"KOBRAHSDF T~

*Pleasant View",

TEL:- 078 130 5244, Hulme Lane, Hulme,
Kr. Longton, Stoke-on- Trent,

Statfs. ST3 SEH.

ENGLAND.

Dear Customer,
many thanks for your valued order for our "SPECTRUM 180
MACHINE CODE COURSE. We hope you will find it interesting and informative. We enclose the complete course consisting of 12
newsletters and exercises, PLUS a cassette containing our "KDf DISASSEMBLER™ and KA1 ASSEMBLER", which we feel are extresely
useful and must make our course the best value for money available! Remember, if you get stuck, or if you have any enquiries

about any part of the course, please ring us on the above number, or write to the above address. If you write, PLEASE enclose
an 5.A.E for our reply. We thank you again for buying our course, and we remain,

Yours Sincerely,

"KOBRAHSOFT SOF TWARE".

1))
"KOBRAHSOFT 280 MACHINE CODE COURSE"

CHAPTER (1)

General Introduction.

Rhen you switch on your Spectrum, and program it in Basic, the {ollowing sequence occurs:-
PROGRAMMER {Basic Instructions) >>> BASIC INTERPRETER 3>} Produces Machine Code)>) C.P.U >)) Executes Instructions

i.e. your Basic instructions are broken down by the Basic Interpreter into Machine Code, which the C.P.U executes to nake
your program work, Let us exasine these teras:-

BASIC lHSTRUETiDHS-- you type these in from the keyboard i.e. LET A=l; PRIHT *Hello®, etc. These are mostly similar to English

B&SIC INTERPRETER: -\ this is a program in your Spectrum which “decodes* your Basic instructions into Machine Code instructions

: which the C.P.U can "understand", then execute.

C.P.U 1=~ the Central Processing Unit or “brain® of your Spectrum - it is the 1I80A Microproctessor. As you eay
expect, being an electronic device, it cannot understand English - only Machine Code.

Nachine Code t= the language the C.P.U understands - it is sisply a series of electronic signals which represent a series
of ordinary nuabers. The sequence of the nuabers tell the C.P.U what to do. It knows what to do for a
certain sequence of numbers, because it is pre-programmsed with a set of Machine Code instructions - there
are over 200 for the 180!

Points to Note:-

Ill. Each Basic instruction has to be decoded into Machine Code by the Basic Interpreter - this takes time, and is why
prograss written in Nachine Code run upto 60 times faster than those written in Basic.
{2). The Basic Interpreter is contained in a RON in your Spectrun’s memory.
(3). Nemory - Your Spectrum can be thought of as having a “"semory" consisting of 63535 "boxes" - each "box" can hold a nusber
from 0 to 255, The values 45535 and 0 to 255 are a characteristic of, and are fixed by, the C.P.U,
(4). RON - means "Read Only Memory® i.e. you can read from it using PEEK to find the nuaber in a box, but you can't write to
it, using POKE to alter it by putting 2 new number in a box.
(5). PEEK - if you type PRINT PEEK (memory location) - this gives the number in that location i.e. PRINT PEEK 0 gives 243 the
first nuaber in the ROM.
(8). If you type POKE location, nuaber - you can put a new nusber in a box - but only if it is in the RAM,
(7). RAN - This means Random Access Memory - the rest of your Spectrum’s sesory apart from the ROM. The RAM CAN be changed
using POKE to put a new number in a box. .
Why use Machine Code?:-
Advantages.
(1), Faster execution of your program.
{2). More efficient use of memory.
(3). Freedon fros the Operating System.
~ f.e. you can talk directly to the C.P.U. i.e,1-
. PROGRAMMER))) Machine Code))) C.P.U »)) Executes prograa,
Disadvantages. '
{1}, Being a simple sequence of numbers, mistakes are easy to wsake, one wrong nusber can give an entirely different
instruction!
{2}, It cannot readily be adapted to other computers.
(3), Aritheetic calculations are very difficult in Machine Code,

As you can imagine, a program consisting of a series of numbers is hard to understand. Thus, the progras can be written in
"ASSEMBLY LANGUAGE" - this uses abbreviations or mnemonics (pronounced "MEENONICS") to relate the instructions to English i.e.
it uses:~ LD - means LDAD; INC - means INCREMENT; SUB - means SUBTRACT, and so on. The mnemonics are entered into a progras
called an "ASSEMBLER' - this then produces the machine code (numbers) to be executed by the C.P.U i.e. an Asseabler is a
convenient way of generating machine code. Similarly, the reverse is a "DISASSEMBLER® i.e. it converts machine code back to
anenonics for easier understanding of a program. The course mow INCLUDES our "KDI DISASSEMBLER™ AND "KAt ASSEMBLER®, making it
very coaprehensive. For FULL details of KDl and KA1, see Chapter &.

As stated earlier, machine code is sisply a sequence of nuabers which represent instructions which the C.P.U can execute.

- As you may suspect, since the computer is an electronic device, the nuabers are represented by electronic signals. We can
inagine a series of switches - these can either be ON (shown by a ONE), or OFF (shown by a 1ERD). i.e.:-

(2)

I A R I
ON OFF OFF ON ON ON OFF ON OFF

The 780 C.P.U is an EIGHT-BIT device i.e. it groups these *switches® together in blocks of eight. Each “switch® is called a
BIT. Each group of 8 BITS = 1 BYTE or one memory location or *box", Incidentally, each group of 4 BITS is called a “NIBBLE®
(truly!). The above sequence of 1,0,0,1 etc is called the BINARY sequence. Consider again a group of 8 bits (=] BYTE). These
bits are nusbered conventionally thus:- 7,6,5,4,3,2,1,0 i.e. each byte has B bits numbered 0 to 7 from right to left (not 1
to B as you might expect), The bits can now be related to numbers using the BINARY systea thus:-

7 & 5§ 4 3 2 1 0 : BIT NUMBER
128 64 32 16 8 4 2 1 1 Decimal Nuaber

ory more sisply, the BINARY systes is based on the nusber 2 (similarly to the usual DECIMAL systes, which is based on the
nusber 10) i.e. the decimal nusber which each bit can represent if = 1 (or is ON or SET, as we sayl is the nusber 2 raised “to
the power® of the bit nusber. Take bit nusber 2, if set - this represents the nusber 2X2 = 4, Similarly, for bit 5 = 20202X2K2
(5 times) = 32 and so on. Bit 0 is a special case - if it = 0 or OFF {or RESET) - it represents 0. If = 1 or ON for SET) it
represents | (since 2 to the power of 0 = | - this is a mathematical fact - don't worry about iti), Thus, we can now sayi-

7 & 5 4 3 2 1 0-BIT NUMBER
126 64 32 16 B 4 2 | - DECIMAL NUMBER
7 6 5 4 3 2 t 0
2 2 2 2 2 2 2 2 -2T70 THE POHER OF

7 - T | I 2 1 0 - BIT NUMBER.
1 | { i 1 1 1 | - ALL Bits SET.
126 64 32 16 B 4 2 1 - Decinal Numbers.

i.e, the total nuaber the byte can represent is thusi- 128+64+432+4164B444241=255! Thus, the biggest nuaber that can be
represented by 8 bits or | BYTE is 233, We can take this further =~ consider 2 BYTES. Here we have:i-

15 14 13 12 11 10 ? 8 7 [3) 3 2 | 0 - BIT NO,

| 1 | 1 1 1 1 1] i 1 1 l i | I - ALL SET

32748 16384 B192 4096 2048 1024 912 254 128 b4 32 16 8 L] 2 1 - Decinal
Nos.

Add all these together, and you get 63535 - the biggest nuaber which can be represented by 2 bytes. It is important that you
understand this BINARY representation. Try counting in BINARY thus:-

[= — = - I - - - -]
SCoCco oo oo
cC o o000 oo
coocooc o oo
cCoco oo oo
—_— OO O O
—_—— O - - OO
—_ e S e S e S
[I I TR O I T
~NO U e LN -

and so on. You say now see that numbers are expressed in BINARY according to electrical *switches® being ON (SET), or OFF
(RESET). Thus, we can have:i= 0 0 | [T S S | I = 63 = CCF - Coaplement Carry Flag - a wmachine code

~instruction. There are over 200 machine code instructions which the C.P.U is pre-prograssed to recognise - we will send you a
list of these later in the course. The Binary systes is also used, since it can readily be related to another nusber systea
called HEXADECIMAL nuabering. Here, the sequence is based on the number {b. Here, we get:-

¢ 1t 2 3 4 5 & 7 B 9 A B C D E F
i A=10,B=11,C=12, D =13, E = 14, F = 15, The letters used are simply a convention. Thus, 15 in Hex. =F. 11 = B,

We can count further in Hex, thus:-
FFF

(3)

16X16X18 16X16 fox1 16X0

=40%9% =256 =14 0OtoF
0 0 0 F = {13 Decimal}
= +1 +
{ 0 16

Thus, Hexadecimal, (usually shortened to "Hex"), numbers increase in multiples of 16 i.e. 1611 (256), 16X16X16 (4098), and so
on. For example, what is 63 in Hex? To calculate this, we divide by the largest of the multiples - here 16 (the next - 256 s
too big), this gives the first digit as 3, with a remainder of 15, But 15 = F, so 63 = 3FH. NOTE:- All Hex nusbers usually
have a sutfix "H* to show they are in Hex. Thus, here we have 3FH. Another example isi- What is 681 in Hex? Here, we again
start by dividing the decisal number by the largest Hex multiple, which in this case is 256 (16X16). This gives a first digit
of 2, with a remainder of 169. We now divide the remainder by the next lowest multiple i.e. 16 - this gives the next digit as
10, with a resainder of 9. Remeaber, 10 in Hex = A. Thus, the answer is: 681 Decima) = 2A9H. The BINARY system relates to the

Het systes thus:- EACH NIBBLE f{group of 4 BITS) IN A BYTE, REPRESENTS ONE HEX DIBIT. Consider the exasple 63 above. In BINARY
this isi- .

7 6 5 & 3 2 | 0- Byte Nusber.
[| | 1 | 1 1 - Binary Number.
128 64 32 16 B § 2 I - Decimal Numbers.

To rapidly relate to Hex, we divide the 8 bits of the byte into 2 nibbles thus:-

T 6 53 4 *3 2 1 0 - Byte Number.

(U A T I | 1 1 - Birary Nusber.

0 0 2 't *“8 4 2 1= Decimal Nusbers,
\ 241 =} A B+4+42+1 = 15 =FH ~ Hex Number,

The only ditference is that, by splitting the byte, we now have 2 nibbles, numbered thus:-
5 A

~3 2 i 0 - Byte Nuaber.
A8 4 2 1 - Decieal Numbers,
A

i 5
7T 6 5 4 *3 2 1 0=~ Byte Nuaber.
1 | A D B | 1 1 ! - Binary Number.
8 4 2 { *8 4 2 1-Decinal Nusbers.
B+4+24] = 15 = FH *B+442+¢1 = 15 = FH - Hex Number.
i.e. F » F

i.e. = FFH = 255 Decimal. Similarly, for 2 bytes, the largest number is FFFFH = 65535 Decimal. This sinple way to interchange
between Rinary and Hex is useful, since most Assemblers and Disasseablers display the machine code in Hex nusbers. Also, these
can now be converted to Binary, so you can see the state of each individual bit in the byte,

The Structure of the C.P.U.

We will now consider in more detail the structure of the "brain® of your Spectrum - the Central Processing Unit.
We can consider a machine code program to be a sequence of instructions for the C.P.U to perform particular tasks. In the 180
C.P.U, all instructions are represented internally as single or sultiple bytes. [Instructions represented by one byte are
called *SHORT" instructions; longer ones are represented by two or more bytes. Because the I80 is an B-bit processor, it can
only deal with one byte at a time - if it requires more than one byte, it aust fetch bytes successively from mesory, Thus, a
single byte instruction is usually executed more rapidly than a 2 or 3 byte one. This is why it is best to write your wmachine
tode program using as many single byte instructions as possible,

The structure of the IB0 can be divided into 5 main parts i,e:-
{1). THE CONTROL UNIT,
(2}, THE INSTRUCTION REGISTER,
{3). THE PROGRAN COUNTER,
{8). THE ARITHNETIC - LDBIC UNIT (A,L.U),
{5). THE 24 USER - REGISTERS.

(4)
We will now consider each in more detail;-

THE CONTKOL UNIT,

‘The Control Unit is the supervisor for the C.P.U's processing. Its task is to time and coordinate the input, processing and
output of any task the C.P.U is pertorming.

THE INSTRUCTION REGISTER.

The Instruction Register is where the CPU stores the current instruction which it is about to execute. Resember, your
program is a sequence of instructions. To execute the instructions, the Control Unit must fetch each instruction in turn froa
aenory, and place it in the Instruction Register,

THE PROGRAM COUNTER,
-This is a location in the CPU where THE ADDRESS OF THE NEXT INSTRUCTION TO BE EXECUTED is stored.

THE ARITHMETIC AND LOGIC UNIT (A.L.U},
This is the calculator inside the CPU. It can only perform simple aritheetic, i.e. addition, subtraction, incresentation
(adding 1}, decrementation (subtracting 1), NOT aultiplication or division!

THE USER REGISTERS. /
There are 24 user registers in the CPU. They are locations which can hold one byte or two bytes. They are usually shown asi

A

L)

A

T = w >
—mom

I
Iy

The use of the letters is pure convention. The important points are:-

The registers AF, BC, DE, and HL are usually paired together. However, they can ALSD be used SEPARATELY as individual
registers i.e. B, C, D, E, H, and L. When used thus, each register can represent B bits or 1 BYTE. When ‘paired*, they can
represent 16 bits or 2 bytes. Also, the arrangement of letters in the pairs tells us which register holds the high part (i.e.
HI1GH ORDER BYTE - H.0.B), and which the low part (LOW ORDER BYTE - L.0.B}. Thus, for example, using the Hex nusber 7EEAH,
this is 2 bytes reseaber, the H.0.B is 7EH, the L.0.B is EAH, Thus, if this was contained in the KL register pair, the H
register would contain 7EH, the L register EAH. Similarly, for AF, BC, and DE - A,B, and D contain the H.0.B; F,C, and E
contain the L.0.B. However, the AF register pair is a special case. Here, the A and F registers are ALWAYS used SEPARATELY.
The A register has a special name - it is called the ACCUMULATOR. It is always used to perfora arithsetic functions. Also, the
F register is known as the FLAGS register, This is used thusi- the 8 bits in the byte of the register are used as °*FLABS®,
1.e. indicators as to whether the result of a certain operation is negative, or positive; zero or not zero etc; according to
which bits in the byte are SET (=1) or RESET {=0). Thus, the A and F registers are ALMAYS used singly as single 8 bit
registers, each with a special function. The HL register pair is also more important than the BC and DE pairs. This is because
certain 16 bit arithaetic operations can only be perforsed using HL. Because of this, general register pair operations will
usually be faster using the HL register pair - use it preferentially where you can! The IX and 1Y register pairs are also a
special case. They are called INDEX REGISTERS i.e. they contain an address (ALWAYS 14 bit) to which can be added offsets i.e.
IX + 1, I¥ + 2, etc - hence the name INDEX registers. ;

The CPU also has an ALTERNATE REGISTER SET. This can be likened to a mirror isage set of the AF, BC, DE and HL registers.
They are used mainly as a temporary storage place for data, which can then readily be put back into the usual registers with a
sisple “exchange® comsand. They can thus only be used in exchange - there are no separate instructions for theam. There are J
nore important registers - these arei- THE STACK POINTER {(SP). This contains the address of the stack in memory. The stack is
a series of memory locations (usually in RAM), where the CPU stores numbers temporarily. Liken it to the stack used in an
office i.e. that metal spike onto which are placed bills, etc. The only difference being that in the cosputer, it can be
thought of as hanging from the ceiling i.e. as the stack grows, it grows DOWNWARD from HIGH to LONER memory locations. It is
ALWAYS used as a 16 bit register PAIR., Numbers are stored by PUSHING them onto the stack, then retrieved by POPPING thea off
{see later),

Another register is the [Register or Interrupt Vector register, It is usually used to hold the base address of a table of
addresses for handling ditferent responses to an interrupt - this is only very rarely used. The final register is the R or
Menory Refresh register. This is mainly used for obtaining random nuabers from 0 to 255.

We hope you have understood the important points in this first part of the 180 course. To help, please find on a separate
sheet a few exercises to try - the answers are on the reverse side - no peeking!

(1)

"KOBRAWSOFT Z80O MACHINE CODE COURSE™"

CHAPTER (1) EXERCISES

We hope these few exercises will help to illustrate the points dealt with in the first chapter of our B0 course. We
tuggest you try them, then check with the answers which we have printed on the opposite side. Also, make a few of your own -
the more practice you get the easier it will become, Remember, if you get stuck, or if you have any questions about any part
of this course, don't hesitate to write to us. FLEASE enclose an S.A.E. for our reply!

{A}. What are the following Decimal numbers expressed in BINARY notation?

. 9,
(2). 2\
{3, &8,
-4, 149,
(5, 217,

(&), What are the following Decimal numbers expressed in HEX notation?

. 121,

1), 249,

., 2. Y
), 98,

15‘. ?‘1‘

For the answers, see overleaf - no peeping!

