Two Dollars and Ninety-Five Cents
Cat. No. 62-2007

Radio fhaek

|
Y

ABS EXP INT LOF

COPY AND FRE NOT

PEEK BYE CALL FN
el M- TR - — ——— MIDS NUM REM TEXT
P — . NSTR GO SUB THEMN

. - TAB ASC DET CAT
r " ; ME SOR
v

r '. . LET ANT HOME SOF
- 1 1
L] L]

DEF CALL LEFTS
LEN MAT INPUT FM
IF THEN DO ELSE END
SONTINUE COS LOAD LOG
MARGIN ON-GOTO RENAME
CHANGE STRS TiM PRINT
HOKE RIGHTS DIM LIST
QUOTE BESTORE CHRS

The BASIC

Cookbook

By Ken Tracton

Radlo Shaek

DDDDDDDDDDDDDDDDDDDDDDD

FIRST EDITION

Copyright © 1978 by TAB BOOKS

Printed in the United States
of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect
to the use of the information herein.

Library of Congress Cataloging in Publication Data

Tracton, Ken.
The BASIC cookbook.

Includes index.

1. Basic (Computer program language) I. Title.
QA76.73.B3T7 001.6'424 78-4578
ISBN 0-8306-9901-5
ISBN 0-8306-1005-3 pbk.

.

Preface

BASIC was originally developed by John Kemeny and Thomas Kurtz
in the 1960's at Dartmouth College. The ease of use and the simpli-
city of learning BASIC was noticed by various time-sharing services,
who then started to implement BASIC for the use of their custom-
ers. BASIC now is no longer so basic, as there are many versions
that are quite advanced. This book covers all the functions presently
available on the majority of BASIC language versions, elementary or
advanced. The user of this book can become adapted to any version
of BASIC with little difficulty.

If you're in a computer course, you will be taught how to
program in BASIC or a similar language. If, however, you have
purchased a microcomputer, vou will either receive with it a guide to
programming of some kind or be referred to such a guide. The
intention of this text is to give you a dictionary of terms used in
BASIC with examples to illustrate all the functions and operations,
as well as such mode and system commands as LOAD, RUN, SAVE
and LIST,

Each statement, commandor function, is provided with exam-
ples and, where deemed necessary, a programming example and a
flowchart have been included.

I believe that once a fundamental understanding is reached on
how the different statements and functions operate, the diligent user
will be in a position to start exploring the multi-uses of BASIC. Also,
since all the functions are in alphabetical order, this text may be used
as a reference guide when using different versions of this common
language.

If you already know the BASIC of your machine, you may find
many terms which are missing from either your version of BASIC or
from this text. Terms missing from this text are usually non-
standard or “machine dependent” instructions, and you should rely
on the guide that comes with your computer. Terms that are missing
from your version of BASIC, and are in this text, are either
synonyms, different ways of doing the same function, or have been
left out for some reason.

I would like to thank David and Susan who drew the flowcharts
from my sketched diagrams and repeatedly questioned me on what [
was doing. I would also like to thank MITS (creator of the Altair) in
the generous use of a model 680 computer, which proved to be a
very useful tool in testing many of the programs.

I especially appreciate the advice Doreen and Owen gave me,
and their invaluable help.

I wish to express my gratitude to Ms. Jane Hunt who took the
time to decipher and decode my barely readable notes and totype the
original manuscript. Without her time and patience this text would
never have been finished.

Ken Tracton

Contents

IREPOUMCHION siviicicusssaiasiusaisinmimminnsssiins sosscibamsnesiiusishsimmannensnngasane 7
A Dictionary of BASIC Programmingceeeeeveeeruecsesessenses 17
BRNEHOICES o s T 135
Derived FUNCLiONS civisiiissvsaisissississsiistismsssssrisin 135
DIASHOSHES (COMMON) soiisnesvinssssisnsisnssessssisssisminsasivisioms 136
INCrEASE PIogTam SPORM iiiaivsiiiimmmimmitimme 137
SAVINE SHACE wusunna RS 137
SDOoHl (PTOCESSINE) wrissinnsninisissississsismassisisasss 138

Introduction

What Is A Computer?

Think of a computer as a super-duper calculator. If you just turn
the calculator on, nothing will happen. In order for a calculator to
operate, you must feed in numbers and operations. An operation is
an instruction to your calculator to perform a function: add, divide,
find the square root, etc. For a computer, however, we must also
nstruct the computer to accept the numbers and to perform the
operations.

If computers could work only with numbers, we would not need
them; programmable calculators would be adequate for almost all
our calculation needs. However, a computer can also work on
alphanumerics, which are all the characters on your keyboard: the
letters, the numbers, the punctuation marks and the signs above the
numbers,

What Is A Program?

A program may be defined as a set of directions that tell a
computer how to solve a problem. Any program may be considered
to have three parts:

1. The necessary information, the input data.
2. The processing of the input data.
3. The output, results obtained from the processing.

These instructions must be written in a language which is
understood by the computer.

Of all the high-level computer languages that have been written
since 1955, BASIC {(Beginner’s All-purpose Symbolic Instruction
Code) is definitely one of the easiest to learn. The simplicity of this
language is actually quite deceiving as it possesses sufficient power
and flexibility to solve a wide variety of problems. BASICis available
on most time-sharing large computer systems as well as being the
number one language of the microcomputers.

The instructions in BASIC resemble algebraic formulae and
include English statements. Since its structure is well suited for
algebraic manipulation, BASIC is very useful for problem solving in
science. mathematics, and engineering; but it is also used in many
areas of numeric or character manipulation, such as medicine,
psychology, economics, and business.

BASIC AS A CALCULATOR

Most versions of BASIC have a type of operation called direct
entry. If you enter an operation without a line number, the operation
is performed immediately and the answer is printed if the word
PRINT precedes the operation.

The following are examples of direct entry and your fundamen-
tal functions. The first statement is your one line program; the
number below is the computer output.

PRINT 5 + 6
11

PRINT 7*11
il

PRINT 39/13
3

PRINT SIN {.785398)
0.7071

PRINT LOG (20)
2.99573

PRINT SQR (2)
1.41421

PRINT 23*34.8
800.4

PRINT INT (45/8)
5

PRINT ABS (-9)
9

PRINT RND
0.9463

PRINT RND
0.2166

Note that each call to RND will produce a uniquely different random
number.

These fundamental operations may be combined to produce
complex results with ease. When combining operations, all expres-
sions follow standard computer hierarchy of operations, and the
computer will calculate:

First: Exponentiation # or 4 (in some basics **)
Second: Multiplication *
Division /
Third: Addition +
Subtraction —
When two operators belong to the same group

Example: 5 +3 - 4
6*7/2
the computer reads from left to right and performs the operations
from left to right.
Example: (6 + 3) — 4
6*7)/2

HOW DO | WRITE A PROGRAM?
A complete BASIC program consists of an ordered sequence of

statements, each instruction being written as a separate statement.
These statements must appear in the order in which they are to be
executed unless a deliberate transfer of control is indicated, for
example, a subroutine.

The following rules always apply:

1) Every statement must appear on a separate line, unless
the version allows multiline statements.

2) A statement cannot exceed one line in length, unless the
version of BASIC being used has multi-line statements.

3) Each statement must begin with a positive integer quanti-
ty, called the statement number or line number.

4) No two statements may have the same line number.

5) Successive statements must have increasing (ascending)
line numbers.

6) Each statement must contain a BASIC keyword, except
versions of BASIC which do not require the LET keyword.

7) Blank spaces may be inserted anywhere desired in order to
improve the readability of the statements.

Now let us examine a program named GUESS, written in
BASIC that illustrates the fundamental concepts in this language.

This program was chosen primarily because it contains no “bells or
whistles” belonging to a SUPER BASIC program. The more
esoteric statements and commands are covered in detail elsewhere

in this text.

A BASIC PROGRAM

LOAD,GUESS
READY
LIST

10 REM THIS PROGRAM DEMONSTRATES BASIC
20 REM THE LINES 30 AND 40 ASK FOR A RANDOM

NUMBER
30 PRINT “ENTER ANY NUMBER FROM 1 TO 100"
40 INPUT X

50 REM LINE 60 EVALUATES A RANDOM NUMBER

60 X = INT(X*RND)

70 REM THE FOLLOWING LINES ACCEPT THE GUESSES
80 PRINT “YOUR GUESS IS";

90 INPUTY

100 IFY =X THEN 200

110 IF Y>X THEN 300

120 PRINT “YOUR GUESS IS TOO LOW”

130 GOTO 80

200 PRINT “YOU HAVE GUESSED CORRECTLY THE
RANDOM NUMBER”

210 STOP

300 PRINT “YOUR GUESS IS TOO HIGH”

310 GOTO 80

320 END

READY

RUN

ENTER ANY NUMBER FROM 1 TO 100

-

? 50

YOUR GUESS IS ? 65

YOUR GUESS IS TOO LOW

YOUR GUESS IS ? 100

YOUR GUESS IS TOO HIGH

YOUR GUESS IS ? 75

YOUR GUESS IS TOO LOW

YOUR GUESS IS ? 80

YOU HAVE GUESSED CORRECTLY THE RANDOM NUMBER

END

Let us look at what has happened, and how this program in
BASIC operated, We stated with the command LOAD,GUESS
which instructed the computer to search its library for the program
named GUESS. Where the program was stored is not of importance;
it may have been on disc or on tape. Once the stored program was
found it was transferred to the main memory of the computer.

When the computer was ready to accept another command it
printed READY. A computer, while very fast, can only do one
operation at a time. When it is free from a task it will notify the user
by some message, usually the words GO or READY. We next typed
in the command LIST, which instructed the computer to print out
the program now residing under the name “GUESS” in main mem-
ory.

We list a program to verify that we have entered the right
program instructions or to make corrections to an already written
program. We do not have to list a program first to RUN it. After the
computer had listed the program GUESS it again printed the
READY message to indicate that it was waiting for auser command.

Typing the command RUN instructed the computer to start
processing the program.

Looking through the program we notice the words REM at lines
10, 20, 50 and 70. The REM statement allows the programmer to
add REMarks to a program. Whenever the computer reads a line
beginning with the work REM, it does not process that line. Only
during listing is a REM line evaluated.

One purpose of the REM statement is to enable the user to add
useful information concerning the program when it is read or listed in
the future. Quite often in long programs a user will forget why he
wrote a certain line in a certain fashion. The REM removes this
problem. Of course the REM statement is also useful for users other
than the original programmer who wish to understand what a certain
line does.

11

In line 30 we notice the word PRINT. The PRINT statement
prints all characters that are enclosed in quotation marks following
the word PRINT. The PRINT statement thus allows the program
to output information, words or numbers. Whenever we wish to
print anything in BASIC we use the PRINT statement.

The INPUT statement in line 40 tells the computer to ask for a
number and assign the number then given by the user to the variable
named X in this case. In line 90 the number is assigned to the variable
Y. The INPUT statement allows us toinput or enter information into
the computer.

Line 60 (X = INT(X*RND)) constructed a random unber from
the number entered by the user in line 40. The word RND 1s an
instruction which tells the computer to pick a random number from 0
to 1 such as 0.96784. We then multiplied the number we entered by
the random number. Since we are only interested in having an
integer number in this program, we used the INT instruction which
tells the computer to only use the integer part of a number. The
resulting random integer number is assigned to the variable X.
Whenever we assign a number to a variable that has been already
used, the former number is lost.

In lines 100 and 110 we test to see if the number entered as a
guess is in fact the random number. Line 100 tests whether the
number is equal or not. If it is equal, we branch or go to line 200. If
the testis false, Yis greater orless thanX, and the nextline, 110,
is executed. Line 110 checks whether the number is greater than X.
If it is, we go to line 300; if it is not, the next line is executed and
prints a message saying we are too low in our guess. If Y = X and
line 200 were executed, the “correct” message would be printed,
and the next line encountered wouid be the STOP instruction which
instructs the computer to stop program execution and END.

The END statement at the “end” of the program in line 320 tells
the computer that this is the end of the program and that it should
stop execution and await another user command. All BASIC pro-
grams must conclude with an END statement.

It should be obvious by now that the execution of the lines is
sequential, going from lowest line number to highest line number.
The only mechanisms that have disturbed this flow are the GOTO,
and THEN instructions in lines 100, 110, 130 and 310.

The user may try this “basic” BASIC program and get the feel
for this language. Reading the text the reader will find that writing in
BASIC is much simpler than he expected. It is definitely “people-

oriented.” It does not require an extensive training in mathematics
Or programming,

ol "

BASIC programs are also very easy to alter. Once written, a
program may be easily modified to suit other applications.

Because most BASICs are so similar, a program written on one
machine will usually run on another computer, except for a few minor
differences that may exist from one version to the next.

GOOD PRACTICE HINTS IN BASIC

1) Use REMs for documentation whenever possible.

2) Increment line number by 10, leaving space for future
updates.

3) Write only one statement per line.

4) Try to avoid the special features available only on your
version of BASIC.

5) Usel, J, K for index or counting variables throughout the
program.

6) UseL, M, N for the end points orloops (FOR I = 1 TO M)

7) Avoid the letter O as a variable as confusion is inevitable
with zero, whether your computer slashes the letter O or
the zero.

8) Unless tight for space, do not reuse variable names.

BASIC and Computer Systems

BASIC is usually run on computers that operate in one of the
following three modes:

A) Stand-alone
B) Time-sharing
C) BATCH

STAND-ALONE

In the stand-alone mode the computer is dedicated to only one
user. That is, only one job or program is being run until completion.,
Generally the large computer systems are not stand-alone as it is not
economically feasible to dedicate a large system to a single user.

Typical single-user machines are the host of microcomputers
now available, and some of the specialized minicomputers.

The advantage, of course, of single-user, stand-alone opera-
tion is that the user has full command of the computer.

TIME-SHARING

In the time-sharing mode the computer is used “simultane-
ously” by more than one user. Each user can communicate with the
computer via an input/output terminal which may be a teleprinter,
video terminal or a combination of both.

13

The program and data are entered via the user’s terminal and
the results are returned to that terminal after processing.

There are many ways time-sharing may be effected by a com-
puter. The system may take advantage of the slow response time of
terminals and process data while the terminals are transmitting or
receiving information. The system may also time-slice the users,
that is, eachuseris allotted a time slot, and is polled in a round-robin
method. Each user may be given 100 milliseconds of computer time,
for example, then the next, and the next, and so on, until the
computer returns to the original user. If the time slots are small and
there are few users, each user views the system as being dedicated
solely to his job.

BATCH

In the BATCH mode a number of jobs (programs) are entered
into the computer and are processed sequentially. Typically this
operational mode is done with punched cards, with both the program
and data being recorded on these cards. A punched card typically
contains 80 columns, of which some or all may contain holes. The
pattern of holes in each column encodes the data, information, or
instructions. Since each column represents one character, a singie
card can hold up to 80 characters of information. The cards are
punched on special “card punches,” then read into the computer by a
card-reading device. The output of the program will then be printed
on a line printer or, if graphics are being handled, on a plotter.

The advantage of the BATCH mode is that extremely large
programs and quantities of data can be transmitted into and out of the
computer very quickly. Therefore the BATCH mode is well suited
for jobs that require large quantities of computer processing time or
are physically long in length.

The serious drawback is that even if a given program requires
only a few seconds of computer time, it may be resident within the
system for a few hours to many days. Each job must wait until its
turn has come up. Jobs are served on a first-in, first-to-be-processed
basis. Thus for simple jobs the BATCH method is definitely
undesirable.

THE AVAILABILITY OF BASIC

BASIC is now available as a compiler, translator, or interpre-
ter. An interpreter stores in memory exactly what the user has
entered. Upon execution the interpreter scans each line of code,
translates the code into computer machine language (the fundamen-

tal machine codes the particular computer understands) and then
-executes the machine language image of the line. This sequence
must be done for each line. Whether any given line has been inter-
preted once already is unimportant. The language does not store the
machine code image. Thus in the event of aline being used ten times,
it must be interpreted ten times.

A translator stores not the entered lines but rather a coded
version of the input material. This coded version must still be
interpreted but, because it is coded by function, it saves space and
offers an increase in speed. Whether for interpretation or transla-
tion, the full BASIC language package must reside in memory.

A compiler compiles or “image the totalprogram as opposed
to line by line into machine code. 7 hus even if a line is used ten times
it is only compiled once. The total compiled image is stored in
memory and is called an object program as opposed to a source
program which is the original material. A compiler offers dramatic
speed increases, and only requires a portion of the language package
to remain in memory. This portion of compiler BASIC is called the
run-time module. The run-time module effectively executes the
BASIC compiled program.

The ability to run the same BASIC program on different
machines is because, whether the version of BASICis a translator,
interpreter, or compiler, the end result is machine language. A
version of BASIC written for one machine will use the instruction set
of that computer to duplicate the functions of a BASIC written for
another computer (machine language programs cannot be transfer-
red from computer to computer).

If you are unfamiliar with BASIC programming, the entries
listed below will give you a working knowledge of the language:

Argument Hierarchy

Array INPUT
Assignment INT

CLEAR Library Functions
Conditional Branching Line Numbers
COS LIST

END Loops

Files MARGIN
FOR-TO Multiline Functions
GOSUB Multiple Branching

GOTO Nested Loops

4 5

NOT
Numbers

ON GO-SUB
OR

PI

PRINT
PRINT USING
Program
RANDOMIZE
REM
RETURN
RND

RUN
SCRATCH
SGN

SIN
SPACE$
SQR
STOP
String
Subroutine
Subscripted Variables
TAN
Variables

A Dictionary of BASIC Programming

@ ABS: The library function ABS returns the absolute value of

the expression within the parentheses that follow the keyword
ABS.

