyze data from questionnaire-type questions
having numerical or yes—no type answers. The tabulating may be done using
one or several lists depending on the problem itself. Random numbers may be
used to try out such programs with many numbers. The random nature of
these numbers may help to spot serious program errors, which might not show
up with small amounts of data unless you check the totals by hand.

PROBLEMS FOR SEC. 5-1

1) Modify program TV'S to total the number of television sets and the number
of families, and find the average number of sets per family rounded off to the nearest

hundredth.

78 Basic BASIC

C@URrRS2

10 F@R J=1 18 5

20 LET CrIl=0

30 NEKT I

33 REM THIS LBOF SIMULATES 500 PEBPLE

35 F@R X=1 Te@ 500

40 FBR R=1 1@ 5

42 REM THIS LO@P LOOKS AT FIVE COURSES FOR EACH PERSON
48 REM PICK A RANDEM NUMBER ZER® @R ONE
S0 LET K=INT(2*RNDC12)

70 LET CLRI=CLR)+K

78 REM NEXT COURSE

80 MNEXT R

BB REM NEXT PERSEN

30 NEAT X

100 PRINT *"CHEMISTRY'™s "PHYSICS®","FRENCH"» "SPANT SH", ""CALCLL. US™
110 FOR I=1 TB& 5

120 PRINT CC1).

130 NEXT 1

9999 END

RUN

CBURS2

CHEMISTRY PHYSICS FRENCH SPANT SH CALCULIS
253 257 237 249 256

DANE

2) Modify program C@OURS] to find the number of people who want to take
chemistry and physies.

3) Modify COURS2 to generate twice as many yeses as nos.

4) Modify COURS] to find the number of people who want to take physics but
not caleulus.
J 5) Consider a questionnaire in which there are 14 questions which call for yes,
no, or other answers. Let 1 be yes, 2 be no, and 3 be other. Set up three separate
lists for yes, no, and other. Generate 25 sets of 14 numbers 1, 2, or 3 and find the
number of each type of answer for each question number. Print the results in

decipherable form.
6) Modify COURS2 to generate yes-to-no answers in a ratio of 3 to 4.

3-2 ARRAYS

So far we have only been able to store numbers in a simple variable or in
a list. There will be situations where we will want to store more numbers than
is convenient in a list. While we have seen that we can use several lists very
effectively, BASIC provides a two-dimensional list for such situations. It may
be called an array. You may think of an array as being similar to a checker-
board. Instead of the familiar single subscript we have been using for lists, we
will need double subscripts; one for rows and the other for columns. (As with
liste, comnuters vary. Some will allow 0 swhserints, others hegin with 1) For
an array designated as A, A[l, 1] is the number in the upper lefthand corner.
(In some cases, it will be A[0, 0].) A[1l, 2] indicates the number in row 1
and column 2; A[5, 8] indicates the number in row 5 and column 8, etc. In
other words, the first subscript indicates the row starting at the top and the

Elementary Data Processing 79

second subscript indicates the column starting at the left. Thus, A[R, C] indi-
cates the number in row R and column C.

An array is just a set of numbers arranged in columns and rows, This per-
fectly matches the printed result in program TCHB in Sec. 5-1. We may use
each column of an airay in the same manner that we used each list in that
prograin, and we can use each row to keep track of the number of families
having that number of the item being tabulated. But before we tackle TCHB
in an array, we should see a little more how arrays operate.

Very often we will use a nested loop, with one loop taking the computer
through the columns and the other loop going through the rows. The structuie
of an array is shown in Table 5-1. For students without 0 subscripts, consider
the dashed outline to exclude the 0 row and 0 column. For students who have
0 subscripts, consider the dashed outline to suggest that it is optional whether
or not you use them at this time.

TABLE 5-1. ARRAY STRUCTURE.

rl,m! 1,1 M2 1,3 (1,4 (1,5]
2,001 (210 1221 12,31 (2,4 125

13,01

|
I
|
|
|
|
I
|
|
] [3:1] 13, 2] (3, 31 (3, 4] 3, 5]

I
|
I
|
|

ARRAY]

9 REM INITIALIZE A AT @NE

10 LET A=l

19 REM RAWS G& FrRO® 1 T2 3

20 F@2R H=1 T@ 3

29 REM COLUMNS G@ FROM 1 T8 5
30 F@R C=1 18 5

40 LET TCR.C1=A

50 LET A=A+l

59 REM NEXT COLUMN

60 NEKT C

&9 REM MNEXT RIW

70 MNEKT R

B0 PRINT "AT THIS PRINT THE ARRAY I5 FILLED"
99 END

RUN

ARRAY 1

AT THIS PIINT THE ARRAY 135 FILLED

DANE

It is time for another demonstration program. In ARRAY1 we simply fill a
3-row by 5-column array with integers 1 through 15 going first across the

80 Basic BASIC

page and then down, just as we read the printed page. In this program we
have called the array T. Any letter of the alphabet may be used. However, do
not use the same letter to name both a list and an array in the same program,
This is because the computer treats a list as an array with just one column or
one row, depending on the computer.

We have filled the array just as the printed message states. However, as
was noted in Chap. 1, in order for the work of the computer to be useful,
we must eventually get back from the computer some printed results. Note
that we say eventually. The more advanced we get in programming, the
more we will do things that are not immediately printed. Nonetheless, just
to restore your faith in the computer, let us ask it to print some values from
the array we just created. After line 80 we will insert a variety of printing

ARRAYZ2

9 REM INITALIZE A AT ONE

10 LET A=1

19 REM ROWS G@ FROmM 1 T2 3

20 FBR R=l1 T@ 3

29 REM COLUMNS G@ FRAOM 1 T@ 5
30 FOR C=1 T@ 5

40 LET TCR:Cl=A

S0 LET A=A+1

59 REM NEXT COLUMN

60 NEXT C

69 REM NEXT ROW

70 NEXT R

BO PRINT "™AT THIS P@INT THE ARRAY IS FILLED™
BS5 PRINT

B9 REM LET'S PRINT TC3, 4]
90 PRINT "TL3,4) =";3TL 3, 41

100 PRINT
110 PRINT "™WH@ LIVES AT [2,51?"35TL[2,513"LIVES THERE"
120 PRINT

130 PRINT "LET®S LO3@K AT THE ENTIRE ARRAY"™
139 REM INCREMENT ROWS

140 FOR R=1 T3 3

149 REM INCREMENT COLUMNS

150 FéR C=1 T@ 5

160 PRINT TLR.C)}

170 NEXT C
175 PRINT
176 PRINT
1B0 NEXT R
999 END
RuUN

ARRAY 2

AT THIS POINT THE ARRAY 15 FILLED
TC3-41 = 14
WH@ LIVES AT (2.5)? 10 LIVES THERE

LET"S L@@k AT THE ENTIRE ARRAY
1 2 3 4 5

] 7 8 2 10

11 12 13 14 15

Elementary Data Processing 81

with labels and comments much as we did earlier in the introduction to lists,
See ARRAY2.
The elements of an array constitute variables just as do the elements of a

list. We may operate on any element or elements in the array we choose.
Consider ARRAY3.

ARRAY 3

10 LET A=1

20 FBR R=1 T2 3
30 FBR C=1 T& 5
40 LET ACR.Cl=aA
50 LET A=A+l

60 NEXT C

70 WNEXT r

90 PRINT "“WE PRINT THE @RI GINAL ARRAY"

100 G¥5UB 900

110 PRINT "WE CAN MULTIPLY EVERY ELEMENT IN THE 4TH C3L UMN
BY s&"

120 FOR R=1 Ta@ 3

130 LET ACR,4)=ALRs 41%6

140 NEXT R

150 GI5UB 900

160 PRINT "WE CAN SUBTRACT THE 3RD RAW FR@M THE 2ND RAW"

170 PRINT "AND PUT THE RESULT IN THE 3RD ROW"™

180 F@R C=1 19 5

190 LET AL3.,Cl=AL2,Cl-AL3:C1

200 NEAT C

210 GBsSUB %00

B80 STdP

B90 REM #*+«PRINTING SUBROUTINE IS HERE®x®#%%

00 F@R R=] T@ 3

710 F@R C=1 T9 5

F20 PRINT ALHsC13

930 NEKT C

F40 PRINT

950 PRINT

760 NEXT R

970 RETURN

999 END

HuN

ARRAY 3

WE PRINT THE @RIGINAL ARRAY
1 2 3 4 5
-] 7 8 9 10
11 12 13 14 15
WE CAN MULTIPLY EVERY ELEMENT IN THE 4TH C@LUMN BY &
1 2 3 24 5
& 1 8 54 10
11 12 13 B4 15

WE CAN SUBTRACT THE JRD R@W FRIM THE 2ND ROW
AND PUT THE RESWLT IN THE 3RD ROW

1 2 3 24 3

& 7 g 54 10

-3 -5 =3 =30 -5

82 Basic BASIC

We can even change the size of the array during a program. In ARRAY4
we begin with the original 3 by 5 array of ARRAY3 and tack on an extra row
to enter the sums of the entries in the first three columns. Notice that in both
ARRAY3 and ARRAY4 we are able to use G@SUB to save writing the printing

routines more than once.
You should begin to see that we have exactly the same control over the

contents of an array that we do over the contents of a list.

Now let us look again at our census program TCHB. There we used an
8-row by 5-column array in which the first column simply contained the row
number and the other four columns each contained tabulated results for a
different item. We may now put the READ statement in a loop going from 2
to 5 and let the loop variable determine the column in which the tabulation
takes place. The other features of the program are procedures that we have
used before. See TCHB+. J

ARRAY 4

10 LET A=1

20 F@R R=1 T8 23
30 F@R C=1 T8 5
40 LET ALRsCl=A
50 LET A=A+]

&0 NEAKAT C

70 NEXT R

B0 PARINT "HERE 1S THE @RIGINAL ARRAYI!™

100 FéRr R=1 T@ 3

110 F@8R C=1 T8 5

120 PRINT ACRsClJ

130 NEXT C

140 PRINT

150 PRINT

160 WNEXT R

168 REM SET ALL ELEMENTS IN THE 4TH R@w T2 ZERD

170 FOR I=1 T8 5

180 LET AL4,11=0

150 WNEXT I

200 PRINT "N3Ww WE HAVE THE 4 BY 5 ARRAY:"

210 GAsuB 500

219 REM THIS ROUTINE ADDS COLUMNS AND PUTS THE 5uUM IN THE 4TH
RA W

220 F@R C=1 T@ 5

230 FdR rR=1 T@ 3

240 LET AL4,Cl=AL4sCI+ALRsC)

250 NEAT R

260 NEXT C

270 PRINT "THE FOURTH H@W CONTAINS THE SUMS @F THE FIRST 3

RAWS."
280 GAsUB 500
430 5TaP

498 REM ##THIS 15 THE PRINTING ROUTINE FBR THE 4 BY 5 ARRAT+*#
500 Far R=1 T@ 4

510 FB8R C=1 T@ 5

520 PRINT ALR.Cl3

530 WEXT C

540 PRINT
550 PRINT
560 WNEXKT K
570 HETURN

999 END

Elementary Data Processing 83

RUN
ARKAY 4

HERE I35 THE @ORIGINAL ARRAY!

i 2 3 4 5
é 7 B 9 10
i 12 13 14 15

N@Ww WE HAVE THE 4 BY 5 ARRAYS

1 2 k} 4 5
6 7 8 9 10
11 12 13 14 15
0 0] 0] 1)

THE FOURTH R@W CONTAINS THE SUMS @F THE FIRST 3 R@WS.

1 2 3 -1 5
& 7 B 9 10
11 12 13 14 15
18 21 24 27 30
DANE
TCHB+

10 FOR R=1 T@ B

14 REM HERE THE ROW NUMBER IS ENTERED IN THE FIRST C@LUMN
1S LET S5LRs11=R

20 F@R C=2 TQ 5

30 LET SCRsCl1=0

40 NEXT C

530 NEXT R

68 REM WE ARE ENTERING FIGURES IN COLUMNS 2 THRAOUGH 5 @nNLY
70 F@R C=2 T@ 5

B0 READ N

85 IF N=-1 THEN 110

B8 REM N DETERMINES THE ROW NUMBER WHICH KEEPS TRACK @F N

ITEMS
70 LET SIN»CI1=SI[N,Cl+1
100 NEXT C

105 G@Ta 70

110 PRINT "NUMBER, TV'Ss, CARS, H@MES,BATHS"

119 REM HERE THE RESULTS ARE PRINTED

120 F@R H=1 TP 8

130 F@R C=1 T8 5

140 PRINT SCR,C13

150 NEXT C

155 PRINT

160 NEXT R

349 REM EACH GROUP OF FOUR NUMBERS IS FOR @NE FAMILY- T.CsHsB
350 DATA 1s 1515152515152+ 35251522 40 322,854,215
355 DATA 22 151535 12130133225 121325151212122215121
360 DATA 25 2,2, 65 1lsls 15435 4525621225 1,242,2,2:8
365 DATA 25 14142:=1,0:0,0

400 END

84 Basic BASIC

RUMN

TCHEY

MUMBER, TV 'S5, CARS, HOMES:BATHS
9 12

0w U b=
COoOOOMNMN W
0OMN==wmw

3
1
1
0
0
0
0

00000

DaNE

SUMMARY

We may now use a powerful extension of the list concept, the array. An
array may be thought of as an arrangement of numbers in which there are
rows and columns. Numbers in an array may be accessed by designating the
location by a double subscript such as H[3, 7] for the number in array named
H which is located in the row numbered 3 and the column numbered 7. As
you may have guessed, you will not need a DIMension statement as long as
you do not exceed a subscript of [10, 10].

PROBLEMS FOR SEC. 5-2

1) Print an array with 3 rows and 6 columns filled with 0’s.

92) Print an array with 6 rows and 3 columns filled with 1’s.

3) Set up an array with 4 rows and 9 columns and fill it with random numbers
from —999 to 4999. Print the array.

4) Fill the addresses along the top left to bottom right diagonal of a square
7 by 7 array with 1's and all other locations with 0s and print the result.

5) Fill two arrays of the same dimensions with random integers and print each
array. Then fill a third array with the sums of the corresponding entries from the
first two and print the result.

8) Fill iwo arrays of the same dimensions with random integers and print cach
array. Then fill one of these two arrays with the sums of the corresponding entries
from each array and print the result.

7) Fill a 3 by 7 array with the integers 0 through 20. Print that array. Then
multiply each entry by the sum of the row number and the column number and
print the result.

8) Fill a 4 by 7 array with random integers from —500 to 4500 and print the
result. Then multiply each entry by 2 and print that result. Insert the printing
routine using C@ASUB.

9) Fill a 10 by 10 array with the addition table.

10Y Fill 2 10 hv 10 arrav with the muoltinlieation table

11) Fill a 5 by 5 array with the addition table mod 5. Then have the computer
generate addition problems with a random number function and find the sum by
accessing the appropriate entry in the additon array.

12) Do problem 11} for the multiplication table mod 5.

v 13) Consider a questionnaire containing 10 questions with yes, no, or other as the

Elementary Data Processing 85

three possible answers. Generate random data and print the results in a 10 by 4
array. Use the first column for the question number and the other three for yes, no,
or other. Have the computer generate 50 questionnaires.

5-3 A MORE DETAILED QUESTIONNAIRE ANALYSIS

Consider a questionnaire submitted to four categories of people: male—21 or
over, male—under 21, female—21 or over, and female—under 21. On this ques-
tionnaire there are 15 questions calling for yes-no answers. Our task is to
present a tabulated summary of the data collected. We can provide sample
data for say 10 people for the purpose of getting a first test RUN. Let us
refer to this first problem and the program as SURVEY. The flowchart for
SURVEY is drawn in Fig. 5-2.

The first computer problem we run into is, how do we get 15 rows in an
array? The answer is that we may dimension an array much the same as we
dimensioned lists. In the array DIM (DIMension) statement, we must specify

Initialize 15 by 5
array cols. 2-5 at 0
Col. 1 to contain row no.

FORQ =1 READ

END
TP 15 A

PRINT PRINT
hEHdiﬂgS array

' LET 5[Q, P]

Fig. 5-2. Flowchart for program SURVEY.

86 Basic BASIC

two dimensions: one for rows and one for columns, We want an array with 15
rows and 5 columns (4 for categories and 1 for the question numbers). DIM
S[15, 5] will provide just such an array.

DIM (TWO-DIMENSIONAL)

DIM A[R, C] sets up an array designated as A with highest column
number C and highest row number R. The statement is required if
either R or C exceeds 10. Some computers require explicit integers,
others allow variables in DIM statements.

In our questionnaire problem, there are three things that we must keep
track of: 1) the category of the respondent, 2) the question number, and 3) the
response. We may organize the data and results according to Table 5-2.

TABLE 5-2. CHART TO ORGANIZE SURVEY.

Array
Code in
Column Number Use DATA Line
1 Question number Pasition in line
2 Male 21 or over 2
3 Male under 21 3
4 Female 21 or over 4
5 Female under 21 5

It will be easier to organize the data, if we reserve an entire data line for
each person. Then we can put the category code (2 through 5) in the first
location and the response (0 or 1) in the next 15 locations. A DATA line will
look like this:

XXX DATA4.1,0.1,.1,1,0.0:. 11,01, 0. 1,01

where the 4 indicates that the respondent is female and 21 or over, and the
I's and 0's mean yes and no in response to the 15 questions. We could count
the number of people in advance or use dummy data so that the printing can
be done after all data is read.

Sl VI W
o amaE W o B

9 REM DIM 5015:,51 5ETS UP AN ARRAY WITH *HIGHEST' LOCATION
(15,51

10 DIM 5015.5]

20 FIR R=1 10O 15

28 REM LINE 30 ENTERS THE <KOW NUMHBER IN THE FIHST COLVMN

30 LET S50Rs11=H

Elementary Data Processing 87

40 FQ+ C=2 T0 S

48 REM LINE 50 SETS THE LAST 4 CIOLUMNS AT ZERO

50 LET S50iaCl=0

60 NEAT C

T0 NEXT H

78 REM HQ READS5 THE CATELJIRY FOKR THE NFEXT PERSON IN THE SHIVEY

BO AEAD P

20 IF P=-1 THEN 200

98 HEM 0 GOES THAQUGH THE 15 AUESTIONS

100 FOR Q=1 TO 15

110 HEAD A

120 LET alds.FP1=500,P1+A

130 MNEXT O

138 HEM LINE 140 SENDS THE COMPUTEH BACK TO RE4AD ANOTHER LINF
OF DATA

140 GOTE 80

198 ®EM THE PRINTING BEGINS HEKE

200 PFRINT "QUEST MALE MALE FEMALEFEMALE"™

210 PHINT "“"NIMBER 21+ UNDER 21+ LIMDE ="

220 FOH R=1 T2 15

230 FOR C=1 T3 S

250 PRINT sS(#:Cl:

260 NEAT C

270 PHINT

280 NEXT =

49H HEM k#wxf LINE LIKE 500 MAY HELFP T3 LINEUP THE DATA LINES

499 REM IN TYPINGex#

500 REM™ Telslaolalaolaololslatolalalslslsl

501 DATA 4515015 1210,051150,1:051:051

502 DATA 45 120:0,0,050121,0:121-0,0-05141

503 DATA 3s1s1s121:0,001202120,0011,1,0.0

S04 DATA Sslsls1:0-,0,00120,00s121212120

5095 DATA 2sls1s1:0,0:120,12000121212120

506 DATA Ss0:,0s 1021202000112 12000s121

SO07 DATA S5+0,000:12012120:10:1-0:1202041

SO DATA 25050515 1505051,150:10:1,0:0s1

509 DATA 4 lslslstalslal:000:00120:1.0:0

S10 DATA 2211202012010 0:020501212121

900 DATA -1
999 END
RUN

SURVEY

QUEST MALE M™MALE FEMALEFEMALE
NUMBER 21+ JNDER 21+ UNDER
1

LB T - R
PE PSP G = = O N0 — =~ NN
CO—~—~00—0=00 === -
PO e O D0 = PO == 000 IO 00 00— L
PO P o= PO PO 0 e e s o i ==) =

e
(T AN VI -

DUNE

Notice in SURVEY that while there are four categories in the original
problem, there are five additional categories generated by the conditions of the
problem. They are male, female, under 21, 21 or over, and total. We may

88 Basic BASIC

further process the tabulated results after line 140 in SURVEY by totaling up
the appropriaie columns o get these latest categories tabulated. Of course, we
will have to change the DIM statement to DIM S[15, 10]. This is done in
SRVEY1. Study lines 145 through 190 carefully to assure yourself that the
correct values are being tabulated there.

There are many other results that we might try to find. There are other

SRVEY1]

10D NIy EC15.1010

20 FOR R=1l T@ 15

28 REM LINE 30 ENTERS THE ROWw MNUMBER IN THE FIHST COLIIMN

30 LET 50is1)=H

40 FOK C=2 T@ 10

48 <EM LINE 50 S5ETS THE LAST 9 COLUMNS AT ZERO

50 LET SLEsCl1=0

60 NEXT C

70 NEXT i

78 REM 80 READS THE CATEGORY FOR THE MEXT PERSON IN THE SURVEY

BOD KEAD P

g0 IF P==1 THEN 1a5

968 REM O GDOES THROUGH THE 15 QUESTIONS

100 FOR Q=1 TO 15

110 READ A

120 LET 5[UsPI=S51[0.P1I+A

130 NEXT @

138 REM LINE 140 SENDS THE COMPUTEHR BACK TO PEAD ANGTHER LINF
AF DATA

140 G2TO EBO

145 FOR R=1 1@ 15

150 LET SIR,6)=S5L%:,21+5[Hs 21

160 LET S[(Rs 7)=5lHs 41+50 5,51

170 LET S[IRs81=5[Hs31+5[1s5]

180 LET SLRs91=5[HKs2)1+5[s 4]

185 LET S[Rs101=50R,8)+5[K, 7]

190 NEXT R '

198 REM THE PRINTING BEGINS HE=F

200 PRINT "OUEST MALE MALE FEMALEFEMALE"™

210 PRINT "NUMBER 21+ 1UNDER 21+ UNDER MALE FEMALFE IWNDER
21+

211 PRINT ** TOTAL™

220 FOX ®R=1 1@ 15

230 FOW C=1 TO 10

250 PRINT S[HsC1:

260 NEXT C

270 PrRINT

280 NEXT =

498 AEM %xA LINE LIKE 500 MAY HELP T2 LINEINP THFE DATA LINFS

499 REM IN TYPING®#*

500 REM lalaololelaololelelolelalalatlalal

501 DATA 4s1s0s 1515050001005 00120510:051

502 DATA 45 1:0,0,0500151505151:0:0:051:1

503 DATA 35 1slslsls0s0s1502100515120:0

S04 DATA 5s1s151:0:0:0:01:0:0:020521215120

505 DATA 2511210001505 150:0:1512121:0

506 DATA Ss0s0s1:05150,0:051501212020:5141

307 DATA Ss0s0s0s12151505150:1502120:,041

508 DATA Z2s0,0s 1215005121205 1502120501

509 DATA 4 1alalslslsls1s0:0:0:150:1:0.0

510 DATA 2515 150+02 10,100,005 10505121

900 DATA -1

999 END

-

Elementary Data Processing 89

RUN
SRVEYI

QUEST MALE MALE FEMALEFEMALE
NUMBER 21+ UNDER 21+ UNDER MALE FEMALE UNDER 21+ TATAL

1 2 1 3 i 3 4 2 5 7
2 2 1] 1 3 2 2 3 5
3 2 1 2 2 3 4 3 4 7
4 I 1 2 1 2 3 2 3 5
5 i 0 2 2 1 4 2 3 5
6 I 0 2 1 1 3 1 3 4
7 2 1 2 1 3 3 2 4 6
8 2 0 1 1 2 2 1 3 4
9 0 1 2 1] 3 2 2 4
10 1 0 1 2] 3 2 2 4
11 1 0 2 2 1 4 2 3 S
12 3 I 0 2 4 2 3 3 6
13 2 1 2 1 3 3 2 4 6
14 2 0 1 2 2 3 2 3 5
15 2 0 2 2 2 4 2 4 6
DANE

totals that could be tabulated. At the time P is read, we could total the
number of people in each of the original four categories and enter these
totals in row 16. Then we could compute averages. There are numerous ratios
that we could evaluate. We could have the computer generate random data to
get larger numbers in the printed result. That would require random integers
92 through 5 for P in line 80 and random 0 or 1 in line 110 for the yes-no
TeSponses.

SUMMARY

We see that the two-dimensional array permits tremendous flexibility. We
may determine its size exactly. The array serves as a vast storage area for
large amounts of data or tabulated results. We may process the contents of
an array and enter results in other parts of the same array with tremendous
maneuverability.

The DIM statement may be used to specify subscripts greater than 10 in
the two-dimensional array much as it was used for lists.

PROBLEMS FOR SEC. 5-3

1) Modify SURVEY to handle 75 questionnaires with random data.

2) Modify SRVEY] to tabulate the totals discussed with that program in the 16th
row of the S array.

3) Modify SURVEY to handle yes, no, and other as possible answers. Create
three arrays: one for yes, a second for no, and a third for other responses. Use
random data and 50 questionnaires.

4) Modify SRVEY]1 to generate random data for 50 questionnaires.

5) Modify SRVEY1 to tabulate the results as percentages of the total number of
yes responses. Do not ereate a second array.

90 Basic BASIC

6) Fill an array with the multiplication table up to 12 x 12, and print the last
three rows.
v 7) In a 12 by 12 array enter all 1’s in the upper left to lower right diagonal and
the left-most column, and all O's elsewhere. Then beginning in the third row, second
column, enter the sum of the entry in the same column of the row immediately
above and in the column one to the left and the row immediately above, through
the 12th row, 11th column. Print the result.

CHAPTER ©

Specific Applications

6-1 EUCLIDEAN ALGORITHM

In Chap. 4 when we first reduced common fractions to lowest terms, even
though the computer did the work, it was done the hard way.
For two integers N and D,

N/D=I1I+4+ R/D
or N=I"D+R

where 1 is the integer quotient and R is the remainder. If we successively
divide the remainder into the previous divisor until the remainder is 0, the last
divisor is the greatest common factor. This will always happen, even for
mutually prime pairs, as the last divisor will be 1.

Let us see what hap < for 13398 and 7854.

N=1°D+
13398 = (1)[7854] + (6-1)
7854 = (1)[5544] + 2310 (6-2)
5544 = (2)[2310] + 924 (6-3)
9310 = (2)[924] + 462 (6-4)
924 = (2)[462]+ O (6-5)

According to Euclid the greatest common factor of 13398 and 7854 is 462, be-
cause 462 was the divisor when the remainder was 0. Indeed 13398 = 29 ® 462
and 7854 = 17 ° 462. That took only five tries. How many would it have taken
using the old method? Now all we have to do is figure out why it works.
Look carefully at Eq. (6-5). 924 is divisible by 462 because the remainder
is 0 and 0 is divisible by any nonzero number. This 0 remainder is the key to
the entire proposition. Now look at Eq. (6-4). Since 924 is divisible by 462, so
is (2)[924] 4 462, which makes 2310 divisible by 462. Now look at Eq. (6-3).

3

91

92 Basic BASIC

Since 2310 and 924 are both divisible by 462, so is 5544. This makes 7854
divisible by 462, which in turn makes 13398 divisible by 462, which is the
original contention. The argument we have just presented is hardly a proof of
the Euclidean algorithm, but it should be convincing.

Now, how do we get the computer to carry out this process? First, from
Egs. (6-1) through (6-5) we should see that we have simply taken the old
divisor D and made it the dividend and the old remainder R and made it the
divisor. So we will get the computer to LET N = D and LET D = R after we
look at the remainder to see if it is 0. If the remainder is 0, we direct the
computer to print the last divisor as it is the greatest common factor.

Now we should be able to draw the flowchart (Fig. 6-1) and write the
program C@MFAC.

INPUT
N, D

LET I
= INT (N/D)

LETR
=N—=|+D

LETN=D
PRINT
“G.C.E"D LETD =R

o) N/

Fig. 6-1. Flowchart for using Euclidean algorithm for program C@MFAC,

Specific Applications 93

COMFAC

10 PRINT "N.D"3

20 INPUT N.D

25 IF N=0 THEN 120

28 REM FIND THE INTEGER QU@TIENT

30 LET I=INTI(N/D)

38 REM FIND THE REMALNDER

40 LET R=N-1#%D

48 REM IF THE REMAINDER IS ZER@ THEN D IS THE GyCsFo.
50 IF R=0 THEN 90

58 REM R WAS N@T ZER@, S8 WE ITERATE
60 LET N=D

70 LET D=R

80 GOTA 30

90 PRINT "G.C.F. ="3D

100 PRINT
110 GB8T@ 10
120 END

RUN

CaMFAC

NsD?13398., 922251
Glcl Fe = 33

Ns.D?T741279,922251
G.C.F. = 33

MNsD?13398, 7854
G-C:Fs« = 462

NsD?29915199
GeCuFe = 1

NsD?272851-246156
GQGQ‘FI = EE.

NsD?0s0

DANE

PROBLEMS FOR SEC. 6-1

1) Write a program to add fractions given the numerators and denominators.
Print the sum reduced to lowest terms.

2) Do problem 1) for multiplication.
J 3) INPUT two pairs of coordinates. Have the computer find the slope and the
Y-intercept of the straight line containing the points and print the results as rational
numbers reduced to lowest terms. If the result is megative, have the numerator be
the negative number.

4) As a project, write a program to factor quadratic expressions with integer
coefficients. Be sure to allow for 0 coclficients and factor out greatest common
factors of all three coefficients.

6-2 CHANGE BASE

In this section we are going to develop a program to convert base-10
numbers to base-2 numbers. You will recall that for base-2, only the digits 0
and 1 are permitted and each digit represents a power of 2 instead of 10.

94 Basic BASIC

One of the widespread uses for base-2 numbers is in computers themselves.
This is because in base-2, all numbers may be expressed by a set of switches
with 0 being off and 1 being on.

One difficulty that we quickly encounter is that whatever the digit capacity
of the computer we have access to, that number of digits provides a much
smaller number in base-2 than it does in base-10. We will use up to six digits

in the base-10 number for our program. In base-2 100000 is only 32
base-10 and

111111, = 1*2°° or 1
+1%2**} or + g
41 #2%e.2 or + 4
o] Rgme g or + 8
+1°2%°4 or +16
41 28*% 5 or +32

63,0

which we could handle asily with pencil and paper. Clearly, we are going
to have to work with more than six digits in base-2.

Let us assume that we can provide for as many digits as are needed. How
many digits do we need to represent the base-10 number 999999 in base-27
We could write a program that would give that information, but we can also
figure it out ourselves. We can begin with 2 °° 5,

2%°bh = 32
2°°10= 32°°2=1024
2 °° 20 = 1024 °° 2 = 1048576

So, if we provide for up to 2 °° 20, we can handle six-digit integers with
room to spare. We know how many digits we need, now we have to figure
out how to make the conversion.

Let us run a sample conversion before we attempt to write the program,
We use 149 base-10 here. First find the greatest integer power of 2 that is
less than 149, Itis 2 ®*° 7 or 128.

149/2°* 7T =1+421/2°°7

or 149=1°(2°°7)+ 2l (6-6)
21=0°(2°*6)+21 (6-7)
2l=0°(2°° %)+ 21 (6-8)
21=1°(2°°4)+ 5 (6-9)
5=0°(2°*3)+ 5 (6-10)
5=1°(2°°2)+ 1 (6-11)
1=0°2°°D+ 1 (6-12)

1=1°(2°°0)+ 0 (6-13)

By successive substitution we see that

149= 1°(2°°7)

So that

_I_Uu{znuﬁ}
+0°(2°°5)
+1°(2°°4)
+0°(2°°3)
+1°(2°%2)
E S
+1°(2°°0)

149,, = 10010101,

Equation (6-6) may be written in general as

N=I°(2°°E)+R

Specific Applications 95

where N is the number, I is the integer quotient, E is the exponent on the
base-2, and R is the remainder after integer division. Therefore

I=INT(N/(2 ** E)

and, solving for R we get

R=

N—I®(2°°E)

Now, looking at Eqgs. (6-6) through (6-13) we see that we have an iterative
process in which the new number is to be the old remainder and the exponent
on the base-2 is reduced by 1 until it gets to 0. This looks like a loop in which
the loop variable is the exponent on the base-2 and stops at 0. Where does it
start? Earlier we decided that the greatest exponent on 2 could be 20. Now
we should be able to assemble our problem into a flowchart (Fig. 6-2).

BASE

10
20

READ N
PRINT MN: "BASE TEN ="

30 FOK E=20 TO O 5TEP =1
40 LET I=INTIN/Z2TE)
50 PRINT I3
60 LET H=N-I1%2tE
70 LET N=R
BO MNEXT E
85 PRINT "BASE TWwO"
86 PRINT
90 GAT8 10
100 DATA 999999%.:1.16
110 END
RUN
BA SE
999999, BASE TEN = O
] 0 0 1

BASE TwO

0

Fig. 6-2. Flowchart for conversion
from base-10 to base-2.

L

LET1
= INT{N/Z *=E)

/ PRINT / M FORE =20
/ N / v 0 STEP —1

|

@(— NEXT £ M= LETN=R

1 BASE TEN = 0 0 O 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
BASE TwO

16 BASE TEN = 0 0 0 0 0 0 0 0 o

0 0 0 0 0 0 0) 0 0 0 i

BASE TwO

QuUT OF DATA IN LINE 10

Looking carefully at the printed results in BASE, we can see that 16 base-10
does equal 000000000000000010000; however it is difficult to sort that out.
Printing the variable I is controlled by semicolon spacing which will not place
one-digit numbers in adjacent spaces. We can however, get the digits next to
each other by printing them explicitly. If we say PRINT “1”; the next printed
character will be printed in the next space. So, instead of 50 PRINT I; we
insert

45 IF 1I=1 THEMN 55
50 PRINT '"O';

52 GATa &0

55 PRINT *"1";

Specific Applications 97

and call for a RUN:

RUN

BASE-2

999999 . BASE TEN =0111101000010001101111 BASE TwO

16

auT

BASE TEN =000000000000000000001 BASE TwO

BASE TEN =000000000000000010000 BASE TWwO

3F DATA IN LINE 10

By not worrying too much about the fact that we were going to require a
large number of digits, we have succeeded in printing numbers with 21 digits.
Quite often in programming, as in any problem-solving situation, you will
solve seemingly impossible problems by emphasizing those things that you
can do rather than holding back because of all the things you think that you
will be unable to handle.

Let us reassemble the program as it now stands in BASE-2 and insert
another set of data just to see a few more results.

BASE-2
10 READ N
20 PRINT N;"BASE TEN ="
30 FOR E=20 TO0 0 STEP =1
40 LET I=INTON/Z2TE)
45 IF I=1 THEN 55
50 PRINT *0";
52 GOTO &0
55 PRINT "1":
60 LET H=N-I#%2rE
70 LET N=R
BO NEXT E
5 PHINT " BASE TwO"
g6 PRINT
90 G2To 10
100 DATA 999999%.,1:16
110 END
100 DATA 45,9875, 123456
RUN
BASE-2
45 BASE TEN =000000000000000101101 BASE TWO

875 BASE TEN =000000010011010010011 BASE TwWO

123456, BASE TEN =000011110001001000000 BASE TwO

QuT

@F DATA IN LINE 10

Of course we really are not finished with the program yet. We should
eliminate the leading 0’s. Then the printed results will be in more familiar
form. This is left as an exercise.

98 Basic BASIC

PROBLEMS FOR SEC. 6-2

1) Eliminate the leading (s in BASE-2. Be carcful not to eliminate all 0.

2) Write a program to convert base-2 numbers to base-10. It may help to put
the digits of the base-2 number in a list.

3) Write a program to add two numbers in base-2.

4) Have the computer convert numbers in base-10 to hase-3.
V' 5) Write a program to convert from base-10 to base-12. It is conventional to use
T for 10 and E for 11 in base-12.
v 6) Have the computer convert base-3 numbers to base-2.

J 7)) Write a program to convert base-10 numbers to any base up to 12 with the

S LEAES S hed) RS ALER

base determined from data.

6-3 LOOKING AT INTEGERS DIGIT BY DIGIT

In general, the more control we have over a number in the computer, the
more complex the problems we might expect to be able to handle. So, for the
purpose of learning to control a number in the computer digit by digit, let us
write a program to take the digits of an integer and print them one at a time.

Consider the number 8394. The 8 means 8 thousand which may be written
8 ° 10 °*° 3; the 3 means 3 hundred which may be written 3 ° 10 °° 2; the 9
means ninety which may be written 9 ° 10 °® 1; and the 4 means four which
may be written 4 ° 10 ®*° 0. Looking at the numbers step by step,

8394 =8°10°° 3 + 394
394=3"10"*2+ 94
94=9°10°"14 4

4=4°10°*"°*0+4+ O

This is an example of the general relationship
N=1"10""E+R

where I is the integer quotient found by
I=INT(N/10 °° E)

and an iterative process whereby the new N is the old R and the value of E
is decreased by 1 for each iteration. Solving for R we get

R=N-1°10°"E

All of this should begin to look familiar.

For Hi}:—{]igit integers the valne of F will have tn lmpf{i11 at 5 anel ao b)
STEP —1. Carefully study program DIGIT and you will see that we have
indeed broken integers into their separate di gits. However, as always, we should
look for ways to improve our programs. One change that will save a little paper

DIGIT

10 PRINT

"INFUT ANY INTEGEK":

20 INPUT N
30 IF N=0 THEN 999
40 FOK E=53 TO 0 STEP -1

50 LET 1=

INTCNATOTED

60 PrRINT I

70 LET H=N=I=]107E
B0 LET N=H

90 NEXT E

10

INTEGER? 123456

INTEGER?819045

INTEGER?53627

INTEGER?O

100 PRINT
110 GaTo
999 EMD
RN

DIGIT
INPUT ANY

1

2

3

4

5

&

INPUT ANY
8

1

9

(0]

4

5
INPUT ANY
0]

S

3

&

2

7
INFUT ANY
DONE

60 PRINT I3

RUN

DIGIT

INPUT ANY
| 2

INPUT ANY
9 1

INFUT ANY
a 5

INPUT ANY

DANE

INTEGER? 123458

3 4 5
INTEGER?9 75432

5 4 3
INTEGEHR?53627

3 & 2
INTEGEK?0

Specific Applications

99

would be to print the digits across the page with semicolon spacing. We can
do that by changing line 60 to read 60 PRINT I; and call for a RUN.

100 Basic BASIC

Now let us see the program with the change and try another number.
(See DIGITI.)

DIGITI]

10 PRINT "INPUT ANY INTEGER":
20 INPUT W

30 IF N=0 THEN 999

40 F@OR E=5 T@ 0 STEP -]

50 LET I=INT(N/I10TE}

&0 PRINT I3

- 10T Rep-Is10+E
[EY Ll IA=IW™ 4% §Ww® L

BO LET N=R
90 MNEAT E
100 PRINT
110 GBTO 10
999 END

HUN

DIGITI

INPUT AMY INTEGER? 666666
& 6 & & <] &
INPUT ANY INTEGEK?O

DaNE

One last consideration is that we might want to eliminate the leading 0.
We leave this as an exercise.

PROBLEMS FOR SEC. 6-3

1) Eliminate the leading 0’s in DIGIT. Be careful not to eliminate all zeroes.

2) Test integers for divisibility by 3 by summing the digits.

3) Construct the integer formed by reversing the order of the digits in an INPUT
integer. Print the result as an integer.
J 4) Test integers with the integer formed by reversing the order of the digits to
find the greatest common factor. '
Y 5) Find all three-digit integers that are prime. Form new integers by reversing
the digits and see if the new number is also prime. Print a number only if it and
its reverse number is prime. There are 43 pairs of numbers, some of which will
appear twice. You should pay particular attention to efficiency in this problem.

CHAPTER 7

Strings and Files

7-1 INTRODUCTION TO STRINGS

To a BASIC programmer, a string is a set of characters. We use strings every
time we print a message by enclosing it in quotes in a PRINT statement. BASIC
provides the ability to save strings in a special string variable, identified by
using a trailing dollar sign ($). We may use A$, BS, etc., to designate string
variables. Some computers allow Al$, B8$, etc.,, and some allow A$(R,C) to
designate string arrays. The use of strings enables us to process alphabetic data,
such as names and addresses, and descriptive data of all kinds.

We may work with string variables in many of the ways that we do with
numeric variables. For instance, in BASIC programs we may use such state-
ments as

100 LET A% = "FIRST"
100 READ A%, BS

100 INPUT ASs BS

100 PRINT AS, Bs

In order to READ A$, B$, we must provide a corresponding DATA state-
ment. Some systems require all strings in DATA statements to be enclosed in
quotes. Others require quotes only when the string contains a comma or ‘looks
like’ a number. For PRINT A$, B$, the output will have “comma spacing.” That
is, the page will be arranged in 15-character columns. If we replace the comma
with a semicolon, the two strings will be printed with no space between them.

We will use a short program named FIRST$ to demonstrate LET, READ,
INPUT, and PRINT.

101

102 Basic BASIC

FIRSTS
95 REM = FIRST STRING PROGRAM
96 REM

100 LET As = "THIS IS5 A"

110 READ BS, CS

120 PRINT A% "™ "3 BSs; "™ "3 (G5
130 INPUT DS

140 PRINT

150 PRINT A% "™ *3 BSs "™ "3 C353 "™ " D5
155 REM

160 DATA "PRBGRAM T@", "DEMBNSTRATE"
170 END

RUN

FIRSTS

THIS 15 A PROGRAM TO DEMBNSTRATE?STRINGS
THIS IS A PREGRAM TP DEMBNSTRATE STRINGS

BASIC allows us to compare strings for order in accordance with a sequence
known as ASCII (American Standard Code for Information Interchange). For
strictly alphabetic strings, this code will alphabetize in the conventional order.
ASCII places the digits 0 through 9 ahead of the letters of the alphabet. We
can easily write a short program to demonstrate order comparison. See ORD#.

BRDS

95 REM * CEMPARES STRINGS FOR ORDER
100 PRINT

110 PRINT "AZE"™)

120 INPUT AS

130 IF AS = "STOP"™ THEN 240

140 PRINT "Bs"™3

150 INPUT BS

160 IF AS < B% THEN 220

170 IF A5 = BE THEN 200

180 PRINT ASs " IS GREATER THAN "3 d3
190 GeTe 100

195 REM

200 PRINT AS3 ™ IS EQUAL T@ "; BS
210 GeTe 100

215 REM

220 PRINT AS$3 " IS LESS THAN “i BS
230 GeTe 100

240 END

RUN

PRDS

ASPTWHAT'S THIS
BE?WHAT'S THAT
WHAT'S THIS I5 GREATER THAN WHAT'S THAT

ASTWHAT'S THIS
BETWHAT"S WHAT
WHAT®*S THIS 15 LESS THAN WHAT'S WHAT

AS?WHAT'S WHAT

BE?WHAT'S5 WHAT

WHAT'S WHAT 15 EQUAL T8 WHAT'S WHAT
AS?STaP

In the handling of strings, we find that different computers have significantly
different BASIC language definitions. For example, on one computer, the state-

Strings and Files 103

ment 100 PRINT A$(4) will cause the computer to output the character string
stored in string variable A$, beginning with the fourth character, whereas on
another, the same statement will cause the computer to output the fourth string
of the string list A$. It is because of these differences that we present two dis-
tinetly different schemes for handling strings in the next two sections.

7-2 STRINGS-THE SUBSTRING SCHEME®

In the substring scheme, strings may be considered as a complete entity by
referring to A$, B$, etc., or we may consider segments of A$ by using one or
two subscripts. A$(I) specifies the segment beginning with the I character and
continuing to the end of the string. A$(L]) [some computers using this scheme
may require A$(I:])] specifies the segment from the I'" character through the
Jtv character inclusive, provided I = J. If I =], then A$(L]) is a single char-
acter. This scheme does not provide for string arrays. (It has been extended on
some computers, however, by using A$(I;],K), where the I designates which
string in the single dimension array is referred to and the J,K pair designates
the segment from the J* through the K character.)

As with arrays, it is necessary to specify the capacity of any string variable
we intend to use (for more than one character) in a DIMension statement, Thus,
100 DIM A$(10),B$(16),C(2,11) provides for up to 10 characters in A$, up to
16 characters in B$, and two rows and 11 columns in a numeric array C. The
C dimensioning is included here merely to demonstrate that string and array
dimensioning may be intermixed in a single statement. The LEN() function is
provided to count the number of characters actually stored in a string. LEN(Z$)
takes on the value of the number of characters stored in string variable Z$.

In program SEG$1, note the dimensioning in line 100, the use of the LEN()
function in lines 140 and 150, and the printing of segments in line 160.

SEGSE1

95 REM * DEM@NSTRATES STRING SUBSCRIPTS

100 DIM ASLE]

110 READ AS

120 IF AS="STOP" THEN 210

130 PRINT "AS="'JAS

140 PRINT “LENCAS)=";LENCAS)

150 F@R I=1 TO LENCAS) STEP 2

160 PRINT AT IF .3+l AL, 14 10]
170 NEXT I

IB0 PRINT

190 GoTa 110

195 REM

200 DATA "ABCDEF"."BASIC",">TOr"
210 END

el [

SEGSI1

AS=ABCDEF

LEMCAS)= 6

AsC 1 s 2 y=4ag
AR(3 s 4 ¥=CD
AL 5 + 6 1=EF

° The programs of this section were run on a Hewlett-Packard computer.

104 Basic BASIC

As=BASIC

LENCASY= S

ASC 1 s 2 I=BA
AEC 3 » 4 }=51I
AL 5 s 6 ¥y=C

The ability to isolate a segment of a string has many uses. We may wish to
pack related information into a single string such as

100 LET D$ = “JANFEBMARAPRMAYJUNJULAUGSEP@CTN@VDEC”

Now we, may select the desired month according to its position in D$. Or, we
might want to use a single string to contain the names of a group of individuals,
last name first, but to print only the last name and first initial.

One common use of string segments is to format numbers in printed results.
For instance, the appearance of the output produced by program SEG#$1 could
be improved by using string output to print I and I 4 1 in line 160. See lines
110 and 160 in program SEG$2. Notice the compact appearance of the printed
result there.

SEGs2

95 HEM * PRINTING A SINGLE DIGIT WNUMERIC

96 REM USING STRING GUTPUT

100 DIM ASL81.DS(91]

110 LET DE="123456739"

120 READ A%

130 IF AS="3T@P" THEN 210

140 PRINT "AZ=";AS

150 FeR I=1 T8 LENCAS) STEP 2

160 PRINT "ASC"IDSCI,I13"»"sDE0L+1,I+133")="5A501,1+1]

170 NEXT I

180 PRINT

190 G@Ie 110

195 REM

200 DATA *"ABCDEF","BASIC","STOP"
210 END

RUN

SEG 52

AS=ABCDEF

AZ(1,2)=AB
ASC3, 4)=CD
AS(Ss 6)=EF

AE=BASIC
AE(1.,2)=BA
A%(3, 4)=51
A%(5,6)=C

We see in SEG$2 the beginning of a technique for printing a numeric using
string output. Obviously missing are the ability to print zero and the ability to
handle more than one digit. We can take care of zero by using LET D§ =
EATONAESTON Lok el bfcms coeslhoes ol cemce ki mc e J2ofh memeefmme el oo

WL LT U, LALIL PR BRI BLLRRRERAGL D WAL BRIVALG L3l WAL LRl LOL LTS LAl WS
use the technique of program DIGIT in Sec. 6-3. That is, we must isolate the
digits of our number one at a time. Once we have the digit to be printed stored

in I, we must print D$(I + 1,I + 1) since zero is the first digit in D$. This step

Strings and Files 105

is taken in program DIGIT2. The numeric output is placed between # signs,
and the string output is placed between §$ signs.

DIGIT2

95 REM * PRINTING A NUMERIC @F MBRE
96 REM THAN ONE DIGIT USING STRING
97 REM QUTPUT

100 DIM DSEL10]

110 LET D$="0123456789"

120 PRINT "INPUT ANY INTEGER"™3

130 INPUT N

140 1IF N=0 THEN 260

150 PRINT "#"3n3"#"

160 PRINT "3"3

170 FOR E=5 T@ 0 STEP =1

180 LET I=INTCNA/I0TED

190 PRINT DSLI+1-1I+11]3

200 LET R=M-I*10tE

210 LET N=R

220 NEXT E

230 PRINT "s*

240 PRINT

250 GaTe 120

260 END

RUN

DIGITZ2

INPUT ANY INTEGER?93617
93617.

0936175

INPUT ANY INTEGER?O

It is left as an exercise to eliminate the printing of the leading zero in the
output of DIGITZ.

SUMMARY

We have used strings to store nonnumeric data. Any string may be con-
sidered in its entirety, or any segment may be isolated using subscripts. A$(L])
designates the substring from the It to the J** characters, inclusive. By placing
the ten digits in a dummy string, we gain complete control over the printing
of numerics by using string output.

PROBLEMS FOR SEC, 7-2

1) Write a program to print the characters of a string in reverse order.

2) Eliminate leading zeros in the output of DIGIT2. Be careful not to eli-
minate all zeros.

3) Write a program to arrange the characters of a string in order using the
technique of program ARANGS of Sec. 4-4,

4) Use string formatting to print the output in problem 7 of Sec. 6-2.

5) Write a program to convert a string integer to a numeric.

J/ 6) Write a program to convert a numeric input to a string output if the nu-

meric input is allowed to contain a decimal point and be negative.

106 Basic BASIC

7-3 THE STRING ARRAY SCHEME®

In the string array scheme, A$(l) names the string stored in the position
numbered I of a string single-dimensioned array, and A$(I,]) names the string
stored in row I and column] of a string two-dimensional array. As with arrays
used elsewhere, a DIMension statement is required if we intend to have either
subscription exceed 10. The maximum number of characters which may be
stored in any one array position varies from computer to computer but ranges
from 6 to the thousands.

We may do many things with string arrays that we do with numeric arrays.
We may READ, PRINT, INPUT, assign, and compare for order elemenis of
the array. We may even be able to use the statement LET A$ = “XYZ” +
“ATV” to assign “XYZATV” to AS.

DAY S01

100 DIM WSCT)

105

108 REM % READ DAYS @F THE WEEK
110 FBR I =1 T8 7

120 READ WS(I)
130 NEXT I
135

138 REM * PRINT DAYS OF THE WEEK
140 FBR I =1 TO 7

150 PRINT I3 WSCI)
160 NEXT I
165

168 REM #* DATA

170 DATA SUNDAY., MBNDAY, TUESDAY., WEDNESDAY
180 DATA THURSDAY., FRIDAY, SATURDAY

190 END

RUN

SUN DAY
MEN DAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

= ol b L DO e

Suppose we wish to work with the days of the week. We can easily read the
names of the days of the week into an array. Then these names can be printed
later as labels whenever needed, as shown in program DAYSOI1.

It is useful to be able to manipulate data in string variables. We might want
to know the number of characters in one of them, for example. There are two
ways to find out. One is to use the LEN function. LEN(AS$) returns the number
of characters in A$. Another is to use the CHANGE statement. CHANGE A$
T@ A stores the number of characters in A$ in A(O), converts each of the char-
acters in the string A$ to a numeric equivalent code, and then stores that nu-
meric in a corresponding position of the one-dimensional A array. The code

il L 1 - ADNYY A oot D e Ao Ml e N W s Maa Mo iss = T 1 S, |
UDTLL LWL LA 15 Do ld \ALUCHICELHL OlaliUedl W WUUGS LWL 20U A LIVHL BILCL LA e 1,

CHANGE A T@ A% makes the conversion in the opposite direction. This can

® The programs of this section were run on the General Electric Information Services
time sharing system.

Strings and Files 107

CHANGE

98 REM * DEMBNSTRATE CHANGE STATEMENT

100 DIM AC303,B(1)

110 PRINT "“STRING"S

120 INPUT AS »

130 CHANGE AE Ta A

140 PRINT LENCAS)Y: "CHARACTERS IN "™ A% "'™
IS0 PRINT

160 LET BCOY = 1

170 PRINT "CHAR ASCII C@DE"™

IBO FBR I =1 T8 ACD)

190 LET B{1} = ACI)

200 CHANGE B Te BS

210 PRINT ™*™3 BS:; "' ™i A(L)
220 NEXT I

230 END

RUM

STRING? TRY THIS
B CHARACTERS IN *TRY THIS®

CHAR ASCII CODE

T 84
R g2
o b 89
L az
T B4
H 72
III Ta
"5 B3

probably best be demonstrated with a program. See especially lines 130 and
200 of program CHANGE.

Notice that it required four statements to extract the I character of A$.
In program CHANGE, we used statements 130, 160, 190, and 200 to do this.
The EXT$ function is available for just this purpose. EXT$(A$,L,]) extracts the
group of characters beginning with I and ending with] for string A$. Some
computers use SEG$ for this. Using EXT$, program CHANGE becomes
CHANGEF.

CHANGF

98 REM * DEM@MNSTRATE CHANGE STATEMENT

100 DIM AC30)

110 PRINT *"STRING"™3

120 INPUT AS

130 CHANGE AT Ta A

140 PRINT LENCAS)S "CHARACTERS IN "™3 A3 "™
150 PRINT

170 PRINT "CHAR ASCII CgbE"™

180 FBR I =1 Toa ACD)

210 PRINT ™'"3 EXTSC(AS,I-I33 "* "3 ACD)
220 NEXT I

230 END

RUN

STRING? #!1&+:2)
& CHARACTERS IN "#!&+:1]1°"

CHAR ASCII CebE

g 15
b B 33
e 3B
Ty 43
Y 58

i b 93

108 Basic BASIC

We may form strings from the characters of strings in some rearranged se-
guence. We might print a stving backwards or with the characters in alphabetic
order. In order to arrange the characters of a string in alphabetic order, we can
simply provide a one-dimensional array with the corresponding ASCII code
numerics in increasing order. Program ORDER$ does exactly this.

@RDERS

100 DIM AC100)

110 PRINT "AS5"3
120 IMPUT AS

i30 FPRINT

140 CHANGE A5 T@ A

150 F@R I = 1 T@ ACO)Y = |

160 FEBR J =1 + 1 T@ ACQ)

170 IF ACI) <= AC(J) THEN 210
175 REM * EXCHANGE @UT 8F ORDER CODES
180 LET 5 = ACI)

190 LET ACIY = ACJ)

200 LET ACJY = 5

210 NEXT J

220 NEXT 1

230 CHANGE A Te AS
240 PRINT AS

250 END

RUN

AS? WHAT IF I CAN'T THINK @OF S@METHING?