(1)

"KOBRAHSOFT Z80 MACHINE CODE COURSE"

CHAPTER (2)

USING THE REGISTERS,
We will now consider the use of the REGISTERS in machine code, by considering a few simple machine code instructions i.e.
LD HL,nn, These are the “snemonics® (remember?) for:- *Load the HL register pair with the 2 byte nusber represented by nn®,
The sachine code instructions are:-

In DECIMALY 33,n,n or 33,nL,nH.
In HEX t 2L,n,n or 21,nL,nH,
=not as you might have expected:~ 33,nH,nL; where nH is the HIGH DRDER BYTE (the larger part of the nuaber), and nL is the
LOW ORDER BYTE (the smaller part of the number) e.g. for the Hex nusber 7006 ~ 7D is the H.0.B, 06 or & is the L.0.B. As you
can see, this is a THREE BYTE instruction i.e. 33 (the instruction to LOAD HL with a 2 byte number) - the nusber consisting of
the 2 bytes that follow i.e. n,n or more specifically, nL,nH. The numbers are nL,nH and NOT nM,nL as you would expect,
becauset IN THE 180 CPU, NUMBERS ARE STORED LOW BYTE FIRST, HIGH BYTE SECOND! i.e. the reverse to what you would expect. This
is siaply a convention, but it is NOST INPORTANT, Thus, for the Hex number 7004, we would have:-

MNEMONICS 180 INSTRUCTIONS
LD HL,7D04 33,6,125 - in DECINAL,
LD HL,7D0& 21,6,70 - in Hex.
This is how the instruction MUST be entered in a sachine code progras. When executed, the result will give:
H Register L Register
In Hex: b)) 04

i.e. the result you wanted. YOU must enter the correct instruction sequence so that the result is to be what you want,
Consider, if you had writtent- (in Hex) 21,7D,05 - you would get as a result:-
H Register L Register
06 7
- the reverse to what you wanted! It is most important that you understand how to enter nuambers as 1B0 instructions
correctly, to get the result you want. Similarly:- (In Hex) for the number 7D0b:-

NNEMONICS 180 INSTRUCTIONS
LD BC,nn 1,nL,nH OR 1,6,70 - gives B=7D; C=06.
LD DE,nn 11,0L,nH OR 11,6,7D - gives D=7D; E=06.

We will now write our FIRST machine code program to show you how fast it really is! A good example uses the LDIR comsand,
which moves blocks of memory around. We will discuss this in greater detail later. We will load the SCREENS (code for the
picture) {from any of your games to a convenient location; e.g. 32000 (7000 Hex); then use the LDIR comsand to move ALL 6912
bytes into the screen area at 15384 (4000 Hex). Firstly, choose a game with a good picture - we will use for our exasple
"EXPLODING FIST®. ANY picture will do - but ensure that it is suitable i.e. it loads at normal speed, and is not "protected* -
the MNelbourne House games are good in this respect. To check, type LDAD*"CODE 16384 {ENTER) and PLAY the game tape from the
start. Usually the Basic loader appears first, then in a suitable game, the SCREEN$ should then load to give you a picture,
Now, leoad the picture to 32000 by typing LOAD*"CODE 32000 {ENTER). Instead of a picture now, the SCREENS code will siaply load
to address 32000. We can put our machine code program at, say, 30000, The mnemonics for the program are:-

NNEMONICS 180 INSTRUCTIONS (Hex) 180 INSTRUCTIONS (Decinal)
LD HL,7D00 21,0,70 33,0,125

LD DE, 4000 11,0,40 17,0,64

LD BC,1800 1,0,1B 1,0,27

LDIR ED, B0 237,176

RET €9 201

i.e. the progras consists of the sequence:- 33,0,125,17,0,64,1,0,27,237,176,201 - only 12 nusbers! The HL register contains
the start address of the block to be moved - here = 7000 Hex = 32000 Dec. The DE register contains the destination address -
here = 4000H = 14384 Dec. The BC register contains the nuaber of bytes to be moved - here = 4912 Dec = 1BOO Hex, The
instruction for LDIR are the numbers ED, BO Hex = 237,176 Dec. The RET or Return ensures we return to Basic, The instruction
for RETurn is CY Hex = 201 Dec. We can POKE the 12 numbers for the routine starting at 30000 using the following Basic Loader
{NOTE:~ This could alse be done using an ASSEMBLER - see earlier). Type imi-

10: FOR A=30000 10 30011: INPUT B: POKE A,B: NEXT A

This program waits for you to input a number, then POKES it to the appropriate address. RUN it, and enter the 12 nuabers.
Your first aachine code progras now resides at address 30000 - 30011. If you wish to examine a range of memory locations, we
will use the following progras (we shall call it "PEEK LINE*):-

(2}

Type 10 {ENTER) to reaove the previous program, then type in:-
10: FOR A=30000 TD 30011: PRINT A,: PRINT PEEK A: NEXT A
KUN it, and you will see your sachine code progras! How do we execute this progras? All machine code routines can be
executed from Basic using the USK command. So here, we type RANDONISE USR 30000 (ENTER). Dn pressing ENTER, the whole picture
(6912 bytes) is moved from address 32000 to the screen in a flashl Such is the speed of machine code! 1f you want to repeat
the routine to impress your friends, type 10 (ENTER) to resove °"PEEK LINE®, then enter this small Basic program:-
10: RANDOMISE USR 30000
20: BOTO 20
RUN it, and the picture will appear in a flash! Line 20 stops the computer froa printing the uswal *0.K.* message at the
bottos of the screen, and spoiling the picture. To re-run the program, press “BREAK"; type CLS (ENTER); then type RUN (ENTER}
d49ain, and so on. This illustrates the beauty of machine code - whilst running your machine code routine, YOU are in TOTAL
control of the computer, not the reverse! But REMEMBER, ONE wrong nuaber can give the CPU a completely different instruction
from the one you intended, which usually "CRASHES* the computer. This is sisply the term used when there is no response froa
the keyboard - don’t worry, no damage is done! It is simply resolved by switching your cosputer off, then (after a few
seconds) on again - or by pressing the RESET switch if you have one. This is said to RESET the computer, or start it anew.
Incidentally, this can also be done {if you have keyboard response and wish to reset the computer) by typing RANDOMISE USR 0
(ENTER). This calls the ROM routine at address 0, and resets your computer - just as if you were switching it on in the
sorning.

THE STACK AND STACK POINTER (S.P.).

As stated earlier, the stack is an area of memory which the CPU uses for the teaporary storage of nusbers. The Stack
Pointer (S,P.} is a 2 byte register which contains the current address of the last nusber on the stack. Liken it to that
office "spike® on which you stick bills, etc. However, in the Spectrum, the spike can be imagined to *hang from the ceiling®,
thusi-

___________ CEILING or Top of Memory
I Top of Stack

" o
Stack Pointer _ ___I___ _ Bottom of Stack
= address of I
last nuaber, Lower semory

i.e. it grows donnwards (towards lower memory). A nusber is saved onto the stack using the PUSH instruction. 1t is
retrieved using the POP instruction, All numbers saved on the stack are 2 byte nusbers i.e. you CAN have PUSH HL - save the
value contained in the HL register on the stack. You CANNDT have PUSH D - save the contents of a single register. Can you see
that when you PUSH a number onto the stack, the address of the G.P., DECREASES by 2 bytes? (i.e. SP=5P-2). Similarly, a POP
INCREASES S.F, by 2 bytes {SP=5P+2). PUSH and POP are a quick way to exchange nusbers between registers i.e. if you PUSH KL,
then POP DE, the nuaber in HL is transferred to DE! You MUST always know the location of the stack in semory. 1f you
overwrite the stack {i.e. load other bytes over it), the Spectrum will crash, since the CPU won't know where its next number
will come fros! The position of the stack is fixed from Basic using the CLEAR instruction i.e. CLEAR 60000 means the stack
starts at 59999 (CLEAR value - 1}, In machine code it is fixed using the LD SP,nn instruction, Where nn is the 2 byte address
you choose., Reseaber, you must always REVERSE your sequence of PUSHes. and POPs to retrieve the correct nusbers you need i.e.

PUSH AF
PUSH BC
FUSH HL
reversed gives:- s
POP HL
POP BC
POP AF
- to retrieve the original values.

USING THE REGISTERS TO ADDRESS MEMDRY.

There are FIVE main ways in which data can be transferred from one register to another, or from a register to semory i.e.:-

(1), lamediate addressing.

{2), Register addressing.

{3). Register indirect addressing.
(4). Extended addressing.

{3), Indexed addressing,

(3)
Don’t worry too much about the complex names - these are only used as a convention, Taking each one in turn:-

INNEDIATE ADDRESSING.

The general fora for this is:- LD r,n {or other instruction, we are using LD as an example only). Where r is any B-bit
{single byte) register e.q. A,H,L etc, and n is any B-bit (single byte) number e.g. 0 - 255. We thus have an interaction
between a REGISTER and DATA. An example is:- LD 4,255 (Dec.) or LD AFF (Hex). The wachine code instructions are:- 62,255
(Dec.) or 3E,FF (Hex). Note that the actual data is a part of the instruction - this weans that the CPU can execute the
instruction IMMEDIATELY - it doesn't need to look in seaory to find more information in order to perform the instruction, The
general format is:- Ist Byte:- instruction code (or opcode) - this tells the computer what the instruction is i.e. LD A; LD H;
etc, 2nd Byte:- the actual data byte. Since this is a single byte - only nusbers in the range 0-255 can be used.

REGISTER ADDRESSING.

The qeneral form isi- LD r,r. (or other instructions) - i.e. an exchange between one register and another. An example is:
LD A\B; or LD H,E etc. NOTE:- We CANNDT have LD H,F - since F the FLAG register is a special case (see earlier), The
instruction LD H,E means LDAD H with the contents of E. Thus i+ H contains 7D (Hex) and E contains 3F (Hex). After execution
of the instruction we would have:- H contains 3F, and E contains 3F. These instructions only need ONE byte, thus they are fast
and are to be used wherever possible.

REGISTER INDIRECT ADDRESSING.

This mode is a little sore complex. The general format is:- LD {rrd,A or LD A (rr) or LD (HL),n, Here we have the transfer
of data between the CPU and a memory location whose address is contained in a 16-bit (2 byte) register pair i.e. HL, DE etr,
NOTE:- rr is used to show such a REGISTER PAIR. Consider:- LD (rr),A. Buppose rr is the HL register pair, and it contains the
nusber 7DOOH (the suffix "H' from now on will indicate a HEX nuaber - no suffix will indicate a Decimal nuaber; this is the
usual convention used). Suppose the Accumulator A contains the number 7EH. The instruction LD (HL),A weans take the value in
Ay and put it into the address contained in HL. Thus, after execution, the location 7DOOH would contain 7EH, HL would still
tontain JDOOH, and A 7EH. For LD A,lrr) - suppose rr was HL, which contained TFOOH; if location 7FO0H contained the nusber
$AHy and A contained 83H - after execution, A would contain 4AH. For the example:= LD (HL),n., Suppose HL held the number BOAOH
and n la single byte number) was 4DH. If the location BOOOH contained, say, 2DH; after execution it would contain 4DH, This
aode of addressing is faster than ordinary indirect addressing, since the CPU need not fetch the address fros memory,

EXTENDED ADDRESSING.
The general format is:-

LD A, (an) or LD (nn),A
ort- LD HLythn) or LD (nn),HL

where nn represents a 2 byte (1b-bit) address in mesory. In this node, the instructions from the program supply the CPU with
an address specified by these 2 bytes.
It single registers i.e. A,H,D etc are involved, there will be 3 instructions. With register pairs e.q. HL,DE etc, there
will be 4 instructions,
E.q. Consider:- LD A,(nn) - the general instruction format isi- SA,nL,nH,
LD (nn),A - the general instruction format isi= 32,nL,nH.
LD HL,(nn) - the general instruction format isr- ED,b6B,nL,nH.
LD (nn),HL - the general instruction format is;- ED,b3,nL,nH,
or, in general,
Byte [1- Opcode - tells the CPU what type of instruction to expect.
Byte 2:- Possible additional opcode if register pairs are involved.
Byte 3:- Low order byte of the 2 byte address,
Byte 4:- High order byte of the 2 byte address.

INDEXED ADDRESSING.
This, as you might expect, involves the use of the Index Registers IX and IY. The general format is:-

LD ry (1X+d) or LD ry (IV+4d} or LD (IX+d),r or LD (1¥+d),r,

Where r is a single byte register e.g. A,B,H,D etc; d is a single byte nuaber for the displacement from the start address.
The CPU adds this nuaber d to the contents of the I¥ or IY register to find the required address. One typical usage for this
type of addressing technique is the manipulation of tables of data. e.g. you can set the address in the IX or IY registers to
be the start address of a table of data. You can then specity any particular byte to which you want by adding the value d.

(4

e.0.i"
LD 1X, TABLESTART
LD A, (1X+3)
This will refer to the Sth byte from the start of the table, and it will be placed in the Accusulator.
The general format is:-
Byte 1:- opcode - tells the CPU what type of instruction,
Byte 2:- opcode - as above.
Byte 3:- displacesent d.
Indexed addressing is slow because the CPU sust perform an addition in order to obtain the effective address. However, it is
yery flexible since the same instruction can refer to all the elesents in a table simply by altering the value of d.

NOTE:- You can combine immediate addressing (i.e., specifying the nuaber you want loaded) with external addressing (i.e.
specifying the address to be laaded by using a register pair). This is called “INMEDIATE EXTERNAL ADDRESSING*. Unfortunately,
you can only use the HL register pair and the general format is thus:- LD (HL),n. This is very useful, since it allows you to
directly fill a memory location with a number without having to load the number into a register. Consider:- if HL contains the
address 7D00H, with the instruction LD (HL),FFH, you can put the value FFH in address 7D00OH! The instruction is only 2 bytes
long i.e. J&H,n. Bhere n is a single byte nuaber.

A sisilar coabination is possible using the Index Registers IY and 1Y. This is called "INMEDIATE INDEXED ADDRESSING®. The
instructions take the form of:-

LD (1X+d),n
LD (1¥+d) ,n

THE FLAGS REBISTER F.
As we stated earlier, the F or "FLABS" register is used to indicate the existence of certain conditions. The Flag register
is an 8-bit register and, of the B bits, & are used as “flags". These are as followsi-

Bit No.:- 7 b 3 4 3 2 l 0

FLAG :- SIGN 1ERD NOT HALF NOY PARITY ~ NEGATE CARRY

FLAG FLAG USED CARRY USED and or FLAG
(5) (1) FLAG OVERFLOW SUBTRACY (C)
(H) FLAB FLAB
(PIV) N)

NOTE:- These flags all relate to the condition of the number in the A register (Accusulator). We shall briefly discuss each
flag in turn - we will discuss their uses more fully later.
THE IERC (1) FLAG. !

This flag will be set i.e. the bit which represents the flag (bit &) will be set or = 1 if, as a result of an aritheetic
operatian, the contents of the A register are zeroj otherwise it is reset or = 0.
THE SIGN FLAG (5).

This is very similar in use to the zero flag above i.e. if the contents of A are positive - the flag is setj it negative it
is reset,
THE CARRY FLAB,

This is one of the most important of the flags. Briefly, it is set if the result of an arithaetical operation would give an
*underflon® i.e. 200-201 gives 255! This is best seen by thinking of the carry bit as a 9th bit of the A register thusi-

Nusber Carry Bit Nusber in Binary Fora
200 " 11001000

= 201 = - 11001001
235 ' 1 (set) i1t

A similar situation arises with an "overflow" i.e. 1324135=267 with the carry set.
PARITY/OVERFLOW FLAB (P/V),
This tlag is set when, after an arithaetic operation, there are an EVEN nusber of SET bits in the result.
SUBTKACTION OR NEGATE FLAG (N),
This flag is set if the last operation was a subtraction.
HALF-CARRY FLAB (H).

This {lag is set similarly to the carry flag, but only if the overflow occurs from the 5th bit = not the fth!

Now for the guod news - no exercises this week! We think this chapter should keep you thinking tor a whilel

This month we give you a list of the NORE COMMON 80 snemonics and their representations in Hex numbers.
if you don't understand them - we will deal with each group in more detail later.

MNEKONIC

ADC HL,BC
ADC L, DE
ADC WL, SP
ADD A, (HL)
ADD A, L1X+dis)

ADD A, t1Y¢dis) |

ADD A,n
ADD HL,RC
ADD HL,DE
ADD HL,HL
ADD HL,SP
ADD 1X,BC
ADD IX,DE
ADD IX,1X
ADD IX,SP
ADD 1Y,BC
ADD 1Y,DE
ADD 1V, 1Y
ADD 1Y,5P
AND {HL)
AND A

AND n

BIT 0,A
CALL ADDR
CALL C,ADDR
CALL NC,ADDR
CALL NZ,ADDR
CALL 1,ADDR
CP (HL)

CP A

CPn

CPOR

CFIR

DEC (HL)
DEC A

DEC BC

DEC DE
DEC HL

DEC 1N

DEC 1Y

DEC 5P

D1

DIND dis
El

EX (5P} HL
EX AF,A'F'
EX DE,HL
IN A,port
INC (HL}

HEX

NO

EEZEZS

ED 4A
ED 5A
ED 7A
86

DD 8BS
FD B
Ch xx
9

19

29

39

DD 09
DD 19

}]
L3

bD 29 |

DD 39
FD 09
FD 19
FD 29
FD 39
Ab
A7
Eb xx
CB 47
€D xx
DC xx
D4 xx
C4 xx
CC xx
BE
BF
FE xx
ED B9
ED Bl
35
30
0B
iB
2B
00 2B
FD 2B
IB
F3
10 xx
Fp
E3
08
(3]
DB xx
34

XX
xx
XX
xx
XX

(1

"KOBRAHSOFT 780 MACHINE CODE COURSE"

KNENONIC

INIR

JP (HL)

P (IX)

JP ADDR

JP C,ADDR

JP NC,ADDR
JP N1,ADDR
JP 1,ADDR

IR C,dis

JR dis

JR NC,dis

JR NI,dis

JR 1,dis

LD (ADDR),A
LD {ADDR),BC
LD (ADDR),DE
LD (ADDR),HL
LD (BC),A

LD (DE},A
LD (HL),A

LD {HLY,n
LD (IX+dis),A
LD (IX+dis),n
LD A, (ADDR)
LD A, (BC)

LD A, (DE)

LD A, (HL)

LD A, {DN+dis)
LD A,n

LD B,n

LD BC, {ADDR)
LD BC,nn

LD Cyn

LD Dyn

LD DE, (ADDR)
LD DE,nn

LD E,n

LD H,n

LD HL, (ADDR)
LD HL,nn

LD IX,(ADDR)

HEX

i

03 .
13

23

0D 23
D23
33

ED BA
ED B2
E9

DD E9
C3 xx
DA xx
D2 xx
C2 xx
CA xx
38 xx
18 xx
30 xx
20 xx
28 xx
32 xx
ED 43
ED 53
22 ux
02

12

17

36 xx
oo 77
DD 3&
JA xx
0A

1A

7E

Dl 7E
3E xx
06 xx
ED 48
01 xx
0FE wx
I6 xx
ED 5B
11 xx
IE xx
26 %y
2A xx
21 xx
DD 2A

CHAPTER

(3)

ND

%
X
L
LR
LR 4

XK
LY]
XX
xy

L3
L3]
4]

w

LE
L34
X

L3
1]

L}]

LE

x

MNEMONIC

ExaEsoDEE

LD IX,nn
LD 1Y, (ADDR)
LD 1Y,nn
LD Lyn

LD 5P, (ADDR)
LD SP,nn
LD SP,HL
LD SP,IX
LD SP,IY
LDD

LDDR

LDl

LDIR

OR (HL)
OR A

OR n

0TDR

aTIR

aut (C),A
OUT port,A
POP AF
POP BC
POP DE
POP HL
POP IX
POP IY
PUSH AF
PUSH BC
PUSH DE
PUSH HL
PUSH IX
PUSH 1Y
RES 0,A

- RET

RET C
RET NC
RET NI
RET 1

RL A

RR A

RST 08
SBC HL,BC
SBC HL,DE
SBC HL,HL
SBC HL,SP
SCF

SET 0,A
SLA A

SRA A

DD 21 xx
FD 2A xx
FD 21 xx
2E xx

ED 7B xx
3 oxx xx
F9

DD F9

FD F9

ED AB

ED B8

ED AD

ED BO

bé

87

Fé xx

ED BB
ED B3
ED 79
D3 port
Fi

Ci

]}

Et

bb El

FD El

FS

{5

[1A]

£S5

DD ES

FD ES

Ch 87

c9

08

Do

co

(]

CB 17
[B IF

CF

ED 42
ED 52

ED 62
ED 72

37

cs C7

ch 27

CB 2F

KNENONIC

Do not worry

HEX ND

SE=EZZE

93
AF
EE xx

(2)

We sust stress that this is not a FULL list - for the full list, please consult any of the 180 reference works which are
usually available at your local library. A good book we can recommend is:- "PROGRAMNING THE 1BO* by Rodnay laks. This gives a
FULL list of ALL the 280 anemonics, together with a lot of other useful inforaation,

NOTE:- In the above list:-

n - represents a SINGLE BYTE nuaber,

nh - represents a TWO BYTE nuaber.

xx - represents a SINGLE BYTE number (2 Hex digits).
xx xx - represents a TWO BYTE number (4 Hex digits).

