e e

ZX Spectrum +2

Introduction

Sinclair ZX Spectrum +2
128K Home Computer

A culmination

Built on the outstanding success of the established ZX range of computers - the original Spectrum, the
Spectrum + and the Spectrum 128, we now proudly present the ZX Spectrum +2, a machine that

combines the ingenuity of Sinclair technology with Amstrad’s expertise in integration and
engineering reliability.

Software compatibility

The +2 may be used with software written for the earlier models in the ZX Spectrum range. This
means that a vast quantity of software already exists for the. +2. There are literally thousands of titles
available covering every conceivable application: games, utilities, music, scientific, educational and
many many more.

sSircl=ir
Quality Control

When choosing software, always look out for the Sinclair Quality Control’ logo on the software
package itself.

We recommend that you buy software only from manufacturers operating under this scheme which
was set up as a control against incorpatible or misleadingly-labelled software.

About this book

This book is not intended to be an exhaustive guide to every aspect of computing on the +2. If you
need to delve deeper, then there are many existing publications for the Spectrum + and Spectrum 128
computers which will serve this purpose admirably ard provide you with all you need to know about
ZX Spectrum computers in general, and about Sinclair BASIC.

-

*

If all you wish to do, however, is find out how to set up the computer, connect add-ons, learn the
fundamentals of BASIC programming, and load software and games, then this book will prove
entirely adequate for your requirements.

CONSUMER ELECTRONICS PLC.
©Copyright 1986 - AMSTRAD Consumer Electronics pic.

Neither the whole nor any part of the information contained herein, nor the product described in this
manual, may be adapted or reproduced in any material form except with the prior written approval of
AMSTRAD Consumer Electronics ple. (‘Amstrd').

The product described in this manual, and products for use with it are subject to continuous
development and improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by Amstrad in good
faith.

All maintenance and service on the product must be carried out by Sinclair authorised dealers.
Amstrad- cannot accept any liability whatsoever for any loss or damage caused by service or
maintenance by unauthorised personnel. This guide is intended only to assist the reader in the use of
the product, and therefore, Amstrad shall not be liable for any loss or damage whatsoever arising
from the use of any information or particulars in, or any error or omission in, this guide or any incorrect
use of the product.

We ask that all users take care to submit their user registration/quarantee cards.
All correspondence relating to the product or to this manual should be addressed to:

Sinclair Computers Division
Amstrad Consumer Electronics plc
Brentwood House
169 Kings Road
BRENTWOQD
Essex CM144EF
First Published 1986
Second Edition 1986

Written by Ivor Spital and Rupert Goodwins
Extracts from the book 'ZX{ Spectrum BASIC programming’ written by Steven Vickers and Robin Bradbeer
Typeset and published by Amstrad

Amstrad is a registered trademark of Amstrad Consumer Electronics plc. Unauthorised use of the trademark or
word Amstrad is strictly forbidden.

IMPORTANT

You must read this....

1. Always connect the mains lead of power supply unit to a 3-pin plug following the instructions given
in chapter 1.

i
2. Do not attempt to connect the power supply, unit to any mains supply other than 220-240V AC 50Hz.

3. Whene.ver you have finished using the +2, ALWAYS disconnect the power supply unit from the
mains supply socket.

4. There are no user serviceable parts inside the equipment - DO NOT ATTEMPT TO GAIN ACCESS
INSIDE THE POWER SUPPLY UNIT - THERE ARE HIGH VOLTAGES INSIDE. Refer all servicing to
qualified service personnel.

5. Do not block or cover the ventilation slots in the equipment.
6. Do not use or store the equipment in excessively hot, cold, damp, or dusty areas.

7. Never plug in (or unplug) any device from the EXPANSION I/O socket while the +2 is switched
on - doing so will probably damage boththe +2 and the expansion device.

8. After you have switched off your TV (or VDU monitor), do not immediately disconnect the +2 -
wait a few seconds or so.

9. Do not switch off the +2 (or switch on or off any peripheral devices connected to the +2) while
there is a program or data in the memory that you wish to keep - doing so may make
the +2 ‘crash’,losingthe programordata.

Contents

Chapter 1

Openthe box
Unpacking
Fitting a mains plug
Setting up

Chapter 2
Operating your +2
Switching on
Tuning-in your TV
Using the +2
The opening menu

Chapter3

How to load Spectrum 128 software
Loading software
Abandoning loading
Resettingthe +2

Chapter 4

How to load Spectrum 48 software
Loading software
Abandoning loading
Resetting the +2

Chapter 5
Introduction to BASIC

Chapter6

Using 128 BASIC
The editor
The editmenn
Renumbering a BASIC program
Swapping screens
Listing to the printer
Typingina program
Moving the cursor
Running a program
Commands and instructions

11

17

19

21

23

Chapter 7 29
Using 48 BASIC

Using the +2 as a 48K Spectrum

Entering 48 BASIC mode

The keyboard under 48 BASIC

Programentry

Editing the current line

Chapter 8 37

A complete guide to BASIC programming
Part | - Introduction
Part 2 - Simple programming concepts
Part 3 - Decisions
Part 4 - Looping
Part 5 - Subroutines
Part 6 - Data in programs
Part 7 - Expressions
Part 8- Strings
Part 9- Functions
Part 10 - Mathematical functions
Part 11 - Random numbers
Part 12 - Arrays
Part 13 - Conditions
Part 14 - The character set
Part 15- More about PRINT and INPUT
Part 16 - Colours
Part 17 - Graphics
Part 18 - Motion
Part 19- Sound
Part 20 - Datacorder operations
Part 21 - Printer operations
Part 22 - Other peripherals
Part 23 - IN and OUT
Part 24 - The memory
Part 25 - The system variables
Part 26 - Using machine code
Part 27 - Spectrum character set
Part 25 - Reports
Part 29 - Reference information
Part 30 - The BASIC
Part 31 - Example programs
Part 32 - Binary and hexadecimal

Chapter9 183
Using the calculator

Selecting the calculator

Entering numbers

Running total

Using built-in mathematical functions

Editing the screen

Assigning variables

Exit-ing from the calculator

Chapter 10 197
Connecting peripherals to your +2
Joystick(s)
VDU Monitor
Amplifier
Printer
Serial devices
MIDI device
Keypad
Interface One and microdrives
Other expansion devices

Index 203

Chapter1l
Open the box

Subjects covered...
Unpacking
Fitting a mains plug
Settingup

Unpacking

Inside the carton, you'll find the following...

The Spectrum +2 computer
The power supply unit
The aerial lead

This manual (together with your user registration/guarantee card)

Fitting a mains plug

The power supply unit for the Spectrum +2 operates from a 220-240 Volt AC 50Hz mains supply.

Fit a proper mains plug to the mains lead of the power supply unit. If a 13 Amp (BS1363) plug is used, a
3 Amp fuse must be fitted. The 13 Amp fuse supplied in a new plug must NOT be used. If any other
type of plug is used, a 5§ Amp fuse must be fitted either in the plug or adaptor or at the distribution
board.

IMPORTANT - The wires in this mains lead are coloured in accordance with the following code:

Blue: Neutral
Brown: Live

As the colours of the wires in the mains lead of this apparatus may not correspond with the coloured
markings identifying the terminals in your plug, proceed as follows...

The wire which is coloured BLUE must be connected to the terminal which is marked with the letter N
or coloured black.

The wire which is coloured BROWN must be connected to the terminal which is marked with the letter
L or coloured red.

Disconnect the mains plug from the supply socket when not in use.

Do not attempt to remove any screws, nor open the casing of the power supply unit. Always obey the
warning on the rating label of the power supply unit...

W ARNING: LIVE PARTS INSIDE - DO NOT REMOVE ANY SCREWS

Setting up

We will now set up the standard +2 system. All you need (other than the items you unpacked)isa
standard TV set (UHF). You can use a colour or black-and-white TV, but of course, with the latter you
will not be able to enjoy the full colour capabilities of your +2,

Note that if you wish to attach add-ons, or peripherals, (such as joystick(s), microdrive(s), a monitor,
keypad, audio amplifier, MIDI device, printer or other serial/expansion devices)toyour +2 system,
you should turn to chapter 10 (Connecting peripheralstoyour +2),

Place the +2 computer on a suitable flat surface, ready to be connected to your TV. Next, remove
any plug which is already connected to the aerial socket at the back of the TV. Using the aerial lead
provided with your +2, insert the Jarger plug into the TV's aerial socket, and insert the smaller plug
intothe socket marked TV at the back of the +2.

Finally, insert the small plug coming from the power supply unit into the socket marked 9V DG at the
backofthe +2.

The +2 systemisnow readyto be switched on.

Thestandard +2 systemsetup

10

Chapter 2
Operating your +2

Subjects covered...

Switching on
Tuning-in your TV
Usingthe +2

The opening menu

Switching on

Connect the mains plug of the power supply unit to the mains supply socket, and switch on the
socket-switch (if necessary). The ON indicator lamp (on the top panel of the +2) should illumninate,

Now switch on your TV. On the screen you will probably see either a faint TV picture or just random
‘white noise’ and hear a loud ‘hissing’ sound from the TV’s speaker, Adjust the TV'’s volume control

until the sound is at a comfortable listening level. The next thing to do is set up the +2 ready for
funing-in.

Preparing to tune-in your TV

The +2 is capable of generating its own test signal, enabling you to tune-in the TV accurately. The
test signal consists of sixteen vertical colour bars (containing text characters) which appear on the TV
screen, and a repeating tone which is reproduced through the TV’s speaker. (If you are using a
black-and-white TV, then the colour bars appear as varying shades of grey). You will see and hear the
test signal when you have completed the tuning-in of your TV (described ahead).

11

Switch on the test signal by holding down the [BREAK] key (at the top right of the keyboard) and
while it is held down, press and release the RESET button (atthe left hand side of the +2). Keep the
[BREAK] key held down for a few seconds longer, then release it. The test signal will now be
generated by the +2, and youshould proceed to tune-in your TV, as now described.

Push-button TV channel selectors

If your TV doesn't have push-button channel selectors, then skip to the section ahead entitled ‘Manual
tuning'.
If your TV does have push-button channel selectors, press one of them to select a Spare channel (ie.

one not normally used for receiving TV or video programimes). Note that if your TV is equipped with
an AFC (or AFT) switch, then this should be set to the off position.

Using the tuning control that corresponds to the selected channel, tune-in to the test signal (shown on
the previous page). Make sure that both picture and sound are tuned-in for the best possible results.

When you are satisfied with the tuning, then you may (if your TV is so equipped) set the AFC (or AFT)
switchto the on position.

Finally, adjust the TV's brightness, contrast and colour controls for the clearest display of the text
characters within the colour bars. '

Now that you have tuned-in one of the TV's push-button channel selectors specifically forthe +2,you
may thereafter select that particular channel whenever youwishtousethe +2 withyour TV.

You may now skip to the section ahead entitled ‘Using the +2'.

Manual tuning

If your TV isn't equipped with push-button channel selectors, then you will have to use the TV's
manual tuning knob to tune-into your +.2.

Having connected and switched onthe +2 and TV, switchonthe +2's test signal as described in
the previous section entitled ‘Preparing to tune-in your TV,

Tune-in the TV's manual tuning knob until the test signal is received. Make sure that both picture and
sound are tuned-in for the best possible results.

Finally, adjust the TV's brightness, contrast and colour controls for the clearest display of the text
characters within the colour bars,

Each time that you wish to set up and use the +2 with your TV, you should follow the above manual
tuning procedure.

You may now skip to the section ahead entitled Usingthe +2°.

12

Having problems?

Ifyou have tuned-in your TV satisfactorily, you may now skip to the section ahead entitled ‘Using the +2".

If you are unable to tune-in your TV, the following check list may help you to ascertain where the
problem lies, and what remedial action you can take.

1. Problem...

The ON indicator lamp (on the top panel of the +2)is not illuminated,
Action...

* Check power supply unit is plugged into computer.

* Check mains plug of power supply unit is plugged into mains supply socket.

* (Ifmains supply socket is switched) - Check supply socket switch is on.
* Check connections and fuse in mains plug.

2. Problem...

The ON indicator lamp is illuminated, but no signal whatsoever can be tuned-in on the TV.
Action...

* Check TV is setup and working correctly.

* Check TV is standard UHF type (colour or black-and-white).

* Check aerial lead (supplied) is connected from computer to TV aerial socket.

* (If you have push-button channel selectors) - Check you are tuning-in the channel youselected,

3. Problem...

Only a poor signal from the computer can be tuned-in on the TV.

Action...
* Check TV is setup and working correctly.
* Check aerial lead (supplied) is fully plugged into computer and TV aerial socket,

* (If TV is so equipped) - Check AFC (or AFT) switch is set to off position.
* Check tuning-in has been carried out as accurately as possible.

4 Problem...

Signal from the computer is being tuned-in, but it's not the test signal described above.
Action...

* Check computer’s test signal has been switched on (as described in the previous section entitled
‘Preparing to tune-in your TV").

5. Problem...
The test signal colour bars appear, but no sound (repeating tone) is audible from the TV’s speaker.
Action...

* Check TV's volume control is not at minimum.
* Check tuning-in has been carried out as accurately as possible.

13

6. Problem...
The test signal sound (repeating tone) can be heard, but no colour bars can be seen onthe TV.
Action...

* Check TV's brightness, contrast and colour controls are not at minimum.
* Check tuning-in has been carried out as accurately as possible.

1.Problem..,
Thetest signal colour bars and sound are tuned-in, but none of the text characters can be read.
Action...

* Check tuning-in has been carried out as accurately as possible.
* Check TV's brightness, contrast and colour controls are adjusted for best results.

If you cannot identify the cause of your problem, try carrying out the entire procedure (from the
beginning of this chapter) again. If the problem still persists, contact your Sinclair dealer.

Using the +2

The +2 system should now be fully set up, with the test signal colour bars on the screen, and the
repeating tone coming from the TV's speaker. :

We will now switch off the test signal and start using the +2. Press and release the RESET button (at
the left hand side ofthe +2). The test signal will disappear from the screen, and in its place will be the
‘opening meny’,

The opening menu

The opening menu appears whenever you first plug in and switch onthe +2, or whenever you press
and release the RESET button,

14

As its name suggests, the opening menu offers you a selection of options. You can choose from one of
the four options which appear within the central box on the screen. These are...

Tape Loader - Choose this option if you wish to load Spectrum 128 software.
128BASIC - Choose this option if you wishto use the +2 for BASIC programming.
Calculator - Choose this option if you wish to use the +2 asacalculator only.
48BASIC - Choose this option if you wish to load Spectrum 48 software (or wish to use

the +2 asa48K Spectrum).

How to choose an option

Notice that the menu option ‘Tape Loader’ appears to be highlighted by a ‘bar’. This means that
the Tape Loader option is ready to be selected - (the selection hasn't been confirmed yet). For
the purpose of this example, let's assume that you don't want to select Tape Loader, but that
instead, you want to select 128 BAS I C. This means that you need to move the highlight bar to the
option*128 BAS I C’. To do this, use the cursor keys (shown below) until the highlight bar moves to
the desired position.

JITTTTTT T
HNEENEEER
“EDIT ‘ L,__ } ’ ENTER
HER ||
- } - = O‘ I

When the highlightbarison 128 BAS I C, confirm this choice by pressing the [ENTER] key.

15

The +2 then switches to the 128 BASIC mode. (You will see a black horizontal ‘banner’ towards the
bottom of the screenand a flashing cursor at the top left hand corner.)

Don'’t worry if you know nothing about BASIC - we're not going to do any programming just yet - we'll
simply return to the opening menu again. To do this, we use a different menu - this one’s called the
‘edit menu'. Call up the edit menu by pressing the [EDIT] key.

Again, using the cursor keys and [ENTERY], select the option ‘E X i t’to return tothe opening menu.

You may now select whichever opening menu option you require. Depending upon your selection,
referto the following chapters for further information...

Tape Loader - Refertochapter 3.

128 BASIC - Referto chapters 5,6 and 8.
Calculator - Referto chapter 9,
48BASIC -Refertochapters 4,5, 7and 8.

IMPORTANT - Whenever you have finished using the +2, always disconnect the power supply unit
from the mains supply socket.

16

Chapter3 __
How to load Spectrum 128 software

Subjects covered...

Loading software
Abandoning loading
Resetting the +2

BEWARE OF ANY SOFTWARE WHICH DOES NOT BEAR THE ‘SINCLAIR QUALITY CONTROL'
LOGO - For further information, read the ‘Introduction’ at the beginning of this manual.

Toload Spectrum 128 software (a game, an utility program, etc.) carry out the following instructions...
1.Setupand switchonthe +2 system, sothatthe opening menu appears onthe screen...

2. Select the option ‘Tape Loader’ from the opening menu. (If you don’t know how to select a
menu option, refer back to chapter 2.)

3. Insert the software cassette into the datacorder and make sure that the tape is rewound to the
beginning.

4. Play the cassette. As loading commences, the border colour will flash and appear striped,
indicating that the program is being ‘read’ from the cassette. If your TV's volume control is turned up,
you will also hear a varying high-pitched tone. Again, this is an indication that the program is being
read.

(Note that if you wish to abandon loading, you should hold down the [BREAK] key until
the +2 retumnstothe opening menu.)

17

Most commercially available software cassettes take a few minutes to load. Initially, the
Program: name will appear towards the top left corner of the screen, followed by various other
displays or messages (these will differ from program to program).

When the program is loaded, stop the cassette. The software isthen readyto use.

If you have finished using the program and you wish to use the +2 for something else, press and
release the RESET button (at the left side of the +2). Always remember that whenever the RESET
button is pressed, everything in the computer's memory (RAM) is cleared. You should therefore
always make sure that you have completely finished with any program inthe +2°’s memory, before
you press the button.

18

Chapter 4
How to load Spectrum 48 software

Subjects covered...

Loading software
Abandoning loading
Resetting the +2

BEWARE OF ANY SOFTWARE WHICH DOES NOT BEAR THE ‘SINCLAIR QUALITY CONTROL'
LOGO - For further information, read the ‘Introduction’ at the beginning of this manual.

Toload Spectrum 48 software (a game, an utility program, etc.) carry out the following instructions...

1. Setupand switchonthe +2 system, sothatthe opening menu appears on the screen.

2. Select the option ‘48 BAS I C’ from the opening menu. (If you don't know how to select a menu
option, refer back to chapter 2.)

3. The opening menu disappears, and the message '© 1982 Ams t r ad’ is displayed at the bottom

of the screen. Now press the J key once, followed by the " (double quotes) key twice. The screen
should look like this...

(If the screen does not correspond to the above picture, then you may have selected the wrong menu

option or pressed the wrong key. In this case, press and release the RESET button (at the left side of
the +2)and carry out steps 2 and 3again.)

When you see the above message, press [ENTER].

4. Insert the software cassette into the datacorder and make sure that the tape is rewound to the
beginning.

5. Play the cassette. As loading commences, the border colour will flash and appear striped,
indicating that the program is being ‘read’ from the cassette. If your TV's volume control is turned up,
you will also hear a varying high-pitched tone. Again, this is an indication that the program is being
read.

(Note that if you wish to abandon loading, you should hold down the [BREAK] key until the screen
clears - you will then be returned to the ‘48 BASIC' mode. If you wish to return to the opening menu,
simply press and release the RESET button.)

Most commercially available software cassettes take a few minutes to load. Initially, the
Program: name will appear towards the top left corer of the screen, followed by various other
displays or messages (these will differ from programto program).

When the program is loaded, stop the cassette, The software is then readytouse.

If you have finished using the program and you wish to use the +2 for something else, press and
release the RESET button. Always remember that whenever the RESET button is pressed,
everything in the computer’s memory (RAM) is cleared. You should therefore always make sure that
you have completely finished with any program in the +2’s memory, before you press the button.

20

Chapter5
Introduction to BASIC

The +2 uses a computer language called BASIC (Beginners' All-purpose Symbolic Instruction
Code). BASIC is by far the commonest language for home computers, however, each type of
computer tends to have its own dialect and the +2 is no exception. Spectrum BASIC has been
designed to be easy to learn and use, though it is different from other BASICs in many respects. A
complete guide to BASIC on the +2 is provided in chapter 8. If you're new to programming,
however, then you should read chapter 6 (Using 128 BASIC) first. (Even if you are a seasoned BASIC
user on another computer, you may still wish to read chapter 8, which describes the editor and other
unique aspectsofthe +2.)

If you are used to the 48K Spectrum, then much of what is contained in this manual will no doubt seem
familiar. In fact, there is a mode in whichthe +2 operates exactly like the old-style Spectrum - even
in the editing and programming aspects. This mode isn't recommended for anything other than a
history lesson for the curious; however, we have provided the relevant information (should you feel so
inclined) in chapter 7 (Using 48 BASIC).

21

22

Chapter6
Using 128 BASIC

Subjects covered...

The editor

The edit menu

Renumbering a BASIC program
Swapping screens

Listing to the printer

Typing ina program

Moving the cursor

Running a program

Commands and instructions

The +2 hasanadvanced editor to create, modify and run 128K BASIC programs. To enter the editor,
select the option ‘128 BAS I C’ from the opening menu, using the cursor keys and [ENTER]. (If you
don’t know how to select a menu option, refer back to chapter 2.)

The screen should now look like this...

There are three thjhgs tonotice about this screen.

Firstly, there is a flashing blue and white blob in the top left hand corner. This is called the cursor, and
if youtype any letters at the keyboard, then they will appear on the screen at the position of the cursor.

Secondly, there's a black bar towards the bottom of the screen. This is called the footer bar, and tells
you which part of the +2 s built-in software you're using. At the moment, it says ‘128 BASIC'
because that's the name of the editor.

23

The last item of note at the moment is the small screen. This fits between the footer bar and the bottom
ofthe screen, and is currently blank. It only has room for two lines of text, and is most often used by the
+2 when it detects an error and needs to print a report to say so. It does have other uses, however,
and these will be described later,

Now press the [EDIT] key. You will notice two things happen - the cursor vanishes, and a new menu
appears. This is called the edit menuy...

The edit menu's options are selected in the same way as for the opening menu (by using the cursor
keysand [ENTER]).

Taking the options in turn...

128 BASIC - This option simply cancels the edit menu and restores the cursor. On the face of it
-not very useful, however, if [EDIT] is pressed accidentally, then this option allows you to return to
your program with no damage done.

Renumber - BASIC programs use line numbers to determine the order of the instructions to be
carried out. You enter these numbers (which can be any whole-number from 1 to 9999) at the
beginning of each program line you type in. Selecting the ‘Renumbe r’ option causes the BASIC
program’s line numbers to start at line 10 and go up in steps of 10. BASIC commands which include
references to line numbers (such as G0 TO, G0 SUB, LINE, RESTORE, RUN and LI ST)also
have these references renumbered accordingly,

If for any reason it’s not possible to renumber, perhaps because there’s no program in the +2, or
because ‘Renumber' would generate line numbers greater than 9999, then the +2 makes a
low-pitched bleep and the menu goesaway.

Newcomers to BASIC should now skip to the section ahead which starts,’Screen’.

24

It is possible, using advanced techniques, to make ‘Renumber’ work with values other than
start=10 and step size= 10. This would be useful, say, if you wanted to renumber a program containing
more than 1000 lines (which could not be legally renumbered with line intervals of 10). The following
command can be used to perform this function...

(Note - Unless you are experienced in Spectrum BASIC, you will probably not understand how this
command works.)

LET start=5: LET stepsize=2: LET histart=INT (start/256):
LET histep=INT (stepsize/256): POKE 23444,start-256*histart:
POKE 23445,histart: POKE 23446,stepsize-256%histep:

POKE 23447 ,histep

By changing the values of start and stepsize, the ‘Renumber' option will renumber to
any (legal) line and step size. Type in the above command, then use the option from the menu.

Later, when you have learned to write BASIC programs and save them using the datacorder, youmay
wish to incorporate the above into a short program for future use, for example...

18 INPUT "Start Lline", start

28 INPUT "Step size", stepsize

3B LET histart=INT (start/256)

40 LET histep=INT (stepsize/256)

580 POKE 23444 ,start-256%histart

68 POKE 23445,histart

78 POKE 23446,stepsize-256*histep

80 POKE 23447,histep

98 PRINT "Press L[EDIT] then select Renumber option"

Screen - This option moves the cursor into the smaller (bottom) part of the screen, and allows
BASIC to be entered and edited there. This is most useful for working with graphics (see chapter 8
part 17), as any editing in the bottom screen does not disturb the top screen. To switch back tothe top
screen (which you can do at any time whilst editing), select the edit menu option ‘S ¢ r e e n’ again.

Print -Ifaprinteris connected, this option will print-out a listing of the current program to it. When
the listing has finished, the menu will go away and the cursor will come back. If for some reason the
computer cannot print (eg. the printer is not connected or is off-line), then pressing the [BREAK] key
twice will return you to the editor.

Ex i t - This option returns you to the opening menu - the +2 retains any program that you were
working on in the memory. If you wish to go back to the program again, select the option ‘128
BAS I C' fromthe opening menu.

If you select the opening menu option ‘48 BAS I C’ (or if you switch off or RESET the +2)then any
program in the memory will be lost. (You may, however, use the opening menu option
‘Ca Lculator withoutlosing a program in the memory.)

25

Resetthe +2 andselect'128 BAS I (. Now type in the line below. As youtypeitin, the characters
will appear on the screen (a character is a letter, number, space, etc.)- 1f you don’t know how to type in
the equals sign = then hold down the [SYMB SHIFT] key, then pressthe L keyonce.

Trytyping in the line now...

18 for f=1 to 255 step 10

-.then press [ENTER]. Providing you have spelt everything correctly, the +2 should have reprinted
the line with the words FOR, TOand STEP in capital (UPPER CASE) letters, like this...

18 FOR f=1 TO 255 STEP 18

The +2 should have also emitted a short bleep, and moved the cursor to the start of the next line.

If the line remains in small (lower case) letters and you hear a low-pitched bleep, then this indicates
that you have typed in something wrong. Note also that the colour of the cursor changes to red when a
mistake is detected, and you must correct the line before it will be accepted by the +2. To do this,
use the cursor keys to move to the part of the line that you wish to correct, then type in any characters

youwish to insert, or use the [DELETE] key to remove any characters you wish to get rid of. When you
have finally corrected the line, press [ENT| ER].

Now type in the line below...

(The colon : is obtained by [SYMB SHIFT] and Z, and the minus sign - is obtained by
[SYMB SHIFT]and J.)

20 plot B,8:draw f,175:plot 255,8:draw -f,175 (press [ENTER])

Don’t worry about the line ‘spilling over onto the next line of the screen - the computer will take care of
this and align the text so that it is easier to read. Unlike a typewriter, there’s no need for you to do
anything when you approach the end of a screen line becausethe +2 detects this automatically and
moves the cursor to the beginning of a new line.

The final line of this program to type in ...

30 next f (press [ENTER]}

The numbers at the beginning of each line are called line numbers and are used to identify each line.
The line you just typed in is line 30, and the cursor should be just below, and to the left of line 30 now.
Press the cursorup «key once. The cursor will move up to line 30. It doesn't move straight up, as you
might expect, as there's nothing for it to move to directly above. Instead it tries to decide what you
want to do, and positions itself accordingly. The cursor tries very hard to avoid blank spaces

(although it doesn’t mind real spaces between words on a line), and will always try and find some text
togoto,

Press cursor up « once again. Now move it right (using the cursor right) key) until it's over the 1 in
DRAW -f , 175. What do you think will happen to the cursor (given its fear’ of blank spaces) when
youtry to move the cursor down by one line? Try it (using the cursor down < key). As you might have
expected, the cursor jumped over to the nearest text available, which in this case was at the end of line

26

30. Now press cursor up « again. You might have thought (since there was text directly above) that
the cursor would have moved straight up - but no, it jumps back to the previous position. This is
the +2 being clever again - it realises that you haven't moved the cursor about on line 30 at all, and so
remembers the last position where the cursor was actually in some text. To demonstrate this, move
the cursor down again, then move it left (onto the f), then right, and then up, the computer thinks that

you've been working on line 30 and it's therefore safe to forget’ where you were on line 20. So the
CUrsor moves straight up.

This sort of cursor movement is called tracking, and can be a little confusing at first, However, it
makes editing programs much easier once it becomes familiar.

Now press [ENTERY]. The computer opens up a new line in preparation for some new text. Type...
run (press [ENTER])

Lots of things happen. Firstly, the footer bar and the program lines are cleared off the screen, as the
128 BASIC editor prepares to hand over control to the program you've just typed in. Then the program
starts, draws a pretty pattern, and stops with the report...

@ 0K, 38:1

Don't worry about what this report means.

Press [ENTER]. The screen will clear and the footer bar will come back, as will the program listing.
This takes about a second or so, during which time the +2 won't be taking input from the keyboard,
so don't try and type anything while it's all happening.

You've just done most of the major operations necessary to program and use a computer! First, you've
given the +2 a list of instructions. Instructions tell the +2 what to do (like the instruction 38
NEXT f). Instructions have a line number and are ‘stored away’ rather than used immediately you
typethemin. Then yougavethe +2 the command RUN to execute the stored program.

Commands are just like instructions, only they don't have line numbers andthe +2 carries them out
immediately, as soon as [ENTER] is pressed. In general, any instruction can be used as a command,
and vice versa. It all depends on the circumstances. Every instruction or command must have at least
one keyword. Keywords make up the vocabulary of the computer, and many of them require
parameters. In the command DRAW 46 , 200, for example, DRAW is the keyword, while 48 and

200 are the parameters (telling the computer exactly where to do the drawing). Everything the
computer does in BASIC will follow these rules.

Now press [EDIT] and select the Screen option. The editor moves the program down into the
bottom screen, and gets rid of the footer bar. You can only see line 10 of the program as the rest is
‘hiding’ off-screen (you can prove this by moving the cursor up and down).

Press [ENTER] thentype...

run {press [ENTER])

..and the program will run exactly the same as before, But this time, if you press [ENTER] afterwards, the
screen doesn't clear, and you can move up and down the program listing (using the cursor keys) without

21

disturbing the top screen. If you press [EDIT] to get the edit menu, you might think that this would
mess up the top screen. However, the +2 remembers whatever's behind the edit menu and restores
it when the menu is removed.

To prove that the editor really is working in the bottom screen, press [ENTER] and change line 101to...
18 FOR f=1 TO 255 STEP 7

Dy moving the cursor to the end of line 10 (just to the rightof STEP 1@), then pressing [DELETE]
twice, and typing 7 (press [ENTER]).

Now type...
go to 1@ (press [ENTERY])

The keywords go totellthe +2 notto clear the screen before starting the program. The modified
program draws a slightly different pattern on top of the old one. You may continue editing the
program to add further pattems, if you wish.

A word of warning - while editing in the bottom screen, don't try to edit instructions which are more
than two screen lines long, for if the editor comes across an instruction which has its beginning or its
end off-screen, it can become ‘confused’. (The same is true of the top screen, but of course, the
limitation there is unlikely to cause problems as the screen s so muchlarger.

One thing you may notice while you're typing away is that [CAPS SHIFT] and the number keys used
together do strange things: [CAPS SHIFT] with 5, 6, 7 and 8 move the cursor about, [CAPS SHIFT]
with 1 calls up the edit menu, [CAPS SHIFT] with @ deletes a character, [CAPS SHIFT] with 2 is
equivalent to [CAPS LOCK], and finally [CAPS SHIFT] with 9 selects graphics mode. All of these
functions are available using the dedicated keysonthe +2,and scthereisnoreason why you should
ever want touse the above [CAPS SHIFT] and number key alternatives.

Once you're happy about how the editor works, go on to chapter 8. Again, actively experiment with
the examples given and don't be afraid to try something different!

28

Chapter?
Using 48 BASIC

Subjects covered...

Usingthe +2 asa48KSpectrum
Entering 48 BASIC mode
The keyboard under 48 BASIC

Program entry
Editing the current line

The +2 has the ability to act exactly like a 48K Spectrum (or Spectrum +). This is achieved by
selecting the '48 BAS I C’ mode from the opening menu. In this mode, the enhanced features of
the +2 such as the extra memory, full screen editor, multi-channel sound, RS232/MIDI and

KEYPAD interfaces, cannot be used. The JOYSTICK 1 and JOYSTICK 2 sockets will still operate,
however,

The 48 BASIC mode is included for compatibility reasons only - there is no advantage in using 48
BASIC mode (instead of 128 BASIC mode) to write programs, and it is not recommended. The
following information is included for reference only, or for anybody who is used to the 48K Spectrum
and wants to use the machine immediately without having to learn about the 128 BASIC editor.

In fact, there are two methods to get the +2 into 48 BASIC mode: the first is by selecting the
‘48 BASIC’ option from the opening menu (If you don't know how to select a menu option, refer
back to chapter 2.) Having selected 48 BASIC, you will see the following on the screen...

29

The second method allows you to enter the 48 BASIC mode while editing a 128 BASIC program. Todo
this (while in 128 BASIC mode), type...

spectrum (press[ENTER])

The +2 will respond with an ‘0K’ message. and the +2 will have changed to 48 BASIC mode,
retaining any program that you had in memory. Once in 48 BASIC mode, there is no way back to 128
BASIC mode apart from resettingthe +2 (or switching off, thenon again),

The major difference in 48 BASIC mode is in the entering and editing of programs. The demonstration
programs in chapter 8 will, in general, work in either mode, but those involving music or the ‘silicon
disc’ must use 128 BASIC only. Note also that the tokens S P E CTRUMand PLAY have replaced the
user defined graphics characters for the keys T and U (values 163 and 164) under 128 BASIC.

Once in 48 BASIC mode, the keyhoard performs as follows:

All the BASIC commands, functions and operators are available directly from the keyboard rather
than needing to be spelled out. In order to accommodate all these functions and commands, some
keys have five or more distinct meanings, obtained partly by ‘shifting’ the keys (ie. pressing either
[CAPS SHIFT] or [SYMB SHIFT] together with the required key); and partly by having the machine
in different modes. The flashing cursor contains a letter (K, L, €, E or G) to indicate which mode you
are operating in.

K (for Keywords) mode automatically replaces L (for Letters) mode when the machine is expecting a
command or program line (ratherthan INPUT data), and from its position on the line the +2 knows
that it should expect either a line number or a keyword. K mode occurs at the beginning of a line, or
after a colon : (exceptina string), or after the keyword THE N. Whenever the K cursor appears, the
next key pressed will be interpreted as eithera keyword ora number, as follows...

FERNEEEENEEE S
A HFJ

[EEFLTTT 1=

ENEND 'J

i o

DELETE W E R T L u I

REW AUN HANCOMZH| RETURN IF INPUT ’ POE
o

MEW SAVE Dime
EDHT A 5 D

FOR

SPACE

The keyboard in K mode

L (for Letters) mode normally occurs at all times (6ther than K mode, described above). Whenever
the L cursor appears, the next key pressed will be interpreted as per the legends on the key-tops
themselves, ie...

TRUE NV

VIDED|| wiDED 1 2 3 4 5| 6 7 E 9 L BREAK
DELETE|| GRAPH Q w E R T ¥ u 1 s} [
EXTEND MODE EDIT I A 5 D F G H J K L ENTER
CAPS

CAPSSHIFT LOCK z X]] B N M ' CAPS SHIFT
SYMB " SYMB
SHIFT H qQ] SPACE . = i SHIFT

The keyboard in L mede

Inboth K and L modes, pressing [SYMB SHIFT] together with a key will be interpreted as follows...

1@#$z&'()}_ﬂ

L ENTER

SYMB|| ; = , llsymB
SHIFT H " SPACE JISHIFT

The keyboard using [SYMB SHIFT] in-K or L mode

31

Using [CAPS SHIFT] in L mode simply converts lower case letters to capitals. In K mode; however,
[CAPS SHIFT] does not affect the keywords,

C (for Capitals) mode is a variant of L mode whereby all letters appear as capitals. The
[CAPS LOCK] key is used to change from L mode to C mode, and back again.

E (for Extended) mode is used to obtain further characters, mostly tokens. It is entered by pressing
the [EXTEND MODE] key, and lasts for only one character (or key depression) thereafter. Whenever
the E cursor appears, the next key pressed will be interpreted as follows...

BLUE RED |MAGENTAIl GREEN || CvaN || vELLOW || wriTe || BRigHT || erighT || BLACK
PAPER || PAPER || PAPER || PAPER || PAPER || PAPER || PARER OFF ON PAPER
1 2 3 4l 5 B 7| B 9| a BPACE
SiM Cos TAN INT AND STR$ || CHR$ || cooe || eEek TAB
) [w] W E A T b u I o [
EXTEND READ ||RESTORE|| DATA SGN ABS SOR VAL LEN USR
MODE A s D F G H J K L ENTER
LN EXP LPRINT [| LLIST BiN INKEY$ Pl
Z X C W B N 1]
——
| SPACE
The keyboard in E mode

32

Applying [CAPS SHIFT] while in E mode, the next key pressed will be interpreted as follows...

BLUE || RED |{maGenTAll GREEN || cvan || veLLow|| whiTE || FLasH || Fuase || Buack
MK INK INK INK INK INK K OFF ON INK
L 2 3 4 5 B 8 B
ash || acs || oamn || verwv || werce [] N out @
Q w E R T Y V]] o P
—
EXTEND ’ \ { } CIRCLE || vaLs ||screens|| arm
MODE A 5 o F & H J K I ENTER
BEEP || Kk || Paper || FLasH || BriGHT || oven || mvense
CAPS SHIFT z % G v B N M CAPS SHIFT
SPACE]_,___Jl

The keyboard using [CAPS SHIFT] in E mode

Applying [SYMB SHIFT] while in E mode, the next key pressed will be interpreted as follows...