"?AACEFFGHHHIIIIKMNNNGBSTTTTW

SUMMARY

Whenever subscripted array string variables may be used, A$(1,]) specifies
the string stored in row I, column J. We may use CHANGE A$ T A to con-
vert the characters in the string variable A$ to the equivalent ASCII code
numerics in corresponding positions of the A array. We may also reverse this
process by using CHANGE A T® A$. We also find the number of characters
in A$ stored in A(O). Alternatively, we may use the LEN function. We may
extract a group of characters with the EXT$(A$,1,]) function. This may be im-
plemented as SECS.

We may assign, PRINT, INPUT, and READ string variables in much the
same way that we handle these operations with numeric variables. Strings may
be placed in DATA statements, and string arrays must be DIMensioned if a
subscript is to exceed 10,

PROBLEMS FOR SEC. 7-3

1) Write a program to print the characters of a string in reverse order.

2) Write a progam to accept string input, and tabulate the number of times
each character appears.

3) Write a program to alphabetize the strings of a single-dimension siring
array.

4) Write a program to produce the following output, using the days of the
week as stored in W$ in program DAYSO01.

Strings and Files 109

“~DpPOZCw
~pPoUZaoz
“DOoOWMAC—
«€«DPDWME QM
~POoWILCIA
~bo=xm
“~POTC-HDt

5) Modify program ORDERS$ to eliminate duplicates.
6) Write a program to produce the following output, using the days of the
week as stored in W§ in program DAYSOL.

7-4 INTRODUCTION TO DATA FILES

So far in our programming work all of the data used by our programs has
been entered through DATA statements, INPUT statements, or LET statements.
Consequently, we have had to store the data as part of the program or type the
data directly at the keyboard of our terminal. This works out all right for small
amounts of data that we wish to process just once. But, if we have large
amounts of data or we expect to carry out several processes on our data, then
we need to separate the data from the program. We can do this by using data
files.

A data file is simply a storage space in the computer where we store data,
much as a program may be stored in a storage space. (In fact, in some com-
puters, files and programs are indistinguishable until we type certain commands.
Obviously, we cannot RUN a data file.) By designating a separate storage space
for data, we gain many capabilities. We may now store much larger amounts of
data than we could possibly store in the data statements of a program. We may
alter the data to accommodate the results of program calculations. We may
rearrange the data according to program specifications. The possibilities are
limited only by our ability to think of problems to solve.

Most computer processing done today utilizes data files. Data files are used
for inventory, bookkeeping, and data processing of all kinds. Just considering
the data handled by the Internal Revenue Service and the Census Bureau, the
use of data files can be seen as a very complex business indeed. So we will
attempt here to present only some rudiments of files processing in BASIC.

As we said earlier, a file is a storage space accessible to the computer. This
space may be used to store programs and data, which may be accessed dwring
program execution. One of the features of these files that makes them mysteri-
ous is that they are invisible. But then, so are programs during execution. How-
ever, it is now possible to carry out tremendous amounts of useful computer

110 Basic BASIC

work without the need for printing at the terminal, although it is good pro-
gramming practice to provide some printed ouipui to heip keep track of what
the computer has done. After we have seen several examples, we will gain
confidence that the computer is really performing the expected operations.

The fundamental concept is that we may write or print data into a file and
that we may retrieve that data under program control. Several versions of pro-
gram statements are used to achieve these purposes. The next two sections
explain the use of files as defined by two different systems. We have chosen
Hewlett-Packard and General Electric versions of BASIC for this.

7-5 HEWLETT-PACKARD FILES

Just to get an idea about how data gets into files and how file data is ac-
cessed, let’s look at two short programs. The first is a program to enter some
numbers into a file. See program PRINT.

PRINT

90 REM * FIRST FILE DEMONSTRATION
100 FILES TEST

110 F@R I=1 To 4

115 READ X

120 PRINT #1:X

130 NEXT 1

140 DATA 3,17»11,31

150 END

RLIN

PRINT

This is the very first program we have run which does something useful
without any printed output. (As a general rule, however, it is good practice to
have programs produce some meaningful printed output at the terminal.) State-
ments 100 and 120 introduce the first two file handling statements. Statement
100 is called the FILES statement. It is the statement which makes the file
whose name is TEST available to the program. Statement 120 instructs the
computer to print data into the film instead of onto the paper in the terminal.
In that statement, the #1 specifies the first file named in the files statement. We
may be able to name eight or more files, separated by commas. In addition,
some computers allow us to replace any file originally named during program
execution by using the ASSIGN statement. In the PRINT # statement, every-
thing past the semicolon is printed into the file. We may list several data items
here, and strings and numerics may be intermixed.

In order to allocate the file space in the first place, we used the OPEN com-
mand, OPEN-TEST, 15 designates a file space, called TEST, that contains
15 segments called records or sectors. Typically, a sector is large enough to
store 32 numbers, or about 128 alphameric characters. More recent Hewlett-
rackard computers allow the option of specifying record size through the
CREATE command. On such a machine, CREATE TEST, 15,106 provides 15
records, each allowing up to 53 numerics, or about 212 alphameric characters.
(106, 212, and 319 are storage efficient numbers to use in the CEATE command.)

In counting space for strings, we must add two to the number of characters

Strings and Files 111

for each string and add one if there is an odd number of characters. Thus three
characters require the same storage space as four.
Now let’s examine a program to read the contents of our file TEST,

READ

90 REM * PR@GRAM TO READ NUMBERS FROM A FILE
100 FILES TEST

110 READ #13Y

120 PRINT Y3

130 GETe 110

140 END

RUN

READ

3 17 11 3

END=-@F-FILE/END B8F RECORD 1IN LINE 110

The printed output produced by program READ should convince us that
those numbers really came from a computer file as they do not appear anywhere
in the program itself. We also got an error message which is exactly analogous
to the @UT @F DATA IN LINE n message we have seen before.

There are several ways to avoid terminating with this error. One is to keep
track of the number of entries in the file; another is to place an item of artificial
data at the end of the real data just as we did in DATA statements in programs.
However, BASIC provides a special statement just for this purpose. It is the IF
END statement. See line 105 of program READO]1.

READO1

30 REM % PRPGRAM READ WITH IF END 'TRAP'
100 FILES TEST

105 IF END #1 THEN 140

110 READ #13Y

120 PRINT Y3

130 GeTe 110

140 END

RUN

READO1

3 17 11 31

Statement 105 caused the computer to “remember” that if at any time we
ask it to read beyond the data, it is to then execute line 140 as the next state-
ment. In our case, that causes the program execution to terminate through the
END statement.

The IF END “trap” may also be used to find the end of data in a file so that
we may begin at that point to print additional data into it. Program PRINT1
does exactly this.

PRINT!I

90 REM #* PRINT WITH IF END *TRAP'
100 FILES TEST

110 IF END #1 THEN 140

120 READ #1:X

130 GeTe 120

140 FOR I=1 Te 2

112 Basic BASIC

150 READ X
160 PRINT #13X
170 PRINT X3
180 NEXT 1

190 DATA 19,256
200 END
RUN
PRINT1

19 2 &

Note that PRINTI1 will also print numbers into an empty file. Consequently,
we can eliminate the need for program PRINT. Now we run program READUL
to verify for us that the file now contains numbers printed into it in separate
runs of two programs.

RN

READO1

17 11 al 19 2 6

When we used file TEST above, we simply printed numbers one after an-
other into the file without any concern for exactly where in the file those num-
bers were placed. Used in this way, file TEST is called a serial file. However,
we could have directed the computer to print each of those numbers on a
different record of the file. We need the following expanded file PRINT state-
ment for this purpose:

999 PRINT #1,R;X

This statement allows us to specify that the data following the semicolon is to
be printed in the Rth record of file #1. See line 130 of program PRINTZ2.

PRINTZ2

90 REM % PRINT TGO RECORD R IN A FILE
100 FILES TEST

110 F@R R=1 T@ 4

120 READ R

130 PRINT #1sHi K

140 PRINT Xi

150 NEXT R

160 DATA 3-17,11:31
170 END

R

FRINTZ2

] 17 11 31

Now to read the Rth value we needn’t read through all R items. We may
read it directly with the statement,

999 READ #1,R;X

Since this structure allows us to select at random any starting point in the file,
we refer to the file as a random access file. See program READOZ2.

Strings and Files 113

READOZ

90 REM #* DEMONSTRATE RANDOM ACCESS
100 FILES TEST

110 PRINT "ITEM #";
120 INPUT R

130 IF R=0 THEN 170
140 READ #1sH3X

150 PRINT X

160 GoTe 110

170 END

RUMN

READOZ2

ITEM #2724
31
ITEM #721
3
ITEM #70

One of the uses of data files is to remrrange data and store it in rearranged
form. For example, let’s enter the names of seven people along with their dates
of birth and death in file TEST, one person to a record, and arrange them in
alphabetical order using the technique of program ARANGE in Sec. 3-4.

Program ENTERA reads the data from DATA statements and prints it in the
first seven records of the file.

ENTERA

90 REM # FILE PRINT 8NE TO A RECBRD

100 DIM NSLT2)

110 FILES TEST

120 F@R I=1 T 7

130 READ NS.A.B

140 PRINT #1,1:;N5,0,8B

150 NEXT 1

160 DATA "JONES, JBHN PAUL"™,1747,1792

170 DATA "ANTHBENY, SUSAN B.">1820,1206

IB0 DATA "WASHINGTEN. BPOKER T."s1859,1915
190 DATA "BELL, ALEXANDER GRAHAM™, 1847, 1922
200 DATA "EDIS@M. THBMAS ALVA", 1BA4T,1231
210 DATA "F@RD, HENRY™,1863,1947

220 DATA "BLPOMER. AMELIA JENKS"»1EB18,1894

230 END
RN
ENTERA

Program READA reads from file TEST and prints at the terminal.

READA

90 REM % READ NAMES FRGM A FILE
100 DIM N3LT72]

110 FILES TEST

120 PRINT * DES NAME®™
130 FOR 1=1 T8 7

140 READ #1,I3N%sAs8

150 PRINT AINS

160 NEXT I
170 END
RUN

READA

114 Basic BASIC

peB MAME

1747 JEMESs, JBHN PAUL

1820 ANTHBNY» SUSAN B.

1859 WASHINGTON:, BBCOKER T.
1847 BELL. ALEXANDER GRAHAM
1847 EDISEN, -THBMAS ALVA
1863 FORDs HEMAY

1818 ELOOMER, AMELIA JENKS

Program ORDERA arranges the data in the file alphabetically. Note that
line 190 is required so that when the comparison for order is made in line 160
after an. exchange has taken place, A$ stores the appropriate string. This is
necessary because daia is stored in iwo places—in the file and in the variables
of the program. It is the programmer’s job to keep these two storage areas
coordinated.

BRDERA

90 REM * ALPHABETIZE NAMES IN A FILE
100 DIM ASLT21,BELT72]

110 FILES TEST

120 F@gR I=1 T8 6

130 READ #1,IJA%»AsAl

140 FegR J=I+1 TQ 7

150 READ #1»J3BS,BsB1

160 IF A% == BE THEN 200

170 PRINT #1:1:;B%,B8,81

1B0O PRINT #lsJ5ASsA A1

190 READ #1,13A5:AsA1L

200 NEXT J

210 NEXT 1

220 PRINT "FILE ALPHABETIZED"

230 END
RUN
@RDERA

FILE ALPHABETIZED

And once again we run READA to see that the data is properly arranged in
the file.

RUN
READA
DaB NAME
1820 ANTHENY»> SUSANM B.
1847 BELL» ALEXANDER GRAHAM
1818 BLOBMER, AMELIA JENKS
18 47 EDIS@N, THBMAS ALVA

1863 FORDs HENRY
1747 JENES, JOHN PAUL
1859 WASHINGTON, BEBKER T.

SUMMARY

The FILES statement is used to make files accessible to a program. We may
be able to replace the files named during execution using the ASSIGN state-
ment. We may print data into a file using PRINT #N;A,B,C$ to print in the
next available space serially. Or we may use PRINT #N,R;A,B,CS$ to specily

Strings and Files 115

that the printing be at the beginning of record R. This approach is referred to
as random access. We have the same options in the file READ statement. READ
#N;A,B,C% reads the next available data serially and READ #N,R;A,B,C#% reads
at record R. The IF END statement allows us to determine when we are read-
ing past the end of data in the file or are trying to read or print past the physical
boundaries of the file itself.

PROBLEMS FOR SEC. 7-5

1) Use the IF END “trap” to avoid reading empty records or past the physi-
cal end of the file in program READO02.

2) Modify ENTERA so that it will accept varying numbers of names and can
be used to add names to a file without “losing” data.

3) Modify READA to read any number of names.

4) Modify ORDERA to handle any number of names.

5) Modify ORDERA to arrange the data in increasing order of date of birth.

6) Write a program to print the names in file TEST at the terminal in alpha-
betical order without altering the arrangement in the file itself,

7) Write a program to print the names from file TEST in order of increasing
age at death without altering the arrangement within the file itself.

8) Since strings and numbers may be intermixed in a file and an attempt to
read one when the other is next will result in an error condition, it is desirable
to be able to distinguish between them. The TYP() function is provided for
this purpose. TYP(N) takes on a value of one if the next item in the file is a
numeric, two if the next item is a string, three if the next item is the end of file,
and, if N is negative, four if the next item is end of record. The absolute value
of N is the position of the file in the files statement. In order to get positioned
at the beginning of a record without reading data, we can READ #N,R. Using
the TYP() function and the positioning READ statement, write a program to
read the unknown contents of a file and print them record by record at the
terminal.

7-6 GENERAL ELECTRIC FILES

The files we are concerned with in this section are referred to as external files
since they store data externally to any programs, Files are generally charac-
terized in two ways: the access type and the data storage type.

Data in files may be accessed sequentially or at random. Sequential access is
similar to the way in which DATA statements of a program are accessed. Ran-
dom access is similar to the way in which the elements of an array are accessed.
As long as we know the exact position of a data item in a file, we may access
it directly.

The data contained in a file may be stored either as ASCII character codes
or as the binary representations of ASCII character codes and the numbers
being stored. We do not need to be concerned with the details of this distinction
when writing BASIC programs. We need only identify the slight differences in
program statement syntax required. ASCII files may be accessed only sequen-
tially whereas binary files may be accessed either sequentially or at random.

116 Basic BASIC

ASCII Files

ASCII files behave in many ways just like the DATA statements of a pro-
gram. The data must be read sequentially, beginning with the first data item
in the file. There is no way to access data at random points. The file may be
filled from the keyboard exactly as DATA statements of a program are typed,
but omitting the word DATA. The file may be listed at the keyboard with the
LISt command, just as programs may be listed. Lines may be corrected in a
file by retyping them. Lines may be removed by typing the line number fol-
lowed by a carriage return. In order to make a file available for future use, it
must be SAVed, just as a program must.

Perhaps the best way to learn about files is to study an example. Let’s type
an ASCII file containing test score data for a class. Suppose we consider a class
of only five people and enter their test scores on six tests.

File SCORE has been typed at the keyboard and SAVed as described earlier.
We list the file here:

LIST
SCBRE

100 MARK UNDERWRBD,65,83,92,77,68,79
110 SUSAN STALBERG.T73,88,B2,77,6%9,79
120 EDGAR ANGLEMAN T 4,86, 73,79,80,73
130 ALTHEA LARGE,91:92,90,99,92,90

140 GERTRUDE SMITH.T71,86,87,90,84,92

Now, to gain some file handling experience, let’s make our first program
merely print the contents of the file under program control rather than use the
LIST command. This approach makes it possible to print labels and arrange
the data in an easy-to-read form. See program READTEST.

READTEST

24 REM # READ FrROM A FILE AMD PrINT O THE TERMINAL
100 FILES SCORE

110 PRINT "WAME"."TEST1 TESTE TESTI TEST4 TESTS TEsI6™
130 READ #1s NS

150 PRINT NS: TABC13):

160 FOR I = 1 T0 6

170 READ #1s X

190 PRINT X3 " "3

200 NEXT 1

210 PHRINT

230 IF MBGRE #1 THEN 130

260 END

Rum

MNAME TEST! TESTZ2 TEST3 TEST4 TEsSTS TEsTE
MARK UNDERWBEAD &5 83 a2 T7 &d 19
SUSAaN STALBERG 73 B g2 17 &9 T3
EUGAR ANGLOrAN 7= ey 70 Tz Y T
ALTHEA LARGE 91 92 g0 99 92 90
GERTRUDE SMITH 71 86 87 90 g3 92

In program READTEST, there are just four statements of a file-handling
nature. The statement 100 FILES SC@ORE makes the file available to the pro-

Strings and Files 117

gram. The file must exist to execute the program. The statement 130 READ
#1, N$ is like a DATA READ statement except that the “#1” appears to notify
the computer to read from the first file named in the FILES statement. We may
name up to eight files there by separating them with semicolons. Statement 160
is another file read statement. A statement 999 READ #N, A,B,X$,T would
read three numerics and one string from the Nth-named file in the FILES state-
ment, The statement 230 IF M@RE #1 THEN 130 has the ability to “look
ahead” in the file to “sée” if there is more data in the file. If there is more data,
the computer is transfered to line 130; if not, then control passes to the next line.

Now that we are able to read the file, let’s perform the necessary operations
to find each student average and the class average. We will require two vari-
ables to store running totals. In program AVERAGE, T2 is the running total
for the class, and T1 is the student running total.

AVERAGE

94 REM * CALCULATE AVERAGES FROM & FILE

100 FILES S5CORE

110 PRINT "NAME","TEST] TESTZ2 TEST3 TESTa TESTS TESTe AVERAGE™
120 LET T1=0

130 READ #1s N5

140 LET T2 = 0

150 PRINT NE3 TABC15):

160 FOR I = 1 T@ 6

170 READ #1, R
180 LET T2 = T2 + X
190 PRINT X3 "™ '3

=200 NEXT I
210 PRINT T2rs6
220 LET T1 = T1 + T2

230 IF MOERE #1 THEN 130

240 PRINT

250 PRINT "CLASS AVERAGE = "“T1,/30

260 END

RUN

MNAME TEST1 TE3TZ2 TEST3 TEST4 TEST> TESTSH AVEHAGE
MARK UNDERWOOD 65 &3 22 77 65 14 TTe 4443
SUSAN STALBERG 73 B3 gz 17 a9 19 T8
EDGAR ANGLEMAN 74 86 75 79 80 T T9. 1657
ALTHEA LARGE a1 92 20 99 92 20 2. 3343
GERTRUDE SMITH 71 B6 a7 20 dd 22 Ho. 6667
CLASS AVERAGE = 82.5

Now that we know how to read an ASCII file under program control, let’s
see how to write data into such a file under program control. Suppose that we
consolidate the data in file SCORE, retaining just the names and averages to
write into a new file, SC@ORE]. To do this, we begin by naming both files in
the FILES statement. We may enter data into an ASCII file with the WRITE
#N statement. However, before writing into the file, it must be prepared for
writing with the SCRATCH #N statement, SCRATCH #N sets a pointer to
the beginning of the Nth-named file and prepares it for writing. In program
WRITEAVG, we print each name at the terminal just to show the progress
of execution during the program run. For large amounts of data, we might
simply print the number of names moved. See lines 110 and 140 of program
WRITEAVG.

118 Basic BASIC

WRITEAVG

94 REM # READ SCORE - WRITE SCORE]

100 FILES SCPREs SCORE!L

110 SCRATCH #2

120 READ #1s NSsX1,X2,K3,K4s K35 K06

130 PRINT NE

140 WRITE #2, NS; (R1+XE2+X3+KA+R5+R6)/6
150 IF MORE #1 THEN 120

160 END

RN

MARK UNDERWOOD
SUSAM STALBERG
EDGAR AMGLEMAN
ALTHEA LARGE

GERTRUDE SMITH

Since this is an ASCII file, we may LISt it at the keyboard as follows:

S5CORE1

100 MARK UNDERWDOD., 77.3333 »
110 SUSAN STALBERGs 78 »

120 EDGAR AMGLEMAN, TF. 1667 »
130 ALTHEA LARGE., 92.3333
140 GERTRUDE SMITHs, B5« 6667

Additional files statements include APPEND #N, which sets a pointer to the
end of data in a file and prepares the file for the write mode in a way similar
to that of the SCRATCH #N statement, and RESTORE #N, which sets a
pointer to the beginning of the file and prepares it for the read mode so that
we may read the data in a file more than once in a single execution of a program.

Binary Files

Binary files may be used only under program control. They may be either
sequential or random access. Sequential binary files are treated for programming
purposes exactly like ASCII files except that where pound signs (#) appear for
an ASCII file, a colon (:) is used for a binary file.

Random Access Files

Random access files may be segmented into blocks of storage called records.
We may dictate the size of each record and the number of records in a file when
we create it, much as we dimension a two-dimensional array. The record size
is measured in words of storage. The word requirements for data are as follows:

One word per numeric

One word per four string characters, or fraction thereof
One word ner Rfring for internal comnnter rontrol

The exact arrangement of data within a file is completely the programmer’s
responsibility. We must know exactly where data is to be found and what it
means. The situation is no different from data handling within an array except
that once data is in a file, it seems more invisible.

Strings and Files 119

For our first example, let’s simply write three rows of six numbers each into
a binary file with one program and then select some of them for printing at the
keyboard with another program, The storage requirements amount to just three
records, each containing six words. We obtain such a file with the CREate com-
mand, as follows:

CRE NUMB,(RAN(6,3))
See program RND.
D
94 REM * LOAD RANDOM NUMBERS INT@ A BINARY FILE

100 FILES NUMB
110 FBR I =1 T8 3

120 FEBR J = 1 Te &
130 LET X = RNDCX)
140 WRITE 21, X
150 PRINT X2

160 NEXT J

170 PRINT

180 NEXT I

190 END

RUN

0.98385 0.362274 0.250535 0.338074 0.250009 0.342306
0.676737 0.B20017 0.290332 0.63319 0.373523 0.853779
0.151996 0.975B66 0.811924 0O.448439 0.139034 0.547165

Notice that we are able to fill the file without regaid to position in the file
because we are exactly filling each record as we go. This is not always the case.

To select locations at random within the file, we need the SETW statement.
SETW N T® X places a pointer in file N to the Xth word in the file without
regard to file dimensions. Thus, in our file of six words per record, the ninth
word is the third word on the second record. To think in terms of records and
words within a record, we need a formula to determine the value of X. For the
Cth word in record R where there are W words per record, the value of X is
We(R—1) 4+ C. Now let’s write a short program to find selected positions in file
NUMB. See program PICK. Notice that the REST@RE statement is not re-
quired for random access files. REST@RE:N is equivalent to SETW N T@ 1.

PICK

94 REM # SELECT A NUMBER FROM A FILE AT rRAdDOM
100 FILES NUMB

110 PRINT "ROW.COL":

120 INPUT RsK

130 IF R = 0 THEN 190

140 SETW 1 TO &% (R=1) + K

150 READ 21, A

160 PRINT "FOUND":; A4

170 PRINT
180 GOTO 110
190 END

RuN

ROW,COL? 2,3
FOUND 0.290332

120 Basic BASIC

ROW-COL? 3.6
FOUND 0.B47165

ROW.COL? 0.0

For our final example we will use a binary file to arrange the student data
from our ASCII file SCOREL in order of increasing test average. We must
write the necessary data into a binary file, arrange it, and then print the results.
This can be done with three different programs or with a single program. We
will use a single program here. See @RDERAUG.

To determine the size records required, we must know the number of char-
acters in the name strings. We find a maximum of 14 characters. We should
go to at least 16 since that is the next multiple of four. In practice, to make
such a file generally useful, we would probably go even higher. Allowing for
16 characters, we need four words for storage of string data, plus one word
for control, plus one word for the numeric. For this problem, a file with five
records containing six words per record is sufficient. We get that with CRE
SCAREZ,(RAN(6,5)).

ORDERAVG

100 FILES SCBRE1s SCORE2

104 REM * WRITE DATA INT@ BINARY FILE
110 FER I =1 T8 5

120 READ #1, NSsAl

130 SETW 2 To &:(I-13 + |
140 WRITE 12, MNSsAl

150 MNEXT I

154 REM # NOW ARRAMGE THE DATA ACCORDING TO AVERAGES
160 FOR I = 1 TG 4

170 For J = 1 + 1 10 5

120 SETH 2 TO 6k(CI-13) + 1
190 HEAD 12, NS»Al

200 SETW 2 To 64C¢J=13 + 1
210 READ 2, MI3sol

220 IF A1 <= Bl THEN 270
230 SETS 2 To 6:¢I-13) + 1
240 WRITE 2. HEa01

250 SETY 2 TC &%{J-13 + 1
260 HRITE 2. N=sA1

270 WEAT J

B0 MEXT I
oR4 REM * AND NOW PRIMT THE RESULTS

290 PRINT " NAME","AVERAGE™
300 PRINT
30 FGR 1 = 1) TC S
320 SETW 2 TO 6%CI-1) + 1
330 READ 2, NisAl
340 PRINT M5sAl
350 NEXT 1
360 END
BUN
WM E AVFERAGE

MARK UNDERWOOD 77..4333
SUSAaN STALBERG 73

EDGAR ANGLEMAN T9. 1667
GERTRUDE SMITH B85.8667
ALTHEA LARGE 92. 3333

Strings and Files 121

SUMMARY

The FILES statement is used to make files accessible to a program. The files
of this section are of two types: ASCII and BINARY. ASCII files are sequential
and may be accessed from the keyboard or through a program. Binary files
may be either sequential or random access and may be accessed only through
a program. We may use READ #N, WRITE #N, SCRATCH #N, APPEND #N
or RESTORE #N to handle data in an ASCII file. For sequential binary files,
all of the above statement types may be used by replacing the pound signs (#)
with colons (:). For random access files, we have the additional statement
SETW N T@® X which sets a pointer at the Xth word of a file in preparation
for the next READ or WRITE statement. A file is made random access in the
CREate command.

PROBLEMS FOR SEC. 7-6

1) Type a few inventory items with quantity and price data into an ASCII
file. Write a program to print the value of each item and the total value of
inventory at the terminal.

2) Write a program to print a list of an unknown number of names in an
ASCII file at the terminal in alphabetic order. Use RESTORE #N and repeated
reading of the file for this purpose. Assume that there are no duplicates.

3) Consider a random access file containing five words per record and six
records filled with numbers. Write a program to find the largest number in each
record and the largest number in each “column.”

4) You are presented with a random access file with a set of ten names in it;
each name was entered first name first, followed by a space, followed by last
name. Since this ordering is diflicult to alphabetize, you are to replace each
entry in the file rearranged so that the last name is first, followed by a comma,
a space, and the first name. You know that each string is to be allocated eight
words of storage.

5) (Project) Print some names into a random access file. Place a list of point-
ers to those names in an ASCII file so that if the pointers are read sequentially
from the ASCII file and used to access the names in the random access file with
the SETW statement, the names will be accessed in alphabetic order, Use the
ASCII file to print the names in alphabetic order.

CHAPTER 8

The Quadratic Function

We define a quadratic function as a real function of the form
f(X)=AX2+BX +C (8-1)

where A does not equal 0.

8-1 ZEROS

Often in mathematics we would like to find the zeros of a quadratic func-
tion, For some sets of coefficients, we may factor the expression on the right in
Eq. (8-1) and set each factor equal to 0. This would be the method to use
for f(X) = X2 + 3X 4+ 2. We would find zeros as follows:

X24+3X+2=0
Factoring,

X+1)X+2)=0
and (X+1)=0 or (X+2)=0
So X=-1 or X=-2

and the truth set is {—2, —1}.
However, in general for nonfactorable as well as factorable quadratic ex-
pressions on the right in Eq. (8-1), we may use the quadratic formula, which

may be derived by the method of completing the square. The zeros of
f(X) = AX2 4+ BX 4 C are

—B + \/B* — 4AC

Xl = A
_ —B~+/BT—4AC
A= 2A

122

The Quadratic Function 123

Since we are going to insert these equations into a program we will write

YNN4 LET X1=(—-B+SQR(B°*2—4°"A°(C))/(2"A)
and
ZZ2 4+ 10 LET X2=(-B—-SQR(B°°2—4°A°C))/(2°A)

Now all we need is some data and some printing instructions (see QUADI),
which seems to work well enough. You will want to modify QUADI1 to

account for nonreal zeros. You may want to just print a message or you may go
ahead and compute the nonreal values. As the program stands though, if

B °®2—4°A°* C is negative, the computer will at best print an error
message and at worst it will terminate the RUN.

GUADL

S PRINT "™ A B C PRl & R R ¥ =L
10 READ A-B.C

15 IF A=0 THEN 99

20 LET X1=(-B+SQR(Br2=-4«A%C))/(2%A)

30 LET X2=(~-B-SORC(Br2-4%xA*C) Y/ (2%A)

40 PRINT A;BiCsX1.X2

45 GATO 10

S0 DATA 1:3.2

60 DATA 122s=-3:2,4:-626213,68:5:-T7+2

70 DATA 0200

99 END
RUN
QuUAD1
A B c X1 Ke
1 3 2 -1 -2
1 2 -3 1 -3
2 4 -6 1 -3
6 13 & -+ 666667 =1s5
5 -7 2 1 . 4
D@NE

8-2 AXIS OF SYMMETRY AND TURNING POINT

The graph of a quadratic function is called a parabola. In examining the
graph of a quadratic function we often want to know where the axis of
symmetry is and where the turning point is. By completing the square on
the right

f(X) = AX2+ BX+C

. B B2 B2
f(X)=A| X24+—X s 4
(X) . tA ST A :mﬂ]H“
o[s Bl g, B B
f(}{}_A_x + % X+ 4*”*2] i +C
we get
alv . B |, 4AC —B?
=[x &]+ SCE

124 Basic BASIC

Now, when X = —B/2A, X + B/2A = 0. The value of f(X) is minimum if A
is positive and maximum if A is negative, and the value of f(—DB/24A) is
(4AC — B?)/4A. Thus the coordinates of the turning point are

__B 4AC — B2
2A ° 4A
You should know, too, that the line whose equation is X = —B/2A is called the
axis of symmetry. We should now be able to write a program to print three
items of information: 1) the maximum or minimum status of the parabola,

2) the equation of the axis of symmetry, and 3) the coordinates of the turning
point. Let us collect things into a flowchart (see Fig. 8-1), and write program

QUAD2.

S Fig. 8-1. Flowchart for finding axis
tart of symmetry, turning point, and

‘L maximum=minimum status for
parabolas.

READ

A, B C

LET M
= SGN(A)

PRINT
minimum

PRINT
maximum

<

LET X = —B/
(2=A)
PRINT
K
T I

~b 1

LETY = (4« A+C PRINT
—B=**2)/(4+A) X, Y

The Quadratic Function 125

QuUAD2

10 READ AsB.C

15 IF B=-.001 THEN 9999

20 PRINT AsBiIC

25 IF A == 0 THEN 30

26 PRINT "™A=0 THE EXPRESSI@N IS5 N@T QUADRATIC™
27 GaTe 20

28 REM DETERMINE MAX. OR MIN.

30 LET M=5GNCAY

40 IF M=1 THEN 70

50 PRINT "MaXIMUM PARABSLA"™

&0 GOTA 80

70 PRINT "MINIMUM PARABBLA™

78 REM FIND THE AXIS @F SYMMETRY

BD LET X=-B/A{2%A)

90 PRINT *"AXIS OF SYMMETRY IS X ="iX
98 REM FIND THE EXTREME VALUE

100 LET Y=(4«A*C-Br2)/(4%A)

110 PRINT "THE TURNING PRINT IS ("™pXi™s."iY3"™)"™
115 PRINT

120 G2T@ 10

150 DATA 1:322:122s-326213:6

155 DATA -3:5:11

160 DATA 4:=.00151

9999 END
RUN
GuUADZ
1 3 2

MINIMUM PARABALA
AXIS OF SYMMETRY IS X ==1.5
THE TURNING P@INT IS5 (=1.5 =25)

1 2 -3
MINIMUM PARABOLA
AXIS @F SYMMETRY IS X =-1
THE TURNING PRINT IS (-1 2= 4 3

& 13 &
MINIMUM PARABOLA
AXIS BF SYMMETRY 15 X =-1.08333
THE TURNING PBINT IS (-1.08333 +=1.04167)

-3 5 11

MaxImMmuM PARABOLA

AXIS OF SYMMETRY IS5 X = .833333

THE TURNING PBINT IS ¢ .B33333 » 13.0833)

DENE

8-3 PLOTTING THE PARABOLA

One last consideration for the parabola is to plot its graph. This works well
right on the terminal itself. We may use the spaces across the carriage as one
axis and the paper lengthwise as the other axis. Since the line feed is auto-
matically set on the terminal, the X-axis should run perpendicular to the
carriage and the Y-axis should run across the page. This means that one line
represents one unit on the X-axis and one space represents one unit on the
Y-axis. This is rotated 90 degrees clockwise from the conventional system.

Let us start out with the simplest possible graph and see what refinements

126 Basic BASIC

will be required. We will first graph Y =X °° 2. We will put “ ”; in a loop to
get the printing head to the point that we want plotted. Any printed character
may be used to represent the plotted points. The range you select will depend
on the width of the carriage on your terminal. Selecting the domain for X as

—T7 to +7 we will require a range of 0 to 49.
When X = —7, we want the printing head to step out 48 spaces, then print

a character, and then RETURN., Now we want X to go to —6 and the printing
head will have to step out only 35 spaces, print a character, and RETURN. As
this process is repeated, it too will be put in a loop with X going from —7 to
+7 incrementing by 1. It will be convenient to define a function here, not as
a saving now, but to fit in with later plotting problems. Before writing the
program PL@T1, let us draw a flowchart (see Fig. 8-2). Notice that we intend
printing the spaces followed by a semicolon and the plotted points also fol-
lowed by a semicolon. After the point has been plotted, we do not want the
printing head to step the rest of the way across the carriage as that would be
a waste of computer time for this particular plot. So line 62 is used to return
the printing head to the left margin. We should observe that the procedure
we are developing is not especially efficient in the first place, and so should

be used sparingly.

Start

DEF FNQ(X)
=X *x3

-1

FOR X 'I FOR Y
=—7TQ®7 =0TQ 70

PRINT

it W PP
r

Y = FNQ(X)?

<

NEXT ¥ Mt vy

END

Fig. 8-2. Flowchart to plot Y = X #¥* 2,

The Quadratic Function 127

PLOTI

30 DEF FNQ{X)=Xr2

60 FBR X==-7 T8 7

62 PRINT

B8 REM LINE 90 HAS THE EFFECT @F NUMBERING THE SPACES
89 REM ACR@S5 THE PAGE 0 T@ 70

90 FOR Y=0 T@ 70

120 IF Y=FNGC{X) THEN 210

148 REM IF Y DOES NOT EQUAL FNG{X) THEMN PRINT A BLANK SPACE
150 PRINT ** ™3

180 NEXKT Y

210 PRINT "'%";

212 REM PL@T THE POINT AND G& TO NEXT X

240 NEXT X

270 END

RUN

PLBTI

DBNE

PL@T1 was not bad for our first try. If we are going to plot other para-
bolas, we will have to make a provision for values of Y less than 0. So we
may change line 90 to read 90 FOR Y = —M T® 70 — M, where M is the
number of spaces to the left of 0, and then we can put M on INPUT:

90 FO@R Y= -M T8 70-M

5 INPUT ™

4 PRINT "INPUT THE NUMBER @F SPACES DESIRED T@ THE LEFT OF ZER@"™:
B8

B?

& PRINT

RUN

FL2TZ2

INPUT THE NUMBER @F SPACES DESIRED T@ THE LEFT @F ZER@?10

NANE

128 Basic BASIC

We have indeed graphed Y = X °*® 2; however, the graph is not clearly
defined because there are no axes to specify the coordinate system. Let us
build up the coordinate system by first putting in the origin by plotting a 0
there. Immediately, we are faced with a decision. If the graph contains the
origin, do we want the plotted point or the origin designation? Since the
absence of the plotted point for X = 0 would indicate that it should have been
plotted at the origin, let us plot the 0 at the origin as first priority. So, before
anything gets done for a particular value of X, we ask if the value of Y is 0.
If it is, we next look for the point at which X is also 0. At (0, 0) we print 0,
Having printed 0, we next look to see if FNQ(X) is greater than 0. If it is, we
send the printing head on across the page.

92 IF ¥ => 0O THEN 120

94 IF X == 0 THEN 120

25 REM IF THE CBMPUTER GETS THROUGH HERE THE
96 REM PRINTING HEAD IS5 AT THE @RIGIN

98 PRINT "0":

100 IF FNQ(X)>0 THENM 1B0O

102 REM IF FNG{X) > 0 G@ FIND WHERE IT IS
103 REM BTHERWISE GET THE NEXT VALUE BF X

106 GATO 240

R UM
PLOT3

INPUT THE NUMBER BF SPACES DESIRED T@ THE LEFT @F ZER3?6

DANE

As long as we have the X-axis located, we might just as well put it in
the graph. All that is necessary is to have a PRINT instruction whenever
Y = 0 but X does not.

24 1F X=0 THEN 9B
95 PRINT *r*'';

96 GATE 100

RUN

FLOTa

The Quadratic Function 129

INFUT THE NUMBER @F SFACES DESIRED T9 THE LEFT QF ZERD?9

*

I T T T T T o T T S R
*

DBNE

Finally, we may put in a Y-axis. Let us settle for having the Y-axis along
the leading side of the graph. By putting the Y-axis there, we will be able to
print the scale without interfering with the graph itself. For the particular
graph we have been plotting a range from 0 to 50 is reasonable.

8 PRINT " "5

10 F@R X=0 T@ 50 STEP 10
12 PRINT ™ i

la NEXT X

15 PRINT

16 F@R X=1 T@ 70

I8 IF X/10=INTCX/10) THEN 24
20 PRINT '"="3

22 G@Te 26

24 PRINT 1"y

26 NEXT X

RUN

PLRTS

INPUT THE NUMBER @F SPACES DESIRED TG THE LEFT OF ZERG?9

o 10 20 30 40 50
--------- Ll R B R Rl R B i B e B

T *

L *

T *

T *

T *

T *

T®

o

Tk

T *

T *

T *

¥ ik

T *

1 *

DONE

130 Basic BASIC

At this point, the program is scattered all over the place and some of the
line numbers are very close together. So we renumber beginning with line 10
and print the entire program in PL@TS5.

PLOTS

10 PRINT "INPUT THE NUMBER OF SPACES DESIRED T0 THE LEFT @8F
ZERB*"3

20 INPUT M

30 PRINT

40 PRINT " "y

50 FBR X=0 T® 50 STEFP 10

&0 PRINT * MiX3

70 NEXT X

80 PRINT

90 FOR X=1 TO 70

100 1IF X/710=INT{(X/10) THEN 130

110 PRINT "-";

120 GOT@ 140

130 PRINT "t"3

140 NEXT X

150 DEF FNG{X)=X12

160 FBR X==7 108 7

170 PRINT

180 FOR Y==-M T@® 70-M

190 IF ¥ <= 0O THEN 2Z2BO

200 IF X=0 THEN 230

210 PRINT "'

220 G2Te 240

230 PRINT 0™

240 IF FNACX>>0 THEN 310

250 REM IF FNG{X) > O GB FIND WHERE IT 15
260 REM BTHERWISE GET THE NEXT VALUE QF X
270 GBaTe 340

2B0 IF Y=FNOC(X) THEN 320

290 REM [IF ¥ DOES N@T EQUAL FNG(X) THEN PRINT A BLANK SPACE
00 PRINT " '3

310 NEXT Y

320 PRINT "%

330 REM PLOT THE PRINT AND GO TO NEXT X
340 NEXT X

350 END

There are still several considerations regarding this program for plotting,
For instance, as the program is written, it will not plot the X-axis if the Y
value is less than 0. The scale is fixed. There is provision for only one function
to be plotted. Also, consider what happens if the value of Y is not an integer.
All of these comments suggest areas in which the program could be improved.
Let us insert a different function and call for one last RUN of PL@ATS5.

150 DEF FNGCE)I=(K-2)12+3
160 FUR X=-5 Ta 8

RUN

PLOTS

The Quadratic Function 131

INPUT THE NUMBER WF SPACES DESIRED T@ THE LEFT @F ZER2?9

o 10 20 30 40 30
--------- Ll et e e el il T Ty Py
t *
] *

t *
t *

4 *

(v} *

* *

LA

1 *

1 *

t *

' *

r *
r #*

DANE

SUMMARY FOR CHAP. 8§

There are several things that can be done with the quadratic function on a
computer: 1) we can calculate the zeros; 2) we can find the various constants
that specify the appearance of the graph; 3) and we can even use the terminal
itself to plot a graph of the function. Of course the graphing program may be
used to plot other functions as well.

PROBLEMS FOR CHAP. 8

1) Write a program that finds the results of QUADI, but prints rational zeros as
fractions reduced to lowest terms.

2) Modify QUADI to compute nonreal zeros.

3) The Y-coordinate of the turning point of a parabola may also be found by
evaluating f(—B/(2 ® A)). Rewrite QUAD2 by defining a function.

4) For sets of coefficients in data lines, have the computer print coordinate pairs
(X, Y) for a reasonable range.

5) Modify PL@ATS to permit the X-axis to be printed for Y-coordinates less than
0. Also provide for the point to be plotted where the graph crosses the X-axis.

CHAPTER ©

Trigonometry

9-1 INTRODUCTION TO SIN(X), COS(X), AND TAN(X)

We choose to define the circular functions in terms of a point (X, Y) plotted
in a rectangular coordinate system. Consider the point (X, Y). It is at a dis-
tance R from the origin. We may find R from X and Y by using the
Pythagorean theorem:

R=X+1Y

It is conventional to use Greek letters for angles. However, since computer
terminals do not provide them, we may use any letters we wish, Let us use G
to measure the angle whose initial side is the non-negative portion of the
X-axis and whose terminal side is the ray that has its endpoint at the origin and
contains the point (X, Y). See Fig. 9-1.

From Fig. 9-1 we define thiee circular functions as follows:

cos G = X/R
sin G = Y/R
tan G = Y/X

where cos stands for cosine, sin stands for sine, and tan stands for tangent.

In BASIC it is required that the angles be measured in radians. | radian
may be defined as the central angle subtended by an are length of R on the
circumference of a circle of radius R. Since the circumlerence of a circle of
radius R is 27R, we see that

27r radians = 360 degrees
ar radians = 180 degrees
1 radian = 180/7 degrees
7r/180 radians = 1 degree

Trigonometry 133

(X, Y)

Fig. 9-1

Although some time-share systems provide the special computer functions
RAD(X) and DEG(X) to convert from degrees to radians and from radians to
degrees, respectively, you should be prepared to make the required conversions.

The wusually available computer trigonometric functions are SIN(X),
COHS(X), and TAN(X). They are used in much the same way that all other
computer functions are used. Just be sure that the argument of the function
is in radians.

In mathematics, it is customary to define three additional circular functions
as follows:

sec G = R/X or sec G = 1/cos G
cse G = R/Y or cse G = 1/5in G
cot G =X/Y or cotG=1/tan G

where sec stands for secant, csc stands for cosecant, and cot stands for
cotangent. Some computers provide these three functions in addition to the
earlier three, but we may always use the appropriate reciprocal. As always,
should an expression become too cumbersome, we have the option of defining a
program function using DEF.

Let us get the computer to print a small table of values of sin, cos, and
tan for 0 to 80 degrees in intervals of 10 degrees. We stop short of 90 degrees
to avoid having an undefined value for the tangent of 90 degrees. To write
program TRIG1, we will have to convert degrees to radians, so we multiply
by #/180.

9-2 RIGHT TRIANGLES AND ARCTANGENT

Taking the graph of Fig. 9-1 and dropping the perpendicular from (X, Y)
in the first quadrant to the X-axis we get Fig. 9-2. We have formed a right
triangle in which the length of the hypotenuse is R, the length of the base is
X, and the length of the altitude is Y. Rediawing the triangle without the
coordinate system, we get triangle ABC with the trigonometric ratios as in
Fig. 9-3.

134 Basic BASIC

TRIG1

S PRINT " SINE","COSINE","TANGENT", "RADIANS", "DEGREES"

9 REM WE COMPUTE A CBNVERSION CBNSTANT
10 LET C=3.14159/180

20 FOR G=0 T@ 80 STEP 10

30 PRINT SINCG#C)»COSC(G*C)» TANCG%C)» G*Cs G

40 NEXT G
50 END
RUN
TRI Gt
SINE CB5INE TANGEMNT RADIANS
0 1- 0 0
« 1 T3648 « 78 4808 « 176327 « 174533
« 34202 «e 39672 « 36397 « 349066
5 «B&56025 « 57735 « 523599
« 642 TBB « 766044 «+B8391 « 698132
« T66044 « 642 TBB 1:19175 +BT26865
« 866025 « 5 1« 73205 1.0472
« 939692 « 34202 2« 74748 1.22173
« 984808 « 1 73648 5. 67129 1. 39626
DBNE
Y
(X,Y)
K y
X
Fig. 9-2
B
C
a
cos/ A=b/c
cim / A=afr
sin/ A=alc
A/ \ C tan/_A=a/b

Fig. 9-3

DEGREES

]

10

20

30

40

50

&0

70
BOD

Trigonometry 135

Pl S

—

—

Fig. 9-4

We also know from geometry that /A and /B are complements, i.e., their
sum is 90 degrees or 7r/2 radians.

Let us solve a problem: George has a 36-ft ladder which he is going to use
to paint his father’s house. He believes that the angle formed by the ladder
and the side of the house should be not less than 14 degrees and not more
than 15 degrees. He needs to know how far out from the house to place the
foot of the ladder. See Fig. 9-4.

We may use either SIN(G) = B/L or C®5(90 — G) = B/L. Let us choose
the sin function and solve for B:

B = L ° SIN(G)

We will have to convert degrees to radians. This is the purpose of line 10 in

program LADER.

LADER

10 LET C=3.14159/180

20 LET L=3é&

30 PRINT "36' LADDER BASE MUST BE OUT FROM THE HQUSE IN FEET"
40 PRINT "™NB8T LESS THAN"."NOT MIRE THAN™

50 PRINT L*SINCC*14)sL*5IN{C*15)

60 END

RUN

LADER

d6' LADDER BASE MUST BE OUT FRrROM THE HOUSE IN FEET
NBT LESS THAN NOGT MO@RE THAN
8. 70918 931748

DANE

We really do not need more than hundredths, so let us round off. Also,
since George may want to change the length of the ladder to reach different
heights, let the ladder length go from 36 ft to 20 ft. See LADERI.

136 Basic BASIC

LADERIL

10 LET C=3.14159/7180

30 PRINT "LADDER BASE MUST BE @UT FR@M THE HO3USE IN FEET™
40 PRINT "NOT LESS THAN""NOT MOARE THAN"."LADDER LENGTH™
45 FOR L=36 T@ 20 STEP -2

50 PRINT INTCL*SINCC*14)%100++5)7100s INTCL*SINCC*15)%100+.53/100,
51 PRINT L

53 NEXT L

&0 END

RUN

LADERI

LADDER BASE MUST BE @UT FR8M THE HOUSE IN FEET
MAT LESS THAN NAT MORE THAN LADDER LENGTH

8. 71 932 36
8.23 8.8 34
7. 74 8.28 32
7-26 T+ 76 ao
& 77 T.25 28
6.29 6+ 73 26
5.81 6-21 24
5.32 5.69 22
4.84 5.18 20
DONE
ATN(X)

Suppose we know the lengths of the sides of a right triangle and we need
to know the angles. If we are using printed tables in a book, we may look up
the angle whose sin, cos, or tan is known. Not so with the computer. An addi-
tional computer function is required for this. ATN(X) is the function usually
available, though some systems will provide others as well. ATN(X) computes
the angle whose tangent is X. If

TAN(G) = X

then

ATN(X) =G

where ATN stands for arctangent and C is in radians.

Fig_ 9.5 /\

Trigonometry 137

Suppose we lean a 36-ft ladder against a building with the base 8 ft out
and we would like to know the angle formed by the ground and the ladder,

as in Fig. 9-5. We can say
TAN(G) =H/8
which means
ATN(H/8) = G
H = SQR(36 °° 2 — 8 °° 2)
Therefore, G may be found in radians by
G = ATN(SQR(36 °° 2 — 8 °° 2)/8)
and the angle in degrees may be found by
LET G=G *® 180/#
See LADER2.

LADER2

10 LET G=ATNC(SGR(16*2=-Bt2)/8)
15 PRINT G3'"RADIANS"

20 LET G=G#180/3.14159

30 PRINT G:"DEGREES™

40 END

RUN

LADERZ2

1« 3467 RADIANS
771605 DEGREES

DANE

SUMMARY

We now may apply the computer to the trigonometry of the right triangle
using SIN(X), COS(X), and TAN (X) to find sides when angles are known and
using ATN(X) when we wish to compute angles. We must always be aware of
the need to use radians for the argument of the computer trigonometric

functions.

PROBLEMS FOR SEC. 9-2
1) Modify LADER2 to give the angle in degrees and minutes.

2) Modify LADER2 to give the angle in degrees, minutes, and seconds.
3) Rewrite LADERZ2 so that the number of radians is given in terms of .
4) If the sides of a triangle are 10, 10, and 4, find the angles of the triangle to

the nearest minute.

5) Find the angles of a 3, 4, 5 right triangle to the nearest minute.
6) Find the angles of a 5, 12, 13 right triangle to the nearest minute.

138 Basic BASIC

7) A right triangle has one angle 42°25' and the side opposite that angle has a
lengih of 10.0”. Find the other sides of the iriangle.

8) Standing 1000 ft from the base of a lighthouse on level ground, the angle of
elevation is 7°30". Find the height of the lighthouse.

9-3 LAW OF SINES AND LAW OF COSINES
Law of Sines

By drawing a triangle successively with each of its vertices at the origin of
a rectangular coordinate system, we may compute its area in three ways.
Referring to Fig. 9-6, the area is found by

Area = :b(H1) or Ka(H2) or #2e(H3) (9-1)
We should see that

sinCl = H1/a
sin Bl = H2/c
sin Al = H3/b

Solving for the heights we get

Hl = asinCl
H2 = ¢ sin Bl
H3 = b sin Al

Substituting in Eq. (9-1) we get
Area = ¥b(a sin C1) or %a(c sin B1) or %e(b sin A1) (9-2)

Therefore we may find the area of any triangle by taking one half the product
of two sides and the sine of the included angle.

Since the area of a triangle is unique, we may set the three expressions for
area in Eq. (9-2) equal to get

%ba sin C1 = ¥ac sin B1 = %cb sin Al
By clearing of fractions and dividing through by abe, we get

sin C1 sin B1 sin Al

c b ~ a (9-3)
Equation (9-3) is called the Law of Sines. It enables us to find all parts of a
triangle if we are given any two sides and the angle opposite one of them, or
if we are given any two angles and any one side (provided, of course, the

triangle exists).
Let us write a program to find the remaining parts of a triangle ABC given
Al, Bl, and a. Since the sum of the measures of the angles of a triangle is

180 degrees, we first get

C1 = 180° — (Al + Bl) (94)

Trigonometry 139

Y Y Y C1

]

B1 " !
b AT H3

I d |

H1, \ X H2! \ b |
Al b C1 C1 a B X B1|€ A1 X

Fig. 9-6
The Law of Sines gives us

sin Al sin Bl
a ~ b
Solving for b gives

___asin Bl

sin Al
Similarly we get

_ bsinCl1
— sin Bl

And finally, the area may be found by
Area = ¥ab sin C1 (9-7)

All we have to do is put all that into a program. We may do that almost
directly from Eqs. (9-4)—(9-7). These four equations appear in order in lines
60, 70, 80, and 90 of program LAWSIN.,

In writing the program, we have done only slightly more work than we
would do preparing to do the calculation by hand. However, we are letting
the computer take the drudgery out of the actual calculation. We also have the
program available to do large numbers of calculations at a later date with
virtually no additional effort required. However, we continue to be totally
responsible for the mathematics required.

If we reflect for a moment upon the congruence of triangles, the various
congruence conditions come to mind. They are side-angle-side, angle-side-angle,
side-side-side, and angle-angle-corresponding side. There are special cases for
right triangles. We should see then, that if any of these four sets of measures
is known, we should be able to find the remaining three parts uniquely. And
so we can. We have just used LAWSIN for two angles and a nonincluded
side. We should be able to handle two angles and the included side with only
slight modifications of LAWSIN. However, you should see that we cannot
handle side-side-side or side-angle-side with the Law of Sines. For these we
need the Law of Cosines.

(9-5)

(9-6)

140 Basic BASIC

Laksin

8 HEM WE COMPUTE THE CONVERSION FACTOR

10 LET K=3.141597180

I8 HREM DEFINE THIG FINCTION FOD< DEGHREES

20 DEF FNTCGI=S5INC Gk

28 HEM DEFINE A ROUNDIMNG FUNCTISN

30 DEF FNRCKI=SINTOX+100+.537100

38 HEM ' Al AND Bl ARE ANGLES AND A 15 A SIDE
40 READ Al,Bl.A

50 IF Al=0 THEN 999

58 rfEM FIND THE THIRD ANGLE

60 LET Cil=1B0-(A1+B1)

68 REM 70 AND 80 COMPUTE THE BTHEK TWO SIDES
T0 LET B=A*FNT(BIYA/FNTCAL)

BEO LET C=B*FNT(CII/FNTC(E1)

B3 AEM COMPUTE AREA

90 LET AZ2=.5%A*B*FNTCCI1)

9B REM MNOW PRINT THE RESULTS

100 FJRINT 1 b pen E"l‘" G"

110 PRINT "THE ANGLES ARE":Al1sB1sC1

120 PRINT "THE SIDES ARE™.FNRCA)s FNRC(B),FNRC(C)
130 PRINT "™AND THE AREA IS ";FMNRCAZ)

140 PRINT

150 GAT@ 40

500 DATA 24,51.10

310 DATA 30,60:15

520 DATA 45, 45.,20

S30 DATA D.0.0

299 END
R UN
LAwsIN
A B c
THE AMNGLES ARE 24 21 105
THE SIDES ARE 10 19«11 23. 75

AND THE AREA IS5 92.28

fa B c
THE AMGLES ARE 30 &0 0
THE SIDES ARE 15 25.98 a0
AND THE AHEA I35 194.86

& B C
THE AMGLES ARE 45 45 90
THE SIDES ARE 20 20 28.28

AND THE AREA IS 200

DANE

Law of Cosines

For any triangle AIB1C1 we may place a vertex at the origin of a rectangu-
lar coordinate system and designate the vertices as shown in Fig. 9-7.
Using the Fyiliagorcan iheviem, we may cutipuie a® by

a? = (c cos Al — b)? + (csin Al1)?
Simplifying the right side we get
a? = ¢2 cos2 Al — 2bccos Al 4+ b? 4 ¢2sin? Al

Trigonometry 141

Y
(c cos A1, csin Al)
B1
C a
X
Al b ci
(0,0 (b, 0}
Fig. 9-7
Rearranging terms
a® = b® 4 ¢*(cos® Al + sin? Al) — 2be cos Al
Since cos® Al + sin®* Al = 1, we finally get
a? = b? + ¢® — 2bc cos Al (9-8)

Equation (9-8) is the statement of the Law of Cosines solved for vertex Al at
the origin. Placing B1 at the origin we would get

b? = a? + ¢? — 2ac cos Bl (9-9)
and placing C1 at the origin would produce
¢® =a? 4 b? — 2ab cos C1 (9-10)

In the form of Egs. (9-8)-(9-10) the Law of Cosines is appropriate for
handling problems in which two sides and the included angle are given. Once
you obtain the third side by taking the square root of the right side of the
equation, you may use the Law of Sines to obtain a second angle, or you may
proceed as for the side-side-side congruence.