Information Representation in the Spectrum,

hs we stated earlier, all information in your Spectrum is stored as groups of BITS. A BIT stands for Binary diglT i.e. a
0" or a "I, Because of its electronic nature, your Spectrus can only represent data using this two-state or BINARY systea.
Just to remind you, the rules for ADDING binary numbers are:-

_—— D
+ + + o+
—_— e o
LTI TR TR 1]
—— O

—
—
(=]

- where (1) denctes a “carry® of 1 i.e.

(= J decimal)
= |1 decimal)

As stated earlier, we can thus represent numbers from 00000000 to 11111411 i,e. O to 255 in B8 bits in binary. There are 2
probleas here:- (1) we are only representing POSITIVE nusbers. (2) The magnitude of these nuabers is limited to 255 if we use
only B bits, Consider each of these problems in turn:-

SIGNED BINARY.

In a signed binary representation, the left-most bit is used to indicate the sign of the nuaber. As a convention, *0* is
used to dencte a POSITIVE nuaber, while “1" is used to denote a NEGATIVE number. Now, 11l111111 will represent =127, while
01111111 will represent +127. We can now represent positive and negative nusbers, but we have reduced the saxisum range to
127. e.q. 00000001 represents +1 (the leading 0 means "+*, followed by 0000001 = 1}, Also, 1000000! is -1 {the leading °1*
seans *-*, followed by 0000001 = 1),

Now consider the MAENITUDE probles. In order to represent larger nuabers, we will have to use a larger nusber of bits e.q.
if we use 16 bits (2 bytes), we can represent nusbers from -32768 to +32768 in signed binary, Bit 15 is used for the sign, and
the remaining 13 bits (14 to 0) are used for the magnitude.

Consider using signed binary for a simple addition i,e.1- let us add -5 and +7:-

+7 is:- 00000111
-3 is:- 10000101

The sum is:- 10001100 or -12!

This is incorrect! It should be +2! i.e. the binary addition of signed nuabers does not work correctly. The solution -to
this problem is called the "two’s complement" systea, which will be used instead of the signed binary systes. In order to
introduce two's cosplesent, let us first introduce an intermediate step:- one's compleaent,

One’s Cosplesent,

In this system, all positive integers (whole nuabers) are represented in their correct binary format. For exasple, +3 is
represented as usual by 00000011, However, its cosplement -3 is obtained by complementing or swapping every bit in the
original representation i.e. each 0 is transformed into a 1, and each 1 is transformed into a 0. Thus, in this exasple, the
one’'s cosplesent representation of -3 will be 11111100, Also, +2 is 00000010; -2 is 11111101, Note that here, positive nuabers
start with a 0 on the left, negative with a 1 on the left.

As a check, let us add ainus 4 and plus 6:-

(3)

-4 iss- 11111011
+6 1s1- 00000110

The sua is:- (1) 00000001

where (1) indicates a carry. The correct result is 2 or 00000010, i.e. it did not work. This is overcome using:-

Two's Complement.

In this system, positive nuabers are still shown, as usual, in signed binary, just as in one's cosplesent, The difference
lies in the representation of NEGATIVE numbers. A negative nusber in two's complement is obtained by first computing the one's
coaplenent, and then ADDING ONE. Consider:- +3 is shown in signed binary by 00000011, I1t's one's complement is 11111100, The
two’s complement is this PLUS | or 11111101, Consider:~- '

3 is:= 000000114
+5 ist- 00000101

el T T T T —

=8 = 00001000

The result is correct! i.e. we have found a way to represent negative nusbers - we now know how to use this convention if
we wish to enter nuabers of specific sign for arithetical calculations, etc.

USINE THE MNEMDNICS,

We will now consider the use of the various groups of mnemonics in machine ctode programs, As we mentioned earlier, all
nachine code prograss are called from Basic using the "USR* command. This can take the form of RANDOMIZE USR, PRINT USR, RUN
USR etc. PRINT USR is a special case, since, on returning to Basic from a machine code routine it prints the value in the BC
register pair at that time. When the Spectrua operating system encounters this *USR® function, it loads the BC register pair
with the nuaber specified in the USR command. We can check this thusi- Type:- POKE 32000,201 (ENTER), Now type FPRINT USR
J2000 {ENTER}. The nusber 32000 appears. You have executed another machine code program. It works thusi- when you POKE the
value 201 to address 32000 - this is the mnesonic for RETurn i.e. return to Basic. (See list above), Typing the PRINT USR
32000 comnand loads 32000 inte the BC register pair - this is printed on returning to Basic! A further refinesent would be:-
FOKE 32000,14; POKE 32001,240; POKE 32002,201, These numbers represent the machine code program: -

LD €,240
RET

Thus, type PRINT USR 32000. The nusber 32240 appears! This is because you have loaded the C register with 240 (FOH) - the
B register is unaltered - thus the new number in BC is 32000 + 240 = 32240, Experiment by putting various other nusbers in the
C register i.e. change the nuaber at 32001, and note the results, Reweaber, you MUST always include a PETurn, otherwise you
will not return to Basic and the computer will crash!

Another example of an B bit loading instruction is:-

LD A,B

This would read as: "Load the A (Accumulator) register with the contents of the B register®. We can have sisilar
instructions invelving the other registers i.e. LD CyA; LD E\H etc - even LD A,A! Remesber, the F or Flags register is a
special case, so there are no instructions involving it singly e.q. LD F,A is not peraitted. A general representation of this
type of instruction is:-

L r,r

- where r represents any 8 bit register EXCEPT F. Remember, this is called REGISTER ADDRESSING (see earlier) or the
transter of information from one register to another.
We can also load numbers into a register, e.q.:-

LD D,D7H

= where this means "load the D register with the nusber D7 in Hex'. (21% decimall. The nusber for the mnesonic LD D,n or LD D
with a number, is 16H, followed by the nusber; or 16,n. Thus, the instruction for LD D,D7H isi- 16H,D7H or 22,215 in decimal.
This would put the nusber 215 into the D register,

(4)

You may recall this is known as imsediate addressing. Again, you can do this with any of the registers, with any nusbers -
the lisitation of course being the size of the numbers i.e. 0-255 since you have only B bits. A shorthand representation of
this isi-

LD ryn

where r indicates any register and n any SINGLE BYTE number.
We now need to know how to put numbers into memory locations - after all, we have only so many registers! The genmeral
anemonic to do this is:-

LD A, {nn)

Remeaber that the brackets mean “the contents of the location pointed to by the number nn®. Where nn is a TNO BYTE (14 bit)
nusber, Let us clarify this, as it is a difficult concept, but one which it is most important that you understand clearly.
Suppose the number is, for exasple, 32000 (7DOOH). Thus, we have:-

LD A, (7D00H)

Suppose location 32000 contained the nusber 200; then the above instruction would result in the nuaber 200 being placed in the
A register, Other points to note about this instruction are:-

{1). You can only use it with the A register.
(2). YOU must supply the memory location as a 2 byte (16 bit) number,

The reverse instruction is also valid i.e.:~
LD (nn},A

Here, the nusber in the A register is placed in the memory location addressed by the nuaber nn - in the above case, if A
tontained the number 173, the instruction would result in this nuaber being placed in Jocation 32000,

keseaber, these 2 instructions only apply to the A register - there are other instructions for the other registers, but
none quite as clear as these, Again, it's because A is a special register (the Accuaulator).

As you can see, these 2 instructions are very powerful. The instruction LD A,inn) allows us to get a nusber froa any aesory
location, and place it in the A register. The instruction LD (nn),A allows us to put a nuaber in any mesmory location froa the
A register,

Another fora of instruction uses register indirect addressing. These are of the general form:-

LD r, (HL)
LD A, (BC)
LD A, (DE)

These read as:~ “Load the register r with the contents of the memory location pointed to by HL®.
Load A with the contents of the memory location pointed to by BC.
*Load A with the contents of the memory location pointed to by DE“.

Note that by using the HL register pair as the pointer to our semory loration, we can load to ANY reqister - even Hor L -
but using BC or DE, we can only load into the Accumulator. This is because the HL register pair the tavoured register pair in
the same way that the A register is the favoured single register. Again, the reverse instructions apply i.e.i= LD (HL),rj LD
(BC) ,A; LD (DE),A,

Alternatively, we could use the index registers IX and 1Y to point to the memery location i.e,

LD r,{IXtd)
LD r,(1Y+d)

Here, r 1s again any register, and d is the displacesent from the address pointed to by IX or IY. NOTEi- This is a single
byte nusber d - NOT the D register. It is wsually used for addressing tables containing lists of data. The reverse
instructions also apply i.e.i- LD (IX+d),r; LD (1¥+d),r,

We can also have lamediate External Addressing of the form:-

LD (HL),n
Untor tunately, this OKLY uses HL. With the index registers, we can have lamediate Indexed Addressing of the form:-
LD (1X+d),n and LD (IYtd),n
Mow, please try the examples to see if you have understood this chapter,

(1)

"KOBRAHSOFT 7ZBO MACHINE CODE COURSE"

CHAPTER (3) EXERCISES

(1), What is #15 in Signed Binary?
{2), What is +65 in Signed Binary?
{3). What is -27 in Signed Binary?
(4), What is -110 in Signed Binary?
(5). What is 47 in 1's Conplement?
(8); What is =45 in 1°s Complesent?
{7}, What is -42 in 2's Complesent?

Answers overleaf!

(2)
ANSHERS .
(1), Answer = 00001111,
(2}, Answer = 01000001,

(3). Answer = 10011611,

11101810,

L1}

(4). Answer

(5}, Answer = 00000111,

16), Answer = 10111110,

(7). Here, +42 in 1's Complement is;- 00101010, Compleaenting to get the negative number gives:- 11010101, To get the 2's
Complesent, we must add | i.e.:-

11010101
+ 00000001

11010110 - the answer,

(1

"KOBRAHSOFTY 780 MACHINE CODE COURSGE"

CHAPTER (4)

We continue this month by examining the use of more groups of mnemonics, The next being:-

The INCresent and DECrement Group.
The general foras of the instructions are:-
INC r - where r is a single byte (B-bit register).
DEC r
INC rr - where rr is a 2 byte (16-bit REGISTER PAIR),
DEC rr
INC is short for INCREMENT or “increase the value by ONE"; DEC is short for DECREMENT or “decrease the value by ONE®. Note,
again, how the register containing an 8-bit number is represented by a SINGLE letter, while the register containing a 16-bit
nubber is represented by THO letters. This is the standard convention which you will find over and over again.
Thus, we can_have:-

INC H, INC D, INC A, INC L, INC €, INC B etc.
INC HL, INC DE, INC BC, INC IY, INC IX etc.

In each case, the meaning is "Increase the value of the number in the register or register pair by ONE", Thus, if the H
register contained, say, 55H (85 decimal)y after executing the INC W instruction, it would contain 56H 186 Decimall,

Suppase the register pair DE contained the number 2FAZH (can you convert this to decimal? - it is in fact 12194 Decimal) -
on executing an INC DE instruction, it would contain 2FAJH 112195 Decimal). NOTE that with a register pair and the
corresponding 16-bit number, the LOW ORDER BYTE is incremented ONLY i.e. the byte in the L Register,

Similarly, we can also have:-

DEC H, DEC D, DEC A, DEC L, DEC E, DEC B etc
DEC HL, DEC DE, DEC BC, DEC 1Y, DEC IX etc.

where the seaning is "Decrease the value of the number in the register or register pair by ONE". Using the above exasples,
it the R register contained 55H (B5 Decimall; after executing the DEC H instruction, it would contain 54H (B4 Decimal),

Again, for the DE register pair, if it contained 2FAZH {12194 Decimal); after the DEC DE instruction it would contain
2FAIH (12193 Decimal).

We can also increase the value of any memory location, using an instruction such asi-

INC (HL)

REMEMBER ~ this has a totally different meaning from INC HL. The instruction INC (HL) means “Increase the value of the
nusber contained in the location in HL by ONE". Thus, if HL contained 5800H {22528 Decimal), and suppose the location 35BOOH
"~ ctontained the nusber 15H {21 Decimal); atter the instruction INC (HL)}, HL would STILL contain 5800H, but the MEMORY LOCATION
SBOOH would NOW contain 1&H (22 Decimal), A shorter way of stating this is * Increase the contents of the wemory location
pointed to by HL by one™ i.e. the brackets in INC (HL)} mean "the CONTENTS of the memory location contained in HL®,

NOTE:- While INC HL acts on the f&-bit number in HL, INC (HL) acts on the 8-bit number stored in the location contzined in
the HL register pair,

Similarly, we can also have:-

DEC (HL)
- with the sase meaning, only DECREASING the value. We can also have, for the Index Registers:-

INC (IX+d)

INC (IY+d) - where d is the displacement
DEC (IY+d) from the start address.

DEC (1Y+d)

NOTE:- ONLY INCrease and DECrease operations on B-bit nuabers affect the FLAGS. The saae operations on 1b-bit nusbers DOES
NOT AFFECT THE FLAGS.

{2)
Since the Flags are affected when B-bit numbers are involved, we will now revien the operation of the {lagsi-

SIGN FLAG:- This flag will be SET (= 1), if bit 7 of the B-bit RESULT is 1.

NEGATE FLAB:- This flag is SET (= 1), if the last instruction was a subtraction, Thus, it is NOT SET (i.e.=0) for *INC* and
———————————— SET (= 1), for “DEC".

SINGLE BYTE (B-BIT) ARITHMETIC,

We give below a table of the operations for B-bit arithmetic. As you will see, these are of THREE main types i.e. ADDING,
SUBTRACTING and COMPARING:-

MNENONIC KO, OF BYTES TIMNE TAKEN EFFECT ON THE FLAGS
L 1 Pv § N H
ADD Ayregister | 4 S S | I 0 X
ADD A,nusber 2) P x 0 X
ADD A, (HL) 1 1 | U O R A |
ADD A, (1X+d) 3 19 o xr x 0 X
ADD A, (1Y+d) 3 19 I X X 1 0 X
ADC A,register | L] | SR S | I 0 X
ADC A,nusber 2 7 X X X I 0 I
ADC A, (HL) 1 7 ¥ x X 0 X
ADC A, (1X4d) 3 19 o x 1 0 X
ADC A, (1Y+d) 3 19 (S T T T
SUB register 1 4 | O T A |
SUB number 2 7 (S T T T T |
SUB (HL) 1 1 | B S | S T |
SUB (1X+d) 3 19 o xr x 1 X
SUB (1Y+d) 3 19 (O T T A A |
SBC A,register 1 4 | S S S S A |
SBC A,nuaber 2 7 | O T | | S T | v
SBC A, (HL) 1 7 [T S T |
SBC A, (1X+d) 3 19 | S O SR S T |
SBC A, (1Y+d) 3 19 LS S T A |
CP register 1 4 LI O D
CP nusber 2 1 | S O T T O |
CP (HL} 1 7 o x ¥ 1 x
CP (1X+d) 3 19 N S R |
CP (1Y+d} 3 19 | N O S A |
NOTE:~ Were, the flags notation represents:- ¥ - indicates flag is altered by the operation.

0 - indicates flag is set to 0 (RESETI,
1 - indicates tlag is set to I {SET),
The time taken is expressed in "T" States, where 1 *T* State = 0.5 aillionths of a second!

(3)

The point to remeaber is that:- ALL B-bit aritheetic operations must be performed using the A Register {Accumulator), This is
such a strong convention in 780 machine code snesonics, that the abbreviation "A" is even omitted in some aneaonics, That is,
to subtract "B" from "A", we would expect to see:-

SUB A,B
- whereas we actually find:-
5UB B

Despite this limitation on all arithmetical Instructions being restricted to the A register, the 780 language is still very
versatile in what we can actually add to whatever nusber we have in the Accumulator i.e. we can have:-

ADD A,r - Add any single register to A.
ADD Ayn - Add any B-bit number to A,
ADD A,(HL) - Add the B-bit nuaber in the location whose address is in HL,
ADD A, (IX+d) - Add the B-bit nusber in the location whose address is in I)+d.
ADD A, (1Y+d) -~ Add the B-bit number in the location whose address is in IY+d,

As you can see, we have a very versatile range of possible nusbers we can add to whatever nuaber is stored in the
Accuaulator - any nusber, any register, and virtually any way we care to define a memory location,
The one which is missing is:-

ADD A, (nn)
- where we define the address in the course of the program. We can get around this problem by writing:-

LD HL,nn
ADD A, (HL)

Note, again, the févoured role of the HL register pair! We CANNOT specify the memory location using the BC or DE register
pairs.