EXAMPLES:

10 Y = ABS())
20 K = ABS(J-2)
30 PRINT ABS(A1)

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES THE
20 REM ABS FUNCTION

30 PRINT “INPUT ANY NUMBER”

40 INPUTK

50 LET K= ABS(K)

60 PRINT LOG{(K)

70 GOTO 30

80 END

RUN
INPUT ANY NUMBER

?-4
1.38629

17

18 AND

INPUT ANY NUMBER
16
2.77259
INPUT ANY NUMBER
?-2563
7.84893
END
CAHT
REM
STATEMENTS
g
C INPUT K)
K = ABS(K)
@JTPUT LOG(K)

Flowchart for ABS function example.

@ AND: The AND statement is used in conjunction with the IF
THEN statement. It allows the IF THEN statement to have two or

more qualifiers instead of only one. The IF THEN statement is true
if and only if both qualifiers are true.

EXAMPLE:

10 IFX=10ANDY =15 THEN 600

In the above example both the first qualifier (X = 10) and the
carond (Y = 15Y miiet he trme if the bhranch to 600 1 to accnr

Sl

AND 19

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES THE
20 REM AND STATEMENT
30 LETK=10

START

REM
STATEMENTS

ASSIGNMENT
STATEMENTS

Elawehart far AND statemeant examole.

20 Arguement —Array

40 LET]J=20

50 LETL =230

60 IFK=]J/2ANDL =K + J THEN 80

70 STOP

80 IF]J=L- KAND]J = K*2 THEN 100

90 STOP
100 IFK =10 AND]J = 20 AND L = 30 THEN 120
110 STOP
120 END

@ Argument: Anargument is any numeric or string quantity that
is required by a mathematical or logical expression to operate on.

The arguments of a function are those items that are used by that
function to produce a result or evaluation of that function.

EXAMPLE:

1. SIN(X)

2. 2%3

3. A/B

In the above, X, 2, 3, A, and B are arguments of the function’s sine,
multiplication, and division, respectively.

@ Array: A table or list of items is called an array. A list has only
items that have a one-dimensional value, namely its position in the
list relative to the first entry in the list. An array is a two-dimensional
entity that has rows and columns; thus every item must have a row
and a column value.

EXAMPLE:

LIST

3456.98
7856989
6756.09
6754444

The above list has 4 items. Each item may be identified by its
position in the list, such as 6756.00 is the third item in the list.

45 78 67 78
83 67 98 23
32 8 21 90
4 29 o3 71

The above is a table of numbers with four columns and four
rows. Each item is identified by its row and column value. In the

LRl O T Lt L. TR e L

ASC 21

If the name of the above table was A then A(2, 2) would stand for

84, the element in the second row and in the second column of the
array named A.

@ ASC: The ASC library function converts any single character to
its ASCII equivalent. Thus this function will only accept a single
character as an argument. One use of the ASC function is to permit
alphabetization. As the code is in alphabetic sequence, we merely
convert the characters to their ASCII values and compare them to
find which is larger.

EXAMPLE:

10 LET A = ASC(2)
20 LET B = ASC(P)
30 LET H = ASC(C)
40 LET J = ASC(K)

See CHANGE for table of ASCII codes.

START

REM
STATEMENTS

—

(WeuTUs)

OUTPUT
ASC(J$)

Elawerhart far AST functinn

22 ASC

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE ASC FUNCTION
30 PRINT “INPUT A LETTER”
40 INPUTJ$

50 IFJ$ =*/" THEN 80

60 PRINT ASC (J$)

70 GOTO 30

8 END

RUN

INPUT A LETTER

?A

65

INPUT A LETTER

’K

75

INPUT A LETTER

2/

END

PROGRAMMING EXAMPLE:

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

RUN

REM THIS PROGRAM USES
REM THE ASC FUNCTION
PRINT “INPUT TWO LETTERS”
INPUT A$.B$

A = ASC(A%)

B = ASC(B$)

IF A>B THEN 110

IF A = B THEN 130

PRINT A$; “IS LESS THAN"”; B$
STOP

PRINT A§%; “IS GREATER THAN"; B$
STOP

PRINT A$; “IS EQUAL TO";B$
STOP

END

INPUT TWO LETTERS

T

T IS GREATER THAN K

W . e

ACSII—Assignment 23

@ ASCII: See CHANGE

® Assignment: The assignment statement assigns the value of a
constant or a string to a variable. The value of the term on the right of
the equal sign is assigned to the variable on the left.

EXAMPLES:

10 LETJ=K-9

20 LET A2 = 365.25

30 LET Q$ = “HELLO”

40 LETKS$ =]%

Similarly, we have

10 J=K-9

20 A2 =365.25

30 Q$ = “HELLO” (Note: Strings must always be enclosed by

quotation marks)
40 K$ =]%

The keyword LET is optional in some versions of BASIC.

An assignment statement does not correspond to an algebraic
expression, for example:

10 J=J+1
20 N =N*2

Assignment statements are always interpreted as carrying out
the operations on the right and assigning the resulting value to the
variable on the left. Thus the statement] = J + 1is interpreted as,
“Take the value of], increment it by 1 and assign it to the variable J.”
Thereafter the variable J has a new value.

PROGRAMMING EXAMPLE:

10 ~ REM THIS PROGRAM DEMONSTRATES THE
20 REM ASSIGNMENT STATEMENT

30 REM ASSIGNMENT USING LET

40 PRINT “INPUT A NUMBER THAT IS POSITIVE”
50 INPUT]

60 LETK =)*2

70 LETL = LOG()

80 LET M = SIN(J)

90 PRINT J.LK,L .M

100 REM ASSIGNMENT NOT USING LET

24

110
120
130
140
150

Assignment

K=])/2
L = J*LOG()
M = J/SIN(J)

PRINT JK,L,M

END

START

REM
STATEMENTS

[
C INPUTJ)

ASSIGNMENT
STATEMENTS

REM
STATEMENT

ASSIGNMENT
STATEMENTS

END

Flowchart for Assignment statement.

ATN 25

@ATN: The library function ATN returns the arctangent of the
argument enclosed in parentheses. The result is returned in radians
on most computers.

EXAMPLES:
10 PRINT ATN(X)
20 Z=ATNX)
PROGRAMMING EXAMPLE:
10 REM THIS PROGRAM DEMONSTRATES
20 REM THE ATN FUNCTION
30 PRINT “INPUT A NUMBER”
40 INPUT]
50 IFJ =0 THEN 80
60 PRINT ATN()
70 GOTO 30
80 END
REM
STATEMENTS
?

(weuty)

N

@UTPUT ATN@

Flowchart for ATN function.

26 Back Slash—-CALL

RUN

INPUT A NUMBER
22

1.10715

INPUT A NUMBER
23.14159

1.26263

INPUT A NUMBER
)

0.78539

INPUT A NUMBER
20

END
@ Back Slash: See Colon.

@ BYE: The BYE command, usually associated with large com-
puter time-sharing system, returns the computer to the executive
(operating system) mode.

® CALL: The purpose of the CALL function is to enable the
program to produce results that can not be achieved by the language
BASIC itself. The use of the CALL or USER statements allows the
programmer to call upon a “machine language” subroutine. Most
versions of BASIC require the programmer to reference the user-
written code by addressing the first line of the subroutine by its
actual absolute location in the computer’s memory. In certain ver-
sions of BASIC the CALL statement can also be used to call a
routine.

EXAMPLE:

MACHINE LANGUAGE

10 CALL 936-(where 936 is the absolute location in memory of
the routine, 939 is in decimal notation.)

20 CALL C9A (Where C9A is the absolute location in memory of

the routine, C9A is in hexadecimal notation.)
30 CALL “PLOT” (Where “PLOT" is the routine.)

Using the CALL in conjunction with name subroutines, we can
usually place variables after the routine name, separated by comn-
mas. These variables have assigned values which can be passed on

CALL 27

EXAMPLE:

10
20

CALL “PLOT", A,B,C

CALL “CONTROL",K,]J,L

Typical examples of the uses of the called machine language

subroutines are control of floppy discs, tape drives, plotters, and
externally controlled relays, switches, and other electronic equip-

ment.

PROGRAMMING EXAMPLE:

10
20
30
40
a0
60
70
80
90
100

REM THIS PROGRAM DEMONSTRATES THE
REM CALL OR USER FUNCTION.

CALL 936
LETN =14
LET J = N*N
EET K =15
CALL 1404
LETK=K -1
IF K > = 10 THEN 70
END
@ —ASSIGMMENT -
STATEMENTS
! -
REM
STATEMENTS CALL 1404
CALL 936 ASSIGNMENT
STATEMENT

N
(=)

Flowchart for CALL function.

28 CATALOG—CHANGE
@® CATALOG: See CAT.

® CAT: The CATALOG or CAT command allows the user to
view the list of names of all programs previously saved by the user.

@ CHANGE: When a computer stores the characters of a string,
it does not store the characters directly, but as an encoded sequence
of numbers.

Several different numerical coding schemes can be used, but
the most common is the 7-bit ASCII code. The following table shows
the ASCII (American Standard Code for Information Interchange)
coding.

CHARACTER CODE CHARACTER CODE
A 65 2 50
B 65 3 51
C 67 4 52
D 68 5 53
E B9 6 54
E 70 7 55
G 71 8 56
H 72 g 57
| 73 + 43
J 74 - 45
K 75 / 47
L 76 * 42
M 77 T 94
N 78 (40
0 79 } 41
P 80 < &0
Q 81 > 62
R g2 = 61
5 83 ? 63
T 84 $ 36
U B5 = 34
W 86 ' 44
W a7 ; 46
X 88 ’ 59
Y 89 CARRBIAGE
Z 80 RETURN (CR) 13
0 48 LINE FEED (LF) 10
1 49 SPACE 32 1

The computer automatically carries out the conversion from
characters to numbers and the reverse. The operation is generally
transparent; that is, the user is not usually even aware of the fact that
the computer is encoding the characters.

Sometimes it is necessary to use the numeric equivalent of the
character in a string. This has the advantage of allowing the user to

CHANGE 29

manipulate each character individually. This conversion is carried
out by the CHANGE statement.
The CHANGE statement may be written in two different ways.

METHOD 1:

The keyword CHANGE, is followed by a string variable, the
keyword TO and a numeric list. The items in this statement must be
kept in that order.

This statement causes each character in the string to be con-
verted to its numerical equivalent and stored in a numeric list.

The first element in the numeric list (that is the element with a
subscript of zero) will indicate the number of encoded characters
contained in the list.

EXAMPLE:
10 LET J§ = “JANE”
20 s e s ves

30 CHANGE J$ TOK

In the previous example the elements of K will be the following.

K@) =4
K1) =74
K(2) = 65
K@) =78
K@4) = 69
METHOD 2:

The string variable and the numeric list may be interchanged.

10 LETJO) =3

20 LETJD=175

30 LETJ(2) =69

40 LETJ@3) =178

50 CHANGE] TO K$

In the example just shown, K$ will be assigned the string KEN.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE CHANGE STATEMENT

30 CHANGE

30 PRINT “INPUT A WORD"
40 INPUTJ$

50 CHANGE J$ TO K

60 FORI=0TO LEN(U%

70 PRINT K@),
80 NEXTI
90 PRINT
100 PRINT “WE WILL NOW CHANGE NUMBERS TO A
STRING”
110 PRINT “HOW MANY NUMBERS”
120 INPUTL

130 LETX() =L
140 FORM=1TOL
150 PRINT “INPUT A NUMBER"

160 INPUTL

170 LET X(M) =L
180 NEXTM

190 CHANGE X TO J3$
200 PRINT J$

210 END

RUN

INPUT A WORD

?JAYN

4 74 65 83 78
WE WILL NOW CHANGE NUMBERS TO A STRING
HOW MANY NUMBERS

23

INPUT A NUMBER

275

INPUT A NUMBER

269

INPUT A NUMBER

278

KEN

END

CHANGE 31

(ilNPu;J$'i)
|

ASSIGNMENT
STATEMENTS $
REM
STATEMENTS
FOR LOOP
(EDUTPUTIQH:)
NEXT
NEXT
C OUTPUT
MESSAGE
(;INPUTL i) ASSIGNMENT
STATEMENT
ASSIGNMENT p
STATEMENT (output s)
FOR LOOP END
(jINPUTL :)

Flowchart for CHANGE statement.

32

@ CHRS: The library function CHR$ is the opposite of the library
function ASC. The CHR$ function converts an ASCII code into a
character. Obviously the argument must be a recognized ASCII
integer quantity. All non-integer values will be truncated.

CHR$

EXAMPLE:

10 LET Z$ = CHR$§(X)
20 LET K$ = CHR$(65)
30 LET H$ = CHR$(74)
40 LET K$ = CHR3(75)

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE CHR$ FUNCTION
30 PRINT “INPUT A NUMBER"
40 INPUTK

50 LET J$ = CHR$(K)

60 PRINT J$

70 GOTO 30

80 END

RUN

INPUT A NUMBER

280

P

INPUT A NUMBER

263

?

INPUT A NUMBER

750

Z

INPUT A NUMBER

774

]

END

CLEAR—Colon 33

START

REM
STATEMENTS

il
(INPUT K) Flowchart for CHRS function.

ASSIGNMENT
STATEMENTS

(output J$)

@® CLEAR: In some versions of BASIC the command CLEAR
zeroes all variables and strings. In other versions the CLEAR
command clears or erases the current program in memory.

@ Colon(:): The colon is used in BASIC to allow more than one
statement to be included in one line number. Depending on the
version of BASIC used either the colon (:), slash (/) or back slash (\)
is used between different statements. The advantage of using multi-
ple statements per line is that memory is saved by not having to
specify as many line numbers.

EXAMPLE:

10 LETK =J/LET H = Z*2/LET P = LET P = 3.1415
90 PRINT:PRINT:PRINT “ENTER VALUE":INPUT K

The above may also be written as:

10 LETK =]J: LET H =Z*2/LET P = 3.1415
or
20 PRINT\PRINT\PRINT “ENTER VALUE"\INPUT K

34 Concatenation

Depending on the version of BASIC caution must be exercised
with conditional statements. Some versions fall through to the next
statement in a multi-statement line, while others fall through to the

next line number.

EXAMPLE:
10 IF X =Y THEN PRINT Y : GOTO 100
20 PRINT X

If the condition X =Y is true Y should be printed and the
execution transferred to line 100. If the condition is not met, transfer
should be given to line 100.

If the version of BASIC used had “fall through” to the next line,
the true condition would work as above, but in the false condition
transfer would go to line 20, not line 100. This occurs because after
the conditional test is made and is found false, transfer goes to
the next line, not to the next statement.

Also depending on the version being used, more than one line of
code may be written under one line number. (Usually a fixed
maximum of characters is set, typically around 255 for the number of
characters in a multi-statement.)

EXAMPLE:

10 LETK=]: FORI =1 TO 20: PRINT I;
PRINT: PRINT K*I: NEXT I
20 PRINT: PRINT “LOOP FINISHED": END

® Concatenation: Concatenation is the process of adding two
or more strings together, such as “HELLQ" and “JANE”, to form
one string, “HELLO JANE". In concatenation we use the + (plus)
symbol and form an assignment statement using strings and/or
string variables.

EXAMPLE:

10 LETK$=J$+1L$

20 LET S$ = “MICE” + “"” + “ARE” + “” + “NICE”
30 LETZ$ = “VALVE” + L%

40 LET H$ = Q$ + “ATOMS”

50 LET P$ = B$ + “ARE” + C$

Note: If spaces are required, they must either be part of the
string or variable, or be concatenated separately as line 20 of the
above example.

Concatenation

PROGRAMMING EXAMPLE:
10 REM THIS PROGRAM DEMONSTRATES
20 REM THE CONCATENATION FUNCTION
30 PRINT “ENTER ANY THREE WORDS”
40 INPUT J3$,K$,L$
50 LETA$=“"
60 LETB$ =J% + A$ + K$ + A$ + L$
70 PRINT B$
80 IF B$ = “STOP NOW OK” THEN 100
%0 GOTO 30
100 END
START
REM
STATEMENTS
I

Flowchart for concatenation example.

@PUT Js, K&@

ASSIGNMENT
STATEMENTS

(OUTF‘UT B3)

IF/THEN
LINE 80

35

36 Conditional Branching
RUN

ENTER ANY THREE WORDS
?MICE,ARE,NICE

MICE ARE NICE

ENTER ANY THREE WORDS
?THIS,IS,BASIC

THIS IS BASIC

ENTER ANY THREE WORDS
?STOP,NOW,0K

STOP NOW OK

END

@ Conditional Branching: The IF-THEN statement is the
basis of the conditional branching operation in BASIC. This state-
ment consists of the key words IF and THEN, separated by a
relation, and followed by the number of the line to be branched to.
Note: In some versions of BASIC it is allowable to place an AS-
SIGNMENT or other statement after the THEN required.

EXAMPLE:

10 IF] =K THEN 100

20 IF X <> 10 THEN 120
30 IFJ1 <2 THEN 100
40 IF Q > 37 THEN 150
50 IFH > =86 THEN 200
60 IF A <=10 THEN 80

If the condition is satisfied, the branch will occur; otherwise,
the next line will be executed.

For an IF THEN statement that transfers control to another
line, some versions of BASIC allow the use of the word GOTO
instead of THEN.

EXAMPLE:
10 IF]J =K GOTO 100

Conditional branching is used with strings as well as with
numerics.In the case of a string as opposed to a string variable (i.e.,
A$), the string must be enclosed in quotation marks.

CONTINUE 37

EXAMPLE:

10
20

IF K$ = “KEN” THEN 100
IF K§ = J$ THEN 500

PROGRAMMING EXAMPLE:

10
20
30
40
50
60
70
80
90

REM THIS PROGRAM DEMONSTRATES
REM THE IF-THEN STATEMENT
INPUT J

IF J = 0 THEN 70

PRINT “J IS NON-ZERO”

GOTO 30

PRINT “]J IS ZERO"

GOTO 30

END

START

REM
STATEMENT

P
(INPUT J)
Flowchart for IF-THEN statement.