If we solve Eqg. (9-8) for cos Al, we get

2bc

cos Al = (9-11)

So, if we are faced with a side-side-side congruence, we may easily find the
value of cos Al. Now our only problem is to get the value of Al from the value
of cos Al. This will require the ATN (X) function. We should know that

sin Al
cos Al

and for Al between 0 and 180 degrees, sin Al is always positive. Thus,
sin Al = /1 — cos® Al (9-12)

tan Al =

142 Basic BASIC

Thus
/1 —cos?Al
At = cos Al
And so,
} [g
Al = ATN (V1 oL ‘“) (9-13)

Now, we will be able to translate Eqs. (9-11)-(9-13) into BASIC program
statements. From Eq. (9-11) we get

LETT=(B°°2+C°°2-A°°2)/(2°B"°C)
and from Eq. (9-12) we get

LETT1 =SQR(L—-T °° 2)
and finally from Eq. (9-13),

LET Al = ATN(T1/T)

These three statements constitute the heart of our program LAWCE@S which
reads three sides from data and prints all six parts of the triangle. See espe-
cially lines 50, 60, and 70.

We could have done the work of lines 90 through 120 by shuffling the data
around and using lines 50 through 80 as a subroutine.

SUMMARY

This section has been devoted to solving triangles which may be uniquely
determined. We have developed the Law of Sines into a program to solve the
case of two angles and a nonincluded side and indicated that, with a few
changes, the angle-side-angle case is solvable by the Law of Sines also.

The Law of Cosines has been used to find the angles of a triangle whose
sides are known. It has been indicated that the case of side-angle-side is appro-
priate for the Law of Cosines also. This covers the uniquely determined cases
except hypotenuse-leg. There remains the ambiguous case. If two sides and a
nonincluded angle are given, there may be two, one, or no triangles possible.
If solvable, such triangles are solvable by the Law of Sines. This is left to the
student in the exercises.

PROBLEMS FOR SEC. 9-3

1) Write a program to solve the angle-side-angle case.

2)* Write a program to handle given two angles and a nonincluded side, and two
angles and the included side. Use an item of data to determine which kind of data
is provided.

3) Modify LAWCPDS 1o use lines 50, 60,
the data as discussed in text.

4) Write a program to solve the side-angle-side case.

5) Write a program to handle given three sides, and two sides and the included
angle. Use an item of data to designate which set of data is provided.

T

- T Akl 1 _l 1 T (2 nd
U, dllld OU ods i SUDIUULENE Wil S

Trigonometry

LAWCAS

10
15
20
30
40
48
50
58
60
68
T0
78
80
B8
20
100
110
120
130
140
150
500
510
320
530
999
RUN

DEF FNRO(X)=INT{(X*+100+.5)/100
FRINT L1 l" " ﬂtl. (1] B'l'll Cl'
READ AsB.C
IF A=0 THEN 999
PRINT "THE SIDES ARE'":;A:B.C
REM T 15 REALLY C@5(Al)
LET T=(Bt*2+Ct2=-At2)/(2%B=()
REM T1 IS REALLY SINCALl)
LET Ti=SGR(1-T*2)
REM Al IS THE ANGLE INCLUDED BY SIDES B aND C
LET Al=ATNC(TI/T)
REM CONVERT RADIANS T@ DEGREES
LET Al=Al*180/3.14159
REM WE N@W REPEAT THE PROCESS T@ FIND ANGLE Bl
LET T=CAr2+Cr2-Br2)/(2%A%()
LET T1=SQ@RC1-Tr2)
LET BI=ATN(TL/T)
LET BiI=Bl*1B0/3.14159%9

143

PRINT "THE ANGLES ARE",FNRCA1),FNRCBI1), 180-CFNRCAI)I+FNRCB1))

PRINT

GATa 20

DATA 3s 4,5, 300, 400, 500
DATA 1.73205,1,2

DATA 2,2,3

DATA 0.0,0

END

LAWCES

THE
THE

THE
THE

THE
THE

THE
THE

DANE

A B C
SIDES ARE 3 4 5
ANGLES ARE 36.87 53.13 0

S5IDES ARE 300 400 500
ANGLES ARE 36.87 53.13 90

SIDES ARE 1.73205 1 2
ANGLES ARE &0 30 70

SIDES ARE 2 2 3
ANGLES ARE 41.41 41. 41 27.18

/ 6) Write a program to solve the ambiguous case. Be sure to provide for no

triangles, one triangle, or two triangles.

v 7) BRewrite problem 3) to handle degrees, minutes, and seconds.

J 8) Rewrite problem 4) to handle degrees, minutes, and seconds.
9) Project: Write a single program to process data in four uniquely determined

cases. You might include the HL case.

9-4 POLAR COORDINATES

Every point in a rectangular coordinate system may be named by a unique
pair of real numbers. The pair is usually designated (X, Y). If we plot a point
(X, Y), we find that we may determine anotlier ordered pair of numbers, one
of which is the distance from the origin and the other is an angle measured
from the positive portion of the X-axis to the ray with endpoint at the origin

144 Basic BASIC

and containing point (X, Y). If we call the distance R and the measure of the
angle G, we may designate a new ordered pair (R, G). Refer to Fig. 9-1.

Ordered pairs of this kind are called polar coordinates. The ray consisting of
the origin and the positive portion of the X-axis is called the polar axis and
the origin is called the pole. Our new coordinate system appears in Fig, 9-8.
Such a coordinate system is particularly adapted to plotting periodic functions
with finite upper and lower bounds.

(R, G) Fig. 9-8

v

POLE POLAR AXIS

Note that there is no one-to-one correspondence between ordered pairs and
plotted points for the polar coordinate system. How do we designate the
origin? (0, 0°)? How about calling it (0, 10°) or (0, —25°)? Also note that
(1, 45°) and (1, 405°) name the same point. Any particular ordered pair does
name a unique point, but every point may be named by an unlimited number
of ordered number pairs in this polar coordinate system.

Looking at the polar equation R = cos G suggests that for some values of G
we would like to allow R to take on negative values. So we extend the defini-
tion of R to permit this. The absolute value of R is the distance of the point
from the pole and we define (—R, G) and (R, G 4 180°) to name the same
point.

Some polar equations are relatively easy to convert to rectangular form.
For instance,

R=2cosG

is equivalent to

V) r L .
VXE + Y2
which is equivalent to
X2 + Y2 —2X =0

which turns out to be a circle with radius 1 and center at the point (1, 0).
However, other polar equations are not so easily identifiable when converted
and so are more appropriate to plot on a polar coordinate system. Consider,

R=1—-2cosC (9-14)
R =2+ sin 2C (9-15)
R=142cosC—3sin*G (9-16)

No matter how you approach plotting any of these, you run into a tremendous
amount of calculating.

Trigonometry 145

We can easily get the coordinates of the points to plot for all three of these
in the same computer program.

In program POLAR we have simply defined a function for each of the Eqs.
(9-14), (9-15), and (9-16), and put the value of the angle G in a loop to get
values every 15 degrees. We are not obligated to define functions, but with
converting to radians and rounding off to hundredths this seems a reasonable
approach. Now if we want different functions we only need change the
printing in line 10 and redefine the new functions in lines 30, 40, and 50. Of
course the actual plotting is left to the student to do on polar coordinate paper.

PALAR

3 LET K=3.141597180

10 PRINT "ANGLE">"1-2COS5C(G)"> "2+ SINC2GI "> " 1+2COSCG)-35INCGI "
20 DEF FNRECXI=INT(X*100+.5)/100

30 DEF FNACKI=1=2#COS(H%X)

40 DEF FNBCXKI=2+S5IN(2*K+X)

S0 DEF FNC(X)=1+2+COSCH+X)-3%S5IN(K*X)112

60 F@R G=0 T@ 360 STEP 15

70 PRINT Gs FNRCFNACGY)> FNRIFNBCG)), FNR(FNCCEY)

BO NEXT G

90 END

RUN

PaLaR

ANGLE 1-2C05CG) 2+ 5INC26) 1+2COSCEY-28INCEY 12
4] =1 2 3
15 -«23 215 2#?3
3o -.73 2.87 1.98
45 -« 4] 3 - 91
&0 0 287 =.25
75 « 48 2.5 =1.28
90 1 2 -2
105 1'52 1«5 -2« 32
120 2 1.13 -2.25
135 2. 41 1 =191
15'3 21?3 1-'.3 -i-AB
165 2+93 1-:5 =]1.13
180 3 2 -1
195 2.73 2.5 =1.13
210 2«73 2«87 =1.48
225 2. 41 3 =121
240 2 2.87 -2.25
255 1.52 2.5 -2.32
270 1 2 -2
EEIS « 45 li5 '1-28
300 O 1«13 -« 25
315 =+ 41 1 + 91
330 -+ T 1-.13 1.98
345 -.93 1.5 2. 73
360 -1 2 3
DaNE

SUMMARY

The computer is an invaluable aid to obtaining values of ordered pairs of
polar coordinates for polar equations.

146 Basic BASIC

PROBLEMS FOR SEC. 94

1) Obtain polar coordinates for plotting any of the following polar equations. /It
would be instructive to plot the graph as well.)

(a) R = cos 2G

(b) R = cos 3G

(c) R = cos 4G

(d) R = sin 2

(e) R = sin 3G

(f) RcosC=1

(g) R=1+RcosG
(h) R=sinG 4+ cosG

2) Write a program to convert from polar coordinates to rectangular coordinates
for any of the polar equations in problem 1).
v 3) Write a program to store rectangular coordinates in an array for any of the
polar equations in problem 1) except (f) and (g) and then rearrange the ordered pairs
in order of increasing values of X. Print the resulting set of ordered pairs. Plot the
graph on rectangular coordinate paper and compare it with the plot obtained in
problem 1).

CHAPTER 10

Complex Numbers

10-1 FUNDAMENTAL OPERATIONS

In the development of mathematics we find that we cannot solve the
equation

X2+1=0
if we are limited to real numbers. We want to say
X =4/-1 or X=—y/-1

However, such numbers are not allowed in the real number system. So we
define a new number i such that

i2=-—1 or i=v’:~—1"

Then, if we should try to solve X* 4+ 2X + 2 = 0 using the quadratic formula,
we get

I ey , @ yfmd
X=) o1 X= 5
and we decide to call \/—4 the same number as i\/4 which is 2i. So now
—2 * 2j
A= T
or X=—1+i
=-1-—1i

These two numbers are representative of complex numbers in rectangular form.
In general, rectangular form is written as a + bi, where a and b are real num-
bers. Another number could be written ¢ + di. Of course, the computer cannot
handle a 4 bi because it is limited to real numbers. But we can deal with the
two real numbers a and b. This means that we will be working with complex
numbers in ordered pair form or (a, b) form. Since the computer terminal is
limited to capital letters, we use (A, B).

148 Basic BASIC

For two complex numbers (A, B) and (C, D) we define equality:
(A, B) = (C, D)

if and only if

A=C and B=D (10-1)

Their sum is found by

(A;BY 4 (D)= (A4 TN +1) (10-2)

and their product is found by

(A, B) * (C,D) = (AC — BD, AD + BC) (10-3)

Equations (10-1), (10-2), and (10-3) are relatively straightforward consid-
erations for a computer program. We can test a pair of real numbers for
equality with another pair or we can perform the addition of Eq. (10-2) or the
multiplication of Eq. (10-3). As an example, let us write a short program to

add two complex numbers on INPUT. See ADDA, B.

ADDA- B

10 PRINT "THIS PROGRAM ADDS TWO COMPLEX NUMBERS IN A:B FORM™
20 PRINT

30 PRINT ™ FIRST NUMBER";

40 INPUT AsB

20 IF A=99% THEN 99%9

60 PRINT * SECOND NUMBER";

70 INPUT CsD

BO PRINT "THE 5UM I5 ("3 A+C3"s"3B+D;")"

20 GaTEe 20

999 END
RUN
ADDA: B

THIS PROGRAM ADDS TW@ CEMPLEX NUMBERS IN A,B FORM

FIRS5T MUMBER?1., 4
SECOND MUMBER?0,0
THE 5UM IS5 ¢ 1 s 4]

FIR5T NUMBER?1.5
SECBND NUMBER? 3,8
THE SuUM IS5 ¢ 4 » 13)

FIRST NUMBER?=-467.902
SECOND NUMBER?56,=-1234
THE 5uUM IS (-411 »=332

FIRST NUMBER?999,1

Lale Al =
L

Subtraction and multiplication are also relatively straightforward.
Now consider division:

(A, B)/(C,D) = (X,Y) (10-4)

Complex Numbers 149

Equation (10-4) may be defined in terms of multiplication:

(A,B)=(X,Y)°(C,D)
(A, B) = (XC — YD, XD + YC)

By the definiton of equality for complex numbers,
A=XC-YD and B=XD+ YC
Solving for X and Y we get

_ AC+BD _ BC—AD
X="&=1Dr Do and h Eotr T D2
This is a little more complicated than the other operations, but still manage-
able.

SUMMARY

The computer may be programmed to work with complex numbeys, if we
represent them as ordered pairs of real numbers. The four fundamental oper-
ations of addition, subtraction, multiplication, and division may all be done
by formula.

PROBLEMS FOR SEC. 10-1

1) Write a program to give the sum, diflerence, product, and quotient for pairs
of complex numbers assigned as data.

2) Write a program to compute and print the complex roots of quadratic
equations.

3) Write a program to test the commutative properties of both addition and
multiplication for five pairs of complex numbers.

4) Demonstrate that subtraction and division are not commutative.

5) Write a program to generate random complex numbers. Then test the asso-
ciative property for both addition and multiplication.

J 8) Find the reciprocal of complex numbers assigned as data.

7) Whenever we talk about ordered pairs of real numbers, the rectangular
coordinate system should come to mind. Think of (A, B) as a plotted point on a
graph with an A-axis and a B-axis. Write a program to find the distance from the
origin of five complex numbers assigned as data.

10-2 POLAR COORDINATES

If we think of ordered pairs of real numbers as being associated with a
rectangular coordinate system, we may plot a point representing (A, B) as
shown in Fig. 10-1, where the distance from the B-axis is the absolute value
of A and the distance from the A-axis is the absolute value of B.

Whenever we plot an ordered pair of real numbers on a rectangular
coordinate system, we may associate the point with another ordered pair of
real numbers. In the new pair, the first number is the distance from the origin
and the second is the angle whose initial side is the positive A-axis and whose
terminal side is the ray with an endpoint at the origin and containing the point

150 Basic BASIC

o {Ar B}

Fig. 10-1

(A, B). We use R for the distance and call it the absolute value of the complex
number (A, B). R is found from (A, B) by

R=|[(A,B)|= AT+ B?
We use G for the angle. G may be found from (A, B) by
G = arctan (A/B)

G is sometimes called the argument of the complex number. We may now
refer to complex numbers in polar form as (R, G). This form for complex
numbers is the same as the form for (X, Y) ordered pairs converted to polar
form in Chap. 9, with the one exception that we prefer not to allow R to be
negative for complex numbers.

So we see that for every complex number we may choose a rectangular
form or polar form depending on which form is appropriate to the problem at
hand. We saw in Sec. 10-1 that addition and subtraction worked out easily
in (A, B) form, but that multiplication and division were more cumbersome.
Let us look at multiplication in (R, G) form.

It turns out that a third form will be helpful in establishing the multiplica-
tion algorithm. From (R, G) we get that A = R cos G and B = R sin G, and
similarly for (R1, G1) we get that C = R1 cos G1 and D = R1 sin G1. Using
the old formula to multiply (A, B) by (C, D) we get

(R cos G, R sin G) (R1 cos G1, R1 sin G1)
= (RR1 cos G cos G1 — RR1 sin G sin G1,
RR1 sin G cos G1 + RR1 cos G sin G1)

After factoring, the right side becomes

(RR1(cos G cos G1 — sin G sin G1), RR1(sin G cos G1 + cos G sin G1))
(10-5)

TL mrne lhn nhineeees b
A% LEALD LAl SRS VY AL Lidiii

cos G cos Gl — sin G sin G1 = cos (G + G1) (10-6)
and
sin G cos G1 + cos G sin G1 = sin (G + G1) (10-7)

Complex Numbers 151

Substituting Egs. (10-6) and (10-7) into (10-5) we get
(RR1 cos (G + G1), RR1 sin (G + G1))

which is a plotted point associated with a distance from the origin of RR1 and
an angle of G + G1. So

(R, G)YR1, G1) = (RRL, G + G1) (10-8)

This means that to multiply two complex numbers in polar form we should
multiply their absolute values and add their arguments. This is less cumber-
some than the method of Sec. 10-1. -

It follows from Eq. (10-8) that to divide two complex numbers in polar
form we divide their absolute values and subtract their arguments:

(R, G)/(R1, G1) = (R/R1, G — G1) i

Again this is less cumbersome than the formula of Sec. 10-1.
Let us multiply some randomly assigned complex numbers in polar form.

We generate arguments in degrees and absolute values in units 1 to 10. See
MLTR, G.

MLTR, G

10 DEF FNC(ZY=INTC(ZxRNDC(Z)+1)

20 FOR X=1 T@ &

30 LET R=sFNCCIO)

40 LET G=FNCC(3602

50 LET RI=FNC(10)

60 LET GI=FNC(360)

T0 PRINT ey R’ N M G YRR "IGII Y= (" RERII ", " GGl ™Y

BO NEXT X
90 END
RUN
MLTR: G
¢ 10 s 135 1x(2 + 311 y=¢ 20 2 446)
(& s+ 9B Ix(9 s 341 ¥I=C 54 +» 439)
9 s & (1 s 231 y=(9 » 237)
¢ 10 s 95 Ix(8 s 307 2=(BO » 402)
(& s 60 I®x(5 s 356 ¥=(30 + 416)
C 10 » 139 I%C 2 » 343 =(20 s 4B2
DEnNE

SUMMARY

Complex numbers may be represented in polar form as (R, G), where R is
the absolute value and G is the angular location starting at the positive end of
the A-axis on an (A, B) graph. We have seen that while addition and subtrac-
tion are easily done in (A, B) form, multiplication and division are better
suited to (R, G) form. (R, G)(R1, G1) = (RRL, G + G1) and (R, G)/(R1, G1) =
(R/R1, G — C1). To multiply in polar form, multiply absolute values and add
arguments, To divide in polar form, divide absolute values and subtract
arguments,

152 Basic BASIC

PROBLEMS FOR SEC. 10-2

1) Write a program to find the quotient of two complex numbers in polar form.

2) Write a program to print the positive integral powers of (1, 45°) from 1 to 8.

3) Write a program to convert from (R, G) form to (A, B) form.
J 4) Write a program to convert complex numbers from (A, B) form to (R, G) form.
You will want to use the ATN(X) computer function here and be sure you have the
angle in the correct quadrant. To check this, simply try numbers in all four quadrants.
J 5) Write a program to take two complex numbers in (A, B) form and print their
product in (R, G) form.
J/ 6) Write a program to print the positive integral powers of a complex number in
(A, B) form. Keep the result in (A, B} form.
v 7) Modify MLTR, G to generate negative as well as positive numbers for angles.
Print the resulting angle as a value between —360 and 4-360 degrees.

i

10-3 POWERS AND ROOTS

We have seen that for multiplying two complex numbers the polar form
provides a very convenient algorithm. If we wish to square a complex number,
i.e., multiply it by itself, we get

(R,G*=(R%,G+G) o (R20)

We also see that for a positive integer n,

(R, G)* = (R», nG) (10-9)
It can also be shown that an nth root of (R, G) may be found by
(R, G)/n = (RVn, G/n) (10-10)

where R!/" means \/R. Equations (10-9) and (10-10) constitute a portion of
De Moivre’s theorem. It can also be shown that every nonzero complex num-
ber has exactly n complex nth roots.

Let us find the four complex fourth roots of unity. By taking the square roots
of the square roots of 1, we should get 1, i, —1, and —i, which in (R, C) form
are (1, 0°), (1, 90°), (1, 180°), and (1, 270°). Using De Moivre’s theorem,

(1, 0234 = (114, Q/4°) or (1,0°)

However, there should be three more. Now we see that there is a tremendous
advantage associated with the nonuniqueness for polar coordinates. By writing
unity (1, 0°) as (1, 360°) we may apply Eq. (10-10) again:

(1, 360°)1/4 = (1, 90°)

Writing (1, 0°) as (1, 720°) we get
(1, 720°)1/% = (1, 180°)

and finally (1, 0°) = (1, 1080°) gives
(1, 1080°)1/4 = (1, 270°)

RAT

10
20
30
40
50
&0
70
80
30
100
110
120
130
140
RUN
REAT

TAKE
THE

€ 1.
O
C 1.
€ 1

THE
€ 1.
¢ 1.
C 1.

THE
€ 1.
€ 1.

THE
{ 1.
€ 1.
€ 1.

eut

Complex Numbers 153

s

PRINT "TAKE REQATS BF COMPLEX NUMBERS IN POLAR FORM'"™
READ Ras GsN
PRINT "THE"™SN3I"s"IN3"TH ROGTS OF (":R:","™31G:"™) ARF:z"™
FBR X=1 T8 N
PRINT "C("3 Rt C1/NY3", "3 G/Ns"™™
LET G=G+360
NEXT X
PRINT
GATe 20
DATA 1:0: 4
DATA 1,0.,3
DATA 15 45,2
DATA 3,90,23

END

5

REATS @F C@MPLEX NUMBERS IN PALAR FO@RM

4 s 4 TH REQTS B8F ¢ 1 » O) ARE:
+» 0)
» 20]
» 18O)
» 270 3

3 » 3 TH RBZTS aF ¢ 1 s O) ARE:
+ 0 b
+ 20)
» 240)

2 s 2 TH RAATS aF ¢ 1 + 45 } ARE:
» 2245 b
¥ EDE-S }

3 s 3 TH ROBTS BF ¢ 3 s 90 } ARE:

A4225 s 30)

44225 + 150)

44225 » 270)

@6F DATA IN LINE 20

as expected. Suppose we add 360 degrees again. Then G = 1440° and
1440(1/4) = 360° which we have alieady in (1, 0°). Finding roots of complex

numbers

in polar form becomes a very straightforward computer program.

See ROATS.

PROBLEMS FOR SEC. 10-3

1) In program ROGTS have the computer convert the roots to (A, B) form.
V' 2) Write a program to find the n complex nth roots of complex numbers in (A, B)
form and print the results in (A, B) form.
J 3) In program ROGTS print the roots in both (A, B) and polar form.

CHAPTER 11

Polynomials

11-1 FUNDAMENTAL OPERATIONS

We define a real polynomial in X as an expression that can be written in
the form

A-;\:Xx + A:\'_lxxul + -+ A2X2 -+ AIX + AU

where N is a non-negative integer, X is a complex number, and the Ay are
constant real coefficients. The following are examples of polynomials in X:

5 X—-3 X84+ 3X5—-X+1 X*+3X—-4

For the polynomial 5, note that 5 = 5X" so the polynomial consists of the term
A,, which is 5. The number 0 is considered a polynomial. All real polynomials
except the zero polynomials have degree i where AX! is the term of the
polynomial with the greatest value of i for A; not equal to 0. Polynomials may
be used to describe many physical problems. For instance, the trajectory of a

projectile is described by a second-degree polynomial.
We may perform operations on polynomials much as we perform opera-

tions on explicit numbers. You have had considerable experience adding and
subtracting such expressions. You have often multiplied two binomials of the
form (AX 4+ B)(CX + D). One of the problems in Chap. 1 was to perform just
that multiplication by computer. We now develop a program to multiply two
polynomials.

Multiplication

Clearly we will perform operations on the computer by working with the
coefficients and being careful to line things up properly. This means being very
much aware of missing terms and inserting zero coefficients where necessary.
Let us begin with an example, say (2X + 7)(3X* + 11X — 5). By hand we get

Polynomials 155

3X2+ 11X — 5
2X 4+ 7

21X2 4 77X — 35
6X3 4 22X2 — 10X

6X3 + 43X* + 67X — 35

where all the X~ were known in advance and do not depend on the coefficients.
So the problem could have been done in the following manner:

(i | S
g+ 7
91 + 77 — 35
6+ 22— 10
6 + 43 + 67 — 35 (11-1)

The program can be set up by putting 3, 11, and -5 in one computer list,
2 and 7 in another, and making provision for putting 6, 43, 67, and —35 in a
third list. We may find the organization to be a little easier by thinking of the
computation in Eq. (11-1) as being set up in columns numbered from right to
left. (If your computer permits 0 subscripts in a list, you may use that to
good advantage here by starting with 0.)

3 2 1 0 Column numbers
4 3 2 1 Column numbers
3 +11 — 5
2 + 7
21 +77 —-35
6 +22 - 10
6 +43 +67 —35

We observe that when we multiply two numbers in column 1, we put the
result in column 1; when we multiply a number from column 1 by a number
from column 3, we put the result in column 3; and when we multiply a
number in column 2 by a number in column 3 we put the result in column 4.
This suggests that multiplying a number in column I by a number in column]
calls for the result to go in column (I +] — 1). [If O is allowed, then the
result goes in column (I + J).] So, if we store the two polynomials being
multiplied in an F list and an S list and the product in a P list, our computer
program will have an instruction to store F[1] ® S[J] in P[I 4 J — 1]. We must
also provide for subtotals. Thus the program statement will be

XXX LETP[I+]J~—1]=PI+]—1]+ F[I]* S[]]

where we initialize the P list at 0. Program TRI ° BI multiplies the two poly-
nomials of our example,

It will be left as an exercise to modify TRI ® BI to multiply pairs of poly-
nomials of various degrees.

156 Basic BASIC

TR1%B1}

g8 REM LINES 10 THHREUGH a0 SEAD AND PRINT THE FIRST POLYNOMIAL
10 FBR X=3 T8 1 STEP =1

20 READ FL X1

30 PrRINT FIX15

40 NEXT X

20 PRIMT "TIMES "

5B HEM LINES &0 THROUGH 90 READ AND PRINT THE SECEND PAOLYNOMIAL
a0 FOR Y=2 T80 1 STEP -1

70 READ 5L[Y1

B0 PRINT 50{Y1:

o0 MNEXT Y

98 REM 100 THROUGH 120 SET THE RESILT LIST AT ALL ZERES
100 FBR W=1 TO 4

110 LET PLWI=D

120 NEXT W

128 REM LINES 130 THROUGH 170 DA THE ACTUAL MULTIPLYING
130 FOR I=1 T® 3

140 F@R J=1 10 2

150 LET PLI+J=-1)1=PLI+J=-11+FL[I1%5[.J]

160 NERT J

170 NEART I

180 PRINT "YIELDS Hy

188 |iEM AND NOW WE PRINT THE 'ANSWER LIST®

190 FOR Z=4 TO 1 STEPFP =1

200 PRINT PLZ1:

210 NEXKT Z

218 REM THE FIRST THREE NUMBERS REPRESENT 3Xt2+11X-5
219 REM THE NEXT TWD NUMBERS REPRESENT 2X+7

220 DATA 3s11s-328517

230 END

RUN

TRI%#BI

3 11 =3 TIMES 2 7 YIELDS 3! 43 57 - 35
DONE

Division

When working with polynomials we often wish to perform the operation of
division. It is especially frequent that we wish to divide by a polynomial of the
form X — R where R iz a constant. Let us divide 2X% — 3X2 — 10X + 3 by
X — 3 and see what can be done to computerize the operation. As with multi-
plication, we will end up considering only the coefficients. First we do the
division by hand:

2X2 43X —1
X — 3)2X% — 3X*— 10X + 3
2X3 — X<
3X2% — 10X
3Xz— 9X
— X+3
— . X+3

Every term in the computation that will be written twice in every problem
appears in bold face. Now if we simply decide not to write things twice and
at the same time compress the problem vertically, we get

Polynomials 157

2X2 4+ 3X — 1
X — 3)2X% — 3X2 — 10X + 3
e BX0 v DXL S

Xz~ X

We saw that for multiplication, as long as everything was lined up correctly,
we could eliminate all the X’s. Also note that we are dividing only by
binomials of the form X — R, so the coefficient of X will always be 1. Let us
not even write it. Now we have the division in the following form:

2+3—1

Y T

il Bl g
3= 1

Since the coefficient of X in the divisor is always 1, the coefficient of ecach term
in the quotient will always be the same as the coefficient of the leading term
of the expression into which we divide the X term. Thus it is no accident that
we see 3 — 1 in the bottom row as well as in the answer. So, if we agree to
simply insert the leading coefficient of the polynomial into which we are
dividing X — R in front of the bottom row of figures, we will always have
the coefficients of the quotient polynomial and we would not need the top
row. We now have reduced the problem to an iteration involving “multiply
and subtract” repeatedly, and the division looks like

—-3)2—-3—-104+3
—6— 943

243~ 1

which we got by the following set of steps: 1) copy down the first coefficient
of the original polynomial 2; 2) multiply 2 by —3 to get -6 and write it down
under the second term of the original polynomial; 3) subtract to get 3, mul-
tiply 3 by —3 to get —9; 4) write it down beneath the next term to the right
and subtract to get —1; 5) multiply —1 by —3 to get +3 and write it down
beneath the next term; 6) subtract to get 0 and we have a 0 remainder. So we
see that 2 + 3 — 1 is interpreted as 2X* + 3X — L.

Since subtracting a number may be accomplished by multiplying the num-
ber to be subtracted by —1 and adding, we may convert “multiply and sub-
tract” to “multiply and add” if we multiply the —3 by —1 to get 3. Or for
X — R we just use R. Let us complete the development of this algorithm by
inserting the 0 in the last column to the right to indicate a remainder of 0.

3)2—3-10+3
86+ 9—3
24+3— 140

Dividing 3X4 - 2X2 4 5X — 2 by X -+ 2 results in

-234+0— 24+ 5— 2
—64+12 —20+ 30

3—6+4+10—-15+28
yielding a quotient of 3X3 — 6X2 + 10X — 15 and a remainder of 28.

158 Basic BASIC

Division by the algorithm we have just developed is usually called synthetic
division. Since this is essentially an iterative process, we should be able to get
the computer to perform division in this way. We put the original polynomial
in a P list and the quotient polynomial in a Q list. Let us store the division
constant in R. For every division problem of the kind we are working with
here, the first coefficient in the quotient polynomial is the same as the first

coeflicient in the dividend polynomial. So we need a line in the program which
says LET Q[4] = P[4]. See line 70 in program SYNDIV.

SYNDIV

S PRINT "SYNTHETIC DIVISION:*™

8 REM READ THE DIVIS@R

10 READ R

I8 REM READ AND PRINT @RIGINAL PALYNBMIAL IN LINES 20 THRU 50
20 FOR N=4 T@ 1 STEP =1

a0 READ PIN]

40 PRINT PINI13

S0 NEXT N

60 PRINT "DIVIDED BY X -"JR:"YI1ELDS"™

68 REM FIRST GQUBTIENT CPEFFICIENT EQUALS FIRST
69 REM COEFFICIENT @F BRIGINAL POLYNBMIAL

70 LET QL 41=PLAa)

80 PRINT QL 4l

90 FBR X=3 T@ 1 STEP -1

98 REM "MULTIPLY AND ADD"™

100 LET QLXI=PIX]1+QLX+11%R

110 PRINT QCLX)3

120 NEXT X

130 DATA 3,2,=-3,-10,3

140 END
RUN
SYNDLV

SYNMTHETIC DIVISION:
2 =3 =10 3 DIVIDED BY X - 3 YIELDS

2 a -1 1]
DBNE
In SYNDIV, 2 3 —1 0 is to be interpreted as 2X2 4 3X — 1 with

a remainder of (. Let us try another:

130 DATA 25 3s-1s4s-5

RUN

SYNDIV

SYNTHETIC DIVISI@n:
3 =1 4 -5 DIVIDED BY X - 2 YIELDS
3 S5 14 23

i

The 3 D 14 23 is to be interpreted as 3X® 4+ 5X + 14 with a
remainder of 23.

Polynomials 159

SUMMARY

You should be able to add and subtract polynomials easily using computer
lists. We have written an elementary program for multiplication of two poly-
nomials, and we have written a program to perform synthetic division using
X — R as the divisor.

PROBLEMS FOR SEC. 11-1

1) Write a program to find the sum of two polynomials assigned as data. Be sure
to avoid printing leading zero coefficients when adding pairs similar to 3X*t 4 6X — 4
and ~— 3X# 4 5X3% — 3X 4 1.

2) Do problem 1) for subtraction.

3) Write a single program to add or subtract pairs of polynomials as determined
by an item of data. (Example: use S = 1 for add and S = 0 for subtract.)

4) Prepare a program to multiply two polynomials of varying degrees.

5) Write a program to multiply three polynomials.

68} Generate pairs of random polynomials of random degree and multiply them.
Print the original polynomials and the product. Be sure to allow negative coefficients,
/ 7) Extend SYNDIV to divide X — R into polynomials of any degree. Also have the
computer print the remainders with a message to the effect that the remainder
equals whatever it comes out to.

J/ 8) Write a program to print the first 11 integral powers of (X + 1).
J 9) Write a program to divide any polynomial by any polynomial of equal or
lesser degree. Suggestion: get data from problem 6.

11-2 INTEGRAL ZEROS

It is common practice to abbreviate any polynomial and call it Py, for a
polynomial in X (read as P of X). We often look at the polynomial equation

Y= P[x}

and its graph. The values of X for which Y =0 are called the zeros of the
function. You have solved many quadratic functions in which there were always
two zeros. Sometimes they were equal, sometimes integral, sometimes real,
and sometimes complex. It can be shown that every Nth-degree polynomial
equation has exactly N complex zeros. Before we actually look for any zeros

of Y = Py, we need to have some theorems available.

Remainder Theorem

According to the Remainder theorem, if a polynomial is divided by X — Z,
then the remainder is the value of the polynomial when Z is substituted
EUF X. Di\'ldlng P{x] b}r (X = Z) we gﬂf

P{X] = R
®-7 Wt =z

where Qx, is the quotient polynomial. Multiplying through by (X — Z) we get

160 Basic BASIC

Pxy=Qux) °X—-Z)+R
and we can see that if we substitute Z for X, then X — Z = 0 and
Py =R (11-2)

Looking at SYNDIV we see that substituting 3 for X in 2X3 — 3X2 — 10X
+ 3 gives 54 — 27 — 30 + 3 or 0, confirming that P, = 0, which is the
remainder after dividing by X — 3. We also see that substituting 2 for X in
3X3 — X2 + 4X — 5 gives 24 — 4 + 8 — 5 or 23, confirming that P,, = 23,
which is the remainder after dividing by X — 2.

Factor Theorem

The Factor theorem states very simply that if the value of R in Eq. (11-2)
is 0, then X — Z is a factor of P(yx,. Looking at SYNDIV again, we see that
X —3 is a factor of 2X? — 3X2 — 10X + 3 while X — 2 is not a factor of
3X3% — X2 +4X — 5. Now all we have to do is find a value of Z so that
P(zy = 0 and Z is a zero of the function,

Search for Integral Zeros

What integers do we try for Z to test P;, for 0P We have assumed that
there are N complex zeros. Let us call them Zy, Zy_,,..., Z,, Z;. It can be
shown that

(X —=Z)X —Zy_y) - (X = Z)X —Zy)
= AXN 4+ Ay XN-1 4 o AX A,

Multiplying the left side out we should see that the only constant term in the
product is (=Zy) (=Zyx_y)---(—Z,) (—Z,) which simplifies to (—1)¥ (Zy)
(Zy_1) -+ (Zy) (Z;) and must equal the constant term in the product poly-
nomial which is Ay And so it follows that if a polynomial has any integral
zeros, they must be factors of the constant term A,. That is not to say that all
integral factors of A, are zeros of the polynomial.

This should provide sufficient basis for writing a computer program to find
the integral zeros of a polynomial function. We can define a computer func-
tion and test for FNP(X) = 0 for all integral factors of the constant term. If
we continue to enter the coefficients of polynomials in computer lists as we
have been doing, then we know that the constant term will always be P[1]. For
our first program, let us define our function using the list entries as coefficients
in a DEF statement and look at only third-degree polynomials.

One feature of the program that requires comment is the finding of num-
bers to test for factors. These numbers must be in the interval —P[1] to P[1]
including the end numbers. Well, if P[1] is negative, we want to step —1
and if F{1] is positive, we want to step +1. This 15 a perfect place to use
SGN(P[1]). See line 80 of program INTZER. It would be useful to print that
there are no integral zeros if that turns out to be the case. In order to do
that, we need a switch which is off initially and which we turn on only if we

Polynomials 161

find at least one zero. Then after we test all possible factors of P[1], we test
to see if the switch is on. If it is, we read more data. If the switch is off,
there were no zeros, so we print a message and then read more data. See
the flowchart in Fig. 11-1.

INTZER works well for polynomials of the same degree; but suppose we
have polynomials of several different degrees we wish to study using the same
program? Well, we could define a different function for each degree or we
could define a function of the highest degree we anticipate and fill in with
leading zeros. But suppose we want up to ninth or tenth degree? The function
would not fit on one line on some terminals. We could define two functions

INTZER

10
20
22
25
30
40
50
60
68
70
18
BO
88
B9
90
98
100
108
110
118
119
120
128
130
140
130
160
165
170
I80O
190
200
210
RUN

DEF FNPC(XI=PLAI*X* 3+PL31xXr2+PL212X+P[1]
PRINT
PRINT
F@R S=4 T@ | STEP -1
READ PL5]
PRINT PLS1s
NEXT S
FRINT "INTEGRAL ZEROC(S)t '
REM TURN SWITCH OFF
LET K=0
REM STUDY LINE BO CAREFULLY!
F2R X==PL1] T@ PL11 STEP SGNCPL11)
REM LINE 90 PREVENTS AN ERROR MESSAGE CAUSED BY
REM DIVIDING BY ZERO
IF X=0 THEN 140
REM I5 X A FACT@R @F PL13?
IF PL1)/X <> INTCPL11/X) THEN 140
REM IS5 THE REMAINDER ZERO?
IF FNP(X) <> 0 THEN 140
REM IF THE C@MPUTER GETS THROUGH HERE, THE
REM VALUE OF X IS A ZER@ @F THE FUNCTION
PRINT X1
REM TURN THE SWITCH ON - WE HAVE A ZER®
LET K=1
NEXT X
IF K=1 THEN 20
PRINT "WNONE FaunD's
GBT@ 20
DATA 1,-2,=11,12
DATA l2ls-5:-2
DATA 1:=2,3.-4
DATA 2,-3,-10,3
END

INTZER

auT

-2 -11 12 INTEGRAL ZERQ(S»>: -3 1 4
1 =9 -2 INTEGRAL ZER@(S5): 2
-2 3 -4 INTEGRAL ZERG(S5): NONE FAUND

-3 =10 3 INTEGRAL ZER@CS5): 3

@F DATA IN LINE 30

162 Basic BASIC

{ 51} }

READ
coefficient
list

<+

Turn switch s 0o
to search for
o factors of
LETK =0
P[1]
PRINT
i M@NE
FOUND "
Close X Turn::ﬂtr:h
| ‘
oop LETK = 1

Fig. 11-1. Flowchait for finding integral zeros of polynomial

and add them. But then we have lurge numbers of leading zeros to worry
about. All of these complications may be eliminated by using a subroutine to
define a function instead of a DEF statement. Notice that evaluating an
Nth-degree polynomial is equivalent to summing up N + 1 terms which look
like A; X1 where i goes from N to 0. If you have 0 subscripts, this is perfect.
For those of us without 0 subscripts, we must use a term similar to
P[I] @ X °° (I — 1), where the value of I goes from N to 1 for N equal to one
mare than the fl‘PEI'FF‘ nf the I‘!E"i]!fﬂﬂlﬂi:‘i]

We mav now define a polynomial function in a five-line subroutine for any
degree with no [urther complications and no tuss over leading zeros and such:

500 LET P=0
510 FOR I=N T@® 1 STEP -1

Polynomials 163

520 LET P=P+P[I]*X°*°*(1-1)
530 NEXT I
540 RETURN

Let us insert G@ASUB 500 after line 100 in INTZER, insert line 23 READ N,
where N is the number of terms in the polynomial, and change line 25 to
read FORS = NT@ 1 STEP —1. See IZER@1.

This program will handle up to ninth-degree polynomials. (Tenth, if you
have 0 subscripts.) If we want to work with polynomials of greater degree,
all we need is a DIM statement to specify a longer list for P.

SUMMARY

We have seen that by combining the Remainder theorem, the Factor
theorem, and the fact that the product of all zeros multiplied by (—1)¥, where
N is the degree of the polynomial, gives the constant term, we are able to
find all integral zeros. We simply test all integral factors of the constant term
to see if the remainder is 0. If the remainder is 0, then we have a zero of the
polynomial. If it is not 0, then we do not have a zero of the polynomial. We
have two alternative methods of evaluating a polynomial for a specified value
of X: one is to use a DEF statement, and the other is to write a subroutine to
sum up terms.

PROBLEMS FOR SEC. 11-2

1) For each of the polynomials to follow: (a) find an integral zero, (b) use syn-
thetic division to find the resulting factor after dividing by (X — Z), and (¢) search
for zeros of the depressed polynomial. Repeat until all integral zeros are found and
then print the remaining polynomial.

10X3 — 71X2 — 76X + 32

6XA — 32X7 — 23X6 — 3X5 — 12X+ — 36X3 — X* 4 8X — 12
X5 — 18Xt — 8X4 — 32X 4+ 2X + 3

2X4 4 5X3 — 31X2 — 21X 4 45

2) Generate random integers in sets of three. Have the computer print the poly-
nomial having those three integers as zeros Be sure to get some negative integers.

3) Do problem 2) for scts of four integers.

4) In IZER®1 have the computer determine if Pox) is within two units of 0 for
each factor of the constant term.

5) Prepare a table of ordered pairs (X, Pxy) such as would be appropriate for
plotting points. Sketch a graph on graph paper. How would you estimate non-
integral zeros?

11-3 REAL ZEROS

It can be shown that for a polynomial, if Py, >0 and Py, <0, then
there is a value of X between X, und X., such that P, , = 0. This is called the
Location Principle. In graphical terms, the Location Principle may be stated as

164 Basic BASIC

IZERB1

20 PRINT
22 PRINT
23 READ N

25 FOR S5=N T8 1 STEP =|

30 READ PL5]

40 PRINT PLSIs

50 NEXT S5

35 PRINT

60 PRINT "INTEGRAL ZERBCS): "3

68 REM TURN SWITCH @8FF

70 LET K=0

78 REM STUDY LINE 80 CAREFULLY?!

B0 F@R X=-PL1) T PL1) STEP SGN{(PIL11)}

B8 REM LINE 90 PREVENTS AN ERR@GR MESSAGE CAUSED BY
89 REM DIVIDING BY ZERO

90 IF X=0 THEN 140

98 REM IS5 X A FACTOR @OF PL11?

100 IF PL11/7XK <> INTCPL1]/X> THEN 140

105 GASsSUB 500

IDE REM IS THE REMAINDER ZERB?

110 IF P <= 0 THEN 140

118 REM IF THE CBMPUTER GETS THROBUGH HERE. THE
i19 REM VALUE @F X IS5 A ZERO 8F THE FUNCTION
120 PRINT X3

128 REM TURN THE SWITCH @N - WE HAVE A ZER®
130 LET K=1

140 NEXT X

150 1IF K=1 THEN 20

160 PRINT "NONE FOUND"3

1645 GBTe 20

170 DATA 4s1s-25-11-12

1BO0 DATA 4 1s1,-5:-2

190 DﬂTﬂ. 4 12-2:3:-4

200 DATA 5:2s=1s=11211,-2

210 DATA TeBr=5:=6:9p,9,-39, 36

490 REM SUBROUTINE 500 THROUGH 540 TAKES THE PLACE @F A
491 REM DEF STATEMENT AND EVALUATES A PBLYNOMIAL B8F
492 REM BF DEGREE N-=1-.

300 LET P=0

210 FOR I=N T@ | STEP -1

220 LET P=P+PLIJ)s=Rt(I-1)

530 NEXT 1

540 RETURM

999 END

RUN

IZERG 1
1 -2 =11 12

INTEGRAL ZERG(S): =23 1 4
1 1 =35 -2

INTEGRAL ZERB(5)1: 2

1 -2 3 -4
INTEGRAL ZERG(S): NONE FBUND

2 =1 =11 il -2
INTEGRAL ZERB(S5): 2

2 -5 -6 2 9 -39 36
INTEGRAL ZERB(S5)1: 3

BUT BF DATA IN LINE 23

Polynomials 165

follows: If point (X;, P(x,,) and point (X,, P(x,)) are on opposite sides of the
X-axis, then the graph must cross the X-axis between (X;, 0) and (X, 0).

We may now search for real zeros by finding intervals in which the graph
crosses the X-axis. In order to find out if the value of the function is positive
for one value of X and negative for another, we may simply test the product.
If the product is negative, they are of opposite sign. If the product is positive,
then they are of the same sign and we are not concerned with those values of
X. Since we anticipate more than one zero, let us make a provision for putting
the information in a list. For that, we need a counter. It seems reasonable to
list the left number of the interval. As long as we know the increment, we
should be able to see the right number of the interval. It is usual to start
looking for real zeros in an increment of one unit. Let us prepare a flowchart
for this problem and call the program REAL. See Fig. 11-2.

Thus, we have found that the three zeros of 12X3 — 64X2 4 17X + 195 fall
in the three intervals —2 to —1, 2 to 3, and 3 to 4. That is fine to know, but
we generally prefer more precision than that. So, we should try to improve on

Start

Define
function
FNT(X)

o Set counter
FORX = =5
XS) a0

LETA=20

L

LET 51 = FNT(X)
LET 52 = FNT(X+1)

LETA=A+1
NEXT X f—— LET S(A) = 51

PRINT
S list

END Fig. 11-2 Fltht;ha!rt for searching for

T =T s |

166 Basic BASIC

REAL

S0 DEF FNT(X)=12#X13-64%X12+17#X+195
60 LET A=0

70 FBR X=-5 T8 5

80 LET SI=FNT(X)

90 LET S2=FNT(X+1)

100 IF S1%S2>0 THEN 130

110 LET A=A+l

120 LET SLAl=X

130 NEXT X

190 PRINT "INTERVAL(S) BEGIN AT:"
200 FBR I=1 T2 A

210 PRINT SCI11$

220 NEXT I

270 END

RN

REAL

INTERVAL(S) BEGIN AT:
-2 2 3

DaNE

REAL to get smaller intervals. There are several very satisfactory procedures
one might try. Let us develop a program that permits us to make decisions
about what to try for the limits and the increment of the search. That calls
for INPUT statements. We can change line 70 to 70 F@R X = F T@ L STEP
S and INPUT F, L, S for First, Last, and Step. We may also use S = 0 as a
flag to terminate the RUN. After we get the computer to search for a change
of sign in a particular interval, we want it to come back and permit us to
either look for more precision in that same interval or to search in a different
interval. We should also provide for the situation where there has been no
change in sign. This will happen for one of several reasons. Either the search
is not including the zeros within its limits, or the increment is large enough
that two zeros are included in one interval, or there might be no real zeros.
We will discuss this in Sec. 11-4. We can determine that no change of sign
has been found by testing the value of A after line 130. If A is still 0, then
there were no changes of sign and we should print a message to that effect.
We make the above changes and call the program REALL

REAL L

10 PRINT “SEARCH F@BR REAL ZERGS @F A POLYN@MIA o
20 PRINT “START, ENDs INCREMENT":

30 INPUT FsLs5S

40 IF 5=0 THEN 270

50 DEF FNTC(X)=12%Xr3-64X1241 TeXK+195

&0 LET A=0

70 F@R X=F T@ L STEP 5

gn LET Si=FMTIX)
90 LET S2=FNT(X+5)

100 IF S1#52=0 THEN 130

110 LET A=A+l

120 LET SLAl=K

130 NEXT X

140 IF A>0 THEN 190

150 PRINT *""N@ INTERVALS F@UND #%%% TRY AGAIN "

Polynomials 167

160 PRINT "WITH EITHER GREATER LIMITS @R SMALLER INCREMENT™
170 PRINT

180 GA@TO 20

190 PRINT "INTERVALCS) BEGIN AT:z™
200 FOR I=1 TO A

210 PRINT SC(I1s

220 NEKT 1

230 PRINT

240 PRINT

250 PRINT "NAaW "3

260 GBTB 20

270 END

HUN

REAL 1

SEARCH F@R REAL ZERO®S5 8F A POLYN@MIAL
START, ENDs INCREMENT?-5:5.1
INTERVALCS) BEGIN AT:

-2 2 3

M@ W START, ENMDs INCREMENT?=3,-2s.1
M@ INTERVALS FAUND #%x%% TRY AGAIN
WITH EITHER GREATER LIMITS 'OR SMALLER INCREMENT

START, ENDs INCREMENT?=-2s-1s.1
INTERVAL(S5) BEGIN AT:
=15

N@W STARTs ENDs INCREMENT?=1¢Ss-1s4,.01
INTERVALCS) BEGIN AT:
=1« 45

NBW S5TART, ENDs, INCREMENT?Z2,3s.1
INTERVALC(S) BEGIN AT:
2.8

NB@W STARTs ENDs INCREMENT?t.2,0

DANE

Since we are using INPUT often in this program, we should pick limits and
increments carefully. We should also be prepared to make up our mind quickly.
Some of the things we should not try are —50 to 50 STEP .01, or 50 to —50
STEP 1. A little care should avoid such blunders.

Let us define a new function and obtain another RUN,

S0 DEF FNTC(X)Y=Xt3+49.1809%Xt2+2.67761%X-15223.8
RUN
REALZ2

SEARCH F@R REAL ZEROS AF A PALYNOMIAL

START: ENMDs INCREMENT?=-10.10.1

N2 INTERVALS FRUND #%%% TRY AGAIN

WITH EITHER GREATER LIMITS OR SMALLER INCREMENT

START, ENDs, INCREMENT?=100s100s5
INTERVALCS) BEGIN AT:
=40 =30 15

MN@W START, END, INCREMENT?-40,-35,.1
INTERVAL(S) BEGIN AT:
-39.3

168 Basic BASIC

NBW START: ENDs, INCREMENT?-39.3,-39.2,.01
INTERVALC(SY BEGIN AT:
=39 . EE

WNOW START, END, INCREMENT?15,20,.1
INTERVAL (5) BEGIN AT:
15.3

NOW START. ENDs INCREMENT?15.23,15.4,.01
INTERVAL(S) BEGIN AT:
15.33

M@W START. EMDs: INCREMENT?0.0.0

DanNE

One of the contingencies that we have not accounted for in REALI is the
possibility that the polynomial has integral zeros. As the program stands, if S1
or S2 equals 0, then the value of X used for S1 will be identified as the
number at the beginning of the interval in which a real zero will be found.
It will be left as an exercise to identify a zero more explicitly if S1 or S2
does equal 0.

SUMMARY

We have used the Location Principle to find intervals within which real
zeros are expected to occur. It should be noted that the Lucation Principle
may be applied to any continuous function and is not limited to polynomial
functions.

PROBLEMS FOR SEC. 11-3

1) Modify REAL1 so that if the value picked for X in line 70 gives cither S1
or 82 equal to 0, we get a message and the value of the zero printed.

2) In program REALIL, after the computer has found the initial intervals for all
real zeros, we do not want the computer to search the entire intervals specified in
subscquent searches in the X-loop. We want the computer to print immediately
after finding the change in sign without scarching the rest of the interval. Incorporate
this into the program.

3) Modify REAL] to read data for more than one polynomial. You may use
some dummy value for S in line 30 as a signal to read the next set of data.

J 4) Write a program to search for real zeros by first finding the unit intervals and
then using linear interpolation until FNT(X) is within 10— of zero. You may want
to specify less or greater precision.

11-4 COMPLEX ZEROS

The simplest real polynomial for which we may find complex zeros is the
second-degree polynomial A,X*+ A, X 4+ A,. We may use the general quad-
ratic formula

—A; = VAZ® — 4AA,
2A,

Ko

(11-3)

Polynomials 169

Letting the radicand equal D we get
D —_ A12 —4A2An

D is called the discriminant of the quadratic expression. We can see that if D
is negative, the zeros are nonreal. We can rewrite Eq. (11-3) as

X ot _A]. i \'/D
9A, ~ 2A,

and finally, considering X as being associated with two numbers A and B, we let

i and B=2VPI

A= gn 2A

=

If D is greater than or equal to 0, the real zeros are

X1=A+B and X2=A—B (11-4)
But if D is less than 0, we get the nonreal zeros

Xl ={x B and X2 = (A, —B) (11-5)

So, in our computer program we compute D, A, and B. Then we test D. If
D is negative, we print as in Eq. (11-5) and if D is not negative, we print as
in Eq.(11-4). See Fig. 11-3 for the flowchart. We call the program C@MP-1.

