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Preface

This is the second of two books on the T/S 2068 computer. The first
book, Timex Sinclair 2068 Beginner/Intermediate Guide, is a guide to
getting started with the T/S 2068 computer. It deals with setting up and
operating the computer, and learning to program in BASIC. This
second book will take you beyond BASIC — into the world of computer
circuits, the Z80 microprocessor, the BASIC interpreter, and machine
language programming. The main goal is to show you how to make
your programs run faster and do things that are otherwise impossible
with BASIC. At the same time, you will learn a lot more about how your
computer works.

This book will assume only a working knowledge of the T/S 2068
and BASIC programming. That is, you should know how to turn on the
computer and be able to enter and run simple BASIC programs. You
do not need to know anything about bits and bytes or RAM and ROM
— it begins with a simple explanation of what a computer is and how it
works. If you are new to computers, or are not familiar with BASIC
programming, then you may wish to start with the Timex Sinclair 2068
Beginner/intermediate Guide.

This book serves two purposes. It describes how a computer works,
and it introduces the reader to machine language programming. The
first part of the book covers computer basics: the operation of comput-
ers in general, and the T/S 2068 in particular. It includes a description
of most of the T/S 2068 hardware. The second part introduces
machine language — the native tongue of the Z80 microprocessor
that drives the T/S 2068. Part Two ends with a section that describes
how machine language routines can be used from within BASIC
programs. ,

This book also serves as a reference guide for the T/S 2068 com-



puter. It contains complete information on the various expansion con-
nectors for the hardware buff trying to interface a new device to the
computer. The machine language programmer will find a wealth of
technical information on the Z80 Central Processing Unit and the
AY-3-8912 Programmable Sound Generator used in the T/S 2068.
This book describes in detail each instruction in the Z80's repertoire. In
addition to the hardware descriptions, the book also discusses the
inner workings of the BASIC interpreter, the special memory mapping
scheme used by the T/S 2068, and the Function Dispatcher routines
which make up the heart of the computer's operating system. Indeed,
there is something for everyone.

Hopefully this book will widen your horizons and unravel a few of the
mysteries that surround computers. When you've finished reading it,
you will want to keep it near your computer so the reference material is
readily available.

JEFFREY MAZUR
I gratefully acknowledge all of the help and support | received from

my wife Lynne, and from my children, Michael, Jonathan, and
Jessica, who put up with “daddy’s book.”
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PART 1
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COMPUTERS
WORK



SECTION A
COMPUTER BASICS



1 |
What Is a Computer?

INTRODUCTION

In the world of computers, the T/S 2068 stacks up as a relatively
small, slow, and limited machine. Itis considered a personal computer
because it is used by only one person at a time, as opposed to larger
computers that can handle many users simultaneously. The latter are
referred to as mainframe computers or minicomputers depending on
their size. Personal computers such as the T/S 2068 are also called
microcomputers—primarily because they are built around a special
electronic part or “chip” called a microprocessor. The T/S 2068 uses
the Z80, one of the most popular microprocessors ever developed.
Much of this book is devoted to describing how this tiny chip of silicon
works.

Despite the many differences between a T/S 2068 and an IBM 370
mainframe computer, they both share a common design philosophy. In
fact, it would be safe to say that almost all present-day computers fit
the description of a stored-program, digital, electronic, data proc-
essing machine. This rather lengthy description also sums up the
history of computing machines.

THE COMPUTER AS A MACHINE

Above all, the computer is a machine: it allows us to perform some
function easier or faster than we can manually. It also allows us to
accomplish some tasks that are otherwise impossible. As an example,
consider another machine that you may be more familiar with — the
lever. Long ago it was learned that a lever could be used to move
objects that were too heavy to move by hand. The lever accomplishes
this task by transforming a small force applied over a large distance
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into a larger force applied over a small distance. Whiie levers help
accomplish physical work, computers aid in the performance of men-
tal work, otherwise known as information processing or data
processing.

i

Mechanical vs. Electronic Machines

A lever is classified as a mechanical machine since it requires
movement to perform its task. The first “mental machines” were also
mechanical in nature. One of the first was the abacus, a mechanical
machine that aids in the performance of a mental process: calculating
numbers. Subsequently, other mechanical calculators were devel-
oped, including slide rules and adding machines.

Today, however, most of our mental machines, including the modern
computer, are electronic machines. They use stationary electronic
devices instead of moving mechanical parts. It is the control of cur-
rents that is important in electronics. Therefore, the electronic analogy
of the lever is called an amplifier. It is a device that takes a small
electric current (or signal) and uses it to control a larger one.

Depending upon the arrangement of other components in an elec-
tronic circuit, amplifiers can accomplish tasks such as inverting,
adding, performing logarithms, or storing electronic signals. There-
fore, almost every electronic circuit is based upon the use of ampli-
fiers. Consequently, much of the relatively brief history of electronics
has involved finding the best electronic amplifying device. The original
amplifiers were vacuum tubes. Today they have been replaced by solid
state transistors.

Analog vs. Digital Computers

Early in their history, computers dealt with data as voltage signals in
a one-to-one relationship. If a signal level of 2 volts represented 200
miles per hour (mph), for example, then 1 volt represented 100 mph,
and 0.52 volts was 52 mph, etc. Information treated this way is referred
to as analog, thus early computers were called analog computers.

When analog computers had their day (it was a relatively short one),
they performed calculations in seconds that would have taken many
hours to perform by hand, even with a slide rule. But such computers
were limited to dealing with numbers—for example, calculating the
trajectory of a rocket. It was soon discovered, however, that almost any
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type of information could be processed if it was in digital form, that s, in
a series of discrete chunks. This was a major breakthrough in the
design of computers.

To appreciate the difference between analog and digital forms of
information, consider these few examples. Analog information can
have an infinite number of values: distance, time, and temperature, are
all examples. We can have a stick that is 4 feet long, 4.527 feet long, or
any possible value in between. Digital information, however, is
restricted to discrete values: the flip of a coin is either heads or tails,
the change in our pocket consists of a finite set of coins, and we can
only have whole numbers of children (census figures notwithstanding,
no family can have 2.3 children).

In a digital computer, all information to be processed (whether it
represents numbers, text, or electronic signals) is first converted to a
series of signals represented by binary ones and zeros. Dealing with
only digital signals, the electronics are much simpler. When using
amplifiers, for example, you need not worry about nonlinearities or
distortion, since they operate either fully on or fully off. In this sense,
the amplifier (tube or transistor) becomes an electronic switch. This
gives rise to some specialized circuits called gates. The name is aptly
chosen since electric current moves through these circuits only when
the “gate” is open. We'll discuss gates in detail a little later. The point
here is that gates, which form the basis of digital processing, are very
easy to make. Today, in fact, thousands of gates can be squeezed onto
a piece of silicon no larger than a pencil eraser. The development of
the modern computer, then, was from the mechanical to the electronic,
and from the analog to the digital.

Stored Program Architecture

While digital electronics gave a great boost to computer design, a
major stumbling block still remained. The early computers were pro-
grammed by connecting wires to various circuit elements. Making a
simple change in the program often involved a complicated and time-
consuming process. This cumbersome technique also limited the
program size. The idea of storing the program itself within the
machine’s memory was the final link leading to today’s computers. By
replacing the wires with a bit pattern in memory, programs were made
more flexible and were limited in size only by the amount of memory
available. This practice, known as the stored-program technique, was
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a milestone in computer science—only today have we begun to reach
its greatest potential.

Stored-program machines operate by executing instruction cycles.
Each cycle begins by having the computer fetch an instruction from
memory. This information is then decoded by the computer to direct its
further action. In most cases, the computer will read one or two more
pieces of information to finish its cycle. All of this takes place extremely
fast—in the T/S 2068, up to one million instructions can be executed in
one second!

THE FOUR BASIC COMPUTER PARTS

Any computer can be divided into four main parts: the input section,
the Central Processing Unit, the memory, and the output section. Fig.
1-1 shows how these sections are connected. The arrows indicate
which direction information can flow.

CENTRAL
: > PROCESSING | >
INPUT UNIT OUTPUT
(CPU)

MEMORY

Fig. 1-1. The four basic parts of a computer.

Input

The input section is the connection to the outside world through
which information is fed into the computer. In the case of the T/S 2068,
there are three input devices supported by the standard machine.
They are the keyboard, the joystick, and the cassette playback. Each
of these devices allows the user to put information into the computer.
Any connection between different parts of a computer, or between the
computer and the human user, is called an interface. The keyboard, of
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course, is the main interface used for communicating with the com-
puter and telling it what to do.

The CPU 1

The CPU, or Central Processing Unit, of the T/S 2068 is the Z80
microprocessor (described in detail in Chapter 4). The Z80 is only one
of many microprocessors. For example, another popular one is the
6502 used in Apple, Atari, and Commodore computers. Each micro-
processor has its own architecture and instruction set. These deter-
mine the machine language with which the CPU is programmed.

Memory

The CPU can only handle a small packet of information at one time.
In the T/S 2068, the Z80 processes eight tiny pieces of information,
called bits, in each packet. These packets, in turn, are called bytes.
We'll have a lot more to say about bits and bytes later, but in general,
you can consider each byte as representing a single character (letter,
number, punctuation mark, etc.).

Since we usually want to process more than one byte of informa-
tion—(the test scores of a class might be hundreds of bytes; a busi-
ness letter, thousands)—we need some place to store this
information, also called data, where the CPU can easily reach it. We
also need storage for the information that tells the computer what to
do, its program. Both data and program can be stored in a portion of
the computer called memory. The computer's memory is divided into
two major classifications called RAM and ROM.

RAM—There are many types of memory devices that can store
information in a computer. Most of the devices accept data from the
computer—they are “written to.” They then hold the data indefinitely
and feed it back when asked—they are “read out.” This type of
memory is referred to as Random Access Memory, or RAM for short.
The T/S 2068 has 49,152 bytes or 48K internal RAM.”

ROM—Another type of memory device used in the T/S 2068 is
called Read Only Memory, or ROM. This device is “written to” at the

*The “K" stands for kilobytes or a thousand bytes, from the metric prefix “kilo” meaning
thousand. However, in the computer’s binary number system, the closest “round”
number to one thousand is actually 1024. Thus each "K" actually stands for 1024 bytes.
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factory and can only be read by the computer. ROM is used to hold
information that is essential to the operation of the computer, but which
will not require any changes. The operating system and BASIC inter-
preter of the T/S 2068 are examples of information that is stored in
ROM. An advantage of storing information in ROM is that the data is
permanently available, even after the computer has been turned off
and on again. In contrast, all information stored in RAM is lost when-
ever the power is removed.

Because of the preceding distinction, ROM is often referred to as
nonvolatile storage and the type of RAM used in the T/S 2068 is
considered volatile storage. The T/S 2068 contains 24K of internal
ROM. Additional ROM and/or RAM can be added to the T/S 2068
through the front panel DOCK connector or through the expansion
- connector on the rear of the computer. See Chapter 5 for a complete
description of the T/S 2068’s memory capabilities.

Output

All of the preceding discussion would be meaningless if there was
no way to get the information back out of the computer in some useful
form. The T/S 2068 has two output devices. By far the most useful is
the video display. This is the picture that you see on the television set
or monitor. Whether you use the TV or the MONITOR jack on the
computer, what you see is a display that is generated by the computer.
The sole purpose for this display is to present information from the
computer in a manner recognizable by humans. The second form of
output from the computer is through the built-in speaker underneath
the T/S 2068. This device allows the computer to signal aurally,
generating anything from a simple beep for attention, to a fully orches-
trated tune. If you have a printer such as the Timex 2040 connected to
the computer, then you have a third form of output—one on which the
computer can generate a more permanent record called “hard copy.”

BITS OF INFORMATION

Being a digital electronic device, a computer can only deal with
information as one of two forms: either the presence of a voltage (or
current) or its absence. At any point in time, a single wire inside the
computer can only be in one of two states. It can be connected to a
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source of electricity placing it at a high potential or it can be at a low
- potential otherwise known as ground. These two states are also
referred to as + 5 and ground, one and zero, or hi and low. Any pointin
a digital electronic circuit will be in one of these two states. When a
single wire carries information from one point to another in this
scheme, it carries the smallest amount of information imaginable—a
bit.

Fig. 1-2 shows how a wire can transmit the status of an electric
switch to a receiving indicator. There is a battery to supply the elec-
tricity, a switch to control the flow, and a light to indicate when the
circuit is complete and current is flowing. In Fig. 1-2A the light is dark
because the switch is open, or turned off. In Fig. 1-2B the switch has
been moved to the on position completing the electrical circuit. Now
the lamp glows because of the electrical current flowing through it.
(Note that we have taken the liberty of defining an electrical ground to
act as the return path for the current.)

A circuit such as that in Fig. 1-2, can transmit only one piece of
information: either the light is on or it is off. Nonetheless, circuits
similar to this are used in a variety of signaling applications—a hospital
room call button, for example. By activating a switch that turns on a
light at the nurse’s station, you communicate the information that you
need assistance.

Fig. 1-3 shows how the light switch can be expanded. By adding
one more wire and switch, as shown in Fig. 1-3A, itis possible to signal
the four different conditions shown in Fig. 1-3B. Similarly, with three
wires eight distinct patterns can be transmitted. Since each new light

' SWITCH
B CLOSED
e i +
. "f £
BATTERY .
ELECTRICAL, _ \\
GROUND ' | i
A. Signal off. B. Signal on.

Fig. 1-2. A circuit that transmits one “bit” of information.
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* t
Fdd
4 0 O= -}
-
I
0 O y),
= =
A. Circuit.
STATE LAMP 1 LAMP 2
1 © 2=
I
2 © o
Ao
3 =0- (3
N . B. State table.
4 = -

Fig. 1-3. Transmitting multiple bits of information.

added can be in one of two different states, it doubles the number of
possible patterns. In general then, with “n” number of wires we can
transmit two to the “n"th power different states. This is the basis of a
binary system—the number system we will cover in detail in the next
chapter.

BOOLEAN LOGIC

Before abandoning the light switch circuits, we’ll use them to explain
the basic logic operations performed by computers. In Fig. 1-2, we
can represent pushing the switch as a logical 1 and likewise for having
the lamp lit. Therefore not pushing the switch and the lamp being off
are assigned the value 0. The function performed by Fig. 1-2 can then
be represented by listing all of the possible switch conditions and their
effect on the lamp. In this simple case, the information can be pre-
sented as shown in the state table of Fig. 1—4A. This type circuit is
sometimes called a buffer and its logic symbol is shown in Fig. 1-4B.
The state table is sometimes called a transition table and is similarto a
truth table. Each is used to follow circuit logic.
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SWITCH LIGHT

BUFFER -
0 o |
INPUT OUTPUT
1 1

A. Truth table. B. Logic symbol.
| Fig. 1-4. A buffer.

If the switch is changed slightly so that itis normally closed and then
opens when pressed, the circuit then looks like Fig. 1-5. Keeping the
same nomenclature, namely that pressing the switch is considered a
logic 1, we then have a circuit known as an inverter. The truth table and

SWITCH

NORMALLY
CLOSED
i
LIGHT / -

\

Fig. 1-5. A circuit with a different type of switch — an inverter circuit.

logic symbol for the inverter are shown in Fig. 1-6. Note the addition of
a small circle to the logic symbol which indicates that the logic state

gets reversed, or inverted, when passing through this device. Such a
SWITCH  LIGHT

INVERTER
0 1
INPUT OUTPUT
1 0
A. Truth table. B. Logic symbol.

Fig. 1-6. An inverter.
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gate performs the logical noT function—that is, it puts out the opposite
value from what is fed in.

The two types of logic elements discussed so far only have a single
input and output. More useful functions can be derived using more
than one input. In our analogy, this means adding more switches but
keeping only one light. For example, another switch can be connected
as shown in Fig. 1-7. In electronics lingo these switches are said to be

0 O
SWITCH A

* #
o ©
SWITCH B

Fig. 1-7. A circuit with two switches in parallel — an or circuit.

in parallel. The result of wiring two switches in this manner is to allow
pressing either switch to cause the lamp to light. It does not matter
whether switch A or switch B is pressed. (The lamp will also light if both
are pressed.) Since either one switch or the other can light the lamp,
this circuit performs the logical or function and therefore is called an
or gate. The truth table and symbol are shown in Fig. 1-8. To read this

SWITCH B
0 1
0 0 1 OR GATE
SWITCH A INPUT A
QUTPUT
e k= | s .N@_
A. Truth table. B. Logic symbol.

Fig. 1-8. An or gate.

table, locate the row that corresponds to the states of switch A. Then
find the column that corresponds to the state of switch B. At the
intersection of this row and column there is a logic value which
represents the output of the gate.
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Another way of adding a second switch is shown in Fig. 1-9. This
places the two switches in series and, therefore, requires that both
switches be pressed in for the lamp to light. In this case, the circuit -

0 O o O
SWITCH A SWITCH B

Fig. 1-9. A circuit with two switches in series — an AnD circuit.
performs the logical anp function, since both input A and input B must

be in the logic 1 state for the output to be a 1. The truth table and logic
symbol for the anD gate are shown in Fig. 1-10.

SWITCH B
0 1
AND GATE
0 0 0
SWITCH A — INPUT A Aep—
1 0 1 :
INPUTB
A. Truth table. B. Logic symbol.

Fig. 1-10. An anp gate.

Note that it is also possible to-have more than two inputs for one gate
as shown in Fig. 1—11. Inthis case, altfour inputs must “go high” for the
output to be high. Often itiis convenient to add an inverter to the or and
AND gates creating the NOR and NAND gates as shown in Fig. 1-12.

4-INPUT AND GATE

A

B L
REY - OUTPUT
—

_D .
Fig. 1-11. A four-input anp gate.
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0 1 0 1
0 1 0 0 1 1 }
1 0 0 1 1 0
SYMBOL SYMBOL
A. NOR gate. B. NAND gate.
Fig. 1-12. Truth tables and logic symbols for or and anp gates with
inverters.

The three logic elements — AnD, oR, and noT — are the building
blocks of all digital circuits. It can be proven that all other logical
operations can be built from these three simple blocks. For example,
an Exclusive or (or xoRr) device must produce a high output when
either one of its inputs, but not both, goes high.

The three logic elements — AND, OR, and NoT — are the building
blocks of all digital circuits. It can be proven that all other logical
operations can be built from these three simple blocks. For example,
an Exclusive or (or xoR) device must produce a high output when
either one of its inputs, but not both, goes high. The truth table and
symbol for this device are shown in Fig. 1-13 along with a diagram
showing how this circuit can be derived from the primitive gates.

0 1
0 0 1 XOR GATE
o
1 1 0 S— ?
A. Truth table. B. Logic symbol.
; J D ouT

Do_

C. xor gate using oR, AND, and NAND gates.

Fig. 1-13. The Exclusive or (xoRr) gate.



2
The Binary Number
System

INTRODUCTION

Since most computers (including the T/S 2068) work with two-state
electronic circuits, any information to be processed must first be
converted into a series of binary numbers. Therefore it is important to
understand fully the base two-number system. As shown in the pre-
ceding chapter, the brains of the T/S 2068 reside in the Central
Processing Unit (CPU). All of the operations performed by the CPU are
based upon the binary system.

The purpose of any number system is to convey information about
quantity, just as languages are used to convey thoughts and ideas.
Although many different languages exist, there is no one “correct”
language. When you say “hello” to someone, you expect him to
understand it as a greeting. When visiting France, however, your
greeting might be met with strange looks unless you said “bonjour.”

In view of the diverse languages in existence today, it is quite
remarkable that one number system is used almost universally. This is
the base 10 (decimal) number system that most people start learning
before they can even read. This is not the only possible system, and
certainly not the most convenient in many cases. Another number
system you may be familiar with is the Roman Numeral system. This
system undoubtedly lost its appeal because it does not have a precise
mathematical foundation. (Have you ever tried to multiply XVII times
IV?) Since mathematics is so closely tied with numbers, a concise and
logical numbering system is essential.

Probably because we have ten fingers (which are easy to count on),
our number system is based upon the number 10. We learn to count,
and thus express quantity, using 10 digits. These digits are written
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using the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. When expressing
numbers greater than nine, we need to add another digit, or place, to
the left of the first number. Thus after 9 we write 10 which means one
group of ten plus zero more. Then comes 11 (one group of ten plus one
more), 12,13 . . ., etc. This continues up to 99 (nine groups of ten plus
nine more) after which we add another digit. The number 349 really
means three hundred plus forty plus nine, as shown in Fig. 2—1.

Notice that when numbers are written this way, the first digit (the one
on the left) carries the most importance or significance. The digit on
the right is the least significant. That is, if the 9 became an 8, there
would only be one less; if the 3 were changed to a 2, however, it would
mean a loss of one hundred — certainly more significant. It should
also be noted that the value of each place in our numbering system is-
simply a power of 10. That is, the last number represents how many ten
to the zero power* or ones there are in the number. The next number
represents how many ten to the one power, or tens, there are. Then
comes the ten to the two power (10 X 10), or hundreds, etc. This
process is continued until there are enough places to express any
number desired.

With this understanding, it is then very easy to describe other
number systems. Using the same procedure, we can simply change

102 OR 100 POSITION

10 OR 10 POSITION

10° OR 1 POSITION

Ox1 = 9

4x10 = 40

3 x100=300
349

Fig. 2-1. Decimal notation

*Any number raised to the zero power equals one.
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the base number, also known as the radix, from 10 to any other value
and come up with a new numbering system. In particular, since
computers only have two states with which to count (i.e., two fingers), it
would seem more natural for computers to use a base 2 number
system. This is commonly known as the binary number system. With
only two numerals, a single digit number can only count from 0 to 1.

Using the standard number system format just described, it is
possible to write numbers of any given size. First we must determine
the value or weight of each numeral in a binary number. Since humans
find it easier to think in terms of decimal numbers, it is helpful to
represent each binary column as its decimal weight. Thus, the binary
number 11100101 is interpreted as shown in Fig. 2-2. For larger

27 OR 128 POSITION

26 OR 64 POSITION

25 OR 32 POSITION

24 OR 16 POSITION

23 OR 8 POSITION

22 OR 4 POSITION

21 OR 2 POSITION

{i 20 OR 1 POSITION

i—1:>-::1 = 1
0x2 = 0

1x4 = 4

0x8 = 0
O0x16 = 0

1x32 = 32
1x64 = 64
1x128=128

229

Fig. 2-2. Binary notation.
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Table 2-1. Negative and Positive Power of Two

2N N 2N
1 0 1
0.5 1 2
0.25 2 4
0.125 3 8
0.0625 4 16
0.03125 5 32
0.015625 6 64
0.0078125 7 128
0.00330625 8 256
0.001953125 9 512
0.0009765625 10 1024
0.00048828125 11 2048
0.000244140625 12 4096
0.0001220703125 13 8192
0.00006103515625 14 16384
0.000030517578125 15 32768
0.0000152587890625 16 65536
0.00000762939453125 17 131072
0.000003814697265625 18 262144
0.0000019073486328125 19 524288
0.00000095367431640625 20 1048576

numbers, higher powers of two can be taken from Table 2—1. Note that
whenever there is doubt as to the base of a given number, a small
subscript will be placed after the number to indicate the radix used.

CONVERTING BINARY NUMBERS TO DECIMAL

Having defined a precise format for all number systems, including
base 10 (decimal) and base 2 (binary), it should not be difficult to
convert a number from one base to another. For example, we have just
shown that converting a binary number to decimal involves nothing
more than writing down the powers of two that correspond to each “1”
digit in the binary number and then adding them all up. This is quite
simple, but if you have a lot of numbers to convert, it can get quite
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tedious (especially when dealing with memory addresses that are 16
binary digits long). Fortunately, we have a computer — and computers
are wonderful for doing tedious things. Therefore, we will write a
program for the T/S 2068 that will convert binary numbers to their
decimal equivalents. :

A binary number must be input to start the program, and it proves
easier to decipher this number if it is treated as a string. This preserves
any leading zeros (which would be lost if we treated it as a numeric
input). This also allows each digit to be examined using the string
“slicing” capabilities of the T/S BASIC. The next step involves looking
at each digit entered and keeping a running total of all binary places
that contain a 1. For each 1 found, the value of 2 raised to the
appropriate power is added to the total. Raising to a power is accom-
plished in this program using the exponentiation function denoted by
the ~ symbol.

Listing 2—1 shows the simple binary to decimal conversion program.
It starts by initializing a running total variable, a, in line 10. Line 20
accepts the desired binary number to be converted and assigns it to
the string variable a$. Line 30 gets the number of digits entered which
we will need later and line 40 checks to see if we are done (by entering
no number). Line 50 sets up a loop to look at each character in the
string and along with line 60 determines if that digit is zero. Note the
formula (! —i) in the slicer which causes the search to proceed from
right to left instead of left to right as normal. Also note the comparison
to the string constant 0 instead of the number; this is due to the use of a
string variable for the input number.

If the current digit is not a zero, then line 70 executes, adding the
designated power of two to the total. Otherwise, the program skips to
line 100 where the next digit is inspected. After all of the digits have
been checked, the program finishes by printing out both the binary
and decimal formats for the number.

Listing 2-1
1§ LETa=g
20 INPUT a$
3@ LETI=LENa$
48 IFI=@THEN STOP
58 FORi=@gTOI-1
6@ IF a$(l-i)="@" THEN GO TO 149
780 LETa=a+2h
190 NEXTi

15@  PRINT a$,a
208 GOTO ¢
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CONVERTING DECIMAL NUMBERS TO BINARY

Converting decimal numbers to binary is only slightly more compli-
cated. Whereas the previous conversion proceeded from right to left
and involved addition, we now use the reverse of this technique.
Therefore, the first step is to find the largest power of two that is still
smaller than the given number. Actually, we could start with any large
power of two, but that would only give us many “leading zeros” in front
of the answer and these are usually meaningless. Having found the
proper factor as described above, we can then write down a 1 as the
first digit of the answer. Next, subtract this amount from the original
number leaving some positive remainder. (This remainder must be
less than the previous factor or we did not start with the correct power
of two.) We then continue with each of the smaller binary factors. If the
remainder is less than the current factor, write down a 0 for that digit.
Otherwise write down a 1 and subtract that factor from the remaining
value. This process continues until the last binary digit, or bit, is
reached. For example, Fig. 2-3 shows how the decimal number 45
would be converted into binary. Of course, after the conversion is
done, we can add any number of leading zeros to normalize the result
for eight or sixteen places.

45 1 0 1 1 .0 1
WD S iiiiiiia ]

4510: 1D11ﬂ12

Fig. 2-3. Converting a decimal number to binary by subtraction.

Once again, we can leave the tedium to our computer. Although the
conversion from decimal to binary seems more difficult for us, notice
that the program in Listing 2-2 is actually more compact.
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. Listing 2-2

1@ INPUT a: PRINT a,
280 FORi=15TO@STEP -1
3@ IF a<2ti THEN GO TO 78
4@  PRINT "1"; !
50 LET a=a-21i
6 GCOTOsg
78 PRINT "@":
8% NEXTi
9 GCOTO 1M

BINARY MATHEMATICS

Having covered the complete foundation for the binary number
system, we shall now investigate the subject of binary arithmetic. In
many ways, binary calculations are easier to perform due to the limited
size for each digit.

Addition

Probably the easiest way to describe binary addition is by sum-
marizing the results of all possible two-number addition problems:

0
= 1
1

+ 4+ + +
—_0O =0
|

= 0 plus carry

You may see a similarity between these results and the discussion
of the Exclusive-or function from the last chapter. You should begin to
see now how a bunch of wires and switches can actually perform
something useful like adding numbers. With this set of rules, it is
possible to add any two binary numbers of arbitrary length. Simply
start at the right column and add each pair of numbers just as we add
decimal numbers. Likewise, whenever there is a carry into the next
digit it gets added with the other digits in that column. Of course, now
there are three numbers to add; but this proves to be no more difficult.
If one of the numbers is zero, then the result can be found by adding
the other two numbers. When adding three 1's, the answer is simply 1
plus a carry into the next place. A few examples should make this
clearer:
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r 11 LT 4 carries
11001010 019011061 11611110
+ 900191100 + 11000111 + @1110119
11119110 11110100 101010100
Subtraction

If we were to extend this line of thinking, we would next need a set of
rules to define subtraction. Instead of having a “carry” bit to worry
about, we would now have to deal with the possibility of a “borrow”
condition. For example, when subtracting 297 from 481, the problem
is written like this:

481 4 minuend
— 297 4 subtrahend

184 ¢ remainder

We start by trying to subtract 7 from 1. Since that would leave us with a
negative number, we borrow ten from next column, instead, changing
the 8toa7. Then we subtract the first 7 from 10 + 1, or 11, resulting in
the answer of 4, We then repeat this process until all columns have
been subtracted. Hopefully, we do not run out of columns to borrow
from (if this happens, then the subtrahend was actually larger than the
minuend and we should perform the opposite subtraction and give the
result a minus sign).

It turns out that there is a much easier way to perform subtraction of
binary numbers (at least as far as computers are concerned). By
converting the subtrahend to a different format — called its comple-
ment — we can transform any subtraction problem into an addition
problem. This proves to be quite efficient and it also solves another
problem — that of writing negative numbers.

Negative Numbers

There often comes a time when we must express a number less
than zero. We have learned to write such negative numbers by placing
a small minus sign in front of the first digit. Then when we add negative
numbers to positive numbers, we actually perform subtraction on the
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negative ones. While this seems to work conveniently for humans, the
computer has no comprehension of a minus sign.

One way to represent negative numbers would be to use one bit of
the number to represent the sign — say the left-most bit being zero for
positive numbers and a one for negative numbers. Using such a
scheme, the number 45 would be written as 00101101, while negative
45 would be written as 10101101. Note that the first bit indicates the
sign, leaving only seven bits remaining for the number. Thus an eight
bit byte can represent a signed decimal number between —~ 127 and
+ 127. The problem with this approach is that adding a negative and
positive number of the same magnitude does not give zero as
expected. That is,

P0101101  (+45,,)
+ 10101181  (—45,,)

11011618 (—90,,) 4 wrong!!

There is another way of denoting negative numbers which solves
this problem. (While it may seem more complicated to us, it simplifies
things for the computer.) The first step in creating a negative number
is to complement each bit of the positive binary number. That is,

change each 0 to a 1 and every 1 to a 0. For example, the number 45
becomes:

28101101 (45,0)
11010010 (each bit complemented)

The next step is to add one to the number giving us:

11010010
+ 1

11610011 (—45,,)

This result is called the twos complement of the original number. We
will use it to represent negative numbers. Just to be sure that you
understand, let's calculate the twos complement of a couple more
numbers:
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21100161  (101,,) (217,0) 11011001
100110106 4 complement » 020100110
E 1 4 add one » + 1
10611011 (—101,,) (—217,,) 90108111

The twos complement of a number has great significance for binary
numbers. For one thing, it has the correct property of negative num-
bers in that adding any negative number to its positive counterpart
yields a result of zero: :

00101101  (+45,)
+ 11010011 (-45,,)

100000000 (@, ignoring carry)

Notice that the result does equal zero if we ignore the carry into the
next higher position. Actually it is quite easy to show that adding any
number to its twos complement equals zero, according to the way in
which we have derived the twos complement number. Since we
started by taking the complement of the number, it should be obvious
that any number plus its complement equals abinary1 111111 1,
for example:

09101191 4 any number
+ 11010010 -4 plus its complement

11111111 4 equals all ones

Therefore adding the twos complement to a number must equal this
plus one or:

11111111
+ 1

100000000

This proves that the twos complement notation satisfies the condi-
tion that adding any number to its negative value equals zero. Further-
more we can show that adding any numbers, regardless of their signs,
may be accomplished with this scheme. For example:
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00101181  (+45,,)
+ 11116118 (—10,,)

00100011  (+35,,)

Notice again that when dealing with negative numbers we will ignore
any carry out to the ninth binary place. Since twos complement
notation correctly follows the algebraic rules for negative numbers, it
becomes the natural choice. It also makes a separate subtraction
operation unnecessary. To subtract two numbers, simply form the
twos complement of the subtrahend and then add.

Binary Fractions

What happens when we need to express numbers less than one but
greater than zero? In modern thinking, these are known as fractions.
You probably know two different ways of expressing fractions. One
way is to divide the whole number “1” into several equal parts and
then express how many of these portions there are. For example, we
might say add “one-third” of a cup of sugar. When the partial units
chosen become a negative power of the base 10 system, we can then
express the number as a decimal fraction. For example, one-tenth is
commonly written as 0.1 where the decimal point signifies that the
numbers to the right are fractions.

We extend the decimal system by adding places for the negative
powers” of ten as shown in Fig. 2—4. The same thing applies to the
binary number system as shown in Fig. 2-5. Table 2—1 lists some of
the negative powers of two.

Multiplication

As previously mentioned, the Z80 CPU does not know anything
about multiplication or division. The only mathematical functions that it
can perform directly are addition and subtraction. However, it is quite
easy to show the relationship between these four operations.

*Raising a number to a negative power is equivalent to dividing by the number raised to
the positive power (e.g., 10—3 = 1/109).
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Multiplying any number A by another number B, is equivalent to

adding A to itself B times or adding B to itself A times. That is:

B times A times ;
AxB = A+A+ ... +A=B+B+ ... +B

6x3 = 6+6+6 = 3+3+3+3+3+3 = 18

So far so good, as long as we are dealing with small (one digit)
numbers. But when we try to multiply 46 x 1023, this simple addition
approach becomes unwieldy:

— 102 OR 100 POSITION

107 OR 10 POSITION

10° OR 1 POSITION

DECIMAL POINT

10-10OR 0.1 POSITION

10-2 OR 0.01 POSITION

5
\— 5x001= 0.05

3 4 9 2
2x01 = 0.2
Ox1 = §
4%10 = 40
3x100 =300
34925

Fig. 2-4. Extending decimal notation to include fractions.
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1023 times — whew!
‘_’\“\
46 %1023 = 46+46+46+46+ ... +46

Even if we could add two numbers per second, it would take quite a
while to perform this simple problem. As you already know however,
there is an easier way to multiply multidigit numbers. This process
relies on our definition of such numbers:

46 = 4x10 +6 -

27 OR 128 POSITION

26 OR 64 POSITION

25  OR 32 POSITION

24  OR 16 POSITION

23  OR 8 POSITION

22 OR 4 POSITION

2! OR2POSITION

20 OR 1 POSITION

BINARY POINT

2-1OR1/20R 05 POSITION
2-20R 1/4 OR0.25 POSITION

17 2-3 OR 1/8 OR 0.125 POSITION

11100101 . 101

]* ix 0125= 0.125
O0x 025 = 0
1x 05 = 05
1x 1 = 1
O0x 2 = 0
12 4 = 4
0x B8 = 0
0x 16 = 0
1x 32 = 32
1x 64 = B4
1% 128 =128

229625

Fig. 2-5. Extending binary notation to include fractions.
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Therefore:

1023 x 46 = (1023 x 4) x 10 + 1023 x 6

]

That is, we break down one of the multidigit factors into its component
parts. This reduces the problem to a series of single-digit problems
which are easier to perform. We can then add the results of these
simpler problems, keeping track of their relative weights, to arrive at
the final answer. Thus we would write:

1023 4 multiplicand
X 46 4 multiplier

6138 (6x1023) partial
4092 (4 x1023) products

47058 4 product

Note that the second partial product is shifted over one place to the
left. This gives it the proper weighting factor ( x 10) necessary for the
addition of the two partial products.

Binary multiplication is probably the simplest of all, as evidenced by
the two-number equations next:

— ok =
b
| I |

D ao

-8 -3

Note how this corresponds to the function of an anp gate. Another way
of looking at this is to say that zero times any number equals zero and
that one times any number equals that number. This should sound
reasonable since the same is true in the decimal system. But since the
binary system stops at 1, we do not have any further multiplication
“tables” to worry about. This also eliminates the problem of “carries”
from one digit to another. Therefore, to multiply two binary numbers
we proceed like so:
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1011101 (9340)
x 18110 (2240)

2000000
1811101
1011101 partial products
0101010151010
1011101

11111111118 (2046,)

Notice that every partial product will be either all zeros or the
multiplicand itself. There is never any carry during the multiplication
although there may be when adding up the partial products. Thus the
multiplication of binary numbers can be reduced to three simple steps:

1. Checking the value of each bit in the muiti.piier
2. Shifting a binary number to the left
3. Adding the result

As we will show in Chapter 12, these steps are quite easy for the
Z80 to perform. With the proper machine language code, any size
binary numbers can be multiplied. Finally, note that whenever two
numbers are multiplied (in any number system), the resuiting product
can have as many digits as the combined total of the numbers being
muitiplied. In a computer, this means that multiplying two 8-bit num-
bers can yield a 16-bit result. Whenever negative numbers are to be
multiplied, they are first changed to their positive values. After the
multiplication is performed, the sign of the result is determined by the
standard rule — if both signs were the same, the result is positive,
otherwise the result is negative. In this latter case, the result is then
converted back into its twos complement form.

Division

Division can be defined in terms of a similar process using subtrac-
tion. We won't bother with all of the details, but simply state that the
number of subtraction operations possible (before the dividend goes

negative) becomes the quotient. Anything left over becomes the
remainder. We can even use the standard division notation:
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101 4 quotient

101 | 11010 4 divisor/dividend
101

@011 ;
0000

110
101

1 4 remainder

There are many ways to program the Z80 to perform bi nary division.
We'll give one example in Chapter 12.

THE HEXADECIMAL NUMBER SYSTEM

Writing binary numbers can get tedious and difficult to read. A
common “shorthand notation” involves grouping the binary number
into four-bit chunks. Thus an eight-bit number would break down into
two chunks. With four bits, there are 16 possible values for any chunk.
If we try to represent them by the decimal numerals 0-9, it leaves us
with 6 more values but no more numerals. We need more symbols, so .
we turn to the letters of the alphabet. The next value becomes A
followed by B etc. up to F. This is the basis for the base 16, or
hexadecimal number system. Table 2-2 shows the decimal/hexa-
decimal relationship. When writing hexadecimal numbers, we will
often add the letter h to indicate the base rather than using a sub-
scripted number 16. Thus 3Bh is the same as 3B,.

Converting Hexadecimal to Decimal

Converting hexadecimal to decimal is very similar to converting
binary to decimal. Instead of using the binary weight factors; we now
use powers of 16 as shown in Table 2-3. Thus:

1AE = 1 x 162= 1 x 2566= 256
Ax 16'= 10 x 16= 160
EX 189= 14 x 1= 14

430
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Table 2-2. Hexadecimal Number System

Bintg_y Hexadecimal ‘Decimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

-
OW-TDU = WO — O
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Table 2-3. Powers of 16

16N N 16—N

1 1
16 0.0625
256 0.00390625
4096 0.000244140625
65536 0.0000152587890625
1048576 0.00000095367431640625
16777216 0.000000059604644775390625

DO Wk -~ 0O

Converting Decimal to Hexadecimal

The same thing holds true for converting decimal numbers to hexa-
decimal. You can use the subtraction method as in Fig. 2-3 or you can
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write the conversion like a division problem with changing divisors:

1AE,q !
1 16 256 | 430
256 Note: All numbers are in
174 base 10 except quotient.
160 .
14

OTHER BINARY REPRESENTATIONS

So far, we have shown how binary representations are used for
writing numbers between 0255 or sighed numbers between — 127 to
+127. Obviously a computer must deal with other forms of data.
Three major formats are used by almost all personal computers. The
simplest involves assigning each of 128 binary values to represent
each letter in the alphabet including numbers and punctuation. In this
way, any type of written information can be stored within the computer
in binary form. As with almost all coding schemes, there is no correct
code, but the most popular is the ASCII code as shown in Appendix A.
The T/S 2086 uses ASCII code to store characters. It also assigns the
unused codes and the remaining 128 possible byte values to repre-
sent graphic characters, special operations, and the BASIC key-
words. The entire character set for the T/S 2068 is shown in Table
24,

Another data structure can be used to store integer numbers
greater than 256. This requires more than eight bits, so we use two
complete bytes. This gives us 16 bits to work with for a total of 65,536
different values. This should suffice for all but the largest numbers.

Numbers greater than 65,536 require more bytes to store them. To
represent very large numbers, another number format is used. This
format is called scientific notation and we will show how the computer
handles such numbers in the next chapter.