(QUTPUT
QUTPUT MESSAGE

MESSAGE

@ CONTINUE: The CONTINUE command (CON or CONT in

some versions of BASIC) restarts program execution after a
CONTROL-C is typed.

38 Control Characters—COS

@ Control Characters: Control characters are generated by
holding down the CTRL key while typing the specified letter. Gen-
erally the control character is not printed.

The following is a list of control characters. Remember to hold
down the CTRL key while typing the letter specified!

B - :5ad Halts a program

By iu s Sounds bell
H...i: Backspaces cursor

| Issues line feed
¥isaas Forward spaces cursor
Kr w i i Deletes current line

@ COPY: Different versions of BASIC have different methods of
controlling peripheral devices. The COPY command is usually used
with a computer having both a video terminal (CRT) and a printer.

After typing in the keyword or command COPY the computer
will utilize the printer to make a “hard copy " of what is presently on

the CRT screen.

@COS: The library function COS returns the cosine of the
argument in parentheses. The argument is generally interpreted as
being in radians.

EXAMPLES:
10 PRINT COS(Y)
20 K = COS()

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE COS FUNCTION

30 PRINT “INPUT A NUMBER"

40 INPUT]

50 IF J = 0 THEN 80

60 PRINT COS(J)

70 GOTO 30

80 END

COS
RUN

INPUT A NUMBER
23.14159

-1

INPUT A NUMBER
?1.2

0.36235

INPUT A NUMBER
?6.28319

1

INPUT A NUMBER
20

END

REM
STATEMENT

(INPUT 4)

N
@JTPUT cos@

Flowchart for COS function.

39

40 DEF

@ DEF: When a program section is used as a function, and is used
quite often during the main program, the programmer can use the
DEF statement.

DEF allows the user to write a function suchas A = (A — 3)/A
and use it repeatedly throughout the program by calling the function.

The DEF statement consists of the keyword DEF and the
function definition. The function definition is the function name
followed by an equal sign, followed by the appropriate variable,
constant, or formula. Both numeric and string functions can be
defined by the DEF statement. If the function requires arguments
then they must appear directly after the function name, enclosed in
parentheses and separated by commas.

If the function is numeric, the function name must consist of
three letters, the first two of which being FN. Thus any given
program may have 26 different numeric functions ranging from FNA
to FNZ. We may also have 26 different string functions labeled
FNA$ to FNZ$. Numeric and string functions having the same first
three letters. such as FNJ and FNJ$, are considered to be different
functions. Thus any program may contain 52 functions. As can be
seen, the string function name must end in a dollar sign.

EXAMPLE:

10 DEFFNJKK,L) =K - 2)/(L - 3)
20 DEF FNK$ = “EMPLOYEE STATUS”
30 DEFFNZXY)=X-Y)- (- X)

A DEF statement may appear anywhere within the BASIC pro-
gram. However it is considered good practice to group all the DEF
statements together and place them near the beginning or end of the
program.

It should be obvious that the DEF statement only defines a
function but does not evaluate it.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE DEF STATEMENT

30 DEF FNAXX) = LOGX)/X

40 DEF FNB(X) = SINX)/K _

50 DEF FNC(X) = COS(X)/L

60 PRINT “INPUT A NUMBER”

70 INPUT]

80 LET]J = ABS()

F

DEF 41

9 LETK=10

100 LETL =20

110 LET M = FNA())
120 LET N = FNB()
130 LET P = FNC()
140 PRINT M,N,P
150 END

RUN

INPUT A NUMBER
’8
0.25993 0.09894 -0.00728

END

In the above example we can see anothet property of the DEF
statement. Any variables (K,L) not included in parentheses (non-
defined arguments) in the DEF statement name will be used as
having the most recent values assigned to them.

(INPUT J)
REM
STATEMENT
ASSIGNMENT
STATEMENTS
DEF
STATEMENT @;Tpm M. N'FD
END

Flowchart for DEF statement.

42 DET

REM |
STATEMENTS |
|

DIM
STATEMENTS

MAT READ J

MAT
ASSIGNMENT
STATEMENT

Q:}UTPUT DE‘D

DATA
STATEMENTS

Flowchart for DET function.

END 8

DET—DIM 43

@®DET: Once we determine the inverse of a square matrix we
may further determine its determinant by using the library function
DET. The DET function returns a single numeric value and requires
no argument. One obvious use of the DET statement is to determine
if a given matrix does have an inverse. If the inverse does not exist.
the determinant will be zero.

Note: The DET library function may only be referenced after a
MAT INV statement. If the DET function returns a zero for a given
matrix, the inverse determined by the preceding MAT INV state-
ment will not be meaningful.

EXAMPLE:

10 MAT] = INV(K)
20 PRINT DET

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE DET FUNCTION

30 DIM J(5,5),K(5,5),L(5,5)

40 MATREAD]

50 MAT K = INV(])

60 PRINT DET

70 DATA 6,8.9,4,1,2,4,6,2,4,8,9,2,1,3

80 DATA 7,3,2,1,4,6,5,3,1,4

9 END

@® DIM: Some versions of BASIC assign 121 elements (11 col-
umns, 11 rows) to every table and 11 elements to everv list. Thus
each subscript can generally range from 0 to 10 (occasionally 1 to
11). In versions of BASIC which do not automatically assign ele-
ments to lists and tables, or if you desire more than 11 elements to a
list or 11 rows by 11 columns to a table, you must use the DIMEN-
SION (DIM) statement.

The DIM statement consists of the keyword DIM followed by
various array names, separated by commas. Each and every array
name must be followed by at least one number (for lists) or two
numbers separated by a comma for tables. In either case, the
numeric values are placed in parentheses directly following the array
name.

EXAMPLE:

10 DIM J(19), K(28), L(4), M(8,10)
20 DIM A(10,20), B(250), X(65), J$(35)
30 DIM F(9), K$(14,14), J$(9,10)

44 DIM

A DIM statement can occur anywhere in a BASIC program but
itis considered good practice to place all DIM statements at the very
beginning.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES THE
20 REM DIM STATEMENT

30 DIM A$(20),B3$(3),C(60)

40 FORI=1TOG60

50 LETCO =1

60 NEXT I
70 END
START
DIM
STATEMENT
REM
STATEMENT
l FOR LOOP
ASSIGNMENT
STATEMENT
Flowchart for DIM statement.
NEXT

END

g

DIMENSION—EXP 45
@ DIMENSION: See DIM.

@® DO END: See IF-THEN DO, ELSE

@ Dummy Arguments: Whenever a certain function requires
an argument in advance, such as the DEF statement, the actual
value of the argument is not required. What is required is the number
and type of arguments being used. An argument that only expresses
location, type and use is called a dummy argument. A dummy
argument “tells” the function in advance that a numeric or string will

be used later on and how many “real” arguments are to be evaluated.
See DEF.

® ELSE: See IF-THEN DO, ELSE

® END: The END statement indicates the end of the program.
When the computer reads this statement it interprets it to mean stop
execution.
In most versions of BASIC this must be the last statement in
the program. Therefore, it must be preceded by the highest line
number.

EXAMPLE:
999 END

@ EXP: The library function EXP raises the constant ¢ (2.71828)
to the power X (¢**X).

EXAMPLES:

10 PRINT EXP(])
20 Z =EXP(Q)

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES

20 REM THE EXP FUNCTION

30 PRINT “INPUT A NUMBER FROM 1 TO 10"
40 INPUT]

50 FORI=1TO]

60 PRINT EXP(I)

70 NEXT I

80 END

46 EXP
RUN

INPUT A NUMBER FROM 1 TO 10
26

2.71828

7.38906

20.0855

54.5981

148.413

403.429

END

(weuty)

REM
STATEMENT

FOR LOOP

@UTPUT Exp@

NEXT

END

Flowchart for EXP function.

Files—FN 47

@ Files: A file consists of a group of records, where each record
may be considered to be a group of variables.

To use a filing cabinet for comparison, a variable is a line of
printing, a number, or a slip. A record is a file folder. The whole
drawer, or cabinet, or aisle of cabinets, is the file.

Files usually contain related data, but this is the programmer’s
decision.

As every version of BASIC has its own way of defining files and
file handling, it is always best to consult the user's manual for the
computer being used. See also Sequential Data Files and Random
Data Files.

® FN: To reference a function predefined by a DEF statement, a
typical assignment statement is written with the function name
acting as though it were a library function, with the function name
followed in parentheses by an argument.

When a function is evaluated, the values of the arguments are
specified by the function reference and not by the function definition.
For this reason any arguments appearing with a DEF statement are
called dummy arguments. The arguments in the reference need not
be the same as those appearing in the definition, but they must be of
the same type (i.e.,numeric or string) and number. See Dummy
Arguments.

EXAMPLE:
10 DEF FNK(Q) =(J - 3)/]
A s
30
40 LET H = FNK(Z) —-100
60 e

70 IF FNK(P) = 110 THEN 100
80 PRINT FNK(A)

90 STOP
100 PRINT “SOLUTION IS";P
110 END

The arguments in the reference must have a one-to-one cor-
respondence with the dummy arguments when two or more argu-
ments are used. The correspondenceis not by name, but by type and
number or arguments.

Dummy arguments must be non-subscripted variables, but the
arguments present in the function reference may be written as
constants, subscripted variables, formulae or even other refer-
ences.

48

FN

PROGRAMMING EXAMPLE:

10
20
30
40
50
60
70

RUN

0

REM THIS PROGRAM DEMONSTRATES

REM THE FN STATEMENT
DEF FNA(X) = LOG(X)*2
FORI=1TO 10

PRINT FNA(I)

NEXT I

END

1.38628
2.19722
2.77258
3.21886
3.58352
3.89182
4,15888
4.39444
4.60516

END

START FOR LOOP

(ouTPuT FNA@

REM
STATEMENT

NEXT

DEF
STATEMENT

END

FOR-TO 49

@ FOR-TO: In BASIC, if we know how many times a loop should
be performed we use the FOR-TO statement, which specifies how
many times the loop is to be executed. Directly following the
keyword FOR is the running variable, which must be a non-
subscripted numeric vanable, whose value changes each time the
loop is executed. The number of times the loop is executed is
specified by the initial and final values of the running variable.

EXAMPLE:

10 FOR] =1TO 50
20 FORK =10TO 100
30 FORL=7TO10

If we set up a FOR-TO statement such as,
FORI=1TO 10

the following occurs. Each time the loop is run, I is initially set to 1.
Iis then incremented by 1 each time the loop is repeated, until I has
reached the final value of 10.

The running variable will always be incremented by 1 unless a
contrary statement is included. The STEP statement changes the
value by which I changes. Using the STEP statement, we may
increment or decrement the running variable. In most versions of
BASIC we can also use variables or formulae for the initial and final
values of the running variable and the step size.

EXAMPLE:

10 FORJ=KTOXSTEPZ
20 FORK=1TOQ STEP -Z
30 FORJ=K/L TO M+ L STEP K-1

Some versions of BASIC allow the interchange of the keywords
STEP and BY. Thus we can have:

FORK=JTOMBYL

To close the FOR-TO loop we use the keyword NEXT. All
FOR-TO loops must end in a NEXT statement. The NEXT state-
ment consists of a statement number (line number) and the keyword
NEXT, followed by the running variable name. Of course the run-

ning variable must be the running variable used in the corresponding
FOR-TO statement

50 FOR-TO

EXAMPLE:

10 FORK=]JTOM
20

30

40

.t SR

60 NEXT K

The following rules always apply in the FOR-TO-STEP loop:

1) The running variable may appear in a statement within the
loop, but its value must and cannot be changed or altered.
2) Ifthe final and initial values of the running variable are equal
and the step size is nonzero, the loop will be executed
once.
3) The loop will not be executed under the following condi-
tions:
A) The final and intial running variable values are equal and
the step size is zero.
B) The final value is less than the initial value and the step
size is positive.
C) The final value is greater than the initial value and the
step size is negative.
4) Control can be transferred out of a loop but not into one.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE FOR-TO STATEMENT

30 FORI=1TO10

40 PRINT I*10

50 NEXTI

60 END

RUN

10
20
30
40
50
60
70
80

FRE 51

90
100

END

REM
STATEMENTS

FOR LOOP

(outpur | *10)

NEXT

(o

® FRE: The FRE statement requires either a zero as an argu-

ment, which returns the number of memory bytes currently unused
by BASIC not including strings,

Flowchart for FOR-TQ statement.

EXAMPLE:
10 PRINT FRE(0)

or A$ as an argument which returns the number of unused memory
bytes including strings.

52 GOSUB

EXAMPLE:
10 PRINT FRE(A$)

@ GOSUB: A subroutine is referenced by the keyword GOSUB
followed by the line number of the first statement in the subroutine
structure. When the computer executes this instruction, control is
transferred to the line indicated by the GOSUB statement; but the
computer “remembers” the line in the program where the sub-
routine call was generated. On encountering a RETURN statement,
the computer returns control to the statement following the one that
was kept in memory. That is, control is transferred to the statement
immediately following the subroutine call.

EXAMPLE:

10 LET] =25
20 LETK =2

30 GOSUB 60
40 PRINT L

50

60 LETL =J/K
70 RETURN

Note: Unless the statement prior to the first statement of the
subroutine is a branch or a STOP statement, the subroutine will be
executed as part of the main program.

A program may contain more than one reference to the same
subroutine procedure. Control will aiways be returned to the state-
ment following the point of call.

EXAMPLE:

10 LETA =10
20 LETB =2
30 GOSUB 100
40 PRINT C

50 GOSUB 100
60 PRINT C-2
70

80 e

100 LETC=A/B
110 RETURN

GOSUB 53

A subroutine itself may call a subroutine. This is called nesting
(see Nested Loops). The number of levels in the nest is determined
by the version of BASIC used. The following rule always applies with
nested subroutines: if Subroutine X calls Subroutine Z, then Sub-
routine Z must not call Subroutine X,

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE GOSUB STATEMENT

30 PRINT “ENTER A NUMBER”

40 INPUT]

50 IFJ =0 THEN 110

REM
STATEMENTS

Flowchart for GOSUB statement.

e

(weuty)

ASSIGNMENT
STATEMENTS

GOSUB 90

C OUTPUTK)

54 GOTO
60 GOSUB 90

70 PRINT K

80 GOTO 30

90 LETK =(*2)/3
100 RETURN
110 END
RUN
ENTER A NUMBER
?5
3.33333
ENTER A NUMBER
71256
837.333
ENTER A NUMBER
£31.3
20.8666
ENTER A NUMBER
20
END

® GOTO: In a BASIC program the flow of execution is from the
smallest line number to the largest line number. If an unconditional
jump is required, a jump that requires no logic to see if it is to be
performed or not, a GOTO statement is used. The GOTO state-
ment or unconditional jump is usually referred to as anunconditional
branch statement. The GOTO statement can transfer control to any
other statement with the program. Once the branch is completed,
execution flow continues from smallest to largest line number.

EXAMPLE:

10 GOTO 100
20 GOTO 1090

It should be noted that depending on the version of BASIC used
GOTO may be one word, two words or either.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES CONDI
TIONAL

GOTO 55

20 REM BRANCHING OUT OF A GOTO LOOP
30 REM THIS PROGRAM COMPUTES THE AVERAGE
40 REM OF N NUMBERS
50 REM TO EXIT THE LOOP TYPE A 0
60 LETK =0
70 LETN=0
80 INPUT])
90 IFJ =0 THEN 130
100 LETK=K+]
110 LETN=N+1
120 GOTO 80
130 PRINT “SUM ="K
140 PRINT “AVERAGE = ";K/N
150 END

START

REM
STATEMENT

I
ASSIGNMENT
STATEMENT ’

—
INPUTJ)
\‘f s
IF J =0 (_ outPuTK)
N (‘outPUT KIN)
" 1
[
ASSIGNMENT ‘
STATEMENT

Flowchart for GOTO Loop.

56 Graphical Qutput—Hierarchy

@® Graphical Output: The numeric lists or tables produced by
computer programs are often plotted by hand on graph paper, but it
is very useful if the computer can produce graphical output without
special equipment. CRT video terminal is not usually a good choice
because the resolution of graph depends upon the number of hori-
zontal and vertical positions available. Although both the CRT and
typical printers have the same number of horizontal positions, the
printer can produce literally infinite vertical positions, if we view the
length as vertical. Alternatively, the paper’s width could be viewed
as vertical and thus we can have an extended horizontal graph.

The easiest method for producing a graph is to use a FOR-TO
loop which has a PRINT statement containing the TAB function
within the structure.

The following are typical routines that may be used in produc-
tion of graphs.

X AXIS (axis across the width of the paper)
10 FOR]J=0TO71

20 PRINT TABQ):“.”;

30 NEXT]

Y AXIS (along the length of the paper)
Since we are plotting the graph along the length of the paper,
we must plot the Y axis (length axis) at the same time.

10 FORB=YTOZ

20

o (.

40 PRINT “.”; TAB(A);"™*"
5) PRSI,

.+) KRR

70 NEXTX

Line 40 prints both the Y axis and also the graph, in this case
composed of asterisks (*). Lines 20, 30, 50, and 60 generate the
values for A. Obviously A is being plotted against B; as each cycle of
the loop moves along the Y axis the TAB function places the * in the

proper position as determined by the formula generating the value of
A.

@ Hierarchy: When two or more operators are used in the same
linear formula, questions in meanings may arise. Consider the case
of 28*K—19*]. Does this correspond to the algebraic term (28K)—

HOME —INPUT 57

(19]) or to 28(K—19])? Also consider K/J*4,is this K/(4]) or 4(K/).
These problems are taken care of by the following hierarchy of
operations:

1) All exponentiation operations are performed first.