The other limitation implicit in all this is also the inherent limitation of B-bit nusbers which can only hold values up to
255, as we have already seen. For example, if we execute the instructions-

LD A,B80H
ADD A,B1H

- we get a result of 1 in the Accunulator, but the carry flag will be set to indicate that the total of the two nusbers
exceeded 255 i.e.

BOH
+ BIH

101k - since B + B = 16 or 10H,

- the extra 1 of the 101K having the effect of setting the carry flag, This would normally go unnoticed, but for the fact
that there is another instruction which also takes into account any setting of the carry flag i.e.:- "ADC* or *add with
carry®. Here, the overflow is recorded by the carry flag being set, Using this instruction, we can add nuabers greater than
235 together with a chaining operation i.e.:- Suppose we want to add 3EBH (1000 Decimal) to 7DOH (2000 Decimall, then store
the result in the BC register pair:-

LD AEBH - Lower part of first number.
ADD A,DOH - Lower part of second nuaber.
LD C,A - Store result in € register,
LD A\3H - Higher part of #irst nusber.
ADC A,7H - Higher part of second number.

LD B,A - Store result in B register,

(4)

Here, after the first addition of EBH and DOH, we will have the carry flag set because the result was greater than 255,
Also, the Accusulator will contain BBH - check this for yourself. You aight expect the second addition of 3+7 (Decimal) to
give 10 (Decimal) or AH. In fact, we get 11 (Decimal) or BH - because of the carry being set. Thus, the final result is BBSH
or 3000 Decimal! We could repeat this process to consider any size of nuaber, and store the result in memory rather than in a

register pair.
B-Bit Subtraction.

This is exactly the same as 8-bit addition. Again, two sets of commands are available, one for ordinary subtraction, and
one for subtraction with carry i.e.:-

SUB s - Subtract s.
SBL s - Subtract s with carry.

hgain, the notation “s* refers to the same range of possible operands as for the add instruction.
Another important operation is:-

COMPARENG TWO B-BIT NUMBERS.

When we “compare® two numbers, if they are the same we say they are “equal®. Another way of expressing this is to say the
ditference between thes is zero e.g. compare & with 6 - they are equal. What if the second number is greater than the first?
For example compare 6 with 87 Here, on subtracting &4 - B, we see the result of - 2 is negative. Similarly, compare B with &,
Here, the subtraction of 8 - 6 = 2 i.e. the result is positive. We can see that the compare operation is essentially one of
subtraction. We can thus devise a machine code operation for "compare®, using the subtract instructions and the flags -
especially the carry and zero flags.

Suppose we wish to compare a range of numbers with the nuaber 5. We can use the instructions:-

LD A,S - the nuaber we have (in the Accuaulator).
SUB N - the nusber being compared.

This gives the following resultsi-

N equals §) The zero flag will be set (=1), carry flag reset (=0).
N less than 5) - The zero flag is reset; carry flag reset.
N greater than 5) =~ The zero flag is reset; carry flag set.

f—
-
=

~ o~

oh oLh o ©n

We can thus see that the test for equality is the zero flag, and the test for “greater than® will be the carry flag being
set. Also, the test for *less than® is both flags being reset.

The only problem with this aethad is that the contents of the Accuaulator have been changed when using the SuB N
instruction,

Fortunately, this can be avoided using the *CP s* instruction, or *compare with s*. NOTE:- This compares the operand °s*,
which can be a ausber n, or another register etc, with the nuaber in the Accumulator - the important fact being that THE
CONTENTS OF A ARE UNCHANGED EY THE OPERATION. The only effect is on the flags. Thus, for example, "CP 5* aeans ‘“compare the
nusber in the Accusulator with 5*. Also, *CP B* - means "compare the contents of A with the contents of B*, and so on.

Thus, remesber that “compare” is exactly the same as *subtract” with the important ditference that using “compare" leaves
the contents of the Accumulator UNCHANGED,

SUMMARY,
8-bit arithaetic using the 180 is limited to:-

ADDITION,
SUBTRACTION.
COMPARISON.
Also, it can OKLY be performed using the ACCUMULATOR,
Because of the nature of B-bit numbers i,e. they can only hold values up to 239, we aust always consider any overflow i.e.
any result with a value greater tham 255.
The CARRY flag is the important flag which we can use to infors us of any overflow.

Additional instructions i.e. add with carry and subtract with carry, allow us to chain arithmetical operations to deal with
overflow,

(1

"KOBRAHSOFT ZB80 MACHINE CODE COURSE"

CHAPTER (5)

LOGICAL OPERATORS.
In this Chapter, we will look at the Logical Dperator instructions available to the 1B0. There are THREE of these i.e.:-

AND
OR
XOR

The reason these operations are important is that they operate on the individual bits of a single byte number. Consider the
first - the “AND" operation:-

BIT A BIT B RESULT OF BIT A “AND® BIT B
0 0 0
1 0 0
0 | 0
i 1 1

- we can see that the result of an "AND* operation is to give us a | only if A AND B BOTH contained I.

Thus, in machine code, if you "AND* two numbers, the result is what you would get if you "AND"ed each of the individual
bits of the two nuabers,

You may well ask, what is the point of such an operation?

The answer is the "AND® operation is very useful in that it allows us to mask a byte so that it is altered to contain only
certain bits i.e. if, for example, we wanted to limit a particular nusber to lie in the range 0 - 7, we need to specify that
ONLY bits 0 - 2 contain information - since if bit 3 contained information, the number would be at least B! Thus, we have:-

These bits must be 0

Thus, if we take a number whose value we do not know, and apply the "AND® operation with 7, the result will be a nusber
which ties in the range 0 - 7. e.g.:- .

0 1 I 0 0 0 1 = 105
0 0 0 0 0 1 Il 1 = 7 (the sask
result of *AND* 0 0o o0 0 0 0 0 I =1 (inranget -7),

NOTE:- the 180 ONLY ALLONS THE "AND® OPERATION TO TAKE PLACE IN THE ACCUMULATOR.
The Accumulator can be "AND"ed with an B-bit nuaber i,e. n; any of the other B-bit registers e.q. B, C, D, etcy with {HL);
with (1X+d}y or with (IY+d), The instructions are shortened so the Accumulator need not be specifically mentioned i.g.1-

AND 7 - wmeans "AND* the number in the Accumulator with 7
AND E - means "AND" the number in the Accumulator with the nuaber in the E register.
AND (HL) - means "AND" the number in the Accumulator with the nuaber pointed to by (HL).

- the Accusulator is not mentioned in the instruction.

The same range of possibilities and the same restriction to using the Accusulator also apply to the other two operations,
i.e. "0R" and “XOR".

The "OR? operation is very similar in concept to the *AND* operation i.e.:-

BIT A BIT B BIT A "OR" BIT B
0 0 0
0 1 1
1 0 !
1 1 |

2)

It is obvious that the result of an "OR® operation is to give a 1 if either A or B contained 1.

Again, you may ask, what is the point of such an operation?

The *0K* operation is very useful in that it allows us to set any bits in a nusber i.e. make thea = 1.
I, tor example, we wished to ensure that a nusber was odd, then clearly we have to set bit 0. i.e.:-

LD A, Number
OR 1 - sake nuaber odd,

The above two lines would be a typical assesbly listing,

The concept of *XOR* - pronounced “exclusive or® - is also easy to understand, but its actual use in prograsaing is aore
limited,

The result of *XOR" is a 1 only if one of A or B contains a 1 i.e. the result is the same as for the "OR® operation in all
cases except when BOTH A AND B contain 1 i.e. XOR = OR - AND i.e,.:-

BIT A BIT B BIT A "XDR* BIT B
0 0 0
1 0 I
0 1 1
1 l 0

The last thing we must consider is the effect these operations have on the flags i.e.:-

lero Flag:- This flag will be on (=1) it the result is zero.

Sign Flag:- This flag will be on (=1} if bit 7 of the result is set {=1).

Carry Flag:- This flag will be oft (=0) after “AND*, *OR*, and *XOR®. i.e. carry is reset,

Parity Flag:- This {lag will be on (=1) if there is an even nuaber of bits in the result i.e.:-
0 1 1 0 b1 1 0 = DFF,
0 ! 1 0 | 0 i 0 = DN

Hal#-Carry Flag:- This flag will be off (=0) after “AND*, “OR* and “XODR".

Subtract Flagi- This flag will be off (=0} after *AND™, "DR* and *XOR".

Use of Logical Dperations on the Flags:-
There is a special case for these Logical Operations - where the Accumulator operates on itself i.e.i-

AND A - A is unchanged, carry flag is cleared,
OR A - Ais unchanged, carry flag is cleared.
I0R A - A is set to 0, carry flag is cleared.

These instructions are often popular because they require only ONE byte to do what might otherwise require two, such as }D
A0,

The carey flag often needs to be cleared, e.g. as a matter of routine before using any of the arithaetic operations such
asi-

ADC - Add with carry.
SBC - Subtract with carry.

- this is easily done by using the instruction AND A, without affecting the contents of any of the registers.

(3

SUMMARY OF THE EFFECTS OF LOGICAL OPERATORS ON THE FLAGS.

Nneaonic Bytes Time Taken Etfect on Flags
""""""""""""""" TR
AND Register 1 4 ; ; -; ; ; ;
AND Nuaber 2 7 o x X 0 1
AND (HL) 1 1 [.I I 0 1
AND (1X+d) 3 19 0 X X xr 0 1
“AND (1Y) 3 19 0 X ¥ 0 1
OR Register 1 4 o X X X 0 0
OR Nusber 2 7 o X X X 0 0
OR tHL) | 7 0O X x X 0 o
OR (1X+d) 3 19 O X X x 0o 0
OR (IY+d) 3 19 0 X x X 0 0
XOR Register 1 4 o x X r 0o 0
XOR Nuaber | 2 7 0O X X 0 0
TOR (HU) ! 7 O X x xr 0o 0
XOR (1X+d) 3 19 0 X X xr o 0
T0R ([Y+d) 3 19 o X X X 0 0

The notation used is:-

- neans flag is altered by the operation.
neans flag is set to 0.

- means flag is set to 1,

- means flag is unaffected.

I v &
L}

USING 16-BIT NUMBERS.,
So far, we have only wainly dealt with single byte (8-bit) numbers. We know that the register pairs i.e. HL, DE, BC are
capable of holding 16-bit numbers which can go to 45534.
The important point to remeaber is that instructions using 16-bit numbers will always be much slower than B-bit - this is
because the instructions using 16-bit nusbers contain 3 or more bytes which have to be fetched from Resory,
~ The addressing modes available using 16-bit numbers are:-

lanediate Extended Addressing.
An exasple of this is the instruction:-

LD rr,nn

This is the equivalent of B-bit lemediate Addressing. 1t is merely Immediate Addressing extended so as to accomodate 16-bit
data transfer.,

4

As stated earlier, instructions that cperate on 16-bit nusbers are longer and slower than those for 8-bits. The foraat for
Ianediate Extended Addressing is thus:-

Byte 1 Instruction
Byte 2 nl - L.0.B of the nuaber,
Byte 3 n2 - H.0.B of the number.

We use this type of addressing instruction to define the contents of a register pair, for example a pointer to a mesory
location.

Register Addressing.
You may recall that Register Addressing is the name we give to an instruction if the value we want to manipulate is stored
in one of the registers.

The same holds true for 16-bit instructions, except that there are only a few instructions of this type in the CPU's

repertoire. These are mainly relating to arithmetical operations, and are very lisited in the register coabinations allowed.
B.Q.i"

ADD HL,BC

We will mention again the preference the CPU has for its HL register pair. Some instructions can ONLY be carried out by
this register pair. This is especially true of arithaetical operations, as we shall see later.

Register Indirect Addressing,

This 1s the nase we give to instructions where the value we want is in memory, and the address of the aemory location is
held by a register pair e.g.:- JP (HL).

Extended Addressing,

This is similar to Register indirect Addressing, but the value you want is not in a register pair, but in a pair of memory
locations e.g.i= LD HL,{nn} - where nn aust be specified at the program stage.

Examples,
{1, Impediate Extended Addressing:-

Try this ssall sachine code program:-

Decimal Nos. Hex Nos. Mneaonics Comments
1, 15, 0 01,0F,00 LD BC,FH Load BC with FH (15 Decinal).
201 c9 RET Return to Basic.

POKE the nuabers in to a suitable location e.g. 32000 - 32003, RUN the program with:- PRINT USR 32000 (ENTERY, The result
is 15 i.e. the nusber in the BC register pair.
(2). Register Addressing:-

Trys- 33,0,64 21,00,40 LD HL,4000H Load HL with 4000H (16384 Decimal).
1,15,0 61,0F,00 LD BC,FH Load BC with FH (135 Deciaal),
9 09 ADD HL,BC Add the two nuabers
201 c9 RET Return to Basic.

POKE the nuabers in, and RUN with PRINT USR 32000, The result is 15! Why not 16384 +15? We did add the two numbers, but the
result is stored in the HL register pair! To see the correct total, consider:-
{3). Extended Addressing:-

Try:- 33,0,64 21,00,40 LD HL,4000H Load HL with 4000H (16384 Deciaal),
1,15,0 01,0F,00 LD BC,FH Load BC with FH (15 Decimal).
] 09 ADD HL,BC Add the two.
34,100,125 22,b4,70 LD (7D64H) (HL Put HL value in 32100 and 32101.
237,75,100,125 ED,4B,64,7D LD BC, (7D&4H) Get value of BC from 32100 and 32101,
20t (] RET Return to Basic.

FOFE the nuabers iny and RUN with PRINT USR 32000. The correct result is 400FH (16399 Decimal). A better way would be to
use the FUSH and POP instructions, but this illustrates another way which should be clearer.

in

"KOBRAHSOFT ZB0 MACHINE CODE CODURSE"

CHAPTER (&)

KOBRAHSOFT KD1 DISASSEMBLER

INSTRUCTIONS FOR USE

EE===zEsszssssssarass

Introduction.
REZTSIZTIIESE

In this sonth’s newsletter we have enclosed a copy of our *KSFT KDI DISASSEMBLER® (which, incidentally, we used to sell
separately for [3.95!). KDI is an efficient and easy-to-use disassesbler for your Spectrus. It can be used to list a
disassesbly of the 180 mnemonics of any programsy either to your T,V. screen, or to a IX Printer. It also allows Basy
interchange to and froa Basic, and also contains a Nusber Converter to convert (a) Hexadecisal to Decimal nuabers, {b) Deciwal
to Hexadecimal numbers. Atso, it contains the facility to Inspect and/or modify any section of mesory - allowing you to easily
enter machine code as a series of Hex numhers,

LOADING,

For the 48K Spectrum, type:- LOAD °* COPE (ENTER), For the 120K Spectrus, select 128K Dasic from the Tape Loader Menu, then
type:- LOAD ** CODE (ENTER) as for the 40K Spectrum, KDI will also run on the 128K Spectrus in 48K Kode, again being loaded
usingt- LDAD *" CODE (ENTER).

The progras will then run, displaying the message:- *To Start: Press BREAK®, On pressing the BREAK key, KDI goes into the
Comnand Mode - with a flashing cursor at the bottom of the screen. At this stage, the following coemands are available:-

Comaznds,

To access the Nuaber Converter, press "N*. The message:- HEX or DEC? is displayed. To convert a Hex to a Decisal nuaber,
press "H'. Now, enter your Hex Number. NOTE:- Any leading zeros MUST be included i.e. enter 38 Hex as 0038, etc. Any normal
Hex letters (A - F) may also be entered, On pressing ENTER, the result is shown.

To convert Decimal to Hex, press *N*, then *D* for Decimal, Now, enter your Decimal nusber WITHOUT feading zeros,
Fressing ENTER gives the result
t2). Inspection of Memory, and/or Insertion of Vex Numbers, (1),

By pressing *1", you have two functions available:-

(a) Inspection of memory - after pressing "1°, the letter *N* appears. If you now enter a four digit Hex nusber (again
Including leading zeros), on typing the fourth digit, the address is shown, together with a two digit nuaber to its right.
This is the content of that memory location. On pressing ENTER again, the next location is shown in a similar way. Thus, by
continually pressing ENTER, a range of locations can be studied. To go back to the Command Hode, press *X",

1b} Insertion of Hex nuabers in memory - after pressing *1*, and typing in your mesory location, you can change its contents
by typing in a 2 digit Mex nuaber (again using leading zeros). For example, suppose you press 'I*, then type 7000 to see the
contents of location 7000 Hex. Suppose this shows 00, 1f you now type, say, F3j this nusber is shown and is inserted fin that
lotation - check by going back to Command Mode (press "X"), press "1", then 7000, followed by ENTER - you will see F3 at 70001
This is a convenient way to enter a machine tode progras as Hex nuabers. Again to return to Command Mode, press *1',

{3}, Disasseabler. (D).