Finally, when we introduce machine language programming we will
come across another form of binary representation called binary
coded decimal (BCD). This notation allows two decimal numbers to be
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Table 2-4. T/S 2068 Character Set (ASCII Compatible)

Code Character Code Character
@ Not used 32 Space
1 Not used 33 !
2 Not used 34 ”
3 Not used 35 #
4 Not used 36 $
5 Not used 37 %
6 PRINT comma 8 &
7 EDIT 39
8 Cursor Left 40 (
9 Cursor Right 41 )

18 Cursor Down 42 *
11 Cursor Up 43 +
12 DELETE 4
13 ENTER 45 -
14 Number (slug) 46 .
15 Not used 47 /
16 INK control 48 @
17 PAPER Control ' 49 1
18 FLASH Control 58 2
19 BRIGHT Control 51 3
2@ INVERSE Control 52 4
21 OVER Control 583 5
22 AT Control 54 6
23 TAB Control L
24 Not used 56 8
25 Not used 97 9
26 Not used 58
27 Not used 98 ;
28 Not used 6@ «
29 Not used 6l =
30 Not used 62 >
31 Not used B3 7
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Table 2-4 — cont. T/S 2068 Character Set

(ASCII Compatible)
Code Character Code Character

64 @ 9% £
65 A 97 a

66 B 98 b

67 C 9 c.

68 D 1600 d

69 E 1801 e

70 F 192 £

71 G 103 g

72 H 164 h

73 1 185 i

74 ] 106

75 K 107 k

76 L 108 1

77 M 189 m

78 N 114 n

79 O 111 o

80 P 112 p

81 Q 113 g

82 R 114 r

83 S 115 s

84 T 116 t

85 U 117 u

86 V 118 v

87 W 119 w

88 X 120 x

89 Y 121 y

99 Z 122 =z

91 [ 123 { (ONERR)
92 | 124 STICK

93 ] 125 } (SOUND)
94 = 126 FREE

95 127 © (RESET)
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Table 2-4 —cont. T/S 2068 Character Set
(ASCII Compatible)

Code Character

45

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
139

BRI SSdEE ML O

(j) user

(k) graphics
(1)

(m)

(n)

(o)

(p)

Code Character

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

(q)

(r)

(s)

(1)

(u)
RND
INKEY$
PI

FN
POINT
SCREENS$
ATTR
AT
TAB
VALS
CODE
VAL
LEN
SIN
COS
TAN
ASN
ACS
ATN
LN
EXP
INT
SQR
SGN
ABS
PEEK
IN
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Table 2—4 — cont. T/S 2068 Character Set

(ASCII Compatible)

Code Character Code Character
192 USR 224 LPRINT
193 STR$ 225 LLIST
194 CHRS 226 STOP
195 NOT 227 READ
196 BIN 228 DATA
197 OR ' 229 RESTORE
198 AND 230 NEW
199 <= 231 BORDER
200 = 232 CONTINUE
201 o 233 DIM
202 LINE 234 REM
203 THEN 235 FOR
204 TO 236 GOTO
205 STEP 237 GO SUB
206 DEF FN 238 INPUT
207 CAT 239 LOAD
208 FORMAT 240 LIST
209 MOVE 241 LET
210 ERASE 242 PAUSE
211 OPEN # 243 NEXT
212 CLOSE # 244 POKE
213 MERGE 245 PRINT
214 VERIFY 246 PLOT
215 BEEP 247 RUN
216 CIRCLE 248 SAVE
217 INK 249 RANDOMIZE
218 PAPER 258 IF
219 FLASH 251 CILS
220 BRIGHT 252 DRAW
221 INVERSE 253 CLEAR
222 OVER | 254 RETURN
223 OUT 255 COPY
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“packed” into an 8-bit byte as shown in Fig. 2—6. While this is not as
efficient as true binary notation, it can eliminate errors that creep in
during the binary/decimal conversions. (With binary fractions for

instance, we often have to round off to a fixed number of binary
places.) ‘ |

BINARY 7 BINARY 4

7409= J0 1 1 1]lo 1 0 o

Fig. 2-6. Binary Coded Decimal notation.
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Exploring the T/S 2068
BASIC

T/S 2068 OPERATING SYSTEM

When the T/S 2068 is first turned on, a few horizontal bars appear
on the screen, possibly some flashes, and then the title page comes
up with the Sinclair and Timex copyright notices. You may have
assumed that the computer was just warming up, like the picture tube
does in your tv set. Actually, there are no parts inside the T/S 2068 that
need to warm up to operate. The instant that you turn on the power, the
computer begins executing a program called the operating system
that resides inside the computer in ROM.

With few exceptions, whenever power is applied to the Z80, it
attempts to execute a program. In a sense, the CPU is like a robot
blindly carrying out its duty. It looks at an internal counter to see what
memory address holds its next instruction, reads that instruction, and
then tries to perform whatever function is called for. As we will see in
Chapter 4, the Z80 CPU can be forced to begin executing its program
at the start of memory, namely address 0000. By placing ROM at this
address, the computer can be made to perform in a predictable
manner. Every time the computer is turned on it will begin executing
whatever program is stored in the ROM.

Initialization

In the T/S 2068, ROM contains a program that initializes the com-
puter and sets it up to accept commands typed on the keyboard by the
user. Even after the copyright page has been displayed and the
computer just seems to be sitting there, it is really still executing a
program.
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At the same time, another circuit inside the T/S 2068 generates the
video display that you see on your tv or monitor. This circuit uses a
portion of the T/S 2068's RAM to store a digital pattern similar to what
is displayed. When the computer is first turned on, the contents of this
portion of RAM (as well as the rest of RAM) is unknown. Almost any
value can be present in any given RAM location. Because the RAM
chips are very symmetrical in design, however, it is likely that many
locations have the same value. Because of this, we usually see a
- regular pattern on the screen, such as a few horizontal bars.

As the initialization routine stored in ROM begins to execute, one of
the first things it does is to check how much RAM is in the machine. In
doing this, almost every byte of RAM is set to zero. You can easily
check this for yourself. Turn on the computer and immediately PEEK at
any location between 26800 and 65300. You will find a value of zero at
all of these locations.

Initialization of the T/S 2068 also includes checking for ROM con-
tained in a Timex Command Cartridge. Depending on the amount of
RAM you have in your computer, the type of cartridge (if any), and
certain other peripherals, the initialization program partitions off sec-
tions of RAM. Certain areas of RAM are reserved for the video display
information, system housekeeping chores, the BASIC program and its
variables, peripherals such as a printer, etc. If a cartridge has been
installed, then the computer may continue by executing the program
on that cartridge. Otherwise, the standard operating system program
contained within the T/S 2068 will continue executing.

By Your Command . . .

After a few seconds, the initialization routine is completed leaving a
blank screen with two copyright notices. At this point, the computer
does not know what you want it to do, so it enters a routine that waits for
further instructions. The only way of communicating our instructions to
the computer is by typing them in on the keyboard. Therefore the
major function of this routine is to determine when we have depressed
a key and which key that is. Furthermore, this routine must keep track
of all the keys typed until the ENTER key is pressed. This is because
the computer cannot determine what you want it to do until the entire
command has been entered and the ENTER key pressed.

While the computer is waiting for you to type in a command, it takes
care of a few housekeeping chores. These include updating the video
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display and keeping a running “frame counter” (more on these later).
Also, whenever a key is pressed and held down for more than half a
second, this routine automatically simulates the action of repeatedly
pressing and releasing that key. This is known as the auto-repeat
function. The actual delay before a key begins to repedt and the repeat
rate are both controlled in software. In Chapter 15, we will show how
these values can be changed with a simple POKE statement.

As we continue typing in our command, the computer stores each
character in a small section of RAM called the edit buffer. The actual
location of this buffer changes as new commands or program lines are
entered but the computer always keeps track of where it is. When the
ENTER key is finally pressed, the operating system then begins to
process the command.

The first thing that it does is to invoke a routine called a parser which
examines the line of characters that were typed and which are now
sitting in the edit buffer. It is the parser’s job to figure out what com-
mand, if any, is being given to the computer. The first task of the parser
is to determine whether a direct command or a BASIC program line
has been entered. This is done by looking at the first character in the
line. If it is a number, then the entire line is interpreted as a BASIC
program line; otherwise, it must be a direct command. We’ll discuss
the latter case first. _

After determining that this is a direct command, the parser con-
tinues to scan each character of the line. If the entry contains any
syntax errors, it is reported by placing a question mark in front of the
offending character. Assuming there are no errors, the parser then
determines what action to take and transfers control to the proper
routine in the system ROM. Each of the T/S 2068 commands has an
appropriate machine language program, or subroutine, which handles
that command. If the command requires further data such as a vari-
able name, constant, numeric expression, etc., then the parser con-
tinues scanning the buffer for these pieces.

A TUTORIAL Oﬂ THE T/S 2068 BASIC INTERPRETER

Most of the system ROM contains a program called the BASIC
interpreter. This is the program that allows us to communicate with the
T/S 2068 in an English-like manner. The interpreter program is written
in machine language and integrated into the operating system. An
interpreter program is interesting in that it allows us to write and
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execute programs using a higher level language such as BASIC. But
as far as the CPU is concerned, it is always running the interpreter
program. The job of the interpreter, therefore, is to translate BASIC
commands into an appropriate sequence of machine language
instructions.

One of the advantages of using a higher level language is that you
do not have to keep track of absolute memory locations. When writing
a program and/or storing data in the computer, everything gets broken
down into a series of bytes. Since all 65,535 bytes look alike to the
Z80, there is a problem in keeping track of which bytes hold what
information. When you write programs in machine language, itis up to
you to keep things straight. This can become very complicated and it is
a major reason why higher level languages were developed. In BASIC
for instance, we only have to say:

LETa=23

to create a variable in RAM and store the value of three there. We have
no idea as to the exact memory location(s) where “a” is to be found,
but we can always get the current value of the variable by simply
referringto it as “a.” This, of course, makes programming much easier
but limits the program’s speed and versatility. One way to get around
these limitations is to include machine language routines in your
BASIC programs (or, of course, write the programs entirely in machine
language). Part Two of this book is devoted to this subject. First,
however, we'll examine the T/S 2068 BASIC interpreter in more detail.

At this point, we can begin to talk about the specifics of the T/S 2068
BASIC interpreter and how it works. Fortunately, we can use the
computer itself to explain many of these functions. To do this, we will
make extensive use of the PEEK and POKE statements. This is
because we need to work with absolute memory locations and the T/S
2068 only speaks BASIC when it is first turned on. Just to make sure
that you understand PEEK and POKE, let’s take a moment to look at
them in some detail.

The PEEK Command

The PEEK command is used to look at the contents of a single byte
in memory. Any valid address (in the range of 0-65,535) can be
examined. It does not matter what type of memory is located at that



52 Timex/Sinclair 2068 Intermediate/Advanced Guide

address. The Z80 CPU will simply go to that location and see what
data is there. If there is no circuit device mapped into that address,
then the data read by the Z80 will be meaningless. If there is RAM or
ROM there, then the information (one byte’s worth) will be read out by
the Z80 and then relayed to the program or display.

Since all data read by the PEEK statement consists of one byte, the
result will always be in the range of 0-255. This result can be printed on
the screen by a command such as:

PRINT PEEK @

The result of entering this command is the number 243 printed on the
screen. This is the value stored at that location and it will always be
there. That is because this data is stored in ROM and therefore all T/S
2068s will display the same results. There are actually over 16,000
bytes to choose from for which we can predict the PEEK results.

The result from a PEEK can also be assigned to a variable, for
example:

LET a = PEEK 100090

Quite often, computers must deal with numbers greater than 255. A
16-bit memory address, for example, requires two adjoining bytes.
One byte holds the lower eight bits of the address or the least signifi-
cant byte. The next memory location then contains the upper eight
bits or the most significant byte. These are also referred to as the low
and high bytes respectively. Although we would normally write the
high byte first followed by the low byte, in most cases, the computer
finds it more convenient to store the low byte first. It is the location of
this byte that is usually referred to when describing the location of a 2-
byte number. The high byte is therefore found at the next higher
memory location.

When using the PEEK function to examine a 16-bit number, we must
use the formula:

PEEK n + 256 * PEEK (n+1)

For example, to find the starting address of a BASIC program in the
T/S 2068, we would type:

PRINT PEEK 23635 + 256 # PEEK 23636
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The POKE Command

The POKE command allows us to place whatever value we desire
into any RAM location. Although we could POKE to any valid memory
address, unless there is RAM located at that address: (or some other
device capable of storing information) the data POKEd will be lost. For
example, if we POKE to a ROM location, nothing much will happen.
Try:

POKE D 0

Then:
PRINT PEEK @

Note that the data at location 0 has not changed from the previous
PEEK. This data is permanently stored in the computer's ROM and
cannot be changed. Also note that the POKE command requires two
parameters: the address to be changed and the data to be put there.
Again, the address must be valid (0-65,535) as well as the data
(0-255). Otherwise, an “integer out of range” error will be reported.

If we try the last example with a “good” memory address (i.e., one
containing RAM and not reserved for system use), we can verify the
results of a POKE command.

POKE 3000010

PRINT PEEK 30200

POKE 30000:33

PRINT PEEK 30200
etc.

There are many ways to POKE 16-bit numbers, but none ofthem are
elegant. One way to POKE a 16-bit value “data” into the two bytes
starting at “address” would be:

LET temp=INT (data/256)
POKE address, data-temp*256: POKE address +1, temp

Now that we have the digging tools (PEEK and POKE), we are ready
to explore the inner workings of the T/S 2068 BASIC. Our exploration
will be divided into two parts since there are two parts to any BASIC
program: the program itself and the variables, or data, that it uses.
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These two items are stored in different areas of the computer's RAM
and the first job will be to find out where they are. Their location
depends on a variety of factors, and indeed, as we use the computer
(entering program lines for example), these areas can even move
around! Fortunately, we know that the computer must keep track of
their location. It does this by maintaining a table of pointers, sort of an
index, to various memory locations that it needs. These pointers are
stored in the RAM area reserved for system use. A complete list can be
found in Appendix D of the T/S 2068 User Manual, but for now we will
only be concerned with two of them. The first is called PROG and is
located at address 23635 (plus 23636, since it is a two-byte number).
This pointer always indicates the memory location where the image of
your BASIC program resides. We will cover this in more detail later.

The other pointer we will need is called VARS. As you might guess,
this tells us where the variables are located. By the way, names such
as PROG and VARS are used only for convenience — to help you
remember what they are used for. These terms have no special
meaning to the computer.

VARIABLE STORAGE

CAUTION: As you follow along with your computer, it is imperative
that you enter each example precisely. Do not skip any or try some
different wording. If you do, the memory addresses given will not be
valid.

Integers
If we type the command:

LETa=1

into the computer we know that the BASIC interpreter will have to
create a variable called a and give it a value of 1. Creating a variable is
really nothing more than setting aside some memory for its value and
keeping track of the variable’s name and where it is located. An easy
way to do this is by keeping all variables together in a sort of list. That
is, as more variables are needed, simply add them to the bottom of the
list by placing them in the next higher memory location. Then as long
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as we make it clear where one variable starts and another ends, we
only have to keep track of the starting address for this list.

This is exactly what the T/S 2068 does as we will demonstrate with
the following exercise. When the computer has just been turned on,
there will be no variable list, since no variables have been defined yet.
The beginning address for this table has been determined, however,.
and we can find this out by entering:

PRINT PEEK 23627 + 256 % 23628

The number 26710 should appear after you press ENTER. Thus the
number 26710 is the starting address for a list of variables to be stored
in memory. To place some variables into the list we can start by
entering:

LET a=1

The computer responds with:

OOK,»D:1

which, of course, just means that it has finished your command and
there were no errors. Although nothing else appears to have hap-
pened, we can check that a variable called “a’ has in fact been created
with a value of 1.

Since we know the starting address for the variable list, it stands to
reason that the variable “a” should be found there. So type:

PRINT PEEK 26710

If you've done everything correctly so far the result should be 97. If we
check the T/S 2068 character set in Table 2—5, we will find that 97 is
indeed the code for the letter “a.” So it would seem that the first byte
represents the name of the variable. The value of “a” must also be
stored here, so let’s do a few more PEEKS:

PRINT PEEK 26711 (@)
PRINT PEEK 26712 (9)
PRINT PEEK 26713 (1)
PRINT PEEK 26714 (@)
PRINT PEEK 2B715 (@)
PRINT PEEK 267186 (128)
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The number in parentheses is the result you should get from enter-
ing each statement. Typing in all of those PRINT statements is a bit
tedious. You may have realized that it could be done easier by using a
FOR . .. NEXT loop. This is true, but it would require us to define
another variable which we don’t want to do quite yet.:And, if you had
tried this by writing a BASIC program, the entire variable list would
move to a completely new location in memory!

Before we explain the results of these PEEK statements, it is impor-
tant to realize that there are three types of variables allowed in BASIC:
whole numbers (integers), real numbers (floating point), and strings
(characters). Each of these variable types use a different format for
storing its value. Furthermore, there are slightly different versions for
variables with single character names as opposed to longer names.
Finally, we will also examine the structure of numerical and string
arrays.

Getting back to our previous results, we can generalize the storage
of any single-letter, numeric variable within the T/S 2068 as shown in
Fig. 3-1.

The first byte equals the ASCII code for the letter which is the
variable name. Fig 3—1 shows this in a slightly different fashion:

0 1 1
| | | | |
\—"V'_A
letter — 60h
pranay
TA?LTBLIEIN’“I‘MIE FIVE-BYTE INTEGER OR HEﬁ.LL NUMBER VALUE

0 1 1 LETTER - 60h
e e —

Fig. 3-1. Data structure for numeric variable with single letter name.

The reason for this format will become clear as we discuss the other
types of variables. In this case, however, we can note that placing the
three bits 011 in front of any 5-bit value is equivalent to adding
01100000 to that number. Converting to hex, we find that this means
adding 60h. Therefore, adding 60h to “letter — 60h” just means that
the letter is stored as is.
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BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5
0 SIGN LSB MSB 0
ALWAYS 0=POSITIVE 16-BIT VALUE ALWAYS
ZERO FFh=NEGATIVE (LEAST SIGNIFICANT ZERO
(SIGNIFIES 'BYTE FIRST)

INTEGER VALUE)
Fig. 3-2. Data structure for an integer value (- 65535 to +65535).

We will be using this technique of subtracting 60h from a letter’s
ASCII code, so it does deserve some explanation. Since a variable
name must always begin with a letter, the first (or only) character in a
variable name can only take on 26 different values. This is also due to
the fact that the T/S 2068 treats upper-case and lower-case letters as if
they were the same (as far as variable names are concerned). Since
we only need 5 bits to describe 26 different items, the T/S 2068 steals
the remaining 3 bits of the first character in a variable name for
indicating what type of variable it is.

For any numerical variable (integer and real) the next five bytes hold
the current value for that variable. In our example, the next byte is a
zero and this indicates that the value is stored in integer format. Fig.
3-2 outlines the significance of each byte in an integer data element.

Following the zero is a byte that represents the sign of the integer. It
will be zero if the number is positive, 255 (FFh) if the number is
negative. The next two bytes represent the lower and then higher byte
of a 16-bit value. In our example, if we write the two bytes together we
would get a value of 01 ,5¢ Which, of course, is equal to the number 1.
This agrees with the value that we previously assigned using the LET
statement. In general, the higher byte must be multiplied by 256 and
then added to the lower byte to determine its decimal value.

The fifth remaining byte of an integer variable will always be zero as
confirmed by the PEEK 26715. Finally, there is the value 128, which is
the last byte at which we ungmaﬂy PEEKed. This is used to signify the
end of the variable list.

If we now type:

LETb = -2
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then a second variable, ‘b’, should get added to the list. Check this by
typing: (I promise after this we'll use a FOR . . . NEXT loop):

i

PRINT PEEK 28716 (98) b

PRINT PEEK 26717 (0) integer
PRINT PEEK 26718 (255) negative
PRINT PEEK 26719 (254) ] 5
PRINT PEEK 26720 (255)

PRINT PEEK 26721 (0) always zero
PRINT PEEK 26722 (128) ' end of table

We've added some comments on the right to illustrate the results. As
you can see, the 128 at location 26716 has been replaced by a 98
which is the code for the letter b. The next byte is zero, signaling that
an integer value follows. The next byte is 255 which indicates that the
number is negative. The following two bytes when taken together form
the integer value. But 255 * 256 + 254 certainly does not equal 2. As
you may have guessed, the T/S 2068 stores a negative number using
its twos complement. notation. Check for yourself that this value is
indeed the correct result for a negative two. One way to determine the
decimal value of a negative integer is to subtract 131,072 from its
unsigned value (e.g., 255 x 256 + 264 = 131,070 — 131,072 = —-2).

A good question to ask at this point might be: Why use five whole
bytes to store a number that could be put into two bytes plus one extra
bit? In fact, most other computers limit integers to one half of this range
(i.e., —32768 to +32767) and thereby only require two bytes for each
integer. The only possible answer is that it makes integer storage more
compatible with that of floating point numbers. These are described
next.

Floating Point

Many times we need to work with numbers larger than 65,535.
While we could always add more bytes to represent numbers of any
given size, it becomes much too inefficient as the number gets very
large. Furthermore, we also need some way to signify fractions such
as %2. The solution to both of these problems is to use scientific
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notation. Numbers stored this way are also called floating point num-
bers.

You may already be familiar with this technique from working in
BASIC. Whenever the computer needs to display a very large, or very
small number, it uses the form: ‘

X.YYYYE =nn

Where x.yyyy represents the mantissa and nn is the exponent. Of
course, we know that this is read as x.yyyy times ten to the nn power.
You should be able to see that scientific notation lets us represent very;,
very large (or small) numbers, although only a few significant figures
are retained.

The same procedure can be applied to writing binary numbers. Only
now the exponent represents powers of two instead of ten. If we assign
one byte to represent the exponent, then we would have a range of
0-255. We also need to consider negative exponents. A convenient
way to deal with this is to add 128 to the exponent before storing it and
then subtract it again to retrieve the correct number. Then the expo-
nent can have a value between —128 and +127. Raising two to these
powers gives us an equivalent range of about 10E —30 to 10E + 30.
This should certainly prove adequate for most jobs.

Therefore, whenever a number is too large to be stored as an
integer, or if it contains some fraction, binary scientific notation is used.
First the number must be normalized which means converting it to a
mantissa between 2 and 1. (This is equivalent to how we normalize
decimal numbers in scientific notation — where we require the number
on the left of the decimal point to be between 0 and 10). If the mantissa
is not already in this range, it is multiplied or divided by 2 as many
times as necessary until it is. Each time this is done, the exponent is
decreased or increased by one, to keep track of the correct value. With
the mantissa normalized and the correct exponent calculated, we are
almost ready to determine how it will be stored in memory.

First of all, we can arbitrarily decide how many bytes to use for the
mantissa. Many numbers will have an infinitely long mantissa just like
the decimal form of 5 is .3333 . . . Therefore, many numbers will
require that the mantissa be rounded off to a fixed number of digits. In
the T/S 2068, floating point numbers are stored with a 4-byte, or 32-bit
mantissa. Thirty-two bits lets us represent numbers as high as
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| | i |
Exic;h;g w FOUR BYTES
| I | !
EXPONENT 32 BIT MANTISSA
(LEADING 1 IMPLIED)
SIGN BIT
{0 = POSITIVE)
(1= NEGATIVE)

Fig. 3-3. Data structure for floating point value.

4,294,967,296 which means that we will have the equivalent of over 9
decimal-place accuracy.

There is one more point to consider and that is the overall sign of the
number. We know that the sign of the exponent has been accounted
for by adding 128 to it. It turns out that the first bit in the mantissa will
always be a one (since the mantissa has been normalized to a number
greatthan 'z or 0.1 in binary). Therefore, this bit really does not need to
be stored. In its place, we can then put a sign bit — 0 for positive, 1 for
negative. At last, we can show the general form for storing a floating
point number (see Fig. 3-3).

To check this on the computer, type:

LETc = 1/10
and then:
FOR i = 26722 TO 26727: PRINT i s PEEK i: NEXT i

Notice that we type this entire line as an immediate command (i.e.,
without a line number). By now you should understand why. Your
screen should now look like this:

26722 a8 c

26723 125 -3 (+128)
26724 76

26725 204

26726 204 1100...
26727 285

To understand these numbers, let's calculate what %o should be in
binary notation. Referring back to Chapter 2, we can calculate that:
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Yo = 0.0001100110011001100 . . .

Normalization of the mantissa is really easy to perform. Simply
count how many places to the right of the binary point we must go to
reach a 1. In this case, there are three so the exponent will be 128 — 3
= 125. Moving the binary point over, we now have a mantissa of:

1100110e11001100 . . .

Because we only have 32 bits, the mantissa is rounded off to that many
places. Because the 33rd number is a one, the 32nd bit gets rounded
up from O to 1. Finally, we drop the leading 1 and replace it with the sign
bit, indicating that the number is positive. Thus .%o would.be stored as:

01111101 091001108 11001100 11001160 11001101

If we now convert each byte to its decimal value, we will come up with
the exact same results printed by the computer. |
We'll now examine what happens when we add a variable whose
name is more than one character. Type ENTER to clear the screen and

then:

LET dog = 3

Then:

FOR i=26747 to 26754: PRINT i+ PEEK iz NEXT i

Your screen should now look like this:

26747 164 d (+64)

26748 111 o

28749 231 g (+128)

26750 @

26751 @

26752 3 integer value 3
26753 )

26754 2

Once again we will start with the general form for a numeric variable
whose name is longer than one letter. This form is shown in Fig. 3—4.
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IIIIIIIIIII]IIHJIIIFIII { {_l
101 0 1 5 BYTES
i o i T O 0 IO 0 R O B0 1 ) !

LN o -

| —

LETTER—60h 2ND CHARACTER LAST CHARACTER  VALUE

Fig. 3-4. Data structure for numeric variable with multiple character
name.

The most important difference here is in the way the first letter is
stored. The first three bits have been changed from 011 to 101. This is
the signal that the T/S 2068 uses to distinguish between single and
multicharacter variable names. Subtracting 60h from a character and
then adding 101 in front of it is the same as adding 64 to the ASCII
code. After placing the first letter in memory in this fashion, the
remaining letters or numbers in the name are added in sequence. The
normal 7-bit ASCII code for each additional character is used with the
eighth, most significant bit set to zero. Since variable names in the T/S
2068 can be of any length, we will also need some way to determine
which byte holds the last character of the variable name. For this
purpose, that eighth bit proves to be most convenient. By settingitto a
one, the computer can indicate that this is the end of the variable name
and that the value follows. The next five bytes then contain the integer
or floating point value, as previously described.

Numeric Arrays

There is one more type of numeric variable to consider and that is
single or multidimensional arrays. To store an array, The T/S 2068
starts as usual with the variable name (array names are always a
single letter). This time, the first three bits are set to 100, indicating that
the following bytes hold information about an array. This is equivalent
to storing the code for the letter plus 32. Next come two bytes which tell
the computer how many more bytes follow that are associated with this
array. The next byte holds the number of dimensions, or how many
subscripts are used to identify a given element in the array. Next follow
pairs of bytes, specifying the size of each dimension as declared when
the array was DIMensioned. After storing the last dimension size, the
actual elements follow, each using five bytes to store a value in either
integer or floating point format. All of this is shown in Fig. 3-5.
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ESSEEE { S |
E l ‘ 5 BYTES
100 2 BYTES. 1 BYTE 2 BYTES 2 BYTES
. EACH
AEEEEN | | | ) )
LETTER-60nh TOTAL NO. OF 187 LAST ELEM{ENTS
NUMBER DIMENSIONS DM oM
OF BYTES
FOLLOWING

Fig. 3-5. Data structure for numeric array.

The order in which the elements are stored can best be viewed as
removing the commas from the subscript and then going in ascending
numerical order. For example, the elements of a 2 x 3 array called ‘b’
would be stored in the order:

b(1,1)b(1,2)b(1,3)b(2,1)b(2,2)b(2,3)

Here is a little test to demonstrate the storage of an array. Type
ENTER so that the screen will clear. Then type:

DIMe(2)

LETe(1.:1)=1
LET e(1:2)=2
LET e(24+1)=3
LET e(2:2)=4

FOR i=2B6755 TO 2678B2: PRINT i » PEEK i: NEXT i

This will yield the following results (you will have to hit ENTER to scroll
the display):

26755 133 e(+32)

26756 25 MNumber of bytes
26757 @ } to follow

26758 z Number of dimensions
28759 2 } First dimension
ZE7EQ @

26761 2 Second dimension
26782 0 }

2687E23 @

26764 ")

26765 1 1 e(1,1)
26766 2

26767 )
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26768
26768
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782

2 e(1,2

3 e(21)

4 e (22)

S e PSS aE NG S

String Variables

Now that we understand how numeric variables are stored in mem-
ory, it will be quite easy to describe string variables. Another simplifica-
tion is that all string variables use single letter names. Thus we have
only two more data structures to consider: simple string variables and
string arrays. A simple string variable uses the form shown in Fig 3—6.

BEEEERER [
010 2 BYTES
AREEEN |

LETTER—-E0h NUMEBER TEXT OF STRING

OF (MAY BE EMPTY)
CHARACTERS.

Fig. 3-6. Data structure for string variable.

Notice, again, that the first three bits of the name take on a unique
pattern so that the computer can tell that this is a string variable. Two
more bytes are then necessary to specify the length of the string.
Following that, we have the actual characters in order as they appear
in the string. Simple, isn't it? To test this out type:

LET f$ = “Test”

Then:

FOR i=2B6783 T0O 26789: PRINT i » PEEK i: NEXT i
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which will yield:

26783
26784
26785
26786
26787
26788
26789

String Arrays

70

B4

101
115
116

65

characters

f
} Number of
T
e
s
t

Finally, we come to string arrays which are stored as shown in Fig.
3—7. To verify this, type:

DIM 9%$(3.:3)
LET H${1}=“nneﬂ_
LET 9%(2)="twa"

LET 9%(3)="three"

FOR i=26790 TO 26807: PRINT i+ PEEK iz NEXT i:

TP T T T | .
110 2BYTES | 18BYTE | 2BYTES || 2sytes | 'BUE
| O O | |\
LETTER-60h TOTAL NO, OF 18T LAST  ELEMENTS
NUMBER DIMS DIM DiM
OF BYTES
FOLLOWING
Fig. 3-7. Data structure for string array.
This will give:
26790 199 g (+96)
26791 14 Number of bytes
26782 o } to follow
26793 2 Number of dimensions
267894 3
267495 @ First dimension
26796 3 } Second dimension
26797 ]
268788 111 0
267499 112 n
2GEP0 191 e
Z268@¢1 116 t
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26802 118 W
26823 111 (4]

26804 118 t

26805 104 h

26806 114 r ,
Z6807 128 end of list

Notice that the last byte is 128, which is the flag to signal the end of the
variable list. This shows that the string “three” has been truncated to
“thr” because we DIMensioned g$ for a length of 3. If we were to lay out
the current variable list it would look like Fig.. 3—8.

VAR

I

ITTTTETrTErrTTgerr rd TTTITrTd
z a 1 Il:l -2 o WG 797 dog a
I LLLLELLI
MEMORY | | | |
LOCATION = 26710 26716 26722 26728 2ETAT 26755
[DECIMAL)
EMND OF
VARIABLE LIST
|
rrrrrryerrrrrredrrrerrvrrrrirgereirtTrgpirirT e T I rTEdaTrTing
e (dimensions) a(1.2) el1.1) al2.1) ez |f Te s tgidimensions) onetwolh r|2| !
O O I I |
| | |
26755 26TE3 26780 26507
Fig. 3-8. Typical variable list.
MORE SIGMIFICAMNT BYTE
LESS SIGMIFICANT E-‘l'TE-l
HEEERE
111 5 BYTES 5 BYTES 5 BYTES 2 BYTES 1 BYTE
LI L1l
[ - - g i b —T A e E N —
LETTER - 60h WALUE LIMIT STEP LOOPING STATEMENT
LINE NUMBER
WITHIM LIMNE

Fig. 3-9. Data structure for FOR . . . NEXT loop variable.

FOR . . . NEXT Loop Variable

Did you notice that we skipped a block of memory between locations
26728 and 267467 It is this area that we want to explore now. We will
find that it contains information about a special type of variable: the
control variable in a FOR . . . NEXT loop (e.g., 7 in FORi = 110 10).

Remember when we got tired of typing in PEEK statements one at a
time? After defining the variable called ‘c’, we used a FOR . . NEXT
loop to print out the memory locations occupied by this variable. As we
did this, the computer had to define a new variable called 7', to keep
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track of the loop statement. It did this by adding another entry to the
variable list in the form shown by Fig. 3-9. Thus if we type:

FOR i=26728 TO 26746: PRINT i, PEEK i: NEXT i

i

we should see:

26728 233 i(+128)

26729 0

26730 (1] l

26731 107 26731 (current value)
26732 104

26733 ] }

26734 2 )

26733 @

26736 122 ¢ 26746 (limit)
26737 104

268738 @ J

26739 ) |

26749 0

26741 1 "1 (step)
26742 2

26743 0 )

26744 254 } looping line
26745 2359

26746 2 statement number

These results should be self explanatory except for the “current
value.” Why does it equal 267317 That is certainly not the value of ¥’
after the loop has finished. (It will be 26747 since a control variable
must always go one step beyond the control limit value in order to exit
the loop). This value does make sense, however, when you consider
what the value for ‘i’ was during the particular pass through the loop
when this was printed. To PEEK at memory location 26731, the vari-
able i had to equal this value at that point. Therefore, when the loop
was printing out the value at location 26731, the variable ‘i’ equaled
26731 which required that a value of 107 be at that address.

Since we entered the command without a line number, the two bytes
that represent the “looping line” contain a value of 65534. This, of
course, would not be a valid line number in BASIC. The statement
number, however, does show a correct value of two. This means that
after each pass through the loop (i.e., when we reach the NEXT i
statement) the computer should return to the second statement in the
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command line. This takes us back to the statement following the first
colon, which was the PRINT command.

Varying variables :

As the value for any variable changes, it will normally stay in its
same position within the variable table. This is true even if the value
changes from an integer number to a floating point. For example, type:

LET dod = 1

Then:

FOR i=26747 TO 26754: PRINT i+ PEEK i: NEXT i

This will give:

268747 164 d (+64)

28748 111 0

26749 231 g (+128)
267350 125

26751 76

28752 204 real value 0.1
28753 2e4

26754 205

Compare this with our earlier results. Notice that the variable dog now
has a new value which is in floating point format. You can also see that
the value is identical to that of the variable c. This, of course, just
proves that Yo is equivalent to .1

There is one exception to the rule of variables staying in the same
place. This comes about because we allow simple string variables to
change in length as they are assigned new values. For example, let’s

type:

LET f$ = "Examination”

There is no way for the computer to replace the old value with the new
one at the same location. This is because we only have four bytes
holding the old value “Test” and the new value, “Examination” requires
11 bytes. We can't just add on a few more bytes because that would
begin to run into the next variable on the list, in effect, wiping it out. The
only solution is to create a new variable entry for $ at the end of the list.
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But what about the old entry for {$? it would certainly be confusing to
have more than one entry in the list for the same variable. There are
basically two alternatives to solving this problem. One method would
be alter the first entry somehow so that it no longer looks like a valid
variable entry (i.e., “mark” it as being unused or garbage). The other
method would involve removing the entry completely and then moving
the entire rest of the list up to fill in the void left by the old entry, It is
interesting to note that the BASIC interpreters in most personal com-
puters use the first method. This offers some advantages but has one
major drawback. By leaving the old entries still in memory, a program
can create a growing trail of garbage which takes up valuable memory
space with useless information. If the program eventually uses up all of
the available RAM, it must then go through a process known as
“garbage collection” whereby all of these unnecessary entries are
purged and a new clean list is created.

Unfortunately, this process can take a considerable amount of time
during which the normal program execution is put on hold. Many a
novice programmer has been baffled when trying to figure out why his/
her program randomly seems to hang up for a few seconds (or even
minutes!) but then continues as if nothing had happened. While this
problem is somewhat rare (many people never experience it), the
chances of garbage collection occurring increase with programs that
constantly re-define string variables and with the large programs
because large programs take up more memory, leaving less for vari-
able storage.

To see what has happened on the T/S 2068, type:

FOR i=26783 T0O 26789: PRINT i » PEEK i3 NEXT i

showing:
26783 199 g (+96)
Z6784 14 Number of bytes
26785 2 } to follow
26786 .
26787 3 } first dimension
26788 ?
267889 3 etc.

Where the old variable f$ had been, we can now see the beginning
of g$. That is, the old entry for f$ has been removed and the next
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variable (in this case, g$), as well as everything else in the list, has
moved up. Thus the T/S 2068 does its garbage collection “on the fly”
every time a string variable changes length. To find the new location for
f$, we can calculate 26807 (previous end of list) — 7 (number of bytes
used in old f$ entry) = 26800. This should be the beginning address
for the new f$ entry.

Therefore type:

FOR i=26800 TO Z26814: PRINT i PEEK i: NEXT i

to get:
2?6800 70 f(-32)
26801 11 : } new length
26802 0
26803 59 E
26804 120 X
26805 g7 a
26806 109 m
26807 105 i
26808 110 n
26809 97 a
26810 116 t
26811 105 i
2B812 111 0
26813 1190 n
26814 128 end of list

A map of the variable list would now look like Fig. 3-10. Compaire this
to Fig. 3-8.

rrrrd T1Trnl LEN R rrrrrrrrrirrrrryyvrrgrerrend
a 1 b =2 & 110 I 26747 26746 1 lloop) fdoag 3
LL L L Ll L1l | T T N O O I I I

1 | | |

26710 26716 26722 26728 26747 26755

FTrrrTTrTrrrrTrTRiTrTErrrrrrrTererd ITTTiTrirrrTrTrTTrygrIvE T rETT
sgimanslons)  e{1.7) &1.2) al2.1) 222 |oldimensions) onetwo thrff Examinat ion|2
Lid e et bty Ebeitereptern it R n oyt i byl iyl yy

| I I I

26755 26783 26800 26814

Fig. 3-10. Variable list after string variable is changed.

HOW THE BASIC INTERPRETER OPERATES

We've come a long way in describing how the T/S 2068 BASIC
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interpreter stores data in memory. Being able to reference the informa-
tion using symbolic names (even if they’'re only one character long) is
much easier than keeping track of the absolute memory locations
needed by the CPU. Of course, this is just a tiny part of what the
interpreter does. i

Before leaving the subject of the variable list, we must describe one
more thing: how the interpreter finds a given variable in the list. This
turns out to be quite trivial, since we have satisfied the two require-
ments that we mentioned at the beginning. That is, knowing where the
list starts and where each variable description ends and the next one
begins. This first requirement was taken care of by keeping a pointer in
the reserved RAM. These locations (23627, 23628) always hold the
starting address for the first variable in the list. As we move through the
list, we can determine the boundaries using a few simplerules:

e Simple, single character variables always take up 6 bytes.

e String variables can be of any length but the actual length is
always stored in the 2 bytes following the variable name.

e Arrays also contain 2 bytes following the name, to indicate how
many more bytes are used.

Therefore, whenever the BASIC interpreter is asked to find the value
of a given variable, it can make alinear search through the variable list.
This means that it starts at the top of the list and checks the name of
the desired variable with the name of the first entry. If these do not
match, the interpreter calculates where the next variable begins and
then checks its name. As long as there is no match, the interpreter will
keep hopping down the list, checking each entry. If it eventually finds a
match, then the value can be read out (or a new value putin). If the end
of the list is reached without a match, then a “variable not found”
message is displayed. If, however, the command is allowed to create a
new variable (e.g., LET, FOR, INPUT, etc.), and no such entry already
exists, then a new entry is made at the end of the list.

It is important to note that variables in the list are kept in the order
that they were created. This gives us an important clue for speeding up
BASIC programs. Since the interpreter will have to perform a search of
the list each time a variable is referenced, those variables that are used
most often should be defined first. They then will be at the top of the list
for quick access by the interpreter.
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This completes our discussion of how variables are stored in mem-
ory. We are now ready to investigate how BASIC programs themselves
are stored in memory.

PROGRAM STORAGE

if you've followed everything so far, then you will have no trouble -
understanding the way BASIC stores programs in memory. Compared
to the ways in which variables are stored in memory, program storage
is much simpler. In fact, every line of a BASIC program is stored in the
same fashion. The general form is shown in Fig. 3—11.

MORE SIGNIFICANT BYTE

r LESS SIGNIFICANT BYTE

| I EEEEER
2 BYTES 2 BYTES ( { 00001101

| | SEEEEN
LINE LENGTH OF TEXT ENTER

NMUMBER  TEXT + ENTER
Fig. 3-11. Data structure for a BASIC program line.