It turns out that there is no convenient general procedure for finding non-
real zeros for polynomials of higher degree than two. But for any polynomial
that has exactly two nonreal zeros, we may find the real zeros first, then for
each real zero Z we may divide out the corresponding X — Z using synthetic
division and if after all division is carried out the result is a second-degree
polynomial, we may apply the technique of program C@MP-1. We demon-
strate this procedure by an elementary example: Find all zeros of the following
polynomials, given that each has at least one integral zero:

X$4+2X2—-X—-2

X3 — X2 - 48
X3 —1

X3+ 1

X8~ X84 X —1

6X% — 7T7X% — 189X — 90

This is of course a special case, but it should help us develop a more gen-
eral approach. Since we have a third-degree polynomial with one integral
zero, we may take program INTZER to find the integral zero Z and then use
program SYNDIV to divide the given polynomial by X — Z. The polynomial
we get is called a depressed polynomial. We know that in this problem each
depressed polynomial will be a second-degree polynomial. So we may then
use program CAOMP-1. In each of these earlier programs the polynomials were
all represented with the same variable P list. So all that will have to be
changed is the various READ statements and the variable in which the integral
zero in INTZER is called X, while in SYNDIV the corresponding number was
stored in R. Thus the need for line 170 in program ALLZER. We also changed

170 Basic BASIC
Fig. 11-3. Flowchart for finding real

Start)
ard nonreal zeros of second-degree

READ and polynomials.
PRINT
coefficients

Does

| LET D = P[2]++2
P[3] = 07 y

— 4=P[3]=P[1]

L

LET F = 2+P[3]

L

LET A = —P[2]/F

<&

LET B = SQR
(ABS(D)/F
PRINT | yes no PRINT
nonreal : real
(A,B), (A,—B) A+B A—B
ComMP=-1
10 PRINT

20 READ PL31:.P[21:.PL 1]

30 IF PL31=0 THEN 170

40 PRINT PL3MIPL2I3PL11]

50 LET D=PL2]r2-4PL31%PL 1]

60 LET F=2%PL(31}

0 LET A==PLZ2)/F

BO LET B=SQR(ABS(D))I/F

0 IF D<0 THEN 130

100 PRINT “REAL ZERBS:™

110 PRINT a+Br*anND "3 A-B

120 GaTa 10

130 PRINT "N@N-REAL ZERD®S:*

140 PRINT "C("FA;",""FBr") AND ("3 AF","3-B3;"2"™
150 GB@Ta 10

160 DATA 1:2:3:12-3:2: 13,2213 1235-1525-32133:12:,0,0,0
170 END

RUN
cemp-1
1 2 3
NdN-REAL ZERDS:
(-1 » l-4142] } AND (-1 #=1. 41421
1 -3 2
REAL ZER®S:
2 AND 1
1 3 2
REAL ZERB®S:
-1 AND -2
1 3 13
NON-REAL ZEROS:
{(-1:5 » 3.27872 Y OAND (-1.5
=1 2 -3
NON-REAL ZERBS:
€1 +=1.41421)} AND ¢ 1 » 1.41421
1 3 12
N@N-REAL ZERBS:
(=1.5 » 3-1225 Y AND (=1.5
DANE
ALLZER

Polynomials

»-3.27872

;-3- 1925

)

)

171

8 REM INTZER BEGINS HERE (WE HAVE REMOVED THE REM STATEMENTS)

9 REM SEE THE PRGGRAM FAR REM STATEMENTS

10 DEF FNP(X)=Pl 41%*Xt3+PL3I%X12+P[2)%X+P(1)

20 PRINT

30 PRINT

40 F@R S5=4 T@ | STEP -1

50 READ PLS]

60 IF PLS51=.0101 THEN 430

70 FPRINT PLS13

BO NEXT S

90 PRINT "INTEGRAL ZER@: g |

100 FOR X=-PL1] T@ PL1]} STEP SGNC(PL11)
110 IF X=0 THEN 180

120 IF PL11sX <> INTCPL11/X) THEN 160
130 IF FNP(X) <> 0 THEN 160

140 PRINT X

150 GaTe 170

160 NEXT X

164 REM INTZER ENDS HERE ##% SYNDIV BEGINS HERE

170 LET R=X

IBO PRINT "SYNTHETIC DIVISI®N BY X ~"sRI"YIELDS:™

190 PRINT PL A4)3

200 FOR X=3 T@ 1 STEP -1
210 LET PLXI=PLX1+PLX+11%R
220 IF X>1 THEN 240

230 PRINT "REMAINDER ="}
240 PRINT PLX]}

250 NEXT %

252 REM SYNDIV ENDS HERE

258 REM HERE WE MOVE EACH ENTRY IN THE P LIST
259 REM Td THE LOCATION OME SUBSCRIPT LAWER

172 Basic BASIC

260 FOR X=1 T8 3
270 LET PLRI=PLR+11]
280 NEXT X
290 PRINT
298 REM COMP-1 BEGINS HERE
300 LET D=PL2)1t2-4%PL3)%P[1]
310 LET F=2%P(3]
320 LET A=-PL21/F
330 LET B=S5QRCABS(DIY/F
340 IF D<0O THEN 380
350 PRINT "REAL ZEROGS:"™
360 PRINT A+B»}"™AND "1 A-B
370 GAarTe 20
380 PRINT "WON-REAL ZERBS:"™
390 PRINT "(*" s A3"™."3B3") AND ("3 A"™:*"3-B3")"
400 G&Te 20
405 DATA 1:2s=1s=2
410 DATA 1:=1:0:,-4982120,0:=12120:0:1002=121:2-1
415 DATA 6:-T77.-18%9,-90
420 DATA 0101
430 END
Run
ALLZER
1 2 -1 -2 INTEGRAL ZER@: 1
SYMTHETIC DIVISIaN BY X - 1 YIELDS:
1 3 2 REMAINDER = 0
REAL ZER®S5:
-1 AND -2
1 =] 0 - 48 INTEGRAL ZERO: 4
SYNTHETIC DIVISI@enN BY X - 4 YIELDS:
1 3 12 REMAINDER = 0
NON-REAL ZER@GS5:
(=15 » 3.1225) AND (=1.5 =3 1225
1 o 0 -1 INTEGRAL ZERO: L|
SYNTHETIC DIVISION BY X =1 YIELDS:
i | 1 REMAINDER = 0O
N@N-REAL ZER@S51
(=5 s +B660DZ2S Y AND (-5 +~+B66025
1 0 o 1 INTEGRAL Z£ER@: -1
SYNTHETIC DIVISI@N BY A =-=1 YIELDS:
1 =1 1 REMAINDER = 0O
N@MN-REAL ZERBS:
¢ «5 » +866025) AND ¢ .5 »-«866025
1 -1 1 -1 INTEGRAL ZER@: 1
SYNTHETIC DIVISI@nN BY X -1 YIELDS:
1 0 1 REMAINDER = 0
NBMN=-REAL ZERDS:
(] s 1) AND ¢ O =1)
6 =77 =189 =90 INTEGRAL ZER®: 15

SYNTHETIC DIVISIGN BY XK =15 YIELDS:

&

13 & REMAINDER = 0

REAL ZEROS:
s 666667 AND =1+5

DBNE

Polynomials 173

the way in which the quotient was stored in SYNDIV. It turns out that the
quotient polynomial can be stored right back in the P list instead of creating
the new Q list. This is done in line 210 of ALLZER. Then in order to aveid
changing the subscripts in C@MP-1 it seems reasonable to simply take the
quotient polynomial, which also stores the remainder in the lowest subscripted
location, and move every entry into the location one subscript lower. Instead
of having the quotient polynomial in P[4], P[3], and P[2], we are putting the
quotient polynomial in P[3], P[2], and P[1], which exactly fits program
COMP-1. This is done in lines 260, 270, and 280.

As always, some interesting problems have been left for you to solve. For
instance, suppose we have third-degree polynomials with two nonreal zeros
and a real zero that is not an integer, or what about higher degree poly-
nomials? These considerations are left as exercises in the problems set for
Sec. 11-4.

Descartes’ Rule of Signs

We may define the variation in a sequence of numbers as the number of
changes in sign found by comparing successive pairs of adjacent numbers.
For example, for the sequence 1, 3, 4, —8, 2. the value of V is 2. There is no
change for 1 to 3 or 3 to 4. There is one change for 4 to —8 and for —8 to 2.
If zeros appear in the sequence, we drop them. The sequence —2, 8, 0, 5, —3,
6 becomes —2, 8, 5, —3, 6 in order to determine the number of variations
which is 3.

Descartes’ Rule of Signs says that for

J&LNXN "l_ ﬁN_lxN_I + Bp + Alx + Au

the number of positive zeros depends on the number of variations in the
sequence

A, Ay _15...5 A1 Ay

in the following manner. If V is the number of variations, then the number
of positive zeros is either V or V — 2 or V — 4, etc., but not less than 0. This
may be written V — 2I, where I is a positive integer.

It turns out that we may find a corresponding number for negative zeros
by finding positive zeros for P _y,. Substituting —X for X will change the
sign of all terms which have an odd exponent on X. So if Py, = —4X5
— 3Xt 4 5X3 — 2X2? + X — 3, the value of V is 4 and there must be 4 or 2 or 0
positive zeros. Now we find P _y, = 4+4X5 — 3X4 — 5X3 — 9X2 — X — 3,
and V is 1. So there must be exactly one negative zero.

This is something we can get the computer to do for us. We may read the
coefficients into the first row of a P array and change the sign of the coefficients
of the terms with odd exponents on X and put the new coefficient list in the
second row of the P array. Then we may look for changes in sign and provide
two counters: one for the first row keeping track of changes of sign for the
positive zeros, and the other for the second row counting sign changes for the
negative zeros. These are V1 for the positive zeros and V2 for the negative
zeros in program DESCRT.

174 Basic BASIC
DESCRT
10 READ N
15 IF N=0 THEN 99%
20 F@R X=N T@® 1 STEP -1
30 READ PL1,X)
40 PRINT PL1,X13
48 REM ENTER THE SAME CBEFFICIENT IN THE SAME COLUMN
49 REM BF THE SECOND RaW
50 LET PL2,X1=PL1,X]
58 REM IF THE EXP@ONENT @8N X 1S O0DD THEN CHANGE THE SIGN
60 IF (X+13/2=INTCCX+1372) THEN BO
70 LET PL2:X)=-P[2:X]
B0 MNEXT X
90 PRINT
100 PRINT M-13*"COMPLEX ZEROS"
200 LET V1=v2=0
210 F@R X=N-1 T® 1 STEP -1
218 REM LOOK AT PBSITIVE ZER®S
220 IF PL1,X1%PL1,X+1)1>0 THEN 240
230 LET Vi=Vi+l
238 REM LOPK AT NEGATIVE ZER@S
240 1F PL2:X)1%PL2:X+11>0 THEN 260
250 LET v2=va+l
260 NEXT X
300 PRINT V13"MAX POSITIVE"
310 PRINT V23“MAX NEGATIVE®
320 PRINT
340 GOTO 10
500 DATA 4,65103,201,%0
510 DATA 5+ 153: 4:=E-2
520 DATA G:=f45=3:5:=2:01,-3
&00 DATA O
999 END
RUN
DESCRT
6 103 201 30
3 COMPLEX ZER@®S
0 MAX PBSITIVE
3 MAX NEGATIVE
i 3 4 -8 2
4 COMPLEX ZERAS
2 MAX P@SITIVE
2 MAX NEGATIVE
-4 =3 5 =2 1 =3
5 CAMPLEX ZER@S
4 MAX P@SITIVE
1 MAX NEGATIVE
DONE

You might reasonably ask, just what have we done that could not be done

auicker by hand. Well, maybe not much, but look at 6 103 201

in DESCRT. If we run these coefficients through INTZER, the computer tests
P[1]/X 180 times (from —90 to 90 skipping 0). We may now use DESCRT
1ge the limits on the test loop in INTZER to test no positive values
the computer will now test a maximum of 90 values of X. We could
take this one step further and use the fact that the maximum number of

and chm
of X. So

Polynomials 175

negative zeros is three to transfer out of the loop after the third value is found
if they all are integral.

There is more to Descartes’ Rule of Signs than appears in program DESCRT.
The rule states that zero coeficients are to be diopped. DESCRT does not
provide for that. You will find that when zero coefficients appear, we may
consider polynomials such as

Px, = 3X* + 2X4 — 5X2 — 7

V1 for positive zeros gives us 1. The coeflicients for P, _y, are 3, —2, —5, —7,
and V2 is 1. Since there are no 0 zeros, there are a total of two real zeros.
Since there are 4 complex zeros, we find that there are two nonreal zeros
for P x,.

SUMMARY

Once again we have used polynomial coefficients stored in a computer list.
This time we find all zeros whenever no more than two zeros are nonintegral.
In addition, we have used Descartes’ Rule of Signs to obtain the possible
numbers of positive and negative zeros and outlined a procedure for deter-
mining the possible numbers of nonreal zeros.

PROBLEMS I'OR SEC. 11-4

1} Modify DESCRT to permit zero coefficients. Read all coefficients into a P list
and then eliminate the zero coefficients as you enter them into a two-row array.

2) Modify ALLZER to handle polynomials of degree greater than three which
have for degree D at least D — 2 integral zeros.

v 3) Write a program to gencrate polynomials of random degree D which are
guaranteed to have exactly D — 2 integral Zeros and two nonreal zeros.

4) Project: Modify your program in problem 2) to handle D — 2 real zeros using
linear interpolation until P¢x) is within .001 of 0. (You may want to change the
tolerance.)

5) Project: Use DESCRT to modify ALLZER to reduce the number of tests for
polynomials similar to 6X% 4 103X 4 201X + 90.

CHAPTER 12

MAT instructions in BASIC

12-1 INTRODUCTION TO MAT INSTRUCTIONS

MAT instructions are BASIC statements which allow us to manipulate
entire arrays in the computer without being required to do it entry by entry.
This capability will enable us to write shorter programs, using arrays, than we
have been able to write thus far.

We have had to assign values of array entries one at a time. We have been
putting LET A[T, J] = or READ A[], J] in a nested loop for assignment and
then in order to print the array, we have been putting PRINT A[L JI; in
another nested loop. In order to print out a 3 by 4 array consisting of —1s, we

MAT-1

B HREM LINES 10 T@ 50 "ASSIGN WVALUES

10 F@R R=1 T@ 3

20 FOR C=1 T2 4

30 LET ALR:Cl=-1

40 NEXT C

50 NEXT R

98 REM LINES 100 T@ 160 PRINT THE ARRAY
100 FOR R=1 T@ 3

110 FOR C=1 TO 4

120 PRINT ALR.C]#

130 NEXT C
140 PRINT
150 PRINT
160 NEXT R
200 END
RUN

MAT-1

MAT Instructions in Basic 177

MAT-2

10 DIM AL 3s4)

20 M™MAT READ A

30 MAT FRINT As

40 DATA =le=ls=ls=lo=ls=ls=la=ls=ls=ls=1ls~-1
20 END

RumN

MAT=2

DANE

would proceed as in MAT-1, using programming statements and techniques
with which we are familiar. MAT-1 certainly does what we said we would do.

But consider MAT-2, which is a five-line program that does what required 13
lines to do in MAT-1. In MAT-2, line 10 instructs the computer to set up a
3 by 4 array. Then line 20 reads the data into the array named and dimen-
sioned in line 10. (Some of you who had 0 subscripts will find that as soon
as you specify a MAT instruction for a particular variable you also lose 0
subscripts for that variable. Others will find the situation unchanged. This
depends on the system.) Note in line 20 a semicolon appears after the array A.
Used in this way we are specifying semicolon spacing. To get comma spacing,
we may place a comma there or leave it blank. If we wish to specify printing
for several arrays in one print instruction, we may do so as follows:

XXX MAT PRINTA, B; C

In this case A and C will be printed with comma spacing, and B will be
printed with semicolon spacing.

In MAT-2 it may not be clear just how the computer takes the numbers in
the data line and enters them in the array locations. MAT-3 is intended to
show what numbers are entered where in the array.

MAT-3

10 DIM AL3:5]

20 MAT READ A

30 MAT PRINT A2

A0 DATA 122535 4r 56 T6Bs95 105112125135 14:15

30 END

RuN

MAT-3
1 2 3 4 5
& 7 8 9 io
11 12 13 14 15

DBNE

178 Basic BASIC

It should be clear now that MAT READ enters numbers just as we read
across the printed page. It reads and enters across until it runs out of space
in the row and then reads the next data item into the first location of the next
row. This is the method we have been using in all array programs throughout
this text.

It was stated earlier that a list is just a special array consisting of a single
column or a single row, depending on the computer. Now we will look at
arrays of just one column or just one row. See MAT-4 and MAT-5.

MAT-4

10 DIM ALS5,11]

20 MAT READ A

30 MAT PRINT A
40 DATA 1,2+3,4,5

50 END
RUN
MAT=-4 MAT=5
1 10 DImM AL1.5]
20 ™MAT READ A
2 30 M™MAT PRINT A3
40 DATA 1,253, 4:5
a 50 END
RUN
4 MAT=5
S 1 2 3 4 5
DANE DANE

Some systems may permit you to dimension a list as DIM A[5] and then
MAT READ A. If this works, then you can determine whether your system
thinks of a list as a row vector or a column vector, by having it MAT PRINT
A when A is a list.

The MAT READ statement has an optional redimensioning capability.
MAT READ A[R, C] redimensions A to have rows numbered up to R and
columns numbered up to C and then reads data into that redimensioned array.
See MAT-6.

MAT-6

10 DIM ALB.B8)

20 ™MAT READ AL2,5)

a0 MAT PRINT Al

40 DATA 653, 4:Bs-1,0:17:31:899,10

50 END

RUN

MAT-6
& 3 4 B -1
] 17 31 B899 10

DONE

MAT Instructions in Basic 179

Some systems permit the use of MAT READ A[R, C] to perform the initial
dimensioning within certain limits (usually up to [10, 10]).
An array of just one column is called a column vector by mathematicians.

An array of one row is called a row vector. Mathematicians use the term matrix
to describe all arrays. Thus the term MAT is used in BASIC,

MAT READ X
Reads data into the array named X according to previously deter-
mined dimensions.

MAT READ Y[R, C]

Dimensions or redimensions an array named Y with R rows and C
columns and reads data into the array Y. R and C may be explicit
integers or variables,

MAT PRINT P; Q, R;
Prints array P with semicolon spacing, then prints array Q with
comma spacing, and then prints array R with semicolon spacing.

Even though you use MAT READ in a program, you are not required to
use MAT PRINT. You may often want to use nested loops to print an array
as we have been doing up to this section. You will do this if you do not want
the blank line between printed rows and if you want to print headings in front
of each row or if you only want to print a potion of the array. Note too,
that you may use MAT PRINT even if you have not used MAT READ. This
will be the case if*we analyze data and enter results into an array as we did
in Chap. 5.

PROBLEMS FOR SEC. 12-1

1) Fill an array with the numbers 1, 2, 3, 4, 5, 6, 7, 23, 51, 47, 56, and 234 and
fill another array of the same dimensions with the numbers 2, —3, 43, 90, 45, 32,
—89, 65, 43, —96, 0, and 1. Fill a third array of the same dimensions with the sums
of the numbers in order. The sum array should contain the numbers 3, —1, 46, 94,
ete,

2) Use the data of problem 1). Dimension a 3 by 12 array. MAT READ the
above data into the first two rows and 0’s into the third row and then replace the
0's with the sums of the entries in the first two rows column by column.

3) Fill an array with the multiplication table up to 12 x 12. MAT PRINT the
result.

4) Fill a 4 by 3 array with the following numbers: 2, 56, 78, 3, 20, 45, 3, 9, 673,
564, 90, and 234. Have the computer multiply each number in the array by 3 and
enter the product to replace the old number. Print the result.

180 Basic BASIC

5) Use the data of problem 4), but this time multiply each entry by the product
of the row and column number. MAT PRINT the result.

6) Fill a 2 by 5 array with the following numbers: 3, 67, 32, 45, 90, 2, 9, 57, —3,
and 1. Multiply each entry by —3 if the sum of the row and column numbers is odd
and by —1 if the sum of the row and column numbers is even. Print the result.

7) Fill a square array so that the locations along the top left to hottom right
diagonal are filled with 1's and all other entries are 0’s. MAT PRINT the array.

8) Fill an array with all 1’s and print it.

9) Have the computer read the following array:

1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

and have it create the new array:

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15

10) Fill a 2 by 8 array with all 0's and print it.
11) A company has salesmen on the road four days a week. At the end of each
week each salesman turns in an expense sheet. Here is a sample expense sheet:

Mon. Tue. Wed. Thur.

Lodging $12.00 $11.00 $10.50 $14.00

Meals $ 400 $ 7.50 $ 6.90 $ 7.40

Transporlation $ 200 0 0 $ 350
Customer

entertainment 0 $18.00 $ 450 $ 450

Miscellaneous % 2.31 $ 1.84 $ 315 $ 183

Write a program that will find total expenses for the week, total expenses for cach
day of the week, and total expenses in cach of the five categories listed on the
expense sheet.

12-2 SOLVING A PROBLEM

To get from a certain town to another town one must travel over a toll
road, through a toll tunnel, and over a toll bridge. At the beginning of the
trip there is a sign posted, listing the rates as in Table 12-1.

MAT Instructions in Basic 181

TABLE 12-1.

Tolls per Vehicle
Road Tunnel Bridge
Trucks $6.00 $3.00 $2.00
Buses $5.00 $3.00 $2.00
Passenger Cars $4.00 $3.00 $2.00
Motorcycles $3.00 $2.00 $1.00

On a particular day there were five caravans which traveled this route. The
caravans consisted of different types of vehicles as shown in Table 12-2.

TABLE 12-2.

Vehicles per Caravan
Trucks Buses Cars Cycles
Caravan 1 1 3 4 2
Caravan 2 1 5 3 6
Caravan 3 2 4 2 5
Caravan 4 1 6 3 2
Caravan 5 3 1 0 2z

The Road Commission would like to have a report which would include the
amount each caravan paid in tolls at each toll booth. The problem will be
solved, when we are able to fill in Table 12-3.

TABLE 12-3.
Tolls Paid
Road Tunnel Bridge
Caravan 1 A B C
Caravan 2 D E F
Caravan 3 G H |
Caravan 4 J K L
Caravan 5 M N)]

Before we actually attempt the problem solution, let us write just the por-
tion of our program that we will use later, which will read the data into two
arrays. One array, which we call A, stores the values of Table 12-1, the other

182 Basic BASIC

array, which we call B, stores the values of Table 12-2. Then let us print the
two arrays with headings so that we may laiter concentrate on the actual
problem solution, having taken care of the mechanics of getting the data into
the proper arrays. Taken by itself, the task of getting the data into the two
arrays is reasonably straightforward. See program T@LL-1.

TarLk-1

20 DIM AL 4, 3):BL 5, 4l

4ﬂl MAT READ A

60 DATA 65352553525 4,325 30201

B0 PRINT "TOLLS PER VEHICLE'

100 PRINT "ROAD TuNL BRIDGE"

120 H™MAT PRINT As

140 ™MAT HEAD B

160 DATA 1232 4:2: 105,362, 452551265322+ 3:1:0.2
180 PRINT "VEHICLES PER CARAVAN"

200 PRINT "TRUCK BUS CARS MOTORCYCLES"™
220 ™MAT PRINT B:

240 END
HUN
TeLL=-1

TéLLS PER VEHICLE
R&@AD TuUNL BRIDGE

& 3 2
=) 3 2
4 3 2
3 2 1

VEHICLES PER CARAVAN
TRUCK BUS CARS MOTARCYCLES

1 3 4 2

1 5 3 &

2 4 2 5

I & 3 2

3 1 o 2
DBNE

Writing the program in parts like this will help us isolate any errors that
we might encounter while writing the program. We may now strike out lines
80, 100, 120, 180, 200, and 220 as we will not need these values printed again.

Now to tackle the problem itself. We can find out how much Caravan 1
paid at the road toll booth. It had one truck which paid $6, three buses at $5
ecach for $15 four cave ot 84 each for 8168 aned two mnfﬁrﬁyﬂlﬁﬂ at $3 each
for $6. Totaling 1°6,3°5,4°4, and 2 ° 3 we get $43. So, $43 is the value
of A in Table 12-3. How much did Caravan 1 pay at the tunnel? It paid
1 ® 3 for the truck, 3 ° 3 for the buses, 4 ° 3 for the cars, and 2 ° 2 for the
motoreycles for a total of $28, which is the value of B in Table 12-3. We

MAT Instructions in Basic 183

repeat this process at the bridge substituting 2, 2, 2, and 1 for 3, 3, 3, and 2
andsumup 1 °2,3°2,4°2 and 2 ° 1 getting a total of $18 for the value
of C in Table 12-3. Then we would go to Caravan 2 and step through the
road tolls, then the tunnel tolls, and finally the bridge tolls. Then on to the
next caravan until we have gotten results for all the five caravans. This is
just the kind of repetitive process that we use the computer for.

We will find it helpful to think of Table 12-3 as an array with C[I, J] as
the values of the entries rather than A, B, ..., M, N, @. Calling that array C
we get C[1, 1] = A, C[1, 2] = B, etc. down to C[5, 3] = 9.

Note that after we step across row 1 in MAT B and down column 1 in MAT
A, the final sum is entered in row 1 and column 1 of MAT C. When we step
across row 1 of MAT B and down column 2 of MAT A, the sum is entered in
row 1 column 2 of MAT C. You should see that stepping across row R of MAT
B and down column C of MAT A results in a sum that is entered in row R,
column C of MAT C. Note too, that the row headings of MAT B correspond
to the row headings of MAT C and the column headings of MAT A corre-
spond to the column headings of MAT C, and that the row headings of MAT A
and the column headings of MAT B coincide. With some experimentation, you
should be able to convince yourself that this is a natural consequence of the
problem and not mere coincidence for this particular set of data. If you
change the number of toll booths, all of the above statements still hold.

Summarizing, we have just tried to establish that we sum up the following
products:

B[R, X] ® A[X, C] (12-1)

where R is the row number in MAT B, C is the column number in MAT A,
and X goes from 1 to the number of columns in MAT B which is the same as
the number of rows in MAT A. Having found the sum of all products in Eq.
(12-1) for a fixed [R, C] pair, we enter that sum in C[R, C]. We do this for all
rows of MAT B and all columns of MAT A.

You should run through the calculations by hand with pencil and paper to
verify the procedure and to become more familiar with it. We draw a flowchart

in Fig. 12-1 and call the program T@LL-2.

PROBLEMS FOR SEC. 12-2

1) Suppose on a particular day there were four caravans. Caravan 1 had one
truck, Caravan 2 had one bus, Caravan 3 had one car, and Caravan 4 had one
motorcycle. Have the computer print the amounts that each caravan paid at each
toll booth.

2) Suppose there were no vehicles on a particular day. What would the Road
Commission report look like?

3) Suppose there were three caravans, eacli having one vehicle of each type.
Print the schedule of payments for this situation.

4) On a given day there were four caravans. Caravan 1 had one motoreyele,
Caravan 2 had one car, Caravan 3 had one bus, and Caravan 4 had one truck. Have
the computer print the schedule of payments.

184 Basic BASIC

Start

MAT READ A
MAT READ B

<~

Step through Step through

calumns of
rows of MAT B —}] —}t LET CIR, C] = 0

FORR=1T®5 FORC =170 3 4'

Step columns Fﬂ
B and rows in A
FORX=1T® 4

<+

LET C[R, C]=
CIR, C] + B[R, X]
* A[X, C]

<+

NEXT R v‘— NEXT C NEXT X

MAT PRINT C
Fig. 12-1. Flowchart for finding tolls paid
END by caravans at various toll booths for program
TOLL-2.
TeLL-2

20 0DIM AL 4, 3):BL 5, 4]

25 DIM CL5,3])

40 MAT READ A

60 DATA 6:3:2,55 3,2, 453523525 1

140 ™MAT READ B

‘60 DHTA |'3‘4‘2'1'5'3’6‘2,4’2‘5‘1.6'3‘2,‘3‘.)0‘2
235 REM WE STEP THROUGH RBWS B8F B THE CARAVANS
240 FOR R=1 T8 5

255 REM WE STEP THRBUGH COLUMNS OF MAT A

256 REM THE TolL BO@TH IDENTIFICATIGN

260 FBR C=1 Te 3

T E (B 1 of ¥ Tri®TY AL T F i E s AR aRrmare
e B owE LA L Ll - R TR b e b W W d [T =LY

280 LET CLRs:Cl=0

295 REM X STEPS THROUGH THE ROWS @F A AND THE C@LUMNS BF B
296 REM THERE WE FIND °"TRUCKS BUSES CARS M@TBRCYCLES'

297 REM IN EACH ARRAY

300 FOR K=1 T@ 4

320 LET CIRsCI=CLR-,Cl+BLlRsX}#=AL[X,C]

335 REM G@ T@ THE NEXT COLUMN @F B AND THE NEXT ROW OF A
340 NEXT XK

MAT Instructions in Basic 185

355 REM GO TO THE NEXT COLUMN OF MAT A
360 NEXT C

375 REM G2 Td THE NEXT ROW BF MAT B
JB0 NEXT R

300 PRINT "ROAD","TUNNEL'","BRIDGE"

520 M™MAT PRINT C

999 END
RuUN
ToLL-2
RAAD TUNNEL BRLDGE
43 28 18
&1 32 24
55 34 21
54 34 2a
29 16 10
DANE
5) Let
1 2 3
a
A= 4 5 6 and — L = 3 4
7 8 9 5 6 7 8
10 11 12

Perform the operations of this section to get MAT C.

6) Suppose we let

Al 2 3 4 4 B 1 12 13
s e 7 8] ™ Tl 15 16 17
Why could not we perform the set of operations of program TALL-2?

12-3 OPERATIONS AND SPECIAL MATRICES

While the MAT operations have specialized and rigid definitions in matrix
algebra, we will find at times that some of the MAT capabilities will help us
in writing programs not deeply involved in a matrix algebra setting. It is the
purpose of this section to list the MAT capabilities, but not to develop the
matrix algebra to any great extent. For such a treatment, you should see any
text in advanced algebra.

Multiplication

The requirements of the Road Commission report in Sec. 12-2 led us to
evolve a set of steps that occurs often in both applied and theoretical mathe-
matics. The set of steps carried out there exactly fits the definition of matrix
multiplication. Using the array names of Sec. 12-2, we define the product of
B and A as the array C, which is written as C = B ® A.

186 Basic BASIC

From the discussion in Sec. 12-2, we should see that the dimensioning must
conform as

B[R, M] ¢ A[M, C] = C[R, C]

Calling for a product of two nonconforming matrices will generate an error
message from the computer. The program statement for multiplication is

XXX MATC=B°A

We may now have the computer do everything from lines 240 through 380
with a single statement. Having worked through the operation in considerable
detail in Sec. 12-2, you should have little difficulty in having the dimensions
correctly provided for. See T@LL-3.

TeLL-3

20 DIM AC4,31.BL 5, 4]

25 DIm CL5., 3]

40 ™MAT READ A

60 DATA 62352553525 46 3520 3521

140 MAT HEAD B

160 DATA 123:49:2: 15535622 4225521+ 653222321:0.2
200 ®™MAT C=B=%A

210 PRINT "RAAD","TUNNEL"."BRIDGE"

230 MAT PRINT C

999 END
RUM
TOLL-3
RGAD TUNNEL BHRI1DGE
43 28 18
61 a9 24
55 da 21
54 34 22
29 16 10
DANE

Addition and Subtraction

Some past problems have asked vou to add two wravs. For two anays of
the same dimensions, the sum is defined as an armay containing the sums of
corresponding entiies of the given arrays. In other words, for all 1,] pairs,
S{1, J1 = AIL 11 + B, 11, where the sum aray is S, Matrix addition is accom-
plished with the program statement

XXX MAT S=A+4+B
or XXX MAT A=A+1D

may be used if you no longer need MAT A.

Subtraction is defined just as you wounld expect. For A — B, the difference
must be an array so that for all I,] pairs, DI, J] = All, J] — BIL J1. The pro-
gram statement is

MAT Instructions in Basic 187
XXX MATD=A-B
oo XXX MAT A=A-B

Neither addition nor subtraction is defined for arrays of different dimensions.

Scalar Multiplication

You may multiply each element of an amay by some constant or algebraic
expression using

XXX MAT Z=(SINC)) * X

which multiplies every entry in MAT X by SIN(G) and enters the product in
MAT Z.

Equality
A matrix may be created to be identical to an already existing matrix by
XXX MAT P=Q (12-2)

or, in systems which do not permit Eq. (12-2), you should be able to achieve
the same result by

XXX MAT P=(1)°Q

Special MAT's

There are three special matrices available with a single assignment state-
ment in BASIC. They are

XXX MAT A = ZER (12-3A)
XXX MAT B = ZER[R, C] (12-3B)
YYY MAT C = C@N (12-4A)
YYY MAT D = C@NIR, C] (12-4B)
777 MAT E = IDN (12-54)
777 MAT F = IDN[N, N] (12-5B)

Equation (12-3A) sets all entries in MAT A equal to 0 according to previ-
ously determined dimensions, while Eq. (12-3B) sets the dimensions of B at
[R, C] and fills MAT B with 0’s. Equation (12-3B) is often used to change the
dimensions of a matrix during the RUN of a program.

Equation (12-4A) sets all entries in MAT C equal to 1 according to pre-
viously determined dimensions, while Eq. (12-4B) sets the dimensions of MAT
D at [R, C] and fills it with 1’s.

Equation (12-5A) requires that MAT E be a square array, and fills the
upper left to lower right diagonal with I's and all other locations with 0.
Equation (12-5B) has the same eflect us Eq. (12-5A), but the dimensions are
set at [N, N]. The matrix created in this form is called an identity matrix,
Program MATSP1 is intended to show how these special arrays are established.

188 Basic BASIC

MATSP1

10 DI Al2,4),B(2,121,CL10,111]
20 PRINT "MAT A=ZER ##% PREVIOQUSLY DIMENSIONED AT 2BY4"
30 ™MAT A=IZER

40 MAT PRINT A

50 PRINT "MAT B=CONL 3, 71"

60 MAT B=CONL 3, T]

70 ®MAT PRINT B)

BO PRINT "MAT C=IDNL 4, 41™

90 MAT C=1DNL 4, 4]

100 ™MAT PRINT Cs

110 PRINT "MAT A=CONL1.6)"

120 MAT A=CONL1. 6]

130 MAT PRINT As

140 END

RUN

MATSPI

MAT A=ZER %% PREVIGUSLY DIMENSI@GNED AT 2BY4

o 0 0 0
0 0 0)

MAT B=Ceni 3. 71
i 1 1 1 1 1 1

i i 1 1 1 1 1
1 1 1 1 1 1 1

MAT C=IDMT 4, 4]

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
MAT A=CON[1,6)]

1 | 1 1 1 1
DBNE

SUMMARY

We have introduced the matrix operations—multiplication, addition, subtrac-
tion, and scalar multiplication. The special matrices ZER, C@N, and IDN have
been specified.

PROBLEMS FOR SEC. 12-3

1) Redo program TOTAL using a row vector for the numbers of items and a
column vector for the prices. Obtain the total cost with a single MAT statement.
2) Have the computer find the product of

1 3 —2 —1 —1
2 —3 1 —3 ik 2
| 5 —1 11 -3
3 —1 1 —1 4

MAT Instructions in Basic 189

If we think of the above as

1 3 —2 —1 W
2 -3 1 —3 X
7 5 1 1 and Y
3 —1 1 -1 Z

then we are really finding the values of W 4+ 3X — 2Y — Z, 2W — 3X 4+ Y — 3Z,
—TW 4+ 5X —~Y <+ 11Z, and 3W — X 4+ Y — Z.

3) Multiply

0 0 1] 5 7 -
0 0 2 by 4 5 3

0 0 3_ 0 0 0

and multiply

0 0 1 5 6 2
0] 2 by 4 1 3

0 0 3 0o 0 0

Any conclusions about the matrix of 0's?
4) Let
3 12 =19 28
A= [1 4] and B= L 3 —T]
Find the product A ° B and the product B ® A, What do you conclude?
5) Let
1 2 —1 -3 2 —11
A= B = —
[3 4] [5 3] C |:25 31]
Find[A°®B]®Cand A ®[B*®C)].
6) Using A, B, and C from problem 5), ind A°[B+ Cland A®* B 4+ A ° C.

7) Multiply
1 2 —1 08 —.24 2
2 -1 3 by D2 44 -2
7 —2 4 A2 64 -2
8) Let

- 1 1 2
A‘[1.5 _.5] and “[3 4]

Find A° Band B ® A.

v 9) Write a program to raise a matrix to a power. Let the power be determined
by an item of data.

10) Enter the integers 1 through 12 into a row vector and into a column vector,
using MAT READ. (You can avoid typing the data twice by using REST@RE.)
Find the 12 by 12 product matrix and print it.

190 Basic BASIC

12-4 SOLVING SIMULTANEOUS LINEAR EQUATIONS

You should see that the matrix equation

A, B, C, X D,
Ay By Cq Z D,
can be multiplied out on the left-hand side to obtain
AX+B,Y+CZ D,
AX+B,Y +CoZ | = | Dy (12-7)
£X + BY 4 CZ g

Defining equality for two matrices as existing if and only if for all 1, J pairs
the entry of one matrix equals the corresponding entry of the other, or for
MAT A and MAT B, A[I, J] = B[], J1, we may say that

AX+BY+CZ=D,
AuX + B,Y + C,Z = D, (12-8)
A;;X + BsY + Csz = D3

which constitutes a system of three linear equations.

Equations (12-6), (12-7), and (12-8) are simply three different ways of writ-
ing the same set of equations. If we can find the values of X, ¥, and Z in
Eq. (12-6), we will have solved the set of linear equations in Eq. (12-8).

Let us rewrite Eq. (12-6) as

O s =K
where
G A B Gy s=|y K=|D,
A'd Blﬂ- C:l ?‘ D:!

It would be very convenient if we could just divide both sides by C. But it
turns out that the division of one matrix by another is not an easily describable
process. However, we may instead multiply each side by the multiplicative
inverse of C. We write that as C— 1. Doing that we get

S=0C-1*K
We note here without elaboration, the following facts:

1) In order to have an inverse, @ matrix must be square.
2) Not all matrices have inverses.
3) The product of a square matrix and its inverse is the identity matrix.

To see more clearly what the inverse of a matrix is, let us find the inverse of

]

MAT Instructions in Basic 191

We may call its inverse the matrix with entiies A, B, C, and D such that

A B 5 6] |1 0

¢ D|°"|7 8] |0 1
Finding the product on the left, we get

S5A + 7B 6BA+8B] [1 0

5C + 7D 6C+8D| |0 1
Two matrices are equal if their corresponding entries are equal. So we gel
the following four equations:

A+ 7B =1 6A+8B=0
sC+7D=0 6C+8D=1

Solving these for A, B, C, and D we get A = —4, B = 3, C = 3.5, and
D =-2.5. So

78 =T s

BASIC provides a statement to find the inverse of a square matrix, if it
exists. After we have arranged for proper dimensioning, we may use

XXX MAT X =INV(A)

MATINV

10 DIM X(2:21,AL2:2).PL2:21]
20 ™MAT READ A

30 MAT X=1NVIA)

40 PRINMT "ORIGINAL MATRIA™
50 M™MAT PRINT A2

60 PRINT "INVERSE MATRIX"
TO HMAT PRINT X3

B0 PRINT "THE PRBDUCT I5"
90 MAT P=K*A

100 ™MAT PRINT P

110 DATA 5Ss6:,T7:8

120 END

Run

MATINWY

PRIGINAL MATRIX
] 6
7 B

INVERSE MATRIX

e 1 3=
3.5 -2.5
THE PR@DUCT 15
1 0
] |

DANE

192 Basic BASIC

and matrix X will be the inverse of matrix A. We may easily verify our calcu-
lations for finding the inverse above. See MATINV.

(You are cautioned that the computer may be susceptible to slight errors
when using the INV() statement.)

So with the MAT INV(), we should be able to solve sets of simultaneous
linear equations such as the following:

AW — X +2Y+3Z=— 3 (12-9A)
— W+ 4X + 2Y =—15 (12-9B)
W+2X~—~ Y+3Z=—3 (12-9C)
—4W+3X+2Y+ Z=-17 (12-9D)
We let
4 -1 2 3
C= —1 4 2 0
1 2 —1 3
—4 3 2 1
where C is usually referred to as the coefficient matrix, and we let
- 3
K | <2
-3
=17

Now we can read the data into two matrices C and K, have the computer find
the inverse of C, and multiply it by K to get matrix S consisting of the values
for W, X, Y, and Z, which satisfy Eq. (12-9). See program S@LVE.

SALVE

10 DIM GLAs AJsKML As 11504115 1C 45 4]

20 MAT READ CsK

30 MAT I=INVIC)

40 MAT S=I=H

50 PHINT "S@LUTIENS: ™

&0 MAT PRINT S

T0 DATA 4s - 122+ 3515452505 1225=1530-4s 302515 ~-36-15,~-32~-17
B0 END

UM

S8LVE

SALUTIBNSS
I =

=2
-3

=1

DANE

MAT Instructions in Basic 193

The column vector

-2
-3
-1

is to be interpreted as, W=1, X = -2, Y = -3, and Z= —1. We may now
substitute these values in Eq. (12-9) to verify that they do in fact constitute the
unique solution.

SUMMARY

We have seen that sets of simultaneous linear equations may be solved by
considering an equivalent matrix equation C ° X = K, where C is the coeffi-
cient matrix, X is a column vector which contains the values of the variables
in the original set of linear equations, and K is a column vector containing the
constant terms in the original set of linear equations. We may solve for X by
finding the inverse of matrix C, so that X = C—1 ® K. The inverse may be found
with the BASIC statement MAT I = INV(C). For systems of simultaneous
linear equations having a unique solution, MAT C will always be square, which
is one of the requirements for having an inverse.

PROBLEMS FOR SEC. 12-4

1) Let
4 —4 4
A=1 1 1 7
-3 9 —8
Find and print A—1, A ®* A—1,and A—1° A,
2) Let

=7y I

Find B=1 and print it. Verify by hand-computing the inverse of B. Find and print
B®B-1and B—1°B,

3) Solve for X and Y:
—2X —5Y=-—18
— X 4 4Y =31

4) Solve for X, Y, and Z:
29X —9Y —-5Z2=2
TX — 6Y 4 5Z = —35
9X — 6Y 4 5Z = —39

194 Basic BASIC

5) Solve for X, Y, and Z:
3X 4 4Y 4 Z =17
DX —6Y 4+ 3Z =28
X4+ 4Y4+Z = -3

6) Solve for W, X, Y, and Z:
6W + 3X + 6Y + 5Z = —12
—TW4+ X -TY—-ZL=T7
—3W + X + 3Y + 6Z = 31
—2W —4X 4+ 4Y — 7L = 76

7) Solve for W, X, Y, and Z:
—3W 4 6X — 5Y —Z = 32
W4+9X—-5Y—-2Z4=9

W4 6Y+4+5Z=2
~TW 44X — Y 4 BZ = —86

8) Solve for X, Y, and Z:
2X 4+ 4Y — 3L = —-11.9
—9X — 3Y = 58.5
—9X 4 8Y 4 52 = 66.6

9) Solve for V, W, X, Y, and Z:
TV + 6W — 3X — Y +4 9Z = 26.3
—9V 4 2W 4 9X 4 5Y 4 Z=91.1
—3V 4 4W 4+ 5X + 5Z = 62.9
6V — 8X — 2Y — 6Z = —55.6
—3V — 9W 4 5X + 7Y + 3Z = —25.9

10) Let
|‘1 —2 3‘| 2 —4 0
A=15 —1 —3 andl B=1 —3 1 2
| o 3 4| 5 3 -5

Find and print (A ® B)—1and B—1 ® A—1,

v 11) Write a program that can solve sets of simultancous linear equations having
different numbers of equations. Have an item of data that is the number of equa-
tions and redimension all matrices accordingly.

12-5 TRANSPOSE OF A MATRIX

Suppose you have just solved a set of 10 simuitaneous imear equations. The
10 values of the 10 unknowns are entered into a column vector that is called
X in Sec. 12-4. Calling for MAT PRINT X prints the 10 values down the page
with a blank line between every two. This takes up a lot of space. It might

MAT Instructions in Basic 195

be convenient to enter these same values in a row vector and MAT PRINT
that on one line. What we want is to create a new matrix whose row corre-
sponds to the column of the matrix X and whose columns correspond to the
rows of matrix X, ie., an exchange of rows and columns. Of course we could
make the exchange element by element or we could do the printing entry by
entry, but both are unnecessary. BASIC provides a program statement to per-
form this set of exchanges. XXX MAT A = TRN(B) fills matrix A so that its
rows correspond to the columns of B and its columns correspond to the rows of
B. This set of exchanges creates a matrix called the transpose of B. We write
the transpose of B as Bt,

As noted earlier, the transpose will enable us to have more compact print-
ing in some programs. The transpose also introduces some matrix properties
of theoretical interest. Some of these properties may be suggested by the
exercises.

TRP@S1 is simply a demonstration program that finds and prints the trans-
pose of a 10-element column vector.

TRPa51

8 REM A IS5 A COLUMN VECTAR AND B IS5 A RAW VECTAR
10 DIM ALL10-.11:.8BL1-101

20 M™MAT READ A

30 DATA 15253545565 7:859:10

40 ™MAT B=TRNCA)

45 PRINT *""TRANSPASE 9F COLUMN VECT@R A™

30 MAT PRINT Bj

&0 END

RN

TRPAS51

TRANSP@SE @F COLUMN VECTOR A
1 2 3 4 5 6 7 8 9 10

DBNE

The transpose differs from the inverse in that every matrix has a transpose.
If MAT A has M rows and N columns, then At has N rows and M columns.
Let us write a second demonstration progiam to print a 2 by 4 matrix and its
transpose. See TRP@S2.

TRPBS2

10 DI ALZ2s, al.BL 4, 2)

20 PRINT "2 BY 4 MATRIX"™

J0 ™MAT READ A

40 ™MAT PRINT As

20 MAT B=THNCA)

&0 PRINT "TRANSPASE @F THE AB@VE MATRIX™
70 ™MAT PRINT B3

B0 DATA 356515-5,0,185,999,11

90 END

196 Basic BASIC

RUN
TRPG 52
2 BY 4 MATRIK
3 6 1 -3
0 18 399 11
TRANSPOSE @F THE ABBVE MATRIX
3 1]
& 18
1 299
-5 11
DBNE

MAT X = TRN(Y)
Creates a matrix X so that for all I, J pairs, X[I, J] = Y[J, I]. Dimen-
sions must be correctly provided for. X is called the transpose of Y.

PROBLEMS FOR SEC. 12-5

1) Let
1 —2 3
A= 2 1 —4
-3 4 1
Find and print At, At 4 A, and At — A,
2) Let
5 3 1
A=1|6 —2 9
3 9 1
Print At, A + At A — At and At — A,
3) Let

ST

Let B— At and let C = A—1. Print B—1 and Ct.

4) Let
2 —1 3 6 3 8
A= 5 0 8 and B= 9 1 4
-3 4 2 11 —3 0

Print [A ® B]t, Bt ® At, and At ° Bt.

CHAPTER 13

Elementary Probability

13-1 INTRODUCTION

It is the purpose of this chapter to introduce some fundamental concepts
of probability and to develop program routines for some of these applications.

Taking an intuitive approach to probability, we may think of rolling a die.
The term experiment is used to describe a particular trial, or in the case of
rolling a die, an experiment is the actual rolling of the die. The outcome is the
number that comes up. There are six possible outcomes for rolling a die. We
may say that the probability of the die coming up 2 is one in six or %,
because there is only one 2 and there are six different numbers, each of which
is equally likely to come up. We refer to the outcome we are looking for as a
success and all others as failure. We define probability so that the probability
of success P added to the probability of failure Q is 1, or P+ Q = 1.

Often our requirements for success permit more than one single outcome,
all of which are equally likely to occur. We define probability as the quotient
of the number of outcomes that constitute success and the total possible
number of outcomes:

P=8/T

where P is the probability of success, S is the number of outcomes that
constitute success, and T is the total number of possible outcomes. All out-
comes are equally likely to occur,

So, before we work with probability, we will have to develop ways of
counting the numbers of outcomes of various kinds of experiments.

13-2 ENUMERATION

Fundamental Principle of Enumeration

The Fundamental Principle of Enumeration states that, if one choice can
occur in A ways and then a second choice can occur in B ways, the total
number of ways that the two choices may occur is the product of A and B,
or A ® B.

198 Basic BASIC

So, if you are going to buy a car that comes in five models and seven
colors, the number of cars you have to choose from is 5°7, or 35. The
Fundamental Principle of Enumeration may be extended to cover any number
of choices so that, if in buying the car you also may choose airconditioning

and whitewalls and you have four engines from which to choose, the number
of cars availableis 5°7 °2° 2 ® 4, or 560.

Permutations

How many four-letter combinations may be formed using the letters of the
word FLAG each used once?

We could approach this problem in one of several ways. We could sit down
with pencil and paper and try to write them all, or we might write a program
to write them all.

The techniques required for this vary so greatly from system to system
that we will not present the program, but only the RUN.

RUN

FLAG

FLAG FLGA FALG FAGL FGLA FGAL
LFAG LFGA LAFG LAGF LGFA LGAF

AFLG AFGL ALFG ALGF AGFL AGLF
GFLA GFAL GLFA GLAF GAFL GALF

DBNE

We can easily see that the number of different combinations is 24. Each of
the combinations listed is a permutation of the four letters F, L, A, and G, and
each is different from the others because the letters are in a different order.
In other words, when we talk about permutations, order matters.

One other approach to solving the original problem will lead us to a more
general enumeration technique. We observe that to form a four-letter word
using four different letters once, we may use any one of the four letters for
the first letter. Now there are only three letters left from which to choose the
second letter, two left from which to pick the third letter, and finally we have
exactly one letter for the fourth letter of the new word. Using the Fundamental
Principle of Enumeration, there are four choices. The first can occur in four
ways, the second can occur in three ways, the third in two ways, and the
fourth in one way. This makes 4 °3°2° 1 or 24, ways that the four choices
can occur,

This kind of calculation occurs often in mathematics and so is given a special
name. 4 *3° 2 ° 1is called 4 factorial written as 4! . In general,

N(N — 1)}(N — 2) - - (2)(1) = NI

where N is a positive integer. Let us write a routine to compute factorials
(see program NI).

Elementary Probability 199

e

10 PRINT "FIND THE FACTORIAL OF"}
20 INPUT N

30 LET F=1

40 F@R X=N TO 1 S5TEP -1

50 LET F=F#X

60 NEXT X

70 PHRINT N:*"FACTORIAL ="3F
80 END

RUN

Nt

FIND THE FACTOQRIAL OF?4
4 FACTORIAL = 24

DONE
Of course for larger integers, N! becomes very large.

RUN
N

FIND THE FACTOGRIAL OF?20
20 FACTORIAL = 2.43290E+18

DAONE

Suppose we want to find the number of three-letter words that can be
formed from the letters of the word COMPUTER without duplication. For
the first letter we may pick from among eight, for the second we may pick
from among seven, and for the third we may pick from among the remaining
six letters. This makes 8 ° 7 ® 6, or 336, different words. Since the order is
different, these are 336 different permutations. Notice that

8§°7°6°5°4°3°2°1 8 8
8MTe= 594°3°2°1 = 5T = 8—3)

We should see that for the number of arrangements of R letters taken from
among N different letters with no duplications we get N!/(N — R)!. This
defines the number of permutations of N things taken R at a time written as

NI
nPpr = (N —R)! (13-1)
Writing the right side of Eq. (13-1) as the quotient of products, we get

N(IN—I)N—2)---(N—R+1)(N—RYN—R—1)---(2)(1)
(N—R)N—R—1)---(2)(})

nPr =
Dividing we get
WPy=NN—-1)--(N=R+1)

which is ideal for computing with a loop that goes from N to N— R+ 1
STEP —1. See line 40 of program NPR.

200 Basic BASIC

NPR

10 READ MNasR

20 IF WN=0 THEN 100

30 LET P=1

40 FOR XK= TO MN-KE+1 STEP -1

S0 LET P=P*X

60 NEAT X

70 PRINT MN;"THINGS":R:"™AT A TIME HAVE": P; "PERMUTATIONS"
80 GBTe 10

o0 DATA Bs3: 4, 4,0:,0

100 END
LN
NHR
8 THINGS 3 AT A TIME HAVE 336 PERMUTATIONS
4 THINGS 4 AT A TIME HAVE 24 PERMUTATIONS
DBMNE

Combinations

The distinction between combinations and permutations is order. For com-
binations, order does not matter. We may think of combinations as selections
of items while permutations are arrangements. The number of combinations of
four letters selected from among four letters is one. The number of combina-
tions of N different things taken R at a time is written (C,. We may find the
number of combinations of N things taken R at a time by looking at the
number of permutations. Each combination of R things could be amranged in
R! ways and that gives us the number of permutations. So

(NCr)(RI) = 5Py
and solving for yC;, we get

P NI .

NCr = “RI = RN — R

Thus, the number of combinations of three letters selected from eight different
letters with no duplications is

while the number of permutations is
gP3 = 336

Combinations pertain to such things as committees and dealing cards where
order does not matter.

If we want to know the number of five-member committees that can be
selected from among 20 people, we get o,U;. For the purpose of witing a
computer program, we might think of ,,C; as .,,P;/Rl. One approach is to
compute .,P; and then successively divide by the integers from 5 down to 1.
Let us draw a flowchart (Fig. 13-1) and call the program NCR.

Elementary Probability 201

Fig. 13-1. Flowchart for computing
Start combinations of N things taken R at

a time.

Does yes
N = 02 END

no

e FORX=NTQ
-1 Wl e

LET C = CsX
<

NEXT X _’F@R}(=RT¢1
STEP —1

LETC=C/X
PRINT
@7/ results f‘ NEXT X
10 READ MN:sR

20 IF N=0 THEN 150

40 LET €=1

40 RKEM 30 T@ 50 FIND NPR

50 F@R X=N T@ N-R+1 STEP -1
60 LET C=C=*x

TO WNEXT X

BO REM 60 T@ B0 DIVIDE BY R!
90 F@R X=R T® 1 S5TEFP =1

100 LET C=C/X

110 NEXT X

120 PRINT N3"THINGS"™IRiI"AT A TIME HAVE": Ci"COMBINATIONS"
130 GAT@ 10

140 DATA 8234, 4,205,050
150 END

NCR

202 Basic BASIC

RUN

NCR

8 THINGS 3 AT A TIME HAVE 5& COMBINATIONS

4 THINGS 4 AT A TIME HAVE 1 CIMBINATIONGS
20 THINGS 5 AT A TIME HAVE 15504 COMBINATIONS
DONE

Permutations of Things Not All Different

Suppose we want to know the number of arrangements possible for the let-
ters of the word PROGRAM. Since there are two R’s and we cannot tell which
is which, taking 7! counts every distinguishable arrangement twice, because
the R’s may occupy two positions in 2! ways. Therefore, the number of words
is 71/2!. How many ways can we arrange the letters of the word ABSENTEE?
Well, if the E's were distinguishable, we would get 8!; but that counts the
indistinguishable arrangements 3! times, because three E’s can be arranged in
three locations in 3! indistinguishable ways. So we get 81/3l. The letters of the
word SNOWSHOES can be arranged 9!/2!3! ways, because the two O’s can
be arranged in 2! ways and the three S’s can be arranged in 3! ways.

