Beyond simple BASIC

DELVING DEEPER

Into your
ZX SPECTRUM

Dilwyn Jones

Beyond Simple Basic

DEILVING DEEPER
intoyour

12X SPECTRUM

Dilwyn Jones

S—

First published in the UK by:
Interface Publications,
44-46 Earls Court Road,
London, W8 6EJ.

© Copyright 1983, Dilwyn Jones

All rights reserved. This book may not be reproduced in partor
in whole without the explicit prior written permission of the
publishers. The routines outlined in this book may not be used
as part of any program offered for publication nor for programs
intended to be sold as software, except as allowed by the
publisher. Permission must be sought, in advance, for all appli-
cations of this material beyond private use by the purchaser of
this volume.

ISBN 0 907563 24 4

Typeset and Printed in England by Commercial Colour Press,
London E7.

CONTENTS

Page
Introduction 7
Screen tricks 9
Escaping from INPUTs 13
Singulars and plurals 14
CAPS LOCK in programs 15
PAUSE and FOR/NEXT loops 16
Matching up PRINT and PLOT co-ordinates 17
Making a catalogue of programs on a tape 18
Partscreen clear 19
Screen scrolling 20
The character set 21
New character set 37
The block graphics 44
Library of subroutines 46
UDG designer program o7
Ready made user defined graphics 63
Sortingout SCREEN$ and ATTR . 75
Lower screen attributes 99
Non-deletable program lines 83
“Press Any Key”’ (IN and OUT) 86
Printing string arrays 95
Preventing AUTO RUNNING 100
Speeding up your programs 101
Making use of the system variables 110
The layout of the Spectrum’s memory 132
Other BASICs 145
Understanding the screen display 155
Useful DEF FN calls 161
Input Output Channels 164
Controlling those numbers 166
ROM routines 171

Page

Programs:

Character Designer 57
Stars 76
Noughts and crosses 174
Intruders 178
Super Sounds 182
3D Maze program 194

INTRODUCTION

Welcome, fellow delvers.

Many of the questions and problems | have encountered during
my experience with the ZX Spectrum have provided material
for this book. The masses of hints and tips contained will help
you the programmer to get a deeper understanding of the ZX
Spectrum microcomputer — hopefully much more than you
ever thought possible.

| hope you find that the fairly advanced material has been writ-
ten in a simple-to-understand style. The Spectrum is so easy to
use compared with other microcomputers that | believe books
like this should do everything possible to reflect this friendliness
and ease of use.

Whether you want to delve into the ROM or just wander
through a maze in glorious 3D effect, | hope you find a lot that
interests you.

| would like to thank everyone at Interface Publications both for
the opportunity to write this book and for their help and
patience during the past months.

Happy Delving,
Dilwyn Jones, Bangor, North Wales, April 1983.

SCREEN TRICKS

Enter and run this program. What does it do?

1€ DIM is(7@4)
28 PRINT RT RNDI2Q RND I3 CHRS
{IRND *223+32)
3@ PRINT AT @.@. QUER 1; INVER
SE 1:;:i %

$2 &0 TE 28
About twice a second something is printed on the screen then
the entire screen is inverted. Who needs machine code?
Actually, it's done by printing a screenful of spaces OVER the
entire screen in INVERSE which has the effect of causing
everything that was white on the screen to turn black and
everything that was black to turn white; normally you would
expect OVER to use its EXOR action to erase some parts, but
there isn’t anything for EXOR to erase in a string of spaces so it
can provide a true screen inversion very quickly. This works
wellin black and white and it is easy to make it work in colour by
adding local PAPER, INK, FLASH and BRIGHT colour controls
with an 8 parameter each to prevent global colours playing
havoc if they were different. All this.does is ensure the same
attributes are maintained but that INVERSE 1 is effected.

186 DIM i$(7D4)

1S FOR i=1 TO S0

2@ PRINT AT RND 20 . RND¥31,; INK
ENDx?: PAPER RNDz?, FLASH RND;
ERIGHT RND;CHR$ (RNDx223+323)

25 NEXT i

38 PRINT AT ©,0; INUVERSE 1; OU
ER 1: PRPER B, NK 8; BRIGHT B;
FLASH 8,i%

The same idea can be used to turn all text and graphics on the
screen a particular colour by omitting the INVERSE 1
statement (or specifying INVERSE 0) and specifying an INK
colour rather than leaving it INK 8. For instance, this program
writes random characters on the screen in random INK and
PAPER colours, for demonstration, then changes all cha-
racters to black while keeping brightness, flashing and PAPER
attributes the same:

1@ DIM is(7@24)
1S FQR =1 TOQ S
22 FPRINT AT RND#20,RND*#31; INK

9

RND*7, PRPER RND*7; FLASH RHND;
BRIGHT RND;CHRS$ (RND322333221
25 NEXT i
SR PRINT BT @.,@; OUER 1: PRFPER
8; INK &; BRIGHT 8; FLROH R;0 %

You may have noticed that some INKs and PAPERs come out
the same after the random printing in line 20. This is a
common problem. Problem? No! Just specify INK 9. You can
now read everything.

1@ DIM i$(704)
18 FOR i=1 TO 506
26 PRINT AT RND#2B ,RNDx21; JINK
ENDE7; PAPER RND*7; FLASH RND;
ERIGHT RND;CHRS% (RNDx325+523
285 NEXT i
S8 PRINT AT 6.,0; OUVER 1; PAPER
&; INK 9, BRIGHT &; FLASH 8;1i%

We can do the same for the PAPER. By specifying the PAPER
colour, and leaving all the other attributes the same, the entire
background colour can be changed without disturbing
anything on the screen or using CLS. Note that anything writ-
ten in this colour on the screen may appear to vanish as, say,
green text on a green background is not all that easy to read!
This example draws random characters with random
attributes, then sets the entire background to yellow.

10 DIM 1&(7043
1% FOR i=1 TO 50
26 PRINT AT RND 320 ,RNDx31; INK
_AND¥/;, FPRPER RND*¥7; FLASH RND;
CRIGHT RRND,CHRS (IRMNDFOSS+3E0
25 NEXT 1
S0 PRINT AT 6,6, OUER 1; PAPER
&; INRKR &; BRIGHT &,; FLASH 8;1i %

You can get an interesting effect with any area that has a
BRIGHT attribute of 1 with the above program. If you had pro-
vided user promptsin BRIGHT 1 orin FLASH 1 (i.e. extra bright
or flashing) to highlight them, and then after they had been
acted upon you wished to cancel them, you can in the follow-
ing ways.

10

To turn off bright spots:

i@ DIM 1$(704)
15 FOR i=3 TO S0
26 PRINT AT RND 28, RNDx33; INK
ENDx7,; PAPER RNDX7; Fl1.AEH RND;
ERIGHT RND, CHR¥ (RND 223 +352)
o5 NEXT i
=6 PRINT AT 8.0 OUER 1; PARPER
=: INK &E; BERIGHT O, FLASH 8;1i%

To turn off flashing:

16 DIM i$(784)
1S FOR i=1 TO SO
56 PRINT AT RND:20.RND$31; INK
RND £7; PAPER RND*7; FLASH RND;
ERIGHT RND; CHR$ (RNDx223+321
285 NEXT i
=6 PRINT AT 8.6; OUVER 1; PRPER
&; INK &; BRIGHT &, FLASH @i %

Note that in all the above examples, the “‘screen tricks” are all
accomplished in one line! Remember: the answer to the
ultimate question of life, the universe and everything is a string
of 704 spaces printed OVER 1 over the entire screen in colour
8’s!

This technique opens up an interesting possibility — if you
want to draw a complex shape which would normally be very
slow, first draw it the normal way in the same INK colour as the
PAPER colour so that it is invisible, then use the above techni-
que to change the shape’s colour so that it almost instan-
taneously becomes visible. Try this program which draws four
concentric circles in magenta on a yellow background. The
drawing process takes about 4 seconds.

5 INK 3: PRPER B [CLS5

186 DIM i%(784)

15 FOR i=1@ TO 70 STEPRP 2&
20 CIRCLE 120.,98.,i

25 NEXT i

Try this program which initially draws the circles in yellowona
yellow background then, after drawing, changes the colour of
the circles to magenta on yellow. You have to stare ata blank
yellow screen for a couple of seconds, but when they appear
the circles seem to be drawn almost instantaneously. In prac-

11

tice, you'd be able to disguise the delay so that the drawing
appeared instantaneous.

S INK 6: PARPER &: CLS
18 DIM i%(704)
15 FOR i=1@® TO 70 STEP 2D
2@ CIRCLE 120,90.3
25 NEXT i
.EB PRINT AT ©.0; INK 3; OUER 1
-

This is only the bare bones of an idea, but using an overprinted

string of spaces to control the attributes file is a fast and pow-
erful programming tool.

We've been talking in terms of using a screenful of spaces so
far, to affect the whole screen. You can use justenough to alter
the attributes of a single character or word on the screen, e.g.
to make that green monster turn white with fright when you hit
it with your special weapon:

PRINT BT ¥, ,X; OUVER 1; INK 7;"“a"

or to make a word cycle through all possible attributes:

1@ PRINT AT_5,S5; "HELP"
2@ FOR F=@_TO 1: FOR B=@ TO 1:
FOR P=@ TO 7: FOR I=@ TQ 7

32 PRINT AT S,5; OUER 1; FLASH
F; BRIGHT B; PAPER P; INK I;"
“: REM_4 SPACES

- g@ NEXT I: NEXT P: NEXT B: NEX

12

ESCAPING FROM
INPUTS

If you wish to stop a program during an INPUT, BREAK does
not operate and just causes a space to be added to the INPUT.
In the case of a numeric INPUT like INPUT A the answer is to
type STOP (which is symbol shift A) followed by ENTER. The
program ends with report H STOP in INPUT.

In the case of strings, things are rather different. STOP can still
be used, but the cursor must be the first thing in the line and this
means moving the cursor out of the quote marks either with
DELETE (which is CAPS SHIFT 0) or with CURSOR LEFT
(which is CAPS SHIFT 5) then type STOP followed by ENTER
and the program will end with report H STOP in INPUT.

Use of the INPUT LINE facility can be problematical in this
respect. STOP is accepted as a perfectly valid INPUT character
and does not stop the program. However, it is possible to
escape from INPUT LINE using CURSOR DOWN (which is
CAPS SHIFT 6). You do not need to press ENTER. The pro-
gram will again come to an end with report H STOP in INPUT
even though STOP was not used!

13

SINGULARS AND
PLURALS

A common program bug is to end up with a sentence like
“There are 1 bombs left”’, that is, not making due allowances
for singulars and plurals. The program line that generates this
sentence may look something like:

B8 PRINT "“"There are "', bompbs ;'
Hbkombs Left'

All that is wrong is that the program cannot cope with the
grammar of the English language. In this context, it is possible
to get around the problem fairly easily. Here is one way around
the problem:

12888 PRINT “There “;
i1 IF bombs>1 THEN PRINT "are™

2R IF bhombs <=1 THEN PRINT "is"

ig32 PRINT " “;bombs; " bomb*;
1242 IF bembs>1 THEN PRINT "s':
iesS@ PRINT " teft™

That was a rather long and cumbersome routine for a rather
simple task. This routine makes use of AND to shorten it to one
program line:

18668 PRINT “There '; “are' AND bo
RbsS>2; V15" GND bombsc=31;" ", bomb
g;“ bomb'; s AND bombs>1,™ teft

14

TO ALLOW THE
SPECTRUM TO SWITCH
OFF/ON THE CAPS LOCK

Bit 3 of the system variable 23658 (FLAGS2) indicates the state
of CAPS LOCK — ifitisengaged bit3is 1, if itis not engaged bit
3 is 0. In programs, it is often useful to be able to detect
whether a certain key is pressed irrespective of whether the
character produced is upper or lower case, €.g. foraYES orNO
answer. To turn on CAPS LOCK use the statement POKE
23658,8 and to turn off the CAPS LOCK use POKE 23658,0
bearing in mind that these will affect the other flags of the
system variable. Fora fun demonstration, plug in the ZX printer
and enter this:

POKE 23658,2

You won't damage the printer or waste paper or anything like
that, but you will wake it up. So, you can see it is necessary to
exercise some caution when POKEing 23658. This is how a
YES or NO type of routine might work:

» 3@ PRINT “Pe you want another
game (¥ or NI7T©V

1310 PORE 23658.,6

spom IF INKEY $="Y" THEN RUN
ifos6G IF INKEY $="N'" THEN STOP
ig40 GO TO 1020

15

PAUSE AND FOR/NEXT
LOOPS

There is normally no problem with using PAUSE on the
Spectrum but where a fixed delay is needed, PAUSE may
cause problems. PAUSE is cut short by a keypress, so if you
held your finger on a key all PAUSEs would never occur. This
problem can be avoided by the use of FOR/NEXT loops as
delay loops. To achieve adelay of approximately 1 secondusea
loop of FOR A = 1 TO 220 : NEXT A

16

TO MATCH UP PRINT
AND PLOT
CO-ORDINATES

Suppose you had a given PRINT AT Y,X; location Y- rows
down the screen and column X across the screen. Y would
be 0 at the top of the screen and 21 at the bottom. X
would be 0 at the left of the screen and 31 at the right of
the screen — in other words, standard PRINT co-ordi-
nates.

The plot co-ordinates corresponding to the four corners 1
to 4 of character cell Y,X (shaded in the above diagram)
would be in PLOT X,Y format:

X * 8, 21-Y)*8 + 7
X "8 + 7, (21-Y} *8 + 7
X "8, (21-Y) * 8

X *8 + 7, 21-2 * 8

From these you should be able to work out the positions
of all pixels within the PRINT position should you need to
PLOT or DRAW through a known PRINT position.

17

MAKING A CATALOGUE
OF PROGRAMS ON A
TAPE

If you have a tape full of programs and have no knowledge of
their names or nature (i.e. BASIC programs, data recordings or
bytes of memory) it would obviously be helpful to be able to run
through the tape and have the names written on the TV screen
along with the type of recording, without affecting whatis cur-
rently in the computer’s memory. The types of recordings you
may come across in this way are:

Character array: A y tor SAVE “A” DATA A () or A$ ()
Number array: A

Program: maze for SAVE “maze”’
Bytes: code for SAVE “code’”” CODE 16384,32

Todo this, use VERIFY with a program name that won’tever be
found on the tape. | tend to use VERIFY 22722777777 . Make

sure there isn’t any program name or whatever on the screen
already, as it may confuse you.

18

PART SCREEN CLEAR

INPUT can be used without having to actually enter a variable.
This can be used to clear part of the bottom of the screen as
long as INPUT AT does not go past the main PRINT position,
(in which case the screen may start scrolling). Use INPUT AT
like this, remembering that INPUT AT co-ordinates start from
the bottom of the screen.

16 INPUT “"Whece?" ,U

2B FOR A=0 TOD 21: PRINT &: NEX
T B

38 PRINT &T .8,

40 INPUT AT W,0;

If INPUT AT reaches the current PRINT position the screen will
scroll. You may be able to save the print position, move it out of
the way, clear the lower screen and then move the print posi-
tion back.

1868 FOQR A=a T4 21: PRINT AT R.G
;A NEXT R

29 LET X=33-PEER 23&£88

5@ LET Y=24 -PEEK 23&E389

48 PRINT AT 0,0;

S8 INPUT ""How pan Tt L HM

660 INPUT AT HHM3+1,6;

78 PRINT AT Y ,X;

In the routine above, line 10 prints something all the way down
the screen. Lines 20 and 30 save the co-ordinates of the
PRINT position. Line 40 moves the print position temporarily
to the top of the screen out of the way. Line 50 asks how many
lines you want cleared in the upper screen of 22 lines. Entering
1, for example, would only clear line 21. Line 60 does the
erasing, and line 70 restores the print position.

19

SCREEN SCROLLING

It is possible to create a scrolling effect from BASIC by storing
the screen image in a string large enough to hold all 22 * 32
characters on the screen. The scrolling is created by rotating
the elements of the string. Up and down scrolling can be done
in this way quite quickly:

1 REM SCROLL UP

1@ DIM RS$ (7@4)

2@ INPUT RS

S8 PRINT AT & ,8.8%

4@ LET R&=AS(33 TO 7 +7

S@ GO TO Je

1 REM SCROLL OCOWN
16 CIM A% (734.)
28 INPUT R%
38 PRINT AT ©,0;RA%
468 LET RAR%="
“+A%(TO &72)
S@é GO T 39

Sideways scrolls are rather slower, but possible:

1 REM SCROLL LEFT
1@ DIM A% (704)
5@ INPUT AS$
S8 PRINT AT
20 FOR F=1 T8'8batsrep 32
5@ LET A$(F TO Fa+31) =As$iF+1 TO
F+31) ¢
60 NEXT F
7@ GO TO 38

1 REM SCROLL RIGHT
i@ DIM Rs(784)
28 INPUT RS
3@ PRINT AT @,0,;RA%
48 FOR F=1 TO 673 STEP 32
S@ LET RAS$S(F TO F+31)=" “+RASIF
TO F+30)
6@ NEXT F
78 GO TO 3@

20

THE CHARACTER SET

In this section we'll make all manner of uses of the ROM cha-
racter set, then proceed to move the character set out of ROM
into RAM (figuratively speaking) and make up our own
alphabets. But first, to introduce an important system variable,
try this. Enter as a direct command:

POKE 23606,8

then press ENTER of course. Now try typing in a program — if
you can! Even more hilarious, try this short typewriter pro-
gram. Reset the machine and type in:

i PORE 235606,8

20 PRINT INKEYS;

380 IF INKEY$%=" " THEN POKE 236
&5 ,8: STOP

48 GO TO 20

RUN the program and try typing anything — what happens?
Letter A's come out as B's, B’s as C’s and so on. You may like
to try this on your local computer-bore then tell him/her the
Spectrum’s broken. Actually, if you press the SPACE key
(without SHIFT) the program resets things to normal. Even
funnier, you may like to change line 10 to:

12 POXKE 235086.,4

in order to half confuse yourself!

Explanation: 23606/23607 is the address of the system varia-
ble that tells the computer where the data lists required for the
display of characters on the screen lie. This two byte system
variable contains a number, 15360, after switch-on which is
256 less than where this table starts in the ROM. So 15360 +
256 = 15616. This is where the ROM CHARACTER GENERA-
TOR starts. Let's have a PEEK in there to see what's there.
- ENTER and RUN this program. You should get similar results
to the sample run that follows.

i@ FOR R=15616 TO 15639
22 PRINT PEEK R
3@ NEXT R

SHGG

21

M ad

ﬁ@@ﬂ@g%@@w&ww#w@@@&@

That wasn’t particularly informative was it? The 15639 wasn't
significant — just a number chosen to give a short example pri-
ntout. Even if we look up the character set in the manual it
doesn’t seem to have any relevance to the numbers printed
out. Ah well, another scratch of the old head is required.

Let us try in binary, since computers are said to make a lot of
use of that. Type in and RUN this program, remembering the
two apostrophes in line 70 which are easily forgotten.

2y LEl H=pPEEXK A

3@ FOR B=7 TO ©® STEP -1

48 PRINT AT 21,B,P-2xINT (P/2)
@ LET P=INT (P2}

&0 NEXT B

78 PRINT AT 21,12;A°*"°

50 NEXT A

SSRAD2RAR 15818
dddm dn I A 4 1S617
2at2aa2a 15818
AT 156819
SRR B 1562
222222 15621
3322 AQ 15622
Zavagaa 15623
ca3qr2aa 15624
2e2leae 15625
uRlaeldue 15626
2AX1222 15627

22

R 1020Q 15628
cER2RRAV 15529
GRe 12200 15630
SR302028 15631
ZATB2A2V 15632
22100100 15533
azioalle 1SE34
22002020 1S63S5
22220208 15636
e L e e L 1S637
Z2ARARAR ise3a
22202202 15639

T

ol o
(ol o

15616
15617
15618
19615
15628
15621
1S622
15623
15624
15625
15626
15627
15628
15629
1563@
15631
15632
15633
15634
1S63S
15636
15637
15638
1S6aa

This may not look any better to you — however, try to imagine
the left column of the printout without the zeros — like this:

What you should see is a SPACE, an exclamation mark and a
quote symbol (if you're imaginative). For our next trick we'll
scan the entire character generator so that we can see what is
contained in its dark depths. To ensure a better screen picture
we'll use [} instead of ones.

183 FOR A=15£16 TO 163865

28 LET P=PEEK 8

<& FOR BE=7 TO @ STEP -1

483 PRINT AT 21.,B.; "I} AND P23
INT (Pr2))=1

53 LET P=INT (P/2}
E® NEXT B

78 PRINT AT 21,12;RA°"°
8@ NEXT A

23

Here's a sample of what you should get.

15782
15793
15724
15795
15796
15797
15798
18799
1588
15381
1582
158a3
1SSad4
158@S
153es
158@a7
158ag8
1589
i581@
15811
15812
15813
15814
1S_as

If you have a printer and would like to keep a copy on paper,
you could use this program which will give you an enlarged pri-
ntout of all characters stored in the ROM character generator.
Warning: you’ll need a lot of paper for this! Press BREAK to
stop the printout when you’ve had enough.

18 FOR A=15616 TO 16383

28 LET P=PEEK A

S8 DIM A% (8)

48 FOR B=5 TO 1 STEP -1
$£g? IF P-INT (Prs2) 2 THEN LET R

&80 LET P=INT (Pr2)

7O NEXT B

&0 LPRINT A%, TAB 12;R;TRAE 18;P
EEK " &

a9d NEXT A

You should by now be getting the idea that the character
generator holds a bit-by-bit pattern of what the characters look
like on the screen. Also, if you refer to Appendix A of the
Spectrum manual you'll see that the characters come up in the
same order on screen as they do in the appendix — at least
those in the range 32 to 127. The others are either CONTROL
CHARACTERS (they control the screen in some way or other,
rather than appear on it), graphics characters (which are stored

24

elsewhere), block graphics (which are ““calculated” rather than
stored as bit patterns) or are made up of combinations of cha-
racters in the character generator (e.g. RUN, INKEYS, IF, etc.)
in which case there is another table in the ROM that indicates

which combinations.

It is no accident that they’re in numerical order — they’re delib-
erately arranged thus to make it easier for the computer to find
them when needed. To understand this let us look at how a
character is organised when looking at the screen, e.g. the

number 8:

i<

A character is made up of eight by eight pixels (picture cells or
little squares if you like) on the screen. By luck there just hap-
pens to be eight bits per byte (would you believe it???). So, if
every byte of eight bits represented a row across of the cha-
racter, we could store a pattern of the character in eight bytes.
This is how the character generator works: there are eight
bytes for each character storing the pattern as a series of zeros
and ones. The ones represent the parts of the characters inked
in and the zeros represent the parts of the character left blank
(in paper colour). This is how the bit pattern of the figure 8
would look (the left column is the bit pattern, the right column
shows where in the ROM in decimal that it’s located):

20000000 1S508 o

951131100 158069 1=1]
lo00016 15318 66
83111106060 1S811 8@
210660610 15812 66
21800010 15813 66
231111006 158514 50
2000000 15815 &

25

One use we can put this to is for enlarging the display cha-
racters. If we printed a [} for every 1 we could enlarge the cha-
racters eight times! Let’s try this. The program is slightly dif-
ferent from those we’ve used so far so study it carefully.

18 LET across =0
28 LET down=0
S8 INPUT as%

48 LET ¢c=CODE a
E8 FOR k=0 TO ?

658 LET p=PEEK 15360 +Cc 8 +Kk)
@ FOR f=0 TO 7

88 PRINT AT down+k,across+7-7;
“H" AND (p-22INT (p.,2)=1)
98 LET p=INT (pr2)
108 NEXT ¥
130 NEXT X
120 IF across+85>31 THEN LET dow

n=down+5
138 LET across=across+8 RND acr

DSS +85<¢=31
480 GO TO 36

The two variables down and across control where on the
screen that printing takes places. A$ is the character you enter
to be enlarged. This should consist of one character with a
CODEof321t0 127 (i.e. SPACE to the © copyrightsymbol). cis
the CODE of this character. Note in line 60 how the number
15360 is used for the bottom of the character set table. You
may remember that this number is 256 less than the address of
the start of the table. Why?

26

Well, the first pattern in the table is that of SPACE, which is
CHR$(32). Remember also that there are eight bytes for the dot
patterns of every character, so everything starts at multiples of
eight. 8 times 32 happens to be 256 and 15360 + 256 is 15616,
the start of the table in the ROM. The loops carry on dividing by
two and finding the remainder each time to determine whether
or not to shade in a part of the screen. The values of down and
across are then adjusted. You may like to enter this additional
line to prevent characters that the program can’t handle being
entered (you are made to re- enter any characters rejected).

35 IF CODE a%$<32 OR CODE a%:»12
7 THEN GO TO 50O

The characters produced are very coarse and you cannot fit
many on the screen. Here is how to use PLOT and DRAW to
generate characters of varying sizes.

1 REM characters
1@ INPUT "Hgow many tipes wider
{(A=nornat)Y?V wigder
28 INPUT "How pany tipes tatie
fii=norpat)?";talter
33 LET across=wider8-1: LET d
crn=176
490 INPUT as: IF 8%<” " DR 2%>"
£ THEN GC TO 4@
S FOR a=2 TOQ 7
e LET peekR=FPEERK (152E&+C0DE &
E$8+3)
7@ FOR b=@ 7TQ 7
8 IF peek-2%xINT (peek.-2) THEN
FOR t=1 TQ taltlesr: PLOT B3CroEs-
bswider ,down—-as*taller-t.: DRAI 13-
RaisteEr .8 MEXT 2
%aa LET peek=INT (peek-s2Y: NEXT

11l NEXT a

122 LET across=across+unider st

I3@ IF across»>255 AND domwn-tall
er¥8xtallers8&8-1 THEN LET down=do
gn—talteria: LET across=nider 8-

142 IF acrass>2585 AND domn-1211
Er¥8<¢tatier 8 THEN PRINT AT 21,3
3°: FOR a=1 70O tattier: PRINT N
EXT a: LET across=niderg8-1

15@ G T 4@

The program is complicated so study the following information
carefully. When you run the program you will be asked first
how many times wider than normal you want the character to

27

appear on screen. If you want the characters three times as
wide as normal, then you should type 3, followed by ENTER. If
you want normal width characters enter 1. You should do the
same when asked how many times taller than normal you
wanted. The program will start at the top left of the screen and
work its way across and down the screen until it reaches the
bottom, when the whole lot will scroll upwards to make room
for another line. The program runs in black and white (or the
permanent INK and PAPER colours you set up) but you may
wish to add suitable colour statements of your own in the pro-
gram.

The variables taller and wider are used in their full form
throughout to make their meanings clearer. The same is true of
the variable peek (it's written in lower case in the listing to
distinguish it from the keyword PEEK) and variables across and
down. These are co-ordinates for the PLOT commands used
later. 176 is one greater than the limit value of 175 for PLOT —
don’t worry about generating errors though. across starts off a
certain amount along the screen because all plotting and
drawing is done from right to left due to the way the binary is
evaluated. Line 40 scans to see which key you’re pressing.
This program uses INPUT to see which letters or symbols you
want to enlarge since there are a few symbols not easily
obtainable with INKEY$, which might otherwise save you the
bother of pressing ENTER all the time. Line 50 starts the loop
which looks in the character generator for the eight bytes
needed to assemble the character on screen. These bytes are
found by line 60. The loop starting at line 70 determines the
pattern on its screen by taking the byte from the character
generator and repeatedly checks to see if individual bits are set
so that appropriate areas may be shaded in on the screen. This
is done by DRAWing a line which is wider times longer than a
pixel. This is done taller times to make it the right height. Line
100 divides the value of peek by 2 so that the next bit may be
checked. Line 120 sets the new value of across — if this goes
off the right-hand side of the screen, a new value is given to
down and the program decides if it is necessary to scroll, which
is done by using PRINT enough times. across is reset to its ini-
tial value for a new line of characters. After all that, the key-
board is scanned again and the whole story is repeated.

28

The program works best with integer values of wider and taller,
but you can have good results for non-integer values of wider
— even creating the illusion of having more or less characters
per line by fiddling with the value of across:

no. of characters normally across the screen

Across = :
no. of characters required across the screen

e.g., for forty characters per line, across would be 32/40 or
0.8. Here are some example displays produced by the pro-
gram including a 40 character per line display.

RECDEFGHabCae 3R
al23456 7898 E !N /

g Tl = T = = T
V= = == T == - B

ABCDEFGHAa
B12345678

abcdefghi jkimnapqrs tuveXyZABCOEFGHTJKL MN
BF*QRSTLNU)(VIG 123456789 @8 EXR” 1Y __"IN(CIE?s
EET Y L, B

Uging the same principle we can use the program to create
mirror image characters e.g.:

29

d1d3d"9=20ed 2 b
S1pRlLEeEChdgS
QISELZETECEdoboaipdii Al qpla2tuv
WREIASIAZI[NIHILAIMHMOARASTUVWIXYS 22

R L= O
=2 ed O B =T

This is done by simply drawing in the opposite direction.

i1 REM mirrors)
18 INPUT "How many times wider
{l=normal) ? wider
28 INPUT "How many times talle
ri{l=normatl?';tatter
380 LET across=0: LET down=1786
48 INPUT a%$: IF ag< “ OR agr"
" THEN GO TO 40
58 FOR a=6 TO 7
6@ LET peek=PEEK {(15368@+C0DF =
x8+3a)
TO0 FOR b= TO 7
80 IF peek-2%INT ipeek. 2) THEN
FOR t=1 TO taller: PLOT across +
Liwider down-astalisr—-t: DRV 31-
wider,0: NEXT t
ima LET peek=INT (peek./23: NEXT
3360 NEXT a

128 LET across=across+miderss
138 IF across»>256-widers8 AND o
own-tallers&>taller*&-1 THEN LET
down=down-talier#8: LET across=
148 IF across >25SB-widers& AND 4
own-tallersxB<tatllers& THEN PRINT
AT 21.31': FOR a=1 TO taller: p

RINT : NEXT a: LET across=0Q
1SG6 GO TO 40

The next stage is to turn the program into a subroutine for use
in your own programs:

1 REM subroutine
4 LET wider=2
8 LET talLier=4
12 LET across =35
15 LET down=3110
28 LET as$="Demonstration™
24 GO SUB 406
S8 STOP
49 FOR 4=1 TO LEN as
58 FOR a=0 TO 7

650 LET peek=PEEK (15360 +CODE a
$'d) ¥ 5+a)

30

-8 FOR b= TO 7

80 IF peek-2INT (peek/2) THEN
FOR (=13 70 tattesr: PLOT across —
Lhewider ,down—-astalier-t: DRAW 1-
wider ,®: NEXT t

g® LET peek=INT (peekrs2): NEXT

E

1860 NEXT a

329 LET across=across+wides 85

120 IF across »255 AND doun-talt
er¥8rtallers8-1 THEN LET down=do
wn—-taliter#s: LET across=wider 8-

=@ IF across»>2885 AND down-tatl
iB<tatlers8& THEN PRINT AT 21,
- FOR a8a=1 TO tatler: PRINT : N
XT a: LET across=wider *8-1

148 NEXT d

asg RETURN

Before calling the subroutine (which is located in lines 40 to
160) you need to specify four variables, wider, taller, across
and down as used in the other programs. across and down
need to be specified as the PLOT co-ordinates of the top right
corner of the first character. A$ is a string containing the cha-
racters to be enlarged and these are done one by one by the
extra FOR/ NEXT loop D. You should either ensure that A$
contains no unallowed characters or add this line to the pro-
gram which will skip the character not permitted (those with
CODEs less than 32 and more than 127):

4S5 IF a3{d) <™ " OR agsfdas»"@" 7T
HEN GO TOQ 15@

The subroutine can also cope with user defined graphics by the
addition of one program line that determines how the value of
peek is derived.

i1 REM subroutine
4 LET wider=2

& LET tatter=4
12 LET across =35
16 LET Jdown=11D

280 LET ag="Demonstration®”
24 GO SUB 40
38 STOP

43 FOR d=1 TO LEN as%

5@ FOR a=0 TO
68 IF CODE a%i(d) >31 AND CODPE_a

é!d){laa THEN LET pue&=PEEX (ISS
B+CODE as$(d} £5+3)

&1 IF CODE as%id) >143 AND CDDE
¥ld) <165 THEN LET peek =PEEK (L&
A"+ (CODE a%i(d) -144) *8+a)

@ FOR b= TO 7

5
R
=

31

50 IF peek-2x%INT (geekx&) THEN
FDOR t=1 TD taller: LOT across —
hiwider ,down-astatier-t: DRAW 1-
wider ,0: MNEXT t

bga LET peek=INT {(peekrs,2): NEXT
108 NEXT a

130 LET across=across+wider 8
120 IF accoss 2255 AND down-iall
er¥8Sr>tatlers8-1 THEN LET douwun=dn
sn—-tatler¥8: LET across=wider 8-

138 IF across »>»aEf8E AND dosn-tat i
ersxBctatiers8& THEN PRINT AT 21,3
1°: FOR a=1 TO tatter: PRINT : N
EXT a: LET across=wider #5-1

140 NEXT d

150 RETURN

Our next project will be to set up a new character set in RAM
that can be used to write on screen, produce listings and so on
— in fact, be identical in all respects but appearance. The
Spectrum manual hints that this can be done, but offers little in
the way of explanation how. The new character set will be
located above RAMTOP, below the user defined graphics cha-
racters. A step by step guide as to how to do this and how to
ultimately redefine any character you like at will, will be given. It
all depends on the fact that system variables 23606 /7 point to
the start of the character set. Where possible, addresses are
giventosuit 16K RAM and 48K RAM Spectrums unless thereis
a method of calculating addresses for machines with any
amount of memory. The new character set will be a right-slop-
ing italic-style text with this type of appearance:

This £5 o SafRple printout to
Shaw the REWW CXHARACTER SET :in
SLéian. Orly the letiters and the
RUDDErs RL2ILE56789 have been
regdefined, al though vyou wildl bde
SR {aler how to redefine any
EMIFacter o wishkh.

32

Fasr nRaws, S¥mdols such as $8Ff'32
MmN URChanged L though they
¥ be redefined tater if
gquires. There follows a sample
SLiRg progJuced wilth this
facter seld.

The (25t2ng s for o simple
pewriter. t hos o detete
cCilidty To eragse The (asid

L Ler: press LDELETE (Laps
REFfL 8). Press FERTER tag stardt o
¢ line of text.

. 5 BORDER O
38 PRTNT INKEYS;

2@ IF ZTRXEY&E >N TREN O TO 20
38 ITF TANKEY&="" THEN 6O 70 3&
e > :ax:rg=c#n§.1e THEN PARATH

4 c#ng 8,V "LNRE 8;: 6O TO 2B
20 5o 70 16

number of bytes in the character generator) to make room
een the end of BASIC and the user defined graphics in

h to store the new character set. There are 768 bytesin the
W character set like the ROM version.

K Spectrums: The new RAMTOP needed will be 31831 as
sed to the normal value of 32599. To lower RAMTOP to
S Néw value enter the command CLEAR 31831.

33

48K Spectrums: The new RAMTOP required will be 64599 as
opposed to the normal value of 65367. To lower RAMTOP to
this new value enter the command CLEAR 64599.

Both these versions of the command rely on absolute numbers.
If you have a different amount of memory connected, you will
need to replace the numbers with an expression that allows the
correct values to be worked out to suit the circumstances. This
could also be the case if you had anything else like machine
code routines stored above RAMTOP. This expression will
lower RAMTOP from its current address by 768 bytes every
time it is used by looking up the address of RAMTOP in system
variable 23730/1, subtracting 768 from this and use CLEAR
with this value like this:

CLERR (PEEK 23730+2S6%PEEK 237G
1-768)

If suitable addresses are not given for the 48K machines in the
following pages, the 16K values are easily converted by adding
32768 in most cases, except of course for system variables.
This is a diagram of how the memory is now laid out:

16K Spectrums
32599
USR“a"”" —1
31831 end of new 32767
RAMTOP character set PRAMT
] ! |
2 top of 62 dec.| new character set user defined
\3 BASIC [3Ehex. area graphics
Start of new 32600
character set USR““a”
31832
RAMTOP + 1

34

48K Spectrums

65367
USR"a"” —1
64599 end of new 32767
RAI\jITOP characiter set P RAIrIT
top of |62dec.| newcharacterset user defined
? BASIC |3Ehex. area graphics

! 1
start of new 65368
character set USR““a"”

64600

RAMTOP + 1

Step 2 Now the existing character set must be copied up from
ROM to this area of RAM so that those we do not wish to
reprogram will be the same as they always were.

