turther Programming

for the
Y SEeRE-REEEi

lan Slewart and

!

A AT AR o]

LUV B TR T IY N

further
rogramming

orthe
IX SPECTRUM

an Stewart

wWathematics Institute, University of Warwick

Robin jones

Computer Unit, South Kent College of Technology

i
’
T
7Y Shiva Publishing Limited

Conlenls

Preface

Map of the World

Block Filling

User-defined Functions
1+ Control Characters

Display Techniques
y System Variables
/ Attribute and Display Files
Psychospectrology
Files
Statistics made Simple
Improving the Display
Ling Renumbering
Polygons
Cryptography and Cryptanalysis
Changing the Character Set
Crashproof Curve-plotting
Data Management Systems
Star Charts

-l

]
]

20~ @ Lh s L D e

wppendix A: The Cassette File System—
1 Reference Description of cfs
yppendix B: Automatic Cassette Control
wopendix C: A User Guide to SDM—
“he Spectrum Data Manager
wppendix D: Spectrum Data Manager—Program Listing
inpendix E: Make your own Load/Save Switch

91
97
101
113
130

142
149

150
154
161

Mreface

“ou own 4 Sinclair ZX Spectrum and you feel pretty confident about using it. You know
vnat the keys do and vou can string twenty or thirty lines of BASIC together and make
them work. You've worked vour way through the Manual and an introductory book.

“ou’ve typed in dozens of programs from the magazines and discovered that the shorter
mnes all do the same thing and the longer ones, if they haven’t got errors all over them,
‘ake hours and hours of careful work—and for a mere five pounds you can buy a cassette
wiich produces more impressive results. Which would be fine except you don’t want to
keep spending five pounds to buy other people’s software—you want to produce your
OWnN.

0 what next?

“ou’ve still got some way to go before you can write Machine Code arcade-quality

games or programs to display the Night Sky at any time between 4000 BC and 600 AD;

ind while this book may start you along that road, it certainly won’t take you all the way.
What it will do is help you to expand both your own capabilities and those of the
machine.

“here are three main directions to explore.

One might be described as *“Theory of Computation™: how to develop techniques for
mproving your programs. As far as this book goes, we've taken a fairly practical view of
vhat constitutes theory: that is, we've concentrated on specific features of the Spectrum,
:uch as its colour facilities and its graphics, and dug a little deeper into the machine.
‘ou’ll find out more about control characters, user-defined functions, user-defined
rraphics. the systerns variables, and the display and attributes files—and how to make

good use of them.

:econd 1s “Machine Enhancement”. By writing suitable utility programs you can
:quip your Spectrum with facilities that the bare machine does not possess. Quick
ine-renumbering of BASIC programs (our routine lets you choose a block out of a
srogram and renumber that on its own—great for tidying up subroutines). Plotting
rraphs without having to worry about points going off-screen. Automatic block-fill of
ine-drawings. An effective system for handling large quantities of data held on cassette
ape as files, which could be used as the basis of a practical record-keeping system for
nesiness or the home. In easv stages we take you from a simple Cassette File System to a
Jata Management System.

Third . . . well, have you noticed that whenever you ask a computer enthusiast “very
1nce, but what can vou do with it?” he tends to change the subject? It’s as if the major aim
) computing is to do more computing. Art for art’s sake, Computers as a Way Of Life.
Jut wouldn’t it be nice to actually use the computer to do something else? You'll find
.ome suggestions here: maps, star charts, psychological experiments, simple statistics,
cryptography and cryptanalysis, symbol manipulation.

I'wo areas we don’t go into herc are Machine Code and “pure” theory—topics like
data structures and structured programming. We deal with those elsewhere, in Machine
Code and Better Basic and in Spectrum Machine Code.