Partitioning

In how many ways can we arrange three X’s and five Y's? We get 8!/3I5l.
We might ask this question in the following way: In how many ways can we
put eight different things in two groups where one group contains three things
and the other contains five and order does not matter?

In how many ways can we arrange three X's, five Y's, and six Z's? We get
141/315!6]. We could ask the question in the following way: In how many
ways can 14 different items be put into three groups of three, five, and six
items?

The second version of each of the last two problems are examples of parti-
tioning. In general, if we have Ry, Ry, . . . , R items such that R, + R,
+---4+ R, = T, then the number of ways that we can put the T items in n
groups of Ry, Ry, ..., R, is

TI
N=RiR1 R

Note that all the problems treated under permutations and combinations
were really special cases of partitioning. The combinations of N things taken
R at a time may be thought of as partitioning into two groups of R and N — R
items. The problem of arranging SNOWSHOES may be thought of as parti-
tioning into six groups of three items for the S’s, two items tor the U's, and one

item each for the four remaining letters N, W, H, and E. Finally, the permu-
tations of N different items taken R at a time may be thought of as R 4 1
groups of N — R in the first group and one item each for the other R groups.

Elementary Probability 203

SUMMARY

This section has been devoted to introducing the Fundamental Principle of
Enumeration and the enumeration of permutations, combinations, and parti-
tionings of objects. In counting permutations order matters. Permutations count
such things as arrangements of letters in a word and books lined up on a
bookshelf. When counting combinations order does not matter. We use com-
binations for such things as the number of different committees formed from
a group of people and hands dealt in a game of cards.

PROBLEMS FOR SEC. 13-2

1) In how many orders can 15 people enter a classroom?

2} In how many different ways can 15 keys be put on a circular key ring?

3) Cars come in 18 colors, seven models, four engines, and there are 15 options
such as whitewalls, outside mirror, radio, etc. How many different cars are available?

4) You have 25 difterent books and two bookshelves, one of which holds exactly
12 books and the other holds exactly 13 books. In how many ways can the books
be arranged on the shelves?

5} In a class of 30, a six-member committee is to be selected. How many differ-
ent committees are possible? If there are 15 girls in the class, how many of the com-
mittees consist of six girls?

6) How many different five-card hands may be dealt from a deck of 52 cards?

7) How many different 13-card hands may be dealt from a deck of 52 cards?

8) There are five people in a room. In how many ways can they all have
different birthdays? Use a 365-day year and ignore Feb, 29.

9) In how many ways can 10 people have all different birthdays? Ignore Feb. 29.

10) If a state uses three letters followed by three digits for its license plates,
how many different license plates can it produce?

11) You have five different flags with which to form signals by arranging them
all on a flagpole. How many signals can you form?

12) You have five different flags with which to form signals by arranging up to
five of them on a flagpole. How many signals can you form? Let zero flags constitute
a signal.

13) You have 10 different flags with which to form signals by arranging up to
five of them on a flagpole. How many signals can you form?

14) You have 50 friends. You are going to have a party and can only invite 25
people. How many different guest lists could you have?

15) In how many ways can 15 people sit in @ row of 15 chairs?

16) Do problem 15) if two of the people must sit next to each other,

17) How many different words can be formed from the letters of the word
COMPUTERS if 1) you must use all of the letters and 2) you must leave out one
letter?

18) A class consists of 30 students of which 17 are girls. In how many ways can
we seleet a committee of four? How many will have two boys and two girls? How
many will have one boy und three girls? How many will have four girls? How
many will have four hoys?

19) How many outcomes are possible for rolling two dice followed by drawing
three cards from a 52-card deck?

204 Basic BASIC

20) How many different sets of two five-card hands can be dealt from a 52-card
deck?
21) How many words can be formed using all the letters in MISSISSIPPI?

13-3 SIMPLE PROBABILITY

We defined probability in Sec. 13-1 as S/T, where S is the number of
ways in which an outcome may constitute a success and T is the number of
possible outcomes, and all outcomes are equally likely. For flipping a coin,
we see that the probability of coming up heads is 1/2 or .5. For drawing a
card from a 52-card deck, the probability of getting the ace of spades is 1/52
or about .0192.

Suppose you are in a class of 29 students and a committee of four members
is to be selected at random. What is the probability that you get on the com-
mittee? Well, the total number of committees possible is ,,C;. Now all we
have to find is how many of those committees count yourself as a member.
We can find out by saying in effect, “Let us put you on the committee and
pick the other three members from the remaining 28 class members.” This
means that you will be on »4C; of the committees, and the probability that
you get on the committee is 03C;/09Cy. Let us write a program to compute
this probability. We can use lines 30 through 110 of program NCR as a
subroutine to first find .,C, and then find »,,C,. See program CLASS. You can
see that your chances are about 14%. You should also see that the probability
that you do not get on the committee is about 1 — .14 or .86.

CLASS

10 READ N»n

20 G@suB 500

30 LET Ci1=C

32 REM Cl1 STORES THE NUMBER @F COMMITTEES @F WHICH
33 REM Y®J ARE A MEMBER

40 READ ®NaR

50 G3ds5uB 500

&0 LET P=Ci/sC

70 PRINT "THE PROBABILITY THAT YBU GET @N A 4 MEMBER"
75 PRINT "CBWMMITTEE FR8M A CLASS GF 29 IS™:P

80 STeP

490 REM FIND COMBINATIONS B8F N THINGS TAKEN R AT A TIME
500 LET C=1

510 Fan X=N T3 N=r+¢1 STEP -1

520 LET C=C*X

530 NEAT X

540 FO@R Y=R T@ 1 STEP =-1

5%0 LET C=Cr/Y

560 WNEAT Y

570 HETURN

600 DATA 28,3

610 DATA 29,4

F3F EWND

RUN

CLASS

THE PRUBABILITY THAT YBU GET @GN A 4 MEMBER
COMMITTEE FrdM A CLASS @F 29 15 .137931

DENE

Elementary Probability 205

Suppose we roll a die. The probability that a 3 comes up is one in six or
1/6. Now roll the die again. Again, the probability of a 3 is 1/6. We can see
that if we roll the die twice, the probability of both rolls coming up 3 is
(1/6) ° (1/6), or 1/36. We define an cvent as a set of outcomes for a particular
experiment. If we have two events A and B such that the probability of suc-
cess for A is P and the probability of success for B is Q, the events A and B
are said to be independent if the probability of success for A and B both is
P ° Q. This is exactly the case for rolling a 3 on each of two dice, which
enables us to arrive at probabilities without actually enumerating outcomes.
Thus we have extended our definition of probability.

For rolling two dice, the events associated with the first die are independent
of the events associated with the second die. The same may be said of rolling
the same die twice. Flipping two coins are independent. Drawing a card from
a deck is independent of rolling a die. So, the probability of getting a 1 and
an ace upon rolling a die and drawing a card is (1/6) ® (4/52), or (1/78).

Let us look at a problem often referred to as the “birthday problem.” Sup-
pose you are in a room with 29 other people. What is the probability that
at least two people have the same birthdate? We can say that if the probabil-
ity of no two people having the same birthdate is P, then the probability
that at least two do have the same birthdate is 1 — P. The birthdates for two
people are independent events, so we may multiply individual probabilities.
Picking any person first, we say that his probability of having a different birth-
date from those already picked is 365/365. Picking a second person, the
probability that his birthdate is different from the first person’s is 364/365.
For the third person we get 363/365 as the probability that his birthdate is
different from the first two, and for the 30th person we get 336/365 as the
probability that his birthdate is different from each of the first 29 birthdates.
So, the probability that all are different is

B 365 . 364 \ . 336
365 365 S 365

and the probability that at least two people have the same birthdate is 1 — P.
We can write a short program to compute 1 — P. See BIRTH.
The chances are about 71%, which is much higher than many people would

BIRTH

10 LET #~=1

20 FOK D=365 TO 3386 STEFP -1

30 LET P=FxDs 3865

40 NMEAT D

S0 LET a=1=p

&l FalWT "THE FROBABILITY OF TwD 05 ¥MOHE'™

70 PFRINT "TUENIICAL SBI«ATHDATES AMONG 30 PEOPLE I15': 0
50 END

it LIN

BIxTH

THE PHOHARBILITY JF TW3 OH MOKE
IDENTICAL BIRTHDATES AMONG 30 MEDPLE IS . 706314

InTal Al

206 Basic BASIC

guess before doing the problem. Note that this is not the probability that
someone else in the room has the same birthday that you have. That problem
is left as an exercise.

SUMMARY

We have initially defined probability as the quotient of the number of ways
to constitute success and the total number of possible outcomes for equally
likely outcomes. We see that this can easily be applied to situations of enumer-
ation. Independent events which have individual probabilities P and Q occur
together with a probability of P ® Q. This produces an extended definition of
probability which does not always require enumeration, but requires only that
we know individual probabilities for successive events.

PROBLEMS FOR SEC. 13-3

1) A class of 29 has 16 girls. A committee of five is selected at random. What
is the probability that all five committee members are girls?

2) Ten people are to sit in a row of 10 chairs. What is the probability that two
particular persons sit next to each other?

3) What is the probability of being dealt the ace of spades, the three of clubs,
the eight of hearts, the seven of diamonds, and the 10 of clubs?

4) What is the probability of being dealt the ace, king, queen, jack, and 10 of
spades from a 52-card deck?

5) What is the probability of the first six flips coming up heads and the last
four tails when flipping a coin 10 times?

6) What is the probability of getting all heads when flipping a coin 10 times?

7) You have a list of 20 true-false questions from which 10 will be selected at
random for a test. Of the 20, there are 15 you are puaranteed to get right and five
that you are guaranteed to get wrong. What is the probability that you will get
exactly eight right?

8) An experiment consists of drawing a card from a 52-card deck until the first
ace appears. Find the probability of the first ace appearing on the fourth draw.

9} For the experiment of problem 8), find the probability of the first ace appear-
ing on draws one through ten.

10) An experiment consists of rolling a die until it comes up 2. Find the proba-
bility of the first 2 coming up on the fourth roll, on the tenth roll.

J 11} Refer to the birthday problem. How many people must be in a room to have
the probability of at least two identical birthdates be .57

12) You are in a room with 29 other people. What is the probability that one of
them has your birthdate?

v 13) How many people must be in a room for the probability of another person
to have your birthdate be .57

13-4 RANDOM SIMULATION

We may use the random number generator to simulate experiments that
occur at random. We can have the computer flip a coin by generating two
random digits. We can roll a die by generating six random digits, etc.

Elementary Probability 207

FLIP

5 LET C=0

10 FOr X=1 TO 50

20 LET F=INTC2%0NDC1))

30 IF F=1 THEN &0

40 PRINT "T"3

50 G318 100

28 REM C COUNTS THE NUMBER 0OF YEADS
60 LET C=C+1

70 PRINT “H";

100 NERAT X

110 PRINT

120 PRAINT "HEADS ";C;"QUT 2F 50 FLIPS"™
130 END

UM

FLIP

HTTHTTTHTTHHHTTTHHH THTTHHATTT THAHAHTTHTHTHTTTTTHTH ¢
HEADS 23 OUT GF S0 FLIPS

DANE

Let us begin by having the computer flip a coin 50 times. See program FLIP.
We get 23 heads out of 50 flips. One of the intriguing things about flipping
a coin many times is that we do not get heads for half of the flips for each
experiment. In fact, it is possible to flip a coin 50 times and get no heads or
to get all heads. Of course the probability of all heads or no heads is very
small compared to the probability of half heads. We will be able to compute
those probabilities in the next section. For now we are concentrating on
simulation.

In many ways, flipping a coin 50 times is the same as flipping 50 coins once.
Let us put program FLIP in a loop to perform the experiment 10 times to
see a range of results. See FLIP-1.

We get a range of 17 to 34 heads for this RUN of the program, and it
turned out this time that none of the trials came out 25 heads.

One of the nice features of simulation by computer is that we can have the
computer perform hundreds or thousands of trials of an experiment that might
take days to do with physical apparatus.

FLIP=1

2 Far =1 T4 10

5 LET C=0

10 FUr X=1 T@ S0

20 LET F=INTC2+HNDC(1))

30 IF F=1 THEN &0

40 PRINT "T":

50 GO@Td 100

58 AREM C CAUNTS THE NUMBER @F HEADS
60 LET C=C+1

T3 PRINT "H":

100 WNEXT X

110 PRINT

120 PRINT "HEADS " Ci™@UT 3F 50 FLIPS®
29 NEAT Y

1 30 EMD

208 Basic BASIC

RunN
FLIP-1

HITTTTHTTHHTTHTTTTTTTTHTHHHHHH TTTTTHTHHH THHHTTHHTT
HEADS 21 @UuT @F 50 FLIPS
HTTHTHHTTHTTHTHHTTTHHHTTTTTTHHHH TTH TH THHHH THH T THHH
HEADS 26 @uT @F 50 FLIPS
HTHTTTHTTHTTHTTTTTTTTHTTHTTTHTHTHTTTHTTTTTHHHTHHHT
HEADS 17 @UT @F 50 FLIPS
THTTTTTTHTHTHTHH THHHHHHTHT T THHTTHTTTTTTTHH THTTHHTT
HEADS 21 @UT @F 50 FLIPS
TTHHTTTTHTHHTTHTHTHHHH T THHTHHHTTTTTTHTHHHH TTHTHHTT
HEADS 24 auT aF 50 FLIPS
HTHTHHHHHHHTHTTTTTTTHTTHHHHHH TTTHTTTTHTHTTHH THH THA
HEADS 26 dUT 8F 50 FLIPS
HTTTTTHTTTTHHTTHTTHTHHHHTHTHHTTHHHHTHTTHTHTHTTTTHT
HEADS 22 @UT 8F 50 FLIPS
THTHHHHHH THTHHHH TTTHH TH THHHHH THHH THH THHHHHHH TTTHTH
HEADS Ja @dJT @F 50 FLIFPS
HTTHHTHHTTHTTTTTTHHHTTTHT TTHHT THTHTHHHHHTTHHTHHTHT
HEADS 24 @UT @F 50 FLIFS
TTHHTHHTHHHTHTTHTHHHTHHHT T TTHHH T TTTHT THTHH THHTHTHT
HEADS 26 @uUT @F 50 FLIPS

LENE

Let us set up an experiment to roll six dice 1000 times, counting the num-
ber of times 1 comes up for each roll of six dice. The possibilities are from
zero to six. Then let us count the number of times each of those seven numbers
occurs. We can keep track of all seven totals in a 1 by 7 row vector. We will
count the number of times no 1's come up in column 1 and the number of
times one 1 comes up in column 2, etc. See the flowchart in Fig, 13-2 and
program R@OLL.

RBLL

5 REM THE MAT INSTRUCTI@NS ARE CBNVENIENT HERE

10 DIM LLI-T]

20 M™AT L=ZER

38 REM THE CBMPUTER D@ES SO THRAUGH 110 1000 TIMES
40 FOR %=1 T8 1000

50 LET C=0

55 REM C IS GAING T8 CBUNT 1'3

S8 REM LINES 60 THRBUGH 100 RALL & DICE AND COUNT 1°'S
60 F@R R=1 T@ 6

0 LET UsINTC(&%RNDC13+12

BO IF U=1 THEN 100

90 LET C=C+1}

100 NEAT R

110 LET LC1sC+11=L01,C+13+1

120 NEXT X

130 PRINT "NBNE @NE Twa THREE F@QUR FIVE SIX™
140 ™MAT PRINT L3

150 END

RUN

RBLL

NBNE @NE Twe THREE F@UR FIVE 51X
343 410 193 44 9 1 o

DENE

Elementary Probability 209

Initialize
vector at 0
FOR X = 1
T 1000
LETC =10
: FORR=1T(6 ’ LET U =INT (6
2t ﬂ::‘a"‘e" _‘F Roll 6 dice *RND (1) +1)
®_b(NEXT R i‘—— LETC=C+1
‘ Enter C into
NEXT X vector
PRINT
results

Fig. 13-2. Flowchart for rolling six dice 1000 times.

PROBLEMS FOR SEC. 13-4

1) Have the computer flip six coins 1000 times and print the distribution of
outcomes.

2) Sketch a graph of the distribution for problem 1) and the distribution for
program R@LL.

3) Write a program to deal five-card hands from a 52-card deck. Be sure not
to deal the same card twice.

4) A company manufactures light bulbs and can openers. For light bulbs it is
known that 1 in 20 is defective and for can openers 1 in 25 is defective. Write a
program to select at random one light bulb and one can opener 1000 times. Total
cach of the following: the number of times neither was defective, the number of

210 Basic BASIC

times both were defective, the number of times the light bulb was defective, and
the number of times the can opener was defective.

5) A regular tetrahedron has four equilateral triangles as faces. Let an experi-
ment consist of numbering one face 1 and the remaining faces 2, and tossing the
tetrahedron into the air to determine which number faces down. Write a program
to toss the tetrahedron 500 times and count the number of times the 1 faces down.

6) Roll a die 500 times. Count the number of times the 1 or the 5 comes up.

7) Roll a die and toss the tetrahedron of problem 5) 1000 times. Count the
number of times both come out 1 and count the number of times both come out 2.

8) An experiment consists of rolling a die until a 1 comes up. Write a program
to perform the experiment 500 times. Count the number of rolls for each experiment.

9) An experiment consists of flipping a coin until it comes up heads. Write a
program to perform the experiment 1500 times and count the number of flips
required for each. Print the distribution.

10) Roll 10 dice 500 times. Count the number of 1's that come up for each roll.
Print the distribution.

11) Suppose 10% of the population is left handed. Write a program to pick groups
of 10 people at random. Count the number of left-handed people. Print the
distribution.

12) Project: Write a program to make the computer the dealer in a game of 21.

13-5 BINOMIAL TRIALS

Suppose we roll two dice. What is the probability that a 1 comes up
exactly once? If we use one red die and one green die, we may more clearly
describe the results. There are two ways that that we could get exactly one 1.
First, we could have the red die come up 1 and the green die not come up 1.
The probability of this is (1/6) ° (5/6). Second, we could have the red die
not come up 1 and the green die come up 1. The probability of this is
(5/6) ® (1/6). Now, if we roll the two dice, the probability that we get
exactly one 1 is the sum of the above two possibilities, or (5/6) ° (1/ 6)
+ (1/6) ® (5/6) Or we can say that the probability of exactly one 1 is two
times the probability of getting a 1 on the green die and not a 1 on the red die
which is 2 ° (5/6) ° (1/6).

Now suppose we roll four dice colored red, green, blue, and white. What is
the probability that we get exactly two 1's? The probability that the red and
the green dice are 1's and the blue and white are not is (1/6) ° (1/6) ° (5/6)
° (5/6). But we might get the 1’s on the green and blue with the same proba-
bility, or we might get 1's on the red and white dice with the same probability.
In fact, there are ,C. ways that we could select two dice from the four to come
up with 1’s. Each selection has probability of (1/6)°(1/6)° (5/6)° (5/6).
‘So the probability of exactly two 1's up for a roll of four dice is

P=,C,°(1/6)2° (5/6)

which simplities to 25/216.

Suppose we have 10 dice. What is the probability that exactly two dice
come up 1 when all 10 are rolled? For a particular selection of two dice, we
get (1/6)2 ° (5/6)% and we can select the two dice in ,,C, ways. So,

P=,0_C"° {156}2 ¢ {54!5}3

Elementary Probability 211

We can write a short program to find the value of P. Note that in program
DICE lines 15 through 40 compute the value of 10Ca.

DICE
10 READ R
15 LET C=1

20 FOR X=10 T@ 10-R+1 STEP -1
J0 LET C=C*X/C10-X+1)

40 NEXT X

S0 LET P=C#(1/6)*R®(5/6)1(10~-R)
&0 PRINT P

65 DATA 2

70 END

RUN

DICE

«29071

DBNE

Program DICE is for exactly two 1’s. What about the other possible num-
bers of I's? With just a few changes in program DICE, we can answer that
question. Instead of computing for R = 2 only, we can let R go from 0 to
10 in a FOR-NEXT loop. This can be done by changing only lines 10 and 65
in DICE. See DICE-1.

In DICE-1 we have defined 11 events that cover all possible outcomes in
this experiment. There can be no outcomes that do not give from 0 to 10 1’s.
It is also true that no two of the events have any outcomes in common. Events
which do not have any outcomes in common are called mutually exclusive

DICE-1

S PRINT "ONES PROBABILITY"

10 FBR R=0 TO® 10

15 LET C=1

20 F@R X=10 T@ 10-R+1 STEP -1
30 LET C=C#X/(10-X+1)

40 NEXT X

S0 LET P=C#C1/6)tR*(5/6)1(10-R)
&0 PRINT R3P

65 NEXT R

70 END

RUN

DICE-1

BNES PROBABILITY
o «161506
1 «+ 323011

2 « 29071
3 « 155045
5 1. 30238E-02
6 2. 1T063E-03
7 2. 48072E-04
8 1:86054E-05
9 8.26%08BE-07
10 1.65382E-08

DBNE

212 Basic BASIC

events. if we have a set of mutually exclusive events that also cover all pos-
sible outcomes, then the sum of the individual probabilities must total 1. We
can verify that the sum of the probabilities in DICE-1 is in fact 1. Of course
one way to do that would be to rewrite the program to total the probabilities in
DICE-1.

Suppose we know that 10% of a certain population is left handed. If we
select 100 people at random, what is the probability that exactly 10 of them
will be left handed? The probability that a particular set of 10 people will be
left handed will be (1/10)10 ° (9/10)* and from 100 people there are ;4,Cyy
ways that 10 of them can be left handed. So the probability is

P = 10.-}(:10 ® (If]ﬂ}lu ® (9510}‘60
This too, can be done with a short program. See LEFT.

LEFT

10 LET C=1

20 FOR X=100 Teé 100-10+1 STEP -1
30 LET C=CxX/C100-X+1)

40 NEXT X

50 LET P=C&(-1)r10%¢.9)790

60 PRINT P

70 END

RUN

LEFT

«131865

DANE

In general, we should see that if an outcome has probability P of success
and Q of failure and we perform an experiment consisting of N trials, the
probability of exactly R successes is

P=,Cp®PR®QN-R

Experiments that behave in this way are called binomial experiments because
the values of xCp ® P* ® Q¥—1 are the terms of the expansion of the binomial
(P + Q) raised to the Nth power.

Binomial Theorem

Looking at (P 4+ Q)¥, we should be able to see the general term in the
product. (P 4+ Q) means, write (P + Q) as a factor N times. So

P+QN¥N=(P+ Q)P+ QP+ Q) - (P+Q)

When we multiply this out, we are actually taking one term from each factor
in such a way that we can sum up all possible products of combinations of N
factors one from each (P + Q) factor. How many factors are there in the
product? There is one term that takes P as a factor N times. There is one term
that takes P as a factor N — 1 times and Q as a factor once. There is also a

Elementary Probability 213

term that takes P as a factor N — 2 times and Q as a factor twice, etc., down
to the term that takes Q as a factor N times. That makes N + 1 terms, Now,
for a particular term, say P3QN—3, we want three P’s and N minus three Qs
We can select three P's from among N terms in yC, ways and so the value
of this term is yC, ® P3Q¥~3, For the Rth term we get NCr ® PRQN—R which
is exactly what we get for a probability of R successes in N trials where the
probability of success on a single trial is P and the probability of failure on a
single trial is Q. So to find (P + Q) we simply evaluate 4Cp ® PRQN—R for
all values of R from 0 to N.

Taking a look at the probability of any binomial experiment, we see that
since P+ Q =1 and the sum of all (Cy, ® PRQ¥—1 terms is (P + Q)¥, we get

if P+Q=1 then P+Q)¥=1

which can be verified by summing up the probabilities in program DICE-1.

Finally, if we look at (X + Y)¥ for X and Y both equal to 1, we get the
general term in the expansion to be (Cy1R1¥—R which is the same as nCr,
so that the numerical coefficients of any binomial expansion are simply the
corresponding values of yCy,. Since the values of X and Y are both 1, we are
really finding the value of 2¥ if we sum up all of the coefficients. Let us
write a program to print the coefficients for values of N from 0 to 11. See
program PASCAL,

You may recognize these numbers as Pascal’s Triangle which has many
interesting properties. Problem 9) in Sec. 11-1 and problem 7) in Sec. 5-3
should also have given the results of program PASCAL.

PASCAL

10 F@R N=0 T@ 11

20 F@R R=0 T@ N

30 LET C=1

40 FOR X=N T@ N=-R+1 STEP -1
30 LET C=C%X/(N-X+1)

60 NEXT X
70 PRINT C»
80 NEXT R
90 PRINT
100 NEXT N
110 END
RUN
PASCAL
1
1 1
1 2 i
1 3 3 1
1 4 6 4 1
1 5 10 10 3 1
1 6 15 20 15 6 1
I 7 21 a5 as 21 7 1
1 B 28 56 70 56 28 B 1
1 g 36 B4 126 126 84 36 2 1
1 10 45 120 210 252 210 120 45 10 1
i | 55 165 330 462 462 330 165 55 11 1

DaNE

214 Basic BASIC

PROBLEMS FOR SEC. 13-5

1) Modify PASCAL to sum up the cocflicients. Print the values of R and the
sum of the coeflicients. Do not print the coefficients.

2) Modify DICE-1 to sum up the individual probabilities. Have the loop go
from 10 to O.

3) It is known that 1% of the population has a certain type of blood. In a class
of 25 persons, what is the probability that exactly two people have this blood type?

4) A company makes bolts. It is known that 1 in 1000 is defective. You buy a
box of 100 bolts. What is the probability of getting exactly one defective bolt?

5) For the company in probiem 4), what is the probability of getting 10 defective
holts.

6) For the company in problem 4), what is the probability of getting at least one
defective bolt.

7) For the compuany in problem 4), what is the probability of getting less than
five defective holts.

8) Find the probabilities of getting zero through six 1's when rolling six dice.
Compare your results with the random simulation in program ROLL.

9) What is the probability of getting zero through 10 heads when flipping 10
coins,

10) What is the probability of getting more heads than tails when flipping 10
coins.

11) A test consists of 25 true-false questions. You know that your probability of
guessing right on any given question is 75%. Find the probability of getting 76% on
the test, if you guess on all questions. Find your probability of getting 76% or better.
J 12) An experiment consists of flipping a coin until it comes up heads. Find the
probability of success for 1 to 10 fips.

J 13) An experiment consists of rolling a die until it comes up 1. Find the proba-
bility of success for 1 to 10 flips. Find the probability that success will require more
than 10 rolls. Find the probability that success will require more than 20 rolls.

APPENDIX A

Storing Programs on Paper
Tape

A-1 INTRODUCTION

Once you have written your program, you would like to have the computer
execute it. In order to execute a program it must be typed into the com-
puter. Ideally, we should all be expert typists, but many of us are not.
So, many time-share terminals provide for punching programs on paper tape
when the terminal is not connected to the computer. Then the high-speed
tape reader may be used for reading the program in on-line. Even so, the
considerate student will do his utmost to improve his typing speed so as not
to tie up the terminal when others would like to be typing. One suggestion
is to type all programs in advance before sitting in front of the terminal to
punch tape. You will benefit in two ways: by getting practice in typing and
by being able to read the program easily.

A-2 PUNCHING PAPER TAPE OFF-LINE

Programs may be stored on a narrow strip of paper tape by punching rows
of holes in a code. Each row represents a character, space, line feed, carriage
return, or other nonprinting character.

There are so many variations from one time-share company to the next,
that we cannot list them all here. But we can outline the general procedure.
First the terminal must be switched to local. Then the tape punch apparatus
must be turmed on. Now you want some blank leading tape so that the tape
reader will be able to read the first character of your program. Some terminals
generate the blank leader by depressing the HERE IS key. On others, you
may have to depress the REPT and RUBOUT keys simultaneously until suffi-
cient tape shows, or try depressing CTRL, SHIFT, REPT, and P all at once.

Now you may type your program. As you type, holes will be punched,
which the tape reader will interpret when you feed the finished tape back.
Be sure to begin each line with a line number and touch the RETURN and

216 Basic BASIC

LINE FEED kevs at the end of each line. (There may be a special key for
RETURN.)

If you make a typing error, you may correct it in one of several ways. If
it is the previous character or within a few characters, depress the backspace
button on the tape punch apparatus once for each character you wish to
erase. Then touch the RUBOUT key once for each backspace. The RUBOUT
key punches out all holes in the row and will be ignored by the computer
and will not print. Alternatively, you may depress the SHIFT key and the
@ key once for each character you wish to erase. A backwards arrow will be
printed for each correction. Spaces do count as characters for this purpose. if
the entire line is a lost cause, simply RETURN, LINE FEED, and begin
typing from the beginning including the line number. After you have finished
typing, touch RETURN and LINE FEED. Then generate blank tape as you
did before typing your program. The idea is to get some paper that is not
filled with holes so that you may write some kind of identification on the
tape. As soon as you have your second tape, the need for this will become
obvious. After tape preparation is completed, tear it off and roll it up. It is
suggested that you not roll it less than about 2 in. in diameter, as the tape
will take on a permanent curl and that may cause trouble in the reader later.

A-3 READING PAPER TAPE

With the terminal on-line and the previous program erased, you are ready
to enter your program into the computer via the tape reader. Again computers
vary, but most require a system command, and for some the command is
TAPE followed by turning the tape reader on. After the tape is read in,
remove your tape from the reader and roll it up again. If the computer
requires a system command to enter tape mode, then a second command will
be required to remove it from that mode. The command KEY removes the
computer from tape mode and prepares it for instructions from the keyboard.
The command RUN usually will serve the same purpose.

At this time the computer takes your entire program and compiles it. To
compile a program means to put all instructions in order and convert it to a
form that the computer uses to actually perform the instructions. In order to
run, all statements must be legal BASIC statements and the entire program
must fit certain requirements that vary depending on the computer.

At this point, you should read all of Appendix B and then retwrn and finish
this appendix.

A-4 GETTING THE COMPUTER TO PUNCH PAPER TAPE

Having read Appendix B, you can see that after you have read in a program
on tape, you may make many changes or additious. After you have made il
of the necessary changes or after it becomes clear that you cannot make all of
the necessary corrections in a reasonable length of time at the keyboard, you
may want a new tape of the program in its latest form. Here again, time-

Storing Programs on Paper Tape 217

share systems will vary, but you will have a way of getting the computer to
punch your program. Some will automatically provide blank leading and
trailing tape, others will require you to use the method you used when you
typed off-line. Two of the system commands in use are PUNCH and LIST-
N@-HEADER.

Now you have two tapes for the same program. Most likely you will want
to throw the old one away. Be sure to write some identification on the new tape.

APPENDIX B

Error Diagnosis

B-1 INTRODUCTION

From the time you type the last line of your program to the completion
of a successful RUN, there are three types of errors that may show up: 1) those
errors that prevent a RUN; 2) those errors that allow a RUN to begin but
cause it to terminate during execution; and 3) those that permit a complete
RUN, but cause the computer to produce an unexpected or incorrect result.
The whole process of taking a program that does not work and turning it into
one that does is called debugging. Let us look at the errors by type.

B-2 ERRORS THAT PREVENT RUN
These are very often simply typing errors:

!0 LT=ET X=5

20 PRONT X

30 END

RUN

M@ STATEMENT TYPE FOUND IN LINE 20

The exact wording will vary from computer to computer, but the message
is clear. We retype line 20 as in the following:

20 PRINT X
RUN

5
DANE

Even though BASIC does use English words, you may not get too conversa-
tional as in the following:

Error Diagnosis 219

1 READ X AND Y

20 PRINT K»Y

30 DATA 425 Ts-11

40 GB T 10

50 END

RUn

CHARACTERS AFTER STATEMENT END IN LINE 10

As far as BASIC is concerned, line 10 says READ X. The AND Y is not
part of the language and so is rejected. Since there is no way to know just
what the characters after X mean, if the first one is not a comma or a single
digit, the computer will not take a guess at what you meant. You must say
exactly what you mean; the computer is not clairvoyant. So, change line 10
as follows:

10 READ X»Y
RUN

4 =]
7 =11

@UT BF DATA IN LINE 10

To multiply X times Y in algebra we write XY,

10 LET X=5

20 LET Y=10

30 LET ZsXxY

40 PRINT Z

50 END

RUN

CHARACTERS AFTER STATEMENT END IN LINE 30

However, even though in algebra XY is understood to mean X times Y, you
must be more explicit for the computer, and write X ° Y.

30 LET Z=X*Y
RUN

50

DANE

Let us put many errors in one program and see what happens.

10 LET X= 5

20 READ Y » £
30 LER W=Y#%* Z

40 PRINT X

50 LET AxB=X

60 READ W

70 G3TA %010

BO LET S=CAX+B)*(CX+D)
90 LET Al

100 G@ BACK T@ 10
110 LET X=3%4+5)

220 Basic BASIC

120 DATA 5Ss 1l» 25 =5

130 PRINT Wr2

140 GBTB &0

130 DﬁTﬁ- 2! 6Ts=1s

RUN

N@ STATEMENT TYPE F@unND 1IN LINE 30
MISSING ASSIGNMENT @PERATIOR IN LINE 50
MISS5ING RIGHT PARENTHESIS IN LINE 80
MISSING ASSIGNMENT @PERATOR IN LINE 90
N@ STATEMENT TYPE FOUND IN LINE 100
CHARACTERS AFTER STATEMENT END IN LINE 110
MISSING @R ILLEGAL DATA ITEM IN LINE 150

Now let us see what we can do to fix the program so it will run. First v
would like to see what is left of our program. The system command LIST wi
do that for us.

LIST

10 LET K=5

20 READ Y. 2

40 PRINT X

60 READ W

T0O G@T@ 2010

120 DATA Ss11,25,-5
130 PRINT wWr2

140 GATa 60

The computer automatically wiped out all of the statements that did n
conform to BASIC requirements. So what remains ought to run, right? Wrong
The computer has only eliminated the errors that are self-contained in sing]
statements, These are sometimes called syntax errors or errors of form. Th
computer has not yet looked to see if the statements fit together into a set «
executable statements. To achieve that we type RUN again:

R
UNMDEFINED STATEMENT REFERENCE IN LINE 70

We can easily see that the computer cannot GAT® 9010 as there is)
line 9010 in the program. We take line 70 out by typing 70 followed
RETURN and try again.

70

RunN

LAST STATEMENT N@T 'END® IN LINE 140
9999 END

R1IM

5
625
25

@UT OF DATA IN LINE &0

Error Diagnosis 221

Now we have gotten something printed, but the program is all over the
place. We can assemble it again with the LIST command or we may use a
new command first. We can get nice numbering by the command RENUM-
BER. Some computers use EDIT RESEQUENCE. We RENUMBER here and
LIST the program in its present form.

RENUMBER
LIST

10 LET Xx=5

20 READ Y.Z

30 PRINT X

40 READ W

50 DATA 5511,25s5-5
60 PRINT Wr2

70 GBTa 40

80 END

RUN

3
625
25

BUT @F DATA IN LINE 40

There is no substitute for experience.

B-3 ERRORS THAT TERMINATE A RUN

The possible errors in this category become more and more plentiful as
you use more and more advanced capabilities. However, the error messages
are rather explicit and so the most fundamental examples should seirve to
demonstrate how termination errors operate. Probably the most common error
for beginning programmers is that the data is either missing or not matched
correctly for the READ variables.

10 PRINT "THE RUN HAS BEGUN"
20 LET a=2

30 READ BsC.D

40 PRINT BxCtA

50 PRINT "D ="3D

60 PRINT “WE GB8T T@ LINE 60 AT LEAST™
70 READ X

B0 PRINT A

20 DATA 351711

100 END

RUN

THE RUN HAS BEGUN

B&7

D =11

WE GAT TO LINE 60 AT LEAST

BUT @F DATA IN LINE 70

9299 Basic BASIC

Not all computers will print the out of data message, but they will termi-
nate after the last item of data is read if the program sends it back to READ
again.

You might instruct the computer to perform an illegal operation as follows:

10 PRINT "A", LA =LY Y - LU LY - L
20 READ A:.B

30 PRINT A-B.A-BsATH

40 GBTO 20

50 DATA 1,2:5:3:3.41:2:1.23,4:050:4.03:5

60 END
RUN
A B A-B AtB

i 2 -1 1

5 3 2 125

3. 41 2 Le 4l 11.6281
1.23 4 -2. 77 2.28887
0 0 0

LER® T@ LERO PIWER IN LINE 30

Zero to the zero power is not defined. So the computer notifies you that it
has come to this undefined condition and halts execution awaiting your pro-
gram change. There are many more errors that will halt execution, but these
examples should demonstrate the principle involved.

B-4 ERRORS THAT CAUSE UNEXPECTED OR INCORRECT RESULTS

These are the most difficult errors to find. Suppose you write a program and
the computer prints nothing, but notifies you that it has run the program in
the usual manner.

15 LET X=5
25 LET Y=10
30 LET Z=Kr2
40 LET W=¥r2
70 END

RUN

DAMNE

We got three blank lines and that is not what we wrote the program to do.
It is reasonably obvious that we forgot to put in any PRINT statements.

50 PRINT KXsYsiZs W

10 PRINT "X Y xKt2 Yr2*
i
X Y Xr2 yr2

5 10 25 100

DBNE

Error Diagnosis 223

If you think that you have the PRINT statements and do not get any
printed results, look for a GOTE that causes the computer to bypass the
PRINT statements,

The ways in which programs can give incorrect results are unlimited. And
to make matters worse, the computer has no way of determining that the
result is correct. This is the responsibility of the programmer. Consider the
following program to read pairs of numbers and print their sum and their
product and the number of pairs:

10 PRINT "A B SuM PROD *
20 LET C=0

30 READ AsB

40 LET C=C+1

S50 PRINT A3IB3A+B: A%*BiCs"PAIRS 5@ FAR"™
60 GOT@ 10

T0 DATA 10201129

B0 DATA 1,2,-45: 18

0 END
RuN
A B SumM PROD

10 20 30 200] PAIRS 59 FAR
A B SumM PROD

11 9 20 29 i PAIRS 59 FAR
A B SuM PROD

i 2 3 2 1 PALRS 59 FAR
A B SuUM PROD
- 45 18 -27 -B10 1 PAIRS 53 FAR
A B SuUM PROD

duUT aF DATA IN LINE 30

We certainly do not need to have the headings printed more than once.
So we want to change the GATE in line 60 as follows:

&0 GOTVZ20

RN

A B SuUM PROD
10 20 30 200 1 PAIRS 538 FAR
11 g 20 99 1 PAIRS 54 FAR
1 2 3 2 1 PAIRS 538 FAR

- 43 18 -27 -810 1 PAIRS 53 FAR

8JT @8F DATA IN LINE 30

But now we still have to find out why the computer prints 1 for the number
of pairs each time. Line 40 is LET C=C + 1. C must be 0 each time the
computer comes to line 40. This is because the C@OT® sends the computer
to line 20 which is LET C = 0. So we change line 60 again. This time we want
the computer to go only to the READ statement in line 30,

224 Basic BASIC

60 GBIB 30

ruUN

A B SuM PROD
10 20 30 200 1 PAIRS 5@ FAR
11 9 20 99 2 PAIRS 58 FAR
1 2 3 2 3 PAIRS 59 FAR

=45 18 =27 =810 4 PAIRS 59 FAR

@UT aF DATA IN LINE 30

1‘{“4 vy s roTram e e fnllnnxr .
Al LIWLFYY LAl LUl ehida Ly Chd LAFRERF YW Da

T3

10 PHINT "A B SiM PROD
20 LET C=0

30 READ A.B

43 LET C=C+1

S0 PRINT AIBIA+B: AxBIC: "PAIHS 53 FAR™
60 GATY 30

T3 DATA 10:,20:11:9

20 DATA 1:2:,=-45, 18

90 END

SUMMARY

We begin to see some of the types of errors and the way in which they
affect the running of our program. There are ervors of language or syntax
errors. There are errors that prevent execution such as GAT@® 870 when there
is no line 870 in the program. Some errors do not affect the computer until it
tries to evaluate an expression that calls for an undefined condition. And
finally we have seen some errors that give incorrect results. As we are making
changes in programs we may find the LIST command helpful to see the
program in its present form. As we change programs, the line numbers may
become very scattered or very close together. The command RENUMBER or
EDIT RESEQUENCE makes 10 the first line number and the intervals 10.

APPENDIX C

Special Formatting Functions

C-1 TAB(X)

The TAB(X) function is available on many BASIC systems. The TAB()
function numbers the spaces across the terminal carriage and uses this number
to designate where to print. XXX PRINT TAB (10); “HELL® THERE” is
an instruction to the computer to skip out to the space whose number is 10
and begin printing there. See program HELL@.

HELL 3

5 PRINT "HELL2 THERE"™

10 PRINT TABC10)3"HELL® THERE"
20 END

Rin

HELL®2

HELL® THERE
HELLA@ THERE

DaN E

Some systems call the leftmost space zero and others call it one. Some
systems treat the argument of the TAB() function mod 72, so that
TAB(100) and TAB(28) mean the same thing. Others use mod 75, in which

case TAB(100) means the same as TAB(25).
There may be several TAB()’s in the same PRINT instruction. The argu-

ment of TAB() may be a variable as in program TAB(1)-
TABC1)
10 LET X=10

20 PRINT TABCX)3 X3 TABCK+10Y1X+103 TABCX+25)5X+25

30 END
RUN
TABC1)

10 20 as

DANE

226 Basic BASIC

Notice that TAB{) counts from the left margin every time it appears, not
from the previous printed character-

We may use the TAB() function to make the formatting a little simpler
in program BANKZ2 in Sec. 4-3. Turn back to that program and look at lines
132, 138, 156, 158, and 500 through 530. All of these lines were required
to achieve flexible format. We may eliminate all of these as well as line 490
and replace line 140 with 140 PRINT TAB(X); “$";FNH(P) and replace line
160 with 160 PRINT TAB(X);“$";FNH(P1). Now all we need to take care of
is a value for X. Let us try 35 the first time through. Anywhere before line
140 we may insert ZZZ LET X = 35 and call for a RUN,

530

520

310

500

430

158

156

138

132

140 PRINT TABCX)3"S"3IFNHC(P)
160 PRINT TABCX):i"™5":FNH(FP1)
135 LET x=35

RUN

BANKZ

FAR TEM YEAKS

84, 5% COMPOUNDED MONTHLY» » . 5 ByY.24
B4. 754 COMPRAUNDED QUARTERLY « .. 5 90.29

The printed results are aligned nicely. Now let us list the new program in
full with the value of X at 31 and call for a final RUN,

BANK2

2 DEF FNH(X)=INT(X+100+.52/100

10 LET P=Pl=56.31

20 FOR Y=1 T@ 10

22 REM F@R TEN YEARS

30 FBR M=] T 12

32 REM COMFBUND M@NTHLY AND COMPUTE INTEREST
40 LET I=P*4.5/100/12

50 LET P=P+]

60 NEXT M
62 REM THAT FIGURES THE INTEREST FBR THIS YEAR C@8MPOUNDED
MONTHLY

70 F@R Q=1 TO 4

72 REM C@MPOUND QUARTERLY

B0 LET I1=Pi®4.75/100/4

90 LET Fl1=PI1+I1

100 NEXT ©

102 REM THAT TAKES CARE @F THE OQUARTERLY INVESTMENT FBR THIS
YEAR

108 REM NOW T@ COMPUTE THE NEXT YEAR

110 NEKT Y

120 PRINT "F8R TEN YEARS"™

130 PRINT "84.5% CBMPBUNDED MBNTHLY».«-"13

135 LET X=31

Special Formatting Functions 227

140 PRINT TAB(X)I"S8": FNHC(P)

150 PRINT "84.75% COMPRUNDED QUARTERLY «« '}
160 PRINT TABC(X)3"S":FNH(PI1)

999 END

RUN

BANK 2

FBR TEN YEARS
84, 5% COMPAUNDED MONTHLY « «» £ BB.24
@4, 753 COMPOUNDED QUARTERLY««+« % 90.29

DBNE

C-2 IMAGE STATEMENT

There may be an IMAGE statement available on your system. An IMAGE
statement provides the printing pattern for a PRINT statement in yet another
statement. For our BANK2 program, we would use the following set of
statements:

130 PRINT USING 140, FNH(P)
140 :@4.5% COMP@UNDED M@NTHLY $ ## . ##
150 PRINT USING 160, FNH(P1)
160 :@4.75% COMPAUNDED QUARTERLY b ## . ##

to achieve the results of the last RUN above. The IMAGE statement begins
with a colon and the number signs specify the locations of the digits in the
numerical results. In an IMAGE statement, you may specify the location of the
decimal point and the number of digits on either side with the number of
number signs. The IMAGE statement may specify printing for several num-
bers by having several sets of number signs. You may also specify E-format
by following the number signs with four exclamation marks (... ##1!). In
our problem above, if we decide to change the location of the printed results,
we simply retype lines 140 and 160.

APPENDIX D

Summary of Flowchart Shapes

Terminal

g

Input
Output

Predefined
process

O,

Opens loop

Uperation
Closes loop

Used for beginning and ending of program.

Indicates data entered into the computer or results
returned by the computer.

READ MAT READ READ#

PRINT MAT PRINT READ:

INPUT MAT INPUT WRITE#
WRITE:

Indicates that a decision is being made.

IF XXXXXX THEN YYY

Indicates a sequence of program statements not in-
cluded in the Howchart. May be used for GASUB

statement.

Connector. Indicates transfer from one statement to
another other than the next higher numbered
statement in the program. N matches another N
elsewhere in the same flowchart.

Used for anything not already specified.
NEXT X
LET

RETURN
ST@P

APPENDIX E

Summary of Statements in

BASIC

NOTE: Not all statements which appear in this appendix will run on all systems,
and the list here does not cover every statement from some systems.

END

PRINT

READ

DATA

INPUT

LET

COTOn

IF-THEN n

It is the highest numbered statement of every BASIC
program. It is optional on some systems and re-
quired on others.

Prints values of variables, calculated wvalues, and
literal expressions inside quotes. Spacing is con-
trolled by semicolons or commas.

Enters values stored in DATA statements into vari-
ables named in the READ statement. All legal
BASIC variables (string and numeric) may be read
in a single READ statement by separating them
with commas.

Stores values for READ statements, Items of data
must be separated by commas. Some systems re-
quire that strings be in quotes.

Same as READ except that data is to be typed on the
keyboard of the remote terminal.

Assignment statement. The word LET is optional on
many systems. Stores the value on the right of an
equals sign in the variable named on the left. May
be used to assign string variables. Multiple assign-
ment is available on most systems.

Names n as the next line number to be executed by
the computer.

Tests the truth of an algebraic sentence placed be-
tween the IF and the THEN. Sends the computer
to line n if the sentence is true. Control passes to
the next line of the sentence is false.

FaTuThl

230 Basic BASIC

REM

FORX=AT@B
STEP C
NEXT X

GOSUB n

RETURN
DEF FNA(X) =

DIM A(),B$()...

STOP

RESTORE

CHANGE A$ T@ A

CHANGE A T@ A$

MAT READ A

MAT PRINT A

Permits the programmer to remark upon the program
in the program itself without affecting the program
operation. Some systems allow an apostrophe, ’, to
serve the same purpose.

Opens a machine loop with first value for X at A, last
number B, and increment C. If C is omitted, the
step defaults to an increment of 1.

Closes machine loop. Sends the computer to the
corresponding F@R statement to increment and
test X.

Sends the computer to a subroutine beginning at line
n. Upon executing a RETURN statement, the com-
puter returns to the line immediately following
G@SUB n.

Closes a subroutine.

Program-defined function. The letter pair FN desig-
nates that a function is called for. The function
name is A and the argument is X, Any letter of
the alphabet may be placed where the A is. Some
systems permit several variables as arguments.

Declares dimensions for one- or two-dimensional nu-
meric arrays or string arrays or both. One number
is required in the parentheses for a list, and two
numbers separated by a comma are required for a
two-dimensional array,

Execution of ST@P statement causes termination of
the RUN at that point.

Restores all data in the program. The next item of
data to be read will be the very first data item in
the program (not discussed in text).

Stores the ASCII code of the characters of the string
A$ in the array A with the length of the string in
characters stored in A(0).

Stores a string in A% with length specified in A(0)
and characters determined by the ASCII code
stored in the array elements of the A list.

MATRIX INSTRUCTIONS

Enters data into the arrav named A. Several arrays
can be read in the same MAT READ statement by

Prints the array named A with comma spacing. Sev-
eral arrays may be printed with the same MAT
PRINT statement by separating array names with
a comma or a semicolon. The delimiter specifies
the spacing for the preceding array.

MAT INPUT

MATC=A9*B
MATA=B+C
MATA=B-C
MAT A = (K)-B

MAT A = ZER
MAT A = CUN
MAT E = IDN

MAT X = INV(A)
MAT A = TRN(B)

SOR(X)

ABS(X)
SGN(X)

INT(X)

RND(X)

RND

RAND@MIZE

SIN(X),CAS(X), TAN(X)

Summary of Statements in BASIC 231

Enters data into an amay from the keyboard (not dis-
cussed in text).

Enters the product of A and B into array C.

Enters the sum of B and C into array A.

Enters the difference of B and C into array A.

Multiplies each entry of B by the scalar K and enters
the result into A,

Creates the zero matrix (fills each entry of A with
zero). ZER may be followed by redimensioning
specifications in parentheses.

Fills each element of A with 1. CON may be followed
by redimensioning specifications in parentheses.
Forms the identity matrix E. E must be square. All
elements with equal row and column numbers are
1 and all other elements are 0. IDN may be fol-
lowed by redimensioning specifications in paren-

theses,

Finds the inverse of A (if it exists) and enters it in X,

Fills A with the transpose of B,

FUNCTIONS

Computes the nonnegative square root of X. X must
be nonnegative.

Computes the absolute value of X.

Returns the value 1 for X positive, 0 for X equals
zero, and —1 for X negative.

Returns integer part of X. For some systems this is
the mathematically greatest integer function. For
others, the computer simply chops off the digits
to the right of the decimal point. (The results are
the same for nonnegative numbers.)

Generates a random number. In some systems the
set of random numbers accessed is determined by
the value of X. Some systems generate the same
set of numbers each time the program is run,
whereas others provide a different set and still
others provide an option. See RND below.

Returns a random number. The numbers will be the
same on successive runs of the program if the
RAND@WMIZE statement is not present in the
program and difterent on successive runs if the
RAND@MIZE statement is present.

Causes the random numbers generated in successive
runs of the same program to vary,

Computes the sin, cos, or tan of X, where X must be
in radians.

232 Basic BASIC

ATN(X)

LAG(X)
EXP(X)
TAB(X)

LEN(AS)
EXT$(AS,L])

FILES

READ #N,R

READ #N;
MAT READ #

PRINT #N,R

PRINT #N;

IF END #N THEN n

TYP(N)

Computes the arctan of X. ATN(X) is in radians.
The program must be written to determine the
correct quadrant for the result.

Computes the logarithm of X using base e.

Computes the number whose LG base e is X.

Moves the printing mechanism to the (X + 1)st posi-
tion of the carriage unless the printing mechanism
is already past that point, in which case there is
no effect

Returns the number of characters in the string A$.

tring extract function. Isolates a substring in A$
from the Ith to the Jth character inclusive.

FILES
Hewlett-Packard Files

Names files to be used by the present program and
makes them available for access. File names are
separated by commas.

Sets the file pointer to the beginning of the Rth rec-
ord of the Nth file named in the files statement. In
addition, when followed by a semicolon and vari-
able list, this statement reads values from the file
to the variables.

When followed by a variable list, this statement reads
from the file at a point previously established.

Reads values from a file with the same options al-
lowed for READ #,

Sets the file pointer in the Nth file named in the files
statement to the beginning of the Rth rcord and
erases the contents of that record. In addition,
when followed by a semicolon and a variable list,
this statement causes the contents of the variables
to be printed into the file.

When followed by a wvariable list this statement
causes the contents of the variables to be printed
wherever the file pointer has been previously set.

When executed, this statement sets a flag. If at any
later time an attempt is made to read past the end
of data or past the physical end of the file or to
nrint pact the nhucieal end of the file, control
passes to line n.

The TYP (N) function takes on values from 1 to 4,
depending on the nature of the next information
in the file TYP(N) becomes 1 for number, 2 for

FILES

READ #N,

WRITE #N,

IF MORE #N

IF END #N

APPEND #N

SCRATCH #N

RESTORE #N

Summary of Statements in BASIC 233

string, and 3 for end of file. If the argument is
negative, the value 4 will be returned for end of
record,

General Electric Files

Names files to be used by the current program and
makes them available for access. File names are
separated by semicolons.

ASCII Files

Reads data from the Nth file named in the program
into the variables of the variable list following the
comma.

Writes data from the variable list following the
comma to the file. The variables in the list may
be separated by semicolons or commas to achieve
corresponding spacing in the file.

Determines whether or not there is more data in the
file.

Determines whether or not the end of the file has
been reached.

Allows additional data to be written to an existing
file by setting the file pointer to the end of the Nth
file and placing the file in the WRITE mode.

Sets the pointer of the Nth file to the beginning of
the file, erases the file, and places it in write mode.

Sets the pointer of the Nth file to the beginning of
the file and places it in the READ mode.

Binary Sequential Files

Binary sequential files may be processed by all of the above statements by
substituting a colon (:) for the pound sign (#). Binary files should be less ex-
pensive to work with; however, ASCII files are very convenient due to the fact
that they may be listed at the terminal.

READ :N,
WRITE :N,
IF M@RE :N
IF END :N

SCRATCH :N

Random Access Files

Same as ASCIL

Same as ASCII,

Tests true, except when the file pointer is at the phy-
sical end of file.

Tests false, except when the file pointer is at the phy-
sical end of file.

Places the file pointer at the beginning of the file and
fills the file with binary zeros.

234 Basic BASIC

REST@RE :N Places the file pointer at the beginning of the file
without altering the contents of the file.
SETW N T X Places the file pointer to the Xth word of file N. To

access a random file by record, the formula
We(R — 1) + 1 places the pointer at the begin-
ning of the Rth record if there are W words per
record.

