) b

A}
ie. \3297) 1@3

“o- 40 BEST
*ifmcumecunﬁ ROUTINES

> . for the
=~ ZXSPECTRUM
wr WITH EKPLANATORY TEXT

o ‘NDHEW Hewﬁﬂm
??i%m de 123 :

230
=1 noD 4¢

40 Best Machine Code Routines
| for the

' ZX Spectrum

John Hardman

and
Andrew Hewson

First Edition 1982
Copyright © Hewson Consultants 1982

All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechanical
including photocopying, recording, or any information storage and retrieval
system without permission in writing from the publisher.

The programs and routines in this volume are the copyright of the publisher
and are for the personal and private use of the purchaser only.

ZX Spectrum is a registered trademark of Sinclair Research Lid,
Cambridge, UK.

The contents of the ZX Spectrum 16K ROM are the copyright property of
Sinclair Research Ltd

ISBN 0-907912-03-6

Printed and bound in Great Britain for Hewson Consultants, 60A St. Mary’s
St, Wallingford, Oxon, by Powage Press, Aspley Guise, Milton Keynes.

Acknowledgments

To my family for their patience but especially to Debbie, John and Mairi
for their unending encouragement.

J.H.

With thanks to Janet, Gordon and Louise.

A.D.H.

iii

CONTENTS
Section A
1. Introduction
Why Use Machine Code
How to Learn Machine Code
2. Internal Structure of the ZX Spectrum T
The Memory Map' . .. ceaiiiiaseisssiss 7
PEEK and POKE . . . PO 8
Display File T 10
AWODULES oiivoicoeiinisinsiinisiminsiiimeindtptas 11
Printer Buflfer6 ioiisdassivndaedsdaean s sis 12
Basic Program Area 12
Five Byte Numeric Form 13
Variables Area el 13
ROM BODUNES &) s s vnavas s i s s f oo issss ol 14
3. ZBOA Machine Language 18
BRS . pvaslden e by a 18
Bytes! y..qq 19
Addresses 20
ZBOA Registers a 20
ACCUMUIAOL . oo asaisrsanis ik e T8
Flag Register Vi 21
Counting Registers e 22
Address Registers 23
Index Registers 23
Stack POINLEE v ;v oussinsinas 24
Program Counter 24
Exchange Registers g da 25
About the Instruction Set £5 25
Glossary of Machine Code Instructions . . 26
Mo Operationcovahrnirisesrnsass 26
575 T [R 26
Push and Pop 27
Exchange - 27
8 Bit Addand Subtractcoviieiianiiiiiiinias 27
8BitandOrand Xor......... 27
EORPATE & ot Lnsn Ses 56 famrs ik 28
8 Bit Increment and Decrement 28
16 Bit Increment and Decrement 28
16 Bit Add and Subtract 28
Jump Call and Return 28
Bit Instructions i 29
Rotate Left Digit ... PP 29
Rotate Righl PIBIW o i~ iSris s sariir s siig i raaine 29
Accumulation Operationsceceeeevrsnsrsaners 29
Restall i cne i Tieind s el sines 30
Block Handling 30

o

w

-4

-3

-

CONTENTS (continued)
Section B

Introduction P R e AT B 1 S o
Machine Code LOader « - : :sronssnsssriiesanisioaidln

Scroll Routines St e Sa s s 08
Scpoll AttiPuteS LB ¢o (i isaiiingidesssizviidgarams
Scroll Attributes Rightcoiiiiiiiiiiiiiiiaann.
Seroll Attributes TP s s acnicswsiciad it aqagdmsnsnstos
Scroll Attributes DOWR . .. c.vovvaiiiininniniinnana-
Left Scroll by One Character .. cicqasaspves dvsassans
Right Scroll by One Characterccvvvvinnsn
Up Scroll by One Character . ..
Down Scroll by One Characteroooo....
Left-Scroll by One Pixell. s . vor e pilipaiascic st sas sl
Righe - Scrolb by One PIREl v o: o vovenve sisinvgivsirs s o9
Up Scroll by One Pixelcovtiriniiesiiionias
Down Scrollby One Pixelconvinminrinniincnnns

Display Routinescccoiiiiiiiiiieionnes Sk
Metge PICtUres cosssessinsissorssoassmaniasawiss
ScreenlInvert TP S o R i 3
Invert Character Vertically .. c......ciiciiiivsvincats
Invert Character Horizontally
Rotate Character Clockwise
Attribute Change
Attribute Swap
Reglon PR .o yviire mrasaimni R A T
ShARE THBIES {ou s uiiivini it insavmnsnnyovetndsiveni
Seredn MAgNHY and COpy . coarrvivs snierin s sinmesaiaos’s

Routines to Manipulate Programs
Delete Block of Programcvcvvviviacissicines
TOKEN SWAD. o 16 £si0 it mgaa tidieralssnsCianamnntadais
Rem Kk oo indcssiisasvanaseispssnsdaes ooy sann s
Rem Createiax:
Compact Program
Load Machine Code into Data Statements . .

Convert Lowercaseto UpperCase O

Toolkit Routines -cociaviuiiveiiinimninaninnas
RETINDET 10 55 55 me wmmiaes mook s Wa 8 AR S 5E &we F R
MemorP Ll 2o caimrassadns songias by dimama s pay jup
Program Length
Line Addresscocivesuss
Copy Memory :
Zar0 B VARABIEY (o 0.5 0.0 ahaa a3 xniss b am b 2 ¥ a7 4% 0 4 61
List Varablesiissisiasvinissitimtad sanvasangt
Search and TSt .- o, oo vaula dilaaleany e ustatis ub sl s
Search and Replace i cowaisiiopisascainssast
BOM SEMCH: 7 ain dnmmis 9253 14 s 0% b vy W MR e T A
IRBLER ik wvioinay o5 b B A A s A s b v Ay Al S et

ADPORAIR A i iinin st i wns pae s ddbn s da o 0 O e

Section A

1. INTRODUCTION

The aim of this volume is to provide both the beginner and the experienced
computer user with a ready source of reference on a number of useful,
interesting or entertaining machine code routines for the ZX Spectrum. To
this end the book is divided into two sections. The Section A describes the
features of the Spectrum which are of interest to the machine code
programmer—what is meant by a machine code routine, the important
internal features and routines of the Spectrum and the structure of the
machine language itself.

The Section B presents the routines themselves. They are laid out in a
standard format which is explained in detail at the beginning of the section.
The routines are complete in themselves so that they can be loaded
individually without reference to any other routines.

It is not necessary to understand how a routine works in order to use it
because each routine can be loaded using the simple M/C Loader listed
at the beginning of Section B. Hence if you are really impatient to use, say
the List Variables routine simply turn to the relevant page, enter and RUN the
M/C Loader and enter the decimal numbers listed in the column headed
“Numbers to be entered”. When all the numbers are loaded compare the
value of the Check sum PRINTed by the M/C Loader with the value given
with the routine. If they are the same you can be sure that the numbers
have been entered correctly (unless you have made two or more errors which
cancel out exactly). The routine is now ready for you to use.

If you have not got enough confidence to try a long routine like List
Variables but are still keen to get started on machine code as soon as
possible then choose a shorter routine. That way if you get lost or make too
many mistakes you will not have spent so much time doing so. The routine
to Scroll Attributes Down is ideal. Once again it is simply a question of
entering and RUNning the M/C Loader listed at the beginning of Section B
and copying the numbers given in the column headed ‘*Numbers to be
entered’’. When you have finished make sure that the Check sum is correct.

If you are happy to defer use of the machine code routines then read

on. The remainder of this chapter introduces the basic ideas and goes on to
explain in more detail the layout of the remainder of the book. The
beginner is advised to read this information carefully but the more
experienced user will only require to skim through it.
The Z80A microprocessor which drives the ZX Spectrum does not directly
understand Basic words like PRINT, IF, TAB etc. Instead it obeys a special
language of its own called machine code. The instructions in the Sinclair
ROM which give the Spectrum its ‘‘personality’’ are written in this special
language and they consist of a large number of routines for entering, listing,
interpreting and executing the particular dialect of Basic which the
Spectrum uses. In effect, the routines are groups of **“WHAT TO DO IF”
instructions. For example they tell the ZB0A WHAT TO DO IF the next Basic
command is the word PRINT, and then WHAT TO DO IF the next item is a
variable name; and THEN WHAT TO DO IF the next item is a comma etc, etc.

3

BN

Machine code consists of a sequence of positive whole numbers, each
less than 256, and it dictates the action of the Z80A by setting eight switches
according to the pattern of the binary equivalent of the number. The binary
equivalent of 237 for example, is 11101101 so that when 237 is encountered
the eight switches are set to on, on, on, off, on, on, off, on respectively.

Just because the machine obeys the binary version of the number there
is no need for humans to consider the instruction in this form. We are used
to using decimals and so it is this form that the M/C Loader in Section B
recognises. However, even a string of decimal numbers is difficult to
interpret and so the decimals are usually converted yet again to a special
assembly language which is a bit cryptic but not too difficult to use with
practice. Each routine in Section B is listed both in assembly language and
in decimal numbers.

Assembly language is so-called because a special program called an
assembler can be conveniently used to bring together or assermble many
machine code instructions to form a new program. Assemblers are
sophisticated programs because machine code is very extensive and they are
usually written in machine code themselves. Several such assemblers are
now available for the Spectrum and, whilst the routines in this book could
be loaded using an assembler, it should be emphasised that the M/C Loader
is quite adequate for the purpose.

One number only is required to specify the simpler Z80A instructions.
The instruction to copy the contents of register c to register d is decimal 81
for example. (The meaning of the word register is explained in more detail
in chapter 3. For the moment it is sufficient to think of ¢ and d as akin to
Basic variables). For these instructions there is a one-to-one correspondence
between the decimal number and the assembly language version so that
decimal 81, for example, is written in assembly language as 1d d, c. “'Id"’,
by the way, stands for “‘load’’. Many assembly language instructions
consist of similar simple abbreviations and for this reason they are often
called mnemonics.

More complex instructions require two, three or even four numbers
before they are completely specified in which case a single assembler mnemonic
is used to represent them all. Table 1.1 lists a few examples of the numbers,
their mnemonics and a brief explantation.

Ref Decimal Assembly language Comment

(a) 81 Idd,c Load d with the contents of ¢
1) 14 27 Idc, 27 Put the number 27 into ¢
(c) 14 13 ldc, 13 Put the number 13 into ¢

(d) 33 27 52 1d hl, 13339 Put 13339 into the hl register
pair. Note 27 + 256*52 =
13339; 27 is put into I; 52 is
put into h
(e) 221 33 27 521dix, 13339 Put 13339 into the ix
register pair
Table 1.1 Some examples of machine code instructions for the Z80A

4

Line (a) of the table is the example of 1d d, ¢ discussed above. Lines
Fb) and (r:_) show how a positive whole number less than 255 may be loaded
into a register using two successive numbers—the first specifies the action
to be performed and the second specifies the number to be loaded. Line (d)
shows how a large whole number may be loaded into two registers, h and |
together. This time it is the second and third numbers which specify 1hé
number to be loaded. The final example in line (e) illustrates a four number
code for loading a large whole number into the ix register pair. Notice how
three out of the four numbers also appear in line (d). In effect the first
number specifies the ix instead of the hl pair.

The structure of machine language is explained in more detail in chapter
3 and a full list of the assembler mnemonics is given in appendix A. A more
important question which should be answered at this point is:

Why use Machine Code?

With any programming language on any computer it always seems to be
the.case that there are tasks which the user wishes the machine to perform
which cannot be conveniently written in the language available or which
V_.vhcn written in that language, are very slow to execute. The ZX Spectrum
is no exception in this regard,

Consider for example_the problem of saving the entire screen display at
the top of RAM or copying it back again perhaps with the intention of
creating a cartoon effect by “‘flipping’’ between various displays. The
display file and the attributes together occupy 6912 bytes and so it is
necessary to move RAMTOP down to 32768 -6912 = 25856 on the 16K
maqhme to provide enough space for the copy of the display outside the
B_asnc area (65536—6912= 58624 on the 48K machine). The following
simple Basic program will save the screen display but it takes a long time—
about 70 seconds:

I0FORi= 0106911
20 POKE 25856 + i, PEEK (16384 + i)
JONEXTi

The reason it takes so long is that the Spectrum spends most of its time
f:lecodmg the commands before executing them. A certain amount of time
is also spent converting numbers between the two byte integer form which
the ZB(){\ understands and the five byte decimal form in which the loop
counter is held and also in performing five byte arithmetic. The steps are as
follows:

1) Addito 16384,

2) Convert the result to two byte form.

3) Retrieve the contents of the PEEK address.

4) Addito 25856.

5) Convert the result to two byte form.

6) Store the value retrieved in the POKE address.

7) Add one to the value of 1 and store the result.
8) Subtract i from 6911. If the result is positive or zero go to 1).

Each time a pass is made through the loop the Spectrum must decode
each command afresh because it retains no memory of the previous
operations. It is easy to see that the computer spends over 99% of the time
preparing to perform the task rather than performing the task itself.
Therefore it is no surprise to know that a machine code routine to save the
screen executes more or less instantaneously. An example routine is given in
Section B.

How to Learn Machine Code

The machine language of the ZBOA microprocessor is very complex and to
understand all its facilities requires a good reference book, a lot of thought
and much practice, There are several books available. The standard
reference is How to Program the Z80 by Rodney Zaks, published by Sybex
and available through Radio Shack (ie Tandy Stores), ISBN No.
0-89588-057-1. It contains a great deal of information about the hardware
organisation of the microprocessor as well as listing full details of the
instruction set, The beginner might find it rather formidable because it runs
to more than 600 pages.

A rather more readable account is contained in Z80 and 8080 Assembly
Language Programming by Kathe Spracklen, published by Hayden, ISBN
No. 0-8104-5167-0. The book starts at a more elementary level and covers
the more important software aspects and ignores the hardware almost
entirely. ‘

This book is intended to act not only as an introduction to machine
code for the beginner but also to be useful to the more experienced user. It
gives the reader a strong incentive to learn machine code by providing him
with routines which he can incorporate into his own Basic or machine
code programs, with or without adaption.

Most of the routines depend intimately on the structure of the ZX
Spectrum and so the next chapter covers the topic in some detail. It covers,
for instance, the form of the display file, the program area and the
variables area, explains the layout of Basic program lines and introduces
five byte floating point arithmetic. The reader of Section B is assumed to
be familiar with the contents of this chapter.

The third chapter explains ZB0 machine language in some detail,
describing many items which are assumed later on. It contains a glossary of
the instruction set which covers most of the salient facts without reproducing
the detailed coverage given in Zaks’ book.

2. INTERNAL STRUCTURE OF THE ZX SPECTRUM

A computer is a machine which is capable of storing a sequence of
instructions and then executing them. Clearly to do so it requires a memory
in which the instructions can be stored. The ZX Spectrum contains two
distinct types of memory. The first type is read-only-memory (ROM) which
contains the fixed set of instructions implanted in the ‘machine by the
manufacturer. The second type is random-access-memory (RAM).

Random-access-memory is the notepad of the Spectrum. When the
computer is performing a task it is continually looking at what is in RAM
(“‘reading’’ from memory) and altering the contents of RAM (“‘writing”’
to memory). The Spectrum does not use its notepad haphazardly.
Different parts of RAM are used to store different sorts of information. A
Basic program entered by the user for example, is stored in one part of
RAM, whilst the variables used by the program are stored elsewhere.
The size of the notepad is limited and so the machine is careful to
allocate just enough space and no more to the information that it holds.
Thus the spare space is always collected in one place so that if, for example,
the user wants to add a line to his program the information in RAM can be
shuffled along using up some of the spare space to accommodate the extra
line.

Most of this chapter is devoted to explaining in detail how the Spectrum
organises RAM because many of the routines in Section B are designed to
manipulate RAM. Therefore if the reader is to understand the design of the
routines as opposed to using them blindly, he must understand the contents
of this chapter. The chapter covers the display file, the attributes, the
printer buffer, the system variables, the program area and the variables
area. The final section describes the routines in ROM which are referred to
in Section B.

The Memory Map

There are 16384 memory locations in RAM in the unexpanded ZX Spectrum
(the expanded version contains a further 32768 locations making 49152 in
all). Each location can hold a single whole number between 0 and 255
inclusive and is identified by its address which is a positive whole number.

Addresses 0 to 16383 are assigned to the fixed form of memory, the
ROM, and so the first address assigned to RAM is 16384. Table 2.1 is the
memory map of the Spectrum which shows how RAM is used starting
at address 16384. The display file, for example, which holds the information
which is currently shown on the screen, occupies locations 16384 to 22527.
The attributes, which determine the colour, brightness etc of the screen
display, follow immediately afterwards in locations 22528 to 23295,

The first five starting addresses in column 1 of table 2.1 are all fixed
because the display file, the attributes etc all occupy a fixed amount of
space. The fifth area is assigned to the microdrive maps. If a microdrive
is attached to the Spectrum this area contains information on the layout

7

of the data in the microdrive. If a microdrive is not attached, the area
is not needed in which case the sixth area, channel information, is placed
immediately after the fourth, the system variables, in line with the Spectrum
practice of saving space wherever possible. Hence the starting address of the
channel information area and all subsequent areas is not fixed but can
‘‘float’’ up and down RAM.

The Spectrum keeps track of the starting address of all these areas by
storing the current value of each address within the system variables
area. The system variables area lies before the microdrive map at locations
23552 to 23733 inclusive and so there is no question of this area also moving
up and down RAM! The address within the area which holds the starting
address of all the floating areas is listed in column two of table 2.1. The
address of the Basic program area, for example, is held at 23635 within the
system variables area.

Starting address Location of Memory contents

or system variable system variable

name

16384 — Display file

22528 — Attributes

23296 — Printer buffer

23552 — System variables

23734 — Microdrive map

CHANS 23631 Channel Information

PROG 23635 Basic program

VARS 23627 Variables

E_LINE 23641 Command/line being
editted

WORKSP 23649 Data being INPUT

STKBOT 23651 Calculator stack

STKEND 23653 Spare

sp —_ Machine stack and GOSUB
stack

RAMTOP 23730 User machine code routines

uDG 23675 User defined graphics

P— AMT 23732 End of RAM

Table 2.1 The memory map. The stack pointer, sp is held not in RAM but in the
sp register in the Z80A microprocessor.

Referring to each system variable by the address at which it is held is
rather awkward and so each is given a name—PROG in the case of the
location which holds the address of the Basic program area. These names
are for the users convenience only as they are not recognised by the
Spectrum. Thus entering the line:

PRINT PROG
will cause the error message **2 Variable not found’’ to be PRINTed unless
a Basic variable called PROG has been generated coincidentally by a

8

program or by the user. The value of such a Basic variable would have
nothing to do with the value of the PROG system variable.

PEEK and POKE

The memory map is the key to understanding the use of RAM by the
Spectrum but the keys to exploring the RAM are the Basic keywords,
PEEK and POKE, which allow the user to look at and alter respectively,
the contents of each memory location,
PEEK is a function of the form:
PEEK address
The address can be a positive whole number between 0 and 65535
or an arithmetic expression which when evaluated gives such a positive
number. It is important to enclose an arithmetic expression in brackets
because:
PEEK 16384 + 2
is interpreted as 2 added to the result of:
PEEK 16384
whereas:
PEEK (16384 + 2)
is interpreted as:
PEEK (16386)

The value returned by the PEEK function is the number currently held
at the address in question which will always be a positive whole number
between 0 and 255 inclusive. It was explained above that the PROG
system variable is held at address 23635 but the value of PROG, being an
address in RAM, is always much larger than 255 therefore two adjacent
addresses, 23635 and 23636, are needed to hold it. The value of PROG can
be PRINTed by entering:

PRINT ““PROG =""; PEEK 23635 + 256* PEEK 236316

All addresses are held in two adjacent locations in this fashion and can
be inspected by entering:

PRINT PEEK first address + 256* PEEK subsequent address
For example if a Spectrum is used without a microdrive attached the

microdrive map area will be non-existent and the channel information will
follow immediately after the system variables area. Thus the value of the
CHANS system variable will be the same as the starting address of the
microdrive map, were it to exist, ie 23734, CHANS is held at 23631 and
23632 and so entering:

PRINT PEEK 23631 + 256* PEEK 23632
will yield the value 23734.

7 The PEEK function can be used to look at the contents of any location
in memory including the fixed instructions in ROM. It is therefore

9

a very important tool. PEEKing any location will not cause the Spectrum to
crash or corrupt a program or variables. Very occasionally the results
of a PEEK can be misleading because the contents of the location being
PEEKed may alter during or immediately after the execution of the
instruction. For example, if the contents of the locations which are assigned
to the top left hand corner of the screen display are PEEKed and the
results PRINTed in the top lefthand corner of the screen the information
will already be out-of-date by the time the user views it.

The POKE command is altogether more dangerous than the PEEK
function because by invoking it the user is interfering in the functioning
of the Spectrum. Thus it is quite possible to make nonsense of the
information in RAM using this command causing the machine to crash or
to halt and display an error code.

The form of the command is:
POKE address, number

Once again the address is a positive whole number between 0 and 65535
inclusive or an arithmetic expression which gives such a number when
evaluated. In this case it is not essential to enclose an arithmetic expression
in brackets because POKE is a command not a function and therefore
cannot be evaluated as a whole. The number POKEd into the location
must lie between 0 and 255 inclusive.

The Spectrum will accept and execute a POKE command to put a
number into an address in ROM (ie an address between 0 and 16383) but the
number will never reach its destination. This fact can be demonstrated
by RUNning the following program:

10 PRINT PEEK 0
20 POKE 0,92
30 PRINT PEEK 0

Lines 10 and 30 will each PRINT the value 243 which happens to be

the contents of location 0. Line 20 has no effect.

The Display File

The normal display consists of 24 lines each containing 32 characters. We
have seen that the display file occupies locations 16384 to 22527 ie 6144
locations in total, therefore the number of locations used per character is:
6144/(24*32) = 8
The easiest way to get an overall impression of how the display is
organised is PRINT a picture on the screen, SAVE the screen to tape,
clear the screen and LOAD the picture back again. The program P2.1
SAVEs and LOADs the screen in this manner using graphics character 5 to
create the original picture.
When the picture is reLOADed from tape it becomes clear that the
display is divided into three sections of eight character lines each. Each

10

19@ FOR i=B TOD 783

ii@ PRINT “F;

120 NEXT i

:5.“2 SAUVE "“FicCture“SCREENS

i INPUT "Rewind the cassette,
= it and than press a Kked)
E

188 LOARD "PicCture " SCREENS
Program P2.1. 4 program to SAVE, clear and LOAD the screen.

character line is further divided into eight lines of pixels. Surprisingly,
the Spectrum does not LOAD, the eight pixel lines which form the first
character line followed by the eight pixel lines which form the second
character line etc. Instead it LOADs the top pixel lines of the first eight
character lines, followed by the next pixel lines of the same eight character
lines and so on. The top section of the display, consisting of eight character
lines and the final eight character lines, form the middle and the bottom of
the display respectively.

Another way of understanding the form of the display is to consider
where the eight bytes which are used to form the character at the top left hand
corner of the screen are held. The first byte forms the topmost eighth of the
character and is located at the beginning of display file at address 16384. A
few moments experimentation shows that:

POKE 16384,0
blanks out the top line of eight pixels which form the top of the first
character whereas:

POKE 16384, 255
causes all the pixels to be illuminated. POKEing numbers between 0 and 255
causes a speckled effect.

The line of eight pixels which is second from top in the first character
on the screen is not formed from the number held at location 16385,
rather this location is used for the top line of pixels in the adjacent character.
There are 32 characters in a line and 8 in a section so that the second
from top line of eight pixels in the first character is formed from the
number held at location:

16384 + 32*8 = 16640

A similar argument applies to the remaining six lines of eight pixels
therefore the form of the character at the top left hand corner of the screen
is dictated by the contents of addresses:

16384, 16640, 16896, 17152, 17408, 17664, 17920, 18176

Program P2.2 allows the user to experiment by POKEing various
numbers into these eight locations.

Every location in the display file controls the condition of eight pixels
on the screen. This control is exerted by converting the number which is
held at a given location to its binary form and then setting the eight pixels

11

1@ REM Routine to set characte
f 2t top LHS ©of screen’
2@ INPUT "H character is forme
d irom eight _butes, each Llying &b
glween @ and258 inclusive. Ente,
aumber of byte o FY M
2@ IF ni@ OR n>»7 0OR n1zINT nT
HEN BEEP .2.24: GO TO 28

+2 INPUT "Enter con.ent' ef by

_sa‘if mi@ OR w2255 08 m<>INT m
THEN BEEP ,2,24: GO TD 49
8 PDKE 18384+3332#0,0

Program P2.2. A program to construct the character af the top left hand corner of
the screen.

)
LB P

according to the zero/one pattern of the eight binary digits. For example,
240 when converted to binary is:
11110000

Therefore if a location contains the number 240, four of the eight
corresponding pixels will be illuminated and the remaining four will be
blank.

To summarise, the display file consists of 6144 locations with eight
locations assigned to each character position. Each location dictates the
condition of a horizontal bar of eight pixels. The locations assigned to a
given character position do not occur adjacent to one another, instead
the display is divided into eight sections and within each section 256
locations separate the constituent bytes of each position.

The Atiributes

The contents of the display file determine only which pixels are illuminated
on the screen. The colour of the PAPER and INK and the BRIGHT and
FLASH conditions are determined by the attributes. The attributes area
occupies locations 22528 to 23295 with one location being assigned to each
of the 768 character positions. In contrast to the display file the locations are
assigned to the character positions in the obvious fashion, ie starting at
the top left hand corner and working from left to right and top to bottom.

Each location sets both the INK and PAPER of the position to which
it is assigned to one of the eight colours shown above the top line of keys on the
Spectrum keyboard. It also determines whether the position is BRIGHT and
whether it FLASHes. The four parameters are encoded using the following
calculation:

Attribute value = 128*FLASH + 64*BRIGHT +8*PAPER + INK

FLASH and BRIGHT take the value one if the appropriate condition
applies and zero otherwise and PAPER and INK take the value of the
required colour as shown on the keyboard (red is 2 for example). Program
P2.3 decodes the attribute, ie given an attribute value it PRINTs the
corresponding PAPER and INK colours etc.

12

e

1® REM Rtrribute decoder

28 DATA "Black “LUBlLUE ol Tt -
ed " "Hagenta" , "Green R T -
] "orvettlow" White "LUBright
w,vriash”

2@ DIM cs(&,7)

4@ FOR i=1 TD &

S@ RERD C$ljl

S@ NEXT

i12@ REM Qtrr:bute decoder

l1i@ INPUT “Enter & number betwe
en @ and =255This prograw decodes
its inter- Pretat:an in the att
ributes fFile";

iz@ IF nia@ nn n>2585 CR INT n

ni
THEN BEEP .2.,24¢: G0 To 11e@ s
2@ PRINT "Ink coclour iz ", 1
3 -B2INT (n.-8)) " .
2198 PRINT "“"Paper_colour & ;L%
(1+INT (n-8)-B3INT (n./ n¢\\ S
22@ IF INT ins84}l=1 OR INT _ (n-s5
4) =3 THEN PRINT "“"Character is BR
T

*35a 1F n2127 THEN PRINT “Chara
ter will LBRSH"

328 fi}?gi?glﬁi i“lllllllllllls
R RN 0 2avsa

388 ot o0

238 YRAUT “Hit ENTER to repeat
R]

Sip oLs

S3p GO TO 112

Program P2.3. A program to decode an attribute.