2) Multiplication and division are carried ou* after exponentia-
tion. Multiplication and division have no hierarchy over
each other; one will not necessarily precede the other.

3) Addition and subtraction are always the last to be carried
out. Here also no hierarchy exists between the two.

Within any given hierachical group, the operations are carried
out from left to right.

Parentheses change the order of normal hierachical flow in a
formula. See Parentheses.

®HOME: The HOME command instructs the computer to re-
turn the display cursor to the “home” position, which is usually
either the upper left or lower left corner of the CRT screen. Some
versions of BASIC use a CALL or USER statement to achieve the
same results.

® IF-END: See Sequential Data Files Reading or Writing.
@IF-THEN: See Conditional Branching.

@ IF-THEN DO,ELSE: The IF-THEN DO,ELSE statement
occurs in certain versions of BASIC and allows the user to write a
complete procedure in the lines between the IF-THEN DO and the
ELSE. Following the ELSE statement the user may also write a
complete procedure. The line following the procedure after the
ELSE and after the DO must contain only the keyword DOEND (DO
END).

The format is therefore the following;

10 IF(EXPRESSION) THEN DO

20 b mpr s DEGEBOIRE. csummsunvsmvrnsnes

M. e s

40 DO END

a0 ELSE (EXPRESSION OR STATEMENT)
60 DO END

@ INPUT: The input statement is used to enter numeric or string
data into the computer during program execution. This statement
consists of the keyword INPUT, followed by the list of variables
separated by commas. Both numeric and string variables may be
included in one INPUT statement.

58 INPUT

EXAMPLE:

10 INPUTK,]
20 INPUT K$. J$. S§
30 INPUT K18, J, S3%

During program execution, a question mark (?) is sent to the
output device when an INPUT statement is encountered. The ques-
tion mark is usually placed on a new line unless a PRINT statement
previous to it included a semi-colon as its last character.

An INPUT statement may also be combined with a PRINT
statement as follows:

EXAMPLE:
INPUT “HOW OLD ARE YOU", J

In this case the computer will print the string HOW OLD ARE
YOU on a new line, immediately follow it with a question mark and
wait for the input data.

In either case, when the INPUT statement is encountered and
the question mark has been printed, the computer will suspend
program execution until the data has been entered. After the data
has been entered, the user must hit the return key to tell the
computer that the data has been entered and that it can continue
execution.,

The following rules must be adhered to when using the INPUT
statement:

1) The data entered must correspond to the variables listed in
the INPUT statement.

2) The data entered, if it is more than one item, must be
separated by commas.

3) A string that contains a comma, or begins with a blank
space, or ends in a blank space, must be placed in quotation
marks.

The INPUT statement is used for the conversation mode of
BASIC and when large quantities of data are not required. If large

volumes of data are required, the READ, DATA statements should
be used.

PROGRAMMING EXAMPLE:
10 REM THIS PROGRAM DEMONSTRATES THE

TS TR F T TPFUT TN TS A FWeS s B i ey . g

INSTR 59

30 INPUT X

40 LET R = (X/3.14159)** 5

50 PRINT “RADIUS = ":R

60 INPUT B,H

70 LET A = (B*H)/2

80 PRINT “AREA = *":A

90 INPUT K,J,L,M,N,Q,P

100 LETS=K+J+L+M+N+O+P
110 PRINT “SUM = ":§

120 END
START ASSIGNMENT
STATEMENT
- (OUTF’UT A)
STATEMENT
NPUT K I
M.N.O. P
(INPUT X)
ASSIGNMENT
STATEMENT
ASSIGNMENT
STATEMENT
C OUTPUT S)
(OUTF’UT R)
END
(INPUT B1H)

Flowchart for INPUT statement.

@INSTR: This function searches for a second string within the
first string. The keyword INSTR is followed in parentheses by a

numeric formula, and the two string formulae.

60 INSTR
To illustrate:

10 INSTR X.Y.Z)

X is a numeric formula (constant or variable) truncated to an
integer and indicates the starting position of the search. If X is not
present, the first character of the string to be searched is the
starting position by default. Y is the string being sought for, and Zis
the string being searched.

INSTR returns the position of the first character in the sub-
string if found, 0 if not.

EXAMPLE:

10 INSTR(10,J$,K$)
20 INSTR(C,"A",J$)
30 INSTR(“BYE"”,“GOODBYE")

REM
STATEMENTS

GNF’UT JS, K$) Flowchart for INSTR function.

ASSIGNMENT
STATEMENTS

(OUTPUT X)

END

INT 61

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES

20 REM THE INSTR FUNCTION

30 PRINT “ENTER TWO WORDS, THE FIRST MUST”
40 PRINT “BE CONTAINED IN THE SECOND”

50 INPUT J$,K$

60 LET X = INSTR{$,K$)

70 PRINT X
80 END
RUN

ENTER TWO WORDS, THE FIRST MUST
BE CONTAINED IN THE SECOND
?BYE,GOODBYE

o

END

@®INT: The library function INT returns the largest integer less
than or equal to the argument enclosed in parentheses.

EXAMPLE:

10 PRINT INT(Q)
20 Z=INTX+Y)

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE INT FUNCTION

30 FORI=1TO 10

40 LET]J=1/3

50 PRINT INT()

60 NEXTI
70 END
RUN

- O

62 INT

Lo L0 B9 B B =

END

REM
STATEMENT

FOR LOOP

ASSIGNMENT
STATEMENT

@UTPUT |NT{@

Flowchart for INT function.

NEXT

END

e

LEFTS$ 63

@ LEFTS: The library function LEFT$ returns the leftmost N
characters of a string expression X$. Usually in BASIC N must be
greater than or equal to zero and less than 255.

EXAMPLE:

10 PRINT LEFT$(X$,N)
20 PRINT LEFT$($,10)

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE LEFT$ FUNCTION

30 INPUT J3

40 FORN =1TO LEN($)

50 PRINT LEFT$($,N)

60 NEXTN
70 END
RUN

START C INPUT J$)

FOR LOOP
REM
STATEMENT
@JTPUT LEFT@
NEXT

Flowchart for LEFT$ function.

64 LEN

?A BASIC PROGRAM
A

A

AB

A BA

A BAS

A BASI

A BASIC

A BASIC

A BASICP

A BASIC PR

A BASIC PRO

A BASIC PROG

A BASIC PROGR

A BASIC PROGRA
A BASIC PROGRAM

END

@LEN: The LEN library function computes the number of
characters in a string. It is written as LEN followed by the string in
parentheses. Some versions require the string to be also enclosed in
quotation marks unless the variable is reference only.

EXAMPLE:

10 K = LEN(“HOUSE")
20 H = LENA9)
30] =LEN(“JANE")

In the last example (line 30) J will be assigned the value 4.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE LEN FUNCTION

30 PRINT “ENTER A STRING”

40 INPUT J$

50 IFJ$ =“END” THEN 80

60 PRINT LEN($)

70 GOTO 30

80 END

RUN

ENTER A STRING
? HELLO

5

ENTER A STRING
?MICE ARE NICE
13

ENTER A STRING
’BASIC LANGUAGE IS EASY
21

ENTER A STRING
?END

END

START

REM
STATEMENTS

LENGTH 65

Flowchart for LEN function.

@®LENGTH: LENGTH is generally a BASIC command, not a
statement. It is used to ascertain the length of the current program
residing in memory. When the user types in LENGTH during com-
mand mode, the total number of characters will be displayed.

66 LET—Line Numbers
@ LET: See Assignment.

@ Library Functions: The library functions, often called
elementary or standard functions, provide a quick and easy method
of evaluating mathematical operations, and, in some versions of
BASIC, logical operations.

The library functions are prewritten routines that are included
as an integral part of the BASIC language. By using the library
functions, the user can avoid writing an explicit routine to achieve
the same end.

Each function is accessed by stating its name and supplying the
required information the function needs. Typically the required
information is presented within parentheses. This information which
is given to the library function is called an argument of the function.

The following is a table of typical library functions:

FUNCTION USAGE | DESCRIPTION
ABS Y = ABS(X) | CALCULATE ABSOLUTE VALUE
ATN Y = ATN(X) | CALCULATE ARCTANGENT
COoS Y = COS(X) |CALCULATE COSINE
coT Y =COT(X) |CALCULATE COTANGENT
EXP Y =EXP(X) | RAISE E TO THE X POWER
INT Y = INT(X) CALCULATE LARGEST INTEGER
NOT EXCEEDING X
LOG Y=10G(X) | CALCULATES NATURAL LOG
SGN Y =SGN(X) | DETERMINES THE SIGN
SIN Y =SIN(X) | CALCULATES THE SINE
SQR Y =SQR(X) |CALCULATES THE SQUARE ROOT
TAB PRINT TAB(N)x| STARTS PRINTING AT A GIVEN COLUMN
TAN Y = TAN(X) |CALCULATES TANGENT

In most versions of BASIC the trigonometric library functions
use the radian system as opposed to degrees. Of course, as with
conventional mathematics, the rules governing trig functions and
logs still apply.

@ Line Numbers: Every BASIC program demands that each
line of code be preceded by a line number. Some versions of BASIC
allow more than one statement per line and more than one line of
code per line number.

It is a good idea to write the program starting at line 10 and
incrementing by 10 for each line number to allow for inserts.

The BASIC language will automatically insert new lines of code
according to their line numbers. If the line number used for the insert
already exists, the old line will be replaced by the new.

LIST-LOAD 67

Except for branching deliberately introduced by the program-

mer, BASIC is always executed from smallest to largest line num-
bers.

@LIST: The LIST command displays the program starting from
the smallest line number and ascending to the largest. The LIST
command comes in a few different “varieties”:

LIST: = Lists the total program.

LIST X: Lists line X if it exists.

LIST X-:Lists all line numbers in a program with a line
number equal to or greater than X.

LIST-X: Lists all line numbers in a program equal to or
less than X.

LIST X-Y: . . . Lists all line numbers in a program from X to
Y.

LIST X.Y: . . . Same as LIST X-Y.

® Lists and Tables: When writing a complex or even a not-so-
complex program it is often convenient and usefui to be able to refer
to an entire collection of data at one time. A collection of data in
BASIC is called an array. We can have a one dimensional array,
usually called a list, and we can have a two-dimensional array, the
table. Most versions of BASIC allow us to refer to the elements of
the lists and tables as if they were ordinary variables. This way of
handling arrays simplifies array manipulation.

The elements of a list or array can usually be either numeric or
string. Note: All the elements must be of the same type, either
numeric or string but not both. Some versions of BASIC allow
strings to be present in lists but not in tables.

Within one program each array must have a unique name, thus
no two arrays can share the same letter or letter-dollar sign. If the
array 1s numeric it must be named by a simple letter; if it is a string
array it must be named by a letter followed by a dollar sign. Usually
array names cannot be subscripted, i.e., letter-integer or letter-
integer-dollar sign.

An ordinary variable and an array may share the same name.
Unfortunately this becomes rather confusing and is thus not recom-
mended. See Subscript Variables.

@ LOAD: The LOAD command instructs the computer to take an
already written program into its memory, usually from tape or disc.
The LOAD command typically requires an argument, usually the
name of the program desired.

68 LOC— LONG

EXAMPLES:

LOAD,MATH-TEST
LOAD,SPACE-WARS

@ LOC: See Random Data Files Pointer Control.
® LOF: See Random Data Files Pointer Control.

® LOG: The library function LOG returns the natural (Base E)
logarithm of the argument in parentheses.

EXAMPLE:

10 PRINT LOGQ)
20 Q =LOG(/K)

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES

20 REM THE LOG FUNCTION

30 PRINT “ENTER A BASE AND AN ARGUMENT”
40 INPUT K

5 IFJ=00RK =0THEN80

60 PRINT LOG(K)/LOG()

70 GOTO 30

80 END

RUN

ENTER A BASE AND AN ARGUMENT
10,5

0.69897

ENTER A BASE AND AN ARGUMENT
72,4

2

ENTER A BASE AND AN ARGUMENT
?1.34, 8.96

7.49231

ENTER A BASE AND AN ARGUMENT
20,0

END

® L.LONG: In some versions of BASIC double precision mathema-
tics and variables are allowed. To indicate that a variable is a double

Loops 69

Flowchart for LOG function.
START

REM
STATEMENT

T
(INPUT J, K)

IF/THEN Y
LINE 50

N

UTPUT LOG)
(KYLOG(J)

precision variable, the variable name is preceded by the keyword
LONG on a line prior to the use of the variable in a function.
Typically, double precision produces 12 digit variables. If a variable
is indicated to be double precision, any operation on that variable will
also produce a double precision output. If an assignment is required,
the variables on both sides of the equal sign must be indicated as
being double precision.

EXAMPLE:
10 LONG]
20 LONGK

30 PRINT LOG(Q)
40 LETK = SQR())

@® Loops: It is often necessary to write a program in which the
same portions are performed not just once but a number of times.

70

Machine Language

Where a given action is done a multitude of times, a programming
device named the LOOP is used in order to write a simplified
program using as few statement lines as possible.

To demonstrate the simplicity and shortness of the loop
technique, two sample programs will be given. Both will solve the
same problem, but the latter will use the loop technique.

Let's assume we need a table of the first 100 numbers plus their
natural logs. Without a loop technique the program would be written

as follows:

10 PRINT 1, LOG(1)

20 PRINT 2, LOG(2)

30 PRINT 3, LOG(3)

¢ SN ——

970 PRINT 97, LOG(97)

980 PRINT 98, LOG(98)

990 PRINT 99, LOG(99)
1000 PRINT 100, LOG(100)
1010 END

The above program would require 101 lines of code. Yet using the

loop

10
20
30
40
50

technique only five lines are required.
LET] =1
PRINT J, LOG(J)
LET]=]+1
IF J] < =100 THEN 20
END

By using the FOR-TO statement we can further cut down the
number of lines to four.

10
20
30
40

FOR]J =1TO 100
PRINT J, LOG())
NEXT]

END

We can also have loops within loops. See Nested Loops.

Machine Language: Machine language is the actual list of

instructions that the computer understands. All computer lan-

MARGIN—MAT IDN 71

guages, including BASIC, are translated into the machine language
of the computer being used by its compiler.

A program written on one computer will therefore run on
another computer (assuming we are using the same language, such
as BASIC, LISP or other high-level language) but the languages
themselves will only run on the same type of computer. There are so
many versions of BASIC, for example, because each and every
different computer requires that the language be written in its own
machine codes.

@ MARGIN: The MARGIN statement consists of the keyword
MARGIN followed by a variable or a number. This statement con-
trols or changes the maximum line length produced by output state-
ments to “N” characters. When “N” is reached, an automatic car-
riage return/line feed is generated. That is, except for the difference
in line length the output operation remains the same.

EXAMPLE:

10 MARGIN N
20 MARGIN K-]
30 MARGIN 72

@ MAT CON: The MAT CON is used to assign a value of one to
each element of a given matrix.

EXAMPLE:
10 MAT]J = CON

(where] is a matrix previously dimensioned).

Example of the MAT CON statement:

141]

@ MAT IDN: The MAT IDN statement assigns a value of zero to
each element of a square matrix (Z x Z matrix) except those ele-
ments on the principal diagonal. The principal diagonal is the diagonal
that runs from upper left to lower right, and a value of one will be
assigned to each of its elements.

A matrix that is assigned these values is known as an identity
matrix.

72 MAT INPUT

EXAMPLE:
10 MAT] = IDN

(where] is a square matrix that has been previously dimensioned).

The identity matrix has an important characteristic: if a square
matrix K is multiplied by the identity matrix J, then the product will
be the square matrix K(K*J = J*K = K).

Example of an Identity Matrix:

O O
= o O

1§
] =0
0

@ MAT INPUT (Matrix): Some versions of BASIC allow the
MAT INPUT statement to enter matrix elements as well as vector
elements. With a matrix, however, the number of data elements to
be entered must always be specified with the MAT INPUT state-

ment.

@ MAT INPUT (Vector): The MAT INPUT statement in
BASIC is used to enter vector elements directly from an input
terminal.

EXAMPLE:
10 MAT INPUT]

Most versions of BASIC only allow one vector to appear n a
MAT INPUT statement.

When the MAT INPUT statement is executed by the computer
a question mark (?) will appear at the start of a new iine, indicating a
request for data. Execution of the program will be suspended until
the user types in the required vector elements, separated by com-
mas. The first element entered will be assigned to J(1), the second to
J(2), and so forth (assuming that J is the vector name). The zeroth
element of the vector will be ignored.

After the user has finished entering the data, the user must
depress the RETURN key, indicating to the computer to continue
execution.

Any number of elements may be entered provided that the
number of data elements does not exceed the maximum number of
vector elements, as specified by the DIM statement for that particu-
lar vector name.

MAT INPUT 73

If the number of data elements is too great for one line,
subsequent lines may be used if each line to be extended ends in an
ampersand (&). The ampersand must therefore appear after the last
data element in each line except the last. A new question mark will be
printed at the start of a new line if the ampersand was used to
terminate the previous line.

EXAMPLE:

’1,4,—5,8,9,—23,4,18,28&
’8,7,—-2,17,8,11,-10,19,30,47

If the vector was dimensioned for 50 elements and only 20 elements
have been entered, the vector elements X(21) to X(50) will not be
affected by the MAT INPUT statement.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES THE
20 REM MAT INPUT STATEMENT
30 DIM K(100),J(100)
40 PRINT “ENTER K VALUES”
50 MAT INPUT K
60 LET K1 = NUM
70 PRINT “ENTER J VALUES”
80 MAT INPUT]
90 LET]J1 = NUM
100 IF K1 <> J1 THEN 130
110 PRINT “THE NUMBER OF J AND K ELEMENTS ARE
THE SAME”
120 GOTO 170
130 IF K1 > J1 THEN 160
140 PRINT “THERE ARE MORE J ELEMENTS THAN K
ELEMENTS”
150 GOTO 170
160 PRINT “THERE ARE MORE K ELEMENTS THAN]
ELEMENTS”
170 END

74 MAT INPUT

START

REM
STATEMENT

DiM:
STATEMENT

(MAT UL) Flowchart for MAT INPUT statement.