Jur primary objective is not to produce highly polished “oven-ready” programs. The

ram emnhasis is on the painful but satisfying process of developing an initial idea into a
program that works. Instead of just presenting the final result, we sometimes describe
‘outines that are then modified. rewritten, revised, or scrapped entirely and replaced.
vfter all. that’s how any non-trivial program gets written, and it’s misleading to pretend
wherwise. We're not trving to give vou the impression that writing programs can or
:nould be painless and casy. The important point is that everybody makes mistakes, so
here’s no reason to lose heart when yvou do. The trick is to recognize the errors and to
out them right. Of course, any methods that help cut down the chances of making
nistakes are well worth having.

wdditionally, however, some of the generally applicable utility routines are also listed
;eparately in appendices. so that it’s not necessary to wade through the descriptions of
heir construction to be able to use them. If all you want to do is copy the listing and run
‘he program, you can do it.

s in all our books, we've tried to keep the explanations clear and simple. This book is
tot a ngidly structured course: it's designed for vou o dip in at random. Some chapters
10 depend on earlier ones to some extent, but it’s always obvious when this is the case. So
sart by thumbing through to see which items have a particular appeal to your own tastes,
ind have a go at those first. You'll find them very instructive.

un, teo.

;o far, we’ve referred to ourselves as ‘*we’’—but as in
vasv Programming we found this didn’t always work out
iater. So from now on, we’ll refer to ourselves in the
anguiar, as ‘‘I”’. Whenever we say ‘‘we’’, we’ll mean *‘1
and the reader’’. It may sound a silly idea, but it’s
actually more informative that way.

i g N | wish she'd use a calculator

H\\.‘-\’ like everyhody else

i]\0\ \'é‘ : 4}{%’_

-

"he more work vou're prepared to

it tn, the more your Spectrum can be trained

o perform. Spend a couple of hours, and
voucan havea. . .

. Map of the World

'hat’s one possibility. The same technique will let you draw, and SAVE, hi-res line
irawings such as pictures of Isaac Newton or Olivia Newton-John, or Martian land-
:capes for use in Space Inveiglers programs.

t's easy; but it takes time. Here’s a picture of a Spectrum World Map, just to convince
vou that the results will amply justify the time spent.

e, Y "_M“'—#J e —
S:“‘ _:;B%_;J ; ’"'"-Mm i -&ﬂ-
: s - ", N
| w1 L s f "
ot W e ;
i |
; kg " ,
| - T e '1%’.
”E il | i -'—_*“\'__..\ 3 o
{

iy, 5 i {}g.. ./ &
H : e % "
! . K f)i ~ i
| . \f i ~ 4]
; | 1 ¥] e f
4 i
\ P L’_A‘\‘/
- & '::?{»

drure 1.1 An owtline map of the world, produced o a Spectren.

“he hard way to get this into the machine is to pore over grids of latitude and longitude.
‘opying out coordinates, and feeding them into a drawing routine.
"he way I actually did it is crude, but effective.

Cut a piece of transparent plastic—such as part of a polythene bag—1o the size of
vour i'V screen.

Mark on 1t an outline of the central arca of the Spectrum display—the part vou can
’RINT or PLOT 10. The easy way to find this is to type BORDER @.

Find a map of the world the right size to fit into this.

Trace it on to the polythene using a felt-tipped pen. A fairly crude image will do.
Let the ink dry, and being careful not to rub it off, stick the map to the front of the
“V._ lining it up with the central area, using sticky tape.

“hat’s the “hardware” requirement for this method. Now for the software . . .

SKETCHPAD

y. Tvpe in a Sketchpad program that lets you control a moving pixel on the screen,
irom the keyboard, so that it either PLOTs or moves. Some means of erasing
rmistakes is worth having too. Here's one that will do the job: you can of course make
t more sophisticated if you feel like it.
0 LETx=0:LETy=175
® OVERI
W LETflag=9
B INPUTd$
@ LETx=x:LETyd=y
W 1IFCODEd$ <60 THEN GO TO 100
@ IFd$=*“m"THENLET flag = 0
80 IFd$ = “p” THEN LET flag = |
M GOTO49
103 REM Keyboard response
18 GOSUB 10 = CODE d$ — 299
20 IF flag = @ THEN PLOT x@, yé
3 PLOTx.y: GOTO 49
2 LETx=x+1:LETy=y+ 1: RETURN
210 LETx=x+1:LETy=y— 1. RETURN
20 LETx=x—-1:LETy=y—1: RETURN
3@ LETx=x— 1:LETy=y+ 1: RETURN
49 LETx=x— 1: RETURN
5¢ LETy=y— 1:RETURN
60 LETv=y+ 1:RETURN
7@ LETx=x+ 1: RETURN
Using the keyboard controls (as explained in detail below) move the pixel to a point
inderneath the traced lines, then trace along the lines plotting as you go, building up

he outline of the continents. When you've gone right round one continent, move
icross to the next, then start plotting again.