APPENDIX F

Index of Programs in Text

Program

ADDA,B
ALLZER

ARANG1

ARANG2
ARANG3
ARANGS
ARANGE
ARRAY1
ARRAY2
ARRAY3
ARRAY4
ASIS

AVERAGE

AVG
AVGCNG

BANKI1

BANK2
BASE
BASE-2
BIRTH
CHANGE
CHANGF
CLASS

CL@CK1
CLOCK2

Description

Adds complex numbers in (A,B) form

Finds nonreal zeros for some fourth-
degree polynomials

Prints list after each exchange in
ARANGE

Uses G@SUB for printing in ARANG1

Orders a list of random integers

Orders lists in excess of 10 elements

Orders list of 10 numbers from data

Demonstrates filling an array

Prints contents of ARRAY1

Detailed array manipulation

More detailed than ARRAY3

ABS(), SOR(), INT(), and SGN()
demonstration

Calculates test average from file SC@ORE
(GE)

Average test scores

AVG done with nested loops First nested
machine loops

Compound amount on $56.31 at two
rates

BANKI1 with rounding and spacing

Change base-10 numbers to base-2

Base with digits printed closely packed

Probability of two identical birthdates

Demonstrates change statement (GE)

Demonstrates EXT$ function (GE)

Probability of membership on a commit-
tee

Clock arithmetic with time of day

Modifies CLACK1

Page
148

171-172

42
44
65
67
40
79
80
81
82-83

48

117
31

32

56
60
96
97
205
107
107

204
69
69

236 Basic BASIC

Program
CMPINT

COMFAC

COMP-1
CONVRT
C@URS1

C@OURS2
DAYSO01
DEF()
DEMREM

DESCRT
DICE
DICE-1
DIGIT
DIGIT2
ENTERA
FIRST$
FLIP
FLIP-1
G@SUB
INTZER
IZER@1

LADER
LADERI1
LADER2
LAWC®S
LAWSIN
LEFT

LIST1
LAGP1
LOGP2
LOGP3
LOAP3+
LUPDEM
MAMDI12
MAT-1
MAT-2
MAT-3

MAT-4
MAT-5
MAT-6
MATINV
MATSP1

Description

Finds compound amount of $2000 after
nine years

Finds greatest common factor using the
Euclidean algorithm

Finds nonreal zeros for trinomials

Converts inches to feet and inches

Finds numbers of persons taking five
courses

COURS1 with random data

Reads days of week into MAT W$(GE)

Introduces DEF

Demonstrates finding remainder after in-
teger division

Uses Decartes’ Rule of Signs

Probability of two 1's on 10 dice

Probability of 0 to 10 1's on 10 dice

Prints base-10 numbers digit by digit

Prints integers using string output (HP)

File prints one name to a record (HP)

First string program

Simulates flipping a coin 50 times

Simulates flipping 50 coins 10 times

G@SUB demonstration program

Finds integral zeros of polynomials

INTZER with a subroutine-defined func-
tion

Uses SIN() in right triangle

Gets several values for LADER

Introduces arctangent function

Given three sides of a triangle

Given two angles and nonincluded side

Probability of 10% success on 100 bi-
nomial trials

First list demonstration program

First loop introduction

Second loop introduction

First machine loop using FOR-NEXT

Uses the loop variable

Demonstrates several loop properties

Multiply and add mod 12

Preintroduction to matrix instructions

First MAT READ and MAT PRINT

Shows the order in which MAT READ
reads

Prints column vector

Prints row vector

Shows redimensioning of a matrix

Takes the inverse of a matrix

Special matrices in BASIC

Page

33

93
170-171
54

77
78
106
58

53
174
211
211
99
105
113
102
207
207-208
43
161

164
135
136
137
143
140

212
4445
25

25

26

26

27

70
176
177

177
178
178
178
191
188

Program

MLTR,G

M@D12

N!

NCR

NPR

DRD$
@RDER$
@RDERA
ARDERAVG
PAIRS

PASCAL
PICK

PLOT1-PLATS

PALAR
PRIMEI
PRIMEZ2
PRINT
PRINT1
PRINT2
QUADI

QUAD2
RANDS3+
READ
READO1
READO02
READA
READTEST
REAL

REALIL
REDUCE
RND

RND(1)
RND(2)
RND(3)
ROLL

ROOGTS

ROUND
SCORE

Index of Programs in Text 237

Description

Multiplies two complex numbers in polar
form

Mod 12 addition

Computes factorial N

Computes combinations of N things R
at a time

Computes permutations of N things R
at a time

Compares strings for order

Alphabetizes characters of a string (GE)

Alphabetizes names in a file (HP)

Arranges student data by test average in
a binary file

Prints all possible pairs from two sets of
four numbers

Prints numbers of Pascal’s triangle

Selects numbers from a random access
binary file

PL@T1 through PLATS develop a plot-
ting program

Prints coordinates from polar graphing

Finds prime integers from data

More efficient than PRIMEL

First HP file program

Uses ‘IF END’ in HP file

Prints to a file random access (HP)

Finds real roots of
AX12+4+BX+C=0

Analyzes parabola

Random decimal numbers 1, to 11

Reads a data file (HP)

Uses ‘IF END’ in HP file

Reads from a file random access (HP)

Reads names from a file (HP)

Reads file SCORE (GE)

Finds intervals for real zeros of poly-
nomials

REAL with input to reduce interval size

Reduces common fractions

Loads a binary file with 18 random num-
bers (GE)

Introduces random number generator

Random integers 0 to 9

Random integers 1 to 10

Simulates rolling 6 dice 1000 times

Takes roots of complex numbers in polar
form

Uses INT(X ¢ 100 + .5)/100 for first time

Listing of ASCII file (GE)

Page

151
70
199

201-202

200
102
108
114

120

38
213

119

127-130
145

49

49

110

111

112

123
125
63

111
111
113
113
116

166
166-167
52

119
62
62
63
208

153
a7
116

238 Basic BASIC

Program

SCORE1
SEG$1
SEG$2

SALVE
SRVEY1
SUM1
SUM2
SUM3
SUM3-+
SURVEY

SYNDIV
TCHB
TCHB+
TOLL-1
TOLL-2
TOLL-3
TOTAL
TOTAL+
TRAGL
TRI®BI
TRIG1
TRP@S1
TRP@S2
TV'S
WRITEAVG

Description

Listing of ASCII file (GE)

Demonstrates string subscripts (HP)

Prints one digit numeric using string out-
put (HP)

Solves four equations and four unknowns

More processing of data’in SURVEY

Adds integers 1 through 50

Modifies SUM1

Modifies SUM2

SUM3 using machine loop

Uses a 15 by 5 array to analyze a ques-
tionnaire

Divides a polynomial by X — R

Tabulates four items per family

TCHB done with an array

Reads and prints data for T@OLL-2

Prints schedule of tolls paid

T@ALL-2 with matrix operation

Finds total cost of five different items

TATAL using machine loop

Demonstrates variable loop limit

Multiplies a trinomial by a binomial

Prints trig table 0 to 80 degrees

Takes the transpose of a column vector

Takes the transpose of a 2 by 4 matrix

Tabulates survey of TV sets per family

Loads file SCORE] from file SCORE
(GE)

Page

118
103

104
192
88-89
17

X

20

29

86-87
158

76
83-84
182
184-185
186

21

29

34

156

134

195
195-196
74

118

APPENDIX G

Answers to
Even-Numbered Problems

INpa
FPE 51 51419 40 HIGRNN Twiol

FleEN
KN

awW3 o2l

Di.51 SL410 40 WIEWMMN TLBL. LWNIHd DO1

or WIHL 21 =+ O 41 08

1+0=d L37 OB

0% alod Si

DB M3IHL d=l JAF 0@

1+0=f 137 OF

1el=i 137 D&

o=l 137 o

EWd WIALD ¥ MO 51470 48 MIEHNK IML STWAIEL L WEH 20
HIEWNN AW FHL 51 0 WIH 1T

SLAID 40 HWIAWNN FHL 40 KIWHL SJ33W 0 HIM OC

T=0 137 02

o=% 137 0Ot

¥l "ON Wa|qoid

L]

FLwid
TosEl
LIRS
c@co
C2sris = JINYTWE TWILIN]

210N

Tt

anNd ot

QGRC=*Rs=1-"¥2 C-*& WivQ DO
of QLoD 09

8 INidd 0%

Led=A 137 oO¥

011 w3HE D=l 41 ST

L awiw of

CZ*rizd 137 02

LEZ WS ® IDAWWE TWILINDG LHIMg O1

7L "ON Wajgol4

SWia|(o.

Anog

FES 5] O3IWMNE SHIEWNN 40 HIGHNK FHL
*ZIBSSE §1 1efl 02 § wWird SKIDWNN GO 40 NS

LRI
W

OoM3 0%

10,51 0IWHNS SHIEKNN 40 HIGKNH FHL,. LWIMS S@
G050 1a11 94 & WOL4 SHIEMNN 000 40 WNS. LNlMd OL
oc oion o%

gemen 13T 05

oL MEHL Lell=N 51 Ov

belel 437 ST

WeSef L3 OC

Q=5 137 o2

Dl 137 %1

S=N 137 O

GL OWe §1 “6L FMY ZWNS WukOded AJFODH 0L OFFN SINTT FHL wW3E 8§

 "ON WI|goid

‘BJEp OU pulj PInom 4 3|qEIEA 3Y)
se ajeuiwd) o) wesdosd Byl pasnel aARy Pinom 09
ajfuis v "sajgEiEA OM] JD} S[[BD JUSWIRIS QVIY YL

T "OpM Wa3|goig
T 'dVHD

AHED
FLE1I9 "6~

awi

Lyt

anl ow

drsm LMIHd DE

Zaf LB=Cifd-red 137 02
wilBrO L =1@rF C23sN 137 01

(PI9L "ON Wa|qouy

e fo L]
LYggeg

[}
1

aW3 D@

Cs2 LMIKA ©1

g "ON wa|qoid

aAxoa
90+ 3000001

L

Lo

aW3 Of

Ton: *S0+3°1 wlvd &
Feu LHMIFd 02

By awsH Ol

g "ON Wa|qold

<« OT13H,, "AIVS
aH, :se yons ‘() sajonb @j3ws usasaq wayl Suipnoui
Aq {,,) salonb ajgnop Sunuud pwiad SWalsAs awog i3y
-jip swalsAs ‘uiefie asay -pajeunwd) 51 adessaw pajund
ay) 1ey 1andwod Iyl 0} uondMNIsu Ue sI ajonb Byl

¥ "ON Wa|golg

sajgqenea 3jduns se gy se yans ‘jageydje
Yyl Jo 543119] (esaARs Nwiad SWaliAs JBaYlg CS3|QRUIEA
se spuesiadwe pue sudis Je|jop jrusad SWEISAS BWOS
‘piemdn jaqeydie ayy jo siana) apius Ajuo Sunpwsad
siapndwod 10) ggz wor) AJEA [[Im Syl O] Jamsue ay)

7 "ON Wwajgoid
1 *d¥HD

-ofed [enpialpur euo st wropoq o) doy woyy peal aq pinoys peaids afed-om) yoey

aJaquIn)-usaj 0} SIAMSUY

O XIAN3ddV

D"
c0-3L9%91 %0
sl-3CHEPE P
FO-F57EPETE

GlaLrg

Sre
BO=FRICHe"g
20-39555064
e0-FSCTHE L

SEFT
EL-FL¥TFF*R
EL=IREEr 1+ L
ED-3IC8a% L
Eh=3CECLE
LA EEATEY L

1
Y|

s
LEHTY I
LEFFTNS

&

Fae

CLECLE "
g
1

arl

¥ L¥IN

¥UTY Lilbd
2 3L 1l=x rFO4

¥ TON Walg

Pl 51 SHIEWN 40 FiIBWHN

Y LE I ¥ Y

FOON
HOE
v
ol
o
i

Dy

anag

ELE)

*UREEL] 51 WlODL

[l

HH

a3 08

MuS 1 SHIRHNN 20 KIOWAN 3Wl.. INIHd OB
<51 TLOLi INiMd OL

N A¥3N 0%

Mel=l 139 0§

I+3=3 137 O

Il a3k CIZE O 1001eM ¥34 OC
=L 127 o0&

0=3 137 o1

T ON Wagqoid

L-E "335

£ dYHD

INpD

6 4@ FDVVEIAY Ny uBd

SISl S Mgl 39
k)

an3

O 6B DDI*L&*I&*CE wivD
D404 FDVHIAY WY HD4. LNINL
SISk, 1] L HPAL ITH0ED., LMIH
oz aiLm

Sslml 1319

1=3=3 137

DL HNIHL Oe§ 41

£ g¥3y

o=] L1317

o=L L3IT

Ha3D

()
HOH
oo

=1}
of
oo
o9
o5
o
ac
az
1
=13

9L "ON wWa|qoiyg

LiaGl

ELTL]
5 1 MIOHO IHL NI SKWALT INIHTAAI0 40 yIEHNm FHL

a1 o

KM

awd ol

HIOED 3HL w1 SWILE INIUIA4010 20 HIAWIN Frl. LN1wd DOI
OC 2ie2 o¥

l+0=1 137 0%

@01 MIHL DM 41 O

4'N O¥3H DC

o=1 137 sz

QD ARG =1 *SC"aw "5 E*"S2 L1 S 20 TG0~ 2 ¥iva 02
O1<a% 51 STHL WIW %

0L "oN wajgold

L

Ll
E0=ALFY¥I ¥
Z0=ITOLwL v
ClRET AT

al9Lwd-

S0*
S0=39IC9E*%
LO=395555 *5
a0=J5CTEES

co%a0-
SO-3LFIFR "9
Z20-3FEZw 1L
SO=31C249°L
20=-3CTCCC 8
E0=3l 80805

Ly99gir
EL
gz
[
g
1

B=gn

MMH

dM3 0%

02 aled or

I=1=f 137 SsC

0% MIHL §2=1 41 o
[AVAD LMTHd O

i=i 1371 01

g "ON Wa3|goid

LEE ST SHIBHAN 40 HIAHIN JHL
"RRZELL §1 SEIEMNM ML 40 WS IHL

LRS-

Ll

av3 oo

Liu§ 1 SUIAHNN 40 HIBWNN JHL. IMIEd 011
51481 SHIMGWON THL 48 HNE 3IWl. LWIED OO0
SC ol oL

01 MAML TIESEZ =« W 41 0%

FlsMzN 137 GF

HeS=S 137 OF

lelsl 139 %€

0=l 137 oOF

0s% 137 o2

loglsy L7 at

9 'ON Wa|qoi4

El
Civae

aw3

By [Nind

AL IS LEMC=Car) i=B LI
[P=CaC*"Zhrig FE+B/0 0= LI

(191 "ON wWajqo

3

Ga&

UL |

Hew LWind
ACr/R)riwsCr=g@ LI
(R840 A20=0 LI

()91 "ON wajqe

¥
*

]

Qe ANIFA
wri=Crinmg 139
Crlegrlan 139

(e)91 "ON Waqa
kL

el s L o® (WSl

Gr3

FrR el wiva

LTI PR LS EE 20 § P 1. LF)
ehelg=0 131

0=k OeiMen £37
TEEEHN DT IR QW3

bl "ON Wwajqo
OEF FHIT M Yivwd 4D 1L

Ct
o

€T &

au3

g1 Q109
2'EFCTE R AL wiwd
OeFfJakeda 2oy LHINS
qiI*E"y OwIM

I1 "ON Wajgo.

EL]
1

o3
DECB RALGIEIp e[agd] iy
Teloms0s JeFefadefay INIKA
FOlfpeenr Je3ag Doy Qv

0L "opN wajgod

,
L
|
[
I
L

FIMNIT LHIMd

ORY NIEHL [1-N1T=0n]17 41
5 0L &= Hog

(137 LNTYd

LT LEHIA 18vITN. ANIWd
1 1¥3H

r AX3IN

SalfF17 437 06

Iryi=i137 437 o8

L119m8 L37 0L

o101 WIHL EF)7 = (D17 41 ©F
5 8L t=f HBd 0S5

¥ iaL is] Hdd OF

1HINd SC

¥ LX3IN OC

I LMTHd G2

(X137 avid o2

S 8L lwx waa QI

THIAHE TWHIDIHD. LHIHd 5

7 "ON Wajgoig

¥-€ "235

aLnpn

L1 wi oy [a ar
r L [} [z B
& 2 k C] L]
ail*an

[at]

oWz awl

PELEACCTEORCETACLOCOI Y wivd OCI
1 L¥3IN 021

fEI)w IMIEd OO0

CIISCIdamidv 437 QO0

¥ AL 1] HO4 O&

AMIHd 53

4 1IN D8

fCAYE AWIHd OL

[AIE Ow3Y 09

¥ 0L 1=l HB4 OF

ANTHd SF

¥ LXIN OF

I¥34 LHIHd Of

[¥)d4d QviH o3

% ol =¥ HB4 O

Tl "ON wajqoag

NG

14 L5 or ¥C &2 w1 & r 1

o1 0N

HNHE

aN3 ol

roAxIN 0l

FLFIM LHIEd OO0

SelifiW 137 08

¥ L¥IN OB

[HIT=5eE 137 OL

F Al sy Wdd ©OF

Os5 137 0%

01 @1 s Ho4d O©CF

I LXIN ©OF

af«{I17 137 03

Ol aL V=1 dad Of

0L "oN wWajgqotd

3HDd

14 Lz &1 (1] 3 Ll 51 3 ¥

§ 1SI7 H@ 4 1517 NI SHIBWNN
& ca iz &l &1 117 QWBd3s
] "l Ll g1] ? OIS 1SHl4

BN

M

aNl o093

IEPCRTLAAI ST "CR7 PR LIGI 1149 wivd G&2
~ ANIN OF3
1 LMIEd ©OC23
¥ BL I= B@d DT

(1]

I%C

ThL
L

L]

r
oL

ot

&L
[3-r

ar

&r
&C
&2
11l

N30

aoe o1
[1-] &
L] o
L L
' ¥
1 H
8l F
& E

L #

1 1
20N

LS it

oM3 oc
roi¥IN 09

Lr3er Anbia 06
01 0L k=" K14 OF

1 iw3ax ot
=117 137 GE
ol Q4 V=l #04 O}

T "ON wa|qoid
£-€ "235
moa

oLy 529 FLG &% FEF Ire oor a2
L1 LT P&l £91 rrl 12l (441} ol
9t Lt %1 & ¥ 1 a o

0 IVN0S

2i*0M

e

aN3 b

9 Lx3N O

iMlre %01

INIFd SO0

3 L¥3m GO
P23y LMIMa Q6
& 0L 0= ¥04 OB
9 IWlde L

DI A31F OF 01 Q=7 FOg O
INIHd C§

1H1¥d &F

¥ L¥3H DF

T LMiFd4 CC

& OL D= FO4 ©O2

T 3be0S. LMNIFd 01

7L "ON wa|goid
JNad

1 ¥ L1 (1) rr (4 £ ir
BE LE 113 sC Lio EC 26 it
B L2 L cE L] [22 -]

] L L) 11 L4 € z]

l=T=l 137 &2

o1 01 1=3 vos @02
& 0L lwk HDA ©I
=l 4137 %

0L "ON wa|qoid
L]
& HWBILIE®d MI S1 ONW LEFOHWT JHL S§1 &6

oM
L)

5&
i
“L
oY
BT

WL

L

el

LL

"5

&5

Ll

L

[113

L0
6r
-
L

L1}

Tk L] ueL L1 (] et v 9
(] L 13 & i Li F L} vl
rh i EF L (1l L k1 |
ow L SE o L1 oz 51 il
a0 el Wr. re = @1 Ea e
ii 1L] LE] i L3 21 [¥
LA ¥1 L L] €l B " L
& L k& L L ® L -
L
K
GhZ
LA & 31
iejrd
2 luim
(L T
el 0L 3 pl4
¢l 31 f=} FQ4
7 "ON Wa|qo
£
EL
S9r S Rdvd OF ol &N ¥
8L 1 f4vd 25 DL &b
o
I
OW3
D*OC el wivd
ol oLaD
SraST SIWd.f0f.00 &N WSa LNIMd
¥ OIxEIN
¥eEeS 139
0 gL lex WO4
osL 137
o0 WML 0=0 A1
@ Ow3¥
0L "ON Waqo
Ik

IOl 51 Hy3A ENE PILlaY LKL

'L
L

and

AlGS 1 Weld IWD HELldY LMNOKY. ANERL
O lk3N

léded L37

de 0=l 137

L
a 137

g "ON Wa|qo

EL

LesAr L §1 DODI €1 1 wO¥4 STRDIFGIIEN 40 F

T
F

GH3

51,51 CCO1 BL | eIF4 STWIDKESIDEM 40 WNS. LRIEd

W L3N

EAl+5=5 L3

aool DL TeX W04

o=5 137

9 "ON Wa|qo
PAUOD L-E D

Ciiu=E 137 O&

LFHem HOIM OAYL LMIEL 08
L# Ta= BT OAV. LHING DL
¥ 1x3N 09
CHIT=[MIH={N Y 137 DF
CEIHeH=H L37 OF
[¥)"7+%=7 137 o©oC
[HIHTI¥)T OW3d 03

L BL =¥ Hed o1

OsH L37 %

087 137 %

9 "ON Wajqolg
INeg

¥y
LYYF-9L
Serl
L9958
LT 16
@ 3IWHIAY J0wHD

R W e

HBILWIBT wWiol

¥Y o= OAW Lh ay 134 L9 L &7
Sl = 9Av L8 (13 &8 L 111 I&
LEPI-le = gaw L el] 26 L] Lé BB
LEPYSE = DAY R L@ Ba o0& La ¥L
LEFR-FL = AW LB 2B i1:] CL e &
L1

L]

dM3 QOE

I= ¥iWwd é&&z

FFUOFCOSTLITILAGY WIVD Bé3
LB'ELYEBTELTEE 714 WIvd 942
AR OGTZETIETLEYED Yiwd wéaE
HOCLA*HEFOSTLATPL WIWD 243
LB“EBSHICL BI ET Wivd D&2
5 1¥3IN oBZ

[(EIHTIS)D INIHd OLE

¥ 0l (=5 W04 O9Z
wHBTLYIRT WHIDIED, *uIDWHIAY JOVED. LNIHd G552
ANHIYd ERE

SE1 MIML =5 41 0Of2

& L3N 0wz

I=5 137 otz

asm{l+AJH L3 oga2
Ci+AIHw[AIH 137 ai2
CAJH=25 1371 so02

IS=m[1+470 137 o022
T1+419=ml400 137 041
tA19=15 137 o8t

OF3 WIHL [0+4)9 =< [X]D 41 OLI
T-v BL Iwi HOd OFl

o=s 137 551

¥ L3N Os1

¥=fMIH 137 o¥l

¥ 2L T=X B4 ©C0

51 2Lon o

Om[¥1D 13T 001

ls=i L3 04

Ofum DAY, LHIHd OF

F4L=0 13T 0L

¥ L¥IM 09

S+i=l 137 0%

15 LHIHd oF

QEL W3IHL 1==5 41 €

S Ow3d oc

9 QL =¥ D4 0F

o=l L3 %1

Osw L3708

'ON Wajqolg

INBa

L5414 1Sv3T
GF HI0HD WMIDlHA
2N

Wy

OHZ 002
BE'SFP I L=-*QL GF wivDd D&1
n 1¥3IN Gel

B& L &rF L=
e 14 L= ¥L

o LEIN

[XIE=Iwil L3
i+way 137

1 L¥3IW

012 MIHL [13Lw(¥lS 41
¥ Bl Isl HD4

% BL Is=X uld4

«F LEIT D 4 LSI7 NI SHIGWNM. IWlkd
ey 139

LMl

4 LX3N

FELIS LMIHd

(L35 awIH
5 0L twa HO4

TulS17 ONDIIS LMIHd
LHIHd

¥ L¥IN

TI¥T4 INTud
[X1deixil 137

(X314 away
9 0Ol =k HO4
TulS17 1SHTdw LMIHd

an

QHIHL QW ONDIIS LTHIS WO4 L*5 4 SLE1T IIHHL 80 HIY &

8 "ON Wajqoiy
LT

FE*FL F = LS00 Twial

P 0N

MY

aNl oL

1 LMTHd &Sr

82 oLED EF

CIldeiliNeloml L3 ©OF

SF NIML O=CIIN 41 wE
(T)d*C1IM Qvdd OC

T+ial 137 @3

Ds] 137 i3

b=l L37 §2

OrOTEg* ' 6P 67 I "GA* 7 [176U 29C/GE+*3 wiva 02
fuk = 1503 WiBl. LMIbHd ol

9 0N Wa|qoig

Inag

91 Lt zl Lt 114 'y
7l 157 a1 15 114 Is
w1 [N} 21 LN 111 ir
71 r Z1 L] 15 ¥
g1 L] Bl # 15 7

SHTWd TV

1 1 al IS LS17 OMp23s

[] 15 LR ¥ % LS5IT LSHI4

FrEM

MM

ON3 oLl

FUAOIEISUS LU 71501 “r "9 wiwd 59|

¥ L¥3IN OFl

IHTH4 551

g L¥3IN 051

TEEISIIVIY LHNIMS aFl

F AL =3 HO4 act

S BL =¥ HQ4 o021

«SHIYd IV LHIHd G0

LNIEd %01

A L¥IN 000

TELIE LMIHd 04

LAJS owid o8

F Bl I=& HOJ DL

FulS1T OWBO3S. LHIHd O

LHINd 5%

X L¥IN D%

Tild LHINd oOF

(¥4 ow3y oC

® AL IeX¥ HA4 02

TalSTT LSHIA- LIWINd

+ ON Wa|qosd

v |

erwrpl

BE*ELEIL

=50l

HE "Ll

ekl

kel

i

49]

lal

B

[

Lig |

=l

LL

e

Cra65 81 "2="12C "PLA* 664~ "CS I r2C LA A_M.-t..._“ “,
dfuNBILISOd NI ST ONY LE3DEVT JHL S1.05 INIHJ
4 L¥IN |
dwd L3
M= 137
OB H3IKWL W == § 4T
H Ovly
a1 2L Ted H@4
I=d L3
5 avde

8 "ON Wa|qo

kL

LovBLll FEER1E0 FUEFGO0 "

SL0REN arsrolil S&*05D1 !

LY=gw il e Cedl LL "BrDL o

sr Rl LR Fr0ral I

T € i Rt kPRSI
L

Hi

oNs O

B AXIN O
A LEIN O
Tl LNIFd 0
o ANIN
Fecdwd L3 o
FALOOL AU red=] L3

" Ol e HOJ o

0l =i wOog O

"F ANIMD

DOQl=d L3 8

% ddlE 5*5 OL web W04 |
INlkd S
FrLtET] fLEHWIANILYH., LNIKe

9 "oN wajqod
IHD

B9 CPFI ol
FECCES &
Ry #
BE*SIRLD L
SC*LeCL Ll
FO*ZHEL 5
GECENZL ¥
SL*DF1 | [4
arerOi E
S4°0501 1
INLIINIEE HW3

LA

Lo i

awy O

A J¥IN

AL LMD

TOANIN

fed=d 137

wrROteda] LXT

¥ Ol l=h Ny

ol 3L l=wd MBS

onol=d 457
A3V laniEd FW3A, LN

¥ "ON Wajqo,

Lo
Ll LL] LA el o4 L1 LTS i tY

L1 L1] (¥ W (414 L oo EF i

[0 EL LS L aw L1 Lr Wi &

aWl
o INIHe
A LEINW
il LEIN
Seded 177
Taded L37T
hssrDrede]l 137
21 @b T=W HOd
53 0L 1=i HBJ4
Sod 137

ool
s
[:1°]

7 'ON Wajqoiyd

£ 235
amea
5 £ 2 1
o1 BN
Y
a3 ozf!

MunL3Iy olii

¥={237 137 0611

1+3=3 137 0401

A L¥3N OBOI

GINl MIHL CAYT=Y 41 OLOY

S oL iek D4 0F01

oL oded 0501

¥ L¥3N OFdl

OF01 H3HML (XrdaLlnledsd A1 DEDI
owldfE (LRI 0301

OCO1 HAHL (MARILMI=NST 4T OND0

I= d345 1 oL

o2l @aLes

I 1M3H

0217 LHlEd

3 8L 1= HD4

T 1%3N

r Lx3N

o001 msnn
rida=s L399
C1l4ud 237

a1 01 l=I=" HAS
& D1 Co] HOA
s FL]
[2=11d+01=13)4=l 004 LI
ol 01 Cal Hdd
I=[2)4 137
Tefidd L3

¥ HOJd 000l

o#t

0L "'ON W3|qodg

IW0a

¥ =409 o2 2l

2 =439 ¥L i

& =439 9C iz

1 =439 5T L2

&f =430 cCaot OEl
BeOH

HE

oN3 &be

OrOFOR Rl PRE AP E SRC A LBIECALECCT0L TR WivD O0F
oy oLpd gzn

¥ AWTHd Q11

o1 QL0d D0&

I luIHd OB

¥ L3N 0L

GBIl HAML E¥sAIINIENSd 41 09
oL DipA 0%

09 WAHL (N/SILNTeNsE 41 OF
I= 4315 | Ol 4ex H@4 OC
0,00 504 LHIdd 5T

&dd HIML Deg 41 0O

B4 g¥3dy 0I

g ‘ON wajqoid

afrl
cari
121
cBzl
cEEl
care
L&ON

srol

BER L
CEr i
aori
BI1EH
bl
Lrzl
il
=17

&LCoi

Ceri
I5Fl
aatl
Lot
LR}
cial
sl
ol

ECol

[1:La}
Lwwl
1ach
coch
ER21
ozt
&2
Lot

1con

Lowl
BEF]
CLTH
ioct
srzl
Tall
Tan
E201

20l

OL W3IHL wdsX3LNTmgs® 41 O
I+ 4345 2 0L ¥ad EHO4 O
Hex 13T 81

Oo=a L3 L1

DZ oiah %1

H=i 137 &I

O=x LA FL

L1 M3HL OeM A1 CU
funuadul LHIHA 21

051 HIKL O=N 41 L1

O*H Q¥3IH 01

7 "OpN Wa|qoug

£-F "D38

Aned

carl 1-141 iEwl
CCw i BEF1 Lawt
(1] (51 LET
L&zt 1621 [1-EA
LCat IE21 s2el
LIl FE11 et
Lieh &00 1 CoLi
ceai 1901 1E01
wial cIo 001
B0
HE
aN3 L

¥ LX3IN 0%
I LNIWE 05

1 Lx3n OF

0% WIHL (I/%2iNlmlsE 41 OC
2 Jd3LS (XHMAS OL Cal HOd 02
4315 0050 OL lODls¥ HO4 O

g "ON Wajgoig

L]

lgas = 10046 = i
&001=u &001 = I=
&00[== &000 -= i
&001 = EDO1 = 1
FEF-o0 FSY = 1=

FE¥-3 FEf-w i
FEF-m L 1]

FEg=u ¥ s &DL-
Li3 AL C=» 81T
FEP=w L= @#lIa-
LA L 2=» L2C
FLE=a 2% L2k=

CEr = CGF & i
E5F = £ = 151

lot=» Iéh = i
Thbas lhé=n 1
1he = 165 ® 1

1L = 11IL = i
1L = & W Bl
1ML = T w LEZ

fo L]
HY

Z "ON wa|qoid
-+ '35
¥ 'dVHD

EL

IHODE WWI103W 3Hl 51 LG

ITVEIAY JADEW IWIR SIHOIS LEIL C
I0VYEIAE ROTIZE J¥3IA SIHO0DE i

OL = JDVHIAY

g% L9 %9 8BS O €9 EB IL 5%
BEOH

Hy

ar3 it

0 wiwg 920

EF"LF"9F7ES D& D9 YIHIL7SP wivd SEC
wIH02S MYTOIW 3HL SlaleS=-2,01=N03LND)T LHIH4 OZC
wITENOML s IHIHa Q1T

Q LX3IN Q0C

b2t oLeD D&

~IOVHIAY IJAOEY IWIA SHHOIE LSIL.D-K LMINH 062
agC MIHL TA17sW 41 OLE

= J3LE | DL [=¥X=d HD4 OFZ
w3MENDEL. LMIHL 052

2 1l¥3M OF2

092 flog oz

LAIYHINY ROTIE Jidm SAN0DR.L-1 LMIHd D32
O¥2 MIHL [277=v 41 OI2

I=% 0L =] Q4 002

QlE WIHL 1=5 41 a&l

8 L¥3w 08t

i=s 139 0Ll

I1S=[1+837 L3 008

Cr=@1%=0837T L3 Ooft

[a37=1% 137 dawl

OE1 NI C1=817 == (817 41 £00

2= @8l 1=0 4ka OF1

ass L3 oL

Wae J0¥MIANG.,. LNIHd DO1

LHIHd G&

f1=¥)sled 137 08

OC pLBD 08

[¥)T+lml 13T OL

FLX17 LWlud 0%

06 W3IHL O=(%37 41 @8

[¥17 Ow3d ow

1+d=% L[3IT OC

o=l L37 OF

Q=x L3I OF

8 'ON Wwa|qolg

kL1

L uidWNN 1% Wi
of = 30HvH LSIHDIH
CriL vl = HOIH DAy

LLs@=18 & ROT DA

B

i

LR

ALTAFUSLASSIRLOGETEBLRR LI "OSTLRUBRCLLIIG Wivd GL
Q. E3dWns Awd N@. LNTHY DL
I0MyE LSIHOIH.. LNIHd ODF
¥ L¥3IM 0%

¥=d L3T OF

[¥1d=y L3T 0OC

(51 MIHL IX1H ws ¥ 47 02
L oL 2= Hd4 01

f=Q L3 0

0,JUB) 9 ON Wa|qOIC
PIUOD b€ D3

INBD

Crordl % TTAIVD OF0MIBEHED TSR

1802 § **ATMILEYNG 0FOMNA4HOD Tie

45108 § fTATHLINDH QIONMOGHED TSL r R
seeHYIL S0 HDJ DD*S&Tess

wean

MY

aN3 Géd

HEMNLIH OrS

Fifuw LMTHd OCS

I LNIN 0I5

T w IN1¥d Q1%

¥ 0L i=2 HD4 oo0%

4015 oL

ECdIMNA ANIHS 093

oos ansdh osz

Z+4=x L3 Ov2

P **ATIWD OJTHNOSHED TE*Pl. LNINd OC2
t2d¥HMd LHIH4 02

Dos angas alz

Taxai 137 002

Pu®* ATHILWWNG JIOMNRGWED IS0, LMIND 041
CldIMNg LMIBd 081

GOS BRSBO oLt

Se¥ 139 oFr

Tu* "ATHLNOW QITHNDIHED ESL*F@a LHING 051
eSS HYIL S0 W04 DD s5Esss ., LMIMd oW1
L Ll¥3N ol

o 1¥3M 0zl

SCFD0L S Feld-Edmld LIT 011

S9C BL 1=0 WO4 OO0

B Ll¥3IN 06

PAOQESEBde2dedd 137 OF

F BL I=h HAJ DL

¥ I1¥3N 0%

BLAODIAEL roldeldeld 13T 05

20 0L lsk HDd oOF

Bl BL 1=l HOD4d OF

Gh=Cdegduld L3703

LO*eCS*+XaD0I BINT#CREIHNS 430 Q1

9 "opN Wajgoly

INDg

TL"BLLE §

L 1]

MY

aN3 ozl

10 @5 +000ed) NI 1ol LNTHd 011
A L¥IN ool

W i¥IN 0d

T LXIN 0f

Deded 137 0L
CFCroovdedel 13T 09
Hod OF
137 or
Hpd OC
Hed 02
137 o

b "ON Wajqoly

iMon
FCoELA

2 @N
MY

=Doo
D=00
e X-Ro k-1

i
I
o
1 e]
SIIMNIS TIHITH SIWIO WILHWNS JTwH

]
OflD* Wil
PLelTSE*"E*1 Wl

Ao

o=
FLel
&=
951
SEYTIe0

FrEN

HNE

HI &464
¥ad raoi
¥a D201

SFOITEZTOE wiva olal

a0 o
lafINeZactarin LN

Lag o2l
Thd ol

Mo IN-10wlD 137 001

(HATO)INImIN
00sad=Id=id
0dsLaring =30
Geif-lg=i0
(A/1aiNI=In
HelH=0G=10
CHAQ) LNI= K
00 ls]=g

3L

137 o4&
137 08
137 oL
137 0%
139 0§
137 or
1317 o
431 L3
NIld 53

Goés NIHL O=0 41 18
a aviy o2
WEITNMIY TIHITH SIHID HILEENE 4TWHG S8V T1T00. LNIHd ST

HA0QT0TH

ow3ay ol

9 "ON Waqoly

ZIIU‘I‘U:-*'
- E RN
Iﬂ"d
:ﬂ =g

SIHINT L334 S0

OFICTCA*ROT OEI*LeT Y02 ¥
oz

Zredva g

EALFERRLFS

L-IFA BT

ASFC=1mi]

CFCA1ILNT =L

T 1

E&& MAML O=

I

wSIHIME 1334 5OWVWA."w= SIHIMI. L

3wea

1€
il
eo7
osi
(]
oa
= SAHIMI

Fe AN

W

OHI &&&
iwD oo
olen o4
NItd @8
137 oL

4 1371 oy

437 af
137 ar
Hidd OF
1 41 s
awiy o2
Hidd O1

t "ON wajqoig

LA Ce ar
L C = ¥
*2 s v = a@r
L [3] L]

oa W,

ANpag

aNa as1
ivd ozl

Br “RCer *CYBF*ZR-9°% WLVO 011
o1 oLeg ool
df0adud#H LNIYd 04

e

mLas of

06 WIHL (ds/ANLWI®sdsd 4T DL
01 @Loa o9
Dol LNIHd ©F

d

LXIN OF

L=

OFIO0&* 40001 ="4001 "PR9="CEF* 1 &4="T44%1 1L wivD
ar¥ aipo

Ol MIHL N=g 4]

Mo ®iul =ia®aillFN= LMIHA

SL HEHL o=N 41
Mymellia®al /N LHNTHY

at aros

MimaM=p®il= LNIHS

0% MIHL O=H 41

Hia SNl LHIND

0 LX3IN

OL NIML (O/HILNT=O0AH 4T
{INISEVIEDS QL Z=0 ¥04
Q11 HFHL D=p a1

H avie

LMW

9 "ON wa|qo.

O 3NIT NI wilwd 20 1n

(RS 1

2*iC g-ic

4 ci

L Lt

o o

coi cell

NN ALNT0EEY HIAR

v

aH3 050

TPLE=*B= 1L C1*LT=-70°C" 1] wiwd OrD
HEMLIY oOCD

W LHIN& ©zZ0

¥=8y 137 @lo

OZ01 NIML O == ¥ JI OO0

a1l aLes o

ool BnNSes O

o LHIHd O

CC Tk

«dNTWA JLATE5EV.. L HIAW NG LHIHd

trON W qos,

AND

1001 = 1odl = i
ool = El = Ll
lgal = [= lé
lgol = L = Cvl
arEl = SFEl w 3
Fr&al = Fral w I
Fr6l = ri s &gl
Bra&l = L= BILZ
rEl = & % CL&
=k

Wi

NI O

GO l00N TePE] "FrPET WIVWA SE
OF OLE9 OF

Ol NIHL Wed JT G
Hasoluea /N LNTES O

al aLes o9

Humubatal LNIHd OF

a LE3N O

OL HIHL (asHILNI=O/N 41 O
THIHDE DBL @=0 ¥D4 O2

DIl WIML o=W 4T L1

N Iwdd 51

AHIMd 01

og

ac

aa-
SF
L

L

&l
=7
o0&

L]

LL
a8

at

100
Bl o1 1] &3 ! EC CLa 1
T L T T Ll 11
[+ a g 2l [+ 2
65 4 " g ek BEC @ !
s 1 L] ae 1 (41 e ¥ ¥
o L 85 @ LE &r ¥
vlot L L L2 oz ¥ E
Ic & 2l g5 t W 9C 1 3]
BE 1 & {1 LT &
LE i 95 ¢ @ pc 1 21
HILYT AWIL AWTL Oav MO FHIL
aZ*aM
My
aN3 oLl
< L¥EN DBF1

S ZH TH Ll H Wbl LHIES OS1
oIl a1en orl
dl=ZHefH L3T 01

051 M3IML 21 =» EH 41 011

legH=iHd 137 0d1

OF=cHeZW L3708

011 WIHL OFeEH 41 @8

IH+H=gH 137 SL

He1H=2W 137 0L

C&FILMHArIW 13T OF

(PCaLMAcIl L3 05

CESILNA=M 137 OF

(Z213iNd=H 137 o©OC

Ol 0L Fed HD4 D2

el)ONEel Y ENEu{LILMNAG 430 1

wHILYT FHILe%uIWIL 00¥*ulOH JWILa LHIHd &

0F 'ON wWajgold

NG

LT3 &= 08 [23

ELE [T HLQE HI Hw3ddd HIIHA SINIW3T3
i1 3 9&= 0DOI=

BE 0% g &= ci = @t aa=
ir or 14 15 ar- Er= PE op

9= ZF= L= FE= 8= ¥S LL= an
135 W3IHLII 40 SLNIWITE

98 [+ fd&= 001= L ag= (1} LL
€l (4.4 1 Ba= [+-] cw 113 a2
L8177 OND23S

BF ow (4 s fr= ar= 111 [1]]

SL- ar- LE= ri= sB= L5 LL= B8
ASIT L5HI4

Bl=0N

WY

Wl SRS

SIC aLOD OLS

OFC NaHi 02=N 41 &SE

[min=(aiT 137 OFs

T+@=g 137 S2%

<8LE ©C2F

48LE OIS

~EL51T HIDE OL NOWHOD SLINIMITA OM. LMIWd 506
O15 WIHL D=8 41 005

K AMAN G&F

1ERI] LHIEG DEF

@ 8L =¥ HE4 SO

WELETT HLEE NI Hw3ddy HITHA SLNIWITI. LIHINd OSF
LHIdd SCF

¥ 1IN O3F

FIXIN LHIMd SO0F

¥ Al l=X Mdd 06T

wl3E HIMLITF 40 SINIMITIa LNIHd SLEC

in IxIN ©OFC

Cimil=iyin 137 SFE

Teysy 137 OCC

n 1¥38 SIC

S35 NIWL [INIL=inin 41 0OC

03 AL lefi WO4 SB3

02 0L I=In ¥B4d OLI

o=y LI7 582

300

& aow L g = 2
L O0H E = a = s
L O0W E = ¥ =]
L OdH L 0 = ¥
L ooW F = $ - 19
Z1-an

HH

QNI &&6

OfIO=*E 4342 P SO O ¥ 79 'C WIWOD ODOG
0% oi23 oul

Le+0=d £L37 001

01 BLdd oL

st Q0HEOn ®uSu-wd LNIHd OF

L=0=d L1371 0§

o9 H3IHL L0 41 OF

00F M3ML 0= 41 OO

S=J4w(L3I7 02

Geé NIHL 1D*=4 41 51

E*4 Ov3IH O1
LIVHAGNE WEY ¢

71 'ON wa|qoid

L O0H 4 HOH4 £

3waa

¥ O8H a4 = o e c 5% 08 E = o= C
L] aas L - L & L] aoH } - i = 1
] aas [+] - G s 4] g aidH 14 - L]
9 agu 2 - - r g aoH 1] " 2 % ¥
9 aam I L L L] g L] aoH ¥ L] 5w g
] adk " - 1= r 5 a0 Q " HI L]
5 b L = 1w r S aoH a - P L
s agH o - 0w F s L) L] L] o= ¥
g agw ¥ L] i e ¥ 1 a0k 1] = 1+ L4
-] ooW 2 L] [] ¥ L oW a = | L 3
al=ax

HNH

aHI &dé

GfRefs Wivd D06

HHEMLIE OEL

fHis O0H«A LMIHd D03L

Hel=X=n L37 OIL

CH/XILHI®] 13T 0D

02 aLan o021

ANIHd ST1

Z 1¥3W o0

- = LHIHd SO1

QDL BNS@H ool

fo =udesu¥ LHIEG 06

Bayw¥ 137 0B

poL ansen oL

T ®u8ata¥ LHINS 09

deymy L1T 5§

(HI)HH4=R 137 0%

CHIYHd=Y L3 OF

S 0l i=? HO4 OC

EE& NIML O=N 21 S0

H OvIE 03

CCIMONHeXILHImENINMA 430 OF

0L "ON Wajqoig

3Hea

& 2 & 1] ¥ []

w &] 5 L]]) [Ll 1 L]

B*8H

HOY

aKl oo9

sksdeesflEIT BAL LSNM 35N LON OB 3 BN WIH 4466
L*O*3 & 59 L0717 Vivd 105

EFITIFLFACEFOCLSR L Wivd 005

H A¥IN QLT

fiH)d LHIHd OF%C

&%l

o

LI BL =X HD4

N INM3M
BeMlde[1=M2dnIN]d 13T
Bl BL Cw¥ HOd
ImC21dwl1)4 439
I=£138 L37

v 1317
[E118°CEN 14 WID

b TON Wajgod,

LT
161

191 (111 33 Ll L1101 aol 21 oa &5 -k]
LE- fw= 25~ 9= &L= LIV= ¥®Ei- ©OCI1- IEi- O&l- DOF
a%

&l oCl= Ir= F3i- 321 1} %1 28 &5] g3l

= 5= &% LC= 0@Z= %11 oEl- Lil- &L= 151= @01

N3 ol

A L¥3N OO0

TEATT IMIMd D

53 0L 1=l HO4 O

DB HIH1 1=5% 41 D&

¥ 1¥3IN o9

=3 L3705

IS=(1#¥]7 L3T OF

[l]} I=(%])7 137 o

[X)7=15 137 D2

091 BIHL CE#X]7 == [¥37 41 DI

I=0 DL l=¥ HR4 OO

O=5 137 ©

I=1=t 137 O

HONOWHL JFHIL HIWE WIEWNN S537 300 1V H20T WILNSWDD WIY §
IHL OMIAWH &8 AIMITDT443 FHL JADHIHDI HWD JA WIH |
Pasl 137 O

AHIHd L

¥ LX3AN ¢

TN LHIEd

(X YEMAnIN)T 43T o

S2 BL l=x ¥O4

{5237 Wig ¢

003 =C) }ONESIDF 3 INTm (X} HMNA 430

7 "ON Wa|go.
-t "03

¥ LYIM

CHIHHATY LHIHL

3 oL 9-=k HOJ

sk ¥ w LHTHL
I=OaBeBaDedn{IIHNS 430

g "ON Wa|qoi

M
L
i

I

_

I

|

pauo) £-k "03

i ENMITWI LEN LNE SO1RAHS OMINWL

) L L 5 L
SnWMITW3 HE I MY LELEEF] SIS AMHd AHLE IMIHD
L T
MY
aMl s646
I= wiva o011
OFOF T I FLT 0T 00 wiwd odon
1 -Dlﬂiﬂs _.._.-ﬂlﬂﬂ-i-lﬂ.-lﬂl-.-h.ﬂq‘i.u!ﬂ vl !E.l-\- -ﬂ ‘F.ﬂ. [+1%+]]
1 Iﬂ|¢I -tﬂl-l._. wﬂlﬂlu !-L-\- -lﬁi- -iﬂ.tﬁiﬂ-t-!_ul- '.F.‘ﬂ ﬂa—
GH SHYIW 0. S34 SwwiW .1, Wid Sad
SNWIITWI HEINYGS HINIHA EDITAH LULS IMIHD WIOUO NI 51 wivd WIH 066
daSAWIIWD LON LN TIISAHE OMIMYL. LMINd Owi
i 1¥IN ot
L1312 LMIHd aoEt
5 0L i=] H34 Qi
S WNI T Ier *1eHS TNV aE s s HINTU e * 05D IS AMbes 1 ANAS IMIND LNING OO
DF DLOD 08

ledad LIT €8

D& WIHL I=i{5)w 41

24

O& WIHL Os={2]¥ 41 18
H Lxdw o8
J+[E1I=(H]ID L3 oL
IJ=[HI¥ 137 1%

001 H3IHL 1=%3 4]

J Avid 0%

§ QL I=H HOd OF
O=d 137 S€

I L¥IN oC
Q=[R2 137 oF
F 0L b=l H0d 01

¥ "ON Walqoid

IMNET

P ED S2IEAHY OWY AHLISIMIHI OMINWL 374834 49 HIOWAN THL

¥ ¥ L - L
FNWI T2 HETHWIE HINIHA SIS AHd AHLE IWIHI
Fa L]

Lt}

aNT séds

I= ¥iwg o00Qi1l

aeofieari T el 2090 wivd 0301
-Igﬂﬂlﬁl-l-iﬂtﬂln!-ﬂl—.!ﬂ.—-lw\ﬂ.-iﬂ.l‘uﬂ.‘-lﬁ n\n .‘Fg n—-HH

R R - L L N L L T ¥ivd ooDot

ON SNYIM .0, 534 SNWIM .1, MIH SEé

ENMNIIWI HEIWWLE HOMIHS EIIEAHD JHLETHIHD HICHD NI 51 WAW0 WIH 086
deBI SIS AHdw LNI¥d S¥I

Fu ONW AHLT IMIHD ONIMVL 3004 40 HIGMOM IHL. LNIHd owi

I 1¥3IN oo

L1310 LWIdd Q21

5 BL I=] w@d QLI

=B WI T " oHE TNV o "IN f * S TS A " AHLE THTHD., LHIHG OO0

oF BLOD 08

feded [37 €8

D& HIHL O={2Iv 41 33
D& HIHL O=Ql)vw 41 1@
¥ L¥3IM O#
J+{HID=[¥13 137 oL
d=luly L3 1w

D0V WIHL 1=-=3 41 0%
J dvis 0%

S 0L l*H w4 O

Dad 137 $C

I ix3N ot

G=0[F)3 137 oz

& Bl l=5 wag o1

Z 'ON wa|qoig
L-§ 235

5 "d¥VHD

LMIEY

A4 ININ

TLAZL LMIHW

(I HHI=ELIL 1T

02 Al Ted Hid

w1 OMEI35. LHIHS

LElHd

¥ LXIM

TEN A LMIHG

[io=ixIn 137
(1IEMA=I¥ 18 137

02 0L 1=M HD4

wlSTT LSUIdu LMTHD
O=Q 139
C(COT=Clpamde 02 LNInCNIEMN 430
Lo IN*EOBIL*CO20L-E0A30 WIO

gL "ON wWwajgolg

DEPF & W37 (1]
FLAC = 3T 1&
9r = W37 &
S5001 = w20 (43
Fal = u37 s
CEl = W31 [
CALE = M2 L&
GEFE = W27 Ly
& = W37 z
LBl = W37 &C

)

Lr]

E LXIN

L2010wl IWTHH

oL BLep

O0C MEHL CLALT2ANE=LANT 4T

oor BLAG

11%D LNTWd

L Lxaw

00T MIML CL/TDEMI=LS] 4T
I= 4118 @ 8L Tel 44

T MON="LI0D LMIHG
CODEIHHA=IT L3

(o0 ENA=] L3

OF 8L i=X¥ HOJ

(s t@anEeu) LNT = (X VMY 430

INg

L1

(R
LIl
(111
oaw
ooc
so3
ooa

i1}
ap
oL
oy
0%
(1
or
oc
[E]
ai

91 'ON wa|qolg

N80

1 = 438 LECI §1-13

B o= 4lB SE? siB

& = 420 Rar oFL

I = 438 693 Cé

LE = 43 LRl wew

i = 5B cce 599

€ = J3B CaL sas

I = 420 sall s0C

9 = 439 LT)

= Ja8 anci LT
LIRT U]

0]

aM1 6

¥ OLXEM 00w

1 LNIEd 0oC

oL eiph S0z

Q0C MIML (L/01)AMI=LAVT 40 OOE
oo BlBD £8

I LNINd 08

1 Le3N 0L

00Z WIHL CL/IDLMI=Ls1 41 OF
1= JdJ31S & 8L I=l HD 14

fum J08.71 i sr
COOR1YHNA=I] L3 oOF
(666)HNA=T L3T OC

O 0L 1eX &4 03
Clef3)aneX) INI=CKIMMY 430 01

¥l "ON wa|qold

08 Bl =N HEd
¥ 1XIN
Tsfil-Wldu[]=¥1d L3
Is0l-IvW)deivld L3
O1A(¥Id)iHI=] £37
DOC HIHL OLlefWld Ji
I= d115 2 Bl OFe¥ uO4
d LxIM
B l¥IM
CE Mo [dd0=C5+dddnlSed)d 127
I= JIA% | AL O0=§ Hod
I= dILT | 0L Qlwd HOd
LIS E
Os{8 14 13T
02 BL I=b W4
¥ L¥IM
[x1L Q¥Id
T 8L U=k HOd
A LYIN
a0 avie
o oL =i HOJ
(03X [O1IL 00000 MIO

T0FEEPC0IN AD STILESDISL LTJILWIN IM WIH

g "ON Wajqose

L] o a 2]
L4 a a L ¥]
LT
L
aul 0o9
DHHI-!ﬂ\‘t'i.ﬂi.—IElN.IIt'lﬁn'\b.L.D&‘-i\“w- wivd —bﬂ
EEIPRICOR RN CR TR TOFE RIS ZAC ARG L WIWE 006
T 1IN oac
Ti2)E LMING 0OIE
13 L 1=2 R4 OQOC
¥ I¥IN DOZ
I+l1=-¥IE=l1=¥1E 137 Ol
Qi-IviE={¥1S 477 o1
Q0F MTHL Ol=(¥WIF 41 0aI
I= J43LE & BL 12ew HB4 all
H LX3IH a0l
[HIL#[MIBsEI+MIE 137 04
I= dIL5 | 8L OZ«H HO4 OB
A LNIN 0L
[AIL OWIH O
03 aiL =i Has o%
E L¥IN Or
[¥18 a¥id O
OF a1 1= HE4 03
CI3IE 021000210 Wia o1
‘0U& 0w 721 WIN #

Bl NFICPETIRECOSY FRLACTRPC OOV IR WIN %

9 'ON wajqoigd

Bl oL [eMwi HB4

aweq
ci] € 4 z 1
Ll 1]
MH
ans osa
D L¥IN O52
IR0 LNINd Owa
¥ 81 [=§ Hdd oOCE
¥ LeIw 033
4 LNKIN 013
T=I¥1a L3T 041
Ieway 137 0@l
A LNIM 0L
013 WIHL [AMIDeT 41 0%l
¥ Bl I=A HO4 OF1
021 HIHL (TATAVAILINT 2= 20434 41 awl
QI3 aked oct
T lxdm 03t
Ol MIHL (T/0X140EMI=240X04 41 o1
I= 1LE le{wlD BL [(X)4=2 HO4 0O

o4

LE 1 g1 g1 L & L L r 1]
Lz vl 1 El ci [L 9 i Fl
Lz it a1l |4 vi 9 L ¥ at [
22 LE mt i ii L -] ¥ i 21
[4 2t 1] Gl L L @ i hi
og 21 B L cl L T w & al
L 1 (1] 2L El on] 1 -] &
L £l] L1 al & L ¥]]
g2 ai 1 & (9]] C 9 & L
IT [Bl Lt g L] 2 t i L
62 ri gl LA 1 8 ¥ L] 1]
L2 sl 21 wi ct 9 El 9 L r
L3 L] 1 Fl oz [L 1 & c
52 Zf ci 21 ti H F & b 2
cz ol L B 51 C % ot 5 1

WLAL +12 WIOMA FTHIA IvH HIAMA 1B WIONA s 12 WIAWNH
TIWNIAITENIS 3TWH ITWE L3NG

DM
L k]

QI Hodb

4 L3N OB2
LMIEd OLE
J Lx3AN 083

FLOEIS LMIMG OS2
o1 BL 1=3 ¥Wl4 OCZ

1 DL l=d HO4 D32

LWLl INIHd LB

Pes 12 HITHN 3wl ITrH HIOMN +I1E WIGHN +1Z HIEWOM. LNIHd Q1T
w3 THIAAIHIA JTWH 3 WH LS3IND. ANIEd 002
IWFH SHIDIE ONILMNIEd WL WIE Bel

¥ LX3FH Osl

[LrHIS+LF"HIS#(007HIS 137 SAL

[reHIS=[2 81586815 L3T ORI

(5 "HIS=(D "W)S=(B"¥)S 137 OLi

[HIS+w IS =[L YIS L7 091
(C"HIS+{2"H)IS=IR"HIS 137 OG1

Gl Ol i=d ¥E4d Grl

W ix3IN OFl

b 1¥3IN OC1

W+[d70I5=1d 835 L3T 021

tolrauEeEibbley 137 061

S1 0L =0 HO4 OOl

SNOLLEIND §1 3HL HONOHML F3I0D0 O W3H- Bé

tEef] pONYePILKTI =2 13T D6

0% 0L 1=N ¥04 08

B OLEIN 0L

3 LEIN 0¥

Def3*HIE 137 05

QHIZ Le SHENTIDS & LE¥T FHL SL3S 05 INIT WiIH Br
D1 OL #=3 Ha4 OF

d={I17HIE 137 O

NHNTI0D LSHIdA IWL NI HI@WNN ROE 3ML SHILNI 0T INET HIW B2
51 BEL i=H HO4 0P

[OL*5118 Wid o1

b 'ON Wajgoid

Inoa
&L ar ok LF 2C Fr L1 i) LE 1
@ L] 2 ¥ - 2 2 i} 2 sl
5 c 2 4 2 z ! o H ¥l
¥ L4 2 4 £ i 2 I - €1
? T C B r 2 o I T 1
& [2 ¥ 1 2 2 o] 1
¥ 2 B | H I 2 1 a ¥ al
¥ B 2 c 1 1 z 1 [} 3
L [+ 1 2 & 1 1 a 4 -]
¥ ¥ 2 L L ! @ 1 2 L
¥ c ' £ i L F- L] 1 %
5 C 2 L] 2 = [+] 1 @
19 E 2 C 2 ! & F 1 ¥
L r £ r E 2 B 1 z 4
14 4 z 2 E]] I 4 2
k % a [E ¥ C I 2 |

TWLIOL =08 HIAMN ITYWI4 ITUH HIOMN <@ HIOND +12 YIAWLN

TIWHILITWHIS 39 3T L5300

AL
L gt

CE1YOMEeRILHI=E 137 OC2
C{130NdeS LNy L3 022
% 0l IsH H2d Ol2

1Hl¥d S0Z

T L¥3N 002

LEIud D&l

rL¥3IN 0B

T{re"idd LNIHd @Ll

0L 1=/ H04 0%

defr*ild L3 08

oL DL3D 0@

S-ded 137 §L

D& H3IHL S=d 41 0OL
C1=-risfi=-Iind L37 OF%
S 04 fer o4 OC

S 21 Pe] HO04 OE

7L 'ON wa|golg

IHQD
[aF:] (=13 o9 14 aw ac [+ ol
2t 5] L& G L L it &
F3 L1 Br or 14 LL 71 k|
9% (1] or sC i LF wl L
BY zr FT oc La al 21]
o aC at LT o gl ol 5
2E a2 LS oz 9 21 El r
LEd 12 an g1 He & L) £
Ll ¥l z1 ail 8 g L] 2
L] L L] [¥ E - 1

ol=0nN

i

anl an

I L¥3N 0ol

AHlHd §&

I Ll¥3N o

fEFT] 1M AN OB
ol al =" HD4 0L
0F 0L I=f HD4A D9

W L¥3IN DS

B L¥3IN OF
AsW=[E*Y]IH LET OC
Of DL 1=8 04 OR
ol oL sy Yo4 01

0L "ON Wajgoid

IHDT

rol- 9&f= 9$HES= vOs- 9EY OLY @B
sC1 ¥i- @92 @YE- 20~ BE BCE-
L4 :] g oEe gi= ZHw L) wig=
2LE- @S6= wR2- FF2 FIC 1S DER
AWHHY LSHI4 40 SHTHLNI S3IMIL ©

25- BEl- T&2- 2ev= COrC SCC r2
ay LC= wCI FHE= Rir- Fr2 69
LT¥ wi ore B- w2 2CC LOEC -
#0I= &LwP- BCI= 201 BSL 1+ [T
Avbay LSHT4

B"DON

K
LT
HHAL3Y 0901
¥ 1¥3n 0501
1NIHd owOl
8 L¥3n otol

TEE*V11 lHiyd o201

Loal ted HE4 0100

¥ BL rey Hisd QOO

JALE ag!

oaot anses Ot

LAVHNY LTHIG 40 SITMLMI S3IWIL 2. LHIW4 511

awl or

LEJN DC

IHlHe D2

9 LE3IN DI
TIB*d4]d LMIH4 0D

L AL 1=8 HO4
L BL Twd HA4
B LN3IN
3 A¥3IN

1=03*H¥0 L3
09 MIHL 2 4+ H Al
Ce(3*H Il 137
L Bl isd HDBJ
L 0L 1=E HDJ

p "ON wajgos

e BrErl=-R-B-R-R=Nm=]

[+ [T

¥ OLXIM O3
LMlb4d DI

D L¥dm OC
fU2*H18 ANIY¥d
£ B4 =] ¥ogF
9 QL b=y HDA
SING HLTI Q3704 §1 @ AvwHHY W3IH |
H OLXAN A

3 L¥3N
peldeHIEm 137
£ oL 1=3 o4
¥ 0L 1eH HOd

7 "ON W3|go.