16K Spectrum version:

18R CHRRRCTER SET COPIER

1@ FOR RA=156i6 TD 163283
2@ POKE 16216+A,PEEK A
3@ NEXT R

48K Spectrum version:

45K CHARACTER SET COPIER

18 FOR A=15616 TO 16383
26 POKE 48984 +A,PEFEK A
F@ NEXT f&

Itis important that this is entered correctly as any mistakes wil!

be difficult to correct later on and you may have to start again
from scratch.

Sfﬂp 3 Now to start redefining. | will tell you first how to rede-

fine Numbers, capital letters and lower case letters to right-
sloping Italic-style face.

35

First of all, let us redefine the numbers. Enter this program:

ik NUMBERS DATHR LORDER

186 FOR A=1 TO 806
28 INPUT B

38 PORKE 319%5+R.B
48 NEXT A

48K NUMBERS DRATR LORDER

1 FOR A=1 TO 88
26 INPUT B

3¢ POKE 64727+A,B
48 NEXT R

Enter these numbers when you are running the above program.
Enter the top row first, left to right, then the second row and so
on (just in case you enter the zeros first and waste your
energy....).

DATA FOR NUMBERS

6@ V& 74 145 164 120
45 8O 16 32 32 248
25 34 4 S6 64 124
S8 A4 24 4 72 56
& 16 206 36 126 &
S8 1&6 66 2 68 56
38 852 68 66 68 &6
B 2 4 3 16 32
ag 35 56 68 68 56
28 34 34 28 4 S5

e feletelelefe bl b
SEOOO0006

Note that you won't see any effect yet — we'll change a certain
system variable later.

36

Step 4 Now to redefine the capital letters. Use this program to
enter the 208 numbers that follow!

16K CRPITRHRLS DARATRH LORBDER

16 FOR A=1 TO 288
20 INPUT B
30 PORKE 32G395+A.,B
43 NEXT A

48K CRPITRHLS DATRA LOADER
1@ FOR RB=1 T0O zea&
2@ INPUT B
38 FPOKE 5¢853+9 e
4@ NEXT

BRTR FOR CARAPITALS

12 18 34 62 66 686
28 18 60 34 66 124
=<8 34 32 64 B8 556
=4 20 34 34 68 126
=0 16 6@ 32 64 1206
o0 16 60 32 64 B4
28 34 32 V6 68 56
18 186 68 36 7?2 72
6562 &8 16 16 32 248
b= = 4 668 72 S6
18 20 E5& 40 68 ©bB6
16 16 32 32 64 124
S4 B4 42 66 bBS 6B
18 26 42 44 68 £8
28 34 34 68 68 S6
23 18 34 60 64 64
6@ 66 66 164 1485 120
28 158 34 606 68 66
28 34 24 4 68 S6
€2 8 8 16 16 32

REROAAAGEINEORHAICRGIAZEAANS
HONOREHHHILEIFIIIIFIVEIENN

37

Step 5 Now to redefine the lower case letters. Use this pro-
gram to enter the following numbers:

16K LOWER CASE DATA LOAKDER

18 FOR A=1 TO 206&
=& INPUT B
S8 POKE 32351+R,B
48 NEXT A

45K LOWER CRSE DATA LOADER

18 FOR A=1 TO 266
28 INPUT B
38 POKE 6%51i1iS+RA.B
40 NEXT A

B
~
D

FOR LOWVER CASE

2 2 68 68 S&
16 66 3¢ BB 2124
28 32 32 B4 BB
2 28 36 68 56
28 34 124 64 56
8 12 15 &6 32
i4 18 354 60 4
16 62 34 65 bBSE
") 24 8 16 A28
& 4 . 85 72
S6 48 72 68
16 16 32 32 24
S4 P33 7?3 146 146
sS4 >4 68 68
28 354 36 68 56
28 18 34 60 64
36 18 36 6@ 8
14 16 16 32 32
30 32 24 4 120
S@ 8 16 18 a2
34 34 ©68 68 ©6
34 34 6 4@ 16
65 65 146 3146 166
o4 20 24 40 65
i85 O A B 16
68 & 16 32 12

o

o
g
m

o

n

)
0

D4

Gg&&GQG@GUWQSQGQFE@HG@GEB&

PIGRGHEARQARARACNAOUREGOHD
e dolaolofdedo ol et Je Vg Jo fo d i fe TR
o
)

Step 6 Using it. You'll be glad to know we’ve nearly finished
typing. To use this new character set we have to alter the value
of system variable 23606/7 CHARS (see Spectrum manual
ch.25) which is the pointer to the start of the character set. It
normally has a value of 256 less than the start of the first byte of
the character generator to make it easy to find the address of
the data for each character. How? It merely allows a simple
mathematical manipulation of CODEs, meaning that the start
address of individual characters can be found from the value

38

held in 23606/7 and the CODE of those characters multiplied
by 8; 23606/7 normally have the values @ and 60
respectively when using the ROM character set on both 16K

and 48K Spectrums, i.e.:

PEEK 23606 is 0 e
PEEK 23607 is 60 0 + 256 * 60 is 15360

To make this point to the new character set, ona 16K Spectrum
we’'d use:

POKE23606,88: POKE23607,123 (88 +256%*123=31576)
On a 48K Spectrum this would be:

POKE23606,88:POKE23607,251 (88 +256*251 =64344)
16K VUERSION

POKE 236@68,88: POKE 23807.,120

48K UERSION

PQOKE 23626 .,.88: POQKE 2067 ,251

Itis best to enter both as one long direct command joined by a
colon in the normal way because entered as individual
commands, they don’t wait for you and you get garble on the
screen (meaning that you don’t see what you're doing entering
the other one). If everything's been done right anything you
now type appears in the new lettering, although anything that
was previously on the screen remains as it was. The values
POKEd gave23606/7 avalue of 31576 for 16K users and 64344
for 48K users. To change back to the ROM character set on
both 16K and 48K machines use:

POKE 23606,0: POKE 23607,60

POKE 236@6.,.@: POKE 236@7,62

You can use both as program statements so you can change
back and forth between both character sets during a program if
you like. Since anything printed on the screen stays there
unless overwritten or cleared, you could freely mix both type-
faces_ on the screen if you like. You can also make printer list-
INgs in sloping characters if you like. The sloping character set

39

has a big advantage on a ZX printer since using the normal ver-
tical set shows up any deficiencies in the quality of the printout
— the new sloping character set helps hide this. In fact, the
appearance is the only thing that leads to a problem. SCREEN$
identifies characters on screen by looking up in the character
generator for a matching character from which it can tell which
character it is. If you're using the new character set then ask
SCREENS to identify a character printed with the old ROM cha-
racter set, it will not be identified and returns the empty string.
SCREENS$ must look up in the same character set from which
the character was originally written on screen. This is only a
problem if you're chopping and changing between two or more
character sets!

Step 7 Savingiton tape and reloading. Before you do anything
else, save the new character set on tape so that you can load it
back into the computer when you need it again. I'm glad to say
it's easier to load and use than it was to enter and set up.

To save the new character set on tape from a 16K Spectrum:
SAVE “chars”” CODE 31832,768

SRAVE “chars“CODE 31832,768

To save the new character set on tape from a 48K Spectrum:
SAVE “chars” CODE 64600,768

SRUE “‘chars"CODE 64600 ,768

To load the new character set from tape back into your 16K
Spectrum, type and enter:

CLEAR 31831: LOAD “chars”CODE 31832,768

CLERR 31831: LOAD “chars“CODE &
1532,768

On a 48K machine:
CLEAR 64599: LOAD ““chars’’CODE 64600,768

CLEARR 64599: LORD “chars"“CODE &
46009 ,768

40

Remember to VERIFY after SAVEing the character set because

ou’ll have a lot of retyping to do if anything went wrong! Inci-
dentally, LOAD “*“CODE will reload the character set back into
the same place as it used to be — useful to save a bit of typing.
This is what the new character set looks like:

Normal ROM character set:

g "' B K X & () £ ¢ , - « 7
& 31 2 3 4 5§ 6 7 8989 : ; ¢ = > 7
@ A B CDEFGHTIUJUEKLHMND
Bl R 8T U U U XY Z I~ 1%
£ a bcde ff g9 h i }J kK L mn o
B r s t U v e xwyz<<! ¥ "B

Alternative RAM character set:

!"ﬂ$:{&'1?*+,—-.-’
& 2 2 3 4 58 6§ 7 8 @ : ; ¢ = >» =
@ A B E&E D EFERT QRL MR G
2 & A ST UV WXY Z L1 4 _
£E o b ¢c d & F @ ©h i G &k & mn ©
P €& £ s v vwXx ¥z LT "B

Except for SCREEN$'s restrictions both sets work exactly the
same. Functions, keywords, etc., are expanded using which-
ever character set is in force at the time. Only the letters and
n_umbers have been redefined so, if you wish to redefine indi-
vidual characters rather than do a job lot like that described,
here is how this can be done. Go as far as Step 2 above, then
zgfgr this program. Two versions, one for 16K, the other for

i6K REDEFINE ANY CHRARACTER

S POKE 236806,85: POKE 23607, 1
18 INPUT “Which character do y

OU wish to define? “;c$
28 IF ce="" THEN STOP

2%

41

30 IF c$<" " OR cs>"®©" THEN GO
TO 1@

48 LET c=CODE %

E@ FOR a=8 TO 7

6@ INPUT {(“"Which vatlue fofr fFrow

;a+l; = “l‘vatue

73 PDHE Slﬂ:6+c58+a ¥alue

80 PRINT AT 8.Q.CS

Q@ NEXT a

1600 GO TO 10

45K REDEFINE ANY CHARACTER

e 5 POKE 23686.88: PORE 23667.=2

18 INPUT "Which charactesr do g
o wish to define®? “'C$

28 IF c%="" THEN STD

38 IF c&%<" * OR cE>"@" THEN GO
TO 106

40 LET c=CODE %

50 FOR a=8 TO 7

=% INPUT (“"Which vatue for rom

tia+l, 7T “jIivalue

70 PQKE 64344 +Cc¥8+a,valvue

&0 PRINT AT ©6,0;c%

S8 NREXT a

16606 GO TO 106

Once you have copied the character set from ROM into
RAM, RUN this program. Line 10 asks you which character
you wish to change. For instance, if you wanted to change
the bracket symbol (into a sloping style, just enter (.

If you want to stop the program, just press ENTER by itself
— the program will STOP if you just press ENTER to enter a
null string. Line 30 restricts the characters that may be
redefined to those from SPACE to the © copyright symbol
(CHR$ 32 to 127).

¢ is the CODE of the character to be redefined. This is used
to determine where the character lies (its address). The loop
in line 50 allows you to change all eight bytes of the cha-
racter’'s dot pattern in RAM. Line 60 asks you to enter the
new value for the eight rows of the dot patterns. This could

42

be done in two ways. You must treat these as you would
the USER DEFINED GRAPHICS — write out their bit patterns,

£0.:

N\\VALUE
ROW \ [128(/64 |32 |16 |8 |4 [2 | 1
1 o101]|10]|1|0]|1]64+16+4+1=85
2 o|0|0|0(0|0|0]|0]|=0
3 110100 |0 |1 |00 ([128+4=132
4 0(0[(0 0|0 |0 |01]|=1
5 210101010]180]1]3]241=3
6 0|10|0|0|0|0]|0]|0]|=0
7 0|1 1 1|10|0 |0 |0 |64+32+16=112
8 11111 {11411]1]|128464+32+16+8+4+
2+1=2565

So, for row 1 you could either enter BIN 01010101, for
example, or enter 85 if you’ve taken the bother to work it out as
a decimal number. Line 70 works out where to POKE this
number. Line 80 keeps printing the new character at the top
left-hand corner of the screen so you can see it changing. Line
100 sends the program back to line 10 to redefine another
character if need be. Note that line 5 allows you to work in the
new character set. You may like to add LINE to the INPUT

statement in line 10, especially as you have to enter double
quotes to redefine .

43

THE BLOCK GRAPHICS

These are the “’square’” graphics symbols CHR$ 128 to CHR$
143 which look like this (see also Spectrum manual Appendix

SiLER=0rE R
D AP d L

There may not appear to be anything special about their orders
and CODEs as they appear to be in no particular order.
However, you may be interested to know that there is a rela-
tionship between their CODE and which of the quarter squares
are inked in. In fact, jot down one of these graphics characters
and you can work out its CODE from this diagram:

Where each of the quarter squares are inked in, add the num-
bers shown in the diagram to 128 and the total is the CODE of
the character you jotted down. For example, take the symbol:

This would be
CHR$(128 + 1 + 8)
which is CHR$ 137

Another way of looking at this is to consider the individual bits
of the CODE of the character. Bits @ to 3 of the CODE are the
significant ones:

44

If bit 0 is set to 1 the top right quarter of the character is inked
in. If bit 1 is set to 1 the top left quarter of the character is inked
in. If bit 2 is set to 1 the bottom right quarter of the character is

inked in.
If bit 3 is set to 1 the bottom left quarter of the character is inked

in.

bit 1 bit @

bit 3 bit 2

45

LIBRARY OF
SUBROUTINES

This section is concerned with providing you with a collection
of subroutines which you can save on tape individually then
MERGE them into your programs later as needed. Of course,
they can be used as the basis of routines tailor-made for your
application. They all have different line numbers so you can
MERGE any number of them without any being overwritten or
overlapping. Line numbers start from 9000. Some of the
subroutines have the same variable names where the same fun-
ction is performed and it is advantageous to use the same varia-
ble names. The description of the subroutines include details of
variable names used and line numbers used, so that you may
know what to change if the need arises.

1. Clearing a part of the display
Line numbers used: 9000 to 9045

Variable names used: LINES, F

This routine will clear the number of lines at the bottom of the
screen specified by the programmer to the current permanent
attributes. The PRINT position is moved to the top left of the
area cleared, and resets the PLOT position to the bottom left of
the screen (co-ordinates 0,0) as it would after CLS. You are
asked to enter a number from 0 to 22 to tell the routine how
many lines to erase from the bottom of the display. You may
prefer to omit this INPUT line and simply specify the variable
LINES before the subroutine is called. If changing the mess-
age, take care to keep it short enough not to scroll anything else
on the screen. Line 9025 prints a string of 32 spaces on every
line to be cleared and provides OVER 0 locally in case OVER 1
is in effect global, in which case nothing would be erased!
There is no colour control specified so you may include
something like PAPER 8; BRIGHT 8; FLASH 8; locally to
preserve the attributes of the background — delete text and
graphics but leave the background the same. Line 9010
rejects invalid INPUTs by making you re-enter them. Line
9035 moves the PRINT position to the top left of the part of the
screen cleared. Line 9040 moves the PLOT position to the
bottom of the screen by POKEing 0 into the system variables
that hold the current PLOT co-ordinates.

46

cpa@ REM clesar part display
cp@s INPUT "How Banpy Lines? "L T
HES -

5@1@ IF LINES<® OR LINES>22 OR L
INES<>INT LINES THEN GO TO @S
o@1S IF LINES=2 THEN RETURN

ge2® FOR F=21 TO 22-LINES STEP -

5825 PRINT RT F.@; OUER @; "

Sl NEXT F

a3 PRINT RT F+1.,@;

sRdl®d POKE 223677 .@: POKE 23678,
s@4S RETURN

2. Yes or No replies
Line numbers used: 9050 to 9080

Variable names used: R$

This routine allows response to the type of questions that need
a YES or NO answer. Any word beginning with n or N is turned
into an N and any word beginning withy or Y isturnedintoa Y
— from this one alternative course of action can be taken. A
yes or no reply must be given — the routine will not allow you to
continue unless you enter a word beginning with y,Y,n, or N.
On returning from the subroutine, R$ will contain either Y or N
for YES or NO respectively. Lower case letters are converted to
upper case. Line 9055 fixes the length of R$ (the reply string)
at one character. This means that if just ENTER is pressed the
reply string is a space which is invalid so mustbe re-entered. If a
word of more than one letter is entered, only the firstis put into
R$ because of the dimensioning. This ensures that line 9075
need only make sure that R$ is either Y or N.

S25@ REM yes or no?

S255 DIM R$(1)

=060 INPUT "Yes_or no? ",RS

SA65 IF Rs$="y'" THEN LET RE&="Y"
S@7Q IF RS$="n" THEN LET R$="N’
SA75 IF R$<>"Y" AND R$¢>"N" THEN
GO TO 9260

S28@ RETURN

3. Engage CAPS LOCK
Line numbers used: 9085 to 9100
Variable names used: ZZZ

This program kindly sets CAPS LOCK on for you automatically
by means of a tiny six byte machine code routine that can be
€ntered from the keyboard without the need for any form of
loader program.

47

When scanning the keyboard it is usually desirable to check for
either upper case or lower case letters only — itis usually incon-
venient to have to look for both. The problem is that you can
never be absolutely sure if the user is going to engage CAPS
LOCK or not. All the routine does is set bit 3 of system variable
23568 to 1 toengage CAPS LOCK. If the program then looks at
the keyboard in a way in which the user cannot change the
CAPS setting (i.e. use INKEY$ or IN to scan the keyboard) we
need not bother checking if the response is upper or lower
case. The machine code is contained in a REM statementin line
9095 (which should not contain anything but these six cha-
racters after the REM — no colour controls, etc., which would
almost certainly confuse the poor machine).

I (exclamation mark)
j (lower case j)

5 (character 92. Note that this is not the division
symbol. It is the character on the D key obtained in
extended mode, SHIFT D)

THEN (the keyword THEN, not the four letters T H E N)
OVER (the statement OVER, not the four letters O V E R)
<> (not equal to symbol, or SYMBOL SHIFT W)

The machine code routine is called with the help of a system
variable called NXTLIN, which helps us find where in memory
the routine lies as we need this information to know where to
start the machine code. NXTLIN actually gives the address of
the start of the next program line as its name implies. There are
two bytes for line number, two bytes for line length marker and
one for the REM character. That's why 5 is added in line 9095.
The variable ZZZ is not important to the routine because it only
accepts the number which is returned by the machine code

routine. It can be any variable that is not used.
- SR285 REM engage caps lock
SRgRk LET ZZZ=USR (PEEK 236837+256
¥PEER 23638+5)
2095 REM ! g\ THEN DUER <¢»
2l@@ RETLURN
4. Disengage CAPS LOCK

Line numbers used: 9105 to 9120
Variable names used: ZZZ

This does the reverse of the previous routine; it disengages
CAPS LOCK so that lower case can be detected. This is, of

48

course over-ridden, when using INKEY$ simply by pressing the
CAPS SHIFT key, sois a bit less useful. Except for the machine
code routine and line numbers, the routine is similar to the pre-
vious one. The six characters after the REM in line 9115 are:

1 (exclamation mark)
i (lower case J)

\ (character 92 extended mode, SHIFT D not the
division symbol)

THEN (keyword THEN, not the separate 4 letters T H E N)

0] (Graphics O, i.e. CHR$ 158)
< > (not equal to symbol, SYMBOL SHIFT W)

01@5 REM dJdisengage CAPS LOCK
G112 LET ZZE=USR (PEEK 2I368I37+256
#PEEK 23638+5)

115 REM ! g\ THEN 0O<>

S12@ RETURN

5. Press any key to continue
Line numbers used: 9125 to 9140

NO variable names used

It is often necessary to make a program wait until a signal is
received from the operator, for example, while instructions are
read. However, most programmers include the line “Press any
key to continue’’ and their routines do not take pressing the
SHIFT keys into account, so you cannot truly press any key in
order to continue. This routine scans the bottom row of the
keyboard with the function IN to check for the CAPS SHIFT
and the SYMBOL SHIFT keys being pressed. The routine may
fail if 2 keys are pressed simultaneously on the top three rows of
the keyboard, but surprisingly this is very difficult to do.

2125 REM Press any key

130 PRINT "Press anpy key to cop
tinhve."

3135 IF INKEY $="" AND IN B£E8278=2
igsﬁND IN 3I2766=255 THEN GONTO B

148 RETURN

6. Using SCREENS$ to detect user defined graphics on
the screen

Line numbers used: 9145 to 9195
Variable names used: X, Y,A,B,A$

49

A shortcoming of the function SCREENS is that it can only
detect characters with CODEs 0f 32 to 127 and their inverses on
the screen. SCREEN$ works by picking up the address of the
start of the character generator from the system variables and
looking up in this for a match of the character on screen. To
make SCREEN$ detect graphics, it is necessary to make the
computer think that the main character set starts at the same
place as the user defined graphics so that these dot patterns
may be checked for. A little arithmetic manipulation will then
get SCREENS to return a character with the right CODE. To use
the routine you need to specify two variables, Y and X. These
are for SCREENS (Y,X),Y being the number of the Y co- ord-
inate down the screen and X being the number of the X co-
ordinate across the screen you wish to examine. The original
values of the system variables holding the address of the cur-
rent character generator are preserved in variables A and B so
that they may be reinstated after the routine is used. This is
done so that you can use a character set other than one in the
ROM and the routine will reinstate the correct one. If you have
more than one set of user defined graphics the routine will only
check against the one currently in use. The routine checks for a
normal character first, then if this fails the user defined graphics
are checked. If this leads to a character being identified, the
CODE of that character is changed to prevent UDG A being
confused with SPACE for example. This is done in lin 9180.

9145 REM SCREEN

2158 LET RSE=5SCREENS (Y, X2

2150 IF R$<>”" THEN RETURN

168 LET RA=PEER 23608G.. LET R=PEF
2367

i8S PQORE Z236R26,FEEK 23675

17@& POQKE 23c6R7,PEEK 23576-1
175 LET R$=5CREENS 1Y ., X)

18 IF R3E<H>"" THEN LET R$=CHR%
CODE As$+112)

21380 FOKE 236286 ,R

2198 PROKE 2367 .8

2185 RETURN

0G0 Y

7. Search for a copy of a string within another string
Line numbers used: 9200 to 9235

Variable names used: P,B$,C$

This routine allows you to search within one string for a copy of
another string. This may be useful in, say, an adventure game
where you may wish to detect certain words entered, orin a

50

filing system where you may wish to search for data. If a copy
of C$ is found in B$ then on return from the subroutine, the
variable P would contain the number of the element at which
the copy starts. For instance, looking for READ in DREADED
would return 2. If no copy is found then P is returned with a
value of 0. B$ is the main string, and we look in B$ for a copy of
cs. The routine will cope with strings of any length within the
limits of the memory available. However, very long strings will

take a long time to scan.
o200 RE¥ gNgTR
S20%5 L =
G218 IF LEN C3$=0 OR LEN Bs=2 QR
i EN C$>LEN BS$ THEN RETURN
8215 FOR P=1 TO LEN EBS-LEN C%+1
Sz IF BS(P TO P+ EN CH-33=C$ T

HEN RETURN
gz225 NEXT P
o230 LET P=0
32335 RETURN

8. Convert decimal numbers to a binary string
Line numbers used: 9240 to 9280

Variable names used: DEC,D$,J)

When working with memory locations it is sometimes necess-
ary to examine the states of individual bits, or the patterns of
ones and zeros of a binary number. Apart from that, this
routine can be used for many mathematical applications where
it is necessary to convert backwards and forwards between
decimal and binary. If you have a number J, then this routine
will convert it to an eight or sixteen digit string D$ so that you
can imagine each digit as a byte. So the numbers @ to 255
would emerge as an eight character string. 256 to 65535 would
emerge as sixteen character strings. If you do not want this
“automatic length” facility just delete lines 9270 and 9275.
Before calling the routine define J as the number you wish to
convert to binary, (e.g. LET J = 255) then use GOSUB 92490.
DEC is made to be a copy of J so that the value can be changed
as needed within the routine but preserve the value of J on
returning from the subroutine. Repeated division by two helps
us build D$ into a string which is the binary equivalent of J. If

‘fti)vgish to convert D$ into a decimal number use VAL (“BIN"

2240 REM DECIMAL TO BINARY
3245 LET DEC=J
:}25@ LE.T D$=“ s

51

=55 LET D&$=STRS$ (DEC-INT IDFEC. 2

*2) +D %

268 LET DEC=INT (DEC.-2)

=265 IF DEC((>0 THEN GO TO 82

Sa27¢6 IF LEN D$<8 THEN LET D$
D>

!.['1 I

GoaEEG" { TO B-1LEN D% +D%
S2?8 IF LEN D&$<16 AND LEN
HEN LET D$="epoedeopr' i TO J15-LFh
DFY DY

T2868 RETURN

9. Convert a binary string to a decimal number
Line numbers used: 9285 to 9315

Variable names used: DEC,SUM, E, E$

To use the subroutine define the string E$ as a string of binary
digits with 1 representing the binary ones and 0 representing
the binary zeros. For example, LET E$ = “1101”. GOSUB
9285 will then make DEC the decimal equivalent of E$. Of
course, this could be done with binary numbers using BIN, but
it is occasionally necessary to store the information as a string
so that the individual bits may be checked. These routines
allow you to work in binary and decimal numbers and convert
backwards and forwards as you need to. It is possible to use
BIN to convert a binary string to a decimal number (in a very
roundabout way using VAL) as shown in the second alterna-
tive, but this is subject to the constraints of VAL and BIN.

285 REM BINARY TO DELTMAL

S280 LET DEC=06: LET SupM=1

52895 FOR E=LEN E%$ TN 1 STEP -3
S388 IF E4${(E)Y="1'" THEN LET DEC=D
EC+5UM

S585 IF ES(E)="8" OR E$(E)I="1" T
HEN LET SUM=SUM=z2

53180 NEXT E

5315 RETURN

2285 REM BINARY TO DECIMAL
8299 LET DEC=UVRAL (“"BIN “+E%)
5285 RETURN

With both versions of the programs you can include spaces
between the digits of E$ to aid reading by clearly spacing out
thenumberslike this: thestring”“1111111111111111" (sixteen
ones) could be entered as ““1111 1111 1111 1111 without
affecting the values because the routine just skips over any
characters that are not ones or zeros. Using BIN you could
separate the digits of the binary number with spaces but any
other character would cause an error C, Nonsense In Basic.

52

_—

10. Round off to 2 decimal places
Line numbers used: 9320 to 9345

Variable names used: F$,VALUE,LF

This routine rounds off the variable VALUE to 2 decimal places
and adds a zero before the decimal place if required. This
makes it very useful for calculations involving money. The
value is returned as the string F$ ready for printing or decoding
with VAL if it is required to be handled as a number. For exam-
ple, if value was 0-678 the string variable F$ would be 0-68.
You should add the £ or $ symbol as you require during prin-
ting. Before calling the subroutine declare VALUE along the
lines of LET VALUE = 89-2345 orINPUT “Enter the costof the
item’”: VALUE. Due to the way the Spectrum holds decimal
numbers in memory, a slight inaccuracy can sometimes occur
where the third decimal place is 5. 0-005 will be treated
incorrectly, ending up as 0 instead of 0-01 — there is a
simple answer, namely adding slightly more than 0-5 in line
9325 — something like 0-500001.

529 REM 2 DEC. PLACES
c325 LET F$=STRE JINT FLIRL LIE 37 563

+.5) /1@@) | s
sa3@e IF Fi)="." THEN LET F5="0

: $

‘3335 LET LF=LEN FS$-LEN STRS INT
(5= F%

CR42 LET Fs=F%+1".02" RND L. F=8) %
(@ AMD LF=2121

S345 RETLURN

11. Keyboard aids for graphics games
Line numbers used: 9350 to 9380

Variable names used: X,Y

The routines described here show how whole sections of the
keyboard may be used to control screen movement in particu-

lar c_iirections. No more frantic searching for the 5 and 8 keys,
for instance.

In the first routine, the left half of the keyboard moves towards
the left (not literally anyway) and the right half of the keyboard
does.the same to the right. With a choice of 20 keys to move
You in the direction, you shouldn’t have any more trouble
finding the right keys for movement. The only thing to watch

53

out for is not to press CAPS SHIFT and SPACE causing
BREAK and stopping the program.

The control effects a change of value of the variable X — this
could be used as the PRINT or PLOT co-ordinate of an object
on the screen. It is up to you to determine the minimum and
maximum values which X can take.

S350 REM MOVE LEFT OR RIGHT

2388 LET X=X4+(IN 681438+IN S734>s
IN 491S0+IN 32766<>1028) -(IN &34
gﬁ+}N 64510+IN BS@22+IN B5278¢>1
=

2368 RETURN

The second routine provides control for movement in eight
directions by splitting the keyboard into four sections — the top
row for up, the left half of the middle two rows for left, the right
half of the middle two rows for right and the bottom row of keys
for down. Pressing suitable combinations of these can move
you diagonally. X is the co-ordinate of the PRINT position
across the screen and Y is the co-ordinate of the PRINT posi-
tion down the screen. Again you should set the limits of the
values these variables can take yourself.

b B

RE 4 DIRECTIDN MOUE
?g LE¥ X=X+ ({IN 4915Q+IN E7342¢
T1@) -(IN 64510+IN E5822¢>518)
75 LET Y=Y+ (IN 685278+IN 32766<
YE10) -(IN 634E86+IN Bl4IB<¢>5121]
23808 RETURN

12.String sorting
Line numbers used: 9385 to 9415

Variable names used: S, T,S$,U$,USED

This routine will allow you to sort a string array into alphabetical
order provided you know how many of them there are to be
sorted. USED is a variable that says how many strings there are
in the string array. So if you had earlier declared DIM S$
(20,20) and had assigned to 15 strings, USED should have a
value of 15 because there’s no point in sorting the other 5. The
other two varvables usea are two loop control variables and a
dummy string used during the swapping over of two strings.

SobS REM sort strings
35980 FOR =1 TO USED-1

10w 100
WA

54

==gs FOR T=5 TOD USED

Za0@ IF S&(T) «5%(5y THEN LET lis=
25is): LET S$(81=3851T): LET S$i{T
1 =U%

Zd4®5 NEXT T

Ze1@ NEXT &
54315 RETURN

13. Printing string arrays without any trailing spaces
Line numbers used: 9420 to 9440

Variable names used: U,W,S$

This routine allows you to print strings or string arrays without
the problem of spaces at the end messing up the screen layout
by causing a gap between two words. To use the routine
replace string array with the name of the string array you wish
to print. W indicates which string in the array is to be printed.
So if you had DIM S$ (20,20) and wished to print S$ (8) you
would say LET W = 8 before calling the subroutine.

2420 REM PRINT LESS END SPRBLCES
Ssos FOR U=LEN S4(W) TO 1 STEP -

1

436G IF S$(W. Uy > " THEN PRINT
cg(ld, TO 1Y : RETURN

9435 NEXT U

3440 RETURN

14. Make a bleep
Line numbers used: 9445 to 9465

Variable names used: Z

The routine merely provides a tone of descending pitch which
is suitable for any application requiring a distinct sound — say,
where you have just been shot down by an alien.

5445 REM MARKE A NOISE
2&53 FOR Z=0 TO 208 STEP =2
5455 BEEP .01,69-(Z32.5)
468 NEXT T

54865 RETURN

1'.5. Decimal to hexadecimal conversion
Line numbers used: 9470 to 9505

Variable names used: DEC,NUMBER,H$,N1

?lppose you had a decimal number DEC which you wanted to
Otr)nvert to hexadecimal format for machine code programming
Whatever reason. This subroutine will convert the value of

.» : 55

DEC into a hex string H$ so that 16 decimal would be 10 hex.
There is no limit to the size of the number DEC (within the arith-
metic limits of the Spectrum) as long as it is positive. Since two
hex digits normally equate with one byte in memory, this
routine adds a leading zero digit so that the resultant hex string
H$ can be used with hex loader programs if needed. This fun-
ction is performed by line 9500 so you may omit this if you do
not need the facility. The other variables are dummies used to
perform arithmetic on the value of DEC during conversion,
without actually changing the value of DEC — itis preserved on
exit from the routine.

G470 REM decimpal to bhex

S4T7ES LET dec=numpber

4860 LET hg=""

S4E8S LET ni=INT (dec—-(INT {(decr1
£3Y 16}

2490 LET h$=CHRS$ (nl1+48+i(7 AND n
183 +hs

2485 IF INT {(decr16) ¢>0 THEN LET
dec=INT {(decri6)y: GO TO Q4iB=
SS88 IF INT (LEN h$/2) x2¢>LEN ht
THEN LET h$="0"+h%

SS5S05 RETURN

16. Hexadecimal to decimal conversion
Line numbers used: 9510 to 9540

Variable names used: H$,H,VALUE,DEC

This routine performs the opposite function, namely converts a
hexadecimal string H$ to a decimal number DEC. H$ may be
any length as long as the resultant decimal number is within the
arithmetic capabilities of the Spectrum. H$ should be defined
before the subroutine is called, it is preserved on exit from the
subroutine and the decimal number is in the variable DEC.

The characters of the hex string should consist of the numbers
0to9, the upper case letters A to F or the lower case letters a to
f (which are read as being the same whether in lower or upper
case).

S51@ REM hex t¢ Jdecsixat :

SIS LET value=1: LET Jderc=@

S528 FQR h=LEN hS TOQ 3 STEP -1
2028 LET dec=dec+(CODE h¥thl-48~

{7 BND h${hl>7"9")~(32 RBND hEi{h) >
="8")) ¥valuse

SIS3R LET vatue=vstiuexls

S535 NEXT b

S2S483 RETURN

56

UDG DESIGNER (16K
SPECTRUM)

This program will allow you to design the user defined graphic
of your choice and then tell you the values to use as data in a
program to setup those graphics. It does notinclude the many
luxuries of some more elaborate versions, but having used one
of those | find that when | need to design a character for a pro-
gram this simple version is all | need. All the commands and
options available are shown on the screen all the time and if you
have a printer you have the option of having a permanent copy
of the display including a large size image, what the character
looks like normal size and the data values. This is a sample of
the display so that you can have an idea of what the program'’s
like.

CONTROLS

& ELank out dot

1 Ink in dot

2 Ctear display
S@Stop the progranm

A Copy to printer
S teft
& Dowmn
7 up Bit
E Right
765543210 DATAH
& [+)
o6
= AR
S N NN 3 24
Row 4 =
S =3
6 =
o 8 3

Thg large square is the display area where the character you're
designing is displayed. Study this area when using the pro-
Qram.-The cursor (a + symbol) shows the current dot of the
graphic that can be shaded in or blanked out. This cursor can
be moved left, down, up or right with the cursor keys5,6,7 and
8 respectively. Pressing the @ key will blank out the dot under
t:e cursor so if the cursor + was in the top left of the box then
the top left dot would be blanked out white after pressing @ no
hmatter whther it was black or white previously. On the other

and, pressing the 1 key would make the dot black. Note that

57

the + cursor is white against the black dots so that you can
always see it. Four ““real” size copies of the user defined
graphic are printed side by side on the left of the enlarged ver-
sion so that you can see what it should actually look like in use.