The Printer Buffer

The 256 locations in RAM following the attributes area are used to hold
temporarily an incomplete line of characters which are later to be trans-
ferred to the printer. The buffer is necessary because a Basic program can
LPRINT a part of a line terminated by a semi colon or comma to indicate
that the remainder of the line is still to come. In some circumstances the
TAB command can act in a similar manner. The part line cannot be passed
to the printer immediately because the printer can only output a complete
line, winding the paper forward to prepare for the next line as it does so.
Therefore, the part line is stored temporarily in the printer buffer until the
program LPRINTS the other part.

Many of the routines in Section B make use of the printer buffer to
pass data from Basic or the keyboard to the routines. The buffer is
convenient for this purpose because its location is fixed and the user is
unlikely to wish to use it for any other purpose when calling a machine code
routine.

13

Basic Program Area

If a microdrive is attached to the Spectrum the beginning of the Basic
program area must be determined by referring to the PROG system
variable which is located at 23635. In the absence of a microdrive the area
starts at 23755. In these comments it is assumed that a microdrive is not
attached.

The four line program P2.4 PRINTs the contents of the 18 locations
at the beginning of the program area as shown in figure F2.1. These 18
locations are used to hold the first line ie:

10 REM Peek program

Much can be learnt about the method of encoding programs by

studying figure F2.1.

@ REM Peek progras
2 FOR 1=23788 70O 23772
I PRINT 1 ,PEEK i

@ NEXT i

Program P2.4. A program to PRINT the contents of the first eighteen locations
in the program area.

s

23755 9
23756 i@
23787 14
23758 o)
23759 234
22762 f=jo}
23751 101
23762 101
2Z37H3 1@7
E37TH54 2
23755 133
23766 114
23767 111
=257686 165
23759 114
22778 g7
=3771 199
23772 iz
Figure F2.1, The form in which the line:

10 REM Peek program
is held in the program area.

The line number, 10, is stored in the first two locations in the form: -
line number = 256*PEEK first address + PEEK second address

Notice that the Z80A convention of multiplying the contents of the
second address by 256 and adding it to the contents of the first is not
applied.

14

L —

The convention is applied to the next two locations, 23757 and 23758
which together hold the length of the remainder of the line starting at
location 23759. The number stored in this case is:

14+256*0=14
Hence the next line starts at location:
23759+ 14=23773
Location 23759 itself holds the number 234 which is the character code of
REM. The next 12 locations hold the character codes of the eleven letters
and a space in the title:
Peek program

Finally location 23772 contains 13 which is the code for the ENTER
character indicating that this is the end of the line. Table 2.2. summarises
the method of encoding programs in the program area.

Locations Contents

land2 line number stored in the reverse order to the Z80A
convention

Jand 4 length of the line excluding the first four locations.

5 the command code.

Final the ENTER character, number 13.

Table 2.2. The method used to encode program lines.

An item which is omitted from the table is a description of the method
which is used to store values occurring in the program. The method can
be explored by substituting the line:

I0LET a= 1443
in program P2.4 Figure 2.2 shows the result of RUNning the program in
this form.

<)

P

BRROW -

pamga@pmmmpmmmaww@
0]

(B

0]

Figure 2.2, The form in which the line:
I0LETa= 1443
is held in the program area.

15

Locations 23755 to 23758 are as before. They are followed by the
codes for LET,a, = and the four digits in turn which together form the
number 1443, The next item in location 23766 is 14, the character code which
indicates that the subsequent five locations hold the number 1443 in
numerical form. The line is terminated at location 23772 by the ENTER
character as before.

Five Byte Numeric Form

Five memory locations are used to store each number which appears in a
Basic Program (except line numbers as we have already seen). Whole
numbers between — 65535 and 65535 are stored in a manner akin to the
ZBOA convention. For these numbers the first two locations and the last
each contain zero and the third and fourth hold the number in the form:
number = PEEK third location + 256*PEEK fourth location
Thus, for example, 16553 is held in five locations as:
00 169 64 0
because
169 + 256*64 = 16553
Non-integer numbers are held in floating point form as a exponent in
the first location and a mantissa in the following four ie:
number = mantissa * 2" exponent
The first location of the mantissa is also used to determine the sign of
the number. If the location contains a value in the 0 to 127 range the
number is positive, if not it is negative.
Program P2.5 can be used to reconstruct a non-integer number from its
five component values.

1@ PRINT “Enter th2 expsnsnt 3
3d the fousr bytes Of The #antiss
3. ALL 2ntries to Lie between 2
snd 255 inctusiva™

2@ INPUT e.a,b,x.d

38 PRINT ., Exgfronent ;2

r‘-.‘E FRINT "Mantissa = “,a,,b,.,c
28

SO PRINT ,,"The number = " iZ2%
{3<125) -1) £21T {2 =160 £ Sexia+l

d1

=3
{(=
SB8#(a<128)) +b) *256+C) ¥256+d.
Program P2.5. This program reconstructs a non-integer number from its five
component values.

The Variables Area

The variables area starts at the location held in the VARS system variable
which is itself held at 23627. Whenever a new variable is declared either
in a program or from the keyboard an appropriate amount of space is
created for it in this area.

16

All variable names must begin with a letter and no distinction is made
between upper and lower case. These restrictions enable the Spectrum to
manipulate the character code of the leading letter of each variable so that
it can distinguish the six permitted types of variable by inspecting the
range within which the code lies. All numeric variables with single character
names, for example, have codes in the range 97 to 122; the letter a being 97;
b being 98; ¢ being 99 etc. Similarly, numeric arrays have codes in the
range 129 to 153; a being 129; b being 130; ¢ being 131 etc. The code
ranges are summarised in table 2.3. The length of each type of variable is
also shown in table 2.3.

Variable type Character code range Length in variables area
Numeric (single 97to 122 6

character name)

Numeric (multiple 161 to 186
character name)

Numeric array 129to 154

5+ name length

4 4+ 2* number of dimensions +
5* total number of elements

Control variable 225 to 250 18

of a FOR-NEXT

loop

String 651090 3 +string length

4 +2* number of dimensions +
total number of elements

Character array 193 to 218
Table 2.3. Variables, the range of character codes and the variable lengths.

ROM Routines

Some of the routines in Section B use routines in the ROM as follows:

rst 16
PRINT the contents of the accumulator
call 3976

Insert the character held in the accumulator at the address in RAM held in
the hl register pair.

call 4210
Delete one character at the address in RAM held in the hl register pair.

call 6326
If the accumulator holds the number character (14) set the zero flag and
increment the hl register pair five times.

call 6510
Return in hl the address in RAM of the line whose line number was passed
to the routine in hl.

17

3. Z80A MACHINE LANGUAGE

This chapter opens by explaining some of the more important words like
bit, byte, address and register, which are taken for granted in the remainder
of the book. The number and variety of the ZBOA registers is then examined
with particular reference to a small number of example instructions.
Finally a summary of the instruction set is presented.

Perhaps the most difficult aspect for the newcomer to machine code
programming is the number of new words and concepts which must be
absorbed. Therefore before embarking on the main part of the chapter
let us examine one instruction as an example of what is to come. Consider
the following compound instruction which is to be found in many of the
routines in Section B:

Id hl (23627)

The instruction is read as load the hl register pair with the bytes
held at addresses 23627 and 23628. Each of the words in italics is explained
in more detail in this chapter.

The instruction is conveyed in the form of three decimal numbers—42,
75, 92. The first number means:

Id hl, ()
ie. load the hl register pair with the contents of two consecutive memory
addresses. The addresses in question are specified by the second and third
numbers using the calculation:

lower address = first number + 256*second number
higher address = lower address + 1

or in this case:

lower address = 75+256*92= 23627

higher address = 23627+ 1= 23628

The word load is just another way of saying copy and h and | can be
thought of as two special locations within the Z80A which are used for
holding numbers. Thus the whole instruction means copy the contents of
23627 into register | and 23628 into register h. Notice that the fower address
is the source for /and the higher address is the source for A.

Bits

A bit is the fundamental unit of computer memory because it can exist
in only one of two states. The two states can be thought of as representing
ON or OFF; TRUE or FALSE; YES or NO; UP or DOWN; MALE or
FEMALE or any other pair of logically opposite conditions. The mechanism
by which a computer memory works is not really important to us but in
the Spectrum the state of a bit is memorised by setting a microscopic
solid-state switch either ON or OFF as appropriate.

The usual notation is to think of one state as the ZERO state and the
other as the ONE state. A bit is considered to be ‘set’ when it is in the

18

state representing ONE and to be ‘reset’ otherwise. This notation allows us
to speak of a given bit pattern in terms of its binary equivalent and by
converting the binary number to a decimal each bit pattern can be given
a unique positive integer decimal number.

For example consider 8 bits of which the rightmost four are set and the
four leftmost are reset. Such a bit pattern is illustrated in table 3.1,

Switch Off Off Off Off On On On On
Setting Reset Reset Reset Reset Set Set Set Set
Binary Pattern 0 0 0 0 | 1 1 1
Bit Number 7 6 5 4 3 2 1 0

Table 3.1. A group of 8 bits with the leftmost four reset and the rightmost
Jour set,

The binary pattern can be converted to decimal if it is remembered that, in
a binary number, the rightmost column is the units column; the next to the
left is the twos column; the next to the left again is the fours column and so
on, doubling at each move to the left. The decimal equivalent of 00001111 is
therefore:
0*128 +0%*64 +0*32+0*16+ 1*8+ 1*4+1*2+1*] = 15

because there is 1 in each of the ones, twos, fours and eights columns and
0in the remainder.

It is obviously inconvenient to refer to bits as ‘the rightmost’ or as ‘the
second from the left’ and so the convention is adopted of numbering the
bits from the right starting at zero. It is not entirely coincidental that
when this convention is used the bit number is also the number to which
2 must be raised to give the value of the column.

je 28t mumber — oolumn value

Bit 3, for example, appears in the eights column and 2°* = 8.

Bytes

The Z80A microprocessor which lies at the heart of the ZX Spectrum
operates on eight bits at a time. (The term ‘“‘operates’’ covers all the different
tasks which are built into the instruction set like addition, subtraction,
rotation, logical AND etc. The form of these instructions is explained in
detail later in this chapter). Thus although a bit is the fundamental unit of
computer memory, bits are usually manipulated together in groups of eight.
These groups of eight bits are called a byte (pronounced bite).

Each of the bytes in RAM can be used to hold a single positive whole
number lying between 0 and 255 inclusive by setting or resetting the eight
bits in the byte according to the binary equivalent of the number. The byte
in table 3.1 for example, holds decimal 15.

There are 16384 bytes in the read only memory (ROM) in the ZX
Spectrum and it is the contents of these bytes together with the electronic
organisation which give the computer its characters. The contents are

19

imprinted in the ROM when the Spectrum is manufactured and cannot
subsequently be changed. It is for this reason that the memory is called
read only memory—the contents can be read but they cannot be overwritten.

The unexpanded Spectrum contains a further 16384 bytes of random
access memory (RAM). The term random access is something of a misnomer.
It does not mean that memory is used haphazardly, rather it means that
any byte can be reached (ie accessed) immediately at any time. This facility
contrasts with those of a sequential access memory like a cassette tape for
which it is necessary to move along the memory medium until the particular
portion required is reached.

To the uninitiated, 16384 does not seem to be a convenient number of
bytes to use. In fact it is a very convenient number because 2'* = 16384
(ie 16384 is equal to 2 multiplied by itself 14 times). In the computer world,
powers of 2 are ‘'round numbers' just as powers of ten—hundreds,
thousands, millions—are ‘‘round numbers’' in everyday life. A particularly
important ‘‘round number”’ is 1024 which is 2 to the power of 10. 1024 is
sufficiently close to one thousand to justify using the letter K to represent it.
(K is used for a thousand in the metric system as in kilogramme—Kg,
kilometer—Km etc). Thus 1024 is written as 1K and 16384, which is 16 x 1024,
is written as 16K.

Addresses

A computer must be able to identify each location in its memory so
that it may copy to and from the right location. Hence each location
is given a unique address. An address is a positive whole number,
greater than or equal to zero.

Many of the ZBOA instructions are of the form ‘‘copy the
contents of the following address into such-and-such a register or
register pair’’. The instruction:

Id hl, (23627)
which was described at the beginning of this chapter is of this form.
The address following the instruction is held in two bytes and so the
number of locations which the processor can access uniquely is limited
to the number of addresses which can be held in two bytes. This number is
the same as the number of different bit patterns which can be adopted by
the 16 bits which make up the two address bytesie 2'® = 65536,
A two byte address is interpreted in the form:

address = first byte + 256*second byte

The two bytes are sometimes called the low and high bytes respectively.
The two byte form of 16384 for example (the beginning of RAM in the
Spectrum), is low byte = 0; high byte = 64 because:

0+ 256*64 = 16384

The Z80A Registers

A computer does not alter the contents of memory directly when it is
executing a program, rather it copies the contents of a location in memory
1
20

1 —=.

into a register and operates on the contents of the register. Registers have
a similar function in machine language to that of variables in Basic in
that they are used to store numbers and can be used to control & decision.
They differ from Basic variables in that they are limited in number
and they exist within the processor itself and not in RAM. Also they only
hold one byte, or two bytes in the case of a register pair.

The Z80A is a powerful microprocessor because it has several registers
and so it can hold several numbers at once thereby reducing the need to
make time-consuming transfers between the processor and memory. Most
of the reg'sler;have one or more special features.

The Accumulator Register—a

The accumulator is the most important register because most of the arith-
metic instructions, addition for example, and the logical instructions, eg
logical OR, operate on the contents of this register. In fact it gains its name
because the result of several succesive operations accumulates in the a
register.

Some of the instructions which refer to the accumulator use a second
register or a memory address as a source of data. For example, add a,b
instructs the processor to add the contents of the b register to the a register,
leaving the result in a.

The Flag Register—f

Most of the registers occur in pairs in the sense that some instructions
operate on two registers together. The f or flag register is paired with the
a register in this sens¢ although the link is rather tenuous because it is
limited to the push, pop and exchange instructions.

The f register is rather different from all the others because the eight
individual bits in the register are used as so-called flags to record and
control the sequence of program execution. Each flag is used to indicate
that either one of two logically opposite events has occurred, for example
the zero flag indicates whether the result of the last addition, subtration etc
was zero. Only four of the eight flags are of interest to most users. Their
features are summarised in table 3.2.

The Sign flag is the simplest. By convention if a byte is being used
to represent a signed number then bit seven is used to hold the sign, being
set when the number is negative and reset otherwise. The sign flag reflects
the sign of the last result.

The Zero flag is set if the result of the last operation is zero. It is also
used by comparison instructions which are in effect subtraction instructions
for which the result is discarded.

The carry flag records the overflow which occurs if the result of an
addition is too large to record in the register and if a ‘‘borrow'’ occurs on
subtraction. There are also some rotation instructions in which the bits in
a register are rotated to the left or to the right with bit 7 and 0 being
rotated to or from the carry flag.

21

Flag Mnemonic Mnemonic Use

when resel
Sign M P Set when the last result is
negative.
Zero Z NZ Set when the last result is

zero or a match occurred.

Carry C NC Set when the last result is too
large to be fully recorded in
one byte (or two bytes for
operations on register pairs).

Parity/Overflow PE PO Parity—set when the last

result had odd parity.
Overflow—set when an
operation changes bit seven
as a result of an overflow
from other bits.

Table 3.2. The four flags which control most of the operations of the Z80A.

The Parity/Overflow flag is really two flags in one. It is used as an
overflow flag by arithmetic instructions to indicate if bit seven has
been affected by a carry or a borrow generated by bit six. It is therefore
used to check if the sign bit has been corrupted. Logical instructions use
the same flag to indicate the parity of the result. (The parity of a binary
number is the number of bits set to one. If the number is even the parity is
said to be even, if it is odd, the parity is said to be odd). The flag is set if the
parity of a result is even.

The effect of some instructions depends on the current setting of
particular flags. For example the instruction:

jrz,d
causes the Z80A to jump over the next d instructions if the zero flag is set.
If the zero flag is not set the processor executes the next instruction
in sequence as usual. Thus the flag register is important because it allows the
processor to make decisions and branch to another part of the program.

The Counting Registers—b and ¢
The b register and to some extent the ¢ register with which it is paired is
available for a number of purposes but its most important use is as a
counter. We have already seen how the flow of a program can be controlled
by the use of the zero flag in the jr z,d instruction. Another instruction:
djnzd

also use the zero flag to allow loops to be constructed in machine
code using b as a counter in an analogous fashion to FOR-NEXT loops in
Basic.

When the instruction is encountered the Z80A decrements the contents
of the b register, ie reduces the contents by one. If the result is zero then

22

the next instruction in the sequence is executed. If the result is not zero
the routine jumps d instructions. If the programmer uses a negative
value for d the jump goes back earlier in the program and assuming there
are no other branches, the processor will eventually encounter the same
instruction again. Thus by loading the b register with a suitable value
initially and setting the displacement, d, appropriately, a section of code
can be executed a given number of times.

The b register holds one byte only and so it can be set to any
number between 0 and a maximum of 255. Hence at most 255 pages can be
made through the same section of code using this mechanism.

There are no similar facilities for making more than 255 passes
through a loop, but there are a limited number of very powerful instructions
which use all 16 bits of the bc register pair as a counter up to 65535.
An example is the instruction:

cpdr
When it is encountered the Z80A:
1) decrements bc by one;
2) decrements the contents of hl (hl is another register pair)—see below:
3) compares the contents of the accumulator, a, with the contents of the
location in memory whose address is held in hl.

The processor repeats these actions until either a match is found
between a and the memory contents or until bc =0. Thus this instruction
can be used to search through memory for an address containing a particular
number,

The Address Register—de and hl

The d and e registers do not have any individual function and are mostly
used as temporary, rapidly accessible memory. They may also be used
together to hold the address of a location in memory which is currently
of interest.

The main function of the h and | registers is together to hold the
address of a location in memory and we have already seen how certain
powerful instructions make use of hl for this purpose. h stands for high
byte and | stands for low byte and the address is held in the form:

address =256*h + 1
giving a maximum of 65536 unique addresses (ie 0 to 65535 inclusive).

The Index Registers—ix and iy

The ix and iy registers are each 16 bit registers and can only be used as
such, in contrast to the bc, de and hl registers which we have met so far
which can be used in pairs as 16 bit registers or individually as 8 bit
registers. ix and iy are generally used in a similar fashion to the hl
register pair although the instructions which drive them require one more
byte of storage compared to the equivalent hl instructions.

23

For example:

add hl,be
is a one byte instruction which causes the Z80A to add the contents of the
hl and be register pairs and leave the result in hl. The same instruction using
xie:

add ix, bc
is a two byte instruction.
ix and iy have one further property which is not available to hl and that is
that they can be used with a displacement, d. This means that an instruction
which references (ix + d) does not use the memory location whose address
is held in ix. Rather d is added to the value in ix to give a new
address and the instruction then uses the corresponding memory location.
It is this property which leads ix and iy to be called index registers.

The Stack Pointer—sp

The stack is an area at or near the top of RAM which is used for the
temporary storage of the contents of pairs of registers. It is designed
to grow down the RAM as it is filled and to shrink back up the RAM as
it is emptied. The bottom of the stack is fixed and, in the ZX Spectrum, it
lies immediately below the location pointed to by the RAMTOP
system variable. The top of the stack is below the bottom of the stack
because it grows downwards and shrinks upwards. The address of the
current location of the top of the stack in the sp register.

Transfers to and from the stack are made by means of push and pop
instructions. For example:

push hl
causes the processor to:
1) decrement sp;
2) copy the contents of h to the location pointed to by sp;
3) decrement sp;
4) copy the contents of | to the location pointed to by hl.

The pop instruction is the exact reverse. In this manner the most
recent pair of values pushed on to the stack are always the values which are
popped off again. This provides a simple and convenient method of
storing the contents of registers temporarily, perhaps whilst a subroutine
is called. Provided the register pairs are popped in the reverse order to that
in which they were originally pushed, no problems will arise.

The Program Counter—pce
The program counter, pc is 4 very important 16 bit register because it holds
the address in memory of the next instruction to be executed.
The normal flow of events when an instruction is executed is as follows:
1) Copy the contents of the location pointed to by pc into a special register
within the processor.

24

2) If the instruction is held in several bytes, increment pc and copy the
contents of the next location into a second special register.

3) Increment pe so that it points to the next instruction to be executed.

4) Execute the instruction which has just been copied in.

A jump instruction such as djnz d or jr 2, d alters the normal flow of
events by altering pc during step 4). Note that this alteration occurs after
pc has been incremented so the value of a displacement, d, should always
be calculated relative to the position of the instruction following the ane
containing the displacement.

The Exchange Registers—af’, be’, de”hl’

The ZBOA possesses duplicates of each of the a,b,c,d,e,h and | registers.
The duplicates are distinguished by the use of a prime, for example a’
is the duplicate a register., No instructions operate on these duplicates
directly but exchange instructions are available to swap two or more
registers out of use and to bring their duplicates into use in their stead.

Exchange instructions are executed very rapidly, much more rapidly
than push and pop instructions for example. The contents are not physically
copied from one register to the other. Rather a set of internal switches are
changed so that the prime register is used by subsequent instructions and the
original register becomes dormant.

About the Instruction Set

There are more than 600 elements in the Z8BOA instruction set as listed in
appendix A. As there are only 256 different arrangements of 8 bits (because
2% = 256) less than half the insructions can be held in one byte. The
remaining instructions are held in two or even three bytes. The first byte of
a two byte instruction is either 203, 221, 237 or 253 (CD, DD, ED, or
FD in hexadecimal). The first two bytes of a three byte instruction are
either 221, 203, or 253, 203, (DD, CB or FD, CB in hexadecimal).

Some instructions are followed by a one byte displacement, d, or a one
byte number, n, or a two byte number or address, nn, to which the
instruction refers. In this way a single instruction can occupy as many as
four bytes in total. For example the instruction:

jrnz,d
which we have already met requires one byte to hold the instruction itself
(32 in decimal, 20 in hexadecimal) and a second byte to hold the displacement,
d.

In this chapter all instructions are referred to by their assembly
language mnemonic or Op Code. The mnemonics are an abbreviated way of
describing each instruction and are for human convenience only. The
Spectrum will not recognise the mnemonics except through the medium of
an assembler program.

Certain conventions are followed as listed here:
1) Single registers are referred to by their letter eg b. Register pairs are
named in alphabetical order eg bc.

25

2) A displacement, d, is taken to be positive if it lies in the range 0 to 127
and negative if it lies between 128 and 255. Larger or smaller numbers
are not allowed.

The negative value is calculated by subtracting d from 256. For example
the unconditional relative jump instruction:

jrd
causes a jump forward 8 bytes if d= 8 and a jump backwards 8 bytes
if d = 248 (=256 - 8). Remember when calculating a displacement that a
jump is made from the address of the first byte following the instruction.

1) A single byte number, n, lies in the range 0 to 255 inclusive.

4) A two byte number or an address is represented by nn and lies in the
range 0 to 65535 inclusive. The value is calculated by adding the first
n to 256 times the second.

5) nn in brackets — viz (nn) — means ‘‘the contents of the location at
address nn”’, whereas nn without brackets means ‘“‘the number nn"".
Thus

1d hl, (23627)
means load the hl register pair with the contents of locations 23627 and

23628 whereas:
1d hl, 23627

means load hl with the number 23627. Similarily (hl) means ‘‘the contents
of the location at the address held in hl’* whereas hl without brackets
means ‘‘the number in hl"’.
The destination of the result of an instruction is always given first. For
example:

adda,b
means ‘‘add the contents of b to the contents of a and leave the result in a.

6

Glossary of Machine Code Instructions

This section presents a summary of most of the Z8OA instruction set, Some
of the more specialised instructions for dealing with interrupts etc have been
omitted.

No Operation nop
This is the simplest instruction and as its name implies the processor does
nothing when it is encountered. It can be very useful when debugging a
routine because it can be substituted temporarily for a suspect instruction
without altering the functioning of the remainder of the routine. It can also
be used to plug gaps introduced when making small alterations to existing
programs or to cause a delay in execution particularly if it is incorporated
into a suitable loop. The decimal code is 0.

Load Id
Load instructions are used to move one byte or two bytes between registers
and between registers and memory. There are more than one hundred

26

different load instructions which is more than any other single class. They
fall into eight groups:
1) 8 bit register to register.
The contents of any of the registers a,b,c,d,e,h, or I can be copied to one
another.
2) B bit memory to register.
(hl), (ix +d) or (iy + d) can be copied to any of the registers a,b,c,d,e,h or L.
(bc), (de) or (nn) can be copied to a.
3) B bit register to memory.
a, b, c, d, e, h or I can be copied to (hl), (ix+d) or (iy+d). a can be
copied to (bc), (de) or (nn).
4) B bit register to memory immediate.
An immediate is a number read from the program itself rather than from a
register or from another address in memory. A number, n, can be loaded
intoa, b, c,d, e, h,1, (hl), (ix + d) or (iy + d).
5) 16 bit register to register.
The contents of hl, ix or iy can be copied to sp.
6) 16 bit memory to register.
(nn) can be copied to be, de, hl, ix, iy or sp.
7) 16 bit register to memory.
bc, de, hl, ix, iy or sp can be copied to (nn).
8) 16 bit register immediate.
nn can be loaded into be, de, hl, ix, iy or sp.

Push and Pop push, pop
A push instruction copies the contents of a named 16 bit register to the stack
and decrements the stack pointer twice. A pop instruction does the reverse
S0 thg two instructions can be used to save register values and re-load them
later in the program. The register pairs af, bc, de, hl, ix and iv can each
be pushed and popped.

Exchange Pt

Exchanges can be made between hl and de, hl and (sp), ix and (sp), iy and
(sp): af and af’ and between bedehl and bedehl’ (a single instruction swaps
all six 8 bit registers).

8 Bit Add and Subtract add, sub, etc

a,b,c,d, e h, !. (hl), n, (ix + d) and (iy + d) can be added or subtracted to or
from the a register with or without the carry flag. Instructions involving
the carry flagend inc.

8 Bit And, Or and Xor and, etc
a, t.), ¢, d.lc. h, I, (hl), n, (ix+d) and (iy + d) can be combined with the a
register using any of the three logical operators. And sets each bit in the
rn_asult which was set in both sources; Or sets each bit which was set in
either or both sources and Xor sets each bit which was set in one or other
source but not those which were set in both.

27

Compare cp
Compare is like subtract except that only the flags and not the contents of a
are affected. a, b, ¢, d, e, h, 1, (hl), n, (ix + d) and (iy + d) can be compared
with the accumulator.