ASSIGNMENT
STATEMENT

(MAT INPUT J)

ASSIGNMENT
STATEMENT

IFITHEN

LIN Ey

N N

OUTPUT (" oueun) PUT
MESSAGE MESSAGE (MESSAGE)

IFTHEN
LINE 100

END

MAT INV—MAT PRINT 75

@ MAT INV: If we inverse a square matrix we generate a square
matrix for which the product and its inverse are equal to theidentity
matrix.

Therefore, if J is the original matrix and K is its inverse we
have:

JK=KY=L

where L is the identity matrix.
A matrix must be square for its inverse to be defined, but it is
not possible to calculate an inverse for all matrices that are square.
To calculate the inverse, if it exists, we use that MAT INV
statement.

EXAMPLE:
10 MAT]J = INV(K)

(where K is the original matrix and J is assigned the inverse of K.
Both J and K must be previously dimensioned.)

@ MAT PRINT: In BASIC the MAT PRINT statement is used to
print the elements of a vector or a matrix.

EXAMPLE:

10 MAT PRINT]
20 MAT PRINT K

In the previous examples, J and K may either be vectors or
matrices. The elements of J for example will be printed in columnar
formif] is a vector, and in table form if] is a matrix. As with the MAT
READ statement, the zeroth elements will be ignored. When the
MAT PRINT statement is operating on a matrix, each element of
each row will be widely spaced, wtih a maximum of 5 elements per
line. Therefore, in the cases of large matrices, several lines may be
required for each row. A blank line will appear between successive
rows.

The following rules always apply:

A) MATRICES

1) Following a matrix name with a comma will have no effect
on the spacing of the output.

2) Following a matrix name with a semicolon will cause the
elements of the rows of the matrix to be printed with a
minimum of spacing between the elements. Successive
rows will be separated by a blank line.

76 MAT READ

B) VECTORS
1) Ifavector name is followed by a comma, then the elements
will be printed in row form rather than columnar form.
Wide separation (maximum 5 elements per row) wil be
used.
2) If a vector name is followed by a semicolon, then the
elements of the vector will be printed in row form with
minimum spacing between them.

Several vectors or matrices can appear in the same MAT
PRINT statement if desired. Array names must be separated by
commas or semicolons. The output will be determined by the type of
punctuation following each array name.

The MAT PRINT statement can contain only matrix and vector
names. Function references and formulae are not permitted.

The following are valid MAT PRINT statements:

10 MAT PRINT A

20 MAT PRINT A,

30 MAT PRINT A;

40 MAT PRINT A,B

50 MAT PRINT A;B

60 MAT PRINT A,B;

70 MAT PRINT A;B;

80 MAT PRINT A,B,K;J;

& MAT READ: In BASIC the MAT READ statement is used to
enter values for the elements of a vector or matrix. This statement is
used in conjunction with DATA statements.

EXAMPLE:
10 MAT READ K

(where K is a vector or matrix that has already been dimensioned).

When the computer executes a MAT READ statement, the set
of elements in the DATA statements are assigned to the elements of
the matrix beginning with the subscript 1.

In versions of BASIC that permit a zero subscript the elements
with subscript zero will be ignored. That is, the following elements
will not be assigned values from a MAT READ statement: Y(0,0),
Y(X,0), Y(0,X). Therefore, whenever using matrices in a version of
BASIC that allows zero subscripts, never use them, as the first
element in a vector or matrix is always 1, not 0.

MAT ZER 77

A single MAT READ statement may contain more than one
matrix or vector.

EXAMPLE:
10 MATREADX,Y, Z

(where X, Y, Z are previously dimensioned).

® MAT TRN: In BASIC the MAT TRN statement causes the
rows and columns of a given matrix to be interchanged or trans-
posed.,

EXAMPLE:
10 MAT() = TRN(K)

(where Kisan M x N matrix and] is the generated N x M matrix.

Both J and K must be previously dimensioned.)
The elements are related as follows:

JI,L) = K(L,I)

and matrix J is termed the transpose of the Matrix K.

HK:ISlO]
47 3

then 10 MAT J = TRN(K) will generate

EXAMPLE:

14
=} 8 7
10 3

As we can see the Nth row of K becomes the Nth column of J
and the Nth column of K becomes the Nth row of J.

@ MAT ZER: In BASIC the MAT ZER statement is used to
assign a value of zero to each element of a given matrix.

EXAMPLE:
10 MAT]J =ZER

(where] is a matrix previously dimensioned).

78 Matrix Addition
Example of the MAT ZER statement:

000
3‘000

®Matrix Addition: To carry out matrix addition the MAT
addition statement form is used.

EXAMPLE:
10 MATK=]J+L

The result of this MAT statement is that each element of K is
assigned the sum of the corresponding eiements of J and L. Thus

K(1,3) = J(1,3) + L(1,3).
Note: The two matrices being added must have the same

number of rows and columns.
If J and L are both 2x3 matrices, whose elements are

1 5 J 51
J=[2 i s:l Lz[z 3 4:|
the MAT statement
10 MATK=]J+L
will cause K to be a 2x3 matrix whose elements are
By
el P
A matrix may be updated by the following procedure,
I0MATK =K +]
but multiple sums are not permissible; that is,

10 MATK=K+]J+L

would not be allowed.

Matrix Assignment—Matrix Multiplication 79

®Matrix Assignment: To assign the matrix A to matrix B the
MAT assignment statement is used.

EXAMPLE:

10 MATJ=K
20 MATL=P
30 MATH=G
Inthe case of MAT] = K, each element of K is assigned to the

corresponding element of J.
Thus if K is the following 2x3 matrix

1 5 8

L

the statement
10 MAT] =K

will cause J to be a 2x 3 matrix whose elements are

1 5 8
-4 6 -9

To reference any element in] we use subscript variables. Thus
the value 6 would have been referenced as J(2,2).

®Matrix Multiplication: Two matrices may be multiplied if the

number of columns in the first matrix is the same as the number of
rows in the second matrix. The result of matrix multiplication is the
generation of a matrix having the same number of rows as the first
matrix and the same number of columns as the second matrix.

Therefore, if K is a 3x5 matrix and] is a 5X 9 matrix, then
the operation L = K*]J will generate the L matrix having three rows
and 9 columns.

Each element of L will be obtained as follows:

LAM) = KL 1D*(A,M) + K(I,2)*J©2.M) + K({,3)*1(3,M)
Matrix multiplication is carried out in the following statement:

10 MATL =K%

Note: A matrix cannot be updated by means of the matrix
multiplication statement.

80 Matrix Subtraction—MID$

@ Matrix Subtraction: The matrix subtraction statement and
the matrix addition statement are very similar except for the sign of
operation. Thus the matrix subtraction statement takes the form:

10 MATK=]-L

Each element of K is assigned the difference of the corresponding
values of] and L. Therefore:

K(1,3) =J(1,3) —L(1.3)

The two matrices must have the same number of rows and
columns.
If] and L are both 2 x 3 matrix whose elements are:

J=[1 3 5] L=[3 5 1]
2 4 6 2 3 4

The MAT statement
10 MATK =J-L
will cause K to be a 2 x3 matrix whose elements are:

g 1 2
A matrix may be updated as follows:

10 MATK =K-]

@MIDS$: The library function MID$ occurs in two types, one
with two arguments and the other with three arguments.

A) Two argument MIDS$ returns characters from the string
expression X$ starting at character position N.

B) Three argument MID$ returns M characters from the
string expression X$ starting at Nth character.

EXAMPLES:

10 PRINT MID$(X$,N)
20 PRINT MID$($,4)
30 PRINT MID$(K$,N,M)

TS TS TRT T R AT YT 19 A%

MID$ 81

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE MID$ FUNCTION

30 INPUTJ$

40 FORN =1 TO LEN($9)

50 PRINT MID§($,N,1), MID$(J$,N,2)

60 NEXT N
70 END
RUN
?BASIC
B BA
A AS
S SI
I IC
. C
END
START C INFLIT.J%)
FOR LOOP I
REM i
STATEMENT
(OUTPUT)

NEXT

Flowchart for MID$ function. I

END

82 Mode—Multiline Functions

@ Mode: In BASIC, mode may be thought of as a description of a
switch. Changing the mode is comparable to rotating or toggling a
switch to a different position. Each position changes the way a
certain operation will be carried out. In the trig functions, mode
refers to which format is being used: radians, grads or degrees. The
SET command is the controller of the “mode” switch. If we set
radians, all trig functions following the SET command (SET RAD)
will be in radians.

@Multiline Functions: Many calculations cannot be carried
out using a single statement, as when lengthy formulae or conditional
branching operations are to be carried out. The multi-
line function format is ideally suited for calculations, complex or
lengthy. Like a single line function, a multiline function can have any
number of dummy arguments but can return only one value.

The format is as follows: the first statement must be a DEF
statement but, unlike a single line function, the multiline function
definition is not included in the DEF statement. The last statement
must be the FNEND (function end) statement, and consists merely
of the keyword FNEND.

Between the DEF and FNEND statements any number of
other statements may occur, but at least one must be an assignment
statement (LET).

EXAMPLE:

10 DEF FNC({,K.L)

MW s

5, 1§ S

40 LET FNC = (J*K*L)/J-K
50 FNEND

The grammatical rules are the same as those for the single line
function:

1) A function definition can appear anywhere in a program.

2) A function is referenced by specifying its name, followed by

a list of arguments enclosed in parentheses and separated

by commas.
3) Control cannot be transferred between a statement within

a function and a point external to the function.

The function reference may be nested, with the level of nesting
Aarmandima am tha varctan AF PACSTCT hainag 1ieard

Multiple Branching 83

EXAMPLE:

10 DEF FNZ(],K)

20 LETFNZ =]

30 IFJ < K THEN 50

40 LETFNZ =K

o0 FNEND

L

W s

90 PRINT FNZ(FNZ(A,B),FNZ(B,C))

Variables other than those specified as arguments may appear
in a multiline function, just as they may be found in a single line
function.

@® Multiple Branching: In BASIC the ON-GOTO statement
carries out the function of multiple branching. This statement in-
cludes a variable or a formula and a list of remote statements.
Control is passed to the first remote statement if the variable or
formula equates to 1, to the second if the variable or formula is equal
to 2 and so forth.

EXAMPLE:

10 ON]J GOTO 100, 350, 900, 45
20 ONK-J GOTO 46, 18, 28
30 ON B*A GOTO 1000, 1500, 3010

If the variable or formula has a value that is not integral, then the

decimal portion will be truncated. Note: Many versions of BASIC
allow the interchange of keywords GOTO and THEN.

EXAMPLE:
10 ON J*K THEN 150, 200, 100, 260

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES THE
20 REM ON-GOTO STATEMENT

30 PRINT “ENTER 1 FOR SQUARE ROOT, 2 FOR”
40 PRINT “LOG, 3 FOR SINE AND 4 FOR COSINE”
50 PRINT “ENTER ARGUMENT AFTER OPTION”
60 INPUT J,K

70 ON J GOTO 80, 100, 120, 140

[aTal TETTT o CMDy /L™y

84 Nested Loops

90 GOTO 150
100 LETL = LOG(K)
110 GOTO 150
120 LET L = SIN(K)
130 GOTO 150
140 LET L = COS(K)

150 PRINT
160 PRINT “SOLUTION IS ";L
170 END
REM
STATEMENT
INEUT JK. }
1 ONIGOTO 4
STATEMENT
/SN
ASSIGNMENT ASSIGNMENT ASSIGNMENT ASSIGNMENT
STATEMENT STATEMENT STATEMENT STATEMENT

{ OQUTPUTL)

END

Flowchart for ON/GOTO statement.

@ Nested Loops: If desired, loops may be nested; that is, one
loop may be imbedded within another. In fact, there can be several
layers of nesting. The number of layers or levels of nesting depends

e e SR B o s

Nested Loops 85

When writing nested loops, the restrictions applying to the

FOR-TO-NEXT loop apply, plus the following requirements:

1) Each nested loop must begin with its own FOR-TO state-
ment and end with its own NEXT statement.

2) An outer loop and an inner (nested) loop cannot have the
same running variable.,

3) Loops cannot overlap. An inner loop must be totally nested
or imbedded within an outer loop.

4) Control can be transferred from a nested loop to a state-
ment in an outer loop or to a remote statement completely
outside the nest. However control cannot be transferred
from a remote statement outside the nest into the nest.

EXAMPLE:
10 FOR]J=1TOK
20
30 ...,
40 FORL=1TOM
50 ...
60 ...eeen.ls
70 NEXTL
80 NEXT]
PROGRAMMING EXAMPLE:
10 REM THIS PROGRAM DEMONSTRATES
20 REM THE FOR TO NESTED LOOP
30 LETK =14
40 LET]J=3
50 LETL=2
60 LETM =10
70 LETN =20
80 FORA=1TO10
90 PRINT A*K
100 FORB=1TO5
110 PRINT B*
120 FORC=1TOS5
130 PRINT ((M*N) + L)/C
140 NEXTC
150 NEXT B
160 NEXT A
170 END

86

Nested Loops

REM
STATEMENTS

ASSIGNMENT
STATEMENTS

Flowchart for Nested Loop.

FOR

LOOP

(out

A*K)

FOR

LOOP

(oute*y)

FOR LOOP

OUTPUT

RES

ULTS

NEXT C

NEXT B

NEXT A

END

T

NEW—-NOT 87

® NEW: NEW is a system command that is entered without a line
number during command mode. The NEW command clears the
workspace in the computer’s main memory and prepares it for a new
program.

Depending on the version of BASIC being used, the computer
may respond with a query such as “NEW PROGRAM NAME—",
After the user supplies the name, the computer will type out
READY.

@NOT: The NOT statement is used in conjunction with the IF
THEN statement. It is written as follows:

10 IF NOT J THEN 600

If] is equal to zero then the statement is true; if J is equal to any
positive or negative number the statement is false and the branch to
600 will not occur.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE NOT FUNCTION
30 PRINT“ENTER 3NUMBERS, 1 OF WHICH SHOULD BE
ZERO”
40 INPUT J,K,L
50 IF NOT J THEN 80
60 PRINT “THE FIRST NUMBER IS NOT ZERO”
70 GOTO 90
80 PRINT “THE FIRST NUMBER IS ZERO”
90 IF NOT K THEN 120
100 PRINT “THE SECOND NUMBER IS NOT ZEROQ”
110 GOTO 130
120 PRINT “THE SECOND NUMBER IS ZERO”
130 IF NOT L THEN 160
140 PRINT “THE THIRD NUMBER IS NOT ZERO"
150 GOTO 170
160 PRINT “THE THIRD NUMBER IS ZERO”
170 END

RUN
ENTER 3 NUMBERS, 1 OF WHICH SHOULD BE ZERO

?11,0,—8
THE FIRST NUMBER IS NOT ZERO

88 NOT

THE SECOND NUMBER IS ZERO
THE THIRD NUMBER IS NOT ZERO

END

REM
STATEMENTS Flowchart for NOT function.

(INPUT J, K, L

s OUTPUT
IFNOT) MESSAGE

N
OQUTPUT
MESSAGE

Y OUTPUT
MESSAGE
N

QUTPUT
MESSAGE

Y OUTPUT
B Dk MESSAGE
N
SUTPUT
MESSAGE

END

NUM 89

@NUM: The NUM function is used to determine how many
values have been entered via a MAT INPUT statement. Whenever
the library function NUM is referenced, it returns the number of data

elements entered only by the most recent MAT INPUT statement.
An argument for this function is not required.

EXAMPLE:

10 LET J(0) = NUM
20 PRINT J(0);“ELEMENTS”

As can be seen by the above example, it is convenient to use the

zero element of the vector in the assignment statement using the
NUM function.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES THE
20 REM NUM FUNCTION
30 DIM M(100),N(100)
40 PRINT “ENTER M VALUES”
50 MAT INPUT M
60 LET M1 =NUM
70 PRINT “ENTER N VALUES”
80 MAT INPUT N
90 LET N1 =NUM
100 IF M1 < > N1 THEN 130
110 PRINT “THE NUMBER OF M AND N ELEMENTS IS
THE SAME
120 GOTO 170
130 IF M1 > N1 THEN 160
140 PRINT “THERE ARE MORE N ELEMENTS THAN M
ELEMENTS”
150 GOTO 170
160 PRINT “THERE ARE MORE M ELEMENTS THAN N
ELEMENTS
170 END

90 Numbers

START

REM
STATEMENT

D.M.
STATEMENT

(MAT INPUT M)

ASSIGNMENT
STATEMENT

MAT INPUT N)

ASSIGNMENT
STATEMENT

IF M1-~::“*N/1

N

(OQUTPUT)
MESS

Y

IF M1 =N1
PUT
SAGE
OUTPUT
MESSAGE

Flowchart for NUM function. END

@ Numbers: Numerical quantities in BASIC may be referred to

as constants or numbers. Constants can be expressed as integers or
decimals.

i

ON-GOSUB 91

The following rules always apply in BASIC:

1) Usually only 8 or 9 significant figures are allowed.

2) A constant may be prefixed witha — or + sign. If no sign
is present, the quantity is assumed to be positive.

3) A comma must never appear in any constant.

4) A constant may contain an exponent.