Pressing the 2 key clears the display of the user defined
graphic, resets the cursor to the top left of the box and puts the
data values back to @ each. Pressing the 3 key will stop the
program if you've finished with it. If for any reason you want to
restart the program from where you stopped it (e.g. in error)
then simply entering CONTINUE as a command will step over
the STOP statement. Pressing the 4 key will give you a printout
on paper (if, of course, the ZX printer is attached), without the
cursor. Once you've finished designing, copy the data values
so that you can incorporate them in a DATA statement for the
user defined graphics in your program. For the example shown
you'd type after the line number DATA 0,96,48,24,12,6,2,32
as an example to show what order the numbers should be writ-
ten. The numbers are all in decimal — if you use BIN to set up
the user defined graphics you would not use this program since
the 1s and @s would show the layout of the dots for you
without the need to design them beforehand. Here is the pro-
gram listing:

5 GO SUE- SO0

10
2@ IF INKEY&<:"" THEN GO TO 20
5@ LET I4=INKEYS$

L20 IF I%<"@Y OR I§: 8" THEN GO
- SO,PRINT AT 24UAL T$,1; INVERS
= ;1'}\‘

6@ IF I4$="0" OR I&="1" THEN G0

SUB 560

7?6 IF I4$="2" THEN GO SUB 180
86 IF I$="3" THEN STOP
8@ IF I4="4" THEN GO SUB 1500

128 IF I%>="S" AND I%<="3" THEN

GO SUE 2006

116 PRINT AT 2+URL I¢,3;" »

126 GO TO 20

5@@ REM ink in or blank out

51@ LET D$ICY,.CX)=1%

, 528 LET DI(CY)=UAL ("BIN “+D$(CY
H

550 POKE AR “A“-14+0Y..D (LY}

S48 PRINT RT_1Z2+CY,16+CX; INUER
SE URAL D&{CY,CX}; “+"; INUERSE ©;
T 16,1;"A A A AY;AT 134+CY,27;D1
C¥I;" “{ TO 3-LEN STR$ D (LY))

58

58 RETURN

1560 REM clear the display

i31i® FOR A= TO 7

1p2@ POKE USSR A" +8,

1838 LET D$(R+13_"aaaaaaaa"

1da@ LET DI(A+1) =0

1@5@ PRINT AT 13+R,17;" i
;BT 16.,31; 7R A A A"; AT 15+R,27;Y 0

1560 NEXT A

a7 LET £¥=1: LET CX=1

150 PRINT RT 124CW ,3640CX; 4"
1598 RETURN

1500 REM copy to printer

1516 PRINT AT 124CY ,;16+4+CX; OUER

i;
1528 COPY

22 :PRINT §T 12+4CY,1640X; OUVER

1'; l\+“

1540 RETURN

=080 REM moOove cursor

oa31@ LET OLDCX=CX: LET CLDCY=CY

=520 LET OX=CX-(I$="5" AND CX:r i}

+(TH="8" AND CX«8)

ZasG LET OY=CY—-{I$="7" AND CY>1}

+({Is="6" AND C¥ <5}

SA4AEe IF OLDCX «>CX DR OLDCYW < >CTY T

REN PRINT AT 124+0LDCY,16+0LDCX;

INUERSE uQt D& (OLDOY ., DLDch- ot

gTC%?+CY315+CX, INUVERSE VAL D¢ (C

IB50 RETURN

SBOS REM INITIALISE

SG1e BRIGHT ©: FLASH 8: INUVERSE

8: OUVER O

EBE@ INK &: BORDER 7: PRPER 7: C

bt

SH3C FOR &=8 TO T: PORE LUSE "a"+

R,®: NEXT A “

SBAG yPRINT “CONTROLS

IF=G PLOT ©,167: DRAW 63,8

SHE® PRINT @ Btantk &ut“dui

SBTG PRINT "Y1 Ink in dot

SEEG PRINT “2 Clear display’”

SE39@ PRINT "3 Stop the pcragraam”

S1668 PRINT “4 Copy to printerc®

S118 PRINT 5 Left"

$120 PRINT “8& Douw " v

2138 PRINT 7 Up" ,TﬁB 18 “Bi L "

PLOT 152,95: DRAW 23,9@

S140 PRINT & Rzght

Si58 PRINT TARB 17 ,"“5543213 DAT

A"’ . pLOT 216,79: DRAM 31,

9IE6G FOR R=0 TO 7: PRINT TRB is;

;A TARB 27; "0 : NEXT ®

9170 PLOT 13S5.,72: DRAW 65,0: DRA
®,-65: DRAU -6S,8: DRALW 2,54

3186 PRINT RT 17.,11; “Row*: PLOT

SE.31: pRAV 23,9

59

S3186 PRINT AT 153,17; “+%
32@@ DIM D(SY: DIM D$(&8.,8)
S210:FOR A=1 TO B8: LET D&(A) =G
@BOOO0" : NEXT A

g22@ LET CY=1: LET CX=1

9258 RETURN

When typing in the listing, please bear the following infor-
mation in mind.

Line 520: The word BIN in quotes after VAL is the function
BIN, not the three letters B, | and N.

Line 630: In quotes after USR, the A is a graphics A.

Line 540: The letter Asin “A A A A" are four graphics As.

Line 1050: There are 8 spaces in the first string of spaces
and 4 graphics Asin ”/A AA A” and “0 " is followed by two
spaces.

Line 2040: One space.

Line 9150: Two spaces between the numbers and DATA.
Note the two apostrophes after the quotes.

The program is designed as a series of subroutines called from
aninitial loop in the program. The first thing done is to initialise
the program in the subroutine at line 9000. This consists of
setting permanent attributes, etc. (9010 to 9020, black text
on white background), making the user defined graphic on key
A have all dots blanked out to match the blank box at the start.
This is done by the standard POKE USR statement 8 times in a
loop.

Lines 9040 to 9140 print the instructions. The DRAW
statements are for underlining. Lines 9150 to 9180 set up the
box in which you edit your character. The numbers along the
top indicate which bit of the DATA byte the dot corresponds
to. The numbers along the side indicate which byte of the data
for the user defined graphic, e.g. row @ will go into USR “A”’
+ 0, etc.

Line 9190 prints the cursor at its starting position. Line 9200
sets up one numeric array D() and a string array D$(). The
former holds the DATA values whereas the string array holds a
binary version to determine whether the individual dots are set
or not. If you want a printout in binary for BIN users this array

60

could be printed. Line 9210 puts @ into every element of D$()
since the display starts with all dots “off"’. The variables in line
9220 are CY for cursor Y co-ordinate down the screen (note,
not from the top of the screen) and CX for cursor X across,
again not standard X values. On returning from the subroutine
the program enters the main loop in lines 20 to 120. Line 50
prints an inverse greater-than symbol as a cursor next to the
option chosen. This is optional and can be omitted (in which
case omit also line 110 which deletes the marker once the
option has been completed which in most cases takes only a
fraction of a second). Lines 60 to 100 select which subrou-
tine to execute. If adding any routines of your own or changing
this program be careful as direct references to the character in
16 are made in other parts of the program; in particular, VAL is
applied and the value used to determine whether something is
in inverse or not.

The subroutine at line 500 is called when you press the @ or 1
key. It handles inking in or blanking outa dot. Firstly, the appro-
priate element of D$() is made @ for somewhere blanked out or
made 1 for somewhere inked in. Thisis converted to decimal in
line 520 by applying VAL to a string containing BIN and a
binary string from D$() — the result is stored in the appropriate
element of the array D() with the data. D() is updated every time
any change is made to the UDG. This value is POKEd into the
user defined graphics area in memory so that graphics A
becomes a copy of the figure you're editing. Line 540 prints
the + cursor in the display box and determines whether this is
to be inverse or not from the character in I$ you pressed on the
Ifeyboard. It also updates the data values on the screen by prin-
ting the appropriate element of D() in the column to the right of
the display box. Note the use of LEN STR$ to decide how many
spaces to print to overwrite any value that may have been there
previously — imagine that the DATA for a row was 127 (i.e.
only bit 7 was blanked out) then you blanked out bit 6, which
made the data 63. This would only have 2 digits instead of the
three there previously so would not completely overwrite it and
leave the 7 on the screen giving 637 — oops! The last PRINT
Statement in line 540 decides how many spaces to print, 2,1,
Or none depending on how many characters in the number.

Three characters are always printed. Line 540 also prints the 4
graphics As.

-

61

The next subroutine at line 1000 clears the display of the
graphics you have set up and resets the data arrays to startlng
values as well as the cursor and UDG A.

The routine at line 1500 copies the display to the ZX printer.
The + cursor is first erased using PRINT OVER 1 which, since
the cursor is already inverse against the background, will turn
the cursor the same as the background, so in effect it is erased.
COPY is used when the cursor is returned using PRINT OVER 1
again. This is a very useful application of OVER 1, erasing and
reprinting something on the screen alternately simply by prin-
ting the same thing OVER and OVER again. The subroutine at
line 2000 is a straightforward routine to move the cursor
using the cursor keys 5 to 8. Note in line 2040 how the binary
strings D$ is used again with VAL to determine whether or not
something is to be printed in inverse. Unusual, but ideal for this
application.

You may notice there is no repeat on the keys, e.g. if you want
to move from one side of the box to the other you have to press
the 8 key once for every space the cursor moves. Thisis due to
line 20 which if it finds a key is pressed waits for it to be rel-
eased. If you don’t see the point of this try omitting it. Because
the program works so fast the keyboard becomes very difficult
to use because the cursor travels so fast. If you like, experiment
with using afixed delay in line 20, something like 20 FOR A =
1 TO 50: NEXT a which will give a nice slow constant repeat.
Do not use PAUSE as this will be cut short after a keypress and
you will have to play around with keyboard auto repeat periods
and so on.

62

READY MADE USER
DEFINED GRAPHICS

These are pre-designed graphic symbols for you to use in your
own graphics programs so that you don’t have to waste time
designing your own. They consist of the more commonly used
user defined graphics, with the relevant data for their creation
placed in DATA statements for subsequent reading and
POKEing into the user defined graphics area of memory.
Although the-line numbering is pretty random since you will
change this to suit your programs, the DATA lists are shown as
they would appear on the screen in a program listing as a visual
aid to correct entry.

For example, to set up the invader character:

S22 REM make graphic R

221d REM antGc an invader

ag2e RESITORLE

sSp3@ FOR a=uUsSR "a” TO USSR "a"+7
sER4@ RERD udg

IASR FOQKE 8 .,udg

288 NEXT 8

S@7@ REM data tist taken from
2R3 REM exaswpiles and renumbered
S8R REM to suit progsrabn

2192 DRTR 6B6,.6@,92,126,6@,24,36,

(=3~
i1 PRINT "R”: REM graphic H

(_)f course, you would leave out the REM statements for simpli-
fication. And that's all there is to it — go ahead and use them!

(1) invader characters

invaderl

Egl@ DATA 66,6@,92,126,60.,24.36,

63

e

invadera

g@ DRATRA 66,336,189, 165,255,690, 03

W)

&
i §

invader3

EQSB PRTRH 82.42,62,28.8,119.65.,.6
(2) fractions

quarter

SZe@ DRTRAR ©8,72,82,38,74,146,31,
&

64

=alf

=

'28@ DRTR 58;?233@;44;65,132;331

IR

i

three quarters

81;%3 DRTR 225,34,068,42,246,42,79

(3) cards

tards diamond

€152 DRTA &,28,62,127.62.,25.5.,0

N .

cards spades

gl;g DRTR 16.56.,124. 254 .2594.,.84., 1
L=

cards hearts

3198 DRTR ©&8,238.254,254,254.,124
.56.,16

cards clubs

§§1E\ DRTR 24.6@.,24.8@,255.28.24.
=

66

.

(4) pacman-type symbols

~ight pacman

@10 DATAH 68,127,252 .,240,240.252
127,60

teft pacman

6%3@ PRETRH ©B@,254,03,15,15.,083.,254

YR pacman

S230 . :
1ESJ539TH 66.,.66,231.231.255.,.255.,

67

down pacman

aa7e DRTAH 6@, 126 ,255,255,2531.,231
. 66,66

JaA7e,l7ae

energy tablet

gll@ DRTR @.,24,60,126,126.£8.24.,

68

DRTH @,238,68,255,255,68.,23

DRTR o6&, 126,90,24, 92,226, 9@

69

tefrt Ccar

Q3¢ DRTR 8,119;3¢;255;255,3¢,11

3,

up car

Eggﬂ DRTH E4;9@;125,93,2¢,93,125

(6) plane

rltanel

caae DRTH E¢;2¢;591126,255,2¢,2¢

.58

70

pDRTA 16,24 ,156,255,255, 156,

DATR 6,24 ,24 ,2855,126,68,24

@ DATA 8,24,57,255,255,57.24,

1

(7) ship
Ship

2pa@ DATA 8,24 ,6@,126,8,255,126,
=Y.

(8) man
man

ggi@ DATA 56,56,16,124,16, =6.68.

(9) explosion

exptosaion
S
R
§o30 DATA 145,82,0,192,3,0,74,13

T2

eral purpose eight direction craft for space
ut games, etc.

DPRTHR 3,13,05©.,184.52.,20.,8.,8

B DHTE a;a,aa;Sai 194‘-!5@-’13-'3

73

8%23 DRTAR 195, 165,980,686 ,36,36,24

?gg@ CRTHR 16,16.,40.,44 ,67,76,176,

2248 DRTH 3,313,5@.,1258.,.1236,°®.13,
o

&

B?g@ DRATR 192,176.,76.,67.,44 ,48, 16
L4

74

ORTING OUT SCREEN$
A\ND ATTR

.quent requirement during games programming is to check
haracter at a given location on the screen, for example, to
collisions. Spectrum BASIC has the SCREENS$ function

his purpose and it works like this.

,syntax is SCREEN$(y,x) which returns a string correspon-
to the character on the screen at row y down the screen
column x across the screen irrespective of whether the
acter is inverse or not. y and x can be numbers or numeric
sressions as in a PRINT statement. For instance, try this pro-

i

. 1@ PRINT AT ©,5;"+"
. 2@ PRINT "The character at @.S
is "“:SCREEN% (8,5}

n be seen that being inverse does not matter with this pro-
n. SCREENS will return + foraninverse + onthe screen or
CE for a GRAPHICS SHIFT 8 character, for example.

. 4@ PRINT AT ©,5; INUERSE 1; 3"
L 2@ PRINT “The character at @,8
is ";SCREEN% (®,5)

eed, the attributes (colours/flashing/brightness) do not
matter to SCREENS$, only the actual dots on the screen. Here is
xample to demonstrate the use of SCREENS in graphic
es. You are in control of a spaceship (inverse V) drifting
ugh space trying to avoid colliding with the stars (asterisks)
ing past you. When you collide, the game stops and your
e is displayed. The 5 key moves you left across the screen
d the 8 key moves you right across the screen. You stay
Ifway down the screen while the action rushes up past you.

30 sets how far across the screen your spaceship starts,
40 increments your score and line 50 keeps the screen
lling without the scroll? prompt appearing. Line 6@ prints
three stars at the bottom of the screen then erases the current
Position of the ship for scrolling. The scrolling is performed by
last PRINT statement in line 60. Line 70 looks at the key-
5 rd and determines where to PRINT the spaceship. Line 80

75

looks for the character at the new position using SCREENS. If
this character isn’t an asterisk then the game continues by prin-
ting the spaceship and looping back to line 40. If there has
been a collision your score is printed and the game ends with
your spaceship flashing to indicate a collision.

Mty SECOREFD &8 kS ¥
x ¥ =3
* +
x*EE ¥
x * *
¥ =
i+ ¥
¥ x *
F ¥
* x ¥
¥)] x ¥
E ¥ ¥
* * +
¥ * E
¥ x> *
¥
x x *
* ¥ *
¥ 3 ES x
* *
* ¥ *

1 REHM stars
1@ RANDOMIZE
20 LET SCORE=2
38 LET RACROSS=INT (RND3*32)
48 LET SCORE=SCORE+1
S& PORKE 236S2.25%5: REM SCROLL
68 FRINT AT 21,RNDx31; "3";RT =2
1,RND*31; “*" ;AT 21 ,RNDx31; "= ,; AT
18.,ACR0SS;" ;AT 21,31°°
78 LET ACROSS=RACROSS- {INKEY%®="
5 AND ACRDOSS:8) + {INKEY $="8" AND
ACROSS +31) i
8@ IF SCREENS% (18,ACROSS}) «»" ¥
THEN PRINT AT 18,RCR0OSS; INUERS
E i;"uy": GO TO 4@
S PRINT AT @.@; "Yau SCORED
SCORE; AT 18 ,ACROSS,; FLASH 1; 7w~

What you don’t get told is that SCREENS$ is very limited in what
it can recognise. It only checks against those characters in the
character set from SPACE to the © symbol, or CHR$(32) to
CHR$(127). User defined graphics and the block graphics on
the number keys on the keyboard are notrecognised, whichisa
great pity since these are the graphics mainly used in graphics
based programs where SCREENS is of most use.

76

o way around this problem is to use ATTR, and PRINT in
t colours. Soif you had a game where you fired missiles
bject you could arrange that the object was green, the
red and the missile launcher blue and so on. To check if
ssile had hit the object you would check for the presence
n on the character square the missile was about to move
h ATTR. This sort of thing is usually done where
N$ cannot be used for any reason. For instance, if the
was blue on a yellow background of normal brightness
not flashing you would test for the presence of the object

jith something like:

IF ATTRI(Y,X) =49 THEN....
;."ng in mind that ATTR returns a number which is (flashing
8) + (brightness * 64) + (PAPER colour *8) + (INK

olour).

)ne thing to watch out for here is that any blank spaces on the
=n should have a different attribute to any other graphics
he screen. If the global colour was blue INK and the missiles
the spaces for blanking were both pri nted in the global

s then ATTR may not be able to distinguish between the
es and the missiles! One easy way around this is to specify
sbal INK colour the same as the background PAPER colour
efore clearing the screen like this:

LASH 0: BRIGHT 0: INK 6: BORDER 6: PAPER 6: CLS.
sets the attributes of any blank spots on the screen to 54
screen will appear yellow). You will not be likely to use
ow INK on yellow PAPER during the course of the program
printing graphics because it would be rather difficult to see.
ything printed on the screen would be printed with tempo-
olours while all blanking would be done in the permanent
ours. The only problem is that when the program stops you
be able to see the listing unless you specify something
INK 9: STOP when the program comes to an end.

€ is a development of the stars program which makes use of
user defined graphics for animproved display and ATTR for
the display for collisions as described above. The

&7

graphics are three graphic A’sin line 70 and a graphic B in lines
100 and 110. Line 20 sets the global attributes to @ so that
an area of screen with nothing printed on has an attribute of 0.
The stars are printed in white against black spaces to give them
an attribute of something other than 0. Thus, when the pro-
gram checks to see if a collision has occurred in line 100 only
empty space allows the action to continue. If there isn't empty
space, a collision has occurred. Here is the program listing.

Stars 2 screen display and listing

¥0OU SCORED 938 x
x X *x

* xk
* * x
*x %X x
* &
x % *x
x x *x
.3 *x x
** ik v
*x ik
x) 4
x x ®
S x *
x % *
= *x *x :k* -
x *x *
x * *x
* x x

S GO SUB 1660

10 RANDOMIZIE

28 FLASH ©: BRIGHT @: INK @: B
ORDER &: PAPER ©: CLS

S8 LET SCORE=@

48 LET RCROSS=INT (RNDx32)

S@ LET SCORE=SCORE+1

6@ POKE 23692.25855: REM AUTO-SC

78 PRINT INK 7;AT 21,RNDs31; "%
“;AT 21,RND¥31; “k“; AT 21,RNDx31;

, 52 PRINT AT 18.ACROSS;™ “;AT 2
‘98 LET ACROSS=ACROSS- (INKEY$="
5" AND ACROSS>0) + (INKEYS="8" AND
ACROSS<31)
18@ IF ATTR (10,ACROSS5) =@ THEN
PRINT BT '1@,ACROS; INK 4; ¥ : &
11@ PRINT AT ©8.08; INK 7:"vou St

78

v, SCORE; AT 18,BCANSS; THiN &
AasSH ig"V"
REM MAKE GR. A INTO STAR

FOR A=@ TO 15

RERAD UDG

POKE USR “A"+R,UDE
NEXT

a

& DATAH 16,55,25¢,124,55,1@B,1
9;195;155,99,65,35;35; 4'{24'

&0’ RETURN

etimes it is possible to use either SCREENS$ or ATTR and it

mes necessary to choose which one can be used. In
ions where either can be used, speed is usually the
srmining factor. Try both of these programs and time how

na they take to run.

he one using SCREEN$ takes about 12 seconds whereas the
sion with ATTR takes about 9 seconds. So it can be seen
it is quicker to return the attributes of a screen location
n to return the character at that location. Sometimes you
2 run into the difficulty of having to find the PAPER colour or
» INK colour or whether the location is bright or flashing.
TR returns the attributes of a character location as one
ber from 0 to 255 which consists of the information for the
r of them. To resolve them into their constituent parts we
ed to know how the attributes are held in memory in the
splay file. This diagram represents an attribute byte in the

splay.

o6 | bis | b4 | bi3 | bi2z | bitl | bito

bright PAPER colour INK colour
-ness

U
~

bits@to2 hold the INK colour in binary
2105 hold the PAPER colour in binary

79

bit6 holds the BRIGHTness attribute, being 1 if bright
(or BRIGHT 1)

bit7 holds the FLASHing attribute, being 1 if flashing
(or BRIGHT 1)

To resolve into individual attributes requires some thought.
These FN calls will resolve the flashing attribute (FN f), the
BRIGHT attribute (FN b), the PAPER attribute (FN p) and the
INK attribute (FN i). If you are only going to use the expression
once in a program there is no need to set up the 4 FN calls —
just write out the expression in full when it’s needed. The num-
bers returned are the colour numbers, so if the PAPER colour
was blue, the function FN p would yield 1. The functions’
arguments x and y are the standard x and y screen co-ordi-
nates, so to find the PAPER colour of the top left of the screen
you would say LET paper = FN p(0,0). x is the column
number across the screen and y is the row number down the
screen.

18 DEF FN f (y,Xx) =INT (ATTR (y,
X} £128)

28 DEF FN biu,.x)=INT ((ATTR 1(y
fx)—-INT (ATTR (Y ,X} ~128) 2128 v64

38 DEF FN p(4u,.x)=INT ((ATTR (y
+X) =INT (ATTR (Y.X) s84) 36412 +8)

48 DEF FN i (4,X)=INT (ATTR {4,
X} =INT (ATTR (4Y4.x) -8) x8)

g
+£
o
Inevitably you will find situations where you need to find user
defined graphics on the screen and ATTR cannot be used. It is
actually possible to make SCREEN$ recognise user defined
graphics once you understand how SCREEN$ works. The fun-
ction SCREENS picks up a value from a certain system variable
which enables it to find the start of the character set which it
looks up for a matching dot pattern for the pattern on the
screen.

If we changed the value in this system variable in such a way as
to make SCREENS think that the UDGs are the normal cha-
racter set then use a simple arithmetic manipulation to get the
correct CHR$ value (it might think that UDG A was CHR$ 32
otherwise, since CHR$ 32 is the first character in the character
set normally).

80

e system variable in question is 23606/23607 which is a

e system variable containinga number whichis 256 less
the address of the start of the character set dot patterns.
> js another two byte system variable 23675/23676 that
us where the user defined graphics start (exactly). So, all
eed to do is transfer the two bytes from 23675/6 into
5/7 subtracting one from the high byte for the difference

56.

is pest written as a subroutine. This subroutine changes
he character set pointer to the user defined graphics, checks
‘e screen, “‘frigs’” the CHR$ value then resets the pointer to
ROM character set (if you're using another character set
| have to preserve the original value in a variable). X is the
IT position across the screen and Y is the PRINT position

n the screen.

2680 POXKE 253606 ,PEER 253675: PORE
23607 , PEEK 23676-1

@10 LET A%=5SCREEN% (Y, X)

28 IF A%$<>"" THEN LET A$=CHRS%
CODE A%$+112)

5838 PORE 253606.0: POKE 23607.6a
&840 RETURN

i
this routine, any blank spaces on screen are not recog-
d properly unless one of the user defined graphics happens
semble a space or there is something resembling aspace in
M above the user defined graphics. This is a nuisance as

ces are used a lot — any blank part of the screen is a space
r all. There are two ways out of this. Either definea UDG as

space or add to the routine like this:

B00@ LET RA$=SCREENS (Y ,X): IF A%
= THEN RETURN

8810 POKE D3BB6,PEEXK 23675: PDKE
23607 ,PEEK 235676-1

8820 LET A$=SCREENS (Y,X)

8838 IF R%$<>"" THEN LET A$=CHRS$

{CODE R$+112)

884@ POKE 23605.8: POKE 23687.60
8858 RETURN

'0 make SCREENS$ recognise the block graphics CHR$ 128 to
HR$ 143 is not so easy. There are no dot patterns as such for

ting this since they are “calculated’’ when they need to be
Printed. You could set up the dot patterns somewhere and

81

change the character set pointer to point to them or you could
define a user defined graphic as the block graphics in turn and
use this to check against SCREEN$. Remember that although
there are 16 block graphics, only 8 of them need to be checked
since 8 are inverse versions of the other 8 and SCREEN$ can
cope with inverses as this statement (entered in direct mode or
as a program line) will show.

CLE: PRINT CHR 14.3: PRINT SCREENS
(8,0 ,CODE SCREENS% (0,8}

CHR$ 143 is GRAPHICS SHIFT 8 or a block of INK dots (an
inverse space). SCREEN$ recognises this as an ordinary space
CHR$32. Of course, an easy way out of this is to copy the entire
character set from the ROM into RAM and redefine some of the
characters that SCREENS$ can recognise. The characters rede-
fined would normally be the little used ones like the square and
curly brackets and other symbols not used much in listings.

82

JON-DELETABLE
OGRAM LINES
Idn't it be nice to be able to insert a line like:
% @ REM © Fred Bloggs 1982

your program knowmg it couldn’t be edited out and
ent other people copying that program without your
or credit? Deleting the above line is easy: just type 10
ed by ENTER and the line has been deleted in the normal
What is needed is a method of inserting lines into a listing
h are difficult, if not impossible, to delete. Part 1 of the
swer is that if you manage to get a line number 0 into a list-
g it cannot be deleted in any of the normal ways since line
umber 0 is usually associated with direct commands (e.g.
ter the direct command PRINT without a line number: you
Id get report @ OK 0:1 meaning everything OK in the first
atement of line 0). If you attempt to enter:

2 REM @ Fred Blaogas 1982

would be rewarded with the cheery message Nonsense in
IC with report C. So that's out.

t has to be done is to enter a line with a normal line number

10) then change this number to a zero. Difficult? Not a bit
pun intended). We could do this by looking through the
ram for the line number, followed by a REM a little further
then POKE away until we got what we wanted. However,
would be very slow and messy. A better way is to use the
em variable NXTLIN contained in 23637 /8 which contains
ddress of the start of the next program line (note: line not
ment). The Spectrum manual informs us that each BASIC
starts off with a line number stored in two bytes in the order
e Significant Byte (MSB) followed by Less Significant Byte
). Therefore, line 1 would be 0,1 and line 258 would be
1*256 + 2). So, if we POKEd 0 into both bytes we’'d get
Ur objective of a virtually undeletable program line. Here's
-to do this in a line of BASIC:

" 3 LEFT a=FPFEK 236537+256:PEEK 2
f‘ﬁﬁ& PDHE a,®: POKE a+i,B: STOP

2 REM © Fred Bloggs

83

RUN the program. Now LIST the program and note the zerg
line number where line 2 used to be and note also how the line
numbers have not been sorted into the correct order; sorting
only takes place when they are actually entered into the listing
— once they’re in they stay in order but any lines entered from
then on will go in the correct place. Line 1 is no longer needed
— delete it as normal to prevent others using it to undo what
you’ve done. You should now have:

@ REM € Fred Blaggs 1882

Try deleting it with EDIT; try typing in its line number. Quite
secure isn't it? To delete it you will have to go through all that
POKEing again. But if you think about it you realise you've got
a problem — you can’t use the system variable NXTLIN again
because line @ is now the first program line — any other lines
entered go through the sorting and will go afterline @. NXTLIN
will only give the correct address for POKEing if used before the
line to be POKEd — hard luck. For security I'll leave you to work
out how to delete line 0. There are several ways of doing this,
all of them rather “‘roundabout’” and not too obvious. There are
no prizes for doing this as it is not meant to be done. You could
place this all into any part of a program and if you're keen
enough, you could place a bright, flashing, coloured copyright
statement into each page of a listing so it stands out whichever
partis viewed. There is nothing more annoying than a glaringly
obvious deterrent like this and the knowledge that you can’t get
rid of it!

If you aim to use it a lot, you could place the routine on tape and
MERGE it into your programs. If starting from scratch you
could even use:

SAVE “copyright”’ LINE 1

which would only leave you with the task of deleting line 1 since
the LINE instruction will make the program start itself to create
line @. Alternatively, just save line @ by itself on tape then use
MERGE to add that as the first line of a program. MERGE will
quite happily handle the zero line number. When creating this
copyright line @, | suggest you give it PAPER bright white, INK
black, FLASHing. This really stands out.

84

tally, @ is not the only fun line number that can be

Try POKEing something like 50 and @ in line 1. Why
ursor before the line number and facing the wrong way?

it's a line number higher than 9999 which the inter-

nnot decode properly; the less than symbol is used
of a number. For even more funny results try POKEing
@ in line 1 — where did the program go? Any line
rgreater than 16383 causes the program not to be listed
LIST will not go beyond line 16383. The program is still
jut just cannot be seen as you'll find out if you POKE
gs back to normal.

85

“PRESS ANY KEY TO
CONTINUE"

A common requirement is to suspend execution of a program
pending an instruction from the operator. An example would
be displaying a list of instructions then ask the operator to press
any key to continue after finishing reading the instructions,
This part of the program may well look like this:

sreeex liNETTFUCTIONKD

1282 PRINT "Press any key except
1he shift Reys ta continue”
iadl@ IF INKEYS$="" THEN G0 TO 121

@

This is fine, but if you press CAPS SHIFT or SYMBOL SHIFT
the program will ignore you and other people will remark ““what
a stupid program’’. There are some ways out of this:

vrere i3IS truc1ionss’

%B@B PRINT "“Press any key 1o con
inre."
é@i@ IF INKEYS$="" THEN GO TO 1901

1228 PRINT "Press ENTER to conti
nug"
181 INPUT RS

Incidentally, you may have noticed with the programs using
INKEYS$, that INKEY$ does not respond to either SHIFT alone,
but if both SHIFT keys are pressed simultaneously, the pro-
gram continues. Pressing both SHIFT keys simultaneously (as
when you enter E mode) produces CHR$ 14.

The above examples are fine, but wouldn’t it be nice if we could
truly press any key to continue? Any key, of course, meaning
any of the forty keys on the Spectrum keyboard including both
SHIFTs. Here is one way in which this could be done:

86

;000 PRINT "Press any key to con
fiéggeIF.INKevs="" AND IN 65278=2
?BRND IN 32766=255 THEN GO 7O 1
2
he keyboard is located in what is called 1/0 space, meaning
(PUT/OUTPUT. These are methods of getting information in
and out of the computer from and to the outside world. The
MIC and EAR sockets, the internal loudspeaker, the keyboard,
the printer and microdrives and the RS232 interfaces are all
xamples of 1/0 in action. The most significant difference bet-
)leen memory addressing as far as the user is concerned is that
pPEEK and POKE only work with memory, be it RAM or ROM.
The I/0 commands IN and OUT are concerned with getting
:formation to or from the computer from or to the outside
id. There are 65536 of these 1/0 ports, just as there can be
36 memory locations, but they may or may notallbeinuse,
as all memory space is not used in a 16K Spectrum.
There are two commands in BASIC to handle the /O ports.
[hese are IN and OUT which can be thought of as working like
EK and POKE respectively. Functions like INKEY$ also
ess the 1/0O ports, but make use of machine code
uivalents of IN and OUT in their own little ways. The next
estion is how do you know which of these ports are used for
at? Chapter 23 of the Spectrum manual outlines them brie-
, but the ones most likely to be of use are those associated

the keyboard, at least at this stage.

As an example, using OUT, let us play with PORT 254 which
amongst other things sets the BORDER colour and drives the
idspeaker. This can be demonstrated by RUNning this short

program:

. 1@ OUT_2854, INT (RND £256)
. 2@ GO TO 1@

You should hear a clicking noise from the Spectrum’s loud-
aker and see the screen’s BORDER colour go haywire! The
Colour changes so rapidly, you may be able to see several
BORDER colours at once! Note that whilst this program is
funning, the lower two lines of the screen do notchange colour
(they would normally be the same colour as the BORDER). The
'BORDER reverts to the colour of the lower screen when you

87

type something. If you understand anything about binary, this
diagram of the eight bits of PORT 254 may help to explain how
the port manages to do more than one thing at a time. Like a
memory location |/0 ports are eight-bit bytes.

128 64 32 16 8 4 2 1 value
D7 D6 D5 | D4 D3 D2%1"'D1 DO bit
rives the ontrols controls
Spectrum the MIC BORDER
loudspeaker / socket colour

D0,D1,D2, etc., mean bit @, bit 1, bit 2, etc. The D usually
stands for DATA, but that need not bother us now. Since only
bits @ to 4 are used, we should have replaced line 10 in the
previous program with:

1@ OUT 254, INT (RND*32)
28 G0 TO 1@

since the bits used could add up to @ (lowest) and 31 (highest).

More useful to us are the 1/0 ports that are associated with the
keyboard. There are eight ports, each handling a row of five
keys on the left or right half of the keyboard. For example,
PORT 61438 is associated with the row of five keys, 6 (bit 4),
7 (bit 3), 8 (bit 2), 9 (bit 1) and 0 (bit @). Try this program
which prints out the value of port 61438 over and over again.
Try pressing keys 6 to @ to see what effect it has. Press more
than one key at a time.

18 PRINT IN 61438
=28 PHRUSE 1006
386 GO TO 106

RUN it and see how it prints 255 all the time, unless you press
one of the 5 keys in the half-row 6 to @ on the keyboard. The

88

-pleogAay 8y} JO 9|ppIW 8y} 1selesu St i nq
pue 8pIsino a8y} uo sAeme si g 39 Moy 910N “Ad) yoes Yim pajeloosse aie
spod 8y} Jo 1q Ydiym pue pJeoqAa) 8yl YiM pajeloosse spod Q/| Jo weibeiq

‘passaid Aey JI GGZ WO} peloenqns aq 0} sanjeA

] Z 7 : 3l m 8 7 Z W
99/z€180d | |3OVdS oouis| |W | | N g A o) X E eion 7] gimauaind
l & v 8 9l 9l 8 v r4 l
osievLidod | (B | 1 A r H 9 3 d S v 22059 140d
L z v 8 o1 9l 8 b z E
ZPELS LHOd d 0 _ n A L d E M| | O 015v9.LHOd
l & - ¥ 8 ol 9l 8 v 2 !
8EY191HOd 0 6 8 L 9 e v € [/ L | | o8ve9Lyod
G b E Bkl o a8 At aba. . ghGe o QR 5 d 0a

89

numbers obtained may look pretty random, until you realise
how the numbers are worked out. You may have realised that
255 is the value for “’no key pressed”’. You may also know that
255 in binaryis 11111111. So, since numbers obtained when
keys are pressed are less than 255, can you imagine that press-
ing a key turns one of those binary ones into a zero?

Study this diagram, (p.89) which shows which bits of which
ports relate to which keys. In particular, try to study those keys
we've been using as examples, 6 to 0.

RUN the program again and every time you press a key,
subtract the number written under the keyboard keys in the dia-
gram from 255, e.g., if you're pressing @ subtract 1 from 255,
giving 254. If you're pressing 8, subtract4 from 255, giving 251
and so on. You should get the same number as that the pro-
gram writes on the screen.

This may not make much sense at the moment, but persevere
and hopefully all will become clear in due course. Written
above the keys in the diagram are the symbols D@ to D4 again
— these represent individual bits of the 1/0 port. In this appli-
cation only bits @ to 4 are used for the keyboard, as there are
only five keys to be checked per port.

Let us have some simple examples to demonstrate a simple use
of IN to scan the keyboard.

To check if the R key is pressed:

IF IN B6451@8=(255-8) THEN PRINT
"R is pressed"

To check if the Y key is pressed:

IF IN 57342=({255-168) THEN PRINT
"W is pressegt

To check if the SPACE key is pressed:

XF IN S3742=(255-1) THEM FRINT
"OSPRCE is pressed”

Of course, you need not write the expression in brackets in full
like the examples above — they’ve only been written in full to

90

otrate the point that you subtract the bit value from 255.
hat if you add up the bits’ values all together, the answer
same. At this stage it does not make much difference
ou do it. Getting a correct result and understanding it is
important now. The important thing is to note that any bit
y a zero if the corresponding key is pressed. This explains
ou get a value of 255 if nothing is pressed — all bitsare 1,
e total is 255 in decimal. To take the example of the K key
pressed. The I/0 port associated with that half-row of 5
is 49150 (see keyboard diagram). Each byte or port has

bits, like this:

g7 BIT6 BITS BIT4 BIT3 B2 BITT BITO
'y 1 1 1 1 1 1 1

i
L

‘above shows the half-row with no keys pressed. When the
key is pressed, this is how the port looks:

BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BITI BITO
E 1 1 1 1 1 0 1 1

t now has a value of BIN 11111011 which is (in deci-
(255 — 4) or251, whichisalsothesameas (128 + 64+32+

8 +2 +1). Technically, adding up the bits individually is
orrect way of doing it, but the other method also works for
ons we won't go into here, and it's generally easier to use
his application. You could do the same for any key on the

board. On its own:

 IF IN 49150=251 THEN PRINT “K pr
essed"

achieves nothing over:

' IF INKEY$="K" OR INKEY&="k" THEN
. PRINT "R pressed”

o) sver, there are advantages. You can check if either SHIFT
€y is pressed, for example, which you couldn’t do with
NKEY$, e.g.:

91

IF IN B5278=254 DR IN 32766=253
THEN PRINT "“"SHIFT pressed”

INKEY$ also differentiates between upper and lower case let-
ters so that IF INKEY$ = “k” THEN. .. is not the same as IF
INKEY$ = “K” THEN... whereas IF IN 49150 = 251
THEN. .. just checks if the k key is pressed, irrespective of
whether CAPS LOCK or CAPS SHIFT is on.