8 Bit Increment and Decrement inc, dec
a, b, c,d, e, h,l, (hl), (ix +d) and (iy + d) can be incremented or decremented.

16 Bit Increment and Decrement inc, dec
be, de, hl, ix, iy and sp can be incremented or decremented.

16 Bit Add and Subtract add, sub, etc
be, de, hl, ix can be added with or without carry or subtracted with carry only
to or from hl. be, de, sp, ix can be added without carry to ix. be, de, sp and
iy can be added without carry to iy.

Jump, Call and Return

The flag register, f, contains a carry flag, c, a parity flag, p, which is

set if a result is even parity, a sign flag, s, which is set if a result is negative,

an overflow flag, v, which is set on overflow, and a zero flag, z, which is
set on a zero result. These flags can be used to control jumps, subroutine
calls and subroutine returns.

1) Jump jporijr
The following jumps to address nn are possible:
absolute jump (jp); jump on zero or not zero (jp z) and (jp nz); jump on
carry or not carry (jp c and jp nc); jump on positive or negative (jp p and
jpm); jump on p/v= 1orp/v=0(jp peand jp po).

The following relative jumps to an address d relative to the current
position are available where d is interpreted as lying in the range —128 to
127: absolute relative jump (jr); relative jump on zero or not zero (jr z
and jr nz); relative jump on carry or not carry (jr ¢ and jr nc).

Jumps can also be made to the addresses held in hl, ix or iy (jp (hl), jp (ix),
ip (iy)). The djnz instruction decrements the b register and jumps to d
if b is non zero.

2) Call call
This instruction serves a similar function to the Basic GOSUB command.
If the call condition is met then the program transfers to the instruction
held in address nn. The following calls may be made: absolute call (call);
call on zero or not zero (call z and call nz); call on carry or not carry
(call ¢ and call nc); call on positive or negative (call p and call m); call
on p/v=1or p/v=0(call pe and call po).

3) Return ret
This instruction serves a similar function to the Basic RETURN
command. Return conditions are available to match each call condition
and returns can also be made from the interrupt and the non-maskable
interrupt. (reti and retn).

28

Bit Instructions

The eight bits in each register are numbered from 0 to 7 from right to

left. Each of the following operations can be performed on the a, b, c,d, e,

h, I'registers and on (hl), (ix + d) and (iy + d).

1) Bit Test bit
The bit test instruction sets the zero flag to the opposite of the setting of
the named bit. Any bit can be tested.

2) Bit Set set
Any bit can be set.

3) Bit Reset res
Any bit can be reset.

4) Rotate Left rl

Bit 7 is_copied to the carry, the carry is copied to bit 0 and all other bits
are copied one place to the left.

5) Rotate Right m
Bit 0 is_copied to the carry, the carry is copied to bit 7 and all other bits
are copied one place to the right.

6) Rotate Left Circular rle
Bit 7 is copied to the carry and to bit 0. All other bits are copied one
place to the left.

7) Rotate Right Circular e
Bit 0 is copied to the carry and to bit 7. All other bits are copied one
place to the right.

B) Shift Left Arithmetic sla
All bits are copied one place to the left, bit 7 is copied to the carry and
bit O is reset.

9) Shift Right Arithmetic sra
All bits are copied one place to the right, bit 0 is copied to the carry and
bit 7 is copied to itself.

10)Shift Right Logical srl
As shift right arithmetic but with bit 7 reset.

Rotate Left Digit rld

Bits'O to 3 of A are copied to bits 0 to 3 of (hl); bits 0 to 3 of (hl) are copied
to bits 4 to 7 of (hl); bits 4 to 7 of (hl) are copied to bits 0 to 3 of a.

Rotate Right Digit rrd

Bits- 0 to 3 of a are copied to bits 4 to 7 of (hl); bits 4 to 7 of (hl) are
copied to bits 0to 3 of (hl); bits 0 to3 of (hl) are copied to bits 0to 3 of a.

Accumulator Operations

1) Complement a cpl
Every set bit of a is reset, every reset bit is set.

2) Negatea neg

Complement a and add one.

29

3) Complement carry cpl
Sets the carry flag if it is reset, resets it otherwise.

4) Set Carry scf
Sets the carry flag.
5) Decimal adjust daa

Corrects a after bed addition and subtraction.

Restart
Save the program counter on the stack and jump to location 8*n where n is
held in the byte following.

Block Handling
These compound instructions are designed to move data or to search for
data in memory.

1) Load and increment Idi
Move one byte from (hl) to (de). Increment hl and de and decrement bc.
2) Load, increment and repeat Idir

Move one byte from (hl) to (de). Increment hl and de and decrement
bc. Repeat until bc=0

3) Load and decrement Idd
Move one byte from (hl) to (de) and decrement hl, de and be.
4) Load, decrement and repeat Iddr

Move one byte from (hl) to (de) and decrement hl, de and bc. Repeat
until b =0.

5) Compare and increment cpi
Compare a and (hl). Increment hl and decrement bc.
6) Compare, increment and repeat cpir

Compare a and (hl). Increment hl and decrement bc. Repeat until
a= (h)orbe= 0.

7) Compare and decrement cpd
Compare a and (hl). Decrement hl and be.
8) Compare, decrement and repeat cpdr

Compare a and (hl). Decrement hl and bc. Repeat until a = (hl) or be=0.

30

Section B

31

32

4. INTRODUCTION

The 40 machine code routines in Section B are listed in a standard format
for ease of use. This introduction explains the format and presents a BASIC
program which can be used to load the routines into memory.

Length:
This is the length in bytes of the routine.

Number of variables:
The execution of some of the routines can be controlled by altering the
values one or more variables passed to the routine via the printer buffer.

Check sum:

Each routine is presented as a sequence of positive whole numbers to be
POKEd into successive locations in memory. The check sum (ie the sum of
all the numbers forming the routine) is given so that the user can ensure
that he has loaded the routine correctly.

Operation:
A brief explanation is given of the task performed by the routine.

Variables:
The names, length and location in the printer buffer of each variable are
defined. A variable which is one byte long must be a positive whole number
between 0 and 255 inclusive and is passed from BASIC or from the
keyboard by using:
POKE location, value
A two byte variable is passed using two commands:
POKE location, value—256*INT (value/256)
POKE location + 1, INT (value/256)
The locations used are in the printer buffer.

Call:
Routines are called using the USR function which must be incorporated
into a command. If the machine code routine does not pass a value back to
BASIC on completion then the RAND command is recommended as in:

RAND USR address

If the value in the be register pair is to be returned then either:

LET A = USR address
or

PRINT USR address
is recommended depending on whether the value returned is to be stored in
a BASIC variable or PRINTed on the screen.

33

Error Checks:
The checks made by the routine for illogical or conflicting variable values

etc are explained.

Commenis:
Simple variants on the main routines are explained.

Machine Code Listing:

The routine is presented in assembly language with the absolute form in
the third column headed ‘‘Numbers to be entered’’. To load the routine the
numbers in the third column are POKEd in sequence into memory. All the

numbers are in decimal.

How it works:
The mode of operation of the routine is explained with references to the
machine code listing.

Machine Code Loader

Almost all the machine code routines in this volume are relocatable
meaning that they will function correctly no matter where in RAM they are
located. If a routine is not relocatable then the comments paragraph
explains how it must be altered if it is to be stored at a location other than
that intended for it.

We have seen in Section A, chapter 2 that the Spectrum uses various
parts of RAM for different functions and that the area between the
locations pointed to by the RAMTOP and UDG system variables is intended
for the storage of machine code routines.

Program BP can be used to load, alter and move a machine code
routine. With it the user can reset the RAMTOP pointer to give more
space for a routine; enter a routine from the keyboard; step forwards or
backwards through the routine to correct an error and insert or delete parts
of the routine.

When the program is RUN it PRINTS the lowest address at which a
routine can be stored, ie one more than RAMTOP, and the amount of space
available between that address and the end of RAM.

In the 16K machine the lowest address is 32600 unless the user has
altered the RAMTOP system variable. Similarly in the 48K machine the
lowest address is normally 65368.

The 168 bytes at the end of RAM are normally reserved for user
defined graphics characters but the program allows the user to overwrite
this area if he wishes. Alternatively he can choose a new lowest possible address
which the program then puts into the RAMTOP pointer using the CLEAR
command. The program will not accept an address lower than 27000 because
the routine would then trespass on the space required by the program itself.
The program asks for the address at which the routine is to start. Thus the

7

user can reserve space for several r
separately.

. Having given the user an opportunity to ; :
okiorbd 32%0(;5%)' \r\fhen the ““Screen Invert™’ routine has been loaded at
OF fhe &l Sreae :md ::h 1rst_col_urun is the address, the second is the contents
is 18 bytes long and ¢ third is the check sum. The “'Screen Invert”* routine
33000 0 32017 and the chick sum Tor loet e aore icopies locations
contents of Iocations 32000 to 3261;?" i?r]étlagauon 32017, ie the sum of the

locm?:;’:eg the main displ"ay is shown the user’s attention is drawn to one
o cgat_:sfr the 'dc_cuma] contents FLASH. It is called the current
st ca;::ean initally it is the selected start address of the routine. The
et ot i;s:a \\;‘hole number be‘tween 0 and 255 inclusive which the pro.gram
e oll e current loqallon and then the following address becomes
b t;;n;];;at&pn.[lnbthls way an entire routine can be POKEd into
s isplay bei i
g play being updated, and scrolled if necessary, at each
T
he user may choose not to enter a number but to select an option from

those summarised in table BT i iliti
L iy Tl instead. These facilities allow corrections to

outines and then load them each

if he is not
shows the

Code Option

b s

i Move the current location backwards by one address

. mber Move the current location backwards by number addresses

s Mave the current location forwards by one address

. mb er Move the current locations forwards by number address
um :

er Inserlt number bytes each containing zero at the current
location.
d number Delete number bytes at the current location.
t Terminate program.

Table BT1. Options available for editing machine code.

Program BP. Machine Code Loader

192 GD SUB i1
200 R
-«failhtsﬁ ¥xx¥*Calculate memory 3

=]

210 LET in= S73
E-’;ﬁ.gS?SJ. Nin=1+PEEK Z23720+2563%PE
e LET P=PEEK Z53753Z+256%PEEK 2
23@ LET t=p-min+i
408 REM xx¥*3Get st

+

* art_a
_ld.ia"l_w:jzﬁT J:suest POSsi b?grgigr
fufe L™iDg.."Maxinuw space avai
428 INPUT “Do U w1

5 Wish to chan:
;)122__}g:eststart sddress iy 2?3

35

430 IF z$="Y" OR Z&="y" THEN GO
+o Foee
. 3 INPUT “Enter addl'25§ at Il‘hi
Ci‘t‘lgﬁ start Lt0adang machineg £DdE
1E3 IF a<min OR a>p THEN BEEP .
2.24: GO TO 440
s@@ GO sustaaaa i
S1@ LET t S+min L
5%@ FERINT “YouU <an use uF 1o -
S i
Y oPP LSS L LhkEK 23675+2SBXPEEK 2
=57
818 IF a<u AND u<p THEN PRINT
If uou use more than Tou- byt
2=, yYyou wWwitl ove:g;;;: the user
g d 9raphics e)
d%é%“%F gs PP IREN PRINT “You wil
Dverwiite the use; defined 9173
igs area.’ 5 P 5
&8 INPUT “fs that OK (¥ of M)
25%%F zs="N" OR z$="pn" THEN GO
F200 gl
SE@ IF Z&csU YD AND Z§crUy" THEN
EEP .2,2¢ GO TO S5&0

5 -
708 RERM **t**BQ ahead &ainnd Load

Z8@ INPUT "Enter number.5.f,i,d
2'--tIF z§-~" THEN.BEEP .Z2.24: B

TER .
LET ag$=CHR§$ (CODE ZHiII)-32¥
1Y 2"EY) -

GO TO SePB+200#(ag="B" 3+SB§*
"F"J+¢E@*ta$—"1"l+59@#(a$— &)

HB@*(a§='T'J

2@ IF x <@ OR x>255 OR 1<>INT R4
THEMN EEE& .2:;24: GO TO 758

40
ig@@ REM &****HQV& forwasds

1@1@ LET iL=iL-1 .
lSEB IF LEN Z%>31 THEMN LET it=t+1l-

W T 1
1230 IF léa IHEN LET L=a
@48 GO T

il@a REM *#%¥¥MOveE backwards

113189 LET Ll=t+1
1129 IF LEN zs>1 THEN LET L=L-1+
UAL ZHl2

p o
1138 IF L:>p THEN LET L=p
1id4@ GO TO 740

e 1 REM s #*¥%Inserl

lggg IF LEN Zz$=1 THEN LET n=1: G
2 TS 1236 f
izS@ LET n=VUAL Z§f= 7O ¥: IF n<l

36

CR_N:p-L DR n<¢3INT n THEN BEEP
2.24: GO TO
225 CLS : GO SUB Bie@e: PRINT TA

2 2
25
6; "INSerting in pProgress-
@
49

= FOR j=p TO L+h STEP -1
2 ﬁgKE J.PEEK (j-n)
X J
FOR J=L TO L+n-1
POKE' j.,@
NEXT

J
GO TO 74@
REM xxx¥¥Delete
IF LEN Z$=1 THEN LET n=1: G

1228 LET n=u

3 N=VAL z&{2 TO 1: IF n<2
OR Nnsp-1L OR N<sINT n THEN

;g;g*iFGg 500549 iz

133 < nxp-1 THEN B -

Siie: oo 10 25ze’F i
4@’ : SUB 5188: PRINT TR

B E;"Delating in progress™

1350 FOR =L TO p-n

136D POKE J,PEEK fg4n3

1370 NEXT

1350 GO To' 74w

iiP@ STOP .

ggg%egﬁznr AT 21,7;"Progras term

13&8 sTOP

7ag EM :xs#¥Reset RAMTOP

5?}9 INPUT “Enteér new start addr

Zoze IF 2¢270P@ OR a:p THE
.2,24: GO 70 v@ie T e

7a38 CLEAR 2-1

Ta4d@

2338 SO

3188 CLS

211@ PRINT TAB 6:“Machine code |

o3 g P

5120 RETURN

S208 REM ****%Prznt men

5210 GO SUB 810 S

220 PRINT ”ﬂdd.ess Decimal
CTheck sum™

S538 LEF it

8 @ S=L=-8: IF s¢a THE =
==3: GO TG 8sz&8@ BN LET
5250 FOR a:a TO s -1

E250 LET c=c+PEEK

8278 NEXT J

a§sg LET f=s+17: IF Fp THEN LET
5252 FOR ,j=s5 TO ¢

2538 L EoEreel

831] -5 +3 s TREB 12;
EEK J,TAS =22;c¢” O PRATRD %
3320 NEXT 4

S40@ LET pos=L-543
B%l? PRINT AT pos,12; FLASH 1;PE

5128 RETURHN

37

HMachine code loader

5. SCROLL ROUTINES

i Check sum .
regs DRESwAL 33 Scroll Attributes Left
23 b 34
%:‘?% l'i-i g; Length: 23
= @g; 2 3o Number of Variables: 1
229285 =4 ige Check sum: 1574
= [= =22 }34_'
2 Zss 299
& li-a-\ g%li Operation
:_% ii“é 7o This routine scrolls the attributes of all the characters on the screen left by
1 e g%g one character.
E‘: ié@ 266 = iabl
o 177 }1-:—.:. Variables
= ‘Q\‘E" iig—‘_; Name Length Location Comment
i Sé 1 is13 new attr 1 23296 The attribute to enter the
i rightmost column
. , the Machine Code loader when the Screen
Figure BF1. The display produced by
.’ngufrr routine has been loaded at location 32000. Call
RAND USR address
Error Checks
None
Comments

This routine is useful for highlighting areas of text and graphics. To scroll
only the top 22 lines the 24* should be changed to 22.

Machine Code Listing
Label Assembly language Numbers to be entered
Id hl, 22528 330 88
Id a, (23296) 58 0 91
Idc, 24 14 24+
next line Id b, 31 6 31
next char inc hl 35
Id e, (hl) 94
dec hl 43
1d (hl),e 115
inc hl 35
djnz, next char 16 249
Id (hl),a 119
inc hl 35
decc 13
jr nz, next line 32 242
ret 201

38

39
S e = e e e e e e —]

ow il works .
?he hl register pair is loaded with the address of the attributes ar;a_. 'l;:i
accumulator is loaded with the value of the :%lmbute to be en:elr_e :Il: 4
right hand column. The ¢ register ishlnaded with the numl?er o_f m'esl Done
scrolled, so that it can be used as a Ime. counter. The b register is set to
less than the number of characters per line, to be usedasa cc?ul:ttcr. .

hi is incremented to point to the next attribute a_nd this is Ioa_ded :luic;
the e register. hl is decremented and is lh.en POKEd with the .vaéue in eAmed
incremented again to point to the next a_ttrlbule. The b reg‘[sler is ECFT: no“:
and if it does not hold zero a jump is t‘na.de back to next charl. Sy
points to the right hand column, and this is POKEd with the va u_crz_r:n oo
accumulator. hlis incremented to point to the start of the next line. The s
counter in the c register is decremented. If the resultant value is not zero
routine loops back to ‘next line’.

The routine then returns to BASIC.

Scroll Attributes Right
Length: 23
Number of Variables: 1
Check sum: 1847

Operation :
This routine scrolls the attributes of all the characters on the screen right by

one character.

Variables : P s
Name Length Location "

y att 1 23296 The attribute to enter the
e left-most column.

Call
RAND USR address

Error Checks
None

Comments _
This routine is useful for highlighting areas of text and graphics. To scroll

only the top 22 lines change the 24* to 22

Machine Code Listing

Label Assemnbly language Numbers to be entered
Id hl, 23295 33 255 %0
Id a, (23296) 58 091
Idc, 24 14 24*

RS

next line Idb, 31 6 31
next char dec hl 43
Id e, (hl) 94
inc hl 35
1d (hl),e 115
dec hl 43
djnz, next char 16 249
Id (hl),a 119
dec hl 43
decc 13
jrnz, next line 32 242
ret 201

How it works

The hl register pair is loaded with the address of the last byte of the
attribute area. The accumulator is loaded with the value of the attribute
to enter the left hand column. The c register is loaded with the number of
lines to be scrolled, so that this can be used as a line counter. The b
register is set to one less than the number of characters per line, for use as a
counter.

hl is decremented to point to the next attribute. The value of this
attribute is loaded into the e register. hl is incremented, and is then POKEd
with the value in the e register. hl is decremented again to point to the next
attribute. The counter in the b register is decremented, and if this does not
hold zero the routine loops back to ‘next char’.

hl now points to the leftmost column, and this is POKEd with the value
in the accumulator. hl is decremented to point to the right end of the next
line. The line counter is decremented, and if this does not hold zero the
routine loops back to ‘next line’.

The routine then returns to BASIC.

Scroll Attributes Up

Length: 21
Number of Variables: 1
Check sum: 1591

Operation

This routine scrolls the attributes of all the characters on the screen upwards
by one character.

Variables
Name Length Location Comments
new attr | 23296 The attribute to enter the

bottom line,

4]

Call
RAND USR address

Error Checks

None

Comments

This routine is useful for highlighting areas of text or graphics. To scroll the
top 22 lines only, change the 224* to 160.

Machine Code Listing

R _—

Variables
Narne Length Location
new attr I 23296

Call
RAND USR address

Error Checks
None

Comients

Comments

The attribute to enter the
top line

This routine is useful for highlighti
! ghlighting areas of text and graphi
only the top 22 lines the following changes must be macle:g el

Label Assembly language Numbers to be entered
1d hl, 22560 33 32 88
Id de, 22528 17 0 88
Id be, 736 1 224* 2
Idir 237 176
Id a, (23296) 58 0 91
Idb, 32 6 32
next char 1d (de),a 18
inc de 19
djnz next char 16 252
ret 201

How it works

hl is loaded with the address of the second line of attributes, de is loaded
with the address of the first line and be is loaded with the number of
bytes to be moved.

The be bytes starting at hl are copied to de, using the ‘Idir’® instruction.
This results in de pointing to the bottom line of attributes. The accumulator
is loaded with the code of the attribute to be entered into the bottom line.
The b register is then loaded with the number of characters in one line, to be
used as a counter.

de is POKEd with the value in the accumulator, and then incremented
to point to the next byte. The counter is decremented, and if it does not hold
zero the routine loops back to ‘next char’. The routine then returns ta

BASIC.
Scroll Attributes Down
Length: 21
Number of Variables: 1
Check sum: 2057

Operation
This routine scrolls the attributes of all the characters on the screen down-
wards by one character.

42

223* 0159
255%* 1o 191
224%** 15 160
Machine Code Listing
Label Assembly language Numbers to be entered
Id hl, 23263 33 223* 90
Id de, 23295 17 255** 90
Id be, 736 | 224~ 2
Iddr 237 184
Id a, (23296) 58 0 91
ldb, 32 6 32
next char Id (de),a 18
dec de 27
djnz next char 16 252
ret 201

How it works

The hl register pair is loaded with the address of t i
2.3rd hne_z. de is loaded with the address of the lasitlEall:?:itbziglg:ltehgnzil}:
!mc. bc_ls loaded with the number of bytes to be moved. Then the ‘Iddr’
mstruct.mn moves the bc bytes ending at hl so that they end at de. This
results in de holding the address of the last attribute on the first line. i
The accumulator is then loaded with the value of i
!_he top line. The b register is loaded with the numbe:h:fall:t;ll:su;ﬁ Tl‘I::): I'::)Cpl'
line, to .be used as a counter. de is POKEd with the value in the accumulator
and ch'ls decremented to point to the next byte. The counter is decrememed'
and if it does not hold zero a jump is made to ‘next char’. :
The routine then returns to BASIC.

43

Left Scroll by One Character

Length: 21
Number of Variables: O
Check Sum: 1745

Operation
This routine scrolls the contents of the display file one character to the left.

Call
RAND USR address

Error Checks
None

Comments
This routine is useful when using the screen as a ‘window’ show_ng just a
small area of a larger display area. The ‘window’ being moved using scroll

routines.

Machine Code Listing
Label Assembly language Numbers to be entered
1d hi, 16384 330 64
Ida,l 85
Id a,192 62 192
next line Id b,31 6 31
next byte inc hl 15
Id e, (hl) 94
dechl 43
1d (hl),e 115
inc hl 33
djnz next byte 16 249
1d (h1),d 114
inc hl 35
deca 61
jr nz, next line 32 242
ret 201

How it works
The hl register pair is loaded with the address of the display file, and tt}e d
register is set to zero. The accumulator is loaded with the number of lines
on the scrren. The b register is set to one less than the number of characters
per line, as this is the number of bytes to be copied.

hl is incremented to point to the next byte, and the e register is loaded
with its value. hl is decremented and POKEd with the value in e. hl is

44

incremented to address the next byte, and the counter in the b register is
decremented. If this does not hold zero the routine loops back to ‘next byte”.

l_f the b register holds zero, the last byte of the line has been copied, and
_h[points to the right most byte. This is then POKEd with zero, and hl
incremented to point to the next line. The line counter in the accumulator
is decremented and if this does not hold zero a jump is made to ‘next line”.

The routine then returns to BASIC.

Right Scroll by One Character
Length: 22
Number of Variables: O
Check sum: 1976

Operation
This routine scrolls the contents of the display file one character to the right.

Call
RAND USR address

Error Checks
None

Comments

This routine is useful when using the screen as a ‘window’ showing just a
small area of a larger display area. The ‘window’ being moved using scroll
routines.

Machine Code Listing
Label Assembly language Numbers to be entered
Id hl, 22527 33 255 87
Idd, 0 220
Ida, 192 62 192
next line Id b, 31 6 31
next byte dec hl 43
Id e, (hl) 94
inc hl 35
Id (hl),e 115
dechl 43
djnz next byte 16 249
1d (hl),d 114
dec hl 43
deca 61
jr nz, next line 32 242
ret 201

45

How it works

The hl register pair is loaded with the address of the last byte of the c_lisplay
file, and the d register is set to zero. The accumulator is loaded with the
number of lines on the screen. The b register is set to one less than the
number of characters per line, to be used as a counter.

The hl register pair is decremented to point to the next byte, and _its
value is loaded into the e register. hl is then incremented and POKEd wqh
the value in e. hl is decremented to point to the next byte, and the counter in

the b register is decremented. If the b register does not hold zero the routine

loops back to ‘next byte’.

If the b register does hold zero, hl points to the leftmost b)fle of the
line. This is then POKEd with zero, and hl is decremented to point 1o th}z
next line. The counter in the accumulator is then decremented and if this

does not hold zero, a jump is made to ‘next line’.

The routine then returns to BASIC.

Up Scroll by One Character

Length: 68
Number of Variables: O
Check sum: 6328

Operation

This routine scrolls the contents of the display file upwards by eight pixels.

Call
RAND USR address
Error Checks
None
Comments
None
Machine Code Listing
Label Assembly language
Id hl, 16384
Id de, 16416
save push hl
push de
Id ¢,23
next line Idb,32
copy byte 1d a, (de)
1d (hl),a
lda,c
and 7

Numbers to be entered

330 64
17 32 64
229

213

14 23

6 32

26

119

121

230 7

e e —

ep 254 |
Jjr nz, next byte 322
suba 151
Id (de),a 18
next byte inc hl 35
inc de 19
djnz copy byte 16 241
decc 13
jrz, restore 40 19
Ida,c 121
and 7 230 7
cpO 254 O
jr z, next block 40 22
cp 7 254 7
Jr nz, next line 32 225
push de 213
Id de, 1792 1707
add hl,de 25
pop de 209
jrnext line 24 217
restore pop de 209
pop hl 225
incd 20
inch 16
Ida,h 124
cp 72 254 72
Jjrnz, save 32 204
ret 201
next block push hl 229
Id hl, 1792 3307
add hl,de 25
ex de,hl 235
pop hi 225
jr next line 24 198

How it works

:l'he hl register pair is loaded with the address of the display file, and de
is loaded with the address of the byte eight lines down. hl and de are
saved on the stack. The c register is loaded with one less than the number
of ‘PRINT lines' on the screen. The b register is loaded with the number of
bytes in one line of the display, to be used as a counter,

The accumulator is loaded with the byte addressed by de and this is
POKEd into hl. The accumulator is loaded with the cofnems of the ¢
register and if this holds, 1,9 or 17 then de is POKEd with zero. hl and de
are incremented to point to the next bytes, the counter in the b register is
decremented, and if this does not hold zero a jump is made to ‘copy byte’.

47

The line counter in the ¢ register is then decremented. llflhis‘ holds zero
a jump is made to ‘restore’. If c holds 8 or 16 [h_en a jump is mad_e t'o
‘next block”. If ¢ does not hold 7 or 15 then the routine loops to ‘next line’.
1792 is added to hl, so that hl points to the next block of the screen. The
routine then jumps to ‘next line’.

At ‘restore’ de and hl are retrieved from the stack, and 256 is added to
each. Thus, de and hl point one line below the position that they held on the
previous loop. If hl holds 18432 the routine returns to BASIC, otherwise a
jump is made to ‘save’. At ‘next block’, 1792 is added to de so t!ﬁu de points
1o the next block of the screen. The routine then loops to ‘next line’.