-5 703

ELT

61z s0d L+ ace LIE
ST HE [l HOM3HA SIS AHd AHLE THI
LRy

i

OHI B

1 Llx3W of

L1102 LHLEd D
g 0L F=) Mpd D

ST D * o HE TR * W HINIE 40 * BT 15 M S AHLS THIHD., LHIHS D

* 1IN
HOSHE3d LXIN W3
4 LEIH
J5UNED L¥3N W3
J=iu)2={6¥2 L3I
e 137
aL oLes
a=3 139

@5 MIHL C43 41
UL aONEsL NE=d L3
BOSHI4 HIVI HO04 SITHNOD 3IAT4 v SHOET £007 S1HL HIW
5 DL =¥ HB4
005 O1 Pak Wld
IMd03d 005 FILWWIHIS 40D SI1HL HIW
1 Le3WH
=112 137
5 0L I=] HOa

0 "Op Wa|go.
PAUOD -5 "D

rl

2C1

o2l

2cl
12
arl

el
oL
oo

M 2L 1=xX Ha4 o2
owl 137 S§f

N O¥3d Ot

tis Wia

Z "ON wa|qolqd
-9 235
JHED0

P9 4 RO1 SI LINJOHd
EFIZiZO"IH
BLTSFLIOTINH

| 2 51 LInoodd
CfrlZa*en
2FELlaTIN

1H M4 10* LNJH] WNY 4005 AL
CHBILIWHY BAL LIJILTMH

Ze oM

[5F]

oMl &6&

of oLen OBl

A/E Qe aTFENGE] LONADYE. LHIHG 091
ool aLas ost

Hel 139 0wl

ds=H 137 GC1

90 HAML O=H 41 021

Qel=Hed LI QLI

fO/HILHE=T L3 001

WL IHOOTY NYIOITIN3 IHL S1 IMIH W3 08
O=CQO 137 &4

Zdwig=g 137 08

MsCTH 139 st

SHelnNsH 13T DL

Z07EN LN4HT 0%

r.Z0°2N. LNIHd D%

G646 NIML LO*=iN 4T 2¥

idfIN LNdHE o

fu1@Y M. LNTHd SC

ANIHd ©OC

wiH HO4 10° LNGMI MNH JBLS BL o LHIHd O
WSHOILOWHA BAL ATHTLH. INIHd ©O1

T 'ON Wa|qoid
-9 "J35
9 *dvHD

L]

goi T L) 2L oy ar ¥C L] 21
1] e L ¥ 13 Lo EC a8 113
o8 B LiT9 13:] 0% or o az a1l

LR

Y

dN3 DE1

§ LkIW ozl

ANlud @t

F 1¥3AH ool
TCO'HIW LHIMd 0%
2l BL =3 404 ©OF
Z01 BL 01=Y HO4 OL
M OLNIN OF

2 1¥X3IN 05
JeMe[JfHIH LI OF
1 ol I=3 Edd oOC
21 oL I=¥ H04 02
(2072114 HIO 01

9 "ON Wa|qoid

aNl 4dé

I= wivd oQ0&

TAEFL e 0 QO D T4 0 [70 AL ¥1 43 WivD OIS
Q@ rQ I rargroT gL T viwvd 40§
BRI R R R RS . BT wivl BOS
Prprgeisprl ot Q=1 1 L Q"D 0" WIWD LO%
L1 QR i LI #Qe0 0| "071 "D 0"C ¥YiWE 905
Rrgrofifor i rarorE LTI 0E wivD SO%
TQ*Q*0 10 7O Q" i ivI"C VIV WwOE
ofofiI*i*g a1 0 Q@FOFIFI*L*1*E viwd COE

IeleQeOQeQeir[*Q 17| FQ 00071 *F ¥iWD ZOG
I*0fienrLeOr L) aQ D I #ELe0f "% vivd 10E
PETRRRRfLrQririopegrpeqepa|#1+] WIN OO0F

sesONIdAL NI WIH G&F

SANIT Wivd IHL dNANIT 0L J713H AWM DOE IMIT JHIT vess WiIH B&F
W IX3IN o082

LNThd oOL2

2 LXIN o9z

TE2"HIS LNIHd OS2

o1 BL i=) B4 OCo

71 BL = HO4 ©Z2

aTWlBl . LNTHd 113

Tut 13 WIOMHT 3TWHIL JTTWM HIOMT +02 HIANN «1Z WIGHIN. LNINd ©f2

oI TWHIAITYWIS ITWH ITWW LEIN0. LNIHd 003
IHIH SHIDIE OMNILMIBS THL W3u B61
¥ OAXIH S&1

2 AKIH 360
CI*HIS+[I"FLIS=(I*RITE L3 061
o1 Bl =3 Hoa @881l
[LEYIS+EF"H)S=[O1"HIE L3 581

EPF IS+ {2 BIS=[S"HIS 137 O

(S HIS+LC"HISwIR WIS 137 OL1

(S HIS=Iv HIS=(L HIE 137 OF1
[CHIS+[B7HIS=(P*HIE LI 01

F1 BL Isl HQ4 oKL

08 oLBE OFi

VIWOD 48 INIT HIAHLANY w3 01 HIWE HILNGWOD THL SONIS Ovl 3INTT WIH GCL

0 IX3IN Ot

Vs[4 0)S=(d*03F 437 031

Weld FIDSe0A RLIE L2 SN0

¥ a¥3IH ol

S0 BL =8 H34 Q00

SHOLLEING §1 JHL HONOWML 5300 0 WIE 66
F1 NIHL V-=d 41 08

d QI o8

AIAENT JHL NI HOSHIL LXIH IHL Y04 AWODVWIVD FHL SoOv3IM DB WIH 8L

H I¥XIN DL

2 LM3N 0%

C={2"uIE 137 05

OHIT Ly SMWATIRD & LS¥T 3FHL 5135 0F IWIT WIY @v

a1 @1 F=2 Ho4 Ow

H=[1*41§ 137 ocC

HNRMNTIGD L5¥T4 FHL NI H3EWON AQW JML SHILNI OC FNIT WiIH 82
#1 91 1=H HEd O0F

[O1*9135 WiQ Q1

7 "ON Wajqoid

£-§ D35

INDD

% 0aw L= zw L]
% OoH I = L L
% 0dw LA Zw 2
5 0o o= I = a
S 0du 2= 1= 2
5 GoW g m oW e
i 2 E ¥ o
2 L] E [+]
T 1 L] [+]
L4 [z 1 o
(1] a o o 1]
S 00N HOILYIIdILNH
Zi=an

HH

NI oF2

W OLEIN 052
wh Q0Hu[1*@* oW]due.Ban.d LNIHd OF2

I L3N

A LXIN
CATT)Te@2=[A 10 197
L Bl =L MO

¥ oBL Is] WOy

ool GnSes

X LWIN

A LTk

(005 =C [)ONE® 100N JLHI=CA* ¥ D] L3
£ Bl Isi Hdg

¥ AL 1= HaJ
AVHEY LEYI4. LM1Y

g "ON Wa|c
o& L= W= L] (] o
z- BB w9l a8 oE ¥,
L 4] L3 Lé L S& £

AvHdy OMEI3E NI OF¥ILNT
LE pE- @r= L vl &L
LE AL @wl E ¥5 Lol
59 FEC 4T1 LT] ¥

L= ca2 Y- ig= EF= I

&L= & 1 e

I= aa - i EC=- ri
AWHHY L

[k]

B OLYIN

LMTH4

3 LX3N

103*8 34 INIH

L@l =2 a4

T ol lskd ypy

wAUMHY OMBIIE HI OIHIALNT SWNG. LMlkd
H LYIN

3 L¥3IM

(31 3= (3 H14e(D¥HI4 LI
LBl i=3 HO4

T ol Ted yd4

Y Lx3N

FUTEE]

a 1x3w

{274 }d LHINHa

(002 YHNA=[I*EId 137

L ol 1=3 Ed4

T Al 1=y Had

wAWHEY OWO33S. LHIMG

H AN3N

LHiHd

2 1¥3M

T3 M1 LMIHG

(001 YENA=Ea*H]T 137

L BL 1=3 Had

C 8L 1wy HES

wAWHYY LEHD4., LNIHG

OE=df 0 pONSRDIANI=CIIHNS 430

9 "ON W3|g

3
1 a =] @ a L]
L] i o 1] o o
L] -]] 4] [+] 1]
o o o 1 o o
o =] o Q i L]
a o [o o 1
o o o o o 1]

A
A AW
u ¥ oo &
a A 4 5 ¥ i &
4y v 8 3 4 ¥ ¥
n a ¥ N § 40 0
1 I n a 3 N W
¥ ¥ H 3 n 8 0N
E 4 L m 1l W %
L 1]
Ll
a3 D52

AOMNLYE *AVIIHA "AVOSHNHL YivVD OFe
AVOSINAIM TAVOSIANL CAVONDH fiwANNS Yi¥E DE2
wivd = WIW B8

G23

I 1¥3N 0OEe

ANTHA oiz

r L¥IN ooz

(CITIT(rISAXSLNI FIMef)EYL LNIdd D&
L@BL 1 =TI HDg oat

TBL 1 =1 HAS DL
ATTWATLHIA MIIRM IHL 40 SAVO LNIMA # HIH 91

S91

[Ax3N 091

CLIdSAIMAT = T 137 o5l

OF1 NIHL 7 =» (CI}SMINIT 41 ow1
(I38M Ov3d ocl

LBL1 =1H 931

0= 137 Ol

BNIHLE 1S3I0MHOT ONI4 QN YIVD OU3H ¢ HIYW 801
s01

(LISR HIO OO1

b TON WWajgod

[3:] i ks
LB I 1.0
EB L LN
rA T wly
(] ¥ -
0B E acls
&L L 1N
8L] 1.
LL 1 M
9L] i
EL E wls
oL 2 sHs
1L] 8.
&9 a =N
89 i s
59 2 -1
6T i wen

=

2k .o
3003 HAN HYHD
FWvd SIHL A¥d OL HETR L.MOO 1 35DddNS 158

20N

Wy

a3 o052

I 1xam oOr2

1 fa w TEIMY Wy ser T5Y Fuuws 1HIES OCE
3¢ B1L 8 IDNWYHD o=

I = c1@ 137 oiE

org NAHL 0 = {I1)% 41 ong

LEI 8L 0 = | HA4 D&l

«3033 WNN HY¥HD. 1NIHG O8I

I = (0)d L3 OLI

I L¥aN 0%

1+ CLI)EMY = (CI2EMW 13T o5l
d)a aL 1 = 1 HA4d oOvl

B 2L I8 3DMWHD DET

88 IlNdHI 031

fufBu LNINA 011

BfN Qu3H

o ILABLISPCE [0.=80

121350 WIQ

SONIMLE WIH

40 35N IHL LNOHLTA WUHDOHS & KIHL W3H
MALHOHE HANK 51 STHL LWHL 331L0K +4 W3H

ot

B
]
v
£
2

p "ON Wajqoid

040000001 WYHL 5537 HIDILNI 3ANILL

SlCas
[} *IcS&R
IE26081L0000001 AYHL S537 MIDILNI 3alLl

g

ae3a

ozl 2109

LWIHd

wds LNIHG

3 1¥3N

H=N 137
Faplal-N=4 L3T
fL1+1*"1+1350 LMNIHd
ODE N3HL O=1 4%
Tel=l 137

€01 ANILNI=T L3T
1= 4315 0 0L §5=3 HD4
g=1 137

TuSn LHIHG

e PHT 0 LRIHS
D98 NIHL D=N d1

MW 1NdHl

LODRO0D| MYHL 5537 HIDILKWI ANILIEDd. LHIHE

wEBLPEFCEI0.=580 137

(31150 WID

Sfl aky ZE1 T591 S3INIT 335 W3
ONIHLE ONISM LI9I0 3NOD MYHL W3H
IHOW 40 DIMIWNN ¥ ONILRIHd = W3Y

Sid

815
18
50d

*ON
L]
092
o052
arg
oLz
o
oiz
on2
n&l
1:1
B8
el
oLl
5%l
agl
o5l
awi
otl
el
att
ool
L&
kL]
56

7 CON Wajqoig
(AT I |
L 'dYHD

LT
QLHIDILNT LNdHE

I s “4°3*0 Lid &LL
SLLLIHIDILNT LlNawd

F om F4F3F0 FET wEr
FEFLEIOILNT LRdMT

I = =4*3"D 25

52

STLHIDALINT Lhan]

LA]

L L]

dH3 OSC

o ol oRe2

IN LNIdd D92

o0E OLOD 052

HelM L3 oeZ

IN=2H 137 OC2

OF2 HIHL O=d 4T DI
INn[-ZH=H 137 DI
LINFEHILMI=] L3 D02
fo® "4 3*"0uINIZN LNINd Q81
1 1¥IN OBl

H=nN 137 0Ll
Js0lel=pHed 137 091
TJanlelsimsln 137 051

Ll INIHd OF

Q0Z HIHL =] 47 O

012 HIHL D=l 41 OF
f+lwl 139 0F

(R4 2/NILNTE 137 OF

1= d315 O 91 02+3 Ho4 Of
O=L 137 o1

o5 TN0T: LNIbd
wdIHHL FEWE o LMIEd
¥ OAXIM

Cl=XPiCmapay 137
TaiZer LEHTHA

OF Qlpa

Pl LMIHd

OF alno

Pl LHTHA

FL MIHL Ze=vw 41

00 MIHL =% 41

W av3ie

F= d3l5 | 0L [M=X MNO4
asN 137

IN Ov3y

SLT210 40 HIOWAN 51 TH W3E

9 "ON Wajgo,

=R 2 B-B R 2 :E- R -B=R-"E E=R=R=F=1

O ENIT WD WAVD 40 LT

JAEM] A5¥E 12ls NIL 35wE ¥
J3bHL I5wE I= MIL 35WE [
II4HL IEWE OODBDEZ0LEANAT= WIL ISwWE Iy

LLE

*EABEEE WIND OO
o1 alos O
»3IIHHL 35WE o LNIHD §
3 LRIN O

HeW 137 O

Jigwf-wed 437

Paa LMlHd 4

oy ples g

Pl LMIHA S

0% olen 3

fula LNIH& O
[

§

L

E

[

L

L

g

c

BS HIHL =1 41

&5 WIHL Im=] 48

0% W3IHL D=l 41

Telml 137
CISCAMIAMI=] 13T

I= d11% 0 @4 02e3 HOg
NIl 35¥@uIH LWiHd
D=l 137

N avid

t "ON Wajgol
a1l INET WI wivd 49 LN

M1l FEwd WIOET » oml IEVE DIOODLNOOI 1000
W1l 35v@ 7 = BAL JEwWE O
MIL JsvE L& = pAL IEWE 1100

OND

griEQeo T sgrorl i FOro R0l ST wivd GF
OfFi*E wivd OF

Pepelsgieg wivd ol

o1 alop o

wMll I5VEwlae OAL 3F¥WD = ANDHd O
i L3N O

fala INIMd O

08 Pid9 O

Tl ANIHd €

OL MIHL I=[X)7 48
(H=WpsZe(K)Ielal 137 %

()7 Oviad o

pauo] -9 s

53Nr f3rd3n

AlyYH “3THND

AMNY *ILNOEE

TNNEADTE "ONZVHHEIN
QUYHIIN WIAHTIA "H3INIWR

ErON

aN3 ooz

090 %d0Ll5. YivD 532

£O&0 TEZFL FLEI MM MM YWIVD 022
PO&L L9 LI THYW ‘ITHND.,. WiVD 012
EFEL FO281 "wiNNY YILNOEE. VIV 061
LEGLOEF 1 " INMYADTSD *ONYIvHEIN: YLIVD 0BI
CHAL'CIE! "W OHYHITH HTIHIIA “YINIWYA,. YEvVD 0Ll
wTd 3974 LWI¥Md SST

4215 &51

T L¥3In 05t

S8 LNIHd S¥I

BYYISHITT14 LNIHd OFl

Gol M3IML Tr ON3 41 BEL

0EZ NIHL Wd4D1l5.=5H d1 2El

ATy EN Qudy OCI

o051 oLo0% cal

SHET*le OVIH 221

DET M3IHL Ie QN3 AT 121

ool oL §=1 ¥04d 021

1531 53714 011

[2LISH WIT QoL

FHNLYIS LHVLSIH HLIR & WIY 26
O4033 v 0L IN0 LNI¥d 3714 * W3Y 06

¢ "ON wajqosy
§-£ 1S

9 0H

L]]

a3 0&e

AvdynLys *AvdIyd ‘AVASHNHL vivd o2
AVOSINGIS TAVAT3INL TAVINOW YAYIMAS WLIYD OCE
Wivd = W3IY EZ2

S8

I L¥3N 0&s

LNTYd oz

P o1v3IN k=3

TELI"4rYSPISLYI ({IeCsriBvl LNIHd o0&l
LOL I =F yda o8l

MTOL 1 =1 #d4 0L
LIS W LY M3FM FHL 40 SAW0 LKI¥d * W3H 591

3]

I L¥3M 091

CEIISRINIT = 7 L3 ost

0%1 KHAHL 7T s» {CIXSAIMET A1 okl
Clrsp Gwdy ot

L oL 1 = 1 HDA 031

0=1 L37 o1t

ARIHLE LS39M0T ONIL aNg Yivd OY3Y = WIY 801
san

LA WIQ ool

g ‘ON wajqoigd

CILIGF{LETIY WIO OO0
AANIANBTHA HILIWHYHD FLYINAYL & WIH 86

L "ON wajgodd
£-L "D38

SCS00L "1 -5
C2001 1 =#
2001 *i-iF

90N

by

ard are

wia LWIML OC¥

I3 L¥an oaEr

OE¥ NIML [00000-*H 41 0Ir
H=H 137 0o

[3s00=l-N=H 137 06
fLE+7*1+1150 LNIMd OSC
150*+1200/HILNE=T L3 OLT
= 4318 %= OL 1=ml3 HO4 09
Fu®e LHEHd OSE

OCr K3IHL O=H 41 OrC

13 I¥3N OEE

YN L3 02C

13+01=-K=H 137 oI
fEE+I"I+I050 LNI¥d OQOC
(13:00AMILNI=T L3 082

I= g3ls 0 0L 3=13 ¥0Jd o8
OSC BLOD 03

3 I¥3IN o092

0BZ WIAHML J4001 =< H 41 052
I= d3l% 0 DL 5=3 HO4 Ord
(HrgEy=N 137 oOES

fu=u LNINd 032

G2 WNIHE Oed 41 012

L.5a LMIMd 003

wilaTHiaf, LHIHd 061

OCI W3HL "Geae66=(NISAEY 41 081
OET MW3IHL 00000 =CMISEY AT OLI
N LNdND 091

T LHIHd 051

LNIHd Orl

w3OMYH 40 LD, LNIHd OE1
oFi oi@e oEl
wbBLISPLE10,=50 0L

[0135a WIO oaol

g "op Wwajqoly

o1 3NIT NI Wiwd 40 LND

£ 35vA 000202012212 0= WAL 35vE *hbEbhs
2 35vE 0000DDI= N3IL 35vA re

& 3ISvE LSLOEl= N31 3SvE *ra3CAL
21 3%¥E L1S&sw= NIL 3SVE 29866
TR

L]

arK3 Odr

CT** 4666667279 YIVD S8

6T *rECHL SN T 290646 YIVOD OB
o oLe9
« ASWE . LNMIud
3 1X3N
u=m 137
digal=Nel

o

] o
oS5

oer

agr

fE1+0*1+13150 LNIH4 OB
oL

07

oL

o

ot

-4

OCF MEHL 0=1 4l
I+l=l 137
(aBANILNI=T L3

1= 4315 0 01 DE=3 Hd4
fa= WAL 25vHL TR LMING
o=1 137

b+13=13 137 Orl

O%1 WIHL Ow=l 41 OCI
Telwl 13T 021

(IOl /HIANTI=T 137 Qfl

V= 431F O OL S=3 HB4 0O
T-=i3 L37 0

O=iN L37 D@

O5C WIHL O=H 41 O

G=L 137 0%

H=ZN 137 5%

H INdNI 0%

THIDILMT LNaNT. LHIEd OF
LHIH4d oOC

¥ "ON Wajqolg

3nag
DLHIDILNE LMeN]

FJWHL A ITEISTAID LEM
a1 51 541910 4@ wWng
LCLHIDIINT LOGHT

HOLd¥a ¥ 51 €
L2 E1 S17910 48 WS
BLAFCALHIOILNT LNSNT

JIHHL LB ALIVEAISIATO H04 L53L

20k

Mk

OM3 E&6

% pLon awl

wlddlIvd ¥ £ T INIMd OCI

¥ olea o=

«3IHHL 4B FIEISTATO LOM, LNIHd ofl
OC1 MIML CC/LDLNTSCSL 41 501
15T SLEDIO 40 WNS. LNIEG GO
3 1N3IN D4

H=M L[3T OB

Juglel-Hwd 137 OL

felwl 137 OF

30l sMdAnlel L3 0%

I= 43L5 0 0L Se3 HOJd OW

G866 MIHL O=N 41 OC

o=l L3I s2

N LneMl o2

L4303LNT LNdMl. LHINd O
LMINd @

«dIHHL AB ALITIBISIATG Edd L531. LNIHE S

7 "ON Wa|qoLy
£-9 35

Q1 INIT HI wivg 48 1no

QAL 35¥WE DRIOICOlGINOLIO0E
5N 3
33HHL ISVE 100110002

ORL 35WH DLIGLOI
STWp3
ATWML ISWE STO01

FURN

HNH

aNl OLE
1a<l*2e 1 1 "0 Q0 0*2*01 wiwd 593
007071 wiwo 093
or Bah o5

LHIHd SrE

wOAL I5YE . LMIWd ©OrF2
3 IXIN okz

. HeW 137 g2z
Juge[-N=H 137 0I3
Tolu LNIH4 002

OiF oLan o0&t

ﬂ._.uﬁw nw" viva oL s¥iy LNIud 0BT
(IIUNAT CRIMHAT (WIUNA®, THY ST01E Tk, Luldd 026 Hu“ M” OSVITMINTIE dvsa OdE
LITHES IR L 3HY S3I0NY 3HL. LNTEd Ot 0138 5w 1 BL I=H HBd 0%
] wfull wha¥ e o LNTHA OOY 01N, SOMIZ TWIH. LN1Nd OF w3HYN 800 . LNIHd OSE
SLWISIY JHL LMIWG KON HIN B CWeRIALiTewsr =240 U0 -B-3m2% 137 O wH 308 Ml mu.&:wh LHldd OFE
(elurisnien 15 oo R e e R A oo
Hds L (=13
£3015 OAL HIHLE FHL FLNJHOD OF OHY OL WIH BY u__mu.umuwmmmnh.ﬂ, ”“ roL¥IN OIE
R+ 1D =08 =1y 137 w@ F30EIY LNIEd §1 EH=5Y 137 oOoC
L e 86 WINL Dev 41 §1 N=OFIY 137 042
0L 0LR3 19 IF04% awad o1 trJv=dIY 131 002
[1E+1WI=0B1=10 137 09 faIw=X 137 0L
ot g+ 5oL R L T "ON Wajgoug O1C MEHL 58 => Sv 41 092
P el SETICI¥ I8 OVEH 052
$66 HENL P=sX 41 9C 8 "dVYHD mh_wm..._“__“ﬁ_,numm mﬂ.m
¥ gwid ST
ODLS(S +DDIeXILNI=CXIHNS 430 OC memmq.nm .”__._“n “.-._.m
(HeDINISaCOILNG 430 OE
AHLOHDO rHOSOODA MOSODEN AHLOHED .
palsesivITEs 437 01 HVD0Z ¢S MM SHYVW 4O e Ty ol
7 ‘ON Wajgoly SIMDTI0 *HITAT4S 373145 5IHOT30 T L¥iN GEl
L1HOMET ‘MDISHENI MALEMNHD LMOWIT SO o=l 14
e TINKYE FI0WS I0VLS TANKYS SWrisle O¥IH 091
£6 'D35 HIATTD LSIAL LEIML HIAIE pSE AL 1=] MBd OGE
HIHL1O0M 35000 35000 mw:_..p__uz 061 MAML I# OME 41 OFl
MOME TILTHA ALTHH HOME i
AAAVH_ oo IO K anre o 3neN 1MNBS s NaE ol
Ll WHLIYEY f3115T4HI FILSIHHD WHLYDY 1531 E31la o1l
1334 29101 ST AMSIIN oot itk M (053 IV (BLISE*LLISY WID 0Ot
b On
N e 0 'Op Wajgolg
aM3 or aN3 D62
wl33duHa$] LHOITH. ANIHd D2 1 1¥3N oE2 «1 yAMOEE *MOLONIHSYA .
0N A5 1P L CaiDP OC LI INELe000 s L3 DI 5V 1NIud oLz - v
e e 052 QUYHOTY WAZHTIM THINDYA Cl&t
.
g "ON Wwajgolg I+ €1=13%8 0L | AL3S 052 TNNYAETD_ “DRyZybH3A oavt
s e e b e Myd HHBC fSINOF LPLI
CL-FeleEWISINE = 5O 130 oE2 tHvH F3] 981
sy u te = 5D LTT b uzﬂu .u..,zunm Mmf
CLSYINET N+F SWISINA = §8 137 01E -
SUNNIN LC 53930 22 o8E DLBY BOE :q:&mqﬁmwﬂmuuu—mﬂuﬁ me"
EunmW. LR JINOE By WZIHISSIH 39WdS. LKIHd o0&l Lt ek
— Folu3M ol
P 012 WIHL o w = CF*r SyIsixd Al oLl L
a0k (5%IN3T OL 1 = [W04 a9 Tazi
WETLNHIML LG +098 ¢ C1OILNI-103IINT LNIHd OB 1US2IEVL ISV LNlYd 05l £-BN-L30
fu 533Y0E0.4193LIHT LNIHd OL .n_uu-__. m._“.um..m Mmu
f-04mln 137 ©F i+ [1-T3%B OL 1 C
WEILANTHLH. EITUOIC.A LNIWd 05 Ot 01 & = I HD3 031 OFZTLAAVIN 4
(5«09 (=031 eW 137 OF wtw HILJY =4 ., TC(523O¥L f.s& FHO4IE w* .. LHI¥d 011 ¥ *OH
(03INIsd 437 O ISEWEN E3T04 DOl i
E51FI-C/00I#950 131 0 aM3 OfE
(57801 3rlw 137 o1 =
S/RIINLEES 43 ¥ TON W04 LORTTIZEYHATY 371de LEIH 022
g "ON Wajgolyd 1 i¥AN 012
#DNE 3LIHH JAr LN 00s
HWIALTD 1§THL W rSYIlTle OWIM O&
LD AHEYH NOWNAL M WIS IR Le LNINd 01
S3LNWIM v £33wa3d c2 HIHIOH F=O0D S0l i
SIUNSVAW ITONV GHIHL 3FHL WHIVDY F0L516HD (BB EBIFF1F OVEH O5%
GILANIM B2 £33WI30 DL Frok N OL 1+1=F W04 OFl
WY SITVONY DAL P IMPYSSHIT I ONEH OCL
ity -1 i=H OL V=1 W04 O3t
L d 1¥3N 02 bemey 127 Al
OH3 D& 5i% = §5 1311 o092 M oixan B
WEIANMIH, LS «098¢ (1DILNT=103)ANT INTHS DB S15 LHINd 0z BWLNILL (Wad
fo SIIHDIC.CIDILIN] INTHA DL I L¥3N w2 poDl OL V=N W04
wIIWNTYIH TTONY JHIHL IHL. LHNIHd £ $H = SIS L3 acsz 611 WIHL 1@ OH3 4T
VS ALMNTHH. mw_mwmﬂw_w.un_w:mwu _w“ 0vZ MIHL SIS <« SN 41 o=l nmpuun.www..__.mm.muwm Mn___"
A SHY ETTONY DAL LMIHG SF o2 NIHL 55 == SN 41 otz it v e =
(Se409RIg=0)) INTnM 137 OF O3LKIHd TWYN WIH SOF (SIHYN JE NIEHIN AN @ W3 26
(93iNI=d 137 OF 1597 FHL MuHL HILWIHD IWH LXIN FHL 139 = W3y 02 3704 ¥ KT SIHGD IZILIATHA W »
451P1-C/0@1e0e0 137 D2 SH fle O3 o0E I
L2/ {FEIHOSINLYD 137 D1 J0L 1 =T b4 o&l P UORN WD

0LE oat
¥ CON Wajgold RIS oLl PAuo] 5-f "335

(=]
(SR

edel g

Hed{2aS-11HDSATMLY=1D 437 DIl
BAIHAVINTIS#0eE 137 OIEI

o=1% 137 soEl

w3 TINYIHL ITOMIS. LHIHd OQOT0

0z plog oina

wITONYINL OM. LMIM4 ODR1L

02 Qlos ordl

O6*18*16-06"u38Y S37ONV. LHMIEd OCOD1
DO CVINNA L IEY 530154 LNINd D201
(R4 BaD)WEEY 139 0IOL

wATINYIHL LHOIHe LNIHE 0000

QC2F ol@d 050

Q=15 L3717 dri

IDJ=0E1=013 L37 daC1

wORLl,. LHIMd 018

oIz aLad ool

wdNls LMINd §&

L=l 137 o0&

wS3TONWIHL DAL FHY FHIHL. LNTHE D@
q0a1 W3IHL J=8 41 0%

QDL HIHL (WALBINTESI»E 41 Or
NIHL [000D*=(3FE-(HATEINTSISAY 41 OC
4666 HIHL O=1@ 41 S2

LMIbHd 22

B*3*18 gQvid Dz

ASiri*cs0BN=N 13T GI

ODLA45 " +00IeNILNI=(XI¥NA 430 01

iwd ai "l . fin an LHIBD §

9 "ON Wwa|qoig

Inpa

ci-cs LB*FE 3IHY SINANY FHL

[TTI-T 59 € ¥y S3QI5 JHL
(] o

¥ N

HE

ANI 000l

DrfOfD wiwg arg
STEICCRC wlwd Q0%
o DLOD O

LNldd 0B

CIDIUNATCIBIENA" CIWIENS " JWY S9Ny JHl. LNIMd OL

GLUCE
QL

AT Y L. JHY SF0IS FHl.. LNIMd SS9
fig+ 11 =0B1=13 E3V 09
CILAEEaIL-12H0SINLYeKH=IY L3 a5
(aeEeR) A C2av-24de2i@InIL 13T OF
(ledaveZ=24J+ZdiVIHO0SE 137 oOC
IWMANEIS0Dal 13T a2

QO0E WEHL Oevw 41 S

1Y Qv3y Q1

0d el e el e e LMIHE &
ESTFI*C/081=2 LAV %

00805 00 s NN PENE 430 2

"ON Wajqoly

e fuli)
652 sl Fdy FI0I5 IML
o9 OC FHY S3T0ONY IHL
a W
LR 1] ai Jdvy S3AI5 IWi
114 P2 JHY FITONY IML
[:] W
2 0N
L}
aHI &&&

= wiwd 02

SUAOR 0670 ¥AWD OIS
QLIPS FEY] ¥YIVD G005
dOAF BMYWIW L=y HIH G&F
wEY SMYEM 0. HIW BEr
WY SHWAW 1. WIH LEF

AHQQ

SONDD35 T9IL*LET
SALMNNTH &
£33r930 LL

Hd

SHY TOwY LErC=1

L]

HPH

aN3 ow

wEONDD3S..0995 LNIHd 5%
EW-Hes 137 0%
wRALNNIHGLH INTdd SW
IWILNT=IW L3 Ow
LEOFINT-D)e0Few L3 SO
«533ED30.0 IHNIHd OC
{D31HI=0 L3 &%
HEIFI*EsOBIaG29 137 a2
w HO w LNIdd L1
wENEIOVHL IO LHIHG G
(BACEeB=To9CIMOSINLY=T L3 OF

7 "ON Wa|gosg

-6 235
6 "dVHD
LN
B =1
&C1 &
BF L
El T
¥ 4]
it C=
& P
Cal &=
B2T 2h=
] C=% 28X 2 X
LAl
WY
am3 Gkb

Efle1g" wivd Q&

FAL=E wilv¥d D@

a1 olpd of

¥ L¥3N OF%

JeNefeTaNary LNIHd OF

C 4345 21 QL 20-=x HDJ OF
Tu# NuBu+ TSI "X LIHINS 0OC
G&& MNIHL 10-=v 41 O

Srg*y aviy 0l

¥ 'ON Wa|gold
Inda

FEEDI* L= EETCCE*® wEE0O0*1 CCCCCEE™ SOMAZ TWIH-HOM

STOFFE "~ = SE099E" Y= MI&U.H muﬂmt!ﬂl
Z= 1= GOHIT “wiH .m. r.. ."

2 oM

HOY

QN3 648

a1 2100 04

(YsZ)AL0-YHOS-TEwe2d A= LNIHd O@
a2 AI0-1HOE FIVeZ) /By SOHIT TWIH-HOEN. LMIHd GO
LNIEd 2L

2000 =dudd 0

WMWY, = 55 137 0

021 NIHL 1@ JHAW 41 L]
SN Tl# OW3IH @

1 +2=232131 0

0 =231371 0

SIHYN LENOD LSHIJ = H3H &
S3WYN §37714 0

H€Ialmo 1s5imk O
HIHLOW JF5003 0
MOMS 3LIHR ©
AHHYH PUWOHL O
YHLIvOY JILSTIWHHD O
53

7 "OpN Wajqo

9-£ "

3714 40 a

S aWo:

EEl FHEESEE- FEral rES!
LU B

ENFE]

[

aqEda3y

Z

GrcEBl - 219L "EIEE6E L5

anE
1 L¥3N

«311d4 40 ONF. LNIHG
009 NEHL v=(l-sdil 41
GO2 0109

15Y LNIHd

syfie duiy

0O¥ HEHL E<(l-14AL di
goz aLod

1Y LNIHd

wile Oudy

0OC HIHL 1 «(l=34AL 41
1£,040034, LNIHd
LHIMd

T#1¢ Q¥3H

0001 OL I=I HO4

S66 MIHL 1@ QM3 41
1831 53704

(BLISY HIA |

g CON Wago

“1L HIWOO0E THAOLIMIHSYA G5E
AueHITY HTIHTIR ‘UINDTM CLE
ITHRYARTD "OMYIVHEIA ofr
FATNC T3IIA BEE

W< WHOC *S3Nar Ll

IIEYH *31UNd LY E

FNtY "ILNDME e

HYHYHE HIGMNIT™ 7738 LB

"B NSNE TANDHLMNY D2E
L L il

H3I0HE NI 53

'L

L

aN3 o

H L¥X3W ©

L]

i a%¥c | 1= W osEgrFETly
i Sl ¢ (L L sSFT1)
L oLE T I i= F AlGrETL]
LI T I)= 5 sLGETLY
i o|r - I i= P oALSFTLD
PoBCL * I 1= £ sLsrely
[0 I 1= 2 wfEr*l]
i L1 I = 1 s(sr*i}
20N

HNH

N3 0ol

M LEJH 046

sl 1T P My MG E5F *] 3 LITHd DB
S¢19=13 L37T oL

37 o9

HO4d O

1371 or

1371 0oF

137 o2

137 o}

7 "ON Wa|goid

T-0L D238
3Npa
i gl==pmi |t

i FrACs1* yme [2
1 p=r ool [L]

i [I Fodmg or [L1]

' Fear 2 Imi g 1 astoey

F 0N

L]

aLi 0%

FerfE-rLrg] GeD I SRS WIND OF

¥ L¥FN OC

bl @adeBadd 0= LNTEd S2

o 2028000l LB oD} U071 LHIHA D2

073 avIe o

5§ 0L =X HO4 S

g "Op Wa|goid

INDD

FEFFOF® * TaLLPE*=dmg v 5 st F F)
Bei=* LA B3 L1 L a kit B-* 5 3

t 4 C=}mi Bar g -t L C]

] El=" £ ¥mi F 2 =t - L]

(L T el BT bR L [

g+ [TANTT " [T g T}

i a FAS LT g [T § L [3 |

3 Z=F @=dmi L L € ¥=t - [

T 1 LR o LI P i o 3

(] b=* o ywi LI o sl - 11

Ll 1" F=3mi - 1 =t LI []

i f= 1 oamg [L [« T a -+ 1132

Lol 1]

M1H

OHI ské

oroTocios vivd 011

FEOZAR=-SEIRICIZALINTOREYT WIND 001

4l aLen o%

ol 2B EIY) ALOE-08Y) "W (T eA+Z W) A (OnE+D oY) INTHa §5
Faad 0l Tatiad A Lailus Yadiadee INTHD DS

el B IO a) A L00W-0003, {240+ 20D) FLORE+ISN} LNTHS 5P
o) 80 0lie "D D F Eiloe Tuliad s LNIHG OF

T - T P W TP T IR T e T

ey B= B o =W} B Lo P Bid = ol FoWei B INTH] D2

LHIEd 21

E&E MIML TO*sw 41 11

afa*@*y gwad ol

} "ON wajqoud

o5t
SrE
11
sIC
[11e]4
SBE
oLz
552
org
Fac
olg
sel

sl
(1]
sC1
oz
so
&
L
as
14
ot
i1}

30Ny

o9
SFE

LW DE0deRs L H NN 430

wI MWL h e w'nd wfel o LNTHG

wl DI EDINTS ol wl DIEOIH= i =k w LHIFd
OE1/6GMF I*Cxex 137

oC
52
oz
o

(y)'(8)7 ‘oN Wa|qold

ECT L]
o v o o
L2*- i ai- age=
BS*-] g LB"=
1= 1 5 ge=
EL*l= 1 o [}
I 1 aee- gt
GINTATINN & WD X LE [
gLt 1 B9~ Blr=
[T] 1 a 1]
i 1 g g+
Bs* 1 | 4 La*
Las 1 e a9
[1] I €] a

[L8 § #i By
- [] g LB=
I=] g ==
cLei- i o a
o A = 1 - Bi-
OAN[4300 L HO ¥ L i}
cL-C 1 B9t = #ye-
cesl 1 o (]
1 I 5" L

BE ¢ L 5 LE*
L2 i are a9
o v o o

L ¥ i i

P05 00N (OCINIS el

432 0H

M

aWI osl

9 13N Gl

B 0INIS0NT L HOD W o LMIEd D&

DLl 2Led LB

BEEEADANAIHHAT L AINMAIENS LIHd B

CHeB 53 led L3 O

06 HAHL 10000 (Ha03502350Y 41 0L

FEEAIANSIHMA CEIDEHADMNS LI 59

f¥adeCinIGs3 L1371 0%

51 J423LS OFC 0L D=D HD4 OS5
QRIS +00 e LT = (¥IHMNA 430 OF

(HeDINISeH=(HIANS 430 SO

(HeDISODeH= (HINNS 430 OO

w10k ool o fed el o LHINd S8

wl =D PRI P AT IMIE =Y o AMINd OF
ORISESIFI=Cexd 137 01

(1(2)Z "OoN wa|qoid

4] o a
[Bre - Cl==
o L= 52
- tL== iL-
sL* tr== CrF
iw e cis= nre-
o o -
o - cle- Bre-
L= £re - o
L= nwe= L
L= CLe= sa-
El== are- Cl*=
o o Q
[are ol
1 A gL* G3e=
== 1L L=
L= cr* CF*-
Bre- < B+
o [1] I
Er" El* L

sL cre cre=

o a De = 13
ir L €5 = 18
2l 5 BC = IW
235 WIH 930 3TONY

3y E110NY

LT E Iyy S3IAIT
=]

(LR

dHL
IHL

a*aN

HH

QN3 Dodl

Df0*0*0"D wivd

LETSFRLAICOL WLWD
STAFPFLACGE WiV

S H 0 W3

ol ALgg

ANlud

PIEDI23, = 00 LNINA
FEMEI28,. = (8. LNIH4
FEICWIEY. = b4, LNIHd

wdAE HTH 8930 IT0NY. LNTHd
(S0P R{CI-0F8LE=-122 2 3LNTsPD LI
098 23=§333LNI=C] 131
CRIILMI=2T 137

(5 +0Pe(CY-DFe V= I¥1 }IANT=FY 137
CoFaiEw=1y)pINI=Cy L37
CIWMLNLE2Y 137

wIH T TITONY JHL. LMIHd

A*EW LTI S3AIE ML LMIHd
(ig+ivi=0BE=12 137
CILAURe 1L -1 3HOSINLYRN=TY 13T
(oegeRd A0 Hy-2ideZa@isLL 137
(Legspe f-Zadedavib0Sed 137
(HA1B)5RI=L L3
COSC wE+0FACH#2ER1E L3

DOO) WIHL o=y 4T

S*F@EETZETY OVIH

ors
ocs
s
114
oLl
591
owl
ngl
ol
&C1
act
ozt
ot
oot

o

oR

oL

14

0%

o

ol

Wl wfaull wfol afe ow LHIEd L
E51ri=Cs0B1eH L3T &

B8 "'ON Waq

04 ac R JEv 53
2 I rare

014

ELU

ToHY

JdY 53315

FoNvIHL LHODN

LL'SF | DE cz e auw 81
L] B SRaL1 =1

T2*rC ag Lersid 34w 53
& -] FEOF ¥l 3y S

SITONYIHL ORL 3HY 3

&5 ot 19+£al Tuw 33
| b AL Y 5

oMY

Ayv S30QIT

oAL
AN
2015

ELT
WIHL

TIHY
ELLEE

IIHUIHL ITONLE

aw3
Q40D Wivd

1#2*0C wivd

@F&*0C wiwvd

&7@ *OC WivD

oz 0166

DIl WIHL 1=is 41
CLIUNACIAIHNS " CIVIHNL® IHY 5370, LNILd
34@%% W 3dY 53005, LNIHd

[HA LEINIS. BeCRAIMINIG =Y 137

I« 18)-0B101W 137

paual) £-6 °

§-0H
MY
[-1-1-1.3
oaw i
Dzt
it
g
oLEl
94l
oRzl
;13-4
orEl
oCEl

235

TN NIHL O = W 4] 201

(Eef+TavwiEdi=y 137 00l

wlIEY Gl u¥e? 40 SLOBH Hlwky *obedHle LHIHd OF
H'E'Y Qv3IH OF

w4 (EW) MI SHIGWIN X3 WHDD J0 SLOOY FWWl. LHIHa OF

DODTA LG *+000IeX AN =i YN 430 02
7 ‘0N Wa|qoid

€-0L "235

aneg

- F=] L3
2y ¢

a1] 2
i=* i=} 1
I=fl=18"y
ridInad LVHR

TEY) 4D SHIMBL TwHIILNT QNI

-
o
]
-

OH3

N LWNIW

arlaallin Tudultul LHIHd
g=4 137

=3 137

FeE+Je¥=d 139
def=3eye] L37

H oL =X Wld O

Gudnd 137 OB

I=3s3 137 0L

QY LNdNI 09

Tl "W LNIHd OF

M Lhdwi oF

T.HINdd LvHAL LMIEd OC
IHIdd 02

wlB*W) 40 SHIMOS TWHOILNI OMIdw LNIH4 O1

9 'ON WIQoi4

INeg
orig*~-dg v
i “§za - 1Zrir*i
(o0& 1 3 = WYMBE (O9H)
iraEy

COfHI BL TETV) WiHd IEIANDD

¥ QN

WY

UL

oC alep 083

nlnbu®sl LHIHd O3
OFC+p=D LFIT OCF

03 HIHL 0«8 41 OF3
oFd BLOT O13

QiEl«+R=d 177 Q023

033 NIHL O«¥ 41 &l
WAWSEIMAVED 13T 08I
LE4g+24VIHDE=d 13T OLT
o oLed ovi

wi0&*,E LHIEd 0OF1

O Bies owl

ulOLEfull- IHIN4 OCI
OC alEo ol

wi0"0= lHldd 011

Ol WIH1 O=8 41 ©O1
QL1 WAHL OB J4I O
QLT NIHL O =+ W 41 08
Tl = HHO4 (D7H)w LNIHMd OL
OF3 HIHL 10*=u¥w 41 OF
A% LNdMI 06

1=8'%. LHIHd OF

1HIEd OE

wfDFH) QL (B9) wWiHd LEIANDD. LHINd 02
GRlsdcivi=Com 13T OF

¥ "ON wajqoid

g 0oLy gy
i tacie~-|=* §E==2
i et et - 2% =a

SLOOH TYIH-MIM
FEIFRLITEY
srl= LEFIFRT =
S1E0H Te3W

QLI FILI g Y

IEB+T MY 40 Sioay

AN

Lt

N3 OF1

oF aL1R3 Dogl

wla (ERZRALCQICEVIHAS -, (WeZ) rB=sadan LNI¥EA OF]

el WOZ NSOGB IHDS.. T R Fl =l LMIBEE OT 1
100N TWIH-MOM. LMINd 021
02 alon oo

LR} ALLOIMBE-B-0 LHIkd 0O
fiysZ) ({AIH05+E-) LNIHd 08
~SLOAY TWIM. LWTHd 08

021 M3IWL O3 41 O
Jeyav=Zigsd L3I 09

Rl MIKL O=% 41 ©F

JI*E*Y LNdNl aw

T2 8 "W LHIMd OC

AIWiNd o2

ndeX@eTexY 40 SLOPH. INIMd OF

T "ON wajqoly

L-0L "235
01 “"dVHD
Ixaq
a f QINIATONN A HO X
b= oy A st-ge
Bi== ace CL*C= G g
a o Ir=g= ir=2
-l ais= CL*l=
(b Wi== E*li=
]] =
ar=n ac- LL®=
are age Bg=-
1 ! T
b El=1 LET=
o4 Bl*] Ci==
] I o
B~ =L [T
Bl*= ac* La
o o LA
acs Bl®- g
By Bi= LL-
1 1]]
IR | 2ce (2]
ai=i By TL*1
1 1 (L] (CH
age BL=1 EL*C L]
I E1=*1 L sC-ga
@ I QINIJICHT A HOD X
A ¥ L ¥
CO¥FOI+LDIHIS =l

am3 oaEl

9 L¥3H 0oLl
OFELHIAMAYENS* [CHIXHADHHA LNIHd OCW
CHeDIE0D= (NeDINIS =M LT D21

*dIN] 30NN 4 MO ¥ w LHNIHdG QLI
|21 Q1o Lon
FELIDYANAYHNATCCIDINNADIHNS LNIEA SO0
f{HaD}5E02- 3 l=1D 13T o0l

OLR NIHL 1200**(CHeO)500-1058Y 41 D&
S0 d3LS 09T 0L OeD ¥4 05
O0IAE5*+000RY AN e{X)ENS 430 ODF
(RedINISeRaLHI NS 430 CF

s
51

o
il

3 15
SFL
otL
gIC
ooe

L= [] IL*= L*=

= sL- 52 Ere-
Tl LA (4 L Bre
Q o]]
A ¥ n ®

(De2IHIE C0er) SED

dazaM

M

aH3 ool

T L¥lIN 08

O CCHRE NSO NS (O N0 5SRO0l M LHIHd DB
FOCHODINIS SV HNS* (CHDISAIRIIENG LNIEHd SL
(Hafe2INIS=0 137 OL

CHebDerISRI=] 137 OF

S0 4305 O9C 81 OwD HE4 OF
OO1A(S*+00LaXILHI (NI EHS 430 0OF

oI TONYL Teh e e w ek wfX . LNIHd 1

D8 BINEE mtulDer 502 w INIHd O1
OBI/EEINFI*Cod 13T &

(PY'(2)Z "ON wajqosg

INag
a 1] '
Bl1*- a9 gg+= ra-
Q L] 5d= [
5" §o= 1] [+]
LE* [1T Er* Ea*=
num "w_m- L =
1 a
[E] Bi== wE* EER
Lg*- = [sa-
il L s o o
o o [+ L P Cwe=
B a9 aar= FE -
[1] T &) i=
gi== - 2E FE*=
nn o @ Cr==-
: L) o
Le- §*= CFr= sar
By * Blv= LJ-A0 e
a a = o
Bye= alr= ra*- Ef==
LE*= G= Cr*= o=
5= Eo= a]
a 1] 53 Cr=
aie B -1 A rE*
]] [1]]
A ¥ A 'y
[$:L 153151 (O=E3E0a
HYZ* BN
M
aNa oal
o L¥IN 08