5) Typically constants may range from 10 through 0to 10%,

Examples: (each row is valid)

0 +0 -0

1 +1 0.1E + 1
+2000 2000 2.0E + 3
-2500 -2.5E + 3 -.25E + 4
+.125 1.25E-1 125E-3
100000 1E5 1E +5

@®ON-GOSUB: In BASIC, the ON-GOSUB statement carries
out the function of multiple branching to subroutines. This statement
includes a variable or a formula and a list of remote GOSUBs. The
first subroutine is called if the variable or formula equals 1, the
second if the variable or formula is equal to 2, and so forth.

EXAMPLE:

10 ON]J GOSUB 100,350,900,45
20 ON K-J GOSUB 46,18,28
30 ON B*A GOSUB 1000,1500,3010

If the variable or formula has a value that is not integral, the
decimal portion will be truncated.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE ON-GOSUB STATEMENT

30 PRINT “ENTER A NUMBER FROM 1 TO 4"
40 INPUT]

50 IFJ<1O0R] >4 THEN 170

60 ONJ GOSUB 90,110,130,150

70 PRINTK
80 GOTO 30
90 K=J*10

100 RETURN

92 ON-GOTO—Operating Commands

110 K=J/10
120 RETURN
130 K = EXP()

140 RETURN

150 K =LOG()

160 RETURN

170 END

RUN

ENTER A NUMBER FROM 1 TO 4
1

10

ENTER A NUMBER FROM 1 TO 4
22

0.20000

ENTER A NUMBER FROM 1 TO 4
23

20.0855

ENTER A NUMBER FROM 1 TO 4
24

1.38629

ENTER A NUMBER FROM 1 TO 4
?5

END

@ON-GOTO: See Multiple Branching.

® Operating Commands: After initializing BASIC in whatever
method is required for the computer system being used, BASIC will
usually respond with some sort of prompting symbol. This prompt-
ing symbol or word indicates that the language is waiting for a
command. The following are a list of typical operating (system)

commands.

4| 7 L Loads a previously saved program, BASIC
may request the name of the old program or
file

NEW: Allows the user to write a new program.
BASIC may request a name for the program
or file.

EIST: & & ¢ & & Prints the current program.

RUN: o o v & Executes the current program.

SAVE, RESAVE
aor REPIACE: Savee the current nroeram.

Operators 93

|

REM

STATEMENTS
ASSIGNMENT ASSIGNMENT
STATEMENT STATEMENT
|
4
ol
ON/GOSUB
= -
' 2 3 I
SSIGNMENT ASSIGNMENT
ﬂST.;TSMMENT @@ STATEMENT
Flowchart for ON/GOSUB statement.
UNSAVE, PURGE
or SCRATCH: Deietes the current program
BYE, GOODBYE
or SYSTEM: Exit from BASIC

®Operators: Operators are special reserved symbols used by
BASIC to indicate arithmetic operations.
These operators are:

Addition +
Subtraction -
Multiplication ¥
Division /

Exponentiation f or A (in some BASICS **)

Operators are used between numbers and numeric variables.

Using operators in conjunction with numeric variables and numbers
we can generate formulae.

94 OR—Parentheses

EXAMPLES:

J+K
Qt R*Z -2)
X1-Z-B4
Z*(Z-1)/4
18-4

@®O0R: The OR statement is used in conjunction with the IF
THEN statement. It allows the IF THEN statement to have two or
more qualifiers instead of one. The IF THEN is true if both qualifiers

are true or if either is.

EXAMPLE:
10 IFX=100RY =15 THEN 600

In the above example, either the first qualifier (X = 10) or the
second (Y = 15) or both must be true if the branch to 6001s to occur.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES THE
20 REM OR STATEMENT

30 LETK=10

40 LET]=20

50 LETL =30

60 IFK=]J/20RL =K+] THEN 80

70 STOP
80 IF]J=L- KOR]J=K*2THEN 100
90 STOP

100 IFK=100R]J=200RL =30THEN 120
110 STOP
120 END

®Parentheses: Parentheses are used to alter the normal
hierarchy of operations in a formula. Since parentheses may be
nested, they are evaluated from the innermost set outwards. Inside
each pair of parentheses, the normal hierarchical status is kept.
Note: Parentheses must always be used in pairs. Any imba-
lance between number of left and right parentheses will cause an
error condition,
For example, to evaluate the algebraic formula

[3.14(K +])* + (19Y)’] K/J + 9)

Password 95

START

REM Flowchart for OR statement.
STATEMENT

ASSIGNMENT
STATEMENT

it may be written in BASIC as
@.14*K + Dt 5+ a9 3t ®/a + 9)

The introduction of extra parentheses in an equation will do no
harm, but obviously the formula that uses the minimum number of
parentheses is easier to read.

®Password: Some computer systems (usually large installa-
tions) require the user to enter a password to allow him access to the
computer's facilities. The password may be numeric, a string or a
combination thereof. An illegal password will not allow the user to
operate or use the computer.

EXAMPLE:

PASSWORD?
KEN
READY

In the above example the password was accepted, but in the follow-
ing the wrong password was used.

96 PEEK

EXAMPLE:

PASSWORD?

PETER

]LLEGAL PASSWORD, TRY AGAIN
PASSWORD?

Generally the computer will allow the user three to four tries.
After the fourth try, if the proper password has not been entered the
connection to the terminal is turned off.

@®PEEK: The PEEK and POKE commands allow the user of
BASIC to write and read machine code instructions. Thus while
running BASIC the programmer may write a machine language
program by using the POKE command; using the PEEK command

REM
STATEMENT

FOR LOOP

(QUTPUT)
PEEK (1)

NEXT

END

Pl oo cnsle m ol Bome LS £ son i s n e

PI—-POKE 97

the programmer can read back the machine codes. To run the
machine language instructions the CALL statements is used.

The PEEK function in BASIC returns the contents of memory
address (J). The value returned will be equal to or greater than 0 and
less than or equal to 255. J must be in the range of 0 to 65535.

EXAMPLE:

10 PRINT PEEK())
20 PRINT PEEK(2819)

See CALL.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE PEEK FUNCTION

30 FORI=2300TO 310

40 PRINT PEEK(I)

20 NEXTI

60 END

@ PI: The library function PI returns the value of 3.1415926. It
requires no argument.

EXAMPLE:

10 PRINT PI
20 PRINT PI*A
30 J=PI*K

@POKE: The PEEK and POKE commands allow the user of
BASIC to write and read machine code instructions. Thus while
running BASIC the programmer may write a machine language
program by using the POKE command; using the PEEK command
the programmer can read back the machine codes. To run the
machine language instructions the CALL statements are used.

The POKE statement stores the byte specified by its second
argument (J) into the location given by its first argument (K). The
byte to be stored must usually be equal to or greater than zero and
less than or equal to 255. The location usually lies between zero and
65535. K and J must be separated by commas.

98 POKE

REM
STATEMENT

FOR LOOP

READ
STATEMENT

POKE
STATEMENT

NEXT

DATA
STATEMENT

Flowchart for POKE function.

Pointers and Counters—Precision 99

EXAMPLES:

10 POKEK,]
20 POKE 2560,130
30 POKE K, 250

Note: POKE stores directly into main memory. Care must be

taken to see that important data is not over-written by the POKE
statement.
See CALL,

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES THE
20 REM POKE FUNCTION
30 FORI = 4001 TO 4010

40 READN
50 POKE LN
60 NEXTI

70 DATA 11,18,104,206,118,114,100,89,1,10
80 END

A program of this type can be used to generate machine
language programs and subroutines. Obviously the data items in the
DATA statements must correspond to the machine language codes
of the machine the BASIC program is running on.

®Pointers and Counters: A pointer is used to point to a certain
item of data such as the Nth data element in a DATA statement. The
pointer keeps track of what data items have been read and at what
position we are in the collection of items. See Random Data Files
Pointer Control. A counter keeps track of how many times an
operation has been carried out, the I in the following statement is a
counter:

FORI=1TO 10

®Precision: Precision is the number of digits used in calcula-
tions in BASIC. Typically single precision offers 6 to 8 digits of
accuracy in mathematical evaluations. Double precision offers twice
as many digits, while #iple precision offers three times as many
numeric digits. Double or triple precision is used when greater than
normal accuracy is required.

100 PRINT

EXAMPLES:
Single precision:
345.786 (6 digits total)

Double precision:
6754998.75478 (12 digits total)

Triple precision:
345837658796546784 (18 digits total)

@PRINT: The PRINT statement is used to transmit data
(numeric or string) to the output device. This statement consists of
the key word PRINT and a list of the output data. The output data
may be formulae, strings, or variables. Successive items must be
separated by either commas or semicolons. Strings must be en-
closed in quotation marks.

EXAMPLE:

10 PRINT “JANE”, “KEN"
20 PRINTX;Y; Z

30 PRINT “HELLO"; A$
40 PRINT 9*X-4

The following rules always apply:

1) Each PRINT statement generates only one new line unless
the list presented by the PRINT statement requires more
than one line.

2) A PRINT statement containing no data items will produce a
blank line.

3) In most versions of BASIC, an integer quantity that con-
tains eight or less digits will be printed as an integer
number. If an integer quantity exceeds eight digits, it will
be rounded to six significant figures and printed as a deci-
mal number with an exponent. A decimal quantity is printed
as a decimal number. If the quantity contains more than six
digits, it will be rounded to six digits. An exponent will be
shown if the magnitude of the number exceeds 999999 or is
less than 0.1 and contains more than six significant figures.

4) Strings must always be enclosed in quotation marks.

5) If the data items in a PRINT statement are separated by
commas, each line of output will be divided into 5 zones of

PEURMEASENT Gl PRORRATN o SO . THpTURCRRITE ety Mo o DRI, SOPCUOR TR | | R T L e L e

PRINT 101

6) If acomma follows the last item in a PRINT statement, the
first output from a subsequent PRINT statement will be
printed on the same line if sufficient space permits.

7) Up to four commas may be placed in a PRINT statement
consecutively. The effect of each comma is to space over
one zone. With this method widely spaced data may be
achieved.

8. If semicolons are used instead of commas to separate data
items, no spaces will be left between items.

9) Placing a semicolon after the last data item in a PRINT
statement causes the output of the next PRINT statement
to occur on the same line without any spaces.

PROGRAMMING EXAMPLE:

10 ~ REM THIS PROGRAM DEMONSTRATES THE PRINT
20 REM STATEMENT

30 LETK=15

40 LET]J=10

REM
STATEMENTS

ASSIGNMENT
STATEMENT

OUTPUT
STATEMENT

END

Flowchart tfor PRINT statement.

102 PRINT USING

50 PRINT
60 PRINT1, 2, 3,4,5
70 PRINT

80 PRINTJ, J*2, J*3, J*4, J*5

90 PRINT K, K*2, K*3, K*4, K*5
100 PRINT
110 PRINT “K TIMES J EQUALS”; K*]
120 PRINT “K LESS J EQUALS"; K-J
130 END

RUN

1 2 3 4 5
10 20 30 40 50
15 30 45 60 75

K TIMES J EQUALS 150
K LESS J EQUALS 5

END

@PRINT USING: The PRINT USING statement allows the
user to output multiple fields of both strings and numerics, where the
strings are enclosed in quotation marks. The usage can be readily
understood by carefully reading the examples.

EXAMPLE:

10 LET A =10.34

20 LET B = 5.06

30 LET C =9.18

40 AS = “ SSHHH. HH SSHHAH HH SERHFAHH
50 PRINT USING A$:A;B;C

This example produces the following output:
$10.34 $5.06 $9.18

Of course strings may be added to the PRINT USING state-
ment. If we replace line 40 with:
40 A$ = “THE AMOUNTS ARE: (A)##.##, (B)##.%#+#,
AND (C)##.##"

we obtain for an output the following:
TUE AMOTIINTG ARE: fAVIO 24 (RIS (/- AND (CHYO 18

PRINT USING 103

Note: The commas, parentheses, numerics (if any) and strings
will be reproduced in the output,

Thus we can see that the PRINT USING statement allows
formatting of the output. It allows control over justification and
spacing of the output.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE PRINT USING FUNCTION

30 LET]J=4.15

40 PRINT USING “####.##",],“BACTERIA”
o0 LET]J=]*3

60 IFJ > 340 THEN 80

70 GOTO 40

80 END

Flowchart for PRINT USING statement. |

REM
STATEMENT
B> ASSIGNMENT
OUTPUT
QUTPUT STATEMENT
ASSIGNMENT

STATEMENT

104 Program—Quote
RUN

4,15 BACTERIA
12.45 BACTERIA
37.35 BACTERIA

112.05 BACTERIA
336.15 BACTERIA

END

@ Program: A program may be defined as a set of directions or
instructions that tell a computer how to solve a problem. Any
program (written in BASIC or any other computer language) must
fulfil certain requirements.

1) It must be written in a language that is understood by the

computer.

2) It must be written completely and precisely. A computer
has no way to interpret what you “really” mean; it can only
do what you tell it to do.

Regardless of the language being used, or the type of computer
system being run on, each and every program consists of three basic
sections:

1) The necessary information, the input data
2) Processing of the input data
3) Output of the results obtained from the processing.

As with any formalized procedure, if mistakes occur in the
program, you will undoubtedly end up with something other than
desired for the output.

@ ?(Question Mark): See PRINT.

@ QUOTE: The QUOTE Statement is used to indicate to the
BASIC program that the information being stored in a file is to be
enclosed in quotation marks and will be read back at some time in the
future by a BASIC program.

EXAMPLE:

10 QUOTE

20 QUOTE #2

In line 20 of the above example, the #2 signifies that there is more
than one set of information and that the quote refers to the second

set only.
QUOTE: See Sequential Data Files Writing.

Random Data Files 105

® Random Data Files: A random data file contains individual
data items that are not arranged in any particular order. With a
random data file each data item can be read directly from, or written
directly onto, without proceeding sequentially along the data file
from the beginning. Thus random is faster.
Note: Random data files may consist of either string or numeric
data but not both. The type of random file is specified with either a
percent sign (%) for numeric files or the dollar sign ($) for string files.
Usually a positive integer quantity (generally ranging from one to
132) must follow the § sign. The positive integer quantity specifies
the maximum number of characters that may appear in each string.
Random data files, unlike sequential data files, cannot be listed
directly on a terminal device. The BASIC system commands cannot
edit a random data file, but of course we can easily write a program
which will handle the above two problems.

@ Random Data File Creation: Typically BASIC does not
have system commands which can create a file. Therefore we must
write a special BASIC program to create a random data file.

EXAMPLE:
10 FILES COUNTRIES $20
20 INPUT J$

30 IF J$ = “END” THEN 60
40 WRITE:1,]J$

50 GOTO 20

60 END

Before the program is run, the user must type in NEW. The
computer will respond with NEW FILE NAME, and the user types
in the new name. Then the user must type in SAVE. After the
program is RUN the user must type SAVE again.

® Random Data Files Pointer Control. The data items in a
random data file are not arranged in any special order, but the
locations of the data items are numbered sequentially from the start
of the file (beginning with number one) and are incremented by one
for each consecutive data item. The concept of a pointer is used to
indicate the location of any particular data file. The pointer must
always be properly positioned before a data item can be transferred
to or from (read or write) the data file.

106 Random Data Files

EXAMPLE:
LOCATION DATA ITEM

301049
21659
23

10

18
13718
8046
2091
18461
10 22964

The pointer is automatically advanced one location every time a
data item is transferred to or from the data file. Therefore it is also
possible to read or write data sequentially from a random data file.
By using the SET statement (RESET in some versions of BASIC)
we can reposition the pointer at any time.

Two library functions are closely related to the SET statement.
They are the LOC and LOF functions. The LOF function indicates
the last storage location in the file, while LOC allows us to determine
the position of the pointer.

When using the SET statement we must also indicate which
data channel is being used.

The format is to have the keyword SET followed by a colon (as
opposed to % in sequential files), followed by the channel number,
then the location. The location may be specified by a formula, a
variable, or a numeric constant, and must be separated by a comma
from the channel number.

000 13U & b=

EXAMPLE:
10 SET:1,]
20 SET:3.4

@ Random Data File Reading: In BASIC a random data file can
be read either sequentially or randomly. The pointer position need
not be considered if the data is to be read sequentially because the
FILES statement places the pointer at the first location in the file and
automatically advances one location each time a new data item is

read.
If the items in a data file are to be read randomly, we must

position the pointer to the proper location with the SET statement

hafmsm mtbamambimeg +m trasd a narficiilars Aafa item

e .u-'z' e !

e

Random Data Files 107

EXAMPLE:
Sequential

10 FILES COUNTRIES$20
20 FORM=1TOZ

30 READ:1,J$
40 PRINT J$
50 NEXT M
60 END
Random

10 FILES COUNTRIES$20
20 PRINT “LOCATION IN FILE”

30 INPUTK
40 SET:1,K
50 READ:1,J$
60 PRINT J$
70 GOTO 20
80 END

@ Random Data Files Reset Command: See Random Data
Files Pointer Control,

@ Random Data Files Set Command: See Random Data
Files Pointer Control.

@ Random Data File Writing: In the same manner that a data
item is read, a data item can be written onto a random file. Whereas
with reading we use the READ statement, with writing we use the
WRITE statement. The pointer must be positioned to the proper
location before an entry can be written; also the new data item will
replace the old data item previously stored in that location.

EXAMPLE:

10 FILES COUNTRIES$20
20 PRINT “WHICH LOCATION"

30 INPUTK

40 PRINT “DATA IS”
50 INPUT J$

60 SET:1.K

70 WRITE:1,]J§

80 GOTO 20

a0 END

108 RANDOMIZE—READ-DATA

@ RANDOMIZE: The numbers generated by the RND library
function are not truly random, as they are produced by a fixed
computational procedure. However, they do have the same statisti-
cal properties as do numbers which are truly random in nature.
Numbers produced by random number generators are usually called
pseudo-random numbers.

Every time a program which uses the RND function is run the
same sequence of random numbers will be generated. For purposes
of debugging, this reproducibility feature is very helpful, but most
users would usually want different numbers each time the programis
run.