Down Scroll by One Character

Length: 73
Number of Variables: O
Check sum: 7987

Operation) 1
This routine scrolls the contents of the display file downwards by eight pixels.

Call
RAND USR address
Error Checks
None
Comments
None
Machine Code Listing
Label Assembly language Numbers to be entered
Id hl, 22527 33 255 87
Id de, 22495 17 223 87
save push hl 229
push de 213
Idc, 23 14 23
next line 1d b,32 6 32
26
copy byte Id a, (de)
1d (hl),a 119
lda,c 121
and 7 230 7
cpl 254 1
jr nz, next byte 32 2
suba 151
18

1d (de),a

48

next byte dec hl 43
dec de 27
djnz copy byte 16 241
decc 13
Jjrz, restore 40 21
Ida,c 121
and 7 230 7
cp O 254 O
Jrz, next block 40 24
cp? 254 7
ijrnz, next line 32 225
push de 213
Id de, 1792 1707
and a 167
sbe hl,de 237 82
pop de 209
jrnext line 24 215
restore pop de 209
pop hl 225
decd 21
dech 37
Ida,h 124
cp 79 254 79
retz 200
jrsave 24 201
next block push hl 229
1d hl, 1792 3307
ex de, hl 235
and a 167
sbe hl,de 237 82
exde, hl 235
pop hl 225
Jr next line 24 193

How it works

The hl register pair is loaded with the address of the last byte of the di

file, and de is loaded with the address of the byte eight Iir}l‘:s up. hl arfglgi
are saved on the stack. The c register is then loaded with one less than the
number of ‘PRINT lines’ on the screen. The b register is loaded with the
number of bytes in one line of the display, to be used as a counter,

The accumulator is loaded with the byte addressed by de is i
PO.KEd into ‘hl. The accumulator is loaded with the coﬁte;t:n:ftthl-:z l:
register, and if this holds 1,9 or 17 then de is POKEd with zero. hl and de
are then decremented to point to the next bytes of the display. The counter
in the b register is decremented and if this does not hold zero a jump is made
1o ‘copy byte’.

49

ine counter in the c register is decrememed,_and 1f this holds‘zero
a jurrT:)“izslmade to ‘restore’. If ¢ holds 8 or }6 then a}un'!p is m.ad? 1?7;?5;
block’. If ¢ does not hold 7 or 15 the routine loops to ‘next line’. i
then subtracted from hl, so that hl points to the next block of the screen.
The routine jumps to ‘next line’. .

At ‘restcj)re' de and hl are retrieved from the stack, anld. 256 is sublra;uig
from both. Thus, de and hl point one line above thelposmon that meiSleC
on the previous loop. If hl holds 20479 the roulnne returns to Bd ; ,
otherwise a jump is made to ‘save’. At ‘next block® 1792 is suptracte I ron;
de, so that de points to the next block of the screen. The routine then loop

to ‘next line’.

Left Scroll by One Pixel

Length: 17
Number of Variables: O
Check sum: 1828

Operation . - i
This routine scrolls the contents of the display file one pixel to the left.

Call
RAND USR address

Error Checks
None

Comments
This routine gives a smoother movement than left scroll by one character
but eight calls are required to move the display by one full character.

Machine Code Listing 5
Label Assembly language Numbers to be entere
Id hl, 22527 33 255 87
Idc, 192 14 192
i 1d b, 32 6 32
next line iy 4
next byte rl (hl) 203 22
dec hl 43
djnz next byte 16 251
decc 13
jr nz, next line 32 245
ret 201

50

How it works

The hi register pair is loaded with the address of the last byte of the display
file, and the c register is loaded with the number of lines in the display file
to be used as a line counter. The b register is loaded with the number of
bytes in one line, for use as a counter. The carry flag is then set to zero.

The byte addressed by hl is then rotated one bit to the left, the carry
flag being copied into the rightmost bit, and the leftmost bit being copied
into the carry flag. The hl register pair is decremented to point to the next
byte and the counter in the b register is decremented. If this does not hold
zero the routine loops back to ‘next byte’. The line number is decremented,
and if this is not equal to zero the routine jumps back to ‘next line’.

The routine then returns to BASIC.

Right Scroll by One Pixel

Length: 17
Number of Variables: O
Check sum: 1550

Operation
This routine scrolls the contents of the display file one pixel to the right.

Call
RAND USR address

Error Checks
None

Comments

This routine gives a smoother movement than Right Scroll by One Character
but eight calls are required to move the display by one full character.

Machine Code Listing

Label Assembly language Numbers to be entered
Id hl, 16384 330 64
Ide, 192 14 192

next line Id b, 32 6 32
orn 183

next byte rr (hl) 203 30
inc hl 35
djnz next byte 16 251
decc 13
jrnz, next line 32 245
ret 201

51

How it works

The hl register pair is loaded with the address of the display file, and the c
register is loaded with the number of lines in the display to be used as a line
counter. The b register is loaded with the number of bytes in one line, to be
used as a counter. The carry flag is then set to zero. The byte addressed by
hl is then rotated one bit to the right, the carry flag being copied into the
leftmost bit, and the rightmost bit being copied into the carry flag. The hl
register pair is incremented to point to the next byte and the counter in the
b register is then decremented. If this does not hold zero the routine loops
back to ‘next byte'. The line counter is decremented, and if this is not equal
to zero the routine jumps back to ‘next line’'.

The routine then returns to BASIC,

Up Scroll by One Pixel

Length: 91
Number of Variables: O
Check sum: 9228

Operation
This routine scrolls the contents of the display file upwards by one pixel.

Call
RAND USR address

Error Checks
None

Comments
None

Machine Code Listing
Numbers to be entered

Label Assembly language
1d hl, 16384 33064
1d de, 16640 17 0 65
ldc, 192 14 192
next line Id b, 32 6 32
next byte Id a, (de) 26
1d (hl),a 119
Ida,c 121
cp2 254 2
jr nz, next byte 32 2
suba 151
18

1d (de),a

52

next byte

subtract

next block

add

inc de

inc hl

djnz copy byte
push de

Id de, 224
add hl,de

ex (sp),hl

add hl,de

ex de,hl

pop hl

decc

Ida,c

and 7

cpO

jr nz, subtract
push de

Id de, 2016
and a

sbe hl,de

pop de
Jjrnext block
cpl

jr nz, next block
push hl

ex de,hl

Id de, 2016
and a

sbc hl,de

ex de,hl

pop hl

Ida,c

and 63

cpO

jrnz, add
Ida,?

add a,h

Idh,a

jr next line
cpl

jrnz, next line
Ida,7

add a,d
Idd,a

Ida,c

cpl

jr nz, next line
ret

53

19

35

16 243
213

17 224 O
25

227

25

235

225

13

121

230 7
254 O
3210
213

17 224 7
167

237 82

24 14
254 1

32 10
229

235

17 224 7
167

237 82
235

225

121
230 63
254 O
326
62 7
132
103
24 187

254 |
32 183
62 7
130
87

121
254 1
32174
201

How it works

The hl register pair is loaded with the address of the display file, and the
de register pair is loaded with the address of the first byte of the second
line of the display. The c register is loaded with the number of lines in the
display. The b register is loaded with the number of bytes in one line, to be
used as a counter.

The accumulator is loaded with the byte addressed by de. This is then
POKEd into the address in hl. The accumulator i< loaded with the contents
of the c register. If this contains the value two, de points to the bottom line
of the screen, and so this is POKEd with zero. de and hl are then incremented
to point to the next bytes. The counter in the b register is then decremented
and if it does not hold zero the routine loops to ‘copy byte’.

224 is added to both the hl and de register pairs, so that they point to
the next line of the display. The line counter, in the c register, is decremented.
If the value in ¢ is not a multiple of eight a jump is made to ‘subtract’.
2016 is subtracted from hl, and a jump made to ‘next block’. This is to
point hl at the next set of eight lines.

At “subtract’, if the value (c—1) is not a multiple of eight a jump is made
to *next block®, otherwise 2016 is subtracted from de so that de points at
the next set of eight lines. At ‘next block’, if c is a multiple of 64, 1792 is
added to hl, and a jump is made to ‘next line' so that hl points to the next
block of 64 lines. At ‘add’, if (c—1) is a multiple of 64, 1792 is added to de
so that de points to the next block of 64 lines. If ¢ does not hold 1 the
routine jumps to ‘next line’, otherwise the routine returns to BASIC.

Down Scroll by One Pixel

Length: 90
Number of Variables: O
Check sum: 9862

Operation
This routine scrolls the contents of the display file downwards by one pixel.

Call
RAND USR address

Error Checks
None

Comments
None

54

Machine Code Listing

Label

next line
copy byte

next byte

add

next block

Assembly language

Id hl, 22527
Id de, 22271
Idc, 192

Id b, 32

Id a, (de)

Id (hl),a

Ida,c

cp2

ir nz, next byte
suba

Id (de),a

dec de

dechl

djnz, copy byte
push de

Id de, 224
and a

sbe hl,de

ex (sp), hl
and a

sbe hl,de

ex de,hl

pop hl

decc

lda,c

and 7

cpO

irnz, add
push de

Id de, 2016
add hl,de
pop de

Jr next block
epl

Jrnz, next block
push hl

Id hi, 2016
add hl,de
ex de,hl
pop hl
Ida,¢
and 63
cpO
jr nz, subtract

Numbers to be entered
33 255 87

17 255 86

14 192

6 32

26

119
121
254 2
322
151

18

27

43

16 243
213

17 224 O
167
237 82
227
167
237 82
235
225

13

121
230 7
254 O
328
213

17 224 7
25

209
2411
254 1
327
229

33 224 7
25

238
225
121
230 63
254 O
26

Id a,h 124
sub 7 214 7
Idh,a 103
jr next line 24 188
subtract cpl 254 1
jr nz, next line 32 184
Ida,d 122
sub 7 214 7
Idd,a 87
Ida,c 121
cpl 254 1
jrnz, next line 32 175
ret 201

How it works

The hl register pair is loaded with the address of the last byte of the display
file, and the de register pair is loaded with the address of the byte one line
above the last byte. The c register is loaded with the number of lines in the
display. The b register is loaded with the number of bytes in one line, to be
used as a counter.

The accumulator is loaded with the byte addressed by de. This is then
POKEJ into the address stored in hl. The accumulator is loaded with the
contents of the c register. If this contains the value two, de points to the top
line of the screen, and so this is POKEd with zero. de and hl are then
decremented to point to the next bytes. The counter in the b register is
decremented, and if it does not hold zero the routine loops to ‘copy byte’.

924 is subtracted from both hl and de, so that they point to the next line
of the display. The line counter in the ¢ register, is decremented. If the
value in ¢ is not a multiple of eight a jump is made to ‘add’. 2016 is then
added to hl, and a jump is made to ‘next block’. This is to point hl at
the next block of eight lines.

At *add’ if the value (c—1) is not a multiple of eight a jump is made to
‘next block’. 2016 is then added to de so that de points at the next set of
eight lines. At ‘next block’, if cis a multiple of 64, 1792 is subtracted from
hl so that hl points to the next block of 64 lines, and a jump is made to
‘next line’. At ‘subtract’, if (c—1) is a multiple of 64, 1792 is subtracted
from de, so that de points to the next block of 64 lines. If ¢ does not hold
one, the routine jumps to ‘next line’, otherwise the routine returns to BASIC.

56

6. DISPLAY ROUTINES

Merge Pictures

Length: 21
Number of Variables: |
Check sum: 1709

Operation

This routine merges a pi i
picture stored in RAM (using the ‘Copy’ i
I ! ¢ e ‘Co|
elsewhere in this book) with the current screen display. The algr;’burti:t;::

not changed.

Variables
Name Length Location
screen store 2 23296

Call
RAND USR address

Error Checks
None

Comments

Comment

address in RAM of
stored picture

To merge pictures the routine
should be used as listed. However, i i
effects can be produced by replacing ‘or (hl) 182’ instructionrl’n;nﬁ(r;ﬂ(lhng

174" or ‘and (hl) 166°,

Machine Code Listing
Label Assembly language
Id hl, 16384
Id de, (23296)
Id be, 6144
next byte: Id a, (de)
or (hl)
Id (hl),a
inc hl
inc de
dec be
Ida,b
orc
jr nz, next byte
ret

57

Numbers to be entered

330 64

237 91 0 91

1024

26 ‘
182 ‘
119

35

19

1

120

177

32 246

201

How it works :
The hi register pair is loaded with the address _of the display ﬁle and the d;
register pair is loaded with the length of the display, so that it can be use
as a counter. -

The accumulator is loaded with the byte at the address slored_ln de, a_nd
this is logically ‘OR’ed (see Glossary) with the next byte of the display file.
The resultant value is then loaded back into the display. -

hl and de are moved onto the next position, and the counter is
decremented. If the counter is not zero the routine then loops back to repeat
the process on the next byte.

Screen Invert

Length: 18
Number of Variables: O
Check sum: 1613

Operation . e
Tnverts all of the display file—where a point is on it is turned off, and where
a point is off it is turned on.

Call
RAND USR address

Error Checks
None

Comments _ ‘
This routine can be used in games programs to produce an effec'tlve explosion.
The effect is increased if this routine is called several times, with some form
of sound added.

Machine Code Listing

Label Assembly language Nurnbers to be entered
1d hl, 16384 33064
1d be, 6144 1024
Id d, 255 22 255

next byte Id a,d 122

% sub (hl) 150

1d (hl),a 119
inc hl 35
dec be 11
Id a,b 120
orc 177
jr nz, next byte 32 247
ret 201

58

How it works

The hl register pair is loaded with the address of the display file and be
is loaded with its length. The d register is set to 255. Each time the routine
loops back to ‘next byte’ the accumulator is loaded from d. This method is
used, rather than the ‘ld a, 255' instruction because ‘ld a,d” takes
approximately half the time taken by the ‘Id a, 255" instruction. The value
of the byte stored at hl is subtracted from the accumulator, and the result is
then loaded back into the same byte, thus inverting it.

hl is incremented to point to the next byte, and the counter, be, is
decremented. If the counter is not zero the routine loops back to ‘next byte’.
If the counter is zero, the routine returns to BASIC.

Invert Character Vertically

Length: 20
Number of Variables: 1
Check sum: 1757

Operation
This routine inverts a character vertically eg an up-arrow would become a
down-arrow and vice versa.
Variables
Name Length Location Comrment
chr. start 2 23296 address of character data
in RAM
Call
RAND USR address

Error Checks
None

Comments

This routine is useful in games such as ‘Minefield* and ‘Puckman’ because
symbols can change direction without using more than one character.

Machine Code Listing
Label Assembly language Numbers to be entered
Id hl, (23296) 42 0 91
Idd,h 84
Ide,l 93
Idb,8 68
next byte Id a, (hl) 126
inc hl 35

59

push af 245
djnz next byte 16 251
Idb,8 68
replace pop af 241
3 1d (de).a 18
inc de 19
djnz replace 16 251
ret 201

How it works F
The hl register pair is loaded with the address of the character data in RAM.
This is then copied into de. The b register is set to 8 to be used as a coumer.'

For each byte, the accumulator is loaded with the present value, hl is
incremented to point to the next byte, and the accumulator is puslged on ta
the stack. The counter is decremented, and if it is not zero t‘he routine loops
back to repeat the process for the next byte. The b register is then re-loaded
with 8 for use as a counter again.

For each byte, the accumulator is popped fron} the stack. and poked
into the address stored in de. de is incremented to point (0 the next byte and
the counter is decremented. If this is not zero the routine loops back te
‘replace’. A return is then made to BASIC.

Invert Character Horizontally

Length: 19
Number of Variables: 1
Check sum: 1621

Operation
This routine inverts a character horizontally eg a left-arrow becomes a
right-arrow and vice versa.

Variables
Name Length Location Comment
data in
hr. start 2 23296 address of character
i RAM

Call
RAND USR address

Error Checks
None

Comments
None

Machine Code Listing

Label Assembly language Numbers to be entered
Id hl, (23296) 42 0 91
Ida, 8 62 8
next byte Idb, 8 6 8
next pixel rr (hl) 203 30
rle 203 17
djnz next pixel 16 250
Id (hl),e 113
inc hl 35
deca 61
jrnz, next byte 32 243
et 201

How it works

The hl register pair is loaded with the address of the character data in RAM,
and the accumulator is loaded with the number of bytes to be inverted. The
b register is loaded with the number of bits in each byte, to be used as a
counter.

The byte at the address in hl is rotated to the right so that the right-most
bit is copied into the carry flag. The c register is rotated leftwards so that the
carry flag is copied into the rightmost bit. The counter stored in the b
register is decremented. If the counter is not zero, a jump is made back to
‘next pixel'. The inverted byte, which is stored in the c register, is POKEd
back to the address that it originally came from.

hl is incremented to point to the next byte, and the accumulator is
decremented. If the accumulator does not hold zero a jump is made back to
‘next byte’.

A return is then made to BASIC.

Rotate Character Clockwise

Length: 42
Number of Variables: |
Check sum: 3876

Operation

This routine rotates a character through 90° clockwise €g an up-arrow
becomes a right-arrow.

Variables

Name Length Location Comment

chr. start 2 23296 address of character data in
RAM

61

Call
RAND USR address

Error Checks
None

Comments * . .
This routine is useful in games and in serious applications eg labelling graphs.

Machine Code Listing
Numbers ta be entered

Label Assemnbly language
1d hl, (23296) 42 0 91
Ide, 128 30 128
next bit push hl 229
Ide, O 14 0
1d b,1 61
23
next byte Ida, e 1
and (hl) 166
cpO 254 0
jrz, not set 40 3
Ida,c 121
add a,b 128
ldc,a 79
not set slab 203 32
inc hl 35
jrnc, next byte 48 242
pop hl 225
push be 197
srle 203 59
jr ne, next bit 48 231
1d de,7 1770
add hl,de 25
1db,8 68
replace pop de 209
v Id (hl),e 115
dec hl 43
djnz replace 16 251
ret 201

e f pixel h of which can be
Each character consists of an 8 x 8 group o pixels, each of whic

turned on (= 1) or off (=0). Consider any bit B‘; of: byte B, in Figure BI.
The data held at the location (B;, B,) in the matrix will be

N, N:)
N; N,

62

where:
N, = the byte at which the pixel (B,, B,) will be inserted after rotation.

N, = the bit in N, at which it will be inserted.
N, = the value that the bit currently represents.
N, = the value of the bit N,.

Each byte of the rotated character will be built up one at a time, by
adding the values of all the bits N, that will be in the new byte.

The hl register is loaded with the address of the first byte of the
character in RAM. The e register is loaded with the value of the byte which
has bit 7 on and bits 0-6 off ie 128. The hl register is saved on the stack.
The c register, to which data will be added giving the new value of the byte
being built, is loaded with zero. The b register is loaded with the value of the
byte which has bit O on and bits 1-7 off, ie 1.

The accumulator is loaded with the contents of the e register, (N,).
This is ‘AND’ed with the byte whose address is stored in hl. If the result is

1128(2 643 3214 16|5 B|6 4|7 2|8 1

LS ¢ KRR (1 1 [ED T |+ SOt 1 e I RO I8 G Y ¥ O | I
1 128(2 64(3 32|4 16|5 8|6 4|7 2|8 1

L 1 OO e e L[7 -1 S AL 2
112812 64|3 32|14 16/5 8|6 4|7 2(8 1

2 4(2 4(2 4|2 4|2 4|2 4|2 4|2 4 :
1 128(2 64|13 32(4 16|5 B|6 4|7 2|8 1 4
¥ B3 W|I/]F B3 RS KT RBIZ 8 Byte (B,)
11282 64(3 32|4 16|55 8|6 4(7 2|8 1

4 16(4 16|4 16(4 16/4 16|4 16|4 16|4 16 :
112812 64|3 32/4 16/5 8|6 4|7 2|8 1

5 32|15 32|5 32(5 32|5 32|85 32|5 32|5 32 4
112812 6413 3214 16|5 8|6 4|7 2|8 1

6 646 64 6 64|6 64(6 64(6 64|6 64(6 64 ;
11282 64(3 32|4 16|5 8|6 4|7 2[(8 1

7 128 |7 128 |7 128 |7 128 |7 128 (7 128 |7 128 |7 128 ;

7 6 5 4 3 2 1 0
Bit (B;)

Figure B1. Key o the character rotation routine

63

zero a jump is made o ‘not set’, as the pixel addressed by e and hl is turned
off. If it is turned on the accumulator is loaded with the present value of the
byte, (N,). The b register, (N,), is added to the accumulator and this is
loaded into c. The b register is then adjusted to point to the next bit of N,.
hl is increased to point to the next byte, (B,). If the byte N, is not complete
the routine loops back to ‘next byte’.

hl is retrieved from the stack, to point to the first byte of the character
again. bc is saved on the stack, holding the value of the last byte to be
completed in ¢. The e register is adjusted to address the next bit of each byte,
If the rotation is not complete a jump is made to “next bit’.

de is loaded with 7, and this is added to hl so that hl points to the
last byte of data. The b register is loaded with the number of bytes to be
retrieved from the stack. For each byte, the new value is copied into e, and
this is POKEd into hl. hl is decremented to point to the next byte, and the
counter in the b register is decremented. If the counter does not hold zero a
jump is made to ‘replace’.

The routine then returns to BASIC.

Attribute Change

Length: 21
Number of Variables: 2
Check sum: 1952

Operation

This routine alters the attributes of all the characters on the screen in a
specified manner eg the ink colour could be changed, the whole screen
could be set to flash etc.

Variables

Name Length Location Comment

data saved 1 23296 bits of attribute not to be
altered

new data | 23297 new bits to be inserted into
attribute

Call

RAND USR address

Error Checks

None

Comments

Individual bits of the attributes, of each character, can be changed, by
using the machine code instructions ‘and’ and ‘or’.

64

Machine Code Listing

Label Assembly language Numbers to be entered
Id hl, 22528 330 88
Id be, 768 103
1d de, (23296) 237 91 0 91
next byte Id a, (hl) 126
and e 163
ord 178
Id (hl), a 119
inc hl 35
dec be 11
Ida,b 120
orc 177
jrnz, next byte 32 246
ret 201
How it works

The hl_ registe‘r l_Jair is loaded with the address of the attributes area, and the
be ::eglstkeripa:;' |ds loaded with the number of characters in the display. The d
register is loaded with the value ‘new data’, and th i i i
< reprlulens e e register is loaded with
TI_1e accumulalqr is loaded with the byte addressed by hl, and the bits
are adjusted accgrdmg to ll:ne values of the d and e registers. The result
is POKEd tgack into hl. hl is incremented to point to the next byte, and
the counter in be is decremented. If be does not hold zero the routine loops
to ‘next byte’.

The routine then returns to BASIC.
Attribute Swap

Length: 22
Number of Variables: 2
Check sum: 1825

Operation

This routine searches the attributes area for a certain value, and replaces
every occurrence by another value.

Variables

Name Length Location Commenr

old value 1 23296 Value of byte to be replaced
new value 1 23297 New value of replaced byte
Call

RAND USR address

65

Error Checks
None

Comments

This routine is useful for highlighting areas of text and graphical characters.

Machine Code Listing
Label Assembly language Numbers ro be entered
Id hl, 22528 33 0 88
Id be, 768 1013
Id de, (23296) 237 91 0 91
next byte Id a, (hl) 126
cpe 187
jrnz, no change 321
Id (hl), d 114
no change inc hl 35
dec be 11
Ida,b 120
orc 177
jr nz, next byte 32 245
ret 201

How it works

The hl register pair is loaded with the address of the attributes area, an_d
be is loaded with the number of characters on the screen. The e register is
loaded with the ‘old value’, and the d register is loaded with the ‘new

value’.

The accumulator is loaded with the byte addressed by the hl register
pair. If the accumulator holds the value of the e register the byte addressed
by hl is POKEd with the contents of the d register. hl is then incremented
to point to the next byte, and the counter in be is decremented. If be

does not hold zero, a jump is made to ‘next byte'.
The routine then returns to BASIC.

Region Filling

Length: 263
Number of Variables: 2
Check sum: 26647

Operation
This routine ‘shades’ an area of the screen bounded by a line of pixels on the
edge of the screen.

66

Variables

Name Length Location Comment

x co-ord | 23296 x co-ordinate of start
position

y co-ord 1 23297 y co-ordinate of start
position

Call

RAND USR address

Error Checks

If the y co-ordinate is more than 175, or POINT (x,y)= 1 the routine
returns to BASIC immediately.

Comments

This_roulinc is not relocatable, the start address being 31955. To copy this
routine to another address use the method given for the ‘RENUMBER’
routine. If 31955 is used for the start address of this routine and 32218 is
used as the start address of ‘RENUMBER’ they may be held in RAM simul-
taneously. When shading very irregular shaped regions, a large amount of
spare RAM is needed. If this is not available the routine may crash.

Machine Code Listing
Label Assembly language Numbers to be entered
1d hl, (23296) 42 0 91
Id a,h 124
cp 176 254 176
ret nc 208
call subroutine 205 143* 125+
and (hl) 166
cpO 254 O
ret nz 192
Id bc, 65535 1 255 255
push be 197
right Id hl, (23296) 42 0 91
call subroutine 205 143* 125+
and (hl) 166
cpO 254 O
jrnz, left 329
Id hl, (23296) 42 0 91
incl 44
Id (23296),hl 34 091
jrnz, right 32 236
left Id de, O 1700
1d hl, (23296) 42 0 91
decl 45
1d (23296),h1 34 0 91

67

plot

reset

long jump
down

Id hl, (23296)
push hl
call subroutine
or (hl)

Id (hl),a

pop hl

Id a,h

cp 175

jrz, down
Idae

cpO

ir nz, reset
inch

call subroutine
and (hl)

cpO

ir nz, reset

Id hl, (23296)
inch

push hl

Ide,l

1d hl, (23296)
Ida,e

cpl

jr nx, down
inch

call subroutine
and (hl)

cpO

jrz, down
Ide, O
jrdown
jrright

1d hl, (23296)
Ida,h

cpO

jr z, next pixel
Ida,d

cpO

jr nz, restore
dech

call subroutine
and (hl)

cpO

jr nz, restore
1d hl, (23296)
dech

68

42091
229

205 143* 125*
182

119

225

124

254 175
40 44
123
254 O
32 16
36

205 143* 125*
166
254 O
3% 7
42 0 91
36

229
301

42 0 91
123
254 1
32'15
36

205 143* 125
166
254 O
40 6
300
24 2

24 167

42 0 91
124
254 O
40 40
122
254 O
3216
37

205 143* 125
166
254 O
2.7
42 0 91
37

restore

next pixel

retrieve

subroutine

push hl

Idd,1

Ida,d

cpl

jr nz, next pixel
Id hl, (23296)
dech

call subroutine
and (hl)

cpO

jr z, next pixel
Idd, O

Id hl, (23296)
Ida,l

cpO

jrz, retrieve
decl

Id (23296),hl
call subroutine
and (hl)

cp O

jrz, plot

pop hl

Id (23296),hl

Id a, 255

cph

jr nz, long jump
cpl

jrnz, long jump
ret

push be
push de
Ida, 175
sub h
Idh,a
push hl
and 7
add a, 64
Idc,a
Ida,h
rra

rra

ra

and 31
Idb, a
and 24

229

22 1
122
254 |
32 14
42 0 91
37

205 143* 125+
166
254 O
40 2
220

42 0 91

125

254 O

40 12

45

34 091

205 143* 125
166

254 O

40 129

225
34 091
62 255
188
32 177
189
32 174
201

197
213
62 175
148
103
229
230 7
198 64
79

124
203 31
203 31
203 31
230 31
71

230 24

idd,a 87

Id a,h 124
and 192 230 192
Ide,a 95
Idh,c 97
da,l 125
rra 203 31
rra 203 31
ra 203 31
and 31 230 31
Idl,a 111
Ilda,e 123
add a,b 128
subd 146
lde,a 95
Idd, 0 20
push hl 229
push de 213
pop hl 225
add hl,hl 41
add h1,hl 41
add hl,hl 41
add hl,hl 41
add hl,hl 41
pop de 209
add hl,de 5(5)9
pop de
ldae 123
and 7 230 7
ldb,a 7
Ida, 8 62 8
subb 144
ldb,a 7
lda,l 62 1
rotate adda,a 135
djnz rotate 16 253
rra 203 31
pop de 209
pop be 193
ret 201

How it works . A \
This routine plots horizontal lines of adjacent plxel:s called ‘RUNS
within areas bounded by illuminated pixels. Ea‘_:h RUN is remembered.by
‘stacking’ the co-ordinates of the rightmost plxgl of the RUN. S.lartmg
from the specified co-ordinates, the routine fills in each RU_N. noting the
positions of any unfilled RUNS above or below. On completing one RUN,

70

the last set of co-ordinates noted are retrieved and the corresponding RUN
is filled in. The process is repeated until there are no more unfilled RUNS,

Figure B2 illustrates the technique. The squares represent illuminated
pixels, x marks the starting position within the area to be shaded and *

marks the rightmost pixels of RUNS.
7
7

*

Figure B2. An illustration of the technigue used for
Jfilling @ region. Grey squares are already illuminated
and define the region to be shaded. X is the starting
position, * are the starts of RUNS and O remain
unshaded.