Using IN to scan the keyboard also allows us to check if more
than one, or combinations of, keys are being pressed, e.g.:

IF IN 49185@=(255~-2-4) THEN FRINT
“K and L pressed”

One application for this would be in games where the cursor
control keys are used to control movement on the screen in the
direction of the arrows. Most games only allow you to move
left, down, up or right, never diagonally. Using IN we could
check to see if both the 5 and 6 keys are pressed to enable
movement both left and down, i.e. diagonally towards the
bottom left of the screen so that movement control could be
more like that of a joystick. Try this program to draw a line
going up and right from the bottom left corner towards the top
right-hand corner, rather like a graph. The controls are 7 to
move up, 8 to move right and press both 7 and 8 to move dia-
gonally up and right. This would not have been so easy if we
had used INKEY$ since we would not have been able to check if
both the 7 and the 8 key were pressed.

18 LET X=0
26 LET Y=0
36 PLOT X.,Y
48 LET A=IN
S8 LET X=X+
&8 LET Y=Y+
78 GO TO 3O

651438

(A=251 OR A=243)

(A=247 0OR B=243)

Whilst on the subject of using the cursor keys 5, 6, 7 and 8 to
control screen movements, wouldn’t it be nice if this could be
made easier to use? The reasons they are commonly used for
this purpose are that they have direction arrows marked near
them on the keyboard and they are easy to read with INKEY$ to
control variable values (you may be familiar with, say, LET
X=X+ (INKEY$="8")—(INKEY$="5")). The snag is that
these keys are so close together that it requires some pretty

92

- finger-action for fast, accurate control. The system to
~ribed allows the use of the entire 40-key keyboard to
movement so that you don’t have to worry so much
your finger being on the exact key required. The key-
will be splitinto 4 (from the point of view of the program,
ing it apart!) parts, each a block of 10 keys like this

strolling movement in the directions shown.

UP 0
LEFT T k4 RIGHT P
LEFT G H RIGHT ENTER
DOWN SPACE

ressing any of the keys on the top row of the keyboard
movement upwards, pressing any of the keys on the
m row of the keyboard causes movement downwards.
ing keys on the left-hand half of the middle rows of the
oard makes you move left and pressing keys on the right
of the middle rows of the keyboard makes you move right.
sing different groups of keys have a combined effect, e.g.
u pressed the 3 key and the W key you would move dia-
onally up and left. The program 1o demonstrate the routine is
| very simple sketcher program which draws in the direction
re “steering’’ it. If you're not pressing any keys you stay
as you'd expect. Do not expect this to be the best sketcher
ver — it crashes if you go off the edge of the screen! Refer

93

back to the diagram showing the I/ O ports associated with the

keyboard when examining lines 30 and 40 which do all the
keyboard scanning.

18 LET X=1i2e
2@ LET Y=28

S& LET X=X+{IN 4915S&<>255 OR I
N S7342<>20505) -(IN B645108<>255 0OR
IN 6T5@ez22<>255)

e 48 LET Y=Y=-{(IN 65278<>255 OR I

I2766<>285) + (IN 634836<¢>255 0OR
IN 61438<¢5>255)

S8 PLOT X,Y
s& G TQ J3e

94

RINTING STRING
\RRAYS

this program:

10 DIM A$(12,9)

26 FOR A=1 TO 12

S8 READ As(A) -

408 PRINT A&R) ;"™ ,";

5@ NEXT &

. 6@ PRINT CHR$ 8; .

. 7@ DATA "“January","February®,*™
ath“.‘“RPrl L“,"Hag";“dU!‘\E";"dUL
“,“August" ,"September" ,"0October
FL,"November ™, "December®

lhat it should do is assign the names of the months of the year
ch string of the array (12 months, maximum length of 9
ars — DIM A$(12,9)) and nrint them outend toend inarow,
arated by commas, ending with a full stop. This is how it

No |d appear:

it s Hag ;JunNne sHJU LY
r ,November ,Cecember .

Some of the words are separated by several spaces when prin-
ed because each string in the array A$ is always the same

gth (in this case nine characters). Each time you assign to
f these strings, you assign to all characters of the string,
if the computer has to add extra spaces. For instance, if
you're making A$(5) MAY which consists of only three letters,
hen six spaces must be added to make up the nine characters.
esult is a lot of ugly spaces printed along with the required
ers which looks messy on the display. This problem can be

dvercome in two main ways.

Print the string, scanning backwards to find the end of the
word, like this:
. 1@ DIM As(12,9)

iz2

2@ FOR R=1 TO
3@ RERD RS (R}

i 428 REM Pfiﬂt;ﬂﬂit end spaces
~, Se FOR B=LEN RS$(R: TQ 1 STEP -
. 8@ IF R3(A,B)<¢>" * THEN PRINT
BRs(R, TO B);",";: GO TO 8e

7@ NEXT B

95

8@ NEXT R
8@ PRINT CHR% &8;"."

1@ DRTRH "danuarg","Februar‘","
”archll 'Clnpri t e ¢ ltﬂagil p"\.‘L‘r}E‘“ P ._‘L‘ L
9","Rugust","september","uctober

*,"November ", "December”
This will be the result of RUNning the program:

danuarg,Februarq,ﬂarCh,ﬂpri.t JMay
,dune,dutg,Hug05t,septEMber,Dctn
ber November ,December ..

All the program does is read the names of the twelve months
into the string array A$(12,9) and the printing is done in the
FOR-NEXT loop B which works backwards from the last cha-
racter in each string towards the first until it finds a character
that is not a space. It then prints to this point with A$(A, TO B).
Note the comma. This expression is an abbreviation of A$(1 TO
B).

(2) Use a String Length Indicator (SLI) to record the length of
the words in the strings so that we do not need to waste time
scanning before printing. This method also allows words
ending in spaces (if needed) to be printed correctly. The SLIwill
normally be stored as the first character in each string. Here isa
listing to demonstrate:

i DIM A%(12,18)

=z FOR A=Y TO 12

3@ READ 5%

4@ LET A% (A)=CHR% (LEN SE+1i) +5

= PRINT A%t(A.2 TO CODE RA%(A)]

F L

58 NEXT A

70 PRINT CHRE &, .

&8 Dara “Janvary' ,"February™,"

Harchu A “F!P‘fi Lll & tlHagtl » leunelt 2 ‘.\JU L

\é“ ,“"Rugust* ,“Septemaber™ ,"0C teber
,CNMovemnber ,,"'Daecember®™

&

- &W
7

Note how in line 10 an extra element has been added to each
string of the array A$ — to store the SLI. The number repre-
senting the length of the string may only be a whole number in
the range @ to 255. This should be enough for most appli-
cations. Two bytes could be used if larger numbers are required
up to 65535. The loop A reads the names of the months from
the data list into an ordinary common-or-garden string variable
S$. Since string variables are only as long as they need be, wé

96

yse LEN S$ to find the length of the word and store thisin
sirst character of the strings of the array A$ as CHR$(LEN
. 1). This is the extra element we talked about earlier. The
the string is made into a copy of S$. This is how it would

| N or the word March:

B alr ¢ | h |SPACE | SPACE SPACE | SPACE

g
h
/A$(3,2 TO CODE A$(3))

_ the first element of the string A$(3) contains a character 6.
s length of the word March is 5 letters. ltstarts at the second
sment and ends at element 6. The reason for adding 1 to the
th of March was because the SLIis the first character — it
Id be unwise to place it at the end in case the string assig-
as so long it overwrote the SLI. The one problem is that
may be greater than the length of the strings of A$ thus
rating a subscript error. This could be avoided by adding

. 45 IF CODE AS!A) >=LEN A% iR T™H
J"LET R3(A,13=CHRS (LEN RAs(A)-1

e strings are printed as PRINT A$(A,2 TO CODE A$(A)),
ng from after the SLI to the last character which isn't a
ace. The one big advantage of method (2) over method (1) is
t vou can correctly print words ending with spaces and if
want to copy strings into other strings or just generally
them about, storing the SLI enables it to be done

would like the speed and convenience of SLls but
ut the rather messy strings, thenitis a simple matter to
the SLls in a separate string array or numeric array.

array first:
REM - USING STRING RRRAY -
DIM A%L12,9)

DIM BR(12)
FOR A=1 TO 12

RERD S%

97

58 LET A% (A =5%
&0 LET B&(A)=CHR$ (LEN S%)
780 PRINT P&t(R, TO CODE B%t(A)) ;

2
868 NEXT A
g8 PRINT CHRY% 8;° 9
100 DETH “danuarg“,“Februﬁrg
ﬂéfth";“ﬁpri L.‘.!“Hag.‘ l!dune dul
u',"Augus L' ,"Septem ber“ N tn ber
", U"Novembert ,"December™

And with a numeric array:

1 REM - USING NUMERILC KRRREY -
1 DIM AR$(12,9)

26 DIM B(12)

S8 FOR A=1 TO 12

43 READ 5%

50 LET A% (A =5%

&0 LET B(R)=LEN S%

78 PRINT AR%(A, TO BRI " ,";
EQ NEXT A

S8 PRINT CHRS &; “"."

18660 DATA “"dJanuvacy' ,"“"Februacy'™.,"
Marchk","Apri Ll ;" May","JdJune" ,"Jul
gy, “ﬂugust“ “September ' ,"October
ke “Nuvember“ “December*

You should have found that using a numeric array is faster but
uses more memory. Again, this could be turned into a sub-
routine for use within programs.

98

DWER SCREEN
TTRIBUTES

-rmally you cannot change the attributes of the lower screen,
»t for the PAPER colour, which follows the BORDER
Would you like a green report code and cursor? Neither
_butitcanbe done. System variable 23624 contains the
e used for the lower screen and the BORDER colour.

is a diagram to show the function of each bit of this system
ariable, called BORDER:

ol 5 4 3 2 1)
1
FLASH| lower BORDER colour lower
lower | screen| and lower screen screen
screen {BRIGHT PAPER INK

Y POKEmg various values into this system variable you could
shieve say a flashing black and white lower screen or a white
r screen that stands out brighter than the rest of the white
for INPUTSs, etc. Try these two with a white screen

*APER 7:CLS):

OKE 23624,BIN 10111000 (184)
OKE 23624,BIN 01111000 (120)

du cannot normally get this effect with INPUT statements as
controls, etc., only effect the prompt string. Changing
ER colour affects this; for instance, lower screen INK
““automatically’’ 9) would revert to either white or black
‘ensure maximum contrasts so that anything typed in the
Wer screen can be read easily.

99

PREVENTING AUTO
RUNNING

If a program has been saved on tape using the SAVE "prog"”
LINE X facility, that program will start automatically when
loaded back into the computer, starting from line X. To prevent
this occurring if you so wished for any reason MERGE "’ can
be used. Ensure there was no program in the computer before
using MERGE """ in this way, as you may get a combination of
both programs.

100

SPEEDING UP YOUR
)ROGRAMS

ere are some tips to help you ensure your Spectrum BASIC
grams run as fast as possible. Using these you may be able
5 turn a jerky graphics program into a smoother, more
cceptable version. By far and away the worst programs are
‘messy, poorly laid out ones. A long tangle of convoluted
*0TOs all over the place will often slow your program down as
auch as will a few PAUSEs! The first thing to do i tidy up your
rograms so that you can identify whole blocks as separate
sutines. Not only does this make it easier to read the program,
ut you can test or alter a particular routine without affecting or
pending upon the others. But most of all the program will not
/aste time jumping backwards and forwards unless it really
as to. Giving the program a good structure as it’s called often
orks wonders. Examine any non-conditional GOTOs critically

called from a main block or loop like this:
1@ REM main program

STOP
REM initiatise
RETURNM

28 REt set up graphzics
RETURN

etc. etc.

'he point to note here is that when searching for GOTO or
UB destinations, it is necessary for the computer to start
t the beginning of the program and work up through the line
umbers until the one sought is found. This means that if you
alled a subroutine at the end of a long program several times

ring the course of the program, it would take longer than if
subroutine was at the beginning of the program. We can
hese simple programs to illustrate this: -

"ROGRAM 1 — 9 seconds
16 FOR_A=1 _TO 1000

20 GO SUB 93600
. 38 NEXT A .

101

48 STOPR
56 REM
660 REM
78 REM
80 REHM
S8 REM
190 REM
1186 REM
123 REM
1386 REM
148 REM
1586 REM
1686 REM
170 REM
1566 REM
196 REM
=288 REM
SOeG8 RETURN

PROGRAM 2 — 7-5 seconds

1@ FOR R=1 7O l1@a&
2@ GQ S R
IR NEXT R
4@ STOP
LR RETURN

Running program 1 should take about 9 seconds compared
with about 7 -5 seconds for program 2. The reason program 1
takes longer is that to find the subroutine at line 9000 it has
to skip over all the lines one by one. Note that the line number
itself has no effect on speed, only its position within the pro-
gram. From this we can decide that programs should be laid out
so that the most commonly used GOTO and GOSUB desti-
nations should be positioned like this:

1 REM suggested program layout
10 GOTO 1000: REM skip over subroutines
100 REM frequently used GOSUBs, etc.
1000 REM main program
8000 REM infrequently used GOSUBs, etc.

This sort of layout would only be used where the time saved is
important. As with most of these time saving techniques they
only become obvious during large loops. Then again, this is
where you are most likely to need to save time. As we're talking
about loops, there are two main types of loops that perform a
similar function — the FOR/NEXT loops and the IF...THEN
GOTO... loops. Let us compare the speed of both.

102

20GRAM 3 — 9 seconds

+1
SR8 THEN GQ TO =2

ROGRAM 4 — 4-5 seconds

'?a FOR A=1 TO 1000
3 NEXT A

FOR/NEXT loop is approximately twice as fast as its
THEN GOTO counterpart. As an interesting comparison
mparing program 4 with program 5 which uses multiple

atements.
ROGRAM 5 — 4-5 seconds

1@ FOR A=1 TO 1800: NEXT A

ote that unlike most versions of BASIC, Spectrum BASIC
not offer much time saving when using multiple
u ements compared with the same program written with all
é;a:;:f:.' on individual line numbers. Program 5 takes about
he same time to RUN as program 4. Within PRINT statements
ugh, stringing several statements on one line can run faster
an on separate lines.

)ROGRAM 6 — 45 seconds

12 FOR A=1 TO 1@28
28 PRINT AT 2,08;"F
S8 PRINT RT 0,0;
". FRINT BT &.,€;
980 PRINT AT 0,0;
B@ NEXT A

i

._ .‘OGRAM 7 — 41 seconds

o 28 FR5A"2T8 3% e

S, " INKIN

8,0; “Tl'm{ ING'; FIT @,0; “THI G"
CAT 0.0 “THINKIgm" :
30 NEX‘T =}

\!

you want to move the PRINT position to a new line,
Sing the apostrophe rather than TAB 0; is faster.

103

PROGRAM 8 — 23 seconds

18 FOR RA=1 TO 3086
2@ POKE 23692,255
30 PRINT "“+";TRB O;
48 NEXT A

PROGRAM 9 — 18 seconds

1@ FOR ARA=1 TOQO SDO
2@ POKE 236%82,2%55
SHIPERINT "+%°

48 NEXT R

Using the control character CHR$ 13 (the ENTER character) to
force a carriage return in place of the apostrophe does not pro-
duce any improvement in run times. The inclusion of control
characters in strings can slow things down somewhat. Pro-
gram 10 fills the screen with + signs. Program 11 fills the
screen with inverse + signs which should be entered as “INV.
VIDEO + TRUE VIDEO".

PROGRAM 10 — 4-7 seconds

1B FOR A=1 TO 784
2@ PRINT "+%;
3@ NEXT A

PROGRAM 11 — 5:5 seconds

1@ FOR R=1_TO 7@4
2@ PRINT "B";
38 NEXT R

However, compare program 11 with program 12, which uses
the INVERSE facility. This it turns out is slower than including
the inv. video control character in the string. Experiment with
others such as FLASH or BRIGHT in this way.

PROGRAM 12 — 6-2 seconds

1@ FOR R=1 TO 7@a
28 PRINT INUVERSE 1;"+";
32 NEXT R

Some computers have special variables called integer variables
which can only store whole numbers. They can be handled
much more quickly than normal floating point variables. There
are no such integer variables on the Spectrum but it does have

104

ocial representation for sméll integers which is used
matically fornumbersthatliefrom —65535to + 65535 and
whole numbers.

’ OGRAM 13 — 11-3 seconds

5 POKE 23692,25S
1@ FOR A=1 TO 600
PRINT AR;

NEXT A

;' 14 — 15-3 seconds

POKE 235682 ,2%5%5
PRINT RH;

grams 13 to 18 attempt to show how using integers can
ke programs run faster. You have no control over this
omatic’’ integer action so the best you can do is make sure
don’t generate non-integer numbers which slow things
jown without you realising it's happening.

ROGRAM 15 — 12-1 seconds

5 POKE 23692,25S5
18 FOR A=1 TO 08
28 PRINT 1.53;

3@ NEXT A

..,':'OGRAM 16 — 9-1 seconds

. 5 POKE 23682 ,25S
,1a FOR A=1 TO &0
PRINT 1;

.@a NEXT A

17 — 12-3 seconds

POKE 23622 ,2%55
LET B=1.3

FOR R=1 TO 6000
PRINT B;

NHEXT R

lOGRAM 18 — 9-2 seconds

POKE 23692 ,285
LET B=1

FOR A=l TO 60
PRINT B;

HEXT A

2

e

¥
T

105

You should attempt to use integers where possible as they can
be printed or converted to another format more quickly than
ordinary floating point numbers. Remember that constants
and variables can be held in this format. Also, the amouat of
scrolling of the screen that has to be done in the programs
above have a small effect on run times since the bottom of the
screen is reached more quickly with numbers with more digits,
and floating point numbers will have more digits than their
integer counterparts.

To stay with screen printing let us look at the ways of printing
numbers to the screen. Programs 19, 20 and 21 compare prin-
ting string constants, integer numeric constants and non-
integer numeric constants.

PROGRAM 19 — 9-8 seconds

S POKE 23692,2%5
18 FOR R=1 TO 1l
20 PRINT "69";

3@ NEXT R

PROGRAM 20 — 17-2 seconds

8 PORE 236%92,2%8
10 FOR A=1 TO iR
20 PRINT 69;

38 NEXT A

PROGRAM 21 — 24-8 seconds

& PORE 236382 ,255
18 FOR A=1 TO 18808
28 PRINT 69.25;

38 NEXT A

Let us now do the same for variables. Programs 22,23 and 24
print string variables, integer numeric variables and non-
integer numeric variables respectively.

PROGRAM 22 — 10-3 seconds

S POKE 23692,2585
‘? LET B$=ll Eg...

18 FOR A=1 TO loeve
20 PRINT BS%;

3@ NEXT A

106

POKE 23682 ,25%5
LET B=69

FOR R=1 TO 120
PRINT B;

NEXT R

ROGRAM 24 — 25-2 seconds

5 POKE 23652,255
. 2 LET B=69.2S5

33 FOR Q=1 TO 10600
53 PRINT B;

%@ NEXT A

_: will be printed more quickly. Let us look at VAL and CODE
3s means of printing.

OGRAM 25 — 26-1 seconds
. 5 POKE 236092,25S

18 FOR A=1 TO 1000
a8 PRINT UAL “"69*;
30 NEXT A

)ROGRAM 26 — 18-3 seconds

. 5 POKE 23692 ,255
. 19 FOR R=1 TO 10202@
22 PRINT CODE "E*;
3@ NEXT R

30 where you want to store information as characters in a

X

use of multiple character variable names is slightly slower
han single character variable names.

OGRAM 27 — 6-9 seconds
12 FOR A=1 TO 1000
=0 LET M=1@

8@ NEXT R

’ROGRAM 28 — 7-8 seconds
1@ FOrR A=1 TO 100
28 LET MAGRZINE=10¢
NEXT &

107

Define the most often used variables first; the time to find a3
variable in the variables area depends on how far the computer
has to look through this area.

PROGRAM 29 — 8-4 seconds

1S LET
28 LET
>S8. LET
40 LET
S8 LET
80 FOR
78 LET
5@ NEXT A

PROGRAM 30 — 8-8 seconds

18 LET =1@
20 LET =
30 LET
4@ LET
S@ LET
6@ FOR
78 LET

g
am

W=~

TO 10806

GDMMOoO0

o
S

TO 1000

@DTMMOOm
NN

MO

0
e
Z
m
x
-l
D

Let us look at REM statements. Although these are ignored
during the RUNning of a program, the BASIC interpreter still
has to step over them and this takes a finite amount of time.
The odd REM statement here or there won't make much dif-
ference, but can have a noticeable effect within a large loop.
Compare program 4 with program 31:

PROGRAM 31 — 5-2 seconds

1@ FOR R=1 TO 1200
2@ REM This is a8 REM statement
38 NEXT R

Program 4, an empty FOR/NEXT loop takes 4-5 seconds to
RUN compared with 5-2 seconds with an inbuilt REM
statement. This is true of everything within loops — if it can be
put outside the loop, the computer won't waste time doing it
over and over again.

Let us now look at the various ways of writing expressions
which are used several times during a program. We'll look at
the example of LET R = INT (RND * 9) + 1. First by writing it
out in full every time it's required.

108

e GRAM 32 — 13-3 seconds

m FOR A=1 TO Saa
x L ET R=INT (RND £3) +1

defining a function.
' 33 — 139 seconds

' 5 DEF FN_RI) =INT (RND#S) +1
4@ FCR A=1 TO S@9
LET R=FN R}

FOR A=1 TO 5088
GO SuB SG
WNEXT A

S1 0P
LET R=INT (RNDx3} +1

RETURN

>ROGRAM 35 — 19-6 seconds

S LET RAS$="INT (RND#91 +1"
FOR A=1 TO 500

LET R=URL RS$

NEXT R

;‘"‘you can now see that itis fastest to write the expression out
n full every time it is needed.

for ATTR and SCREENS. If you have a choice of using
er SCREENS or ATTR to find out what is atany screen loca-
it is faster to use ATTR than SCREENS$, as programs 36

--"'ff_'--' 37 show.
_OGRAM 36 — 9-5 seconds

1B FOR A=1 TO 1000
28 LFT B=RATTR 12,1}
30 NEXT R

ROGRAM 37 — 12-5 seconds

16 FOR A=1 TO 1086
2@ LET B$=SCREEN$ (1.,1)

- 3@ NEXT R
109

MAKING USE OF THE
SYSTEM VARIABLES

System variables are bytesinmemory from23552 t023732 that
help the computer remember certain things it needs to know
about itself like how its memory is laid out. The information is
held in these system variables in these addresses so that the
computer can get hold of it and update it as and when required.

We can make use of the information stored in these memory
locations, in some ways, in our programs either by reading
information already there or changing it to make the computer
do something it might not otherwise do, or sometimes do it
more easily.

Not all of them are that much use to us. And certainly not all of
them ought to be changed. Some will cause the computer to
crash, or the computer may simply ignore you. Some can be
happily changed under certain circumstances only and most
within strict limitations. | hope to give you some guidelines as
to what can and can’t be done, but hopefully you will learn your
own little PEEKs and POKEs in time as well.

23552 to 23559 KSTATE reading the keyboard

When the processor is interrupted (50 times every secondin the
UK normally) one of the things done is to read the keyboard and
store the results here. The bytes have differentuses. Notall can
be practically used by the programmer. You can use this pro-
gram to examine what's going on in the eight bytes of
KSTATE. Run it and press various keys to see what effect indi-
vidual keys have, such as the SHIFT keys, and what effect
going from one key to the other has.

18 FOR fR=23552 TOo 23559

28 POKE 236%82.,0: REM KEEP SCRO
LLING

38 LET B=PEEK R
48 PRINT &;TRE 18;6;7TAE 28; CHFA
5 5 a/aND E:3%

5@ NEXT A

58 GO TO 10

The first four bytes of KSTATE deal with something called
“two key rollover” which allows you to press a second key

110

pefore you actually let go of the first. The descriptions given to
he main four bytes, 23556 to 23559 will apply to the first four
also as long as you bear in mind that these only come into ope-
ation for two key rollover. PEEK 23556 can return the CODE of
the upper case version of the key pressed, so if you pressed
gyMBOL SHIFT A you would get the CODE of /A" not the
CODE of "a” nor the CODE of ““STOP"'. This may be useful
where itis essential that upper case be entered, etc. The effect
- is temporary and lasts only as long as the key is
The value in 23556 would be 255 if no key was
at the time the interrupt had occurred. For the
ENTER key avalue of 13 is returned. For the SPACEkeya value
¢ 32 is returned. Pressing both SHIFT keys simultaneously

produces 14. This program will demonstrate this:

!
Wl
il

=2 LET A=PEEK 2395506

. 3¢ POKE 23692,0
. S@ PRINT ﬁéCHﬂs o AND R»SA

2@ GO TO
23557 is used for timing
gtc., causing problems — known as

to prevent intermittent key contact,
keyboard debouncing.

mer which times the pause before the

fys start repeating, then the pause between repeats once the
key has actually started repeating. The delays used are those in
iables that hold these delays (23561/2).

93558 is the auto repeat i

DE of the last character pressed on the
keyboard. This depends on whether the SHIFT keys were
pressed or not. The numbers produced are as those that would
be returned by PRINT CODE INKEY$ except that these are the
last key pressed not necessarily the key currently being
pressed. Try this program to display what can happen — RUN
itand try pressing various keys making use of the SHIFT keys.

. 3@ LET R=PEEK 230535%

. 2@ FOKE 23682,
. 58 PRINT R,CHRS A AND A>31

. 42 GO TO 1@
See also under 23611 FLAGS.

23559 contains the CO

LASTK Newly pressed key

ery time the keyboard is scanned and a key is found to have

been pressed and proved valid the value of this system variable

111

is updated. Its content is the CODE of the last key pressed. |t
does not really do much you could not do with INKEY$ except
that it could be used to type ahead one character. If you try thijg
program, you will find that if you press a key when invited to dg
so, the key is indicated on the screen in a short while even
though the program may not have got as far as line 50 when
you pressed a key. The CODE of the last key pressed is stored
here and stays here until another key is pressed. It is possible to
test for a newly pressed key by examining bit 5 of the system
variable FLAGS 23611. This would be 1 for a key just pressed.

1868 PRINT "“Press a3 keu nowm"

20 FOR A=1 TO 963

38 NEXT A

48 CLS

S8 LET A=PEEK 2356&

68 PRINT A: IF A>»31 THEN PRINT
CHES A

This could be used for testing foray/n (yes or no) type situation
— if you knew one was coming up you could indicate your
response before the program got there and the program would
respond when it got round to it. Also, if two keys were pressed
simultaneously the program would respond if one were rel-
eased without having to wait for the keyboard to be released
completely.

Control characters can be generated by using CAPS SHIFT in
conjunction with the number keys. ENTER returns 13. Pressing
both SHIFT keys together returns 14. To see this, try this pro-
gram:

18 LET A=FEEkK 235608
28 PRINT AR,CHR% A& AND A:31
38 GO TOo 19

23561 REPDEL Repeat delay

This system variable contains the length of time that a key must
be held down before it starts to auto-repeat. The time delay in
the UK is in one fiftieths of a second and starts off at 35/50 of a
second. You can happily POKE this if, for instance, you want
the key to start repeating immediately. The cursors become
rather difficult to control if you, say, POKE 23561,1. POKE
23561,0 effectively turns off the auto-repeat, actually giving a
delay of about 5 seconds like POKE 23561,255.

112

It

f 1

562 REPPER delay between repeats
system variable controls the length of time between
speats once the auto-repeat has actually begun. The timeisin
tioths of a second in the UK. If you effectively want to turn off
“auto-repeat for any reason, POKE 23562,0 or POKE
62,255 gives about 5 seconds between repeats. If you wish
dit long program lines (e.g. a long PRINT statement) then
CE 23562,1 will speed up moving the cursor to the right
e. But beware of changing 23561 too much at the same
ime or you may speed up the cursor so much it becomes diffi-
It to control. Its normal value is 5/50 of a second or one

h of a second.

13563/4 DEFADD

address of the argument of a user defined functionin a pro-
m, i.e. if you had DEF FN A(B) ina programline, the valuein
63/4 would be the address of the letter B in the brackets in
line while only the function is being used. The best way to
EK into 23563 /4 to show this is to put the PEEK as a part of
FN to be evaluated as there is always 0 there unless the
unction is being evaluated. So the line:

. 1@ PRINT PEEK 23563+256#PEEK 2
- 3564

%

;, always return 0. On the other hand:

f. i DEF FN Ei({B) =PEEK 235635+20G %

- PEER 23564

. 28 PRINT FN R(999)

uld return the address of the B in line 10. The 999 is not
nificant, just something to actually give a value to B to

event an error. In the case of a function with no argument:

4 1@ DEF FN R () =PEEK 235635+256%F
- EEK 23564
" 28 PRINT FN R}

T
e

this would print the address of the close bracket) symbol.

68 to 23605 STRMS

e first fourteen bytes on a basic Spectrum contain addresses
relating to channels and streams. Streams —3to + 3 are stored

In two bytes each.

113

23606/7 CHARS
This system variable has as normal values:

23606 contains 0
23607 contains 60

This system variable points to the start of the character set that
the computer uses for printing on the screen and on the printer,
SCREENS$ also uses this system variable. The normal address
pointed to is 15360 which is 256 less than the address of the
start of the ROM character set. 256 less because the character
generator is accessed by something similar to PEEK 23606 +
256 * PEEK 23607 + CODE “A" * 8 and since the first cha-
racteris SPACE, CODE of SPACEis32,and 8 * 32is 256. The
character generator is 768 bytes long, so if you wish tosetupa
new character set you must set aside this number of bytes in
case it is overwritten by BASIC — you wouldn't get a crash,
you'd just end up with gibberish. Mention was made of
SCREENS$ using this system variable — in fact, you may be
aware of the problem that SCREEN$ does not recognise user-
defined graphics normally, unless they happen to be similar to
an existing Spectrum character. In fact, SCREEN$ works by
picking up the address of the start of the character generator
and looking through the table until it finds a matching cha-
racter. Now since the Spectrum screen is bit-mapped rather
than memory mapped like some computers, once anything is
printed on the screen it stays the same even if you change the
character in memory. So, we could temporarily change the
pointer to the character set to point to the user defined graphics
and look up there. One snag is that although there is a system
variable that tells us where the user defined graphics start, this
address is not 256 less — so we must subtract 256. This con-
veniently means we subtract one from the high byte. This pro-
gram should demonstrate:

1® FOR X=144 TO 164

20 PRINT AT @,8; CHR% X

38 POKE 23686 ,PEEK 23675

48 POKE 23687 ,PEEK 23576-1

S0 PRINT AT 20,0, SCREENS (8,8}
58 PRUSE 40

78 POKE 23606,0

88 POKE 23667 ,60

98 NEXT X

114

hat we did was make the computer think the user-defined
anhics are the normal character set. SCREENS will still pro-
\ce characters with CODEs of 32 —127 though, although this
ily overcome with a bit of fiddling. Since SCREENS starts
th CHR$ 32 and the UDGs start off at 144, we would need
d 112 to return characters in the range of the user defined
ics. Here is one way to do this. X is the x-co-ordinate
oss the screen and Y the y-co-ordinate down the screen of
location SCREENS is to examine. A check is first of all made
t SCREEN$ does not find one of the normal characters
ere, then returns if one is found. The character at Y, X ic

rned in A$. Line 8025 is needed only if you are using a cha-
cter set other than the ROM one. If you are using the ROM
set, then delete line 8025 and replace lines 8070
ad 8080 with the alternative versions that follow.

BEO® REM SCREEN$ FOR UDG’S

" BB10 LET A$=5CREENS (Y ,X)

2026 IF A%<r"" THEN RETURN
xaaggaagT A=PEEK 236086: LET B=PEE
BP30 POKE 236858 ,PEEK 23875

8048 POKE 23607,PEEK 23676-1

" BBS6 LET RE=SCREENS (Y ,X)

B@6@8 IF A%cr"" THEN LET Ag=CHRS
{CODE A$+112)

8070 POKE 23606,R

EG650 POKE 23667 .B

85890 RETURN

s070
5050

PORKE =236506,0
POKE 2360807 ,60

he story does not finish there. There are only 21 user defined
raphics — if SCREEN$ does not find a match, it will continue
ng up past the user defined graphics until it has finished
<ing for the 32 to 127 range it thinks it's looking for. This
ld be embarrassing if there just happened to be some data
red above the UDGs for any reason which resembled any
haracter. To help prevent this happening although the UDGs
ire normally at the top of RAM anyway, this could be added:

U%ass IF AS$>CHRS 164 THEN LET Rg=
b
ldentally, you should ensure that 23606 /7 always pomts to

Ne right character set when PRINTing, LISTing, etc., is done
¥ - this is the sort of thing that careless use of this system varia-

115

ble can do. It’s actually one of the above subroutines Withouyt
the CHARS pointer reset. Not particularly readable is it?

23608 RASP

Controls the duration of the buzz that sounds to warn you that
you are running out of memory. At switch on, this has a value
of 64. This can be altered, but there seems little point. POKE
23608, gives a very short click rather than a buzz especially if
you hate that buzz that satirically mocks you when you run out
of memory. Alternatively, POKE 23608,255 gives a very long
buzz which immobilises the keyboard preventing you typing in
any further than when the buzz sounded.

23609 PIP

Controls the length of the click emanated when a key is pressed
in command mode or du ring an INPUT. Starts off at @ but may
be changed. Any value between 30 and about 130 gives a
pleasant, more audible bleep rather than the quieter click nor-
mally given. Values higher than 130 tend to noticeably slow
down the keyboard response, since computing stops as the

bleep is sounded. Usually, the one to use is POKE
23609,100

23610 ERR NR

Controls error report number and normally has a value of 255
unless an error arises, when it contains one less than the error
report codes printed, e.g. for error 4, out of memory, would
contain 3. The message printed out is contained in ROM start-
ing at address 5010 decimal. The end of the message is signi-
fied by the last character in the message having bit 7 set to 1.
After the error messages comes the © 1982 Sinclair Research

116

td., message that you see after switch on or NEW. You can
OKE 23610 to generate an error to stop the program, but
ince the message printed is fixed and in ROM you may end up
vith garbage. If you wanted to simulate an out of memory error
ou would end a program with POKE 23610,3. This would not
rk as any program line, you’'d have to ensure that it was the
line as once a condition arises to end a program — only then

523610 looked at as data to determine what is printed.

11 FLAGS

s system variable contains various flags controlling the
SIC system and generally should not be POKEd. However,
e of the flags can be usefully PEEKed.

@: Being 1 indicates no space to be printed before the
next keyword.

3IT 1: This bit being set to 1 indicates print output to be sent
to the printer. @ means send to the TV screen.

BIT 5: Any newly pressed key is indicated by its CODE being
stored in 23560 (the LASTK system variable) and bit 5
of 23611 (FLAGS) is set to indicate that a new key has
been pressed.

¥
e

i 7 : Syntax flag.

These will be of more use when using ROM routines in a
machine code program than to the BASIC programmer.

23613/4 ERR-SP

Keeps track of the address on the machine stack where the
ropriate return data lies. Try calling a few GOSUBs with no
tching RETURNSs and watch this point down the memory.
W you can see what happens and why this occurs when you
out of memory in a situation like this. Also, try PEEKing the
tents of the three addresses, the base of which is pointed to
Oy 23613/4, to see what return data actually consists of.

%E LET AR=PEEK 235613+25B*PEEK 2

- 38
i, 28 PRINT PEEK A; TAB 1@; PEEK (8
- *1)TABE 28;PEEK (A+2)

i

17

23617 MODE

Specifies cursor. 0,1,2, or 4 for L/C mode, E mode, G mode or
K mode respectively. POKEing this system variable will affect
the appearance of the cursor — it may appear as a flashing
letter, number, symbol or even a keyword. This is most
apparent during an INPUT statement. The value is reset When
the need arises, e.g. a mode change made normally from the
keyboard. So if you get into difficulties, press both SHIFT keys
for E mode and then the same again to get back to normal L/ C
mode. Try this program which POKEs all possible values into
23617. Most are variants on the four cursors, i.e. you will find
yourself in a particular mode after the POKE such as everything
coming outas graphics asin G mode. 252 will give an L/ C mode
flashing < to point to where you're typing. . .