The RANDOMIZE statement is used to ensure that a different
sequence will be generated each time the program is run. The
RANDOMIZE statement consists simply of the keyword RAN-
DOMIZE. This function operates by providing a different starting
point for the random number generator. Thus the RANDOMIZE
statement must precede the first reference to the RND library
function.

EXAMPLE:

10 DIM K(50)

20 RANDOMIZE

W s

40 FORI=1TO50
50 LET K{I) = RND
60 NEXTI

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE RANDOMIZE FUNCTION
30 RANDOMIZE
40 DIM J(100)
50 FORI =1TO 100
60 J(I) = RND
70 NEXTI
80 FORI=1TO 100
90 PRINT J(I)
100 NEXT I
110 END

@READ-DATA: When large numbers of data items are to be

SR TR T, [S SR o (e (R OO S LR TIR| TRCCRlE: I [T (i, oy e (N N R | (B D] T P ey R gt bl A e LT hﬂ

READ-DATA 109

used, but this process can become time-consuming and tends to
introduce errors. In such a case, the READ-DATA statement would
be preferable. The READ-DATA statement is also the only way to
introduce data in TIMESHARING and SINGLE-USER MODES.

The READ statement specifies the variables whose values are
to be entered into the computer via the program. This statement
consists of the keyword READ followed by a list of input variables
separated by commas. The list can contain ordinary numeric and/or
string, or subscripted variables representing numeric and/or string.

The purpose of the DATA statement is to assign the appro-
priate values to the variables listed in the READ statement. The
DATA statement consists of the keyword DATA followed by the list
of numbers and/or strings, separated by commas. Of course each
data entry in the DATA statement must correspond to the variable in
the READ statement.

EXAMPLE:

10 READL, K§$, J$, X
20 DATA 100, KEN, JAYN, 150

All DATA statements regardless of their position in the pro-
gram form a single DATA block. Each item in the DATA block maps
(or corresponds) on a one to one bdsis to an appropriate variable in
the READ statements. Actually this is not a true one to one corres-
pondence as you may have more variables on one line of a READ
statement than on one line of a DATA statement.

It should also be pointed out that in the following examples line
10 and line 20 are identical to line 30.

EXAMPLE:

10 DATA 5, HELLO, 36, 84
20 DATA FOX, HUNT, 82
30 DATA 5, HELLO, 36, 84, FOX, HUNT, 82

It is also to be remembered that the DATA specified by the
READ-DATA statement are an integral part of the program as
opposed to the INPUT statement.

Thus no matter how often the same program is run, the same
data remains.

The following rules must be observed with a DATA block:

1) The DATA items must correspond in order (mapping) and
in type to the variables specified by the READ statement.

110

READY—Relational Operators

2) There must be at least as many data elements in the DATA
block as there are variables in the READ statements.
Extra data will be ignored.

3) The elements in a DATA statement must be separated by
commas. The last item in the DATA statement is not
followed by a comma.

4. Elements of a DATA statement must be numeric or string
in nature, not variables or formulae.

5. Strings containing commas or beginning or ending with
blank spaces must be enclosed in quotation marks.

6) DATA statements should (but do not have to) be placed
consecutively near the end of the program.

PROGRAMMING EXAMPLE:
5 REM DEMONSTRATES READ/DATA STATEMENTS

10 READKJLM

15 LETH = K*M-J*L

20 IF H =0 THEN 65

30 READP.Q

40 LET X = (P*M-J*Q)/H

45 LETY = (K*Q-P*L)/H

50 PRINT X,Y

60 GOTO 30

65 PRINT “NO UNIQUE SOLUTION"
70 DATA 124

80 DATA 2,-7,5

90 DATA 1,3,4,-7
100 END

@ READY: A BASIC generated message indicating that the
computer is waiting for a user command.

@® Relational Operators: Relational operators are used to carry
out conditional branching, allowing a branch to occur under certain
well defined conditions.

The following is the list of relational operators:

= equal to

<> not equal to (Some BASICs use #)
< less than

> greater than

< = less than or equal to

> = greater than or equal to

™ - y 9 ™

REM 111

REM
STATEMENT

READ
STATEMENT

— e o m— S s e oww e mmss e e e

ASSIGNMENT
STATEMENT

QUTPUT
MESSAGE

— m am e o e e e e o e

READ DATA
ST&TEMENT’ ______ STATEMENTS ________
!
i
ASSIGNMENT
STATEMENT

(OUTPUT X, Y)
Flowchart for READ-DATA statement.

@® REM: The REM statement provides no executable instruc-
tions for the computer. The chief reason for the use of REM
statements is to properly document a program as it is the easiest
way to introduce remarks (comments) into a BASIC program. This
statement consists of the keyword REM and the message.

EXAMPLE:
10 REM THIS IS A PROGRAM

112 REM

Rem statements can be placed anywhere in a BASIC program.
In some versions of BASIC it is also possible to include a remark on
the same line as an ASSIGNMENT statement. To separate the
remark from the rest of the statement an apostrophe must precede
the remark.

REM
STATEMENTS
DIM
STATEMENTS Flowchart for REM statement.
REM
STATEMENTS
FOR LOOP
REM
STATEMENTS REM
STATEMENTS
ASSIGNMENT
STATEMENTS ASSIGNMENT
STATEMENTS
NEXT
& Y
REM
STATEMENTS i REM
STATEMENTS
ASSIGNMENT
STATEMENTS
END
{ QUTPUT N({1) }

RENAME —RESTORE 113

EXAMPLE:
10 LET K =J*A ‘CALCULATE 1ST PRODUCT

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE REM STATEMENT
30 REM DIMENSION VARIABLE N
40 DIM N(50)
o0 REM SET NQ -50) = 1-50
60 REM IN A FOR LOOP
70 FORI=1TOS50
80 REM SET VALUE OF N(I)
9 LETN®D =1
100 NEXTI
110 REM PRINT OUT N(1-50)
120 REM USING A GOTO LOOP
130 LETI=1
140 PRINT N(I)
150 REM INCREMENT I
160 LETI=]1+1
170 IF I > 50 THEN 190
180 GOTO 140
190 REM PROGRAM TERMINATES
200 END

® RENAME: The RENAME or REN command allows the user
to rename a program that is contained currently in the computer’s
main memory work space.
The computer will generally respond to “RENAME” with
“NEW PROGRAM NAME—", and the user then supplies the new
name.

® RESET: See Random Data Files Pointer Control.

® RESTORE: The correspondence between variables in the
READ statement and the elements in the DATA statement is main-
tained by an internal pointer. The internal pointer indicates the next
data element in the list to be read. In the case of strings and numerics
there are two pointers, one for each. Every time a data element is
read the pointer is incremented.
If the data has to be read again, whether it be some of the data
or all of it, the RESTORE statement is used. The RESTORE
statement consists of the kevword RESTORE onlv. The 1ice of thic

114 RESTORE

statement is to restore the pointer or pointers to the first data
element or elements.

EXAMPLE:
10 READJK,L
/. | [,
0 e
40 RESTORE
50 READ M,N,P,Q
B0 e
M weneas
80 RESTORE
90 READR,S
IO s

110 DATA 2,4,6,8,10,12,14

In the example given, J, K, L are assigned the values of the first
three elements. Using the RESTORE statement we can assign to
M, N, P, Q the first four values. If the RESTORE statement in line
80 was not present M, N, P, Q would have been assigned the “next”
four values.

In most versions of BASIC using the RESTORE statement, an
asterisk (*) or dollar sign ($) may be placed directly after the
RESTORE keyword.

The asterisk indicates to the computer to restore only the
numeric pointer, while the dollar sign indicates to restore only the
string pointer.

EXAMPLE:
10 READ X,Y,Z,J3,K$
20 s
k| B
40 RESTORE*
50 READ H,I
) s
1 SRy
80 READ L%
90

100 RESTORE $
110 READ A$,B$
120

o A FTAA 4 AS AA ATATTOT AT MAAART OMaTTTDDD T

<. !

RESUME—RND 115

In this example X, Y, Z are assigned 10, 20, 30. H and I are assigned
10, 20 because of the RESTORE* in line 40. J$ and K$ are assigned
MOUSE and RACCOON, then inline 80 L$is assigned SQUIRREL.
Since the RESTORE$ was not encountered until line 100, L$ was
assigned the next string value. In line 110 A$ and B$ are assigned
MOUSE and RACCOON, because this READ statement follows the
RESTORES$ statement.

@® RESUME: See CONTINUE.

© RETURN: The RETURN statement closes the subroutine
procedure. When the computer encounters the keyword RETURN,
control is transferred back to the statement following the point of
reference. The RETURN statement consists of only the keyword
RETURN.
Note: Control cannot be returned to the point of calling by
other types of branching statements.

EXAMPLE:

10 LETK=10
20 LETJ =20
30 GOSUB 80

d0: s

50 PRINTZ
O e

| ER et

80 LETZ=]J-K

90 RETURN

® RIGHTS: The library function RIGHT$ returns the rightmost
N characters of the string expression X$

EXAMPLES:

10 PRINT RIGHT$(X$,N)
20 PRINT RIGHT$(KS$,6)

® RND: In BASIC, the RND library function is used to generate a
random number. This function will return a different random
number, with a value between zero and one, each time the functionis
referenced. Generally an argument is not required, but in some
versions of BASIC, typically the integer-only versions, an argument
is required. The RND function will then generate integer random
numbers from O to the value of the argument.

116 RUN

EXAMPLE:

10 DIM K(50)
20 eerennn

30

40 FORI=1TO 50
50 LET K@) = RND
60 NEXTI

The above example will generate 50 random numbers. It should
be remembered that the random function never generates a one, but
a value very close to one.

To generate a randon number between X and Y, the following
formula may be used:

LETZ =X + (Y-X)*RND

EXAMPLE:

10 LET K = RND()
20 LET H = RND(10)
30 LET] = RND(28)

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE RND FUNCTION

30 PRINT “THIS PROGRAM ROLLS DICE”
40 LET] =INT(*RND) + 1

50 LET K = INT(6*RND) + 1

60 PRINT “THE DICE ARE “:J;” AND ;K
70 END

@ RUN: RUN is a typical command in BASIC; it is not a state-
ment. Once the program under consideration has been entered or
loaded, the user types in RUN and the program is executed. If a
compiler form of BASIC is used, the program is compiled first then
run.

Note: After all commands, it is generally necessary to hit the
return key to signal to the computer that you have finished entering a
command or data, and that it should proceed.

SAVE 117

REM
STATEMENT

Flowchart for RND function.

OUTPUT
MESSAGE)

ASSIGNMENT
STATEMENTS

COUTF'UT J @

END

Some versions allow entering RUN with a number following it.
In this case, the program execution will commence at the line
number specified.

@ SAVE: After writing a program in BASIC the user can keep the
program either on tape or on disc by using the SAVE command. The
SAVE command usually requires the name of the program as an
argument. Depending on the version of BASIC being used the user
may be limited to the number of letters used in the name.

EXAMPLE:

SAVE,HEATLOSS
SAVE,INSULATION-FACTOR

After saving the program by name, the user can request the
already written program by using the LOAD command.

118 Scalar Multiplication—Sequential Data Files

@ Scalar Multiplication: If all the elements of a given matrix
are multiplied by a given constant, we say that the operation of scalar
multiplication is being carried out.

EXAMPLE:
10 MATK =0

K and L are matrices, and J is an ordinary variable. Each
element of K will be defined as K(I,J) = ()*L({,J)).
If L is the following 2 X 3 matrix:

41 3 5

and] = 2, then 10 MAT K = (2)*L where the elements of K are:
2 6 10
K =E1 8 12]

The term within the parentheses need not be a single variable.
Subscripted variables, constants, formulae and function references
may all be used, as long as the term represents a single numerical
quantity. The scalar term must always be enclosed in parentheses.

The following are all valid scalar multiplication statements:

10 MATK = (25)*L
20 MAT]=Z*Y)*H
30 MATL = (SQR(H-P))*B

Updating with scalar multiplication is as follows:
10 MAT K = ()*K

@® SCRATCH: The SCRATCH (SCR) command clears or erases

the current contents of the computer’s main memory work space but
returns the current program name.

@ Sequential Data Files: A sequential data file contains date
sets that are arranged in the order of increasing line numbers. A
sequential data file generally consists of several lines of data, with
each line beginning with a line number. The data items in any given
line may be numbers, strings, or a combination of the two. Data
items must be separated by either commas or blank spaces. If a

Sequential Data Files 119

string contains commas or blank spaces it must be enclosed in
quotation marks. See also Files and Random Data Files.

® Sequential Data File Creation: Since a sequential data file
is structured almost precisely in the same way as a BASIC program,
we can generally create and edit a sequential file in the same manner
as a program. We can also print a sequential data file on a terminal.

® Sequential Data File Reading: In most applications, the
information or data stored in a sequential data file will be read and
then processed by a BASIC program. The data items in a sequential
data file must be read in the same order that they are stored in,
starting at the beginning of the sequential data file.

Note: All the information that is read will be retained for
subsequent use.

There are three fundamental file manipulation statements:
FILES, INPUT and IF END.

Transfer of information between a BASIC program and the data
file always takes place over a data channel. The keyword FILES
assigns the data file NAME to data channel #X. This must be done
prior to any information transference to or from the data file.

Therefore, all subsequent file statements will refer to the data
file by channel number, not by name. The keyword INPUT reads
from the data file sequential information. The keyword IF END tests
for the end of the data file.

EXAMPLE:

10 FILES DATES

20 INPUT #1, K,J$,Z%
30 PRINT K,J$,Z%

40 IF END #1 GOTO 60
50 GOTO 20

60 END

@ Sequential Data File Writing: A BASIC program may write
information onto a data file, much in the same manner as information
is read from a sequential data file. Because sequential data files are
sequential, new information or data will automatically be written
beyond any existing data. This obviously protects any information
already stored.

If the old data is to be deleted prior to the writing of new data,
then the old data file must explicitly be erased and repositioned toits
starting point.

The fundamental statements used in writing a data file are
FILES QUOTE, SCRATCH, INPUT, PRINT, and IF END.

120 SET

The FILES statement must always be prior to any other file
manipulation statement. Once the data files have been assigned to
their respective data channels, all references to these files will use
the channel number »ot the file name. If a file statement contains N
names, the data channels are assigned 1 to N reading left to right
after the keyword FILE.

EXAMPLE:
10 FILE STATUS, QUEUE, SAVING

(In this example, file “status” is channel #1, file “queue” is channel
#2, and “savings” is #3.)

The keyword QUOTE specifies that all strings written into a
particular data file will be enclosed in quotation marks. This is
important if the strings are to be read subsequently by a BASIC
program.

EXAMPLE:
10 QUOTE #3

The keyword SCRATCH causes a particular file to be erased
and reset to its starting point, in preparation for writing new data.

EXAMPLE:
10 SCRATCH #1

The keyword PRINT instructs the computer to print the vari-
ables listed after the file PRINT statement from the file pointed to by
the channel number following the keyword PRINT.

EXAMPLE:
10 PRINT #3,Z,T$,J$

® SET: The SET statement is usually used to set different modes
of operation within the BASIC interpreter or compiler. The following
are examples of different modes that are affected by the SET
statement.

1) SETRADIAN:sets trigonometricfunctionstoradian mode.
2) SET DEGREE: sets tngonometric functions to degree

mode.
3) SET GRAD: sets trigonometric functions to grad mode.

Set Pointer 121

4) SET TRACE: sets trace mode, which in most versions of

BASIC prints out the line numbers as they are being
executed. This function is very useful in debugging.

5) SET NORMAL: cancels the SET TRACE function.
Of course, depending on the version of BASIC being used,

there may or may not be SET statements, or different ones than
those shown here.

EXAMPLE:

10 SET RADIANS
20 Y COS(X)

30 SET DEGREE
40 Z COS(X)

50 SET GRAD

60 K COS(X)

See also Random Files Pointer Control.

@ Set Pointer: See Random Data Files Pointer Control.

REM
STATEMENT

(meuTy)

IFJ =100

@UTPUTSGN@

Flowchart for SGN function.

122 SGN—SIN

@ SGN: The library function SGN returns a one if the argument is
positive (greather than zero), a zero if the argument is equal to zero,
and minus one if the argument is negative (less than zero).

EXAMPLE:

10 PRINT SGN(10)
20 PRINT SGN(0)
30 PRINT SGN(-45)
40 PRINT SGN(K*])

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE SGN FUNCTION

30 PRINT “ENTER ANY NUMBER”

40 INPUT]

50 IFJ =100 THEN 80

60 PRINT SGN(Q)

70 GOTO 30

80 END

RUN

ENTER ANY NUMBER
20

0

ENTER ANY NUMBER
?-234

-1

ENTER ANY NUMBER
228

1

ENTER ANY NUMBER
7100

END

@ SIN: The library function SIN returns the sine of the expres-
sion X, where X is in parentheses. X is interpreted as being in
radians.

SIN 123

EXAMPLE:

10 PRINT SIN()
20 PRINT SIN(Q)
30 Q= SiIN(K)

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE SIN FUNCTION

30 FORI=1TOS5

40 PRINT SIN()

50 NEXTI

60 END

RUN

0.84147
0.90929
0.14112
-0.75680
-0.95892

END

FOR LOOP

START

@UTPUT s:w@

REM
STATEMENTS NEXT

Flowchart for SIN function.

124 Slash—SQR

@ Slash: See Colon.

@® Space (Available): To check for how much relative space you
have available for programs try the following program:

10 DIM J(K)

20 FORI=1TOK
30 LETJD=JD +1
40 NEXTI

50 END

Try different values of K until you receive a “OUT OF MEM-
ORY” error message.

® SPACES$: The SPACES$ Function returns a string of spaces,
the length being specified by the numeric formula, constant or

variable (truncated to an integer) in parentheses following the
keyword SPACES.