The routine shades the horizontal line containing the starting position
and saves on the stack the positions of the starts of the RUNS in the lines
immediately above and below. It next shades the line above and then the
line below noting in the latter case that two more RUNS start on the
next line down and so on. Any position within the area to be shaded
may be selected as the starting position but note that the two pixels
marked with zeros are left untouched because they are separated from the
area being shaded.

The h register is loaded with the y co-ordinate specified, and the |
register is loaded with the x co-ordinate. If the value of the y co-ordinate is
more than 175 the routine returns to BASIC. The ‘subroutine’ is called
returning the address in memory of the bit (x,y). If this bit is ‘on’ the
routine returns to BASIC,

The number 65535 is PUSHed onto the stack to mark the first value
saved. Later in the routine, if a number is retrieved from the stack, it is used
as a pair of co-ordinates. However, if the number is 65535, a return is made
to BASIC as the routine will have finished.

The h register is loaded with the y co-ordinate, and the | register is
loaded with the x co-ordinate. The ‘subroutine’ is called, returning in hl the
address of the bit (x,y). If this bit is ‘on’ a jump is made to ‘left’. Otherwise
the x co-ordinate is incremented, and a loop to ‘right’ if x is not equal to 256.

71

At ‘left’, de is set to zero. The d and e registers are to be used as
flags. d for down and e for up. The x co-ordinate is decremented. The
subroutine is called, and the point (x,y) is plotted. If the y co-ordinate
is 175 the routine jumps to ‘down’. If the ‘up flag’ is set to one a jump is
made to ‘reset’. If the bit {x,y + 11is ‘off” the values of x and y + 1 are saved
on the stack, and the ‘up flag’ sct to one.

At ‘reset’, if the ‘up flag’ is set to zero a jump is made to ‘down’. If
the bit (x,y +1) is ‘on’ the ‘up flag’ is set to zero. At ‘down’, if the y
co-ordinate is zero a jump is made to ‘next pixel’. If the ‘down flag’ is set
to one a jump is made to ‘restore’. If the bit (x,y—1) is *off’ the values of
x and y—1 are saved on the stack, and the ‘down flag’ set to one.

Al ‘restore’, if the ‘down flag’ is set to zero a jump is made to
‘next pixel’. If the bit (x,y—1) is ‘on’ the ‘down flag® is set to zero. At
‘next pixel’, if the x co-ordinate is zero the routine jumps to ‘retrieve’. The
x co-ordinate is decremented, and if the new bit (x,y) is ‘off” a jump is made
to ‘plot’. At ‘retrieve’, an x and y co-ordinate are removed from the stack.
If x and v both equal 255 then the routine returns to BASIC as the region
has been completely filled. Otherwise the routine loops back to ‘right”.

The subroutine has to calculate the address of the bit (x,y) in memory.
In BASIC this address would be:

16384 4 INT (Z/8) + 256 x (Z—8 x INT (Z/8))
+32% (64 % INT(Z/64) + INT(Z/8)—8 x INT(Z/64))
where Z = 175—Y

The be and de register pairs are saved on the stack. The accumulator is
loaded with 175 and the Y co-ordinate is subtracted from this. The result is
copied back into the h register. hl is then saved on the stack. The left five bits of
the accumulator are set to zero, and 64 is added. The result is copied into
the ¢ register. When multiplied by 256 this gives 16384 + 256 x (Z—8 X INT
(Z/8)). The accumulator is loaded with Z, and this is divided by eight, the
result being copied into the b register. This result is INT (Z/8). Setting the
rightmost three bits to zero produces the value 8 x INT (Z/64), this being
loaded into the d register.

The accumulator is loaded with Z, and the six rightmost bits are
set to zero, producing the value 64 x INT (Z/64). This is loaded into the ¢
register. The value in the c register is copied into h. The accumulator is
loaded with the x co-ordinate, this is divided by eight, and the result is
copied into |.

The accumulator is then loaded with the value in €, and the contents
of b are added. The value in d is subtracted and the result loaded into de.
The hl register pair is saved on the stack, and then loaded with the value in

de. This is multiplied by 32, de is retrieved from the stack and added to
hl. Thus, hl now holds the address of the bit (x,y).

The accumulator is loaded with the original value of x. Setting the left
five bits to zero, produces the value x—8x INT (x/8). The b register is
then loaded with eight minus the value of the accumulator, to be used as

72

a counter. The accumulator is set to 15 m P b}' wo
ne, and
0 a this is ultiplied L

At this point a single bit should b i
S e set in the accumulator, which
tL_-orresl)om:ls to the bit (x,v) adfiressed by hl. de and be are then retrieved
rom the stack, and the subroutine then returns to the main routine.

Shape Tables

Length: 196
Number of Variables: 2
Check sum: 20278

Operation
This routine plots a shape of any size on the screen.

Variables

Nane Length Location Comment

?;t::: : g:;g: X co-ordinate of first pixel
Y co-ordinate of first pixel

Call

RAND USR address

Error Checks

If A$ does not exist, has zero |

| 3 ength, or does not contain any sh
information, the routine returns to BASIC i i i s
: on, immediatel

if Y start is more than 175, A T Tyt

Comments

This is a useful method of storin ShaDCS In memory to be]}l()[ed at speed
g t

The method for using this routine is:

(Q LET AS = “‘shape information’’

(31) POKE 23296, X co-ordinate of first pixel
(,n) POKE 23297, Y co-ordinate of first pixel
(iv) RAND USR address

he ShﬂpE Information is a strin Ci er Ci
I f al tring of charact s, which have the

o Plot point

g decrease X co-ordinate
G decrease Y co-ordinate
e increase Y co-ordinate
=8 increase X co-ordinate

Any other characters are ignored.

73

The routine includes a ‘wrap-round’ facility. ie if the X co-ordinate
moves off the left of the screen it appears on the right etc.

To change the routine to use a string other than A$, change the 65* 1o
the code of the upper case character of the name of the string.

Machine Code Listing
Label Assembly language
1d hl, (23627)
next variable Id a, (hl)
cp 128
retz
bit 7,a
jr nz, for next
cp 96
jr nc, number
cp 65
jr z, found
string inc hl
Id e, (h1)
inchl
Id d, (hl)
add add hl,de
jr increase

number inc hl
inc hl
inc hl
inc hl
inc hl

increase inc hl
jr next variable

for next cp 224
jrc, next bit
|d de, 18
jradd
next bit bit 5,a
jr z, string
next byte inchl
bit 7,(hl)
jr z, next byte
jr number
found inc hl
Id ¢, (h1)
inc hl
Id b, (h1)
inc hl

74

again

Numbers to be entered
42 75 92

126

254 128
200
203 127
31223
254 96
48 11
254 65*
40 35

315
94
15
86

25
245

35
15
35
35
35

35
24 225

254 224
56 5

17 180
24 236

203 111
40 228

35

203 126
40 251

24 228

35

78

35

70

15

ex de,hl
Id a, (23297)
cp 176
ret nc

I1d hl, (23296)
Ida,b
orc
retz

dec be
Id a, (de)
inc de
cp 48

jr nz, not plot
push bc
push de
Ida, 175
sub h
Idh,a
push hl
and 7
add a,64
Idc,a
Ida,h
rra

rra

rra

and 31
Idb,a
and 24
ldd,a
Ida,h
and 192
Ide,a
Idh,c
Ida,l
rra

rra

rra

and 31
Idl,a
Ida,e
adda,b
subd
Ide,a
ldd, O
push hl
push de

75

235
38 191
254 176
208

42 0 91
120
177
200

11

26

19

254 48
32 78
197
213
62 175
148
103
229
230 7
198 64
79

124
203 31
203 131
203 31
230 31
71

230 24
B7

124
230 192
95

97

125
203 31
203 31
203 31
230 31
111
123
128
146

95
220
229
213

rotate

here
not plot

down

up

right

save

pop hl
add hl,hl
add hl,hl
add hl,hl
add hl,hl
add hl,hl
pop de
add hl,de
pop de
Ida,e

and 7
Idb,a
Ida, 8
subb
Idb,a
Ida,l
adda,a
dinz rotate
ra

pop de
pop be

or (hl)

Id (hl),a
jragain
cp 53
jrnz, down
dec 1

cp 54
jrnz, up
dech

Id a,h

cp 255

jr nz, save
Idh, 175
cp 55

jr nz, right
inch
Ida,h

cp 176
jrnz, save
Idh, O

cp 56
jrnz, save
incl

Id (23296),h1
jr here

76

225

41

41

41

41

41

209
25
209
123
230 7
T

62 8
144

T
621
135
16 253
203 31
209
193
182
119
24 165

254 53
321
45

254 54
28
7

124
254 255
3219
38 175

254 55
328

36

124
254 176
327
80
254 56
121

34091
24 215

How it works
The address of the string, A% is found using an adaption of the first section
of the ‘Instr$’ routine.

The length of the string is loaded into be, and the address of the first
character of A$ is loaded into de. The accumulator is set to the value Y
start, and if this is more than 175 the routine returns to BASIC. The
h register is loaded with the Y co-ordinate, and | is loaded with the X
co-ordinate. If the value of the bc register pair is zero the routine then
returns to BASIC, because the end of the string has been reached. bc is
decremented, to indicate that another character has been operated on. The
next character is loaded into the accumulator, and de is incremented to
point to the following byte. If the accumulator does not hold 48 a jump is
made to ‘not plot’. The point (X,Y) is plotted using the ‘subroutine’ from
the “‘Region Filling"’ routine. The routine then jumps back to ‘again’.

At ‘not plot’, if the accumulator holds 53, the X co-ordinate is
decremented. At ‘down’ if the accumulator does not hold 54, a jump is
made to ‘up’. The Y co-ordinate is decremented, and if this then holds —1
the Y co-ordinate is then set to 175.

At ‘up’, if the accumulator does not hold 55 a jump is made to ‘right’,
The Y co-ordinate is incremented, and if it is 176 the Y co-ordinate is then
set to O. At ‘right’, if the accumulator holds 56, the X co-ordinate is
incremented. At ‘save’, the X and Y co-ordinates are POKEd into memory,
and the routine loops to ‘here’.

Screen Magnify and Copy

Length: 335
Number of Variables: 8
Check Sum: 33663

Operation

This routine copies a section of the display to another area on the screen,
magnifying the copy in the x or y planes.

Variables

Name Length Location Comment

upper y co-ord | 23296 y co-ordinate of top row

lower y co-ord 1 23297 y co-ordinate of bottom row

right x co-ord 1 23298 x co-ordinate of rightmost
column

left x co-ord 1 23299 x co-ordinate of leftmost
column

horizontal scale 1 23300 magnification in x plane

vertical scale 1 23301 magnification in y plane

It

new left co-ord 1 23302 x co-ordinate of leftmost
column of area to be copied ta

new lower co-ord 1 23303 y co-ordinate to bottom row of
area to be copied to

Call

RAND USR address

Error Checks
The routine returns to BASIC immediately if any of the following conditions
are true:
(i) horizontal scale= O
(ii) vertical scale= O
(iii) upper co-ord greater than 175
(iv) new lower co-ord greater than 175
(v) lower y co-ord greater than upper v co-ord
(vi) left x co-ord greater than right x co-ord

However, to keep the routine short, there is no check that ensures that
the copied section fits on the screen. If it does not, the routine may ‘crash’.
The routine also requires a large amount of spare RAM, and if this is not
available, the routine may ‘crash’.

Comments
This routine is not relocatable, due to the existence of a ‘Plot/Point’
subroutine. It is located at address 65033, and hence can only be used on
machines with 48K of RAM. The routine can be re-positioned in memory,
using the procedure given for the ‘Renumber’ routine. However, if large
areas to the screen are to be copied, then a lot of spare RAM is needed, and
so the start address should be as high as possible.

If the copied area of the display is to be the same size as the original,
the scales should be set to one, to double the size load the scales with two, to
triple the size load the scales with three etc.

Machine Code Listing

Label Assembly language Numbers to be entered
1d ix, 23296 221 33091
Ida, 175 62 175
cp (ix+0) 221 190 0
retc 216
cp(ix+7) 221 190 7
retc 216
suba 151
cp (ix +4) 221 190 4
retz 200
cp (ix +5) 221 190 5
retz 200
1d hl, (23296) 42 0 91

78

add

remainder

full
save

off

next bit

Idb, 1

Id a,l

sub h

retc

Id (23298),a
Ide,a

Id hl, (23298)
Ide,l

Id a,l

subh

Tet C

1d (23298),a
push be
Idl,a

Idh, O

inc hl

push hl

pop be
ince

dece

jrz, remainder
add hl,be
jradd

Id a,l

and 15
Idb,a
pophl

Idc,l

jr nz, save
Idb,16
push hl

call subroutine
and (hl)
jrz, off
Ida, 1

pop hl

rra

rle

rld

Ida,l

cp (ix+3)
jr z, next row
decl

djnz save
push de

jr full

79

69

125

148
216

50 0 91
95

42 2 91
77

125

148
216

50 2 91
197
111
3830
35
229
193

28

29

40 3
9

24 250

125
230 15
71
225
i
322
6 16

229
205 13* 255+
166

40 2
62 1
225
203 31
203 19
203 18
125
221 190 3
40 6
45

16 231
213
24 226

nextLrow

copy

reset

retrieve

loop

preserve

multiply

long jump
calculate

Idl,c
Id a,h
ep(ix+ 1)
jr z, copy
dech
jr next bit

push de
Idb, O
Idh,b

Id1b

1d (23306),hl
Ida,b

ora

jr nz, retrieve
pop de

Idb, 16
suba

decb

rrd

rre

rla

push de
push be
push af
Idh,l

Idi, 1

1d (23304),h!
Id a, (23307)
1d hl, O

1d de, (23301)
1dd,1

ora

jr z, calculate
add hl,de
deca

jr multiply
jrreset

Id a, (23303)
add a,l

1d hl, (23304)
add a,l

deca

push af

Id a, (23306)
Idhl, O

Id de, (23300)

80

105

124

221 190 1
40 3

37

24 241
213

6 0

96

104

34 10 91
120
183
23
209
616

151

5

203 26
203 27
203 23
213
197
245
38 1
46 1

34 8 91

58 11 91
3300

237 91 5 91
85

183

40 6

25

61

24 249

24 208

58 7 91

133

42 8 91
133

61

245

58 10 91
3300

237 91 4 91

repeat

continue

Plot

Poke

ldd, |

ora

jir z, continue
add hl,de
dec a

jr repeat

Id a, (23302)
adda,l

Id hl, (23305)
add a, |
deca

Idl,a

pop af

Id h,a

pop af

push af

ora

jrnz, plot
call subroutine
cpl

and (hl)

jr Poke

call subroutine
or (hl)

Id (hl),a

Id hl, (23304)
incl

Id a, (23301)
inca

cpl

jrnz, preserve
inch

Id a, (23300)
inca

cph

ir nz, loop
pop af

pop be

pop de

Id hl, (23306)
incl

Id a, (23298)
inca

cpl

jrnz, long jump
Id1,0

inch

81

85

183

40 4
25

61

24 249

58 6 91
133

42 9 91
133

61

1

241

103

241

245

183
327
205 13¥ 255+
47

166

24 4

205 13* 255+
182

119
42 8 91
44
58 5 91
60

189

32 165
36

58 4 91
60

188

32 155
241

193

209

42 10 91
44

58 2 9]
60

189

32 164
46 O
36

subroutine

Id a, (23296)
inca

cph .
jrnz, long jump
ret

push be
push de
Ida, 175
subh

Id h,a
push hl
and 7
add a, 64
ldc,a
Idah

rra

rra

rra

and 31

1d b,a
and 24
ldd,a
Idah
and 192
Ide,a
Idh,c
Ida,l

rra

rra

rra

and 31
Idl,a

Id a,e
adda,b
subd
Ide,a
Idd, O
push hi
push de
pop hl
add hl,hl
add hl,hl
add hl,hl
add hl,hl
add hi,hl
pop de
add hl,de

82

58 0 91

188
32 154
201

197
213

62 175
148
103
229
230 7
198 64
79

124
203 31
203 31
203 31
230 31
71

230 24
87

124
230 192
95

97

125
203 31
203 31
203 31
230 31
111
123
128
146
95

22 0
229
213
225
41

41

41

41

41
209
25

pop de 209
Ida,e 123
and 7 230 7
ldb,a 71
Ida,8 62 8
sub b 144
Idb,a 71
Ida,l 62 1
rotate add a,a 135
djnz rotate 16 253
rra 203 31
pop de 209
pop be 193
ret 201

How it works

ix is loaded with the address of the printer buffer, for use as a pointer to
the variables. If the upper y co-ordinate or the new lower y co-ordinate is
more than 175 the routine returns to BASIC. If the horizontal scale or the
vertical scale is zero a return is made to BASIC.

The h register is loaded with the lower y co-ordinate, and the | register is
loaded with the upper y co-ordinate. The I register is copied into both the b
register and the accumulator. The h register is subtracted from the
accumulator, and the routine returns to BASIC, if the result is negative.

The value of the accumulator is then POKEd into location 23298, for
use as a counter. The be register pair is then saved on the stack.

The hl register is loaded with the value in the accumulator, incremented,
and copied into the be register. be is added to hl, e times, the resulting
value in hl being the number of pixels on the screen to be copied. The
accumulator is loaded with the value in the | register, and the four leftmost
bits are set to zero. The result is copied into the b register, to be used as
a counter.

The hl register pair is retrieved from the stack, and the | register is
copied into the c register. If the b register holds zero, it is loaded with
sixteen, this being the number of bits in a register pair. The ‘subroutine’
is then called, and the accumulator is loaded with the value POINT (1,h).
The de register pair is rotated to the left and the value of the accumulator
is loaded into the rightmost bit of the e register.

If the I register equals the left x co-ordinate the routine jumps to ‘next
row’. Otherwise the | register is decremented, followed by the b register. If
the b register does not hold zero, the routine loops to ‘save’ to feed the next
bit into the de register pair. If the b register does hold zero, the de register
pair is pushed on to the stack and a jump is made to ‘full’.

At ‘next row’ the | register is loaded with the right x co-ordinate, and
the accumulator is loaded with the value in the h register. If the value of the
accumulator equals the lower y co-ordinate, a jump is made to ‘copy’
because the last pixel to be copied has been fed into de. Otherwise, the h

83

register is decremented to point to the next row, and the routine loops to
‘next bit".

At ‘copy’, de is pushed on to the stack, and the b, h and | registers are all
set to zero for use as counters. The hl register pair is POKEd into addresses
23306/7, so that hl can be used as a counter for further loops without using
the stack. If the b register holds zero, de is retrieved from the stack and the
b register is reset to sixteen, indicating the number of pixels stored in de.
The b register is decremented to indicate that a bit of information is to be
removed from de. The rightmost bit of the e register is loaded into the
accumulator, and the de register pair is rotated to the right. de, bc and af
are all pushed on to the stack, while some calculations are performed.

The h and | registers, are both loaded with one, for use as counters, and
hl is POKEd into addresses 23304/5, The accumulator is loaded with the
value of the byte at address 23307, this being one of the counters saved
earlier, The de register pair is loaded with the vertical scale. This is then
multiplied by the value in the accumulator, and the result fed into hl. This
is added to the new lower vy co-ordinate, in the accumulator. The byte at
address 23304 is then added to the accumulator, and the result is decremented.

The accumulator now holds the y co-ordinate of the next pixel to be
plotted. This is saved on the stack, whilst the x co-ordinate is calculated by a
very similar process. The x co-ordinate, when calculated, is loaded into the
| register. The y co-ordinate is retrieved from the stack and loaded into the
h register. The accumulator is set to the last value held on the stack. If this
is one, then the point (x,y) should be plotted, otherwise it should be
‘unplotted’. The subroutine is called, and the appropriate action taken.

The hi register pair is loaded with the loop counters, stored at addresses
23304/5. The | register is incremented and if this does not hold the value
(1 + vertical scale) the routine loops to ‘preserve’. The h register is incremented
and if this does not hold the value (I + horizontal scale) a jump is made to
‘loop’.

The af, bc and de register pairs are retrieved from the stack and the hl
register pair is loaded with the second set of loop counters, which are stored
at addresses 23306/7. The | register is incremented, and a jump is made to
‘reset” if the result does not equal (right x co-ord—left x co-ord +1). The
| register is set to zero, this being the original value of the loop counter.
The h register is then incremented, and the routine loops to ‘reset” if the
result does not equal (upper y co-ord—lower y co-ord +1). The routine
returns to BASIC.

The ‘subroutine’ is identical to that used in the ‘Region Fill' routine.

84

7. ROUTINES TO MANIPULATE PROGRAMS

Delete block of program
Length: 42
Number of Variables: 2
Check sum: 5977

Operation

This routine deletes blocks of BASIC program between two lines specified
by the user.

Variables

Name Length Location Comment

start _Ime no 2 23296 First line to be deleted
end line no 2 23298 Final line to be deleted
Call

RAND USR address

Error Checks

If any of the following errors occur then the routine stops without deleting
any of the BASIC program:

(i) Final line number is less than first line number:
(ii) thereis no BASIC program between the two given lines;
(iii) either or both of the specified line numbers are zero.

Comments

This rog(i.nc is quite slow to delete a large block of program lines but none-
the.Iess_ it is much quicker to use it than to delete the lines by hand. Do not
enter line numbers greater than 9999.

Machine Code Listing
Label Assembly language Numbers to be entered
1d hl, (23296) 42 0 91
Id de, (23298) 237 91 2 91
Ida,h 124
orl 181
retz 200
Ida,d 122
ore 179
retz 200
push de 213
call 6510 205 110 25
ex (sp), hl 227

85

55—

inc hl 35
call 6510 205 110 25
pop de 209
and a 167
sbe hl,de 237 82
ret z 200
ret ¢ 216
ex de,hl 235
next chr: Id a,d 122
ore 179
retz 200
push de 213
push hl 229
call 4120 205 24 16
pop hl 225
pop de 209
dec de 27
jr next chr 24 243

How it works

The hl and de register pairs are loaded with the start and end line numbers
respectively. The values are checked and if either or both are zero, the
routine returns to BASIC.

The ROM routine at address 6510 is then called and it returns the
address of the first line. It is then called again to find the address of the
character after the “ENTER" in the final line. The hl register pair is set
to the difference in the two addresses, and if this is zero or negative, the
routine returns to BASIC.

The contents of the hl register pair are copied into de to be used as a
counter. If the counter is zero the routine has finished, if not then the ROM
routine at address 4120 is called which deletes one character. The routine
then loops back to ‘next chr’,

Token Swap

Length: 46
Number of Variables: 2
Check sum: 5000

Operation
Changes every occurence of a specified character in a BASIC program to
another specified character. eg all PRINT statements could be changed to

LPRINTS.

86

Variahles

Name Length Location
chr old 1 23296
chr new 1 23297
Call

RAND USR address

Error Checks

If there is no BASIC program in memory or if either of the specified

Comment
character to be replaced
character to be entered

characters have codes less than 32, the routine returns to BASIC.

Comments

This routine is very fast but obviously, the longer the BASIC program, the

longer it takes to run.

Machine Code Listing

Label

next chr:

check:

compare:

Assembly language
Id, be, (23296)

Id a,31

cphb

ret nc

cpc

ret nc

Id hl, (23635)

inc hl
inc hl
inc hl

Id de, (23627)
and a

sbe hl,de

ret nc

add hl,de

inc hl

Id a, (hl)

inc hl

cpll

jr z, next chr
cp 14

jr nz, compare
inc hl

jr next chr
dec hl

cpec

jr nz, check
1d (hl), b

jr check

87

Numbers to be entered
237 75 0 91

62 31

184

208

185

208

42 83 92

35

35

35

237 91 75 92

167

237 82

208

25

35

126

5

254 13

40 237

254 14

323
35

24 230
43

185
32 229
112

24 226

How it works
The b and c registers are loaded with the new and old characters respectively.
If either character has a code less than 32 then the routine returns to BASIC.

The hl register pair is loaded with the address of the start of the basic
program. The hl pair is then increased and compared with the address of the
variables area. If hl is not less than the address of the variables the routine
returns to BASIC.

The hl pair is incremented to point to the next character. The code of
this character is loaded into the accumulator, and hl is incremented again. If
the value of the accumulator is 13 or 14 (ENTER or NUMBER) the routine
jumps back to next chr and hl is increased to point to the next character. If
the accumulator does not hold 13 or 14, the value stored is compared with
‘chr old’. If a match is found this character is replaced by ‘chr new’.

The routine then jumps back to check for the end of the program.

REM Kill

Length: 132
Number of Variables: O
Check sum: 13809

Operation
This routine deletes all ‘REM’ statements in a BASIC program in memory.

Call
RAND USR address

Error Checks
If there is no BASIC program in memory the routine will return without

doing anything.

Comments

The ROM routine which is used to delete characters is not very fast and so
this routine may take some time to run.