1@ FOR R=@ TO 255
28 PRINT R

38 POKE 23617.R
4@ INPUT Rs%

S&@ NEXT R

23618/9 NEWPPC and 23620 NSPPC

23618/9 is a two byte system variable containing the line
number of the line to be jumped to. 23618 contains the lower
byte of the line number and 23619 the higher, so the line
number contained isread as PEEK 23t i8 + 256 * PEEK 23619.
To POKE a line number in, say line X:

POKE 23618, X — 256 * INT (X/256)
POKE 23619, INT (X/256)

POKE 23618,X-2563INT (X,258)
POKE 23619, INT (Xrs256)

We now come to system variable 23620. With 23618/9 and
23620 we could actually simulate a GOTO to a statement
within a program line should that ever be necessary. GOTOs
cannot access individual statements within long program lines.

To jump to statement 4 in line X, first go through the motions
described above then POKE 23620,4 and the jump is exe-
cuted.

118

3624 BORDCR
he bits of this system variable control the attributes of the
ower screen and the BORDER colour as follows:

B g | s f a3]2 e

FLASH| lower BORDER colour lower
lower | screen| and lower screen screen
screen |BRIGHT PAPER INK

v POKEing various values into this system variable you could
eve a flashing bright multicoloured lower screen, or make
h PAPER and INK the same colour to prevent other people
ing at your programs — any alteration would have to be
nade blind. Or you could make INPUTSs extra bright to stand

3629/30 DEST

he address of the variable when it is assigned to. If the variable
been set up before, it would point to the start of where it
was stored in the variables area. If it was being defined for the
time, it would point to the address of the start of the name
he variable in the program, e.g. in 10 LET A = 5 it would
nt to the address of the letter A. It can also be used to find
memory address of a numeric variable, if you use
something like LET A = A like this:

10 LET &8=%5
28 LET R=R
b asgg PRINT PEEK 236293+25B:PEER =

13631/2 CHANS

res the address of where the channel information area
rts.

13633/4 CHURCHL

dress of INPUT/OUTPUT information used at that
ment. Normally points during an INPUT/OUTPUT ope-
on to a5 byte block of data in the channel information area.
JSe this to examine the contents.

119

1 FOR X=0 TO 3: PRINT #X; PEEK
23633 +256xPEEK 23634 : NEXT X:
ALSE ©6: STOP

23627/8 VARS

Pointer to the start of the variables store. Apart from finding
your way into the variables area, you can find the length of the
BASIC program with this expression. This excludes screen,
system variables, stacks and variables.

LET bytes=PEEK 23627+256:PEEK 23
625 -PEEXK 236535 -256xPEEK 23636

23635/6 PROG

Address of start of the area in memory where the BASIC pro-
gramis stored. This points to the first byte of the line number of
the first program line. May be useful if you’re converting pro-
grams for other Sinclair computers with information held as a
REM statement in the first line of a program. See also under
VARS above.

If you wish to “’security-lock’’ a line into a program, then by
means of this system variable you could POKE a zero into both
bytes of a line number at the start of a program. Program lines
start with a two byte line number.

23637/8 NXTLIN

Address of the start of the next program line. You could use
this to enable you to access machine code stored within REM
statements anywhere in the program, e.g. those loaded with
MERGE from a tape library of subroutines. These would have
their own local calls to machine code like this:

TP LET RA=USR (PEEK 2ZE€357 4356 xF
EEK 23635+5})

210 REM (:MACHINE CODE<>»

2328 RETURN

One constraint to this is that you should notinclude any colour,
flash, brightness, etc., control characters into the REM
statement or they may be interpreted as machine code,

120

.‘ things somewhat. However, if from a library of
.ubroutines, these would not normally be used anyway.

73639/40 DATADD

s contains the address of the comma ending the last item of
TA. If nothing was read from the list (e.g. after RUN or res-
ed, etc). the address held in 23639/40 is the address of the
e before the program area, normally the CHR$ 128 at the
of the channel information area. To demonstrate try
RUNNing this program:

13 QQTF‘ LR] 1.! IQEOI ll3tl ll¢ll Iasl‘
Iksﬁig LET Q=PEEKR 236535 +256 sPEER 2
4 38 PRINT G;7TRAB S8;PEEK AB;TRE 186
. ;CHR% PEEK A AND PEEK R>31

p 48 READC B%

s GG TG 20

. 25754 128
- 23763 4.4
. 23767 44
eSS 7 71 44
- 23775 44
. 23779 1=

b a e "

;he address in this two byte system variable can point to the
ENTER character or the colon signifying the end of the line or

This system variable points to the start of the area above the
variables. From this we can gain an idea of how much memory
isused in bytes by screen, system variables, program and varia-
bles once the program has been RUN once to set up the varia-
bles, etc. Type this in, as a direct command:

FRINT FPEEK 2364 1+256*:PEEK 23642-
15384

e can also tell how much room is used for variables once the
Pprogram has been RUN to set up the variables. Use the
Command:

121

PRINT PEEK 23641+2S64PEEK 23642
PEEK 23627 -2563%PEEK 23628

23653/4 STKEND

This system variable contains the address of where the spare
part of memory starts. From reading this we can gain an idea of
how much memory we have left by subtracting it from
RAMTOP. This will not include memory used for the
machine/ GOSUB stacks but includes the length of the PEEK
statement. So, this is only a fairly accurate guide but one
which is adequate for most circumstances.

PRINT PEEK 23730+256%PEEK 23731 -
PEEK 23653-256#PEEK 236%S4

23658 FLAGS 2

This system variable contains some flags used (normally) by
the computer to indicate certain conditions.

The best use we can make of this is to make use of the flag
indicated by bit 3. This being 1 indicates CAPS LOCK on or
CAPS LOCK engaged.

What use is that? Consider in a program using INKEY$, e.g. ina
menu of options in a filing program, we often need to know
whether the operator is pressing a certain key. If the operator is
invited to press Y for Yes or N for No he/she may pressy for Yes
or n for No — mix up lower case and upper case capitals. Most
often this would depend on whether CAPS LOCK was
engaged — people are not interested in upper or lower case —
when they pressy or Y they expect the computer to understand
y as being Y like we would in everyday language. But the
computer doesn’t really appreciate that. So if we engage
CAPS LOCK automatically, our worries are over and we have a
simpler program which doesn’t have to check (as far asit’s con-
cerned) two separate options for each choice.

It is tempting to use the BASIC statement POKE 23658,8 to
engage CAPS LOCK and POKE 23658,0 to disengage it. But
this will affect the other flags, so do check their state first unless
you know they are not any particular value. Normally in L
mode, 23658 has a value of 0 so it is generally OK to use the
POKEs above. You are not likely to cause crashes, but some

122

effects may rarely be caused. When the printer buffer
s empty bit 1 will be zero.

2659 DF SZ

is system variable contains the number of lines in the lower
jion of the screen, normally used for INPUTs, error
orts and so on. Normally this would be 2, except for when
ong INPUT prompt is displayed, etc. If a value of 0 is
KEd in normally to attempt to clear this unused part so
t we can use the whole 24 lines of the screen, the
puter crashes. However, this can be done within a few
rictions. These restrictions are that we must ensure that
lower part of the screen is restored to normal before any
is made of this — so to BREAK out of a program would
somewhat catastrophic! Also, errors generated within the
rse of a program will have the same effect since the error
ort would have to be printed out. Here is a short listing to
monstrate the use of line 22 and 23 on the screen. Unfor-
unately, it only works for PRINT or PRINT TAB as we
annot use PLOT down here and PRINT AT will only work
n to line 22. The screen is restored to normal by POKE
23659,2 within the program.

. 10 POKE 23659,0
20 FOR A=8 TO 23
. 36 PRINT R

. 4@ NEXT @A

' 5@ PAUSE ©

. 6@ POKE 23£59,2

demonstrate what can go wrong let us generate an error
Dy adding this line to the program:

{
. 48 PRINT errfor

ODops!!! If you just want to PRINT on the bottom two lines it
usually better to use PRINT #1;"text” which works just
well if not better, without such a risk of causing a system
sh. If you POKE a value greater than 2 into DF SZ the
per screen will become smaller than normal. So after
KE 23569, Y the upper screen would be 24 - Y rows down
d would scroll when the PRINT position got to or beyond
24-Y,0. This program shows how a part screen scroll can be

123

maintained with DF SZ and SCR CT. Here random numberg
appear and scroll up the top 14 lines of the screen only.

18 POKE 23692,9: PODKE 23659,10
2@ PRINT RND
32 GO TOo 1@

23670/1 SEED

When RANDOMIZE (number) is used, number (a constant or g
variable) is stored in this system variable. This is the number
that determines the next random number. This opens up the
possibility of cheating since you could work out the next
(supposedly) random number generated and use the knowl-
edge gained to “swing” luck your way. For example, after
RANDOMIZE 1 the next value of RND would be
0-0022735596 or INT (RND * 6) + 1 to simulate a die being
thrown would be 1.

23672/3/4 FRAMES

This is a frame counter which can be used as a timer. It counts
frames of a TV picture, so is incremented fifty times a second in
the UK, or every 0-02 seconds, although the time taken to
actually read and evaluate these three bytes of the timer may
not allow it to be used to this accuracy. It has a timing range of
nearly 4 days (actually about 3 days 212 hours). The manual
(chapter 18) points out that you need to read the value of these
three bytes twice in succession and take the higher value for full
accuracy because of the possibility of the values of the three
changing while being read in such a way as to cause large
Inaccuracies.

It must be emphasised that the timer bytes are in the opposite
order to what you might expect — the most significant byte is
23674, so the timer values are ready by:

CO036#PECK 23674 +2CC*PEEK 23673 +
RFEEK 23672

which returns time in units of fiftieths of a second. There are
several things that affect the accuracy of this timer. Using
BEEP stops the timer. Using the printer and loading/saving,
etc., also affectits accuracy. However, the use of PAUSE is OK

124

_ is only waits a specified time without resetting or stopping
e timer.

3675/6 UDG

__ address of the start of the dot patterns for the user defined
raphics is normally 32600 on a 16K Spectrum or 65368 on a
gK Spectrum. This number is the same as USR“a”,so PRINT
SR ““a’’ corresponds to:

+

RINT PEEK 23675 + 256 * PEEK 23676

ompulsive POKEers can have fun with this one. The manual
uggests changing this to save space by having fewer user
efined graphics. However, itis also possible to do the reverse,
p more than one user defined graphics set if required
lthough only one set of 21 can be in use at any one time.
ermember that since there are 21 UDGs it is necessary to set

e 21 * 8 or 168 bytes for each separate set of UDGs and
E the start addresses, into 23675/6, of the character setin

fun, type in the following commands:
POKE 23675,96: POKE 23676,127 (1 6K Spectrum)
POKE 23675,96: POKE 23676,255 (48K Spectrum)

| ;_'_n using the user defined graphics (they normally appear as
apital letters until redefined) try to type out a message. I'll
gave you to find out what happens.

i
One useful tip: once you've setup an user defined character set
tmay be SAVED on tape. Most people would type something
ike:
SAVE “"chars’ CODE 32600,1 68
Fine but you have to specify the start addresses. You could use
VE “chars”’ CODE(PEEK 23675 + 256 * PEEK 23676),168
then you could happily save the current set of UDGs on tape
Without knowing the address of where they start. This would,
for example, allow you to LOAD a character set SAVED froma
16K Spectrum back into a 48K Spectrum without having to
know the addresses. To get a character set back into the right
place on a machine with different amounts of memory simply

125

use LOAD “chars” CODE(PEEK 23675 + 256 * PEEK
23676),168. This would automatically relocate data to the
right address for the machine in use at the time. This g
the same as LOAD “‘chars” CODE USR ““a” which saves 3
bit of typing although it may look a bit strange.

23679 P POSN

Contains information about how far across the printer
buffer the LPRINT position has got to. Contains (33 -
column number) for columns @ to 31. You cannot change
the LPRINT position by POKEing this alone.

23680 PRCC

Contains the low byte of the address where the next cha-
racter is to go into the printer buffer, i.e. this will con-
tain (23296 + LPRINT column number), being @ for the
left column of the printer, 15 for the 15th column, etc.
Because this is the address of the top row of dots of each
character you can POKE this to change the LPRINT buffer
position provided you change the value in P POSN (23679)
to match. It may appear to work if you don’t do this but
problems will be encountered at the end of the line.

23681 UNUSED SYSTEM VARIABLE

This system variable, although strictly speaking unused,
usually contains 91. This is the high byte of the LPRINT
buffer address (91 * 256 is 23296 where the buffer starts).
This can be POKEd for your own use but using the printer
will overwrite it back again to 91. 23680/1 together con-
tain the address of the LPRINT position in the printer
buffer. You will not affect the working of the printer if
you POKE 23681 but anything stored here may be over-
written by the printer routines.

23677/8 COORDS

23677 is the system variable that contains the X co-ordi-
nate of the last plotted point. After CLS it starts off at @
and 23678 is the system variable that contains the Y co-or-
dinate of the last point plotted. It contains the actual
value, so if the last point plotted was 3,3 both bytes would
contain 3.

126

hese two can be POKEd with valid X and Y co-ordinates
espectively. Since POKEing these does not actually PLOT
nything on the screen, this is a convenient way to move the
)L OT cursor around. This could be done by PLOT OVER
X,Y:PLOT OVER 1:X,Y but would be messy. Amongst other
hings this could simulate MOVE found in other BASICs.
Jseful if you wanted to draw lines from around a particular

yoint.

23684/5 DF CC

Address in display file of PRINT position. It may be POKEd to
send the PRINT output elsewhere, although this requires an
ynderstanding of the way the display file is organised.

3688/9 SPOSN

13688 contains information concerning how far across the
screen the PRINT position has got. It starts off as 33 for the
eft-hand side of the screen and decreases by one every time
he PRINT position moves one place to the right. After using
PRINT AT Y, X; (if Y and X are valid PRINT AT co-ordinates)
23688 would contain 33 - X. This can be useful when trying to
prevent words being chopped in half when printed on the
screen. If you imagine the number in 23688 as counting down
towards zero as there is no more room on the current line, you
can see that comparing this to the length of the word to be prin-
ted gives us an idea of whether it is necessary to move to a new
fine to prevent the word being chopped. Suppose the word to

be printed was W$:
1: IF PEEK23688 <LEN WS+l THEN FRINT

This only works for words less than 32 characters long. 23689
contains information relating to how far down the screen the
PRINT position has got to. It starts off at 24 for the top line of
the screen and decreases by one every time the PRINT position
moves down the screen. If you do notwanta scrolling display
ind would rather the screen was cleared when the PRINT posi-

tion got near the bottom of the screen, then try:
:}' IF PEEK 238689=3 THEN cLS
123692 SCR CT

: ontains how many scrolls will b
‘Waiting with scroll? to give viewing time. In gra

e carried out + 1 before
phics games

‘.

127

especially this can be a nuisance, since one is not interested in
waiting for viewing. Soif the numberin 23692 isanything other
than 1 the waiting does not occur. So POKE 23692,255 woulq
give you 255 lines of printing before the machine waits with
scroll?. POKE 23692,0 seems to have a similar effect except
that you have one more line of print. If more is needed, then if
the printing is done within a loop it will be necessary to include
the POKE statement in the loop as well — wasting time but
necessary.

23693 ATTR P

Contains permanent attributes, or the attributes (FLASH,
BRIGHT, PAPER, INK) in effect globally. Local colours in
PRINT statements, etc., are dealt with elsewhere. Note that
most of the ROM routines use the values of the system variable
holding the temporary attributes as these contain the per-
manent attributes unless a local parameter is specified. CLS,
however, clears the screen to the colours, etc., inATTR P. The
functions of the individual bits are as follows:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit @

FLASH |BRIGHT PAPER colour INK colour in binary
in binary

Bit 7 is 1 for FLASH 1.

BIT 7 is @ for FLASH 0.

BIT6is 1 for BRIGHT 1.

BIT 6 is @ for BRIGHT 0.

Bits 5,4 and 3 contain the PAPER colour in binary, e.g. for
PAPER 7 bits 5, 4 and 3 would be 111.

Bits 2,1 and @ contain the INK colour in binary, e.g. for
INK 3, bits 2,1 and @ would be 011.

Attributes of 8 or 9 are not dealt with here. If the permanent

attributes are 8 or 9 then these stored in 23693 may not be
valid.

128

his is the system variable that helps the Spectrum determine
ttributes of anything printed when a parameter of 8 is spe-
d. So if you specified BRIGHT 8 globally, bit 6 of 23694
yjould be setto 1 to remind the computer in future that BRIGHT
' has been specified. So to determine the colour/flashing/
tness when printing, the computer looks at what's already
and prints the word in that colour, etc. Or if you like, it
nly overprints the character on the screen and leaves the

bit 6 bit5 bit 4 bit 3 bit 2 bit 1 bit @

BRIGHT PAPER colour 8? INK colour 8?
8

below.

:.'2,1 and 0 are normally all 1 when INK 8 in effect, but see
" below.

Vhere there is more than one bit to consider, as in INK and
APER, then only the bits set have their attributes bit taken
m the screen. This can lead to some unexpected effects. Try

1@ INK 8
. 2@ POKE 23694 ,8IN 02200113
.. 38 PRINT AT @.,2; INK S "SS555S

4@ PRINT AT @.,0;"1111"

s INK 8 is specified, you may expect the ones to be printed in
¥an like the fives, but no. Rather than check the INK attribute

d 1. See if you can work out what colour the ones will be
:_ted in. Have fun!

129

You could see this for yourself with something like these twq
direct commands:

PRINT PEEK 23695
PRINT INK 7;PAPER 0;PEEK 23695

Thatis, include the PEEK ina PRINT statement under the effect
of the local colour controls. Normally, unless local colour
statements are specified, this system variable will contain the
global colour values. Colours, etc., to be used for printing on
screen are taken from these temporary system variables ang
things are balanced such that ATTR T is only different from
ATTR Piflocal colour attributes and so on so decree. Thisis the
function of individual bits:

bit 7 bit 6 bit5 bit 4 bit 3 bit 2 bit 1 bit @
tempor | tempor
-aIl:"y _af-)y temporary PAPER colour temporary INK colour
FLASH |BRIGHT
23696 MASK T

This is rather like MASK P (system variable 23694) except that
the parametersin here are temporary. Normally the same as the
equivalent permanent parameter 8s, this is changed while local
colour 8s, etc., are in effect. You could study this by using
something like:

PRINT PEEK 23696, IMNK 8;PEEK 236
S6, INK 2, FLASH 8; PEEK 236956

The individual bits have the following functions:
bit 7 bit 6 bit5 | bit4 | bit3 | bit2 | bit1 | bit®

temporary [temporary
FLASH 8? 'BRIGHT 87

23697 P FLAG

This system variable contains, as you might expect from its
name, flags used during printing. After PAPER 9 has been spe-
cified, bits 6 and 7 are set to 1. After INK 9 has been specified,
bits 4 and 5 are set to 1. After INVERSE 1 has been specified,
bits 2 and 3 are set to 1. And after OVER 1 has been specified,
bits @ and 1 are set to 1. The effects are global if the odd num-

temporary PAPER 8? temporary INK 8?7

3

130

bits (bits 1,3,5 and 7) are set to 1 and temporary if the
wen bits (bits 0,2,4 and 6) are set to 1, as this diagram shows:

i 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit @
alobal temporary global temporary ! global temporary global temporary
PER 9 PAPER 9 INK 9 INK 9 INVERSE 1 | INVERSE 1 OVER 1 OVER 1

'hese three bytes in the system variables are not normally used
)y the Spectrum — you may like to make use of them as
‘custom variables” for use in your own programs in which to
jccess information. These are particularly useful in machine
sode routines where you can simply access the information by
naddress rather than searching for the variable in the variables
area. 23728/9 was intended for use by non-maskable interrupts
ut these don’t occur on a bare Spectrum.

3730/1 RAMTOP

his two byte system variable points to the last byte of RAM of
he BASIC system area. Note that this is not the end of the
nemory used by BASIC, in the sense that the user defined
raphics normally hide up above this address. If you move
tAMTOP up above the start of the user defined graphics they

nay be overwritten, but you gain quite a few valuable bytes
vhich may be useful for 16K users.

)ne important thing is that NEW only operates as far as the
iddress held in 23730/1 so you can store data above this
thich may be passed between programs loaded into the
Omputer. The same is true if you want to preserve machine

0de routines, etc.
3732/3 P RAMT
his contains the address of where RAM ends on the
_.ectrum. If you acquire a Spectrum whose memory capacity

Ou don’t know, then you do not need to look inside it to see if
'S an expanded model or not, just enter this expression:

RINT PEEK 23732 + 256 * PEEK 23733 — 16384

16384 bytes subtracted is for the ROM since RAM starts at
ddress 16384 and goes up to the address held in P RAMT.

131

THE LAYOUT OF THE
SPECTRUM’'S MEMORY

The Spectrum normally consists of 16K of Read Only Memory
(ROM) space and either 16K RAM (Random Access Memory)
or 48K RAM, as shown in this diagram:

Address: 0
16K ROM
16384
16K RAM
32768
extra 32K
RAM on an
expanded
Spectrum
65535

The 16K ROM contains the instructions, dataand so on that the
Spectrum needs to run programs, execute instructions
supplied by the user, drive the printer, tape recorder and so on.
This area consists of 16384 bytes (@ to 16383). After this
comesanother 16384 bytes of RAM and another 32768 bytes of
RAM on the expanded 48K Spectrum.

The main difference between ROM and RAM is that the con-
tents of ROM are fixed and cannot be altered and so remain
even if the power is switched off. RAM contents can be altered
‘quite easily, almost at will, and, of course, the contents are lost
when the power is turned off. The RAM is divided into many
sections as in this diagram:

132

Area Of Memory How to find a boundary address
if not fixed

84 Display file

22528 Display attributes

296 Printer buffer

23552 | System variables

Microdrive maps (if
23734 microdrives are
connected)

CHANS | Channel information | PEEK 23631 +256*PEEK 23632

CHRS 128
PROG The BASIC program | PEEK 23635 +256*PEEK 23636
| VARS | Variablesstorearea |PEEK 23627 + 256*PEEK 23628

CHR$ 128

| Command or line .
i HINE balfin adited PEEK 23641 +256*PEEK 23642

\/../\,\/\'\/\/\

133

AN A AN

Command or line
being edited

CHR$ 13
CHR$ 128

WORKSP INPUT data PEEK 23649 +256*PEEK 23650

CHR$ 13

Temporary workspace
follows after the
CHR$ 13 marker

STKBOT The calculator stack | PEEK 23651 +256*PEEK 23652

STKEND Spare memory PEEK 23653 +256*PEEK 23654

Z80A Machine stack used

stack by the Z80A (not accessible from BASIC)
pointer microprocessor

GOSUB stack
RAMTOP CHR$ 62 PEEK 23730 +256*PEEK 23731
User defined n
UDG ordphies PEEK 23675 +256*PEEK 23676
P-RAMT 'PEEK 23732 +256*PEEK 23733

134

s now take a brief look at these sections one by one where
are of interest.

Display file Address 16384 to 22527

is is the copy of the television screen picture that resides in
, computer's memory. For every dot on the screen in both
pper part of the screen and the lower part of the screen
*192) thereisamatchingbitinthisarea. It consistsof6144
which are laid out rather curiously at first sight as the
anual explains. If a point, or dot, on the screenissettoan INK
olour then the relevant bit is set to 1 in the display file. This
ief program will give you an idea of the layout of the display

@ FOR A=16384 TO 22827

5@ PORE RA,255
3@ NEXT A

| Attributes file Address 22528 to 23295

his area of memory contains information about the colours,

htness and flashing effects on the screen. If you consider
ne character space on the screen as being an 8 by 8 grid of
bts then the dots within that grid can only have one INK and

PAPER colour because all their attributes come from the
e place — the attributes operate on the same grid as the
NT routine. That's why you can’t have a green spaceman
magenta eyes on a black background or whatever. One
of eight bits in the attributes area contains the information
or FLASH, BRIGHT, PAPER and INK for one character loca-
ion on the screen. There are 768 attribute bytes (32 *24)includ-
ng the bottom two lines of the screen used for INPUTSs, etc.
These are stored in the order: first line of 32 bytes for the first
screen line of thirty two characters, second line of 32 attribute
bvtes for the second line of 32 characters across and so on. This
short program will demonstrate this:

. 1p FOR A=22528 TO 2329%
- 3@ NEXT R

Three bits are used for PAPER, three bits used for INK, one bit
for FLASH, and one bit for BRIGHT. They are all stored in
inary, so one bit alone gives @ or 1 and three bits give D to 7.
You may be aware that parameters of8 or9 (e.g. FLASH 8 or

135

PAPER 9) are not stored here — only the result after the
computer has decided if INK 9 will end up red or white g
whatever. This is what each bit signifies in an attributes byte:

] 3 o
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit ¢
e

L FLASH {BRIGHT PAPER colour INK colour
.

(3) Printer buffer Address 23296 to 23551

Information about characters waiting to be sent to the printer.
It consists of 256 bytes or 32 by 8 so that graphics canbe sent to
the printer. The actual dot pattern as will appear on the printer
paper is stored here.

(4) The system variables Address 23552 to 23734

Bytes containing information relating to several factors about
the computer’s operation — where various sections of memory
such as the user defined graphics, variables, etc., start and
end. They all have a name, but the computer will not recognise
this since it is only for the programmer’s benefit. These names
are SCR__CT, VARS and so on.

(5) Microdrive maps

This area contains information relating to the microdrives when
they are connected. If the microdrives are not connected, there
is nothing there and the next system variable pointer CHANS
points to 23734. No further information was available at the
time of writing this book.

(6) Channel information

On a standard 16K or 48K Spectrum with nothing attached
(except possibly a printer which makes no difference to the
contents of this area), there are details of 4 INPUT/QUTPUT
channels in this area. These refer to what information comes
from where and goes to where, e.g. if anything typed at the
keyboard appears on the lower part of the screen, and the
addresses of the routines that handle the INPUT/QUTPUT
operations for that channel.

136

The area starts at the address stored in the system variable
CHANS 23631/2 and ends at the address held in the system
variable PROG 23635/6 less one with a byte holding CHR$ 128
which signifies the end of the channel information area. In
terms of bytes on the 16K or 48K bare Spectrum (irrespective of
whether or not the printer is connected) the area is 21 bytes
long from 23734 t0 23754. The numbers held in this area are as
follows. They are arranged in a table of 4 by 5 figures:

244 =] 245 16 75 CK]
=44 a 246 =21 83 £S1
=S 1S s e b d 21 a2 [R1
244 = 246 21 aa LRl

128

channels, so we have channel K, channel S, channel R and
channel P.

Channel K is the “Keyboard’’ channel. Information can come

ii- two addresses and file names, the addresses being those of
the routines handling the appropriate routines:

(decimal) output (decimal) input
- routine address routine address filenames

\
..I |

2545 4254

K
254 E S572 S
3969 5572 R
25485 SE72 P

) Program area

This is the area where the BASIC program goes. The system
Variable PROG points to the start of the program area, to the
first byte of the first line number. This follows a byte with CHR$
128 marking the end of the channel information area. This area
€nds at the address held in VARS less 1. The lines of a BASIC
Program are stored like this:

137

l Two bytes holding
Two bytes length of text of i
holding line |line + 1 for the Text of the program line BIN
number CHRS$ 13 at the 00001101
MSB | LSB |end of the line (ENTER)

—

Each line ends with a CHR$ 13 or the ENTER character. Multi-
ple statements are separated by a colon, CHR$ 58, and num-
bers are stored twice, firstly as the CODEs of their digits, then
after a CHR$ 14 (indicating a number) follows a five byte repre-
sentation of the number be it integer format or floating point.

This simple program will allow you to examine any line of
BASIC you place as the first line of a program. It works out
where the first program line starts (line 10) and where it ends
(line 20) by using the bytes three and four in the program line,
which hold the length of the line from byte b of the program line
to the ENTER character at the end. All addresses are PEEKed in
turn and three columns printed on the screen. The first shows
the addresses, the second the number in that memory location
and the third the character corresponding to that number if this
is a printable character. The example shows a REM statement
being examined:

2375C "

23756 1

23787 15

23758 2

2375 234 REM
23768 1@3d t
23761 1@%S i
23762 lie n
23763 i@l €
23764 32

237865 2ak G
23766 ia=2 F
23767 22

23768 66 B
23762 =3= =
2377@ 83 S
23771 73 i 3
23772 &7 C

23773 i3

1 REM Lline of BRSIC
1@ LET STRRT=PEEK 23635+256%PE
EK 23636
22 LET FINISH=STRART +3+FPEER 197
RRT +21) +2SS+PEEK (STRRT+32
3@ FOR R=STRART TO FINISH

138

4@ LET CHRR=PEEK A

. s@& PRINT R: TAB 8, CHRAR; TRB 16;C
4Rs (CHRR) RND CHRR 31

- B2 NEXT R

¥
]

1

' "'Va_riables area

ariables area starts at the address held in the system varia-
e VARS and ends at the address held in system variable
_LINE. This is where the variables used by BASIC are stored.

0 avoid confusion the variable names are stored with different
ats to their names for the names of strings, arrays,

yumeric variables, etc.

erent patterns of bits for the first letter in the name of the
ariable enable the computer to tell the difference between the

ifferent types.

Jsually these letters are stored as lower case letters but the dif-
erent bit patterns mean that we can not always look for the
JODE of the letter in the name, for example. We will now take a
yrief look at the different types of variables. The first letter of all
ariable names is stored in one byte as the CODE of the letter
ass 96, since only bits @ to 4 are significant for the name. Bits
nd 7 always have values that depend on the type of varia-
- are not used in the name. The values, if bit and 6 were 1,
vould be 32 and 64 respectively, the sum of which is 96. The
actual letter is stored in bits @ to 4 as the CODE of the lower
sase letter minus the value of these two bits. So if the first letter
the variable name was an ““a”, bits 4 to ® would be BIN
)001. Bits 5, 6 and 7 would depend on the type of varia-

lariables whose name consists of one letter (numeric
__rlable)'

This type of variable is stored with bits 5 and 6 of its name set to
"and bit 7 reset to 0. So this is a rare example of the first
acter in the name being stored as its name exactly, butonly
use the bit patterns happen to coincide. The name is
Ollowed by the exponent byte and four bytes for the mantissa:

B =

-9 3
. - Epronent 2 Four bytes for the mantissa.

CODE(name) e 5

~96 =

139

The exponent byte has a value of 1 to 255 (may be 1 or 255)
This shows where the decimal point lies. The mantissa is held i
four bytes. These give the digits of the number and can have 3
value of 0-5 to 1 (it is never 1, although it can be 0-5). The
number can be found with the formula (mantissa)*21
(exponent — 128).

As a result of the values which the mantissa can take, the left-
most bit of the mantissa is used as a sign bit. This is 1 if the
number is negative or @ if the number is positive.

There is a slightly different method of storing whole numbers
from — 65535 to + 65535, numbers which may be accommo-
dated in two bytes:

“byte1 byte2 byte3 byte 4 byte5
@ if number Ls8 | MsB
0 positive or The number is held 0
Al 255 if in bytes three and ¢
| negative four |
L

The first byte of numbers held in this way is always zero. This
could aid identification of this format of numbers. The second
byte is the sign byte — it will be 0 if the number is positive or it
will be 255 if the number is negative. The third and fourth bytes
contain the value of the whole number in the order Less Signi-
ficant Byte (LSB) followed by the More Significant Byte (MSB)
and is held in what is called ““twos complement form"’.

The value for a positive number can be read by the expression:
LSB +256*MSB

The value for a negative number can be found by the expres-
sion:

LSB +256*MSB — 65536

And if ever you wish to read the value of this form of number,
you could use:

LET value = LSB +256*MSB — (65536 AND (sign byte = 255))
The fifth byte will always be zero.

140

umeric variables whose names consist of more than
ne letter

type of variable is stored with bits 5 and 7 of the first letter
name set to 1 and bit 6 of the first letter in the name reset
> 0. Subsequent characters in the name are stored as the
ADE of the character, (with all but the last character in the
ame having bit 7 reset to @. The end of the name is indicated
the last character in the name having bit 7 setto 1. In decimal
his means that the first letter in the name is stored as the CODE
he letter + 64, subsequent characters are stored as the
DDE of the ietter/number, with the last character being the
JODE of the character + 128. Incidentally, you can get very
sonfused mixing decimal and binary in your thoughts so if you
an it is better to stick with binary here as we're dealing with
ndividual bits.

lere is a diagram to illustrate this:

01 1)
j v N~ Further
CODE(name)| CODE(character) characters in
—-96 bit7is0 the name
there are more)
characters
in name
1
M
Further X
CODE (last letter 5 bytes for the value as
characters ; .
- in name) shown previously
in name 4 e
bit7 is 1

?rray of numbers
An array of numbers is recognised by bits 5 and 6 being @ and
it 7 being 1 in the byte holding the name of the numeric array.

So the name is held as the CODE of the name minus 96 in bits @
to 4. This corresponds over the eight bits to the CODE of the
hame +32.

141

11010 2 bytes for the total ;
. length of the elements 1 byte hOId".’g the_
_—~— | dimensions and 1 for | "umber of dimensions
CODE(name)| the byte holding the | SEtUP .
- 96 number of dimensions

number of elements | . ber of elements | 2 PYtes per element

in the first in the last dimension | ©f the array
dimension

The elements of the array are held in a logical way so that the
elements of the first array subscript come first, then all those of
the second dimension subscript and so on, as you might have
expected.

The control variable of a FOR...NEXT loop

The FOR...NEXT loop control variables are recognised by
having bits5, 6 and 7 in their name all set to 1. The letter is again
stored in bits @ to 4 as the CODE (name) — 96. In decimal, over
the eight bits or the byte as a whole, this would be CODE (of the
name) + 128. There is one byte for the name, 5 bytes for the
start value (the one before the TO in the program line setting up
the loop), five bytes for the limit value (the number after TO)
and five bytes for the STEP value. There follows two bytes that
say to which line number the loop ““loops’’ and another one
byte for the number of the statement within that line to which
the loop jumps to. This makes a total of 19 bytes occupied in the
variables area.

e

11111
: 5 bytes for | 5 bytes for |5 bytes
coT)E i ‘*")' start limit or holding STEP
_(E;lsame value end value value

142

2 bytes holding
number of line to
which the loop

jumps

1 byte holding

in line to which
loop jumps

number of statement

r—

ﬁ"tring variables

trlng variables are recognised by having bits 5 and 7 reset to 0

and bit 6 set to 1. The name (one letter only) is stored in bits @
o 4 as the CODE of the name minus 96. In decimal this would
mean that the byte holding the name of the string variable
nyould have a value of CODE (name)
he name followed by two bytes for the length of the string, i.e.
how many characters the string contains, like the BASIC fun-
stion LEN. Then come the characters in the string themselves,
stored simply as their CODEs. If the string is null, there are no
characters here.

—32. Thereis one byte for

0|1]0

——
CODE(name)
—-96

2 bytes holding the
number of characters
in the string

The characters in the
string-if the string

is null, there is
nothing here

Character arrays

Character arrays are recognised by having bit 5 reset to @ and
Dits 6 and 7 setto 1. The nameis stored in one byte consisting of
one letter only. Bits @ to 4 hold the CODE of the name minus
96. In decimal, this corresponds over the entire byte to the
CODE of the name +96. There is one byte for the name then
two bytes holding the length of the remainder of the string
including the elements, the dimensions and an extra one for
how many dimensions there are. The length bytes are followed
by one byte holding the number of dimensions set up. If you
had DIM A$(4,5,6) this byte would hold 3. The dimensions
themselves follow in two bytes each in the order written down
in the program line setting up the DIM. So in the example of
DIM A$(4,5,6) you would get, after the 193 for the name array,
the numbers 127,0,3,4,0,5,0,6,0 followed by the CODEs

143

of the characters in the elements of the arrays. The zeros, of
course, are due to the use of two bytes in some cases ag
described. Finally, come the elements of the character array
These are stored by their CODEs in one byte each in order.

111(0

2 bytes for holding
\—~—~—| the length of the array
CODE(name)| from the next byte to
-96 the end of the elements

1 byte holding
how many dimensions
have been set up

Array elements all

: b
2 bytes with 2 bytes with last Qf'fh? 88%5\21? the

first dimension dlmens/|0n chiarastir n ke
element.

Command/line being edited, INPUT data and the
workspace

Used by the computer during the RUNning of BASIC pro-
grams, editing and keyboard information. These areas may
expand or contract to nothing depending on how much roomis
actually required at the time. Usually, you will find that if you
examine these areas there is nothing there as everything is bal-
anced so that any space not required is not used.

The calculator stack

The calculator stack is used to place floating point numbers,
integers and information about strings. Everything generally
goes on as five bytes — numbers in their five byte form and
strings as five bytes of details about them (starting addresses
and so on). Arithmetic operations and so on make use of this
stack.