As we mentioned before, whenever you hit the ENTER key, the
preceding characters are examined by the parser. If there are no errors
and the first character on the line is a number, then the parser
determines that this is a BASIC program line. The interpreter then
places the line into a special area of memory set aside for the storage
of BASIC program lines.

Actually, the BASIC program is stored in memory in much the same
way as variables. To begin with, each line is stored consecutively in
what we could call the BASIC program list. The beginning address for
the list is kept in a pointer called PROG (within the reserved area of
RAM). Instead of variable names, we keep track of program lines by
their line number. Since each program line can be anywhere from 1 to
65K characters long, we add two bytes to specify its length. This is
identical to what we did with string variables. The only major difference
with the way program lines are stored is that they are always kept in
numerical order according to line number. Thus if the program has line
numbers, 10, 20, 30, and 40 and we add a line number 25, it gets
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sandwiched in between 20 and 30. Of course, you probably have seen
this whenever you LIST a program.

Let's take a closer look at how the text of our BASIC program lines
are kept in memory. For the most part, the text is stored exactly as it
appears on the screen. One exception is that key words (PRINT,
NEXT, GO TO, etc.) are stored using a single byte, or token. This saves
considerable memory space over storing each character in the key
word as a single byte. These tokens are part of the character set as
shown in Table 2-5.

To start our investigation using the computer, type:

NEM

so that we're all at the same starting point. Now type:

10 REM hello

With a program line entered into memory, the next step is to find the
starting address of the program image. We know this will be found at
locations 23635-6 so we type:

PRINT PEEK 23635 + 256 * 23636

The answer comes up 26710. With this information, we can now type:

FOR i=26710 TO 26720: PRINT iy PEEK i: NEXT i

This displays on the screen:

26710 ) } 0 (line number)
26711 10

26712 7 } 7 (length of text)
26713 )

26714 234 REM token
26715 104 h

26716 101 e

26717 108 |

26718 108 |

26719 111 0

26720 13 ENTER

A couple of notes are in order here. First, notice that the line number
bytes are stored with the most significant byte first. This is the opposite
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of most other two-byte storage. Next, note that the line count includes
the ENTER key (and it is stored in memory). Another new technique
used in program line storage concerns numerical constants. If we

type: .

20 LETa=2

and then:

FOR 1=26721 TO 26735t PRINT i » PEEK i2 NEXT i

we get:
26721 2 } 28 (line number)
26722 Z0 - :
26723 11 .
28724 a } 11 (length of line)
28725 241 LET token
267286 97 a
26727 61 ==
26728 =@ 2
26729 14 number token
26730 @
26731 @
26732 2 2
ZB733 ]
26734 @
26735 13 ENTER

As you can see from the notations, whenever we have a numerical
constant in a BASIC line, it is followed by a special token byte (with the
value 14) and then by five more bytes with the constant’s value in
integer or floating point format.

There you have it — program storage on the T/S 2068. We can. now
describe some of the functions performed by the BASIC interpreter.
We've already seen how the interpreter keeps a variable list and a
program list in memory. As we, or our program, use new variable
names, they are added to the variable list. If we enter BASIC program
lines, they are added to the program list.

If we type LIST, we know that the interpreter will display the current
program in memory. It does this by simply going to the start of the
program list and printing out the text that it finds. Double-byte line
numbers are converted to their decimal form and printed on the
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screen. Tokenized keywords are also expanded into their English-like
form.

Explaining what happens when you type RUN is a little more compli-
cated. In fact, it is a /ot more complicated. The basic operation,
however, is to read each program line in sequence and convert the
keyword commands into some appropriate action. For this purpose
these are numerous subroutines stored in ROM that perform each of
these tasks. Therefore, as a program line is read by the interpreter, it
looks at the token to decide what subroutine(s) to execute. If further
data is needed, such as variables or constants, they are read from the
program line and sent to the subroutine. When a branching instruc-
tion, such as a GO TO 20, is reached, the interpreter looks down the
program list for the appropriate line number and then resumes execu-
tion at that point. That brings us to helpful hint number two.

When writing long programs, it will speed things up if you place often
used subroutines at the beginning of your program. Such routines,
which may be called from various places throughout the program, will
execute faster since the interpreter will not have to search through the
entire program list looking for them. Of course, if you really want to
speed up your programs, then machine language may be the only
answer. That’s the subject of Part Two. First, however, we need to know
a little bit more about the T/S 2068 hardware. In particular, we shall

“start with the Z80 CPU which is described in the next chapter.



SECTION B
INSIDE THE T/S 2068



4 1
The 280 CPU

INTRODUCTION

Our discussion of what's inside the T/S 2068 begins with a detailed
look at the Z80 CPU. This chapter contains a lot of information which
may interest only the “hardware hacker” who wants to know the details
of the Z80’s operation. Much of this material will also be explained in
later chapters. If you feel that things are getting a little too deep, skip on
to the next section. The Z80 is a very complicated piece of silicon as
you can see from the photomicrograph of Fig. 4-1. Fortunately, we
don’t have to know what's inside a Z80 to be able to program it. But a
knowledge of its architecture is essential.

Fig. 4-2 shows a block diagram of the Z80 CPU. The arrows
indicate how each section is interconnected and how the CPU com-
municates with the rest of the computer. These arrows indicate how
the Z80 is organized into several buses. A bus is simply a group of
wires that are treated collectively. For example, all data flowing into or
out of the CPU pass along eight wires called the data bus. For this
reason, the Z80 is referred to as an 8-bit CPU.

When data is transferred to or from main memory, a 16-bit address
bus is used to specify which memory location to use. This gives the
Z80 the capability of directly addressing 64k of memory. (The T/S
2068 can actually accommodate much more memory as we will see in
the next chapter.) Within the Z80, data is stored in special memory
cells called registers. These registers are also connected to the
Arithmetic and Logic Unit, or ALU, where various operations are
performed on the data. Finally, there is an instruction decode and CPU
control section which interprets the machine language program
instructions and tells the rest of the CPU what to do.
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g. 4-1. Photomicrograph of Z80 CPU. (Courtesy Zilog, Inc.)
REGISTERS

The Z80 contains 208 bits of RAM that are available to the program-
mer. Fig. 4-3 illustrates how this memory is organized into eighteen 8-
bit registers and four 14-bit registers. The special-purpose registers
hold information that is closely related to the Z80 hardware and its
operation. The general-purpose registers are used by the program-
~mer for temporary storage of data that is to be processed by the CPU.

Special-Purpose Registers

Program Counter (PC)—The program counter holds the 16-bit
address of the current instruction byte being fetched from memory. A
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8-BIT
DATA BUS
DATA BUS
CONTROL
K ':Eg <INTEHNAL DATA ELIS> ALU
INSTRUCTION
DECODE
&
. Y 22
11 CONTROL
CPU AND GEH
SYSTEM cPU HEGISTERS
CONTROL CONTROL
SIGNALS
T T T ADDRESS
CONTROL
+5V GND #

16-BIT
ADDRESS BUS

Fig. 4-2. Block diagram of Z80. (Courtesy MOSTEK Corp.)

special circuit in the Z80 automatically increments this counter after
each byte is read. This is what causes the CPU to execute programs
normally in sequential order. If a jump or call instruction is encountered
(equivalent to the BASIC GO TO and GO SUB statements), then the
new address is placed in the PC register.

Stack Pointer (SP)—The stack pointer holds a 16-bit address
which points to a section of system RAM that is reserved for the
machine stack. The stack is a special type of memory organization
whereby data can be stored and retrieved on a last-in, first-out (LIFO)
basis. We'll explain this further in Chapter 10.

Index Registers (IX and IY)}—Each of these two registers can hold
a 16-bit value. While they can be used as general-purpose storage,
their primary function is to hold the base address for a special type of
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MAIN REG SET

ALTERMATE SET

-~

=,

ACCUMULATOR FLAG ACCUMULATOR FLAG
A F A’ F'
B c B’ c*
GENERAL-
D E D’ E' + PURPOSE
REGISTERS
H L H L!
INTERRUPT MEMORY
VECTOR REFRESH
| R
INDEX REGISTER IX
SPECIAL-
b PURPOSE
INDEX REGISTER 1Y REGISTERS

STACK POINTER SP

PROGRAM COUNTER PC

#

Fig. 4-3. The Z80 register set. (Courtesy MOSTEK Corp.)

memory access known as indexed addressing. This will also be
explained in Chapter 10.

Interrupt Vector (1) and Memory Refresh (R)}—These are two 8-bit
registers which support some of the advanced features of the Z80. The
| register is used with an advanced interrupt handling mode available
on the Z80. When this mode is selected, the | register supplies the high
order address for an indirect call to the interrupt service routine. The R
register is used to refresh dynamic RAMs automatically.

Accumulator and Flag Registers

The Z80 has two independent 8-bit accumuiators, each with a
respective 8-bit flag register. These are also referredto asthe Aand F
registers, or sometimes treated together as a single 16-bit AF register.
The programmer can alternate between the two accumulator and flag
pairs by executing a single exchange instruction.
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The accumulator is used to hold the results of 8-bit arithmetic and
logical operations. It is also supported by more instructions and
addressing modes than any other register. The flag register contains
six special bits which indicate vital statistics about the value in the
accumulator and the results of the last operation. These bits can be
“tested” by other instructions to allow conditional program execution
based on the results of a previous operation.

General-Purpose Registers

There are two matched sets of general-purpose registers in the Z80.
Each set contains six 8-bit registers that can be used individually or
treated as 16-bit register pairs. One set is called the BC, DE and HL
registers, while the other set is called BC', DE’, and HL'. Just as with
the duplicate AF registers, the programmer can exchange all three
register pairs with their “primed” counterparts using a single instruc-
tion.

THE FLAG REGISTER

The notion of a flag register is very important to the design of a CPU.
Therefore, we should examine the Z80’s flag registers in a little more
detail. Although there are actually two separate F registers, only one is
used at a time. Therefore, we will continue the discussion as if there
were only one flag register.

As we have already said, six of the eight bits in the flag register are
used to denote specific details about the operation of the CPU. The
remaining two bits are unused. Four of these six bits are testable —
that is, they can be used as a condition for the execution of certain
instructions. These are the Carry flag (C), Zero flag (Z), Sign flag (S),
and Parity/Overflow (P/V) flag. Their bit positions in the Flag register
are shown next:

D7 D@
S | Z H PV| N |[C

Testable Flag bits: C, P/V, Z, S
The Carry flag is used to indicate that an arithmetic operation has
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exceeded the 8-bit range available to the accumulator. For example,
adding the following two numbers would cause a carry to be gener-
ated:
19100011
+ 11901000

C
= 1 21191011
When the carry flag equals 1, it shows that a carry has occurred. The
carry flag will also be set if a borrow occurs during a subtraction
operation. Several other instructions, such as the shift and rotate
group, also affect this bit.

The Parity/Overflow flag serves a dual purpose, depending upon
the type of operation being performed by the CPU. When logical
operations are performed (such as AND A,B), it indicates the parity of
the result in the accumulator. Parity is derived from the number of “1”
bits in a given byte and can be either odd or even. After performing an
arithmetic operation (such as ADD A,B), the P/V flag indicates
whether there has been an overflow condition. This happens when
signed numbers are used and result of the operation cannot be
represented correctly by the 8-bit accumulator.

The Zero flag is set whenever the results of an operation leave a
value of zero in the accumulator. It is also used in a slightly different
fashion by the block I/O and search instructions as well as the BIT
testing instruction.

The Sign Flag is a replica of the most significant bit of the
accumulator. When signed numbers are being manipulated by the
CPU, the most significant bit represents the sign of the number. A “0”
indicates that the accumulator holds a positive number, while a “1”
shows that it is negative.

Nontestable Flag Bits: H and N

The other two bits in the flag register are used to implement BCD
arithmetic. The Half carry (H) flag keeps track of any carry or borrow
between the lower four bits and the upper four bits of the accumulator.
The Add/Subtract (N) flag indicates which type of operation was
performed last. These two bits are used by the DAA (Decimal Adjust
Accumulator) instruction to properly re-format the contents of the
accumulator into packed BCD format. This allows the Z80 to perform
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Table 4-1. Summary of Flag Operations

(Courtesy MOSTEK, Corp.)

o7 oo
P/ !
Instruction 5 g H W N_E_
ADD As; ADC As 1 Py p b pxg Vo |1 | &beadd or add with carry
SUB3: SBCA s; CPs: NEG fope i Jtxg vl |t | Gbitsubtract subtract with carry, compare gnd negate accumulator
AND 5 l*?‘.IIF‘lJﬂlIIL. :
OR & X0 s t ]t ]oyx]| e o |a [flogics operations
INCs Plr e jelx]vio |* | Bbitincrement
DECs Pyt % | s x| w1 |* | 8bitdecrament
ADD DD, 55 e | X | XX |* |0 ] 16-hit add
ADG HL, 55 Pyt [ xpx | vilo |t | 16bitadd with carry
SBC HL, 58 | P 1A [ X (x| vl | 16-hit subtract with carry
RLA: RLCA; RRA; RRCA - ® |» [ X [0 [X|* |0 |1 | Rotateaccumulator
RLs; RLCs; AR & RACS; Pt % o x| P o)1 | Rotateandshift locations
SLALSRA s SRL:
RLD: RAD PPy |X JOoyX | PO | = | Rotatedigi left and right
DAA | Pl (E X P = || | Decimaladjust accumulatar
CPL o e X [T X | |8 |* | Complemantaccumulator
SCF ot X JO (X ]* |0 |1 | Sercarry
CCF o e I X I X]X]|* (0] ] Complemen carry
INT, iCI Projx Jo X P lof={ Inputregisierindirect
INI; IND; QUTI; DUTD XU fx x> 2|0 | X JyBlockinput and ouiput
INIR; INDR; OTIR; OTDR X X pX|X | X1 X [PZ=0iTB+ 0otherwise 2 =1
L0I; LDD Xl xix jojx |00 |* ||@lock transfer instructions
LOIR; LODR Xl EKIX D)X |ojg0o |= {FPAv=1iFBC+#0, otherwse PV =0
CPI: CPIR; CPD: CPOR i P1x [t ™ bt gy |» | Blocksearch instructions
Z=10 A= (HL), otheswite 2= 0
PV = 1if BE # 0, othersise PIV = 0
DA LDA R T L gx jo|x IFF|0 | #® | Thecontentof the interrupt enable flip-op (1 FF) is copied into
the F/V flag
ElThs XQLpX |1 %) %30 | = | Thestate of bit b of location s is copied into the Z flag
Tha following notation s used in thic tshis: )
SYMBOL OFERATION
c Carry/link flag, C=1 if the operation produced s carry from the M58 of the opsrand or result.
z Zaro filag. Z=1 if the result of the operation iz zero.
5 Sign flag. 5=1 if the MSE of the result is ona. .
PV Parity or overflow flsg, Parity IP) snd overfiow (V) share the sams fisg. Logical operations sffect this flag -
with the perity of the result while srithmetic operations affect this flag with the overflow of the result,
If PAV holds parity, PIV=1 i the rewlt of tha apsretion is sven, PAV=0 if result s add. If PAV halds over
fiow, P/V=1 if the result of the opsration produced sn overflow,
H Half-carry flag. H=1 if the sdd or subtract operation produced & carry into or borrow from bit 4 of the
sceumulntor.
N Add/Subtrect fleg. N=1 if tha previous opsration wes a subiract,
H and N fisgs are used in conjunction with the decimal sdjust instruction (DAA) to proparly correct the
reguit into packed BCD forma following sddition or subtraction using opsrands with packed BCD format.
Tha fisg s affected sccording to the result of the operstion,
. Tha fisg s unchanged by the operation.
0 The flsg i reset by the operation.
1 Tha flag i st by the operstion.
4 Tha fisg i a “don't care™,
v PV flag atfected sccording to the overflow result of the operation.
P PV fisg sffactad sccording to the parity result of the operation.
r Any one of the CPU registers A, B, C. D, E, H, L.
* Any B-bit locstion for all the sddresing modes sliowed for the particulsr instrugtion,
- Any 16-bit location for all the sddremsing modes allowed for thet instruction.
Hi Any ore of the two index registers 1X or IY.
R Anfrash counter.
n B-bit value in range <D, 258>
nn 16-bit valus In range <0, BEE3E>
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BCD arithmetic almost as easily as binary arithmetic. Table 4—1 shows
a summary of how the flag register is affected by various Z80 instruc-
tions. The importance of this will become clearer when we begin to
examine the Z80 instruction set in Chapter 9.

L]

CPU OPERATION

All CPU’s operate by repeating a few basic steps over and over.
These steps are performed according to a complex interconnection
between various circuits within the CPU. These circuits operate “syn-
chronously”; that is, they all perform their functions at a very specific
time. All of the circuits within a Z80 are timed in accordance with a
single clock signal. In the T/S 2068, this is a 3.528 MHz square wave
which is derived from the 14.112 MHz master oscillator inside the
computer. Each cycle of the CPU clock causes a specific action to take
place within the Z80. This is also referred to as a T cycle. It takes
several T cycles to perform a machine cycle. Each machine cycle
represents the transfer of one byte into or out of the CPU. An instruc-
tion cycle consists of one or more machine cycles and represents the
smallest unit available to the machine language programmer. Fig. 4—4
shows the basic CPU timing for an INC (HL) instruction. This operation
involves reading the value of a memory location into the CPU, adding
one to this value, and then storing the new value back into the memory
location.

T STATE — ’7
cPU __| |_

CLOCK
T1 T2 T3 T4 T T2 T3 | T4 T1 T2 | T3

~— MAGCHINE CYCLE ‘]~ M2 -‘- M3
M1 i (MEMORY READ) |{MEMCIFW WRITE})
{OP CODE FETCH)

INSTRUCTION CYCLE

Fig. 4-4. CPU timing for executing a typical instruction. (Courtesy
MOSTEK Corp.)

The instruction begins with an M1 cycle which is always an op-code
fetch. During this cycle, the Z80 places the contents of the Program
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Counter onto the address bus (during T1) and then performs a read of
this location (during T2). The contents of this location (which is
assumed to be the op code for a Z80 machine language instruction) is
then sent to the instruction decoder circuit within the CPU. During the
next two (or possibly more) T cycles, the CPU “decodes’ the instruc-
tion op code. This is really nothing more than setting up certain flags,
counters, and other circuits within the CPU to prepare it for the
execution of the instruction. During the instruction decode T cycles,
the Z80 places the contents of its internal Refresh counter onto the
address bus and a “dummy” memory read is performed. No data is
transferred during the read,; its sole purpose is to allow for the refresh
of dynamic RAMs. Since the refresh counter is incremented after
every instruction, it will take 128 instructions to completely cycle
through the entire 7-bit refresh counter values. At this point, however,
every byte of dynamic RAM will have been refreshed. If the particular
op-code read is for an instruction that requires more information (such
as another op-code byte or an immediate mode operand) then
another memory read will take place. This is accomplished by again
putting out the PC address (which has automatically been incre-
mented) and retrieving the next byte. -

In the case of the INC (HL) instruction, the instruction decoder has
informed the address control circuit that the contents of the H and L
registers should next be placed onto the address bus (M2, T1 cycle).
During the next T cycle, the contents of the memory location are read
into the ALU. The instruction decoder has already set up the ALU to
perform the "ADD 1” function. After the result is obtained, it is written
into memory during the next machine cycle.

SPECIAL FUNCTIONS

There are four special functions that the Z80 can perform in
response to hardware signals. These are the RESET, WAIT, INT, and
NMI. Each of these functions is initiated when their corresponding pin
on the Z80 chip is brought low.

RESET

A RESET signal causes the CPU to become initialized. This allows
the system to begin operating from a well defined state. On the T/S
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2068, the CPU is reset every time the computer is turned on. Initializa-
tion of the Z80 includes:

1. Loading the Program Counter with a value of 0000.
2. Disabling interrupts. '

3. Loading the | and R registers with a value of 00.

4. Setting Interrupt Mode 0.

WAIT

When the WAIT line on the Z80 is brought low, the CPU will tem-
porarily halt execution of its program. It will enter a “wait state” until this
line is brought high again. The main purpose for this function is to allow
the Z80 to communicate with devices that cannot read or write data as
fast as the CPU. For example, when the CPU wants to read from RAM,
it sets up the correct location on the address bus and then reads the
data bus a short time later. It assumes that the memory device being
read is fast enough to present its data within the specified amount of
time after being addressed. If this is not the case, then the memory
device can pull the WAIT line down for one or more clock cycles until its
data is ready to be read by the CPU.

INT (Interrupt Request)

The Interrupt Request line is used to trigger an interrupt to the CPU.
There are three different ways in which the Z80 can respond to such a
signal. In the T/S 2068, an INT interrupt will cause the CPU to suspend
its current operation and begin executing the program starting at
location 38h. It is possible to enable and disable this function from
software.

NMI (Nonmaskable Interrupt)

Like the INT interrupt, this signal will cause the CPU to stop execut-
ing its current program temporarily and begin running an interrupt
service routine. For an NMI, the CPU performs a call to location 66h.
This interrupt cannot be disabled from software.
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ADDRESSING MODES

Most of the Z80 instructions operate on data stored in internal CPU
registers, external memory, or in the I/O ports. Addressing refers to
how the location of this data is generated in each instruction. There are
ten different addressing modes possible with the Z80, although not
every mode is available with each instruction. Here is a brief summary
of each addressing mode.

Immediate Addressing

In this mode of addressing, the byte following the op code contains
the actual operand.

op code | 1 or 2 bytes

operand
d7 do

An example of this type of instruction would be to load the accumulator

with a constant where the constant is the byte immediately following
the op code.

Immediate Extended Addressing

This mode is merely an extension of the immediate addressing
mode in that the next two bytes following the op code are used as the
operand.

op code 1 or 2 bytes
operand L | low-order byte
operand H| high-order byte

An example of this type of instruction would be to load the 16-bit HL
register pair with two bytes of data.

Modified Zero Page Addressing

This mode applies to the special single-byte call instructions known
as restarts. These instructions set the Program Counter to one of eight
specific locations in page zero of memory. The benefit of this address-
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ing mode is that it allows a single byte instruction to specify a complete
16-bit address. This saves memory space and shortens execution
time.

Relative Addressing

When a program needs to execute instructions in a nonsequential
order, the jump instruction is used. If the new address where the
program is to continue executing is fairly close (less than 127 bytes
away), then this location can be specified by a one byte offset from the
program’s current location. Using relative addressing, the byte follow-
ing the op code is treated as a signed, twos-complement integer which
is added to the address of the op code of the next instruction.

op code | Jump relative
operand| 8-bit twos-complement displacement

There are two major advantages of using relative addressing. First,
it allows the 16-bit jump address to be specified by a single byte for
reduced memory usage and faster operation. Second, the use of
relative addressing allows for relocatable code. This means that a
program can be moved to any absolute location and still operate
correctly.

Extended Addressing

Extended addressing means that the two bytes representing the
address are included within the instruction.

op code 1 or 2 bytes
operand L | low-order address
operand H| high-order address

With extended addressing, a jump instruction can reach locations
which are more than 127 bytes away.

Indexed Addressing
In this type of addressing, the byte following the op code contains a
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displacement which is added to one of the index registers (the op code
specifies either IX or 1Y) to form the address of a memory location. The
contents of the index register is not altered by this operation.

op code 2-byte op code
op code

Displacement | 8-bit twos-complement displacement
added to index register to form
memory address

Indexed addressing greatly simplifies programs that use tables,
since the index register can point to the start of the table and the
displacement can specify a given element within the table. Indexed
addressing also facilitates the generation of relocatable code.

Register Addressing

Many of the Z80 op codes contain special bits which specify one of
the CPU registers as the operand. This is known as register address-
ing. For example, we could have an instruction that would load the
contents of register B into register C.

Implied Addressing

Implied addressing refers to operations where the op code automat-
ically implies one or more of the CPU registers to be used as an
operand. Instructions involving the | and R registers are examples of
implied addressing.

Register Indirect Addressing

Register Indirect Addressing allows one of the 16-bit register pairs in
the CPU to be used as a pointer to any location in memory. Since the
address for the operand must already be loaded into the selected
register pair, the instruction takes the form of a simple one- or two-byte
op code.

An example of this type of instruction would be to load the
accumulator with the contents of the memory location pointed to by
the HL register. Such an instruction would be written in assembly
language mnemonics as LD A, (HL). The use of parentheses around
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the HL operand signifies that this register is to be used as a pointer to a
memory location. That is, when we write HL, it means we are inter-
ested in the contents of the register pair HL. But (HL) means that we
want the contents of the memory location pointed to by the HL register.

Register Indirect Addressing can also be used to specify 16-bit
operands. In this case, the contents of the register point to the first
(lower) byte of the 16-bit operand. The register contents are then
automatically incremented to obtain the address of the high order
byte.

Bit Addressing

The Z80 has the ability to set, reset, or test any bit within a CPU
register or memory location. Only the specified bit is affected (or
examined). The actual location tested can be specified by either
register, register indirect, or indexed addressing and the specific bit is
indicated by three bits of the op code.
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Memory Map of the
T/S 2068

Since the Z80 has 16 address lines, it can address up to 65,535
different locations. Only six or seven years ago, 64K of memory was
considered enormous. It represented the upper limit for personal
computers. Today’s programs have just begun to stretch this limit. The
IBM PC uses a 16-Bit CPU capable of addressing megabytes of RAM.
Eight-bit machines, such as the T/S 2068, however, must turn to a
design called “bank switching” to increase accessible memory. Bank
switching allows more than 64K of memory to be connected to a single
8-bit CPU. For this to work, two or more memory devices must be
assigned the same physical memory address. The trick, therefore, is
in keeping one, and only one, device active at any given time. This is
the job of the T/S 2068’s memory bank switching hardware.

While switching complete banks of 64K memory addresses is
sometimes useful, in the T/S 2068 it proves more desirable to break
each bank into several “chunks.” Making each chunk 8K bytes long,
divides the Z80 address range into 8 equal parts. These are labelled
chunk 0 through chunk 7. Since the T/S 2068 is capable of controlling
256 different banks of memory, a memory map of the computer would
look like Fig. 5-1. The banks are numbered from 0 to 255. Of course,
more of these banks will be empty (i.e., they will not contain any RAM
or ROM) so it would not be of much use to turn them on.

BANK SELECTION

There will always be eight and only eight chunks active at any point
in time. Each chunk will have a different number and can reside in any
of the 256 banks. Three of these banks are reserved for special
purposes; the remaining 253 are called expansion banks and may be
used by peripherals that connect to the back of the T/S 2068.
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Fig. 5~1. Memory map of T/S 2068.

\

Home Bank

Bank number 255 is called the Home Bank. It contains most of the
T/S 2068’s built-in ROM and all of its RAM. It is the bank that gets
selected by default and thus occupies the entire 64K space when the
computer is first turned on. The Home ROM contains the BASIC
interpreter, the fundamental 1/O routines (display, keyboard, printer,
etc.), and basic links to other peripheral devices through a channelled
I/O section. To enable any chunks in the other banks, a special
sequence of instructions must be executed by the CPU. We'll explain
this technique shortly.

EXROM Bank

Bank number 254 is called the Extension ROM, or EXROM, bank. It
contains only one ROM which occupies chunk #0. When selected, it
replaces the first chunk of ROM in the Home Bank. Contained within
the EXROM are the cassette tape I/O routines, bank switching code,
and system initialization procedures. Initialization of the T/S 2068 can
be quite complex and most of the machine code to do this resides in
the EXROM. Of course, when the computer is first turned on, it is the
program in the Home ROM that starts executing. Therefore one of the
first things that the Home ROM does is to enable the EXROM and then
jump to its initialization routine.
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Dock Bank

Bank number 0 is called the Dock bank. It represents any memory
contained within a Timex Command Cartridge. These cartridges are
inserted into the compartment on the right side of the T/S 2068 which
attaches them to the computer’s dock connector. The Dock bank is
usually occupied with some form of ROM Oriented Software.

Expansion Banks

The remaining 253 banks are available for use by peripherals that
connect to the T/S 2068's rear card edge. To be compatible with the
bank switching scheme employed by the T/S 2068, such peripherals
must follow the hardware and software protocol set by Timex Com-
puter. This will be described next.

BANK SWITCHING HARDWARE/SOFTWARE

All of this talk about bank switching sounds great but there are some
restrictions. First of all, we need some sort of hardware to physically
enable and disable each bank that we have. This hardware is built into
the T/S 2068 for controlling the Home, EXROM, and Dock banks. A
very elaborate bank switching-control scheme is also implemented in
the T/S 2068 for handling the Expansion Banks.

Another problem associated with bank switched memory is that
when the switch takes place, it must not affect the program flow of the
routine that does the bank switching. That is, you would not want the
CPU executing a program in one bank, and then suddenly find itself in
the middle of some other routine in another bank. There are two ways
around this problem. One way involves duplicating the bank switching
code into the same memory locations of each bank that is to be
switched. Therefore, as the bank switching routine executes and
performs the switch, the CPU continues to execute the same program
(although it is now in another bank).

The other way to solve this problem is to have one section of
memory which is never switched out. This area can then contain the
bank switching code as well as any other common information (such
as interrupt handlers, machine stack, etc.). In the T/S 2068, memory
chunk 3 is normally reserved for such use.
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Bank Switching Control

The bank switching hardware within the T/S 2068 is accessed
through four 1/O ports:

]

DKHSPT = F4h Dock horizontal select port

BDATPT = FCh Expansion bank data port

BCMDPT = FDh Expansion bank address port

HREXPT = FFh Home ROM extension select port (bit7)

The Home Bank has the lowest priority, thus its chunks are enabled
by default when no other Bank has the same chunks enabled. The
DOCK Bank has the next highest priority, thus its chunks are enabled
when no Expansion Bank has the same chunks enabled. The Expan-
sion Banks have the highest priority. The Home ROM Extension Bank
(EXROM) has the same priority as the DOCK Bank.

The Dock horizontal select port controls which of the DOCK bank
chunks are to be enabled. By sending a given value out through this
port, those chunk numbers corresponding to the '1’ bits in this value
will be enabled. Thus to activate only chunk number 7 in the DOCK
Bank, we would OUTput the binary number 10000000 through port
F4h. Itis also possible to INput from this port and read back the current
status (i.e., which DOCK chunks are enabled).

The EXROM is selected by writing a '1’ to bit 7 of the HREXPT port
(FFh). If this bit is set, the EXROM will overlay chunk 0 of the DOCK
Bank. Thus to access this ROM, you must set bit 7 in port FFh and set
at least bit 0 in the DKHSPT port (F4h). You must also insure that no
external Banks have done their chunk O selected, since external
Banks have higher priority than the DOCK Bank and, also, therefore
the EXROM Bank.

HOLD Temporary holding register

ABN Assigned bank number (one for each expansion bank)

BNA Bank number accessed register

HS Expansion bank horizontal select register (one for each expan-
sion bank)

STATUS Status nybble* whose bits have the following interpretation:

bit 0—Set to O if bank caused an
IRQ interrupt

bit 1—Not used

bit 2—Set to @ if bank is responding
to memory read/write

bit 3—Not used

*A nybble equals half of a byte or 4 bits.
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Selecting an Expansion Bank is a little more complicated because
we must use the HOLD register to latch data into and out of the BNA,
ABN, and HS registers. The BNA register contains the number of the
Bank whose status is being read or changed. The ABN register
contains the Bank number assigned to a particular Bank. And the HS
register specifies which chunks in that expansion Bank are enabled.
Note that there is only one HOLD register and one BNA register. There
are ABN and HS registers for each Expansion Bank, however.

There is no way to directly read or write to these registers from the
Z80. The only way to access these registers is through the Expansion
Bank Controller Registers shown in Table 5-1. These, in turn, are

Table 5-1. Expansion Bank Controller Registers
(Courtesy Timex Computer Corp.)

Address Read Data Port Write Data Port
a Read status Write command Type [
1 None Write command Type Il
2 Read HS Is nybble Write hold reg. ls nybble
3 Read HS ms nybble Write hold reg. ms nybble

reached via the BDATPT (FCh) and BCMDPT (FDh) ports. The
BCMDPT port is first used to address one of the Expansion Bank
Controller Registers by sending out a 2-bit value. This selects one of
the four controller registers which can then be read or written to by the
BDATPT port. By writing to controller registers 0-or 1, we can perform
one of the eight commands as listed in Table 5-2.

If all this seems rather complicated, it's because it really is! An
example will make things clearer. Suppose we have a device plugged
onto the back of our T/S 2068 and it has some ROM which we would
like to activate into chunk 0. We'll assume it is configured as bank
number 1. We thus need to enable chunk 0 in Bank 1. Since Expansion
Banks have the highest priority, we do not have to worry about turning
off the Home ROM chunk 0, DOCK Bank chunk 0, or the EXROM. We
would first, however, have to disable any other Expansion Banks that
had chunk 0 active. Now we must load a binary 00000001 into the
Horizontal Select (HS) register for bank number 1. To do this, we start
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Table 5-2. Expansion Bank Controller Commands
(Courtesy Timex Computer Corp.)

Type I Commands

Value Function
14 Reset controller — prepare to initialize.
13 Start interrupt REG sequence.
11 Initialization done. Move to next bank in
daisy chain.
¥ Reset interrupt flag.
Type Il Commands
Value Function
14 Dump HOLD register to ABN.
13 Dump HOLD register to BNA.
12 Dump HOLD register to HS.
7 Not used.

by setting the

Bank Number Access Register to 1. This is accom-

plished by writing 01 into the HOLD register (it takes two steps) and
then causing the “Dump HOLD register to BNA” command to be
executed. In machine language, this would look like:

OUT FD 2
OUT FC»1
OUT FD 3
ouT FC»0
OUT FD+1
DUT FC»13

Now that we

Select control register 2

Write lower half of bank number into HOLD register

Select control register 3

Write upper half of bank number

Select control register 1

Send Type Il command number 1 (Dump HOLD register to BNA)

have set the BNA register to point to the desired bank,

we must set the corresponding HS register. In this example, our HS
value is the same as the BNA value so the HOLD register is already
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loaded with the proper value. Thus to complete our task, we only need
to perform:

DUT FC.11 Send Type l command number 2 [D'ump HOLD register to HS)

With that, we have accomplished our goal. All of this assumes,
however, that we have previously initialized the bank controller and
that our Expansion Bank had been assigned a bank number of 1. Also
note that it is possible to read a status byte associated with the bank.
This byte is used to indicate whether the bank contains any RAM and
also to indicate if the bank has generated an interrupt signal to the
CPU.

HOME BANK MEMORY MAP

Fig. 5-2 shows the layout of the Home Bank on the T/S 2068. The
labels along the outside of the map refer to system variables as
described on pages 261-265 of the 7/S 2068 User Manual. Some of
these change as the computer is used; their initial values are shown in
parentheses. When two display files are in use (e.g., in the 64-column
mode), the machine stack and RAM-resident code are moved up to the
top of RAM. The second display file then takes their place starting at
location 6000h.

INPUT/OUTPUT FACILITIES

Nineteen of the Z80 ports have been assigned by the T/S 2068 as
outlined in Table 5-3. Port FEh is used by a number of devices in the
T/S 2068. When readling port FEh, the five least significant bits (DO-
D4) represent the outputs from the keyboard and D6 corresponds to
the Cassette Tape Input signal. By writing to Port FEh, we can set the
border color (in DO, D1, and D2), set the tape output signal (D3), or
toggle the internal speaker (D4).

Port FFh also controls a number of circuits within the T/S 2068 as
follows:
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— Enables D_FILE_2 (secondary display file)
— Enables ultra-high-color resolution mode
— Enables 64-column display (requires bit @ to be set)

} — Set paper color for 64-column display

— Disables keyboard interrupts
— Enables extension ROM in the EXROM bank

Table 5-3. T/S 2068 I/O Port Assignments

(Courtesy Timex Computer Corp.)

Port Function

FF Display Modes, Extension ROM, Interrupt
Control

FE Keyboard, Border Color, Tape, Beep

FD Bank Controller — Address

FC Bank Controller — Data

FB Printer

FA Printer

F9 Printer

F8 | Printer

F7 Reserved

F6 PSG — Data

F5 PSG — Address

F4 DOCK Horizontal Select

F3 Printer

F2 Printer

F1 Printer

FB Printer

EF Reserved

Notes: Modem uses ports C7, CF, D7, DF.
Timex devices will use ports 78-FFh.
Other vendors will use ports 00-77h.

KEYBOARD

The keyboard on the T/S 2068 is divided into a matrix of eight “half
rows” with five keys each. When a key is pressed, it makes a connec-
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Fig. 5~2. Home Bank memory map (Numbers in parenthesis repre-
sent initial values for system variables — these will change
as computer is used.)
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tion between its “row line” and “column line.” To detect when a key has
been pressed, the computer repetitively scans through all eight rows,
looking for a signal that represents a keypress. On the T/S 2068, this is
accomplished by connecting the eight row lines to the upper half of the
address bus. The five column lines connect to the CPU through 1/0
port FEh.

By sequentially lowering each of the address lines A8—A15 and then
reading the I/O port, the CPU can tell what key, if any, has been
pressed. Normally, with no keys pressed, the five keyboard bits read
through the port will all be high no matter what address is used. When
a key is pressed, however, it will place a low on its respective 1/0 bit
whenever its row address line is also low. Therefore, by detecting the
column bit and knowing the row position, the keyboard polling routine
can determine which key was pressed. Table 5—4 describes how each
key is mapped. DO represents the key closest to the outside of each
row; D4 the one nearest the middie of the keyboard. A bitis 0, if key is
pressed; 1 if it is not.

SOUND

There are two ways to generate sound on the T/S 2068. By toggling
bit 4 of port FEh, many types of sounds can be generated under
software control. This usually must be done in machine language and
it may require all of the CPU’s time just to generate the sound. To see
how this works, type in the following one-line program:

10 OUT 254,7: DUT 254,23: GOTO10

When this is RUN, the computer will generate a low pitched tone.
Notice that this is about the fastest BASIC program that can toggle the
port as required. Therefore, this program creates the highest pitched
tone possible from BASIC. Of course, you can add other statements to
slow this program down if you want lower pitched notes. With machine
language, however, we can create tones that are so high in frequency
that they cannot even be heard.

In case you haven't figured out what this BASIC program does, here
is a quick rundown. The OUT command is used to send data to the
port number 254 (FEh). The first statement puts out a value of seven.
This sets the speaker toggle (bit 4) to a zero and leaves the border
color white (by setting bits 0, 1, and 2 high). The next statement comes
along and outputs a value of 23. This sets the speaker bit high while
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Table 54. Hardware Map of T/S 2068 Keyboard

Port Address Key Indicated When Bit Is Low

Decimal Hex | Bit4 | Bit3 |Bit2 | Bitl | Bitd
32766 7FFE B N M |SYMBL |SPACE*
49150 BFFE H ] K L ENTER
57342 DFFE Y U I O P
61438 EFFE 6 7 8 9 g
63486 F7FE 9 | 3 2 1
64510 FBFE T R E V'Y Q
65022 FDFE G F D S A
65278 FEFE ) C X Z CAPS

*Same as BREAK key.

keeping the border color bits the same. Thus the speaker will toggle
one time, putting out a small click. When the final statement is
executed, the program returns to the beginning of the line and starts
over. While the BASIC interpreter is relatively slow for this type of task,
it is still able to execute this line about 200 times per second, creating
the low-pitched tone.

The T/S 2068 also contains a Programmable Sound Generator chip
which is tied to the CPU through ports F5h and F6h. The first port is
used to address one of the 15 registers in the PSG. The other port is
then used to read or write data to these registers. See Chapter 7 for
more details on the PSG. The sounds generated by these two meth-
ods are combined to drive the speaker underneath the T/S 2068. The
software generated sounds also feed the cassette MIC jack. There-
fore, these sounds can be recorded on the cassette machine or fed
into an ampilifier, if desired. The sounds generated by the PSG do not
come out this jack but there is a signal available on the rear card edge
connector.

JOYSTICKS

The two joystick connectors are read through the I/O port on the
PSG. To access this port, a value of 14 must be written to the PSG
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address port (F5h). Bit 8 of the address bus is used to select one of the
two joystick connectors. The CPU can then determine the status of the
selected joystick by reading the PSG data port (F6h). The byte read is
interpreted as follows:

[

Bit 0 — 0 indicates stick is UP

Bit 1 — 0 indicates stick is DOWN
Bit 2 — 0 indicates stick is LEFT
Bit 3 — 0 indicates stick is RIGHT
Bit 4 )

Bit 5 |- — Not used (all ones)

Bit6

Bit 7 —0 indicates button is depressed



6
Connecting to the Outside
World

If “No man is an island,” then no computer is a complete data
processing system. To do anything useful, we need to attach a variety
of peripherals such as a television or monitor, tape recorder, printer,
modem, etc. All of these devices connect to the T/S 2068 through a
variety of special connectors.