See, it really is easy. But the results can be magnificent, if you take the time and
rouble to be careful.

JSING SKETCHPAD

T'he program can be in one of two “modes™:

n: MOVE the pixel to a new position;
n: PLOT the current position as you move to it.

[T L]

t starts in “‘m". At any stage you can change the modes by typing in the symbol “p” or
(._,I.'I‘H.

"he moves are controlled by keys 1-8. as follows:

417 |1
5|« | 8
EARAE:

“he pixel moves from its current position {*) one place up, down, sideways, or
tiagonally, according to the numbers. (The order may look odd: the idea is that the
‘arrow”” Keys 5—-8 work as usual, and the “diagonal”™ moves 1-4 start at 1 o’clock and
nove clockwise.)

"he program as it stands requires you to ENTER each number or mede symbol. You
can use INKEYS$ if you prefer; but this way there's a chance to check you've hit the right
ey before doing any damage.

FExperiment with the moves. Because of the OVER 1 command, if you PLOT twice in
‘he same place, the pixel blanks out. This lets you erase mistakes. However, you should
year two things in mind:

To move on to a new region, make one move away from your finished curve {(in a
lirection that won’t run into it) before changing to moede “m”.

On arrival at the new piece of curve, do not press “p” until your pixel is exactly
iligned with it.

f vou make mistakes in choosing modes, you tend to get isolated pixels sitting on the
icreen. 1'o get rid of these, go into mode “m™; move until you hit them (and obliterate
hem); go into mode “p”'; move one space; go back to mode “m™. Try it.

Jon’t expect a polished result in ten minutes.

AVE IT

Once vou're happy, SAVE the map on tape: you won't need to spend two hours glued to
he screen ever again. Just STOP the Sketchpad program; then key in as a direct
:ommand;

:AVE “map” SCREENS
"o LOAD it back in, go through the usual routine and use
OAD “map” SCREEN$

rome of the later chapters of this book assume that you’ve drawn a map (it can be alot
ampier than the one in my photo) and saved it on tape. So get cracking!

Sometimes the main problem in writing
1 program is deciding just what it is

‘hat the machine has todo . . . as in this
graphics utility program that shades in
‘egions of the screen—subject to a few
ctauses in the fine print.

Z Block Hiling

The original idea was: ““Wouldn't it be nice to have a World Map screen display in which
he land areas were blacked in?” And the immediate thought was ““Using the Sketchpad
srogram, 1t'll take weeks!” So of course the idea was to get the Spectrum to do all the
work.

t sounds easy, at first. And in simple cases. it is. But you can’t tell the Spectrum “Find
he closed curves and block in the inside” . because it doesn’t know what a closed curve is,
101 does it have anv Inside Knowledge. Nor, indeed, does that approach look workable
»n the computational level.

Let’s start with an easv case, and work up to the map in stages. The simplest task is to
1l in a single closed region, such as a circle or a polygon. Here's a working title:

*OLYFILLER

wuppose we have a single polygon drawn on the screen. Ignore practicalities for the
noment: consider the theoretical auestion “What steps must the computer carry out in
order to fill the outline in?”
The answer’s easy:

For a given horizontal row, find the left-hand point of the polygon by searching
along from the left.
Find the right-hand end by searching from the right.

:. Join them up by a horizontal line.

. Repeat for each row.

'he way to see if a point has been PLOTted is to use the function POINT (Easy
‘rogramming*, page 36). The value of POINT (x, y)is 1 if (x, y) has been PLOTted, @ if
101. So the program we want is this (where I'm using an italic { to distinguish from the
wmerai 1):

@ FORy=0TO175
B LETxI=0
IF POINT (x/, y}) = 1 THEN GO TO 6@
4 TETxi=xI+1

@ IFxi< =255THEN GO TO 30

o LET xr = 255

® IF POINT (xr, y) = 1 THEN GO TO 1
W LETxr=xr—1

Tasy Programming for the ZX Spectrum by lan Stewart and Robin Jones, Shiva.

W IF xr > =@THEN GO TO 70
M@ TF x/ > = 256 THEN GO TO 120
18 PLOTx!,y: DRAW xr — x/,
20 NEXTy

‘or a test, feed this in; then enter by direct command:
'TRCLE 127. 87,87
say) and then
i0TO 10

not RUN, which erases the screen!).