Machine Code Listing

Label Assembly language Numbers to be entered
1d hl, (23635) 42 83 92
jr check 24 31
next line push hl 229
inc hl 5
inc hl 35
Idc, (hl) 78
inc hl 35
1d b, (hD) 70

88

next chr

delete line

check

search

enter found

not enter

not number

inc hl

Id a,(hl)

cp 33

irc, next chr
cp 234

jrnz, search
inc be

inc be

inc be

inc be

pop hl

push be

call 4120
pop be

dec be

Ida,b

aorc

jrnz, delete line
1d de, (23627)
and a

sbc hl,de

ret nc

add hl,de

jr next line
inc hl

Id a, (hl)
cpl3

irnz, not enter
pap hl

add hl,be
inc hl

inchl

inc hl

inc hl

jr check

cp 14

jr nz, not number
inc hl

inc hl

inc hl

inchl

inc hl

jr search

cp 33

ir ¢, search
cp 34

89

225

197

205 24 16
193

I

120

177

32 246

237 91 75 92
167

237 82

208

25

24 214

35

126
254 13
328
225

9

35

35

35

35

24 231

254 14
327
35

35

35

35

35

24 231

254 33
56 227
254 34

jr nz, not quote 32 8

te inc hl 35
bk ik Id a, (hl) 126
cp 34 254 34
jr nz, find quote 32 250
jr search 24 215
uote cp 58 254 58
s jr nz, search 32 211
Idd,h 84
Ide,l 93
ind enter inc hl 35
¢ Id a, (hl) 126
cpl3 254 13
jr z, enter found 40 209
cp33 254 33
ir ¢, find enter 56 246
cp234 254 234
jr nz, not quote 32 236
Id h,d 98
Idle 107
ush be 197
S gall 4120 205 24 16
pop be 193
dec be 11
Id a, (hl) 126
cp 13 254 13
jr nz, delete chr 32 245
pop hl 225
inc hl 35
inc hl 35
Id (h),c 113
inc hl 35
Id (hl),b 112
dec hl 43
dec hl 43
dec hl 43
jr check 24 160

How it works
The hl register pair is loaded with the address of th.e start of the BASIC
program area, and a jump is made to the routine which checks t:or the end
of the program area. If the end has been reached a return to BASIC s n'fade.
The routine jumps to ‘next line’. This section saves the address in hl on
the stack for later use, and then loads be with the length of the BASIC hr}e
that has been encountered. The ‘next chr’ routine increments the address in
hl and loads the accumulator with the character stored at that address. If this

%0

character has a code less than 33, indicating that it is a space or control
character, the routine jumps back to repeat this section again. If the
character encountered is not the REM token a jump is made to ‘search’.

If a REM has been found the be register is increased by four so that it
can be used as a counter, and hl is removed from the top of the stack.
Then bc characters are deleted at address hl using the ROM routine at
address 4120. The routine then ‘falls through’ to the ‘check’ routine again.

If a jump is made to the ‘search’ routine hl is incremented to point
to the next character and this is loaded into the accumulator. If this is an
ENTER character hl is restored from the stack, increased to point to the
start of the next line, and a jump is made to ‘check’.

If the accumulator holds the NUMBER character (14) hl is increased to
point to the first character after the stored number and the search process is
repeated.

A check is then made for characters whose codes are less than 33, and
if one is found a jump is made back to ‘search’. If a quote character (34) is
found, the routine loops until a second quote is found and then the search is
continued. If the character found is not a colon, indicating a multi-statement
line, the search is repeated. hl is then copied into de to save the address of
the colon, and then hl is incremented to point to the next character. If this
character is an ENTER a jump is made to ‘enterfound’, otherwise if it is a
control character or space the routine loops back to ‘find enter’.

If the character is not a REM token a jump is made back to ‘not quote’,
If a REM token is found hl is loaded with the address of the last colon
encountered, and then all the characters from hl to the next ENTER token
are deleted. The pointers for the line are corrected, hl is set to the start of
the line and a jump is made back to ‘check’.

REM Create
Length: 85
Number of Variables: 3
Check sum: 9526

Operation

This routine creates a REM statement at a specified line containing a given
number of characters. The character is chosen by the user.

Variables

Name Length Location Comment

line number 2 23296 line at which REM is to be
inserted

number char. 2 23298 number of characters after
REM

char. code 1 23300 code of characters after
REM

91

Call
RAND USR address

Error Checks : :
If the line number given is zero, more than 9999, or a line with the same
number already exists the routine returns to BASIC.

Comments .
This routine does not check that enough memory is free for the new.lme to
be inserted. Therefore, this should be done before running this routine, by
calling the “Memory Left’ routine elsewhere in this book.

The characters to be entered after the REM should preferably have
codes more than 31 as the control characters (0-31) may confuse the LIST
routine in the ROM.

The ROM routine which is called to insert characters is fairly slow, so
this routine can take a long time.

The REM statement created using this routine, can be used to store
machine code or data which has to be POKEd into place.

Machine Code Listing
Label Assembly language Numbers to be entered
1d hl, (23296) 42 091
Id, a,h 124
orl 181
retz 200
1d de, 10000 17 16 39
anda 167
sbe hl,de 237 B2
ret nc 208
add hl,de 25
push hl 229
call 6510 205 110 25
jrnz, create 322
pop hl 225
ret 201
create Id be, (23298) 2T 529N
push bc 197
push be 197
Ida, 13 62 13
call 3976 205 136 15
inc hl 15
pop be 193
next chr push be 197
Id a,b 120
orce 177

92

jr z, insert REM 40 11

Id a, (23300) 58 4 9]

call 3976 205 136 15

inc hl 35

pop be 193

dec be 11

jr next chr 24 240
insert REM pop be 193

Id a, 234 62 234

call 3976 205 136 15

inc hl 35

pop be 193

inc be 3

inc be 3

Id a,b 120

push be 197

call 3976 205 136 15

pop be 193

inc hl 35

Ida,c 121

call 3976 205 136 15

inc hl 35

pop be 193

lda,c 121

push be 197

call 3976 205 136 15

pop be 193

inc hl is

lda,b 120

jp 3976 195 136 15

How it works

The hl register pair is loaded with the specified line number. This is
compared with zero, and if a match is found the routine returns to BASIC.
Also if hl contains a number longer than 9999 (the highest possible line
number), a return is made to BASIC.

A ROM routine is called which returns in hl the address of the line
whose number was previously in hl. If the zero flag is set, a line already
exists there, and so the routine returns to BASIC.

If the zero flag is not set a jump is made to ‘create’. bc is loaded with
the number of characters to be inserted after the ‘REM’ and this number is
saved on the stack. The accumulator is then loaded with 13, which is the
code of the ENTER character. The ROM routine at address 3976 is then
called to insert the ENTER character. The bc register is retrieved from the
stack. After re-saving bc on the stack, bc is tested to see if any more
characters have to be inserted. If not, a jump is made to “‘insert REM"". If

93

another character has to be inserted, the accumulator is loaded with the
specified code and the ROM routine at 3976 is used 1o insert it. The counter
(be) is decremented and the routine loops back to test if be is zero. Once the
routine reaches “‘insert REM™, a REM token is inserted using the same
ROM routine. be is then loaded with the length of the new line, and the
pointers for that line are created. The line number is then removed from the
stack and this is finally inserted before returning to BASIC.

Compact Program

Length: 71
Number of Variables: O
Check sum: 7158

Operation
This routine deletes all unnecessary control characters and spaces in a
BASIC program, thus increasing the amount of spare RAM available.

Call
RAND USR address

Error Checks
If there is no BASIC program in memory the routine returns to BASIC

immediately.

Comments

This routine assumes that all REM statements have already been removed
from the BASIC program. However, if this is not so, the computer will not
‘crash’. The time taken for the routine to finish is proportional to the length
of the BASIC program in memory.

Machine Code Listing

next byte inc hl 35
load Id a, (hl) 126

cp 13 254 13

jr nz, number 328
restore pop hl 225

Id (hl),c 113

inc hl 25

Id (hl),b 112

add hl,bc 9

inc hi 35

jr next line 24 227
number cp 14 254 14

jrnz, quote 27

inc hl 35

inc hl 35

inc hl 35

inc hl 35

inc hl 35

jr next byte 24 231
quote cp 34 254 14

jr nz, control 32 12
find quote inc hl 35

Id a, (hl) 126

cp 34 254 34

Jr z, next byte 40 221

cp 13 254 13

jrz, restore 40 223

jr find quote 24 244
control cp33 254 33

jr nc, next byte 48 211

push be 197

call 4120 205 24 16

pop be 193

dec be 11

jrload 24 204

How it works

Label Assembly language Nurnbers to be entered
Id hl, (23635) 42 83 92
next line inc hl 35
inc hl 35
check 1d de, (23627) 237 91 75 92
and a 167
sbe hl,de 237 82
ret nc 208
add hl,de 25
length push hl 229
Id c, (hl) 78
inc hl 35
Id b, (hl) 70

94

The i‘ll register pair is loaded with the address of the BASIC program. hl is
then mcrcmer!tcd twice, so that it points to the two bytes holding the length
of .the next line. The de register pair is loaded with the address of the
variables area. If hl is not less than de the routine returns to BASIC because
the end of the program area has been reached.

The add_ress in hl is saved on the stack, bc is loaded with the length of
the present line and hl is incremented to point to the next byte in the line.
The byte at hl is then loaded into the accumulator. If the accumulator does
not hold thirteen a jump is made to ‘number’.

95

To reach ‘restore’ the end of the present line must have been found.
The address of the line ‘pointers’ is loaded from the stack into hl, and
the present length inserted. The line length is added to hl, hl is incremented
and the routine loops back to ‘next line’.

If the routine reaches ‘number’ the accumulator is checked to see if it
holds the NUMBER character (14). If so, hl is increased by five so that the
following number is not changed, and a jump is made to ‘next byte'.

If the accumulator does not hold the code for a quote character the
routine jumps to ‘control’. If a quote has been found the routine loops until
the end of the line is reached, or another quote. In the former case a
jump is made to ‘restore’, in the latter case the jumpis to ‘next byte’.

At ‘control’ the character is checked to see if it has a code less than
thirty-three. If not the routine loops to ‘next byte’.

If a space or control character has been found the ROM routine at
address 4120 is called to delete it. The line length, which is held in be, is
decremented and a jump is made to ‘load’.

Load Machine Code into Data Statements

Length: 179
Number of Variables: 2
Check sum: 19181

Operation
This routine produces a DATA statement at line one in a BASIC program
and then fills it with data PEEKed from memory.

Variables

Name Length Location Comment

data start 2 23296 address to be copied from
data length 2 23298 number of bytes to copy
Call

RAND USR address

Error Checks

If the number of bytes to be copied is zero or there is already a line one the
routine returns to BASIC immediately. The routine does not check that
there is enough memory available for the new line, and so this must be done
manually.

The routine requires ten bytes per byte of data, plus five for line
numbers, pointers, etc. However, the ROM routine used also uses a large
workspace, so always take this into account. If there is not enough memory
available, the line pointers will not be set correctly and the BASIC listing
will be corrupted.

96

Comments

The time taken by this routine is proportional to the len
copied. gth of memory to be

Machine Code Listing

Label Assembly language Numbers to be entered
Id de, (23296) 237 91 0 91
Id be, (23298) 237 75 2 91
Ida,b 120
orc 177
retz 200
Id hl, (23635) 42 83 92
Id a, (hl) 126
cp (6]) 254 0
Jjrnz, continue 32 6
inc hl 35
Id a, (hl) 126
cpl 254 |
retz 200
dec hl 43

continue push hl 229
push be 197
push de 213
sub a 151
call 3976 205 136 15
ex de,hl 235
Ida,l 62 1
call 3976 205 136 15
ex de,hl 235
call 3976 205 136 15
ex de,hl 235
call 3976 205 136 15
ex de,hl 235
1d a, 228 62 228
call 3976 205 136 15
ex de,hl 235

next byte pop de 209
Id a, (de) 26
push de 213
Id c,47 14 47

hundreds incc 12
Id b, 100 6 100
subb 144
jr nc, hundreds 48 250
adda,b 128
Idb,a 71

97

tens

next zero

Id a,c
push be
call 3976
ex de,hl
pop be
Ida,b

Id c,47
ince

Id b,10
sub b

jr nc, tens
add a,b
Id b,a
Ida,c
push be
call 3976
pop be
ex de,hl
lda.b
add a,48
call 3976
ex de,hl
Id a,14
Idb, 6

push be
call 3976
pop be
ex de,hl
suba
djnz next zero
pop de
push hl
dec hl
dec hl
dec hl

Id a, (de)
Id (hl),a
pop hl
inc de
pop be
dec be

Id a,b
orc

jrz, enter
push be
push de
Ida, 44

98

121 call 3976 205 136 15
197 ex de, hl 235
205 136 15 jr next byte 24 173
235 enter Ida,13 62 13
193 call 3976 205 136 15
120 pop hl 225
14 47 Idbe, 0 100
12 inc hl 35
6 10 inc hl 35
144 Idd,h 84
48 250 Ide,] 93
128 inc hl 35
71 pointers inc hl 35
:g_', inc be 3
Id a, (hl) 126
205 136 15 cp 14 254 14
193 jrnz, end? 32 12
235 ine be 3
120 inc be 3
198 48 inc be 3
205 136 15 inc be 3
235 inc be 3
62 14 inc hl 35
66 inc hl 35
197 inc hl 15
205 136 15 inc hl 3s
193 inc hl 35
235 jr pointers 24 237
151 end? cp 13 254 13
iﬁ 247 jr nz pointers 32 233
209 lda,c 121
229 1d (de),a 18
43 inc de 19
43 Ida,b 120
43 Id (de),a 18
26 ret 201
119 -
225 How it works
19 The de register pair is loaded with the address of the bytes to be copied,
193 and the be register pair is loaded with the number of bytes to be copied. If
1 be holds zero the routine returns to BASIC immediately.
120 The hl register pair is loaded with the address of the BASIC program.
177 The accumulator is loaded with the byte stored at the address in hl. This
40 10 is the high byte of the line number. If this does not hold zero, line one does
197 not already exist and so the routine jumps to ‘continue’. If the high byte
213 does hold zero, the accumulator is loaded with the low byte. If this is set
62 44 to one, line one already exists, and so the routine returns to BASIC.

99

The address of the high byte of the line number is saved on the stack.
The number of bytes to be copied is saved, followed by the address of the data.

The accumulator is then loaded with zero—the high byte of the new line
number. Calling the ROM routine at address 3976 then inserts the character,
held in the accumulator, at the address stored in hl. hlis set to the value held
before this operation. The accumulator is loaded with one, and this is
inserted three times. The first one is the low byte of the line number, the
next two being the line pointer. The accumulator is then loaded with the
code of the *‘DATA’ token and this is inserted.

The address of the next byte of data is retrieved from the stack and
loaded into de. The accumulator is loaded with this byte, and de is stacked
again. The c register is loaded with one less than the code for the character
0", The ¢ register is incremented and the b register is loaded with 100.
The b register is subtracted from the accumulator and if the result is not
negative the routine loops back to ‘hundreds’.

The b register is added once to the accumulator so that the accumulator
holds a positive value. This value is then loaded into the b register. The
accumulator is loaded with the contents of ¢, and be is saved on the stack.
The ROM routine at address 3976 then inserts the character, held in the
accumulator, at the address stored in hl. The bc register pair is retrieved
from the stack and the accumulator is loaded with the value of the b register.
The above process is then repeated for b=10. The accumulator is then
increased by 48 and the resulting character is inserted.

The above routine has inserted the decimal value, of the byte of data
encountered, into the DATA statement. The binary representation must
now be inserted. This is marked by the NUMBER token, chr 14, which is
entered first, followed by five zeros. The value of the byte being copied
is POKEd to replace the third zero. de is then incremented to point to the
next byte of data. The number of bytes to be copied is copied from the stack
into be, and this is decremented. If the result is zero a jump is made to
‘enter’, otherwise the be and de register pairs are re-stacked, a comma is
inserted in the DATA statement, and the routine loops to ‘next byte’.

At ‘enter’ an ENTER token is inserted to mark the end of the DATA
statement. hl is loaded with the address of the start of the line, and bc is
set to zero. hl is increased to point to the low byte of the line pointer, and
this new address is copied into de. hl is incremented to point to the high
byte of the line pointer. hl and bc are then incremented, and the accumulator
is loaded with the character at the address stored in hl.

If the accumulator holds 14, a number has been found and so both hl
and be are increased by five to point to the first character after the number,
the routine then looping to ‘pointers’.

If the accumulator does not hold 14, and it does not hold 13 a jump is
made back to *pointers’.

To reach this stage the ENTER token marking the end of the line must
have been encountered. bc now holds the line length and so this is POKEd
into the line pointer, the address of which is stored in de.

The routine then returns to BASIC.

100

Convert Lower Case to Upper Case

Length: 41
Number of Variables: O
Check sum: 4683

Operation

This routine converts all lower case characters in a BASIC program to
Upper case or vice versa.

Call
RAND USR address

Error Checks

_lf there is no BASIC program in memory the routine returns to BASIC
immediately.

Comments

To change this routine so that it converts from upper case to lower case
change the numbers marked as below:

96* to 64
90** 10 122

Machine Code Listing

Label Assembly language Numbers to be entered
Id hl, (23635) 42 831 92
Id de, (23627) 237 91 75 92

jump inc hl 35
inc hl 35
inc hl 35
inc hl 3s

changed inc hl 35

next byte and a 167
shc hl,de 237 82
ret nc 208
add hl,de 25
Id a, (hl) 126
cp 13 254 13
jrz, jump 40 241
cp 14 254 14
inc hl 35
jrz, jump 40 236
sub 96 214 96*
jr ¢, next byte 56 237
sub 26 214 26

101

L

i.:jtéc;; ng%xt byte 738233)” 8. TOOLKIT ROUTINES
dec hl 43 Renumber

Id (hl), a 119

jrchanged 24 226 Length: 382

Number of Variables: 2

How it works Check sum: 41423

The hl register pair is loaded with the address of the BASIC program and
de is loaded with the address of the variables area. hl is increased to jump

over the line number/pointers. If hl is not less than de, the routine returns Operation
to BASIC, as the end of the program has been reached.) . This routine renumbers a BASIC program including any GOTO, GOSUBs
The accumulator is loaded with the byte s!m_‘ed at hl. If this bﬁg is an Btg:
ENTER character the routine loops back to ‘Jum.;:l’. If the pyne is the
NUMBER token, the routine also loops back to ‘jump’, hav!ng already Variables
incremented hl. Thus the five bytes :fter the ch]aracte:rl a;‘are av::;lc.ied. . Fra Fibiies " s
Ninety six is subtracted from the accumulator. If the result is ne Gl lingnd 3 g 8 e
the routine jumps to ‘next byte' because the character cannot be a I;)w:r LEAll 3296 th:;ﬂ&bﬁro he first line
y ix i d f the ac ulator. If the
case letter. Twenty six is then subtracted from the accum fidh P 443 i 0 S

result is not negative a jump is made to ‘next byte' as the character has a

code too high to be a lower case letter. Ninety is then added to the consecutive line numbers.

accumulator to give the code of the corresponding upper case le_tter. hl is e

decremented to point to the character that is to be replaced. This addrFss

is POKEd with the value in the accumulator and a jump is made to ‘changed’. RAND USR address
Error Checks

If the number of the first line is zero, or the step is zero the routine returns
to BASIC immediately. If there is no BASIC program in RAM the routine
returns to BASIC. Any calculated line numbers (eg GOTO 7*A); numbers
including decimal points (eg GOTO 7.8); numbers less than zero (eg
GOTO—1) or numbers more than 9999 (eg GOTO 20170) are ignored. If
the step is too large, line numbers may be repeated and the program
corrupted. The routine increases the length of the BASIC program in
RAM so a check should always be made that there is some spare RAM.

Comments
The time taken by this routine is proportional to the length of the BASIC
program in RAM.

The routine is not relocatable and should normally be entered at
memory location 32218. The position can be changed by following this
procedure:

(i) Let X= new address —32218
(ii) Let H= INT (x/256)

Let L= x — 256*h
(iii) For every pair of numbers in the listing marked “*’

Let L1= L +the first number

Let HI = H + the second number

102 103
e —— e e e e S

If L1is more than 255 Let HI= HI + |
let LI = LI—256

Replace the pair of numbers by LI and HI.

Machine Code Listing
Label Assemibly lunguage
1d hl, (23296)
Ida, h
orL
retz
Id hi, (23298)
Ida,h
orL
retz
1d hl, (23635)
1d de, (23296)
call check
jrnc, find GOTO
Id b, (hl)

1d (hl),d

inc hl

Id e, (hl)

1d (hl),e

inc hl

Id (hi),c

inc hl

1d (hl).b

inc hl

push hl

1d hl, (23298)
add hl,de

ex de, hl

pop hl

call end of line
jr next line
Id hl, (23635)
inc hl

inc hl

inc hl

inc hl

call find

jp nc, restore
Idd,h

Ide,1

Idb, O

next line

find GOTO

search

next digit

find next
Numbers to be entered
42 0 91
124
181
200
42 2 91
124
181
200
42 83 92
237 91 0 91
205 76* 127*
48 22
70
114 found
2; compare
115
35
113
35
112
35
229
4229
25
235
225
205 65* 127+
24 229

42 83 92

35

35

35

35

205 235* 126*
210 184* 126*
84

93

60

continue

calculate

incb

inc hl

Id a, (hl)

cp 46

jr nz, continue
ex de,hl

jr search

cp 14

jr nz, next digit
inc hl

inc hl

inc hl

inc hl

inc hl

inc hl

1d a, (h])

cp 58

jr z, found
cpl3

jr nz, find next
Ida,b

cpd

jr z, calculate
jr ne, find next
push de

Id h,d

Idl,e

push af

Id a, 48

call 3976

pop af

inca

pop de

jr compare
ldb,d

Idc,e

push de

Idhl, O

Id de, 1000
call add

Id de, 100
call add

Ide, 10

call add

Id a, (be)

sub 48

105

4
35

126
254 46
323
235

24 236
254 14
32 242
35

35

35

35

35

35

126
254 S8
40 4
254 13
32 234
120
254 4
40 16
48 227
213

98

107
245

62 48
205 136 15
241

60

209

24 236

66

75

213

3300

17 232 3

205 226% 126*
17 100 0

205 226* 126*
30 10

205 226* 126*
10

214 48

find line

end of prog

exists

wrong line

next byte

Ide,a

add hl,de

1d b,h

Id¢,]

Id hl, (23635)

inc hl
inc hl

call check
jr c, exists
pop hl

jr search
Id a, (hl)
cpc

jr nc, next byte
inc hl

inc hl

call end of line
jr find line
inc hl

Id a, (hl)
cphb

jr ¢, wrong line
dec hl

dec hl

Id ¢, (hD)
dec hl

1d h, (hl)
Idl, ¢

pop bc
push be
push hl

Id de, 1000
call insert
Id de, 100
call insert
Ide, 10
call insert
Ide, 1

call insert
inc be
suba

Id (bc),a
inc be

Id (bc),a
inc be

pop hl

95
25
68
77
42 83 92

3

35

205 76* 127*
56 3

225

24 153

126

185

48 7

35

35

205 65* 127+
24 235

35

126

184

56 245

43

43

78

43

102

105

193

197

229

17 2323

205 212* 126*
17 100 0

205 212* 126*
30 10

205 212* 126*
301

205 212* 126*

3
151

|l o P V]

restore
following

insert
subtract

poke

add

repeat

Ida,l

1d (be),a
inc be

Id a,h

1d (be),a
inc be
suba

1d (bc),a
pophl

ip search
1d hl, (23635)
inc hl

inc hl
call check
ret nc
ldbh
Idc,l

call end of line
push hl
and a

sbe hl,be
dec hl
dec hl
Ida,l

Id (bc),a
inc be
Idah

Id (be),a
pop hl

jr following line
Ida, 48

and a

sbe hl,de
jr ¢, poke
mnca

jr subtract
add hl,de
Id (bc),a
inc be

Tet

Id a, (bc)
inc be
sub 47
deca
retz

add hl,de

107

125

2

3

124

2

3

151

2

225

195 15* 126*
42 83 92
15

35

205 76* 127+
208

68

13

205 65* 127*
229

167

237 66
43

43

125

2

3

124

2

225

24 231
62 48
167

237 B2
56 3

60

24 248
25

2

k}

201

10

3

214 47
61

200

25

find

find ENTER

increase

not REM

next character

not string

check digit

jr repeat

Id a, (hl)

call check

ret nc

cp 234

jr nz not REM
inc hl

Id a, (h1)

cp 13

jrnz, find ENTER
inc hl

inc hl

inc hl

inc hl

inc hl

jr find

cp 34

jrnz, not string
inc hl

1d a, (h1)

cp 34

Jrnz, next character
inc hl

jr find

cp 13

Jr z, increase
call 6326

jrz, find

cp 237

jrz, check digit
cp 236

jr z, check digit
cp 247

jr z, check digit
cp 240

jr z, check digit
cp 229

jr z, check digit
cp 225

jrz, check digit
cp 202

jr z, check digit
inc hl

jr find

inc hl

108

24 251

126

205 76* 127+
208

254 234
3213

35

126
254 13
32 250
35

5

40 232
205 182 24
40 212
254 237
40 27
254 236
40 23
254 247
40 19
254 240
40 15
254 229
40 11
254 225
40 7
254 202
40 3

35

24 181
35

Id a, (hl) 126
cp 48 254 48
jre, find 56 175
cp 58 254 58
jrne, find 48 171
ret 201
end of line Id a, (hl) 126
again call 6326 205 182 24
jr z, again 40 251
cpl3 254 13
inchl 35
jrnz, end of line 32 245
check push hl 229
push de 213
Id de, (23627) 237 91 75 92
anda 167
shc hl,de 237 82
pop de 209
pop hl 225
ret 201

How it works

The hl register pair is loaded with the first line number. If this is zero,
the routine returns to BASIC. hl is then loaded with the step, and if this is
zero the routine returns to BASIC,

hl is loaded with the address of the BASIC program, and de is set to
the first line number. The subroutine ‘check’ is then called, and if the end of
the BASIC program has been reached, a jump is made to ‘find GOTO’. be
is loaded with the old number of the line encountered, and the number is
replaced by de, bc is then copied into the line pointers.

hl is saved on the stack, is loaded with the step, and increased by de.
The result is copied into de, being the next line number. hl is then
retrieved from the stack, and the subroutine ‘end of line" increases it, so
that it points to the next line. The routine then loops back to ‘next line’.

At “find GOTO’, hl is loaded with the address of the BASIC program and
this is increased to point to the first character of the first line. The
subroutine ‘find” is then called. If there are no more GOTOs, GOSUBs etc
left to alter, the routine jumps to ‘restore’. Otherwise, on return from the
subroutine hl holds the address of the first digit after the GOTO, GOSUB,
etc. This is copied into de, and the b register is set to zero. The b register is
used to count the number of digits in the following number.

The b register is incremented, and hl is increased to point to the next
character and this character is then loaded into the accumulator. If the
character is a decimal point hl is loaded with de and the routine loops back
to search, to find the next GOTO. If the character is not the NUMBER
token the routine loops to ‘next digit’.