By now, you are probably familiar with the POWER, TV, MONITOR,
EAR, and MIC connectors. The power-supply unit that plugs into the
wall supplies electricity to operate the T/S 2068 through the POWER
connector. To create a visual display on your television set or video
monitor, the computer generates a special electronic waveform called
a composite video signal. (It is also possible to connect a monitor
directly to the computer’s RGB signals — this will be discussed in the
next chapter.) There are three places on the back of the T/S 2068
where this composite video signal is available. The first place is at the
MONITOR jack which is the normal place to connect a video monitor.
This same signal is also available on one of the pins of the peripheral
expansion connector. The-video signal also goes to an RF modulator
within the T/S 2068 where it is converted into a radio frequency signal
much like the one broadcast from your local tv station. This allows the
computer to be conveniently connected to the antenna terminal of a tv
set, usually through a transfer switch box. The computer’s video signal
is then seen by tuning the tv to the proper channel.

For program and data storage, most T/S 2068 owners use a simple
cassette recorder. The computer contains all of the hardware and
software needed to support such a mass storage device. Two connec-
tors are used to hook up a recorder. The MIC jack sends out a very
small signal (on the order of the level produced by a microphone —
about 150 mV). The signal can then be fed into the MIC jack of the
recorder and used to store data from the computer on tape. See
Chapter 15 for details on this signal. When the tape is played back, the

P
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signal from the recorder’'s EAR phone output is then fed into the EAR
jack onthe T/S 2068. The computer can “listen” to this signal and then
reconstruct the data that originally was in the machine when the tape
was SAVE'd.

The output level from a cassette recorder can vary according to the
setting of its volume control. For proper operation, the T/S 2068
requires a signal level of several volts. By the way, any software
generated sounds such as the “keyclick” or BEEP commands, also
come out the MIC jack.

JOYSTICK CONNECTORS

There are two joystick connectors on the T/S 2068 — one on each
side of the machine. These connectors are designed to accept stan-
dard eight-position joysticks with 9-pin “D” type plugs. These are
compatible with joysticks used on the Atari and Commodore comput-
ers, as well as most video games. Fig. 6—1 and Table 6—1 show the pin
assignments for these connectors.

O Oz Os O+ Os
Os O7 Os O

Fig. 6-1. Joystick connectors.

When the “stick” is moved away from its center position, it will close
one (or two) switches within the joystick. These switches will then
connect the Read Strobe line to the corresponding direction output
pin. When the joystick port is being accessed, the Read Strobe signal
will go low. Thus, any direction pins whose switch is closed will also go
low. The other direction outputs will remain high. By reading the port
data, the computer can determine which, if any, joystick switches are
closed.

If you are not going to use joysticks, these connectors can be used
for other general-purpose I/O. The direction pins, for example, can be
connected to any “TTL-compatible” circuit. This would give up to ten
input lines that could be used to check the status of various external
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Table 6-1. Joystick Connector Pin Assignments

Pin | Name Description

1 DIR1 Direction One (UP)

2 DIR2 Direction Two (DOWN)

3 DIR3 Direction Three (LEFT)

4 DIR4 |Direction Four (RIGHT)

5 — Not used

6 BUTTON | Button Input

7 - Not used

8 RDSTB |Read Strobe. This pin goes low for approx.
3wS when the joystick port is being read. It
is an open-collector output.

9 — Not used

devices. By using the STICK command, these inputs can easily be
read by a BASIC program. The Read Strobe output signal can also be
used to trigger an external device. This pin goes low when active, but
requires a pull-up resistor to make it go high when inactive. Adding a
10K-ohm resistor between Read Strobe and + 5 Volts should work just
fine. Since the +5-volt line is not available at this connector, an
alternative is just to tie the RDSTB signal to one of the direction input
lines. This will give it the necessary pull up (via a resistor on the
direction input line) but makes that direction input unusable. Note that
the RDSTB signal is a single, very narrow pulse. It stays low for only
- about 3 microseconds (that's 3 millionth’s of a second!) and then goes
high again. You can also generate a RDSTB signal from BASIC using
the STICK command.

DOCK CONNECTOR

Inside the Timex Command Cartridge slot there is a 36-pin edge
connector. This allows any ROM Oriented Software cartridges placed
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Al4 1 gd b 2 +5V
A12 3 d b 4 A3
oo 5 |d b 6 D7 :
D1 7 d p 8 AO
D2 g9 d p 10 Al
D6 11 d p 12 A3
D5 13 d b 14 A3
D3 15 d b 16 A15
b4 17 |d p| 18 WREQ
IORQ 19 d p 20 A7R
RD 21 q b 22 M1
WR 23 d b 24 A8
A7 25 g P 26 A9
A 27 d b 28  A10
AS 29 qd p 30 A1
A4 31 qd b 32 RFSH
BE 33 d p 34 EXROM
ROSCS 35 d b 36 GND
BOTTOM SIDE TOP SIDE

Fig. 6~2. DOCK connector.

in this connector to interface with the computer. Fig. 6—2 and Table 6-2
show the layout and function of each pin on this connector. Since the
DOCK port is used primarily to support ROM software, the signals
available at this connector are related to the data bus, address bus,
and bank switching hardware.

PERIPHERAL EXPANSION CONNECTOR

On the back of the T/S 2068 behind a small cover, there is a 64-pin
card edge for peripheral expansion. This is where the T/S 2040 printer
and T/S 2050 modem are attached. The layout of this card edge is
shown in Fig. 6-3 and a description of each signal is given in Table
6—-3.
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DZIN 1 1  DZOUT
MIC/IBEEP 2 2 EAR
+15V 3 3 A7R
+5V 4 4 D7
NOTUSED 5 5  NOT USED
SLOT 6 6 SLOT )
GND 7 7 DO
GND 8 8 D1
0 9 9 D2
A0 10 10 D6
Al 11 11 D5
A2 12 12 D3
A3 13 13 D4 =
A15 14 14 INT @
Al4 15 15 NMI B
A13 16 16  HALT =
A12 17 17  MREQ 8
A1l 18 18  iORQ S
A10 19 19 RD a
A9 20 20 WR =
A8 21 21  BUSAK
AT 22 22  WAIT
A6 23 23  BUSRQ
A5 24 24  RESET
A4 25 25 M
NOT USED 26 26 RFSH
R 27 27 EXROM g
G 28 28 ROSCS
B 29 29 BE
GND 30 30 GND
VIDEQ 31 31  SOUND
GND 32 32 GND
"A" SIDE "B" SIDE
TOP BOTTOM

Fig. 6-3. Expansion edge connector.

Most of the data and address lines are not internally buffered by the
T/S 2068 and, therefore, must be used with care by any peripherals. If
these lines must be connected to several other devices, they should
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first be buffered by a suitable circuit. Just about every useful signal
within the T/S 2068 is available at the expansion connector, including
all of those at the DOCK connector. A portion of the 64-pin expansion
card edge is compatible with the 46-pin card edge used by the T/S
1000 computer. Those pins which are identical are shown in Fig. 6-3.
This compatibility makes it possible to use some peripherals (such as
the T/S 2040 printer) with either computer. In general, however,
devices designed for the T/S 1000, T/S 1500, or the Sinclair Spectrum
will not work with the T/S 2068 computer.

Table 6-2. DOCK Connector Pin Assignments

Pin | Name Description

1,3.4 A0-Al5 |The 16-bit address bus. Only Al3 and Al4

8,10,12 have been buffered on the T/S 2068.

14,16 '

24-31

2 +5V + 5-volt power supply.

5-7,9 |D0-D7 |The 8-bit bidirectional data bus.

11,13

15,17

18 MREQ |Memory Request. This line goes low when
the Z80 is ready to access a memory
location. '

19 IORQ I/O Request. This line goes low when the
Z80 is ready to access an /O port.

20 A7R Refresh address bit 7.

21 RD Read. This signal goes low when the Z80
wants to read data from a memory location
or I/O device.

22 M1 CPU M1 state. This signal indicates when
the Z80 is performing an M1 (instruction
fetch) cycle.
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Table 6-2 — cont. DOCK Connector Pin Assignments

Pin.

Name

Descriptiun

23

32

33

34

35

36

WR

RFSH

EXROM

ROSCS

GND

Write. This signal goes low when the Z80
wants to write to a memory location or I/O
device.

Refresh. This line signals when the Z80 is
putting out a refresh address on the lower
half of the address bus.

Bank Enable. When this line is pulled low,
it disables the RAM/ROM inside the T/S
2068. This allows the cartridge memory to
be accessed conflicting with the internal
memory.

Extension ROM enable. This signal is used
to access the EXROM.

Rom Oriented Software Chip Select. When
this signal goes low it indicates that the
CPU wishes to access the RAM or ROM on
the ROS cartridge.

System electrical ground.

Table 6-3. Expansion Edge Connector Pin

Assignments
Pin | Name Description
1A DZOUT |Daisy chain out. This signal is used to
control the selection of the Expansion
memory banks.
2A EAR This line is a duplicate of the signal at the

EAR jack on the rear of the computer. It can
be used as either an input or output.
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Table 6-3 — cont. Expansion Edge Connector Pin

Assignments
Pin | Name Description

3A ATR Refresh address bit 7.

4A, D0-D7 |This is the 8-bit bidirectional data bus.

7-13A

S5A — Not used.

B6A — Slot.

14A INT Interrupt Request. When this line is pulled
low, the T/S 2086 begins an interrupt cycle
if the interrupt flag (IFF) has been set.
Otherwise, this line is ignored.

15A NMI Nonmaskable Interrupt. When this line is
pulled low, the T/S 2068 will begin
executing an NMI cycle. This causes the
Z80 to perform a restart to location 0066h.

16A HALT |This signal indicates that the Z80 has
executed a HALT instruction and is
awaiting either an INT or NMI interrupt
before operation can resume.

17A MREQ |Memory Request. This line goes low when
the Z80 is ready to access a memory

_ location.
18A IORQ I/O Request. This line goes low when the
| Z80 is ready to access an /O port.

19A RD Read. This signal goes low when the Z80
wants to read data from a memory location
or J/O device.

20A WR Write. This signal goes low when the Z80
wants to write to a memory location or /O
device.
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Table 6-3 — cont. Expansion Edge Connector Pin

Assignments
Pin | Name Description

1B DZIN Daisy in. This signal is used with the Daisy
out line to coordinate access of the
Expansion memory banks.

2B MIC/ This line carries the same signal as the

BEEP MIC jack but at a higher level. It contains
- | pulses generated by the cassette write and

software BEEP routines.

3B + 15V + 15 volt unregulated. Actually this can be
as high as +21 volts.

4B +5V + 5_-vult regulated power supply.

|15B — Not used.

6B — Slot.

7B,8B, |GND System electrical ground.

30B,32B

9B O CPU system clock (inverted).

10-25B | A0-AlS |This is the 16-bit address bus.

26B — Not used.

27B R Red color signal. (TTL level — positive).

28B G Green color signal. (TTL level — positive).

29B B Blue color signal. (TTL level — positive).

31B ‘VIDEO [Composite video signal. This is a
duplicate of the signal available at the
MONITOR connector. Approximately 1V
peak-to-peak.

21A BUSAK |Bus Acknowledge. This line is used to
indicate that the CPU address, data, and
control signals have been deactivated so
that an external device can now control
these signals.
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Table 6-3 — cont. Expansion Edge Connector Pin

Assignments

Pin

Name

Description

22A

23A

24A

25A

26A

27A

28A

29A

30A,32A
31A

WAIT
BUSRQ

RESET

RFSH

EXROM

ROSCS

GND
SOUND

| cartridge in the DOCK connector.

Pulling this line low will cause the CPU to

enter wait states for as long as the line is
held low.

Bus Request. This line is used to signal the
Z80 that an external device wishes to take
control of the data and address buses.

Pulling this line low causes the computer
to perform a reset operation as if it were
just turned on. This line can also be used
as an output to reset external hardware
whenever the computer is reset.

CPU M1 state. This signal indicates when
the Z80 is performing an M1 (instruction
fetch) cycle.

Refresh. This line signals when the Z80 is
putting out a refresh address on the lower
half of the address bus.

Extension ROM enable. This signal is used
to access the EXROM.

Rom Oriented Software Chip Select. When
this signal goes low it indicates that the
CPU is accessing the RAM or ROM on a

Bank Enable. When this line is pulled low,
it disables the RAM/ROM inside the T/S
2068. This allows the Z80 to communicate
with an External memory bank without
conflicting with the internal memory.

System electrical ground.

This is the analog output from the PSG.



7
Using the T/S 2068's

Programmable Sound
Generator

The T/S 2068 has a built-in, sound-generating IC. This sophisti-
cated “chip” is known as the Programmable Sound Generator, or PSG
for short. (Technically speaking, the PSG is a General Instrument
AY-3-8912.) Telling the PSG what to do is simply a matter of sending
the proper bytes of data out through a pair of /0 ports. Specifically, the
T/S 2068 uses ports F5h and F6h for communicating with the PSG.
Port F5h is used to address one out of 15 registers within the PSG, and
the eight bits of data are written to (or read back from) the PSG via port
F6h. From BASIC, there is a SOUND command which makes this task -
slightly easier.

~ INSIDE THE PSG

If we could look inside the PSG, we would find 15 byte-wide registers
arranged as shown in Fig. 7-1. These registers control the sound
generated by this IC. To generate music or sound effects, the com-
puter must send a series of commands to the PSG at precise times. In
between commands, the PSG will continue to produce sound accord-
ing to its last instructions. Thus, the CPU is free to perform other tasks,
such as updating the screen or graphics display. This is one of the
main advantages of using a hardware PSG versus the software gener-
ated sound.

The PSG can be broken down into six major functions (see Fig.
7-2). We start with three identical tone generators. Each generator
produces a square-wave signal at a software-controlled frequency.
The exact frequency is determined by programming the coarse tune
and fine tune registers associated with each tone generator. In addi-
tion to the three tone oscillators, there also is a random-frequency
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Fig. 7-1. Registerlayout of AY-3-8912 PSG. (Courtesy General Instru-
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Fig. 7-2. Block diagram of PSG. (Courtesy General Instrument Corp.)

noise generator. This block creates a sound similar to the noise heard
from a tv set when it is tuned to a channel that is not broadcasting. By
controlling the sound produced by the noise generator, we can create
the sound of percussion instruments, as well as many sound effects.
The outputs from these tone generators and the noise generator are
fed into a mixer section which controls which sound is to be fed into
three D/A (digital to analog) converters. The purpose of these devices
is to give control over the amplitude (loudness) of the signal.

The D/A converters set the volume for each channel according to
the data stored in the amplitude control registers. These registers can
supply a fixed 4-bit value representing one of 16 logarithmically scaled
amplitudes. Alternatively, each register can specify that the amplitude
be controlled by the envelope generator which automatically causes
the amplitude to rise or fall at a predetermined rate. Before describing
how the PSG is programmed, we’ll discuss a few basics of sound.

AUDIO BASICS

Sound is nothing more than a compression wave — molecules of air
moving closer together and then farther apart. This wave is usually
generated by some vibrating object. In the case of the T/S 2068, it
comes from the moving diaphragm, or cone, of a small speaker inside
the computer. When this speaker is fed an alternating current, it will
move in and out according to the varying potential (voltage) across its
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terminals. If this signal is made to alternate somewhere in the range of
20 to 20,000 times per second, then our ears can detect (hear) the
motion of the speaker.

There are three characteristics of the voltage signal that can be
discerned by our ears. First of all, there is the number of times that the
voltage changes polarity (goes from positive to negative or vice versa).
This determines the frequency or pitch of the signal. At 20 polarity
reversals per second, the sound will be extremely low, almost like an
earth tremor. To make the sound of a middie C note on the piano, the
signal must have a frequency of about 260 cycles per second. The
high end of the audio frequencies is at 20,000 cycles per second. This
is usually written as 20,000 Hz or 20 KHz (Hz represents hertz, the unit
of frequency and K represents 1000).

Sometimes it is useful to refer to the inverse function of frequency.
That is, how many seconds (or fraction thereof) it takes to complete
one cycle. This is known as the period of a signal and can be
expressed in seconds, milliseconds (thousandths of a second), etc.
Converting from frequency to period, or vice versa, is simply a matter
of dividing the number by 1. For example, a 200-Hz signal has a period
of 1/200 or .005 second (5 milliseconds).

Another characteristic of the voltage signal driving a speaker is the
amplitude or level of the signal. This determines how Joud the sound
emanating from the speaker will be. The amplitude can be constant,
as in the dial tone you hear when you pick up a telephone, or it can vary
in some manner to create a different sound. When you hit a cymbal for
instance, the sound starts off very loud. As the cymbal continues to
vibrate, the sound begins to die off, getting softer and softer until there
is no sound at all.

Sounds that have a varying amplitude can be broken up into three
phases. The first phase consists of the time when the sound is
beginning to increase in amplitude. This is known as the attack portion
of the signal. If the signal maintains this amplitude for some length of
time, then this is called the sustain portion. Finally, the sound enters
the decay phase where the amplitude decreases, usually to zero.
Sometimes repetitive combinations of these phases are strung
together to form complex sounds. By drawing a line around the peak
values of a given waveform, we can easily see what kind of variations
are taking place in the signal’s amplitude. This is known as the enve-
lope of the signal (see Fig 7-3.)
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Fig. 7-3. Basic characteristics of an audio signal.

The last important characteristic of a signal is its waveshape. This
determines the timbre or voice of the sound. It's what makes a middle
C note on the piano sound different from the same note played on a
guitar. Actually it is the presence of harmonics, or multiples of the
primary frequency, that give each instrument its individual sound. The
only pure sound is that created by a sine wave which consists of only
one frequency without any harmonics. A tuning fork creates such
monochromatic sound. Other waveshapes such as the “square wave”
signals created by the T/S 2068 are rich in harmonics. When we speak
of the frequency of such a signal, we always refer to the most dominant
or fundamental frequency. While there may be numerous harmonics
present in the signal, they are all considerably lower in amplitude than
the fundamental.

PROGRAMMING THE PSG

To understand how the PSG creates sounds, let’s start with the input
clock and the register array. These two criteria fully define the actual
sounds that come out of the PSG. First, we have a master clock signal
which the T/S 2068 creates and feeds to the PSG's CLOCK input. This
signal is nothing more than a square wave oscillating at 1.764 MHz
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(that's millions of hertz). Obviously this frequency is much too high to
be heard by the human ear, so the PSG must reduce the signalinto the
audible range to be of any use. It does this with a series of circuits
known as dividers since they divide the input frequency by some fixed
amount to produce a lower frequency. The first thing that happens to
the input clock is that it gets divided by 16. This, then, becomes the
PSG's master clock which feeds the rest of the circuits.

Setting the Frequency

The PSG has three separate tone generators which can be indi-
vidually programmed to create a single note. The actual frequency
produced by each generator is equal to the PSG master clock divided
by a 12-bit Tone Period value stored in the PSG's registers. For
example, the Tone Period for the “A” channel of the PSG is comprised
of Register 0 and part of Register 1. Fig. 7—4 shows a graphic repre-
sentation of how this 12-bit value is formed. Although one half of
Register 1 (hereafter referred to as R1) is not used, the lower four bits
represent the most significant portion of the tone value. Therefore, R1
is called the Coarse Tune Register and R0 is the Fine Tune Register.
Likewise for the other two channels B and C, there are two pairs of
tuning registers, R2/R3 and R4/R5, respectively.

COARSE TUNE FIMNE TUNE
REGISTER CHAMMEL REGISTER
A1 A RO
A3 B R2
(25 [ R4
BY |BE|(BS| B4 | B3| B2|B1}|BO BY|BE|Bs|B4a}| B3I} B2 B1} B0
\ A .r

NOT

I

|
USED ; L
i
I

TRU|TPIO| TPD | TRE | TPT | TP& | TPS | TP4 | TP3 | TP2 | TP1 | TRD

12B8IT TONE PERIOD (TP} TO TOME GENERATOR

Fig. 7-4. Tone generator timing registers. (Courtesy General Instru-
ment Corp.)

Let’s see what kind of tones we can generate with the PSG. With a
12-bit divisor, we can represent any number between 1 and 4095
(dividing by 0 is not allowed). With a 1.764 MHz input clock divided by
16, we have a PSG master clock frequency of 110.25 KHz. This is the
highest frequency obtainable using a tone period divisor of 1. At the
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low end, we can get 110.25 KHz divided by 4095, or 27 Hz. This covers
most of the useful audio spectrum.

Note that the numbers stored in the Tune registers represent the
period of the desired frequency. Therefore, a large number stored in
the register corresponds to a low frequency tone. Also note that these
division counters create a linear span of frequencies which have
nothing to do with musical notes. The musical scale is based upon a
logarithmic group of frequencies. Notes are arranged in octaves
which represent a doubling of frequency and each octave is then
subdivided into twelve equally tempered notes. Thus, every note is the
twelfth root of two higher in frequency than the previous one. Table 7-1
shows the actual frequencies associated with each musical note along
with the values that must be stored in the tuning registers to approxi-
mate them. Note that these are only approximations as can be seenin
the last column which shows the actual frequencies produced by the
T/S 2068.

Table 7-1. Register Values for Notes of Musical Scale

Ideal Tune Registers Actual
Note |[Octave| Frequency |Coarse| Fine Frequency
C 1 32.703 13 43 32.705
C# 1 34.648 12 110 34.648
D | 36.708 11 187 36.713
D# 1 38.891 11 19 38.889
E 1 41.203 10 116 41.200
F 1 43.654 9 222 43.646
F# 1 46.249 9 80 46.246
G 1 48.999 8 202 49.000
G# | 51.913 8 76 51.907
A 1 55.000 T 213 54.988
A# 1 58.270 7 100 58.272
B 1 61.735 6 250 61.730
C 2 65.406 6 150 65.391
C# 2 69.296 6 55 69.296
D 2 73.416 5 222 73.402
D# 2 77.782 5 137 77.805
E 2 82.407 5 58 82.399
E 2 87.307 4 239 87.292
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Table 7-1 — cont. Register Value
for Notes of Musical Scale

Ideal Tune Registers| .  Actual

Note |[Octave| Frequency [Coarse| Fine Frequency
F# 2 92.499 4 168 92.492
G 2 97.999 4 101 98.000
G# 2 103.826 4 38 103.814
A 2 110.000 3 |. 234 110.030
A# 2 116.541 3 178 116.543
B 2 123.471 3 125 123.460
C 3 130.813 3 75 130.783
C# 3 138.591 3 28 138.505
D 3 146.832 2 239 146.804
D# 3 155.563 2 197 155.501
E 3 164.814 2 157 164.798
F 3 174.614 2 119 174.723
F# 3 184.997 2 84 184.983
G 3 195.998 2 51 195.826
G# 3 207.652 2 19 207.627
A 3 220.000 1 245 220.060
A# 3 233.082 1 217 233.087
B 3 246.942 1 190 247.197
C 4 261.626 1 165 261.876
| C# 4 277.183 1 142 277.010
D 4 293.665 1 119 294.000
D# 4 311.127 1 98 311.441
E 4 329.628 1 78 330.080
F 4 349.228 1 60 348.892
F# 4 369.994 1 42 369.966
G 4 391.995 1 25 392.349
G# 4 415.305 1 9 416.038
A 4 440.000 0 251 439.243
A# 4 466.164 0 237 465.190
B 4 493.883 0 223 494.395
C 5 $23.251 0 211 522.512
C# 5 554.365 0 199 554.020
D 5 587.330 0 188 586.436
D# 5 622.254 0 177 622.881
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Table 7-1 — cont. Register Value

for Notes of Musical Scale
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Ideal Tune Registers Actual

Note [Octave| Frequency |Coarse| Fine Frequency
E 5 659.255 0 167 660.180
F S 698.456 0 158 697.785
F# 5 739.989 0 149 739.933
G 5 783.991 0 | 141 781.915
G# 5 830.609 0 133 828.947
A S 880.000 0 125 882.000
A# 5 932.328 0 118 934.322
B S 987.767 0 112 984.375
C 6 1046.502 0 105 1050.000
C# 6 1108.731 0 99 1113.636
D 6 1174.659 0 94 1172.872
D# 6 1244.508 0 89 1238.764
E 6 1318.510 0 84 1312.500
F 6 1396.913 0 79 1395.570
F# 6 1479.978 0 74 1489.865
G 6 1567.982 0 70 1575.000
G# 6 1661.219 0 66 1670.455
A 6 1760.000 0 63 1750.000
A# 6 1864.655 0 59 1868.644
B 6 1975.533 0 56 1968.750
C 7 2093.005 0 53 2080.189
C# 7 2217.461 0 S0 2205.000
D 7 2349.318 0 47 2345.745
D# 7 2489.016 0 44 2505.682
E 7 2637.021 0 42 2625.000
1F 7 2793.826 0 39 2826.923
F# 7 . 2959.956 0 37 2879.730
G 7 © 3135.964 0 35 3150.000
G# 7 3322.438 0 33 3340.908
A 7 3520.000 1] 31 3556.452
A# 7 3729.310 0 30 3675.000
B 7 3951.067 0 28 3937.500
C 8 4186.009 0 26 4240.385
C# 8 4434.922 0 25 4410.000
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Table 7-1 — cont. Register Value.
for Notes of Musical Scale

Ideal Tune Registers Actual
Note [Octave| Frequency |Coarse| Fine Frequency
D 8 4698.637 0 23 4793.478
D# 8 4978.032 0 22 5011.364
E 8 5274.041 0 21 5250.000
F 8 5587.652 0 20 5512.500
F# 8 5919.911 0 19 5802.632
G 8 6271.927 0 18 6125.000
G# 8 6644.876 0 17 6485.294
A 8 7040.000 0 16 6890.625
A# B8 7458.621 0 15 7350.000
B 8 7902.133 0 14 7875.000

By the way, you might like to compare Table 7—1 with the chart on
pages 187-189 of the T/S 2068 User Manual. You will find that the
frequencies given and the register values recommended are slightly
different. The reasons for this are threefold. First, it seems that the
actual frequencies presented in the Timex manual were calculated on
a machine with limited accuracy. Therefore, there are some discrepan-
cies in the last couple of decimal places. Next, when calculating the
Coarse and Fine Tune register values, a couple more errors crept in.
As evidenced by the program later in the chapter, we see that an
approximation of 1.75 MHz was used for the clock frequency. We also
see that the Fine Tune register value was truncated instead of being
rounded to the nearest integer. Since all of the values are really
approximations to the correct frequencies anyway, we really shouid
use all of the accuracy we can get. Listing 7-1 shows the program that
generated the values in Table 7-1.

Noise Generator

Aside from the three programmable tone generators, there is also a
programmable noise generator in the PSG. This generates a random
collection of frequencies that can be used in a variety of ways. Unlike a
true white noise source which would generate all audio frequencies
with equal amplitudes, this generator only produces a limited noise
range. This range can be moved towards either the high-frequency or
low-frequency end. This is accomplished by setting a five-bit value into



Using the T/S 2068s Programmable Sound Generator 123

Listing 7-1

W LET x=1764400/16
280 LETb=27.5: LETs=2%(1/12)
3 FORiI=3TO98
40 LET a= (b«sti)
50 GO SUB 5¢¢
68 PRINT a$;” *;
7@ LET a=x/a: LET c=INT (a/256)
87 LETf=INT (a—(c+256)+.5)
9@ IF c<1@ THEN PRINT * *:
91 PRINT " *;
8¢  IF f<1@ THEN PRINT * *:
181 IF <18@ THEN PRINT” *;
13  PRINT f:* »:
118 LET a=x/(c«256+1)
126 GO SUB 50@
13@ PRINT a$
A0@  NEXT i
499 STOP
500 LET a$=" "+ STRS$ (a+ .B4@@5):
FOR j=1TOLEN (a$): IF a$(j)=" .” THEN GO TO 5@3
581  NEXT |
502 LETa$=a%+"."
503 LET a$=(a$+ "@00") (-4 TO j+ 3)
504 RETURN

REGISTER R6

B7 | B6 | B5 | B4 | B3 | B2 | B1 BO

e W

NOT 5-BIT NOISE PERIOD (NP)
USED TO NOISE GENERATOR

Fig. 7-5. Noise Period Register. (Courtesy General instrument Corp.)

the Noise Period Register (R6). See Fig. 7-5. Using a low number
gives a high-frequency noise that sounds somewhat like rain. A high
number yields the lower pitched noise of wind rustling through the
trees. By sweeping the noise spectrum from high to low, you can
create the sound of waves crashing on the shore.

Selecting the Tone and Noise Sources

The Mixer Control Register (R7) takes care of selecting which tone
or noise source will be sent to the output channels. Each channel (A,
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B, or C) can contain either its respective tone generator or the noise
source. The tone enable is represented by the lower three bits of R7.
The noise enable is contained in the next three higher bits. Each “0” bit
represents that the respective source is enabled or turned on. Storing
a value of 63 at this location (111111 in binary) causes all sound from
the PSG to be turned off. Bit 6 is used to control the direction (i.e.,
either input or output) of an I/O port which is part of the PSG. This is
the port used by the T/S 2068 to read the status of the external
joysticks. This bit must always be left at zero for the STICK command
to work properly. Fig. 7—6 shows the breakdown of bits in R7.

REGISTER R7
NOT
USED B& BS B4 B3 B2 B1 BO
b i1 Iy \
il -"" : :11. 11.
- | iy 1
e ,‘r 1 Iy 1
# / | I\ \
o ! 1 1 4 i
# ! | | \ 1
W : : 'ﬁil II.li
| | 1 L
110 PORT A : : ;S ":I
I i \ i
I | ] 1
FLFNCTIQN NOISE ENABLE TONE ENABLE
CHANNEL cC B A c B A
MOISE ENABLE TRUTH TABLE: TOME ENABLE TRUTH TABLE:
R7 BITS NOISE ENABLED R7 BITS TONE ENABLED
B5 B4 B3 ON CHANNEL B2 B1 BO ON CHANNEL
0 0 0 C B A c 0 0 C B A
0 0 1 C B — 1] 0 1 C B —_—
0 1 0 cC — A 0 1 o cC — A
o 1 1 & = = & 1 9 B o o
1 0 0 — B A 1 0 0 - B A
1 0 1 - B - 1 0 1 - B -
1 1 0 - — A 1 i 0 T — — A
t 1 1 — e T 2 9 wowy i

Fig. 7-6. Mixer Control Register. (Courtesy General Instrument
Corp.)
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AMPLITUDE CONTROL

REGISTER CHANNEL
R8 A
R9 B
R10 C

B7|B6|B5|Ba| B3|B2| B1| BO

N'E}T ! :a' "'\ I"'l.
USED / 1 \
i i 1 i
! i v \
! [ ) \
] ! \1 Y
M L3|L2|L1|Lo
AMPLITUDE 4-BIT "FIXED"
"MODE" AMPLITUDE LEVEL
Fig. 7-7. Amplitude Control Registers. (Courtesy General Instrument
Corp.)
Setting the Amplitude

Now that we have the frequency of the note(s) defined in the
appropriate tune registers, we need to set the amplitude. There is an
Amplitude Control register in the PSG for each of the three channels.
These are R8, R9, and R10 for Channels A, B, and C, respectively.
Each Amplitude Control register contains a four-bit “fixed” amplitude
level and a one-bit amplitude “mode” control, as shown in Fig. 7-7.

The amplitude mode bit selects either a fixed level (M =0) or vari-
able level (M=1) amplitude. If the fixed mode is selected, then the
four-bit amplitude value sets the loudness of the channel to one of 16
preset levels. These levels are logarithmically related to compensate
for the response of the human ear. The amplitude of a channel could
be varied under software control by constantly writing new values into
the amplitude register. The PSG, however, has a built-in mechanism
for creating variable amplitude signals.

When the amplitude mode bit is set to a “1”, another section of the
PSG, called the Envelope Generator is used to control the channel's
amplitude. The Envelope Generator supplies a four-bit value to the
amplitude control which can dynamically change without any interven-
tion of the CPU. At any given time, the output of the Envelope Gener-
ator will depend upon the Envelope Period Control Registers (R11 and
R12) and the Envelope Shapenycle Control Register (R13). See Fig.
7-8 and Fig. 7-9.
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ENVELOPE ENVELOPE
COARSE TUNE FINE TUME
REGISTER R12 REGISTER Ri1
BY|BG|B6|Ba|B3|B2]B1|BO B7|Bo|B5|Ba| B3| B2| B1| BO

L |
LY 4
A

EP15| EP14| EP13 | EP12 | EP11 |EPM0| EPS | EPG | EPT | EPG | EPS | EP4 | EP3 | EP2 | EP1 | EFD

16-B1T ENVELOPE PERIOD (EF}
TO ENVELOFE GENERATOR

Fig. 7-8. Envelope Period Control Registers. (Courtesy General
Instrument Corp.)

REGISTER R13

B7{B6|B5|B4| B3| B2|B1|BO

v 5 FUNCTION
NOT
USED HOLD

» ALTERNATE T0
. ENVELOPE
- ATTACK GENERATOR

—= CONTINUE -

Fig. 7-9. Envelope Shape/Cycle Control Register. (Courtesy General
Instrument Corp.)

The rate at which the amplitude will rise (attack) or fall (decay) is
controlled by the Envelope Period Control Registers. These two regis-
ters combine to form a 16-bit divisor which determines the envelope
period. Before being fed into this programmable divider, however, the
master clock is first divided again by 16. Thus the envelope frequency
canvary from1.764 + 16 + 16 + 1 = 6890 Hzdownt0 1.764 + 16 +
16 + 65535 = 0.105 Hz. This last value corresponds to a decay period
of 9.5 seconds. _

- Register 15 contains four bits which control the action of the Enve-
lope Generator. These bits are labelled Hold, Alternate, Attack, and
Continue. By setting these bits at the appropriate time, we can gener-
ate any type of attack-sustain-decay amplitude envelope that we
desire.

The Hold bit determines whether the envelope control will generate
a single attack or decay cycle or whether it will keep repeating. With
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Hold =1, the envelope will rise or fall — depending upon the value of
the Attack bit—and then maintain the last amplitude (either all the way
on or all the way off) until the next command. When Hold=0, the
envelope will continue cycling up and down at the frequency deter-
mined by the Envelope Period registers. The Alternate bit controls how
the envelope cycles when Hold=0. If the Alternate=1, then the
envelope will change direction at the end of each ramp cycle. That is, if
the envelope started as an attack, it will begin to decay after reaching
its maximum amplitude. This generates an envelope pattern that
resembles a triangle wave. At the end of an attack cycle where
Alternate =0, the amplitude will return to zero and another attack cycle
begins. This is known as a sawtooth pattern.

The Attack bit determines whether the envelope generated will be
an attack (Attack =1) or a decay (Attack = 0). The Continue bit actually
does not serve any useful purpose so it is best left as a zero. Fig. 7-10

-shows the resulting envelope shapes generated by the various set-
tings of the Envelope Control bits.

COMBINING THE OUTPUT CHANNELS

The three outputs from the PSG are combined into a single SOUND
signal. This signal is available at the rear expansion connector and is
one of three signals that drive the speaker in the T/S 2068.

OTHER EFFECTS

Tremolo

There are several musical effects obtainable from the PSG. One of
these is called tremolo, which is the slight, rhythmical variation in a
tone’s amplitude. This is accomplished by cycling through several
fixed amplitudes at a constant rate. A program loop can create such a
cycle, with the execution time of the loop controlling the repetition, or
tremolo rate. The range of amplitudes used will control the depth of
tremolo effect. By using just 2 or 3 values, there will be only a slight
warble effect. Increasing the range causes the effect to be more
pronounced. Listing 7—-2 contains a program to demonstrate the trem-
olo effect.
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ENVELOPE SHAPE/CYCLE CONTROL

R13 BITS
B3I B2 B1 BO
A

C L

o T

M Al E 1
T|T|rR

1| TI{N|H

NIl ATAIO GRAPHIC REPRESENTATION

E ﬁ E E OF ENVELOPE GENERATOR

-
[=]
(=]
o

-— EP 15 THE ENVELOPE PERIOD
{DURATION OF ONE CYCLE)

:

Mote: Above waveforms only show positive
side of envelope.
For example, cycle 1110 creates a
signal like this:

Fig. 7-10. Envelope patterns available with the PSG. (Courtesy Gen-
eral Instrument Corp.)
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Listing 7-2
¥ LETa=13 :
20 SOUND@,211:1,8: REM C5note
3@ SOUND 7.62:8,13: REM enable .

43  PAUSE 18@: REM play note
538 FORi=1TO 8: READ t: SOUND 8,a+t: REM do tremolo
60 NEXTi: RESTORE: GO TO 5d

193 DATA@1,21,8,-1,-2,-1

Vibrato

129

Varying the frequency of a note instead of its amplitude creates the
effect known as vibrato. The program in Listing 7-3 demonstrates this
effect. Note that the entire tone period value must be varied. Therefore,
if the fine tune register must cross through a value of 0 or 255, the
coarse tune register must be updated accordingly. To be equally
effective on any given note, the depth of vibrato (lowest tone period -

Listing 7-3

1@ LET f=211: REM C5 note

20 SOUND @.f:1,0

3@ SOUND 7,62:8,13: REM enable

4%  PAUSE 19@: REM play note

50 FORi=1TO 8: READ v: SOUND @,f+v: REM do vibrato
6f  NEXT i: RESTORE : GO TO 58
168 DATA@1,21,8,-1,-2,-1

highest tone period) should be proportioned to the absolute periﬂd.
The program in Listing 7—4 compares the tremolo and vibrato effects.

Listing 74

W LETa=13: LETf=211
20 SOUND @,f;1,8: REM C5note
38 SOUND 7,62:8,13: REM enable
4  PAUSE 18@: REM play note
45 FORq=1TO 50
50 FORi=1TO 8: READ t: SOUND 8,a+t : REM do tremolo
68 NEXT i: RESTORE : NEXT g
78 FORq=1TO 50
80 FORi=1TO 8: READ v: SOUND @,f+ v : REM do vibrato
9@ NEXT i: RESTORE : NEXT q:GOTO 1@
133 DATAS1,2,1,8,-1,-2,-1
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Chords

Playing several notes at the same time can create the pleasant
sound of a chord. Table 7-2 shows how various chords can be
created. A chord starts with its root note (the numbers in parentheses
refer to the octave: —2 means down one octave, —4 down two
octaves, etc.). Then a 3rd Minor or 3rd Major note is added to create
either a minor or major chord. Any of the remaining notes can then be
added to fill out the chord. See Listing 7-5 for an example of how a
chord is played on the T/S 2068.

Timex/Sinclair 2068 Intermediate/Advanced Guide

Listing 7-5

W SOUND®,211;1,8: REM C5

28 SOUND 2,167:3,8: REM E5

3@  SOUND 4,141;5,8: REM G5

44 SOUND 7,56:8,15:9,15:1@,15

9@ PAUSE 180

Table 7-2. Chord Selection Chart
(Courtesy General Instrument Corp.)

Chord Root |3rd Minor|3rd Major| 4th 5th 6th Tth

Selection
C C (+2)|D# (+2|E (+2|F (+2|G (+2|A (+2) |A# (+2
C# |C# (+2|E (+2|F (+2 |[F# (+2) |G# (+2 |A# (+2) |B (+2)
D D (+2|F (+2)|F# (+2|G (+D|A (+2|B (+2|C (+1)
D# D# (+2)|F# (+2) |G (+2)|G# (+2) |A# (+2|C (+1)|C# (+1]1)
E E (+2)|G (+2)|G#E (=2 |A (=2)|B (+2)|C# (+1|D (1)
F F (+2)|G# (+2){A (+2)|A# (+2|C (+1)|D (+1)|D# (+1)
F# F# (+4)|A (+4) |A# (+4)|B (+4)|C# (+2)|D# (+2)|E (+2
G G (+4)|A# (+4)|B (+4)|C (=+2)|D (+2)|E (+2)|F (=+2)
G# G# (+4)|B (+4)|C (+2)|C# (=2 |D# (+2)|F (=2 |F# (+2
A A (+4)|C (=2} |{C# (=2)|D (2 |E (=2)|F# (=G (+2)
A# A# (+4)|C# (+2)|{D (+2)|D# (=2 |F (+2D |G (+2) |G# (+2
B B (=4)|D (#2)|D# (=2)|E (+2)|F# (=2)|G# (+D|A (+2)




8 .
The Video Display

INTRODUCTION

When we interact with a computer, the primary output device
through which information is conveyed is the video display. This is how
the computer presents the results of most of its functions. The T/S
2068 has four different bit-mapped, color display modes available to
the user. These will be described in this chapter.