DEF FN FN LINE || OPEN # ||CLOSE #|| MOVE || ERASE || POINT GAT || FORMAT
1 2 3 4 5| & 7 B) a
ASN ACS ATN §| VERIFY || MERGE [] N ouT ©
L&] W E R T ¥ u [} Q P
EXTEND s l \ { } CIRCLE || vaLS ||SCREEN$|| ATTR
MODE Al 5 o F G H J K L ENTER
[
BEEP Kk |} Parer || FLasH || BRIGHT || OVER || MVERSE
Z x c Vi B N (o]
SYMB SYMB
SHIFT SPACE SHIFT

The keyboard using [SYMB SHIFT] in E mode

33

G (for Graphics) mode occurs when [GRAPH] is pressed, and lasts until it is pressed again (or 9 is
pressed on its own). A number key will give a mosaic graphic, and each of the letter keys (apart from
V, W, X, Y and Z) will give a user-defined graphic which, until it is defined, will look identical to an
upper case character. Whenever the G cursor appears, the next key pressed will be interpreted as

25Mﬂﬂ%lﬂﬁW@T17;
P

Q] [EJR]T. I [o

[A]s]DJF, 1ﬂét
T T T TcI I8INMT T
(TT 1

-

GRAPH

1

DELETE

[#]
T

[F]G[A]
| I ——

The keyboard in G mode

Applying [CAPS SHIFT] while in G mode inverts the mosaic graphics (ie. the ink colour becomes the
paper colour, and the paper becomes the ink colour). Hence, the next key pressed will be interpreted

TWWU{M IIWUL@
J 1EJR]T] JO%J
___JL_H JSJDJF, G[E];Lﬂii
e |]]CI M| | e
LT]

The keyboard using [CAPS SHIFT]in G mode

-]

DELETE GHAFH

34

Ifany key is held down for more than 2 or 3 seconds, it will start repeating. Keyboard input appears in
the bottom half of the screen as it is typed, each character (single symbol or compound token) being
inserted just before the cursor. The cursor can be moved left and right using the cursor control keys

@(to the left of the space bar). The character to the left of the cursor can be removed using
[DELETE].

When [ENTER] is pressed, the line is either executed, entered into the program, or used as INPUT
data. If the line contains a syntax error, however, a flashing question mark ? appears nextto the error.

As program lines are entered, a listing is displayed in the top half of the screen. The last line entered is
called the current line and is indicated by the symbol > after the line number. Any line in the program
may be selected as the current line (for editing purposes) by using the up and down cursor keys ~o
(to the right of the space bar). To then edit the selected current line, press the [EDIT] key. (Editing
takes place at the bottom of the screen.)

Whenammmandisexecutedorapmgramisnm,omputisdi.-:playedmthetophalfofmescreenand
remains there until either [ENTER] or the cursor up or down key < is pressed. At the bottom of the
SCreen appears a report giving a code (digit or letter) referred to in part 28 of chapter 8. This report
remains on the screenuntila key ispressedandthe +2 returnsto K mode.

35

36

Chapter 8
A complete guide to BASIC programming

Part 1
Introduction

Whether youread chapter 6 first, or came straight here, you should be aware that...

Commands are obeyed straight away.
Instructions begin with a line number and are stored away for later use.

This guide to BASIC starts by repeating some things given in chapter 6 (using 128 BASIC) but in much
more detail, telling you exactly what you can do. You will also find some exercises at the end of some
sections - don't ignore these, as many of them illustrate points that are hinted at in the text. Look
through them, and do any that interest you or that seem to cover ground that you don't understand
properly. Whatever else you do, keep using your +2. If you ever wonder, ‘what will it do if I type in
such and such? then the answer is simple - type it in and see! Remember, whatever you type in, it
cannotharmthe +2,

The Keyboard

!
l 5|l 5 7 8 9| a BREAK

I 1 |
1
TRUE| I |
VIDED|| vIDEQ 1 2l 3l 4

GRJ\PHi o W F‘ A

DELETE

EXTEND MODE EDT

.i‘ K] L ENTER

| % c 1 v B ol mi il CAPS SHIFT

CAPS SHIFT

il

31

The characters used on the +2 comprise not only single symbols (letters, digits, etc.) but also
compound tokens (keywords, function names, etc.). Everything must be typed in full, and in most
cases it doesn't matter whether capital letters (known as UPPER CASE) or small letters (lower case)
are used. There are three sorts of keys on the keyboard: letter and number keys (called alphanumeric

keys), symbol keys (punctuation marks), and control keys (things like [CAPS SHIFT], [DELETE]and
soon).

The most commonly used keys for BASIC are the alphanumeric keys. When a letter key is pressed,a
lower case letter will appear on the screen together with a flashing blue and white square called the
cursor. To get an upper case letter, the [CAPS SHIFT] key should be held down while the letter is
typed.

If you wish to continuously type upper case letters, then pressing the [CAPS LOCK] key once will
make all subsequent letters typed upper case. To return to lower case letters, simply press [CAPS
LOCK] again.

Totype the symbols which appear on the alphanumeric keys on the keyboard, ie...
!a#sz&‘()_<>1-+=:£?,’*

-.simply hold down the [SYMB SHIFT] key while the alphanumeric key with the required symbol on
it is pressed (see the following diagram)...

] ! o | ' F
| - 1 ' @2 #3 $ 4 A 5' & 6 7| (8)] - ‘.
| <]> | |
R T
| HEREE
H of K L
-T£]2 ‘ /| *
l .Z x c W B
SYMB! ” ” “ SYMB
SHIFT SHIFT
Symbols available using [SYMB SHIFT]
Additionally, the symbols [J © ~ | \ { and } can be obtained by first pressing the

[EXTEND MODE] key once, then holding down [SYMB SHIFT] while pressing the appropriate
alphanumeric key (see the following diagram)...

38

S 1)

SYMB SYMB
SHIFT SHIFT

Symbols available using [SYMB SHIFT] in [EXTEND MODE]

To enter graphics mode, the [GRAPH] key is pressed once. Mosaic graphics (see the following
diagram) can then be produced by pressing the number keys (except 9 and 0). [CAPS SHIFT] and
the number keys produce inverted mosaic graphics. Pressing the letter keys (except T, U, VW, X, Y
and Z) produce user-defined graphics.

0% |

L] =1r)L] K2

GRAPH | i i ‘

i

B

Mosaic graphics available using [GRAPH]

If any key is held down for more than 2 or 3 seconds, it will start repeating. As keys are pressed, a line
will be built up on the screen. A line, by the way, means a line of BASIC, and may easily be several
lines long on the screen. The cursor keys ().~ can be used to move about the line, and if the part
of the line that the cursor is moved to is off screen, then the text on screen will scroll up or down to
display it. Any characters typed will be inserted at the cursor, and pressing [DELETE] causes the
character to the left of the cursor to be removed. As soon as [ENTER] is pressed or any attempt is
made to move the cursor off the line, the +2 checks to see if the line makes sense. If it does, then
there is a high-pitched bleep, and the line is either acted upon immediately or stored away as partof a
program. If the line contains an error, then the +2 generates a low-pitched bleep and moves the
cursor to the area where it thinks the error is (the colour of the cursor also changes to red to indicate

the error). It is impossible to move off a line which contains an error - the +2 will always move the
cursor back.

39

The monitor screen

This has 24 lines (each being 32 characters long) and is divided into two parts. The larger (top) part of
the screen is at most 22 lines and displays either a listing or program output. It is the one used most
often for editing. When printing in the top part has reached its bottom limit, the contents scroll up by
one line. If, however, scrolling would mean losing a line that you haven't yet had a chance to see, then
the +2 stopswiththe message...

scroll?
Pressing any key (except N, [BREAK] or the space bar) will let scrolling continue.

Pressing one of the keysN, [BREAK] or the space bar will make the program stop with the report...

D BREAK - CONT repeats

The smaller (bottom) part of the screen is used for editing short programs, entering input data,
entering direct commands (where the main screen must not be used, eg. graphics programs), and
also for displaying reports.

Program entry

Ifthe program being entered gets bigger than the screen size, the +2 attempts to display the area of
most interest (usually the last line entered together with its surrounding lines). You may, however,
specify a different area of the programto be displayed using the command...

LIST xxx
..where 'xxx’ isa line number, telling the +2 to bring a specified area of the program into view.

When a command is executed or a program is run, output is displayed in the top part of the screen and
remains there when the program finishes (until a key is pressed). If the program is being edited in the
bottom part of the screen, then any output in the top screen will stay there until it is either overwritten,
scrolled off, ora C L S command is issued. The bottom screen displays a report giving a code (digit or
letter) referred to in part 28 of this chapter. This report remains in the bottom screen until a key is
pressed.

While the +2 is running a BASIC program, the [BREAK] key is checked every so often. This
happens atthe end of a statement, during cassette or printer use, or while music is being played.

Ifthe +2 finds thatthe [BREAK] key is pressed, then program execution stops, with the report...

D) o L
...and the program may then be edited.

40

Part2
Simple programming concepts

Subjects covered...

Programs

Line numbers

Editing programs using {0«~<

RUN,LIST

GOTO,CONTINUE, INPUT,NEW,REM,PRINT
Stopping a program

Type inthe first two lines of a program which will eventually print out the sum of two numbers...

20 print a (press [ENTER])

18 Llet a=18 (press [ENTER])
Note that the screen looks like this...

18 LET a=1@

28 PRINT a

As we have already discussed - because these lines began with numbers, they were not obeyed
immediately but were stored away as program lines. You will have also noticed here that the line
numbers govern the order in which the program lines are to be executed, and as you can see on the
screen,the +2 sortsallthe lines into order whenever a new line is entered.

Note also that although we typed in each line in lower case letters, the keywords (ie. PRINT and
LET) were converted to upper case as soon the line was entered and accepted by the +2. From

now on, we will show information to be typed in upper case letters; however, you may continue to type
inlower case letters.

So far you have only entered one number, so type...

15 LET b=15 (press [ENTERY])

Now you need to change line 201o...
20 PRINT atb

You could type out the replacement line in full, but it is far easier to move the cursor (using the cursor
keys)to just after the a, and then type...

+b (don't press [ENTER] yet)

41

The line should then read...

20 PRINT atb
Now press [ENTER] and the cursor will move to the line below, so that the screen looks like this...

18 LET a=10
15 LET b=15
2@ PRINT a+b

Run this program by typing...

RUN (press [ENTER]))
..and the sum will be displayed.
Run the program again and then type...

PRINT a,b (press [ENTER])

See how the variables are still there, even though the program has finished.
Ifyouenter a line by mistake, say...

12 LET b=8
..and youwish to delete the line, then simply type...

12 (press [ENTER])
Line 12 will vanish, the cursor will reappear where line 12 used to be.

Now type...

3 (press [ENTERY])

The +2 will search for line 30, and since there isn't one, it will ‘fall off the end of the program. The
cursor will be positioned just after the last line. If you enter any non-existent line number, thenthe +2
will place the cursor where it thinks the line would have been if it really existed. This can be a useful
way of moving about large programs, but beware - it can also be very dangerous because if the line
really did exist before you entered the line number - it certainly wouldn't exist afterwards!

Tolista program on the screen, simply type...

LIST (press [ENTER])

You may (particularly when working with more lengthy programs) wish to list from a certain point
onwards. This can be achieved by typing an appropriate line number after the LIS T command,

42

Type...

LIST 15 (press [ENTER]) .
..to see this illustrated.

When we were developing the above program, note how we were able to insert line 15 between the
other two lines - this would have been impossible if they had been numbered 1 and 2 instead of 10 and
20. It is always good practice, therefore, to leave gaps between line numbers.

(Note that line numbers must be entered as whole numbers between 1 and 9999.)

If, at some time, you find that you haven't left enough space between line numbers, then you may use
the edit menu to renumber a program. To do this, press the [EDIT] key then select the ‘Renumbe r’

option from the menu that appears; this sets the gap between each line number to 10. Try this out and
see how the line numbers change.

We are now going to use the BASIC command N E W. This erases any existing programs and variables
inthe +2. The command should be used whenever you are about to start afresh, sotype...

NEW

..and press [ENTER]. From now on, we won't mention ‘press [ENTER]' every time - we'll assume that
you'llremember.

With the opening menu on the screen, start up BASIC by selecting the option ‘128 BASI C’.
Now carefully type in this program, which converts Fahrenheit temperatures to Celsius (centigrade)...

18 REM temperature conversion
28 PRINT "deg F","deg C"

3@ PRINT

4@ INPUT "Enter deg F",f

58 PRINT f,(f=32)%5/9

60 GO TO 48

Although you can type in all of line 10 in lower case, only the R E M will be converted to upper case on
entry as it's the only keyword that the +2 recognises. Also, although the words GO T 0 will appear
with a space between them, they may be typed in as one word (G 0 T 0) if you prefer.

Now run the program. You will see that the headings are printed on the screen (as instructed by line
20), but what has line 10 done? It looks like the +2 has completely ignored it - in fact, it has! REM in
line 10 stands for remark, and is there solely to remind you of what the program does. A REM

command consists of REM followed by anything you like, and the +2 will ignore everything after
the R EM, right up to the end of the line,

Bynowthe +2 hasgottothe INPUT command in line 40 and is waiting for you to type in a value for
the variable f - you can tell this because at the bottom of the screen is a flashing cursor.

43

Enter a number. The +2 displays the result and then waits for another number. This is because the
Instruction in line 60 says GO T0 4@, in other words, ‘instead of running out of program and stopping,
jump back to line 40 and continue running from there’,

So, enter another temperature, then another...

After a few more of these you might be wondering if the machine will ever get bored with this - it
won't! Next time it asks for another number, hold down [SYMB SHIFT] and type A. The word STOP
will appear, and when you press [ENTER] the +2 comes back withthe report...

H STOP in INPUT in line 48:1
.which tells you why it stopped, and where (in line 40). (The : 1 after the line number in the report
tells you that the Jst instruction in line 40 is being reported upon.)
If you wish to continue the program type...

CONTINUE

~.andthe +2 will ask you for another number.

When CONT INUE isused, the +2 remembers the line number in the last report that it sent you (as

long as it was not @ 0K) and jumps back to that line, which in our case is line 40 (the INPUT
command).

Stop the program again and replace line 60 by...
68 GO TO 31

There will be no perceptible difference to the running of the program because if the line numberina
G0 T0 command refers to a non-existent line, then the jump is to the next line after the given number.
The same goes for RUN (in fact, RUN on its own actually means RUN 8).

Now type in numbers until the screen starts getting full. Whenitisfull, the +2 will move the whole of

the top half of the screen up one line to make room, losing the heading off the top. This is called
scrolling.

When you are tired of this, stop the program as before and enter the editor by pressing [ENTER].
Lookatthe PRINT statement inline 50. The , comma in this line is very important.

Commas are used to make the printing start either at the left.hand margin, or in the middle of the
screen (depending upon which comes next). Thus in line 50, the comma causes the Celsius
temperature to be printed inthe middle of the line.

A semicolon ; on the other hand, is used to make the next number or string be printed immediately
after the preceding one.

Another punctuation mark you can use like this in PRINT commands is the ' apostrophe. This
makes whatever is printed next appear at the beginning of the next line on the screen. This also
happens by default at the end of each PR I N T command.

44

If you wish to inhibit this (so that whatever follows to be printed continues on the same line) you can

puta comma or semicolon at the end of the PR I N T statement. To see how this works, replace line 50
in turn by each of these...

58 PRINT f,
58 PRINT f;
58 PRINT f

...and run the program each time to see the difference.

The line with the comma prints everything in two columns, the line with the semicolon crams

everything together, and the line without either, prints each number on a new line (you could have
alsoused PRINT f ' todothis).

Always remember the difference between commas and semicolons in PRINT commands, and do

not confuse them with : colons which are used as separators between commands on a single line, for
example...

PRINT f: GO TO 40
Now type in these extra lines...

100 REM this polite program remembers your name
118 INPUT n$

128 PRINT "Hello ";n$;"!"
138 GO TO 118

This is a separate program from the last one, but you may keep them bothinthe +2 atthe same time.
Torunthe new one, type...

RUN 100

Because this program expects you to input a string (a character or group of characters) instead of a
number, it prints out two string quotes "' "' as a reminder. So type in a name and press [ENTER].

Next time round, you will get two string quotes again, but you don't have to use them if you don't want
to. Try this, for example: rub out the quotes by pressing ¢ twicethen [DELETE] twice, and type...

n$

Since there are no string quotes, the +2 knows that it has to do some calculation - the calculation in
this case is to find the value of the string variable called n$ (which is whatever name you happen to
have typed in last time round). In this way, the INPUT statement acts like LET n$=n$, so the
value of n $ isunchanged.

If you wish to stop the program, delete the quotes then hold down [SYMB SHIFT] and press A, then
[ENTER].

45

Now look back atthat RUN 108 instruction which jumps to line 100 and runs the program from there.
You may be asking, ‘What's the difference between RUN 1 BB and GO TO 180 ? Well, RUN 100
first of all clears all the variables and the screen, and after that works just like GO TO 188. On the
other hand, GO T0 100 doesn't clear anything, and there may well be occasions where you wish to
Tun a program without clearing any variables; here 60 T0 would be necessary and RUN could be
disastrous, so it is better not to get into the habit of automatically typing RUN to start a program.

Another difference of course is that you may type RUN without a line number, and it starts off at the
firstline in the program. GO T 0 must always be followed by a line number.

Both this program and the ‘temperature conversion’ program stopped because you pressed

[SYMB SHIFT] and A in the input line. Sometimes, by mistake, you write a program that you can't stop
and that won't stop itself. Type...

200 GO TO 209
RUN 208

Although the screen is blank, the program is running - executing line 200 over and over again, This
looks all set to go on forever unless you pull the plug out or press the reset switch! However, thereisa
less drastic remedy - press the [B REAK] key. The program will stop withthe report...

L BREAK into program

At the end of every statement, the program looks to see if this key is pressed, and if it is, then the
program stops. The [BREAK] key can also be used when you are in the middle of using the
datacorder, the printer, or various other add-ons that you can attachtothe +2.

- Inthese cases there is a different repon...

D BREAK - CONT repeats

The instruction CONTINUE in this case (and in most other cases too) repeats the statement where

the program was stopped and carries straight on with the next statement (after allowing for any jumps
to be made).

Run the ‘name’ program againand when it asks you for input, type...
n$ (after removing the quotes)
Because n $ is an undefined variable, you will get the error report...

2 Variable not found

Ifyounowtype...

LET n$="fish face"

(which produces the report @ 0K , @ : 1)and then type...

46

CONTINUE

-..you will find that you can use n $ as input data without any trouble.

In this case CONTINUE does a jump to the INPUT command in line 110. It disregards the report
fromthe LET statement because that said ‘0K’ and jumps to the command referred to in the previous
report, ie. line 110. This feature can be extremely useful as it allows you to ‘fix’ a program that has
stopped due to errors, and then CONT I NUE from that point.

As we said before, the report ‘L BREAK into program’ is special because after it,
CONT INUE does not repeat the command where the program stopped.

You have now seen the statements, PRINT, LET, INPUT, RUN, LIST, 60 TO, CONTINUE,
NEW and REM, and they can all be used either as direct commands or in program lines - this is true of
almost all commands in Spectrum BASIC, however, RUN, LIST, CONTINUE and NEW are not
usually of much use ina program.

Exercises...
1.Puta LI ST statement in a program, so that when you run it, it lists itself afterwards.

2. Write a program to input prices and print out the tax due (at 15 percent). Putin PR INT statements
so that the +2 announces what it is going to do, and asks for the input price with extravagant
politeness. Modify the program so that you can also input the tax rate (to allow for zero ratings or
future changes).

3. Write a program to print a running total of numbers you input. (Suggestions: have one variable
called total - set to 0 to begin with, and another variable called i t em. Input i tem, add it to
total, printthemboth, and go round again).

4. Whatwould CONT INUE and N EW do ina program? Can you think of any uses at all for this?

41

Part3
Decisions

Subjects covered...
CLS,IF,STOP
=,¢,>,<5,>=, <>

All the programs we have seen so far have been prefty predictable - they went straight through the
instructions, and then went back to the beginning again. This is not very useful, as in practice, we
would wantthe +2 to make decisions and act accordingly. The instruction to do this in BASIC takes
the form: ‘I F something is true (or not true) THEN do something else’.

Let’s look at an example of this. Use NEW to clear the previous program from the +2, select ‘128
BASIC', then type in and run this program. (This is clearly meant for two people to play!)

18 REM Guess the number

20 INPUT "Enter a secret number",a: CLS

38 INPUT "Guess the number" ,b

48 IF b=a THEN PRINT "That is correct": STOP

58 I1F b<a THEN PRINT "That is too small, try again"
60 IF b>a THEN PRINT "That is too big, try again"
70 GO TO 30

Note that the C LS command (in line 20) means clear screen. We have used it in this program to stop
the other person seeing the secret number after it is entered.

Youcanseethatthe I F statement takes the form...

I F condition THEN xxx

..where ‘xxx’ stands for a command (or a sequence of commands separated by colons). The condition

is something that is going to be worked out as either true or false - if it comes out as true then the

statements in the rest of the line (after THE N) are executed; otherwise they are skipped over, and the
program executes the next instruction,

The simplest conditions compare two numbers or two strings; they can test whether two numbers are
equal or whether one is bigger than the other. They can also test whether two strings are equal, or
whether one comes before the other in alphanumerical order, They use the symbols =, <, >, <=, >=,
and <> (these are known as relational operators).

means Isequalto.

< means Islessthan.

> means isgreaterthan.

<= means islessthanorequalto.

>= means isgreaterthanor equal to.
<> means isnotegualto.

48

(If you keep getting mixed up about the meanings of < and >,it may help you to remember that the
thin end of the symbol points to the number which s supposed to be smaller.)

In the program we have just typed in, line 40 compares a and b. If they are equal, then the program is
halted by the S T 0P command. The report at the bottom of the screen...

9 STOP statement, 4@:3

..shows that the 3rd statement (ie.the S TOP command) in line 40 caused the program to halt.

Line 50 determines whether b is less than a, and line 60 whether b is greater than a. If one of these

conditions is true then the appropriate comment is printed, and the program works its way down to
line 70 which jumps back to line 30 and starts all over again,

Finally, note that in some versions of BASIC (not Spectrum BASIC) the IF statement can have the
form...

IF condition THEN line number

This means the sameas...

IF condition THEN GO TO line number
...in Spectrum BASIC,

Exercise...
1. Try this program...

10 LET a=1
20 LET b=1
38 IF a>b THEN PRINT a;" is higher"
4B IF a<b THEN PRINT b;" is higher"

Before you run it, try to work out what will be printed on the screen.

49

Part4

Looping

Subjects covered...

FO

R,NEXT

TO,STEP

Suppose you wish to input five numbers and add them together.
One way (don't type this in unless you are feeling dutiful) is as follows...

14
20
3
40
50
60
70
80
90
188
118
128

LET total=@

INPUT a

LET total=total+a
INPUT a

LET total=total+a
INPUT a

LET total=total+a
INPUT a

LET total=total+a
INPUT a

LET total=total+a
PRINT total

This method is not good programming practice. It may be just about controllable for five numbers, but
you can imagine how tedious a program like this to add ten numbers would be, and to add a hundred

would be out of the question.
Much better is to set up a variable to count up to 5 and then stop the program, like this (which you
should type in)...
18 LET total=@
28 LET count=1
3@ INPUT a
4@ REM count is number of times that a has been input so far
58 LET total=total+a
68 LET count=count+1
78 IF count<=5 THEN GO TO 3@
80 PRINT total

Notice how easy it would be to change line 70 so that this program adds ten numbers, or even a

hundred.

50

This sort of thing is so useful that there are two special commands to make it easier - the FOR
command and the NEXT command. They are always used together. Using these, the program you
have just typed in does exactly the same as..,

18 LET total=@

28 FOR ¢=1 10 §

3@ INPUT a

4@ REM ¢ is number of times that a has been input so far
30 LET total=total+a

68 NEXT ¢

8@ PRINT total

(To get this program from the previous one, you just have to edit lines 20, 40 and 60, then delete line 10.)

Note that we have changed count to c. Thisis because the control variable ofa FOR..NEXT loop
must have a single letter as its name.

The effect of this program is that ¢ runs through the values 1 (the initial value), 2, 3, 4 and 5 (the limit),
and for each one, lines 30, 40 and 50 are executed. Then, when ¢ has finished its five values, line 80 is
executed.

Atthis point, attempt exercise 2 (which refers to the above programy), atthe end of this section.

An extra subtlety to the FOR..NE X T structure is that the control variable does nothavetogoupby 1

each time - you can change this 1 to anything you like by usinga STEP partin the FOR command.
The most general formofa F O R command is...

FOR control variable = initial value TO limit STEP step

..where the control variable is a single letter, and where the jnjtial value, the limit and the step are all
things that the +2 can calculate as numbers - like the actual numbers themselves, or sums or the
names of numeric variables. So, if you replace line 20 in the programby...

2@ FOR ¢=1 TO 5 STEP 3/2

..this will step the control variable by the amount 3/2 each time the FOR loop is executed. Note that

we could have simply said STEP 1.5, or we could have assigned the step value to a variable, say
s,andthensaid STEP s.

With the above modification, ¢ will un through the values 1, 2.5 and 4. Notice that you don'’t have to
restrict yourself to whole numbers, and also that the control value does not have to hit the limit exactly
- it carries on looping as long as it is less than or equal to the limit.

Atthis point, attempt exercise 3 at the end of this section (which refers to the above program).

Step values can be negative instead of positive. Try this program which prints out the numbers from 1
to 10 inreverse order. (Remember, always use the command N E W before typing in a new program).

51

1@ FOR n=18 TO 1 STEP -1
2@ PRINT n
30 NEXT n

We said before that the program carries on looping as long as the control variable is less than or equal
to the limit. If yon consider what that would mean in this case, you'll see that it now doesn't hold true.
Hence, the rule has to be modified to say that when the step is negative, the program carries on
looping as long as the control variabie is greater than or equal to the limit.

Atthis point, attempt exercises 4 and 5 at the end of this section (which refer to the above programy).

You must be careful if you are running two FOR...NE X T loops together, one inside the other. Try this
program, which prints out the numbers for a complete set of six spot dominoes.

18 FOR m=8 T0 6

20 FOR n=@ TO0 m
38 PRINT m;":":n;" "= n loop m loop
4@ NEXT n

58 PRINT
68 NEXT m

You can see that the n loop is entirely inside the m loop. This means that they are properly nested.

However, what must be avoided is having two FOR...NEXT loops that overlap without either being
entirely inside the other, like this...

5> REM this program is wrong
1@ FOR m=0 TO 6

20 FOR n=@ TO m m loop

3“ PRINT m;":!l;n;ll ||;

4B NEXT m n loop
58 PRINT

68 NEXT n

Two FOR...NEXT loops must either be one inside the other, or completely separate.

Another thing to avoid is jumping into the middle ofa FOR..NEXT loop from the outside. The control
variable is only set up properly when its F OR statement is executed, and if you miss this out, then the
NEXT statement will confuse the +2. You will probably get an error report saying NEXT
without FOR ..or.. Variablenot found. :

There is nothing to stopyouusinga FOR..NEXT loop in a direct command. For example, try...

FOR m=8 TO 18: PRINT m: NEXT m

You can sometimes use this as a (somewhat artificial) way of getting round the restriction that you
cannot 60 T 0 anywhere inside a command - because a command has no line number. For instance...

FOR m=@8 TO 1 STEP @: INPUT a: PRINT a: NEXT m

52

The step size of zero here makes the command repeat itself forever.

This sort of thing is not really recommended, because if an error crops up then you have lost the
command and will have to type it in again; moreover, CONT I NUE will not work.

1. Make sure you thoroughly understand that a control variable not only has a name and a value, like
an ordinary variable, but also a limit, a step, and a reference to the statement after the corresponding
FOR statement. Ensure that when the FOR statement is executed all this information is available
(using the initial value as the first value the variable takes), and also that this information is enough for

the NEXT statement to know by how much to increase the value, whether to jump back, and if so
where to jump back to.

2. Run the third program in this section, then type...

PRINT ¢
Why is the answer 6, and not 57

(Answer: The NEXT command in line 60 is executed five times, and each time 1 is added to ¢. The
last time, ¢ becomes 6; so the NEXT command decides not to loop back, but to carry on, ¢ now
being past its limit).

What happensif youput S TEP 2 atthe end of line 207

3. Change the third program so that instead of automatically adding five numbers, it asks you to input
the amount of numbers you wish to add. When you run this program, what happens if you input 0
(meaning that you don't wish to add any numbers)? Why might you expect this to cause problems for
the +2, even though it is clear what you mean? (The +2 has to make a search for the command
NEXT c,whichis not usually necessary.) In fact this has all been taken care of.

4. In line 10 of the fourth program in this section, change 18to 188 and run the program. It will print
the numbers from lmdawnto'feonthescreen.andthensayscroli?attheboettom.'!'}ﬁsistugive
yuuachancetoseethenumbmmatareabounobesm]ledoﬂmetop.Ifyoupreﬁ N, [BREAK] or
the space bar, the program will stop with the report D BREAK - CONT repeats. If you press
am;.rotherkey,thenitwi]lpﬁntanotherzz]inesandaskyouagamifyouwishtoscroll.

8. Delete line 30 from the fourth program. When you run the new curtailed program, it will print the
first number and stop with the message @ OK. If youthen type...

NEXT n
...the program will go once round the loop, printing out the next number.

53

Part5
Subroutines

Subjects covered...
GO SUB,RETURN

Sometimes, different parts of the program will have rather similar jobs to do, and you will find yourself
typing in the same lines two or more times; however, this is not necessary. Instead, you need only type
in the lines once (in what's called a subroutine) and then call the subroutine into action whenever you
need it in the program.

To do this, you use the statements GO SUB (GO to SUBroutine) and RETURN . This takes the
form... :

GO SUB xxx

..where ‘xxx’ is the line number of the first line in the subroutine. It is just like GO T0 xxx except that
the +2 remembers where the GO SUB statement was, so that it can come back again after carrying
out the subroutine.

(In case you are interested, the +2 does this by remembering at which point in the program the
G0 SUB command was issued (in other words where it should continue from afterwards) and storing
this refurn address ontop of a pile called the GO SUB stack.)

When the command...

RETURN

..is met (at the end of the subroutine itself), the +2 takes the top return address off the GO SUB
stack, and continues from the next statement.

Asanexample, let's look at the number guessing program again. Retypeitas follows...

18 REM "A rearranged guessing game"

28 INPUT "Enter a secret number" ,a: CLS
38 INPUT "Guess the number”,b

40 IF b=a THEN PRINT "Correct": STOP
58 IF b<a THEN GO SUB 199

60 IF b>a THEN GO SUB 1@@

78 GO TO 3@
180 PRINT "Try again"
118 RETURN

The GO TO 30 statement in line 70 (and the STOP statement in the next program) are very
important because otherwise the programs will run on into their subroutines and cause an error
(7RETURNwithout GO SUB) whenthe RETURN statement is reached.

54

The following program uses a subroutine (from line 100 to 150) which prints a ‘times table’
corresponding to the value of parameter n. The command GO SUB 188 may be issued from any
point in the program to call the subroutine, When the RETURN command in line 150 of the
subroutine is reached, control returns to the main program, which continues running from the
statement afterthe G0 SUB call. Like GO T0, GO SUB may be typed in as one word (GO SUB).

1@ REM times tables for 2, 5, 18 and 11
20 LET n=2: GO SuB 188

38 LET n=5: GO SUB 108

4@ LET n=108: GO0 SUB 108

58 LET n=11: GO SUB 100

68 STOP

70 REM end of main program, start of subroutine
188 PRINT n;" times table"

118 FOR t=1 T0 9

128 PRINT t;" x ";n;" = ";txn

138 NEXT t

148 PRINT

158 RETURN

One subroutine can happily call another, or even itself (a subroutine that calls itself is known as
recursive).

55

Part6
Data in programs

Subjects covered...
READ,DATA,RESTORE

In some previous programs we saw that information, or data, can be entered directly into
the +2 using the INPUT statement. Sometimes this can be very tedious, especially if a lot of the
data is repeated every time the program is run. You can save alotof time by using the READ, DATA
and RES T 0ORE commands. For example...

18 READ a,b,c
280 PRINT a,b,c
30 DATA 1,2,3

A READ statement consists of READ followed by a list of the names of variables, separated by
commas. It works rather like an INPUT statement, except that instead of getting you to type in the
valuesto give tothe variables, the +2 looks up the valuesinthe DA T A statement.

Each DAT A statement is a list of expressions - numeric or string expressions - separated by commas.
You can put them anywhere you like in a program, because the +2 ignores them except when itis
doing a READ. You must imagine the expressions from all the DA TA statements in the program as
being put together to form one long list of expressions - the DAT A list. The first time the +2 goesto
READ avalue, it reads the first expression from the DA T A list; the next time, it reads the second; and
thus as it meets successive READ statements, it works its way through the DATA list. (If it tries to
read pastthe end of the DA T A list, then it Ieports an error.)

Note that it's a waste of time putting DATA statements in a direct command, because RE A D will not
find them. DAT A statements mustgoina program.

Let's see how all this works in the program youve just typed in. Line 10 tells the +2 to read three
pieces of data and assign them to the variables a ,band c. Line 20then says PRINT these variables.
The DAT A statement in line 30 provides the values of a , b and ¢ forline 10to read.

The informationin DAT A canbe partofa FOR..NEXT loop. Typein...

18 FOR n=1 TO 6

20 DATA 2,4,6,8,10,12
3@ READ d

4@ PRINT d

58 NEXT n

Note from the above two programsthata DAT A statement can appear anywhere - before or after the
READ statement.

When the above program is run, the READ statement moves through the D A T A list with each pass of
the FOR...NEXT loop.

56

D AT A statements may also contain string variables. For example...

18 READ d$
20 PRINT "The date is",d$
3@ DATA "December 28th 1986"

The +2 doesn't have to READ the DATA statements in order - it can be made to jump about'
between DA T A statements by using the RES T 0 R E command. The form of the command is...

RESTORE xxx

..where ‘xxx’ is the line number of the DATA statement to be READ from. If you use the command
RESTORE on its own (without a line number) the +2 will jump to the first DA T A statement in the
program.

Type in and run the following program...

19 DATA 1,2,3,4,5
20 DATA 6,7,8,9
30 GO SUB 118
4@ GO SUB 110
5@ GO SUB 110
60 RESTORE 20
780 GO SUB 118
88 RESTORE

98 GO SUB 118
180 STOP

118 READ a,b,c
12@0 PRINT a'b'c
138 PRINT

148 RETURN

The command GO SUB 118 calls a subroutine which RE A Ds the next three items of DATA and
then PRI NTsthem. Notice howthe RE S T ORE command affects which items are read.

Delete line 60 and run this program again to see what happens.

51

Part7
Expressions

Subjects covered...
Operations: +, =, *, /
Expressions, scientific notation, variable names

You have already seen some of the ways in whichthe +2 can calculate with numbers. It can perform
the four arithmetic operations +, -, * and / (remember that * is used for multiplication, and / is
used for division), and it can find the value of a variable, given its name.

The example...
LET tax=sum*15/18¢

-.illustrates that calculations can be combined. Such a combination, like sum*15/ 108, is called
an expression - 50 an expression is just a short-hand way of telling the +2 to do several calculations,
one after the other. In our example, the expression sum* 15/ 186 means ‘look up the value of the
variable called ‘sum’, multiply it by 15, and divide by 100",

A full list of the priorities of mathematical (and logical) operations will be found in part 30 of this
chapter.

In expressions containing *, /, +, —, multiplication and division are carried out first - they have a
higher priority than addition and subtraction. Multiplication and division have the same priority as
each other, which means that they are carried out in whichever order they appear in the expression
(from left to right). The next operations to be carried out are addition and subtraction - these again
have the same priority as each other and 80, again, are carried out in order from left to right.

Hence in the expression 8-12/4+2*2, the first operation to be carried out is the division 12/4 which
equals 3, so we can then represent the expression as 8-3+2*2.

The next operation to be carried out is the multiplication 2*2 which equals 4, so the expression then
becomes8-3+4.

Next to be carried out is the subtraction 8-3 which equals 5, so the expression becomes 5+4. Finally,
the addition is carried out leaving the result 9.

Try this out for yourself. Typein...
PRINT 8-12/4+2%2

You may, however, change the priority of calculations within an expression by the use of brackets.
Calculations within brackets are carried out first, so if in the above expression, you required the
addition 4+2 to be carried out first, you would enclose it in brackets. To seethis, typein...

PRINT 8-12/(4+2)%?
...and the result this time is 4 instead of 9.

58

Expressions are useful because, whenever the +2 is expecting a number from you, you can give it
an expression instead and it will work out the answer.

You canalso add together strings (or string variables) in a single expression. For example...