NOTEt - Any section of memory may be disassesbled EXCEPT that occupied by KD1. Any atteapt to disassesble this area will
produce the wessage:- "INVALID ADDRESS". To enter the disassesbler mode, press *D*, Next, type (in 4 Hex digits) your required
start address. You tan new also similarly specify a 4 Hex digit end address. If you don't, the only diflerence is that KDI
will continue its disasseably up to 65535 (FFFTH), which is probably inconvenient, especially when outputting to your printer!
In the case of no specified end address - press ENIER, You are then asked if you require a printout to the IX Printer, If yes
- press /%, if ne - press "N", when the Tisting will appear on the screen. To list wore - press ENTER. To end the listing -
press *F'. When an end address is specified - ENTER is not needed - the enquiry PRINT? appears on pressing the last digit.
NDTE:- To get °/", press Syabol Shift and *V* keys. If you do not speclfy an end address, you can stop a continual printout to
a X Printer by pressing "BREAK®. This will relurn you to Basic, with the usual error aessage,

(2

(4), Return to Basic, (P},

For a NORMAL return to Basic, press °R* while in Command Mode - you will be returned to Basic. To re-enter KDI fros Basic,
type:i- RANDOMISE USR 59625 (RUN USR 59425 on the 128K Spectrus), then press "BREAK®. This will take you back into the Coamand
Node,

As you have seen, KDl is an easy-to-use, but quite powerful disasseabler. We suggest you try it on any sources of machine
tode you can get hold of. As an exercise, why not try disasseabling your Spectrua’s RON? This ls easily done by using a start
dddress of 0, or 0000! Also, check any Basic Loaders in any of your games - if on Jisting they contain a REN which gives a lot
of unusual characters - it is likely to contain machine code. Try disasseabling the area around the start of Basic i.e, SCCBH
or SDOSH. You could also try entering the *Screen Mover® routine we showed earlier which uses the block move cosaand LDIR.

t

"KAn1l EDITOR/ASBSBEMBLER"

INTRODUCTION.
KAl is a multi-purpose Editor/Aszesbler program which allows you to enter and edit the source code (snemonics and |abel
nases), produce the chject code (the Mex machine code), and create hard copy on the 1% Printer, or cassette copies on tape. It
operates in two distinct parts. Firstly the EDITOR allows entry of the Source Code by seans of line nusbers in a similar

fashion to a Basic program, and allows editing of that source code. In the second part of the operation, the Source Code is
asseabled into the actual Hex tode (ohject code!.

LOADING KAf.
For the 48K Spectrum:- Type LOAD " and FLAY in the program.

For the 128K Spectrum:- Select 48K Pasic, and proceed as for 48K Spectrua.

THE EDITOR,

Having loaded KAL, the progras will ask whether you wish to use NEW TEXT or to CONTINUE with existing text., As at the start
there will be no text (listing) in the text bulfer, press °N* in response to the prompt, {5See later for the CONTINUE eption),
The aessage will disappear, and the cursor wil) appear in the lower left corner of the screen. KAl ic now ready to use,

USING THE KEYBOARD IN KAI.

As the nuaber of commands accessible from KA1 is much smaller tham the nusber from Basit, the keyboard operates in a
sisplified manner. EXTENDED wode is not available, nor 1is the BRAPHICS node, or CAPS LOCK mode. KAL knows when lower case
letters nay be needed, and displays capitals at all other times. Wherever possible the KAL cowmands are accessed by the sase

keys as the equivalent keywords In Basic. These command names are shown below, and are only available when the cursor is at
the left hand side of the bottos line:-

LISTi- on Key K.
EOTTt~ on Key I with Caps Shift,
SAVE:- on Key S.
LOAD:- on Key J.
NIW :- on Key A,
CLEAR:- on Key X.
RETURN:- on Key Y,

Other KAl commands thal have no Basic equivalent or are not Basic keywords are as follows, and are also only accessible
with the cursor at the left end of the line:-

RENUM:- use Key N,
VERIFY:- use Key V.
AUTO:- use Key D.
ASSEMBLE:- use Key R.

Cursor control functions are accessible wherever the cursor is positioned, and are:-

{-- on Key 5 with Caps Shift,

== on Key 8 with Caps 5hift,
DELETE on Key 0 with Caps Shift,
ENTER on Key ENTER,

A1l other alpha-numeric keys operate as normal, giving the appropriate letter or number. Use of the Symbol Shift with a key
will give the red syabal shewn on that key tep, providing it is a single character sysbol i.e. ! is available froa Key 1
plus Syabol Shift, but using Key 0" plus Symbol Shift will produce no result since "OR®
Sysbols noraally actessed by the use of the Exlended Mode in Basic are ot accessible from
use CAPB SHIFT to actess s capitsl letter is when you are entering a wessage
autonatically displays capital letters,

is not a single character syabol,
KAL, The only tise you will need to
line in KAL. At all other tiaes, KAl

THE SCREEN DISFLAY,
The screen display of KAl is divided into fields. This produces an ordered form of listing that is very easily readable,

{2)

The cursor control functions automatically recognise ihe boundaries between the fields, wmaking entry of a line into the
text buffer a simple operation.

ENTERING A LINE.

Only ONE instruction per line is allowed, and the line must contain a line nuaber between 0 and 9999. The progras line may
then next contaln a LABEL to Identify the instruction In this line. The 4 fields are;-

Line No. = 1st 4 characters + | space.

Label Name - Next S characters + 1 space.

Dperation Name - HNext 4 characters + | space,
Operands - Rest of line.

With the cursor to the left, type a line number e.g. 10. Press SPACE, this advances the cursor to the label field. For no
label press SPACE again to go to the Dp Name field. All prograss NUST start with an DRIGIN address, defined by ORG. Type ORG,
press SPACE to wove to the Operand Field. Type 7D00H to specify 32000 Decizal. Press ENTER and the line is coaplete. Using the
4 fields into which each line is divided, always enter a line nuaberj then a label if needed (max. 5 chars); enter the Op Nase
(CALL, LD etc)y enter the operand into the last field, With 2 operands, they sust be separated by a cosma, e.q.i-

0010 0PG ThOON
0020 LD A,200
0030 END

NOTE:- Each progras MUST have an END instruction.
EDITOR COMMANDS.

(1), LIST.
Press the K key, then ENTER. For more listing, press SPACE. Press °K* then a line nusber then ENTER lists from that line.
To list to a IX Printer, press "K", then / (Symbol Shift and Key *V*) - ENTER lists to the printer.

(2), AUTO.

Press Key "D* - gives AUID, Type a line number then ENTER. The line nuabers will be automatically displayed and increase by
10 each tise you enter a line.

(3), EDIT,
Press Caps Shift and Key 1 - gives EDIT. Adding a line nusber edits that line. Edit as for Basic.

{4). MEW,
Press the *A* Key and ENTER, This clears all the text {rom the text buffer.

{5). RETUEN,
Press "Y° then ENTER - returns you to Basic. To return to KAL, type R.USR 58924 ENTER.

(b}, RENUN,
Press *N* - gives RENUM. Now, type the new interval between lines (1 to 99). Press ENTER and the progras is renuabered.

THE ASSEMBLER.

The asseabler part of KAl converts the mnemonics into Hex code. The amnemonics in the listing are called the Source Code,
the asseabled Hex code is the Object Code.

DPERANDS,

NUHBERS,
KAL will accept Decisal or Mex numbers, and defaults to Decimal., Nusbers HUST start with a nuseric digit i.e. 0 to 9, and

Hex nuabers sust have a suffix H. 1f a Hex nusber starts with a letter (A to F¥, it must be preceded by a zero i.e. DOOO Hex
sust be written ODOOOM, and FF Hex as OFFH.

JR/DINL,
Such jusps as these aust be within the range +127 to -128,

(3}

LABELS,
Any label can be used, to a maximum length of 5 characters,

ASSENBLER DIRECTIVES,

ORG.
This specities the start address in wemory where the code will reload with LOAD*"CODE. DRG must be the first line you enter

END.
This specifies the end of the program and MUST be included.

DEFB,
Defines a single byte at the current address. Must be in the range 0-255.

DEFW.
Defines the next two bytes at the current address in the range 0 - 45535,

CONNANDS,
ASSENBLE.
Press *R" - gives ASSEMBLE, 3 choices are available:-
(1), Press "R" then ENTER. This gives an assesbly with no display and is the fastest.
(2). Press "R".then Symbol Shift and "V* Igives /), Pressing ENTER gives an assembly to the IX Printer,

{3). Press *R" then *S* then ENTER - gives an asseably to the screen in full detail. PAUSE with *N*.

CLEAR.
Press "X* then ENTER. This clears the text buffer.

CONTINRUE,
Pressing "C* in response to "New Text or Continue?" does not alter the text when returning from Basic, *N° clears it.

CASSETTE ROUTINES.,

SAVE,

You can save either the Text or Object buffer to tape by pressing "5* i.e.:-
(1), TEXT BUFFER:- The form is SAVE"name" T, Saves the text to tape.

{2). DBJECT BUFFER:- The form is SAVE"name'C. Saves the object buffer as bytes to tape.

VERIFY,
Press *V*. The fora is VERIFY*nase". There is no need to specify text or code,

LOAD.
The KAL will ONLY load TEXT files. 2 options are available:-

(1}, Press *J°. The fora is LOAD"name”N. The *N* means NEW - the existing text butfer is cleared, as is the label table, °N°
need not be specified.

(2). Again press "J*. The form is LOAD"name*C. Here °*C* wmeans CLEAR - the text buffer is cleared, but the label table is
protected,

¥e hope you enjoy using your KAl assembler, and find it useful in writing machine code routines.

(1

"KOBRANSOFT 780 MACHINE CODE COURSE™

CHAPTER (7)

USING 1&-BIT NUMBERS.
We will now discuss the use of 16-bit {2 byte) numbers in machine code.

As we discussed earlier, the largest nusber that can be represented using 8 bits is 255, Clearly, this would be 3 serious
limitation, particularly if we wanted to specify an address in the region 236 to 65535, Thankfully there is a way around this
problea in the B0 chip, using 16-bit (2 byte) nusbers to represent addresses in the range 256 to 65535.

SPECIFYING ADDRESSES USING 16-BIT NUMBIRS.

PLEASE NOTE:- All addresses MUST be specified by a 16-bit nuaber, even if it is in the range 0 to 255. This is because the

CPU is set up to recognise that a number is not to be taken as an address unless it is specified by 2 bytes of 8 bits each, It
can be reqgarded as a convention, if you like.

You aay reseaber that this was implied hy the use of the instruction:-

LD A, (nn)

You aust also resesber that 16-B1T NUNRERS ARE STORED IN REGISTER PAIRS WIGH NUMBER FIRST, LOW KUMBER SECOND.
In conplete contrast to this is the convention of:-

STORING 14-BIT NUMPERS IN MENORY,

Here, the convention used is COMFLETELY OPPOSITE T0 THAT ABOVE, i.e. WHEN LDADING 15-BIT NUMBERS INTO MEMORY, THE LOW BYTE
1S ALWAYS STORED FIRST IN NENORY!

Convider the example 'of placing the contents of the HL register pair into wesory. Buppose that the HL register pair
contains the nueber 7D00H or 32000 Decimal. As we have stated, in the registers, H contains the HIGH byte, L the LOW byte.
(Sinilarly, for BC, B contains the HIGH byte, [the LOW byte; also for DE and AF), Thus we can show this as:-

H L
70 00 (Hex}.

This result would be achieved, for example, by executing the instruction:-
LD HL,7DO0H

Now suppose we wish to place this nuaber in memory at, say, address BOOOH or 32768 Decimal. This can be done using the
instructions-

LD (Address), KL

_ where {Address) is (B00OHI. Remeaber, the brackets mean *the location pointed to'. On executing this instruction, we would
find:-

Memory Location Contents
12768 00 {Decinal)
32769 125 {Decimal)

f.e. LOW byte FIRST, HIGH byte SECOND! Again, this is sisply a convention which means it is the way the 180 has been
prograsaed, but it is NOST INFORTANT that you remember it. Again it is 1-

IN REGISTERS:- HIGH byte FIRST,
IN MEMORY AND PROGRAMS:~ LOW byte FIRST,

Thus, please resesber when using 14 bit numher s, AUWAYS CONSIDER CAREFULLY THE ORDER OF THE BYTES.
We will use the above as an example. lhe whole program lsi=

2)

LD WL, 7DO0N
LD (B00OH), WL
RET

Resember, don’t forget the KET instruction - this is to ensure we return to Basic! The machine code instructions are:-

Mnemonics Instructions {Hex. Nos.) Decimal Nos.
LD HL,7D00OH 21,00,70 33,00,125
LD (B000H), HL 22,00,80 34,00,128
RET C9 201

ROTE:- This is the way the program instructions must be stored in aeaory. The program can be entered into memoryi-

(1), By POKING in the values to a suitable location using a Basic program such as:-
10t FOR A=30000 TO 30006: INPUT B:POKE A,B:iNEXT A

(2), Use the KDI Disasseabler we supplied in the last newsletter, Use the "1° facility to insert the Hex. numbers starting at
address 7530H (30000 Decimal),

Having entered the program into memory, run it by typing RANDOMIZE USR 30000 for RUN USR 30000 on the 128K Spectrua),
NOIE:- The 128K Spectrua sometimes won't accept the RANDOMIZE USR command.

Exanine the memory locations at 8000H and BOOIH (32748 and 32749) using PRINT PEEK 32768, then PRINT PEEX 32769, You will
find:- 32768:0; 32769=125 (if you have done it correctly!),

We apologise for going into so much detail, but this is a difficult concept which MUST be well understood to avoid
aistakes,

OTHER 16-BIT LDAD INSTRUCTIONS.
As well as using the register pairs, we can also load 16-bit nusbers into the Index Registers IX and 1Y usingi-

LD IX, nn
LD 1Y, nn

We tan also interchange nuabers to and from menory and register pairs usingi-

LD (nndyrr
LD (nnb, IX
LD (an), IV

where an is a 14-bit nueber, rr is a register pair,
We can also havei-

LD rr, (an)
LD IX, (nn)
L0 1Y, (on)

- the reciprocal of the above instructions.

EXERCISE: -

Check your understanding of the previous exasples by tinding the contents of the Systes Variable PROG, which is a two byte
nusber stored at address 23635 (SCS3H). This will be either 23755 (SCCBH) y or 23813 (SDOSH), depending on whether a microdrive
is fitted or not.

We can do this from Basic using:-

PRINT PEEK 23635 + 2568PEEK 23634

(3

Ve will now do the same thing using the following machine code program:-

Nneaonics Hachine Code Instructions (Hex and Dec Nos.)
LD BC, (5C53H) ED,4B,53,3C 237,75,83,92
RET (] 201

Again enter the nuabers into memory as before, and execute the program by typing PRINT USR 30000. The nusber 23755 or 23813
should appear on your screen.

The reason for this is that, when a FRINT USR comsand is used, on returning to Basic, the nusber in the BC register pair
Is printed, In this case it is our answer - the address conlained in the Systew Variable PROG.

NOTE:- The LD BC,!nn) instruction is a FOUR BYTE instruction!

EXERCISES,

Use a sisilar method to the above Lo delermine the values of the addresses stored in other System Variables (see list on P,
173 of your Spectrun Manual. Remember - some are only one byte nusbers! Check your answers using the PRINT PEEX method. Alsn,
POKE a few values into different memory locations and see if you get the correct results using the above methods,

15-BIT ARITHNETIC.

In this we again have a favoured register pair - the HL register pair. However, we do not have such a wide range of options
as in B-bit aritheetic!

16-BIT ADDITION.
The possidle operations are:-

ADD HL,BC
ADD KL, DE
ADD HL HL
ADD HL,SP

These are the only options! Note that we tannot add an absolute nusber to HL e.q. "ADD HL,nn* is not permitted. We can get
around this vsing:-

LD DE,mn
ADD HL,DE

However, this uses up four B-bit registers - not very elegant! Also, there is no addition between HL and IX and 1Y, Niether
Is there any LOAD instruction which allows you to transfer the contents of the Index Registers to BC or DE, so we must use:-

PUSH 1%
POP DE
ADD HL,DE

f.e. the contents of 1Y are FUSHed onto the stack, and POPped off into the DE register pair. This is then added to HL with
the last instruction,

EFFECT ON THE FLAGS,

The main flag affected is the Carry flag. (The subtract tHag is also affected, but its use is very linited). The carry flag
will be set 1F there is any overflow from the high bit of the H register - any overflow from the L register autonatically goes

into the W register in any 16-bit calculation. We can also have "ADD WITH CARRY" or "ADC", which operates in a sisilar wmanner
to "ADD" in B-bit arithwetic, with the sane register pairs i.e, i-

ADC KL, BC
ADC WL, DE
ADC WL, HL
ADC HL, 5P

(1)

16-BIT SUBTRACTION,

Note that you cannot have subtraction without carry, Thus, you must always check the status of the carry flag before any
16-bit subtraction operation. It is usually best to include an instruction to clear the carry flag first - e.g. an "AND A

instruction will do this without altering the contents of the Accumulator (see Logical Operators earlier). The allowed
instructions are:-

SBC HL,BC
SBC KL, DE
SBL HL,HL
SBC HL,5P

EXERCISE; -

Using the Systea Variable STKEND (start of free memory space), write a simple progras to calculate the value for the amount
of free space. (Hint:- Load WL with the value in STKEND, then subtract SP - the NEGATIVE result will be the amount of free
spacel. See later for the solution,

EFFECT OF 16-BIT CARRY ARITHMETIC ON THE FLAGS.

Three other flags are affected by the “ADC* and "SBC* instructions which were not affected by the simple °“ADD®
instructions. These are Lhe ZERD, SIGN and OVERFLOW flags. Each is set according to the result of the operation.

IHDEX REGISTER ARITHMETIC.

NOTE:- The Index Fegisters are liaited to ONLY ADDITION WITHOUT CARRY! Also, the range of registers which can be added to
thea is very linited i.e,:-

ADD 13, BC
ADD 1v,BC
ADD 11,DE
ADD 1Y, DE
ADD 1X, 1
ADD 1, IY
ADD 1,5P
ADD 1Y,5P

SOLUTION TO MEMORY LEFY EXERCISE:-

First, we sust load HL with the contents of the Systes Variable STKEND i.e. t- LD HL, (STKEND).
NOTE:- The value of STKEND is SC&5H (23653 Decimal). Now we must subtract 5P using SBC HL,SP. However, REMEMBER we must clear
the carry flag first using AND A!

However, because the Stack Pointer is (usually) higher in memory than the top of your progras, the result will be negative,
To convert this to a positive value, we can use the BC register pair (we could also use DE). Firstly, we aust shift HL to BC -
but there is no apprepriate LOAD instruction, but we can get around this using the stack by using a PUSH then a POP thusi-

PUSH HL
POP BC

- this keeps HL the same, but transfers its contents to BC. To get HL = -BC i.e. the negative value of BC, we sust subtract

BC fros HL TWICE. Reseaber, though, that the carry flag has just been set by the SBC HL,SP (since SP is greater than i), so
we sust clear it again using "AND A", liL now contains the negalive value of its previous contents or the positive nusber of
bytes left.To get HL back into BC (to get a result from the USR function) we can PUSH HL, POP BC, and return with KET {.e.t-

LD ML, (STKEND)

AND A

SBC IL,5P

PUSH HL

Fup BC

AHD A

SBC WL, RC

SBC HL,BC

FUSH HL

PP BC
RET

(1)

"KOBRAHSOFT Z80 MACHINE CODE COURSE"

CHAPTER (8)

USING JUNPS AND LODPS [N MACHINE CODE.