VIDEO BASICS

It would seem that the best place to startis at the beginning— with a
primer on what video is and how it works. In its broadest definition,
video refers to the presentation of information as a visual image,
usually by some electronic means. Nearly all video displays are
created on some form of cathude -ray tube (crt), better known as a
picture tube.

A crt consists of an alectmn gun assembly (see Fig. 8-1) and a
relatively flat viewing area coated with a phosphorescent material. The
electron gun contains a small wire filament that is heated by passing a
current through it, much like an incandescent light bulb. This heating
element gives off electrons which are attracted toward the face of the
tube by a high voltage (generated by circuits within the television set or
monitor). This voltage accelerates the electrons to a very high speed.

When the electrons strike the phosphors on the crt screen, they
cause it to glow, creating a small speck of light. The intensity of this
spot is controlled by an electrode which varies the number of electrons
leaving the heater area. Finally, the location on the screen where the
electrons hit can also be manipulated by deflecting the beam of
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electrons either electrostatically or magnetically. In most video dis-
plays, the deflection is done by means of two magnetic coils wound
around the neck of the cathode-ray tube. These are known as the
deflection coils. When the proper signals are applied to these coils, the
electron beam can be directed left or right, up or down, at will.

With few exceptions, video displays use a raster-scan technigue.
This means that the electron beam is constantly being swept, in a
consistent pattern, across the entire screen. Starting in the upper-left
corner of the screen, the beam is made to scan towards the right.
Wherever information is to be displayed, the electron (or beam) current
is modulated so that it illuminates only the desired areas. When the
beam reaches the far right side of the screen, itis turned completely off
(or “blanked”) and then rapidly returned to the left side in preparation
for scanning the next line. At the same time the beam is also moving
toward the bottom of the screen so that the next line will appear slightly
below the previous one. When the beam eventually reaches the
bottom of the screen, there’s a similar blanking period during which the
beam is brought back to its starting position. -~

To standardize the American television industry and to reduce the
information needed to transfer a video image, the National Television
System Committee (NTSC) was formed in 1953. This committee set

HIGH VOLTAGE
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CIRCLATS

SmT=w—
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Fig. 8-1. Cathode-ray tube.
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down the specifications for a raster-scan video system and further
defined the frequencies, levels, and timing of the video signal.

It turns out that the electrical signal needed to deflect the electron
beam horizontally and vertically in the appropriate fashion is quite
easy to obtain. The waveform for this signal is known as a sawtooth,
(so named for its resemblance to the ragged edge of a saw). Since this
signal can be created by an oscillator circuit within the monitor or
television, it need not be sent along with the video information from the
camera, computer, or other video source.

In a camera, for instance, there might be another sawtooth oscillator
that causes an electron beam to scan the face of a video pickup tube.
The output of this tube would vary according to the brightness level of
the scene at the exact location of the beam. Thus, if the output of the
pickup tube were connected to the input of the crt, it would “paint” an
image on the screen of whatever the camera was focused on.

There is, of course, one hitch. For the system to work properly, the
scanning position of the pickup tube and the beam deflection of the crt
must coincide with, and track, each other. Although the NTSC specifi-
cation sets the frequency for these oscillators, some means of getting
them “in phase” or synchronized must be provided. This is accom-
plished by adding some special features, known as horizontal and
vertical sync, to the video signal. See Fig. 8-2 and Fig. 8-3.

HORIZOMTAL
BLANKING ACTIVE VIDED
HORIZ| COLOR DARK DARK LIGHT PALE
|5-mc BURST WHITE | BLAGK | B e RED RED AED
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VOLTAGE 1

LUMINAMCE

i LEVEL
*, M. (BRIGHTNESS)
“BLACK - _\!:J d
0° (1N PHASE) CHROMA PHASE (TINT)
Vi MMUWWW‘
HOREOMIAL g  FEFERENCE SUBCARRIER
[SHOWN FOR COMPARISON TIME ——t
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NOT TO SCALE

Fig. 8-2. Video waveform for one horizontal scan line.
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VERTICAL :
FIELD
VERTICAL ___ :
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VIDEO
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SYNC

Fig. 8-3. Video waveform for one vertical field.

The preceding holds true for both black-and-white and color trans-
mission. When color television was first considered by the NTSC, it
was decided that some means of adding the color information that
would remain compatibie with black-and-white standards needed to
be found. A color tv camera works by separating the light from a scene
into its red, green, and blue components. It's like putting three black-
and-white cameras together with a colored filter in front of each one.
Since red, green, and blue are the primary colors, any other color can
be broken down into a specific mixture of these colors.

To be compatible with the black-and-white video standard, the RGB
(Red, Green, and Blue) signals must be combined in a precise ratio to
develop the brightness, or luminance signal. By adding these three
signals, we can create another signal which is identical to the output of
a black-and-white camera. That takes care of the compatibility issue,
but what about the rest of the color information? Well, it can be proven
mathematically that a set of mutually exclusive functions (such as the
RGB primary colors) can be transformed into another set based upon
any other mutually exclusive functions. By adding the RGB signals
together we have already created one signal. If we add or subtract the
R, G, and B signals in two other ratios, we can derive another pair of
signals that represent only the color information. With proper proc-
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essing, these signals can then be transformed to represent the hue
(tint) and saturation (color intensity) information.

The NTSC'’s solution was to add a high-frequency subcarrier to the
luminance signal. This could be both amplitude and frequency modu-
lated (actually phase modulated) to carry the hue and saturation
information. This subcarrier would ride along the video waveform so
that to a black-and-white receiver it would pass unnoticed. With the
proper circuitry in a color set, however, this extra signal could be
reconstituted into the proper red, green, and blue signals to drive a
typical color crt.

As was the case with the horizontal and vertical sync signals,
another color sync signal needed to be added so that the receiver’s
color oscillator could be synchronized to that of the original video
source. This additional signal is called the color burst because it
consists of a burst of approximately nine cycles of the originating
subcarrier reference oscillator.

To summarize the NTSC color video system, let's consider its three
separate parts. Both the sending and receiving devices contain three
oscillators: a vertical one at a rate of 29.97 Hz, a horizontal one at
15,735 Hz, and a subcarrier riding on 3.57945 MHz. Through these
oscillators, the sending device creates a video signal with the following
properties:

1. There is a negative-going pulse to signify the start of each
horizontal line and a similar signal to signify the beginning of
each vertical field.

2. The color reference subcarrier is modulated by signals repre-
senting the red, green, and blue content of each portion of the
active video field. These signals in turn create an am (amplitude
modulated) and fm (frequency modulated) signal that rides
along with the brightness or luminance signal. In particular, the
phase of this subcarrier represents the hue, and the amplitude of
the subcarrier corresponds to the saturation of the color. This
subcarrier signal is referred to as the chrominance subcarrier, or
simply chroma. The center point around which the subcarrier
oscillates is thus the luminance level.

Now that we know what kind of signal the T/S 2068 video generator
must create, we will look at where the computer stores the information
that we see on the screen.
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DISPLAY MODES

The information that the T/S 2068 displays on the screen comes
from several special areas in RAM. These are called display files and
attribute files and there are two of each. Their addresses are shown in
Fig. 8—4. Normally, only the primary files are used, and the memory
assigned to the secondary files is used by the system software. To fully
utilize the secondary files, this system data must be moved elsewhere
in RAM as discussed in Chapter 5.

Display and Attribute ]
File Addresses Hexadecimal Decimal

Display File 1 4000-57FF 16384-22527
Attribute File 1 5800-5AFF 22528-23295
Display File 2 6000-77FF 24576-30719
Attribute File 2 7800-7AFF 30720-31487

Fig. 8-4. Display file and attribute file addresses.

The display file holds a bit-mapped representation of the video
display. This means that there is a one-for-one correspondence
between each bit in the display file memory and the dots that make up
the video picture. Each dot is also called a picture element, or pixe/ for
short. Although the exact order of the bits in memory may not corre-
spond to the relative position on the screen, there is a somewhat
logical layout to the bytes in the display file. See Fig. 8-5.

The attribute file contains information on the color, intensity, and
flashing status for each character position in the display. The informa-
tion represented by each attribute byte is shown in Fig. 8-6 and the
layout of the attribute file is shown in Fig. 8—7. Note that three bits are
used to represent each of the PAPER and INK colors. If you examine
the bit representations, you will find that the least significant bit repre-
sents blue; the middle bit red; and the most significant bit represents
green. Various combinations, of course, yield their respective colors
(e.g., 011 = Red + Blue = Magenta). Thus the T/S 2068 represents
color information in an RGB format.

A large portion of the T/S 2068's circuitry is devoted to the job of
video generation. This is one of the major improvements that the T/S
2068 made over the earlier T/S 1000 which had used the CPU to
perform this task. Since video generation requires that a continuous
signal be created and updated about 60 times per second, it required
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START OF DISPLAY FILE

6144 BYTES TOTAL

+—32 BYTES —— 32 BYTES — = === ssvress +— 32 BYTES —=— 32 BYTES —
DATA FOR DATA FOR DATA FOR DATA FOR
ROW 1 ROW 2 ROW 8 ROW 1
SCAN LINE 1 SCAN LINE 1 SCAN LINE 1 SCAN LINE 2
+— 32 BYTES —=f s+ s = v 02 —32 BYTES —1=— 32 BYTES —+— 32 BYTES —+
S————— %\ i Y & s
DATA FOR DATA FOR DATA FOR DATA FOR
ROW 8 ROW 8 ROW 9 ROW 10
SCAN LINE 2 SCAN LINE 8 SCAN LINE 1 SCAN LINE 1
p— i —] & sk omomowowowoE o — — START OF
{ 32 BYTES 32 BYTES 32 BYTES ATTRIBUTE FILE
L g .3 W
DATA FOR DATA FOR DATA FOR
ROW 16 ROW 17 ROW 24
SCAN LINE 8 SCAN LINE 1 SCAN LIME 8

Fig. 8-5. Display file organization. (Courtesy Timex Computer Corp.)

that the T/S 1000 either stop making video while it was computing, or
else run very slowly.

In the T/S 2068 the video generator operates independently (but
synchronously) with the CPU. To present information on the video
display, the CPU has only to load the correct dot patterns into the
display file and the appropriate color/intensity information into the
attribute file. The video generator then constantly reads out these
files, converting the information they contain into the three RGB
signals. These signals are available at the card edge on the rear of the
computer; this allows the T/S 2068 to be connected to monitors
specifically designed to accept RGB signals. We'll have more to say
about this later. The RGB signals also go to an encoder circuit which
transforms them into the composite video signal which feeds the
MONITOR jack and the RF modulator.
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ATTRIBUTE BYTE FORMAT

BIT

7 6 5 4 3 2 1 0
GREEN | RED BLUE | GREEN | RED | BLUE

L PAPER COLOR INK COLOR
1=BRIGHT, 0=NORMAL

— 1=FLASH, 0 =STEADY

PAPER OR INK COLOR

VALUE COLOR

7 1M WHITE

6 110 YELLOW
5 101 CYAN

4 100 GREEN

3 omn MAGENTA
2 010 RED

1 001 BLUE

0 000 BLACK

Fig. 8-6. Attribute byte structure. (Courtesy Timex Computer Corp.)

START OF
ATTRIBUTE FILE
768 BYTES
+— 32 BYTES —}+— 32 BYTES —{ + s s+ s essoen +~— 32 BYTES —-I
DATA FOR DATA FOR DATA FOR
ROW 1 ROW 2 ROW 24
Fig. 8-7. Attribute file organization. (Courtesy Timex Computer
Corp.)
Display Mode 1

In this mode, the T/S 2068 organizes the video display into 24 rows
of 32 characters each. This corresponds to creating 256 pixels on
each of 192 lines. One attribute byte is used for each character
position (a character is made up of 8 x 8 pixels). The pixel data and
attribute data are stored in their primary locations (D _
FILE 1 and A FILE 1).
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Display Mode 2

This display mode allows the computer to generate 24 rows of 64
characters each. This corresponds to a graphic resolution of 512 X
192 dots. Both display files are used. The odd numbered character
positions come from D FILE 1and the even ones come from D FILE 2.
No attribute file is used; therefore, the entire screen can only have one
PAPER color and one INK color. The paper color is stored in a
hardware register at port FFh. The ink color is chosen automatically by
the computer as shown in Table 8-1. The low brightness and flashing
attributes are not available in this mode.

Table 8-1. Paper and Ink Combinations
Available in Display Mode 2

Port FFh
Bit5 Bit4 Bit3 Ink Paper
1] 0 0 Black White
@ 0 1 Blue Yellow
1] 1 0 Red Cyan
1] 1 1 Magenta Green
1 0 0 Green Magenta
1 0 1 Cyan Red
1 1 1] Yellow Blue
1 1 1 White Black

You can see what the 64-column mode looks like by typing:

OuUT 25562

This turns on Mode 2 with black paper and white ink. You will need a
good, hi-resolution monitor connected to the MONITOR jack in order
to see the presentation clearly.

Note that the characters are now half as wide as normal. You can
type on the computer, or do anything else with it as if you were in the
regular mode. However, the upper portion of the screen will have
strange looking “garbage” characters in every other position. In fact,
as you press the keys, you will notice certain changing patterns on the
screen. This is because the second display file memory is still being
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used by the system software for data storage. The only effect of the
OUT 255,62 command has been to cause this area of memory to be
displayed on the screen.

Display Mode 3

This is the “secondary page” mode of the T/S 2068. It operates
exactly like display mode 1 except that D FILE 2 and A FILE 2 are
used. One of the reasons for having two separate display pages is that
they can be used for instant reveal and simple animation. Without two
pages, the computer would have to constantly update a single page
with the new information to be presented. Updating an entire screen
takes a finite amount of CPU time, and you would have to watch the
computer draw each new screen. With two pages, however, the com-
puter can be updating one page while the other is being displayed.
Then it can simply “throw a switch” to instantly reveal the newly drawn
page and begin updating the first page. By alternating between these
two pages, a crude form of animation can be created.

Display Mode 4

This is the Ultra High Color Resolution mode of the T/S 2068. It uses
D FILE 1 to define the pixel data just as in mode 1. Instead of using
A FILE 1 to hold the attributes, however, this mode uses D FILE 2.
Since this display file contains eight times as much memory as the
normal attribute file, it is possible to assign an attribute byte to each
row of pixels within each character. This allows a wide variety of color
displays to be generated by the T/S 2068.

RGB VIDEO

As previously mentioned, the video generator first created Red,
Green, and Blue signals from the data stored in the display/attribute
file areas of RAM. These signals can be used to drive an RGB monitor
for high quality color displays. By using the RGB signals directly, such
a monitor avoids the noise and distortion that are inevitable when the
RGB signals are converted to a composite video signal and then back
again.
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Most RGB monitors require five signals: the Red, Green, and Blue
video signals plus Horizontal and Vertical sync. These last two signals
are sometimes combined into a composite sync signal. These signals
are usually sent in digital form as TTL levels (transistor-transistor-
logic, the most common form of digital electronic circuitry using + 5-
volt and O-volt signal levels). The T/S 2068 has TTL compatible R, G,
and B signals available at its card edge. However, there is no horizon-
tal, vertical, or composite sync signal available. To obtain these sig-
nals, it is necessary to feed the composite video signal (also available
at the card edge) into a circuit that can extract the sync portion and
translate it to TTL levels. If the monitor requires positive TTL sync,
then the circuit must also invert the sync waveform since the com-
posite video signal uses negative going sync pulses. An RGB adapter
should be available by now from the Timex Computer Corporation.
When using RGB, however, the intensity attribute (set by the BRIGHT
instruction) is ignored.






PART 2
MACHINE
LANGUAGE



SECTION A
PROGRAMMING THE Z80



9

Introduction to Machine
Language Programming

We shall now examine how to program the Z80 in machine lan-
guage. We have covered most of the hardware aspects of the CPU;
now we’ll explore the software side. The principles of machine lan-
guage programming are not too different from BASIC programming.
We must devise a procedure, or algorithm, to solve a problem and
then turn that into a series of program steps within the constraints of
the programming language. We'll examine these constraints a little
further.

BASIC VS. MACHINE LANGUAGE

Every BASIC program written on the T/S 2068 follows a given set of
rules. The program consists of lines or statements which themselves
follow a given set of rules. These lines are executed sequentially
unless specifically directed to jump or GO TO another line number. We
define various data elements as either constants or variables in either
numerical or character (i.e., string) format. Variables are referred to by
“names’ which are usually chosen to help remember their meaning.
Within each statement, the data is manipulated using the approx-
imately 100 different commands that are understood by the T/S 2068
BASIC interpreter. These commands include the simple arithmetic
operations as well as higher mathematics such as trig functions. Thus
writing a program is simply the act of stringing these instructions
together in the proper order to produce the required results.

Machine language programs also follow a rigid set of rules. Again,
we can define a program as a list of statements which execute sequen-
tially unless explicitly diverted. As far as a machine language program
is concerned, however, all data looks the same — it's simply a “bunch
of bits.” The Z80 doesn’t know whether a given byte represents part of
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a floating point number or one character of a string. It is strictly up to
the machine language programmer to keep track of things. One way to
do this is by creating certain data structures that help define the
program. We have already seen several examples of data structures
used by the T/S 2068 BASIC interpreter: numerical values are stored
in 5-byte blocks (fixed length data structure), string variables are
stored in a variable length data structure, and the BASIC program in
memory is stored as a linked-list. Keep in mind that these structures
merely refer to blocks of memory and are identified to the Z80 by their
absolute starting address. Actually, we can assign names to such
variables or lists if we have an assembler (more on this later), but to the
Z80 everything is still simply 8 bits times 65,536 locations. Finally,
unlike the BASIC interpreter which understands about 100 com-
mands, the Z80 has an “instruction set” of only 50 or so unique
functions. (Most Z80 instructions have. many variations, however.)
These instructions are all very simple compared to their BASIC coun-
terparts. For example, the Z80 only has instructions for adding and
subtracting 8 and 16-bit numbers. All other mathematical operations
require multiple Z80 instructions arranged in a small routine to accom-
plish the given function. Some examples of this will be shown in
Chapter 12,

HAND-CODING VS. AN ASSEMBLER

Before delving into Z80 machine language programming, we must
decide how we are going to write programs and get them into the T /S
2068. There are two ways to write programs: hand-coding or using an
assembler. Both methods start off by defining the problem in terms of
the Z80's capabilities. A sequence of Z80 instructions is then written
down which will accomplish the desired task.

Each instruction is referred to by a mnemonic code. When hand-
coding a program, the one or more bytes that represent this instruc-
tion, i.e., its op code, are looked up in a table and written down next to
the instruction. Any related data bytes are also written down in the
proper order to derive the exact sequence of bytes that represent the
desired program.

Using an assembler makes things much simpler, however. The
mnemonic program is typed directly into the assembler which auto-
matically converts it into the proper bytes in memory. Various other
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features such as line labels and variable labels (similar to BASIC line
numbers and variable names) are also supported. Another great
feature of an assembler is in calculating relative offsets and jump
locations which may change as the program is modified. As we will
soon see, adding one instruction to an existing program can require
many changes. With hand-coding, each change must be identified
and corrected manually.

Despite the advantages of using an assembler, we are going to
proceed with hand-coding our examples. The reason for this is quite
simple. At the time this book was being written there was no assembler
program available for the T/S 2068. Anyone serious about machine
language programming, however, will eventually want to have an
assembler (there should be some available by now). Aithough we don't
have an assembler, we can still write programs in “assembly lan-
guage” complete with instruction mnemonics and labels. Then we will
go back and play human assembler — looking up op codes, calculat-
ing offsets, and eventually generating the hexadecimal bytes which
represent the given program. To enter the program into the T/S 2068,
we then have to convert the hex numbers into decimal and POKE them
in from BASIC. While this takes much more time and effort than using
an assembler, it offers a great opportunity to learn about the Z80 and
how it is programmed.

UNDERSTANDING THE Z80 DOCUMENTATION

Our approach to learning machine language programming will cen-
ter upon one theme — understanding completely the Z80 instruction
set. The charts presented in the next few chapters outline everything
you need to know about what each instruction does.

Justto get a feel for the usefulness of these charts, take a look at the
column headings in Table 10-1. The first column shows the mnemonic
for the given instruction. This includes separate representations for the
various types of operands that can be used with each instruction. Due
to the variety of addressing modes available with the Z80, there may
be twenty or more different forms of a given instruction. The eight-bit
LD (load) instruction, for example, has 21 varieties.

The next column shows a symbolic representation of the operation
performed by the instruction. Arrows are used to denote the flow of
data. The next eight columns show the effect of the instruction on each
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bit of the flag register. There are five distinct possibilities for the
outcome of each bit. By executing the instructions, a flag bit can be
“set” (=1) or "reset” (=0), left unaffected, or left in an unknown state.
The last alternative is that the flag bit is set or reset according to the
result of the operation performed by the instruction.

The next two columns give the numeric representation of the
instruction, or op code, in both binary and hex form. Many instructions
apply to more than one register so a generic form is listed for the op
code. Substituting the proper bits for each of the required registers will
yield the exact binary representation for the instruction.

The last three columns give information on the number of bytes
used by each instruction and the number of machine cycles needed to
execute it. Normally, these columns can be ignored unless a very time-
sensitive routine is being written.

THE USR COMMAND

To execute a machine language program from BASIC, the USR
command is used. This is a cross between the BASIC GO SUB
statement and the machine language CALL instruction. Actually, USR
is a function so it requires a preceding action command such as
PRINT or LET. It also requires a parameter which in this case is the
address to begin executing at (in decimal). Thus, a machine language
routine located at address 1000 can be executed by any one of these
lines:

18 LET » = USR 1909
Z0 PRINT USR 12090
30 RANDOMIZE USR 1000

All of the preceding statements cause a machine language routine to
execute until a RETurn instruction is encountered. This returns control
to the BASIC program which then continues with its next statement.
Upon entering the machine language routine, the BC register pair will
hold the starting address of that routine. With the exception of the IY
and | registers, the routine is free to use any of the CPU registers. Their
values prior to the USR call are automatically saved on the machine
stack. Upon returning to BASIC, the interpreter will restore these
registers to their proper value. The BC register pair, however, can be
used to pass back data from the machine language routine. The
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contents of this register will be assigned as the value of the USR
function. Thus, in line 10, the value in register BC will be assigned to
the variable x. This is a full 16-bit integer value.

In line 20, the value returned will be printed out on the screen. Line
30 shows a method of calling a routine which does not pass back any
data. This avoids the need for a “dummy variable” or the printing of
extraneous numbers on the screen.

THE Z80 INSTRUCTION SET

The remainder of this section will describe each of the Z80 instruc-
tions in detail. Chapter 10 will introduce the simple LOAD instructions
for moving information between memory and the CPU. All of the Z80
addressing modes will be described. Chapter 11 continues with
instructions that affect program flow. These include jump, call, and
restart instructions. Chapter 12 will discuss arithmetic and logic opera-
tions. Routines for multiple precision addition, subtraction, and multi-
plication are described, as well as a routine to perform division. Finally,
Chapter 13 concludes with the advanced Z80 instructions, including
block moves, searches, and I/O operations.



10 |
Moving Information:

The Load Instruction

Machine language programs spend much of their time transferring
data between the CPU registers and memory. Moving data is the
function of the Z80’s LOAD instructions which are very similar to the
LLET statement in BASIC. There are many varieties of this instruction,
so it will be helpful to break them down into at least two groups: the 8-
bit LOAD group and the 16-bit LOAD group. As its name implies, the 8-
bit load group transfers one byte of data per instruction. Note that
whenever we speak of the transfer of data, we are actually talking
about reading the contents of some source location and then copying
the same pattern of bits into the destination location. These locations
can be CPU registers, RAM or ROM memory locations, or even I/O
ports. It is also important to note that the contents of the source
location always remain unchanged (unless, of course, the source
location also happens to be the destination location). The previous
contents of the destination location are always lost when the new data
is written there.

REGISTER ADDRESSING

Table 101 shows the 8-bit LOAD group of the Z80. All of the
instructions start with the LD mnemonic which is short for LoaD.
Starting at the top, we have the LD r,s instruction. Here r and s refer to
any of the following registers within the Z80: A,B,C,D,E,H, or L. As the
symbolic description to the right implies, the contents of register s are
copied into register r. Since both the source and destination locations
are registers, this instruction is called a register to register load.
Register addressing is relatively simple (there are only seven to
choose from) and extremely fast. Since it only takes 3 bits each to
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Table 10-1. The 8-Bit LOAD Group
(Courtesy MOSTEK, Corp.)

Symbalic Flags ! Op-Code No. of |Mo.of M Ilu. aT
Mnemaonic Operation [ 5 [ Z H FIV[ N | C |76 533 210 | Hex Bytes | Cyeles | States Commants
LOr,s r—% ¢ fef x| e| X|e] o]0l r i 1 4 s  Reg
Ldrn r—n o | & | X | o) W )le|s|e DD 110 1 2 7 non B
- n - om C
LB, (HL r —[(HL} - o | X]|=|x]=]=]« 01 ¢ 110 1 2 T b ] 1]
LD r, (1%l FefiXedh | | ] X} ofx]s * 111 011 1 oo 3 5 19 bit E
0l r 110 100 H
- d = m L
L0, (1Y) F=ll¥ed) o | ® | X | &) x| @] {11 111101 FO 3 5 19 m A
o or 110
-d = '
LO(HLL, ¢ {HLY} —r o Xlw|x|=|=]|= D10 1 ]
LD (13Xl ¢ {isdlmr [ [ o x| o) % |a] =]« {11011 i} 3 5 19
0t 110
R
LO{0Y+dl, r (edi=—r [® | ® [ X | | x}e|«]|af11 11110 FO 3 ] 13
IS [
[ | -
LD (HLE, [HL} =~ n - s X=X |= = |+ |00 110110 36 2 3 L]
-— m -
LD [ X+d), m (iXtd)m=n | ® X || X|® == 11011100 (]1] 4 5 19
o0 10110 | 36
— ﬂ -
R
LOUY+dln  [iFfedi—n |[® [o | x| ® fx |o ]« )a (1110010 FO | 4 5 19
oo 10 1a 36
._d -
= i =
LD A, [(BC) A —[BE) L ® P M| efx Je ]|« |= |00000i0 ha 1 2 7
LD A, [DE} A—{DEN |o Lo x| |x |=]|=f= 00001000 1A 1 2 7
LD A, {nnl A =[nnl # | e X | e | X |o|«f= p0111010 1A 3 4 13
- -
-0 =
LD [BCI, A {BCl=—A ® e fX e X |=f == 00000010 02 1 2 7
LD [DE), & (DEl=A |= fo|X|o}|X o |=|a|0)G10010 12 1 2 7
LD {nnf, A fral—A |* [o | X |e]x|e || {01000 12 k| 4 13
- ] -
R
LD A, I A= bl Xxfolx per]lofe= |11 1001 ED 2 2 g
o1 pan 57
LD &, R A—R Lyt s ol per|a]e 1100 ED |2 2 ]
omonm 5F
LO I, A i-A L =X e X |= ]« £ |11 10110 ED ) 2 9
01 000111 47
LD R, A R=-A& . M & [¥ ]« = [= )17 101101 EDQ 2 2 3
a1 g1 1 4F

Motes: 1.5 means any of the registers A, B, C, 0, E, H, L
IFF the content of the interrupt enable flip-tfop (1FF] is copied inta the PV flag

Flag Notation:  ®= fiag not affected, 0 = flag reset, 1 = flag set, X = flag it unknown,
b= flag is affected according to the rewult of the aperation.

specify the source and destination registers, the entire instruction can
be contained within a single byte and executed in one machine cycle.

To see an example of how this instruction would be used, suppose
we have some data in the A register that we wish to move into the B
register. The mnemonic code would be:

LDB+A
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To calculate the binary representation of the op code, we start with 01,
add 000 to specify B as the destination, and finish up with 111 indicat-
ing A for the source. This gives us an op code of 01000111 or 47h. You
can also verify this by checking the op code chart in Table 10-2.
Locate the column for register A as the source and the row for register
B as the destination. The intersection gives 47 as the correct op code.

You should also note that none of the flag bits are affected by this
instruction.

Table 10-2. Op Codes for 8-Bit LOAD Group
(Courtesy MOSTEK, Corp.)

TRT,
IMPLIED REG INCHRECT I 1M X ADDR. | FME
] ] el | ioE) Bincs iy sgal ek | »
R b R B i 7 T o i s oo o PO 1)
o e Fae b &a@' - --
A Ex | Em i : L TA e 7 TE skl
7 C i i) B el et | i s d d B e
i oD FD e
B 4E L] ﬂ._&
a ) ]
oo ] B
[ i €
a ]
oo | fo
% ]
REGHTER | D - -
(&) F
E SE 5E
4 d
oo Fi
H B& 6
d d
Fe
t @ i
DEETINATION HL

REG
INDERECT

Aoy

LE L]
INBERED

e T it

11l

ENT. ADDA | Gl @"' E

IMFLIED

IMMEDIATE ADDRESSING

The next form of LoaD instruction to consider is that shown by the
following mnemonic:

LD rsn

Here, as before, r represents one of seven possible registers for the
destination. In this case, however, the source of data, n, is the next byte
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following the op code. Therefore, this instruction requires two bytes —
one for the op code and another for the data. When this instruction is
executed, the Z80 looks at the second byte and then copies that data
into the selected register. |

This method of supplying the data within the instruction is called
immediate addressing. That is, the source data is found immediately
following the op code. For example, if we wanted to load register C with
a value of 40, the instruction would look like:

@E 28 LDC., 40

Notice that we have written some (hex) numbers in front of the instruc-
tion. These are the hexadecimal bytes that represent the given instruc-
tion. This format of writing the hex notation to the left of the mnemonic
representation is standard for an assembly language listing. Even
though we will be assembling our code by hand, it proves to be a
convenient and efficient way of showing both forms at one time.
Therefore, whenever writing machine language code, leave enough
space to fill in the hex codes to the left as they are determined.

To see how these hex numbers were derived, start by looking up the
op code for loading register C with an immediate value. From Table
10-2 we find that the code should read OE n (where nis the data). Thus
the first byte must be OEh. The instruction specified a data value of 40
without explicitly indicating its base. Therefore, it is assumed to be a
decimal number which needs to be converted into hex before it can
become the second byte of the instruction. Doing the conversion gives
us 28h for the second byte. Therefore, the complete hex representa-
tion for the instruction is OE 28 as shown.

REGISTER INDIRECT ADDRESSING

The next entry in the 8-bit LOAD group demonstrates the use of
register indirect addressing. Indirect addressing refers to a method
whereby the data resides in a memory location, and the address of that
location is placed in one of the 16-bit register pairs within the Z80. The
CPU, therefore, must look to that address to find the data. (This may
sound a bit confusing, but it is a very common procedure for the Z80
and can be very powerful.)
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Of course, to use any of the register indirect load instructions, we
must first set up one of the register pairs with the desired address.
Note from Table 10-2 that any register can be loaded using the (HL)
indirect addressing mode. The other register pairs, however, can only
be used for loading the A register.

For example, if we needed to load register D with the contents of
memory location 1000h we would write:

LDH:10h
LD L»20h
LD DsCHLY

See if you can fill in what the correct hex codes should be. When we
discuss the 16-bit LOAD group, we will find an even easier way to load
the HL register pair. Remember that whenever we use parentheses
around a 16-bit value, we are actually referring to the 8-bit data stored
at the 16-bit address. Therefore, you should read HL as the value
stored in the HL register; but (HL) means “the value stored at the
address pointed to by the HL register.”

INDEXED ADDRESSING

One of the most powerful addressing modes of the Z80 is known as
indexed addressing. The mode makes use of the two special pur-
pose, 16-bit, index registers: IX and IY. While these registers are
capable of holding a complete memory address, the term indexing
refers to the fact that we can add an offset, or displacement, to the
address to form a new effective address. This effective addressis then
used as the source or destination location for the data.

One of the most common uses for indexed addressing is when
dealing with data that is stored in tabular form. In this case, the index
register would be loaded with the starting, or base, address of the
table. To find a given element in the table, we would then only need to
know its position (i.e., displacement) from the beginning of the table.
This would then become the displacement value used in the instruc-
tion. Indexed loads require three bytes of code — two for the op code
and one more for the displacement. A typical instruction might look like
this:

DDA4aBE @94 LDB, (IX + 4)
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EXTENDED ADDRESSING

When passing data to or from the A register, a special form of
extended addressing can also be used. This is sometimes referred to
as direct addressing because the address for the memory location is
directly contained within the instruction. In fact, it is palced in the two
bytes following the op code. As will be the case with all addresses
stored by the Z80, the low byte of the address is stored first. For
example

JAPQ 10 LDA, (1000h)

With this instruction the contents of memory location 1000h would get
loaded into the A register.

IMPLIED ADDRESSING

The last four load operations in Table 101 refer to transfers between
the A register and the special purpose | and R registers. We won't have
too much to say about these instructions except that they define
another type of addressing mode. Since both the source and destina-
tion locations are completely specified by the op code, these instruc-
tions are said to use implied addressing. Also note that LD A,l and LD
A,R are the only 8-bit load instructions that affect the flag bits: the H
and N bits are reset, the S and Z bits are set according to the value
loaded, and the P/V flag gets set to the state of a special-purpose
circuit within the Z80 called the Interrupt Flip-Flop.

16-BIT LOAD GROUP

Next we shall describe the 16-bit Load group. These instructions
perform exactly like their 8-bit counterparts except that 2 bytes get
transferred at the same time. Table 10-3 and Table 10—4 outline this
group of instructions. ,

The first thing to notice from Table 10—4 is that almost no register-
pair to register-pair loads are allowed. The exception is between the
special SP register and the IX and |Y registers. Most register pairs can
be loaded with an immediate 16-bit value, however. This is known as
immediate extended addressing. The value is contained in the two
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bytes following the op code (low byte first, of course). So we could

have:

210019 LDHL»1000h

Table 10-3. The 16-Bit LOAD Group

(Courtesy MOSTEK, Corp.)

Symbolic Fl : Op-Cods Mo, of | No.of M | No.of T
Mnemonic Dpsration g1z H PVl Rl C|76 41 N Hex Bytes | Cycles | States Camments
LO dd, nn dd = nn oo | X |® | X|® | ® | 00 dd0 D01 i 3 k] 10 dd  Pair
B o BC
- n = M OE
LO MK, nn 1% = nn L N O T O L I v ) i 4 4 14 10 HL
gowonomy 1 5P
-0 =
- 0 =
LOIY, nn I = nn o | e | X|® | X|® = | &|11 51110 FO 4 4 14
00 200 0 | 2
-— n -
-0 =
LD HL, tnnl H —ipp*il f oo ] X]|® | X]|e|e =100 101 map 2a 3 5 16
L = fmn - n =
Lo pd i
L0 dd; [nnl ddg=inpel] | = | & | X 1= [ X |o |= « 111 101 101 ED 4 [ 20
ddy =[nnk 01 ddt 01
- n -
-y e
LD X, {nn) IXKp=fonet] [ * | @ | X |® [ 1= |= | =)0 m1 0] OO 4 g k|
IX[ = [nn} 0007 af A
. n -
- =
LD 1Y, dnn) I¥p=Mnnel] | = ] o | X [ = | %X |= |« | =17 1111001} FD [ [ 0
1Y =[nnl o 107 010 2A
-— 1] —
- “ -—
LD {an), HL | {nnel} = H e | N je | ¥ |o |« | = |0f 10000} 22 k] 5 16
fan) =i - N =
— 1] -
L0 {an), dd atl =ddy | * [ = | X | = | X |® |= | =]1110110tf ED 4 B 1
tan)=dd 01 ddid 811
- n —
B
LD {nnd, 1X ipti]l =IXy| == [ Xf= [X]» |» * 111 011 10d oo 4 B 0
{mn) =1 00 w0 010§ 22
-— n -
- n -
LD (nnd, 1Y fonslh =¥yl e |e [ X | [ X|= | « L1111 101 FD 4 B 20
fnnk=1v| 00 100 00| 22
- n -
- p =
LDSP. HL | 5P = HL slo x| ool (o snmom| ra |1 i ]
LDEP, 1X P - Ix s e X |® X ]|= || =110 | DO z z 10
1 111 oot | F9
LD &P, 1Y 5P~y ol | X [= §X |» = 111 111 10% Fb 2 2 0
1M M| FfI &y Pair
PIUISH g9 [SPN ~gq |[®|= X |= [ X |= | * |11 gt T 1 k1 11 00 BC
18P-1) = qoy 0 OE
PUSH 1X [GP2) =X |[* | | X|® {X|» |= =111 01 1 oo 2 4 15 1o HL
[SP-1h = I¥y 10 1M E5 n AF
PUSHIY [BP2) =¥ [ |® | X |®» [ X |» |= e |11 111 1 FO 2 4 15
[SP1) = iYy oT00 101 | ES
PO g qgE=(5P+1] | = [® | X | & [X |® |# « | 11 qob 001 1 3 10
qqp = (5P}
FOPI1X Iy =[5P+1] o lw X [= X[ |» 111 011t oo i 4 "
X =8P 11100 01 | EX
POPIY I¥=l5P+1) |= |® f XK |= [X = |= =111 111 1 FD 1 4 14
1Y =[5F} 11 100 001 E1l

Notes:  dd 15 any of the register pairs BC, DE, HL, 5P
94 Is any of the register pairs AF, BC, DE, HL
{PAIR] W, (PALRY L reter to high arder and low arder eight bits of the register pair respectively.
eg BCL=C AFy=A

Flag Notation: @ = flag not affected, 0 = flag reser, 1 = Hlag tet, X = flag iz unknown,
fliag is affected according 1o the reswlt of the operation.
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Table 10-4. Op Codes for 16-Bit LOAD Group
(Courtesy MOSTEK, Corp.)

SOURCE
IMM. | EXT. | REG.
REGISTER EXT. | ADDR. | INDIR,
AF BC DE HL 5P 13 ¥ o nnd
AF
M| ED
BC i 3_2 .
i i
Fuaar )
8| ! | =
£ im0
G &#@m% fl
! HL EEREEE S
DESTINATION | 3%'5@ -
-E R g"hi&.“’ké&
B TR ED
e ?ﬁﬁi oo | ro | av | 55
oo Fa F9 [agiaid o
e ‘g %‘%‘ n
oD oD
X 21 24 | oo
n n E1
n n
FD FD
v i 28 FD
i} £ E1
L] Lil
ED oo FO
Ex 73| 2 5]
ADDRA. m n n
L] n
i —a= | REG. oo | ED
INSTRUCTIONS IND. e £
MOTE: Tha Push & Pop Inrtructions sdpust POP
the 5P sfter avery suecution INSTRUCTIONS

Of course, this is equivalent to the following 8-bit loads:

ZE 2D LDL +2dh
2619 LDH:18h

As can be seen, the 16-bit instruction uses one less byte and it also
executes faster.

We can also use extended or direct addressing to specify a given
memory location. But this only gives us a single 8-bit value — not
much use for a 16-bit load instruction. Therefore, the CPU must look at
another location to get the other half of the 16-bit data. This is exactly
what the Z80 does, as shown by the symbolic representation of the LD
HL, (nn) instruction. The L register is loaded with the contents of
location nn; the H register is loaded with the contents of location nn + 1.
This conforms to the Z80's standard of storing the lower order byte of a
16-bit value first. Thus, if memory locations 1000h and 1001h con-
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tained an important memory address, we could load the complete 16-
bit address with a single command:

ZA0D 1D LD HL »(100Dh)

The last form of 16-bit load instruction uses the Stack Pointer (SP)
register as a memory pointer (indirect addressing). These instructions
are referred to as the PUSH and POP instructions because they
operate on the machine stack. What makes these instructions differ-
ent, aside from using the register indirect addressing mode, is that
they also alter the SP register itself after executing. That is, after each
PUSH instruction, the SP register is decremented by 2. Conversely
each POP instruction adds 2 to the Stack Pointer. Although not
explicitly shown in the symbolic descriptions of these operations, you
should remember that a PUSH instruction also performs SP ¢ SP - 2.
And POP does an SP 4 SP + 2. None of the flag bit are affected by a 16-
bit load instruction.