109

hlis increased to point to the character following the NUMBER. If this
is not a colon or an ENTER token the routine jumps back to ‘find next’
as the GOTO being tested has a calculated destination. The accumulator is
loaded with the value in the b register. If this is four the routine jumps to
‘calculate’; if it is more than four a jump is made back to ‘find next’ as
line numbers more than 9999 are invalid.

de is then saved on the stack, and copied into hl. The accumulator is
then saved on the stack, and loaded with the code of the zero character.
This is inserted at the address in hl by the ROM routine at address 3976.
The accumulator is retrieved from the stack and incremented. It then holds
the new number of digits in the line number. de is retrieved from the stack,
and the routine loops to ‘compare’.

At ‘calculate’, the address in de is copied into be, and then saved on
the stack. hl is loaded with zero, and de is loaded with 1000, The subroutine
‘add’ is then called, to add to hl the number of thousands in the line number
under scrutiny. This is then repeated for the hundreds, tens and units, thus
loading hl with the line number. The bc register pair is loaded with the
result.

The hl register pair is loaded with the address of the BASIC program.
The “‘check’ subroutine is called, and if the end of the program area has
been reached, the routine retrieves hl from the stack and jumps to ‘search’,
because the destination of the GOTO does not exist. If the byte addressed
by hl is less than the value of the c register, hl is increased to point to the
next line, and a jump made to ‘find line’. Otherwise hl is incremented to
point to the next byte of the line number under test. If this is less than the
value of the b register a jump is made to *wrong line’.

To reach this stage the destination of the GOTO must have been found.
hl is decreased to point to the start of the line, and then loaded with its new
line number. be is loaded with the address on the stack, and then hl is saved
on the stack. bc now holds the address to which the line number is to be
copied. de is loaded with 1000, and the subroutine ‘insert’ is called. This
calculates the number of thousands in hl, adds 48 to produce a readable
digit, and POKEs the value into be. be is then increased to point to the next
character. This process is repeated for the hundreds, tens and units.

The binary representation of the line number is then built up; be is
increased to point to the character after the NUMBER token and the next
two bytes are POKEd with zero. hl is then retrieved from the stack, and
POKEd into the following two bytes. The fifth byte of the number is POKEd
with zero. hl is retrieved from the stack, and the routine jumps to ‘search’ to
repeat the process for the next GOTO.

At ‘restore’, hl is loaded with the address of the BASIC program area,
and then incremented twice to address the pointers of the following line,
which actually hold the old line number. The subroutine ‘check’ is called,
and if the end of the BASIC program has been reached the routine returns
to BASIC. bc is loaded with the address in hl, and the subroutine
‘end of line’ is called. This returns one plus the address of the ENTER
token in hl. hl is saved on the stack. bc is subtracted from hl, and then

110

R R R R R R R R R R R

hl is decremented twice producing the new line pointers which are POKEd
on to bec and be + 1. hl is retrieved from the stack, and a jump made to
‘following line”.

Subroutines

Insert:

The accumulator is loaded with the code of the zero character. de is
subtracted from hl, and if the result is negative, a jump is made to ‘poke’.
Otherwise the accumulator is incremented and a loop made to ‘subtract’.

At ‘poke’, de is added to hl to produce a positive value. be is POKEd
with the value in the accumulator, and then incremented to point to the next
byte. A return is then made.

Add:

The accumulator is loaded with the byte addressed by be, and be is
incremented to point to the next byte. 47 is subtracted from the accumulator.
The accumulator is decremented and if the result is zero, a return is made.
Otherwise de is added to hl, and the routine loops to ‘repeat’.

Find:

The accumulator is loaded with the byte addressed by hl. The ‘check’
subroutine is then called, and if the end of the BASIC program has
been reached a return is made. If the character in the accumulator is not
the ‘REM’ token a jump is made to ‘not REM’. hl is incremented
repeatedly until the end of the line is found. hl is increased to point
to the first character of the next line, and a jump is made to *find’.

At ‘not REM’, if the accumulator does not hold the code of the quote
character, a jump is made to ‘not string’. Otherwise hl is incremented
repeatedly until a second quote symbol is found. hl is incremented once
more to point to the next character, and a jump is made back to *find’.

At ‘not string’, if the accumulator holds the ENTER token a loop is
made to ‘increase’, if it holds the NUMBER token the routine loops to
“find’. If none of the GOSUB, GOTQ, RUN, LIST, RESTORE, LLIST,
LINE instructions has been found, hl is incremented and a jump made
ta ‘find’. hl is incremented, and the accumulator loaded with the next
character. If this is not in the range 48-57 the routine jumps to ‘find’. The
routine then returns.

End of Line:

The accumulator is loaded with the byte addressed by hl. If this is the
NUMBER token hl is increased and a loop made to ‘again’. hl is
incremented. If the accumulator does not hold the ENTER token the
routine jumps to ‘end of line’. A test is made to see if the end of the BASIC
program has been reached, and the routine then returns,

Memory Left
Length: 14

Number of Variables: O
Check sum: 1443

111

Operation

Returns the amount of spare RAM in bytes.

Call
PRINT USR address

Error Checks
None

Comments

This routine should be called before using any routines that may increase
the program length, to ensure that there is enough spare RAM.

Machine Code Listing

Label Assembly language Numbers to be entered
Idhl, O 3300
add hl, sp 57
Id de, (23653) 237 91 101 92
anda 167
sbe hl,de 237 82
Id b,h 68
ldc,l 7T
ret 201

How it works

The hl register pair is set to zero, and the address of the end of spare RAM
is added to it (the address is stored in sp). The de register pair is
loaded with the address of the start of spare RAM, and is subtracted from
hl. hl is copied into be, and the routine returns to BASIC.

Program Length

Length: 13
Number of Variables: O
Check sum: 1544

Operation
Returns the length of BASIC program, in bytes.

Call
PRINT USR address

Error Checks
None

112

Comments
None

Machine Code Listing

Label Assembly language Numbers (o be entered
Id hl, (23627) 42 75 92
Id de, (23635) 237 91 83 92
anda 167
sbe hl,de 237 82
1d b,h 68
lde,l 77
ret 201

How it works

The hl register pair is loaded with the address of the variables area, and de
is loaded with the address of the BASIC program. de is subtracted from
hl, to give the program length. hl is copied into be, and the routine returns
to BASIC.

Line Address

Length: 29
Number of Variables: 1
Check sum: 2351

Operation

Returns the address of the first character after the 'REM’ token in a
specified line.

Variables

Name Length Location Comment

line number 2 23296 line number which should
contain ‘REM’

Call

LET A = USR address

Error Checks
If the specified line does not exist or it is not a REM statement, the routine
will return the value zero.

Comments
This routine can be used to find the address at which machine-code should
be POKEd to be positioned in a REM statement.

113

When called, the variable A (any variable could be used) is set to the
address, or zero if an error occurs. Do not enter line numbers more than

9999.

Machine Code Listing

Label Assembly language Numbers to be entered
1d hl, (23296) 42 0 91
Ida,h 124
orl 181
jrz,error 40 5
call 6510 205 110 25
jr z, continue 40 4
error Id be, O 100
ret 201
continue inc hl 35
inc hl 35
inc hl 35
inc hl 35
I1d a, 234 62 234
cp (hl) 190
jr nz, error 32 243
inchl 35
Id b,h 68
Idc,l 77
ret 201

How it works

The hl register pair is loaded with the specified line number. If this number
is zero a jump is made to ‘error’ otherwise the ROM routine at address 6510
is called on return from this subroutine. hl is set to the address of the line.
If the zero flag is set a jump is made to ‘continue’. If the zero flag is not set,
the line does not exist, and the routine falls through to ‘error’ where bc is
loaded with zero and the routine returns to BASIC.

If the routine reaches ‘continue’ hl is increased by four to point to the
first instruction in the specified line. If this instruction does not have a code
of 234 a jump is made to ‘error’. If the instruction is a ‘REM" hl is increased
to point to the next character. The value of hl is then copied into bc and the
routine returns to BASIC.

Copy Memory

Length: 33
Number of Variables: 3
Check sum: 4022

114

Operation
This routine copies an area of memory from one address to another.

Variables
Name Length Location Commenl

start 2 23296 address to be copied from
destination 2 23298 address to be copied to
length 2 23300 number of bytes to be copied

Call
RAND USR address

Error Checks
None

Comments
This routine can be used to produce animated ‘films’ by the following
method:

(i) produce the first screen of information

(ii) copy the display to above RAMTOP

(iii) repeat for further screens.

(iv) copy the screens back one at a time in rapid succession.

Machine Code Listing

Label Assembly language Numbers to be entered
1d hl, (23296) 42 0 91
Id de, (23298) 23791291
Id be, (23300) 237 75 4 91
Id a,b 120
orc 1
ret z 200
and a 167
sbe hl,de 237 82
ret z 200
add hl,de 25
jre, lddr 56 3
Idir 237 176
ret 201

Iddr ex de,hl 235
add hl,be 9
ex de,hl 235
add hl,bc 9
dec hl 43
dec de 27
Iddr 237 184
ret 201

115

How it works

The hl register pair is loaded with the address of the first byte of memory to
be copied, de is loaded with the address that it is to be copied to, and bc is
loaded with the number of bytes to be copied. If be is zero or hl =de then
the routine returns to BASIC. If hl is more than de, the section of memory
is copied using the ‘Idir’ instruction, and then the routine returns to BASIC.

If de is more than hl, be—1 is added to both register pairs, the memory
is copied using the ‘lddr” instruction, and the routine returns to BASIC.

Zero all Variables

Length: 108
Number of Variables: O
Check sum: 10717

Operation

All numeric variables are given the value zero, all dimensioned strings are
filled with spaces, and non-dimensioned strings are set to length zero (null
strings).

Call
RAND USR address

Error Checks
If there are no variables in memory the routine returns to BASIC immediately.

Comments
This routine is a useful debugging aid.

Machine Code Listing

Label Assembly language Numbers to be entered
Id hl, (23627) 42 75 92
check Id a, (h) 126
cp 128 254 128
retz 200
Id de, 1 1710
bit 7,a 203 127
jrnz, next bit 32:32
bit 5,a 203 111
jrz, ‘string’ 40 9
zero ldb,5 65
next byte inc hl 15
Id (hl),d 114
djnz next byte 16 252
116

string

delete

next bit

number

array
find length

find elements

rub out

add hl,de
jrcheck
inc hl

Id ¢, (hl)
Id (hl),d
inc hl

Id b,(h])
1d (hl),d
inc hl
Ida,b
orc

jr z, check
push be
call 4120
pop be
dec be

Jr delete
bit 6,a
jrnz, bit 5
bit 5,a

jr z, array
inc hl

bit 7, (hl)
jr z, number
jr zero
suba
puch af
inc hl

Id c, (hl)
inc hl

Id b, (hl)
inc hl
push hl
I1d 1, (hl)
Idh,d
add hl,hl
pop de
inc de

dec be
dec hl

Id a,h

orl

jr nz, find elements
dec be

inc de
dec be

117

25
24 232
15

78

114

35

70

114

35

120

177

40 221
197

205 24 16
193

1

24 244
203 119
32 45
203 111
40 7

35

203 126
40 251
24 213
151

245
35
78
35
70
35
229
110
98
41
209
19
11
43
124
181
32 249
11

19
11

pop af 241

push af 245

Id (de),a 18

Ida,b 120

orc 177

jr nz, rub out 32 247

pop af 241
restore inc de 19

rx de,hl 235

jr check 24 164
bit § bit 5,a 203 111

jr z, string array 40 5

Id de, 14 17 14 0

jr ‘zero’ 24 170
string array Ida, 32 62 32

jr find length 24 210

How it works

The hl register pair is loaded with the address of the start of the variables
area. The accumulator is loaded with the byte stored at hl. If the value of
this byte is 128 the routine returns to BASIC, because the code 128 marks
the end of the variables. The de register is loaded with the value one for use
later in the routine. If bit 7 of the accumulator is set to one, the routine
jumps to ‘next bit” then, if bit 5 is set to zero, the routine jumps to ‘string’.

To reach ‘zero’ without jumping ahead in the routine, the variable
found must be a number whose name is one letter long. The b register is set
to five, to be used as a counter, hl is incremented to point to the next byte
and this is POKEd with zero. The counter is decremented, and if zero has
not been reached the routine loops back to ‘next byte’. de is then added to
hl to point to the next variable and a jump is made back to ‘check’.

If the routine reaches ‘string’ hl is incremented to point to the bytes
holding the length of string found. The old length is loaded into bc to be
used as a counter, and the new length is set to zero. hl is again incremented
to point to the text of the string. If the counter is set to zero, hl now points
to the next variable and so a jump is made back to ‘check’. If not, then bc
is saved on the stack and the ROM routine at address 4120 is called to
delete one character. The counter is then retrieved from the stack,
decremented, and a jump is made back to ‘delete’.

At ‘next bit’, bit six of the accumulator is checked. If it is set to one a
jump is made to ‘bit 5’ as a string array or FOR/NEXT control variable has
been found. If it is set to zero, and bit five is set to zero a jump is made to
‘array’.

To reach ‘number’ the variable found must be a number with a name
more than one character long. The hl register pair is incremented to point to
the next byte, and this is repeated until a byte is encountered with bit

118

seven set to one. When this is found the routine jumps to ‘zero’ to load
with variable with nought.

If the routine reaches ‘array’ the accumulator is loaded with zero,
because this is the value which the elements must be set to later.

At “find length® the accumulator is saved on the stack and hl is
incremented to point to the bytes holding the array length. This is copied
into be for use as a counter. hl is agian incremented, so that it now points to
the byte holding the number of dimensions, and then hl is saved on the
stack. hl is loaded with the number of dimensions and this is multiplied by
two, de is set to the address saved on the stack, then de is incremented hl
times and bc is decremented (hl+ 1) times. de is then incremented and be
decremented again. de now points to the next element of the array and bc
holds the number of bytes left before the end is reached. The accumulator
is retrieved from the stack and this is POKEd into de. The counter in be is
decremented, and if it does not hold zero the routine jumps back to ‘rub
out'. The value in hl is then adjusted to point to the next variable, and a
jump is made to ‘check’.

At ‘bit 5" a test is made to see if a string array has been encountered.
If so, the accumulator is set to the code for a space and a jump is made 10
‘find length'. To reach this point, the variable must be a FOR/NEXT
control variable. de is set to 14 so that adding this to (hl + 5) points to the
next variable. The routine then jumps back to ‘zero’.

List Variables

Length: 94
Number of Variables: O
Check sum: 10295

Operation
This routine lists the names of all the variables presently in memory.

Call
RAND USR address

Error Checks
If there are no variables in memory the routine returns to BASIC immediately.

Comments
This is a useful aid for program debugging, particularly with long or
complex programs.

Machine Code Listing

Label Assembly language Numbers to be entered
resO, (IY +2) 253 203 2 134
1d hl, (23627) 42 75 92

119

next variable

print

string array

brackets

pointers

next bit

next character

last character
jump

array

Ida, 13

rst 16

Id a, 32

rst 16

1d a, (hl)

cp 128

retz

bit7,a
jrz,bits
bit 6,a

ir z, next bit
bit 5,a

jr z, string array
sub 128

Id de, 19
rst 16

add hl,de

jr next variable
sub 96

rst 16

Ida, 36

rst 16

Id a, 40

st 16

Ida, 41

inc hl

Id e, (hl)
inc hl

Id d, (h)
inc hl

jr print

bit 5,a

jr z, array
sub 64

rst 16

inc hl

Id a, (hD)
bit 7,a

jr nz, last character
rst 16

jr next character
sub 128

Id de, 6

jr print

sub 32

120

62 13
215

62 32
215
126
254 128
200
203 127
40 62
203 119
40 31
203 111
40 9
214 128
17 19 0

215
25
24 225

214 96
215
62 36

215

62 40
215

62 41
35

94

35

86

35

24 234
203 111
40 19
214 64
215

5

126
203 127
323
215

24 247
214 128

1760
24 211

214 32

jr brackets 24 216
bit 5 bit 5,a 203 111

jrnz, jump 32 243

add a, 32 198 32

rst 16 215

Id a, 36 62 36

Jir pointers 24 211

How it works

Bit O of the byte at address 23612 is reset to ensure that any characters
PRINTed appear in the top part of the screen. hl is loaded with the address
of the variables area. The accumulator is loaded with the ENTER token
and this is PRINTed using the ROM routine at address 16. The accumulator
is then loaded with the code for a space and this is PRINTed using the same
routine.

The accumulator is loaded with the byte stored at the address in hl. If
the value of this is 128 the routine returns to BASIC because the end of the
variables area has been reached.

If bit 7 of the accumulator is set to zero the routine jumps to ‘bit 5'
because a string, or a number whose name is one letter only, has been
encountered. bit 6 of the accumulator is tested. If it is set to zero a jump is
made to ‘next bit’ because an array, or a number whose name is more than
one letter, has been found. If bit 5 of the accumulator is zero the routine
jumps to ‘string array’.

The routine reaches this point if the variable found is the control of a
FOR/NEXT loop, 128 is subtracted from the accumulator, the result being
the code of the character to be PRINTed. de is loaded with 19 to point to
the next variable when added to hl, the character in the accumulator is
PRINTed, de is added to hl, and the routine loops back to ‘next variable’.

If the routine reaches ‘string array’ 96 is subtracted from the
accumulator, to give the code of the name of the array found. This is
PRINTed using the ROM routine. A dollar sign and an open-bracket
are then PRINTed, and the accumulator is loaded with the code of a close-
bracket. hl is increased to point to the bytes holding the length of the array.
This is loaded into de, so that adding to hl gives the address of the next
variable. A jump is made to ‘print’ where the close-bracket is PRINTed and
de is added to hl.

At ‘next bit’, bit 5 of the accumulator is tested. If it is set to zero, a
jump is made to ‘array’. If it is set to one, a number has been found whose
name is longer than one letter. 64 is subtracted from the accumulator and
the resulting character is PRINTed. Then the routine loops, PRINTing each
character encountered, until one is found with bit 7 set to one. 128 is
subtracted from the character code, de is loaded with the displacement to
the next variable, and the routine jumps to ‘print’.

If an array is found 32 is subtracted from the accumulator to give the
correct code, and a jump is made to ‘brackets’.

121

L ————

At ‘bit 57, if a number has been found whose name is one letter only,
the routine loops back to ‘jump’.

To get to this section, the variable encountered must be a string.
Subtracting 32 from the accumulator gives the code to be PRINTed. Finally
the accumulator is loaded with the code for a dollar sign, and a jump is
made to ‘pointers’.

Search and List
Length: 155

Number of Variables: 2
Check sum: 17221

Operation
This routine searches through a BASIC program and lists every line
containing a string of characters specified by the user.

Variables

Narme Length Location Comments

data start 2 23296 address of first byte of data

string length 1 23298 number of characters in
string

Call

RAND USR address

Error Checks

If there is no BASIC program in memory or the string is zero characters in
length, the routine returns to BASIC immediately.

Comments
The time taken by this routine is proportional to both the length of the
string and the length of the BASIC program.

The string to be searched for should be POKEd above RAMTOP and
the address of the first byte of the string POKEd into 23296/7. The string
length should be stored in 23298.

Machine Code Listing
Label Assembly language Numbers to be entered
res O, (1Y +2) 253 203 2 134
Id ix, (23296) 221 42 0 91
Id hl, (23635) 42 83 92
restart Id a, (23298) 58 2 91
Ide,a 95
cpO 254 0

122

B e —— =~ e

resiore

check

long jump
enter

number

different

compare

ret z
push hl

push ix
pop be
Idd, O
inc hi

inc hl

inc hl

inc hl
push de
Id de, (23627)
and a
sbec hl,de
add hl,de
pop de

jr c, enter
pop hl
ret

jr restart

Id a, (hl)

cp 13

jrnz, number
inc hl

pop be

push hl
jrrestore

call 6326

jr nz, compare
dec hl

push ix

pop be

Idd, O

jr check

Id a, (bc)

cp (hl)

jrnz, different
inc be

incd

Ida,d

cpe

jrnz, check
Ida, 13

st 16

pop hl

push hl

Id b, (hD)

123

200

229

221 229
193
220

35

35

35

35
213
237 91 75 92
167
237 82
25
209
56 4
225
201

24 223

126
254 13
325
35

193
229
24 221

205 182 24
328
43

221 229
193
220
24 216
10

190

32 245
E)

20

122

187

32 206
62 13
215

225
229

70

thousands

hundreds

tens

next character

line end

chr 14

inc hl

Id 1, (hl)
Idh, b

Id de, 1000
Id a, 47
inca

and a

sbe hl,de

jr nc, thousands
add hl, de
st 16

1d de, 100

Id a, 47
inca

and a

sbc hl, de

jr nc, hundreds
add hl,de
st 16

Id de, 10

Id a, 47
inca

and a

sbe hl,de

jr nc, tens
add hl, de
st 16

Ida,l

add a, 48

rst 16

pop hl

inc hl

inc hl

inc hl

inc hl

1d a, (hl)
cpl3

jrnz, chr 14
st 16

inc hl

jr long jump
call 6326
jrz, line end
cp 32

jr c, next character
st 16

jr next character

124

15
110

96

17 232 3
62 47
60

167

237 82
48 250
25

215

17 100 0
62 47
60

167

237 82
48 250
25

215

17 10 0
62 47
60

167

237 82
48 250
25

218

125

198 48
215

225

35

35

35

35

126

254 13
324
215

35

24 155
205 182 24
40 243
254 32
56 237
215

24 234

How it works

Bit O of the byte stored at address 23612 is reset to ensure that any characters
PRINTed appear in the top part of the screen. ix is loaded with the address
of the first byte of data. This allows the address to be loaded into other
register pairs, using less references to the printer buffer. hl is loaded with
the address of the BASIC program.

The accumulator is loaded with the length of the string and this is
copied into the e register. If the length is zero the routine returns to BASIC
immediately, The address in hl is saved on the stack, holding the position in
memory of the line currently being searched.

The address of the data is copied from ix into bc to be more accessible.
The d register is loaded with zero, ie the number of characters found that
match the data entered. The hl register pair is increased by three to point to
the high byte of the line pointer. hl is incremented to point to the next
character. The de register pair is saved on the stack.

de is loaded with the address of the variables area, and this is subtracted
from hl. If the result is negative the routine jumps to ‘enter’ after restoring
hl and retrieving de from the stack. If the result was positive the stack is
restored to its original size and the routine returns to BASIC, as the end of
the BASIC program had been reached.

At ‘enter’ the accumulator is loaded with the byte stored at the address
in hl. If this is not the ENTER token a jump is made to ‘number’. If the
ENTER token is found hl is increased to point to the start of the next
line. The address of the previous line is removed from the stack and is
replaced by the new value in hl. Then a jump is made to ‘restore’.

At ‘number’ the ROM routine at address 6326 is called. If the character
in the accumulator is the NUMBER token, hl is increased to point to the
first character after the binary representation of the number found by the
ROM routine. If the NUMBER token is not found the routine jumps to
‘compare’, otherwise hl is decremented and the routine ‘falls through' to
‘different’. bc is copied from ix, the number of characters found is reset to
zero, and a jump is made to ‘check’.

At ‘compare’ the accumulator is loaded with the byte stored at the
address in be. If this is not the same as the byte stored at the address in hl,
the routine loops back to ‘different’. bc is incremented to point to the next
data byte, and the number of characters found is increased. If this is not
equal to the length of the string the routine loops back to ‘check’.

The accumulator is loaded with the code of the ENTER token and this
is PRINTed using the ROM routine at address 16. The address of the line to
be PRINTed is loaded from the stack into hl. The line number is then copied
into hl via the b register. de is loaded with 1000 and the accumulator is
loaded with one less than the code of the *'O"’ character. The accumulator
is incremented and de is repeatedly subtracted from hl until hl is negative.
Then de is added once to hl to produce a positive remainder. The character
in the accumulator is then PRINTed.

125

The above process is then repeated for de = 100 and de = 10. Then the Machine Code Listing
remainder is loaded into the accumulator, 48 is added, and the resultant Label Assembly language Numbers ta be entered
character is PRINTed. - . 1d ix, (23296) 221 42 0 91
The address of the start of the line is retrieved from the stack, and 1d hl, (23635) 42 83 92
loaded into hl. Then hl is increased to point to the high byte of the line 1d a, (23298) 58 2 9]
pointer, hl is incremented, and the byte at hl is loaded into the accumulator. Ide, a 95
If this byte is not the ENTER token a jump is made to ‘chr 14°, otherwise cpO 254 O
the ENTER is PRINTed, hl is incremented, and a jump is made back to rel 2 200
‘restart’. dechl 43
At “chr 14’, the ROM routine at address 6326 is called. If the character new line inc hl 35
in the accumulator is the NUMBER token, hl is increased to point to the inc hl 15
first character after the number found, this character is loaded into the inc hl 15
accumulator, and a jump is made to ‘line end’. Then, if the character in the inchl 15
accumulator has a code less than 32, the routine loops back to ‘next jr reset 24 23
character’. If the code is more than 31 the character found is PRINTed and check inc hl 15
a jump is made to ‘next character’. push de 213
Id de, (23627) 237 91 75 92
Search and Replace and a 167
Length: 85 sbe hl,de 237 82
’ add hl,de 25
Number of Variables: 3 pop de 209
Check sum: 8518 ret nc 208
. Id a, (hD) 126
Operation ep 13 254 13
This routine searches a BASIC program for a string of characters, and jr z, new line 40 233
replaces every occurrence by another string of the same length. call 6326 205 182 24
jr nz, compare 28
Variables dec hl 43
Name Length Location Comment reset push ix 221 229
old data start 2 23296 address of string to be pop be 193
Teplas j!?cdh'ecc)k iczt (2)26
string length 1 23298 length of string to be compare 1d a, (be) 10
replaced
cp (hl) 190
new data start 2 23299 adt.:lress of replacement ir nz, reset 32 245
FrInE inc be 3
Call incd 20
RAND USR address Ida,d 122
cpe 187
Error Checks jrnz, check 32 216
If the string length is zero or there is no BASIC program in memory the push hl 229
routine returns to BASIC immediately. Idd, 0 220
and a 167
Comments ?:uéhl.de 237 82
The time taken by this routine is dependent on the string length and the € 83
length of the BASIC program in memory. 1d be, (23299) 237 75 3 91
incd 20
126 127

next char inc hl 35
decd 21
jr z, finish 40 5
Id a, (bc) 10
Id (hl).a 119
inc be 3
jr next char 24 247
finish pop hl 225
Jrreset 24 215

How it works

ix is loaded with the address of the string to be searched for. This should be
above RAMTOP. hl is loaded with the address of the program area, and
the accumulator is loaded with the length of the string. The length is copied
into the e register for use later in the program. If the string length is zero the
routine returns to BASIC. hl is adjusted to point to the high byte of the
next BASIC line pointer and a jump is made to ‘reset’.

At ‘check’ hl is incremented to point to the next character. de is saved
on the stack, and loaded with the address of the variables area. If hl is not
less than de the end of the program has been reached and so, after restoring
de from the stack, the routine returns to BASIC.

The accumulator is loaded with the character addressed by hl. If this is
the ENTER token the routine loops back to ‘newline’. If the accumulator
does not hold the NUMBER token (character 14) a jump is made to
‘compare’, otherwise hl is increased by five, so that hl points to the fifth
byte of the number found.

At ‘reset’ be is loaded with the address of the string to be searched for.