3EFORE DURING

‘ferre 2.1 Or easy shapes, shading from the lefimost point to the rightmost witl work.

t's slow, to be sure {any shade-in routine is going to be, the amount of computation is
sound to be lengthy because there are 45,056 points on the screen to worry about) but it
vorks.

fyou combine it with the polygon-drawing routine in Chapter 13 so that it first draws a
ingie polygon, then shades it in, you'll find it continues to work.

“HE SNAGS

Towever. it fails dismally when there are several regions that need shading (and indead
n other cases too). Try:

IRCLE 5@, 50, 49: CTRCLE 168, 5@, 49

i0TO 10
'hat’s not what's intended, is it?

What it’s doing is finding the left-hand point of one circle, then the right-hand point of
he other, and joining those. One way out is to try to work out which closed curve is
vhich, but that’s messy and long. And, in any case, we’ve still got problems even if
there's only one curve. Try this:

*LOT 100, 5¢: DRAW 50, —50: DRAW —50, 1(8:
JRAW —50, —100: DRAW 50, 50:
O TO 10

t’s a single closed polygon, shaped a bit like an arrowhead; and the program shades in
00 much.

"he reason here is that certain horizontal lines meet the shape in more than just two
points. For example, a line like the one in Figure 2.2 will meet it in four points. And we
niy want to shade between the 1st and 2nd; and the 3rd and 4th: not between the 2nd
and 3rd.

dgure 2.2 On more complicated shapes, it wonr't!

¥hich suggests we do this:

Track along the row looking for points on the curve, and list them all.

Draw from the Ist to the 2nd, the 3rd to the 4th, . . . and in general from the
ydd-numbered ones (2 * i + 1) to the even-numbered ones (2 *i + 2) asi runs from 1
lo whatever it is.

f vou think this will do the trick, try writing a program to implement it. Then test it out

m the arrowhead shape above,
‘Whoops.

t goes wrong in the first line. There are only two points here; but you don’t want to
snade between them, because each is the tip of a bit of polygon that juts out. and
hetween them is a “bay™.

3v drawing on bits of paper, you should be able to convince yourself that apart from

his ““tip of the horn™ problem, the idea would work. For instance, on the shape shown in
Figure 2.3 it shades correctly on rows A and B, but not on C or D which meet tips. Notice
't works even though there are several closed curves drawn.
0 now the problem is: how to recognize a tip?

dgure 2.3 Shading between odd and even intersections wifl do the trick, except at the tip of a

genmsuia, as in lines C and 1.

Ybviously the characteristic feature of a tip is that the curve does not actually cross the
horizontal line. It enters it from one side: possibly runs along it for a while; but then
eaves on the same side it entered. Compare the two cases shown in Figure 2.4.

Row

N
N\
X
N

dgure 2.4 Tolocate tips of peninsulae, see if the line crosses the row or not,

CROSSES

DOESN'T
CROSS

:0 what we seem to need is a routine to see whether the curve crosses the row or not;
and if it doesn’t we ignore it. In order to see if it crosses, we also need to be able 10
ecognize the part that runs along the row we're interested in. Then we look at the pixels
;urrounding the two ends, and see whether they are suitably filled in (see Figure 2.5).

N e
N\~ °

% é/ é@/ 7//2@ CROSSES
iz ||

Down

igure 2.5 Detection of crossings by searching two 3 % 3 squares of pixels.

n fact we're still being a hittle naive; but we've got a workable idea, and it leads 10 the
ollowing program.

SUPERFILLER

@ LET track = 1009

D LET test = 2000

@ LET list = 3000
A LET shade = 4000

DIM a(2@®)
DIM b(2@}
@ FORy—=1TO 174
@S LETq=0

16 LETx=1
220 IFx > =255 THEN GO TO 4%

3¢ TFPOINT (x, y) =9 THEN LET x = x + 1: GO TO 220
40 LET x! = x: GO SUB track

54 GO SUB test

0 LETx =xr+ 1: GOTO 220

i) GO SUB shade

500 NEXTYy
0M REM track
01 LETc=0
026 IFx! +c> = 255THEN RETURN
@30 IF POINT (x{ + ¢, y) = WTHEN GO TO 1060
640 LETc=c+1:GOTO 12¢
a6
079