- 11 |
Program Flow: JUMP.
CALL, and RETURN

Having machine language programs execute in sequential order
from start to finish is not very useful. Computer programs (whether
they're machine language or BASIC) gain versatility through the use of
decision making and branching instructions. Structured programming
and memory savings are the benefits derived from the use of sub-
routines. In BASIC, we have the GO TO, GO SUB and RETURN
statements. Their machine language equivalents are the JUMP,
CALL, and RETURN groups.

Table 11-1 and Table 11-2 outline the JUMP instructions. The first
type of jump is called an unconditional jump and it has the form:

JP nn

Like the BASIC GO TO statement, this instruction always causes the
program to jump to the address nn and then continue executing there.
Note the symbolic form for this instruction:

PC4nn

This instruction merely places the two-byte address nn into the Pro-
gram Counter (PC) register. Since the PC register determines from
where the next instruction will be read, altering the PC has the effect of
jumping to a new sequence of program instructions.

The next form of jump instruction is known as the conditional jump.
Thisresemblesthe IF . . . THEN GO TO structure used in BASIC. The
conditions which can be tested are the states of several flag bits.
These are shown in Table 11-2 under the heading “CONDITION.” If the
specified condition is met, then the jump instruction will be executed.
Otherwise, the program continues with the next sequential instruction.
To see an example, suppose we have the following two program lines:
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Table 11-1. JUMP Group
(Courtesy MOSTEK, Corp.)

Symbalic Flags Op-Cods Wo.of | Ne.of M{Noal T
Mpsmonic | Operation R H PIV| N | C |76 543 210] Hex | Bytes|Cyches | States | Commants
JPnn PC - nn s 1o | Xl= | %= |=|= f1too0oi| c3 |3 3 1
R
- a = ot Candition
JP ec, nn (Feonditionee | * [= | X]* | X |= [=|= [ e oo 3 3 10 000 | NZ non pero
is true PC = nn, - n = o (2 eero
orthierwite - n = 010 | NE noncarry
comtinue 011 | € eaery
100 | PO parity odd
101 | PE parity even
10 | P sign positive
JRe PL~PC+e o o] x|® jx|= |+« = 0001 ODOf 8 2 3 11 111 | M sign negative
- gl = ;
JRCe Me=10, o o | x|® | x|®{=|= |00 111 000] 38 i Z 7 il condition not met
conlinue -kl -
HWEL=1, 2 3 12 I condition is met
P = PCie
JRNC. e o [#]x]|® | xi® j=|= |0010000) 30 |2 rd 7 If condition not mat
- ‘-2 -
2 1 12 If condition is met
JRZ e . |- ¥l= | x]= |=[= jo0 00000 28 12 ? T If conditicn nat mat
- gl =
FJ 3 12 If condition is met
IRNZ & o o | %= | x|® |= |+~ |00 100 000F 20 |2 7 7 If eandition Aot met
continug - g2 =
HZ=0, i 3 12 It condition is met
FC = PL+e
PN [PC - HL ele | x|efx]e | nnmomj €1 1 4
JP LK) PC - 1X oo | xls [ x]e |o )= {1010 OO 2 2 ]
11 101 001§ ES
JR(EY) PC = 1% LN L 4w o | 11111 W01 FD ) 2 2 B
1101 ooy ES
DINZ, & B - B1 oo | x]|e |n|® |= )= |00om0o000y W2 2 ] He=mo
ife=0 -l -
continue
1B #0, F 3 13 IfB#D
PC - PCie

Notes: e represents the extension in the relative addresing mode.
# it 0 signed Two's complement numbet in the range <126, 128>

&7 in the op-code provides an effactive sddrass of pese a PCis
incremented by 2 prioe to the addition of e

Flag Notation: ® = flag nat affecied, 0= flag reset, 1 = flag set, X = flag is unknawn,
{ = flag is affected accarding to the result of the oparation.

ED SF LDA:R
CZ 00 10 JPNZ + 1000h

The first instruction loads the A register with the contents of the R
register. After executing this instruction, the Zflag will be set according
to the value just transferred. If the value was zero, then the Z flag will be
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set (=1). Otherwise, it will be reset (=0). According to this condition,
the next step will either jump to location 1000h or continue with the

program.

RELATIVE ADDRESSING

The previous jump instructions used immediate extended address-
ing (the target address is part of the instruction). Another form of jump
instruction uses relative addressing. This means that the new location
to jump to is given in terms of an offset (plus or minus so many bytes)
from the present location. Instead of supplying the absolute location
within the instruction, as done previously, the new destination is given
relative to the current position. The Jump Relative instruction has two
major advantages. First, it only uses two bytes of memory (one for the
op code; another for the relative offset) instead of three. The second
advantage of using relative jumps is that they make the machine
language program relocatable or position independent. This means
that a program written to run at location 1000-1020, for example, could
be moved byte for byte into location 2000-2020 and still run correctly.
We’'ll explain this by way of example. Suppose we had the following
two lines:

1000 - ED SF LD AR
1002—- C5S 00 10 JPNZ 1009h

Table 11-2. Op Codes for JUMP Group
(Courtesy MOSTEK, Corp.)

CONDITION
LIN. HNOMN KOM |PARITY |PARITY | SIGMN SIGN REG
COND. | CARRY | CARRY| ZERD ZERD |EVEN Dop NEG POS Bal
¢y l'pa | p2lcAa|lcaEA ]| g2 | FA] F2
JUMP P IMMED, an n@ e .}“? £ S0 he L Thes G SR B RO BN
EXT, o Eaiis et e e T el n - n
JUMP R RELATIVE | PCee | 18 a8 30 28 0
=2 e L] =2 Lo
uwe HU) |ipg "
ume  up REG. i oD
INDIR, Ef
JumP  “gp v FO
£9
DECREMENT B,
JUMP IF NON | RELATIVE | PC+e 0
ZERD ‘DJNZ’ w2
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The first instruction reads the contents of the R register into A,
setting the Z flag accordingly. If the contents of R was non-zero, then
the second instruction causes the program to loop back to the first
instruction. This program will continue looping around until the R
register reaches 0 at which point the next instruction would be
executed. If you’re wondering why the R register would change as this
program is looping, remember that the R register is a special refresh
counter that the Z80 increments automatically after each instruction.
Technically, this program has a 50-50 chance of becoming an endless
loop, but that's not important here.

You should notice that some more numbers have been added to the
machine language listing. This is necessary because we are now
dealing with program jumps. This makes it important to know exactly
where the program resides in memory. For this purpose, we will again
follow the standard format used by assemblers and start each line by
giving the-memory location for the first byte of code on that line. This
will then be followed by the hex code for the instruction and then,
finally, by the mnemonic form of the instruction itself. Of course, when
writing programs, we start by writing down the mnemonic form first
and then filling in the address and machine codes later.

We can also define labels that help keep track of what a program is
doing. The last example might be written:

LOOP LD AR
JPNZ LOOP

By using the label LOOP, we can easily tell what this section of
machine code is supposed to do. To hand-assemble the preceding
code, we only need to know a starting address for the program. If we
assume that it starts at 1000h, then we would write:

1000 - ED OF LOOP LD AR
JPNZ LOOP

The machine code for the first instruction is well defined. When we
come to the second instruction, we start by looking up the op code for
JPNZ which turns out to be C2. Next, we must determine the address
which is to be placed in the next two bytes. For this we must look back
to where the label LOOP: was defined (in this case, the previous
instruction) and then use that address (i.e., 1000h). Thus, we have the
complete instruction codes and can write the program as follows:
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1600 — ED 5F LOOP LD AR
1002—- C2 00 10 JPNZ 1000h

~ Of course, all the computer cares about are the five bytes: E5, 5F,
C2, 00 and 10. These tell the Z80 to do the operation which we have
asked, namely sit in a loop until the R register equals zero. However,
what if these same five bytes were moved to a different location in
memory, say starting at address 20007 If we put these five bytes there
and then could somehow disassemble them back into mnemonic
form, this is what we might see:

2000 - ED SF LD AR
2002—- CZ 006 10 JPNZ 1@00h

Well, this certainly looks the same! In fact, the instructions them-
selves have not changed at all. But look at the second instruction. It still
wants to jump to location 1000h. Now, however, we do not know what
machine language program (if any!) resides at 1000h. In any case, the
program no longer functions like it was supposed to. So this type of
program is position dependent.

Consider now a different approach to writing the same program,
using the jump relative instruction:

1000 ED 5F LOOP LD AR
1002 20 FC JRNZ LOOP:

In hand-assemblying this program, the first line remains the same.
The op code for the JRNZ instruction is 20h; so that’s prefty easy.
Calculating the offset requires a little practice, however. We'll go
through the formal procedure first and then look at a useful shortcut.

When using relative addressing, the CPU reads the offset amount
located in the second byte of the instruction. This value (it is a signed
integer in the range —128 to +127) is then added to the program
counter PC register to achieve the address for the next instruction to
be executed. However, when the offset is being added to the PC, the
PC register has already incremented to point at the address for the
instruction following the JR instruction. Therefore, if it is a conditional
jump relative and the condition is not met, the Program Counter is all
prepared to fetch the next sequential instruction.

However, if the condition is met (or if it was an unconditional jump),
then the offset is added and the jump performed. If we were willing to
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talk about jumps relative to “the start of the next instruction,” then we
would have no difficulty calculating the offset needed for the JR
instruction. Unfortunately, it is more common to think in terms of the
jump instruction itself. The start of this instruction is two bytes less
than the base used for calculating the jump location. Therefore, if we
want to use the JR instruction as the base we will have to deduct two
from the offset. This is the way they are shown in Table 11-1 and Table
11-2. Remember, also, that whenever jumping backwards, the twos
complement notation is used to specify the negative amount. When
jumping more than 20 bytes forward or backward, you should probably
calculate the offset using the formula:

Offset = Destination instruction — Current JUMP instruction — 2
or, in our example:

1000 — 1002 — 2 = — 4 = FCh

For short jumps, however, it is sometimes easier just to count bytes.
In the example, this requires counting backwards in hex. If we start at
the end of the JR instruction and call that byte FFh, then count back to
the start of the previous instruction (the target of the jump), we would
call the “20” byte FE, the “5F” byte FD and, finally, the “ED"” byte FC.
This value, FCh, is, therefore, the correct offset for the JR instruction.

We'll now see what happens if we move this program {0 a new
location. Taking these four bytes (note how the relative addressing
also saves one byte) and placing them at location 2000h, we would
have:

2@06@¢ — ED 5F LD AR
200d — ZU FC JPNZ 2000

This program will operate identically to the previous one. Note that
relative addressing allows this program to be moved without changing
the way it operates. This type of program is called position indepen-
dent or relocatable.

REGISTER INDIRECT JUMPS

The Z80 also has the ability to jump unconditionally to the address
pointed to by one of the registers HL, IX, or IY. Thus any instructions
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which affect the contents of these registers can be used to set up the
address for a jump.

AUTOMATIC LOOPING

The last instruction in the jump group is rather special. It is the
Decrement B, Jump if Non Zero or DJNZ instruction. This is sort of like
aFOR. . . NEXT loop in BASIC, with B as the control variable. To use
this instruction, the B register is first loaded with the number of times
that the loop is to be executed (up to 255). Then the desired code to be
repeated is written. This is followed by the DJNZ instruction which
points back to the beginning of the loop. The following example will
load memory location 2000h with every possible value one at a time.

l¢ew — 21 00 20 LDHL: Z2000h
1¢d3 — @6 od LB B2

19@5 — 70 LOOP LD (HL) :B
1466 —~ 10 FD DJNZ LOOP

Let's analyze this program in detail. The first line sets up the HL
register pair to point to location 2000h. Line two initializes the B
register with a value of zero. As we shall see, this causes the loop to be
executed 256 times. The third line begins the loop and stores the
contents of register B into the memory location pointed to by HL.
Therefore, memory location 2000h now holds a value of zero.

The last line of the program does two things. First, it decrements B
and then jumps back to LOOP: if B is nonzero. On the first pass
through this instruction, the B register equals zero. Therefore, decre-
menting B gives it a value of — 1 or FFh. If you prefer, you can also think
of this as the number 255. In either case, B certainly is not zero so the
jump back to LOOP: is executed. Now, the value FFh gets stored at
location 2000h, B decrements to FEh, and the loop repeats again. This
continues for 255 more times, decrementing the contents of 2000h by
one for each pass through the loop.

Finally, after storing the value of 01 at 2000h, register B is decre-
mented, leaving a value of zero. At this point, the conditional jump is
not satisfied and, therefore, the program continues with the next
sequential instruction.
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CALL AND RETURN GROUP
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In much the same way in which the GO SUB and RETURN state-
ments are used in BASIC, machine language programmers can use

the CALL and RETurn instructions. Table 11-3 and Table 11—4 show

the various forms of these instructions.

Table 11-3. CALL and RETURN Group

No. of [No.of M[Noof T

(Courtesy MOSTEK, Corp.)

Symbolic Op-Code
Mnsmenic | Opsration L Bytes |Cychs [States | Commants
CALLan |[GP-1] - PLy = [=hoom | co |3 5 [
(5P-2) ~ PC -0 -
PC = nn - n =
CALL ce, nn | If condition . " oec 100) i 3 10 If ez is false
ce is lalse - n =
continue, - 0 = ki 5 17 I e i3 true
otherwise
S3MME 33
CALL an
RET PBL- [5P) - 1M am ooy 63 )1 3 10
PCy = [5P+1)
RET ex It eondition . 11 ec OGO| 1 1 L] If ec is false
e is false
Eantinug, 1 3 1" I cc is true
otharwise ] Condition
Same a3 000 | N2 non zero
RET oo | Z ZBro
010 | NC  noncarry
RETI Retucr from - 11101 1] ED |2 4 14 mic CarTy
interrupt 01 G01 1N} 4D 100 | PO pasity odd
RETH! Return from - 11 400 1§ ED |2 4 14 101 | PFE  parity aven
non maskable 0F 000 1017 45 1o P sign positive
interrupl 1mim sign negative
RST p (SP-1) = PCy . 1norom 1 3 |
{5P-2) = PCy
PCy = O
PCL -
1 B
000 | oW
00 | 08H
010 | T0H
011 | 18H
108 | 20H
101 | 28K
110 | 30H
111 | 38K

VRETN loads IFF3 = IFFy

Flag Notation: # = flag not affected, O = flag resst, 1 = flag set, X = flag it unknawn,
| = tisg is affectad secarding to the result of the aperation.
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Table 11-4. Op Codes for CALL and RETURN Group
(Courtesy MOSTEK, Corp.)

CONDITION
i

PARITY

UN- NON HON PARITY | SIGN SIGN REG
COND. | CARRY | CARRY| ZTERD | ZERO {EVEN

app NEG FOS B=0

: w »ﬂ;e:s«eﬁ- ¥ 'ww% o im

‘CALL® IMMED, : e e ﬁ%’g & la o |

EXT. i i ;%ﬁg-mﬁ B ac ol
RETURN REGISTER i %‘fﬁg_ *:%%ﬂ‘%’é b bl
L r i i £ : : 5 e s
il S e i e :wg%:f; e b
RETURN FROM | REG.
INT "RETV INDIR,
RETURN FROM
NON MASKABLE | REG. (5P ED
T e INDIR.  [|I5Pe1) | 48

NOTE-CERTAIN
FLAGS HAVE MORE
THAMN ONE PURPOSE.
REFER TO SECTION
6.0 FOR DETAILS

0000, | €7 | RSTO
»:zw»_nc

0008, | CF | ‘RST®

0010, 1 B | -asT1e

s
0018, LDF ‘AST 24"

i ‘RST 32

“wemIoO0rEr rrepn

‘AST 407

‘RST 48°

‘AST 568"

When writing a BASIC statement such as GO SUB 5000, it is quite
obvious where the program should continue executing. The line
number, 5000, is right there in the instruction. Have you ever won-
dered, however, how the computer knows where to go when it reaches
a RETURN statement, especially when one subroutine may have
called another subroutine (i.e., they may be nested)? The answer is
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quite simple. Whenever a GO SUB statement is executed, the com-
puter keeps track of the line number it is currently on in an area of
memory called the GO SUB Stack. Like all LIFO (Last in— First OUT)
stacks the line number of the most recently executed GO SUB is
always kept on the top.

A GO SUB statement, therefore, requnree that the current line
number be PUSHED onto this stack. The statement number is also
saved, since muitiple statements can be placed on one line. Whenever
a RETURN statement is encountered, the computer simply POPs the
line and statement numbers off the GO SUB stack and continues
executing with the next statement just after the GO SUB. _

The machine language CALL instruction does much the same
thing. It uses the machine stack to store the current address (two
bytes) and then loads the Program Counter with the target address for
the jump. You can also see this by looking at the symbolic description
shown for the CALL nn instruction. As with other instructions that use
the SP register, there is also the hidden operation of updating the
contents of the SP register. You can add SP 4 SP-2 to the description of
the CALL instruction if you want to be technically complete. Notice that
there is also a conditional call instruction that can first test one of eight
flag conditions.

If you've followed everything so far, then it should be quite obvious
how the RETurn instruction works. It simply POPs two bytes off the
stack and stores them in the program counter. There is one big caution
that needs to be mentioned here. Unlike the BASIC intepreter, which
keeps a separate stack for pending GO SUB instructions, the machine
language CALL uses the Z80 machine stack. This stack may also be
- used by other parts of a program temporarily to store data, addresses,
status, etc. Therefore, it is imperative that the stack be in the proper
state when the RETurn instruction is executed. The RETurn instruction
can also be made conditional on the status of the flag bits.

There are two more RETurn instructions that are used when the
interrupt facilities of the Z80 are employed. These instructions perform
the same operation as a RETurn, but have special features that make
them specifically applicable to interrupt routines. The RETI instruction
is used fo return from an IRQ service routine and the RETN instruction
should be used to end a Nonmaskable Interrupt routine.
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RESTART GROUP

The final group of instructions in this category is the Restart instruc-
tions. These are eight, special-purpose instructions that CALL specific
locations in page zero of memory. The advantages of these instruc-
tions are that they only require one byte and they execute much faster
than the normal CALL instruction. Routines that are used over and
over are good candidates for use by the restart instructions.
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Arithmetic and Logic
Operations

The Z80 instructions discussed so far have only dealt with one or
two bytes of information. The load instructions, for example, simply
move data from one location to another. The instructions we are now
going to describe operate on two pieces of information in some
defined manner ta create a third. Thus we will have two source
locations, as well as a destination register, to hold the result. To keep
things simple, most of these instructions use the special-purpose A
register or accumulator to hold one of the source operands and also to
hold the result of the operation. All of these instructions affect the flag
register according to the results of the operation. Refer to Table 12—1
and Table 12-2 as we describe the arithmetic and logic operations of
the Z80.

Z80 INSTRUCTIONS

ADD, ADC

There are two types of Z80 instructions that perform addition. The
first instruction, with the mnemonic ADD, simply sums the contents of
the accumulator with a specified 8-bit value from another location. The
result is placed in the accumulator and the flag register is set accord-
ingly. The second operand can come from any of the other registers or
from a memory location specified either directly or via the index
registers.

The second instruction, ADd with Carry (ADC), is identical to the
ADD instruction except that the value of the Carry flag.(1 or 0) is added
in, also. This makes it possible to do multiple byte, or multiple preci-
sion addition. Suppose, for example, we wanted to add two 16-bit,
unsigned integers. Assuming we could only work with eight bits at a
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Table 12-1. 8-Bit ARITHMETIC and LOGICAL Group
(Courtesy MOSTEK, Corp.)

Symbulic Flags Op-Code No.of |Ho.oTMo.st T
Mnemonic Operation 5|z H [PV N[ C (76 583 210] Hex Byter [Cycles [States | Comments
ADD A, r A=At 1 Pyl x| vpol s o6 - 1 1 4 r Reg.
ADD A, n A-A+n O O o T O R A BT 1 rl 7 ooa B
o il C
010 0
ADD A GHLE A= A«fHU | L Q[ X}y | X | w )oY |vo@Eo 1 2 7 o E
ADD A, (+dh |A=asliXedd | 1] P @0 x| vwlo]d|nomm| oo |3 ] 19 100 H
10 [Imd) 11 LU L
- d - m A
ADD A UY+d) |A=Awllysd) | 8 | b ®F 0| XV ]O [ 11110 101) FD |3 -] 18
10 [@@a)1oj -
- d -
ADC A, 3 a-Asgely | p x|y ]x|v]o]]| @D sisanyaf 1, n,
SUB s A=p.5 I AR IEEEF SR ERE N i {HL), 1EX+d),
SBCA, s A=p-s.CY | P bl x| bl ]t [ {E¥-+d) a5 shawn far
AND 5 A=h s bl =xft)x|er]o]lo ADD instruction.
OR 3 A=A v s Pl x| 0l x|rio|o [T The indicated bits
XOR s A=A s fl1]lxjojxjrio|o [Taf] replace the [Q0] in
CPs A-s AR IRIESR AR E; [ the ADD set abowe.
INCr r=r+1 Pl Xp 1 Xfwlo|= |00 « 1 1 i
ING (HL) (HU={HLs0 ) P p ) X ffxfw o |« |00 1o[iEEH 1 K] 1"
ING (FX+d) xed) = Phpplxfefxf{vjo| o) oo {3 & Pk
{1 edl+1 {00 110 [TGE
- d N
ING (17 +d] ¥} = Pl af e x]vfole nmmam| ro (3 |6 2
;i 1Y +di+1 |00 110100}
- =
DECs $+5-1 Ppbpx] x|Vt |= (i) sisany of r, (HL),
l:mdl. (1Y +d) 2z
hown far INC.
D EC same format
and stafes as INC.
Aeplace (T00] with
fiGT)in OF Code.

Notes:  The V symbal in the P/V flag column indicates that the P/V flag containg the overflow of the result of the
operation. Simikerly the P symbol indicates parity. V = 1 means averflow, V = 0 means oot gverfiow, P = 1
means pafity of the result is @ven, P = 0 means parity of the result is odd.

Flag Motation:  ® = fiag not affected, 0= flag reser, 1 = flag s#t, X = flag is unknown,
| = fhag s sifected sccording 1o the result of the cperation,

time, we would start by adding the lower order bytes of the two
numbers together. If this addition caused a carry-over into the next
higher place, then we would have to add in the carry when we perform
the addition on the higher order bytes. See Fig. 12-1.

Writing a program to accomplish this procedure is relatively simple.
First we decide where the operands will come from and where to store
the 16-bit result. As a quick example, we’ll write a program to add the
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Table 12-2. Op Codes for 8-Bit ARITHMETIC and
LOGIC Group
(Courtesy MOSTEK, Corp.)

SOURCE

REGISTER ADDRESSING INDIR.| INDEXED |IMMED.

(HL) 1 (iX+d} | {1¥+d) n

DD FD
BE B&
d d

DD | FD
ADD w CARRY - 4 BE | BE
"ADC’ 3 IS e iR e {d d

| A . 4 oD FD

SUBTRACT ; : . 8 ; 1.9 f 96 |96 9%

‘SUB’ ot b i ' s % d d

S R ' DD FD

SUBwCARRY | 9F |- ; 9 |9
“SBC" Ay : G it St RRng Shh el d d

oD FD
AB Ab
d d

oD FD
AE AE
d d

oo [fo
BS |86 | .
s ,d d :!':

oo FD
BE BE
d . |d

-} DD FOr
34 34
d d

[8]0] FO
a5 a5
" d d

8 |

3R

‘AND’ AT A1

XOR' M"- 1

s, A y
g b L s i
i H - e L X

‘OR" F By ﬂ

COMPARE
icpl

INCREMENT | '3¢°

DECREMENT | 3D | 08 | 0D
iﬁEcl ; -‘;\“EL;' .:;-1..-\. = - L ..x_.

DECIMAL BINARY

1
01011001 L

HEX

23004 11011100 59 DC

3149

26153

00001100

01001101

01100110

00101001

0cC

4D

66

29

Fig. 12-1. Addition, with carry, of two 16-bit numbers.
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Listing 12-1
7@@@-11 DC59 LD DE,59DCh 17,228,89
70@3- 214D @EC LD HL,@C4Dh 33,7712
70d6- 78 LD A, E 123
7007 - 85 ADD A, L 133
7008 AF 1DC, A 79
70@9- 7A LDA,D 122
70@A- 8C ADC A, H 146
70@B- 47 LD B, A 71
70@C-C9 RET 201

Listing 12-2

¥ FORa=28672TO 28684

28 READ d: POKE a,d

3@ NEXTa

48 DATA 17,220,89,33,77,12,123,133,79,122,148,71,201
99 : REM Now let's do it!
18d  PRINT USR 28672

contents of the DE register to the HL register, storing the results in BC.
Listing 12—1 shows the result.

The program starts by loading the two 16-bit operands into the DE
and HL registers. To perform the addition of the lower bytes, we first
load one operand into the accumulator. In this case, we pick the E
register (i.e., the lower half of the DE pair). Next, we add the other low
byte, in the L register, to the accumulator. This gives the lower order
byte of the result which is then loaded into register C. At this point, if
there was a carry from the first addition, the carry flag will be set.
Otherwise, it will be reset. With the sample numbers chosen, it will be
set because there is a carry. The accumulator is next loaded with one
of the high bytes — the D register — in preparation for the second
addition,

The next instruction is an Add with Carry of the two high bytes (D,
which already is in A, plus H). This allows any carry over from the
previous addition also to get added in. After loading the high byte of
the answer into register B, the program RETurns to BASIC. Note that
when running this program from BASIC, we can easily print out the
answer stored in the BC register by using the PRINT USR calll.

. Listing 12—-2 shows how to enter and RUN this program on the T/S

2068. You should verify that the result printed is, indeed, the correct
answer for the two numbers used. In fact, by changing the second/
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third and fourth/fifth bytes in the DATA statement, you can make this
program add any two numbers,

SUB, SBC ;

Everything we have said about the addition instructions ADD and
ADC, applies to the subtraction instructions SUB and SBC (SUBtract
and SuBtract with Carry). The only difference, aside from the opposite
operation being performed, is that the Carry flag is now used to
represent a borrow condition. Listing 12-3 shows an example of 8-bit
subtraction. This time, both the operands and the result are stored in
memory locations. We can, therefore, POKE the minuend and sub-
trahend into memory, call the subtraction routine with RANDOMIZE
USR, and then PEEK at the remainder. Listing 12—4 shows how to do
this from BASIC.

Remember that this is a very simple routine. It does not check for
any borrow condition and only handles 8-bit quantities. Of course, we
can always write 2 multiple precision subtraction routine as we did for
addition.

Listing 12-3
7000- 3A@B 78 LD A, (7808Bh) 58,11.112
70@3-21@C78 LD HL, (706Ch) 33,12,112
70@6- 96 SUB A,(HL) 150
78@7-32@D 7¢ LD (78@Dh),A 5¢,13,112
70@A- C9 RET 241
7008 : Contains Minuend
7@0C : Contains Subtrahend
708D : Receives Remainder

Listing 124

i FOR a= 28672 TO 28682

28 READd: POKE a,d

3@ NEXTa

43 DATA58,11,112,33,12,112,15

@.5¢ , 13,112,201

6@ : REM Store minuend

78 POKE 28683,150

8@ :REM and subtrahend

9@ POKE 28684,35
198 RANDOMIZE USR 28672
198 : REM Now print the result
2@  PRINT PEEK 28685
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SIGNED ARITHMETIC

So far, we have discussed addition and subtraction of whole,
positive integers. Even our multiple precision addition routine is based
on these assumptions. We'll now see what happens if we try to apply
these routines to signed integers.

Suppose we wish to add 100 + 75, using signed arithmetic. The
problem would look something like this:

(100,,) 01100100
+ (75,9 01001011

G
(=81, @ 10101111

We know the answer is not —81, so something must have gone
wrong. The carry flag is not set, so the error is not due to a carry past
the eighth bit. What has happened, however, is that the true answer,
175, has exceeded the maximum amount that can be represented in
twos complement form by eight bits (i.e., +127). This is known as an
overflow condition. Likewise, whenever an operation resulits in a value
less than — 128, we would have an underflow condition. In either case,
the accumulator contains an erroneous value which can create all
kinds of havoc, if it goes unnoticed.

Fortunately, the Z80 knows about signed numbers, so it has a buili-
in overflow/underflow detector which appears to the programmer as
the P/V bit in the flag register. Actually, the P/V (Parity/oVerflow) flag
serves two purposes, depending upon whether the Z80 is performing
a logical or arithmetic operation. For now, we are interested in its use
as an overflow (or underflow) flag.

Whenever an arithmetic operation, such as ADD or SUB is per-
formed, the P/V flag is set according to the result of the operation. If the
resulting value is between —128 and +127, and, therefore, is a valid
signed integer, then the P/V flag will be cleared (i.e., set to 0); other-
wise, it will be set. By testing this flag or using a conditional jump, the
program can be diverted to handle the overflow condition properly.

CP

The Z80 has a special instruction for ComParing the binary values of
the accumulator with any other location. What makes this instruction
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special is that, unlike all of othe other arithmetic operations, no result
gets stored. Actually, the CP instruction is just like the SUB instruction
except that the accumulator is not changed. The flag register is
affected, however, so this provides a way of comparing two values.
This instruction is usually followed by a conditional jump such as JP Z
(jump if zero, implying that the two values were equal) or JP NZ (jump if
nonzero, implying that the two values were unequal). Other instruc-
tions, such as JP C (carry, indicating that the accumulator was less
than the other value) can also be used. Since the accumulator is not
affected by the CP instruction, a series of comparisons can be made
one after the other until a match is finally made. For example:

LD A DATAVALUE

CP 21

JP £ ROUTINE1L

CP e

JP Z ROUTINEZ

cCP 03

JP Z ROUTINES

JP NONE OF THE ABOVE

INC. DEC

The last two arithmetic functions supported by the Z80 involve
incrementing (adding 1) and decrementing (subtracting 1) registers or
memory locations. They do not require use of the accumulator, since
only one operand is required. (The other operand is implied as 1 and
the destination for the result is the same as the source.) The INC and
DEC instructions can be applied to any register or any memory
location via indirect (HL) or indexed (IX+d, 1Y +d) addressing.

Logical Operations — AND, OR, XOR, NOT

Aside from the arithmetic operations just described, the Z80 can
also perform four basic logic functions on data values. Three of these
require two operands — AND, OR, and xor -— and will be described
here. The fourth function, NoT or complement, only requires one byte
and, in fact, can only operate on the accumulator. It will be described in
a later group of instructions.
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Performing the AND, or and eXclusive oR instructions is very similar
to the arithmetic functions. One operand is held in the accumulator, as
is the final result. The other operand can come from any register or
memory location. When the two operands are brought together inside
the Z80's ALU, the appropriate logic function is then applied to each
pair of bits. Each bit in the result is determined by the logic function and
the values of the same bit position in each operand. The following
examples should make this clear:

10011010 10011010 10011010
AND OR XOR

319011118 g1611110 P1611110

= 00811010 = 11911110 = 11000100

When performing logical operations, the P/V flag is used to denote
the parity of the result in the accumulator. Parity simply refers to
number of 1 bits in the answer. If there are an even number, then the
result is said to have even parity. An odd number means odd parity. .
For example, the binary number 10111011 has six1 bits and, therefore,
has even parity. The P/V flag is set when the parity of the result is even;
it is reset if the parity is odd.

The parity of a number can serve many purposes. In ASCII repre-
sentations, for example, which use a 7-bit code, the parity value can
be placed in the eighth bit and sent along with the character. When
transmitting data over long distances (e.g., through the telephone
lines), the parity information can be used to detect any errors in
transmission. If one bit of the code is received incorrectly, then the
parity of the data at the receiving end will not match that which was
sent. This parity checking can alert the receiving device that it has
incorrect data. Of course, if more than one bit gets changed during
transmission, this scheme will not always work.

16-BIT ARITHMETIC GROUP

Refer to Table 12-3 and Table 12—4 for information on the 16-bit
arithmetic instructions. In general, the 16-bit operations are identical to
their 8-bit counterparts. Watch out for the flag bits, however, as each
instruction only affects certain flags. You might also like to note that the
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Table 12-3. 16-Bit ARITHMETIC and LOGICAL Group
(Courtesy MOSTEK, Corp.)

Symbaiic Fiags Op-Code No. of [No.ofM{No.of T
Mnemanic Oparstion [ 5 ] 2 H [FIVI N | C [76 543 218] Hex | Bytes | Cyeles | States | Commanns
“ADDHLs: [HL-ALwm [* |* |X | X1 % * |0 [o0at om N = Reg,
0g BC
ADCHL 1 |HL-HLsgsCY| | § QX ] XX vw]o|t || ED|2 4 15 o DE
01 =1 0o 14 HL
" 5P
SBCHLw JHL-HissCY { ¢ ]xfxtd|v]opnionim| enjz |a 15
0 =0 00
ADDIX, pp (1% =iX+pp |o Jo|xlx|x|=]o)l o} ooz Ja 15 |pp Reg.
00 pp! 00N 08 BC
o oE
0 I
n 5P
0D iV,ee [1¥=1vere Jo foefx|lx|xle]lofrnmmm| iz fa 5 |n Reg.
00 o1 001 i1} ;1M
m DE
mw Y
n sp
INE 23 maemt] s Jo|x|o|n]efe]e|ooss on 1 1 6
NE X I = 1% +1 s felxfjotx el oo|2 |2 0
0o 100 011 23
ING Y ¥ = 1¥+1 o | (M e X o]« [111010100] FD |2 r 10
00 100 001§ 23
DEC = o= s Jafx|e|x|e]=]eoos ot 1 1
. DECIX IX = 1%-1 o (o |x|e|x]e slnonn| ooz |2 0
0o 101 By 28
DEC 1Y I = 1¥.1 o o |x|ofx|o]efefrimmw| Foj2 |2 10
00 101 01| 28

Motes: 553 any of the register pairs BC, DE, HL, 5P
pp it any of the register pairs BC, DE, 1X, 5P
rr iz any of the register pairs BC, DE, 1Y, 5P,
Flag Notation:  # = flag not affected, § = l_lig sesel, 1 = flag set, X = flag iz unknown.
! = flag is alfected according to the result of the operation.
16-bit addition routine in Fig. 12—2 can be greatly simplified using the
16-bit ADD instruction. See how Listing 12-5 compares to the earlier

routine.

BIT OPERATIONS

Some of the most powerful instructions available on the Z80 are the
bit operations. These instructions allow the programmer to change or
test the state of a single bit within any register or memory location.
Table 12-5 and Table 12-6 show the various forms of the bit SET,
RESet, and TEST instructions.

The SET and RESet instructions affect only the indicated bit within
the data location. The flag register is unchanged by these operations.
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Table 12-4. Op Codes for 16-Bit ARITHMETIC and
LOGICAL Group
(Courtesy MOSTEK, Corp.)

SOURCE

HL
‘ADD" X DD oo | oD oD
o9 19 38 29
1Y FD FD FD FD
a9 19 » 3

DESTINATION

ADD WITH CARRY AND | HL ED ED ED ED
SET FLAGS “ADC’ 44 5A 6A TA

SUBWITH CARRY AND HL ED ED ED ED
SET FLAGS 'SBC' 42 52 &2 72

INCREMENT ‘INC.

DECREMENT 'DEC’

Listing 12-5
7000- 3A @B 78 LD A, (780Bh) 58,11,112
78@3- 21 @C 78 LD HL, (78@Ch) 33,12,112
70@d6- 19 ADD HL,DE 25
7007 44 LD B,H 68
70@8- 4D LD:EL 77
78@9- C9 RET 2@1

The BIT instruction examines one bit of the desired location and then
setsthe Z flag according to that value. Note that if the bit is a zero, the
Zero flag is set (=1). Therefore, the Z flag actually represents the
complement of the bit tested.

Bit operations serve many purposes in machine language pro-
grams. They make it easy for a programmer to create external flag
registers in memory. These registers can then be used to monitor and
control various procedures within a program just as the flag register in
the Z80 is used. Bit testing can also be used to tell if a numberis odd or
even, to check the status of an external device read through an I/O
port, or to implement special data structures for efficient memory
usage.
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-_
7 0
R I I |
ROTATE LEFT c REGISTER "
CIRCULAR i I'[]FII MI?MC{HY] i

3}
7 0 '
| 1 1 1§ | ]
ROTATE RIGHT REGISTER
CIRCULAR c ™ ORMEMORY
fan
7 0
' "REGISTER = _
ROTATE LEFT cle - e
-
7 0
' "REGISTER = _
ROTATE RIGHT C II- PHI Mq‘MqHYI —
Fig. 12-2. The ROTATE operations.
ROTATE AND SHIFT GROUP

Refer to Table 12—7 and Table 12—8 as we discuss the rotate and
shift operations performed by the Z80. These operations generally
involve a single eight-bit value plus the carry flag. A rotate operation
causes each bit in the data location to move one position, either to the
right or left. One bit gets rotated out of the operand and into the C flag.
Sometimes this same bit is shifted into the opposite end of the
operand. This is the case for the eight-bit Rotate Left Circular (RLC)
and Rotate Right Circular (RRC) instructions. It is also possible to
include the carry flag within the rotation, making for a nine-bit Rotate
Left (RL) or Rotate Right (RR). Fig. 12-2 outlines the effect of these
four instructions. Note that most of these instructions affect the entire
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Table 12-5. SET, RESet, and TEST Group
(Courtesy MOSTEK, Corp.)

Symbalic Fisgs Dp-Code No. of [NoafM|Moot T
Mnsmonic Dperstion | § H Fiv 76 543 J10] Hex |Bytes |Cycles |Stares | Commanis
BIT b, r Z-Th X 1 X = f1v 001 011 CE |2 i ] r Reg.
’ of b or oo B
BITh, (MU (Z-[ALly | X 1 X 11 601 01| cE |2 3 2 a1 c
' o os 10 oo ]
BITh, (IX+dly {Z - (vl | % i X N o am| oo |4 5 20 o1 E
Mo 0| CB 100 H
- = 1M L
M ob 10 m A
b | Bit Tested
BITh, [1¥+dly |2 - (T¥edly | X 1 X 1111 01 FD |4 5 20 (T ]
11 001 on1) B o 1
- d = oo )
o1 b 100 011 3
100 4
0 5
1o ]
m 7
SETh. ¢ ry =~ 1 . . # 100 M| o |2 b 8
lﬂj b F 3
SETh, [HL  [iHUp -1 | * . ’ 1100 o ca |z [ 15
1] b 110
SET b, (1X+d} [{ixedly =1 | ® - . 1 01| oo (4 b1
11000 5| cA
S,
i & 110
SETh, {Iv+d) |(¥edly =1 | » . . 1M M| Fo|a I B
10 0| CB
- d -
11 b 110
RESh, » sy - 0 L - . i} To ferm new O
s =1, ML, Code replace [T7]
(X +d), of SET b, 5 with
(1Y +d} [T0] . Fiogs and time
states for SET
instruction

Notés:  The nolation sy indicates bit b {0 1o 7} or lozcation s,

Flag Notation: * = flag not alfected, O = fRag reset, 1 = flag set, X = flag i3 snknown,
| = flag is affected according to the result of the operation,

flag register. Fig. 12-3 shows how the operations would apply to a
sample data byte.

Shift operations are very similar to rotates except that the link from
the C flag into the data location is broken. Thus, the bit shifted out of
the C flag is lost forever and the vacant bit position in the data byte is
filled in with either a zero (logical shift) or a repeat of its last value
(arithmetic shift). Shifting operations are mostly used to perform bi-
nary multiplication and division. As we have shown in Chapter 2,
shifting a binary number one bit position to the left is equivalent to
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Table 12-6. Op Codes for SET, RESet. and TEST Group
(Courtesy MOSTEK, Corp.)