EXAMPLE:

10 SPACES$(10)
20 SPACE$()
30 SPACES$(J*K)

@ SQR: The library function SQR returns the square root of the
argument in parentheses. X must be greater than or equal to zero.

EXAMPLE:

10 PRINT SQR(Q)
20 K =S8QR(D)

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE SQR FUNCTION

30 FORI=10TO 100 STEP 10

40 PRINT SQR(I)

50 NEXTI

60 END

RUN

3.16227
4.47214
5.47722

= 290400

SQR 125

7.07107
7.74597
8.36667
8.94427
9.48683
10.0000

END

START

REM
STATEMENTS

FOR LOOP

@JTPUT SGF@

NEXT

-~

END

Flowchart for SQR function.

126 STATUS—String

@ STATUS: The STATUS or STA command is usually as-
sociated with large computer systems. After the user types in the
STATUS command during command mode, the computer will re-
spond with the following:

A) The current program name
B) The current data and time
C) The amount of CPU time the user has used since LOGON.

® STEP: See FOR-TO.

@ STOP: The STOP statement is used in BASIC to halt program
execution. In effect it is a GOTO statement to the END statement.
The STOP statement can be used more than once and any-
where within the structure of a program. The END statement, as
opposed to the STOP, must only be used once—at the end of the
program.

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES THE STOP
20 REM STATEMENT

30 LETZ=10

40 LETX=5

50 LETY=2
60 IFZ = 10 THEN 80
70 STOP
80 IFZ = X*Y THEN 100
9 STOP
100 IFZ = X-Y THEN 120
110 STOP
120 IFZ =X THEN 60
130 END

@ STRS$: The library function STR$ returns a string which is the
character representation of the numeric expression X.

EXAMPLE:
10 PRINT STR$(18.9) ("18.9)

@ String: A string is a sequence of characters (alphanumeric plus
special characters suchas +, —, /, *, $...etc.). A blank space may be
included in a string, but never quotation marks because quotation
marks are delimiters and mark the beginning and the end of a string.
The maximum number of characters any string may have will depend

:

String 127

l

REM
STATEMENT

l

ASSIGNMENT
STATEMENTS

Flowchart for STOP statement.

on the version of BASIC being used. The function of a string is to
represent such non-numeric data as labels, messages, etc.
Note: A sequence of integers in a string does not represent a

numeric data.

REM
STATEMENTS

{ INPUT J3 (1-4))

FOR

LOOP

NEXT P

NEXT N

NEXT M

ASSIGNMENT
STATEMENT

g

Subroutines 129

EXAMPLES:

“BASIC”

“THIS IS A STRING”

“THE DATE IS”

“TYPE YES TO RESTART”
“$153.92”
“301019491621959”

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES STRING
20 REM MANIPULATION
30 PRINT “TYPE ANY FOUR LETTERS”
40 INPUT J$(1),J8(2),]J3(3),J$(4)
50 FORM=1TO 4
60 FORN=1TO4
70 IF N =M THEN 140
80 FORP=1TO4
90 IF P =M THEN 130
100 IF P =N THEN 130
110 LETR =10-(M + N +)
120 PRINT J$(M); JS(N); I$(P); JS(R)

130 NEXTP
140 NEXTN
150 NEXT M
160 END

® Subroutines: A subroutine is a program within a program that
does a predefined function. Sometimes it is easier and more useful to
structure such a procedure as a subroutine than as a function.
Subroutines, like functions, may be referenced from different points
within a program. Whereas a function is given a name, a subroutine is
not; it is referenced by the line number of the first statement of the
subroutine. A subroutine can determine more than one numeric
and/or string quantity and arguments are not required. Thus a
subroutine may be viewed as a very generalized function.

A subroutine may be called from different points in the program
by the GOSUB and the ON-GOSUB commands. The first statement
within the subroutine structure may be of any type, but the last
statement must always be the keyword RETURN. A subroutine
may have more than one RETURN statement, as for multiple or
conditional branching procedures.

The advantage of the subroutine structure is the ability to write
a section of code once, yet use it in many places in the same

130 Subscripted Variables —TAB

program, which saves a lot of memory, especially if the subroutine is
large and it is called several times. If a subroutine contains 10 lines of
statements and is called six times we can save 38 lines of code. Why
38? Every subroutine must end in a return statement; thus the
routine itself is only nine lines long. We have six calls statements,
nine lines of routine, and one return, or 16 lines total. If all nine lines
had been written six times throughout the program 54 lines would
have been required.

@ Subscripted Variables: The individual elements within an
array are known as subscripted variables. Any element in an array
can be referred to by using the array name followed by the value of
the subscript in parentheses. With lists, only one subscript is re-
quired; with tables, two subscripts are needed to properly identify

any given element.
The subscripts may be variables, numbers, or formulae. The

following are valid subscript variables:
KO

L(M)

H(1,5)

Z(K1, J1)

P(ABS(X-4), ABSX + 4))

Note: The variable, or formula written within the parentheses,
will be truncated if it has a value that is non-integer. If the value is
negative, an error message will be generated and program execution
will be halted.

Subscript variables may be used just as ordinary variables
within a program.

By placing subscript variables within loops and using either
counter techniques or the FOR-TO loop technique, we can refer to
the elements in the array with ease. Note: Remember the running
variable of the FOR-TO statement may be used within the loop as
long as its value is not changed.

@® System Commands: See User Commands.

@ TAB: The library function TAB spaces to a specified position
on the printer or video terminal. It must be used in conjunction witha
print statement. The TAB function specifies the absolute position
from the left hand margin where printing is to start.

EXAMPLE:
10 PRINT TAB()

131

PROGRAMMING EXAMPLE:

10 ~ REM THIS PROGRAM DEMONSTRATES
20 REM THE TAB FUNCTION

30 FORI=1TO5

40 PRINT TAB(J)“BASIC”

50 NEXTI

60 END

RUN

BASIC
BASIC
BASIC
BASIC
BASIC

END

REM
STATEMENT

FOR LOOP

Flowchart for TAB function.

QUTPUT
BY "TAB"

NEXT

132 TAN—User Commands

® TAN: The library function TAN returns the tangent of the
argument in parentheses, interpreted as being in radians.

EXAMPLE:

10 PRINT TAN()
20 K =TAN()

PROGRAMMING EXAMPLE:

10 REM THIS PROGRAM DEMONSTRATES
20 REM THE TAN FUNCTION

30 FORI=1TOS5

40 PRINT TAN(®)

50 NEXTI

60 END

RUN

1.35741
-2.18503
-0.14254
1.15782
-3.38052

END

@TEXT: The TEXT or TEX command is used in conjunction
with the versions of BASIC that have graphics capabilities. The
command TEXT sets the video output back to standard text mode
(alphanumerics plus the standard symbols).

@®THEN: See GOTO.

@ TIM: To find the amount of time required to run a program the
TIM function may be used. The TIM function requires a dummy
argument in parentheses. The value given by TIM is processor
time, in seconds, used since the RUN command was given to the
computer.

EXAMPLE:
10 PRINT “TIME = ": TIM®X)
@ USER: See CALL.

@ User Commands: User Commands are commands such as
RUN, LOAD, SAVE, LIST. These are commands that are indepen-
dent of the program being run concurrently. User Commands are
often termed System Commands.

=

VAL-—-VARIABLES 133

START

REM
STATEMENTS

FOR LOOP

@UTPUT TAN@

NEXT

Flowchart for TAN function.

@ VAL: The library function VAL returns the string expression
X$ converted to a number. If the first non-space character of the
string is not a plus or minus sign, a digit, or a decimal point, then a
zero will be returned.

EXAMPLE:
10 PRINT VAL($)
20 PRINT VAL("123.47) (123.4)

@VARIABLES: A string or numeric constant may be rep-
resented by a name called a variable. In most versions of BASIC
each numeric variable must consist of a letter or a letter followed by
an integer. A string variable must be written as a letter followed by a

134 Vector and Matrix Operations

dollar sign, (3). Note: Most BASIC versions allow string variables to
be written as a letter, an integer, then the dollar sign.

EXAMPLES:

I J K1 J2 X4 Z9
I$ J$ K1$ J2%8 X48 Z9%

@® Vector and Matrix Operations: MATRIX and VECTOR are
mathematical terms that are in reference to a tableand alistrespec-
tively. A one-dimensional array is called a vector, while a two-
dimensional array is termed a matrix (plural to matrices). A vector is
therefore only a special type of matrix, and thus most of the rules
that apply to matrices apply to vectors.

The individual elements of the array are represented by sub-
script variables. When dealing with matrices the subscript variable
requires two subscripts, for example J(K,L), where K represents
the row and L the column. Thus J(5,8) is the element found in the
fifth row and eighth column of the matrix J. If a matrix has K rows and
L columns it is referred to as a K x L matrix.

In most versions of BASIC a subscript has a preset value of 10.
If a greater value is required a DIM statement must be used.

The operations of addition, subtraction, scalar multiplication
and vector multiplication are the most common vector and matrix
operations.

B

Appendices

DERIVED FUNCTIONS

The following functions which are not typical of standard BASIC
library functions may be easily implemented by the following for-
mulae:

ARC SIN(X) = ATN(X/SQR(X*X + 1))

ARC COS(X) = ATN(X/SQR(X*X + 1)) + 1.5708

ARC SEC(X) = ATN(SQR(X*X —1)) + (SGN(X) — 1)*1.5708
ARC CSC(X) = ATN(1/SQR(X*X) — 1)) + (SGN(X) — 1)*1.5708
ARC COT(X) = —=ATN(X) + 1.5708

ARC SINH(X) = LOG(X + SQR(X*X + 1))

ARC COSH(X) = LOG(X + SQR(X*X — 1))

ARC TANH(X) = LOG((1 + X)/(1 - X))/2

ARC SECH(X) = LOG((SQRX*X + 1) + 1)/X)

ARC CSCH(X) = LOG((SGN(X)*SQR(X*X + 1) + 1)/ X)
ARC COTH(X) = LOG(X + 1/(X - 1))/2

COT(X) = 1/TAN(X)

CSC(X) = 1/SIN(X)

SEC(X) = 1/COS(X)

COSH(X) = (EXP(X) + EXP(— X))/2

COTH(X) = EXP(-X)/(EXP(X) — EXP(- X))*2 + 1
CSCH(X) = 2/(EXP(X) — EXP(-X))

SECH(X) = 2/EXP(X) + EXP(-X))

SINH(X) = (EXP(X) — EXP(-X))/2

TANH(X) = —-EXP(-X)/(EXP(X) + EXP(-X))*2 + 1

135

DIAGNOSTICS (COMMON)

READ/RESUME, NO DATA: The user has not provided any
DATA statements or data but has used either the READ or
RESTORE statements.

FOR, NO NEXT: The user has constructed a FOR-TO loop but has
not closed it with a NEXT statement.

UNDIMENSIONED: Variables that were being used as matrices
were not dimensioned.

VECTOR + ARRAY: The same variable was used both as a vec-
tor and an array.

VALUE OUTSIDE RANGE: A value has exceeded the bounds for
that particular function.

GOSUB NESTING: The user has used more levels of GOSUB
nesting than the version of BASIC used allows.

RETURN: A RETURN statement was executed before a GOSUB
statement.

DIVISION BY ZERO: Division by zero was tried.

INVALID EXPONENT: A**B, where A<0 and B< >INT (B).

LOG(~X): The log of a negative number was specified.

SQR(-X): The square root of a negative number was specified.

OUT OF DATA: The set of DATA elements has been exhausted
and a READ statement is executed.

ILLEGAL CONSTANT: A string (numeric) data elemen is read

into a numeric (string) variable.

FUNCTION PREVIOUSLY DEFINED: A user defined function
(DEF statement) has been defined more than once in one pro-
gram.

ARRAY PREVIOUSLY DIMENSIONED: An array or a matrix
has been defined more than once in one program.

NO SUCH LINE#: A reference has been made to a nonexistent

line number.

FOR NESTING (MAX = X): Where the user has exceeded the
maximum of nesting (where X is the maximum for that particu-
lar version of BASIC).

NESTING SAME INDEX: Where a user has constructed a nested
FOR loop with two or more of the FOR-TO statements using
the same running variable (index variable).

WRONG NEXT: The matching NEXT statement must follow the
corresponding FOR-TO statement.

ILLEGAL NESTING: FOR-TO loops may be nested, but they

must not overlap.

OVERFLOW: A numeric constant exceeds the maximum single-
precision floating-point value.

136

UNDERFLOW: A numeric constant is smaller than the minimum
single-precision floating-point value.
MEMORY EXCEEDED: The generated object code exceeds the

bounds permitted by the computer and/or the version of
BASIC being used.

INCREASE PROGRAM SPEED

1) Use GOSUB sparingly.

2) Minimize GOTOs from one section to another section of
the program.

3) Check if FOR-NEXT is faster than or slower than IF-
THEN loops.

4) For simple integer multiplication such as 2*K,K+K will
be faster.

5) Check whether simple code is faster than or slower than
complex expressions.

SAVING SPACE

To conserve space and limit the size of programs the following
hints may be implemented.

A) Use multiple statements per line number, if the version of
BASIC allows. There is an overhead of about 5 bytes
associated with each line in a program.

B) Use integer values whenever possible as opposed to real
numbers.

C) Delete all unnecessary spaces from program lines.

EXAMPLE.:
10 PRINTK, J; L
Could be entered as

10 PRINTK,J;L

D) Use as few REM statements as possible.

E) Use variables rather than constants, when the same con-
stant is required more than a few times.

F) A program that is one loop and is ended by either CTRL C
or by running out of data usually does not require an END
statement.

G) Re-use variables over and over if possible.

H) Use go-subs instead of repeating lines of code.

137

SPEED

The following programs may be timed to give an indication of
processing speed.

10 FORI=1TO 1000
20 LETX=X+1

30 NEXTI
40 PRINTX
50 END

Instead of line 20 being LET X = X +1, the user may try 20
LETX = 10*Xor 20 LET X = X/10. Multiplication and division are
fairly complex software routines. Using the above two replacements
will give a fair indication of this type of operation speed.

1R

ABS

AND
Argument
Array

ASC

ASCI!
Assignment
ATN

Back Slash
BYE

CALL

CATALOG

CAT

CHANGE

CHR$

CLEAR

Colon
Concatenation
Conditional Branching
CONTINUE
Control Characters
COPY

COSs

DEF

DET

DimM

DIMENSION

DO END

Dummy Arguments

index

17
18
20
20
21
23
23
25

26
26

26
28
28
28
32
33
33
34
36
37
38
38
38

40
42
43
45
45
45

ELSE
END
EXP

Files

FN
FOR-TO
FRE

GOSsuB
GOTO
Graphical Qutput

Hierarchy
HOME

IF-END

IF-THEN

IF-THEN DO, ELSE
INPUT

INSTR

INT

LEFTS

LEN

LENGTH

LET

Library Functions
Line Numbers
LIST

Lists and Tables
LOAD

45
45
45

47
47
49
a1

52
54
o6

56
o7

57
57
57
57
59
61

63
64
65
66
66
66

67
67

LOC
LOF
LOG
LONG

Loops

Machine Language
MARGIN

MAT CON

MAT IDN

MAT INPUT (Matrix)
MAT INPUT (Vector)
MAT INV

MAT PRINT

MAT READ

MAT TRN

MAT ZER

Matrix Addition
Matrix Assignment
Matrix Multiplication
Matrix Subtraction
MID$

Mode

Muiltiline Functions
Multipie Branching

Nested Locps
NEW

NOT

NUM
Numbers

ON-GOSUB
ON-GOTO

Operating Commands
QOperators

OR

Parentheses
Password

PEEK

P!

POKE

Pointers and Counters
Precision

PRINT

PRINT USING
Program

? (Question Mark)
QUQOTE

Random Data Files
Creation
Pointer Control
Reading
Heset Command
Set Command
Writing

68
68
68
69
69

70
71
71
71
72
72
75
75
76
77
T
78
79
79
80
80
82
82
83

84
87
87
89
90

91
92
92
93
94

94
95
96
97
97
99
99
100
102
104
104
104

105
105
105
106
107
107
107

RANDOMIZE
READ-DATA
READY
Relational Operators
REM
RENAME
RESET
RESTORE
RESUME
RETURN
RIGHTS

RND

RUN

SAVE

Scalar Multiplication

SCRATCH

Sequential Data Files
Creation
Reading
Writing

SET

Set Pointer

SGN

SIN

Slash

Space {Available)

SPACES$

SQR

STATUS

STEP

STOP

STRS

String

Subroutines

Subscripted Variables

System Commands

TAB
TAN
TEXT
THEN
TIM

USER
User Commands

VAL
Variables

Vector and Matrix Operations

108
108
110
110
111
113
113
113
115
115
115
115
116

117
118
118
118
119
119
119
120
121
122
122
124
124
125
125
126
126
126
126
126
129
130
130

130
132
132
132
132

132
132

133
133
134

 The

BASIC
Cookbook

Now you can write your own computer programs for virtually any
business or technical application, or for home use, games, etc.

Most all small hobby-type micro- and minicomputers, plus many
large computer systems, use and understand a language called
BASIC (Beginner's All-purpose Symbolic Instruction Code). BASIC is
no longer so basic, however, and there are many versions of it that are
quite advanced. This unique user/reference handbook covers all the
functions presently available on the majority of BASIC language ver-
sions available—elementary or advanced.

With this easy-to-use book, you'll quickly learn how to understand
BASIC, which will enable you to write instructions and statements and
enter them into the computer, and how to interpret the results and
answers the computer gives you. Each statement, command, and
function is illustrated with examples, and where necessary a pro-
gramming example and a flow chart are included. And each instruc-
tion appcars in alphabetical order for easy reference.

The author is an experienced computer programmer and
software developer.

e i R —