1@ LET a$="fish"
20 LET b$="chips"
30 PRINT a$;" and ";b$

We really ought to tell you what you can and cannot use as the names of variables, As we have already
said, the name of a string variable has to be a single letter followed by $, and the name of the control
variable ina FOR..NEXT loop must be a single letter; but the names of ordinary numeric variables
are much freer. They can use any letters or digits as long as the first one is a letter. You can put spaces
in as well to make it easier to read, but they won't count as part of the name. Also, it doesn't make any
difference to the name whether you type it in capitals or lower case letters. There are some
restrictions about variable names which are the same as commands, however. In general, if the
variable contains a BASIC command name in it with spaces around it, then it won't be accepted.

Here are some examples of the names of variables that are allowed...

X

any old thing

t42 3

this name is impractical because it is too long
tobeornottobe

mixed cases spaces

MixEdCASEsSpAcCES

(Note that these last two names (mixed cases spaces and MixEdCASESSpACES) are
considered the same, and refer to the same variable).

The following are not allowed as the names of variables...

pi (PI isakeyword)

2081 (it begins with a digit)

any new thing {contains NEW within two spaces)

to be or not to be (70, OR and NOT are all BASIC keywords)
3bears (begins with a digit)

M*AxS*H {(* is not a letter or a digit)
Lloyd-Webber (- is not a letter or a digit)

Numerical expressions can be represented by a number and exponent. Try the following to prove the
point...

PRINT 2.34ef
PRINT 2.34e1
PRINT 2.34e2

..and so onupto...
PRINT 2.34e15

59

PRINT gives only eight significant digits of a number. Try...

PRINT 4294967295, 4294967295-429e7

This proves that the computer can hold the digits of 4294967295, even though it is not prepared to
display them all at once. '

The +2 uses floating point arithmetic, which means that it keeps separate the digits of a number (its
mantissa) and the position of the point (the exponent). This is not always exact, even for whole
numbers. Type...

PRINT 1e10+1-1e18,1¢18-1e18+1

Numbers are held to about nine and a half digits accuracy, so lel10 is too big to be held exactly right.
The inaccuracy (actually about 2) is more than 1, so the numbers 1el0 and lel0+1 appear to the
computer to be equal.

For an even more peculiar example, type...

PRINT 5e9+1-5e9

Here the inaccuracy in Se9 is only about 1, and the 1to be added on in fact gets rounded up to 2. The
numbers Se3+1 and 5e9+2 appear to the computer to be equal. The largest integer (whole number)
that can be held completely accurately is 4,294,967,294.

The string " "' with no character at all is called the empty or null string. Remember that spaces are
significant and an empty string is not the same as one containing nothing but spaces.

PRINT "Did you read “The Times" yesterday?"

When you press [ENTER] you will get the flashing red cursor that shows there is a mistake
somewhere in the line. When the +2 finds the double quotes at the beginning of "The Times"
it imagines that these mark the end of the string "' D i d youread", and it then can't work out what
The Times means.

There is a special device to get over this - whenever you wish to write a string quote symbol in the
middle of a string, you must write it twice, like this...

PRINT "Did you read ""The Times™" yesterday?"

As you can see from what is printed on the screen, each double quote is only really there once - you
just have to type it twice to get it recognised. ;

60

Part8
Strings

Subjects covered...
Slicing, using T0

Given a string, a substring of it consists of some consecutive characters from it, taken in sequence.
thus "string" is a substring of "bigger string”,but"b sting” and "big reg"
arenot.

There is a notation called slicing for describing substrings, and this can be applied to arbitrary string
expressions. The general forms...

string expression (start T O finish)

..sothat, forinstance..,
"abcdef"(2 T0 5)
isequaltobcde.

If you omit the start, then 1 is assumed; if you omit the finish, then the length of the string is assumed.
Thus...

"abcdef"(TO 5) is equal to abcde
"abedef" (2 TO0) is equal to becdef
"abedef"(TO) is equal to abcdef

You can also write thislastoneas "abcdef" ().
A slightly different form misses out the T 0 and just has one number.

"abcdef"(3) is equal to "abcdef" (3 TO 3) isequalto c

Although normally both start and finish must refer to existing parts of the string, this rule is overridden
by another one:if the start is more than the finish, then the result is the empty string. So...

"abcdef" (5 TO 7)

..gives the error 3 Subscript wrong because the string only contains 6 characters and 7 is
too many, but...

"abcdef" (8 TO 7)

..and...
"abcdef" (1 TO @)

-..are both equal to the empty string "' "' and are therefore permitted.

61

The start and finish must not be negative, oryougettheerror B integer out of range. This
next program is a simple one illustrating some of these rules...

18 LET a$="abcdef"
28 FOR n=1 TO 6

38 PRINT a$(n TO 6)
4B NEXT n

Type NE W when this program has been run, and enter the next program.

10 LET a$="123456789@"

280 FOR n=1 T0O 1@

38 PRINT a$(n TO 18),a$((11-n) TO 18)
4@ NEXT n

s

For string variables, we can not only extract substrings, but also assign to them. For instance, type

LET a$="I love my Sinclair"

...and ther...

LET a$(11 TO 18)="Amstrad*xx%&"

PRINT a$

Notice how since the substring a$(11 70 18) is only 8 characters long, only its first 8 characters
(Ams t r ad*) are used; the remaining 4 characters (*** %) are discarded. This is a characteristic
of assigning to substrings: the substring has to be exactly the same length afterwards as it was before.
To make sure this happens, the string that is being assigned to it is cut off on the right if it is too long, or
filled out with spaces if it is too short - this is called ‘Procrustean assignment’ after the inn-keeper
Procrustes who used to make sure that his guests fitted their beds by either stretching them out on a
rack or cutting their feet off!

Ifyounowtry...

LET a$()="Hello there"

..and...
PRINT a$;"."

~-you will see that the same thing has happened again (this time with spaces put in) because a$ ()
counts as a substring.

62

|

LET a$="Hello there"

..willdoit properly.

Complicated string expressions will need brackets around them before they can be sliced. For
example...

"abc"+"def" (1 TO 2) is equalto "abcde"
("abc"+"def") (1 TO 2) is equal to "ab"

Exercise...

1. Try writing a program to print out the day of the week using string slicing. (Hint - Let the string be
SunMonTue WedThuFriSat).

63

Part9
Functions

Subjects covered...
DEF

LEN,STR$,VAL,SGN,ABS, INT,SQR
FN

Consider the sausage machine. You put a lump of meat in at one end, turn a handle and out comes a

sausage at the other end. A lump of pork gives a pork sausage, a lump of fish gives a fish sausage, and
alump of beefa beef sausage.

Functions are practically indistinguishable from sausage machines but there is a difference; they
work on numbers and strings instead of meat. You supply one value (called the argument), mince it up
by doing some calculations on it, and eventually get another value - the result.

Meatin — SausageMachine -» Sausageout
Argument in — Function — Result out

Different arguments give different results, and if the argument is completely inappropriate the
function will stop and give an error report.

Just as you can have different machines to make different products - one for sausages, another for dish
cloths, a third for fish-fingers, and so on, different functions will do different calculations. Each will
have its own value to distinguish it from the others.

You use a function in expressions by typing its name followed by the argument, and when the
expression is evaluated the result of the function will be worked out.

As an example, there is a function called LEN » which works out the length of a string. Its argument is
the string whose length you wish to find, and its result is the length, sothat if you type...

PRINT LEN "Spectrum +2"

the +2 will write the answer 11, ie. the number of characters (including spaces) in the string
‘Spectrum +2.

If you mix functions and operations in a single expression, then the functions will be worked out
before the operations. Again, however, you can circumvent this rule by using brackets. For instance,
here are two expressions which differ only in the brackets, and yet calculations are performed in an
entirely different order in each case (although, asit happens, the end results are the same).

LEN "Fred" + LEN "Bloggs" LEN ("Fred" + "Bloggs")
4+LEN "Bloggs"” LEN ("FredBloggs™)

L+6 LEN "FredBloggs"

10 10

64

g |

STR$ converts numbers into strings: its arqument is a number, and its result is the string that would
appear on the screen if the number were displayed by a PR I NT statement. Note how its name ends
ina $ sign to show that its result is a string. For example, you could say...

Here are some more functions...

LET a$=STR$ 1e?

.whichwould have exactly the same effect as typing...

LET as="1@8"

Or you could say...

PRINT LEN STRS 100.0000

-.and get the answer 3, because STRS 100.00080 is equal to 188, the length of which is 3
characters.

VAL islike STR$ in reverse - it converts strings into numbers. For instance...

VAL "3.5"

.18 equal to the number 3.5.

VAL is the reverse of STR$ because if you take any number, apply STR$ to it, and then apply
VAL toit, you get back to the number you first thought of.

However, if you take a string, apply VAL toit, and then apply S TR$ to it, you do not always get back
to your original string.

VAL is an extremely powerful function, because the string which is its argument is not restricted to
looking like a plain number - it can be any numeric expression. Thus, for instance...

UAL |r2*3||

..isequalto 6. Even...

UAL (lell+li*3!l}

..1s equal to 6. There are two processes at work here. In the first, the arqgument of V A L is evaluated as
a string - the string expression " 2" +" *3" is evaluated to give the string "2 *3"'. Then, the string
has its double quotes stripped off, and what is left is evaluated as a number: so 2 *3 is evaluated to
give the number 6.

This can get pretty confusing if you don’ keep your wits about you: for instance...

PRINT VAL HU“LHHUAL”“““z”““”““”

65

(Remember that inside a string, a string quote must be written twice. If you go down into further
depths of strings, then you find that string quotes need to be quadrupled, or even octupled.)

There is another function, rather similar to VAL, though probably less useful, called VALS. Its
argument is still a string, but its result is also a string. To see how this works, recall how VA L goes in
two steps: first its argument is evaluated as a string, then the string quotes stripped off this, and
whatever is left is evaluated as a number. With VAL $, the first step is the same, but after the string

quotes have been stripped off in the second step, whatever is left is evaluated as another string.
Thus...

VALS """Ursula""" isequalto "Ursula"

(Notice how the string quotes proliferate again.) Try...

LET a$=ll’9?il

.and print out all of the following: VAL a$, VAL "a$”, VAL """as$""" VALS a$, VALS
"a%$" and VALS """ a%$""" Some of these will work, and some of them won't; try to explain all
the answers. (Keep a cool head).

SGN is the sign function (sometimes called signum). It is the first function you have seen that has
nothing to do with strings, because both its argument and its result are numbers. The result is + 1 if the
argument is positive, 0 if the argument is zero, and - 1 if the argument is negative.

ABS isanother function whose arqument and result are both numbers. It converts the argument into a
positive number (which is the result) by forgetting the sign, so that for instance...

ABS -3.2
_...isequaltc
ABS 3.2

-.which is simply equal to 3.2.

INT stands for ‘integer part'- an integer is a whole number, possibly negative. This function converts
afractional number into an integer by throwing away the fractional part, so that for instance...

INT 3.9

isequalto 3,

Be careful when you are applying it to negative numbers, because it always rounds down. Thus for
instance...

INT -3.1
..isequalto -4.

66

l

SQR calculates the square root of a number, ie. the resuit that, when multiplied by itself, gives the
argument, for instance...

SQR 4

..is equalto 2because 2*2 = 4.
SQR B.25

..i5 equalto 0.5 because 0,5*0.5 = 0.25.
SQR 2

-is equal to 1.4142136 (approx) because 1.4142136*1.4142136 = 2.0000001.

If you multiply any number (even a negative one) by itself, the answer is always positive, This means
that negative numbers do not have square roots, so if you apply SQR to a negative argument you get
theerrorreport A InvalidArgument.

You can also define functions of your own. Possible names for these are F N followed by a letter (if the
result is a number) or F N followed by a letter followed by $ (if the result is a string). These functions
are much stricter about brackets - the argument must be enclosed in brackets.

You define a function by putting a DE F statement somewhere in the program. For instance, here is
the definition of a function F N s whose result is the square of the argument...

180 DEF FN s(x)=x*x: REM the square of x

The s following the DEF F N is the name of the function. The x in brackets is a name by which you
wish to refer to the argument of the function. You can use any single letter you like for this (or, if the
argument is a string, a single letter followed by $).

After the = sign comes the actual definition of the function. This can be any expression, and it can also

refer to the argument using the name you've given it (in this case, x) as though it were an ordinary
variable.

When you have entered this line, you can invoke the function just like one ofthe +2’s own functions,

by typing its name, FN s, followed by the argument Remember that when you have defined a
function yourself, the argument must be enclosed in brackets. Tryitout a fewtimes...

PRINT FN s(2)
PRINT FN s(3+4)
PRINT 1+INT FN s (LEN "chicken"/2+3)

Once you have put the corresponding DEF statement into the program, you can use your own
functions in expressions just as freely as you can use the computer’.

617

INT always rounds down. To round to the nearest integer, add 0.5 first - you could write your own
functionto do this...

2@ DEF FN r(x)=INT (x+@.5): REM gives x rounded to
the nearest integer.

You will then get, for instance...

FN r(2.9) is equal to 3 FN r(2.4) is equal to 2
FN r(-2.9) is equal to -3 FN r(-2.4) is equal to -2

Compare these with the answers you will get when youuse INT instead of FN r. Type in and run the
following...

10 LET x=0@: LET y=@: LET a=1@
28 DEF FN p(x,y)=atx*y

30 DEF FN g()=a+xxy

4@ PRINT FN p(2,3),FN qQ)

There are a lot of subtle points in this program. First, a function is not restricted to just one argument: it
can have more, or even none atall - but you must still always keep the brackets.

Second, it doesn't matter whereabouts in the program you put the D E F statements, Afterthe +2 has
executed line 10, it simply skips over lines 20 and 30 to get to line 40. They do, however, have to be
somewhere in the program - they can't be in a command.

Third, x and y are both the names of variables in the program as a whole, and the names of
arguments for the function FN p. FN p temporarily forgets about the variables called x and y, but
since it has no argument called a, it still remembers the variable a. Thus when FN p(2,3) is
being evaluated, a has the value 10 because it is the variable, X has the value 2 because it is the first
argument, and y has the value 3 because it is the second argument. The result isthen, 10+2*3 which is
equal to 16, When FN g () is being evaluated, on the other hand, there are no arguments, so a, X
and y all still refer to the variables and so have the values 10, 0 and 0 respectively. The answer in this
case is 10+0*0 which is equalto 10.

Now change line 20to...

20 DEF FN p(x,y)=FN g()
This time, FN p(2,3) will have the value 10 because FN g will still go back to the variables X and
y rather than using the arguments of F N p.
Some BASICs (not Spectrum BASIC) have functions called LEFT$, RIGHT$, MID$ and TL$.
LEFT$ (a$,n) gives the substring of a$ consisting of the first n characters.
RIGHTS (a$,n) gives the substring of a$ consisting of the characters from nth on.

68

MIDS (a$, nl, n2) gives the substring of a$ consisting of n2 characters, starting at the nlth. TL$ (a$)
gives the substring of a$ consisting of all its characters except the first.

You can write some user-defined functions to do the same...

1@ DEF FN t$(a$)=a$(2 TO): REM TL$
2@ DEF FN Ll$(a$,n)=a$(TO n): REM LEFTS

Check that these work with strings of length 0 or 1. Note that our FN L $ has two arguments, one a
number and the other a string. A function can have up to 26 numeric arguments (why 26?) and at the
same time up to 26 string arguments.

Exercise...

Use the function FN s (x) =x*x totest S QR. You should find that...
FN s(SGR x)

-.equals X if you substitute any positive number for X, and...
SQR FN s(x)

.equals ABS x whether X is positive or negative (Whyisthe AB S there?).

69

Part10
Mathematical functions

Subjects covered...
)
PI,EXP,LN,SIN,COS, TAN,ASN,ACS,ATN

This section deals with the mathematics that the +2 can handle. Quite possibly you will never have
to use any of this at all, so if you find it too heavy going, don't be afraid of skipping it. It covers the
operation | (raising to a power), the functions E X P and LN, and the trigonometrical functions S I N,
COS, TAN andtheirinverses ASN,ACS,and ATN.

1 and EXP

You can raise one number to the power of another. This means ‘multiply the first number by itself the
second number of times'. This is normally shown by writing the second number just above and to the
right of the first number; but obviously this would be difficult on a computer so we use the symbol
instead. For example, the powers of 2are...

]

t1=2

21 2=2"2 = 4(2 squared, normally written 22)
213=2*2"2=8(2c1bed, normally written 2%)

214=2"2"2"2 = 16(2tothe power of four, normally written 2*)
...and so on.

Thus, at its most elementary level, ‘a * b’ means ‘a multiplied by itself b times’, but obviously this only
makes sense if b is a positive whole number. To find a definition that works for other values of b, we
consider the rule...

al(btc)=atb*atc

(Notice that we give 1 a higher priority than * and / so that when there are several operations in one
expression, the | sare evaluated before the *sand /s). You should not need much convincing that this
works when b and ¢ are both positive whole numbers; but if we decide that we want it to work even
when they are not, then we find ourselves compelled to accept that...

alo=1
at(-b)=latb
a | (/b) = the bthroot of a, which is tc say, the number that you have to multiply by itself btimes toget a

...and...
at(*c)=(atb)tc

70

&

If you have never seen any of this before then don't try to remember it straight away, just remember
that...

at(-=1la

..and...

at(l2)=5QRa

..and maybe when you are familiar with these, the rest will begin to make sense.
Experiment with all this by trying this program...

18 INPUT a,b,c
2@ PRINT af(b+c),atb*atfc
30 60 TO 18

Of course, if the rule we gave earlier is true, then each time round, the two numbers that
the +2 prints out will be equal. (Note - because of the way the computer works out 1, the number on
the left, a in this case, must never be negative.)

A rather typical example of what this function can be used for is that of compound interest. Suppose
you keep some of your money in a building society and they give 15% interest per year. Then after one
year you will have not just the 100% that you had anyway, but also the 15% interest that the building
society has given you, making altogether 115% of what you had originally. To put it another way, you
have multiplied your sum of money by 1.15, and this is true however much you had there in the first
place. After another year, the same will have happened again, so that you will then have 1.15*1.15, or
in other words, 1.15 1 2, or in other words, 1.3225 times your original sum of money. In general then,
after y years, you will have 1.15 1 y times what you started out with.

Ifyou try this command...

FOR y=08 TO0 18@: PRINT Y,18%1.151y: NEXT y

-.you will see that even starting off from just £10, it all mounts up quite quickly, and what's more, it gets
faster and faster as time goes on (though you might still find that it doesn’t keep up with inflation).

This sort of behaviour, where after a fixed interval of time some quantity multiplies itself by a fixed
proportion, is called exponential growth, and it is calculated by raising a fixed number to the power of
the time.
Suppose you did this...

18 DEF FN a(x)=a?tx

Here, a is more or less fixed, by LE T statements - its value will correspond to the interest rate, which
changes only every so often.

There is a certain value for a that makes the function FN a look especially pretty to the trained eye of
amathematician; and this value is called e. The +2 hasa function called E X P defined by...

EXP x isequaltoe?x

11

Unfortunately, e itself is not an especially pretty number: it is an infinite non-recurring decimal. You
can see its first few decimal places by typing...

PRINT EXP 1

-.because EXP 1 = e 11 = e. Of course, this is just an approximation. You can never write down e
exactly.

LN

The inverse of an exponential function is a logarithmic function - the logarithm (to base a) of a number
x is the power to which you'd have to raise a to get the number X, and this is written log,x. Thus by
definition, a 1 logax = x; and itis also true thatlog (a Tx)=x

You may well already know how to use base 10 logarithms for doing multiplications; these are called
common logarithms. The +2 hasa function LN which calculates logarithms to the base e; these are
called natural logarithms. To calculate logarithms to any other base, you must divide the natural
logarithm by the natural logarithm of the base, ie. log.x=LNx/LNa.

|

Given any circle, you can find its perimeter (the distance round its edge - often called its
circumference) by multiplying its diameter (width) by a number called 7. 7 is a Creek p, and it is
used because it stands for perimeter. Its name is pi.)

Like e, 7 is an infinite non-recurring decimal - it starts off as 3.1415927. The word PI onthe +2 is
taken as standing for this number. Try ...

PRINT PI

12

sl

SIN COS and TAN, ASN ACS and ATN

The trigonometrical functions measure what happens when a point moves round a circle, Here isa
circle of radius 1 ('l what?' you may ask - it doesn't matter, as long as we keep to the same unit all the
way through) and a point moving round it. The point started at the ‘3 o’clock’ position, and then moved
round inan anti-clockwise direction.

y-axis

distance moved
around circle=a

X-axis

radius=1

starting position

We have also drawn in two lines called axes through the centre of the circle. The one through 3
o'clockis called the x-axis, and the one through 12 o'clock is called the y-axis.

To specify where the point is, you say how far it has moved round the circle from its 3 o'clock starting
position: let us call this distance a. We know that the circumference of the circle is 27 (because its
radius is 1 and its diameter is thus 2); so when it has moved a quarter of the way round the circle,
a=n/2; when it has moved halfway round, a=7: and when it has moved the whole way round, a=27.

Given the curved distance round the edge - a, two other distances you might like to know are how far
the point is to the right of the y-axis, and how far it is above the x-axis. These are called, respectively,
the cosine and sine of a. The functions C0S and S IN onthe +2 will calculate these,

y-axis

cosine of a=C0S a

-
-

o [1

Ik

Note that if the point goes to the left of the y-axis, then the cosine becomes negative, and if the point
goes below the x-axis, the sine becomes negative.

Another property is that once a has got up to 27, the point is back where it started and the sine and
cosinesta:ttakm:;thesamevaluesaﬂuveragain, ie. SIN (a+2*PI) equals SIN a,and COS
(1+2%PI) equals COS a.

The tangent of a is defined as being the sine divided by the cosine; the corresponding function on the
+2 iscalled TAN.

Sometimes we need to work these functions out in reverse, finding the value of a that has given sine,

cosine or tangent. The functions to do this are called arcsine (ASN onthe +2), arcosine (ACS)and
arctangent (A TN).

In the diagram of the point moving round the circle, look at the radius joining the centre to the point,
You should be able to see that the distance we have called a (the distance that the point has moved
round the edge of the circle) is a way of measuring the angle through which the radius has moved
away from the x-axis. When a=7/2, the angle is 90 degrees; when a=r the angle is 180 degrees, and
50 on, round to when a=27, and the angle is 360 degrees. You might just as well forget about degrees,

and measure the angle in terms of a alone; we say then that we are measuring the angle in radians.
Thus 7/2 radians =90 degrees and so on.

You must always remember that on the +2, the functions § I N, COS, etc. use radians and nor
degrees. To convert degrees to radians, divide by 180 and mutliply by 7; to convert back from
radians to degrees, you divide by 7 and multiply by 180.

15

16

‘l—-v-'\-v’
—

Partll
Random Numbers

Subjects covered...

RANDOMIZE
RND

This section deals with the keywords RND and RANDOM I Z E.

In some ways RND is like a function - it does calculations and produces a result. It is unusual in that it
does not need an argument.

Each time you use it, its result is a new random number between 0 and 1. (Sometimes it can take the
value 0, but never 1.)

18 PRINT RND
2@ GO TO 10

...to see how the answer varies. Can you detect any pattern? You shouldn’t be able to - ‘random’ means
that there is no pattern.

Actually, RND is not truly random, because it follows a fixed sequence of 65536 numbers. However,

these are so thoroughly jumbled up that there are at least no obvious patterns, and we say that RN D is
pseudo-random.

RND gives a random number between 0 and 1, but you can easily get random numbers in other
ranges. For instance, 5*RND is between 0 and 5,and 1.3+@ . 7*RND is between l3and 2. To
get whole numbers, use INT (remembering that INT always rounds down) as in T+INT

(RND*6), which we shall use in a program to simulate dice. RND* 6 is in the range 0 to 6, but
since it never actually reaches6, INT (RND *6)is0, 1,23,40r5.

Here isthe program...

10 REM dice throwing program
28 CLS

38 FOR n=1 710 2

4B PRINT 1+INT (RND*G) ;" "
50 NEXT n

68 INPUT a$: GO TO 2@

Press [ENTER] each time you wish to ‘throw’ the dice.

17

The RANDOMI Z E statement may be used to make RND start off at a definite place in its sequence
of numbers, as you can see with this program...

1@ RANDOMIZE 1
2@ FOR n=1 TO 5: PRINT RND,: NEXT n
30 PRINT: GO TO 1@ :

After each execution of RANDOMI ZE 1, the RND sequence starts off again with 0.0022735596. You
can use other numbers between 1 and 65535 in the RANDOMI ZE statement to start the RND
sequence off at different places.

If you had a program with RN D in it and it also had some mistakes that you had not found, then it would
helptouse RANDOMI Z E like this so that the program behaved the same way each time you ranit,

RANDOMIZE onits own (or RANDOMI ZE @) have a different effect - they really do randomise
RND -you can see this in the next program...

18 RANDOMIZE
20 PRINT RND: GO TO 18

The sequence you get here is not very random, because RANDOMIZE uses the time since
the +2 was switched on. As this has gone up by the same amount each time RANDOMIZE is

executed, the next RND does more or less the same. You would get better ‘randomness’ by replacing
GOTO12byGOTO20.

Here is a program to toss coins and count the numbers of heads and tails. .

18 LET heads=@: LET tails=8

2@ LET coin=INT (RND#%2)

380 1IF coin=@ THEN LET heads=heads+1

40 IF coin=1 THEN LET tails=tajls+1

3@ PRINT heads;",";tails,

68 IF tails <>B THEN PRINT heads/tails;
78 PRINT: GO TO 2@

The ratio of heads to tails should become approximately 1 if you go on long enough, because in the
long run you expect approximately equal numbers of heads and tails.

Exercise.,,

1. Suppose you choose a number between 1 and 872 and type..
RANDOMI Z E your number

Convince yourself that the next value of RN D will be...

(75" (your number + 1)-1)/65536
Try this out for yourself.

18

e,
S

Part12
Arrays

Subjects covered...

Arrays (Note that the way thatthe +2 handles string arrays
is slightly non-standard).
DIM

Suppose that you have a list of numbers - for instance, the marks of ten people ina ¢lass. To store them
inthe +2 you could use the variables ml, m2, m3... and so on up to m10, but the program to set up
these ten variables would be rather long and tedious to type in, ie...

18 LET m1=75
28 LET m2=44
30 LET m3=9¢
40 LET mé4&=38
58 LET m5=55
60 LET mé=64
7@ LET m7=78@
80 LET m8=12
98 LET m9=75
180 LET m18=60

Instead, there is a mechanism, known as an array whereby you may specify a variable which (instead
of containing a single value as variables normally do) may contain a number of separate elements,
each of which may contain different values. Each element is referenced by an index number (the
subscript) written in brackets after the variable name. For the above example, the array variable’s
name could be m - (the name of an array variable must be a single letter), and the ten variables would
then be m(1), m(2), m(3)... and so on up to.m(10).

The elements of an array are called subscripted variables, as opposed to the simple variables that you
are already familiar with.

Before you can use an array, you must reserve some space for it inside the +2, and you do this using
the keyword D I M (for dimension). The statement... '

DIM m(18)

--Sets up an array called m whose dimensions are 10 (ie. there are 10 subscripted variables). The
D IM statement initialises each element in the array to zero. It also deletes any array called m that
existed previously - (however, it doesn’t delete any simple varable called m. An array variable can
coexist alongside a simple numerical variable of the same name because the array is always
distinguished by its subscript).

19

The array elements’ subscripts may be represented by any numerical expression yielding a valid
subscript number. This means that an array can be processed using a FOR..NEXT loop. Thus,
instead of the above long-winded program, we can now set up the variables m(1)...m(10) using...

18 DIM m(18)

28 FOR n=1 TO 18
38 READ m(n)

40 NEXT n

58 DATA 75,44,90,38,55,64,70,12,75,60

Note that the D I M statement must come before any attempt to access the array in a program.
If you wish, you may examine the contents of the array by typing...

PRINT m(1)
PRINT m(2)
PRINT m(3)
etc...

You can also set up arrays with more than one dimension. In a two dimensional array you need two
numbers to specify one of the elements - rather like the line and column numbers that specify a
character position on the screen. If you imagine the line and column numbers (two dimensions) as
referring to a printed page, you could then have an extra dimension for the page numbers. Of course,
we are talking about numeric arrays; so the elements would not be printed characters as in a book, but
numbers. Think of the elements of a three dimensional array v as being specified by v(page
number line number,column number).

For example, to set up a two-dimensional array ¢ with dimensions 3 and 6, you use the DIM
statement...

DIM c(3,6)
This then gives you 3*6= 18 subscripted variables...
c(1,1), ¢(1,2)... ¢(1,6)
c(2,1), ¢(2,2)... ¢(2,6)
c(3,1), ¢(3,2)... ¢(3,6)
The same principle works for any number of dimensions.

Although you can have a number and an array with the same name, you cannot have two arrays with
the same name, even if they have a different number of dimensions.

There are also string arrays. The strings in an array differ from simple strings in that they are of fixed
length and assignment to them is always Procrustean (ie. chopped off or padded with spaces).

The name of a string array is a single letter followed by $. Unlike numeric arrays, a string array and a
simple string variable cannot have the same name.

80

e

i

Suppose then, that you want an array a $ of five strings. You must decide how long these strings are to
be - letus suppose that 10 characters for each element is long enough. You then say...

DIMa$(5,18) (typethisin)
This sets up a 5* 10 array of characters, but you can also think of each row as being a string...

a$(1)=a$(1,1)a$(1,2)... a$(1,10)
a$(2)=a$(2,1)a$(2,2)... a$(2,10)
a$(3)=a8(3,1)a$(3,2)... a$(3,10)
a$(4)=a$(4,1) a$(4,2)... a$(4,10)
a$(5)=a%(5,1) a$(5,2)... a$(5,10)

If you give the same number of subscripts (two in this case) as there were dimensions in the D I M
statement, then you get a single charactes; but if you miss the last one out, then you get a fixed length
string. So, for instance, a$(2,7) is the 7th character in the string a$(2). Using the slicing notation, we
could also write this as a$(2)(7). Now type...

LET a$(2)="123456789@"
...and...

PRINT a$(2), as$(2,7)
Youget...

1234567890 7
For the last subscript (the one you can miss out), you can also have a slicer, so that for instance...
a%$(2,4 TO 8)isequaltoa$(2)(4 TO 8)isequalto"45678"

Remember - In a string array, all the strings have the same, fixed length.

The D I M statement Has an extra number (the last one) to specify this length, When you write down a
subscripted variable for a string array, you can put in an extra number, or a slicer, to correspond with
the extra number in the D I M statement,

You can have string arrays with no extra dimensions. Type...

DIM a$(1@)

and you will find that 2 $ behaves just like a string variable, except that it always has length 10, and
assignment to it is always Procrustean.

Exercise...
1. Use READ and DAT A statements to set up an array m$ of twelve strings in which m$ (n) is the

name of the nth month. (Hint - The D I M statement willbe DIM m$ (12 ,9). Test it by printing out
allthe valuesof m$ (n) (usealoop)).

81

Part13
Conditions

Subjects covered...

AND,OR
NOT

We saw in part 3 of this chapter how an I F statement takes the form...

I F condition THEN...
The conditions there were the relations (=, <, >, < =, >= and <>) which compare two numbers or
two strings. You can also combine several of these, using the logical operations: AND, ORand NOT.
One relation AND another relation is true whenever both relations are true, so you could have a line
like...

IF a$="yes" AND x>@ THEN PRINT x

-.inwhich x only gets printed if a $ is equalto‘ye s’and x is greater than zero. The BASIC here is so
close to English that it hardly seems worth spelling out the details. As in English, you can join lots of
relations together with AND, and then the whole lot is true if all the individual relations are.

One relation OR another is true whenever at least one of the two relations is true. (Remempber that it is
still true if both the relations are true - this is something that English doesn’t always imply.)

The NOT relationship turns things upside down. The NOT relation is true whenever the relation is
- false, and false whenever itis true,

Logical expressions may use combinations of AN D, OR and NOT, just as numerical expressions may
use combinations of +, =, * and so on. You can even put them in brackets if necessary. Logical
operations have priorities in the same way as +, -, *, / and ! do. OR has the lowest priority, then
AND,thenNOT.

NOT isreally a function, with an argument and a result, but its priority is much lower than that of other
functions. Therefore, its arqument does not need brackets unless it contains AND or OR (or both).
NOT a=b meansthesameasNOT (a=b) (andthesameasa<>b of course).

<> isthe negation of = in the sense that it is true if, and onlyif, = isfalse. In other words...
a<>bisthesameasNOT a=b

...and also...
NOT a<>bisthesameasa=b

Convince yourself that >= and <= are the negations of < and > respectively. Thus you can always
getridof NOT from in front of a relation by changing the relation.

82

Also...
NOT (afirstlogical expression AN D a second)

..isthe same as...

NOT (thefirst) OR NOT (the second)
..and...

NOT (afirstlogical expression O R a second)
..isthe same as...

NOT (the first) AND NOT (the second)

Using this, you can work NO T's through brackets until eventually they are all applied to relations, and

then you can get rid of them. Logically speaking, NOT is unnecessary, although you might still find
that using it makes a program clearer.

The following section is quite complicated, and can be skipped by the faint-hearted!
PRINT 1=2, 1<>2

...which you might expect to give a syntax error. In fact, as far as the computer is concerned, there is
no such thing asa logical value - instead it uses ordinary numbers, subject to a few rules:

(@) =, <, >, €=, >= and <> all give the numeric results: 1 for true, and 0 for false. Thus, the PRINT
command above printed 0 for 1 =2', which is false, and 1 for ‘1< > 2, which is true.

(ii) In the statement...
I F condition THEN...

..the condition can be actually any numeric expression. If its value is 0, then it counts as false, and any
other value (including the value of 1 that a true relation gives) counts as true. Thus the I F statement
means exactly the same as...

I F condition <>@ THEN...
(iii) AND, OR and NO T are also number-valued opearations...

x,if yis true (non-zero)
X AND y hasthe value -[0(false), if y is false (zero)

1 (true), if yis true (non-zero)
XORyhasthe viln ‘I: x,if yis false (zero)

0 (false), if xis true {(non-zero)
NOT xhas the value ‘[1 (true), it xis false (zero)

(Notice that ‘true’ means ‘non-zero’ when we're checking a given value, but it means ‘I’ when we're
producing a new one).

83

Now try this program...

18 INPUT a
28 INPUT b
30 PRINT (a AND a>=b)+(b AND a< b)
40 GO TO 1@
Eachtime it prints the larger of the two numbers a and b.
Convineeyourself that you can think of...
X AND y

-5 meaning...

X if y (else the resultis 0)
..and of...

x OR y
.28 meaning...

X unless y (in which case the resultis 1)

An expression using hN D or OR like this is called a conditional expression. An example using OR
could be...

LET total=price less tax*(1.15 OR v$="zero rated")
- Notice how AND tends to go with addition (because its default value is 0), and OR tends to go with
multiplication (because its default value is 1.
You can also make string valued conditional expressions, but only using AND.
x$ AND y hasthe value ﬁ.lfy isf ROt ser0
ifyis zero
--80 itmeuns x$ if y (else the empty string).
Try this program, which inputs two strings and puts them in alphabetical order.

18 INPUT "type in two strings" 'a$,bs$
2B IF a$>b$ THEN LET c$=a$: LET a%=b%: LET b%=c$%

30 PRINT a$;™ ";("<" AND a$<b$)+("=" AND a$=ps$);" ";b$
48 60 TO 18

84

Paxt 14
The Character Set

Subjects covered...

CODE,CHR$
POKE,PEEK
USR
BIN

The letters, digits, spaces, punctuation marks and so on that can appear in strings are called
characters, and they make up the character sefthatthe +2 uses. Most of these characters are single

symbols, but there are some more, called tokens, that represent whole words, such as PRINT,
STOP, <> andsoon.

There are 256 characters, and each one has a code between 0 and 255 (there is a complete list of them
in part 27 of this chapter). To convert between codes and characters, there are two functions, CODE
and CHRS.

CODE is applied to a string, and gives the code of the first character in the string (or 0 if the string is
empty).

CHR$ isapplied to a number, and gives the single character string whose code is that number,
This program prints out the entire character set...

18 FOR a=32 TO 255: PRINT CHRS$ a;: NEXT a
Onthe screen will appear the following...

The character set

85

As you can see, the character set consists of a space, 15 symbols and punctuation marks, the ten
digits, seven more symbols, the capital letters, six more symbols, the lower case letters and five more
symbols. These are all (except £ and ©) taken from a widely-used set of characters known as ASCII
(American Standard Codes for Information Interchange). ASCII also assigns numeric codes to these
characters, and these are the codes thatthe +2 uses.

The rest of the characters are not part of ASCII, but are dedicated to the ZX Spectrum range of
computers. First amongst them are a space and 15 patterns of black and white blobs. These are called
the graphics symbols and can be used for drawing pictures. You can enter these from the keyboard,
using what's known as graphics mode. Pressing the [GRAPH] key switches on graphics mode, after
whichthe keys 1,2, 3,4, 5,6,7 and 8 will produce the graphics symbols...

| eSS O

| Jew [T] HEA
|| | |
” rl ’J || l’ \

86

While in graphics mode, pressing [CAPS SHIFT] together with one of the keys 1 to 8 produces
‘inverted’ versions of the same symbols, ie. black becomes white and white becomes black...

BEUICIC ﬂ\'\li?b\lﬂl'wﬁ?fj ‘

|
l 1 CAPS SHIFT

CAPS SHIFJ 1

The cursor keys won't work properly while all this is going onasthe +2 interprets them as shifted
number keys, and prints graphics characters accordingly.