a

LETxr=x+c¢—-1
RETURN

O} REM test

WS LETH=0:LETh— ®:LET=0:LETru=0

W1 FORe=-1TO1

MO IFPOINT(x +e,y —1)=1THENLET# = 1

W30 TFPOINT(x/+e,v+ [)=1THENLETh =1

W9 IFPOINT(xr+c¢,y—1)=1THENLETr =1

W5 IFPOINT (xr+e,v+ 1)=1THENLETru=1

W60 NEXTe

G790 IFH+d=%0OR M+ ru=#THEN RETURN

@8¢ GO SUB list

WP RETURN

0 REM list

Q10 LETa=q+ 1:LETa(q) =xr

¢ RETURN

i REM shade

{319 IFy < =1THEN RETURN

20 FORt=1TO20STEP2

@30 TF bt + 1) =@ THEN GO TO 4100

B PLOTb(t),y — 1: DRAWDb(t + 1) — b(x), @

950 NEXT1t

11 FORt=1TO29

1110 LET b(t) = a(t)

1120 NEXTt

1130 DIM a(20)

‘14 RETURN
jefore describing some of the peculiarities of this routine, I suggest vou try it out. Key it
n, and add:

CIRCLE 50, 50, 48: CIRCLE 5@, 50, 44.
TRCLE 200, 49, 37: CIRCLE 205, 38,20
o provide something to shade in. Now RUN. It’s fairly slow, but it seems to work, as
‘igure 2.6 demonstrates.
Now for the explanations. Lines 20050 set up the main program: a loop that checks
iiong each horizontal row (except the top and bottom ones) looking for bits of curve. Ifit
finds a bit it goes to a subroutine frack which follows the curve along the line to find the
‘nds (as marked in Figure 2.5); then it goes to fesr which decides, by examining the 3 X 3
egion around each end, whether the curve crosses or not. Ifit does, the routine fist notes
town the relevant coordinate.
After a row has been scanned in this way, it is filled in by joining the 1st point to the

‘nd, then the 3rd to the 4th, and so on as suggested above. However, there is one tricky
eature. If vou fill in the line too soon, it interferes with the test routine on the next line,

and you get nonsense. So the list of points is first stored in a buffer—the array a—and

hen transferred to another array b on the next scan, ready to be plotted. Lines
‘1004130 perform this task.

(a)

z ; i
| (i
8 s ¥
1 | i i
1 ;)]
: /
)’{ ; %L X _ ‘; (ln‘
i e /‘ \, L T . #
el e
(b)
/‘WM—%
x:ﬁ/ ::‘:‘g\t\‘

(c)

i

tgure 2.6 Filling in the region between rwo test circles: before (a), during (B), and after (c).

'o keep the program simple, it is assumed that the curves being shaded in do not touch
he border (rows ® and 175, columns @ and 255). So it scans rows 1 to 174 from columns 1
0 254 only.

THE MAP

Jo far so good, but will it pass the acid test? Will it shade the world map?
.0ad in your map, using

OAD “map” SCREENS$
ind then hit
3O TO 19

‘not RUN, which wipes the map!).
Now, your map may not be quite the same as mine was. What I got was Figures 2.7 and

Fipure 2.7 Shading in an outline map of the world—a few bugs . | .

digure 2.8 . . . and a few more!

+0: if the routine fails on vour map. as it did on mine, here’s what you do. Use the
:ketchpad program to modify the map, removing dangling ends and touching curves.
"hen shade it in.

Possibly a few flaws will still remain: 1 don't guarantee that there aren’t other
indesirable features. {Breaks in curves cause havoc, but those are really just dangling
'nds again.) But you'll be able to spot where they arise, and use Sketchpad to eliminate
hem. After a few shots. vou'll eventually end up with something like Figure 2.10. When
vou do, save it under a new name, say

:AVE “solidmap” SCREENS$

ind it's ready to use in other programs.
f vou think the shape is a little odd. it’s because the map [started from was a Hammer
:quat-area projection, not the more usual Mercator projection.