Spare memory

This is the part of memory between the calculator stack and the
machine stack which is not required. It may come into use if
stacks grow or changes are made to variables or program, etc.
It is not safe to put anything of importance here.

144

achine stack and GOSUB stack

machine stack is where the Z80A may put information

such as values of registers to be preserved. The GOSUB stack

"olds the data necessary for RETURN to jump back to the
ropriate point in a BASIC program after a BASIC subrou-

e. Information, as to the line number and statement number

r the GOSUB, is stored here which is used to know where

to RETURN to.
RAMTOP
is is the limit of memory used by BASIC, apart from the user
defined graphics data which is stored between RAMTOP and
the end of available memory. Anything stored above RAMTOP
:0 RAM is safe from everything in BASIC except POKE. NEW

only operates as far as the address held in RAMTOP so UDGs
set up are safe unless you turn off the machine or POKE over
them. The same applies to any data or machine code above
RAMTOP — itis even safe from NEW.

Other versions of BASIC

If you wish to convert a program written in another version of
BASIC, this section will be of interest to you. It shows how you
‘can emulate certain commands, functions and other features
found in certain versions of BASICs which cannot be directly
‘used in Sinclair Spectrum BASIC. Sometimes, it is just a
matter of using another word or sometimes a complete routine
,:'ay be necessary.

Arrays

With numeric arrays, the only problem likely to arise is with
‘subscripts. These may start at @ whereas Spectrum subscripts
rt with 1. The solution generally is to add 1 to all references
to any array subscripts, including DIM statements, if the pro-
‘gram makes use of subscript 0. Watch out for calculated
references, e.g. A(G*3 — 1) which can be tricky to convert —
you will have to convert these individually as you meet them.

SC
::_ his corresponds to the Spectrum’s CODE function — at least,
for characters with CODEs of 32 to 1 26 on the Spectrum. If this

145

is used for storing DATA in a string or array and subsequent
decoding, you may be all right not having to do any changes —
otherwise study the routine to find out whether any values o
characters involved differ from their equivalent on the
Spectrum. Any changes will have to be made individually for
each program as there is no hard and fast rule as to what cha-
racters have what CODEs/ASC values outside the range 32 tg
126. There may even be one or two differences within this
range.

CALL

This is used to jump into machine code and may be replaced by
USR. The Spectrum returns a number when coming back into
BASIC which you’ll have to find something to do with, e.g.,
CALL address could be replaced with LET A=USR address or
RANDOMIZE USR address.

Degrees and Radians

The Spectrum’s trigonometric functions work in radians. If you
need to adapt a routine using degrees they may be changed to
radians with:

LET RADIANS = (PI*DEGREES)/180

DIM

The program may call for several arrays to be set up using one
DIM statement all separated by commas. So you would replace
DIM A(3),B(4),C(5) with DIM A(3): DIM B(4): DIM C(5).
Beware of DIM statements setting up string arrays or character
arrays, because you may need an extra subscript on the
Spectrum since these arrays are all set to a fixed length at the
time of the DIM statement. Normally on other computers, the
length of each string in the array is only as long as it needs to be.
So, if the program calls for DIM A$(4) this means four separate
strings, not the one string of four characters as this statement
might appear to ZX users. The way to convert this for the
Spectrum is to work out what the longest string is, say 10,
letters and set up the Spectrum DIM accordingly as DIM
A$(4,10).

DIV

This function returns the whole number part after a division sO
that 10 DIV 4 would be 2. Rewrite this as INT(10/4), i.e. put
the division in brackets and apply INT to this.

146

... UNTIL

he program carries on executing the part of the program bet-
veen DO and UNTIL and only stops doing this once the condi-
ion after UNTIL has happened. Normally, you'd convert this
vith IF. . .THEN GOTO. ..

)RAW

fost BASICs would draw a line by specifying the end co-ordi-
ates, €.9. DRAW 200,90 would draw a line ending at pixels
@0 across and 90 vertically. This would cause problems
pecause the Spectrum’s DRAW routine would expect relative
¢and y values, i.e. X pixels across from where the line started
and y pixels up from where the line started. Note that most
2 ASICs would MOVE the PLOT cursor first then DRAW from
this. So to convert MOVE a b:DRAW x,y, but for the
anectrum you'd use PLOT a,b:DRAW (x—a),ly—b). Note
that there is a difference in that the PLOT has to be used both
£or MOVE and to shade in the first dot in the line.

| SE
This is a part of IF.. . THEN. ..ELSE in which the condition
after |F being false the rest of the line is not skipped over but
that action after ELSE is done instead. You will have to write
put two separate courses of action. IF X = 1 THEN PRINT “X
e ELSE PRINT “X is not 1”’. This would be written as:
IFX = 1 THEN PRINT "X = 1"

IF X < >1 THEN PRINT “Xis not 1"

may also be able to rewrite some examples using AND to
join the conditions. However, using two IF...THEN
is the best course to follow normally.

!

END

ES

.nder some circumstances this may simply be omitted. Itis to
all intents and purposes the same as STOP in most cases.
ponentiation

Different BASICs use different symbols for this — just replace
the ** or A with the Spectrum’s |.

i

147

FOR...NEXT loops

The difference you are likely to encounter is where the pro.
gram tests to see if the loop has been finished. If the test is
done at the NEXT end of the loop, this means that the loop
will be run through at least once. On the Spectrum, the test
is done at the FOR end of the loop, meaning that the loop
is never executed if the finish value is already exceeded by
the start value being bigger than the end value.

GET and GETS

This reads the keyboard and usually waits for a key to be
pressed before the program moves on. The full expression
is likely to be LET A = GET or GET A (and the same for
GET$). This can be converted using INKEY$ (if the
computer concerned waited for a key to be pressed, you’d
made special arrangements) or using INPUT (you’d have to
make it obvious ENTER was needed).

If you use INKEY$ convert LET A = GET or GET A with:

1000 LET A = CODE INKEY$: IF A = @ THEN GOTO
1000

With GETS$ (e.g. LET A$ = GETS$):

1000 LET A$ = INKEY$: IF A$ = ““THEN GOTO
1000

IF...THEN...

Some BASICs allow THEN to be omitted. However, it must
be included on the Spectrum. For example, IF X = 1
PRINT ““One” must be written as IF X = 1 THEN PRINT
.ltonel"l

INKEY

This reads the CODE of the key just pressed on the key-
board. It can be converted by CODE INKEY$ so that LET A
= INKEY would become LET A = CODE INKEYS.

You may come across a varsion with a number in brackets
after it. This is the time the function will wait for a key to

148

he pressed before giving up and moving on. The easiest way is
to put a PAUSE before the keyboard scan. So:

.AUSE 50: LET A = CODE INKEY$

_‘:'the time units are not the same, some change to the length of
the PAUSE may be necessary.

will be a great deal slower. B$ is the “’big”’ string in which you
look for a copy of the smaller string C$. No errors occur if either

oza@a REM INSTR
3285 LET P=2
. 921@ IF LEN Cs$=2 OR LEN B%=0 OR
. LEN Cs>LEN Bs THEN RETURN
Q215 FOR P=1 TO LEN BS$-LEN C%+1
9228 IF BS(P TO P+LEN C$-1)=C8S T
HEN RETURN
2225 NEXT P
S=23@ LET P=@
2235 RETURN

' On returning from the routine, Y will contain the position of
‘where the copy starts — 1 if the copy starts at the beginning, 2
if it starts at the second letter and so on. If no copy is found or
' C$ is bigger than B$ then Y will be 0. Whatever the reason, Y
.::fbeing @ means there is no exact copy of C$ in BS.

Integer variables

-* ‘These are normally identified by having a % symbol tagged
- onto the end of the name. For example, A%. Normally, you
' could use any variable name you like as long as you made sure
' the value going in the variable was an integer, e.g. if the original
" read LET A% = 3/2 and you want to PRINT A%, you would
_ get 1. To have the same result on the Spectrum you’'d use LET
- A = INT(3/2).

149

LEFT$

The function LEFT$(A$,B) which takes the first B characterg
from A$ may be written as A$(TO B) on the Spectrum. So
something like LET R$ = LEFT$(A$,B) would become LET Rs
= A$(TO B).

LINK

This is a call to a machine code routine. You may replace it with
USR.

Logical expressions

You are likely to encounter problems with TRUE and FALSE
values. Zero is always the false value in programs you will
encounter, but true may often be —1. By this | mean that
something like PRINT (1 = 2) will print @ (as it would on the
Spectrum) and PRINT (1 = 1) will print —1 because the
expression is true. On the Spectrum, PRINT (1 = 1) would
print 1. The solution here is to negate the result of these expres-
sions. If the original read:

LET X = 10 — (SCORE = 6) + (TIME < 300)
this would be rewritten for the Spectrum as:
LET X = 10 + (SCORE = 6) — (TIME < 300)

Beware of uses of AND and OR as binary operators which
operate on numbers bit by bit. These usually manifest them-
selves in this sort of statement:

LETA = AAND4

There is no easy way to convert these in BASIC. You will have
to rewrite the routine generally or forget it completely.

LOGS

The Spectrum uses natural logarithms. If you require logs to
other bases (usually base 10) use:

LET LOGBASEX number = LN number / LN X

where X is the base and nuraber is the number you wish to find
the logarithm of.

150

VAT
ghort for Matrix or Matrices. This is a function which will work
on all elements of an array:

10 DIM X(10)

g DIM Y(10)

30 MAT X = Y

Thus, all the elements of the array X are made equal to the
elements of array Y. You will have to use a loop to perform the
pperation on all elements of the arrays:

10 DIM X(10)

20 DIM Y(10)

FORM = 1TO 10
30 LET X(M) = Y(M)
NEXT M

MID$
ID$(W$,T,U) takes the middle U characters of WS$ starting at
‘ T. On the Spectrum use W$(T TO T+U-1.

MOD
‘A MOD B gives the remainder after A has been divided by B.

.-eplace with A — (INT(A/B) * B).

MOVE

Al this does is alter the position of the PLOT cursor without
plotting anything on the screen. It is generally used to setup a
point from which aline is drawn, and for examining a particular
part of the screen. Note that when used for drawing lines, the
associated function DRAW would fill in the first dot in the line
— the Spectrum DRAW would not and you would use PLOT
and DRAW together. To simulate MOVE by itself you have to
,-_OKE the X and Y values into the system variables holding the
ccurrent PLOT co-ordinates. To replace MOVE on the same
scale on the screen (e.g. MOVE X,Y) use:

'POKE 23677,X: POKE 23678,Y
NEXT

In some versions of BASIC, the name of the variable after the
EXT may be omitted. If so, the value of the most recent con-

151

trol variable is incremented. This is not possible on the
Spectrum. You must always specify the control variable’g
name.

ON...GOTO/GOSUB...
This usually takes the form:

ON X GOTO 200,300,400,500

Which means that if X was one, the program would GOTO the
first line number in the list after the GOTO or GOSUB. If X was
2, the program would GOTO/GOSUB the second line number
and so on.

The easiest way is to convert using IF.. . THEN GOTO. .. so
the above would become:

IF X =1 THEN GOTO 200
IFX =2 THEN GOTO 300
IF X = 3 THEN GOTO 400
IF X = 4 THEN GOTO 500

You could use AND to convert it:

GOTO (200 AND X = 1) + (300 AND X = 2) + (400
AND X = 3) + (500 AND X = 4)

If the line numbers go in a step suitable to allow it, use a |
computed GOTO like this:

GOTO 100 + (X * 100)

PAINT

This is a graphics command which fills in an area of the screen
in colour. There is no fast way to convert this in BASIC and
anyway it tends to vary from machine to machine. This and
many other graphics commands are best avoided because
graphics is probably the area where the biggest differences bet-
ween various computers are found.

PEEK and POKE

This is the other big difference from computer to computer. A
specialist knowledge of the computer concerned is generally
needed and is often impossible to convert.

1562

5NNT
)n some computers the question mark ? is used as an abbre-
.ation for the command PRINT, which must be used on the

;ROC.ENDPROC

BROC is short for procedure, which is a form of subroutine
-alled by name rather than line number. On the Spectrum you
yould replace the PROC with a subroutine, called by GOSUB
jine number). Replace the ENDPROC with a RETURN.

RANDOM NUMBERS

Some computers generate random numbers with the expres-
sion RND (X) which returns a whole number between 1and X
‘clusive. Convert RND (X) with INT(RND *X) + 1. If you see
an expression like RND (@) it usually means repeat the last
andom number. RND (—X) usually means the same as RAND

n Spectrum.

REPEAT. .. UNTIL

is is a means of creating a loop without reference to line
pumbers. The loop keeps going forever, unless the condition
mentioned after the word UNTIL becomes true and the pro-
gram finishes the loop and carries straight on. Here is an exam-

ple of its use:

1@ LET X=©
2@ REPERT

| 3@ LET X=X+1
. 48 UNTIL X=10

is can be converted using an IF...THEN GOTO...

statement in the line containing the UNTIL, the GOTO referring

to the statement or line after the one containing the REPEAT. If

you convert it as | have done here, you may as well include a

R _M statement as a reminder and GOTO this:

1@ LET X=@

. 2@ REM loop here

. 3@ LET X=X+1

4 4@ IF X<18@ THEN GO TO 2@

%ESET

Thisis used to make a dot or block on the screen white or black.
is a graphics command which can usually be replaced with

OT or PRINT depending on the computer and the nature of

the program.

153

RESTORE

The Spectrum can have a line number after the RESTORE
command and this can often simplify a program. It is quite
common to come across something like:

100 RESTORE:FOR A = 1 TO 4: READ A$: NEXT A
110 DATA “FISH”,”BIRDS"”,"MAMMALS",”REPTILES"
120 DATA “CATS"”,”DOGS"”

This is necessary to step over certain data until the right
section is reached. On the Spectrum, replace everything in
line 100 with:

100 RESTORE 120

RIGHTS$
RIGHT$(R$,X) takes the right-hand X characters of the string
R$. On the Spectrum use R$(LEN R$ — X + 1 TO). Note

that nothing is necessary after the TO in the Spectrum ver-
sion.

SCROLL

The ZX81's SCROLL command may be replaced with PRINT
AT 21,31 "’ (note the 2 apostrophes). This has the advantage
of being in simple BASIC but has the disadvantage of having
to cope with the scroll? query. The ROM call LET A = USR
3582 will scroll the screen without this effect occurring. Of
course, it has the disadvantage that if ever a new ROM is
issued the addresses may be different.

SET
See under RESET.

TAB(X.,Y)

Apart from the fact that the program may have been
intended for a computer with more characters across the
screen (or less), this is the same as AT Y,X: on the
Spectrum.

THEN

THEN may be omitted on some computers, e.g. IF X = 2
GOTO 10, but it must be included on the Spectrum, e.g. IF
X = 2 THEN GOTO 10.

154

ndefined variables

If a program attempts to use a variable before it has been set up
most BASICs will assume a value of zero. However, anerror ‘2
Variable not found" is generated on the Spectrum.

VAL

similarly, if the string to which VAL is applied is not numeric
the value 0 is obtained. On the Spectrum, you may obtain dif-
ferent errors (e.g. error 2 as above or error C Nonsense in
BASIC).

AN

Understanding the screen display

fter reading chapter 24 of the Sinclair manual you may be
‘aware of the apparently unusual layout of the dot pattern of the
'screen display. The copy of the picture in memory is stored in
two blocks. First is the pattern of dots stored in a 6144 byte
blockin addresses 16384 to 22527.. Every doton the screen has
‘acorresponding bit (eight bits in every byte, 6144 *8 = 49152
‘dots/bits) but the dots are not in the same order on the screen
‘as they are in the memory. This will be explained later.

The second block contains the colour, brightness and flashing
information in a 768 byte block in addresses 22528 to 23295.
‘We'll take a look at both of these sections. First, the display file
_containing the screen dot pattern. Let’s try POKEinginto this to
‘study the effect it has. Remember that each bit corresponds to
a dot on the screen and when we POKE a whole byte we're
‘changing eight bits/dots at the same time. Any bit thatis setto
"1 will be in INK colour on the screen and any bit that is made 0
“will appear as PAPER colour. The value we'll POKE is 255
“(which is BIN 1111 1111 which sets all eight bits to 1 each. In
“other words, it will appear as a line one character space wide
~and one dot high:

1@ FOR R=16384 TG =ZINZ7
28 POME R, 255
@ NEXT R

"_"'You will notice several things. First of all, there does not appear
1o be a sensible pattern in the way the screen is filled. Second,
 the screen is filled in three blocks, the top eight rows (PRINT

E

| 155

i -
i

rows 0 to 7), the middle eight rows (PRINT rows 8 to 15) ang
then finally the bottom eight rows (PRINT rows 16 to 23).

This means that even the lower screen is stored here. The pat-
tern is that first of all the top line of dots in PRINT row 0 is filleg
in, then the top line of dots in PRINT row 1, and so on down tg

‘thetop line of dotsin PRINT row 7. Then the second line of dotg
in PRINT row 0 is filled in, then the second line of dots in
PRINT row 1 is filled, and so on until the eight lines of dots in
PRINT rows 0 to 7 are all filled in. From this we can conclude
that to find the address of the top line of dots in any of the cha-
racter rows (using the PRINT AT Y, X; co-ordinates) in row Y,
column X. We could use:

LET RAPDRESS=16384+Y£32+X

This would only work for values of Y from @ to 7. You may
have noticed that the middle block of 8 PRINT rows is filled in
the same as the top row once that has been completed. Unfor-
tunately, the equation only works for the top rows 0 to 7.
However, this equation will tell you where to POKE for the top
line of dots in PRINT rows 8 to 15:

LET RDDRESS=16384+2@43+ (Y-8} 32+
p 4

The number 2048 is how many bytes represent PRINT rows 0
to 7. Remember, there are 32 columns across the screen, 8
bytes for each character location and 8 rows in that block of the
screen (32 * 8 ¥ 8 = 2048). Similarly, we need another equa-
tion for the lower third block of the screen:

LET RDDREZS=16384 +4296+ (Y =-16) 32
-

These could be used like this. This is an example program
which prints the number 8 down the left of the screen and then
POKEs a line above each figure 8 like underlining only on top of
a character: .

1@ LET X=@2

28 FOR Y= TO 21

S8 PRINT KT Y,Q;"8"

48 IF ¥Y<=7 THEN LET RDDRESS=16
3844V £32+X

S@ IF Y>=8 RAND Y<=1S THEN LET
RODRESS=16384+284.8+ (Y-8} #32+X

6@ IF Y>=18 THEN LET RDDRESS=1
6384.+40286+ {(Y-16) *32+X

7@ POKE RDDRESS, 255

8@ NEXT Y

156

It is more than a bit inconvenient to have to write three lines of
program (40 to 60) where one would have done. The more
mathematically inclined may have seen that they could be
summarised in one line like this:

Lt ET ADDRESS=106384 +23483xINT (Y ,/8)
C + (Y -(INT (Y/8)£8)) x32+X

hich after a bit of juggling comes to:

. _ET RDDRESS=16384+2248%INT (Y/8)
. §32s3Y-(INT (Y/8)%8%3211+X

LET ADDRESS=16384+2848%INT (Y /8)
+32#Y ~-256*INT (Y/8) +X

LET ADDRESS=18384 +1792xINT (Y /78)
+S2 ¥V +X

And which finally comes down to:

I ET ADDRESS=16384+32% (56*INT (¥~
L 81 4Y) +X

hich looks strange, but works. So if we change lines 40, 50
‘and 60 to our one line wonder:

1®& LET X=0
2@ FOR Y=0 TO 21

3@ PRINT AT Y,&;"8"
A0 LET RDDRESS$=16384+32% (S63:IN

C T Y sB)Y +Y) X

b 50 POKE ADDRESS, 255

i &8 NEXT Y

That works fine. You may be wondering about what to do for
lines other than the top one in any character. It turns out that as
the top line of each block of eight PRINT rows are stored after
each other, then the second line of dots in every PRINT row
follows 256 bytes (32 characters per row * 8 rows = 256) fur-
ther on, and so on.

We then go through the same process for the three blocks each
0f 8 rows described earlier. To cutalong story short, we end up
With this equation to fill in the lines of character location Y rows
X columns across. The values of LINE (the lines) are 0
107 from the top line to the bottom line. The same as you would
o for the user defined graphics.

. LET ADDRESS=18384+32% (S6xINT (Y-
&) +¥Y) + X +LINE 256

157

Try this demo program which fills in a solid line alongside 3
column of eights:

18 LET X=1%

20 FOR ¥Y=0 TODO 21

38 PRINT AT ¥, ,&; ' 8"

480 FOR L= TOD 7

S0 LET ADDRESS=16384 +32x (S5 xIN
(W /78) +Y) + X +L 256

650 POKE ADDRESS ., 2585 :
T8 NEXT L

88 NEXT Y

Try this program which very slowly and inefficiently fills the
screen by POKEing the addresses in the display file in the right
order to fill every character location in the order the person
viewing the screen might expect. Incidentally, extending the
value of X to 23 means you can PLOT on lines 22 and 23 which
you could not normally do. Note, however, that you cannot
POKE individual dots without affecting the eight dots con-
trolled by the entire byte, unless you are prepared to check the
values already in the byte and determine accordingly what
value to POKE.

18 FOR Y= TG 25

28 FOR X=6 TO 31

S8 FOR L=G TO 7

40 LET ADDRESS=16384+32x(S&6xIN
T (Y78 4Y) + X +L £25&

50 POKE ADDRESS 255

&8 NEXT L

T8 NEXT X

58 NEXT VY

In binary, there is an easy to understand logical method of
dealing with the display file. Certain groups of bits denote
certain information relating as to position in the display file.
This comes in useful in machine code since it allows text and
graphics access to the screen quite easily. This diagram will
show how this is organised.

w

bit15 | bit14 | bit13 | bit12 | bit 11 bit 10 | bit9 | bit8
0 1 0 These two bits
are 0 if the
dot referred to
Fixed value to point to is in the top Which line of dots in
the start of the display third of the 8*8 character
file-BIN 0100000000000000 | screen, 1 if in bleck-Value @ for the
is 16384 the middle third | top row, 7 for lowest,
or 2 if in the
lower third

158

bit6. | bits | bita | bit3 | bit2 | bitd | bitd

|n the appropriate X co-ordinate of
9 third of the screen, character block across
 which character rows the screen, 0 to 31

Gather the expressions from each section in the diagram
together and you arrive at a familiar looking expression:

acter squares on the screen making 768 bytes in all. These are
stored in a block of memory called the attributes file from
addresses 22528 to 23295. The layout of these bytes is quite

The first byte (22528) corresponds to the top left character on
TV screen. The first 32 bytes correspond to the top row of
characters across the screen. The next 32 bytes correspond
to the second row of 32 characters across the TV screen, the
next 32 bytes correspond to the third row of 32 characters, and
so on right down to the last character in the display on the
bottom row (row 23). If you want to see how straig htforward it
is to understand this, try this program which will make all of the

filled, including the bottom two lines. Although the bottom
two lines are made black for a moment, the report code
promptly overwrites this. Add a PAUSE 0 to line 30's end to
see the effect and press any key (except the SHIFTS!) to finish
the program:

. 13 FOR A=22528 TO 23285
. 20 POKE A,®
. 3@ NEXT A

159

The information in an attribute byte is held in a form which
allows individual bits to store values for flashing, brightness
PAPER colour and INK colour like this:

bit 7 bit 6 bit54 &3 |bit2,1&0
FLASH 1if | BRIGHT |PAPER INK colour
FLASHing | 1if BRIGHT | colour in binary

@ if not 0 if normal | in binary

FLASHing

Given this, it is easily possible to work out where to POKE into
any location of the attributes file if you know the PRINT AT
Y,X: co-ordinates (where Y is the PRINT position down the
screen and X the same across the screen).

POKE (22528+32#Y+X) ,NUMBER

This could also be done using PRINT AT Y,X;OVER 1;" " —
but that’s another story.

Try this program. It will ask you to enter the Y and X values,
print a character there, then ask you to enter a value for the
attributes and you will see it change colour, brightness and/or
flashing depending on what you entered. From the above dia-
gram, you may like to use BIN to enter the attribute value —
e.g. if you wanted a non-flashing, bright, white PAPER and
blue INK characters, you'd enter BIN 01111001:

1@ INPUT "ENTER VRLUE FOR X ";
28 INPUT “"ENTER VRLUE FOR Y ",

38 PRINT AT Y, ,X;"+"
4@ INPUT “ENTER UVARALUE FOR RATTR
IBUTES ";RATTRIBUTES
ESB FOKE (225S28+328Y +X) ;RTTRIBU
TES

X
Y

There’s not really any point in PEEKing the attributes file as
ATTR can do it for you — but if you're determined, use this:

LET P=PEEK (22528+32%Y+X)

160

JSEFUL DEF FN CALLS

Here are some function calls | have found useful and gathered
ogether for you.

(1) To find whether bit B (0 to7) of number N (0 t0255)is 1 or

EN AB.N) = INT (N — INT (N/@2 T (B+1)*(2 1
.'5;_ +1)))/(21B))

(2) Add a percentage P to an amount A:

DEF FN S(A,P) = A*P/100 + A

Given a total amount T which includes a percentage P

ded to an original amount, this function will tell you what the
yriginal amount was. Useful for VAT calculations, etc:

DEF FN A(P,T) = (T * 100)/(100 + P)

) Odd or even. FN O() will be 1 if the number N is odd, or zero
fitis even:

DEF FNLO(N) = N — INT (N/2)

) To find the PAPER colour at screen location ¥YiX (e
f~. the attributes to components):

’.EF EN P(Y.X) = INT ((ATTR (Y,X) — INT (ATTR
X)/64)*64)/8)

(6) To find the INK colour at screen location Y, X:

FENI(Y,X) = INT(ATTR(Y,X) — INT(ATTR(Y,X)/8) *8)
7) To find FLASH state (@ or 1) at screen location Y, X:

FN F(Y,X) = INT (ATTR (Y,X)/128)

(8) To find the state of BRIGHT at screen location Y, X:

DEF FN B(Y,X) = INT (ATTR(Y,X) — INT (ATTR(Y,X)/128)
_128)/64)

(9) 2 byte PEEK starting at address A:
| 161

DEF FN P(A) = PEEK A + 256 * PEEK (A + 1)

You could use this in your program while typing it in. At any
time, PRINT FN(23641) - 16384 will give you a vague idea of
how much memory has been used up (including everything up
to the end of the variables). This saves typing in alengthy PEEK
expression all the time.

(10) Memory left in bytes:

DEF FN M() = PEEK 23730 + 256 * PEEK 23731 — PEEK
23653 — 256 * PEEK 23654

(11) Round off the value of X to the nearest whole number:

DEF FN W(X) = INT (X + 0-5). This suffers from the way the
Spectrum holds the number -5 in such a way that giving X a
value of 0-5 will yield 0. This can be corrected by increasing

the value added to X in the function to, say,
0-50000001.

(12) Random numbers between 1 and X:
DEF FN R(X) = INT (RND * X) + 1

(13) Centering a string around the middle of the screen. This
returns the value for TAB to print the string so that it is in the
middle of the screen:

DEF FN M(M$) = (16 — LEN M$ / 2) AND LEN M$ < 33

This only works for strings up to 32 characters long — if longer
than 32 characters, the routine will give up and just print from
the left of the screen. This is how to use the function — putitin
a PRINT statement as the argument of TAB remembering to
place the string to be printed in the brackets, e.g. PRINT TAB
FN M(A$):A$ or PRINT TAB FN M(“DOG");"”"DOG".

(14) To find the log base 10 of a number N using the
Spectrum’s natural logs:

DEF FN L(N) = LN N/LN 10
The formula can be used to find logs to other bases, e.g. basé
B:

162

=F FN L(N,B) = LN N/LN B
5) Rounding off an amount A to 2 demical places:
EF FN R(A) = INT (A * 100 + 0-5)/100

ding off an amount A to D decimal places:
EF FN R(A,D) = INT (A* (101 D) + 0-5)/(101 D).

163

INPUT-OUTPUT
CHANNELS

It is possible to use certain commands to provide OUTPUT tq
different destinations or to accept INPUT from certain sour-
ces, e.g. try INPUT 2 ; “This is #2"; # 1;X.

This introduces us to the system of channels used for the
INPUTting and OUTPUTting of information on the
Spectrum. There are 19 possible channels. Channels -3 to
— 1 are used by the operating system but cannot practically
be used by the programmer. On the bare Spectrum (no
expansion module, microdrives, etc.) channels @ to +3 are
implemented as follows. Note how only channel 1 allows
INPUT normally:

Channel INPUT OUTPUT
0 none to workspace/lower
screen
1 keyboard editing area/lower
screen
2 none upper screen
3 none printer

Channels 4 to 15 are not used at the time of writing (unless
specially opened by the user) although they will probably be
used for some of the expansion options such as RS232,
microdrives and networking. We can make use of certain
channels for printing, e.g. try:

1@ FOR R=@ TO 3
28 PRINT #R; “THIS IS #":A
328 NEXT R: PRUSE @

Note how PRINT output can go to both parts of the screen or
even to the printer. PRINT is not the only command that can
be used in this way. Try:

164

: 10 INPUT $#2; “Enter a number *;
3, X

;-he prompt message string for INPUT appears in the upper
screen (note that it is not erased afterwards) whereas anything
you type appears in the normal place. This is because the key-
poard INPUT can only come from channel 1 as set up by the
ROM. OUTPUT can go to any channel specified. LLIST can
also be replaced by PRINT #3 and LPRINT replaced by
PRINT #3. Try LPRINT $2 — who needs PRINT
anyway? The most obvious application for this is to use
PRINT # 1 to enable us to print on those lower two screen
lines. To see what happens when you try to get INPUT from
channels 0,2 or 3, try INPUT 4 3;X.

That example tried to get INPUT from the printer which you
can't do, obviously. An error J Invalid I/O Device occurs. You
can open a channel with the OPEN 3 statement. To do this
you must specify what device is attached to which channel.
After the # comes the channel number, then a comma,
‘then in quotes a letter to denote the “device”’; at the moment
R, K, S or P for workspace/lower screen, edltmg area/lower
: ;screen & keyboard, upper screen and printer respectively, e.g.

'OPEN 5,”P”. The same can be done to close a channel using
'CLOSE #5, for example. Beware of trying to CLOSE a
_channel before it has been opened as spurious results occur.

165

CONTROLLING THOSE
NUMBERS

Printing the numbers to the screen can often be an art in itself if
any control is needed over those numbers. Serious programs
especially require that numbers be tabulated in a certain
manner. This could involve making sure that only a certain
number of decimal places are printed, that all the numbers are
printed beneath one another with decimal points aligned, or
that all the numbers contain the same amount of digits.

All of these usually demand that the number be turned into 3
string then examined character by character to find the decimal
point, the integer part studied to decide how many zeros to
add, or the length checked, and so on. I'll look at routines to
provide the various type of formatting often used.

(1) Round off a number to a set number of decimal
places

Numerically it is quite simple to round off an amount
(AMOUNT) to 2 decimal places. All that is needed is a formula
like:

LET TWODEC=INT (AMOUNT*100+0-5)/100

LET TUWODEC=INT (ARMOUNT :100+B.5) /
180

This is very useful for money values since you can round off to
the nearest penny. This short program will show what the
routine can do and some of its shortcomings. Line 10
generates an amount AMOUNT at random which line 20
reduces to TWODEC, a copy of AMOUNT rounded off to two
decimal places. Both are printed side by side in line 30 for
comparison.

128 LET RMOQUNT =RND=zxlQQ

2@ LET TWOLEC=INT (RMQUNT 1@+
2,58) 210

22 RPRINT SMOUNT . TUWOLEC

48 G0 TO 1a

166

. 54.892273

E 34 .89
. 16.993713 16.99
. 74.623183 74 .62
. 06.762@3S 96 . 76
. £7.159424 57.16
- a87. 205615 87.901
. 25.434875 25.43
7 . 6985805 Ted
77.574158 77.857
18.8386243 18.038
=6 . 561279 o6 .00
42.144775 42.14
s@. 23767 ta.s9=2
b 99.543762 Q9. 54
- &5.7821686 695.78
33 . 7035062 3Z.7
=7 .616882 7 B2
71.348857=2 71.38
51.174927 SAs LT
233.17443C 38.17
&3, 1530276 3. 15

The routine works quite well, if somewhat untidily. Numbers
less than 0-1 are printed without zeros before the decimal
point and numbers greater than or equal to @-1and less than 1
are printed with a zero before the decimal point. There can also
be a variable amount of digits after the decimal point, e.qg. the
‘number 2 (no digits after the decimal point), 2-2 (1 digit after
the decimal point) and 2-24 (which has two digits after the
decimal point).

_':fyou wish to round off an amount AMOUNT to PLACES deci-
‘mal places, use this routine. ROUNDED is AMOUNT once it

'PLACES) +0-5)/(10 | PLACES)

LET ROUNDED=INT {(AMOUNT % (104 PLATC
FS) +@.5) 7 {181t PLACES)

' The use of exponentiation } makes the routine slow compared
o the version before. If this latest routine is to be used more
~ than once, try storing the exponentiation in another variable to

speed things up slightly:
'LET MULT=10 { D: LET ROUNDED=INT (AMOUNT*
- MULT +0-5)/MULT

LET MULT=212%E: LET ROUNDED =1IWT 1
AMOUNT *MULT+@.9) /MULT

167

(2) Rounding off to a fixed number of decimal places,
with zeros and/or decimal point added as necessary

Here, AMOUNT is the amount to be printed to 2 decimg|
places. This ends up in string form as A$, a string with any
additional digits added as needed.

10 LEYT AMOUNT =RND z123

20 LET A%=5STR% (INT A\AMNOUNT2IS
+0.5) £1068)

gg IF A%(1)="." THEN LET A%="0
1l+
RLig LET C=LEN RA%$-LEN STR$ INT U

SB$LET ARE=A%+".80" (C+1 TO)}

6@ PRINT "“£";AMOUNT ., £" ;A%

70 GO TO 10

£5.581543 £8 .58

£43.719482 £43.72
£79.025269 £79 .83
£26.818063 £26 .92
£318.9346£51 £18.93
£28.18859504 £20.19
£14 .257813 £14 .26
£69.433594 £69.43
£7.55310606 £7.55

£56.58783 £66 .59
£94 . 1253566 £94..13
£59 . 4088569 £59.41
£55.688477 £55 .69
£76.6868586 £76.68
£51.483154 £51.438
£61.29154 €£61.29
£96 .8070435 £965 .91
£565.831311 £685.03
£2.36834229 £2 .38

£75.5681a3 £78.87
£15.136615 EiT. 18
£54 . 8922753 £34..89

The output from this program is what you might expect to see
on a price tag, in pounds. Line 10 sets up the initial amount
and line 20 converts this to a string equivalent rounded off to 2
decimal places. Line 30 adds a zero at the beginning, if
needed. Line 40 finds the length of the whole number part
subtracted from the entire length, i.e. digits after decimal point
if any. This is used to determine how many zeros/decimal
points are to be added in line 50. Line 60 prints both versions
side by side to compare.

(3) Lining up decimal points

168

- Where you have charts of numbers, a faster visual understand-
~ ing is obtained if the numbers are aligned in such a way that the
" decimal points all line up under one another.

16 LEY AMOUNT =RND 12006
2@ PRINT AHOUNT
5¢ GO TO 10

12915064
£1543

« 1948652
58 . 25269
F.1883

1i59.54631
=31.55904
142.57813
&394 . 53594
7S5.531086
&E5 . 85783

g41.25366
Zo54 . 08568
S5SE .858477
766 . 566036
%14 .53154
2312.91584
59 .87045
E580.5131%
=25 . 834229
TEG.BE5105
151.36615

v,

[0 (0

i i
~Je

E

~ Toline up the decimal points, all thatis needed is to change line
- 20 slightly:

1@ LET RAMOUNT=RND %1282

5@ PRINT TRAB 15-LEN STRS INT R
HMOUNT ; AMOQUNT

3@ GO TO 1@

169.93713
746.231@86
a57 . 62085
571.59424
570.065615
254 .34875
76 .9958S
775.74158
150 .56243
565.51279
421 .44775
&89 .23767
693 .25782
a95.43762
£57.82166
337 .08562
276 .16582

169

7313.48572

511.74927

S581.74438

£31.53875

cES5.2183°0
See how much tidier this is? If you wish to align decimal points
of numbers formatted to 2 decimal places held in a string, youy
cannot always use the above method because the string may
be affected by converting with VAL. However, you know how

many decimal places there will be, so working from the right:
2@ FPRINT TRB 1S-LEN RS R%

Note that a rather nasty effect occurs when numbers get so
large that STR$ starts using scientific notation. Of course,
unless you were dealing with amounts greater than a hundred
millions, this would not bother you.