Pressing the 9 key turns everything back to normal (as does pressing [GRAPH] again). The @ key
deletes the character to the left of the cursor.

81

Here are the sixteen graphics symbols...

Symbol Code Symboal Code

128 . 143
N - k-
E:l 130 u 141
E a ; a0
] 132 n 139
F_"l 13 I]
ﬂ 135 E 136

After the graphics symbols in the character set, you will see what appears to be another copy of the
alphabet from A to S. These are characters that you can redefine yourself (though when the machine is
first switched on they are setas letters) - they are called user-defined graphics. You can type these in
from the keyboard by going into graphics mode, and then using the letter keysAtoS.

Todefine anew character for yourself, follow this recipe - it defines a character to show .

88

(i) Work out what the character looks like. Each character has an 8 x 8 grid of dots, each of which can

appear to be either on or off. You'd draw a diagram something like this (with black squares
representing the dots which are on)...

When a dot is on, the +2 prints the ink colour; when a dot is off, the +2 prints the paper colour.
(The terms ink and paper are explained in part 16 of this chapter.)

We've left a one-square border around the edge of the character because all the other letters also
have one (except for lower case letters with tails, where the tail goes right down to the bottom).

(ii) Work out which user-defined graphic you wish to display = - let's say the one corresponding to P,
sothatif you press P (after pressing [GRAPH]) youget 7.

(iii) Store the new pattern. Each user-defined graphic has its pattern stored as eight numbers, one for
each row. You can write each of these numbers in a program as B I N followed by eight 0's or I's - 0 for
paper, | forink - so the eight numbers for our 7 character are...

BIN PPODBO0BE -toprow

BIN A0@00@PE -secondrowdown
BIN 0000818 -thirdrowdown
BIN 80111108 - fourthrowdown
BIN 81810108 -fifthrowdown
BIN 00018100 -sixthrowdown
BIN GOBB181808 -seventhrowdown
BIN 0PGABAAG -bottomrow

(If you know about binary numbers, then it should help you to know that BIN is used to write a
number in binary instead of the usual decimal.) Look at the pattern of binary numbers through
half-closed eyes - you may even be able to see the 7 character.

These eight numbers are stored in eight locations (bytes) in memory. Each of these locations has an
address. The address of the first byte (or group of eight digits) is USR "P" (we chose P in (ii)

above). The address of the second byte is USR " P" + 1, and so on up to the eighth byte, which has
theaddress USR"P" +7.

89

USR here is a function to convert a string argument into the address of the first byte in memory for the
corresponding user-defined graphic. The string argument must be a single character which can be
either the user-defined graphic itself or the corresponding letter (in upper or lower case). There is
another use for US R, when its argument is a number, which will be dealt with later.

Evenif youdon't understand this, the following program will define the character for you...

18 FOR n=@ to 7

20 READ row: POKE USR "P"+n,row
38 NEXT n

4@ DATA BIN Q0Q0E0BE
50 DATA BIN 0PQPP0GEQ
60 DATA BIN 0@0QGB10
70 DATA BIN 00111180
80 DATA BIN 81810180
90 DATA BIN 00910100
100 DATA BIN 0G0R210180
118 DATA BIN 00000000

The POKE statement stores a number directly in a memory location, bypassing the mechanisms
normally used by the BASIC. The opposite of POKE is PEEK, and this allows us to look at the

contents of a memory location although it does not actually alter the contents themselves. PE EK and
POKE are described more fully in part 24 of this chapter. .

After the user-defined graphics in the character set come the tokens.

You will have noticed that we have not printed out the first 32 characters (codes 0 to 31) - these are

contro] characters. They don't produce anything printable, but instead are used to control the screen
display or some other function of the +2.

(If you try to print control characters, the +2 displays ? to show that it doesn't understand them,
Control characters are described more fully in part 27 of this chapter.)

The three codes that the screen display uses are 6, 8 and 13 (these will now be explained). On the
whole, CHRS$ 8 isthe only one you are likely to find useful. ;

CHR$ 6 prints spaces in exactly the same way as a comma does in a PRINT statement, for
‘nstance...

PRINT 1; CHRS$ 6;2
..doesthe same as...
PRINT 1,2
Obviously thisisnota very clear way of using it. A more subtle wayistosay..,

LET a$="1"+CHRS &+"2"
PRINT a$

90

e
—

CHR$ 8 is ‘backspace’ - it moves the print position back one place - try...
PRINT "1234"; CHR$ 8;"5"

..which prints out..,
1235

CHR$ 13 is‘newline’ - it moves the print position to the beginning of the next line.

The screen display also uses control codes 16 to 23 - these are explained in parts 15 and 16 of this
chapter (all the codes are listed in part 27).

Using the codes for the characters we can extend the concept of ‘alphanumerical ordering’ to cover
strings containing any characters, not just letters. If instead of thinking in terms of the usual alphabet of
26 letters we use the extended alphabet of 256 characters, in the same order as their codes, then the
principle is exactly the same. For instance, the following strings are in their ‘Spectrum’ alphabetical
order. (Notice the rather odd feature that lower case letters come after all the capitals; so ‘a’ comes
after ‘Z'; also, spaces are significant.)

CHR$ 3+"ZO0OLOGICAL GARDENS"
CHRS 8+"AARDVARK HUNTING"
" AAAARGH!"
"(Parenthetical remark)"
II'1BII

"129.95 inc. VAT"
"AASVOGEL"

"Aardvark"”

"Elgar, the Regal Lager"
"PRINT"

"IUO"

"[interpolationl"
"aardvark"

"aasvogel"

Ilderbyrl

"ZOO"

"zoology"

Here is the rule for finding out which order two strings come in. First, compare the first characters. If
they are different, then one of them has its code less than the other, and the string it came from is the
earlier (lesser) of the two strings. If they are the same, then go on to compare the next characters. If in
this process one of the strings runs out before the other, then that string is the earlier; otherwise they

must be equal.

The relations =, £, >, <=, >=, and <> are used for strings as well as for numbers: < means ‘comes
before’ and > means ‘comes after’, sothat...

"AA man"<"AARDVARK"
"AARDVARK">"AA man"

...are both true.

91

<=and > = work the same way as they do for numbers, sothat...

"The same string"<="The same string"
..istrue, but...

"The same string”"<"The same string”
..is false.

Experiment on all this using the program here, which inputs two strings and putsthemin order.

1@ INPUT "Type in two strings:",a%$,b$

20 IF a$>b$ THEN LET c$=a$: LET a$=b%$: LET b$=c$
38 PRINT as;" ";

4@ IF a$<b$ THEN PRINT "<";: GO TO 6P

58 PRINT "=";

60 PRINT " ":b$

78 GO TO 10

Note (in the above program and in the program at the end of part 13) how we have to introduce ¢ $ in
line 20whenwe swap over a$ and b'$. Can you see why simply using...

LET a$=b%: LET b$%$=2a%
..would not have the desired effect?

The next program sets up user defined graphics for the following keys to display chess pieces...

B for bishop
K for king
Rforrook
Qfor queen
P for pawn
N for knight

Chess pieces...

5 LET b=BIN 8111110@0: LET c=BIN BB111000:
LET d=BIN 00018080
1@ FOR n=1 TO é: READ p$: REM é pieces
28 FOR f=@ TO 7: REM read pieces into 8 bytes
30 READ a: POKE USR pk+f,a
40 NEXT f
58 NEXT n
100 REM bishop
110 DATA "b",@,d, BIN 00101000, BIN @10P90100
120 DATA BIN 81161100,c,b,8
138 REM king
140 DATA "k",B,d,c,d

92

—
.

158 DATA c, BIN ©1008100,c,0

168 REM rook

178 DATA "r",0, BIN 0101810@,b,c
188 DATA c¢,b,b,B

198 REM queen

208 DATA "qg",0, BIN 61018100, BIN 0B101000,d
210 DATA BIN 01101168,b,b,0

220 REM pawn

230 DATA "p",0,8,d,c

24@ DATA ¢,d,b,B

25@ REM knight

260 DATA "n",@,d,c, BIN 81111000
278 DATA BIN @0B11800,c,b,B

Note that inthe above D AT A statements, we have simply used B instead of BIN 0800200 @.
When you have run this program, you may look at the pieces by pressing [GRAPH] followed by any of
thekeys:B,K,R,Q,PorN.

Exercises...

1. Imagine the space for one symbol divided up into four quarters like a Battenburg cake. Thenif each
quarter can be either black or white, there are 2* = 16 possibilities. Find them all in the character set.

2. Run this program...
18 INPUT a

20 PRINT CHRS a;
386 GO TO 10

If you experiment with it, you'll find that CHR$ a is rounded to the nearest whole number: and if a is
not in the range 0 to 255, then the program stops with the error report B integer out of
range.

3. Which of these is the lesser?

"EVIL"
"eviL"

93

Part15
More about PRINT and INPUT

Subjects covered...

CLS

PRINT items: nothing at all

Expressions (numeric or string type): T AB numeric expressions, AT
numeric expression

PRINT separators: , ; !

INPUT items: variables (numeric or string type)

L I NE string variable

Any PRINT item not beginning with a letter. (Tokens are not considered
as beginning witha letter.)

Scrolling

SCREENS

You have already seen PRINT used quite a lot, so you will have a rough idea of how it is used.
Expressions whose values are printed are called PRINT items, They may be separated by commas,
semicolons or apostrophes, which are called PRINT separators. A PRINT item can also be
nothing at all, which is a way of explaining what happens when you use two commas in a row.

there are two more kinds of PRINT items, which are used to tell the +2 not what, but where to
print. For example, the instruction...

18 PRINT AT 11,16;"*"
~printsastar in the centre of the screen. This is because...

AT line , column
-moves the PRINT position (the place where the next item is to be printed) to the line and column
;;l)ec' ied. Lines are numbered from 0 (at the top) to 21; columns are numbered from 0 (on the left) to
SCREENS$ is the reverse function to PRINT AT, and will (within limits) ‘read’ the character which

is located at a particular position on the screen. It uses line and column numbers in the same Way as
PRINT AT,butenclosed in brackets. For example, the instruction...

20 PRINT AT 8,0; SCREENS (11,16)

-.will read the star printed in the centre of the screen, then print it at location 0,0 (the top left hand
commer).

Characters from tokens are read normally (as single characters), and spaces are read as spaces.
Attempting to read user-defined characters, graphics characters, or lines drawn by PLOT, DRAW
and CIRCLE, however, result in a null (empty) string being returned. The same applies if 0VER

has been used to create a composite character. (The keywords PLOT, DRAW, CIRCLE and
OVER aredescribed in parts 16 and 17 of this chapter.)

You cannot normally PRINT or PLOT

! on the bottom two lines
M S E I Om D R oW oM = & m om W & ot b [R -

=

[

B

£L |51
S
4

g |55 Jir |68 L

gl gol g

a 4§ v £ i
g SULIN|07)

24

~——— S3JBUIPIOOD X [3XId
: % .-:I 1 ._-
a2 £

e
=

ooy -
el a
=
|
e
= H =
2
=3 =
& =
- 2
2 & =
= -
B
5 E &
= o @
0
= o -l
z a
o -
@]
- § 1
= [Ty
o § H| 85z Wa:a
5 ot wo O
ks "o 8
& 2 woX W
= 5 -] 3
Eé F — D
; =3
ol N L0 T

o

L O =
BEE - W
e o &
o e L _
& - W

o
ES S
" & w
ir G)

] B 6 24 32 40 48 S8 B84 72 B0 HE O 04 1127 170 2R V36 44 147 180 168
' h 23 O3y 39 47 5% 81 T T3 @7 95 @3 111 819 FT 135 143 1% 159 167 175

Pixel v coordinates ———————g-

95

The function...

TAB column

-.prints enough spaces to move the PRINT position to the column specified. It stays on the same
line, or, if this would involve backspacing, moves to the next line. Note that the +2 reduces the
column number ‘modulo 32’ (ie. it divides by 32 and takes the remainder) - so TAB 33 means the
sameas TAB 1,

Asanexample...
PRINT TAB 30;1; TAB 12;"Contents"; AT 3,1: "Chapter";
TAB 24;"Page"
.15 how you might want to print out the heading on the contents page (page 1) of a book.
Try running this...
1@ FOR n=B TO 2P
2@ PRINT TAB 8%n;n;
30 NEXT n
This shows what is meant by the T AB numbers being reduced modulo 32.
Fora more elegant example, change the 8 inline 20toa 6.
Note the following points:

(1) TABs and print items are best terminated with semicolons, as we have done above. You can use
commas (or nothing, at the end of the statement), but this means that after having carefully set up the

PRINT position, you immediately move it on again - not terribly useful!

(ii) You cannot print on the bottom two lines (22 and 23) on the screen because they are reserved for

commands, INPUT data, error messages, reports and so on. References to ‘the bottom line’ usually
mean line 21.

(iii) You can use AT to locate the PRINT position even where there is already something printed
-the new print item will simply overwrite the old.

Another statement connected with PRINTis C L 5. This clears the whole screen,

When printing reaches the bottom of the screen, it starts to scroll upwards rather like a typewriter.
You can see this if you go into the small screen using the edit menu option‘Screen’ (described in
chapter 6), and then type...

CLS: FOR n=1 TO 3@: PRINT n: NEXT n

When it has printed a screen full, the +2 will stop with the message s ¢ ro L L ? at the bottom of the
screen. You can now inspect the first 22 numbers at your leisure. When you have finished with them,
press Y (for ‘yes') and the +2 will give you the next screen full of numbers. Actually, any key will

96

make the +2 carry on except N (for ‘no"), the [BREAK] key or the space bar. These will make
the _+2 stop running the program withthe report D BREAK - CONT repeats.

The INPUT statement can do much more than we have told you so far. You have already seen
INPUT statementslike...

INPUT "How old are you?", age

..in which the +2 prints the caption ‘How o Ld are you?’ at the bottom of the screen, and then
you have to type in your age. In fact though, an INPUT statement can be made up of items and
separators in exactly the same way as a PRINT statement, so‘How old are you? and ‘age’
are both INPUT items. INPUT items are generally the same as PRINT items, however, there are
some very important differences:

First, an obvious extra INPUT item is the variable whose value you require to be typed in - agein
our example above. The rule is that if an INPUT item begins with a letter, then it must be a variable
whose value isto be input.

This would seem to mean that you can't print out the values of variables as part of a caption. However,

you can get round this by putting brackets around the variable. Any expression that starts with a letter
must be enclosed in brackets if it is to be printed as part of a caption.

Any kind of PRINT item that is not affected by these rules is also an INPUT item. Here is an
example to illustrate what's going on...

LET my age = INT (RND * 1@@): INPUT ("I am ";my age;".");
"How old are you?", your age

my age is contained in brackets, so its value gets printed out. your age is not contained in
brackets, so you haveto typeits value in.

Everything that an INPUT statement writes goes to the bottom part of the screen, which acts
somewhat independently of the top half. In particular, its lines are numbered relative to the top line of
the bottom half, even if this has moved up the actual TV screen (which it does if you type lots of
INPUT data). Whatever the small screen does during INPUT, however, it will always revert to
being two lines in size when the program stops, and you start editing.

Toseehow AT worksin I NPU T statements, trv this...

1@ INPUT “"This is line 1.",a$; AT 8,8;"This is Line 0.",as$;
AT 2,8;"This is line 2.",a$; AT 1,B;"This is still Lline
1.",a$%

Run the program (just press [ENTER] each time it stops). When‘This is line 2',is printed, the
lower part of the screen moves up to make room for it; but the numbering moves up as well, so that the
lines of text keep their same numbers.

91

Now try this...

18 FOR n=@ TO 19: PRINT AT n,@;n;: NEXT n
20 INPUT AT @,0;a$; AT 1,8;a$: AT 2,0;a%; AT 3,0;a$;
AT &4,0;a$; AT 5,0;a%;

As the lower part of the screen goes up and up, the upper part remains undisturbed until the lower
part threatens to write on the same line asthe PRINT position. Then the upper part starts scrolling
up toavoid this.

Another refinement to the INPUT statement that we haven't seen yetiscalled LINE inputand isa

different way of inputting string variables. If you use L I NE before the name of a string variable to be
input, asin...

INPUT LINE a$

~thenthe +2 will not give you the string quotes that it normally does for a string variable (though it
will pretend to itself that they are there). So if you type in...

cat

-.as the INPUT data, a$ will be given the value ‘c a t’. Because the string quotes do not appear
with the string, you cannot delete them and type in a different sort of string expression for the
INPUT data. Remember that you cannot use L I NE for numeric variables,

There’s an interesting side effect to INPUT. Whilst typing into an INPUT request, the old
Spectrum single-key entry system enjoys a brief moment of freedom before being locked away again
when you press [ENTER]. Run this program if you're interested...

1@ INPUT numbers
2@ PRINT numbers
30 GO TO 18

Input a few numbers, and they’ll get printed faithfully onto the screen. Now press [EXTEND MODE]
followed by the M key. The word P I appears, and if you press [ENTER],then 3.1415927 will
appear as if by magic. However, if you type P I as two letters without the aid of [EXTEND MODE]
thenthe +2 will stop withthe report...

2 Variable not found, 18:1

There’s no simple explanation for this behaviour, and it's best just to be aware that it can happenif you
press some combinations of keys during INPUT. If for some reason you're keen to experiment,
chapter 7 will tell you which keys produce which effects.

The control characters CHR$ 22 and CHR$ 23 have effects rather like AT and T AB. Whenever
the +2 is instructed print one of them, the character must be followed by two more characters that
do not have their usual effect, but that are treated instead as numbers (their codes) to specify the line
and column (for A T) or the tab position (for T AB), You will almost always find it easier touse AT and
TAB in the usual way rather than use control characters, however, they might be useful in some

98

circumstances. The AT control character is CHR$ 22. The first character after it specifies the line
number and the second specifies the column number, so that...

PRINT CHR$ 22+CHR$ 1+CHRS$ c;
...has exactly the same effect as...
PRINT AT 1,c;

This is so that even if CHR$ 1 or CHR$ ¢ would normally have a different meaning {for instance if
c=13);the CHR$ 2 2 before them overrides that.

The TAB control character is CHR$ 23 and the two characters after it combine to give a number
between 0 and 65535, specifying the number you would have ina T AB item. The statement...

PRINT CHR$ 23+CHR$ a+CHR$ b;

...hasthe same effect as...

PRINT TAB a+256%*b;

Youcanuse POKE to stop the computer asking if youwishto s ¢ ro L L 2 by typing...
POKE 23692,255

..every so often. After this it will scroll up 255 times before stopping with s ¢ ro L L ? As an example,
try...

18 FOR n=@ TO 1000

2@ PRINT n: POKE 23692,255
3@ NEXT n

..and watch everything whizz off the screen!

Exercise...

1. Try this program on some children, to test their multiplication tables...

18 LET m$=""
20 LET a=INT (RND*12)+1: LET b=INT (RND*12)+1
30 INPUT (m$) ' ' “"what is ";(a);" x ";(b);"2";¢

188 IF c=axb THEN LET m$="Right.": GO TO 20
118 LET m$="Wrong. Try again.": GO TO 3@

If they are perceptive, they might manage to work out that they do not have to do the calculation
themselves. For instance, if the +2 asks them to type the answerto 2 x 3, then all they have to do is
typein 2 * 3 literally.

99

Part 16
Colours

Subjects covered...

INK,PAPER,FLASH,BRIGHT, INVERSE,OVER
BORDER

Run this program...

18
2@
30
4@
5@
68
70
30
90
108
118
120
130

This shows the eight colours (including white and black) and the two levels of brightness that the +2
can produce on a colour television. (If your TV is black-and-white, then you will just see various
shades of grey.) A quicker way to achieve a similar result is to RESET the +2 whilst holding down
[BREAK] - but that's a little drastic. Here is a list of which numbers produce which colours (for your

reference)...

FOR m=@ TO 1: BRIGHT
FOR n=1 T0 18

FOR c=@8 TO0 7

PAPER c¢: PRINT "
NEXT c: NEXT n: NEXT
FOR m=@ TO 1: BRIGHT
FOR c=B 70 3

INK c: PRINT ¢;" “;
NEXT c: PAPER @

FOR ¢c=4 TO 7

INK c¢: PRINT ¢;" ":
NEXT c: NEXT m

PAPER 7: INK @: BRIGHT @

0-black
1-blue

rea

2.
3-magenta
4.

green
5-cyan
6 - yellow
T-white

On a black-and-white TV, these numbers are in order of brightness. To use these colours properly,

L]

m

&
F
m
m:

REM 4 coloured spaces

PAPER 7

you need to understand a bit about how the picture is arranged.

100

The picture is divided up into 768 (24 lines of 32) positions (cells) where characters can be printed.

Atypical character cell

Each character cell consists of an 8 x 8 grid (such as above). This should remind you of the
user-defined graphics in part 14, where we had 0s for the white dots and 1s for the black dots.

The character has two colours associated with it: the ink, or foreground colour, which is the colour for
the black dots in our square, and the paper, or background colour, which is used for the white dots. To
start off with, every cell has black ink and white paper so writing appears as black on white.

The character also has a brightness (normal or extra bright), and something to say whether it flashes
or not. Flashing is done by continuously swapping the ink and paper colours. All this information can
be coded into numbers, so a character then has the following...

(i) An8x8gridof 0sand lsto define the shape of the character, with 0 for paper and 1 for ink.
(i) Inkand paper colours, eachcoded into a.: number between0and 7.

(iii) Abrightness - 0fornormal, 1for extra bright.

(iv) Aflashnumber - 0for steady, 1 for flashing.

Note that since the ink and paper colours cover a whole character cell, you cannot possibly have
more than two colours in a given block of 64 dots. The same goes for the brightness and flash numbers
- they refer to the whole character cell, not individual dots within the cell. The colour, brightness and
flash number for a given character cell are called attributes.

101

When you print something on the screen, you change the dot pattern for that character cell. It is less
obvious, but still true, that you also change the cell's attributes. To start off with you do not notice this
because everything is printed with black ink on white paper (at normal brightness and no flashing);
however, you can vary this with the INK, PAPER, BRIGHT and FLASH statements. Using the
editmenu’s'S ¢ r e e n’ option, go to the bottom screen, and try...

PAPER 5

..and then PRINT a few items on the screen - they will appear on cyan paper, because as they are
printed, the paper colour for the cells they occupy are set to cyan (which has code By

The others work the same way, so you may use the settings...
PAPER (whole number between0and 7)
INK (whole number between0and 7)

BRIGHT (wholenumber between0and 1)
FLASH (whole number between 0and 1)

..and any printing will set the corresponding attributes for all the character cells it subsequently uses.

Try some of these out. You should now be able to see how the program at the beginning of this section
worked (remember that a space is a character that has its ink and paper the same colour).

There are some more numbers you can use in these statements that have less direct effects.

8 can be used in all four statements, and means ‘transparent’ in the same sense that the old attribute
shows through. Suppose, for instance, that you do...

PAPER 8

No character position will ever have its paper colour set to 8 because there is no such colour; what
happens is that when a position is printed on, its paper colour is left the same as it was before.

However, INK 8, BRIGHT 8 and FLASH 8 work the same way as for the other attribute
numbers.

9 can be used only with PAPER and INK, and means ‘contrast’. The colour (ink or paper) that you
use it with is made to contrast with the other by being made white if the other is a dark colour (black,
blue, red or magenta), or being made black if the otherisa light colour (green, cyan, yellow or white).

Try this by doing...

INK 9: FOR c=@ TO 7: PAPER c: PRINT c: NEXT ¢

A more impressive display of its power is to run the program at the beginning to make coloured
stripes (again, making sure that you are in the lower screen when youtype RUN), and then doing...

INK 9: PAPER 8: PRINT AT @,8;: FOR n=1 TO 10@@: PRINT n;:
NEXT n

The ink colour here is always made to contrast with the old paper colour for each character cell.

102

Colour TV relies on the rather curious fact that the human eye can only really see three colours - red,
green and blue. The other colours are mixtures of these. For instance, magenta is made by mixing red
with blue - which is why its code, 3, is the sum of the codes for red and blue,

To see how all eight colours fit together, imagine three rectangular spotlights, coloured red, green
and blue shining at not quite the same place on a piece of white paper in the dark. Where they overlap
you will see mixtures of colours, as shown by the following program (note that solid ink spaces are
obtained by entering graphics mode (pressing [GRAPH]) then holding down [CAPS SHIFT] while
pressing 8. To exit from graphics mode, press9.)

1% BORDER B: PAPER B: INK 7: CLS
2B FOR a=1 TO 6
3@ PRINT TAB 6; INK 1;" G " : REM 18
ink squares
4@ NEXT a
50 LET dataline=208
60 GO SUB 1000
78 LET dataline=218@
80 GO SuB 10080
9@ STOP
200 DATA 2,3,7,5,
218 DATA 2,2,6,4,
1008 FOR a=1 TO &
1818 RESTORE dataline
1628 FOR b=1 TO 5
1830 READ c: PRINT INK c;" B ";: REM 6
ink squares
1848 NEXT b: PRINT: NEXT a
1850 RETURN

There isa function called AT TR that finds out what the attributes are at a given position on the screen.
Itis a fairly complicated function, so it has been relegated to the end of this section.

There are two more statements, INVERSE and 0V ER, which control not the attributes, but the dot
pattern that is printed on the screen. They use the numbers 0 for off, and 1 for on. If you use
INVERSE 1, then each character cell's dot pattern will be the inverse of its usual form, ie. paper
dots will be replaced by ink dots and vice versa. Thus the character cell containing ‘a’ (shown
previously) would be printed as follows (on the next page)...

103

If (as at switch on) we have black ink and white paper, then the ‘a’ will appear as white on black.
The statement...

OVER 1

...sets into action a particular sort of overprinting. Normally when something is written into a character
position it completely obliterates what was there before; however, using OVER 1, the new character
is simply added on top of the old one. This can be particularly useful for writing composite characters,
like an underlined letter, as in the following program. (Resetthe +2 and select 128 BASIC. Note that
the underline character is obtained by [SYMB SHIFT] with 8.)

18 OVER 1
2@ PRINT "w"; CHR$ 8;"_";

4

(Notice we have used the control character CHRS$ 8 (backspace) before overprinting the w with _.)

There is another way of using INK, PAPER and so on which you will probably find more useful than
having them as statements. You can put them as itemsina PRINT statement (followed by ;), and
they then do exactly the same as they would have done if they had been used as statements on their

own, except that their effect is only temporary, lasting as far as the end of the PRINT statement that
contains them. Thus if you type...

PRINT PAPER 6;"x";: PRINT "y"
..then only the x will be on yellow paper.

104

INK and the rest when used as statements do not affect the colour in the bottom part of the screen,
where INPUT data is typed in and errors are displayed. The bottom screen uses the colour of the
border for its paper colour, code 9 (for contrast) for its ink colour, has flashing off, and everything at
normal brightness. You can change the border colour to any of the eight normal colours {not 8 or 9)
using the statement...

BORDER colour

Whenyoutype in INPUT data, it follows this rule of using contrasting ink on border coloured paper;
but you can change the colour of the captions written by the +2 byusing INK and PAPER (and so
on) items inthe INPUT statement, just as youwould ina PRINT statement. Their effect lasts either
tothe end of the statement, or until some I NPUT data is typed in, whichever comes soonest. Try...

INPUT FLASH 1; INK 1;"What is your number?";n

The +2 has a high regard for your sanity - no matter what combination of effects and colours you
manage to produce from a BASIC program, the editor will always use black ink on white paper.

There is one more way of changing the colours by using control characters - rather like the control
charactersfor AT and TAB inpart 15.

CHR$® 16 correspondsto INK
CHR$ 17 correspondsto PAPER
CHR$ 18 correspondsto FLASH
CHR$ 19 correspondsto BRIGHT
CHR$ 2@ correspondsto INVERSE
CHR$ 21 correspondsto OVER

These are each followed by one character that shows a colour by its code:; so that (for instance)...

PRINT CHR$ 16+CHRS 9;"item"
...has the same effect as...

PRINT INK 9;"item"

On the whole, you would not bother to use these control characters because you might just as well use
the statements INK, PAPER, etc. However, if you have some old 48K BASIC programs on cassette,
you may find such control characters embedded in the listing. In general, the editor will actively

ignore them, and remove them at the first opportunity. It is not possible to insert them into listings as
with the old 48K Spectrum.,

The AT TR function hasthe form...

ATTR (line , column)

105

Its two arguments are the line and column numbers that you would useinan A T item, and itsresultisa
number that shows the colours and so on at the corresponding character position on the TV screen.
You can use this as freely in expressions as you can any other function.

The number that is the result is the sum of four other numbers as follows:

8 ifthecharacter cell is flashing, 0if it is steady.
ifthe character cellis bright, 0 if it is normal.
multiplied by the code for the paper colour.
multiplied by the code for the ink colour.

—eRs

For instance, if the character cell is flashing, normal brightness, yellow paper and blue ink, then the
four numbers that we have to add together are 128, 0, 8*6=48 and 1, making 177 altogether, Test this
with...

PRINT AT B,8; FLASH 1; PAPER 6; INK 1;" ";ATTR (8,8)

Exercises...

1. Try..
PRINT "B"; CHRS 8; OVER 1;"/";

Where the / has cut through the B, it has left a white dot. This is thé way overprinting works on
the +2 -two papers or two inks give a paper, one of each gives an ink. This has the interesting
property that if you overprint with the same thing twice you get back what you started off with. If you
Now type...

PRINT CHRS$ 8; OVER 1;"/"
...Why do you recover an unblemished B?

2. Run this program...

18 POKE 22527+RND*704, RND*127
26 GO TO 10

(Never mind how this program works) The program is changing the colours of squares on the TV
screen and the RND should ensure that this happens randomly. The diagonal stripes that you
eventually see are a manifestation of the hidden pattern in RND, ie. pseudo-random instead of truly
random.

106

Part17
Graphics

Subjects covered...

PLOT,DRAW,CIRCLE
pixels

For all of this section, type in the example programs, commands and RUN in the small screen (use the
edit menu's‘S ¢ r e e n’ option).

In this section we shall see how to draw pictures onthe +2. The part of the screen you can use has 22
lines and 32 columns, making 22*32=704 character positions. As you may remember from part 18,

each of these character positions is made up of an 8 x 8 grid of dots which are called pixels (picture
elements),

A pixel is specified by two numbers, - its coordinates. The first, its x coordinate, says how far it is
across from the extreme left hand column. The second, its y coordinate, says how far it is up from the
bottom. These coordinates are usually written as a pair in brackets, so (0,0), (225,0), (0,175) and
(255,175) are the bottom left, bottom right, top left and top right corners of the screen.

If you have trouble memorising which coordinate is which, simply remember that x is a cross (x is
across).

The statement...
PLOT xcoordinate , y coordinate

...Inks in the pixel with these coordinates, so this measles program...
18 PLOT INT (RND*256), INT (RND*176): INPUT a%: GO TO 10

...plots a random point each time you press [ENTER].

Here is a rather more interesting program. It plots a graph of the function S IN (a sine wave) for
values between 0and 27...

18 FOR n=@8 TO 255
20 PLOT n,88+8@*SIN (n/128*PI)
30 NEXT n

This next program plots a graph of S QR (part of a parabola) between 0 and 4...

10 FOR n=@ TO 255
20 PLOT n,80%SQR (n/é&4)
3@ NEXT n

107

Notice that pixel coordinates are rather different from the line and column in an AT item. You may

find the diagram in part 15 of this chapter useful when working out pixel coordinates and line and
column numbers.

To help you with your pictures, the +2 will draw straight lines, circles and parts of circles for you,
usingthe DRAW and C I RC LE statements.

The statement D RA W (to draw a straight line) takes the form...

DRAW x,y

The starting place of the line is the pixel where the last PLOT, DRAW or CIRCLE statement left off
(this is called the PLOT position - RUN, CLEAR, CLS and NEW reset it to the bottom left hand
corner, at 0,0); the finishing place of the line is x pixels to the right of that and ypixelsup. The DRAW
statementonitsowndetemi:lesthelengthanddjrecﬁonofﬂleline, but not its starting point,

Experiment withafew PLO T and D R AW commands, for instance...

PLOT 8,10@: DRAW 88,-35
PLOT 9@,158: DRAW 8@,-35

Notice thatthe numbersina DRAW statement can be negative, but thoseina PL O T statement can't.

You can also plot and draw in colour, although you have to bear in mind that colours always cover the
whole of a character cell and cannot be specified for individual pixels. When a pixel is plotted, it is set
to show the full ink colour, and the whole of the character cell containing it is given the current ink
colour. This program demonstrates that point...

18 BORDER @: PAPER @: INK 7: CLS: REM black out screen

28 LET x1=@: LET y1=@: REM start of Lline

38 LET c=1: REM for ink colour, starting blue

4@ LET x2=INT (RND%*256): LET y2=INT (RND*176): REM random
finish on Line

5@ DRAW INK c;x2-x1,y2-y1

6@ LET x1=x2: LET y1=y2: REM next line starts where last one
finished

7@ LET c=c+1: IF c=8 THEN LET c=1: REM new colour
80 GO TO 4@

The lines seem to get broader as the program goes on, and this is because a line changes the colours
of all the inked-in pixels of all the character cells that it passes through. Note that you can embed
PAPER, INK, FLASH, BRIGHT, INVERSE and OVER items in a PLOT or DRAW
statement just as you could with PRINT and INPUT. They go between the keyword and the
coordinates, and are terminated by either semicolons or co

An extra frill with DRAW is that you can use it to draw parts of circles instead of straight lines, by
including an extra number to specify an angle to be turned through. The formis...

DRAW x,y,a

108

x and y are used to specify the finishing point of the line just as before, and a is the number of radians
that it must tusn through as it goes. If a is positive then it turns to the left; if a is negative then it turns to
the right. Another way of seeing a is as showing the fraction of a complete circle that will be drawn, (a

complete circle is 27 radians) so if a=w it will draw a semicircle, if a=0.57 a quarter of a circle, and
soon.

For instance, suppose a=7. Then whatever values xand ytake, a semicircle will be drawn. Try...

10 PLOT 100,1060: DRAW 50,5@,PI

..which will draw this...

finish at (150,150)

start at (100,100)

The drawing starts off in a south-easterly direction, but by the time it stops, it is going north-west. In
between, it has turned through 180 degrees, or 7 radians (the value of a).

Run the program several times, with P I replaced by various other expressions, eg. =PI, PI1/2,
3%¥PI1/2,PI/4,1,0,etc.

The last statement in this section is CIRCLE, which draws an entire circle. You specify the
coordinates of the centre and the radius of the circle using...

CIRCLE xcoordinate, ycoordinate , radius

Just as with PLOT and DRAW, you can put the various sorts of colour items in at the beginning of a
CIRCLE statement.

The POINT function tells you whether a pixel is ink or paper colour, Its two arguments are the

coordinates of the pixel (which must be enclosed in brackets) and its result is 0 if the pixel is paper
colour; or 1if it is ink colour. Try...

CLS : PRINT POINT (6,@8): PLOT @,@: PRINT POINT (@,0)
Type...

PAPER 7: INK @

109

-.and let us investigate how INVERSE and OVER work inside a PLOT statement. These two
affect just the relevant pixel, and not the rest of the character cell. They are normally off (0)ina PLOT
statement, so you only need to mention them to turn them on (1).

Here is alist of the possibilities for reference:

PLOT; - Thisis the usual form. It plots an ink dot, ie. sets the pixel to show the ink colour.

PLOT INVERSE 1; - This plots a dot of ‘ink eradicator’, ie. it sets the pixel to show the paper
colour.

PLOT OVER 1; - This exchanges the pixel colour with whatever it was before, so if it was ink
colour then it becomes paper colour, and vice versa.

PLOT INVERSE 1; OVER 1; - This leaves the pixel exactly as it was before, but note that it
also changesthe P LO T position, so you might use it simply to do that.

Asanother example of using the OV E R statement, fill the screen up with writing using black on white,
and thentype...

PLOT B,8: DRAW OVER 1;255,175

This will draw a fairly decent line, even though it has gaps in it wherever it hits some writing. Now type
in exactly the same command again. The line will vanish without leaving any trace whatsoever - this is
the greatadvantage of 0VER 1.If you had drawn the line using...

PLOT B,0: DRAW 255,175

..and erased itusing...
PLOT @,8: DRAW INVERSE 1;255,175
-then you would also have erased some of the writing.

Nowtry...

PLOT @,0: DRAW OVER 1;258,175

...and try to undraw it using...

DRAW OVER 1;-258,-175

This doesn’t quite work, because the pixels that the line uses on the way back are not quite the same

as the ones that it used on the way there. You must therefore undraw a line in exactly the same
direction as you drew t.

110

One way to get unusual colours is to speckle two normal ones together in a single square, using a
user-defined graphic. Try this program...

10080 FOR n=@ TO 6 STEP 2
1818 POKE USR "a"+n, BIN 01818181:

POKE USR "a"+n+1, BIN 18121818
1828 NEXT n

..which gives the user-defined graphic corresponding to a chessboard pattern. If you print this
character (press [GRAPH], then A) in red ink on yellow paper, you will find it gives a reasonably
acceptable orange.

Exercises...

1. Experiment with PAPER, INK, FLASH and BRIGHT items ina PLOT statement. These are
the parts that affect the whole of the character cell containing the pixel. Normally it is as though the
PLOT statement had started off...

PLOTPAPERS; FLASH8; BRIGHT 8; ..efc...