THE PRAIRIE FIRE METHOD

There’s a totally different approach to the shading problem that you might like to think
ipout. The idea is to give the Spectrum a clue by “lighting a fire”” on one of the dry-land
egions. 1o do this, just tell it (via keyboard or a moving pixel) the coordinates of such a
yoint. For example, the point 125, 8@ s in the middle of Africa.
Now let the fire spread: that is, fill in all neighbouring pixels unless you hit the
coastiine. Using these as new starting points, spread the fire still further. [t will only stop
vnen it reaches the coast. In fact. the Atrican fire will spread into Asia and Europe
-ventually. It will never reach the UK, the USA, or Australia; so you will have to input
aitable “sparks” to start fires there too . . . in fact, you need one ignition point for each
connected land-mass.
t's not a difficult method to program, but the above sketch has to be made a lot more
wecise. If you want an interesting project, this is a good one.

SET FIRE TO THE SEA

iince the sea is rather more connected than the land, a better way might be 10 set the sea
siight {you'll have to light up the Caspian and Aral Seas separately}), having set up the
land colour as PAPER.

'f the same expression keeps turning up,
wvith different values for its variables,
ton’t use a subroutine—try:

+ User-defined lunclions

A\ function is a kind of “black box™. You give it some numbers or strings, it gives you
;ome back. For example, if you give the function LEN the string “gthily™ it gives you
yack the number 6—the length of the string—because it works out

EN “gthily” = 6.

The Spectrum has a lot of built-in functions like VAL, COS, TAN, EXP, and so forth.
jut sometimes you find you keep on using a particular expression, over and over again,
m different variables. You car implement this as a subroutine: but that usually involves
otsof LET a=39: LET b = 21. . . commands before you can c¢all the routine.

I'he DEF FN key (E-mode/SYMBOL shift/1) lets you set up your own functions; and

he FN kev (E-mode/SYMBOL shift/2) calls them. Each must be followed by a single
letter: DEF FNa. and FNa; or DEF FINb and FNb; and so on through the alphabet. Ifits
/alue is a string, then you have to use FNa$, FNb§, etc. You can use capitals too; but the
spectrum takes no notice. That is, FNa and FNA are censidered to be identical. So
you 've got 26 functions of each type at your disposal.

‘or example, suppose we find that our program keeps wanting to add three numbers
together and then divide by three, getting an average. We have lots of expressions like
(x + y+z)/3and (pricel + price2 + price3) / 3 scattered around the listing. Then we set
1p a tunction like this:

'@ DEFFNa(p.q.r)={(p+q+1)/3
Once this is done, we can replace the above expressions by:
‘Nailx,v.z)

‘Na (pricel, price2, price3)

whnerever the}’ Qccur.
et's test it out;

@ DEFFNa(p.q.,r)=(p+q+1)/3
@ INPUTx,vy,z
i@ PRINT FNa(x,vy,z7)

RUN this, and input things like:

2 3 (result 2)
! 4 4 (result 4)
7 91 3 (result 57)

o make sure it's working OK.

farious points are worth noting. First, the variables p, q. r that occur in the function
1efinition are simply place-holders: you can use those letters elsewhere in the program
vithout any harm being done, and you can define the same function using other letters,
or example:

? DEFFNa(a,b,c)=(a+b+¢c)/3

t doesn’t even matter if the letter used to name the function (here ““a’) occurs as a
ranable inside the brackets that define it. The Spectrum can tell which is which.

Next, the letters inside the brackets must be single: you can’t usc variables like pricel
n the definition. There is no harm at all, though, in using pricel when the function is
:aicuiated somewhere: FlNa (pricel, priceZ. price3) is fine.

ou can have string variables in the definition, but they also must be only one letter,
ollowed by 3. You can mix numbers and strings; and the computer is quite happy with,

ay
@ DEFFNb(b.b%)=b+ LENb$

'ven though the “b™ occurs in three places with three different meanings. Then FiNb
muitiplies the length of a string b$ by the number b. If you ask for

‘Nb (7. “cat™)
rou'll get the answer 21, which is found by working out
* LEN “cat” =7+3 =21

“he definition of a function does nor have to come in the program before the function
s used; but it must be in there somewhere (rather like DATA definitions).
vs another example, try the string-valued function

@ DEF FNm$ (u$, v§) = u$ + u§ + v§

ind find out what vou get if you ask for

‘Nm$ (“B”, “C")
‘Nm$ {“a”, “gh!™)
‘Nm$ (“co™, “nut™)
‘NmS$ (“Zsal1”, “Gabor™)
-'.vur_y function-definition must include the brackets. But it can have no variables! If
vou write
@ DEFFNk()=77

hen FNk will give you the number 77 whenever you call it. (There are more subtle
wecasions where this kind of thing can actually be useful: here it just looks perverse.)