A jump in sachine code is the Basic equivalent of the "BOY0" instruction, i.e. the program jumps to the line in Basic, or
the specified address in machine code. This is a very powerful instruction, but you MUST ensure that there is a seaningful
nachine code instruction at the jusp address, otherwise unpredictable results will follow!

There are THO types of "juap" instruction available in machine code; these are:-

{1}, The ABSOLUTE juap.
(2). The RELATIVE or JUMP RELATIVE jump.
-The ABSODLUTE jump can be summarised as:-
JP xx xy

= where the JP is the JUNP instruction, and xx xx is a two-byte (16 bit) number. Since the whole of the Spectrum memory can
be addressed by a 16 bit nuaber, the ABSOLUTE jump allows us to jump to ANY position in the Spectrum’s memory!
The juap can also be dependent on the status of one of the flags, e.g. the carry flag. We can thus have:-

JP ccy nn
ori- P 1, 0000

This would read as "jump if zero to address zero”. This is the address the Spectrus jumps to when you switch on - the
computer is said to RESET, We can illustrate this with the following simple machine code program. Type POKE 32000,195; POKE
32001,0; POKE 32002,0. This puts the 3 bytes 195,0,0 at 32000, This is the sinple instruction JP 0000, or RESET, Activate by
typing RANDOMISE USR 32000 (ENTER) - the computer RESETS! All you have told it to do is to jusp to address zero and start
executing the instructions from there, which is what occurs when you switch on. The other ABSOLUTE JUMP instructions can be
suaparised as:- '

INSTRUCTION HNEMONICS HEX NOS. DECIKHAL NODS.
JUNP TO NODRESS SPECIFIED BY G, 19 () e m
JUNP TO ADDRESS SPECIFIED BY (1Y), JP {IX) oD E9 221 233
JUNP TO ADDRESS SPECIFIED BY (1Y), JP (1Y) FD E9 233 213
JUNP TO ADRRESS SPECIFIED BY xx xr. JP ADDR C3 xx xx 195 xx xx
- JUNP, IF CARRY TD ADDRESS xx xx. . JP C,ADDR DA xx xx 218 xx xx
JUNP, IF MINUS TO ADDRESS xx xx. JP H,ADDR FA xx xx 230 wx xx
JUNP, NO CARRY TD ADDRESS xx xx. JP NC,ADDR D2 xx xx 210 xx xx
JUMP, NOT 7ERQ TO ADDRESS xx xx. JF NI,ADDR €2 xx xx 194 xx xx
JUMP, POSETIVE TO ADDRESS xx xx. JP P,ADDR F2 xx xx 242 xx xx
JUNP PARITY EVEN TO ADDRESS xx xx. JP PE,ADDR EA xx xx 234 xx xx
JUMP PARITY ODD TO ADDRESS xx xx, JP PD,ADDR EZ xx xx 226 xx xx

JUNP IF IERD TO ADDRESS xx xx. JP 1,ADDR CA xx xx 202 xx xx

(2)

This is a convenient point to digress slightly to consider how the 280 CPU in the Spectrua handles sachine code
instructions. The 180 contains a 1b bit register called the PROGRAM COUNTER {see earlier), which is used to store the adrress
OF THE NEXT INSTRUCTION TO BE EXECUTED. Thus, if the CPU encounters a 2 byte instruction, it adds 2 to the program counter
(usually abbreviated to PC); with a 3 byte instruction it adds 3, and so on. However, with a normal JUNP instruction, on
encountering the OP CODE C3 (Hex), the CPU knows that the following 2 bytes fora a ib bit address which specifies to where it
aust jump. As usual, the first byte after the C3 is the LON order byte, the second is the HIGH order byte. How does the CPU
*know" it needs to get the jump address from the next 2 bytes? - it is programaed to do just that, Remeamber, the 0P CODE is
the first byte of an instruction which specifies its type i.e. a JUMP, or an ADD etc.

Returning to the absolute jump i.e. JP xx xx, it can be seen that there are two sain disadvantages with this instruction -
these are:-

(1), We do not always need such a “long" jusp - but it still needs 3 bytes to execute.

(2). The program cannot be easily relocated to a different area of mesory, since we are specifying an ABSOLUTE address i.e.
one which will only give the correct result in one area of memory.

Fortunately, there is an alternative instruction in the 280 - if the JP xx xx or ABSOLUTE JUMP is considered as a *LONE"
jusp, the alternative *JUMP RELATIVE® instruction or JR d is the *short jusp*. The "d* is the relative displacesent froa the
current address, and since it is only specified by one byte, we can ONLY have JUNP RELATIVE jumps of -128 (i.e. jusping
backwards), to +127 {i.e. jumping forward).

The general form of the instruction is :-

R d

- where d is the displacesent from the current position.

The main advantage is obvious - the distance jumped is specified in only ONE byte and the whole instruction only takes 2
bytes. The value of the displacement *d* is added to the PC, thus the PC is always pointing to the next instruction specified
by the jump relative. Similarly for a case where a condition is to be set i.e. JR cc,d e.q. JR 1,d. To illustrate this more
clearly, consider the program:-

Mesory Location Hnesonic
32000 ADD A,B (1 BYTE)
32001 JR1,2 (2 BYIES)
32003 LD B,0 (2 BYTES)
32005 Next:- LD HL,4000H (3 BYTES)

If the JR instruction at 32001 is ignored by the CPU (i.e. the zero flag is not set), the CPU executes thusi-

(1), Load the single byte instruction at 32000. Since only ! byte, set the PC to 32001,

(2), Execute the instruction i.e. add contents of B register to A register,

(3). Load byte specified by PC at 32001 - byte is part of a 2 byte instruction, so add 2 to PC to sake it 32003.

{4). Bet next byte to complete the instruction and execute the instruction - the result here is to ignore the jump, since the
zero flag is not set.

(5). Load byte specified by the PC at 32003, Byte is part of a 2 byte instruction, so add 2 to PC which is now 32005,

(), Bet next byte toc complete the instruction and execute the instruction i.e. load the B register with zero.

NOTE:- At location 32001 the program encounters the Relative Jump instruction, since the zero flag is not set in the above
example, the jusp is ignored and the mext instruction is executed i.e. LD B,0.

However, if the zero flag WAS set, the CPU would ADD TWD (the amount of the displacement for the jusp) te the PC, which
would now make it 32005 i.e. the next instruction to be executed would be the LD HL,4000H at 32005 - under these conditions
the LD B,0 instruction would be OMITTED or jusped past. Thus, if the zero flag is SET, the LD B,0 is jusped over.

KOTE:- We can also have a NEGATIVE JUMP RELATIVE. As an exercise, consider what would the effect be on the abave progras of
substituting a JR 1,-2 instruction for the JR 1,27 For the answer, see the bottom of page 4! {(Hint:- Remeaber, the PC will be
pointing to 32003 again, since the JR 1,-2 is still a 2 byte instruction).

Also, can you see how the displacement d would be represented as -2, a NEBATIVE number?

(3)

We tan have a range of jump relative instructions for various tlag conditions also, as for the absolute jumps.

the range available is here limited to the following:-

Instruction, Knemonic Hex Nos.

JUNP RELATIVE, displacesent, IR, d 18 xx
JUNP RELATIVE IF CARRY, displacement. REC,d 38 xx
JUNP RELATIVE NO CARRY, displacement, JRNC, d 30 xx
JUNP RELATIVE IF IERD, displacement. JRI1,1¢ 28 xx

JUNP RELATIVE NOT ZERO, displacesent. JR N, d 20 xx

Using "For...Next" Loops in Machine Code,

You are probably familiar with the usual form of a *For...Next" loop in Basic, i.e.:-

10:
20
J0:

FORI =1
LETC=¢C
NEXT |

106
t1

Decimal Nos.

24 xx
3b xx
48 xx
40 xx
32 xx

A sinilar case exists in machine code, but in a slightly ditferent fore. We could do this in machine code thus:-

LD B,1

LD A,7
LOOF INC C

INC B

CP B

JR N, LOOP

; Set counter to 1.

; Maximum of counter + 1.
pletC=C+1,

j Increment counter.

1 IsB=A?

i If not loop again,

However,

This would work, but it is a very bad piece of programming, since we are tying up 2 register pairs - one to increase, and
one to hold the maximum; and the instruction which increments the counter does not set any flags on completion, A much better

way would be to use a countdown! We know we have to do the loop & times,

This gives us:-

LD B,b
LOOP INC €

DEC B

JR NI, LOOP

As you can see, this is far more efficient,

NOTE:- The I80 CPU has a special instruction which combines the last two lines above i.e.:-

This stands for “decrement the B REGISTER, and jump if not zero®. The d is the relative

i Set counter.

j Let L =C+ 1,

; Decrease counter.

i Loop if not finished,

DINT d

instruction. It is a TND BYTE instruction, which saves one byte on the above coding.
the B register is usually used as a counting register,
The obvious limitation of the *DINI* instruction is that it can only count up to 254. However, DINI instructions can be

Because of the existence of this special instruction,

nested in a similar way as for the Basic For..Next loops:

BIGLOOP

LITLOOP

LD B, 10K
PUSH BC
LD 8,0

R RN

B = 16 Decinal.
Save value of B register on Stack.
et B = 256

displacement as in

y Any required calculation etc.

DINI LITLDOP
POP BC
DINT BIGLDOP

Done 256 times?
Get back value of B,
Do bigloop 16 times,

the

50 why not set the B register to 6 and count down?

R

(4)

h useful exercise for you to try is to write down what would appear in each register after each instruction in the above
progras,

Waiting Loops,

There are tises in machine lanquage prograas when things happen so fast that it is necessary to wait for a short tise. A
waiting loocp can be set up using:-

LD B, Count
WAIT DINI WAIT

The instruction "DJNI WAIT® will cause the CPU to jump back to the DINI instruction as many times as required to set the B
register back to zero before continuing,

USE OF SUBROUTINES IN MACHINE LANGUAGE,

The use of subroutines involves the use of the CALL and RET instructions. The sain point to remeaber is that when you CALL
a subroutine, you MUST have a RET if you are to get back to the point you expect!

The action of a CALL instruction adds J bytes (the length of the instruction) to the PC, which is then PUSHED onto the
stack to save it., Siailarly, when the CAlLed routine reaches a RET instruction, the contents of the last nuaber PUSHED onto
the stack is POPped back off into the PC, causing a return to the instruction immediately AFTER the original CALL.

As you tan see, when you enter a CALLed subroutine, you MUST be very careful to ensure that any PUSHes in the routine equal
the nuaber of FOPs, to ensure a correct return froa the subroutine. Consider the program:-

Address Mneaonic
32000 LD HL,4000H
32003 CALL 9000H
32004 LD DE,700H

The CPU will execute the program thus:-

(1), Load byte at 32000 - a 3 byte instruction, so add 3 to the PC which = 32003, et next 2 bytes to complete the instruction
then execute the instruction - load the ML register pair with 4000H.

(2). Load byte specified by the PC (32003), byte is part of a 3 byte instruction, so add 3 to the PC (= "32008). 6et next 2
bytes and execute the instruction. Since it is a CALL, PUSH the contents of the PL (= 32006) onto the stack and go to the
address specified in the CALL i.e. 9000H.

(31, On reaching the KET in the subroutine at 9000H, POP the PC of the stack (=32004) and jump there.

{4), Continue starting at LD DE,700H (at 32004),

Subroutines can also be called conditionally e.q. according to the status of a flag. The only flags involved here are the
CARRY FLAG, the IERD FLAG, the PARITY FLAG and the SIGN FLAG.

Care should be taken when in a subroutine to also not affect any {flags or registers which are needed for the next
cosparisons. This is so that you don't branch off again to the wrong place on a following CALL, after returning from where you
left off. Remesber that the four flags above are set according to the last instruction which affected that particular flag.
Thus, it is a good idea to have a CALL or RETurn instruction imaediately AFTER the instruction which sets the tlag e.g.i-

LD A, (Number)

CP 1

CALL 1, Routine 1
tp 2

CALL 7, Routine 2

This progras allows you to jusp to various routines depending on the value stored in the aemory location “Number®. NOTE:-
It assuses that the subroutines do not change the value in the A register, otherwise on returning from one subroutine an
incorrect branch may occur for the resaining ones, since the value for A from *Nuaber® is not reloaded on returning from the
subroutines. The value of A CAN be allowed to change in the subrotines IF the instruction LD A, (Number) is added after each
CALL.

The solution to the JR -2 instruction is that it would cause a jump back to the JR 1, -2 instruction if the zero flag was
set, causing an endless loop, since the JR instruction does not affect the flags.

The -2 nuaber would be represented by having d = FE Hex.

()

"KOBRAHSOFT Z80 MACHINE CODE COURSE"

CHAPTER (%)

NDVING BLOCKS OF MEMDRY AROUND.
We now come to the very useful and extremely powerful "BLOCK MOVE" instructions which we can use to save whole blocks of
aesory from one area to another - remeaber the use of LDIR earlier to move the WHOLE screen into place in a fraction of a
second?
The sisplest of the block instructions is:-

cel

Here, the contents of the A register are compared with (HL) i.e. the contents of the location pointed to by HL. It also
detreaents the BC register pair, and checks to see if it is zero. It is thus used as a counter. 14 BC is not zero, the next
(HL} is compared to A - the HL register having been automatically incresented - hence "tonpare and increment®. The usual
procedure is thus to load HL with the start of the block we wish to check, and BT with the nusber of bytes to be checked.

Let us assume the block length is less than 255 - the count can thus be stored in the C register only of the BC register
pair. A suitable progras would be:-

Search [PI]
JR 1, Found
INC C
DEC C
JR NI,Search
Not Found .uvuvnss

We would obviously need a different routine if the length of the block was more than 255 bytes, but here we can use the INC
and DEC instructions to check if C = 0. These two instructions only need one byte each, and as they both affect the zero flag,
the net effect is to set the flag only if C was originally zero. The other benefit is that this method does not alter any of
the other registers,

We aight also wish to search a block of memory starting from the top rather than from the bottom - this is done using the
instruction:-

CPD

- this reads "compare and decrement’. Mere HL is decremented, as also is BC as before.
Nore powerful still are the instructions:-

CPIR
CPDR

These read as "compare, incresent and repeat”, and "compare, decrement and repeat*. The instructions each only take 2
bytes. They allow us to continue searching through a block of semory until either (a) a match is found i.e, the contents of A
* the contents of {HL); or (b) the end of the block is reached. Thus, we need to include some code which will tell us which of
these 2 possibilities has occurred.

The next instructions deal with moving blocks of memory around i.e.:-

LDI
LCIR
LDD
LDDR

LDI reads as "load and increase’; LDIR reads as "load increment and repeat®; LDD reads as "load and decresent®; LDDR reads
s "load decreaent and repeat®,

(2
Consider each instruction in more detail - the actual operations involved are:-
LDI:~ {HL} --» (DE); increment HL and DE; decrement BLC.
LDD:- (HL} --> (DE); decrement HL, DE and BC.
LDIR:= (HL) ==> (DE)}; increment HL and DE; decrement BC - repeat until BC = 0.

LDDR:- (HL) --> (DE); decrement HL, DE and BC - repeat until BC = 0.
Points to note are:-

(1). These are the only instructions which will load from one wmesory location to another, without having to be loaded into a
register first.

(2}, In every case, THE HL REGISTER PAIR 15 THE SOURCE ADDRESS; THE DE PAIR 1S THE DEstination ADDRESS (easily remeabered); BC
CONTAINS THE COUNT.

NOTE:- Always be aware of the addresses involved when using these imstructions, since it can happen that you can overwrite
the information you are trying to move! It is important to remeaber this!

As an exercise, try writing a routine to transfer, say, 32 bytes froa the ROM (i.e. start at address zerol, to the first
part of the screen display (starts at 4000H or 16384 decimall.

hleo, try aoving 256 bytes, then 2048 bytes. Note the unusual way in which the screen is arranged!

INSTRUCTIONS FOR BLOCK COMPARE AND MOVE GROUP.

Mnemonic Bytes Time Taken Effect on Flags

€1 P S NH
LDI 2 16 == f =00
LDD 2 & - - f -0
LDIR 2 2/1b - -0 - 00
LODR 2 21716 - -0 - 00
CP1 2 16 O S S M T §
CFD 2 14 -ff b1t
CPIk 2 24714 -t f £t
CPOR 2 21116 - 1t

NOTES: -
£ - indicates the flag is altered by the operation.

0 - indicates the flag is set to 0.
1 - indicates the flag is set to .
- =~ indicates the flag is unaffected.

TINING: - For repeat instructions, the times shown are for each cycle. The shorter tise indicated is for the case of the
instruction terminating - e.g. for CPIR, either BC = 0 or A = (HL).

180 INSTRUCTIONS THAT ARE LESS FREBUENTLY USED.
We will now discuss @ few 180 instructions which are usually only occasionally used, but which are nevertheless quite
useful,

(3)

REGISTER EXCHANGE INSTRUCTIONS.
We briefly discussed earlier the fact that by exchanging registers, the CPU can store information in the alternate register
set, which are more accessible than using memory locations. To recap, the following alternate registers are available;-

Normal Registers. Alternate Registers,
A F A F
B C B C
D E D E
H L H L

The important point to remember is that, while you can store a value in an alternate register, YOU CANNOT USE THEM T0
MANIPULATE THAT VALUE OR DO ANYTHING ELSE! Thus, they are usually used as a temporary storage place for numerical values
tontained in the normal register set. A sinqular case of register exchange is the instruction:-

EX AF,A'F’

This means "store the value in AF tesporarily in A'F’, and vice versa®. This instruction is usually used as a temporary
place to store the value in the A register (Accumulator).
A general register exchange instruction is:-

EXX

This means “exchange the values in BC and B'C'; DE and D'E’; and HL and H'L'*, NOTE:- The AF register pair is NOT affected
by this instruction ~ it has its own as shown above!