..and only the ink colour of a character cell is altered when something is plotted there, but you can
change this if you wish.

Be especially careful when using colours with INVERSE 1, because this sets the pixel to show the
paper colour, and may change the ink colour, which might not be what you expect.

2. Try todraw circlesusing S I N and C 0S (if you have read part 10, see if you can work out how). Run

18 FOR n=@ TO 2+«PI STEP PI/180
20 PLOT 180+80%C0S n,87+8B*SIN n
30 NEXT n

4@ CIRCLE 150,87,80

Youcanseethatthe C I R C L E statement is much quicker, albeit less accurate.
3. Try...

CIRCLE 100,87,80: DRAW 50,58

You can see from this that the CIRCLE statement leaves the PLOT position at a rather
indeterminate place - it is always somewhere about half way up the right hand side of the circle. You
will usually need to follow the CIRCLE statement witha P LOT statement before you do any more
drawing.

111

Part 18
Motion

Subjects covered...

PAUSE,INKEY$,PEEK

Quite often you will want to make the program take a specified length of time, and for this you will find
the PAUS E statement useful.

PAUSE n

-..Stops computing and displays the picture for n frames of the TV (at 50 frames per second in Europe
or 60 in USA). The value of n can be up to 65535, which gives you a pause of just under 22 minutes. If
n=0then it means ‘pause indefinitely’.

A pause can always be cut short by pressing a key.
This program works the second hand of a clock...

18 REM first we draw the clock face
28 FOR n=1 710 12

3@ PRINT AT 18-18*C0S (n/6*P1),16+16*SIN (n/6*PL);n
4@ NEXT n

58 REM now we start the clock

6@ FOR t=0 TO 2PBOPO: REM t is the time in seconds

7@ LET a=t/3@*PI: REM a is the angle of the second hand in
radians

80 LET sx=8B*SIN a: LET sy=88*C0S a
2B@ PLOT 128,88: DRAW OVER 1;sx,sy: REM draw second hand
218 PAUSE 42

228 PLOT 128,88: DRAW OVER 1;sx,sy: REM erase second hand
480 NEXT t

The clock will run down after about 55.5 howrs because of line 60, but you can easily make it run
lenger. Note how the timing is controlled by line 210. You might expect PAUSE 50 to make it tick
once per second, however, the computing takes a bit of time as well and has to be allowed for. This is
best done by trial and error, timing the +2 clock against a real one, and adjusting line 210 until they

agree. (You can't do this very accurately - an adjustment of one frame per second is equal to 2% or half
anhour ina day.)

There is a much more accurate way of measuring time, This uses the contents of certain memory

locations. The data stored is retrieved by using PE EK. Part 25 of this chapter explains what we're
looking atin detail. The expression used is...

(65536 PEEK 23674 + 256 * PEEK 23673+ PEEK 23672)/50

112

This prints the number of seconds since the +2 was switched on or RESET (up to about 3 days and
2] hours, after which it goes back to 0).

Here isarevised clock program to make use of this...

18 REM first we draw the clock face
20 FOR n=1 TO 12
3@ PRINT AT 18-18%C0OS (nf6*PI1),16+18*SIN (n/6*P1);n
48 NEXT n
58 DEF FN t()=INT ((65536*PEEK 236TL+256%PEEK 23673+
PEEK 23672)/58): REM number of seconds since start
188 REM now we start the clock
118 LET t1=FN t()
128 LET a=t1/3@0+PI: REM a is the angle of the second hand in
radians
138 LET sx=72*%SIN a: LET Sy=72%C0S a
148 PLOT 131,91: DRAW OVER 1;sx,sy: REM draw hand
208 LET t=FN t()
218 IF t<=t1 THEN GO TO 28@: REM Wwill wait until time for
next hand
228 PLOT 131,91: DRAW OVER 1isx,5y: REM rub out old hand
238 LET t1=t: GO TO 128

The internal clock that this method uses should be accurate to about 0.01% (approx 10 seconds per
day)solgngasthe +2 issimply running the program. However, when you use the BE E P statement
(described in part 19 of this chapter) or operate the datacorder, printer or any other peripheral
attached tothe +2, the internal clock stops temporarily, losing time,

The numbers PEEK 23674, PEEK 23673 and PEEK 23672 are held inside the +2 and
used for counting in 50ths of a second. Eachis between 0 and 255 and they gradually increase through
all the numbers from 0to 255: after 255 they drop straight back to 0.

The one that increases most often is PEEK 23672 - every 1/50 second it increases by 1. When it is
at 255, the next increase ‘nudges’ it to 0, and at the same time it increments PEEK 23673 up by L.
When (every 256/50 seconds) PEEK 23673 is nudged from 255 to 0, it in turn increments PE EK
23674 upby 1. This should be enough to explain why the expression above works.

Now, consider carefully - suppose our three numbers are 0 (for PEEK 23674), 255 (for PEEK
23673)and 255 (for PEEK 2367 2). This means that it is about 21 minutes after switch on. Our
expression ought to yield...

(65536*0+256*255+255)/50=1310.7

But there isa hidden danger - the next time there is a 1/50 second count, the three numbers will change
to 1, 0and 0. Every so often, this will happen when you are half way through evaluating the expression
- the +2 would evaluate PEEK 23674 as 0, but then change the other two to 0 before it can
P E EK them. The answer would then be...

(65536*0+256*0+0)/50=0

-.which is obviously wrong.

113

A simple way of avoiding this problem is to evaluate the expression fwice in succession and take the
larger answer.

If youlook carefully at the previous program, you can see that it does this implicitly.
Here is a trick to apply the rule. Define the functions...

18 DEF FN mix,y)=(x+y+ABS (x-y))/2: REM the larger of
x and y

20 DEF FN u()=(65536*PEEK 23674+256%PEEK 23673+PEEK
23672)/5@8: REM time (may be wrong)

3@ DEF FN t()=FN m(FN u(), FN u()): REM time (correct)

You can change the three counter numbers so that they give the real time instead of the time since the
+2 was switched on. For instance, to set the time at 10.00am, you work out that this is 10 x 60 x 60 x 50
= 1800000 fiftieths of a second, and that...

1800000=65536*21+256*119+64
To setthe three numbersto 27, 119 and 64, you type...

POKE 23674,27: POKE 23673,119: POKE 23672,64

In countries with mains frequencies of 60 Hz (cycles per second), these programs must replace ‘50’ by
‘60' where appropriate.

The function INKEY$ (which has no argument) reads the keyboard. If you are pressing just one
key, (or say, [CAPS SHIFT] and just one other key), then the result is the character which that key
gives normally, otherwise the result is an empty string.

Try this program, which works like a typewriter.
18 IF INKEY$<>"" THEN'GO TO 1@
28 IF INKEY$="" THEN GO TO 28

38 PRINT INKEYS;
48 G0 TO 1@

Here line 10 waits for you to lift your finger off the keyboard, and line 20 waits for you to press a new
key.

Remember that unlike INPUT, INKEY $ doesn't wait for you, so you don't have to press [ENTER].
On the other hand, if you don't type anything at all, then you've missed your chance.

Exercises...

1. What happens if you miss out line 10in the ‘typewriter’ program?

114

2. Another way of using INKEY$ is in conjunction with PAUSE as in this alternative typewriter
program...

18 PAUSE @
20 PRINT INKEYS;
30 GO TO 10

To make this work, why is it essential that a pause should not finish if it finds you already pressing a
key when it starts?

3. Adapt the ‘second hand' program so that it also shows minute and hour hands, re-drawing them
every minute. If you're feeling ambitious, arrange so that every quarter of an hour it puts on some kind
of ‘show’ - perhaps you could produce the ‘Big Ben' chimes using P LAY (described next in part 19 of
this chapter).

115

Part19
Sound

Subjects covered...

BEEP,PLAY

As you will have already noticed, the +2 can make a variety of noises. To get the best quality of
sound, it's important to make sure that your TV is tuned in properly (see chapter 2). If, instead of a TV,
you are using a VDU monitor (which won't reproduce the +2s sound), note that a separate sound
signal (which may be connected to an audio amplifier powering speaker(s) or headphones) is availa-
ble from the SOUND socket at the back the +2. Headphones may not be plugged into the SOUND
socket directly.

Connections to the SOUND socket are described in chapter 10.

To get the most out of the +2 's musical ability, it helps to have a little knowledge about musical
terms.

Note - In the examples that follow, it is important that you type in the string expressions exactly as
shown in upper case and lower case letters, ie. the example "ga" should not be typed in as
IlGa"’ llgﬂl!orllGAll.
Type in this command (don't worry about what it means just yet)...

PLAY "ga"

Two notes were played - the second slightly higher than the first. The difference between the notes is
called a tone. Now try...

PLAY "g$a"

Again there were two notes played - the first one was the same as the previous example, but there was
less of a jump to the second. If you didn't hear the difference, then try the first example followed bythe

second again. The second example has half the difference between notes, and this is called a
semitone.

When you're happy with semitones, try this...

PLAY "gD"

This sort of difference is called a fifth, and occurs quite often in music of all kinds. With that example
ringing in your ears, type...

PLAY "gG"

116

Although (hopefully) you noticed that there was a much bigger difference that time than for the fifth,
the two notes somehow sounded much more similar. This is called an octave, and is the point at which
music starts to ‘repeat itself. Don't worry about that unduly, just remember what an octave sounds like.

There are two ways of making music and sounds withthe +2. The most elementary is the somewhat
spartan BE E P command. This takes the form...

BE EP duration , pitch

..where, as usual, duration and pitch represent numerical expressions. The duration is given in
seconds, and the pitch is given in semitones above middle C - using negative numbers for notes
below middle C.

Here isa diagram to show the pitch values of all the notes in one octave onthe pianofor BEEP..,

C# D# F# |l G# A#
Db Eb Gh || Ab Bb
-2 1 3 6 8 10 13 15
-3 -1 @ 2 4 5 7 9 " 12 14 16
c D E F G A B c

Hence, to play the A above middle C for halfa second, you would use...

BEEP 0.5,9
-~and to play a scale (for example, C major) a complete (albeit short) program is needed...

18 FOR =1 to 8

20 READ note

30 BEEP @.5,note

4@ NEXT f

50 DATA 0,2,4,5,7,9,11,12

Toget higher or lower notes, you have to add or subtract 12 for each octave that yougoup or down.

BEEP exists mostly to provide compatibility with the older designs of Spectrum, though it can be
useful for very short or rapid sound effects. For any new programs you develop, the second way of
producing sound is much to be preferred, and thisis called PLA Y (if you worked through the simple
examples earlier in this section, you'll remember that that's what youused).

117

PLAY is much more flexible than BE E P - it can play up to three voices in harmony with all manner of
effects, and gives a much higher quality of sound. It's also much easier to use. For example, to play A
above middle C for half a second, type in...

PLAY "a"
..and to play the C major scale (which needed a program to itself before), use...

PLAY "cdefgabC"

Notice that the last C inthe example above is in upper case. Thistellsthe PLAY command to playitan
octave higher than the lower case c. A scale, by the way, is the term used for a set of notes spanning
an octave. The example above is called the C major scale because it's the set of notes between two
C's. Why major? There are two main classes of scale, major and minor, and this is just musical
shorthand for describing two different sets. Just for interest, the C minor scale sounds like this...

PLAY "cd$fefg$as$bC”

Preceding a note by $ drops it by a semitone (flattens it), and preceding a note by # raises it by a
semitone (sharpens it). The PLAY command spans 9 octaves, and can be told which one to use by
having the upper case letter O followed by a number, in the list of notes it is given. Type in this little
program...

10 LET o$="05"
20 LET n$="DECcg"
30 LET a$=0$+n$
40 PLAY a$

Therea:eafewnewthingsixltlﬁspmgramFi:sﬂy,PLAYisjusia.shappsrwimasuingvaﬁab]eas
withastringconstamhothexwords,providingthata$hasbeensetupbeforehand,PLA‘r a$
works justaswellas PLAY "05DECcg". Infact, using variablesin PLAY statements has certain
distinct advantages, and we shall doing this from now on.

Notice also that the string a $ has been built up' by combining two smaller strings 0$ and n'$. While
this doesn’t make much difference at this sort of level, PLAY can cope with strings many thousands of

notes long, and the only sensible way of creating and editing those strings from BASIC is to combine
lots of smaller strings in this way.

Now run the above program. Edit line 10 so that " 05" becomes "07", and run it again, or if you
want to be a big spaceship make it " 02" If you don't specify an octave number for a particular
string, then the +2 assumes that you want octave 5. Here is a diagram of the notes and octave
numbers which correspond to the standard even-tempered musical scale.

118

o-ye
- '.."" i _] il
cidje|f|glalbiCiDIEIF|GIAIB] | | | | | |
clale[alamlclplelelclalel | | 1] ||
OCTAVE4 - bl
cidle|f|gia|b|CD|EIFIGIAB

There is a lot of overlap, so for example, " 03D " isthe sameas "' 04d ", This makes it easier to write
tunes without having to change octave all the time. Some of the notes in the lowest octaves (0 and 1)

aren’t very accurate for technical reasons, and so the computer just makes a brave attempt at getting
asclose aspossible.

PLAY canalso handle many different lengths of note. Edit the program above so that line 10 is now...
18 LET o%="2"

..and run it. Then alter the setting of 0$ between " 1" and " 9". The note length can be changed
anywhere in a string by including a number between 1 and 9, and this is effective for all subsequent
notes until a new nurnber is encountered. Each of these nine note lengths has a specific musical name,
and looks different when written down in musical notation. The following table shows which is
which...

119

NUMBER NOTE NAME MUSICAL SYMBOL
1 semi-quaver -F
2 dotted semi-quaver j‘ .
3 quaver ; '
4 | dotted quaver I :,
5 crotchet J
] dotted erotchet J.
1 mminim J
8 dotted minim d.
9 semi-breve o

PLAY canalso cope with triplets, which are three notes played in the time for two. Unlike simple note
lengths, the triplet number only applies for the three notes immediately following, and then the
previous note length number resumes. The triplet numbers are as follows...

NUMBER NOTE NAME MUSICAL SYMBOL
7
10 triplet semi-quaver m
N F
11 triplet quaver JJJ
—3
12 triplet crotchet Jdd

PLAY is quite happy about being told to ‘shut up’l A timed period during which no notes play is called
arest,and "&" is used to signify this. The length of rest it produces is the same as the current note
length. To demonstrate, edit lines 10 and 20to...

18 LET o$="04"
20 LET n$="DEC&cg"

Two notes played together without a break are called tied notes, which are signified ina PLAY
command by an _ underline, so a crotchet ¢ and a minim ¢ tied together would be "'5_7¢". (The
second value is then used as the note length for all subsequent notes, as before.)

There are occasions when ambiguity creeps in. Say that a piece of music needs octave § and a note
length of 2, then...

18 LET o$%$="062"

120

..5eems a good bet - but no! The computer will find the 0 and try to read the number following it.
When it finds 62, it will stop with the report n OQut of range. In cases like this, there is a
‘dummy note’ called N that just serves to split things up, so line 10 should be...

18 LET o$="06N2"

The volume can be set between 0 (minimum) and 15 (maximum) using " V" followed by a number. In
practice, only 10 to 15 are likely to be useful, as 1-8 are too soft unless the +2 is being used with an
amplifier. As previously mentioned, BE EP is louder than a single channel of PLAY, but if all three
channels play a note at volume 15, then it should be at the same level as a note produced by BEEP.

Playing more than one channel at a time is very simple; you just separate lists of notes by commas. Try
this new program...

18 LET a$="04cCcCgGgG"
20 LET b$="06CaCe$bd$bD"
380 PLAY a$,b$

In general, there is no difference between the three channels, and any string of notes can be put onto
any channel. The overall speed of the music, the tempo, must be in the string assigned to channel A
(the first string after P LA Y), otherwise it will be ignored. To set tempo in beats (crotchets) per minute,
use " T" followed by a number between 60 and 240. The standard value is 120, or two crotchets per
second. Modify the program above to...

5 LET ts$="T128"

18 LET a$=t$+"04cCcCgGgG"
20 LET b$="06CaCe$bd$bD"
30 PLAY a%,.b$

...and run it several times, changing line 5 for different tempos,

A common feature in music is the repetition of a group of notes. Any part of a string can be repeated
by enclosing it in brackets, so if you change line 10to...

18 LET a%$=t$+"04(cC)(gG)"

PLAY treats it just the same as the old line 10. If you include a closing bracket, (with no matching
opening bracket) then the string up to that point is repeated indefinitely. This is useful for rhythm
effects and bass lines, To demonstrate, try this (youll have to use [BREAK] to stop the sound)...

PLAY "04N2cdefgfed)”
...and...

PLAY "O04N2cd(efgfled)”

If you set up an infinitely repeating bass line, and then play a melody with it, then it would be nice if the
bass line stops when the melody does. There is a device to do this- if PLAY comes across " H" (for
Halt) in any of the strings it is playing, then it stops all sound immediately. Run the followitig program
(again, you'll have to use [BREAK] to stop it)...

121

18 LET a%$="cegbdfacC"”
20 LET b$="04cC)"
30 PLAY a$,bs

Now modify line 10to...

1@ LET a$="cegbdfaCH"

...and run it again.

So far we've only used notes which start and stop atone level of volume. The +2 can alter the volume
of a note while it is playing, so it can start loud and die away like a piano, or rise and fall like a dog
growling. To turn these effects on, use " W" (for Waveform) followed by a number between 0 and 7,
together with " U" for each channel you want to use the effect on. Any channel with a volume setting

("V") will not respond to "'U"'. This table shows graphically how the volume changes for each
setting...

5 S
i ——
2inli . - 0- single decay then off.

1 - single attack then off.
2-single decay then hold.
3 - single attack then hold.
4-repeated decay.
5-repeated attack.

6 - repeated attack-decay.
1-repeated decay-attack.

This program plays the same note with each effect in turn, so you can con'ésére them against the
diagramabaove.

122

10 LET a$="UXTOOOWOACEWICEW2CEWICEWLCEWSCRWACEWTC"
20 PLAY a$

The U turns on effects, and the W selects which waveform to use. There’salsoan "X 1808". X sets
how long the effect will last for (from 0 to 65535). If you don't include an X, thenthe +2 will choose
the longest value. Waveforms that settle down (0 to 3 in the table above) after the initial part, work best
with X settings of about 1000, whereas repetitive effects (4-7) are more effective with short values like
300. Try varying the X setting in the program above to get some idea of how each works.

The PLAY command isn't limited to pure musical notes. There are also three ‘white noise’ generators
(white noise is a sound which is like an un-tuned FM radio or TV), and any of the three channels can
play notes, white noise, or a mixture of both. To select a mix of noise and note, you may use "M"
followed by a number between 1and 63. You can work out which number to use from this table...

Tone channels Noise channels

A B C| A B C

Number 1 2 4 8 16 32

Write down the numbers corresponding to the effects you want, and then add them together. If you
wanted A to be noise, B to be tone, and C to be both tone and noise, then add 8, 2, 4 and 32 to get 46 (the
order of the channels is the order of the strings which follow the PLAY command). The best effects
can be obtained with the A channel - don't be afraid to experiment.

By now, you'll be writing symphonies. However, it can be difficult to work out just which part of the
music a particular section of string is responsible for. To alleviate this problem, your music string may
include ‘comments’ enclosed between ! exclamation marks; for example...

1098 LET 2$=z$+"CDcE3Ge4 _6f! end of 75th bar !'egeA"
The P LAY command will simply ‘hop over' any comments in the string.

If you have an electronic musical instrument with MID], thenthe +2 cancontrolitusing PLAY.Upto
8 channels of music can be sent to synthesisers, drum machines or sequencers. The PLAY command
is constructed exactly as described so far in this section, except that each string should includea " Y "
followed by a number between 1 and 16. The number after the Y controls which channel the music
data is assigned to. Up to eight strings can be used,; the first three strings will still be played through
the TV as before so you'll probably want to twrn the TV sound down. You can also send MIDI
programming codes via the PLAY command, using "Z" followed by the code number. Key

velocities (loudness) are calculated and sent at 8 times the V setting (so " V6" will send 48 as a key
velocity).

123

Finally, here is a brief list of the parameters that can be used in string ofa PLA Y command, together
with the values they may take...

:

FUNCTION

o
-

Specifies the pitch of the note within the cwrrent octave range.

Specifies that the note which follows must be flattened.
Specifies that the note which follows must be sharpened.
Specifies the octave number to be used (followed by 0- 8).
Specifies the length of notes to be used.

Specifies that a rest is to be played.

Specifies that a tied note is to be played.

Separates two numbers.

Specifies the volume to be used (followed by0-15).
Specifies the volume effect to be used (followed by 0- 7).
Specifies that the volume effect to be used ina string,
Specifies duration of volume effect (followed by 0-65535).
Specifies tempo of music (followed by 60 -240).

) Specifies that enclosed phrase must be repeated.

: Specifies that enclosed comment is to be skipped over.
Specifiesthat the PLA Y command must stop.

Specifies the channel(s) to be used (followed by 1 -63). .
Specifies that MIDI channel is to be used (followed by 1 - 16).
Specifies MIDI programming code (followed by code number).

=200
L]
—
[a%]

NI T —-~dxcCcEZI

124

Part20
Datacorder operations

Subjects covered...

LOAD,SAVE,VERIFY,MERGE

The basic method of using the datacorder to load software is given in chapters 3 and 4.

You can also use the datacorder to store (save) your own programs onto cassette so that you can load
them back into the computer whenever you wish to use them - (otherwise, you would always need to
type in every program from scratch).

First of all, familiarise yourself with the datacorder’s six function keys...

o (I > M D21

Record Play Rewind FF Stop/Eject Pause

To see how the datacorder saves a program, first type in the short program (which displays coloured
squares) that you first met at the end of part 16, ie...

10 POKE 22527+RND*7@4, RND*127
26 GO TO 108

This is the program that you are going to save onto cassette, Any standard cassette should work
although low noise cassettes may be better.

Type in the following...
SAVE "squares"

"squares" isjustaname that youuse to label the program you are going to store on cassette. You
are allowed up toten characters in the name.

The +2 will display the message...

Press REC & PLAY, then any key.

125

We shall first go through a ‘dry run’ so that you can see what will happen when we actually do save the
program later, This time, therefore, don't press record and play on the datacorder - just press a key on
the +2 (for example [ENTER]) and watch the border of the TV screen. You will see patterns of
coloured horizontal stripes as follows:

Five seconds of red and cyan stripes moving slowly upwards, followed by a very short burst of blue
and yellow stripes.

A short pause.,

Two seconds of the red and cyan stripes again, followed by another short burst of blue and yellow
stripes.

While the stripes appear on the screen, you can also hear the ‘sound’ of the data through your TV's
speaker.

Keep trying out the above SAVE command (without actually operating the datacorder) until you can
recognise these patterns. What's actually happening is that the information is being saved in two
blocks and both blocks have a ‘lead-in’ (which corresponds to the red and cyan stripes) followed by
the information itself (which corresponds to the blue and yellow stripes). The first block is a
preliminary one containing the name and various other bits of information about the program, and the
second is the program itself together with any variables present. The pause between them is just a
gap.

Now let's actually save the program onto cassette:

1. Wind the cassette to an area of tape that is either blank, or that you are prepared to overwrite.

2. Type...

SAVE "squares"
3. Obeythemessage'Press REC & PLAY, then any key.\

4. Watch the screen as before. When the +2 has finished (with the report ‘@ 0K’) stop the
datacorder.

When you have successfully saved a program, you can happily switch off or reset the computer, or
start a NEW program, knowing that you could always load in the saved program if you needed it.
However, before clearing the saved program from the computer’'s memory, you should always make
sure that the save worked correctly - you can check the signal on the cassette against the program in
the memory usingthe VER I F Y command:

1. Rewind the cassette to just before the point at which you saved the program.

2. Type...

VERIFY "squares"

126

The border will alternate between red and cyan until the +2 finds the program you specified, then
you will see the same pattern as you did when you saved the program. During the pause between the
blocks, the message ‘Program: squares’ willbe displayed on the screen. (Whenthe +2 is
searching for something on cassette, it displays the name of everything it comes across.) If, after the
pattern has appeared, the computer displays the report ‘@ 0K, then your program is safely stored

on cassette and you can skip the next five paragraphs. Otherwise, something has gone wrong - take
the following steps to find out what;

If the program name has not been displayed, then either the program was not saved properly in the
first place, or it was, but was not ‘read back’ properly. You need to find out which. To see if it was
saved properly, rewind the cassette to just before where you saved the program, and play it back
while listening to the TV's speaker. The (red and cyan) lead-in should produce a clear, steady high
pitched note, and the (blue and yellow) information part gives a much less pleasant screech.

If you do not hear these noises, then the program was probably not saved. Check that you were not
trying to save the program onto the plastic leader at the beginning of the cassette. When you have
checked this, try saving again.

If you can hear the sounds as described, then S AVE was probably alright and your problem is with
reading back.

1t could be that you mistyped the program name when you saved it (in which case whenthe +2 finds
the program it will display the mistyped name on the screen). On the other hand, perhaps you
mistyped the program name when you verified it, in which case the computer will ignore the correctly
saved program and carry on looking for the wrong name, flashing red and cyan asit goes.

If there is a genuine mistake on the cassette, then the +2 will display the message

‘R Tape loading error’ which means in this case that it failed to verify the program. Note
that a slight fault on the tape itself (which might be almost inaudible with music) can wreak havoc with
acomputer program. Try saving the program again, perhaps on a different part of the tape.

Now let us suppose that you have saved the program and successfully verified it. Loading it back into
the memory is just like verifying it except that you type...

LOAD ”squares"
.(insteadof VERIFY "squares'").

Since the program verified properly, you should have no problem loading it.

LOAD deletes the old program (and variables) in the memory when it loads in the new one from
cassefte.

Oncea program has been loaded, the command R UN will run it.

As mentioned in chapters 3 and 4, it is possible to buy pre-recorded programs (software) on cassette.
They must be specially written for the ZX Spectrum range (ie. The Spectrum, the Spectrum +, the
Spectrum 128 or the Spectrum +2). Different makes and models of computer have different ways of
storing programs, so they cannot use each other's cassettes,

121

If your cassette has more than one program stored on the same side, then each will have a name. You

can choose which program to load in the L 0AD command - for instance, if the one you want is called
‘helicopter’, you could type...

LOAD "helicopter"”

The command LOAD ™" means load the first program that the computer comes across on the
cassette. This can be very useful if you cannot remember the name that you saved the program under

The option‘Tape Loade r'fromthe opening menu has the same actionas LOAD " ", and is much
quicker to use - simply switchonthe +2 and press[ENTER). :

As previously mentioned, |.0AD deletes the old program and variables in the computer whenever it
loads in the new ones from cassette; however, there is another command, MERG E, which is similar to
LOAD but it only deletes an old program line or variable if there is a new one with the same line
number or name. Type in the ‘dice’ program in part 11 of this chapter and SAVE it onto cassette, as
"d1ice". Nowenter and runthe following new program...

1 PRINT 1
2 PRINT 2
18 PRINT 10
20 LET x=20

Rewind the cassette sothat you are ready toload in the dice program, then typein...
MERGE "dice"
And follow the same procedure as if you were LOADing the program using the datacorder. If you

then LIST the program, you will see that lines 1 and 2 have survived, but lines 10 and 20 have been -

overwritten by those from the dice program. The variable x has also survived (try PRINT x). e

You have now seen simple forms of the four commands that work in conjunction with the datacorder:

SAVE - Storesthe program and variables onto cassette,

VERIFY - Checksthe programand variableson cassette against those in the computer's memory.

LOAD - Clears the computer of all its program and variables, and replaces them with new
onesread in from cassette,

MERGE - Similarto LOAD except that it does not clear the old program lines and variables un-
lessithas to(because they are the same as those being loaded in from cassette).

In each of the above commands, the keyword is followed by a string. For the SAVE command, this
string consists of a name by which the program is stored on cassette, while for the other three
commands, the string tells the computer which program to search for. While the computer is

searching, it displays the name of each brogram it comes across. There are a couple of twists to all
this, however:

For VERIFY, LOAD and MERGE you can provide the empty string """ as the name to search for;
then the computer does not care about the name, but takes the first program it comes across.

128

Avarianton 5 A VE takes the form...

SAVEstring LINE number
A program which saved using this command, is stored in such a way that when it is read back by
LOAD (but not MERGE) it automatically jumps to the line with the given number, thus running
itself.
If you load a program which doesn’t automatically run (by usingthe ‘Tape Loader’ option from

the opening menu), then you'll have to selectthe ‘128 BAS I C’ option after the program hasloaded,
in order torun it or edit it.

So far, the only kinds of information we have stored on cassette have been programs together with
their variables, There are two other kinds as well, called arrays and bytes.

You can save arrays on cassette using the keyword DATAina SAVE statement...

SAVEstring DAT A arrayname()

.where string is the name that the information will have on cassette and works in exactly the same
way as when you save a program (or plain bytes).

The array name specifies the array you want to save, so it is just a letter (or a letter followed by 3).
Remember to putthe brackets () after the array name.

Be clear about the separate roles of stzing and array name. If you say (for instance)...

SAVE "Bloggs" DATA b()

then SAVE takes the array b from the computer and stores it on cassette under the name
"Bloggs".

When you type...

VERIFY "Bloggs" DATA b()
...the computer will look for a number a:fay stored on cassette under thename "Bloggs". Whenit
finds one, it will display ‘Number array: Bloggs’ and check it against the array b in the
computer.

The command...

LOAD "Bloggs" DATA b()

...finds the array on cassette, and then (if there is room for it in the computer) deletes any array already
existing called b and loads in the new array from cassette, calling it b.

You cannotuse ME R G E with saved arrays.

129

You can save character (string) arrays in exactly the same way. When the computer is searching the
cassette and finds one of these it writesup‘Character array:’followed by the name. When
youload in a character array, it will delete not only any previous character array with the same name,
but also any simple string variable with the same name.

Byte storage is used for pieces of information without any reference to what the information is used for
-itcould be a TV screen display, or perhaps some user-defined graphics, or just something you have
made up for yourself. It is specified using the word CODE ,asin...

SAVE "picture" CODE 16384,6912

The unit of storage in memory is the byte (a number between 0 and 255), and each byte has an address
(which is a number between 0 and 65535). The first number after C 0D E is the address of the first byte
to be stored on cassette; the second number is the amount of bytes to be stored. In our case, 16384 is
the address of the first byte in the file (which contains the TV screen display), and 6912 is the amount
of bytes in it, so we are saving a actual copy of the TV screen. Try the above SAVE command. (You

don't have to save the bytes using the name " picture" - it's merely a convenient reminder of
what's on the cassette.)

Toload it b'ack, use...

LOAD "picture"™ CODE
You can put numbers after C 0D E inthe form...
LOAD name CODE start , length

Here, length is used as a safety measure - when the computer has found the bytes on cassette with the
right name, it will check the Jength and refuse to load the bytes if there are more than specified
(thereby safeguarding against the extra bytes accidentally overwriting an area of memory you
wished to preserve). Insucha case, thereport'R Ta pe loading error’isalsodisplayed.

It you leave out length, the computer will read in the bytes however many there are.

The start parameter shows the address where the first byte is to be loaded back to - this can be

different from the address it was saved from, although if they are the same, then you can leave out start
inthe LOAD statement.

CODE 16384 ,6912 issuchauseful area of memory (the screen display) to save and load, that a
special function (S CRE EN$) has been provided to represent it, so you can type (for example)...

SAVE "picture" SCREENS

.0l

LOAD "picture"™ SCREEN$

This is one of the rare cases where VER I F Y will not work - VERI F Y displays the names of what it

finds on cassette, thereby altering the saved screen display as it does so, and therefore the
verification fails.

130

Anything you candowith SAVE, LOAD or MERGE on cassette, you can also do with the silicon disc
that's built into the +2 . This acts like a cassette (with a couple of extra commands), with the
exception that it's about 64K in size, very fast and loses its contents whenthe +2 is reset or turned off
(however, it does survive the N EW command). You use all the commands in exactly the same way you
would with the datacorder - simply add an exclamation mark ! between the command and its
associated string. So where you would type...

SAVE "squares"
..to save to cassette, you may instead use...

SAVE ! "sqguares"
..to savetothe silicon disc.
There are two extra commands for use with silicon disc. The first oneis...

CAT !

..which gives you alist of all the programs or data that's stored in the disc.
The second command is...

ERASE ! "filename"
...to getrid of an unwanted program or data.

Perhaps the most obvious use of the silicon disc is to store chunks of BASIC program which can be
merged (using MERGE !)into a smaller program, in sequence. This makes it possible to write about

90K of BASIC program, and hold it in the +2 (to do this, the program structure has to be well
defined).

One of the more interesting uses of the silicon disc is in animation, where a series of pictures can be
defined by a ‘slow’ BASIC program stored in silicon disc, then called back to the screen at high speed.
The following program gives a faint taste of this; doubtless you can do better...

18 INK 5: PAPER @: BORDER @: CLS

20 FOR f=1 T0 18

38 CIRCLE fx2@,150@,f

4@ SAVE ! "ball"+STR$(f) CODE 16384,2048
58 CLS

6@ NEXT f

7@ FOR f=1 T0 1@

88 LOAD ! "ball"+STR$(f) CODE

90 NEXT f

108 BEEP 8.01, @.81

118 FOR f=9 TO 2 STEP -1

120 LOAD ! "ball"+STR$(f) CODE

130 NEXT f

140 BEEP 0.81, 8.81

1580 GO TO 70

168 REM use GO TO 168 to clear the pictures from disc
1780 FOR =18 TO 1 STEP -1

180 ERASE ! "ball"+STRS$(f)

198 NEXT f

131

Note that in line 40 of this program, the two numbers following C 0D E are the address in memory of
the start of the screen, and the length of the top third of it. By only saving and loading the top third, the
overall speed is maintained. Lines 160 to 190 are there if you [BREAK] out of the program, modify the
circle drawing bit and try to save a new set of pictures. So before doing that, type GO TO 160810
clear out the silicon disc. (Always try to delete files backwards, so the last file to be saved will be the
first to be deleted. This saves the computer a lot of juggling about, and is much faster.)

Finally in this section, here isa complete summary of the four datacorder statements:

The parameter name stands for any string expression, and refers to the name under which the
information is saved on cassette. It should consist of ASCII printing characters, of which only the first
10 are used.

There are four sonts of information that can be stored on cassette or silicon disc: program and
variables (together), number arrays, character arrays, and bytes.

When VERIFY, LOAD and MERGE are searching the cassette for information with a given name
and of a given sort, the computer displays on the screen the type and name of all the information it
finds. The type is shown by ‘Program:’,‘Number array:,'Character array:’ or

‘By tes:" If nameisan empty string ("' "), then the computer takes the first lot of information (of the
right sort) regardless of name.

SAVE
1. Program and variables:
SAVE (!)name L I NE line number

-.saves the program and variables in such a way that LOAD automatically implies a ‘60 TO line
number',

2. Bytes:

SAVE (!)name CODE start, length
-.5aves length bytes starting at address start,
Note that...

SAVE(!)name SCREENS$
..Isequivalent to...

SAVE(!)name CODE 16384 ,6912
..and saves the screen display.

3. Arrays:

SAVE(!)name DATA letter ()
.Or...

SAVE(!)name DATAletter$ ()

...saves the numeric array whose name is Jetter, or the character array whose name is letter $.

132

VERIFY
1. Programand variables:
VERIFY name
Checks the program and variables saved under name on cassette against those inthe memory.
2. Bytes:
VERIFY name CODE start,length

If the bytes saved under name are no longer than Jength, then checks the bytes on cassette against
those in memory, starting at address start.

VERIFYname CODE

-.checks the bytes saved under name on cassette against those in memory starting at the address
from which the first cassette byte was saved.

3. Arrays:

VERIFY name DATA letter ()

VERIFYname DATAletter$ ()

~.checks the numeric array whose name is Jetter, or the character array whose name is letter $,
againstthe array Jetter or letter $ in memory.

LOAD
1. Program and variables:
LOAD(!)name

...deletes the old program and variables, and loads in the program and variables saved under name
from cassette. If the program was saved using SAVE name LINE line number, then LOAD it
performs an automatic‘G0 T 0 line number’ after the program is loaded.

Ifthe load is not successful, then the old program and variables are not deleted.
2.Bytes:
LOAD (!)Yname CODE start ,length

If the bytes saved under name are not longer than length, then load the bytes from cassette into
memory, starting at address startand overwriting whatever was there previcusly.

LOAD(!)name CODE start

133

Unconditionally load the bytes saved under name from cassette into memory, starting at address start
and overwriting whatever was there previously.

LOAD(!)name CODE

..Joads the bytes saved under name from cassette into memory starting at the address from which the

first cassette byte was saved, and overwriting the bytes that were in that section of the memory
before.

3. Arrays:

LOAD(!)name DATA letter)
wiOL...

LOAD(!)name DATAletter$ ()

..deletes any numeric array already called letter, or any character array called Jetter $, and forms a
new one fromthe array stored on cassette.

MERGE
1. Program and variables:
MERGE (!)name

-.merges the program saved under name in with the one already in memory, overwriting only the

program lines or variables in the old program whose line numbers or names conflict with those in the
new program.

2.Bytes:

Not possible.
3. Arrays:
Not possible.

Exercise...