REG.
REGISTER ADDRESSING INDIR INDEXED
A B c D E H L [HL} | {1X+d} | (1Y+d)
BIT
Do ED
o CB ce CB ce CcB CH CB ce cB ChB
4 41 42 43 a4 4 d d
7 40 5 46 A 8
s oD FD
1 cB CB cB CB c8 CB CB CB Eu EB
F 4 4 4B 4E
4 48 g A 4C 4D g e
[1]¥] FD
! 2 cB CB cB C8 CB CH ce CB 55 EH
i 7 5
g 50 51 52 53 54 5 55 2 d
F
3 CB CB ca Ce CB CB ce CH Eg CE
[
TEST 5 58 59 54, 58 5C 50 5E gE gE
|BIT|I
oD FD
4 cB CB CB CB ce CR cB CB CB ce
67 60 61 62 63 64 65 &6 d d
- 66 66
F
5 cH CB o} CB CB CB ce cB EE CE
6F 68 649 6A 68 6C &0 6E d d
6E 6E
oD FD
[ CB CB ca cB CB CB GB CB CB CB
77 70 T 72 73 74 75 76 d d
16 76
i 7 ca CcR CB cB CB CB ca CB EE EE
! 7F 78 79 74 78 c m 7E d d
; 7E JE
i DD FD
; 0 ce ce CB cB CB CB cB CB EE CB
i B7 80 81 B2 83 B4 85 86 d
i BE B6
; DD F
1 cB o] ce Ce cB CB cB CB CcB cg
BF 88 BG Ba BB 8 8O BE d d
¢ BE BE
DD [+]
2 cB o] ce CB CB CB Ch CB CB ce
g7 91 g2 a3 95 o6 d d
=] 54 4. 2
F
3 CB CB cB cB CB cB CB ca EE cg
RESET oF g8 99 g4 9@ 9C 90 9E d d
BIT aE 9E
i FD
HES 1 .4 s | 8 | 8 | ca | c8 | c8 | e8| ce | B9 | E8
a7 Al Al A2 A3 Ad A5 AB d d
AB AB
5 CB CB CB cB CB CH CB Ch EE -.F:E
AF AR AG Al AR AC AD AE d d
AE AE
oD FD
B cB ce cB CH (ol CB CH CB CB CB
B7 BO B1 B2 B3 B4 BS BE d d
B6 . BE
oo FD
7 CB cB CB CB ca CB CB CB CR cB
BF B8 B9 BA BE BC BD BE d d
BE BE
Db FD
0 cB CB ce CB CB CB cH (] CB CB
c7 | @ C c2 ¢z | c4 cs | & | & e
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Table 12-6 — cont.Op Codes for SET, RESet, and

TEST Group

DD FD
1 C8 cB cB CB cB cB CB CEB, E-B EE
CF cs o CA ce cc cD CE CE CE
oD FD
2 ca ca ce ce ce CcB ca CB EB dCE
D7 Do D D2 D3 Da D5 D6 b6 06
DD FD
3 cBe ca CB CcB cB CB CB cB ca ca

SET DF oa D9 DA DB oC oD DE d a
DE DE

BIT

SET D | FD
4 [:] ca CB ce CB CcB CB CE . B Eﬂ
) ED E1 E2 E3 E4 ES E6 E6 E6
(n]8) FD
5 ce ce ca ca CB CB CcB CiB (d:B ?
EF E8 Eg EA EB EC ED EE EE tE
oD FD
6 ca ce ca ca CeB CB CB CB EB 5!-
F7 FO F1 F2 F3 | Fa F5 F6 ds g
; DD FD
7 CB ca CB ce CB CB ce cB CB ce
FF F8 Fa FA F8 FC FD FE E £ :Fl £

multiplying the number by two. Likewise, a right shift implements a
division by two.

Shifting a data byte always causes one bit to be shifted out into the
carry flag. At the other end of the byte, there is an empty bit position
which must be filled. Normally, we will want to set this bit equal to zero
so that multiplication and division operations give the correct resuits.
The Shift Left Arithmetic (SLA) and Shift Right Logical (SRL) instruc-
tions operate in this manner.

The Shift Right Arithmetic (SRA) instruction is used to divide signed
integers. Since the most significant bit represents the sign of such
numbers, filling this position with a zero might change its sign. There-
fore, the highest order bit is retained in its position as well as being
duplicated into the next position. Fig. 12—4 and Fig. 12-5 outline the
results of the various shift operations including the use of the SRA
instruction to divide signed numbers.

BCD Rotates

The final two rotate instructions are used on numbers stored in BCD
format. These instructions can rotate an entire digit (4 bits) to or from
the accumulator. The other two digits involved in the rotate are stored
in @ memory location which is pointed to by the HL register.
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Table 12-7. ROTATE and SHIFT Group
(Courtesy MOSTEK. Corp.)

Symbolic Flggs OpCode  |Mo.of|No.of [No.of
T | mlT
Mnemanic Dperation 512 H VIN|C |[7T6543210 | Hex |Bytec|CyciisBtates] Commants

RLCA sle X |OjX]j*}j0D 0o oao 111 | a7 | 1 4 Rotaie left circular

A accumulator

RLA [—-_EE--@J' sl |x|Ofx]=]0 oo oio 111§ 17 | i 4 Fotate lele

A accwmulater

RRCA @-{{ﬂ sfe|xofxfe|ojtfooom mforf |t 4 |Roteright circuler

A accumidaior

RAA —1 oo ot1 1 1F f |1 |8 |Rotate right

A ) accumulator

Lyl
-
L]
L]
s
=]
=
[
=

RLC s flvIxXjoix|prl0 11 001 0% ) CB 2 2 8 Ratate left circuler

o {00 register r
RLEC [HL) ffi|Xx|o0jx]|P|D :E'ﬁ 001 DI | €E B 4 15 ' feg.
0 00l 110 oo L]
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FLE {14} >E—@ ptlilx|ofx|rle]ls pronm ooh s |z |oe o
rAHLY, (+d ], [0 +d) 11 001 011 | CB o E
= d - 100 H
o [65 va 101 L
¥ A
ALE (¥4} {! Tl jofxsPjaoft proanmf FD B §6 23
11 0ol 01§ CE
- d -
joo [@og] 110
RLs [ml thipxjelxip ol MO Engtruction farmat and
5 =, IHLL I X +d) 1Y +d) states are as shawn for
i RLEC's To form new
RRACs =g Llem tfefxfolxjerfo]t Op-Code repace {500

8 ErHLL X)L (Y +d) of RLC's with shawn
code
ARs =g |i|t]|x|o|x|efoft

£ Z e (HLL X 4d), 1Y+

SLAs Efl=—{—u)-—t |t]t|x{ofx|r|o]t
+ S IHLL U X} {1 +d}

B B B B

SRAs =9V tfilefolxfelo]t
1 e IHLLINX +d) §1Y+d)

L pI==0l-7] tfo]xfolxfefeft] am
§ =i, HLL DX +d) (1 +d]

ALD Ammtml tlxlefxfelo -mmi wfeo |5 be |Rowe digiienand

.10 199 | 6F right betwesn the
Becumulator
nd iocatien (HL).

ARD o D peapamuf ] 4 x fafx e [o --gun; wleof |5 f1s [ohecontent ot e

1 100 11§ 67 wppar hall of the
1 3 mulator i1
unattecied

Fisg Nomtion: * = flag aot alfected, 0 = flag rezat, 1 = flag set, X-= flag is unknown,
§ = fiag inaflected sccording to the result of the operation.

N MULTIPLICATION AND DIVISION

As we saw in Chapter 2, binary multiplication involves nothing more
than three simple steps: bit testing, bit shifting, and addition. Having
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Fig. 12-3. Typical-results of the ROTATE operations.
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Fig. 12-4. The SHIFT operations.
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Table 12-8. Op Codes for ROTATE and SHIFT Group
(Courtesy MOSTEK, Corp.)

R S R -
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s |
El
¥
a
i
E

2]
r
)

E‘

sg |88 sg| -
‘E:El:i‘aai“aa 5

g |Rg|ea| =

=g |eg|=g| » |.
48 |R2 | 2@ °

LU o
il %
AQTATE

2] [2]] (&
il
1O

!

SHIFT ar

@@ | 2@ |sQ|cQ B3| 8
$2| %8| =0

E
|

R (=g | ¥ |2 |co g2 (ag| ~

BB | 2B | %8 | a8
RE | RB | ¥R | A3 | a8 | RE | BE
rﬁﬁ‘iq:‘ﬂg = B3 S‘B&[ﬂ“:git‘m
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Ly

—

ey |8

o ok
| R I T v ai
[ B | . |

1HLI BMgistn Diapk

AL !
seen how the Z80 performs all of these operations, we are ready to

write some basic multiplication (and division) routines. One thing that
you learn very quickly when programming computers — whether in
assembly language or BASIC — is that there are always many differ-
ent ways to write a program. There is seldom ever one way which is,
without question, the best. Most of the time, there are three “best”
ways.

One way is the shortest, using the least number of instructions and
usually the smallest amount of bytes. This is always the preferred way
when you have only a small amount of memory (RAM or ROM) in
which to write the program. Another way is the fastest, using those
instructions with fast execution times. Programmers often resort to
some very esoteric tricks to achieve these goals.

The final way to write programs is the one in which the program flow
is easiest to follow. This method creates programs that are easy to
explain and easy for the beginner to understand. The routines we are
about to describe were not written for optimum speed or memory
usage. But while they may not be the most efficient for a given task,
they are still very useful, general purpose routines. These routines
also provide an opportune time to add the final item to our assembly
language listings: comments. Just like the REMark statement in
BASIC, we can add comments to our program listings to make them
easier to understand. We do this by adding a semicolon after the last
operand in any instruction, or at the beginning of a line. Everything
after the semicolon would be ignored by an assembler so we'll do the
same.
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Fig. 12-5. Typical results of the SHIFT operations.

8-Bit Unsigned Integer Multiply

187

Listing 12—6 shows a routine which we have named UMULT. This
program is written as a subroutine so that it can be called from other
parts of a machine language program. UMULT takes the 8-bit
unsigned value in register C and multiplies it by the 8-bit value in
register B. Since an 8-bit by 8-bit multiply can yield a 16-bit product, we
will store the result in the HL register pair. We can summarize the
operation of this routine as follows:
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Listing 12-6
: UNSIGNED 8 X 8 MULTIPLY
MULTIPLIER IN C
:MULTIPLICAND IN B
:PODUCT IN HL
UMULT LDE,S8 :E used as a counter
LD HL,#99@  ;Clear product register
LOOP LD A,C :Get multiplier
RRCA ;Rotate right
LD CA ;and re-save
LD AH
JR NC,SHIFT  ;If not 1, then skip add
ADD B ;Add multiplicand
SHIFT RRA € ==H{7) Hip} —C
LDHA :Save new H
RRL A JH{@) —=L(7)
DECE
JRNZ,LOOP  :Repeat for 8 bits
Listing 12-7
;SIGNED 8 X 8 MULTIPLY
SMULT LDD@ :Clear product sign flag
LD AB ;Get multiplicand
ORA A :Set flags
JR BSM1 ;If positive, continue
NEGC :Form 2's complement
LD B,A ;and re-save
INCD ;Keep track of sign
SM1 LD A,C :Get multiplier
ORA A :Do the same for
JR P.SM2 :multiplier
NEG
LD C.A
INCD
SM2 CALL UMULT :Do multiply
BIT@,D ;Check LSB of D
JR Z,DONE :Exit if product is positive
LD A H :Make 2's compliment
CPL ;of 16-bit product
LDH,A
LD AL
CPL
LD LA
INC HL
DONE RET :exit to caller

1. Initialize register E to a value of eight. This register is used as a
counter to make one pass through the loop for each bit in the
multiplier.
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2. Clear outthe product register (i.e., set HL = 0000) so that we can
keep a running total of the partial products.

3. Start each pass of the loop by rotating out the next least signifi-
cant bit of the multiplier. Since we want to get a new bit for each
pass, we must re-save the rotated value back into the C register.
We could also use a shift instead of rotate, but the latter pre-
serves the contents of the multiplier.

4. Load A with the high-order byte on the running total.

5. Add the multiplicand to A only if the last bit rotated out from the
multiplier was a 1.

6. Rotate right the entire 16-bit total.

7. Repeat the loop until done.

To give each partial product its proper weight, this program uses a
rotate right on the running total instead of a rotate left on each partial
product. You should be able to see that they are equivalent. Thus, on
the first pass through the loop we get the least significant partial
product. This is added to the most significant byte of the total but then
is shifted one bit lower. After eight passes through the loop, and eight
rotate rights, this product takes on its correct importance in the least
significant byte.

8-Bit Signed Integer Multiply

To extend our program to signed numbers, we merely have to test
the sign of each factor before multiplying. First, we determine what the
sign of the product will be — positive if the signs are the same:
negative if they are different. Then we convert any negative numbers
to their positive value. At this point we can CALL the unsigned multiply
routine UMULT to perform the actual multiplication. When this routine
returns, the product will be in HL. If the result is supposed to be
positive, then we are all done. Otherwise, we must take the twos
complement of the product to convert it to the proper format.

Listing 12—7 shows the listing for the SMULT routine. Here the D
register is used to hold the sign of the product. After performing the
multiplication, the least significant bit of D is tested. If neither factor
was negative, then D = 0, and, therefore, bit 0 of D is 0. Likewise, if
both factors were negative, D would equal 2 and again bit 0 of D would
be 0. If only one factor was negative, D would be 1 with bit 0 obviously
set. In this case, we form the twos complement of the 16-bit result.
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8-Bit Unsigned Integer Division Routine

Writing a division routine requires a few more considerations. First of
all, there is the problem of attempting to divide by zero. This condition
must be trapped out before getting to the actual division routine. Then,
there is also a question as to the precision necessary for the quotient.
This may require that one or both of the operands be scaled to put the
quotient into a given range. Finally, there is a choice of how to perform
the actual subtraction process. At each step in the calculation, we
must detect whether the divisor is larger than the current dividend. If it
is, then a one is added to the left of the quotient and the divisor is
subtracted from the dividend. Otherwise a zero is added to the quo-
tient and no subtraction is performed. Instead of checking the two
numbers first, it is often simpler to perform the subtraction first and
then check for an underflow. If this happens, then the current quotient
position is made a zero and the divisor is added back in. This is known
as a restoring division because the partial dividend is restored to its
original value if the underflow occurs. Listing 12-8 shows a typical
restoring division routine for the Z80.

Listing 128
:UNSIGNED 16 DIVIDED BY 8

;DIVIDEND (16 BITS) IN HL
;DIVISOR (8 BITS) IN D

;QUOTIENT (16 BITS) IN IX
;REMAINDER (8 BITS) IN H

DIV LD A,L :Move dividend
LD LH
LD Ed :Set for 16 bit SBC
LD H.@ :Clear remainder
LD B,16 :Loop 16 times
LD IX,@ :Clear quotient
LOOP ADD HL,HL  ;Trick to shift left
RLA A :Cet next bit
JP NC,SHIFT  ;Skip if zero
INCL
SHIFT ADD IX,IX ;Shift quotient left
INC IX :Setbit=1
ORA A :Clear carry for SBC
SBC HL,DE :Do subtract
JP NC,NEXT :No underflow, continue
ADD HL,DE  ;Otherwise restore
DEC IX :Set bit=f
NEXT DINZ LOOP :Do 16 times

RET

-Exit when done
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Special Instructions and I/O

Two of the most powerful features of the Z80 are its duplicate
register sets and the block move/search instructions. This chapter will
discuss how to use these advanced functions. We will also describe
the INput and OUTput instructions which are used to transfer data
through the I/O ports of the Z80. Then we'll finish the discussion of the
Z80 instruction set by examining the general-purpose arithmetic and
miscellaneous CPU control groups. :

EXCHANGE GROUP : EX and EXX

As described in Chapter 4, the Z80 has two complete sets of
general-purpose registers and a duplicate set of accumulator and flag
registers. These primed registers can only be accessed by exchang-
ing them with their nonprimed counterparts. Then data can be written
to or read from these registers using the normal instructions. The A
and F registers are always swapped together (AF ¢# AF’). The general-
purpose registers (BC, DE, and HL) are also exchanged as a single
group. See Table 13—1 and Table 13-2 for details of the Z80 Exchange
Group.

The Z80 also allows a limited number of exchanges to be performed
between the special-purpose registers. The single byte op code EBh,
for example, swaps the contents of the HL register with that in the DE
register pair. Note that this is equivalent to the following code:

LD TEMP,HL
LD HL,DE
LD DE,TEMP

where TEMP is a 16-bit temporary storage register or memory loca-
tion. Obviously the EXchange instruction saves memory, executes
much faster, and does not require the use of a temporary storage
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Table 13-1. EXCHANGE Group
(Courtesy MOSTEK. Corp.)

Symbalie F Code No.of | Ne.of M}No.of T
Mramonic| Operation | 5 | 2 H Wi N | CI76 543 210] Hex | Bytes | Cyches | Stotet | Communts
EX DE, HL | DE~=HL w o | X |* | x]*]=|= {11100 011} EB 1 1 4
EX AF, AF'| AF—AF o | @ | X Qe d x|« e | & 0000 00Df OB 1 1 4
EXX C=ac o | o | X Qe X | |e | N0 000 D% 1 1 4 Register bank and
I DE -ﬂE‘) auxiliary register
HL=HL’ hank exchange
EXISPIL,HL] H =={SP+1] | » | » § X f* | X | |« | =7 100 010| E3 1 5 19
L ==(5F]
EX(SP), 6] IXy=={SPet)| ® | » | X |= | x |= |® [= it 01100 DD |2 B n
1% ~{5P} 17 100 fiv| E3 :
EXISPLIY ] IVy—{SP+1)]® J o | X | | X |= (= | = }T111 101 FD ki g 3
Iy —{5P} : 1 100 011) E3

Motes: (1) PV flag is § if the result of BG-1 = 0, otherwise PV = 1
(@) Zfagis 1if A = [HL], otherwise Z = 0.

Flag Nomratian: * = flag not aftected, O = flag reser, 1 = fhag ser, X = ilag & wnknawn,
= Hag iz atfectad according to the result of the operation.

Table 13-2. Op Codes for EXCHANGE Group
(Courtesy MOSTEK, Corp.)

IMPLIED ADDRESSING
AF |BC DE &HL | HL | X Y

AF o8

MPLIED| &
r HL

DE

DD FD
E3 E3

REG. (SP}
INDIR.

location. Of course, only certain registers can be exchanged, so the
preceding routine is useful as a general approach to exchanging data.

BLOCK TRANSFER GROUP : LDI, LDIR, LDD, LDDR

Refer to Table 13—3 and Table 13—4 as we discuss the block transfer
instructions. These four instructions can be used to copy a contiguous
range of memory locations from one place to another. There are no
restrictions on the source or destination addresses nor on the number
of bytes transferred. In many cases, the source and destination
addresses will overlap. Before using any of these instructions, the HL,
DE, and BC registers must first be initialized. The HL pair is loaded
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Table 13-3. BLOCK TRANSFER Group
(Courtesy MOSTEK., Corp.)

Symbalic Flags Op-Cods No. of |Ne.of M|No.of T
Mnamanic Oparation | 5 | 2 H "IN | C |76 583 210] Hex | Byt | Cycles States | Comments .
@
LD} [DEI={HL} |= | =} % |0O)x 1] 0 'llli 11 ED 1 [} 16 - Load {HL) inta
DE — DE+ 10 100 000) AD [DE), increment the
HL = HL+1 parnters and
BC = BL-1 decrement the byte
counter [BE)
LDIR IDE)~(HL) |= |« }x | 0fX]o| o -hrnm 1 ED F. 5 21 HEBC w0
DE ~ DE#1 10 110 000{ BOD . L] 16 HBC=0
HL = HL+1
BC = BC
Repeat until
BE=0
).
LDD (DEI=(HLY J» |» | X [0 [x 1_ 0Of= 11w 0| ED 2 4 16
DE = DE1 0 101 00D | A8
HL = HL1
BC - BC
LODR {DEY=(HL) [» jo X (O |X]O]o = hti1001 1] ED 2 -1 i | IFBC=0
DE = DE-1 10 111 000 BB 2 q 16 WBC =0
HL = HL-¥ X
BC —BE1
Repeat wntil
BC=D
@ ]
CRl A = [HL) Pl )X IREARERNE III 1 1| ED FJ 4 16
HL = HL*1 10 100 0D Al
BC - BC1
; & )
CPIR A - [HL} | t Xliix PP = iy R0 ED z & il IWBC# Dand A+I{HL}
HL = HL# |m 1000 | &1 2 4 16 IEBC=0or A =(HL
B =BG
Repeat watil
A= [HL or
BC=0

Notes: (T} P/W flag iz 0l the resulr of BC-1 = 0, atherwise BV = 1
{Z) Zflagis 111 A = [HL], otherwise 2 = 0,

Flag Notation: * = {lag not affected, O = flag reset, 1 = flag set, X = flag is unknown,
ia fieg is alfected according to the result of the operation.

Table 13-4. Op Codes for BLOCK TRANSFER Group
(Courtesy MOSTEK. Corp.)

Reg HL points to soufce
Reg DE points to destination
Reg BC s byte counter

‘LD - Load {DE }=— (HL}
inc HL & DE, Dec BC

| "LDIR, - Load (DE)=—(HL)
il Inc HL & DE, Dec BC_ Repeat unul BC = 0

DESTINATION |fior | (DE)

— _
1 'LDD" - Load (DE}— (ML)
o Dee HL & DE, Dec BC

i

ED ‘LDDR" - Load [DE |-s—{HL}
B8 Dec HL & DE, Dec BC, Repeat until BC = 0
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with the starting address of the source range, DE is loaded with the
beginning of the destination range, and the number of bytes to be
transferred is placed in BC. This is easy to remember if you think of DE
for DEstination and BC for Byte Counter.

The LDI, or LoaD and Increment instruction, loads the data stored at
‘the memory location pointed to by HL into the memory location.
pointed to by DE. Then the HL and DE registers are incremented and
the BC register is decremented. After executing the LDI instruction,
the program can determine if the entire range has been transferred
(i.e., BC = 0) by testing the P/V fiag. If this flag is 1, then there are still
more bytes to transfer. The program can execute some more steps
and then loop back to the LDl instruction to continue the block transfer.
If the program does not need to perform any steps in between suc-
cessive byte transfers, then the LDIR (LoaD, Increment, and Repeat)
instructions can be used. This single instruction, all by itself, will
transfer the entire range of bytes specified. As you can see from the
symbolic representation, this instruction performs the LDI operation

and, then, automatically repeats until BC = 0.

The LDD (LoaD and Decrement) and LDDR (LoaD, Decrement,
and Repeat) instructions are similar to LDl and LDIR except that the
registers are decremented after each transfer. This allows the transfer
to proceed from the highest memory location to the lowest. While most
of the time it does not matter in which order the transfer is made, there
are some cases where it can be very important.

To simply transfer a block of memory from one range of addresses
to another, nonoverlapping range, either LDl or LDD can be used. With
LDI, the lowest memory address of the source range would go into HL,
and the lowest address of the destination is put into DE. BC, of course,
gets the total number of bytes in the block being transferred.

With LDD, the highest address of both ranges would be used; BC
would stay the same. After executing either of these block moves, the
results would be identical: a copy of the source range would be
transferred into the destination range. See Fig. 13—1.

When the source and destination ranges overlap, however, things
change considerably. For example, suppose we want to move a range

~ of bytes up or down by one address. Except for one byte, every
address in the destination range is also in the source range. Therefore,
when we read data from a source location, itis important to make sure
that the original data is still there. We would not want to retrieve data
from this location that had already been transferred previously from
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ADDRESS ADDRESS
T i) e S
1000 1 —4——3 1000 1 ~1————~1
3 2
1001 2 — 1001 2 - .
1002 3 —_ 1002 3 i
1003 4 1003 s 3
1004 1004
B [ —
e e
2000 1 - / 2000 1 s /
2001 2 - 4 2001 2 — /
2002 3 il 2002 3 i
- 2003 4 -J 2003 4 et
e e e il
USING LDD USING LDI
HL =1003h HL = 1000h
DE =2003h DE = 2000h
BC=4 BC=4

Fig. 13—1. Transferring a block of memory with nonoveriapping
ranges.

another source location. Under these circumstances, the entire desti-
nation range would end up being filled with just one value — that of the
initial source byte. Of course, this can also be a useful operation.

Fig. 13—2 shows the outcome of moving a block of memory up one
byte using the LDDR instruction. The arrows indicate the memory
transfers; they are numbered to show the order in which they take
place. Note that we must start at the high end of the range and then
work our way down for this operation to work properly. Had we started
at the bottom of the range and used the LDIR instruction, we would
have the results shown in Fig. 13-3.

BLOCK SEARCH GROUP: CPl, CPIR, CPD, CPDR

Another set of instructions which acts on an entire range of locations
is the Block Search Group. (See Table 13-5 and Table 13—6). These
can be used to look through a range of bytes for the occurrence of a
particular hex value. Like the block transfer group, the search can be
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1000
1001
1002
1003
1004
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t Bl |na | = "

BEFORE

= hy D

e S
1000 1
1001 1
1002 2
1003 3
1004 4
e
AFTER
USING LDD
HL = 1003h
DE = 1004h

BC=4

Fig. 13—-2. Moving a block of memory up one byte using LDD.

1000
1001
1002
1003

o L2 B

e i

BEFORE

B L pp =

—

1000
1001
1002
1003
1004

e | e f ok | ok | =

AFTER

USING LDI

HL = 1000h
DE = 1001h
BC=4

Fig. 13-3. Moving a block of memory up one byte using LDI.

done manually or automatically and from either direction. To use these
instructions, we first load HL with the starting address of the search
and BC with the number of bytes to search. The Accumulator is loaded
with the value that we are looking for.

Upon execution of the CPIl (ComPare and Increment) instruction,
the contents of the memory location pointed to by HL will be compared
with the value in the accumulator. That is, the memory value is sub-
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Table 13-5. BLOCK SEARCH Group
(Courtesy MOSTEK. Corp.)

Symbalic Flags | 0pCods No. of | No.of M|Wo.of T
Mesmonic| Openation [ 5 | Z H Prviw ] c[rs 543 210] Hew | Byt | Cyeles | Stotes | Commants
(2 w
CPO A - {HL Plyjx bl x]elry=prwn ) 0 |2 § 16
HL = HL! 0101 01| A9
BC —BC1
(2 @
CFOR A - (HL Pibxpdxlelr )= m| en §2 5 Fy | IFBC#0and A F(HL)
HL ~ HL1 Nt om| es |2 4 16 IFBC=00r A=(HL
BL — BC1
Repeat untd
A={HL or
BG=0
Notes: PIV flag is O if the result of BC-1 = 0, otherwise PAV = 1

Zlagis 1if A= (HLL, otherwise Z=10.

Flag Notation:  * = flag not affected, 0 = flag reget, 1 = flag set, X = flag is unknown,
I= flag is affected according to the result of the operation.

Table 13-6. Op Codes for BLOCK SEARCH Group
(Courtesy MOSTEK, Corp.)

SEARCH

LOCATION
REG.
INDIR.
(HL)
ED ‘CPI°
Al Inc HL, Dec BC
ED ‘CPIR’, Inc HL, Dec BC
B1 repeat until BC = 0 or find match
ED a4 L}
AG CPD’ Dec HL & BC
ED ‘CPOR' Dec HL & BC
B9 Repeat until BC = 0 or find match

HL paints to location in memary
to be compared with accumulator
contents

BC is byte counter

tracted from the accumulator, and the flag register is set according to
the results of this operation. The Z flag is used as always to specify
whether the two bytes were equal. If they were, then the Z flag is set.
Following the compare, the HL register is incremented and BC is
decremented. The P/V flag serves a special purpose after a CPI
instruction. Itis set to 0 if the remaining value in the BC register is zero.
Otherwise, P/V = 1.
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The CPIR (ComPare, Increment, and Repeat) instruction automati-
cally repeats until either a match is found or the byte count reaches
zero. The flag register is affected in the same way as the CPI instruc-
tion. CPD (ComPare and Decrement) and CPDR (ComPare, Decre-
ment, and Repeat) are the descending versions of the preceding
group. All of the block move and search instructions are extremely
useful when dealing with character strings. They allow us to move
entire strings around or to search them for certain characters.

INPUT AND OUTPUT GROUP: IN, OUT

The Z80 has a fairly extensive set of instructions to communicate
with external devices through the use of ports. As discussed in Chap-
ter 5, an I/O port is just another way to get data into or out of the CPU.
To access an I/O port, we use the IN and OUT instructions and supply
a port address. Most of the Z80 I/O instructions use the C register to
hold the 8-bit port address. During the /O operation, the contents of
this register are placed on the lower 8-bits of the address bus. The
contents of the B register are placed on the upper 8-bits, so, in effect,
we have register indirect addressing using the 16-bit BC pair.

This is how we can access over 65,000 different ports, if needed.
Most Z80 computer systems find 256 |/O ports more than sufficient so
the Z80 literature usually refers to only an 8-bit port address. Inthe T/S
2068, however, we have already seen that the joystick port uses a 9-bit
address, and the entire 15 address bits are used for reading the
keyboard. Let’s take a closer look at the INput and OUTput instruc-
tions, as shown in Table 13—7 and Table 13-8.

The first instructions are the IN A,(n) and the corresponding OUT
(n),A. These are the only two I/O instructions that do not use register
indirect addressing. Instead, they use immediate addressing. That is,
the byte following the op code is used to specify the port. This is used
to form the lower half of the address bus with the accumulator going to
the upper eight bits. This form of addressing can only be used todo /O
with the A register. Let's see how these instructions might be used to
access one of the ports in the T/S 2068.

If you recall, the joystick inputs on the T/S 2068 are connected to the
I/O port in the PSG. Therefore, to access these inputs, we must first
address register 14 of the PSG. This is done by putting out 14 on the
PSG address port (F5h). We then read the joystick signals on the PSG
data port (F6h). But, to select which of the two joysticks we want, we
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Table 13-7. INPUT and OUTPUT Group
(Courtesy MOSTEK, Corp.)

Symbalic Flagt Dp-Cadu No.ol [Mo.of M [Na.of T
Mnsmaonic | Dperation 5 |2 H PV W C |76 543 ﬂ! Hax Bytws |Cycies |States | Comments
INA L [A -l elefjx|efu]lsfes]=jnnmom| oe |2 3 " In nto Ap ~ Ay
- N = Acc o Ag ™~ Aqg
INr. (C} r o= (L) blbafx] g%l plode 11100000 ED |2 3 12 Crohg=~ &g
it r="110 ooly 0 r ooo B 1o Ag ~ Ayg
the flags will
e atfecied
@
(L1 {HL} = (C) XlpXx | Xx|x] X[ 1] x|} ED |2 4 16 Clo Ag~ Ay
B-8-1 10 100 D10} A2 Bro g ~ Agg
HL ~ HL #1
INIR [HL] = [C) X1 X | x| X} x| v | X110 imf ED |2 5 n Co g~ Ay
B-8-1 10 110 o10f &2 (e B 70 B 1o Ag ~ Ayg
HL = HL +1 1 4 16
Regpeat uanil e =0
B=0
d:
IND (HL = (£ XlPp|X | Xpxf Xf QX1 En ? 4 16 ﬁlu.ﬁﬁ"-'ﬁ.?
B=-8-1 10 101 010 AA B o Ag =~ Aqg
HL = HL-1
INDR (HL] = (L] Xpv | x xix) ®)t] x| ep |z 5 ]| CroAp ™ Ag
B-8-1 10111 Mg BA (B 400 Em#ﬁ"-ﬁ.ﬁ
HL = HL-1 1 4 16
Repeat umiil (18 =0}
B={
OUT [nl A | [nb= 4 #le X qe (X)® ||« 110000 D3 |2 3 n nto Ag ™~ Ap
Acc to Ag ™ Aqg
ouTiC), s [IC) =+ e X e ix| | ]|® (1100t ] ED |2 3 12 Cro Ag~ Ay
[ I 1 B o Ag ™~ A
® Ag ™ Arg
ouTi B=B-1 XKl x| X{X] X] v ] x |10 101 ED Fi 4 16 CioAg =~ A7
() = [HLI 10 100 011} A3 BioAg =~ Ayg
HL = HL+1
. OTIR 8-8-1 Xl{v e Pxyx| xf1 x| E0 {2 5 Fi| CroAg ™ Ay
€] = (HL) 10 1o o1 83 it B 00 BroAg ~ Aqgg
HL = HL+1 2 4 16
Repeat until fliB=0
E=0
i
ouTD =y fafp]xpxjxe|xfr{ximmm| eo |2 4 1% C1o Ay~ Ay
g =-B-1 0w o1 aB B1oAg ™~ Ayg
HL = HL- 1 _
OTDR WG -WU fxpy (X | xqx| %] (= [1n0rim} E0 |2 § F]] CwAp~ Ay
B-8-1 ooy es e+ Bio Ag =~ Aqg
HL = HL-1 2 4 16
Repeat untd (Ff B =0}
B=p

Motes: () M the result of B - 115 zevo the Z flag is 1et, otherwize it is reset.

Flag Notation: = = flag ot aifected, 0 = flag resar, 1 = fiag ser, X = flag it unknown,
§ = fag ix affected according to the result of the operation,

also have to set the ninth address bit (A8) accordingly. The following
routine accomplishes this task with immediate mode |/O instructions:

LDA, 14 :Select /0 register
OUT (FSh) +A ;on PSG
LD A+ PLAYER ‘Set to either ® or 1

INA, (FBh) ;Read joystick
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Table 13-8. Op Codes for INPUT and OUTPUT Group

FORT ADDRESS
|imamen] nee.
INDLRA.
5 ici
A jioa | eo
:ﬁ_ﬁ? ]
B En
an
L]
I )
e
INPUT "IN a
o <] ED
R’ 50,
E
- ED
] 58
INPUT M
DEETINATION & [, -
ta
L £
&8
Rt
NN = INFUT & ED
Ing HL, Dez B A3
'IMIR = IMP, bng HL, ED
Oac B, REPEAT IF Ba0 a2
rriaﬂl'n [HLE y BLOCK INPUT
N~ INPUT & ED = e
Dz WL, Duc B AN
“INGR'— INFLIT, Dac ML ED
Dwe B, REFEAT IF Bod Ba,
#
SOURCE
REG.
REGISTER IND.
A B c D E H L (ML)
IMMED. n %
o
“ouT
REG. | (C] ED ED ED ED ED ED ED
IND. 3 41 49 51 59 &1 1]
LY
‘QUTH — OUTPUT REG. (] ED
Inc HL, Dec b IND, A3
OTIR' — OQUTPUT, inc HL, REG. ] ED
Dec B, REPEAT IF B0 iND, B3 BLOCK
 QUTPUT
"DUTD" = QUTPUT REG. ] ED COMMANDS
DecHLA B IND, AB
‘OTDR" — OUTPUT, Dec HL REG, icl ED
& B, REPEAT IF B0 IND, BE
#
—
PORT
DESTINATION

ADDRESS
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BLOCK I/O: INI INIR, IND, INDR,
OUTI., OTIR., OUTD, OTDR

The Z80 is also capable of transferring a block of data through an I/0
port. In this case, the HL register is loaded with the starting address of
a memory range; the B register is used for a byte count. Since only the
8-bit B register is used, block /O operations are limited to 256 bytes at
one time. With the INI, IND, OUTI, and OUTD instructions, the Z flag is
used to indicate when the B register has been decremented to zero (Z
= 0 means that there are more bytes to transfer). Other than that,
these instructions are used just like the block transfer commands.

GENERAL-PURPOSE ARITHMETIC GROUP: DAA,
CPL, NEG, CCE SCF

There are five general-purpose arithmetic instructions which oper-
ate on the accumulator or the carry flag. These are shown in Table
13-9 and Table 13—10. The DAA (Decimal Adjust Accumulator)
instruction is useful when BCD arithmetic is performed. After perform-
ing addition or subtraction of BCD data, the resuit may not be in the
correct form. Consider:

2 6
26 g 91 9 g 11 0@
+ 3 5
35 g 6 11 g 10 1
5 ?7??

g 1 0 1 181 1 not valid BCD format
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Table 13-9. GENERAL-PURPOSE ARITHMETIC Group
(Courtesy MOSTEK, Corp.)

Symbolic Flags Op-Code No.of |Ne.of M |No.of T
Mnremaonic | Operation 5z H PIV] W] C |76 543 210] Hes Bytet | Cycles | States” | Comments
DaA Corwertsace, | 111 ) %) 1| R0F | * | ¢ |00 100 111] &7 1 1 4 Decimal adjust
confent into accumulator
packed BCD
fallowing add}
or subtract
with packed
BOD aperands
CPL A-TE o [ | x| v} M=l | = o000 YN} 2F 1 1 4 Complement
accumulator
' [One's complemant]
NEG A-a+r [PV g b xv vt oo i) ED | 2 2 8 Megate acc, (hwo's
01 000 100) 44 complzment]
CCF CY-T¥ s le P x x| x)=sfo]tjoom ) 3F |1 1 4 Complement carry
: fhag
SCF CY -1 o lo | X0 | X )0]| 100130 100) 37 1 1 4 Sen carry flag

Table 13-10. Op Codes for GENERAL-PURPOSE
ARITHMETIC Group '
(Courtesy MOSTEK, Corp.)

Decimal Adjust Ace, 'DAA" 27
Complement Ace, 'CPL" 2F
MNegate Acc, ‘NEG' ED
{2"s complement) 44

Complement Carry Flag, 'CCF* 3F

Set Carry Flag, 'SCF’ 37

After executing the DAA instruction, however, we would have the
correct result:

61 g 1180 6 g0 1

The CPL (ComPLiment accumulator) instruction causes every bit in
the accumulator to be changed. Thus:
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Accum.| 1 0 0 1 1t 1 0 1

becomes after CPL

Accum.| 0 1 1 0 0 O 1 0O

The NEG (NEGate accumulator) instruction replaces the value in
the accumulator with its twos complement notation. Therefore:

Accum., 1 0 0 1 1 1 0 1

becomes after NEG

Accur.'n.ﬂ11ﬂnﬂ11

The last two instructions in this group operate only on the Carry flag.
CCF (Complement Carry Flag) inverts the value of the flag while SCF
(Set Carry Flag) forces the flag to 1. Although there is no direct
instruction to reset the carry flag, this is easily accomplished through
other single byte instructions such as AND AA.

MISCELLANEOUS CPU CONTROL: NOP, HALT. DI,
EI, IM0, IM1, IM2

Table 13-11 and Table 13—12 describe the instructions that control
the operation of the Z80 and set the interrupt response mode. The first
instruction is the NOP (No OPeration) which does just that — nothing.
There are many reasons for having such an instruction. Probably the
most common use for the NOP is to replace unnecessary or revised
instructions in a previously written program. It is also useful for writing
time-sensitive routines, since it will add a slight delay (one machine
cycle) to the execution of a program.

The HALT instruction causes the CPU to stop executing its program
until an interrupt is received. This is used to synchronize a program to
external hardware. The T/S 1000, for example, uses such a scheme to
let the Z80 perform the task of generating the video display.
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Table 13-11.
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MISCELLANEOUS CUP CONTROL Group
(Courtesy MOSTEK, Corp.)

Symbalic Flpgs Op-Cods Mo of |No.of M | No.of T
Maemonic | Operation | 5 | 2 H "W C |76 543 210] Hex | Byus | Cyces | Swim | Comments
NOF Mooperation| = | | X|® | X| * | » | » |00 000 00| o0 | ¢ 1 ]
HALT CPUhalved | = o | X|= | X|®|= |0 1010] 76 |1 1 [}
D" IFF =0 |®|= § x| |x|=f=|=Jt1tiom] f |1 1 4
Bl IFF =1 |»]e | Xx|® | xX|*|[e|=junimvon] FE |1 1 4
M0 Setinterrupt | = [ | X|= | X |« [= |« |10 108101 ED | 2 z 8
mode 0 01 000 10| 46
M1 Setinterrupt | * | | X{w | X | = s 11 im| Eo |2 7 8
mode 1 o1 e 10| 56
M2 Setinterrupt | = [# | X |® | X = o) Eo |2 2 8
made 2 o1 o1 10|  SE
Moies:  IFF indicates the interrupt enable flip-flop

CY indicates the carry Hip-flop.

Flag Motation: ® = {lag not aifected, O = Hag reser, 1 = flag ser, X = flag is unknown,
| = flag iv aifected secording to the result of the operation

*Interrupts are not sampled at the end of EI or DI

Table 13-12. Op Codes for MISCELLANEOUS CUP
CONTROL Group
(Courtesy MOSTEK, Corp.)

‘NOP

‘HALT"

DISABLE INT ‘IO |

ENABLE INT'(EI} | FB

SET INT MODE 0
‘Mg

SET INT MODE 1
‘i1’

SET INT MODE 2
Mz

BOBOA MODE

CALL TO LOCATION 0038,

INDIRECT CALL USING REGISTER
1 AND 8 BITS FROM INTERRUPTING
DEWICE AS A POINTER,

The two instructions — DI (Disable Interrupt) and EI (Enable Inter-
rupt) — control the software maskable interrupt facilities of the Z80.
After executing the El instruction, the internal IFF (Interrupt Flip Flop)
flag is set, allowing an interrupt signal to be recognized. This flag will
stay set until either the DI instruction is executed or an interrupt is
received. An interrupt service routine should end with the El instruc-



Special Instructions and 1/O | 205

tion, if further interrupts are to be recognized. Since the Z80 does not
check for an interrupt signal immediately following the El instruction, if
the next instruction is a RETI (Return from Interrupt), the routine will
return properly without any danger of another interrupt routine starting
before the first one ended. Of course, nested interrupts with varying
priorities can be implemented if desired.