The obvious problea with the EXX instruction is that it acts on all the three registers - we cannot retain any single
value. To do this, we would need a routine of the type:-

FUSH HL
EXX
POP HL

Here, the value in HL would be retained on the Stack.
A special single case of register exchange is the instruction:-

EX DE,HL

Here, the contents of the two registers are exchanged i.e. HL to DE and DE to HL. This can be a useful way of saving the
value in HL, FROVIDED of course, the value in DE does not need to be saved!

BIT, SET AND RESET INSTRUCTIONS,

So far, all the instructions we have been dealing with have involved the manipulation of B-bit or 16-bit nuabers. The "BIT,
SET and RESET" qroup allows us to manipulate single bits in the registers and/or the contents of memory locations, However,
because they are rather cosplex and ditficult to use, they are not commonly used,

Also, it tends to take even longer to set a single bit in a register or a memory location than it does to change or examine
the entire B bits of that register or memory location, so speed (or rather, lack of it!) is another consideration.

However, there are times when we need to know whether a bit in the nmiddle is set or not, or even to set a certain bit,
Remember, however, that many of the bit setting or resetting operations can be perforned using the logical operators as
discussed earlier,

The "BIT, SET and RESET" group of instructions allows us to turn any bit "on® or ‘off" at will, or even just look at a
specified bit to see what its status is. Consider the first set of instructions:-

SETn, r

SET m, (HL)
SET n, (1X+d)
SET n, (IV+d)

(4)

The *SET* instruction turns "on* (i.e. sets = 1) the bit nusbered *n* {using the notation 0 - 7, where 0 is the lowest
value bit, 7 is the highest value bit), in register *r* or in the specified memory location. NOTE:- The operation does NOT
atfect the flags.

The *RESET* group of instructions operate on exactly the same range of registers or memory locations, but instead of
turning bits “on®, it turns thea “off*; i.e. = 0.

The “BIT® instructions should really read as “*BIT?* in English, since the function of this instruction is to VEST the
tontents of the indicated bit.

No actual changes are made to the registers or memory locations, but the 1ERD FLAG 1S ALTERED ACCORDING TO THE STATUS OF
THE BIT TESTED i.e.:-

If the Bit = 0 then the IERD FLAG 15 SET ON (=1},
If the Bit =1 then the IERD FLAG IS SET OFF (=0).

[NTERRUFTS,
An interrupt is a signal sent to the sicroprocessor, which may occur at any time and will generally suspend the execution
of the current program without the prograa knowing it!

THREE Interrupt aechanisas are provided on the 180 i.e.1-

{11, The Bus Request (BUSRQ).
(2), The Non - Maskable Interrupt (NMI),
(3}, The normal Interrupt {(INT).

From a programsing point of view, we will only look into the usual maskable interrupt (INT),
The DI (disable interrupt) instruction is used to reset (mask), while the EI (enable interrupt) instruction is used to set
{unmask).
Benerally, an ordinary interrupt will result in the current program counter being PUSHed onto the Stack, followed by a
branch of execution to the zero page of the ROM by the RST (restart) instruction - see later. A RETI (return from interrupt)
instruction is required to return from the interrupt in the correct manner.
In noraal operation, the Spectrum has interrupts emabled (EI), and in fact the progras is interrupted 50 times per second.
This interrupt allows the keyboard to be scanned by the ROM's routine.

You say wish to disable interrupts in your programs, as this will speed execution. You can still read the keyboard, as long
45 you use your own routine to do so - for examples see later.
Make sure you enable interrupts when you return from your program e.g. to Basic, otherwise the system will be unable to
read the keyboard!

RESTART INSTRUCTIONS.

This is rather a *leftover® froa the BOBO processor implemented for compatibility. That is why you will be unlikely to use
RESTART or ST instructions in your programs.

The BST perforas the same actions as a CALL (see earlier), but allows a jump to only one of EIBHT addresses in the first
256 mesory locations of the KOM. These are:-

00H
0BH
10H
18H
20H
JOH
JBH

The advantage of the RST instruction is that frequently called subroutines can be called using only ONE byte! The RST
instruction also takes much less time than a CALL instruction.

The bvious disadvantage of the RST instruction is that it can ONLY be used to call one of the above eight posible
locations,

hs all these locations are in the ROM, you cannot gain this advantage in your own programs. It IS possible however to make
use of the ROM's subroutines it you know what they do, and thus use the RST instructions.

1)

"KOBRAHS0OFT 7ZB0O MACHINE CODE COURSE"

CHAPTER (10)

REGISTER ROTATE AND SHIFT INSTRUCTIONS,

The bits in the various registers may be moved both left and right, using the appropriate instructions. The trick is to
differentiate between the various shifts and rotations in order to know which one to use when, Also, we must consider the
"rarry® bit to be the 9th bit in the registers, i.e., the carry is bit number B if the bits are numbered 0 - 7 in the usual

sanner,

Some rotate instructions go right through the carry (as the 9th bit) so that the entire rotation goes through a cycle of 9
bits.

Consider, for example, the "RLA™ instruction {for full meaning see later}; the pattern of bit movement is:-

'
I
\
|
«-- ¢ -{7 0}~

Dther rotations involve only an 8-bit cycle, although the carry #lag is thanged according to the bit which has to go the
"long way round®, An example of this is the "RLCA" instruction i.e.:-

r——-=—-

Ay
r

]
|
|
I

i
O et I 0 F--~-

This seans that in a left rotation as above, the contents of bit 0 are transferred to bit 1, bit 1 to bit 2, etc; but the
contents of bit 7 are transferred to BOTH the carry bit AND to bit 0. Compare this with the "KLA" instruction above where bit
7 gets transferred to the carry bit and the carry bit gets transferred to bit 0.

e s o e e

LEFT ROTATIDNS.
There are two main types of left rotations i.e.:-

(1), ROTATE LEFT REGISTERS.

This is a 9 bit cycle rotation as shown above for "RLA" i.e. :-

The two main types are:-

RLA - or "Rotate Left Accumulator”,

RL r - or "Rotate Left Register r*,

{2). ROTATE LEFT CIRCULAR,

Here, the "rircular® means that the cycle is for only 8 bits as with the RLCA instruction illustrated above. The various
options available are:-

(2)

RLCA - Rotate Left Circular 'A’.
RLC r - Rotate Left Circular 'r'.
RLC (HL) ~ Rotate Left Circular (HL).

RLC (IX+d) - Rotate Left Circular (1X+d).
RLC (1Y+d) - Rotate Left Circular (1Y+d).

In all cases, we get;-

hs well as these two left rotate instructions there is also a shift left instruction available, but this can only operate
on register "A', This is:-

SLA - "Shift Left Accumulator”
ori-

R {7 0 F-¢-- 0

The sain difference here is that the contents of the carry bit are LOST, and bit 0 is filled with 0. This is effectively
aultiplying "A* by 2 as long as nothing is transferred to the accumsulator.

KIGHT KOTATIONS.

Here again we have the same two basic modes of rotations, but this time they rotate to the right. Exactly the same range of
possible memory locations and rotations can be moved to the right as to the left i.e.:-

RRA - Rotate Right Accumulator.

RR r - Rotate Right Register.
this is shown by:-
T T
i I
] |
] [}
L --~)--1 7 0 f-)-J
Again, the available options are:-
RRCA - Rotate Right Circular "A*,
RRC r = Rotate Right Circular *r".
RRC (HL) = Rotate Right Circular (HL}.
RRC (IX+d) - Rotate Right Circular. (1X+d),
RRC (IY+d} - Rotate Right Circular (IY+d).

ori-

(3
A similar shift right is available as for shift left i.e.:-
SRL r - Shift Right Logical Register "r".
i.e.r-

Here, this is division by 2, as long as we are wusing unsigned numbers i.e. 0 - 255. However, because in some applications
we use the convention to indicate negative numbers by setting bit 7 to t (giving us a range of -128 to +127), there is an
additional shift right instruction called:-

SRA r - Shift Right Aritheetic "r",

Again, this is alsoe division by 2, but the sign bit is preserved.

IN AND QUT INSTRUCTIONS,

There are times when the CPU in your Spectrum needs Lo communicate with the outside world - to read the keyboard, or the
tape recorder etc. This.is achieved using the machine code IN and OUT instructions. The communication is perforaed by using
PORTS - these are special locations used by the CPU, the most common of which is PORT 254 (FE Hex) - this is very often used
tor reading the keyboard etc. The number of ports available is usvally limited to 256 for the 180 CPU, due to hardware and
other considerations. The keyboard is read, for example, using the instruction:-

IN A, (FE)
The 40 keys on the keyboard are arranged in a very special way so they canm be represented by 8-bit bytes, In fact, the

keyboard only returns information from FIVE keys at a time! It is the value of *A" in the IN instruction which detersines
which set of 5 keys will be read. The keyboard is divided intoc 4 rows, each comprising 2 blocks of § keys thus:-

BLOCK KEYS BLOCK
J wesea » 1 23 45 67890 (=== 4
& msmss } 8@ ¥ ERT Y vo1raoe {===3
| =g ¥ A5 DF G B J K L EN {--- b
§ w=ene } SH 1 x €V B NN . 5P {---1

There are 8 blocks of letters, these can be correlated with the B bits of the "A* register i.e. ALL of the bits of "A" are set
to "ON", except for one bit which specifies the block to be read.

Thus, to read the keys in the block "1 2 3 4 35", it is bit 3 of "A" which should be off i.e.:-
A= 1 L L1 01 1 L = F7 Hex,
The contents of the keyboard are returned in "A", with the information coming into the lower bits of *A* i.e.:-
Key *1* ---) Bit 0 of "A*

Key "2" ---) Bit 1 of "A"

(4)

It block & was chosen instead, (i.e. A = EF Hex), then the information would come in asi-
Key “0* ~---) Bit 0 of "A*
Key "9* =-=) Bit | of "A*

You can think of the inforsation coming into "A* from the outside edges first, so that both "0 and *1® would both go to bit
0 of register "A".

For sose games applications you may wish to allow all of the top row to be read, and it is possible to read it all in one
instruction (rather than the two instructions which would be required if we read one block at a timel.

eg.A=1 1 1 0 0 L § I =E7 Hex

Note that both bits *3* and *4* are “OFF*. This tells us the CPU wants information from blocks 3 and 4. Of course the two lots
of information get mixed and it is impossible to tell whether key "0* or key “1* was pressed, since both would set bit 0 of
A" 1.e.:-

“1®" or "0 --=) Bit 0 of A.
2" or "9 ===} Bit 1 of A etc.

This is useful in movement games because it enables keys *5* and *8* to be used as the left and right direction arrows, even
though they belong to different blocks on the keyboard.

Note that 1f you use the instruction:-
INr, ()

where register C specifies the port you want, them it is the contents of register B which define which keyboard block is being
selected.

hnother useful port 1s the cassette input/output port. This is still port FE as above. The major probles involved is the
tining of the data going out and going in; this kind of problea requires a lot of experience with sachine code,

The DUT instruction 15 also used to generate sound on the Spectrum, and to set the border colour.

Fage 160 of your Spectrua manual discusses the Basic OUT instruction, and sachine code prograsming of the OUT comaand is
esactly the same i.e. bits 0,1, and 2 define the border colour, bit 3 sends a pulse out to the MIC and EAR sockets, while bit
4 sends a pulse to the internal loudspeaker.

To change the border colour, load A with the appropriate colour value and then execute the DUT (FE) ,A instruction. Note that
this 15 only a TEMPORARY colour change. For a permanent change, you must perform the OUT, and also change the value of address
23624 (systea variable BORDCR). This is because the ULA in the Spectrus gets its value for the border colour from this
address. To stop the hardware aessing with the border colour, you must disable interrupts (DI),

CREATING SOUND ON YOUR SPECTRUM.

bue to hardware lisitations in the Spectrum, you can only produce sounds and noises using the DUT command if you have a 16K
Spectru, but not pure notes, you can with a 48K Spectrua.

To make a sound, you need to send a pulse to turn on the loudspeaker (and/or the MIC socket if it is to be asplified}. Then a
little while later, you need to send another pulse to turn it off. Then a little while later, on againj and so on.

In this way, sound is created. The total length of time between turning the loudspeaker on and the next tise you turn it on
again deteraines the frequency of the sound.

The length ot time you leave the pulse ON, as opposed to the total time between pulses, can give you a small degree of control
over the voluame,

Note that you must use a value for A for on and off such that the border colour resains unchanged. Otherwise, you will get a
banding pattern similar to the LOADing pattern,

m

"KOBRAHSOFT 780 MACHINE CODE COURSE"

! ! CHAPTER (11)

USEFUL FEATURES OF THE SPECTRUM FOR MACHINE CODE PROGRAMS,
Here we will consider in detail three useful features of the Spectrum which we may use in machine code programs.

THE KEYBOARD.
The keyboard is the main source of real-time input for the Spectrus, It can dynamically affect the processing of any
program, either the operating systes in the ROM, or the user's program in the RAM,

It is best considered as a two dimensional matrix with eight rows and five columns as shown below:-

' g A SPECTRUM KEY INPUT TABLE
Input in
A for
FEH (Hex)
' D4 D3 02 D1 0o
; CAP
FE [--rr===mmmeemes L Rt C]----r=moeecmenn- | R) L e SHIFT
i pemmmemmommemeea] e L L RO D -5 -A
FB oo T o R{====mcmmmmmreeu- Ef==m=mmsena W{- -]
I [ossmmnemnsnnae R e §i-mmommmmmm e 3--- F l
EF |-—--mmmmmemneee] R ke e By---mmmmmm e R L 0
F f----momemeeeee | e e bty | I[{==m=m- e 4
BF rescommemmmrnnnn Hl---=-mmmmmmmeen- N e K{==mmmmmmmmccannn N e e ENTER
SYN BREAK
L el LEEE ==N3 Bt 1 ALl L e SPACE
o 16 B L] 2 i

There are 4 main operations to test if a particular key has been pressed e.q. to check the *A® key:-

(1). Load the A register with the INPUT VALUE of the corresponding row:

LD A, FD Hex } Second Row
(2). Fetch from input port FE Hex - always used for keyboard:
IN A, (FE)
(3). Test Dx set to low for desired key:
AND | i Test “A" key

(4), 11 zero flag set, then key has been pressed:
JR 1, Keyset j Normal {not pressed state always high - N1)

(2)

Each of the 40 intersections represents a key of the keyboard. In their normal state (i.e. when they are NOT pressedl, they
are always in a high state i.e. the intersection is set as I. :

When a particular key is pressed, the intersection corresponding to that key will be reset to a low state i.e. 0.
Knowing the relationship between the keyboard and this inner matrix, we can derive a logical way of testing when a
particular key is pressed, using machine code. This is susmarised briefly on page 1. In sore detaili-
In Basic, when we scan the keyboard, we need to provide an address for that particular half row of the keyboard where the
desired key resides, before checking it using the IN function, as described on Page 140, Chapter 23 of the Spectrum sanual.
Siailarly, using machine code, we need to load into the A register (Accusulator) a value corresponding to the address of
the half row of keys we want to test. The required value for each half row is listed in the leftmost coluan of the table on
Page 1. e.q. For the "H to ENTER® half row we load A with BF Hex:-

" LD A, BF Hex

The value in A will then be used to fetch the byte which contains the state of that particular half row of keys, and return
to A when the INPUT instruction is used. e.g. the port used is the HE Hex port thus:-

IN A, (FE)

Since there are 5 keys per half row, we are only interested in the 5 low order bits of the byte returned in the A register,
I1f no key is pressed in that half row, the value of the low order 5 bits will be (2828282 + 24242 + 202 + 2 + 1) i.e.
1648+44241 = 31, Thus. register A contains xxx1i111 when no key is pressed.
1f we want to test whether the rightmost bit is pressed, we check to see whether that bit is low. There are two Nays to do
this:-

(1), Use BIT test instructions, e.g. BIT 0,A etc. If the bit is low (not set), then the lero Flag will be set (s1).
{2). Use Logical AND instructions e.q. AND | - if the bit is low (not set), then the result will be rero, and the lero Flag
will be set (s1).

The first sethod is easier because the particular bit we want to test is specified directly in the Bit Test instructiong
but is has a shortcoming in that if we want to test TWO keys of that half row, we will need to use TWD Bit Test instructions,
and possibly TWO relative juaps (JR's) e.g. to test Bit 0 and Bit I, using the first method:-

BIT 0, A j Test if Bit 0 of A is set or not,

JR 1, NOPRESS j Jump if not pressed.

BIT 1, A y Test if Bit 1 of A is set or not.

JR z, NOPRESS ; Juap if not pressed.

. . .1 Do whatever if both pressed.

NOFRESS .
' i Do whatever if not pressed.

The second method of testing using logical AND instructions needs a little more logic. To test bit zero, we use "AND 1) to
test bit 1 we use "AND 2*; to test bit 2 we use "AND 4"; to test bit 3 we use "AND 8"j and so on. (Pardon the pun!),
To test THO keys, we use "AND x*, where x is the sum of the value we will use when testing each single key individually
e.q. to test BOTH bit 0 and bit 1 of A are set:-

AND 3 i Test both bit 0 and bit ! is set.
cp 3 j Test if BOTH are set.
JR NI, NOTBOTH j Jump if both NOT pressed.
To test if EITHER bit 0 or bit I of A are set:-
AND 3 { Test EITHER bit O and bit ! is set,

JR 1, NOTONE i Juap if one is not pressed.

(3

To check if you understand the method of testing the keys, write a routine in machine code to test if key 6" has been
pressedy if it has, reset the computer. Hints:-

(1), Check the row address in the table on Page ! to be loaded into A.
{2), Send it to the input port FE Hex.

{3), Test the bit that is set by the *6* key,

(4), If ero, jump to address iero to reset.

(3}, 1f not 2ero, go back to (1) to repeat.

For the answer, seen the bottoa of Page 4.

OUTPUT - THE VIDED SCREEN DISPLAY.