1. Practise saving, loading and merging programs and data onto both cassette and the silicon disc.

134

Part 21
Printer operations

Subjects covered...
LPRINT,LLIST,COPY

The +2 comes with a serial port and built-in software enabling you to use a printer. These features
are usable only in 128 BASIC mode.

The printer must have an RS232 (serial) interface, and if you want to produce pictures of the screen it
must have an Epson compatible quadruple-density bit-image graphics mode.,

Make sure you have the correct lead to connect the printer to the +2 - if in doubt, consult your
Sinclair dealer.

To get the +2 and the printer communicating with each other they must both use the same
baud rate. The baud rate is the speed at which data is transferred between computer and printer.
Although it is possible that your printer can be set to different baud rates, it'll probably be easier to
change the rate at the computer end. Somewhere in the printer's operating manual, the baud rate will
be specified - find this out and then setthe +2 to this rate, using the command...

FORMAT "p"; bgudrate

(You won't need to do this if the printer normally uses 9600 baud, asthe +2 will assume this rate by
default.)

Once you have everything set up, you can use three BASIC commands to print things out. The first two,
LPRINT and LLIST, arejustlike PRINT and LIST, except that they use the printer instead of
the TV. Note that the ‘P r i n t option from 128 BASIC’s edit menu has the same effectas LL1 S T, but
isincluded as an easier method of getting a listing.

Try this program for example...

18 PRINT "This program..."®

20 LLIST

30 LPRINT '""...prints out the character get, et
40 FOR n=32 TO 255

58 LPRINT CHRS$ n;

6@ NEXT n

It's important to note that LPRINT and L LI ST take care to screen out any embedded colour codes
(and their parameters) before printing or listing anything. Embedded colour codes are a bit of a
hangover from the 48K Spectrum - when included in a string they set INK, PAPER and so on.
Printers on the whole tend to use these codes for completely different things like setting italics and
turning on underline etc., so it would be quite dangerous to send them colour codes and hope that
nothing untoward would happen. As a side effect of this, it is impossible (from BASIC) to set up any
special features on a printer that use ESCAPE (character 27) sequences or similar control codes.

135

The third statement - COPY, prints out a copy of the TV screen. To demonstrate, go into the small
screen, type L I ST to getalisting on the screen of the program above, and then type...

copy

The COPY command takes about 15-30 seconds to get started, so don't panic if nothing appears to
happen immediately. You'll get another listing of the program on the printer, but this time it will look
pretty much the same as it does on the screen. If all youget from COPY isalot of random characters
onthe printer then it's likely that your printer isn't fully compatible.

You can always stop printing at any time by pressing the [BREAK] key. Some printers have what is
known as a buffer, which stores text before printing. If your printer is one of these then pressing
[BREAK] will not stop it immediately, althoughthe +2 will register the break at once.

If you try and use any of the printer commands when there isn't a printer attached, then the +2 will
stop dead whilst it patiently waits for the (non-existent) printer to say Ready’. Pressing [BREAK] will,
asusual, bringthe +2 backtolife.

18 FOR n=31 TO @ STEP =1
2@ PRINT AT 31-n,n; CHR$ (CODE "B"+n);:
38 NEXT n

You will see a pattern of characters working down diagonally from the top right-hand corner until it
reaches the bottom of the screen, when the program asks if you want to scroll.

Now change AT 31-n,ninline 20to TAB n. The program will have exactly the same effect as
before.

Now change PRINT inline 20 to LPR I NT. This time there will be no pause to scroll? (which does
not occur with the printer).

Now change TAB n backto AT 31-n,n still using LPRINT. This time you will get just a single
line of symbols. The reason for the difference is that the output from LPRINT is not printed straight
away, but is stored in a buffer until either one line’s-worth of printer output has accumulated, or
something else ‘flushes’ the buffer. Hence, printing only takes place:

1. Whenthe buffer is full.

2. Afteran LPRINT statement that does not end in a comma or semicolon.
3. Whena comma, apostrophe or T AB item requires a new line.

4. Attheend ofa program, if there is anything left unprinted.

5. (Depending on your printer) When you set the printer off line.

Number 3 above explains why our program with TAB works the way it does. As for AT, the line
number is ignored, and the LPRINT position (like the PRINT position) is moved to the column
number. An AT item can never cause a line to be sent to the printer,

Exercise...

1. Make a printed graph of S IN by running the first program in part 17 of this chapter, then using
COPY.

136

Part 22
Other peripherals

Subjects covered...
ZX microdrives
Network

RS232
Keypad

There are many peripherals (add-ons) available that you can attach to the +2 . Chapter 10 will
movideyouwﬂhhntherdetaﬂsregardingtheircomacﬁonmdapemﬁm.
TheZXnﬁcrodﬁveisaﬂem‘blet&ghspeedmassstomgedeﬁce.Etwﬂloperatenotmﬂywith SAVE,
VERIFY, LOADand MERGE, but also with PRINT,LIST,INPUT and INKEYS.

A network is usedforconnecﬁngseveralmmputerssothatmeycantalktoeachother~me of the
usesoftlﬁs:’sttmtyou&enneedordyonenﬁcrodrivetoseweseveralcompmcam

ThaRszsainteﬁaOeisastandazdconnecﬁonﬂmtaﬂowsmtoﬁnkacompmerwimkeyhoards.

pﬁﬂers,andvaﬂovsoﬂlercompmardevices,evenﬁmeymanotdesign&dspeciﬁca]ly{or
the +2 .

The keypad can be used to facilitate extra editing functions under 128 BASIC, and is also useful for fast
data entry,

137

Part23
IN and OUT

Subjects covered...

ouT
IN

The processor can read from (ROM and RAM) and write to (RAM) memory by using PEEK and
POKE. The processor itself does not really care whether memory is ROM or RAM - it just thinks that
there are 65536 memory addresses, and it can read a byte from each one (even if it's nonsense), and
write a byte to each one (even if it gets lost). In a completely analogous way, there are 65536 of what
are called J/O ports (standing for Input/Output ports). These are used by the processor for
communicating with things like the keyboard or the printer, and also for controlling the extra memory
and the sound chip. Some of them can be safely controlled from BASIC by using the I N function and
the OUT command, but there are locations which you must not write to from BASIC, as you will
probably cause the system to crash, losing any program and data,

INisafunctionlike PE EK.Itsformis...

IN address
Ithas one argument - the port address, and its result is a byte read from that port.

0UT isastatementlike POKE. Itsformis...
O0UT address , value

-.which writes the given value to the port with the given address. How the address is interpreted
depends very much upon the rest of the computer. Quite often, many different addresses will mean
the same. Onthe +2 it is most sensible to imagine the address being written in binary, because the
individual bits (each of which can have the value either 0 or 1) tend to work independently. There are
16 bits, which we shall refer to (using A for address) as...

AlS,Al4,A13,A12,A11,A10, A9, A8, AT, A6, AS, A4, A3, A2, Al, AD

Here, A0 is the Is bit, Al is the 2s bit, A2 is the 4s bit, and so on. Bits A0, Al, A2, A3 and A4 are the
important ones. They are normally 1, but if any one of them is 0, then this tells the computer to do
something specific. The computer cannot cope with more than one thing at a time, so no more than
one of these five bits should be 0. Bits A6 and A7 are ignored, so if you are a wizard with electronics
you can use them yourself, The best addresses to use are those that are 1 lessthana multiple of 32, so

that A0 to A4 are all 1. Bits A8, AS, and so on are sometimes used to give extra information, and are
used mostly for the extra memory and sound.

The byte being written or read has 8 bits, and these are often referred to (using D for data) as...
D7,D6, DS, D4, D3,D2, D1, D0

138

Here follows a list of the port addresses used:

There is a set of input addresses that read the keyboard and the datacorder.
The keyboard is divided up into 8 half-rows of 5 keys each, viz;

IN 65278 reads the half-row [CAPS SHIFT]to V

IN 65022 reads the half-row A to G

IN 64510 reads the half-row Qto T

IN 63486 reads the half-row 1 to 5 (and JOYSTICK 2)
IN 61438 reads the half-row @ to 6 (and JOYSTICK 1) -
IN 57342 reads the half-row P to Y

IN 49150 reads the half-row [ENTER] to H

IN 32766 reads the half-row (space) to B

(These addresses are 254+256*(255—2 1 n) as n goes from 0 to 7.)
In the byte read in, bits DO to D4 stand for the five keys in the given half-row. DO is for the

outside key, and D4 is for the one nearest the middle. The bit is 0 if the key is pressed, 1 if itis [/

not. D6 is set by the datacorder, and is effectively random if no cassette data is present,

For JOYSTICK 1, bit 0 is fire, bit 1 is up, bit 2 is down, bit 3 is right and bit 4 is left. For
JOYSTICK 2, bit 0 is left, bit 1 is right, bit 2 is down, bit 3 is up and bit 4 is fire. From BASIC,
these read as the number keys.

Port address 254 in output drives the sound (D4) and the save signal to the datacorder {D3), and
also sets the border colour (D2, D1 and D0).

Port addresses 254, 247 and 239 are used for the extra devices mentioned in part 22.

Port address 32765 drives the extra memory. Executing an OUT to this port from BASIC will
nearly always cause the computer to crash, losing any program and data. There is a fuller
description of this port in part 24 of this chapter (under the heading ‘Memory management’). This
port is write only - you cannot determine the current state of the paging by an IN instruction.

Port address 49149 drives the sound chip’s data registers. Port address 65533 in output writes a
register address, and in input reads a register. Judicious use of these two registers can allow

sounds to be generated whilst BASIC gets on with something else, but you should be aware that
they also control RS232, keypad and MIDI.

Run this program to see how the keyboard works...
10 FOR n=8 TO0 7: REM half-row number

20 LET a=2544256%(255-21n)
30 PRINT AT @,8; IN a: GO TO 30

-.and play around by pressing keys. When you finished with each half-row, press [BREAK] and
then type...

NEXT n

The control, data and address busses are all exposed at the back of the +2 on the EXPANSION
I/O socket, so you could do almost anything with a +2 that you could with a Z80. Sometimes,
though, the computer’s hardware might get in the way.

See chapter 10 for a diagram and pin-out of the EXPANSION I/O socket.

139

Part 24
The memory

Subjects covered...
CLEAR

Deep insidethe +2, everything is stored as bytes, ie. numbers between 0 and 255, You may think you
have stored away the price of gruts or the address of your friend Fremsley, but in fact, all the
information has been converted into collections of bytes, and bytes are what the computer sees.

Each place where a byte can be stored has an address, which is a number between 0 and FFEFh (a
small h at the end of the digits signifies that the number is hexadecimal). This means that an address
can be stored as two bytes. You might think of the memory as a long row of numbered boxes, each of
which can contain a byte. Not all the boxes are the same, however - the boxes from 4000h to FFFFh are
RAM boxes, which means you can open the lid and alter the contents, but those from 0 to 3FFFh are
ROM boxes, which have a glass lid that cannot be opened - you just have to read whatever was put into
them when the computer was made. In the +2, we have crammed in more than twice the amount of
memory than can comfortably fit. While the processor can address 65536 bytes, there are in fact
131072 bytes of RAM and 32768 bytes of ROM making 163840 bytes (160K) in all. Al this is hidden from
the processor by the hardware using a process called paging - BASIC (and the processor) always
‘sees’' the memory as 16K of ROM and 48K of RAM. .

65535 FFFFh
RAMO-7
49152 C000h
RAM 2
32768 8000h
RAMS5
16384 4000h
ROM 0-1
)
The +2memory map

140

To inspect the contents of a box, we use the PE EK function. Its argument is the address of the box,

and its result is the contents. For example, this program prints out the first 21 bytes in ROM (and their
addresses)...

18 PRINT "Address"; TAB 8; "Byte"
2@ FOR a=@ TO 20

30 PRINT a; TAB 8; PEEK a

40 NEXT a

All these bytes will probably be quite meaningless to you, but the processor chip understands themto
be instructions telling it what to do.

To change the contents of a box (if it is RAM), we use the POK E command. Its formis...

POKE address,contents

.where address and contents are numeric expressions. For example, if you type...

POKE 31008,57
..then the byte at address 31000 is given the new value 57. Now type...

PRINT PEEK 31000

..to prove this. (Try poking in other values, to show that there is no cheating.) The new value must be
between —255and +2585; if it is negative, then 256 is added to it.

The ability to poke gives you immense power over the computer if you know how to wield it, and
immense destructive possibilities if you don't. It is very easy (by poking the wrong value into the
wrong address) to lose vast programs that took you hours to type in. Fortunately though, you won't do
the computer any permanent damage.

We shall now take a more detailed look at how the RAM is used. Don't bother to read this unless you're
really interested. -

The memory is divided into different areas (shown in the diagram ahead) for storing different kinds of
information. The areas are only large enough for the information that they actually contain, and if you
insert some more at a given point (for instance by adding a program line or variable), then space is
made by shifting up everything above that point. Conversely, if you delete information, then
everything is shifted down.

The display file stores the TV picture. It is rather curiously laid out, so you probably won't want to
PEEK or POKE init. Each character position on the screen has an 8 x 8 grid of dots; each dot can be
either 0 (paper) or 1 (ink), so by using birary notation we can store the pattern as 8 bytes - one for each
row. However, these 8 bytes are not stored together. The corresponding columns in the 32 characters
of a single line are stored together as a scan of 32 bytes, because this is what the electron beam in the
TV needs as it scans from the left hand side of the screen to the other. Since the complete picture has
24 lines of 8 scans each, you might expect the total of 172 scans to be stored in order, one after the
other - well, you'd be wrong! First come the top scans of lines 0 to 7, then the next scans of lines 0 to 1,
and 5o on to the bottom scans of lines 0 to 7; then the same for lines 8 to 15; and again for lines 16 to 23.
The upshot of all this is that if you're used to a computer that uses PEEK and POKE on the screen,
thenyou'll havetostartusing SCREEN$ and PRINT AT instead (or PLOT and POINT).

141

The attributes are the colours and so on for each character position, using the format of AT TR. These
are stored line by line in the order you'd expect.

The way that the computer organises its affairs changes slightly between 48 BASIC and 128 BASIC

mode. The area that was the printer buffer in 48 BASIC mode, is used for extra system variables in 128
BASIC mode.

23552

Printer Bystem

(48K maode onl
buffer variables v

Dhsplay File Altnbutes System variables

16384 22528 23296 23652 23734

Channel

Microdrive maps
informanion

: Command or
80h|BASIC program| Vanables |80h program e being edited ML BOR

23734 CHANS PROG WARS E__LINE

WORKSP

i Temporary |Caleulator Machine | GOSUB
INFUT data |NL work space | ' stack Spare stack stack ? }3Eh| User Defined Graphics

WORKSP STRBOT STKEND sp RAM UDG P_RAMT

TCR

BASIC memory map

142

The system variables contain various pieces of information that tell the computer what sort of state it's
in. They are listed fully in part 25 of this chapter, but for the moment, note that there are some (called
CHANS, PROG, VARS, E_LINE, and so on) that contain the addresses of the boundaries between the

various areas in memory. These are not BASIC variables, and their names will not be recognised by
the +2 .

The microdrive maps are only used with the microdrive. Normally there is nothing there,

The channel information contains information about the input and output devices, namely the
keyboard (together with the lower half of the screen), the upper half of the screen, and the printer.

Eachline of BASIC program has the form:

Mare significant byte

| Less significant byte

+ * i
! E [TTTTT
2 bytes 2 bytes e20@1101
I | NN l
Line number Length of Text [ENTER]

text + [ENTER]

Note that, in contrast with all other cases of two-byte numbers in the Z80, the line number here is
stored with its most significant byte first; that is to say, in the order that you write them down n.

A numerical constant in the program is followed by its binary form, using the character CHR$ 14
followed by five bytes for the number itself.

The variables have different formats according to their different natures. The letters in the names
should be imagined as starting off in lower case.

143

g

Number whose name is one letter only:

Sign bit

LTETTT
017
Ll

Exponent byte

-

RS

s

4 Mantissa bytes

N

Letter-60h

Value

Number whose name is longer than one letter:
LTTTTTTTITTTTTT]
0

Ik
@ {Illllli

§§

CTTTTT
1

§5 bvtea
?

Letter-60h

LUl
; 2nd character

Array of numbers:

HEEREN

Last character

Value

[TTTTTTT 7 |
0

2 bytes 1 byte

10 2 bytes
HEERNN |

§ I
2 bytes
1]

E Q
5 bytes each
s

.

o

No. of
dimensions

Letter-60h Total
iength of
elements &
dimensions
+1 for no

of dimensions

1stdim

Last dim

Elements

14

The order of the element is:

First - the elements for which the first subscriptis 1.
Next - the elements for which the first subscriptis 2.
Next - the elements for which the first subscript is 3...
-.and soon for all possible values of the first subscript.

The elements with a given first subscript are ordered in the same way using the second subscript, and
soondowntothe last. '

As an example, the elements of the 3*6 array ¢ in part 12 of this chapter are stored in the order c(Ll)
c(1,2)e(1,3) c(1,4) c(1,5) c(1,6) and c(2,1) ¢(2,2)... ¢(2,6) and c(3,1) ¢(3,2)... ¢(3,6).

Control variable ofa FOR...NE X T loop:

Less significant byte
1' More significant byte
i

v v
1|1l1| | | ; 5 bytes 5 bytes 5 bytes 2 bytes 1 byte
LI |
Letter-60h Va;iue Limit Step Looping line Statement
number
within line
String:
LTTTTT] l
010 2 bytes
HENEEN]
Letter 606h Number of Text of string {7mav be empty)
characters

145

Array of characters:

RRRRRRRER | | | s =
110 2 bytes 1 byte 2 bytes 2 bytes 1 byte each
ENRENE ! | | £ 32
Letter-60h Tt;lal No. of dims. TSI;jirn. Last'dim. Elements

number

of elements

& dims. +1

for no. of

dims.

The calculator is the part of the BASIC system that deals with arithmetic, and the numbers on which it
isoperating are held mostly in the calculator stack,

The spare part contains the space so far unused.
The machine stack is the stack used by the Z80 processor to hold return addresses and so on.
The GO $SUB stack was mentioned in part 5 of this chapter.

The byte ‘pointed to’ by RAMTOP has the highest address used by the BASIC system. Even NEW,
which clears the RAM out, only does so as far as this - so it doesn't change the user-defined graphics.
You can change the address RAMTOP by puttinga numberina CLEAR statement, ie...

CLEAR new RAMTOP
...which does the following:

1. Clearsoutall the variables.

2. Clearsthe display file (like C LS does).

3. Resetsthe PLOT position to the bottom left-hand corner.

4. RESTOREsthe DATA pointer.

5. Clearsthe GO SUB stack and puts it at the new RAMTOP (assuming that this lies between the cal-
culator and the physical end of RAM; otherwise it leaves RAMTOP where it was).

RUN alsoperformsa C L E AR, although it never changes RAMTOP.

Using C LEAR in this way, you can either move RAMTOP up to make more room for the BASIC by

overwriting the user-defined graphics, or you can move it down to make more RAM that is preserved
fromNEW.

Type NEW,then CLEAR 23825 togetsome idea of what happens to the machine when it fills up.

Ifyouthentry to make the +2 compute, (type in, for example PRINT 1+1) you will see the report
‘4 Out of memory’ displayed. This means the computer has no more room for information. If
you come up against this message while entering a large program, you will have to empty the memory
slightly (delete a line or so) in order to control the computer,

146

Memory management

We mentioned earlier that there is rather more memory in the computer than the processor can
comfortably deal with. While the processor can indeed only address 64K of memory at once, the extra
memory can be slotted in and out of that 64K at will. Consider a TV set. Although it (and you) can only
deal with one channel at a time, there are another three always there which can be selected with the
right buttons. So, even though there's four times as much information as you can use at any one time,
you can pick and choose which part is relevant.

It is much the same for the processor. By setting the right bits in an /O port it can pick and choose
which chunks of the 160K of memory it wants to use. For the majority of the time in BASIC it ignores
most of the memory, but for games playing, having three times as much RAM is really rather useful.
Look again at the +2 's memory map (shown at the beginning of this section). RAMs 2 and 5 are
always in the positions shown, although there’s no reason why they shouldn't be in the banked section
(CO00h to FFFFh) -however, it would be difficult to see any use for this. The RAM banks are of two
types; RAM 4 to 7 which are contended (which means they share time with the video circuitry) and
RAM 0 to 3 which are uncontended (where the processor has exclusive use). Any machine code
which has critical timing loops (such as music or communications programs) should keep all such
routines in the uncontended banks.

The hardware switch is at 'O address 7FFDh (32765 decimal). The bit field for this address is as
follows:

D0-D2 -RAMselect

D3 - Screenselect
D4 - ROM select
D5 -48K lock

D2-D0 make a three bit number that selects which RAM goes into the CO00h to FFFFh slot. In BASIC,
RAM 0 is normally in situ, and when editing, RAM 7 is used for various buffers and ‘scratchpads'’. D3
switches screens; screen 0 is held in RAM 5 (beginning at 4000h) and is the one that BASIC uses,
screen | is held in RAM 7 (beginning at C000h) and can only be used by machine code programs. It is
entirely feasible to set up a screen in RAM 7 and then page it out; this leaves the entire 48K free for data
and program. D4 determines whether ROM 0 (the editor ROM) or ROM 1 (the BASIC ROM) is paged
into 0000h to 3FFFh. D5 is a safety feature; once this bit has been set, the machine assumes a standard
48K Spectrum configuration and all the memory paging circuitry is locked out. It cannot be turned
back into a 128K machine other than by switching off or pressing the RESET button; however, the
sound chip can still be drivenby OUT.

141

Part 25
The system variables

Subjects covered...
POKE,PEEK

The bytes in memory from 23296 to 23733 are set aside for specific uses by the system. There are a few
routines (used to keep the paging in order), and some locations called system variables. You can

peek these to find out various things about the system, and some of them can be usefully poked. They
are listed here with their uses.

There is quite a difference, as you might expect, between the system variables’ area in 48 BASIC
mode and 128 BASIC mode. In 48 BASIC mode, all the variables and routines below 23552 do not exist;
instead there is a buffer between 23296 and 23552 which is used for controlling the printer. This was
quite a popular location for small machine code routines on the 48K Spectrum, and if any of these
routines are tried in 128 BASIC mode, the computer will invariably crash. Any old program that uses
PEEK, POKE and USR is therefore a safer bet if it is run in 48 BASIC mode (although it can be
entered in 128 BASIC mode and transferred using the S P E C T RUM command).

System variables have names, but do not confuse them with the words and names used in BASIC. The
computer will not recognise the names as referring to system variables; they are given solely as
mnemonics for we humans.

The abbreviations in column 1 of the table ahead have the following meanings:

X - The variables should not be poked because the system might crash.

N - Poking the variables will have no lasting effect.

R - Routine entry point. Not a variable.

The number in column 1 is the number of bytes in the variable or routine. For two bytes, the first one is

the least significant byte - the reverse of what you might expect. So, to poke a value vinto a two-byte
variable at address n, use...

POKE n,v-256*INT (v/256)
POKE n+1,INT (v/256)

...and to peek its value, use the expression...

PEEK n+256*PEEK (n+1)

148

N10

ADDRESS

23296
23316
23325
23343
23348

23370
23384
23386
23388
23389
23390
23391
23393
23395
23396
23397
23398
23399
23409
23410
23412
23414
23416
23418
23419
23421
23423
23425
23427
23429
23432
23433
23434
23435
23431
23442
23444
23446
23448
23456
23551
23552
23560

NAME

SWAP
YOUNGER
ONERR
PIN

POUT

POUT2
TARGET
RETADDR
BANKM
RAMRST
RAMERR
BAUD
SERFL
COL
WIDTH
TVPARS
FLAGS3
N STR1
HD 00
HD 0B
HD (0D
HD OF
HD 11
SC 00
5C 08
5C 0D
SC OF
OLDSP
SFNEXT
SFSPACE
ROWO1
ROW23
ROW45
SYNRET
LASTV
RNLINE
RNFIRST
RNSTEP
STRIP1
STRIP2
TSTACK
KSTATE
LASTK

CONTENTS

Paging subroutine.

Paging subroutine.

Paging subroutine.

R5232 input preroutine.

R5232 token output preroutine. This can be patched to
bypass the control code filter.

RS232 character output preroutine.

Subroutine address in ROM 1.

Return address in ROM 0.

Copy of last byte output to bank.

RST 8 instruction.

Error number, ROM 1.

R5232 bit period in T states/26.

Second-character-received-flag, and data.

Current column from 1 to width.

Paper column width.

No. of inline parameters expected by RS232.

Various flags.

File name.

Type offile code.

Length of block.

Start of block.

Program length.

Line number.

Second set - file type code,

Second set - length of block.

Second set - start of block.

Second set - program length.

0Old SP when TSTACK inuse.

Pointer to first empty directory entry.

Number of bytes left (17 bit).

Keypad flags and row 1 image.

Keypad rows 2 and 3 images.

Keypad rows 4 and 5images.

Return address for ONERR.

Last value printed by calculator.

Current line being renumbered.

Starting line number for RENUMBER.

Incremental value for RENUMBER.

Stripe one bitmap.

Stripe two bitmap.

Temporary stack grows down from here.

Used in reading the keyboard.

Stores newly pressed key.

149

N1

N2
X38

23561

23562

" 23563

23565

23566
23568
23606

23608
23609
23610

23611
23612
23613

23615
236117
23618
23620

23621
23623
23624

23625
23627
23629
23631
23633
23635

23631
23639
23641
23643

REPDEL

REPPER

DEFADD
KDATA

TVDATA
STRMS
CHARS

RASP
PIP
ERRNR

FLAGS
TVFLAG
ERRSP

LISTSP
MOCDE
NEWPPC
NSPPC

PPC
SUBPPC
BORDCR

EPPC
VARS
DEST

CURCHL
PROG

NXTLIN
DATADD
ELINE
KCUR

Time (in 50ths of a second - in 60ths of a second in USA)
that a key must be held down before it repeats. This
starts off at 35, but you can P OK E in other values.

Delay (in 50ths of a second - in 60ths of a second in USA)
between successive repeats of a key held down
-initially 5.

Address of arguments of user defined function if one is
being evaluated; otherwise 0.

Stores 2nd byte of colour controls entered from
keyboard.

Stores bytes of colour, A T and T AB controls going to TV.

Addresses of channels attached to streams,

256 less than address of character set (which starts with
space and carries on to the copyright symbol) Nor-
mally in ROM, but you can set up your own in RAM
and make CHARS pointtoit.

Length of warning buzz.

Length of keyboard click.

1 less than the report code. &..ts off at 255 (for -1) so
PEEK 23610 gives255.

Various flags to control the BASIC system.

Flags associated with the 1V,

Address of item on machine stack to be used as error
return.

Address of return address from automatic listing.

SpecifiesK, L, C, Eor G cursor.

Linetobe jumped to.

Statement number in line to be jumped to poking first
NEWPPC and then NSPPC forces a jump to a
specified statement ina line,

Line number of statement currently being executed.

Number within line of statement being executed.

Border colour multiplied by 8; also contains the attributes
normally used for the lower half of the screen.

Number of current line (with program cursor).

Address of variables,

Address of variable in assignrment.

Address of channel data.

Address of information currently being used for input
and output.

Address of BASIC program.

Address of next line in program.

Address of terminator of last DA T A itemn.

Address of command being typed in.

Address of cursor.

150

N1
N2
N2

B2 =

23645

23647
23649
23651
23653
23655
23656

23658
43658

23660
23662
23664

23665
23666
23668

23670

23672

23675

23671
23678
23679
23680

23681
23682

23684
23686
23688
23689
23680
23692

CHADD

XPTR
WORKSP
STKBOT
STKEND
BREG
MEM

FLAGS2
DFSZ

S TOP
OLDPPC

OSPCC
FLAGX
STRLEN
TADDR
SEED

FRAMES

UDG

COORDS
PPOSN
PRCC
ECHOE
DFCC
DFCCL
SPOSN

SPOSNL
SCRCT

Address of the next character to be interpreted - the
character after the argument of PE EK, or the
NEWLINE at the end ofa P 0K E statement.

Address of the character after the [marker.

Address of temporary work space.

Address of bottom of calculator stack.

Address of start of spare space.

Calculator's b register.

Address of area used for calculator's memory. (Usually
MEMBOT, but not always.)

More flags.

The number of lines (including one blank line) in the
lower part of the screen.

The number of the top program line in automatic listings.

Line numbertowhich CONT I NUE jumps.

Number within line of statement to which CONTINUE
jumps.

Various flags.

Length of string type destination in assignment.

Address of next item in syntax table (very unlikely to be
useful).

The seed for RND. This is the variable that is set by
RANDOMIZE,

3 byte (least significant byte first), frame counter
incremented every 20mS. (See part 18 of this
chapter.) !

Address of lst user-defined graphic. You can change
this, for instance, to save space by having fewer
user-defined graphics.

x-coordinate of last point plotted.

y-coordinate of last point plotted.

33-column number of printer position.

Least significant byte of address of next position for
LPRINT toprintat (in printer buffer).

Not used.

33-column number and 24-line number (in lower half) of
end of input buffer,

Addressindisplay file of PRINT position.

Like DF CC for lower part of screen.

 33-column number for PR IN T position.

24-line number for PR INT position.

Like 5 POSN for lower part.

Counts scrolls - it is always 1 more than the number of
scrolls that will be done before stopping with
‘scrol L7 If you keep poking this with a number
bigger than | (say 255), the screen will scroll on and
on without asking you.

151

1 23693 ATTRP Permanent current colours, etc., (as set up by colour

statements),

1 23694 MASKP Used for transparent colours etc. Any bit that is 1 shows
that the corresponding attribute bit is taken not from

N1 23695 ATTRT ATTRP, but from what is already on the screen.

Temporary current colours, etc., (as set up by colour

items),

N1 23696 MASKT Like MASK P, but temporary.

1 23697 PFLAG More flags.

N30 23698 MEMBOT Calculator's memory area - used to store numbers that
cannot conveniently be put on the calculator stack.

2 23728 Not used.

2 23730 RAMTOP Address of last byte of BASIC system area.

P 23132 P-RAMT Address of last byte of physical RAM.

Exercise...

1. This program shows you 22 bytes of the variables area (from KSCAN onwards)...

18 FOR n=0 TO 21
20 PRINT PEEK (PEEK 23627+256%PEEK 23628+n)
30 NEXT N

Try to match up the control variable n with the descriptions above. Now change line 20to...
20 PRINT PEEK (23755+n)
This shows you the first 22 bytes of the programarea. Match these up with the program itself.

152

Part 26
Using machine code

Subjects covered...

U S R with numeric argument

This section is written for those who understand 280 machine code, ie. the set of instructions that the
Z80 processor chip uses. If you do not, but would like to, there are plenty of books about it. You should
get one called something along the lines of... ‘Z80 machine code (or assembly language) for the

absolute beginner’, and if it mentions the *+2° or other computers in the ZX Spectrum range, so
muchthe better.

Machine code programs are normally written in assembly language, which, although cryptic, is not
too difficult to understand with practice. You can see the assembly language instructions in part 27 of
this chapter. However, torunthemonthe +2 youneed to code the program into a sequence of bytes
-in this form it is called machine code. This translation is usually done by the computer itself, using a
program called an assembler. There is no assembler built in to the +2 , but you will be able to buy

one on cassette. Failing that, you will have to do the translation yourself, provided that the program is
not too long.

Let's take as an example the program...

Id be, 99
ret

..which loads the be register pair with 99. This translates into the four machine code bytes 1,99, 0 (for
Id be, 99) and 201 (for ret). (If you look up codes 1 and 201 in part 27 ahead, you will find that 1
correspondstold bc,NN- where NN stands for any two-byte number: and 201 corresponds to ret.)

When you have got your machine code program, the next step is to get it into the computer - (an
assembler would probably do this automatically). You need to decide whereabouts in memory to

locate it - the best thing is to make extra space for it between the BASIC area and the user-defined
graphics.

Ifyoutype...

CLEAR 65267
..this will give you a space of 100 (for good measure) bytes starting at address 65268.
To put in the machine code program, you would run a BASIC program something like...

180 LET a=65268

20 READ n: POKE a,n
30 LET a=a+1: GO TO 2@
4@ DATA 1,99,0,201

(This will stop withthe report'E Out o f DA T A’ when it has filled in the four bytes you specified.)

153

To run the machine code, you use the function USR - but this {ime with a numeric argument, ie. the
starting address. Its result is the value of the bc register on return from the machine code program, so
ifyoutype...

PRINT USR 65268
..youwill get the answer 99.

The return address to BASIC is ‘stacked’ in the usual way, so return is by a Z80 ret instruction. You
should not use the iy and ; registers in a machine code routine that expects to use the BASIC interrupt
mechanism. You should also not load ; with values between 40h and 7Fh (evenif you never use IM 2).
Values between COh and FFh for i should also be avoided if contended memory (ie. RAM 4 to T)is to
be paged in between C000h and FFFFh. This is due to an interaction between the video controller and
the Z80 refresh mechanism, and can cause otherwise inexplicable crashes, screen corruption or
other undesirable effects. Thus, you should only vector IM 2 interrupts to between 8000h and BFFFh,
unless you are very confident of your memory mapping.

There are a number of standard pitfalls when programming a banked system such asthe +2 from
machine code. If you are experiencing problems, check that your stack is not being paged out during
interrupts, and that your interrupt routine is always where you expectittobel (it is advisable to disable
interrupts during paging operations). It is also recommended that you keep a copy of the current
bank register setting in unpaged RAM somewhere, as the port is write-only, BASIC and the editor use
the system variable BANK M.

You can save your machine code program easily enough with...
SAVE "somename" CODE 65268,4

On the face of it, there is no way of saving the program so that when loaded it automatically runs itself:
however, you can get round this by using the short BASIC program... :

18 LOAD "" CODE 65268,4
20 PRINT USR 65268

...which must be saved to cassette just before the machine code, using the command (for example)...

SAVE "loader"™ LINE @

.then you may save the machine code using (for example)...
SAVE "m code” CODE 65268,4

.after which, you may run the machine code from BASIC using the single command...
LOAD "loader™"

-.Which loads and automatically runs the BASIC program which in turn loads and runs the machine
code.

154

Part 27
Spectrum character set

Subjects covered...

Control codes
Characters
Z80 assembler mnemonics

This is the complete Spectrum character set, with codes in decimal and hex. If one imagines the codes
as being Z80 machine code instructions, then the right hand columns give the corresponding
assembly language mnemonics. As you may be aware, certain Z80 instructions are ‘compounds’
starting with CBh or EDh; these are shown in the two right hand colurans. Where a character changes
(between 48K and 128K modes), the 48K version is given in brackets after the 128K one.