The IMO (Interrupt Mode 0), IM1, and IM2 instructions are used to
select how the Z80 will respond to interrupts. While a complete discus-
sion of interrupts is beyond the scope of this book, we will give a brief
description of the three modes available. The default condition is IMO
which allows the Z80 to handle interrupt requests like the 8080 CPU.
Since the Z80 was designed to be an enhanced replacement for this
early microprocessor, this mode is necessary for complete software
compatibility. In the 8080 mode, the device generating the interrupt
must place an instruction op code onto the data bus during the
interrupt acknowledge time. This allows the device to “hardware pro-
gram” the CPU to execute any instruction. This will usually be a restart
instruction to a special interrupt handling routine somewhere in RAM.

In Mode 1, which the T/S 2068 uses, an interrupt causes a restart to
location 38h. Thus, the interrupt handler would be loaded into that
address. If the routine is of any great length, then a JuMP instruction to
another area of memory may be used. Since the T/S 2068 uses
interrupts to read the keyboard, there is a routine at location 38h to
perform this task.

Mode 2 interrupts are used when the Z80 is attached to any of its
peripheral chips. These devices support a comprehensive, vectored
interrupt scheme which allows the interrupt to generate an indirect call
to any location in memory. To accomplish this, the Z80 uses the |
register as the upper 8 bits of an address and another 8-bit vector from
the interrupting peripheral. This address points to an entry in a table of
interrupt service routine addresses. Thus, the CPU reads the contents
of this address, plus the next one, to find out the actual location of the
service routine. The Z80 then performs a CALL to that address. '

The Z80 also supports another interrupt structure called the NMI
(Nonmaskable Interrupt). A different signal is used to generate an
NMI, which always causes a restart to location 66h. There is no way to
disable these interrupts.

With the completion of this chapter, we have described the entire
Z80 instruction set. In the next section, we will show how machine
language can be used from BASIC on the T/S 2068,
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| T/S 2068



14 :
Using Machine Language
From BASIC

Now that we have covered the Z80 instruction set, we can begin to
get serious about using machine language programs. Aside from
writing the program itself on paper, we now have to consider how it will
interact with the rest of the T/S 2068 hardware and software. First, we
have to determine where in memory the program will reside. Then we
have to physically place the program there. At the same time, we must
ensure that the program will not interfere with the normal operation of
the computer and vice versa. Consideration must be given to all of the
computer’'s resources and how they are used. Memory locations,
register usage, bank switching status, etc., must all be examined.
Finally, don’t overlook such hidden traps as the presence of external
devices or the computer’s interrupt generation (60 times per second to
read the keyboard).

CREATING A MACHINE LANGUAGE PROGRAM

Obviously the first thing we have to do is to create the machine
language program that we wish to execute. For example, suppose we
want to fill the screen with a constant dot pattern. We know from
Chapter 8 that this involves filling the memory locations in D FILE 1
with a constant byte. This could be written in BASIC as follows:

12 FOR i = 168384 TD 22528 : POKE i+ 51 : NEXT i

When you run this program, the screen will slowly fill up with the binary
pattern represented by the data in the POKE statement. We chose the
value 51 because in binary it becomes 00110011, Thus the screen will
take on a pattern of vertical lines 2 pixels wide with 2 pixels in-
between. You might also want to try other values such as 85, 17, or 7.
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With a little playing around, you should be able to verify the structure
shown in Fig. 8-5. This should be especially evident by the order in
which the screen gets filled.

No matter what vaiue you POKE in, the preceding program takes
about 48 seconds to completely fill the screen. This is a classic
candidate for replacement by a machine language routine. Such a
program might look like Listing 14—1. This is the block move routine
that is set up to replicate the first byte into an entire memory range.
This first byte is defined by the second line of the routine which shows
this value in binary form.

CHOOSING THE RIGHT LOCATION

The next thing we must consider is where to put the machine code.
While BASIC will let us POKE the program almost anywhere in RAM,
we must not do so indiscriminately. As we saw in Fig. 5-2, much of the
computer’s memory is dedicated to a particular use. We certainly
would not want to POKE the program into the middle of the machine
stack or on top of our BASIC program. If we examine this figure
carefully, we will find that there are five distinct sections of memory.
The stationary RAM, which is used by the system software, runs from
location 16384 (D FILE 1) to location 26709 (PROG — 1). This
includes the display and attribute file, machine stack, bank switching
code, etc. These data structures are always present (with minor
changes when D FILE 2 is used), and therefore represent a fixed
overhead on the available RAM. The area of memory between PROG
and E LINE —1 represents the storage of our BASIC program and its
variables. This, of course, will constantly be changing, and it can grow
until all of the available RAM is used up. Directly above the variable
storage, we find another series of system data structures. These
include the edit buffer and the temporary work space for the BASIC

Listing 14-1
LD HL, 16384 ;Start of D —FILE_1
LD (HL),#8118611 ;Pattern byte to replicate
LD DE,16385 ;First byte to transfer
LD BC,6143 ;Length of D FILE _1

LDIR :Gotoit!
RET -Return to BASIC
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interpreter. This section of memory, from E LINE to STKEND, also
moves around as the computer is used. With the exception of a small
area at the very top of memory, the remaining RAM from STKEND to
RAMTOP is unused. After RAMTOP, we have the data for the user-
defined graphics characters. This continues up to the very last byte of
RAM.

In looking for a place to put a machine language program, we can
see that almost everything below STKEND is being used. There are a
few tricky places to put machine code, such as in the area reserved for
the printer buffer (if you are not using a printer, then these 256 bytes
can be used for anything you desire). In general, however, we will
want to place machine language programs above STKEND, into the
unused area.

Since this free RAM gets eaten up from the bottom end as memory
usage grows, it makes sense to place the routines as high as possible.
This means that they should go just below the User Defined Graphics
area. This is, in fact, where most machine language routines will be
placed; we will show how to protect this area from BASIC.

In Chapter 12, we created some programs to run at location 28672
(7000h). This location was chosen because it was a nice round hex
address and we could be sure that it was in the unused area. We knew
that it was above STKEND because we only had a short BASIC
program and a couple of variables being stored in memory. Since
STKEND is initially set at location 26726, we knew that the program/
variable usage would have to reach almost 2000 bytes before mem-
ory locations 28672 and above were needed. Thus, we were safe in
putting our program there.

There is still one more problem to deal with, however. No matter
where in free memory that we place the routine, there is always the
chance that the BASIC program or variables will expand to that point.
Since BASIC has no idea that we have something meaningful at these
addresses, it will blindly overwrite these locations with whatever data
it needs to store. So the machine language program could get
destroyed if we are not careful.

Fortunately, there is a simple way to inform the BASIC interpreter
that we do not want it to use memory locations above a certain
address. This is the function of the system variable RAMTOP. It
represents to BASIC the last byte of memory available to the inter-
preter. Thus, if we can move RAMTOP down in memory, we will
create a free area of RAM between RAMTOP and UDG. We can then
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place machine language routines in this area where they will be safe
from BASIC. While it is possible to change RAMTOP by POKEing in a
new value, it is easier to use the CLEAR statement in BASIC. This
statement automatically resets RAMTOP to the address specified by
the command. Thus:

10 CLEAR BS0Q0

will set RAMTOP to address 65000. Since RAMTOP is normally
65367 on the T/S 2068, this would give us 367 bytes of free memoryin
which to place the routines. With RAMTOP set at 65000, the first byte
available for machine code is at location 65001.

ASSEMBLING THE PROGRAM

Now that we know where the program is going, we will return to our
example and hand-assemble it. We start by converting the starting
address to hex (65001 = FDE8h). Then we look up the op code for
each instruction and convert any binary or decimal operands to hex.
This gives us the complete hex representation, or object code for the
program. Finally, we convert each byte of hex code to its decimal
equivalent (jot them down on the right side), and we're ready to POKE
the program into memory. After assembly, the program now looks like
Listing 14-2. ,_

Listing 14-3 shows how we take the decimal values, placed in a
DATA statement, and POKE them into the locations starting above
the new RAMTOP setting. When this program is run, the screen fills
up in about one-half of a second. That's 100 times faster than the
BASIC version! In fact, most of this half-second is still being used up
by the interpreter executing the first five lines. Type:

RUN 190
Listing 14-2

FDES- 21 @@ 40 LD HL, 16384 33,0,64

FDEB- 36 33 LD (HL),@8118@11 54,51

FDED- 11 @1 40 LD DE,16385 171,64

FOF@- 81 FF 17 LD BC,6143 1,255,23

FDF3- ED B@ LDIR 237,176

FDF5-C9 RET 201



Using Machine Language From BASIC 211

Listing 14-3

1§ CLEAR 65000

26 FOR a=65@@1 TO 65814

39 READd: POKEa,d

A  NEXTa

58 DATA 33,0,64,54,51,17,1,64,1,255,23,237,176,201
198 RANDOMIZE USR 65001

to see how fast the machine language program really is.

Once we have run the program, the machine language routine will
be safely stored in memory. Typing NEW will wipe out any existing
BASIC program, but the machine language routine will remain. Try it:

NEW
RANDOMIZE USR 659201

CASSETTE STORAGE OF MACHINE LANGUAGE
ROUTINES

Once we have a working machine language program, we may want
to save it on cassette. Before we typed in NEW, the BASIC program
that POKE'd it in was still in memory. This program contains the
machine language routine as a series of numbers in the DATA state-
ment. Obviously, it can be saved on cassette, reloaded back in, and
then RUN to execute the routine. When the machine code is less than
50 — 100 bytes, this method works fine.

With longer routines, we begin to suffer a few problems. First, it
should be noted that the DATA statement representation of the code
requires several times as many bytes as the actual code. This is
because each hex byte will require eight to ten bytes when placed in
the DATA statement (1-3 bytes for the decimal digits, 6 bytes for the
“number” code and its 5-byte value, and another byte for the comma
between each data element).

Thus a moderately long machine language program will require a
very long BASIC program to POKE it in. This means that the BASIC
program will also take quite a long time to load in from cassette. The
loop which does the POKEing can also take a considerable amount of
time when the program is RUN. To make matters even worse, after
the routine has been POKE'd in, there are actually two copies of the
same program taking up memory space. The original data (which
takes up the most room) is no longer needed so it is wasting space.
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This can be solved by DELETEing the program lines which do the
POKEing along with the associated DATA statements.

A much better approach to saving and loading machine language
programs is to use the special forms of the SAVE and LOAD com-
mands. If you type:

SAYVE “sereen” CODE BS991 514

then the machine language routine will be saved on tape (even though
it's still hidden from BASIC). The SAVE . . . CODE command allows
you to “dump” any portion of the T/S 2068’s memory, in binary form, to
the cassette.

To retrieve the program, we would type:

LOAD “screen” B5001 14

This can be done in the command mode or from any point within a
BASIC program. Since we usually want {o use the machine code in
conjunction with a BASIC program, it makes sense to have them both
loaded in at the same time. This can be accomplished by having one
of the first lines of the BASIC program do the LOAD ... CODE
operation. Under these circumstances, you would also want to have
the BASIC program begin executing as soon as it is loaded. With our
example, we could do this by writing a new BASIC program:

10 LOAD "screen” 65001 :14
Z0 RANDOMIZE USR BS @@ 1

Then we would save it onto cassette with:

SAVE “demo” LINE 19

and as soon a the report code appears, type:

SAVE “screen” BS50G1.:14

This will place both parts of the program next to each other. If you now
rewind the tape and type:

LOAD “demo”™

the screen demo program will automatically start executing.
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Using the Built-in ROM
Routines

This chapter is for the adventurers out there who really like to dig into
their computers. One of the most exciting things you can do with a
computer is to poke around (or should that be PEEK around?) with its
ROM program attempting to discover some useful subroutines. Many
times, you will find some interesting POKE's or USR calls that allow
you to do things not possible from BASIC. Or you might discover one of
the interpreter’s routines that can be accessed directly — even from
BASIC — to perform a given function. This information can make your
BASIC programs run much faster and your machine language pro-
grams easier to write.

PRECIOUS POKES

Probably the best place to go looking for POKES is in the Table of
System Variables found in Appendix D of the Timex Sinclair 2068 User
Manual. By now, some of these cryptic descriptions should make a
little sense. Let's pick a few that have some really useful function.
Memory location 23609 is called PIP because it holds a value that
determines the sound that the T/S 2068 makes when a key is pressed.
When the computer is first turned on, this location is initialized with a
value of one. This causes the very short click that you normally hear
when pressing a key. If you change this value by entering:

FPOKE 23609 ,128

you will find that the key “click” has now become a key “beep.” Actually,
itis the length of this beep that is stored in location 23609. Therefore,
when the computer initializes this byte to 1, it really makes only one
cycle of the tone which sounds like a click.
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Another interesting location to POKE at is address 23562. This is
called REPPER, and it controls the speed of the auto-repeat feature on
the keyboard. The value at this location represents the delay — in
Yeoths of a second — between successive repeats when a key is held
down. Initially it is 5 but you can change this to any number from 1 to
225. Try typing:

POKE 23562 .1

and then hold down the space bar. One thing to watch out for: this
function is somewhat tied to the previous one. If the PIP value is very
large, then it takes a considerable amount of time for each beep to be
produced. The computer will not accept another keystroke until it has
finished sounding the previous one. Therefore, it is possible that the
PIP value will override the REPPER rate setting. By the way, location
23561 holds a value called REPDEL which sets the time that a key
must be held down before it begins to repeat. You cannot hurt the
computer in any way by changing the values of these system vari-
ables. The worst that can happen is that the computer will hang up,
and you will have to turn it off and back on again to regain control. So
be adventurous!

USING USR

With most computers, the real hacker would next begin to explore
various ROM routines. Finding out where they are, what they do, and
what else they affect can be fun, but it also takes a lot of time. In the
case of the T/S 2068, there is another point to consider. At the time this
book is being written, there is a strong possibility that the ROMs in the
computer will undergo some changes. Therefore, any routines that we
might document here could well end up being obsolete in the near
future. This is one of the negative aspects of using ROM routines in
your programs. Fortunately, however, Timex has incorporated a spe-
cial section in the ROM which makes everything much easier.

THE FUNCTION DISPATCHER

Built-in to the T/S 2068 Operating System ROM is a mechanism for
handling all of the basic functions of the computer. During initialization,
this ROM installs a special utility program into RAM at location 6200h
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(or FA50h if D_FILE 2 is being used). This utility, called the Function
Dispatcher, forms a consistent interface between application or sys-
tem software and the rudimentary operations needed to control the
T/S 2068 hardware. Y

Table 15—1 lists all of the functions currently available to the Function
Dispatcher.* Note that each function_is identified by a service code
number. To use the Function Dispatcher, we must first initialize the
machine stack and then PUSH a two-byte value representing the
service code. Any other registers used by the particular function are
then set up. Finally, a call is made to the Dispatcher which then
performs the desired task. It does this by CALLing certain other
routines stored in ROM.

As an example, let's see how we can plot a point on the screen using
the PLOTBC routine. This routine performs the equivalent of the
BASIC statement PLOT C,B. There are also four variations of this
command, depending upon the value stored in the system variable
PFLAG (23697). Bit 0 of this variable is called XOR-CH; bit 2 is called
INV-CH. Table 15-2 outlines the significance of these bits to the
PLOTBC function. Normally this routine will cause a pixel to be set.

Listing 15—1 shows a machine language routine that uses the Func-
tion Dispatcher and PLOTBC to draw a vertical line on the screen. This
involves plotting 174 separate points from within a loop. Since the B
register holds the vertical coordinate for the PLOTBC operation, we -
use the DJNZ instruction to create the loop. We, therefore, start by
initializing the B register to 175 and loading the C register with the
desired X-coordinate (in this case 127). We can load both registers
simultaneously using the LD BC instruction.

Next, we begin our loop by saving the BC register on the stack This
is because the contents of this register will get changed after calling
the Function Dispatcher. We then need to PUSH two sets of 2-byte
zeros to set up the stack for the Dispatcher. We PUSH the service
code onto the stack and we're ready to CALL the Function Dispatcher.
After plotting the point indicated by register B and C, the routine
returns to our POP BC instruction. This recovers the coordinates of the
point just plotted. The DJNZ instruction lowers the Y-coordinate by one
and then jumps back to plot the next point. After 174 points have been

*As of this writing, it is known that some of these functions (such as CHNG VID) do not
work. These problems may be corrected in future ROM revisions.
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Table 15-1. T/S 2068 Functions

Service
Function Code Action

W TAPE @ | Write a block to tape.
R TAPE 1 Read a block from tape.
RD BIT 2 Read a bit from tape.
R EDGE 3 Read an edge from tape.
SLVM 4 General tape routine.
LOAD 5 Load.
MERGE 6 Merge.
SAVE 7 Save.
CHNG VID 8 Change video mode.
W BORD 9 Write border color.

10 Reserved.

11 Reserved.

12 Reserved.

13 Reserved.
GET STATUS 14
GET NUMBER 15
BANK ENABLE 16
GOTO BANK 17
CALL BANK 18
XFER BANK 19

20 Reserved.

21 Reserved.

22 Reserved.

23 Reserved.

24 Reserved.
UPDK 25 Scan keyboard.
PARP 26 Sound routine.
BEEP 27 BEEP command.
K DUMP 28 COPY command.
SENDTV 29 Send char. to screen.
SETAT 30 Set print position.
STTBYT 31 Fix attribute byte.
R ATTS 32 Temp. Atts., Perm. Atts.
CLLHS 33 Clear lower half of screen.
CLS 34 Clear entire screen.
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Table 15-1 — cont. T/S 2068 Functions

Service

Function Code Action
DUMPPR 35 Printer buffer sent to print.
PRSCAN 36 Send scan to printer.
DESLUG 37 Remove slugs from line buffer.
K NEW 38 NEW command.
INIT 39 Initialize.
INCH 40  |Input character.
SELECT 41 Select current stream.
INSERT 42 Insert bytes.
RESET 43 Reset calculator stack.
CLOSE 44 CLOSE command.
CLCHAN 45 Close channel.
OPEN 46 OPEN command.
OPCHAN 47 Open channel.
CAT 48 CAT command.
DELETE 49 DELETE command.
FORMAT 50 FORMAT command.
MOVE Sl MOVE command.
FLASHA 52 Flash char. in A to screen.
FINDL 53 Find BASIC line.
SUBLIN 54 Find sub-line.
RECLEN 55 Record length.
DELREC 56 Delete record.
PUT LN 97 | Send line to output.
SYNTAX 58 Check syntax.
EXECUTE 59 Execute line,
FOR 60 FOR command. _ y
STOP 61 STOP command.
NEXT 62 NEXT command.
READ 63 READ command.
DATA 64 DATA command.
RESTBC 65 RESTORE bc.
RAND 66 RAND command.
CON'T 67 CON'T command.
JUMP 686 |Jump to line.
FIX Ul 69 |Fix | byte # from calc. stack.
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Table 15-1 — cont. T/S 2068 Functions

Service

Function Code Action
[FIXU 78  |Fix 2 byte # from calc. stack.
CLEAR 71 CLEAR command.
CLR BC 72 CLEAR bc.
GO SUB 73 GOSUB command.
CHKUSR- 74 Free space left.
RETURN 75 RETURN command.
PAUSE 76 PAUSE command.
BREAK? 77 Break key pressed?
DEF 78 DEF command.
K LPR 79  |LPRINT command.
K PRIN 80 |PRINT command.
P SEQ 81 Print sequence.
INPUT 82 INPUT command.
I SEQ 83 Input sequence.
NOTKB? 84 Test CURCHL =KB.
COLOR 85 Adjust attributes sysvars.
HIFLSH 86 Adjust attributes sysvars.
SCRMBL 87 Screen address calculator.
PLOT 88 PLOT command.
PLOTBC 89 Plot ¢, b.
GET XY 9@ Get x and y.
CIRCLE 91 CIRCLE command.
DRAW 92 DRAW command.
DRAW L 93 Draw line.
EXPRN 94 Expression Evaluator.
F SCRN 95 |Run time action for SCREEN $.
F ATT 96 |Run time action for ATTR.
RND 97 RND action.
PPl 98 |PI action.
F INKY 99 INKEY action.
FIND N 109 Find variable.
PSHSTR 141  |Push string.
PAEDCB 102 Push A, E, D, C, B.
LET 183 LET command.
POPSTR 104 Pop string.
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Table 15-1 — cont. T/S 2068 Functions
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Service

Function Code Action
' DIM 105 DIM command.
STKUSN 106 Stack unsigned number.
STK A 197 Stack A.
STK BC 108 Stack BC.
ININT 109 Read/Stack Integer.
FP2BC 110 Get 16 bit #.
FP2A 111 Get 8 bit #.
OUTPUT 112 Output number on stack.
SUB 113 Subtract.
ADD 114 Add,
MULT 115 Multiple (int).
TIMES 116 Multiply (ER).
DIVIDE 117 Divide.
TRUNC 118 Truncate.
FLOAT 119 Force Int EP.
INTDIV 120 Integer Divide.
INT 121 INT.
EXP 122 EXP.
LN 123 LN.
ANGLE 124 Angle calculator.
COS 125 COS.
SIN 126 SIN.
TAN 127 TAN.
ATN 128 ATN,
ASN 129 ASN.
ACS 130 ACS.
ROOT 131 SQR calculator.
TO THE 132 Exponentiation.
RDCH 133 Read character.
SENDCH 134 Send character.
WRCH 135 Write character.
K SCAN 136  |Keyboard scan.
PLFT 137 | Print cursor left.
P RT 138 Print cursor right.
P NL 139 | Print newline.
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Table 15-1 — cont. T/S 2068 Functions
Service
Function Code Action
PUTMES 140 Print message.
K CLS 141 CLS command.
SCRL 142 Scrolling routine.
F PNT 143 Point action.

Table 15-2. PLOTBC Options

XOR-CH INV-CH Function
2 g Set pixel.
@ 1 Reset pixel.
1 g Invert pixel.
| 1 Leave pixel as is.

plotted, this routine returns to BASIC. By using the DJNZ instruction,
we do not plot a point at the zero Y-coordinate location.

Listing 15—2 shows the BASIC program to enter this routine into
memory. After RUNning this BASIC program, type:

RANDOMIZE USR GS021

to RUN the routine. Note that it takes about one-half second to

execute.

Listing 151
FDE8- @1 AF 7F LD BC,7FAF  ;Start at (127,175) 1,127,175
FDEB- C5 LOOP PUSH BC :Save coordinates 197
FDEC- 11 @0 9@ LD DE,@ddg@ ;Setup 17,00
FDEF- D5 PUSH DE ;Function 213
FDF@- D5 PUSH DE :Dispatcher 213
FDF1- 11 27 @@ LD DE,89 :Get Service Code 17,890
FDF4- D5 PUSH DE ;and push it 213
FDF5- CD @ 62 CALL 6288h :Goto Func. Disp.  205,0,98
FDF8- C1 POP BC :Restore coordinates 193
FDF9- 10 EF DINZ,LOOP ;Do another point 16,239
FDFB- C9 RET ;Exit when done 201
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Listing 15-2

1§ CLEAR 6500¢

26 FOR a=65@81 TO 65020

3¢ READ d: POKE a,d :

4 NEXT a -

5¢ DATA1,127,175,197,17,8,8,2,13,213,17,89,8,213,205,8,98,193,16,239, 281

If you want to compare this to the equivalent BASIC program, type
NEW and then:

10 FOR i=175TO1 STEP —1: PLOT 127 +i: NEXT i

This program takes 1.6 seconds to execute. In this case, the Function
Dispatcher is adding some overhead to the machine language routine
but it is still over three times faster. Of course, when you compare the
machine language program of Listing 15—1 to the BASIC equivalent in
terms of simplicity and readability, BASIC wins hands down.

There you have the great compromise. Machine language programs
will outrun higher level programs such as those written in BASIC. But
the machine language programs will take considerably longer to write
(and even longer to debug!). Machine language programs are also
less easily modified. Having a knowledge of both BASIC and machine
language will aliow you to combine the best features of each according
to your needs. The following paragraphs describe some of the other
functions provided by the Function Dispatcher.

W Tape (Service Code 0)

This routine writes a block of data from memory to the cassette tape.
Upon entry, the IX register should point to the starting address of the
block and the DE register should specify the number of bytes to be
written. Before beginning the block transfer, the contents of the A
register will be written out; it should be a 0 for data or a FFh to indicate
that the following bytes are header information. The header block
contains information about a file such as its name and length.

The data recorded on tape starts off with a leader signal. This is an
800-Hz tone which lasts for about 5 seconds on a header block or
about 2 seconds for a data block. Following the leader signal is one
cycle of 2040-Hz tone and then the data. Each data byte is sent out
serially, MSB first. A zero bit is indicated by one cycle of 2040 Hz, and a
one bit is signaled by one cycle of 1020-Hz tone. After all the data bits
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have been sent, a parity byte is added. This byte represents the
Exclusive-or of all the previous data bytes.

R TAPE (Service Code 1)

This routine reads a block of data from the cassette. The number of
bytes to be read is specified in the DE register. The [X register points to
where the first byte will go in memory. The A register should also be set
to a 0 or FFh to indicate what type of block is to be read. A running
checksum is kept as the data is read in. This gets compared to the
checksum byte recorded on the tape. This routine will return with the
carry flag set if there were no errors. It returns with carry reset if the
checksums did not match, if there were less than DE bytes read in, or if
the block type was wrong.

BREAK? (Service Code 77)

This routine looks directly at the keyboard to determine if both the
CAPS SHIFT and SPACE keys are being pressed (i.e., a BREAK). It
returns with carry reset if this is true; otherwise, it returns with carry
set.

SCRMBL (Service Code 87)

This is a screen address calculator. Since the pixel locations on the
screen are stored in a scrambled form in memory, this routine is
available to help unscramble it. Upon entry, the BC register should
hold the PLOT-type coordinates. B should be holding Y and C should
contain X. When this function returns, the HL register will be pointing at
the byte in the display file where this pixel is stored. The A register will
indicate the bit position within this byte.
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2N

1

2

4

8

16

32

64

128

256

512

1024

2048

4 096

8 192

16 384

32 768

65 536

131 072

262 144

524 288

1 048 576

2 097 152

4 194 304

8 388 608

16 777 216

33 554 432
67 108 864
134 217 728
268 435 456
536 870 912

1 073 741 824
2 147 483 648
4 294 967 296
8 589 934 592
17 179 869 184
34 359 738 368

APPENDIX A
- Powers of 2

o z
O W o =1 MO = Wbk — O

G G G L0 G G B B B B B2 B BI B B B = = = = = e e
On i G B = O (D O ~] O U0 &= O = O WO ~ 3 0 = I b =

2—N

1

0.5

0.25

0.125

0.062 5

0.031 25

0.015 625

0.007 812 5

0.003 906 25

0.001 853 125

0.000 976 562 5

0.000 488 281 25

0.000 244 140 625

0.000 122 070 312 5

0.000 061 035 156 25

0.000 030 517 578 125

0.000 015 258 789 062 5

0.000 007 629 394 331 25

0.000 003 814 637 265 625

0.000 001 907 348 632 812 5

0.000 000 953 674 316 406 25

0.000 000 476 837 158 203 125

0.000 000 238 418 579 101 562 5

0.000 000 119 209 289 550 781 25

0.000 000 059 604 644 775 390 625

0.000 000 029 802 322 387 6395 312 5

0.000 000 014 901 161 133 847 656 25

0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5
0.000 000 000 232 830 643 653 869 628 306 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25
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Hex to Decimal

Conversion

Hex Dec | Hex Dec | Hex Dec | Hex Dec
00 0 21 33 42 66 63 99
0l 1 22 34 43 67 64 100
02 2 23 35 44 68 65 101
03 3 24 36 45 69 66 102
04 4 25 37 46 70 67 103
05 S 26 38 47 71 68 104
06 b ar 39 48 72 69 105
07 7 28 40 49 73 BA 106
08 8 29 41 4A 74 6B 107
09 9 2A 42 4B 75 6C 108
0A 10 2B 43 4C 76 6D 109
0B 11 2C 4 4D 77 6E 110
0C 12 2D 45 4FE 78 6F 111
0D 13 2E 46 4F 79 70 112
OE 14 2F 47 50 80 71 113
OF 15 30 48 ol 81 72 114
10 16 31 49 52 82 73 115
11 17 32 S0 o3 83 74 116
12 18 33 bl 54 84 75 117
13 19 34 92 55 85 76 118
14 20 |35 58 |56 86 77 119
15 21 36 54 57 87 78 120
16 22 -37 59 58 88 79 121
17 23 (38 56 [53 89 [7A 122
18 24 39 57 |58 90 |7B 123
19 29 . 3A 58 5B 91 TG 124
1A 26 3B 59 SC 92 7D 125
1B 27 aC 60 sD 93 7E 126
1C 28 3D 61 SE 94 7F 127
1D 29 3E 62 SF 95 80 128
1E 30 3F 63 60 96 81 129
IF 31 40 64 61 i 82 130
20 32 4] 65 62 98 83 131
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Hex Dec | Hex Dec | Hex Dec | Hex Dec

84 132 A3 163 C2 194 El 225
85 133 A4 164 C3 195 E2 226
86 134 AS 165 C4 196 E3' 227
87 135 Ab 166 C5 197 E4 228
88 136 A7 167 C6 198 ES 229
83 137 A8 168 C7 139 E6 230
8A 138 A9 169 C8 200 E7 231
8B 139 AA 170 C9 201 E8 232
8C 140 AB 171 CA 202 ES 233
8D 141 AC 172 CB 203 EA 234
8E 142 AD 173 CC 204 EB 235
8F 143 AE 174 CD 205 EC 236
90 144 AF 175 CE 206 ED 237
91 145 BO 176 CF 207 EE 238
92 146 Bl 177 DO 208 EF 239
93 147 B2 178 Dl 208 FO 240
94 148 B3 179 D2 210 Fl 241
95 149 B4 180 D3 211 Fa 242
96 150 BS 181 D4 212 F3 243
97 151 B6 182 D5 213 F4 244
98 152 B7 183 D6 214 F5 245
99 153 B8 184 D7 215 F6 246
9A 154 B9 185 D8 216 F7 247
9B 155 BA 186 D9 217 F8 248
aC 156 BB 187 DA 218 F9 249
9D 157 BC 188 DB 219 FA 250
9E 158 BD 189 DC 220 FB 251
ar 159 BE 190 DD 221 FC 252
AD 160 BF 191 DE 222 FD 253
Al 161 CO 192 DF 223 FE 254
A2 162 Cl 193 ED 224 FF 255
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ASCII Character Set
(7-Bit Code)

MSD | 0 1 2 | 3| 4|5 |86 |7

LSD 000 | 001 | 010|011 | 100|101 | 110 | 111
0 |0000 [NUL {DLE |SP| 0 |@ | P | ° | p
1 (o001 [SOH|DC1| ! |1 | A | Q| a | g
2 |oo10 |STX |Dc2| “ |2 | B|R | b |
30011 |ETX |DC3 | # | 3 | C | S | ¢ | s
4 [ 0100 |EOT |[DC4 | $ | 4 | D[ T | d | t
50101 |[ENG|NAK | % | 5 | E| U | e | u
6 {0110 [ACK |SYN | & | 6 | F |V | f | v
7 (0111 [BEL |ETB | ' | 7 |G | W | g | w
8 1000 BS |CAN| ( | 8 | H| X | n | x
9 (1000 | HT [ EM | ) | 9 | 1 | Y | i |y
A|1010| LF |[SUB| *~ | : | T 1|z || z
B|1011 | VI |ESC| + | ; | K | [ | k| {
clumo | FF | FS | * | < | L {\N| 1|/
D|10l [CR | GS |- |=|M| 1 |m]|}
E | 1110 | SO | RS > | N | A | n |~

Flun| st | v8s |/ |2 | 0o|—1| o |DEL

T e T g
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Index

A

Accumulator and flag registers, 80-81
ADC, 170-174

ADD, 170-174

Add/Subtract (N) flag, 82

Addition, 31-32

Address bus, 77

Addressing mode, 87-90

Amplifier, 14

Analog, 14-15

AND, 176-177

Arithmetic and logic operations, 170-190
Arrays, 56

Assembler, 146-147

Assembling program, 210-211
Attribute files, 136

Audio basics, 115-117

Automatic looping, 165

B

Bank
selection, 91-93
switching
control, 94-97
hardware/software, 93-97
BASIC, 145-146
Basic
interpreter operates, 70-72
parts, 16-18
BCD rotates, 183-184
Binary
fractions, 35
mathematics, 31-35
number system, 25-47
representation, 42-47
- system, 20
Bit
addressing, 90
operations, 176-180
pattern, 15
Bits of information, 18-20
Block
YO, 201
search groups, 195-198
transfer group, 192-195

Boolean logic, 20-24
Break? (Service Code 77), 222
Buffer, 20

Cc

CALL, 159, 166-169
and RETURN group, 166-168
Carry (C) flag, 81
Cassette storage of machine language
routines, 211-212
CCF, 201-203
Central Processing Unit (CPU), 25
Choosing the right location, 208-210
Chords, 130
Combining output channels, 127-130
Computer, 13-24
Conditional jump, 159
Connecting to outside world, 103-112
Converting
decimal to hexadecimal, 41-42
hexadecimal to decimal, 40-4
to binary, 30 :
to decimal, 28-29
CP, 175-176
CPD, 195-198
CPDR, 195-198
CPI, 195-198
CPIR, 195-198
CPL, 201-203
CPU, 17
operation, 84-85
Creating machine language program,
207-208

D

DAA (Decimal Adjust Accumulator),
82, 201-203
Data, 17
bus, 77
processing, 14
structures, 64
DEC, 176
DI, 203-205
Digital, 15
Dispatcher, function, 214-221



Display
files, 136
mode(s), 136-138
1, 138
2, 139-140
3, 140
4,140
Dividers, 118
Division, 39-40
Dock
bank, 93
connector, 105-106

"E

8-bit
signed integer multiply, 189
unsigned integer
division routine, 190
multiply, 187-189
El, 203-205
EX, 191-192
Exchange group, 191-192
Expansion
banks, 93
connector, peripheral, 106-112
Exploring the T/S 2068 basic, 48-75
EXROM bank, 93
Extended addressing, 88, 155
EXX, 191-192

F

Files, attribute, 136

Flag register, 81-84

Floating point, 58-62

FOR . .. NEXT loop variable, 66-68
Function dispatcher, 214-221

G

General-purpose
arithmetic group, 201-203
registers, 81

Ground, 19

H

Half carry (H) flag, 82
HALT, 203-205
Hand-coding, 146-147
Harmonics, 117
Hexadecimal number system, 40-42
Home bank, 92
memory map, 97
Horizontal sync, 133

Hue, 135

IMO, 203-205
IM1, 203-205
IM2, 203-205
Immediate
addressing, 87, 152-153
extended addressing, 87
Implied addressing, 89, 155
IN, 198
INC, 176
Index
addressing, 88-89, 154
registers (IX and IY), 79-80
INI, 201
INIR, 201
Initialization, 48-50
Input, 16-17
and Qutput group, 198-200
/Qutput facilities, 97-98
Inside the PSG, 113-115
INT (Interrupt Request), 86
Integers, 54-58
Interface, 16
Interrupt Veector (I) and Memory Refresh
(R), 80
Introduction to machine language pro-
gramming, 145-149

|

Joystick, 101-102
connectors, 104-105

JUMP, 159-165

Jump, 88
conditional, 159
unconditional, 159

K
Keyboard, 98-100

L
LDD, 192-195
LDDR, 192-195
LDI, 192-195
LDIR, 192-195

Line number, 72

Linear span, 119
Logarithmic, 119

Logic elements, 24

Logical operations, 176-177
Looping, automatic, 165
Luminance, 134



M

Machine language, 145-146
programming, introduction to, 145-149
Mechanical, 14
Memory, 17
map of T/S 2068, 91-102
Microcomputer, 13
Microprocessor, 13
Miscellaneous CPU control, 203-205
Mnemonic, 146
Modified zero page addressing, 87-88

Moving information: load instruction,

150-158
Multiplication, 35-39
and division, 184-187

N

NEG, 201-203

Negative numbers, 32-35

NMI (Nonmaskable Interrupt), 86
Noise generator, 122-123
Nonprimed registers, 191
Nontestable flag bits: H and N, 82-84
Nonvolatile storage, 18

NOP, 203-205

Normalized, 59, 61

NOT, 176-177

Notations, scientific, 58-59
Numbers, negative, 32-35
Numeric arrays, 62-64

0

Octaves, 119
OR, 176-177
OTDR, 201
QTIR, 201
QUT, 198
QUTD, 201
QUTI, 201
Output, 18
Overflow, 175

P

Parity/Overflow (P/V) flag, 82
PEEK command, 51-52
Peripheral expansion connector, 106-112
POKE command, 53-54
Potential, 19
Precious POKES, 213-214
Primed counterparts, 191
Program, 17
assembling, 210-211
counter (PC), 78-79
creating machine language, 207-208

Program—cont
flow, 159-169
storage, 72-75
stored, 15
Programming the PSG, 117-127

R

R tape (Service Code 1), 222
RAM, 17
Real numbers, 56
Register
addressing, 89, 150-152
indirect
addressing, 89-90, 153-154
jumps; 164-165
Registers, 77, 78-84
Relative addressing, 88-90, 161-164
RESET, 85
Restart group, 169
RETURN, 159, 166-168
RGB video, 140-141
ROM, 17-18
Rotate
and shift group, 180-183
Left Circular (RLC), 180
Right Circular (RRC), 180

S

Saturation, 135
SBC, 174
SCF, 201-203
Scientific notation, 58-59
SCRMBL (Service Code 87), 222
Selecting tone and noise sources,
123-124
Setting
amplitude, 125-127
frequency, 118-122
Shift Left Arithmetic (SLA), 183
Shift Right Arithmetic (SRA), 183
Shift Right Logical (SRL), 183
Sign (S) flag, 82
Signed arithmetic, 175-177
16-bit
arithmetic group, 177-178
load group, 155-158
Sound, 100-101
Special
functions, 85-86
instructions and I/O, 191-205
-purpose registers, 78-80
Stack pointer (SP), 79
State tables, 20
Storage,
nonvolatile, 18
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Storage—cont
volatile, 18
Stored program, 15
architecture, 15-16
String
arrays, 65-66
variables, 64-65
Strings., 56
SUB, 174
Subtraction, 32
Sync
horizontal, 133
vertical, 133

Tables,
state, 20
truth, 20-24
Testable flag bits: C, P/V, £, S, 81-82
Timbre, 117
Token, 73
Tremolo, 127-128
Truth table, 20-24
Tutorial on the T/S 2068 basic interpreter,
50-51

U

Unconditional jump, 159
Underflow, 175
Understanding 280 documentation,
147-148
Using
built-in ROM routines, 213-222
machine language from BASIC,
207-212

Using—cont
T/S 2068's pregrammable sound gen-
erator, 113-130
USR, 214
USR command, 148-149

v

Variable storage, 54-70
Varying variables, 68-70
Vertical sync, 133
Vibrato, 129
Video
basics, 131-135
display, 18, 131-141 -
RGB, 140-141
Volatile storage, 18

(]

W

W tape (Service Code @), 221-222
WAIT, 86

Waveshape, 117

Whole numbers, 56

X
XOR, 176177
Z
280
-CPU, 77-90

instruction set, 149
instructions, 170-174
Zero (Z) flag, 82
Zero page addressing, modified, 87-88
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This second book in a series on the Timex Sinclair 2068 takes the
reader beyond BASIC into the world of the computer’s circuits, its
microprocessor, and machine language. This book is written for
the computer user with a basic understanding of programming
who wants to learn what really makes his Timex tick. It covers

e Interfacing peripheral devices

® Machine language programs and subroutines

® Technical details of the Z80 microprocessor

® Information on using the Programmable Sound Generator
® Inner workings of the BASIC interpreter

® Memory mapping

The Timex Sinclair 2068 Intermediate /Advanced Guide teaches
you the tricks of the programming trade—how to make everyday
programs run faster, and how to make the 2068 do things you
thought were impossible.
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