CLEMSDINIEREIENA{(NeDITDI0EINMHA LINIHS 0L
FLOHODINISSWINNA*C (N0 IS 02eW UMY LNINd OF

(HeDeT)500=Y L1 OF

1 4315 OFC OL O=3 HdJd OC

sl TRV Tuld o'l wad w e = LMIHd 51

=COnCIERD wfulBea3150D = LMIWd 31
QOIALE 4001 eX)LNI={X) NS 420 01

DBls8RIvPI=Cod 12T %

(Q)Y'(e)T "ON wajqoig

¥=6 '35

L]

B 81 w3l = 1]
s @t te = 18
v £z ¥Z =W

I35 MIW D30 ITONY
3HY 5370wy THL
oz FELE*EI @l Jbv SIATE JML

Inaa

OF1 O LINIMININD fONT fINELE RON

B*2

tlw NID3D (S1TWANZLNI

PARE AR ANTIWMIHTINE TONI TIFVIS AOM

[z &=

ILW NESIE (53 IwArILNI

PPREI PEAL-LLINIWIHINE FONT "LWVIS

T IWOMATDd ¥ 40 SOMIT TWIH WOa ®OHV3AS

TraN
L

QM3 oL

02 0lon O9E

Voo BOM. INIPd O%E
INTHd OC2

1sCE 137 522

I 1w3n 022

fILES INIEd D12

W OL t=1 Hd4 O0E

wil¥ NIDIE (S1TeANALNT. INIHd 041
0E GLod odi

AANIWIHIND EIVINHE B0 SLIWIT MILWIHD WIHLIZ MLIA. AkIR4 091

o HIWOW AHL ssss OMNOJ SIWAEILME ONo IKIHG 061
O&l NIWL Q4w 41 0w

¥ 1¥3n oC1t

GAl WIHL Is=CE F1 521

Ewf{vls L3 G20

I=eew L3 O

of1 MIML D<25e15 41 DOI

iSeMilMin2E 137 D&

(X¥FIMAwES 137 08

S oJLS 7 DL dex HO4d 0L

fey 137 0%

GElsxullsgaxnry=CaxediedX)inNg 230 OF

PLZ WNIHL D=5 41 0w

S#'4 INdNT OC

osLE 11T S8

1 ANIHIEIND *ON3 "Abvlf. IWIWd 02

LIWIWONATIDG ¥ 40 SOB3IT IWIY MDA HIEWIS. IHl¥«e OI

T 'O Wa|qoad

E-LL "D3%

aWea

al= I=] FEEI0HIZ TWHIALNT
DE= e C]
- (]

o X

ErrdriyY

2 S BERT TeRDILNT
2= 11 b= b= 2
aRngd INGW TSI 0HET TWHDILMI
L C - J

FrON

Ll

ON3 G2

NEILIE OiF

T Le3n ODDw

[i=Thaxml]ldedmd 13T O&C
- 4305 | 0L W=l 04 Od@C
Osg 137 QLT

Q@1 piod DRC

LBl 137 OREC

Ee[Z*mIM L3 OrE

del[i*03H 137 DEC

Qfl MIHL 2 s= (J¥EAv 41 O3LC
10*= viwd SIE
OE-"BL=*C*E*r wivd OIC
-rllfil=?i=727g Vivd O0DC
FeAiCig=r e WAWD 0ET

o1 oLon ez

WINNDs IHON. LHIHd DL

DI Ik l=n 41 O9E

Iwda

(11 591 [b4 Z9w oLC 591 55 3] 1
o 5F ol oz 26d DIz ozt ir ol 1
1] WL L4} F21 L1] oC & i
I] Bz ¥4 95 iz] i
1 L 12 5€ 2 L ¥
1 9 o2 11 b I

] o1 ot T ¥

L] ¥ L L}

1 T € 3

] 2]

] i

Cle) 40 SHIMdH

g oM

WiH

an3 ohE

1 L¥3N DLE

LMIHd DRE

ey 137 058

W OLEIMN OPE

DefWld L3V OLE

21 0L 1=k hHdg 022

T lw3as aleg

1021d IHINd 002

I= J3LS 1 OL 1+¥el HO4 081

¥ LxEN odi

(xideimid L3 OL

IE 8L =% HOg O%1

1 L3N DRI

rLX3N ow1

EFYSel] asid l=Ms ddui=-r+13d L399 OC1

6 OL 1= HD4 ©QE1

¥ oeL ¥ed QI

o1 oL 1=i ¥04 OOL

(EJ40001 14 INIHd OB

Zepsy L3 08

Es{2}Es{1)5 137 OL

is{Z)dull}4d 13T 0OF

A LXIN 0%

D=[A}d 137 oOF

1 0L 1=R HQ4 &€

L1347 12011d WID D2

wll#x]) 40 SHIADM: LMlhe ©1

g "oOp Wajgqoigd

INDO

L] Lo rl 281 oel Li
] £l L

L] 9] 5

B3] 5 LT

L

r o 1 F

HEE

vl

B~

LE gl 9= HIN Rl Ge [1]
C L4 C

B H= B [i1] [}
LR

Rl

gH3 551

i ixwjin DI

IMlEd S710

LIy

7 Lxzim (LI

{234 LMIkad OEL

I=- 43L5 ¥ Ol 1-B+¥W= HD4d &2
P L3N B2

oM3 &b62
1*E*EL-"97C wivD O&2
B=rRe2eCor wivd O0E

L1356 LNIwe OL2

¥ LXEIN D9
sl =X ¥, (NS LNTEL DS
Q98 NIML D=5 41 OF2
[¥)S+58=5 137 DE2

1= 3% 2 0L Ql=¥ Y4 O2E
o=5 137 si2

¥ 13N oil2

¥1L-[¥)O=(¥IS 13T 002

P= 3Ll 0 DL Cle=x HOS 061
[EIL AWIHg Oat

(13l a¥3y 091

¥ EXIN DG

Baw o I=No WL EX 3L LNIHd OF
[xil dw3d OQC1

I J3LS 2 0L im=¥ HO4 DZL
I Qvay ol

1110 LMIEd ODOF

[1310 g¥ay O&

X L¥3H DB

BB =M b8 (X130 LHIND ©OL
(N10 OvIH 0¥

L= 4315 2 DL Me¥ HD4 OF
W Ovid O

¥ L¥EIM DT
DeiwiS=ixllslx]lld 137 OF
o1 @L =¥ HE4 O
SIVIWONL Tod Rl LDWHLENS WIH &

7 "ON wa|goig

L=LL D35

LL "dYHD

19 INTT M1 wivWd 20 1nd

' o - LI |

i GRE - =1

i LT R LREH

E3HY 1 [1 » a0 SLIDHF HL = T 3HL
i gEre-T a0 1=}

¥ FEr s&0*1 3

13N ¢ = I3 A0 SLODM HL g 2 3JHL
i FEb" |- [L]

s 1419 FEES=)

[l Ly 1 EBC==3

] TEC* * FE4" ¥

L L] - 0) 40 SLOOW H1 L ¥ AWl
WHOF CETE] NI SHIEWNN ¥IT4W0D 20 51008 Inwl
0N

[F]

aM3 DEr

CrOT1 WAVD
171 Wiwo
O WAWD
0% 0109

IMled

¥ Lx3n DBEC

ESiviCaz+9md LI 0OFC

sl TEIHNL. Pl 1WIHNAW)e ARTHG OFE
CIDyNISein=18 L3 OIC
CloaSadell=1y L37 O0C

mrDsld LT 082

(HALYslmIE L3 092

H o1 ¥ HMOd oOr2

G lrl*Cag+OmG 137 OF2

Or2 HN3IHML 048 41 DOT

oFE GLDD DRI

a5lw i CeQ=d 137 OFI

O0% NIHL Dew 41 DFl

(orEINlYeg L3 0210

oRl aLdD @el

Crg MWL O<@ 41 901

ZAESIFI-Ca] L3 POl

pauol £-0L 235

1= 4315 ¥ OL 1-HNw¥ MDi OwFg

PEMld LHIEd CEE

alSONINATH - W AE MNOISIAIG JILIMLMAS. LNIEd D2
xmp 137 0Ol

¥ L¥IN 007

OIS QLDD O&1

¥ INIwe QORI

OODE2 H3IHL O =+ (¥idNgd 40 QLI

O0F WIHL (XA00DdBANT 2= %A0010d 21 OF1

D02 W3IHL D=x A1 Q%1

CELBddMOE S34% f10d OL [00d-w¥ HO4 OF1

L™ 10M3IT Tng3LlNE. LNIWd OEX

£ LxIN 021

t(E)d INIBa 01

1504 Qvd¥ De

1= 4315 [DL &5 HO4 OR

005 M3AML 10WpcEN 41 5L

N avis 0L

E 1¥3IN OF

DufX)d L3 a8

& DL i=¥ HOQ4 ¥

LMIkd 0w

EEIANIe {NIWNIS LN) dNd 430 ©OC
fildedmi@ldeZannlC IdsCakalr iduduifhd 530 02
PR ladeQaNa [P gdaVirelL IdsLaNalHIdeBamlbdadiwhd 430 01

T "ON Wa|goig
p-LL *D3S

L]

SO-3FLUS0"C=» (¥)LlMNd SOTIIL SLFde"C
S0-325C01"9=0 (WIlWd SOTINA CLELR=T
S0-32SCO01*% = 4xilhg SO314 Flier=j=

T & -
TLY HIDFE 452 TeAMILNI

L1

My

aN3I 05T

T Le3in orQ

GEF OLOD OCC

¥wd L3T OQEC

d=1l=i1 137 QIE

Gel 0109 DDE

a=i] 137 os2

DIC HIHL O=CXPLHI=EJ3LINS 41 aag
orC QlOD ore

ENILIMHAR e CXILMA SOTITL.IX IMIHd OF2
OHZ HIHL 1000*<¢{MIINAIGEY 41 DSR2
OFL QLD9 OFZ

wJHIT W 510X LMIke OCE

USE WAML 0 «» INILH4 41 D22

Jednx 137 DI2
CESIINA-L QI LN FRE 3 ANs®l [3= LIT OD2
TI+dmE B3 D&

I=11 137 o8l

C115=4d 13T @il

v oL =1 Qs 091

AMIvd 051

INTEd Owl

I 4¥3N 0L

TEDIS IMTHd D20

¥ OL =] HQJ4 Qi

whly NIDIQ (S)WAMILNI. LMIHd DOT
wOF3IT ¥ 515X LMivd P&

OO0 MIHL O == E& 41 28

¥ LEIN 08

«+OR3T W S1.,% IMIWJ 90

06 WAML © == 15 41 @

O MIHML 4 == X 41 28

" MsiwlS 137 om

lewmyw L3377 DL

D& HIML O+E5 41 D9

fi+X)LHIe25 L3T DS

(X)LMd=1% L3 oOF

S 0L S==¥ bla OC

0=y L3 OF
GEleeallsZa¥erF-Caxaglaiuilng 430 01

t TON Wajqold

@l Qipn osE

¥ AX3IN O
[I*NINIL2 ")N LNIlKd OEZ
-0 DL 1e¥ HdJd Oz

wd ¥ oo IMIHd G012
Wt {d)SEY.. INIHd G112
INIH« D02

G992 HIHL =8 41 O&1

¥ L¥IN 0@

=¥ 137 OLi

15 INIHd §91

O30 MIML O <= J 41 OF1

GLE BAS0D Ol

OB WIML (MA0UDABEND #% ¥r0010d 41 OCH
DBl NAML Q=¥ 41 021

COEYPMDS S35 C10d 0L [N 0gd=s¥ HWO3E O
D=k 137 001

T FLSIOHAZ TWEOILIND. LMIEL 08

i=d 137 OF

lHivd D¢

£ LXIN D%

TES)d LMNlbd ©OF

(514 Avdy OF

I=- 4308 @ 0L NS HO4 OF

O MIAML ID*-=N 4] &2

N Qvih o2

1HTHd Q1

b TON Walgold

L]

E8E=- FL0- L [Iy SAMITI[44303 IHL
LTS L= 9 Py SOW3T

- ER T 5 I 13uW SLNIIDIA4T0D JHL
B B ¥- 13Hv 50432

ag- sl 2= I i3uw SANITI144303 3HL
L L 1 134y 50H3Z

20N

Y

oM3 02T

L l¥as 0IcC

AWlyd sOC

¥ LwdN OO0

fiX)d LHIHdS D63

I= 434§ | OL wek FO4 082

fo PIWY FLMIIDI44I0D FHL. IMIH4 503

IMINd OL2

0t OL09 092

Cey 137 052

¥ L¥IN OrZ

O=[X)d 137 OCZ

[¥1dewiX14d 137 D2IE

" DL Ia¥ W04 DIZ

o=% 137 o002

DL WIHL =5 41 D&

1 Le3dn pE1

™ LXIN DLl
[F)Sel]ldefl=FeTldeli-F+10d LI 091
B 0L 1= HO4 01

v OL I=] EOQ4 Ow)

TiL)S= IMIEd OCH
t0ErEMA=[1]8 1371 o021
FLLYd= LMIHd Q11
(O21EMInll]d 137 001
g=fl=y L3 o0&

I=lZ15=[204 L3 O

¥ L¥3N 0L

O=ix)id L39 0¥

0L l=¥ HO4 0OF

=5 137 oOw

T P3Ny S0W3T. LNldd OC
INlde OF

€ 0L sl H04 &1

CCA/E=-(1 POMNHaM)IMTI=(XIENG 430 O

7 "ON wajqoig
-kl "23%

ro1¥dN
(riSell)defi=Fe])defl=F=T}¢ LI
B 0L 1ef B34
¥V oL 1wl H]a
ANl 4
A L3k
TELIS ANIRS
CFLIHHAST LIS 139
1- J3LS 1 0L Reh pdd
thikkgeE [T
LH[Ha
¥ OIN3N
ix1d LMlEd
(eddhaniuly 139
I= <315 | OL weX w34
tal dsw 137
OLXAN
OwlDlemldulr jasimiEsinly 139
01 3L lsk #0g4
FoOL Iel ¥D4
Clec OmMpe)INTn N HNS 430
(/A= TaEMITNERRIANT m 02 aNd 430
[021d Wi

o s

9 "oN wajqolg

ILng
7 Tl L]
13 &
E4 [4
g & 21 | L &l Ll
2 5 2
1 2 o = c
LAl
HE
N3 D2y
I=- wivg 0Qly
Cr2 g wivd &sO¥
ZYCTE WiVOD 009
EFEUECC WiV S&%
IF2*Q 290G wivd D&%
001 @alpD s@s
LMIHd ©B%
LHIEd 09§
i LEIN DOFF
TE2ld LNIHd D25
1= d315 | @l i=@+vel EDd 0OD%
1 LkdN Dew
I LXIN D%
ErISellddefi=reflduli=r+10d LIT OFF
B 0L 1=r @04 O3
¥ Ol te=l HO4 OOF
ANl¥d OHC
A L¥IN o9E
TLAYS LHIHd OF(
CAJS OW3H OEC
I= 431§ 1 QL B=i ¥Oo4 QOC
B O¥3IH¥ 08g
ANlEd 092
¥ OLNIN OF2
TEX]ls IWNIHd D32
[X14 O¥3d o002
I= 4315 1 OL ¥=N HQ4 OF1
029 MIHL 1-s¥ 41 &%1
¥ O¥IH 091
A LEIN Ol
CD=[Ol=Ald={Rld={m]E=({MIs L3 o2
ol BL i=m HO4 001
[o2ld Wig 03
v O Eﬂ_n_.n-hn
IN0
fuw 1 ix LY £ ax G C ix ol = ¥ a¥ L.
I = 1 ix 0 = z ax B . [} L-= LS § L
f-e 1oan L 2 oax e L oax [
Z*ON
HME

Fri

2c!

Ll

4

L3

2L

oF

7C

L

sE1

(4

&b

&b

LY

7

%

(14

el

[N}

oo

=1]

o}

oL

ow

1]

or

ot

Ll

L1

L]

el

1)

(1]

¥L

L2

ik

b

AH

b

€L

L4

L]

i

L]

(T3

oL

2

¥c

119

-

Fi

&L

(4]

0w

e

kr

e

#C

CE

Ll

=l

[

L

wr

&C

oc

5

L

51

ol

L

T

o

L1

B2a

L

L

71

€

Tt

CE

L

UL

&1

21

BITIIYO1 "G HA L9 G gt
13 LINlEd 1wl 0%
Wefe] led Of

Iwon
FE zi
[[}]
o ol
Al L]
9l L
L4 L
El L)
ol <
i L]
¥ 14
¥ &
& i
=L R =L
L
anl Doz
¥ivn ©ol

3 Ow3ak A¥W W

o OW3F
LErfEiIaftirel e tEi 1]y Wid o1

oy

19 LNIVe dvn (g

13 LMIHe

IFOLS3H 0T
ivW D2

0L "ON Wa|qoid

3Nog

By
E®3M
e
ogt

Lvn 0%

whst. LHIMe U5

L AR Y|

Fewel Llék LF
g

wivad OF

Ffg Qw3
ferzi0rfrareldr e 16 te2lv 1o Q1

Lwie Oe

g "ON wajqoly

Lé
5%

L]
L&l
1§

InNgo

SNIWYDANDDI-HON

Jsy SHIISNIHIO 3IHL 3Snwd3A

FrOM

EXlH

QW3 oC

wOMTHE I ANDD=NONa ANI¥d OF

o dHY SHOTSHIETO FHL 3SNWIIE., LHIHS 01

g "ON Wa|gold
3H30
i T ¥
w n n
.w

t 2 £
I9a1EE T3MRAL awoy

L]

M

ONE sé8

2 Aniva lwd Q2%

wd B T TINKN L 0W0k. LHTHd DOS
H L¥3N QBT

2 LEFN DFLC

¥ L3N OrC

(OF N Iwe (N M1+ (D HIDnID*HID 1. o2t
F OL 1e¥ ¥_s5 0O

O={3%¥10 139 poz

€ 0L 1= yo4 o082

v 0L I=d HO4 Or2

QAQ DL Qe r T Qe QI 0 R LD 0D wivd OR|
0 Ov3E L¥W Qel

IFEPE" 2 L o FEACIGP2ICYF wivwd OF

¥ Ovid LwW OF

[C*)D7{r e JG [E"")Yy WIO Q2

¥ ON Waqold
aNag

o o a
3001HE =TT awan
Ze0m

WA

ONI &8s

QO INTH4 1WW DES
W00 1M . fu TINNA L., L OVDH., LNTHd 005
H LN3EN DEC

3 IN3N D9C

¥ L¥3N OFE

T27H el d "HIA« (DY 1De{2*81D 137 DEC
T 0L 1sx ¥O4 0OC

D=(2"¥12 137 o8z

C OL 1=3 Hdd O

1 OL i=d HO0d OrE

orOeOND WAWD QUi

B OWIH LwH Or)

LIS E 2 L w "E2TL ST RICTY WiWD 09

W oOviH Lve OF
[ErL1a7 e 1 JECE "7 IW WIO OZ

7 'ON W3|goid

T-TL D38

auca
o o 0 ¢ o 6 o
o o o o e o o

L E R
v LWIEd 1w 0L

e

#5

L

Fh=

L

H L¥3IN DB

3 LE3IN BL
[J*¥Ivaleafd Edvy L3 0%
C 0L 1=l HOS OF

¥ DL =¥ pOog OF

W LIMIYd LW OC

Y OY3F LuW Oz

[Cw1v Wig o1

b "ON Wajgoig

FN0d
Fa EB 28~ B o4 ra o - C
L 89 6B~ i & D& (3] L= 2
1% [i ¥ 5 L4 [4 &]

0N

HIH

N3 Ol

QT "0 0 Q'O O 0 D "0 wivd L%

19096 Lo SR gRB="2C 'SP 0&*Cr C-*2 wivd 99
FLERS AL T ISACE LTS FCCYEC] wivD 59

Iy LHIHa LvH 0%

¥ A¥IN OG5

EETIJe &« (X "2)WafN Ty 137 Ow

201 bl =¥ HdJd OC

v OvaK Llvw o2

LEL C IV Wid ot

7 "ON wajgoig
[Bl B = 1

Z1 "d¥HD

LA B L C ESQHIT TW3AK LA L= g

1IS07314 I - x LE WOISIAIO DILFHLINAS

1 VOEAZ wROALN] & §= &= 2

LRk Y G ¥ AB HWOEISTAID DILAHANWAS

&= I0F3T WwHAALN] G IZ= 16- L] z
2= 1] = 1S0H3IZ "WIAH 2 K L]
EOT3INA I -% LE HMOISIATD DIL3WANLE

I I0EIT TWEOALMI &= i= 4 L]
C
HIH
QW3 00%

1g1o" wiwd 06w
GFYIE=FIL="5 278 wlwd Ode
E=tl="g l"r wlwd Ocr

OF ILOD 09

P OONY LetBlafufWinl. LINIMS O5F
wIE0MI T TedH=NOM. LNIHd 0¥k
Gr QLOD OCw

LECTH OMVLTE+w LNIMd D2
fi S0H3IZ TWIH. LNIHd OIF
OFr HIHL Dsd 41 Q0w

A, CEOQSEVIHDSE 137 0&C

A 1Bdd=nv L3T OBD

[Chaelmy L3 OLE

fEigefi Jdew=22 [E1a=0 L3 OFC
oCi 0LD9 O§C

I-Huly L3 Do

DT HWIHL Fwl 4] OCT

Ouilid L37 %2C

¥ I¥3N D2

CleXlami¥ld 137 0IC

Faid 04 teax pds OO0

¥ Lwdw pRE

YEEld AINIEG DL

B2 W3IHL =k J4] O%2
Em[l-¥id+(X1dmi¥dd L3V OS2

pauol #-LL D38

silp TRl

LTl

aN¥ onl

BL=fICALL 21~ wivD 5@1
Lefpiv-tg=t9igeiep wivd 20
L=tl=tg o= Eop Cr9 WivD OO0

§ LMINd 1we 0%

HeleS LWW OF

CIAMIED LwW OC

HTI OW3IY AvH 02

FLO IS 0w e J0°00 "% IHCrF *¢ 12 WD @1

g9 "oN wa|golyg

INed

Ce=

Dadbbe"

.

RN

Lo gl]

as3 ol
EC-*5C-"2 wiwd &OI
SPR-FEIG N TR rg- T Wlwd 0O
§ LNINd LvW 0%
W 5 l¥W O

JdANIel lww QC
W'D 0elY 1w 02
ICCRIPEE“CYS“OLI"C IR {C*C)3 Wiad o1

v "ON wajgoid

INET

i o

L]]
Be{@ErH]

1
TEIANT*8
L= o

LC- w310~
LEIANI

ZYRN

MK

QW3 ooC

[=*0*Cav@- WIWD QD2
QO AwiEd LwW 001
AR UHIANL. LHIHd O8
Teded I¥W 08

a0 LWIWd LyW SL
wiBlANT®0,. LNTHd OL
Jvfl=d L¥w 0%

3 LMIH4 Lew 0%
wL@MANL, LNIld OF
tBMAMT=D 1¥W OC

8 Juldy 1w D2
(Z*2M AT 21D (T2 10 WlG 01

7 "ON Wajgqo.y
b-IL D38

B=fl"i="C*L1

[d*Fjww
LB Cel

A1 19
Jdevepnw

b s []

Kiig

ae3 eca

I3 Inlkd IWwe Bl
wld*PRaw. ANIBE wli
Tugny jvs GLA
JeuED Lyk Ue

4 LMlbd Iww (W
wlaelEd. LNIFG OL
deiied Lk 0%

Jewal Llww 0%

Esual j¥e U

IR e I e PO T P fudw] ywlwl OO

ITdw M3 dew O
IREEID"Cr e JA' L dE WIn &1
[EFe i a3 e e Ju"(220% wIM 4

9 "ON Waqosy
anon

InLLelHEGD
L0 50 NOILWI[NIl INe
ElELvW AWHL FONT3M03 |

B [}

= B=

LR L]

L]

aM3 ot

wdA DAYANENGD.. INIHG D20

w10M 51 ROILWII 0L Wn,. ARERd Ol
wETILER LyMl 306GTINAD 1. AMIMG OGL
10 LNIrd Lww Ub

oS INld UH

D IMINg LlbW 0L

ebel, [WI[H4d 0%

¥eHed 1lwH O0F

eged 1nh L

L=*CHug*gl="F* "2 ['C wiwd OC

BfY Ow3d EwW (2

LefB 10Tl 2 10" (e el leredv WIn QI

¥ ‘ON wajgoug
INDT

gl=
L&)

tz-

ardm

sl

aH2 D

F INlFa IVe DL

Fewal Lve 0%

FICTE2T - Wiwd 0%

B dvlE Lwk iOw
FL=fZdlavg="Cr| wled oOf
¥ avdF 1wk 02

LI v i3 0 I"r IR Er e i WiG O

T 'ON Wwa|qoi4
€-TL 'D38

"ETL=TC

X LNEN

4 L¥aN
LElA®"XIW 157 |
WL t=h D8 o
€ 0L [=% FJa4 0
[Efelw Wwig |

01 "ON wWajgos

£k

13 INlEs Lve
= oLEEN L

2 LxEN L
T=03*0 1% 137
% OL 483 #04
2 3l 1=K P04 U
[97: 1% wIQ G

o "ON Wwajgos

M

c- L LI b= kK
Cé- §CI- EC= [OE- 3
1 €= 5 & 2
(] L1 €L Ly C
LRl

wl

oM3 %

1= f LG R L L& EEPEC L9 0 wiwn OF
T INIH& LWW OF

i LXIN DE

3 LX%3IN o

(3)Xol =wi MIN 13T O

@il oLa9 o

[J*hIkesC=a[39H 0¥ 137 O,

G6 MIML CEACIPFILNISSAID06D 41 O
S 0L ls3 BO4 O

DL I=d 404

1Y AKIHG LWe Of

¥ OOVIH Lk G

[S'21% wid O

9 "OpN Wa|qod,

ZNOY
20t Gia LR
&ITE LE 6
L1 o% L]
L4 (]| &
wiE e FFE
Cey & [+
o Qo C
bL 5 ©

L]

Rl

aW3 ol

FESTOETPISTOLY & 'L "SSP PO C*BL 9672 Wiva 64

I LHEMd LWH D&
INTLd &4

4 LXIN DL

¥AHaH L3 0%

1= 315 ¢ DL §=X HD4 OF

W LIEIN DF

XeNay 137 0T

I= JALE L#5=-25 QA1 F5=x Wd4d 0O
lag 137 01

B "ON Wajgoy

IW00

as

20N

L]

a3 ool
grH LHlud 08
¥ Ix3IW O

¥ega0 137 OL

1= d315 1 @1 Oi=x HOd OF
lad 137 0§

% Lx3AM Or

kmpeH 137 ©OC

I+ J3LE 1 Bl & B4 O
N 137 0

7 "ON Wa|gold
£-£L "D235

ELLL
SOMuH QWD IAlS 40 SElve 2l=159986°C

o2*aN

i

aN3 oDa

WSONYH OHWD IAL4 40 SHIVE.IHSH LNIHd OF1
¥ L¥3IN D51

EATH=LIH 137 OF!

I= J315 1 9L §e=1 HB4 OFI

X L¥3IN D21

KelHelil 137 o011

1= J3E 1#5-06=3K3 O $-36e) ¥04 0O1
¥ A¥3AN 0¥

wsHeH 13T OES

I= 434% 1 0L 5= HO4 0%

¥ L¥3IN OF

¥eHeH L3 OF

I= LS 1e5=25 QL BS=¥ H@4 OF

IslHeH 137 01

0Z "ON Wa[goid
ANDa

siL SigE 1

CBCE SISO W

OFlB 5THID 3JuKL OHv ADE IND
BO0Y0L SADE DML OMY SIHIO @Al
SITLLTWHDD LHOIVHLE SorLE

al-ou

MY

aNd ooR

InFARE . LMIEL Q@1
CieZeCari/Dlellelecing 137 OLI
251D TIW.. LHIEd OFl
CleZsCerdsrinsiediocind 137 05
JuEWID JIuWL ONY ADE 3D LMlEd Orl
iCaZelpsSledlel|aClied 137 DE1
LIFA0E BML ONY EMHID ORLa LWIEd D21
I2ed=gl 137 001

(la2)s0lobl=ld 137 001

Cle2}s 301800100 137 Od

«E3FLLIWNAD IHDIWHIE D LMNIWL 00

¥ OLXIN Ol

¥/J=2 137 oF

I= d3LF F DL Fu¥ HO4 OF

¥ LEIN OF

Nl 0%

H LNIHd oOF

¥ ININ OC

¥eMsH 117 @83

1= d31% 1+6-59C BL S9CwX HB4 OI
I=H 137 &

B ON Wa|gold

Inon
SONYH FO+FRERE5"2

0N

HTE

aM3 0&

wSONYHLD ANlNd OB

¥ Ledw 0L

/783 137 av

I= J315 1 QL Sek Wd4 0OF
X INJIH oOr

¥ajml 137 OC

l= J3L% 1+5=E5 QL 25=X MO4 O
=3 137 o1

9 'ON Wwajqoid
L ik

SEeITLISE" 1

¥ Ok

Lyt

ONI 04

4 LHIEd 08
¥ LN3IN OL

¥eded 13T 09

I= d3L5 1 @1 2ielk 204 D5
¥ LMIM Ow

¥egza 137 OC

= d31% C1 0L GE2s¥ W04 D2
img 137

b ON WAqol4
e L e

DI+JI&AGE *¥

20N

L L]

OW3 0L

M OLKlMg 0%
2FNeH 137 0%
¥ L¥3N O

¥epesl 137 O
1= 4315 0 OL wisx w2 02

Taw L3% D6
7 "OR Wajqold
T-EL "238
E€L "d¥HD
ELT)
Lt SL as
E= L LF-A
zl It T
CEINHL® i WML
B= daw 21
L 1= 5=

ar 1 RE

INIG
C=
e

ol |
EN31LNT0S

]
[}
o
SHH3L LHVLSNOD

g= 2= [}
1 o C

1= [B
X[Eive LNITIT44303

s

[
SNOTLNTDE

2

L
SHHIL 1HW1S MO
L L]

] £
EIHLYW LNIIDEA4300

o1 +0oe

MY

M3 BEs

O wiwg OC=

Fr0T0E wivd OE:
B=tE=2 1 " 17DICT 1= "L AT wivd Gl
SELAC=TS RN PEYE wivd QD

oz oLo3 ord

S ANIMe IwW OCL

wSHOTLN3E. LNINg 021

Helaf Lk 010

EDrANE=] LwW OD1

[LPMINIZSS Llvw 06

[HENIFIZ®] LYW OB

HOLNIEd Llww DL

stHMIL LNVLSHOD. LMIMd 09

2 LIWiWd LIwW 0OF

wEIHLY INIDITA4300. LMIHd OF
(1 "NINFLN'HID OW3N Ll¥w OC

E6& NIHL OsM 4] §E

M OW3H O

SHEONHEMT ML 0L &0 ROTTY 3K HI3W)
CI*OTIS L0 Ul dl LR DI)X 000 *013D Wid Ol

01 "oN wajqodd

Ll
BEabHsEE"
Ioonne s

Leg=

D*gn

Pk
aN3d aoite

PRRR OGS SRt L. WLINWD SO0
SHBTE="D 0= "f="C="¥ g Wiwd UL

5 LMlEe Luw 05

He 4% [WHW Ov

f2iakle]l Ly OC

HED gw3dH Lled O

(CfCIIr LI ® S LI*CIRT[CFCID WID O

g 'ON Wa|goig
pauol #-IL "235

kL

Fid c s€ zr

HIHLIIN WIQE WINILO0 LHDIA
IATLIZAI0

Ll L

Ll

aKl owil

TS LNHIEd LvW O61

¥ OL¥IW Okl
T#lF*lJSulP ()5 L3T OC1
D& HIHL O=3 JT o2

owl OL@T g1

T+ L)}F=[C*L3F L3T all
Ol WNIHL Q=7 4T S01
T=f{2*1)5=(271]5 L3 OOt
OFl WIHL 0=3 A1 O6
T=«CT*035=(1°0)S L3 08
0E1 WIHL 047 41 0L
ELIAONEeGZILNI=] 13T ©OF
CEINONESOENLNE=T 13T OF
DOl Ol fe=X H34 O
~HIHLIIN HLDE HINIA0 AHOIT. LHINd Of
wAN 1123430 w ANIMd 02
[rf1JE3T=5 LW O

¥ "ON Wa|qoid
b-£L "235

inpa
f0=-J66C8C0" L

I 0N

Lo

ON3 0=

BEASICowRCi=1 AINiHd 01

L1 'ON Waqotd

INaa

d0=Fliote*c

ED=3908F 56

oi=aN

L]

L ER

(971)mE4(9/5) LINIHd OB
CASLIME I E9SES AMINd D0

0L "ON Wajqosyg

awen
2o=3Lica@C-9

HraN

HMH

oN3 0ot¢

d INlbd 02
CERP P IniOR /PP int IGALP et RS /Rrled L3 01

8 "ON Wwa|qoig

ANag

FO=32959L"&
FEON

KNH

QW3 02

OlscEsl) LNIHd O]

9 "ON Wajqold

Axda
LO=JéWowrsC

L]

Lt]

N3 D&
HAT INTHS O

¥eded 137 aC
l= diLS ler=-0C 0L OCw=X HO4 OF
1=3 137 ol

8L "ON wajqoig
Nea
Ti+3LSCwPL" |

FETON

L]

aH3 0%

H LHlvd 0§

ZaleH L3177 5r

X LEFN OF

XeN=H 137 ©OC

I= d3L5 | OL winX HBJ OF
=8 L37 01

91 "N Wa|god
aNea

SA517 L3N0 FE=ASETFF 7
Fl*au

aw3i ool

w5117 153N3.,0 LMIEd D&
¥ I¥3N D@

LT T

I= 4315 1 0L 52« HD4 0F
X L¥IN OF

¥eO=d 137 OF

1#58=05 0L DSaX¥ HDJ O
=3 137 01

FLCON Wa|qodd
axoa

FEIC SI SIWMHDIS 40 BIOWHOM TWLIDL

STWHDIS I B0vId o
STYNDTS 5 50V4]
STUNDIS 02 S9v74 4
STITHDIS 0% S0vd [
STWNOTS D21 F0vd L
ETWHAIS 021 S9v4 1
Ziay

MY

aNI 08
.51 SWRDIS 40 HIGHNN TWLOL. LNIHd SL
4 1¥IN DL

wETYNO 15 duS 0% Tdud LHNIHd 0F
delsl 137 0F

¥ L¥dM OF

Xedegd 137 OC

i= J315 1+4-§ Bl Se¥ HOo4 02
ind 137 €1

I= dJ15 0 81 Sw=d HO4 O1
o=l 137 %

Tl "o wa|goly
L
SRV ININIAATO LO+FOFLSLE
ol=oH
L al]
awd o2
SE3LVTE IHIYFAAIO.E 01 8C492 LN OO
oL oN Wwajgolg
Inag
213553009

@ aN
L

CUrnMHLleid MUl

B= ar 21
L 1= 5=
ar an 9L
(Eed I NEL
wran

WOy

OH3I Gdé

DrFE=-T11 P Q7R C"T WIVD OIC
B fL-tBTORCCYN-CE WIWG 00C
13 [MIHd LwW dvi
wUBINELe(YINEL, LNTHd OC1
Qel=3 IWW 01

13 LNI¥d Lwd 018
wilWINHLe(ANEL: LNIH4 OO0
Je0=3 1¥H 04

(RIRHLeD LuW o8

TWINKL=D 1WH 0L

rd LNIHd Lwd &%

WUERYINYL. LNTHd O
12yl =d LYW O

Beysd L¥H OC

BTV Ov3IH LYW 02
[CACI37(CCIOAICC I IC'CIBFIC T IV WID a1

¥ TON Waqotd

DT
a] &=
a o C-
2 i 4]
LRI RS

o 1] 2
1] o g
a= [£ o
(Y INML -

z a [
EL - &
r [o
W IHHEL oy

1 & I
3 2- [
c L 5
IWINKL

ani

PG C P& TE= "0 | *C g WiWD
£ INIHd LW
A=A L. LMTHG

W=Hrd LYH

13 LWlhd oW

W IREL =Y., LHIMd

B-%=3 L¥H 06

1 LNIEd LYW 0B

wiWINEL oY, LHIMG O

Baw=d LW 0¥

18 LNlud 1w 0§

(W INELG LNIHd OF

IWINHL=R 1wW OrC

¥ OW3AH lvd a2
ICEID(C"C 17 IC “C IV WID @t

Z 'ON Wa|qoig
§-ZL "D3s

INDd
FO=JEFSILE a1
Co=3BIEG8"! &
CO=-35390&"C a
Co-3052i8"i L
SERSIO- 9
SZIED- 5
290" L
SEi- =
g2 2
5"]
ALiTravEdyd SJI04
L
L]
Lk L
H L¥3IN 0%

did LHINd OF

(241 bwdad 137 DT

@1 DL 1=H HO4 02

I=d 139 0

wALTTIEYEOYE 54174 LNIHd &

7L "oN wajgoid

L]
CoERLC"

[+ L]

MOH

oN3 OL

1 1HiBd 89

H 1¥3W §9

delml L3 09

(H=01) s d{BANInMa S L 3uded L3 05
i L¥dN OF

{lesx=01)sE8da]d L3T OC

1= d345 1+¥=01 QL QU=X HD4 O2

=3 137 &1
ol 9L Fay 04 O1
o=l 13T S5

0L "ON Wa[goid

IMda
EO=35CCwi"E L)
FO-3F000F %
Co-355LiC08 L]
TO=ILCBSC5 C
sCe0DE" -
BegLor* I
BAEFCC" o

ALITVIEWEDEd H3ING

B 0H

M

aHz osi

¥ I¥3IN OCl

HELR AN OIH-NISLRAG0mdiY LNINd OFL
¥ E¥EM DIl

¥s2s0 L3T 000

l= 3L §| Bl W=% Hd4 086

N 1¥3IH 0L

¥s)=] L3 O¥

I= JJILE leH=-M DL Wek HO3d 05
I=3 137 ©OC

9 OL O=4 HQ4 02

=W L3AT O1

wALTTIAVARHE SIND. LlMIHA &

g "ON wajqoid
Inga

E0=JL2125 8

FrON

MR

as3 oc

d=1 LNI¥d D2
slB0*elsag L37 OF

9 "ON Wa|qoid

Indg
Ap-ICEFE0 &

L]

Lt

aN3 ow

o AWldd OC

Egibnb el DD eD0=d LIV O

OOl=3WIl ¥ A% | SONIHL OO0 OWad W3H 01

¥ "ON Wwajgoid

awda
LY | FORIFI® o
SevgCa* 110CEC " ¥
Cargig* PLOBE" &
CLLrda® Sr055L " €
g0-36LALE*F E0=34502F "5 L
avrsio- @f=3aCgoC*? §
CO=3918Ck"2 Co=-3cyoLl+a 5
PO=3I25L9"2 rO=-32L08F "2 L
SO=349Fra~i So=0F507d" 1 B
LO=3LrFrCri LO=3FDEFE*E L]
BO=FTHCEF~ 1 @0=32@CE9*1 ol

Telal ALTVIAWEDYY S3IND

ZTOH

Lt

oMl ol

W 1¥3IH %

L'l LHIHd OF

del=l LI &
(H-O124 (9500 He R /100084 13T OS5

X LMIN 0w

C1+¥=01}/xaded L3 OC

I= 43I L1+H-DI OL DIsl HO4 OF

=3 137 &1

b= 4308 O B Di=y HO4 DO

oeL L3 &

w100 " bl IV EWE0Hd 53N, LMIHD &

7 "ON wa|qoid

S-£L D35

e

L] o o (1] 1]] 2 &% (441 ovl BL
WIL CENIH IHOIZ NIA3S XIS IALS HNDJ 3II8HL DAL IND NG
ol oN

Ml

aw1 oot

5 LWIEd Lww opl

wH3IL 3INIH AHOT3 . LHIH4 091

T HANIS ¥IE Anld wN0d o LNTHe O%1
T ATHHL anl IMD INDHs LH1Hd OFl
¥ L¥IN OL"

PeC1+D7 1350 R+D005 137 OM1

H LX3N 0D1

1+3=3 L37 0%

001 HIHL v=id 41 OF
Cls{1)OHEaT)LMNI =il 13T OF

o1 @l M HBdJd 0T

D=3 137 S

DOS @4 Ls¥ WHag4 02

HiZ=5 LeW &l

CLeLys Wig ol

0L "ON Wajqoid

anNga

FAAFN="MEOYR=NODO0O==000=

0 P A S~

T e oem e e o
BTN OES =GN TN IO EO =6 TN
BT OH M P D R s o e e m om s g B B0 B B B O P B BT PR B AR

¥BE
SIWIL 40 HIBHAN 3N TIL STI0H

asoM

L

oM3 061

¥ 1¥3W 061

[XI5*% LWIMd 0Ll

IN OL beX BOd ©O91
IWIL 40 HIAWINGTLI90 1L ST0u. LNINd 051
X LXIN 0wl

0% LoD OCl

I+N=M 137 D1

orl OLDS 001

H=iN 137 0ol

Ol W3IHL IMsN &1 08
1+[MIS=INIE L3 08
021 WIHL 1=y 41 DL
Ci+C01}ONEEGLNInE L3 0OF
Ial 137 DS

005 91 f=X ¥Dd OF
H3I=5 lwe OO

(oG0S)S wla 02

I=lN 137 ©1

0 O Wwajgoly

E L]
dn END M@ 3nTe 291
Pl L]
L]
aN3 022
wdfl IND MO JAL4LD AINIHd 002
X LXIN 002

143=3 L37 Q01

oo2 oLpn OF

008 H3IHL 5= 41 ©5

oD W3HL I=y 41 OF
Clsf1)0HEeS) INTIeE 137 DO
DOS 2L lex B4 02

b=2 137 Ol

g *ON W3|qoid

PO p-£L D35

Index

Index

ABS (Y) function, 47
Addition
matrix, 186
modular, 67
Algorithm, Euclidean, 91-92
Argument, definition of, 47
APPEND N statement, 118
Arithmetic, modular; see Modular arith-
metic
Arithmetic operators, definition of, 4
Arrays, 78-79, 84
DIM (two-dimensional), 85, 86, §9
dimensioning, 85—86
MAT instructions in, 176
structure of, 79
Artificial data, 20
ASCII, 102, 115, 116
Assignment operator, 10
Assignment statement, 10
ATN (X) function, 136
Axis of symmetry, 123, 124

Base-2, 93, 94

Binary files, 118

Binomial experiments, 212

Binomial theorem, 212

Binomial trials, 210-213

Birthday problem, 205

Block diagramming; see Flowcharting

Circular functions, 132, 133
CLE; see SCR
Coeflicient matrix, 192
Column vector, definition of, 179
Combinations, 200
Comma, use of, 2, 3, 101
Comma delimiter, 10-11
Complex numbers
addition of, 148
de Moivre’s theorem, 152
division of, 148
multiplication of, 148
polar form, 150, 151
rectangular form, 147, 149
roots of, 152
subtraction of, 148
Complex zeros, 168-175
Compound fraction, decimal value for,
6

Compound interest, 55
calculating, 32
Computer list, 35-36, 40—45
dimensioning, 66
Computer functions
ABS(Y), 47
ATN(X), 136
DEF FNA(X), 57, 58, 61
INT(X), 47, 48, 51
RND(X), 62-63
SCGN(N), 47
SQR(Y), 47
trigonometric, 133, 136
C®N, 187
Conditional transfer, 18, 19
Congruence conditions, 139
Conversions
base-10 to base-2, 93-96
degrees to radians, 133
dimensions, 50-51
inches to feet and inches, 51, 54
Coordinate systems, 128
polar, 144, 150, 151
rectangular, 132, 138, 143, 147
C®S(X) function, 133
Cosines, Law of, 139-142
CREATE command, 110

Data files, 109-121
access, 115
ASCII, 116-118
binary, 118
data storage, 115
General Electric, 115
Hewlett-Packard, 110-115
random access, 112, 118-120
Data processing, 2
arrays, 78
questionnaires, 85
tabulation, 73-77
DATA statement, 3—4, 101, 116
Debugging, 218
Decision-making, 14
DEF, 57.58
DEG(X), 133
Degrees, conversion to radians, 133
Delimiter, 73
comma, 10-11
semicolon, 10-11

265

266 Basic BASIC

De Moivre's theorem, 152
Depressed polynomial, definition of, 169
Descartes” Rule of Signs, 173, 175
Dimension conversions, 50-51
Dimensioning
arrays, 85-86
lists, 66
DIM statement, 66, 103
two-dimensional, 85, 86, 89
Division
of polynomials, 156-158, 159
synthetic, 158
Dummy argument, definition of, 62
Dummy data; see Artificial data

E-format, 8-9
END statement, 2, 12
Enumeration
combinations, 200
factorial, 198
partitioning, 202
permutations, 198-199, 200, 202
Principle of, 197-198
Equality, matrix, 187, 190
Equals sign, 10
in IF-THEN statement, 15
as relational operator, 15
Error diagnosis, 218-224
Euclidean algorithm, 112-113
greatest common factor, 91
Event, definition of, 205
Executive program, 4
Experiment in probability, definition of,
197, 207
Exponentiation, symbols used for, 4

Factorial, 198
Factoring integers, 48—49
Factor theorem, 160
Failure in probability, definition of, 197
Fibonacci numbers, 39, 46
FILES statement, 110, 117
Flowcharting, 13-14, 20
FOR—NEXT statement, 26, 28, 31, 32
Fractions, reducing, 50-51
Functions

circular, 132, 133

computer, se¢ Computer functions

G@ASUDB statement, 41, 45
GOATO statement, 3, 12, 18

Createst common factor, 51, 54, 91

Identity matrix, 187
IDN, 187
IF END statement, 111
IF-THEN statement, 15, 18-19
IMAGE statement, 227
Initializing, 9-10
INPUT statement, 166
Integers
computing greatest, 47
factoring, 48—49
Integral zeroes of polynomials, 159-163
INT(X) function, 47, 48, 51
INV() statement, 191-192

Law of Cosines, 139-142
Law of Sines, 138-139, 141, 142
LEN() function, 103
LET statement, 5-6, 11, 56
as assignment statement, 10
Lists; see Computer list
Location principle, 163
Logical end, definition of, 69
Log-on; see Sign-on
Loops, 24-25, 31-34
FOR-NEXT, 26, 28
machine-made, 26, 28-30
nested, 32

Machine-made loops, 26, 28-30

MAT instructions, 176

MAT READ, 178-179

MAT PRINT, 177, 178, 179

Matrix, 179; see also Arrays
coefficient, 192
creating zero matrix (ZER), 187
filling locations with 1 (C@N), 187
forming identity matrix (IDN), 187
identity, 187
inverse of, 190-191
transpose of, 195

Matrix addition, 186

Matrix algebra, 185-188

Matrix equality, 187, 190

Matrix inverse, 190, 191
difference from transpose, 195

Matrix muitiplication, 185—186
scalar, 187

Matrix subtraction, 186

Maximum, 124

Minimum, 124
Modular arithmetic, 67
addition, 70
multiplication, 70
Multiplication
matrix, 185-186
modular, 70
of polynomials, 155
scalar, 184
Multiplication symbol, use of, 4
Mutually exclusive events, 211, 212

NAME command, 16
Nested loops, 32

Nomreal zeros, 169
Numerical order, 40-41

OPEN command, 110
Operands, definition of, 4
Operators

arithmetic, 4

assignment, 10

relational, 15, 19, 20
Ordering routine, 65
Outcome, definition of, 197

Paper tape, 215
Parabola
definition of, 123
plotting, 125-131
Parentheses, 7-8
Partioning, 202
Pascal’s Triangle, 213
Permutations, 198-199, 200, 202
Polar axis, definition of, 144
Polar coordinate system, 151
complex numbers, 150
polar axis, 144
pole, 144
Pole, definition of, 144
Polynomials
abbreviation of, 159
complex zeros, 168-175
definition of, 154
depressed, 169
Descartes’ Rule of Signs, 173, 175
division of, 156-158, 159
Factor theorem, 160
integral zeroes of, 159-163
Location Principle, 165

Index

multiplication of, 155
polynomial function, 160
quotient, 173
real zeros, 163, 165-167
Remainder theorem, 159
second-degree, 168
synthetic division, 158
variation in sequence, 173
Predefined process, 41
Prime numbers, 48-49
Principle of Enumeration, 197-198
PRINT statement, 1,2, 101
PRINT USING function, 61, 227
Probability
binomial trials, 210-213
“birthday problem,” 205
definition of, 197, 204
event, definition of, 205
experiment, definition of, 197
failure, definition of, 197
imdependence, 205
outcome, definition of, 197
success, definition of, 197
Program, definition of, 1
executive, 4
Program defined functions, 55-60

Pseudo random number generator,

inition of, 62
Pythagorean theorem, 132

Quadratic formula, 122, 168
Quadratic function
definition of, 122
graph of, 123-124
quadratic formula, 122, 168
zeros of, 122--123
Questionnaire, 77, 85
Quotient polynomial, 157
storing of, 173

Radians, definition of, 132, 133
RAD(X) function, 133

Random access, 115
Random access files, 112, 118—-120

267

def-

Random number generator, 62-71, 206—

207
dummy argument, 62

pseudo random number generator, 62

RND(X), 62-63
READ statement, 3—4

268 Basic BASIC

READ #N statement, 117 Statements
Real zeros, 163, 165-167 DATA, 3—4
Records, 118 DEF, 57, 58
Rectangular coordinate system, 132, DIM, 66, 85, 86
138, 143 END, 2,11
complex numbers, 147, 149 FOR-NEXT, 26, 31, 32
Relational operators GOSUB, 41, 45
equals sign as, 15 GATH, 3,11, 18
“greater than,” 19 IF-THEN, 15, 18-19
“greater than or equal to,” 20 INPUT, 166
“less than,” 19 LET, 5-6, 10, 11, 56
“less than or equal,” 20 READ, 3—4
“not equal to,” 20 REM, 13, 16-17
REM statement, 13, 16-17 REST@RE, 108, 110
Remainder, 51, 91 RETURN, 41, 4445
Remainder theorem, 159 ST@P, 59
Remote terminal, definition of, 1 STOP statement, 59
Replacement operator; see Assignment Strings, 101-109
operator String array scheme, 106-108
REST@RE #N statement, 118, 119 String variable, 101, 103
RETURN statement, 41, 44-45 Subroutine, 41, 45
Right triangles, 133, 135 Subsecripts, 35, 103
computing angles, 136 Substring scheme, 103
RND(X) function, 62-63 Subtraction, matrix, 186
BRoots, complex numbers, 152 Success in probability, definition of,
Rounding off, 57 197
Routine, ordering, 65 Sum array, 186
Row vector, definition of, 179 Symmetry
RUN command, 4, 5 axis of, 123
definition of, 124
Scalar multiplication, 187 Syntax errors, 220
Scientific notation, 8-9 Synthetic division, definition of, 158
SCR command, 4-5 System commands, 4-5
SCRATCH #N statement, 117, 118 NAME, 16
Selections, 200 RUN, 4,5
Semicolon delimiter, 10-11 SCR, 4-5
Sequential access, 115 Sign-on, 4
SETW statement, 119
SGN(N) function, 47 TAB(X) function, 225
Sign-on, 4 Tabulating
Simulation, random one item, 73-75
random number generator, 206-207 several items, 75
Simultaneous linear equations yes—no answers, 76-77
printing results, 194-195 TAN(X) function, 133
solving, 192—193 Tape, paper, 215
Sines, Law of, 138-139, 141, 142 Tape punch, 215
SIN(A) tunction, 133 Tupe reader, 210
Spacing, 58-59 Transpose, of a matrix, 195
comma, 10, 11 Transfer
semicolon, 10, 11, 96 conditional, 18

SQR(Y) function, 47 unconditional, 18

Index 269

Triangle TRN(), 195-196
area of, 138 Two-dimensional list; see Arrays
Law of Cosines, 140-142
Law of Sines, 138-139 Unconditional transfer, 18

right triangles, 133, 135, 136
Trigonometric ratios, 133
Trigonometry

area of triangle, 138

Variation in number sequence, defini-

tion of, 173

circular functions, 132 Vectors 2
complement, 135 column, 179
congruence conditions, 139 row, 179
Law of Cosines, 139-142
Law of Sines, 138-139, 141, 142 WRITE #N statement, 117
polar coordinate system, 144, 150,
151 ZER, 187
Pythagorean theorem, 132 Zero subscripts, 155
radians, 132 Zeros of polynomials
rectangular coordinate system, 132, complex zeros, 168175
138, 143 of function, 159
trigonometric computer functions, integral zeros, 159-163
133, 136 nonreal zeros, 169

trigonometric ratios, 133 real zeros, 163, 165-167

BASIC BASIC: An Introduction to Computer Programming in
BASIC Language, Second Edition

James S. Coan

‘... an excellent introduction to the use of BASIC through remote
terminals and time sharing . . . clearly written and well-organized,"
said Computing Reviews about the first edition of this popular
introductory book. Anyone can learn to write computer programs
in BASIC using this book. Not only does it describe the essential
statements of BASIC and use them in sample programs, but this
new edition now includes a chapter on strings and files.

The author uses over 100 sample programs to illustrate the
essential techniques of the language and to integrate BASIC pro-
gramming with mathematics. Each language statement or capabil-
ity is clearly explained at the time that it is first used in a sample
program. Every section is followed by practice problems. Solutions
to even-numbered problems appear in the text, the remainder in
the separate Teacher's Guide.

Other Books of Interest. ..
ADVANCED BASIC: Applications and Problems

James 5. Coan
This is the follow-up BASIC text for those who want to extend their
expertise. It offers advanced techniques and applications, including
coordinate geometry, area, sequences and series, polynomials,
graphing, simulations, and games. #5855-1, paper, #5856-X, cloth,
192 pages.

THE BASIC WORKBOOK: Creative Techniques for Beginning Programmers
Kenneth E. Schoman, Jr.

Here is a hands-on approach to learning BASIC and the fundamen-
tals of problem-solving using a computer. Through many exercises,
readers develop a workable BASIC vocabulary, a feeling for the
logic and intrigue of programming algorithms, and the self-confid-
ence needed to use a computer in a variety of applications. #5104-2,
paper, 128 pages.

GAME PLAYING WITH BASIC

Donald D. Spencer

Enjoy the challenge of competition by playing such computer games
and puzzles as 3-D Tic-Tac-Toe, Nim, Roulette, Black Jack, Magic
Squares, the 15 Puzzle, Go-Moko, Keno, Morra, Baccarat, and many
others. The author writes in a nontechnical style and includes the
rules of each game, how each game works, illustrative flowcharts
and diagrams, and the output produced by each program. #5109-3,

paper, 176 pages.

HAYDEN BOOK COMPANY, INC.