CODE CHARACTER HEX ZBOASSEMBLER -AFTERCBh -AFTEREDh
0 00 nop ch

1 01 ld b, NN ricc

2 02 ld (bc),a rlcd

3 Btused 03 inchbe fce
4 04 inch rich

5 05 decb rlcl

] PRINT comma 06 IdbN rle(hl)
7 [EDIT] 07 rlca rica

8 cursor left § 08 exafaf rreh

9 cursor right 09 add hl,bc rree
10 cursor down < 0A lda,(bc) mred
11 CUrsorup <» 0B dechc rce
12 [DELETE] 0C incc rrch
13 [ENTER] 0D decc el
14 number 0E lde N rrc (hl)
15 notused OF rca Ica
16 I NK control 10 djnz DIS 1lb

17 PAPER control 11 1d de, NN rle
18 F LA SH control 12 Id(de),a 1ld

19 BRIGHT control 13 incde rle
20 INVERSE control 14 incd 1k
21 OVER control 15 decd 11l

22 AT control 16 ldd,N rl(hD)
23 T AB control 17 1la rla

24 18 jr DIS rh

25 notused 19 add hl,de e

155

E8ELEHLLL=8VYIY

4]

not used

space
I

=

+ ¥ e~ = 00 e I

[Y

T O M MO O IDI2E2 WV I A ss DO JOWWVI £~ M) =S~

lda,(de)

ince
dece
lde,N

Ima
jrnz,DIS
Idh NN
1d (NN),hi
inchl
inch

Idh,N

jrz,DIS
add hl,hl
1d hl,(NN)
dechl
incl
decl
IdLN

cpl
jrne,DIS
ldsp, NN
1d (NN),a
incsp
inc (hl)
dec(hl)
ld (h1),N

jrc,DIS
add hl,sp
1da,(NN)
decsp
inca
deca
ldaN
ccf
ldbb
ldbe
ldbd
ldbe
ldbh
ldb,]

ld b,(hl)
Idba
ldeb

stlb
sric
srld
sile
srth
srll
stl(hl)
srla
bit0,b
bit0,c
bit0,d
bit0,e
bit0,h
bit0,]
bit 0,(hl)
bit0,a
bit L,b

inb,(c)
out(c),b
sbc hlbe
1d (NN),be
heg

retn

im0

ldia
inc,(c)

156

101

110
111
112
113
114
115
116
117
118
118

ECC U TO0TVTO0IE —mFm =@ WD OOTU M Sd MMTNAXESCANID VOB R

4A
4B

4D
4F

28

S L L E L T R P R P R R R R

lde,c
ldecd
ldce
ldch
lde]

ld c,(hl)
ldca
lddb
ldd,c
ldd,d
ldde
lddh
lddl

ld d,(hl)
ldda
ldeb
ldec
lded
dee
ldeh
Ide
lde,(hl)
ldea
ldhb
ldhec
ldhd
ldhe
ldhh
ldh]

1d h,(hl)
ldha

ldle
ldld
ldle
ldLh
1dL]

1d L,(hl)
dla

1d (h),b
ld(hl),c
1d (hl),d
d(hl),e
1d (h),h
1d (hl)1

1d (hD),a

bit L,¢
bit1,d
bitl,e
bit Lh
bit 1,1
bit 1,(h)
bitl,a
bit2,b
bit2,c
bit2,d
bit2,e
bit2,h
bit2,]
bit 2,(hl)
bit2,a
bit3,b
bit3,c
bit3,d
bit3,e
bit3,h
bit 3,1
bit 3,(hl)
bit3,a
bit4,b
bit4,c
bit4,d
bit4,e
bit4,h
bit4,1
bit 4,(hl)
bit4,a
bit5,b
bit5,c
bit 5,d
bit5,.e
bit5,h
bit§,1
bit 5,(h)
bit5,a
bit6,b
bit6,c
bit6,d
bit6,e
bit6,h
bit6,1
bit 6,(hl)
bité,a

out(c),c
adchlbc
ld be,(NN)

reti

ldra
ind,(c)
out(c),d
sbc hl,de
1d (NN),de

iml

lda,i
ine,(c)
out{c),e
adchlde
Id de,(NN)

im2

ldar
inh(c)
out(c),h
sbchlLhl
1d (NN),hl

inl,(c)
out(C)1
adchLhl
1d hl,(NIN)

rid
inf(c)

sbchlsp
1d (NN),sp

157

120
121
122
123
124

127

CHPFEDY=Sr AP BAE O =N x

(b)
(c)
(d)
(e)
(f)
(9)
(h}
()
(1)
(k) L user

(L) graphics
(m)
(n)
(0)
(p)
(@)
(r)
(s)
SPECTRUM (t)
PLAY (u) |
RND

INKEYS$

ldab
ldac
ldad
ldae
ldah
Ida]

ld a,(hl)
ldaa
addab
adda,c
addad
addae
adda,h
adda,l
adda,(hl)
addaa
adcab
adca,c
adca,d
adcae
adca,h
adca,l
adca,(hl)
adcaa
subb
sube
subd
sube
subh
subl
sub (h)
suba
sbcab
sbcac
sbca,d
sbcae
sbcah
sbca)l
sbca,(hl)
sbcaa
andb
andc
andd
ande
andh
andl
and (hl)

bitZb
bitT,c
bit7,d
bit7,e
bit Z,h
bit7,1
bit 7,(hD)
bit7,a
res0b
res0,c
res0,d
resOe
resOh
res0l
res 0,(hl)
res(,a
reslb
reslc
resld
resle
resLh
resll
res 1,(hl)
resla
res2,b
resa.c
res2,d
res2e
res2,h
res 2,
res2,(hl)
resza
res3,b
resd,c
resdd
resde
resd,h
res3,
res 3,(hl)
resda
res¢b
res4,c
res4,d
resde
res4,h
res4l
res4,(hl)

ina,(c)
out(c),a
adchlsp
ld sp,(NN)

cpi

outi

158

167
168
169
170
171
172
173
174
178
176

210

PI

FN
POINT
SCREENS
ATTR
AT

TAB
VALS
CODE
VAL
LEN
SIN
Cos
TAN
ASN
ACS
ATN
LN
EXP
INT
SQRr
SGN
ABS
PEEK
IN
USR
STRS
CHRS
NOT
BIN
OR
AND
<=

>=

<>
LINE
THEN
TO
STEP
DEFFN
CAT
FORMAT
MOVE
ERASE
OPEN#
CLOSER
MERGE

BEEEEEEEEE

anda
xorb
XOrc
xord
Xore
xorh
Xorl
xor (hl)
Xora
orb
orc
ord
ore
orh
orl
or(hl)
ora
cpb
cpe
cpd
cpe

cpl

cp (hl)
cpa
retnz
popbc
jpnz,NN
JpNN
callnz NN
pushbc
adda,N
rst0
retz

ret
jpz,NN

callz NN
callNN
adca,N
rst8
popde
pop de
jpnc,NN
out(N),a
callnc,NN
pushde

res4,a
res5b
res5,c
res5d
resSe
res5h
res§,
res5,(hl)
resSa
res6,b
res6,c
res6,d
resb,e
res6,h
res6,l
res 6,(hl)
resBa
res7,b
res1,c
res7d
resl,e
resT,h
res7,l
res 7,(hl)
resTa
set0,b
set0,c
set0,d
set0,e
setQ,h
set0,]
set0,(hl)
set0,a
setlb
setlc
setld
setle
setLh
setl]
set 1,(hl)
setla
set2,b
seta,c
set2,d
set2e
set2,h
set2,]

ldd

ind
outd

1dir
cpir

lddr

indr
otdr

159

al4
218
alg
217
218
219
220
221

a52

VERIFY
BEEP
CIRCLE
INK
PAPER
FLASH
BRIGHT
INVERSE

OVER
ouT
LPRINT
LLIST
STOP
READ
DATA
RESTORE
NEW
BORDER
CONTINUE
DIM
REM
FOR
GOTO
GOSUB
INPUT
LOAD
LIST
LET
PAUSE
NEXT
POKE
PRINT
PLOT
RUN
SAVE

RANDOMIZE

IF
CLS
DRAW
CLEAR

RETURN
cory

DE

ARLEEngaTEErEEy

JdAdRdIAFARAII3REY

A

subN
st 16
retc

exx
jpoNN
ina,(N)
calle, NN
prefixes
instructions
using ix
sbcaN
rst24
retpo
pophl
jppo,NN
ex(sp),hl
callpo,NN

and N
rst32
retpe

jp (hl)
jppe,NN
exdehl
callpe,NN

xorN
st 40
retp
Dop R
jpp.NN

callp,NN
push af
orN
rst48
retm

1d sp,hl
PN

call m,NN
prefixes
instructions
using iy

rst56

set2,(hl)
setla
set3b
seti,c
setdd
setde
setd,h
setd,]

set 3,(hl)
set3,a
set4,b
setd,c
set4,d
setde
setd.h
setd,]
set4,(hl)
setda
set5,b
set8,c
set5,d
setbe
set5h
set§1
set5,(hl)
set5a
set6,b
set6,c
set6,d
setfe
set6h
set6l
set6,(hl)
setb,a
setTb
setTc
set7,d
setle
setTh
set7]

set 7,(hi)
setTa

160

Part 28
Reports

Subjects covered...

Screen display messages
Error messages

Reports

CONTINUE

Reports appear at the bottom of the screen whenever the +2 has stopped executing some BASIC.
They explain why it has stopped - be it for some natural reason, or because an error has occurred.

The report has a code number or letter (so that you can refer to the table here), a brief message
explaining what happened, and the line number (and the statement number within the line) where it
stopped. (A command is shown as line 0. Within a line, statement 1 is at the beginning, statement 2
comes after the first colon (or THEN), and soon.)

The behaviour of CONTINUE depends very much on the reports. Normally, CONTINUE goes to
the line and statement specified in the last report, but there are exceptions withreports @, 9 and D.

Here is a table showing all the reports. It also tells you in what circumstances the report can occur, and
this refers you to part 30 of this chapter. For instance, theerror ‘A Invalid ar gument’'canocecur

with SQR, IN, ACS and A SN and the entries for these in part 30 tell you exactly which arguments are
invalid.

CODE MEANING SITUATION

@ oK Any
Successful completion, or jump to a line number bigger than
any existing. This report does not change the line and
statement jumpedtoby CONTINUE.

T NEXT without FOR NEXT
The control variable does not exist (it has not been set up by a
F OR statement), but there is an ordinary variable with the
same name.

2 Variablenot found Any
For a simple variable this will happen if the variable is used
beforeithasbeenassignedtobya LET,READ or INPUT
statement, or loaded from cassette, orsetupina FOR
statement. For a subscripted variable it will happen if the
variable is used before it has been dimensioned ina DI M
statement, or loaded from cassette.

161

Subscriptwrong

A subscript is beyond the dimension of the array, or there are
the wrong number of subscripts. If the subscript is negative or
bigger than 65535, then error B will result.

Out of memory

There isnot enough room in the computer for what you are
trying to do. If the computer really seems to be stuck in this
state, you may have to clear out the command line using
[DELETE] and then delete a program line or two (with the
intention of putting them back afterwards) to give yourself
roomto manoeuvre.

Outofscreen
An INPUT statement has tried to generate more than 23 lines

inthe lower half of the screen. Also occurs with PRINT AT
22 ,%x.

Number toobig

Calculations have led to a number greater than approximately
10%,

RETURNwithoutGOSUB
There has been one more RE TURN than there were
GO SUBs.

Endof File

STOPstatement
Afterthis, CONT INUE will not repeatthe ST 0P, but carries
onwith the statement after.

Invalidargument
The argument for a function is unsuitable (for some reason).

Integeroutofrange

When aninteger is required, the floating point argument is
rounded to the nearest integer. If this is outside a suitable
range, then error B results.

For array access, see also Error 3.

Subscripted variables,
Substrings

LET,INPUT, FOR,
DIM,GOSUB,LOAD
MERGE.Sometimes
during expression
evaluation

INPUT,PRINTAT

Any arithmetic

RETURN

Microdrive, etc.
operations

STOP

SQN,LN,ASN,ACS,
USR (withstring
argument)

RUN,RANDOMI ZE,
POKE,DIM,GOTO,
GO SUB,LIST,
LLIST,PAUSE,
PLOT,CHRS,PEEK,
US R (with numeric
argument)

Arrayaccess

162

Nonsense in BASIC

The text of the (string) argument does not form a valid
expression. Also used when the argument for a function or
command is outrageously wrong.

BREAK - CONT repeats

[BREAK] was pressed during some peripheral operation.
The behaviour of CONT I NUE after this report is normal in
that it repeats the statement. Compare with report L.

Out of DATA
Youhavetriedto READ pasttheend of the DA T A list.

Invalid file name
S AVE with name empty or longer than 10 characters.

No room for Lline

There is not enough room left in memory to accommodate the
new program line.

STOP in INPUT

Some INPUT data started with S T 0 P. Unlike the case with
report 9, after report H, CONT I NUE will behave normally,
byrepeatingthe INPUT statement.

FOR without NEXT
Therewasa F O R loop to be executed notimes (eg. FOR n=1

T0 @)and the corresponding N E X T statement could not be
found.

Invalid I/0 device

Invalidcolour
The number specified is not an appropriate value.

BREAKintoprogram

[BREAK] pressed. This is detected between two statements.
Theline and statement number in the report refer to the
statement before [BREAK] was pressed, but CONTINUE
goesto the statement after (allowing for any jumps to be done),
soit does not repeat any statements.

VAL, VALS

LOAD,SAVE,
VERIFY,MERGE,
Alsoused whenthe
computer asks
‘scrol l?’andyou
press N, [BREAK] or
the space bar

READ
SAVE

Entering aline into the
program

INPUT

FOR

Microdrive, etc.
operations

INK,PAPER,
BORDER, FLASH,
BRIGHT,INVERSE,
0VER;also after one of
the corresponding
control characters

Any

163

RAMTOP _.no good

The number specified for RAMTOP is either too bigortoo
small,

Statement lost
Jump to a statement that no longer exists.

Invalid Stream

FNwithout DEF
User-defined function used without a corresponding D E F in
the program.

Parameter error
Wrong number of arguments, or one of them is the wrong type
(string instead of number or vice versa).

Tape loading error
A file on cassette was found but for some reason could not be
read in, or would not verify.

MERGE error
MERGE ! would notexecute for some reason - either size
or file type wrong.

Wrong file type
A file of an inappropriate type was specified during silicon
disc operation, for instancea CODE filein LOAD ! "name".

CODE error
The size of the file would lead to overrun of top of memory.

Too many brackets
Too many brackets around a repeated phrase
inone of the arguments.

File already exists
The file name specified has already been used.

Invalid name
The file name specified is empty or above 10 charactersin
length.

File does not exist
There isno file in the silicon disc that has the name specified.

CLEAR;possiblyin
RUN

RETURN,NEXT,
CONTINUE

Microdrive, etc.
operations

FN

FN

VERIFY,LOADor

MERGE

MERGE !

MERGE !, LOAD!

LOAD !fileCODE

PLAY

SAVE !

ERASE!

LOAD !
ERASE!

164

e i

Invalid device
The device name following the FORMA T command does not
exist or correspond to a physical device.

Invalid baud rate
The baud rate for the RS232 was set to zero.

Invalid note name
PLAY came across a note or command it didn't recognise, or
a command which was in lower case.

Number too big
A parameter for a command is an order of magnitude too big.

Note out of range

A series of sharps or flats has taken a note beyond the range of
the sound chip.

Out of range
A parameter for a command is too big or too small. If the error
isverylarge error | results.

Too manytiednotes
An attempt was made to tie too many notes together.

FORMAT

FORMAT

PLAY

PLAY

PLAY

PLAY

PLAY

165

Part 29
Reference information

Subjects covered...

Hardware

The +2 is designed around the Z80A microprocessor, which runs at a speed of 3.54 MHz (3.54
million eycles per second).

The +2's memory is divided into 32K ROM and 128K RAM, arranged in 16K pages. The two ROM
pages (0-1) are mapped into the bottom 16K (0-3FFFh) of the memory map. The eight RAM pages (0-7)
are mapped into the top 16K (C000h-FFFFh) of the memory map. RAM page 5 is also mapped into the
range 4000h-7FFFh, and RAM page 2 is mapped to range 8000h-BFFFh.

Physically speaking, the ROM is a single 32K device (similar to a 21256), which is treated by the
system as two 16K chips. The RAM is composed of sixteen 64K x 1-bit chips (4164), some of which
(RAM banks 4-) are time-shared between the circuitry that produces the TV picture (more of which

later) and the Z80A. The other eight (RAM banks 0-3) are for the exclusive use of the Z80A, as is the
ROM. ;

The Uncommitted Logic Array (ULA) handles most of the IO, like keyboard, datacorder and screen
handling. It converts bytes in memory into patterns and colours on screen, and allows the ZB0A to
scan the keyboard and read and write data to cassette.

The three-channel sound is produckd by the AY-3-8912 - a very popular sound chip, and this device
also controls the R$232/MIDI and KEYPAD ports. The way in which it works is quite complex, and
the putative experimenter is advised to get the AY-3-8912 data sheet. The following information
should be enough to get things underway, however. The sound chip contains sixteen registers which
are selected by writing first to the address write port (/O address FFFDh - 65533 decimal) with the
register number, and then reading the register value (same address) or writing to the data register
write address (BFFDh - 49149 decimal). Once a register has been selected, any number of data

read/writes can be done; the address write port need only be re-written if a different register needs to
be accessed.

The basic clock frequency of the circuit is 1.7734 MHz (to 0.01%).
The registers do the following:

RO - Fine tone control channel A
R1-Coarse tone control channel A
R2- Fine tone control channel B
R3-Coarse tone control channel B
R4 - Fine tone control channel C
R5- Coarse tone control channel C

166

Dl

The tone of a channel is a 12-bit value taken from the sum of D3-D0 of the coarse register, and D7-D0 of
the the fine register. The basic unit of tone is the clock frequency divided by 16 (ie. 110.83 KHz), and
witha 12bit counter range, frequencies from 27Hz to 110 KHz can be generated.

R6 - Noise Generator Control, D4-D0

The period of the noise source is taken by counting down the lower 5 bits of the noise register every
sound clock period divided by 16.

R7 - Mixer and 1'O control

DT -notused

D6- 1 = input port, 0 = output port
D5 - Channel C noise

D4 - Channel B noise

D3 - Channel A noise

D2 -Channel Ctone
D1-Channel B tone

D0 - Channel A tone

This register controls both the mixing of noise and tone values for each channel, and the direction of
the 8-bit /O port. A zero in a mix bit indicates that the function is enabled.

R8 - Amplitude control channel A
RS9 - Amplitude control channel B
RA - Amplitude control channel C

D4 - 1=useenvelope generator
- 0= use value of D3-D0 for amplitude
D3-D0 - Amplitude

These three registers control the amplitude of each channel and whether or not it is modulated bythe
envelope registers.

RB - Envelope coarse period control
RC - Envelope fine period control

The eight bit values in RB+RC are surmmed to produce a 16 bit number which is counted down in units
_of 256 times the sound clock. Envelope frequencies can be between 0.1Hz and 6KHz.

RD - Envelope control

D3 - Continue
D2- Attack
D1 - Alternate
D0 -Hold

The diagram of envelope shapes (in part 19 of this chapter) gives a graphic illustration of the possible
settings for this register,

167

Part 30
The BASIC

Subjects covered...

Number handling
Variables

Strings

Functions

Brief summary of keywords
Mathematical operations

Numbers are stored to an accuracy of 9 or 10 digits. The largest number you can get is about 10°%, and
the smallest (positive) number is about 4* 103,

A number is stored inthe +2 in floating point binary with one exponent byte e (1<=e<=255), and
four mantissa bytes m (/,<=m<1). This represents the number m* 25128

Since '/2<=m<1, the most significant bit of the mantissa m is always 1. Therefore, in actual fact we can
replace it with a bit to show the sign - 0 for positive numbers, 1 for negative.

Small integers have a special representation in which the first byte is 0, the second is a sign byte (0 or

FFh) and the third and fourth are the integer itself (in twos complement form) with the least significant
byte first,

Numeric variables have names of arbitrary length, starting with a letter and continuing with letters and
digits. Spaces are ignored and all letters are converted internally to lower-case letters.

Control variablesof F OR...NE X T loops have namesa single letterlong.

Numeric arrays have names a single letter long, which may be the same as the name of a simple
variable. They may have many dimensions of arbitrary size. Subscripts startat 1.

Strings are completely flexible in length. The name of a string consists of a single letter followed by $.

String arrays can have many dimensions of arbitrary size. The name is a single letter followed by $
and may not be the same as the name of a simple string variable. All the strings in a given array have

the same fixed length, which is specified as an extra final dimensionin the D I M statement. Subscripts
startat 1.

Slicing: Substrings of strings may be specified using slicers. A slicer can be one of the following:
(i) empty
0T,

(i) a numerical expression

168

i

O
(i) optional numerical expression TQ optional numerical expression and is used in
expressing a substring by either:

(a) string expression (slicer)
e | N
(b) string array variable (subscript,... subscript, slicer)
..whichisthe same as..,

string array variable (subscript... subscript) (slicer)

In (a), suppose the string expression has the value s$, then if the slicer is empty, the resultis s $
(considered as a substring of itself).

If the slicer is a numerical expression with value m, then the result is the mth character of s$ (a
substring of length 1).

Ifthe slicer has the form (jii), then suppose the first numerical expression has the value m (the default
value is 1), and the second, n (the default value is the length of s $). If 1<=m<=n<=the lengthof s $,
then the result is the substring of s $ starting with the mth character and ending with the nth.
I0<=n<m, then the result is the empty string. Otherwise, error 3 results.

Slicing is performed before functions or operations are evéluated. unless brackets dictate otherwise.

Substrings can be assigned to (see LET). Ifastring quote is to be written in a string literal, then it must
be doubled.

169

Functions

The argument of a function does not need brackets if it is a constant or a variable (optionally
subscripted or sliced).

FUNCTION TYPE OF ARGUMENT RESULT
ABS number Absolute magnitude.
ACS number Arccosine in radians. Error A if x not
intherange =1to +1.
AND binary operation, right operand
alwaysa number
numeric left operand:

aifb<>0
aANDb {01“::0

i : ifb<>
string left operand. afAND b{ﬁ: i?b=00_
AND has priority 3.
ASN number Arcsine in radians. Error Aif xnot in
therange - 1to +1.
ATN number Arctangent in radians.
ATTR two arguments, x and y, both A number whose binary form codes
numbers; enclosed in brackets the attributes of line x, column y on the

screen. Bit 7 (most significant) is 1 for
flashing, 0 for steady. Bit6is 1 for
bright, 0 for normal. Bits 5to 3 are the
paper colour. Bits 2to 0 are ink colour.
Error Bunless 0< =x<=23and
0<=y<=31

BIN Thisis not really a function, but an
alternative notation for numbers: BI N
followed by a sequence of Osand 1sis
the number with such a representation
in binary. .

CHRS number The character whose codeis x,
rounded to the nearest integer.

170

CODE

cos
EXP
FN

IN

INKEYS$

INT
LEN
LN

NOT
OR

PEEK

PI
POINT

string

number (in radians)

number

number

none

number

string

number

number

binary operation,

bothoperands
numbers

number

none

Two arguments, xand y, both
numbers; enclosed in brackets

The code of the first character in % (or
0if x is the empty string).

Cosinex.

ex

F N followed by aletter callsupa
user-defined function (see DE F). The
arguments must be enclosed in
brackets - (even if there areno

arguments, the brackets must still be
present.

The result of inputting at processor
level fromportx (0<=x<=FFFFh),
Loads the beregister pair withxand
does the assembly language
instructionin a,(c).

Readsthe keyboard. The resultisthe
character representing the key
pressed if there is exactly one, else the
empty string.

Integer part (always rounds down).
Length.

Naturallogarithm (to base e).
Error Aifx<=0,

0ifx<>0,1ifx=0. NOT has priority 4.

ifb<>
20R 1#h 0
aifb=0

OR has priority 2.

The value of the byte in memory
whose address is x (rounded to the
nearestinteger). Error Bif x isnotin
the range 0t065535.

7 (3.1418927..).

lifthe pixel at (%,y)is ink
colour. 0if it is paper colour.

ErrorBunless0<=x<=255and
0<=y<=115.

171

RND

SCREENS

SGN

SIN
SQR

STRS

TAN
USR

USR

VAL

VALS

none

Two arguments, x and y bath
numbers; enclosed in brackets

number

number (in radians)
number

number

number (in radians)
number

string

string

string

number

The next pseudo-random numberin a

sequence generated by taking the
powers of 75 modulo 65537,
subtracting | and dividing by 65536.
D<=y< 1,

The character that appears, either
normally or inverted, onthe screen at
line x, column y. Returns the empty
string if the characteris not
recognised.

Error Bunless0<=%x<=23and
0<=y<=3l.

Sign of number. Returns -1 for
negative, 0 for zero or + 1 for positive.

Sine x,

Square root.
Error Aif x<0,

The string of characters
that would be displayed if x were
printed.

Tangent.

Calls the machine code subroutine
whose starting address is . On return,
the resultis the contents of the be
register pair,

The address of the bit pattern for the
user-defined graphic corresponding
to x. Error Aif xis not a single letter
between a and u, or a user-defined
graphic.

Evaluates x (without its bounding
quotes) as a numerical expression.
Error Cif x contains a syntax error, or
gives a string value, Other errors
possible, depending on the
expression. .

Evaluates x (without its bounding
quotes) as a string expression. Error C
if x contains a syntax error or gives a
numeric value. Other errors possible
(asfor VAL).

Negation.

172

Ik

The following are binary operations:

Addition (on numbers), or concatenation (on strings)
Subtraction

Multiplication

Division

Raising to a power. Error Bif the left operand is negative
Equals :

Greater than
tasstlan Both operands must be of the

Less than or - sametype. Theresultisa

number 1, if the comparison
Greater than or equalto nies
Not lto holds and 0if it dt_}es not

Functions and operations have the following prierities:

AV AAY las™~* 1 +

A4

OPERATION PRIORITY

Subscripting and slicing 12
All functions except NO T and unary minus 11
)

Unary minus (minus used to negate)
x [/

=,= (minus used to subtract)
=,2,£,45,>2,<>

NOT

AND

OR

mmhmmmmg

Statements
In this list:
1 represents a single letter.
v represents a variable.
X,¥,Z2 representnumerical expressions.
m,n represent numerical expressions that are rounded to the nearest integer.
e represents an expression.
f represents a string valued expression.
5 represents a sequence of statements separated by colons.
c represents a sequence of colour items, each terminated by commas or semicolons. A

colour item has the form of a PAPER, INK, FLASHBRIGHT, INVERSE, or
0V ER statement.

113

Note that arbitrary expressions are allowed everywhere (except for the line number at the beginning

of a statement).

All statements except INPUT, DEF FN and DATA can be used either as commands or in
programs (although they be more sensible in one than the other). A command or program line can
have several statements, separated by colons. There is no restriction on whereabouts in a line any
particular statement can occur; however, see I F and REM.

BEEPX,y

BORDER m

BRIGHT

CAT

CAT!
CIRCLEX,v,z
CLEAR

CLEARRN

CLOSE#
CLS
CONTINUE

COPY

DATA €) .8z, B3...

Sounds a note through the TV's speaker for x seconds at a pitch y semitones
above middle C (or below middle Cify is negative).

Sets the border colour around the screen and also the paper colour for the lower
part of the screen.

ErrorKunless0<=m< =7 (ie. unless mis notin the range 0to 7).

Sets brightness of characters subsequently printed: n=0 for normal, 1 for bright, 8
for transparent.
Error Kunlessnis0, 1 or8.

Does not work without microdrive, etc,
Gives a list of files currently resident on the silicon disc.
Drawsanarc of a circle, centre (x,y) radius z.

Deletes all variables, freeing the space they previously occupied.
ExecutesaRESTORE and CLS,resetsthe PLOT position to the bottom
left-hand cornerand clearsthe GO S UB stack.

Like CLEAR, butif possible, changes the system variable RAMTOP ton and puts
thenew GO0 SUB stackthere.

Does not work without microdrive, etc.
(Clear screen). Clears the display file.

Continues the program, starting where it left off last time it stopped with areport
other than 0. If the report was 9 or L, then continues with the following statement
(taking jumps into account), otherwise repeats the one where the error occurred.
Ifthe last report was ina command line then CONT I NUE will attemptto
continue the command line and will either go into a loop if the error wasin @ : 1 :
generate reportOifitwasin @ : 2, orreport Nifitwasin @ : 3 or greater.

Sends a copy of the top 32 lines of display to the printer (if attached)in quad
density Epson bit map format; otherwise does nothing.
Report Dif[BREAK] pressed.

Partofthe DAT A list. Must be in a program; otherwise has no effect.

DEF FN 1(L,.1) =e

User-defined function definition. Must be in a program,; otherwise has no effect.
Eachoflandl;tol; iseitherasingle letter or a single letter followed by $ for
string argument or result.

TakestheformDEF FN 1() =eifnoarguments.

174

L

DIM 1 (I‘I.l,...l'lk:'

DIM 1$ (my,..my)

DRAWX, v
DRAWZX,Y,z

ERASE
ERASE ! f
FLASH

FOR I=x TO y
FOR 1=x TO y STEP

FORMATf;n

GO SUBn

GOTOn
IFXxTHENSs

INKn

Deletes any array with the name 1, and sets up an array | of numbers with k
dimensions ny,... Ny.
Initialises all the valuesto 0.

Deletes any array or string with the name 1$, and setsup an array 1$ of
characters with k dimensions n,,... ny. Initialises all the valuesto "' *'. This
can be considered as an array of strings of fixed length ny, withk—-1
dimensions (n,,... nk-1). An array is undefined until it is dimensioned by
DIM.

Error 4 if there isno room to fit the array in.

DRAWZX,y,0

Draws a line from the current plot position moving x horizontallyand y
vertically relative to it, while turning through angle z. Error B if line runs
offthe screen.

Does not work without microdrive, etc.
Erase a file from the silicon disc.

Defines whether characters will be flashing or steady; n=0 for steady,
n=1for flash, n=8 for no change.

FOR l=x TO y STEP 1
z

Deletes any simple variable 1 and sets up a control variable 1 with value x,
limit y, step z, and looping address referring to the statement after the

F O R statement. Checks if the initial value is greater (if step> =0) or less
(if step <0) than the limit, and if so then skips to statement NEXT |,
giving error 1 ifthereisnone. See NEXT.

Error 4 if there is no room for the control variable.

Sets the baud rate of device f to baud rate n. Valid device "p" or "' P"
(the RS232), valid baud rates 75to 19200.

Pushes the line number ofthe G0 SUB statement onto a stack; then as
GO TOn

Error 4 can occur if there are not enough RE TURNs.
Jumpsto line n (or, if there is none, the first line after that),

Ifx is true (non-zero), then s is executed. Note that s comprises all the

statements until the end of the line, The form ‘1 F x THE N line number' is
not allowed.

Sets the ink (foreground) colour of characters subsequently printed; nis
inthe range Oto 7 for a colour, n=8 for transparent or 9 for contrast.
ErrorKunless0<=n<=9,

175

INPUT..

INVERSEn

LETv=e

LIST
LISTn

LLIST
LLISTn
LOADT

LOAD f DATA

The'.. isasequenceof INPUT items, separated asina PR I N T statement by
commas, semicolons or apostrophes. An I NPUT item can be any of the
following:

() AnyPRINT itemnotbeginning witha letter.

(i) Avariable name.

(iii) LINE,thenastringtype variable name. The PRINT items and separators
in(i)aretreated exactlyasin PR INT, except that everything is printed in
the lower part of the screen. For (ii) the computer stops and waits for input of
an expression from the keyboard -the value of this is assigned tothe
variable. The input is echoed in the usual way and syntax errors give the
flashing & . For string type expressions, the input buffer is initialised to
contain two string quotes (which can be erased if necessary). If the first
characterinthe inputis STOP ([SYMB SH IFT] A),then the program
stops with error H. (iii) is like (ii) except that the input is treated as a string
literal without quotes, and the § T 0 P mechanism won't work - tostopit you
must press cursor down < instead.

Controls inversion of characters subsequently printed. Ifn=0,then characters -
are printed in normal video, as ink colour on paper colour. If n= 1, charactersare
printed in inverse video, ie. paper colour on ink colour. Error K occurs (see part
28 of this chapter) if n is neither O nor 1.

In48BASIC, pressing the [INV VIDEO] key is equivalentto INVERS E 1;
pressing the [TRUE VIDEO] key is equivalentto INVERSE @.

Assigns the value of e to the variable v. LET cannot be omitted. A simple
variable is undefined until it is assigned to in eithera LET, READ or INPUT
statement. If v is a subscripted string variable, or a sliced string variable
(substring), then the assignment is Procrustean (fixed length), ie. the string value
of e is either truncated or filled out with spaces on the right, to make it the same
length as specified inv.

LISTA@.

Lists the program to the upper part of the screen, starting at the first line whose
number is at least n, and makes n the current line.

LLISTA@.

Like L I ST, butusing the printer.

Loads the program and variables,
O

Loads a numeric array.

LOAD f DATA $(Q)

Loads character array.

LOAD f CODE m,n

Loads (at most) n bytes, starting at address m.

176

A

LOAD f CODE m
Loads bytes starting at address m.

LOAD f CODE Loadsbytes backtothe address from where they were saved.

LOAD f SCREENS
LOAD f CODE 16384 ,6912.

LOAD ! Like LOAD (for options, see above), but uses the silicon disc.
LPRINT.. Like PRI N T, butusingthe printer.
MERGE f Like LOAD f, butdoes notdelete old program lines or variables, except to

make way for new ones with the same line number or name.,
MERGE ! f Like MERGE f, butusesthe silicon disc.
MOVE f,,f Does not work without the microdrive, etc.

NEW Starts the BASIC system afresh, deleting any program and variables, and using
the memory up to and including the byte whose address is in the system variable
RAMTOP. The system variables UDG, P-RAMT, RASP and PIP are preserved,
Returns control to the opening menu, but does not affect the silicon disc.

NEXT | (i) Finds the control variable .
(i) Addsitssteptoitsvalue.
(iii) Ifthe step > =0and the value > the limit; or if the step <0and the value <the
limit, then jumps to the looping statement.
Error 2ifthere isnovariable .
Error 1if variable | does not match control variable in F OR statement.

OPEN # Does not work without the microdrive, etc.

OUTm,n Outputs byte n at port m at processor level. (Loads the bc register pair with m,
the aregister with n, and does the assembly language instruction: out (c),a.)
Error Bunless 0<=m<=65535and -255<=n< =255,

OVERn Controls overprinting for characters subsequently printed.
Ifn=0, characters obliterate previous characters at that position.
Ifn=1, then new characters are mixed in with old charactersto give ink colour
wherever either (but not both) had ink colour, and paper colour where they were

both paper or both ink.
ErrorKunlessnisOor 1.
PAPERN Like INK, but controlling the paper (background) colour,
PAUSEn Stops computing and displays the display file for n frames (at 50 frames per

second - 60 frames per second in USA), or until a key is pressed. If n=0then the
pause is not timed, but lasts until a key is pressed.
Error Bunless 0<=n<=65535,

177

PLAY | (,f,1,8,..)

PLOTc;m,n

POKEm,n

PRINT..

Interpretup to eight strings (see part 19 of this chapter) and play them
simultaneously. The first three strings play via the TV speaker and (optionally) via
the MIDI port; any subsequent strings can only be output via MIDI.

Prints an ink dot (subjectto 0 VER and I NVE RS E) atthe pixel (m,n), moving
the PLOT position thereto.

Unless the colour items ¢ specify otherwise, the ink colour at the character
position containing the pixel is changed to the current permanent ink colour,
and the others (paper colour, flashing and brightness) are left

unchanged.

ErrorBunless0<=m<=255and0<=n<=1175.

Writes the value n to the byte in store with address m.
Error Bunless 0<=m<=65535and - 255< =n<=255.

The'..)isa sequence of PR I N T items, separated by commas, semicolons or
apostrophes, and they are written to the display file for output to the

sCreen.

A semicolon between two items has no effect - it is used purely to separate the
items, a comma outputs the comma control character, and an apostrophe
outputs the [ENTER] character (which is output by defaultifa PRINT
statement does not not end in a semicolon, comma or apostrophe).

APRINT itemcanbe;

(i) Empty, ie. nothing.

(ii) Anumerical expression.
First a minus sign is printed if the value is negative. Now let x be the modulus
of value. If x<=10"%or x> =103, then it is printed using scientific notation.
The mantissa part has up to eight digits (with no trailing zeros), and the
decimal point (absent if only one digit) is after the first. The exponent part is
E, followed by + or -, followed by one or two digits. Otherwise x is printed in
ordinary decimal notation with up to eight significant digits, and no trailing
zeros after the decimal point. A decimal point right at the beginning is always
followed by a zero, so for instance .03 and 0.3 are printed as such. 0is printed
asasingle digit 0.

(iif) A string expression.
The tokens inthe string are expanded, possibly with a space before or after.
Control characters have their control effect. Unrecognised characters print
as ?.

(iv) ATm,n.
Outputs an AT control character followed by a byte for m (the line number)
and a byte for n (the column number).

(v) TABn.
Outputs a TAB control character followed by two bytes for n (least
significant byte first) - the tab stop.

(vi) A colour item, which takes the form of a PAPER, INK, FLASH,
BRIGHT, INVERSE or OVER statement.

178

RANDOMIZE

RANDOMIZEn

REF\D'Jl,Vg,...?]:

REM...

RESTORE
RESTOREn

RETURN

RUN

RUNR
SAVE(

SAVE f LINEm

¢
|

J
RANDOMIZE @.

Sets the system variable (called SEED) used to generate the next value of RN D i
n<>0, then SEED is given the value n. Ifn=0then SEED is given the value of
another system variable (called FRAMES) that counts the frames so far
displayed on the screen, and so should be fairly random. Error B unless
0<=n<=65535.

Assigns to the variable using successive expressionsinthe DATA list.

Error Cif an expression is the wrong type. _

Error Eif there are variables left to be read when the D A T A list is exhausted.
Noeffect."..." can be any sequence of characters terminated by [ENTER]. No
statements in the line will be acted upon after the R E M, and colons will not be
treated as separators,

RESTORE 8.

Restoresthe DA TA pointertothe first DA T A statement in line n. If line n doesn’t
exist (orisnota D AT A statement), then the first D A T A statement after linen is
restored, and the next RE A D statement will start reading from there.
Takesareferencetoastatementoffthe 60 SUB stack, and jumpstothe line
afterit,

Error 7when there is no statement reference on the stack - (this probably means
that there is some mistake in your program - ensure thatall G0 SUBsare
balanced by RETURNSs).

RUN @.

CLEAR,andthenGO TOn

Saves the program and variables, giving it the name f.
Error Fif fis empty, oris greater than ten characters inlength. See part 20 of this
chapter.

Saves the program and variables so that if they are loaded, there is an automatic
jump to line m.

SAVE f DATA ()

Saves the numeric array.

SAVE f DATA $(Q)

SAVE f CODEm,

Saves the character array.
n
Savesn bytesstarting ataddress m.

SAVE f SCREENS

SAVE ! f
SPECTRUM

STOP

VERIFY

SAVE f CODE16384,691 2.Saves the current screen display.
Like S AV E, but operates with the silicon disc. See part 20 of this chapter.

Switches from 128 BASIC into 48 BASIC, maintaining any program in RAM. There
isnoswitch back to 128 BASIC.

Stops the program with report 9. CONT INUE will resume the progfam at the
following statement.

Like LOAD, but the information on cassette is not loaded into RAM -instead, it is
just compared against what is already in RAM.
Error R if the comparison shows different bytes.

179

Part 31
Example Programs

Programs...

Days
IChing
Pangolins
Flag
Hangman

This section contains some example programs for your interest. If you wish to use the programs more
than once, don't forgetto $ AV E them permanently onto cassette, or temporarily into the silicon disc.

Days

The first of these programs requires a date (in this century) to be input, and then gives the day of the
week which corresponds to this date...