The Video Screen display is the main source of output for the computer to comsunicate to the user.
The following machine code program will demonstrate the way the screen semory of the Spectrum is organised., Load it into a
tonvenient address e.g. 32000 (7000 Hex). This can either be done by POKING the numbers in with:-

10 FOR A = 32000 TO 32013: INPUT B: POKE A,B: NEXT A

RUN it and enter the nuabers:- 33,0,64,54,255,17,1,44,1,1,0,237,176,201, This is the following progras:-

Hex Nos Decimal Nos Mnemonics Comments

21,00,40 33,0,44 LD HL,4000 | Load HL with start of dosplay file.

Jb,FF 54,255 LD (HL), FF j Fill that screen location.

11,01,40 17,1,64 LD DE,4001 j Load DE with next byte in display.

01,01,00 1,1,0 LD BC,1 { Load BC with no. of bytes to move,

ED,BO 237,176 LDIR } Move block of length BC from (HL} to {DE)
' cY 201 RET j End of progranm,

The other way is to load the KD! disassembler, and enter the Hex numbers, using the Memory (M) facility.

RUN the program by typing RANDOMIZE USR 32000 - the single byte from 16384 will be woved to 16385,

Change line 4 to read LD BC,20 Hex or 01,1F,00 Hex. Again RUN it - you may be surprised to see which are the first 32 bytes
of the screen display! Note how a very thin line has been drawn across the top of the screen. The first 32 bytes of the screen
aenory relate to the first byte of each of the first 32 characters.

Next, change line & to read LD BC,FF Hex or 0§,FF,00 Hex. and RUN it. Again you may be surprised! The 33rd byte is NOT on
the 2nd row of the screen - it is the first byte of the 32nd character! And so on up to the 256th character,

Where do you think the next byte would go? Change line 4 to LD BC,2047 Decimal or 01,FF,07 Hex and RUN it. The top third
only of the screen is filled.

Experisment with this program, using different values for B up to LD BC,6143 Decimal or 01,FF,17 Hex. In this way you can
see how the display is organised. The screen memory is divided into THREE separate parts i.e, :-

(1), Memory 4000 Hex - 47FF Hex = first B lines
{2), Memory 4800 Hex - 4FFF Hex = second 8 lines,
{3}, Memory 5000 Hex - SIFF Hex = third B lines.

Not only that, but you will recall that each character of the Spectrum is composed of EIGHT 8 bit bytes which makes &4
dots. e.. for the character *1*, we have:-

Decimal No Binary No Hex No
0 00000000 0
16 00010000 10
16 00010000 10
b 00010000 10
16 00010000 10
0 00000000 0
16 00010000 10

0 00000000 0

(4)

The organisation of the Spectrum screen display memory is such that the first 254 bytes from 4000 Hex to 40FF Hex
correspond to the first byte of each of the 256 B byte characters of the first B lines.
Then the next 256 bytes from 4100 Hex to 41FF Hex correspond to the SECOND byte of each of the 256 8 byte characters of the
tirst B lines and so on. _
Thus, the memory location of the B bytes corresponding to the first character of the screen ist-
Ist bytet- 4000 Hex
2nd bytei- 4100 Hex
Jrd byte:- 4200 Hex
4th bytei- 4300 Hex
Sth byte:- 4400 Hex
bth bytei- 4500 Hex
Tth bytet- 4600 Hex
Bth byter- 4700 Hex
Unusual, but that's the Spectrus! The full screen display organisation is shown belowi-

HEMORY ATTRIBUTE LINE HEMDRY ATTRIBUTE
IN HEX . IN HEX . . « INHEX . INHEX .
4000 3800 0 401F J81F
4020 3820 1 §03F 3B3F
4040 3840 2 405F S85F
4060 5860 3 §07F S87F
4080 3860 4 409F SBYF
4040 JBA0 3 40BF S8BF
40C0 3800 b 40DF J80F
40E0 SBEO 7 40FF SBFF
4800 5500 B A8IF J91F
4820 3920 9 483F 9P3F
4840 3740 10 4B5F 395F
4840 3960 1 A87F 37F
4880 3980 12 489 S99F
4BA0 39A0 13 486F J9BF
4800 9900 14 4BDF “SR0F
48E0 970 15 ABFF S9FF
5000 5A00 6 . 201F SALF
3020 JA20 17 S03F JAJF
9040 JA40 18 S05F SASF
5060 9AL0 19 J07F SATF
2080 JAB0 20 S09F T SASF
S0A0 SAAQ 21 : S0BF JABF
50C0 SACO Py _ JODF SADF
S0E0 SAEO 23 J0FF SAFF

The screen complexities are, however, well worth understanding since, using machine code, we can also access the bottos two
lines of the screen, which we never could using Basic!

SOLUTION TO TRAP “B* KEY ROUTINE.
Referring to the table on Page I, we can see that the required row address is FD Hex. Also, to test the bit, we must use
the AND 1b instruction. The full routine is thusi-

Hex Nos Decimal Nos Hnemonics Coasents
3E,FD 62,253 AGAIN LD A,FD Hex ; Input value of row = FD Hex
DB, FE 219,254 IN &, (FE) 3 Fetch from port FE Hex.
£6,10 230,16 AND 10 Hex 3 Trap "B" key.

CA,0C,7D 202,142,125 JP 1,RESET 3 I 2ero, reset,

£3,00,70 195,0,123 JP AGAIN s If not, try again,

€3,00,00 195,0,0 RESET JP 0000 3 Juap to address O - RESET,

Try it - enter the nuabers 62,253,219,254,230,16,202,12,125,195,0,125,195,0,0 . Start at 32000, RUN - pressing "6* should
reset the computer,

(1}

"KOBRAHSOFT 280 MACHINE CODE COURSE"

CHAPTER (12)

USEFUL FEATURES OF THE SPECTRUM FOR MACHINE CODE PROGRAMS {contd.)
In this, the final part of our Machine Code Course, we will consider two more important features of the Spectrum for use in
machine code programming i.e. The Video Attributes Display and Sound Output. MHe will also show you how to construct a simple
machine code program which will also be very useful - a Header Reader progranm.

THE VIDEO DISPLAY ATTRIBUTES.

The word “attribute” can be seen as meaning *colours”; whatever value lies in a certain attribute area will give that area
a certain PAPER, INK, FLASH or BRIGHT colour.

The attribute memory area is easier to understand than the Spectrua display (screen) layout, since it bears a sisple
one-to-one relationship with the characters displayed on the screen,

The attribute file occupies the memory area from 5800 Hex (22528 Decimal) to SAFF Hex (23295 Decimal). It is thus 768 bytes
long, which corresponds to 24 lines of 32 characters in each line i.e. there is ONE attribute byte for each character
position.

Thus, 3800 Hex is the attribute of the first character of the first line, 3801 Hex the second character, 5802 Hex the third
and so on. 5BIF Hex corresponds to the 32nd character of the first line. Similarly, 3820 Hex holds the attribute of the #irst
ctharacter of the SECOND line, 5840 Hex the first character of the THIRD 1line, and SAEO Hex the first character of the LAST
line of the screen.

NOTE:- For each character position on the screen, each corresponding attribute byte is made up as follows:-

Attribute Byte:- Bbitsie. 763543210

Bits 0,1, and 2:- These determine the INK colour of the character i.e. colours 0 to 7 (black to white). The usual
values for the bits apply i.e.:- Bit 0 if set represents 1, Bit [represents 2, Bit 2 represents 4, Thus, if

we have:-
Rt 21 0
State (Set/Reset):- 01 0
Value:t- 0 2 0 Tatal = 2 = colour is RED,

Bits 3,4, and 5:- These determine the PAPER colour of the character 0 to 7.
Bit b:- This makes the character BRIGHT if SET (=1); NORMAL if RESET (=0),
Bit 7:- This makes the character FLASH if SET, NOT FLASH if RESET,
As an exercise, how would make the first character of the second line of the screen have PAPER b, INK 3, and be BRIGHT but NOT
FLASHING? For the answer, see later,
We will now write a subroutine which will convert a given screen address to its torresponding attribute address - this

aeans finding which area of the screen the character belongs to, then adding this to 5800 Hex. This can be done thus:-

{1) LD HL,4529H - Load the address in HL.

(2 LD A - Put the High Order Byte in A,

(3) AND I8H - Trap bits 3 and 4; gives the screen area.

(4) SRA A - Shift Right Accumulator 3 times i.e. divide by B. The result will
SRA A be either 0, 1, or 2 depending on the value in H.
SRA A

(3) ADD A,58H Transform to attribute address.
(6) LD H,A - Store in H register. W = 5BH, S9H or S5AH,

Me will illustrate this with an example. Consider the address 4800H. Step (1) puts this in HL i.e. H contains ABH, L contains
zero. Step (2) puts 48H in A. Consider Step (3):-

Value in A:~ 01001000
AND with 1BH:- 00011000

48H.
1BH,

00001000 = BH,

()

Performing Step (4) three times then gives the equivalent of dividing by 8 i.e. here the result will give | in the A register,
Step (5) then adds SBH tc this to give here 59H; this is stored in the H register by Step {4). The result gives 5900H in HL.
NOTE:- The L register stays the same. The answer is thus 5900H - correct. For verification - check the screen display table on
Fage 4 of Chapter 11,

Answer to the Attribute Exercise.

The first character of the second line of the screen is represented by the attribute address 5820H = 22540 Decimal, To sake
it contain FAPER &, INK 3, BRIGHT 1, we must have:-

Function:- FLASH BRIGHT PAPER INK
Address 22560:- Bit No. 7 b S 43 2.1 0
Answer:- 0 | I L0 0t L = 73K = 115 Dec.
FLASH 0 BRIGHT 1} PAPER & INK 3

The correct answer is thus obtained by POKEing 22540 with 115, Try it, type POKE 22540,115 (ENTER). Any character on the
screen at this position will be BRIGHT, and have PAPER &, INK 3.

SOUND QUTPUT ON THE SPECTRUM,
There are THO ways of generating sound using machine code on the Spectrum i.e.i-

(1), Sending signals to the cassette output port 254 for a certain duration of tiae using the OUT 254 instruction i.e. DUT
(254) ,A.

{2}, Using the BEEP routine in your Spectrum’'s ROM, we can set HL and DE registers to contain certain values i.e. DE contains
the duration of the sound in seconds X frequency; HL contains the frequency. Then we execute the routine with the
instruction CALL 03BSH.

Nethiod (1) has the advantage of being free from any ROM calls, which can change from one model of the Spectrus to another -
bear this in mind when considering using KOM calls in your machine code prograss. The snag is that because the ULA is
constantly accessing the video display, if your program resides in the first 18K of your Spectrum’s memory it will be
frequently interrupted by this process. If the progras generates sound, it will occur in bursts of unpredictable duration,
This weans the sound will not be pure. One solution is to move that part of the program which generates sound to higher seasory
if you have a 48K Spectrum. Another problem is that since we send values to output port 254, it will also affect the border
colour and HIC and LOUDSPEAKER, depending on the value sent. (See Page 4 of Chapter 10).

Hethod (2) does not sutfer from these problems, and is consequently the best to use.

As an exaaple, for the note *Middle C* to be produced for one second, DE must hold 105H, HL must hold 44AH. The following
program will produce this i.e.:-

Hneronics Hex Numbers Decimal Numbers
LD HL,bbAH 21,b4,6 33,108,6

LD DE,105H 1,3,1 17,5,1

CALL 0IBSH cb,Bs,3 205,181,3
RET RET 201

To try this, put the code at a suitable address e.q. 40000, with the following program:-
10+ FOR A=40000 TO 40009: INPUT B: POKE A,B: NEXT A

RUN it, and enter the above nusbers i.e. 33,106,6,17,5,1,205,181,3,201, Activate the routine with RANDONIZE USR 40000. You
will hear the note Middle C for | second! Experiment with different values for HL and DE to get any ditfferent sounds you want,

AN EXAMFLE MACHINE CODE PROGKAM - WRITING A HEADER READER PROGRAM.

We will now consider the writing of a Header Reader program in machine code, which will read the Headers of any prograa
PLAYed in, and list their composition. What is a Header? When you load a prograe on your Spectrum, you usually see at first a
burst of RED/CYAN THICK STRIPES - this is called a LEADER (L), and is around 5 sec. in length for a *HEADER*, but only 2 sec.
for & *CODE BLOCK™. After, comes a burst of BLUE/YELLOW NARROWER STRIPES - these are BYTES (B). Thus, for a typical Basic
program you get:-

3

HEADER CODE BLOCK
L----B L----B
Y A A A
3 secs V.short 2 secs Any length
RED/CYAN BLUE/YELLOW RED/CYAN BLUE/YELLOW
THICK BANDS THINNER BANDS THICK BANDS THINNER BANDS

The HEADER must always come first, since it tells the Spectrum where the following code sust qo in semory. The burst of BYTES
for a Header is always very short, since it always contains only 17 bytes. These 17 bytes give the following information:-

BYTE NUKBER

INFORNATIDN

This gives the TYPE of program i.e. 0 for BASIC, | for a NUMERIC
ARRAY, 2 for a STRING ARRAY, 3 for MACHINE CODE.

2 =1 These 10 bytes give the PROGRAM NAME, in Spectrus character codes.
12,13 These 2 bytes give, for a block of code, the CODE LENGTH; or, for a
Basic program, the length of the program area PLUS its variables.
14,15 These 2 bytes give, for @ block of code, the Start Address of the
block in memory; or, for a Basic program, the AUTO-RUN line nusber.
18,17 These 2 bytes give, for a block of code, a repeat of the CODE

LENGTH; or, for a Basic program, the lenqth of the program area
MINUS its variables,

The information in these 17 bytes ran be obtained by the Header Reader program we will now write. The first probles - where to
load the Header? This can be any convenient address, we will wuse 32000, We will be loading the Header using machine code -
this can be placed in a REM statement at the start of the program. Type in the following Basic program, it will be explained

fully later:- s

i1

b
102
15:
fhe
17
18:
20
2532
2b:
h
28:
30:
33
401
45!
303
ShH
60:
45:
10
152
B0:
85

REN hhhhhhhhhhhhhhhhhhhhhhhhbhhhhh

CLEAR 31999: CLS

LET A=32000¢ DEF FN A(X)=PEEK (A+X)42563%PEEK (A+X+])

PRINT AT 0,5;"HEADER READER PROGRAN": PRINT AT 1,5 "=s=szzszzzzzzzzzz==z=="1PRINT: PRINT
LET R=PEEK 23635+254*PEEK 23436

RANDOMIZE USR B: CLS

PRINT AT 0,5;"HEADER READER PRDGRAM": PRINT AT 1,5;"===s============zs=22"3 PRINT: PRINT
PRINT *Filenamer *;

FOR N=At+] TO A+10t PRINT CHR$ PEEK N;: NEXT N

LET R=PEEK A: IF R=0 THEN GOSUB 35: GOTD 15

IF R=1 THEN BOSUR 60: 60TD 15

IF R=2 THEN GOSUB &5: G0TO 15

IF R=3 THEN GOSUB BO: GOTD 15

PRINT ' '"Basic Progran”

FRINT "“"Total Length: *3FN A(1L);"* Bytes,"

PRINT *'“Program Length: *;FN A{15);" Bytes,"

IF FN A(13)>9999 THEN PRINT '""Loading Only":RETURN

PRINT *'"Auto-Runs from Line: "sFN A(13):RETURN

PRINT *'"Nuseric Array": LET A$="": BOTD 70

LET A$="$": PRINT *‘"Character Array"

PRINT “““Array Length: *jFN A(11}}" Bytes.”

LET X=PEEK (A+14): PRINT ''“Array Name: ";CHR$ (64+32¢(X/32-INT (X/32)});A%: RETURN

IF FN A(13)=16384 AND FN A{11)=5912 THEN PRINT *'“Screen$ ": RETURN

PRINT """Machine Code®"'"Start Address: ";FN A(13) """Code Length: *;FN A(11);" Bytes.": RETURN

t4)

We now need to FOKE the machine code to load the Header into the REM statement in Ling [. Find the start of the Basic program
area by typing PRINT PEEK 23635+256¢PEEK 23436, This will give a value of either 23755 or 23813 according to whether a
aicrodrive is fitted. The machine code to load the Header will be:-

Mnemonics Hex Nos. Decinal Nos. Remarks
LD HL, (3C3D) 24,3D,5C 42,61,92 Load HL from ERR-SPj gives RESET with BREAK.
LD (HL),0 34,00 54,0 Load first byte with 0.
INC HL 23 35 Increaent to next byte.
LD {HL},0 36,00 94,0 Load second byte with 0.
0K A AF 175 Signal *Loading Header".
5CF 37 33 Set Carry Flag - signal "Load".
LD IX,7000 0h,21,00,70 221,33,0,125 Load start address = 32000,
LD DE,0011 11,11,00 17,17,0 Length to load = 17 bytes.
CALL 0556 CD,56,05 205,86,5 Call the ROM load routine,
RET (' 201 Return to Basic.

This is POKed in as follows - type in:-
90: FOR A=23760 (or 23818) TO 23780 (or 23838): INPUT B: POKE A B: NEXT A

PUN 90, and enter the numbers 42,61,92,54,0,35,54,0,175,55,221,33,0,125,17,17,0,205,86,5,201. The start is § bytes past the
start of the Basic program area, since the first 2 bytes are the Line No.; the next 2 are the line length; and the next is the
REM character. NOTE:- LISTing the program will now give the sessage “Invalid Colour® because of the weird character tokens in
the KEM line, An explanation of the Basit is:-

Line 1i- Contains the REM which contains the machine rode.

Line 5:- Sets the stack below KAMTOP; clears screen.

Line 10:- Sets A to 320005 defines a general function,

Line 15:- Prints the Heading,

Line 16:- Checks the start of the Basic program area.

Lice 17:- Call the machine code in the REM to load the Header; clear screen after,
Line 18:- Feprint Heading.

Lines 20 - B5:- Print the various Headings read from the Header.

Delete Line 90. Next, POKE Line | to zero with POKE 23756 (or 238141, 0. It cannot then be edited out! Save the program to
auto-run with SAVE"HReader® LINE 0, .

That brings us to the end of our “KOBRAHSOFT MACHINE CODE COURSE*. e hope you enjoyed it and will now go on to write your
own maching code prograes. Kemeamber, with machine code, the only limit is your imagination!