The d register is set to zero to hold the number of characters in the string
found so far. The routine then loops back to ‘check’.
Al ‘compare’ the accumulator is loaded with the character in the string that
is pointed to by be. If this is different to the byte addressed by hl, the routine
jumps to ‘reset’. bc is incremented to point to the next character in the
string, and the counter in the d register is incremented. If this is not equal to
the length of the string the routine loops back to ‘check’.

If the string has been found hl is saved on the stack, so that the routine
starts searching for the next occurrence from this address. de is loaded with
the length of the string and this is subtracted from hl to give one less than
the start address. The string length is then loaded into d for use as a counter.
be is loaded with the start address of the new string, and the d register is
incremented. The hl register is incremented to point to the next location and
the counter is decremented. If the counter holds zero hl is retrieved from the
stack and a jump is made to ‘reset’ to find the next occurrence. The
accumulator is loaded with the character pointed to by bc and this is
POKEd into hl. be in incremented to point to the next character and the
routine loops back to ‘next char’.

128

ROM Search

Length: 58
Number of Variables: 3
Check sum: 6533

Operation
This routine searches the ROM for a pattern of bytes specified by the user.

Variables

Name Length Location Comment

search start 2 23296 start of memory to be
searched

string length | 23298 number of bytes in string

data start 2 23299 address of string in RAM

Call

PRINT USR address

Error Checks

If the length of the string is zero the routine returns to BASIC immediately,
giving the address of the start of the data. If the string is not found the value
of 65535 is returned.

Comments

When writing machine code programs this routine can be used to find sub-
routines in the ROM, if the user already knows how part of the routine is
written.

As most of the Spectrum ROM is adapted from the ZX81, programs
originally written for the ZX8I can be easily adapted. For example, the
‘Line Address’ routine calls the ROM routine at address 6510. On the ZX81,
the routine starts at address 2520. Disassembling this routine gives:

push hl

1d hil, program

Idd,h*

Ide,l*

pop be*

call 09EA

The three bytes marked by an asterisk are the same on the Spectrum,

and may be found using the search routine. In fact the routine returns the
address 6514 which is four plus the start address of the required ROM
routine.

129

Machine Code Listing
Label Assembly language Numbers to be entered
Id hl, (23296) 42 0 91
Id de, (23298) 237 91 2 91
restart Id be, (23299) 237 715 391
Ida,e 123
cpO 254 O
ret z 200
push hl 229
1dd, O 220
compare Id a, (bc) 10
cp (hl) 190
jr z, match 40 25
pop hi 225
inc hl 35
push de 213
push hl 229
Id hl, 16384 330 64
1d,0 220
and a 167
sbe hl,de 237 82
inc hl 35
pop de 209
and a 167
she hl,de 237 82
ex de,hl 235
pop de 209
jrnz, restart 32 220
Id be, 65535 1 255255
ret 201
match incd 20
Ida,d 122
cpe 187
jrnz, next byte 32 2
pop be 193
ret 201
next byte inc hl a5
inc be 3
jr compare 24 216

How it works

The hl register pair is loaded with the address of the first location in memory
that is to be checked. To find the first occurrence in the ROM, this should
be set to zero. The e register is loaded with the number of bytes in the string
being searched for. The bc register pair is loaded with the address of the

130

string, entered by the user, in RAM. The accumulator is loaded with the
string length, and if this is zero the routine returns ta BASIC.

The address in hl is saved on the stack. The accumulator is loaded with
the byte pointed to by the be register pair. If this is the same as the bvte
pointed to by hla jump is made to match. If the two bytes are different, hl
is loaded with the address on the stack. This is then incremented to point to
the next location in memory.

The de and hl registers are saved on the stack, hl is loaded with the
address of the first byte of RAM, and de is loaded with the string length. de
is subtracted from hl to give the highest possible start address for the string.
This is incremented to point to the first address at which the string could
not be held.

The address on the top of the stack is loaded into de and this is
subtracted from hl. The result of this operation is remembered whilst hl is
loaded with the contents of de, and de is loaded with the number on the
stack. If the result was zero, be is loaded with 65535 and the routine returns
to BASIC as the string does not exist in the ROM. If the result was not zero
the routine loops back to ‘restart’.

At ‘Match’ the d register is incremented to hold the number of bytes
found that have matched. If this equals the length of the string be is
retrieved from the stack and the routine returns to BASIC. If the d register
did not hold the length of the string, hl and bec are both incremented to
point to the next bytes and the routine loops to ‘compare’.

Instrs

Length: 168
Number of Variables: O
Check sum: 19875

Operation
This routine returns the position of a substring (B$) in a main string (A$), or
zero if an error occurs.

Call
Let P = USR address

Error Checks
If either string does not exist, the length of the substring is zero, or the length
of the substring is more than the length of the main string, the routine
returns the value zero.

If an error does not occur, but the substring cannot be found in the
main string, the routine also returns to zero.

Comments
On return from the machine code routine the variable P (any other variable
could be used) will hold the return value. The strings referred to cannot

131

R EE—

be DIMensioned as character arrays. To change the strings used, fhe
asterisked numbers should be altered. The 66* is the substring, the 65* being
the mainstring. To alter these, replace the numbers by the codes of the
characters required (A to Z= 65 to 90).

Machine Code Listing
Assembly language

Label

next variable

substring

check

string

add

number

suba
ldb,a
ldc,a
Idd,a
lde,a
Id hl, (23627)
Id a, (hi)
cp 128
jrz, not found
bit 7,a
jr nz, for-next
cp 96
jr nc, number
cp 65
jr nz, substring
1d d,h
Ide,l
cp 66
jr nz, check
1d b,h
ldc,l
Ida,d
ore
jrz, string
Ida,b
orc
jr nz, found
push de
inc hl
Ide, (hD
inc hl
Id d, (hl)
add hl,de
pop de
jr increase
inc hl
inc hl
inc hl

132

Numbers to be entered

151
71
79
87
95
42 75 92

126
254128
40 95
203 127
32 41
25496
48 29
254 65*
322
84

93

254 66*
322

68

77

122
179
40 4
120
177
32 38

213
s
94
35
86

25
209
245

35
35
35

™ A A/S'HL‘

S

R s S

increase

for-next

next bit

next byte

found

zero length

error
not found

continue

inc hl

inc hl

inc hl

ir next variable
cp 224

jr ¢, next bit
push de

Id de, 18
jradd

bit 5,a

jr z, string
inc hl

bit 7, (hl)
jrz, next byte
jr number

ex de,hl
inc hl
inc hl
push hl
push hl
inc be
push be
Id a, (bc)
Ide,a
inc be
Id a, (bc)
Idd,a
ore
irz, zero length
push de
Id a, (hD)
dec hl
Id 1, (hl)
Idh,a
and a
sbc hl,de
jrne, continue
pop be
pop be
pop bc
pop be
ldbe, O
ret
pop ix
pop be

133

35
35
a5
24 206

254 224
56 6
213
1718 0
24 234
203 111
40 225

5
203 126
40 251
24 227
235
35

35

229
229

3

197

10

95

3

10

87

179

40 11
213
126

43

110
103
167
237 82
48 8
193

193
193

193
100
201

221 225
193

ex de,hl 235
pop hl 225
inc be 3
inc be 3
save inc hl 35
push hl 229
push be 197
push ix 221 229
push de 213
compare Id a, (bc) 10
cp (hl) 190
jr z, match 40 12
pop de 209
pop ix 221 225
pop be 193
pop hl 225
Ida,d 122
ore 179
jr z, error 40 225
dec de 27
jrsave 24 234
match inc hl 35
in¢c be 3
push hl 229
decix 221 43
push ix 221 229
pop hl 225
Id a,h 124
orl 181
pop hl 225
jrnz, compare 32 227
pop de 209
pop de 209
and a 167
sbe hl,de 237 82
pop de 209
pop de 209
pop de 209
and a 167
sbe hl,de 237 82
Id b,h 68
ldc,l 77
ret 201

How it works

The accumulator, the be register pair and the de register pair are all loaded
with zero, Later in the routine be will be set to the address of B and de will

134

be ser to the address of AS. hl is loaded with the address of the variables
area.

The accumulator is loaded with the byte addressed by hl. If the
accumulator holds 128 the routine jumps to ‘not found' as the end of the
variables area has been reached. If bit 7 of the accumulator is set to one
a jump is made to ‘for-next’ as the variable found is not a string or a
number whose name is one letter only. If the accumulator holds a number
larger than 95 a jump is made to ‘number’.

To reach this stage, a string must have been found. If the accumulator
holds 65, AS has been located and the contents of hl are copied into de. If
the accumulator holds 66, BS has been found and hl is copied into be. If de
does not hold zero and bc does not hold zero, both sirings have been
located, and so the routine jumps to ‘found’,

IT the routine reaches ‘string’ de is saved on the stack, and loaded
with the length of the string encountered. This is added to the address of the
high byte of the string pointers, and stored in hl. de is retrieved from the
stack, and a jump is made to ‘increase’.

At ‘number’, hl is incremented five times to point to the last byte of
any number encountered. hl is then incremented 1o point to the next
variable, and a jump made to ‘next variable’.

At ‘for next’, if the accumulator holds a number below 224 a jump is
made to ‘next bit' as the variable encountered is not a FOR—NEXT loop
control. If the value in the accumulator is more than 223, eighteen is
added to hl to point to the last byte of the control, and the routine loops to
‘increase’.

If the routine reaches ‘next bit* and bit 5 of the accumulator is set to
zero a jump is made to ‘string’, to load hl with the address of the following
variable, as an array has been found.

If the routine reaches ‘next byte’ a number has been found whose
name is more than one character in length. Thus hl is increased until it
points to the last character of the variable name, and then a jump is made
to ‘number’.

Al ‘found’ hl is loaded with the address of AS and this is incremented
twice to give the address of the high byte of the pointers. This value is then
saved on the stack twice. be is incremented to point to the low byte of the
pointers for BS. The address in bc is then saved on the stack. de
is loaded with the length of BS§, and if this is zero a jump is made to
‘zero length’. de is then PUSHed onto the stack. hl is loaded with the
length of AS, and if this is not less than de the routine jumps to ‘continue’.
The stack is then restored to its original size, bc is loaded with zero, and the
routine returns to BASIC,

At ‘continue’ ix is set to the length of B$, and bc is set to the address of
the low byte of the pointers for BS. de is loaded with the difference in
lengths of AS and BS, and hl is loaded with the address of the high byte of
the pointers for AS. bc is then incremented twice to give the address of the
first character in BS. hl is incremented to point to the next character of AS.

135

hl, be, ix and de are then saved on the stack. The accumulator is loaded
with the byte addressed by be, and if this is the same as the byte addressed
by hla jump is made to ‘match’. de, ix, bc and hl are then retrieved from the
stack. If de holds zero a jump is made to ‘error’ as B$ does not occur in
A$. The counter in de is then decremented, and the routine loops back to
‘save’,

If the routine reaches ‘match’ hl and bc are both incremented to point
(o the next characters of A% and B$ respectively. hl is then saved on
the stack. The counter in ix is decremented and, after retrieving hl from the
stack, if ix does not hold zero a jump is made back to ‘compare’.

To reach this stage, an occurrence of BS must have been found in AS.
The length of B$ is then subtracted from hl, and then the address of the high
byte of the pointers for AS$ is subtracted from hl. The result is the position
in AS$ of BS. This is copied into the bc register pair and the routine returns
to BASIC.

136

APPENDIX A

There are two main tables of instructions in this appendix. Table A2.
lists the one byte instructions and those two byte instructions which are
preceded by 203 (hexadecimal CB) or 237 (hexadecimal ED). Table A3.
lists the index register instructions.

There are many patterns in the instruction set. For example, the registers
are almost always in the order b, ¢, d, e, h, 1, (hl), a as in, for example,
the group of 8 bit register to register load instruction, numbers 64 to 127.
Similarly, the index register codes mimic the hl codes, being preceded by
221 (hexadecimal DD) when referring to the ix index register and by 213
(hexadecimal FD) when referring to the iy index register.

Some of the instructions are qualified by one or more of the following:
a one byte integer between 0 and 255 inclusive
d a one byte displacement between 0 and 255 inclusive (index register
instructions) or between — 127 and 128 (jump instructions). Negative
values of d are obtained by subtracting the positive value from 256.
nn atwo byte integer between 0 and 65535 inclusive. The most significant
byte lies second, for example 16384 (=0+ 256*64) is held as 0,64,

Qualifiers are always placed in the byte or bytes following the
instruction to which they refer, except in three byte index register
instructions (columns 5 and 6 of table A.3) in which case they are
placed between the second and third bytes. See table A1 for examples.

=2

Table A1 Some examples of the Z80A instruction set. Column one refers to the
appropriate column in tables A2 and A3.

Table and General form Specific example Decimal
column
number
A2,3 — inch 4
A2,3 Ide,n Ide,25 30 25
A2,3 Id a, (nn) Id a, (23296) 58 0 91
A2,4 — res 2,d 203 92
A2 Id (nn),de Id (23760),de 237 53 208 92
A3l — add ix,be 221 9
A33 Id (ix + d),n Id (ix + 193),5 221 54 193 5
Al4 —_ add iy,bc 253 9
A3 4 Id (nn), iy Id (23760),iy 253 34 208 92
A3,5 rre (ix +d) rrc (ix + 5) 221 203 5 14
Al6 rre (iy +d) rre (iy + 5) 253203 5 14
Table A2. Z80A instructions except for index register codes (see table A3).
Decimal Hex Op Code After 203 After 237
(hex CB) thex ED)
0 00 nop rlcb
1 01 Id be,nn rlce
137

2 02 Id (be),a rled 49 31 1d sp,nn
3 03 inc be rice 50 32 Id (nn),a
4 04 incb rich 51 33 incsp
5 05 dech rlel 52 34 inc (hl)
6 06 Id b,n rle (hl) | 53 15 dec (hl)
7 07 rlca rlca | 54 16 Id (hl),n
8 08 ex,af,af’ rreb | 55 37 scf
9 09 add hl,be mee | 56 38 jre,d srlb
10 0A Id a, (bc) rred 57 39 add hl,sp srlc
11 0B dec be rrce 58 JA lad, (nn) srld
12 0cC incc rrch 59 iB dec sp srle
13 0D decc rrel 60 ic inca srlh
14 0E Idc,n rre (hl) 61 iD deca srll
15 OF rrea rrca 62 3E Ida,n srl (hl)
16 10 djnzd b ‘ 63 iF cef srla
17 11 Id de,nn rle 64 40 Id b,b bit 0,b inb, (¢)
18 12 1d (de),a rld 65 a1 ldb,c bit 0,¢ out (c),b
19 13 inc de rle 66 42 Idb,d bit 0,d sbe hl,be
20 14 incd rlh 67 43 Idb,e bit 0,e Id (nn),be
21 15 decd tll 68 44 1d b,h bit 0,h neg
22 16 Idd,n rl (hl) 69 45 ld b, bit 0,1 retn
23 17 rla rla ' 70 46 Id b, (hl) bit 0, (hl) im 0
24 18 jrd rrb i 71 47 ldb,a bit 0,a di,a
25 19 add hl,de rre 72 48 Idec,b bit 1,b inc, (¢)
26 1A Id a, (de) rrd 73 49 Ide.c bit 1,¢ out (c),¢
27 1B dec de rre | 74 4A Ide,d bit 1,d adc hl,be
28 1c ince rrh | 75 4B Idc,e bit 1,e Id be,(nn)
29 1D dece rrl 76 4C Ide,h bit I,h
0 1E Ide,d rr (hl) 77 4D Ide,l bit 1,1 reti
31 IF rra ma | 78 4E Id ¢, (hD) bit 1, (hl)
32 20 jr nz,d slab ! 79 4F ldc,a bit 1,a ldr.a
33 21 Id hl,nn slac | BO 50 Idd,b bit 2,b ind, (c)
34 22 Id (nn),hl slad | 81 51 Idd,c bit 2,¢ out (c),d
35 23 inc hl slae 82 52 Idd,d bit 2,d sbe hl,de
36 24 inch slah 83 53 ldd,e bit 2,e Id (nn),de
37 25 dech slal R4 54 Idd,h bit 2,h
38 26 Idh,n sla (hl) 85 55 Idd,l bit 2,1
39 27 daa slaa B6 56 Id d, (hl) bit 2, (hl) im |
40 28 irz,d srab 87 57 ldd,a bit 2,a Ida,i
41 29 add hl,hl srac 88 58 Ide,b bit 3,b ine,(c)
42 2A Id hl, (nn) srad 89 59 Ide,c bit 3,¢ out (c),e
43 2B dechl srae 90 5A Ide,d bit 3,d adc hl,de
44 2C incl srah 91 SB lde,e bit 3,e 1d de,(nn)
45 2D decl sral 92 5C Ide,h bit 3,h
46 2E Id1,n sra (hl) 93 5D Ide,l bit 3,1
47 2F cpl sraa 94 SE Ide, (hl) bit 3, (hl) im 2
48 30 jrnc,d 95 5F Ide,a bit 3,a lda,r

138

139
== e — = —— = - = am = s - > |

96 60 1d h,b bit 4,b in h, (c) 143 8F adca,a res l,a
97 61 Id h,c bit 4,¢ out (c),h 144 90 sub b res 2,b
98 62 Idh,d bit 4,d sbe hl,hl 145 91 sub ¢ res 2,c
99 63 Idh.e bit 4,e Id (nn),hl ‘ 146 92 subd res 2,d
100 64 Idhh bit 4,h | 147 93 sube res2,e
101 65 Id h,l bit 4,1 148 94 sub h res 2,h
102 66 Id h, (hl) bit 4, (hl) 149 95 subl res 2,|
103 67 Id h,a bit 4,a rrd 150 96 sub (hl) res 2, (hl)
104 68 Idl,b bit 5,b inl,(c) 151 97 suba res2,a
105 69 Idl,c bit 5,¢ out (c),l 152 98 sbca.b res 3,b
106 6A Id1,d bit 5,d adc hl,hl 153 99 shca,c res 3,¢
107 6B Idl,e bit 5,e Id hl,(nn) 154 9A sbca,d res3,d
108 6C Id 1,h bit 5,h 155 9B shca,e res3,e
109 6D Id 11 bit 5,1 156 9C sbca,h res 3,h
110 6E 1d 1, (hl) bit 5, (h1) ‘ 157 9D sbca,l res 3,1
111 6F Idl,a bit 5,a rid | 158 9E sbe a, (hl) res 3, (h)
112 70 1d (hl),b bit 6,b inf.(c) ‘ 159 9F sbca,a res3,a
113 71 Id (h),c bit 6,¢ 160 A0 and b res4,b Idi
114 72 Id (hl),d bit 6,d sbe hl,sp ‘ 161 Al and ¢ res4,c cpi
115 73 Id (hl),e bit 6,e Id (nn),sp 162 A2 and d res4,d ini
116 74 Id (hl),h bit 6,h 163 A3 and e res4,e outi
117 75 Id (hl),l bit 6,1 164 Ad and h res4,h
118 76 halt bit 6, (hl) 165 AS and | res 4,1
119 77 Id (hl),a bit 6,a ‘ 166 A6 and (hl) res 4, (hl)
120 78 Id a,b bit 7,b ina,(c) | 167 A7 and a res4,a
121 79 Ida,c bit 7,c out (c),a [168 A8 xor b res 5,b Idd
122 TA Ida,d bit 7,d adc hl,sp | 169 A9 XOr ¢ res 5.c cpd
123 B Ida,e bit 7,e Id sp, (nn) I 170 AA xor d res 5,d ind
124 G Ida,h bit 7,h | 171 AB Xor e res 5.e outd
125 7D Ida,l bit 7,1 [172 AC xor h res 5,h
126 7TE Id a, (hl) bit 7, (hl) 173 AD xor | res 5,1
127 7F Ida,a bit 7,a | 174 AE xor (hl) res 5, (hl)
128 80 add a,b res 0,b \ 175 AF xora res5,a
129 81 add a,c res0,c \ 176 BO orb res 6,b Idir
130 82 add a,d res0,d 1 177 Bl orc res 6,c cpir
131 83 add a,e res0,e ; 178 B2 ord res 6,d inir
132 84 add a,h res0,h 179 B3 ore res 6,e otir
133 85 adda,l res 0,1 180 B4 orh res 6,h
134 86 add a, (hl) res 0, (hl) 181 BS orl res 6,1
135 87 adda,a res0,a 182 Bé6 or (hl) res 6, (hl)
136 88 adca,b res 1,b 183 B7 ora res 6,a
137 89 adca,c res 1,c 184 B8 cpb res7,b lddr
138 BA adca,d res 1,d 185 B9 cpce res7,c cpdr
139 8B adca,e res 1,e 186 BA cpd res7,d indr
140 8C adca,h res 1,h 187 BB cpe res7,e otdr
141 8D adca,l res 1,1 188 BC cph res 7,h
142 8E adca, (hl) res 1, (hl) 189 BD cpl res 7,1

140 | 141

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

BE
BF
co
Cl
Cc2
C3
C4
CS
Cé
C7
Cc8
co
CA
CB
cC
CD
CE
CF
DO
D1
D2
D3
D4
D§
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
E0
El
E2
E3
E4
ES
E6
B7
E8
E9
EA
EB
EC

cp (hl)
cpa

ret nz
pop be
jpnz, nn
jpnn
call nz,nn
push be
add a,n
rst 0
retz

ret
jpz,nn
call z,nn
call nn
adca,n
st 8

ret nc
pop de
jp nc,nn
out (n),a
call nc,nn
push de
sub,n

rst 16
retc

exx
jpec,nn
in a,(n)
call c,nn
sbca,n
rst 24

ret po
pop hl

jp po,nn
ex (sp),hl
call po,nn
push hl
andn

rst 32

ret pe

ip (hl)

Jp pe,nn
ex de,hl
call pe,nn

res 7, (hl)
res7,a
set 0,b
set0,c
set 0,d
set 0,e
set 0,h
set 0,1
set 0, (hl)
set 0,a
set 1,b
set.I.c
set 1,d
set 1,e
set 1,h
set 1,1
set 1, (hl)
setl,a
set 2,b
set 2,¢
set 2,d
set2.e
set 2,h
set 2,1
set 2, (hl)
set 2,a
set 3,b
set 3,c
set 3,d
set 3,e
set 3,h
set 3,1

set 3, (hl)
set 3,a
set 4,b
set 4,c
set 4,d
set4,e
set4,h
set 4,1

set 4, (hl)
set4,a
set 5,b
set 5,c
set §5,d
set 5,e
set 5,h

142

238

239

240

24]

l 242

l
1 237
[

243
244
245
246
| 247
‘ 248

249
250
251
252
253
254
255

6

9

14
22
25
30
13
34
35
38
41
42
43
46
52
53
54
57
62
70
78

ED
EE
EF
FO
F1
F2
F3
F4
F3
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

xor n
rst 40
ret p
pop af
ipp,nn
di

call p,nn
push af
orn

rst 48
ret m

1d sp,hl
jpm,nn
ei

call m,nn

cpn
rst 56

Decimal Hex After 221
thex DD)

06
09 addix, bc
OE
16
19 addix,de
1E
21 Idix,nn
22 Id (nn),ix
23 incix
26

29 add ix,ix
2A Idix,(nn)

2B decix

2E

34 inc(ix+d)

35 dec(ix+d)

36 Id(ix+d),n
39 addix,sp

3E

46 Idb, (ix+d)
4E Idc,(ix+d)

set 5,1

set 5, (hl)
set5,a
set 6,b
set 6,¢
set 6,d
set 6,e
set 6,h
set 6,1
set 6, (hl)
set 6,a
set 7,b
set7,¢
set 7,d
set 7,e
set 7,h
set 7,1
set 7, (hl)
set 7,a

Table A3 Index register codes. Columns 3 and 5 refer to the ix register. _Ca.'um»"rs 4
and 6 refer to the iy register. All the instructions in this table mimic the instructions
for the hl register pair in table A2.

After 221, 203 After 253, 203

After 253
fhex FD) (hex DD, CB)
rle (ix +d)
add iy,bc
rre (ix +d)
rl (ix +d)
add iy,de
r(ix +d)
Id iy,nn
1d (nn),iy
inciy
sla (ix +d)
add iy,iy
1diy,(nn)
deciy
sra (ix +d)
inc (iy +d)
dec (iy +d)
Id (iy + d),n
add iy,sp
srl (ix +d)

ldb, (iy+d) bit 0,(ix +d)

Id ¢, (iy+

14

d) bitl,(ix+d)

3

(hex FD, CB)
rle (iy +d)

rrc (iy + d)
rl iy +d)

rr (iy +d)

sla (iy + d)

sra (iy +d)

srl (iy+d)
bit 0,(iy +d)
bit 1,(iy +d)

e

86 56 Idd.ix+d) ldd,(iy+d) bit2(ix+d) bit2,(iy+d)
94 SE Ide,(ix+d) Id e,(iy + d) bit 3,(ix +d) bit 3,(iy +d)
102 66 Idh,(ix+d) Idh,(y+d) bit4,(ix+d) bitd,(iy+d)
110 6E Id1,(ix +d) 1d 1,(iy + d) bit 5,(ix +d) bit 5,(iy +d)
112 70 Id(ix+d),b Id(y+d)b

113 71 Id (ix +d),c Id (iy +d),c

114 72 Id(ix+d),d Id(iy+d)d

115 73 Id (ix +d),e Id (iy +d),e

116 74 Id(ix+d),h Id(yv+d)h

117 75 I (ix+d),! Id (iy +d),1 |
118 76 bit 6, (ix +d) bit 6, (iy +d) |
119 77 Id(ix+d),a Id (iy +d),a

126 7E Ida,(ix+d) Ida,(iy+d) bit7, (ix+d) bit7,(iy+d)

134 86 adda,(ix+d) adda,(iy+d) resO,(ix+d) res0,(iy+d)

142 BE adca,(ix+d) adca,(iv+d) resl,(ix+d) resl,(iy+d)
150 96 sub (ix+d) sub (iy +d) res 2,(ix+d) res2,(iy+d)
158 9E sbca,(ix+d) sbca,(iy+d) res3,(ix+d) res3.(iy+d)
166 A6 and (ix+d) and (iy +d) res4,(ix +d) resd,(iy +d)
174 AE xor (ix +d) xor (iy+d) res 5,(ix +d) res§,(iy+d)
182 B6 or(ix+d) or (iy +d) res 6,(ix+d) res6,(iy+d)
190 BE cp(ix+d) cp (iy +d) res7, (ix+d) res7,(iy+d)
198 c6 set 0,(ix+d) setO,(iy+d)
206 CE set 1,(ix+d) setl,(iy+d)
214 D6 set 2,(ix+d) set2,(iy+d)
222 DE set 3,(ix+d) set3,(iy+d)
225 El popix pop iy
227 E3 ex(sp)ix ex (sp),iy
229 ES pushix push iy
230 E6 set4,(ix+d) setd,(iy+d)
233 E9 jpix jpiy
238 EE set 5,(ix+d) set 5, (iv+d)
246 F6 set 6,(ix +d) set 6,(iy +d)
249 F9 Idsp,ix Id sp,iy
254 FE set 7,(ix +d) set 7,(iy +d)
|
144