18 REM convert date to day
20 DIM d$(7,6): REM days of week
30 FOR n=1TO 7. READ d$(n}): NEXT n
40 DIM m(12): REM lengths of months
50 FOR n=1TO 12: READ m(n}: NEXT n
100 REM input date
110 INPUT “"day?’’;day
120 INPUT "month?”’;month
130 INPUT “year {20th century only}?";year
140 IF year<1901 THEN PRINT “20th century starts at 1901"";
GO TO 100
150 IF year>2000 THEN PRINT "'20th century ends at 2000"":
GO TO 100
160 IF month<<1 THEN GO TO 210
170 IF month>12 THEN GO TO 218
180 IF year/4—INT(year/4)=0 THEN LET m(2)}=29: REM leap year
190 IF day>m(month) THEN PRINT "“This month has only *;
m{month);” days.”: GO TO 500
200 IF day>=0 THEN GO TO 30¢
210 PRINT “Stuff and nonsense. Give me a real date.”
220 GO TO 500

...continued on next page

180

A

300 REM convert date to number of days since start of century
310 LET y=year—1901

320 LET b=365"y+INT (y/4): REM number of days to start of year
330 FOR n=1 TO month—1: REM add on previous months
340 LET b=b+mi(n}: NEXT n

350 LET b=b+day

400 REM convert to day of week

410 LET b=b—7* INT (b/7)+1

420 PRINT day;"/”;month;"/"";year

430 FOR n=6 TO 3 STEP —1: REM remove trailing spaces
440 IF d$(b,n) <> " " THEN GO TO 460

450 NEXT n

460 LET e$=d$(b, TO n)

470 PRINT” is a ”'; e$; “day”

500 LET m(2)=28: REM restore February

5108 INPUT “again?”, a$

520 IF a$="n" THEN GO TO 540

530 IF a$ <> "N"" THEN GO TO 100

546 STOP
1000 REM days of week
1010 DATA “"Mon”, “Tues”, “"Wednes"
1020 DATA “Thurs”, “Fri”, ““Satur”, “Sun”
1100 REM lengths of months
1110 DATA 31, 28, 31, 30, 31, 30
1120 DATA 31, 31, 30, 31, 30, 31

181

IChing

Here is a program to throw coins for the T Ching’. The patterns it produces are ‘upside down'
-however, the results should still prove acceptable...

5 RANDOMIZE
18 FOR m=1 TO 6: REM for 6 throws
20 LET c=0: REM initialize coin total to @
30 FOR n=1 TO 3: REM for 3 coins
40 LET c=c+2+INT (2*RND)
50 NEXT n
60 PRINT ~* ',

v

78 FOR n=1 TO 2: REM 1st for the thrown hexagram, 2nd for
the changes
80 PRINT "——-";
90 IF c=7 THEN PRINT ”-";
100 IF ¢c=8 THEN PRINT * '
110 IF c=6 THEN PRINT “X'*:: LET ¢=7
120 IF ¢=9 THEN PRINT “0"":: LET c=8
130 PRINT “—— -
140 NEXT n
150 PRINT
160 INPUT a$
170 NEXT m: NEW

After you have typed in this program, RUN it, then press [ENTER] five times to get the two
hexagrams. Look these up in a copy of the Chinese Book of Changes. The text willdescribe a situation
and the courses of action appropriate to it, and you must ponder deeply to discover the parallels
between that and your own life. Press [ENTER] a sixth time, and the program will erase itself - this is to
discourage you from using it frivolously!

Many people find the texts are always more apt than they would expect on grounds of chance; this
may or may not be the case withyour +2 . In general, computers are pretty godless creatures.

182

X

Here 15 a program to_play ‘pangolins’. You think of an animal, and the computer tries to guess what itis
by asking you questions that can be answered either ‘yes’ or 'no’. If it has never heard of your animal

bgfo:g, then it asks you to type in a question that it can use next time to find out whether someone’s
given it your new animal...

Pangolins

5 REM pangolins
10 LET ng=100: REM number of questions and animals
15 DIM g$(nq,50): DIM a(nq,2): DIM r$(1)
20 LET qf=8
30 FOR n=1TO gf/i2—1
49 READ g%(n): READ a(n,1}: READ a(n,2)
50 NEXT n
60 FOR n=n TO gf—1
7@ READ q${n): NEXT n

160 REM start playing

11@ PRINT “Think of an animal.”,”"Press any key to continue.”
120 PAUSE 0

130 LET c=1: REM start with 1st question
140 IF alc,1)=0 THEN GO TO 300

150 LET p$=q%(c): GO SUB 910

160 PRINT 7. GO SUB 1000

170 LET i =1: IF r$="y"” THEN GO TO 210
180 IF r$="Y" THEN GO TO 219

190 LET i =2: IF r$=""n"" THEN GO TO 210
200 IF r$<-="N" THEN GO TO 150

210 LET c=alc,i): GO TO 140

300 REM animal

310 PRINT “Are you thinking of”

320 LET p$=q$(c): GO SUB 900: PRINT 7"
330 GO SUB 1000

340 IF r$="y" THEN GO TO 400

350 IF r$="Y" THEN GO TO 400

360 IF r$="n"" THEN GO TO 500

370 IF r$="N"" THEN GO TO 500

380 PRINT “Answer me properly when I'm"”,"talking to you.”: GO
TO 300

400 REM guessed it
410 PRINT "I thought as much.”: GO TO 800

..continued on next page

183

560 REM new animal

510 IF gf>ng—1 THEN PRINT “I'm sure your animal is very”,
“interesting, but | don’t have”,”room for it just now.”: GO TO 800

520 LET g$(qf)=q$(c): REM move old animal

530 PRINT “What is it, then?”": INPUT qs(qf+1)

540 PRINT “Tell me a question which dist-","inguishes
between

550 LET p$=q$(qf): GO SUB 900: PRINT “ and”

560 LET p$=q$(qf+1): GO SUB 900: PRINT ~* *

570 INPUT s$: LET b=LEN s$

580 IF s${b)=""?"" THEN LET b=b—1

590 LET q$(c)=s$(TO b): REM insert question

600 PRINT ""What is the answer for” '

610 LET p$=qS(qf+1): GO SUB 900: PRINT "'?"

620 GO SUB 1000

630 LET i =1: LET io=2: REM answers for new and old animals

640 IF r$="y" THEN GO TO 700

65@ IF r$="Y" THEN GO TO 700

660 LET i =2: LET io=1

670 IF r$="n" THEN GO TO 700

580 IF r$="N" THEN GO TO 700

690 PRINT “That's no good. ": GO TO 600

780 REM update answers

710 LET alc,i)=qf+1: LET a(c,io)=qgf

720 LET qf=qf+2: REM next free animal space
730 PRINT "“That fooled me.”

800 REM again?

810 PRINT “Do you want another go?"’: GO SUB 1000
820 IF r$="y" THEN GO TO 100

830 IF r$=""Y" THEN GO TO 100

840 STOP

900 REM print without trailing spaces
905 PRINT ~ ",

910 FOR n=5@ TO 1 STEP —1

920 IF p$(n)<>" " THEN GO TO 940
930 NEXT n

940 PRINT p$(TO n);: RETURN

...continued on next page

184

Flag

1000 REM get reply

1010 INPUT r$: IF r$§="""" THEN RETURN

1020 LET r$=r$(1): RETURN

2000 REM initial animals

2010 DATA “Does it live in the sea’ 4,2
2020 DATA “Is it scaly”,3,5

2030 DATA “Does it eat ants”,6,7

2040 DATA “a whale”, “a blancmange”, "“a pangolin”, “an ant”

Here is a program to draw a Union Jack...

5 REM union flag
10 LET r=2: LET w=7: LET b=1
20 BORDER 0: PAPER b: INK w: CLS
30 REM black in bottom of screen
406 INVERSE 1
50 FOR n=40 TO 0 STEP —8

60 PLCT PAPER 0.7,n: DRAW PAPER 0:241.0

70 NEXT n: INVERSE 0
108 REM draw in white parts
105 REM St. George

110 FOR n=0TO 7
120 PLOT 104+n,175: DRAW 0,—35
130 PLOT 151—n,175: DRAW 0,—35
149 PLOT 151—n,48: DRAW 0,35
150 PLOT 104+n,48: DRAW 0,35
160 NEXT n
200 FOR n=90 TO 11
210 PLOT 0,139—n: DRAW 111.0
220 PLOT 255,139—n: DRAW —111,0
230 PLOT 255,84+n: DRAW —111,0
240 PLOT 0,84+n: DRAW 111,0
250 NEXT n

..continued on the next page

185

300 REM St. Andrew

310 FOR n=0 TO 35

320 PLOT 1+2*n,175—n: DRAW 32,0

330 PLOT 224—2*n,175—n: DRAW 16,0

340 PLOT 254—2%n,48+n: DRAW — —-32,0

350 PLOT 17+2*n,48+n: DRAW 16 K]

360 NEXT n

370 FOR n=0 TO 19

380 PLOT 185+2%*n,140+n: DRAW 32,0

390 PLOT 200+2*n,83—n: DRAW 16,0

400 PLOT 39—-2*n,83—n: DRAW 32,0

410 PLOT 54—2%n,140+n: DRAW -16,0

420 NEXT n

425 REM fill in extra bits

430 FOR n=0 TO 15

440 PLOT 255,160+n: DRAW 2*n—30.0

450 PLOT 0,63—n: DRAW 31-2*n,0

460 NEXT n

470 FORn=0TO 7

480 PLOT 0,160+n: DRAW 14—2*n.0

485 PLOT 255,63—n: DRAW 2*n—15,0

490 NEXT n

500 REM red stripes

510 INVERSE 1

520 REM St. George

530 FOR n=96 TO 120 STEP 8

540 PLOT PAPER r;7,n: DRAW PAPER r;241,0

550 NEXT n

560 FOR n=112 TO 136 STEP 8

570 PLOT PAPER r;n,168: DRAW PAPER r.0,—-113
580 NEXT n

600 REM St. Patrick

610 PLOT PAPER r;170,148: DRAW PAPER ;70,35
620 PLOT PAPER r;179,140: DRAW PAPER r;790,35
630 PLOT PAPER r;199,83: DRAW PAPER r;56,—28
640 PLOT PAPER r;184,83: DRAW PAPER r;70,—35
650 PLOT PAPER r;86,83: DRAW PAPER r;—79,—35
660 PLOT PAPER r;72,83: DRAW PAPER r;—70,—35
670 PLOT PAPER r;56,140: DRAW PAPER r;—56,28
68@ PLOT PAPER r;71,140: DRAW PAPER r- ;—798,35
690 INVERSE 0: PAPER 0: INK 7

186

If you aren't British, have a go at drawing your own flag. Tricolours are fairly easy, although some of the
colours - for instance the orange in the Irish flag - might present difficulties. If you're trying to create the
stars and stripes in the flag of the USA, you might be able to fit the * characters in. Once you've drawn a
flag, you could store it away in the silicon discusing SAVE ! "flag" SCREENS,andthendrawa
different flag and save it under a different name. There’s room for about 10 different screens in the silicon
dise, so you could put on quite a varied display.

Hangman

Here is a program to play hangman. In case you're not familiar with the game - one player enters a
word, and the other player tries to guessiit...

5 REM Hangman

18 REM set up screen

20 INK 0: PAPER 7: CLS

30 LET x=240: GO SUB 1000: REM draw man

40 PLOT 238,128. DRAW 4,0: REM mouth
100 REM set up word
110 INPUT w$: REM word to guess
120 LET b=LEN w$: LET v§=""
130 FOR n=2 TO b: LET v$=v$+" ”
140 NEXT n: REM vS=word guessed so far
150 LET ¢=0: LET d=0: REM guess & mistake counts
160 FOR n=0 TO b—1
170 PRINT AT 20,n;"-";
180 NEXT n: REM write —'s instead of letters
200 INPUT “"Guess a letter: "';g$
210 IF g$="" THEN GO TO 200
220 LET g$=g$(1): REM 1st letter only
230 PRINT AT 0,c:g$
240 LET c=c+1: LET u$=v$
250 FOR n=1TO b: REM update guessed word
260 IF w$(n)=g$ THEN LET v$(n)=g$
278 NEXT n
280 PRINT AT 19,0;vS$
2390 IF v$=w$ THEN GO TO 500: REM word guessed
300 IF v§<>u$ THEN GO TO 200: REM guess was right
400 REM draw next part of gallows
410 IF d=8 THEN GO TO 600: REM hanged
420 LET d=d+1
430 READ x0,y0,x,y
440 PLOT x0,y0: DRAW x.,y
450 GO TO 200

..continued on next page

181

500 REM free man
510 OVER 1: REM rub out man
520 LET x=240: GO SUB 1000
530 PLOT 238,128: DRAW 4,0: REM mouth
540 OVER @: REM redraw man
550 LET x=146: GO SUB 1000
560 PLOT 143,129: DRAW 6.0, Pl/2: REM smile
570 GO TO 800
600 REM hang man
610 OVER 1: REM rub out floor
620 PLOT 255,65: DRAW —48,0
630 DRAW 0,—48: REM open trapdoor
640 PLOT 238,128: DRAW 4,0: REM rub out mouth
650 REM move limbs
655 REM arms
660 PLOT 255,117: DRAW —15,—15: DRAW —15,15
670 OVER 0
680 PLOT 236,81: DRAW 4,21: DRAW 4,—21
690 OVER 1: REM legs
700 PLOT 255,66: DRAW —15,15: DRAW -15,—-15
710 OVER 0
720 PLOT 236,60: DRAW 4,21: DRAW 4,-21
730 PLOT 237,127: DRAW 6.0, —PU2: REM frown
740 PRINT AT 19,0:w$
800 INPUT "‘again? '":a$
810 IF a$=""" THEN GO TO 850
820 LET a$=a$%{1)
830 IF a$=""n"" THEN STOP
840 IF a$(1)=""N"" THEN STOP
850 RESTORE : GO TO 5
1000 REM draw man at column x
1018 REM head
1020 CIRCLE x,132,8
1030 PLOT x+4,134: PLOT x—4,134: PLOT x,131
1040 REM body
1050 PLOT x,123: DRAW 0,—20
1055 PLOT x,101: DRAW 0,19
1060 REM legs
1070 PLOT x—15,66: DRAW 15,15: DRAW 15,—15

-.continued on next page

188

1080 REM arms

1090 PLOT x—15,117: DRAW 15,—15: DRAW 15,15
1100 RETURN

2000 DATA 120,65,135,0,184,65,0,91

2010 DATA 168,65,16,16,184,81,16,— 16

2020 DATA 184,156,68,0,184,140,16,16

2030 DATA 204,156,—20,—20,240,156,0,— 16

189

Part 32
Binary and hexadecimal

Subjects covered...

Number systems
Bits and bytes

This section describes how computers count, using the binary system.

Most european languages count using a more or less regular pattern of tens -in English, for example,
although it starts off a bit erratically, it soon settles down into regular groups...

twenty, twenty one, twenty two,... twenty nine
thirty, thirty one, thirty two,... thirty nine
forty, forty one, forty two,... forty nine

-.and so on, and this is made even more systematic with the numerals that we use. However, the only
reason for using ten (the decimal system) is that we happen to have ten fingers and thumbs.

Instead of using the decimal system - based on ten, computers use a form of binary called
hexadecimal (or 'hex’ for short) which is based on sixteen. As there are only ten digits available in our
number system we need six extra digits to do the counting. So we use A, B, C, D, E and F. And what
comes after F? Well, just as we, with ten fingers, write 10 for ten (a hand full), so computers use 10 for
sixteen. Comparing counting in decimal to hex...

DECIMAL HEX

Bt et e e e et e e D OO] O N W GO DO e O
=1 O U7 ke GO DD e 3

w oo [=2 004 B S Y
SESTMmyOwn =]

continued...

190

25 19

26 1A
27 1B
~efe...

31 1F
32 20
33 21
«ete...

158 9E
159 ar
160 Al
161 Al
..etc...

255 FF
256 100
..andsoon.

If you are using hex notation and you want to make the fact quite plain, then write ‘i’ at the end of the
number, and say ‘hex’. For instance, for one hundred and fifty eight (decimal), write ‘9Eh’ and say ‘nine
Ehex'.

You may be wondering what all this has to do with computers. In fact, computers behave as though
they had only two digits, represented by a low voltage (or off) known as 0, and a high voltage {oron)
known as 1. This is called the binary system, and the two binary digits are called bits - so a bit is either
Oorl.

Soto expand the previous table of counting to include binary...

DECIMAL HEX BINARY
0 0 0

1 1 1

2 2 10

3 3 11

4 4 100

5 5 101

6 6 110

1 1 111

8 8 1000
8 9 1001
10 A 1010
11 B 1011
12 Cc 1100
13 D 1101
14 E 1110
15 F 1111
16 10 10000
17 11 10001
wetC...

191

It is customary to ‘pad out’ binary numbers with leading zeros so that they always contain at least four
bits - for example, 0000, 0001, 0010, 0011 (representing 0to 3 decimal).

Converting between binary and hex is very easy (use the previous table to help you):

To convert a binary number to hex, split the binary number into groups of four bits (starting at the right
of the number) and convert each group into its corresponding hex digit. Finally, put the hex digits
together to form the complete hex number. For example, to convert 10110100 binary into hex, convert
the first (right hand) group of four bits (0100) to 4 hex, then convert the next group of four bits (1011) to
B hex, put them together, and you have the complete hex number - B4h. If the binary number is longer
than eight bits, you can continue converting each group of four bits into one hex digit. For example,
11101011110000 binary corresponds to 3AFOh.

To convert a hex number to binary, change each hex digit into four bits (again, starting at the right)
then put the bits together to form the complete binary number. For example, to convert F3h to binary,
first convert 3 which corresponds to 0011 binary (remember - you must use zeros to make the binary
number four bits’' long), then convert F which corresponds to 1111 binary, put them together, and you
have the complete binary number-11110011.

Although computers use a pure binary system, humans often write the numbers stored inside a
computer using hex notation - after all, the number 3AF(h (for example) is far more likely to be easily
and correctly read than 0011101011110000 in sixteen bit binary notation.

The bits inside the computer are mostly grouped into sets of eight, or bytes. A single byte can
represent any number from 0to 255 decimal (11111111 binary or FFh).

Two bytes can be grouped together to make what is technically called a word. A word can be
expressed using sixteen bits or four hex digits, and represents a number from 0 to 65535 decimal
(1111111111111111 binary or FFFFh).

Abyte isalways eight bits, but words vary in length from computer to computer.

The BIN notation used in part 14 of this chapter provides a means of entering numbers in binary on

the +2 ,ie. BIN 10 represents 4 decimal BIN 111 represents 7 decimal, BIN 11111111
represents 255 decimal, and soon.

Youcan only use Osand Ls for this, so the number must be a non-negative whole number - for instance,
youcannotuse BIN =11 to represent -3 decimal, but youcanuse ~BIN 11 instead. The number
must also be no greater than decimal 65535 - ie. it can’t have more than sixteen bits. If you pad out a
binary number with leading zeros, for example, BIN B8000@61, BIN will rightly ignore them
and treatthe number asifitwere BIN 1.

192

Chapter9
Using the calculator

Subjects covered...

Selecting the calculator

Entering numbers

Running total

Using built-in mathematical functions
Editing the screen

Assigning variables

Exit-ing from the calculator

The +2 canbe used asa full function calculator.

To use the calculator, call up the opening menu and select the option‘Calculator’. (If you don't
know how to select a menu option, refer back to chapter 2.)

The calculator may be selected as soon asthe +2 is switched on. Alternatively, if you are working
on a 128 BASIC program, you may select the calculator by choosing the ‘E x 1 t' option from the edit
menu (which returns you to the opening menu), at which point you can selectthe ‘Calculator’
option. Note that any BASIC program which was being worked on when you selected the calculater,
will be remembered and restored when you exit from the calculator.

When you have selectedthe‘Ca L cu L a t o r’ option, the screen will change to...

~andthe +2'scalculator is ready to accept your first entry. Typein...
6+4

193

As soon as you press [ENTER], the answer 1@ will appear. (Note that you don't key in = as you would
on a conventional calculator.)

You will see that the cursor is positioned to right of the answer, which is a mnning total (like on a
conventional calculator). This means that you can simply type in the next operation to be carried out
on the running total (without having to type in a whole new calculation). So, with the cursor still
positioned to the right of the 1@ onthe screen, typein...

/5
..and back comesthe answer 2. Now typein...
*PI

This produces the result 6 . 2831853 on the screen. The +2 has used its built-in 7 function - all

you had to do was type in P I. This applies to all the +2’s mathematical functions. To demonstrate,
typein...

*ATN 60

-.which gives the result 9.7648943. You may also ‘edit the contents of the screen. To

demonstrate, move the cursor (using the cursor left key ¢)to the beginning of the line and then type
in‘INT’sothatthe line reads...

INT 9.7648943

-.and as soon as [ENTER] is pressed, back comes the answer 9, This also demonstrates that the +2
doesn't have to perform a calculation in order to print the value of an expression. As another example,
press [ENTER] thentype...

1E6

.and back will come the value of that expression. Notice that before you typed in“1E 6’, you pressed
[ENTER] onits own - thistellsthe +2 that you are about to start a new calculation.

One extremely useful feature of the +2's calculator is that it will allow youto assign values to variables
and then use them in subsequent calculations. This is achieved by using the LET statement (as you
would in BASIC). To demonstrate, type in the following...

LET x=18

(You must then press [ENTER] twice for the +2 to accept the variable assignment.) Now verify that
the variable x is being used, by typing...

x+98@
...then...

+X*X

194

If you are using the calculator whilst working on a BASIC program, then any variables used by the
calcuhturshmﬂdbechoaensoﬂ\atmeydonorconﬂictwimmmusedbythepmgrmiwelt

BASIC keywords are not allowed to be used as variable names.
When you have finished using the calculator, pressthe [EDIT] key. The screen will change to...

Selectthe ‘E x i t’optiontoretumtotheope:ﬁngmenu.lt?ouwarewnrkingonalE&B&SICpmgram
beforeyoustaﬂeduﬁngthecﬂmﬂator.thenymmayremtomepmmmbyselecﬁngﬂaeopﬁon
‘128 BASIC'. (If you wish to continue using the calculator, then select the ‘Calculator’
option.)

195 '

196

Chapter 10
Connecting peripherals to your +2

Subjects covered...

Joystick(s)

VDU Monitor

Amplifier

Printer

Serial devices

MIDI device

Keypad

Interface One and microdrives
Other expansion devices

The +2 is capable of operating with a wide range of add-ons (peripherals) such as joystick(s), VDU
monitor, amplifier, etc. This section contains all the information necessary to connect these.

Joystick(s)
We recommend that you use the Sinclair SJS1 joystick(s) withthe +2. Any other type of joystick (eg.
Atari) will not operate directly, as its connecting plug is wired differently.

There are two joystick sockets at the left hand side of the +2.In general, games use the JOYSTICK 1
socket.

If a program offers you a choice of joystick types, then choose the Interface Two’ (or ‘Sinclair’) option
(asthe +2'sjoystick circuitry is designed to work exactly like the Interface Two).

Itis safe to plug in (or unplug) a joystick while the +2 is switched on.

197

FUNCTION JOYSTICK 1and JOYSTICK 2 sockets:

notused
ground
not used
fire

up

right
left

ground
down

lﬂ'ﬂﬂﬂ"iﬂuﬂ-'ﬂﬂl—'a

VDU Monitor

The +2 can use a monochrome or colour VDU monitor instead of (or in addition to) a TV. If the
monitor that you wish to use isn't advertised as being Spectrum +2 (or Spectrum 128) compatible,
thenthe chances are you'll have to buy a lead for it (contact your Sinclair dealer).

Note that unless your monitor accepts a BRIGHT signal it will only display 8 of the 16 available colours.

RGB socket:

o
2

SIGNAL

5

composite PAL 1.2V pk-pk/15 ohms
0 volts

bright
composite sync
vertical sync

00 =1 O T B W DD e

blue

EEEEEN

198

When using a monitor, some provision may have to be fnade for sound (if required). If the monitor has
an audio input, then this should be connected to the SOUND socket at the back of the +2 ; if the
monitor is not capable of producing sound, then an external amplifier will have to be used. See the
next paragraph for further details,

Amplifier

The +2 normally reproduces sound through the TV set it is connected to. However, if a VDU
monitor is being used, or if you would like to record or amplify the sound further, then a sound signal is
available from the SOUND socket at the back of the +2. This is a 3.5mm mono jack socket producing
200mV pk-pk at approximately 5kohms impedance. When using an amplifier, it is worth
remembering that the datacorder’s Toad’ and ‘save’ signals are also fed to the SOUND socket (and
therefore the amplifier’s volume control should be turned down when performing these operations).

Another point to note is that the level of sound produced by BE EP is set to be the same as that of all
three channels of PLAY running at the same time. In practice, this means that BE E P will sound quite
alotlouderthan P LAY (which may cause problemsif sound levels are critical).

It is safe to plug in (or unplug) an amplifier, tape recorder, etc. into the SOUND socket while the +.__
2 isswitched on.

" SOUND socket:

RING
Tip

GROUND ALDIC OUT

Printer (and other serial devices)

The +2 may be used with most serial printers conforming to the R5232 standard. It is recommended
that inexperienced users should not attempt to experiment with interface connections. You should

obtain a suitable computer-to-printer lead from your Sinclair dealer, and you should always follow the
printer manufacturer’s connection and operating instructions.

The printer should be connected to the R$232/MIDI socket at the rear of the +2.

To connect any serial device tothe +2, you will require a Spectrum +2 serial lead - available from
your Sinclair dealer. If you wish to wire-up your own, then the connections are as follows (on the next
page)...

199

PIN FUNCTION RS232 socket:

6 5 4 3 2 1
RXD I::------

I I U
=)

MIDI device

Although the +2's MIDI (Musical Instrument Digital Interface) port shares the same socket as the
RS232, you will need a different lead for it (available from your Sinclair dealer). The lead should be
connected into the 'MIDI IN' socket on your synthesiser, drum machine, etc. There is no provision for
the +2 to receive MIDI data - it can only act as a source. No setting up of the MIDI is nécessary
before use (except the commands within P LA Y to furn it on).

Using the MIDI interface will not disturb the RS232's baud rate setting.

MIDI socket:

[
| B
E-
B
Im
I_;

PIN | FUNCTION

notused
not used
not used
DATA OUT
notused

WU s D DD e

200

Keypad

The keypad (check availability with your Sinclair dealer) offers access to a wide range of editing

facilities such as ‘move by page’, ‘delete by word’ and ‘delete to end of line’, It may also be used as a
calculator keyboard.

The keypad should be connected to the KEYPAD socket at the rear ofthe +2.

Interface One and microdrives

The +2 will work with the ‘Interface One’ and with microdrives. Full instructions for use come with
these, and they are available from your Sinclair dealer.

The ‘Interface One’ and microdrives are connected to the EXPANSION 1/0 socket at the rear of the
+2.

Other expansion devices

The +2 canconnecttoa véry wide range of peripherals via the EXPANSION I/O socket at the rear
of the machine. Although this socket is much the same as on the old-style Spectrum 48K, there is no
guarantee that a device which ran correctly on a Spectrum 48K will run on a +2. You should,

therefore, before you purchase any expansion device or add-on, verify that it will work with the +2,
and not just with a 48K Spectrum.

WARNING - It is very dangerous indeed to plug in (or unplug) any device from the
EXPANSION 1/0 socket while the +2 is switched on - you will probably damage both
the +2and the expansion device if you do so.

201

EXPANSION 1/O socket:

U 27 26 25 24 23 22 21 20 19 18 7 % 15 W 13 12 1 W0 % & 7 6 5 4 3 2 1
e T e O e T e O e I e O e s I e 8 e s 1 e O e e e e B e e e I e T e O s e O e s |

L 27 26 25 24 23 22 21 20 19 B 17 W B ¥ 13 12 1N W % 88 7 6 5 4 3 2 1
PIN UPPERROW (U) LOWERROW (L)
1 Al5 Al4
2 R13 A12
3 DI +5V
4 notused +9¥
5 DO ov
6 D1 ov
7 D2 CK
8 D6 RO
9 D5 Al

10 D3 A2

11 D4 A3

12 INT IORQGE
13 NMI ov

14 HALT not used
15 MREQ notused
16 IORQ notused
17 RD notused
18 WR BUSRQ
19 5V RESET
20 WAIT A7
21 +12V A6
22 .12V A5

23 Mi A4
24 RFSH ROMCS
25 A BUSACK
26 Al0 K9

27 not used All

202

Index

A

ABS ...
Beriallead ...
Amplifier

Animation

fne <y

Arithmetical express:-;;s

Arrays ..,

ASN ..
Assemble:'

AT.

Attributes

B
BASIC
Baudrate

271 S,

BORDER -, .

Brackets

BRIGHT
Brightness
Byte ...

C
Calculator ...

wornes 15,

s, 1B,
82,

1'9 129 144,

= 94969?136

EDS
101 103,

- 21, 23, 28, 31,

ll?,

. 89,

44

53 B? 70,

146,

.. 18,

153,
150,

. 15,

108,
142,

152,

170
170

e 1y B

199
170
. 131
178
173
168
170
155
178
170
170
152

195

. 138

174,
170,

weee 89,

.. 40, 46,

e B9, 14

[CAPS LOCK] key ':::"""":.f

[CAPS SHIFT] key
Cassette operation

GAT ot
Characters
CIRCIE
Circles
CLEAR ...
Cmode ..rrrnnnna,
2olom G

. 125,

e, 86, 130, 184,

129,
136,

w102,

140,

199
192
190

sy 191
SRU— 1§
e 08, 63, 61, 68,
[BREAK] key

174
170
163
174
101
182

193

3238

30 3238

132,

. 131,

114
164
174
158
170
174
108
174

. 174

174

. 7

164,

171
178

Colour ...
Gomma
Commands
Connections
Contentsovveernnnn,
CONTINUE ..

Contrast

Control codesfch-aracters

Control variable ..
Coordinates
COPY
Cursor

D

DATA .o
Datacorder
DC 9V socket
DEF o
Degrees
[DELETE] key
DIM ..
Dunenswns
DRAW ...

E

[EDIT] key
Emode ...
Empty string
[ENTER] key
Error messages

EXPANSION i}b";;:iééi":'

Exponents ...
[EXTEND MODE] key,r

F

Flashmg B

FDR R
FORMAT

PUDCHONS . coneivisiisomnic i

. 11, 100, 110, 150, 152,

.. 56, 129, 150, 163,
e 17, 20, 125, 132,

44
o 8,197
.44, 46, 151, 161'"

. 90, 155
. 51, 145
95, 107
136, 174
14, 171
23 30 39 42 60, 150

174
164
v 87, 164, 174
e 19, 178
v 19, 1758
SE—]
v 108, 175

16, 24, 43, 195

"'zsaszaasssm

. 32

Bﬂ 95 114 128 169

. 44, 114
131 175

161

?] 171
139 20] a02
59 10
32, 38

. 102, 175

o 101
B? 164 171

. 81, 161, 175

— 135, 165, 175
.. 64, 67, 170

203

G

GInode o smasms

GOSUB

OO upiscoseimiosases
[GRAPH]KEY ..covvvrerrrecsremsnsosinssenseneenens

Graphics ..o,
H

Hardwareccoeennns
Headphonesvcesncmmmressenes
Hexadecimal

InStructionscoeeveenne

INtErface One
INtErfACE WO oooveeeee e eeeeeeeneesseenns
[INVVIDEQ] key

INVERSE
I/Oports

]

Joysticks ..

JOYSTICK SoCKets ...

K
Keyboard ..
Keypad ...

KEYPAD socket . .._:: o

Keywords
Kmode

L

LEFTS

LET

Line numbers

LASHIRE icisiiacinissiscacconi

LLIST

Limode sy

LN [PTTrT e

v 41, 58, 176,

. 54, 163,

o 28, 44, 46,

- 88,

.. 140,

. 48, 82,
. 138,

. 102,
oo 114,
... 43, 9T

e

175
175

34, 39, 86

107

166

e 116
. 190

175
171
175
171
176

. 37

171

S | ! |

e 139,
. 187,

. 30, 37, 114,

. 137, 139,
e 166,
e 41, 58,

e 176
.. 103, 110,
. 138, 166,

176
197

167
198

139
201
201
195

.. 30, 35

e 68

e B4,

. 98, 128,

171
194
154

.. 24, 26, 41

o 40, 42,

176

. 25, 40, 42
o 135
s 9l

n

171

LOAD ..

M

Machine code ..
Mains plug ...

Mathemaucal expreasmns

Memory ...

Menus
MERGE
Messages ...
Microdrive
MIDS

MIDI oo

Monitor
Motionccoorveeeas
MOVE
Musiccovviee

N

Nesting ...
Network ...t
NOT

Numerical expressions

Overprinting ...

P

PAPER
PAUSE
Peripherals
2= S

.......... 55 8? '.?0 1?3
... 138, 140, 147, 166
e 14, 16, 17, 19, 24

R, R — 123, 139, 1'.-’1 300
MIDI socket

s 180, 128, 133, 154
Loadmgaprogram
Logarithmic function

Logical EXpIessions ... cereeoreessssens o,

17, 18, 127, 128
R .
vernenss 138, 151

. 183
. 8

. 128, 134, 164
. 161

131’ 143 201

. 68

... 166, 200
v 116, 198
wxmssrsanner LB
sisisigeivane LA
e 116, 124

weeenens 137

R T
e 51, 161, 177

e 83, 171

. 60, 95, 114, 128, 169

59, 66, 143, 168

i 17T
eeevnenne 88y 171
- 138, 177

e 104, 110, 177
. 96, 104, 106, 110

. 102, 171
. 112, 171

e 90, 112, 141, 148, 171

venrnennnens 137, 197
. 12, 109, 171
95 101, 107, 109

116 124, 168, 177, 199

204

POINTooevrinnne . . 109, 171
POKE ... 90 99 141 148, 178
Powersuppl',rumt T 8
Precautions .. o
PRINT 41 44 BD 94 151 1?3
Printer .. . 25, 135, 199
Processc:-r —— .. 153, 166
Procrusteanasmgnment craannrenn .. 62, 80
Pseudo-random ... s bt Th

Q
Cniotes s

R

Radians .. = veee 15
RAM ... 138 140 147 152 154. 166
RHMTOP . 146, 152, 164, 174
RﬁNDOMIZE s ABo10L; 179
Random nUMDErScveecreeevvcesrerenessessmmseesees 11
Relational operatorsccooevreenen.. 48, 91, 173
Renumbermg e 08, 43, 149
Reports ... P ORI | 1) |
HESETbutton s 18 18
Resemngthecomputer RSP | |
RETURN ..o mmesnsmmsssnsansonssenes 34, 162, 179
RGB socket ... SESEEEnanE | e, 108
ENB:ciannersnamamnn, (EIR] 172
ROM .. 138, 140, 147, 166
Roundmgnumbers P
RS5232 .. sermnenseeennnes 199, 187, 139, 199
Flszazsocket bissuismrsiiensis et s LOD; 199
RUN cciiiiiisiiinimininne 21, 44,46, 127, 179

S

SAVE .. . 125, 129, 132, 154
Savmgaprogram 125, 129
Screendisplay 12 25 21’ 35 40 95, 130
SCREENS ...oooerrmsrrsssssanens . 94, 130, 172
Scroll ... 40 96, 99, 151
BOIMICOON «icsissimisisiniinnsamscivinni. 38, 178
Setting up ...ooeernrrrenaes B8

. 107, 178

.. 45, 60, 65

0 O .. 30, 38
BIECON B0 sz g0: 131
SHEMG cmcse s ssissninss s 01, B1, 168
Software .. . 1,17, 19, 127
Sound ., ceerenmesmeeennenns 116, 166, 199
SOUNDsocket v msesssncenens. 118, 199
SPEAKETS ..cvorrrimsrseeressssmmsssssesseensseanessessmaseenns 116
SPECTRUM 30, 148, 179
) N o 1) b
BOUATeTONE i somerimimmansisrminmmaserssassaces. 0T
STEP .. P Bt ety SRR b .
STOP .. i 49, 162, 179
Stoppmgaprogram . 44, 46, 49
STRS ... 65, 172

Stmgmtp&'mﬁ%ﬁﬂﬁlﬁélmﬂi 145
Subroutine ... P . 54

Subscript ... ?9, 162
Substring 61, 169
S'mtctungonfoff .11, 16
[SYMB SHIFT] key srimmssisssissismsnasss 0y .00
DYMAR OFTOT it e a5
System variableso..oooorenenee. .. 143, 148

T

PAB oz’ 90, 13’8. 150, 118
Toat SIONAL. ..o sizaa .11
THEN conemin e nees 48 82 1'25
3} B e e e 51 61 1?5
Tokens - 3[} 85, 90, 158
Tngonomemcal Euncuons .13
Troubleshooting ... e
[TFIUEVIDEO} key eeeeeerserssarssssesessensiens 110
Turu.nngV “ T 1

8 11 lDU 1{}3 112
Wsocket D |

U

Unpacking .. . S
Userdeimedgraphms 34, 39, 88, 92, 111
USR .. 89, 111, 148, 154, 172

205

v

VALS ..o, 66. 172
Vanables 59 68 1'9 9? 129 148, 161
011 S 116, 198
VERIFY 125 129 13[1 133, 179

X

Xoooordinats ocooonn o 95, 107

Y

Y-coordmate SRR — %)

A
Z80 miCro processor 153, 155, 166

206