‘urther, the function-definition can include variables that are not enclosed in the
wackets, provided these are assigned in the program. So

@ DEFFNa(x)=x+q

® LETg=>5
i PRINT FNa (10)

sives the result 15; but

1@ DEFFNa(x)=x+q
*® PRINT FNa (10)
% LETq=35

nves an error message. (WARNING: press CLEAR before you check this out: the
vaiue of g will still be in the machine from the first trial.) To check that the definition

eallv can go anywhere, try

@ LETg=35
9 PRINT FNa (1)
W DEFFNaix)=x+gq

SOME USES

t's only worth defining a function this way if (1) you keep using the same expression over
ind over again but with different variables, or (2) your program manipulates a function
which is not always the same one - such as a graphics program to plot out the graph of a
siven function. Then you may prefer to write it to manipulate. say, FNa; and then have
the user edit in the desired function value. {Or sneaky tricks with VAL, and it can be
NPUT ——at a price: a slower program. See Chapter 16.)

‘or example. the distance between points (a, b) and (c. d) on the screen (in pixel-sized
1mits) is given by:

¢ DEFFNd(a,b.c.d)=SQR((a—c)*(a—c)+(b—d)*(b—d))

vnich is the Spectrum’s version of Pythagoras’ Theorem. If you have a lot of distances to
ieal with. this may be uscful. (Not just in maths: you may have set up a map of the USA
ind want to know how far it is from Los Angeles to Oklahoma City.)

3ear in mind the possibility of using logic values. Recall that a logical statement like
% << > 4" is considered by the computer to have a numerical value: 1 for truc, @ for false.
=0

® DEFFNo(u,v})=u=>=0ANDu<=255ANDv>=0ANDv<=175

mav look to you like nonsense; but to the Spectrum it’s clarity itself. In fact, FNo tests
vhether a pixel position (u, v) is on screen or not:

No (u, ¥v) = 1if (u. v) is on screen,
No (u, v) = @if (u, v} is off screen.

20, if you keep needing to test for this, it's a function worth thinking about.
Jr, take the current rates for newspapers and periodicals by Air Mail outside Europe.
These depend on the weight, and zone (A, B or C} as follows:

l- Zone A |Zone B | Zone C

' First10g 24 26 29
| Each additional 10 g
or part thereof

11 14 15

£t’s set up a user-defined function FNp to give us the price for any weight w grammes
ind any zone z§ (= “a”, “b”, or *¢’’}. It will take a numerical value, so we don’t have to
-ail it FN_D$. And it will look like:

JEF FNp (w, z8) = something nasty . . .

set’s take it stage by stage. First, thinking just of zone A. For simplicity, assume that
he weight is always greater than @. Then the “first 10 grammes” always applies, so we’ll
certainiy need to pay our 24p. The weight left overis w — 1Q. If thisis@ or less, then we're
done; but if not we must round it up to the next 10 grammes.
'0 round up a number n to the next multiple of 18, we can use the expression

@+ INT (—n/10)
ry it: if n = 43 then we have:

0= —43

/10 = —4.3
NT(—n/1) = -5 (ves, try it! INT rounds down}
@ INT (—n/10) = —50
'@+ INT (—n/10) — 50
which 1s what we want.
¥e'll need to use this process several times, so let's define a function:
JEFFNr{n) = —INT (—n/19)
which is the “round-up” function divided by 10. Great!
Now. in zone A, the price we pay is
4 + 11 * FNr (w — 18}
wrovided w = 1@, and only 24 if w << = 10. Hmmm . . . logic values! We have to pay
4 + {w > 18} * 11 * FNr (w - 10)

secause (w = 1@} takes value | when w > 10, adding on the extra bit; but value # when
¥ <. = 19, leaving just the 24.