(4) Overwriting columns of numbers
When tabulating numbers in columns, it is common to over-
print numbers on top of one another to update values. This
runs the risk of one value having a different number of digits to
another, leaving some of them on the screen. As a simple
example, try:

1@ FOR R=11@ TO @ STEFP -1

28 PRINT RT @,@;R
3@ NEXT R

The numbers printed at the top of the screen start off as three
digit numbers, but once the numbers become 2 digit numbers a
zero remains on the right of the column(s). This could be
avoided by printing a few spaces after the number. Of course, if
you've got graphics/text/another column of numbers along-
side, this will be erased as well.

Use this routine to print only enough spaces to reach just as far
as the longest (in terms of digits) number. Line 20 should have
in the print quotes one less space than the maximum number of
digits to be printed. The number after TO should be that maxi-
mum amount of digits.

1@ FOR R=119 TO 2 STEP -1

20 PRINT AT @,8;RA;" B el 32 B 2
EN STRS R}

38 NEXT R

170

'ROM ROUTINES

There are a number of useful routines in the 16K ROM that can
" used in user-written machine code programs. This list details
" some of them, but is by no means exhaustive since this would
' pe the subject of an entire book in itself. All addresses referred
' to are in decimal unless otherwise stated.

* 16 PRINT routine. The contents of the A register is sent to the
" current OUTPUT channel. If the current channel is anything
~ other than the one that you want to PRINT to, use the routine
" 215633 with the A register holding the number of the channel to
" be opened (normally upper screen, channel 2). You canuse the
" PRINT routine to OUTPUT control characters as well as the
* normal characters to be printed.

* 949 BEEP. This will sound a note on the loudspeaker and the
' tape sockets like the BASIC BEEP command. On entry to this
' routine, register pair HL should contain the frequency (lower
' values give higher frequency) and register pair DE should con-
' tain the duration of the note (lower values give shorter dur-
" ations). Note that the frequency affects the duration of the
" note so that if you doubled the frequency and had the same
" duration value, the note would not necessarily be the same
-~ length. Calling this routine repeatedly with a short duration
~ BEEP of different frequencies could simulate sliding tones or

~ even envelope control, something that is not possible in
- BASIC.

: 3435 CLS. Use of this routine is the same as the BASIC
- command CLS.

- 3582 Scroll the screen. USR 3582 or CALL 3582 will scroll the
" screen up by one character line without affecting the PRINT
~ position or affecting the SCR__CT system variable. Very useful
~ for games where a continuous scrolling action is required
- without having to use something like:

- POKE 23692,255: PRINT AT 21,31"

~ which forces a screen scroll and suppresses the scroll? query.

- 3742 Address of the start of the line of display. If the A register
_ is loaded with the PRINT row number (0 to 23 down the

171

screen) the value of HL on return from this routine will be the
address of the top line of dots in the first character on that line,

3756 The same as the BASIC command COPY. The interesting
aspect is that after disabling the interrupts, it starts by specif-
ying how many lines in the upper screen will be copied to the
printer. So, you can replace this part with your own routine to
specify how many lines of the upper screen are to be copied
into the printer. This number should be in the B register. The
- routine might look like this:

DI : disable interrupts
LD B,number : how many lines to be copied
CALL 3759 : COPY it to printer

3789 LPRINT. Prints whatever is in the printer buffer to the ZX
Printer and resets everything concerned with the printer buffer.

6683 Prints contents of register pair BC as a decimal number. @
to 9999 are the values allowed because it is normally used for
printing line numbers.

7997 PAUSE Register BC is to hold the time delay in 50ths of a
second in the UK. Like the BASIC PAUSE command, this
delay is ended either when the time delay ends or a key is
pressed. Like PAUSE 0, if BC contains zero on entry, the C
register contains the X co-ordinate and the B register contains
the Y co-ordinate. On returning, the number in the A register
denotes which bit of the address in HL corresponds to the pixel
X,Y on the screen.

8252 PRINT bytes. This routine will print to the current output
channel a string starting at the address held in register pair DE
of length stored in reg. pair BC.

8855 border colour. To change border colour put the colour
number in the A register the call 8855.

8874 This routine will tell you which bit of which address in the
display file corresponds to which screen pixel. On entry the C
register contains the X coordinate and the B register contains
the Y coordinate. On returning, the number in the A register
denotes which bit of the address in HL corresponds to the pixel
X,Y on the screen.

172

B |

- 8927 PLOT routine. Register B should contain the Y co-ordi-
' nate, register C the X co-ordinate on entry. Corresponds to
EPLOT X,Y.

- 9402 DRAW straight lines. Four registers need to be set up as
~ follows, before calling the routine. Load the B register with the
Y offset (absolute value) and load the C register with the X
offset (absolute value). Then, registers D and E have to contain
1 for positive or 255 for negative offsets (the SGN of the off-
~ sets). Register D will denote the sign of the X offset and register
~ E the sign of the Y offset.

173

NOUGHTS & CROSSES

This program plays the game of noughts and crosses in which
the object is for you or the computer to take alternate turns to
try to get three Os or three Xs respectively in a row up,
across, or diagonally. Unlike many programs to play this
game, the computer can be beaten — but not all the time.
The program plays defensively, so most games tend to end in
a draw.

When RUN, the program asks if you want to have first go.
Answer y if you want first go, or n if you don’t. You should
ensure that CAPS LOCK is off, as the program only recog-
nises lower case letters. If you add the line:

15 POKE 23658,0

this would allow the computer to switch off the CAPS LOCK
by itself. The program uses INKEY$ to detect keyboard
responses, so you don’t have to press ENTER at any time
except when running the program. The board is numbered as
follows:

7 a8 9

To make your move, press the key with the same number as
the square on which you wish to place an O; the computer is
always X. Once a winning line has been made, the computer
draws a line through that winning line and flashes on the
screen who has won. Example displays and listing follow:

174

X o
a X
X X
"R dram
Yau win
——a——e—
4 !
3 a

175

B@O>REM . Noughts and Ccrosses
B>REM by Dilwyn Jones.
i PRINT RT @.,9; "D0o you want
i T EL g0 "1y of Dl
28 LET RS=INKEYS$: IF Ag<>"y" R
ND as<<>"n" THEN GO TO 2@
3@ IF a3="y" THEN GO SUR 1232
G0 TO 1@
48 IF 3s3="n" THEN GG SUB 1&3C-
S0 TO 3aga
S& GO SUB 188@: REM Initistlicse
1@ REM Yaousr move
248 PRINT AT 18;12; "Your go’
120 LET R=CODE INMNKEYS2-48: IF K<
A OR A8 THEN SO T =@
@13@ IFf BEtR) 4> * THEN GO TOQ 12
14 LET B {R)Y="0Q"
192 PRINT BT Y IR] ,X{(R);B3s (A}
ic@ LET \|s="Q0Q0"
17@ GO TO 6ad: REM ain?
388 REM SREECtILD Bnyve _
31@ PRINT RT 18,12;" My go -
31S LET Rg=""XXX"
S2@ IF B2iSi=" “ THEN LEY F=S:
S0 TO S6@: REM Migdgdle o0of board
S3& FOR B=1 TO 2
S4@ IfFf B=1 THEN LET Cg="XX"
358 IF B=2 THEN LET Cs=""00"
262 RESTORE 42
A7&@ FOR R=1 TO 7@ STEP 3
38& RERAD D ,.E.,F -
IR IF BE (D) +4BR(E) =C3 AND Bf (F)
=" " THEN GQ TO S6@: REM Uinning
combination - do something.
48Q NEXT
418 NEXT
428 DRTR
432 DRTHR
44 bB=TH
4o DRYR
288 DRTR
47@ DRTR
438 DRTR
S8@ REM R
S1@ LET Csg=
S2@ FOR R=31
S3IV IF 83 (R}
+5TRS R
S4@ NEXT R
$:}?~S?)LET F=URL CsS${INT (RNDZLEN C
-+
208 LET B (F) ="X*
o780 PRINT AY Y IF) ,XIF);;Bg{F)
S8BB LET RSE="XXX*
e REM Check for vin]
681 REM RS contains who wins if
SR2 REM Win coembination found
81@ RESTORE 7@
e28 FOR R=1 TO 8
e3& RERD D,E,F

DR~NN
M RO 1 10
PNE
DROHLY
OROARN

LGN A AEN] Sl o1k 3

|&l"lhh~.~.~h

(UL RNV AT

- T

S0 iGUn
DS & &6 & 4 & 4
ML~~~

L A S s

QINADFWK

thhh-\hh

-
-
-
™~

0 OOpAUINND

10

L

"~

" THEN LET Cs=C%

176

c4-2
N GO
ase
sg@
e7ve
a8
=yl
a8
71
72
73&
3ag
a21&

21,311,

IF B%(D) +B% (E) +B%$ (F) =A% THE
TO oee

NEXT R

LET X=X+1

IF X=0 THEN GO TO SR

IF R3="XXX" THEN GO TO 108
IF RE-"000" THEN GO TC 388
DRTH 1.,2,3.4,5.,6,7.,8,9,1.4
DRATR 7.82,5.,8,3,6,9,1,5.9,3
DRATR 5,7

STOP

REM Draw

PRINT AT i18,12;"
FLASH 1;" R draw”

ll;nT

32& STOP

9@ REM Uin

a@asS INK 4

a18 IF
R S ,8

|28 IF
oo, @

A=1
R=2

THEN
THEN

PLOT
PLOT

DR
oRA

8e,131:
sSa,89:

THEN
THEN
THEN

PLOT
RPLOT
PLOT

Qz2c IF
W ae,a

23 IF R=4
835 IF RA=5
RRARiL 8, -8R

24 IF R=06
4SS IF R=7
s S8, -8
as@ IF RA=8

R=_ g8a,e8?7: DRA
913143; DR

123,143: D

THEN
THEN
THEN

PLOT
PLOT
PLOT

155.,143: D
77,143: DR
168,345 ©

rRAU
255
857
S6e
ey
965
s 235
975
1gee
1219
ie29

a3
1225
1a3R
ia4@
iase
1868
i1a7a
308
=21l@a
=22
2a3e
224
2BS8
=2ea
=237
2230
z2ege
=1aa
=11l
2120

-2 2 -99'

T 8,11 "4
grl

INK @

PRINT AT _18,12;" =

IF A$="000" THEN PRINT AT 2
FLASH 1;"You win"

IF R%=""XXX" THEN PRINT AT 2
FLASH 1; "I win"
STOP

REM Initialise displa
BORDER &: PAPER 6: CLS
PRINT AT S,1%;"1 2
E«TOERIRT X2, 1307
Iri_ 4

FLOT Ow,11S:
PLOT 8@,83: DRAU 99,0
PLOT 187,143 DRAL 2, -92
PLOT 139,143: DRAW @, -9¢

INK @

REM Initigiise v2r-rizxkles

DIM BS$1(8): REM board

LET X=08: REM count mOVES

DIM X(9): REM X CO0-0idsS
REM 4 co-0rds

DRARW L&,

DIM Y (S2):
RESTQRE 28384
FOR R=1 TQ ©
RERD > R ,Y (R)
NEXT R
DATAR 11,5,15,5,19,5,311,9,15
PRTAR 9,19,9,11,13,15.,15.,19
PRTR 1%
RETURN

177

INTRUDERS

A swarm of aliens is descending on you — you must prevent
them landing at all costs or they will destroy Earth. You must
stand up to them alone armed only with your laser gun and
protected only by a few shields. The aliens come at you in battle
formation firing their deadly missiles at you with uncanny
accuracy. Avoid them at all costs or hide behind your shields —
but beware, they vaporise after being hit once. Align yourself
with the alien and vaporise it by firing your laser cannon; you
will see the alien turn white hot as the laser beam strikes it. The
laser beam will do the same thing to your shields so don’t
vaporise them! You can’t win — they’ll get you eventually, but
try to get a higher score than anyone else. Use the 5 (cursor left)
key to move you left, the 8 (cursor right) key to move you right
and the 7 (cursor up) key to fire your laser cannon up at the alien
intruders. If any aliens disappear off the edge of the screen
they'll promptly reappear on the other side, so don't get
complacent.

INTRUDERS
Have: 1 sScore.
i 5D o T TN
B - B £ ! B
A

178

G>yREM ITntruders
By Dilwun Jones
186 GO SUB S99
28 GO SUB SS00
6 FOR D=1 TO 7

34 LET C=" & g & B
_RIN0Y e,

35 PRINT INK 2;8T 18.8.;C%
yAB EET AgE="% % % g %

78 PRINT AT 5,6;0

50 FOR BE=D+9 TO 19 STEP 2

ES IF B:=318 THEN LET C&=E4: PR
INT AT 1&5,0;C% 5 d

98 FCR E=1 TO 3

166 LET A$=A%&(532)+A%¢(TO 31)

11@ FOR A=08 O DIFF

111 IF A$i(X+1)="¥" AND RBND (.85
anbh MOT BOMBY THEN LET BOMBY =B:
L ET BOMBX=X

112 IF BOMBY »18 AND BOMEX=X THE
R GO TO SE66

115>1IF BOMEBY THEN GO SUE 8608

1828 LET X=X+ {INREY $="8" AaND X3
13 —(INKEY &="5" AND X >0}

138 PRINT AT B,6; INK 4,;AR8%; INK
uziﬁT 28 .C; " “ AND CH»X; AT 2@ ,¥X;

14¢ IF A%=B¢ THEN GO TO 240
156 LET C=X
IEG IF INKEYWS="7T" THEMN GO SUE 4
SGE
1768 NEXT A
16868 NEXT E
190 PRINT AT B.2:8B%
208 NEXT B .
2160 PRINT PAPER 2; FLASH 1;A/T 7
;S "D0PS sty Landedt ™
@233 IF INKEY$%<:"" THEN GO TDO 22
=238 5TOoOPF
58 NEXT D
2868 LET COIFF=0DIFF-1: IF DIFF«S
THEN LET DIFF=2p
S8 GO TD &
1000 REXM #ake a3 noiset
131060 RETURN
=88 REM Mo noise
818 FOR A= TO 21 STEP =2
=838 NEXT &
2548 ggﬁURg o~
161610 O
2818 LET SCMBEY=B0OHEY +1
=p3isS IF EOMBY =21 THEN PRIﬂI AT B
OMEY -1,B0MBX, " T LET BOMBDY=0: R
ETURN
20 IF BOMBY =18 AND C4 (BOMBX+2113
=" THEN GO SUB 3160
=a530 IF BOMBY -1:B THEN PRINT 8T

BY-1,B0MBX; " ©
3329 IF ' BOMBEY THEN PRINT AT BOMB

"'f 3BQHE}: - A% t!t
; 179

)

=1
216
15
15

Lty

20
33

&@
S
1o
29 ,

113 Wil
mmPPMHmHMH

G2

40206
435S
4G4 &
458
OUVER
4355
4650
470
1286

EQ00
S80S

RE=SCORE+1:
SCORE-=

T
5010
G268
SB850
S5804.6
S858
SO68
SO78
Sa80
=B85
53906
5895
5100
33008
3816
S620
SB38
SB4.0
9258
SB68
G
588509

DATR €6
ip,60,65,24, &5 é ias sa

9556
©c5106
S526
SE3I0
IS4 S
o550
9560
g570
5580
5596

OoMBEY —

X; FLasH 1;
eeaa PRINT

RETURN

REM Epnock ot shipld

LET CHtBOMBX+1)Y =" "

IF BGﬂBY 1¢yB THEN PRINT AT
;BOHMBX;* ¥

LET BDHBY-Q

PRINT AT 18.,.BOMBX;" *“

GO SUBE 188@

RETURN

REM COoOPS..sbang i
PRINT AT BOMBY ., BDﬁBx} ;AT
PRI SRl PG 5t
88T 21,0; “Oh d2ar..

STOP

REM Destroy sh
ar C$(x+1 3wt

INK 9

PLOT x¥&5+3,16:
LET CHEX+1¥=""
PLOT OUER 1;
1;8.,8

GO SLIE 3888
PRINT AT 18,X;"*" "

INK &

RETURN

REM Fire Laser beam

IF agi(X+1)="%" THEN LET SCO
IF SCORE >899 THEN LE

eld

EH SD-TH. 5

DRAUV 2,8
X¥8+35,16: DRAW

INK S
PLOT X325+3, 16
DRAW B8, {(19-B) 8
OUVER 1
PLOT X543, 165
DRAN O, (19-B) x5
INK &
OUER O
GO SUB 1800
LET As{i{X+ly="" "
PRINT AT S5.,29; INK &; SCORE
RETURN
REM Initialise UDGab WA
RESTORE 98808
FOR C=8 TO 7
READ A,B
POKE USSR "A" +C .8
POKE USSR "B a+C ,8
NEXT C
RETURN
, 4, 528,
193
REH Inttlalise
PARPER ©
BORDER &
LS
INK 3
PLOT @&,3139
DRAY 255.,d
PLOT 8,124
ggﬁueass,a
180

SE@2 PRINT FLASH 1;AT 2,1@; "INTR

UDERS"™

5516 PLOT 78,161

SE23 DRAM 75.0

SE3@ DRAV 8, -11

Sgi2 BhAl 57Ris

S5 4 .

SES® PRINT AT S,1) Uave 0¥, TA3 2

Z;V"Score 1 G

SE7G DIM A% (3S2)

SESEG DIM B$(32)

9590 DIM CH(3Z2)

9595 LET BOMEY=0: LET 8OMEX=0

SB896 LET X=INT (RND=x32}: LEY T=x

3700 LET SCORE=@

I705 LET DIFF=28

9710 RETURN
The program requires some 12K including screen, variables,
program and user defined graphics to RUN, and so is OK for the
16K Spectrum. Itis an arcade-style game written in BASIC and
makes use of several colours, high resolution graphics, user
defined graphics and sound for exciting fast action. It has a
score facility to provide an element of competition. Extensive
use is made of strings for fast handling of data and the PLOT,
DRAW and OVER commands are used for line drawing and
erasing. The program proper is contained in lines 30 to 300
and the rest of the program is mainly subroutines to perform
various functions. All are marked with REMs to identify them.
All that needs adding is to note the graphics characters in each

line:

34: graphics SHIFT 8
40: graphics A
111: graphics A
130: graphics B
3020: graphics SHIFT 8
3510: graphics B
5005: graphics A
9000: graphics A followed by graphics B

If you intend to change the program at all, note that it has been
written to be fast, so don’t do anything to slow it down. The
sound commands in the subroutine 1000 should be kept
very short — about 005 seconds maximum. Do what you
like to the other sound subroutine — it only ever occurs at the
end of the program when you've been defeated, so it’s been
made long to humiliate!

181

SUPER SOUNDS

In BASIC the Spectrum’s sound facilities are limited to creating
a single note of fixed duration and pitch like:

BEEP duration, pitch

We can extend this slightly by playing several short notes
quickly after one another, for example:

FOR R=0 TO 21
ég BEEP 0.01, (4D~ (R/2))

38 NEXT R

However, we are forced to the conclusion that to produce any
more complex sounds, BASIC is not capable of doing so. Even
when we turn to machine code, we are still limited to control
over pitch and duration of a sound. However, what machine
code can do is speed up the process a great deal so that we
could sound a sequence of notes, one after the other, so
quickly they could pass for one longer note. And if we arranged
that the notes are slightly different in pitch, we could make
some notes not normally possible (think of the synthesised
drum “peeow” sound to be found on pop records). The way to
do this is to use the ROM routine that normally handles the
BEEP command by repeatedly calling with very short notes of
changing frequencies. Here is a diagram to illustrate:

start pitch, start duration

call the ROM sound routine

recover the pitch values
change the pitch
i pitch hasn’t reached limit value, go back for more.

end of sound routine.

Here is a machine code program which will allow us to do this. If
you don’t understand machine code or assembler language,
fullinstructions will be given so that you can run the routines on
your 16K or 48K Spectrum. These sounds can be used in any
program you care to add these routines to.

HEXA-

DECIMAL DECIMAL ASSEMBLER REMARKS

06 DA 6,10 LDB,10 ; counter for repeats
635] 197 COUNT;PUSHBC ; save counter onstack
210000 33,0,0 LDHL,0 ; starting pitch

1164 00 17,100,0 LOOP ;LDDE,100 ; duration of one sound
Eb 229 PUSHHL ; save the pitch value

182

cDB503 205,181,3 CALL949 ; call ROM BEEP routine

- 011400 1,20,0 LD BC,20 ; pitch change step value
- 116400 17,100,0 LD DE, 100 ; pitch limit value
. E1 225 POP HL ; recover pitch from stack
C6 00 198,0 ADDA,0 ; reset carry flag
- ED4A 237,74 ADCHL,BC ; new pitch value
. E5 229 PUSHHL ; save new pitch on stack
. C600 198,0 ADDA,0 ; reset carry flag
. ED52 237,82 SBCHL,DE ; test for pitch limit
S 225 POP HL ; recover pitch value
~ 38E6 56,230 JRC,LOOP(JRC, —26) ; pitch limit reached?
C1 193 POPBC ; recover counter of repeats
- 10DF 16,223 DJ NZ,COUNT (DJ NZ, —33) ; more repeats?
e 201 RET : return to BASIC

~ Relative jumps have been shown in assembler as both jumps
" to labels for clarity and relative (minus) jumps for practical
. purposes. The values given for numbers loaded into registers
- are examples. The remarks alongside the assembler will show
- what goes where.

~ Briefly, the above 36 byte routine takes a note of pitch HL and
. duration DE and repeatedly sounds it with the pitch
~ descending until a limit value is reached, then repeats this the
number of times specified. Note that when using the ROM
BEEP routine in this way, the duration value is dependent on
the pitch value (think of it as number of cycles rather than dur-
ation — a higher pitch has a shorter period).

Both pitch and duration can start at 1 for high pitch and short
~ duration respectively but going for too large a value for either
- will result in very long low pitched useless tones. What I'll do
. is give you a decimal machine code loader which will read the
~ values of the bytes of machine code from DATA statements
to be POKEd into memory above RAMTOP. You need to res-
erve 36 bytes for one of these routines. For 16K users, | sug-
gest that you CLEAR 32563 so that the routine will start at
32564. For 48K users, | suggest that you CLEAR 65331 in the
first line of the load program so that the routine will start at
65332. Two versions of the loader follow, one for 16K and
another for 48K:

1 REM 48K SOUNDS LORDER
1@ CLERR 65331
13%8 LET RDDREDS=65S3I32: LET END=
s%ngERD BYTE: IF BYTE=END THEN
4@ IF BYTE»>255% THEN STOP
52 POKE RDDRESS ,BYTE

183

6@ LET RDDRESS=RODRESS 1
7@ GO TO 3@

1 REM 16K SOUNDS LORDER
1@ CLERR 32563
28 LET RDDRESS=32%64: LET END-=

19aa
S@ RERD BYTE: IF BYTE=END THEN

STOP

4@ IF BYTE>208 THEN STOPRP
S@ POKE RDDRESS,BYTE

6@ LET RDDRESS=RDDRESS+1
7@ GO TO 30

Line 10 sets up the new RAMTOP above which will go the
machine code. You will need to adjust this if you make the
machine code longer (e.g. combine more than one, in which
case, for the examples given you will need 36 bytes each). To
determine this, find out the number in the system variable
RAMTOP (normally 32599 ona 16K Spectrum, 65367 ona48K
Spectrum) then subtract the number of bytes of machine code
(e.g. for one of these routines on a 16K Spectrum 32599 — 36
= 32563) whereupon the machine code will start immediately
after this new RAMTOP value. This brings us to line 20.
ADDRESS is where the routine will start, just after RAMTOP
as described. The variable END is used as a marker for the end
of the DATA list of numbers. All it means is that numbers to be
POKEd must have a value 0 to 255; so reading a value greater
than 255 can be taken to be a signal that the end of the list has
been reached. It could be done simply with any number, but
assigning a variable and using it as a word gives an immediate
visual indication (note that not every computer would allow
you to read a variable name from the DATA list like this). Thisis
done in lines 30 and 40. Line 50 puts the bytes of machine
code in place in memory, then line 60 increments the address
for the next byte.

Here are some examples of the sounds that can be generated.
These are the DATA statements to be used with the loader pro-
gram. They all contain 36 bytes of the same machine code, but
with different pitch, repeats, etc. Type in the DATA statement
of your choice and run the loader program. The program
should stop with report 9 STOP statement, 30:3. If it doesn’t
and you've not made any changes to the program, there’s a
mistake somewhere. SAVE the program on tape in case you

184

lose it when trying to run the machine code. When you are
ready to hear the sounds, once the machine code has been set
up (and ultimately this is the only way to be sure it's all OK once

you've saved it all on tape in case), you can use these
commands to run the machine code:

LET A = USR 32564 (for 16K Spectrum)
LET A = USR 65332 (for 48K Spectrum)

Of course, you could use something like RANDOMIZE USR
65332, but this may affect randomness of random numbers
generated if, as is most likely, these sounds are used in games.
As an interesting aside, where you see a machine code call
made using RANDOMIZE and random numbers are generated
in the program, you may like to use RANDOMIZE (@ * USR
nnnnn) (effectively RANDOMIZE @) to get around this.

However, back to the point. Here are some DATA statements
for you to play with:

885

99
186
116
126
158
146
150

a8

=1
12
11e
120
13
140
ise

23
= 3
19
il@
12
132
14
ioe

REM

REM

DATA
DATH
paTa
DATAH
DATAH
DRTH

REM

REM

DRTH
DRTRH
DRTR
LRTH
PRTH
DRTRH

REM

RENM

oRTR
DRTH
eRTR
DRTH
oRTH
CRTR

BOMB FALL ING
SOUNDGS DATAR LIST
&,1,107,33,a,0,1
&.555,285,41581,5,
1%.6,12,255, 1565,
74,259,498 ,0,237
525.56.0308,195, 1
561, END

-
1,200,808
@,237

1
2
7
=
=220

+
3>
&
+ 8
&,

PHRSOR FIRE
SOUNDS DRTAR LLIST
6,1,197,33,8,2,17.,1
@,229,285,181,3,1,1,0
17, 5608,5,825,186,8,83¢
74,229,188, ,237 .82
225 ,56,23@, 193, 16,223
281 ,END

REPERTED PHASCOR FIRE
SQUNDS DARTA LIST
6,1@,197,33,2,@,17,1
@,229,205,1681,3,1,1,0
17,128, 1,225,198,0,=237
74 ,229,196,0.,237,82
225,56 ,230,183, 16,223
221 ,END

185

=3=

100
1l@

120
158
i4@
158

208

18
ile
iz2e
13@
14@
isea

S5

189
ii@
129
150
140
150

98

o999
166
118
128
156
140
150

Qg

a9
1G9
i11&
12@
139
148
158

98

18@
11@
128
i13@
14@
15@

a8
g9
100
1i@

REM
REM
DPRTAH
OCRTAH

DRTH
DRTRH
DRTH
DRTRH

RAEASFEETRREY

SOUNDS DHTHR LI1I5T
6,1,197,33,9,12,17.,1
2.,229,205,181,3,1,1008,

17.,0,36,22%, 185,868,237
74 ,229,198,08,237,82
225 ,56,232,1893, 16,225
281 ,END

REM ALIEN MRCHINERY OR UFO

REM

ERTRH
DRATH
DRTH
CRATAH
DRTRH
DRTRH

SQUNDS DRTR LIST
€.,20,197,33,@,4,17.,1
@,.228,2085,181,3.1,582,6
17.,89,6,225,198,6,237
74 ,229,198,0,2537,82
225,56,230,193, 16,223
281 ,END

REM MYSTERIOUS SOUNDS

REM

DATA
DATAH
DRATH
PATA
DATAH
DATA

REM

REM

DAETH
DATAH
DETH
DATH
DARTAH
DATH

REM

REM

DRTAH
DRATRH
VAR
DRATAH
DRTH
DRT R

SOUNDS DATRA LIST
£,5,197,33,0,16,17,1a
®.,223,205,181,3,1,8,2
19,2 ,49,225,1598 2,227
74 ‘243,198 ,8,237,82
50456 030, 193,456,223
581, END

AL ARM

SOUNDS DATA LIST
&.10,197,33,0,0,17,180
e =208,205,181.5,1,0,1
15, 0,5,225,188,8,237
Z4’253.198,0,257,82
55&°56,250,1953,15,223
551 , END

LRSER BEARNM

SOUNDS DRTA LIST
6,25,197,33,0,08,17,6
Q,228,205,1561,3,1,58,9
17 ,8,%,225,1306,9,2337
74 ,229,198,8,283537,8=2
295,56 ,23@,183,16,223T
2@ 1, END

REM DRUM SYNTH-TYPE ~PEECGUS

REH

oRTAH
DRTRH
DRTH
DRTRH
DRTRH
DRTRH

SOUNDS DATR LIST
6,1,197,35,@,06,17.,%
@,229,205,181,3,1,1,
17,6,1,225,198,18,237
74 ,229,198,9,237.,82
225 ,56,23@,193,16,225
201 ,END

REM BIRD{(OR SEEING STHRRS! !

REHM
DATA
DRTA

SOUNDS DRTA LIST
6,14 ,197,33,6,6,
0,229,285,181.,3,

186

1200 DATA 17,240,0,225

188 BETA 71.553:148,8.850408. 0
Q3

140 DatA 225,088 0

After being used to the Spectrum'’s polite little BEEP in BASIC,
these sounds are quite a happy surprise. The one thing the
routine given can’t do is give a rising pitch tone. Normally this
won’t make much difference because the sound repeats itself
so quickly it doesn’t matter. But if you want specifically a note
of rising pitch, here’s a slightly different version of the same
routine to do this.

HEXA-

DECIMAL DECIMAL ASSEMBLER REMARKS

06 01 6,1 LDB,1 : repeats counter
C5 197 REPT:PUSHBC : save counter

21 E8 03 33,232,3 LD HL,1000 : start pitch
110100 17.1,0 LOOP;LDDE,1 - duration of sound
ES 229 PUSHHL : save pitch
cCDB503 205,181,3 CALL949 - call BEEPin ROM
E1 225 POPHL : recover pitch
010100 110 LDBC,1 - change of pitch

C6 00 198,0 ADDA,? : resetcarry flag

ED 42 237,66 SBCHL,BC : new pitch

30 EF 48,239 JRNC,LOOP(JRNC,-17) ;more of thissound?
c1 193 POPBC : nope. Recover repeat counter
10 E8 16,232 DJNZ,REPT(DJNZ, —24) : more repeats?

C9 201 RET - backto BASIC

This routine is only 27 bytes long and lacks the “limit pitch”
feature, meaning that whatever pitch the sound starts off with,
it always ends up at its highest. You could incorporate itintoa
DATA statement like the others, although there’d be a few
bytes wasted which you'd have to change the CLEAR
statement in line 10 of the loader program if you were worried
about that. However, leaving it asitis does have the advantage
of being standard in that you can swap any of them about as
you please. If you wanted this shorter routine to be the same
length, you could pad it out with zeros (NOP) before END in the
DATA.

o5 REM FASTER ASCEND ING TOWNE
99 REHM SOUNDS DATH LIST

13@ DHTR EJ1;197,33}232;2;17}
116 DATA 5,229,235,181,3,225;

187

120 DATA 10.£,188,2.237.686,48
136G DATAR 222,3185,16,252,201 ,END

Now the next question will be how to go about adding these
sounds to our programs. It'll involve a bit of sweat and tears for
those with no experience of machine code, I'm afraid. There
are three main options:

(i) Incorporate a loader program and the DATA statements
into your program. When the program is RUN (with the SAVE
LINE facility for convenience, then you need only set up the
machine once. Subsequent RUNs will only run the program
and not set up the machine code again,) this might take the
form:

9900 REM loader program

9998 GOTO.1

This program would have been saved with SAVE “program”’
LINE 9900

(i) Set up the machine code beforehand and save it on tape
using the SAVE CODE facility for subsequent reloading by the
program concerned. A time consuming exercise.

(iii) Store it all ready made in a REM statement in the program.
This would be saved on tape in its own right as a line to be
merged into your programs that require these sounds. The
whole lot could then be saved together so that everything was
ready to go on loading — no annoying delay while the machine
code side of things are set up. This program will allow you to do
this for the twelve sounds we've discussed. Remember that we
said each routine was 36 bytes long, and since there are 12
routines we'll need a REM statement with at least 12 * 36 or432
characters after the word REM in that one line. That's a lot of
typing, so make sure your finger is fit and ready for the ordeal.

188

Line 10 to 60 comprise the loader program. The rest of the
program is DATA statements holding the machine code for the
various sounds. Obviously, you could omit the REM
statements as they only show where the DATA for each sound
begins. Note that there is only a variable END at the very end of
the list — in case you were expecting them to terminate every
sound from earlier on. There’s a lot of typing to do and it's
important that it all gets done properly as nothing will work
after any mistake. As soon as you type itallin, saveiton tapein
case any errors cause you 10 lose it all!

1 RENM

-
-

LI
-
r &
- =
= =
= =
a =
a =
L

u-l.allullllllld.

= & & " = ® W -
- " % - - = B -
[S = - & £ -
a = = - - W B L
a ® =] ®» & ¥ -
«a & = = = = = »
n F = L " = B -
" & =& - "= B = L
= B = - . % % -
" 8 = L] L B B -
- = = - - B L]
- = = - " W= -
s = ® - - = = -
- F ® - - B =B -
- = - : B = =
= =* @ - » BN L]
- F B » " B B L]

nlnllnuiltlllntvn

-
-
-
L]
L
L]
| |
-
-
-
»
L]
-
-
-
L
»

lllil.lil.qu!lldl

L

-
- -
= L]
L J L J
= | 3
- "
- =
- -
L -
- -
- "
- -
- -
- L]
- L
L] E

=
L
L
L]
-
-
-
L
L]
L J
L]
-
-
-

qa & A % % % 0 % A € a2 3 a4 2% 4 »
a 4 ¥ M % 8 2 3§ = moa m N R 4R L]
N = 8 8 N ® W W g # a » N B ¥ h ¥ B

"'..."‘.llill.'
.II‘I.I..I!.Q"II

!.uluq-n-u-lla-l
!ll!i-u-tall-n-

-
L
L
|
-
=
-
"
=
»
-
-
-
L
»
-

ililll'ii'l!lli-

- r &

LET RADDRESS=PEEK 23635+2506%
23636+5: LET END=1200

RERD BYTE

IF RYTE»255 THEN STNE

POKE RDDRESS,BYTE

LET RDDRESS=RDDRESS+1

GO TO 289

129 REM BOMB FRALLING

=P

0
m
ome
DAY

ML
e6an

DRTR 5,1,197,33,8,8,17,1
DRATAH @,229,2@5,161;3,1,2ﬁ,@
DRTH 17.@,12,225.,198,@,23
DRTR 74,229, 193,9,2337,32
DATH 225,55,23@;193,16,223

DATR 201

REM PHRASOR FIRE

DRTRH &,1,187,33,8,8,37.2
DRTH @,229,235,151,3,1,1.8
DRTR 17:1@3;1:225.19&.9:3&?
DRTH ?4:229;19&:@,237;82
DRTH 2245 ,.56,250, 193,156,237
DRATR 28l

REM REFERTED PHASOR FIRE
DHTR 5;13319?,331@:@;1?;1
DATH B,EEQ,EBS,iBi,S,i,l,B
DRTH i?,l@@,iaﬂﬂS;iQB;@;EG?
DRTRH 71,229,193;Fﬁ23?f32
DRTAH 225:56;23@,193,15,223
3@@ DRTR 21l

mmmmmmmmmmppwwpuuwn
wmummﬁumuammummamMF
&Sﬁ&ﬂﬂ&&ﬂﬂ&&&&&m&ﬂa

189

31a
328
233

348
35a
2608
[
QS
3g@
422
4“1&
4120
4a38
4@
45
168
47
438
490
S0
Sie
28
S3.
34-@
=5e
See
S78
588
oo
oRe
sla
ez
e3a&
ST R %
aSa
o
a878
o588
eo
72
71
728
738
740
7S&
7ee
778
72
720
I
a1
a2e
S3@
840
IS
368
378
a8e
=31

REM RASPBERRY

ERTR
OCRATR

DRTR
DRTRH
PRTR
ODRTR

REM ALIEN MACHINERY OR

CRTHR
PRTR
CATAH
DRTRH
DRTR
CRTR

65,1,197,083,9, 10,
8,229,2085,161,3,

1
3
17.,2,39,225, 195,10
5

v
S

W

“ @

74,229,198, ,237
225,56,2530, 193, 1

=21

~» M

S whom

L
(S B (V)
D W

&.,20,187,32,@4,4,17,
©,229,205,181,3,1,58,0
17.,@,86,225,198,,237
74,229,133 ,8,237,82
g%?:SB,ES@;iQB,lﬁ,EES

REM MYSTERIOUS SOUNDS

PRATR
LRATR
CRTR
DRTRH
DRTR
DRTR

6.5,187,53,08,10,17.,1
©,229,205,163,3,3,8.,2
17,8,19,225,198,0,23
74, 228, 288 B .27 R

gg%,SE,Eﬁﬁ,igﬁ,iﬁ,EES

REM RLRRM

DRTAH
CRTRH
DRTRH
DPATRH
DRTR
CRTR

65,10,197,33,,02,17,12%
@,229,205,181,3,1,2, 1
17,@,3,225,198,8,237
’4,229,198,0,237,82
§§§,55,23@,193,16,223

REM LRSER BERM

DRTHR
LRTRH
DRTAH
DRTAH
DRTH
PRTR

REM DRUM SYNTH-TYPE

PRTRH
LRTRH
ERTRH
DRTRH
DRTR
DRTR

REM BIRD

DRTH
DRTH
eRTRHR
DRTRH
CRTRHR
CRATR

6,25,197,33,0,2
@,222,205,181,3
17,9,1,225,198,
74 ,229,198,0,253
gg?,S&;EB@,lQS,

s PO s
w paa]T) Qv « papa
v M~
WrAam s
n ~an

() -

L)

m

6,1,197,83,8,@,
9,229.,205,181,3,
17,9,1,225,183,2
74,229,

[
0
8

Ry- ~
~J-

(QR SEEING STRRS!?
6,14,197,33,2,0,17.40
B,=229,205,181,3,1,55,®
17.,2480,0,225,198,@,237
74,229,198,0,237.,.82
g§§,55,233,193,15,223

REM RSCENDING TONE

oCRTRH
ERTH
DRTRH
ORTR

DRTR @.,8,a.8,
REM FASTE

DRATRH
DPRATAH
DRTAH

6,1,197,3%,232,3,17,1
2,229,205,181,3,225,13
1.@,198,0,237,66,48
239, 192, 15,222,203
2,8,8,8,6
BSCENDING TONE
6,1,197,33,232,2,1?,1
9,229,235,181,3,225,1
12,0,198,0,237,66,486

190

Q@@ DRTR 239,183,16,232,201
218 DRTR END

After SAVEing it all on tape, RUN the program to set up the
machine code, which will take a few seconds and the program
will stop with report 9 STOP statement, 30:2. As a quick
check for everything being OK, try the command PRINT
ADDRESS, which should give 24183. This only works if you
have no expansion module, etc., plugged in as the program
then will have started at a different address. Ultimately, the
only test is to RUN the machine code — this is why | advised
you to SAVE it all on tape beforehand. Enter this short test pro-
gram before you start to delete any lines:

1@ LET ADDRESS=PEEK 23635+256 %
~EER 23636+5

11 FOR RA=RADDRESS TO ADDRESS+4 2
3 STER _Sb6

12 RANDOMIZE USR R

15 PAUSE 26

34 NEXT A: STOP

If all went well, you should have heard the twelve sou nds with a
slight pause between each one and the program would have
stopped normally in line 14. If all’s well and good you can go
ahead and delete every line except the line 1 REM and SAVE
the line 1 REM on tape in its own right. Thisis the line you'lladd
to your future games programs. Now as to how to call each
sound as you need them. Those with no expansion module
don’t know how lucky they are — they can just call the appro-
priate address since the REM will be fixed in memory. This table
tells you where to call:

191

31a

328

338
S

348
35a
S6a
I8
I3
38@
42
4“1&
420
438
+4.Q
45
166
47
438
422
2
Sl
a2
S3@e
34
SO
s6e
27&
S8R
So@
Sl
sl&
a2
e3&
c4e
aoa
coa
878
658
e
720
71l
728
738
7493
788
e
778
788
728
ISR
a1
320
S3A
840
ISV
a6a
378
ace
=31

REM RASPBERRY

DRTR
CRTR

DRTR
CRTRH
DRTR
CRTR

REM AL IEN

CRTR
DRTR
CRTRH
DRTH
DRTRHR
PRTRA

65,1,197,83,2,12,17,1
@,229,2085,161,3,1, 108,

17,@,30,225,198,6,237
74 ,229,198,,237 .82
225,556,250, 193, 16,223

=81 -
MRCHINERY QR UFQ.
.,28,187,33,&,4,17.%
B,229,205,181,3,1,52,0
17.,@,6,225,12938,,237
74,229,133,8,237,82
§§§;55;2335193;15>223

REM MYSTERIOQUS SOUNDS

DRTR
DRATAR
CRTR
DRTRH
DRTR
DHRTR

6,5,197,33,0,10,17,1@
0,229,205,3163,3.,13,8.,2
17.,8,19,225,198,,237
74,222 2598 . B . PR7 /D

gg?,ﬁﬁ,ﬂﬁﬁ,igﬂ,iﬁ¢323

REM RLRARM

DRTRH
DRTRH
DRTR
PRATRH
PRTRH
CRTAR

5,10,197,33,0,2,17,122
@,229,205,181,3,1,e, 1
17,0,3,225,198,6,237
’4,229,198,0,237,82
§§§,55,233,193,16,223

REM LRSER BEAM

DRTRH
ORTR
DRTRH
DRTAH
ERTRH
DPRTR

REM DRUM SYNTH-TYPE

PRTR
LRTR
PRTRH
DRTRH

6,25,197,33,0,0,
Q,222,205,181,3,
17,9,1,225,198,0
74 ,229,198,0,237
§§§,55,233,193,15,233

wREEDL) -
6,1,197,33,0,2,17.,5
2,2289,205,181,3.,1.1.0@
17,2,1,225,183,8,237
74 ,229,198,@,237,82

1
= -
2
»

Qs
(VAL

DRTR 225 SR . 230 . 383 . 3F.,0207

ORTR

REM BIRD

DRTRH
DRTH
CRTRH
DRTRHR
CRTR
CRTH

=81

(OR_ SEEING STRRS!?!:
6,14,197,383,2,0,17.40
©,229,205,151,%3,1,859,8
17.,24@,0,225,198,@,237
74,229,198,0,237,82
gg?,SE,EBB,lga,iﬁ;QES

REM RSCENDING TONE

oRTR
ERTH
DRATR
ERTR

6,1,197,33,232
2,229,205, 181 ,:
1,,198,0,23
239,192, 15,2
3;@,@;@:

LA

s PDRO PR

UPUHBLW
~s nJ'Zn. I'IJ\. -
“ wbms?umw
~ -G I
FUNZ Ui
O «~ m -
o o el o

thn

190

Q@@ DRTR 232,183,16,282,201
218 DRTR END

After SAVEing it all on tape, RUN the program to set up the
machine code, which will take a few seconds and the program
will stop with report 9 STOP statement, 30:2. As a quick
check for everything being OK, try the command PRINT
ADDRESS, which should give 24183. This only works if you
have no expansion module, etc., plugged in as the program
then will have started at a different address. Ultimately, the
only test is to RUN the machine code — this is why | advised
you to SAVE itall on tape beforehand. Enter this short test pro-
gram before you start to delete any lines:

1@ LET ADDRESS=PEEK 23635+25b %
cEER 23636 +5

11 FOR RA=ADDRESS TO ADDRESS+4 2
3 STEP 36

12 RANDOMIZE USR R

15 PAUSE =206

4 NEXT A: STOP

If all went well, you should have heard the twelve sounds with a
slight pause between each one and the program would have
stopped normally in line 14. If all’'s well and good you can go
ahead and delete every line except the line 1 REM and SAVE
the line 1 REM on tape in its own right. Thisis the line you’ll add
to your future games programs. Now as to how to call each
sound as you need them. Those with no expansion module
don’t know how lucky they are — they can just call the appro-
priate address since the REM will be fixed in memory. This table
tells you where to call:

191

NUMBeR ADDRESS| SOUND
1 23760 |Bomb falling
2 23796 | Phasor fire
3 23832 | Repeated phasor fire
4 23868 | Raspberry
5 23904 | Alien machinery/UFQ
6 23940 | Mysterious sounds
7 23976 | Alarm
8 24012 | Laser beam
9 24048 | Drum — synthesiser “peeow’’ sound
10 24084 | Bird (or seeing stars!!)
1 24120 | Ascending tone
12 24156 | Faster ascending tone

Calling by those addresses will probably not work for users
whose Spectrums have microdrive maps and so on below the
program area. So | suggest you call the appropriate routine by
PEEKing23635/6 and adding the appropriate number of bytes.
This would be very tedious so | suggest you include an FN call
to calculate it for you:

DEF FN U(N) = PEEK 23635 + 256 *PEEK 23636 +5 +
36*(N—1)

Include that at line 2 and SAVE it with the REM.

Any time you want one of those sou nds (e.g. the sixth sound):

LET U=USR FN U (6)

Seeing as the sounds will be usedin games, itis better to assign
the number returned from the USR call to a variable than use
RANDOMIZE USR, since this will affect random numbers
used. Here is an example to show how to use the USR FN:

192

2°>DEF FN U((N) =PEEK 23635+256 %
PEEK 23636+5+003 IN-1)
S REM SOUND N UITH USR FN(IN?
i@ FOR R=1 70O 12
2@ LET U=USR FN U (R}
3@ NEXT R

Here is an example graphics program to show how to use the
sounds in a program. An alarm sounds over the two missile
bases that a UFO is approaching. Onitsfirst flypast it destroys a
base by dropping a bomb on it and then, on its second flypast,
the second base shoots it — all rather violent stuff and a bit
overdone, but a useful demonstration of the sounds. It keeps
going until you BREAK out of it. | hope this will encourage you
to experiment with creating your own sounds.

2>DEF FN Q (N1 =PEER 233D +Z0bD %

PEEK 20B3635+305% IN-1}
3 REM SOUND N WITH USR FNINY
19@ PRINT AT 15,12;" ‘iAT 1
5,20; “. REM BASE
19S PRINT AT @,8; FLASH 1;"UFOD
RSPROACHING "
318 LET R=USR FN U(7): REM ALAR
115 PRINT RT @,8;"
12@ FOR RA=@ _TO 3@
13@ PRINT AT S,A;" "
L2128 IF RS THEN G0 TO 18@: REM
e 1 =~
15@ IF A=S THEN LET R=USR FN U(
i2): PRINT AT 6,5;"1": REH DROP
16@ IF R>5 RAND R<¢14 THEN PRINT
AT_R.R-1; ;AT _B#1.9; 0"
178 2 h-14 THEN BRIAT AT _A.A-1
;% ";AT 15,12; FLASH 1; OVER 1; "
“: LET R=USR FN U(2): PRINT
AT 1S5,12;"

18@ NEXT R

185 PRINT RFY 5,31;" *

186 PRINT AT ©,8; FLASH 1; "UFO
SRPRORCHING™
M187 LETE =USR FN UI7): REM RLAR

188 PRINT RT @,8;"

19@ FQR RA=@ TOC =21

202 PRINT RT S - R

218 NEXT R

22@ PLOT 179,56: DRRARW ©,75

225 LET R=USR FN U(8) :

=23@ PLDT OUVER 1;179,56: DRAW 0L
ER 1;0,75

24@ PRINT AT 5,22; FLASH 1; ">

258 LET R=USR FN U4}

288 PRLIGE oM

26@ CLO cQ TO 10

193

3D MAZE (16K)

Fancy taking a walk in‘a maze where you can see the walls and
corridors in glorious breathtaking 3D effect? If you're getting
lost in an endless corridor, consult your computer for some
help and a diagram at the expense of losing 20 points out of
the 300 you start with. The object, of course, being to get out
of the maze successfully with as high a score as possible, your
score decreases every time you try to move and by 20 points
every time you ask for help. And once you crack the maze, you
can change the design for another one.

e e

R e
E T
E

v = A

YouU are facing west

Anyway, begin by typing in the listing which should run on a
16K machine. Remember that there is no difference between
upper case and lower case variable names, so that MAZEY is
the same as mazey, for example. Follow the line numbers
exactly as there are several calculated GOSUBs and GOTOs.
Where you see references to D$, any reference to ““N”’ for
North, ““S" for south, ‘‘E"’ for east, or ‘"W’ for west must be
made in UPPER CASE letters as the program uses this variable
to keep track of which direction you are facing in and only
checks for the upper case letters. There are also several multi-
statement IF. . . THEN. .. lines in the program. These are used
when more than an outcome for a certain condition is needed
but having a separate subroutine is not really needed. In line

194

8015 there are four apostrophes in the PRINT statement. In
line 8510 and 8515 the symbols after PRINT are the hash
(noughts and crosses board lookalike) on the 3 key. In the maze
DATA the characters | used were graphics SHIFT 8 squares,
but these could be any character you prefer as the program
only checks for the presence of a SPACE to denote an opéen
corridor, and any other character denotes a wall in the maze.

Once all the program has been entered, save it on tape and
verify it. Then when you are ready, run the program. The
display will change to white on blue with a black BORDER. A
two note bleep will sound once the maze and all DATA has
been set up. The message ““Press any key when you are ready”’
will appear and once you press any of the keys on the keyboard
you will be presented with a diagram of the maze for about two
seconds with the entry marked “IN” and the exit marked
“QUT”, and a message at the bottom of the screen shows
what direction you are facing in, and the starting score. Your
position is indicated by an asterisk at the entry point at this
time.

ouT

vou are rscing nocth Segce = 3an

The screen will now clear and you are alone in the maze. Ahead
of you is a 3D view of where you face in the maze. I'd better tell
you what the controls at your disposal are:

5 - Turn to your left (rotate 90 degrees anticlockwise).

195

6 : Turn around backwards (rotate through 180 degrees).
7 : Move forward (actually one square in the diagram).
8 : Turn right (rotate 90 degrees clockwise).

qor Q : | Quit...I've had enough. . .get me out of here. . .

The last option really should be the /ast option as all it does is
stop the program. Use this rather than BREAK in case you
leave some RETURN addresses on the stack and clog up your
memory. You could use the Q option to suspend the program
while you’re answering the phone or something, then restart
with CONTINUE, although you won’t get a direction indication
until you actually make a move since the direction prompt and
score use the lower screen and this would have been cleared by
the STOP report.

b ¥ -~

¥ r

b
- ")

¥oU are facing nor th

é REM 3D RATE
E REM by
2 REM DILWYN JJONES

10 BRIGHT @: FLASH 8: INUERSE
_20 INK ?: PAPER 1: BORDER 8: G

38 GO 5UB 90006
18@ REHM KEYROARD

196

18 SR LInENERS

2 =ll LE n }‘;$=..-b ax T..._ =
SUE seae: GO SUBR 8taa faiit . -
P%ls IF kg="q" OR &g="8" THEMN 37
R = IF (KE<¢"8" OR K%>"“8”) THEN
S0 TO 116

117 LET score=score-1

1858 TF K=" 0O~ Kg="8" DR K%="
= THEN CLS : GO SUE A, N Si
& 5506

120 IF K$="7" THEN &GO sSu8s 1288

GO SuUuB 8508 .

146 IF mazeuv=exity AND mazex=g¥x
; tx THEN PRINT INUERSE 1;AT 1.,3;
;DEUT WITH R SCORE OF v SCORE: ©

s GO TO 1606

250 STOPRP
18380 REM MOVE FORURARRD
1eeS IF (DE=""N" AND MAZEY=1) OR
iDg="8" AND MAZEY=15) OR (iD$="E"

aGND MAZEX=15) OR iDg=""W" FAND MR
FEX=1) THEN RETURN
1018 IF DH="N" THEN IF #HM& (HAZEY -

T MRZEX3 < v THEN RETURN

309 IF D%="5" THEN_ IF tig (MRZEYV
I, MRZEX)Y ¢ ** THEN RETURN

130 IF DH="W" THEN_ IF M (MRZEY ,
MAZEX-1) <) * THEN RETURN |
i@a® IF D$="E" THEN IF Mg (MRZEY ,
MATEX+1) ¢4 " THEMN RETURN

1ASE LET MAZEX=HAZEX+ (DF="E" aND
ﬁﬂRZEK{=151—iD$="U" ANC HAZEX =1

»e6a LET MAZEY=MAZEY:(D$="5" AN
“MAZEY <=185) - (D%="N" AND MATEY > =1

12090 REM TURHN

jzi@ IF K$="5" THEMN LET O%H=("U"
END DE="N"1+("3" AND D=1+ {"E
v AND D$="5"3) + ("N" RND DEHE="E")
1226 IF K$="8" THEN LET Ds=("E”
AND D&="N") + ("N"_ AND DE="") + ("W
< AaND D&="S"} +£LVS" ap Dg="E"}
1238 IF K&="8" THEN {t ET Og=("38"
aND DE="N"Y +{("E" SHD Dar="32"1 & 9"
S AaND DE="S5")+("W" AND De="E"1}
1235 CLS

iz4® GO TO 200G+ (200 AND D$="W"1
+ (400 AQND O%="N"1 +(6aad aND O0%="95

"3

>0 REM facing east

oa16 FOR =8 TO IF-aazeXx

o@e@ LET x=6xn

oags IF MAZEY =15 THEN GO 50@-76@
8: GO SUB ADOD+ (2000 RAND i {MAZE
Y -1, ,MAZEX-M) =" “y . GO TD 272
=026 IF MRZEY =1 THEN GO SR ol
: GO SUB S0+ (28388 AND Mg {MRZEY
+1,MAZEX+M) =" “y . GO TO 207e

6 : Turn around backwards (rotate through 180 degrees).
7 : Move forward (actually one square in the diagram).
8 : Turn right (rotate 90 degrees clockwise).

gor Q : | Quit...I've had enough. . .get me out of here. . .

The last option really should be the /ast option as all it does is
stop the program. Use this rather than BREAK in case you
leave some RETURN addresses on the stack and clog up your
memory. You could use the Q option to suspend the program
while you’re answering the phone or something, then restart
with CONTINUE, although you won’t get a direction indication
until you actually make a move since the direction prompt and
score use the lower screen and this would have been cleared by
the STOP report.

~ ~

et

b
- "

¥Y¥oU are facing north

REM 30 MATE
REM by
REM DILWYN JONES

A BRIGHT @: FLASH O: INUERSE
8. gUER §B
.52@ INK ?: PAPER 1: BORDER @: C
30 GO SUB S000

180 REM KEYROARD

QOAEWN-

po

196

S LET GETRNNERS -

E =|l ra K$=...b sa T... =
E saae: GO SUB atée ki
5 IF kg=""q" OR kg="8" THEM 37

5 IF (K$<¢"5" OR KR&%3»"38") THEN

) 7 1 R A %

2 LET score=score-1

B TEoxE="5H" [K=" OR K%="
s THEN CLS : GO SLUR AR L0 Si

Ke="7" THEN GO sSus 12828
GO SUB 8S@8 -

o oo = T o mazeuv=exity AND Razex=ex
;tx THEN PRINT INUERSE 1;AT 1.3;
;GgUT WUWITH R SCORE OF *,8SCORE: ©

@ GO TC 16806

1e6S IF (DE='"N'" AND MAZEY =1 OR
iDH="5"" AND MAZEY=15) OR (D%="E’
GND MAZEN=15) OR iD$="W" FAND MR
FEX=1) THEN RETURN

1910 IF DH="N"_THEN IF M% (HAZEY -

T MRZEX) < THEMNM RETURN

303 IF D%="5" THEN IF Mg (MRZEV +
I, MRZEX) ¢»** " THEN RETURN

1630 IF DH="wW" THEN IF M% (MRZEY ,
MAZEX-1) ¢3" * THEN RETURN '

i@a@ IF D$="E" THEN IF H$ {MARZEY ,
HMATEX+11 ¢3" U THEMN RETURN

@56 LET MAZEX=MAZEX+ (D$="E" AND
%HRKEK{=151—iE$="U" aANe tAaZEXYy=1
r1@e@ LET MAZEY=MAZEY + (D$="3" NNk
‘HRZEY{=15)-(D$="H" AND MAZEY)> =1

1200 REM TURN

jzi@ IF K$="5" THEN LET O%H=("UW"
END DE="N"1+("3" aAND D=1+ {"E
L HND D$=llSIl)+{I|N!. RND D$=I§Ell‘)
1226 IF K$="8" THEN LET D$=("E"”
AaND D&="N") + ("N"_ AND DE="t") + ("W
. aND D&="S"} +£VS" anp og="E"1
1238 IF K&="8" THEN LEYT O%={("8"
aND DE="N"Y +("E" SHD Dar="32"13 & 9"
S aND DE="S5")+("W" AND DE="E"}
1235 CLS

iz4® GO TO 200G+ (2006 AND D$="W"1
:!-(d-@ﬁ AND O%="N") + (633 AND Q%=""S

% |

>0 REM facing east

o@16G FOR 8= TO IF-aazeXx

~@3=2@ LET x=6xn

2a2s IF MAZEY =15 THEN GO BUQ-TEE
8: GO SLib ADOD+ (20080 AND s {HMAZE
Y -1, ,MAZEX-M) =" nys B TD

=026 IF MRZEY =1 THEN GO SUBS caw

SB30 GO SUB 4000+ (2002 AND m3i(ma

zey-1,mazex+m) =" ')

=85C GO SUE S008+ (2080 AND as(ma
e+l mazex+ml) =" ')

20780 IF mazeX+R+1(=1S5S THEN IF »%
imazey,mazex+m+l) ¢>" “ THEN GO T
O 3500

=83 NEXT m

203910 RETURN

2200 REM facing west

=221 FOR m=@ TO mazex-31

=228 LET x=8=xm

2225 IF MAZEY =15 THEN GO SUB &8
G: G0 SUB SO0+ (2800 AND M3 (MRZE
Y =1, MARZEX-M}=" "3 GO TN 22792
=226 IF MAZEY =1 THEM S0 ALIR Tk
. GO0 SUB 4@@294 {2888 AND M3 iMAZEY

+L.MAZEX-HM) =" “]1: GO TO 22578
Z23@ GO SUB 4C80+ (20228 AND miims
Zay+l, mazex-ml=" ‘)

<250 GO SUB 5688+ (208 AND m% ims
Fey-l1l.mazex-4r =" "2

2278 IF mazexX-m-1>=1 THEN IF m%
mgégg,mazex—m—13<}" “ THEN GO TO

258 NEXT m

=Z290 RETURN

=400 REM face north

=410 FOR m=0@ TO mazey-1i

=420 LET x=mp 38

2425 IF MAZEX=15 THEM GG Sups 7A@

. GO SUE 4888+ (28388 AND 4 (MAAFTE

Y-, MRZEX-1) =" "): GO TO 247

2426 IF MRZEX=1 THEN GO S5UR B3
. GO SUB SO00+ (2000 AND Mg iMOIEY
—i,, MAZEX+1) =" **): GO TD 2478

Z43536 GO SLR ARRA - I DAPUA O % (e
Zey-m , mazex -1y =")

2452 GO SUB S0+ (2008 AND m$(ma
FZeu-m,razex+li=" "3}

=478 IF mazey-m-1>=1 THEN IF Ms&{

MRZEY -M-1 ,MAZEXK) 23" ~ TACTHK &0 T
=580

Z458 NEXT ©™

Z490 RETURN

=502 REM facing soulhn

Z51@ FOR m=0 TO iS-mazey

=620 LET x=5xm

=525 IF MRZEX=1%S THEN GO 5UB So9

&: GO SUB S2a8+ (2888 AND M3 {MATE
Y+ ,MAZEX-1)=" "): GO TO 2678

=626 IF MRAZEX =1 THEN GO 348 748
. GO SUB 4000+ (2000 RAND M3z lHMAZEY

R ,MAZEX+1l =" 1. GQ TQ 267&@
2530 GO SUB 4000+ (2000 AND r§ ima
Zed+m , mazex +iyi=")

=658 GO SUE 588+ (2888 AND B imz
Zed+m ,M3zex-1y=" "3

=670 IF pazpysptIes=ls THEN JF n%
émgégg+m+1;aazexl<)“ * THEN GO T

198

NEXT m

RETURN

REM wall ahaad

LET X=X4+85

PLOT x,x¥5,8: DRAW DER-12FX%

PLOT x,x*5x8+1?5—i19*x/8}:
os5-(2¥X) ;8

RETURN

REM DRAL BLOCKED OFF WRLL

ot LEFT

20106
4320
3930
4040
5050
pag oy

PLOT X ,Xx5/8

DRAW 8.5

DRAW &,165-(10xX/8)
prRAW -85.5

RETURN
DRAW RLOCKED OFF MRLL

ON RIGHT

518
SB28
SAa36
=240
SO5@
000
LECT
5010
5920
&Ea30
6040
A58
7000

RIGHT

7010
zaze
7030
7040
7250
5000
£010
3015
S020
2030
S@4@
2050

SB35 1

REM

PLOT 255-X,X¥5/6

DRAKN &5

DRAY @,165-(5EX/4)

prRAY 8.5

RETURN

REM DRAY DPEN CORRIDDR DR

PLOT X,Xx5,/8+45

DRAL 8,0

DRAY O,165-(5X/4)

DRAY -5,0

RETURN

REM DRAW OPEN CORRIDDR DN

PLOT 255-X,X:z5/8+6
DRAW -8,8

DRAW O, 185- (83X, 412
DRAL 8.0

RETURN

REM HELP

cCLS
PRINT
FOR A=1 T 185
PRINT TASE S;M$(R)

NEXT_ R ,
PRINT AT MAZEY +3 ,MRZEXH7, 7 #

IF EXITY=1 OR EXITY=185 THEM

L

PRINT AT 24 (18 AND EXITY =151 ,EX
TTX+6; “0OUT"

cas2

N PRINT AT EXITYIEZ, L3

IF EXITY >l AND EXITY <15 THE
ion gy EXI

THR=157 § “Ep

@53

FN PRINT AT
LENTRYX 46

3054

HEN PRINT
ENTRYX=15); “IN"

Sas59
5500
o650
=07

IF ENTRYY=1 DR ENTRYY =15 TH
ﬂzﬁtiia AND ENTRYY =153
IF ENTRYY3>1 AND ENTRYY <15 T
AT ENTRYY 33,53 {419 _E:

LET score=score-2@: GO suUs
PRUSE 1@@: CLS

GO SUB 2688+ (283 AND DH="W"

199

= |
573

030
3SO0
3585
S8510
€cing
hil

+
L]

; gest

S8518
core;
5520
=060
=810
=220
=030
2845
B850
260
IB70
Sea85e
096
S180
=118
3128
213D
3140
S150
2160
2170
F180
=198
S2ad
S21e
QzZ20
I2TO
2246
=250
=260
261
Sa2e2
G2
3263

RND D

(400 AND DEHE="N"}+{(6888 BND D=

RETURN

REM UHICH DIRECTION?

IF scoc2¢® THEN LET score=0

PRINT 8#1;,A7T 1.,8;"“You are g

“fnocth AND O#%="N";"zaut

$=ll5Il; lleast ne HND D$=||Ela
AND De="l"

PRINT 81,AT 1,26-1LFi aThR3
INUERSE 1, “*Score=";score

RETURN

REM INITIRLISE

REM DATA FOR MAZE

DATA

paTrTgn

DATAH

DARATA

DETH

DATHR

DAaTA

DATR

DARTA

DARETR

DaTH

RTH

DATA n

CARTAR el ATl Sl s 50 B,

LET ENTRYX=8: LFE ENTRYY =18

LET EXITX=8: 1L FT EXITY=1

DIM M&(15,15): REM MAZE

RESTORE c@aa

FOR M=1 TO 1S5

READ M$ (M)

NEXT M

LET MAZEX=ENTAYX

LET MAZEY =ENTRYY

EET Dy

EEEP .5,8: BEEP « s d2

IF INKEY%<)>"" THEN &G0 TO 9=

PRINT “"Press apy ey when oy

B

ar

LY

L 7] s i a3
20 Es

(1%

v

an 5

e

Aa s ..

DU are ready’

264 IF INKEY §="*"
S5 AND IN 32766=255 THENM GO TO

2E4

BAND TM ESE?E:E

S26S5>LET score=320

2266
2267
I270
S290
2T

GO SuB
GG SUR
GO SuB
GC SsSuB
RETURN

S0A0
8588
2400
858

The listing is fairly complex and long. There is a lot of repetition
in the drawing routines to avoid a multitude of conditional
statements all over the place to cover every eventuality which

200

although shortening the program might actually slow it down if
done. As it stands, you may well be pleasantly surprised to find
a BASIC program of this complexity running this fast since
there is quite a lot of working out perspective views and
drawing them to be done. The drawing is not strictly accurate
in that although height changes with distance, the width of the
corridor entrances do not change as you go deeper towards the
far end of the corridor. This would not only slow down the pro-
gram to an unacceptable extent, but mean that the furthest
wall or side entrance ahead of you would be so thin as to be
indistinguishable. As you can see from the example, the
method used for drawing gives more than an acceptable 3D
effect, where you can see blocked off walls to the left or right
and clearly tell the difference between these and open corridors
to the left or right or ahead.

Lines 10 and 20 set up the colours, etc., for the display.
These are the only global colour commands, so if white text
and graphics on a blue background does not agree with you
change these statements. The black BORDER is used to frame
the view ahead and some do not like this; again, if you change
this statement it will provide the BORDER used throughout the
program. Line 30 sends the program to the initialisation
routine at line 9000. The loop in lines 100 to 200 deals
with reading the keyboard and taking appropriate action. Line
112 deals with the “help”” option by going to the line 8000
routine (help) and 8509 (direction/score). The help routine
deducts the appropriate amount from the score within itself,
and the direction/score routine both prints the direction in
which you are currently facing and the present score. Line 113
deals with the Quit option. Line 115 ensures that the program
goes no further if no key is being pressed or the help option has
been taken. This would prevent the score working properly.
Line 117 decrements the score by one for every move made
except the help option where different action is taken. Line
120 deals with the turning options by first clearing the screen
then calling the turning subroutine at line 1200 then the
direction/score routine. Line 130 deals with moving forward
by calling subroutine 1000 and the direction/score routine.
Line 140 deals with checking to see if you've made it through
the maze and prints the score and stops the program. At line
1000, you start the move forward subroutine. Line 1005

201

checks for the limits of the maze. Lines 1010 to 1040 check
if there is an obstryction ahead. Note the use of IF...THEN
IF...THEN. .. in place of IF.. .AND...THEN... since the
second condition may cause an error to arise under certain con-
ditions such as turning sideways in the entrance to the maze.
The program jumps over these without trying to execute
anything that might cause an error. This is a feature of ZX
Spectrum BASIC that anything after THEN is completely skip-
ped over to the end of the line unless the condition is true. Lines
1050 and 1060 change the values of the variables MAZEY
and MAZEX as appropriate. These two variables are the posi-
tion down the maze and across the maze respectively. Line
1200 is the start of the turn routine which changes the
direction variable D$ as needed. Line 1240 chooses which
drawing routine to use depending on your direction, by means
of a calculated GOTO, the same one as is used for moving for-
ward.

Line 2000 to 2090 is the routine that handles drawing
when you are facing east and is similar to the other three
direction routines up to 2690. The loop m handles from your
present position to the outer limit of the maze. X is what will be
the co- ordinate across the screen of the bottom nearest to you
of the wall which will next be drawn on the left of the screen. X
will be used as a scaling factor as well for the perspective view.
Lines 2025 to 2050 select whether to draw an open wall or a
closed wall on the left or on the right. Line 2070 decides
whether or not there is an obstruction ahead of you, in which
case a wall is drawn ahead of you in line 3500. The short
routines in 4000 to 7050 deal with the actual drawing of
the walls on either side of you using 8 pixels wide as the width
for each wall/opening (and the fact that each successive wall
will be 12 pixels shorter as they get further away fromyou). This
is the reason why the maze size is fixed at 15 by 15. Line
8000 is the start of the “help” routine which prints the plan
of the maze then shows your position as an asterisk. Lines
8051 to 8054 determine where to mark the entrance and exit
since it is possible to change these as described later. Line
8059 deducts the penalty points for demanding help. Line
8060 determines how much time you get to study the maze
before the screen is cleared and the program continues by
drawing your current positon in the maze (line 8070).

202

Line 8500 prints your score and direction (lines 8510 to 8515)
in the lower screen using PRINT 1 to make it appear as though
this writing is in the BORDER area out of the main display. Line
8505 ensures that the score never goes below zero. We come
to line 9000 which is the main initialisation routine. Lines
9020 to 9180 must be entered with the line numbers as
shown exactly if you wish to change the maze design later.

The DATA statements are laid out so that the maze design is
obvious ata glance. ENTRYXis the co-ordinate across (110 15,
left to right) of the entrance. ENTRYY is the Y co-ordinate (1to
15, top to bottom) of the entrance. EXITX is the X co- ordinate
of the exit from the maze and EXITY is the Y co- ordinate of this
exit, as the variable names imply. Line 9190 sets up an array
Ms$ (15,15) which holds the maze. This could be saved on tape
using the SAVE"‘name’’ DATA facility but would, of course, be
cleared if RUN was used, which is why the DATA statements
will be used later for new mazes. Lines 9210 to 9230 read the
maze from the DATA statements into the maze array then the
start co-ordinates are set equal to the entrance co-ordinates so
that you start in the entrance. D$ is set to N to indicate starting
in a northerly direction in this case.

Line 9261 gives a short two note bleep to alert you that every-
thing is ready to go. Line 9262 waits for you toletgo of the keys
if you are already pressing something. Lines 9263/4 wait for
you to press any key (including SHIFTs). The score at the start
is set up as 320 because the help routine is used for the initial
preview of the maze and this will deduct 20 points making it
300 as we want. Lines 9266 to 9290 set up the display pre-
view and score/direction, then draw the maze ahead in 3D.

Making changes to the program

The easiest change to make is the colours of the display, cur-
rently white on blue background with a black BORDER. Lines
10 and 20 are all that need to be changed.

You can change the amount of time you get to view the display
by changing the length of the PAUSE in line 8060. The cha-
racter used to show your position can be any you like — itcould

203

even be a space, but then you wouldn’t get to see where you
are although you would see the plan of the maze!

You can change the starting score in line 9265 if you're having a
lot of trouble with getting out of the maze. And if you want to
deduct more or less points for asking for help, change line
8059. Also, if you're more musically inclined than me you
could arrange for a short tune to be played when you success-
fully get out of the maze. This would be done by replacing the
STOP in line 140 with a GOTO to a routine to play the tune.
This could be put between lines 200 and 1000 since this
part is not used before the subroutines and after the main loop.

But the biggest change that can be made is to the maze. The
best thing you can do is to save lines 9020 to 9180 separately
on tape to be merged with the main program later on, this way
you can quickly load in a new maze.

Here's an example:

228 DRTA
S83& DRTSH
L4 DRTH
SBSE DRTR
SBER LRTSH
Sa7e DRTR
S8 DRTAR

Se90 DRTR

i@ DRATR

[Li@ DRTR

128 DPATAH

I3V ORTR

8140 DRTAH

215 DRATH

216 ORTR S
2178 LET EMTRYX =1R, LET ENTRYY=S
SLIVS LET Dg="W"

2188 LET EXITX=1: LET EXITVY=13

204

SV 2 ORTRA
2R3& DRTH
3I04@ DRTR
VS DATH
ReE3 DRTH
R DRTR
2988 DRTAH
2288 DRTR
Q188 DRTR
2131 DRTAR
gi1z2e DRTR
2138 DRATH
2140 DRTAH

21s@ DATA "I _ W
9168 DRTR 4 :

Q17@ LET ENTRYX=1: LET ENTRYY=7
Q175 LET D$="E"

9186 LET EXITX=1: LET EXITY=3

One thing to watch out for is not to have corridors more than
one square wide. As you can see from this example where the
first corridor to the right should be one corridor four times the
width of a normal corridor, they are actually sk own as four side
by side corridors. Quite correct, but you may find it a little
misleading at first.

al
Post
a

Lo

.
ettt

eon
ety gy

-
P e A
e

Ana
ol

e
o
et
Pt ool oot ™puold)
gyt e e
Frmand™ol sl ls
Wl

e -
L
A sl rad .

e |

205

A Tim Hartnell ‘Success in the Fast Lane’* programming guide

When you’ve mastered introductory
programming on the Spectrum, you need this
outstanding guide to enhanced programming

techniques and concepts.

Contents include:

screen tricks

escaping from INPUTs

screen scrolling

new character sets

using the block graphics

a library of subroutines

user defined graphics

sorting out SCREENS$ and ATTR
IN and OUT

speeding up your programs
making use of the system variables

memory layout
useful DEF FN calls

Programs include INTRUDERS and 3D MAZE

Another great book from
INTERFACE PUBLICATIONS
London and Melbourne