“ones B and C give similar expressions, but with different values in place of the 24 and
‘1. How do we work them in?

f we use lower-case letters “a”. “'b”, “¢” for the zone variable z8. then logic values
*omie 10 our aid again. The number

Aow (2§ = “a") + 26+ (28 = “b7) ~ 29 = (28 = *“¢”)

akes value 24 when z§ = “a”, 26 when z5 = “b”". and 29 when z$ = “¢”. (Why?) And we
can deal with the 11 ~ 14 — 15 hit the same way.
All of which leads us to the definitions:

I DEFFNr({n)= —INT (—n/1®
0 DEFFNp(w,z$)=24+(z5="a")+ 26+ (2§ = “b") + 29+ (z§ = ¢
(11 * (23 ="a") + 14> (25 =“b"}+ 15+ (2§ = “c") } »
w > 10) = FNr (w — 1)

ind now FNop (w, 28) does give the price of a newspaper, weight w, to zone z§.
*rojects

. Set up FNt so that FINt (x) is the cost of x cans of beer at 65 cents apiece.
7. Set up FNu so that FNu (x, p} is the cost of x cans of beer at p cents apiece.
. Setup FNj$ so that FNj$ (a$, b$, c$) gives whichever of a$. b$, or c§ comes earliest
n aiphabetical order. (Note: two strings a$ and b§ are in alphabetical orderif a3 < =
18, in the Spectrum’s notation for ordering strings.)
For newspapers registered at the post office, the prices table above becomes:

Zone A | Zone B | Zone C
First 10 g 13 15 16

| Each additional 10 g
? or part thereof

3 1 3

Define FNa (w, 28} to give the price of a registered newspaper of weight w to zone
5.

Combine FNa and FNp (in the text) to give a function FNr (w, z$, y) where w is
veight, z§ zone, and v = @ for unregistered papers, 1 for registered.

. . then there was the programmer who
aiways used magenta ink because he liked
his programs to remain inviolate . . .

A Control Characiers

‘ou’ve no doubt discovered that the top row of keys on your Spectrum behave dif-
erently from the rest, as regards modes and suchlike. If you haven't, try the following
experiment. Hit, in turn,

NEW

"APS SHIFT and SYMBOL SHIFT Ifor extended mode]
<ey 4 in the top row

-l'ingers1'

“ou’ll find vou have green fingers . . .

13y using the top row of keys in extended mode (with or without CAPS SHIFT) you
:an, from the keyboard, set colours, FLASH, BRIGHT, change the PRINT position.
ind 50 on. The Manual gives full details of the effects of particular combinations of keys
ind modes. on page 115; the important part for us is:

| Key Effect in extended mode
Without CAPS SHIFT With CAPS SHIFT
1 PAPER blue INK blue
2 PAPER red INK red
3 PAPER magenta INK magenta
‘ 4 PAPER green INK green
I 5 PAPER cyan INK cyan
| 6 PAPER yellow INK vellow
| 7 PAPER white INK white
|8 BRIGHT off FLASH off
[t BRIGHT on FLASH on
| 0 PAPER black INK black

SFFECT ON LISTINGS
‘or test purposes, input a few lines of program:

1 REM
? REM
¥ REM

Jow hit, in turn,

a) 1
(b) REM

¢) extended mode/CAPS SHIFT and 9
d) ENTER

¥atch the cursor carefullv to make sure vou actually get into extended mode. You'll find
hat the whole program, except for line 1, flashes at you. LIST it: it still flashes.

iepeat this, but use different keys in the top row, and sometimes leave out the CAPS
‘HIFT, in{c). Hmmm . . . pity it affects the whole listing . . . or does it?

70 back to the flash version of line 1; and add

‘1 REM |extended mode/4]

Vow everything after line 11 has gone green (colour 4). But it's still flashing . . . Wasn't
herc a FLASH off in the table? So maybe we need:

1 REM [extended mode/4] [extended mode/CAPS SHIFT and 8]

10 get nnd of the flash but keep the green, from line 20 onwards.
Tty it and see.

CONTROL CHARACTERS

What is going on?

f vou look at the list of character codes in the Manual, page 183, you'll find a bunch at
‘he front (numbers 6 to 23) that cannot be printed out (even as ? marks). These are
control characters which affect the behaviour of the systemi. Here's the list:

: e I
| Code Character
6 PRINT comma
I 7 EDIT
‘ 3 cursor left
: 9 cursor right
[1) cursor down
| 11 Cursor up
} 12 DELETFE
| 13 ENTER
14 number (used in program organization)
15 {not used)
! 16 INK control
| 17 PAPER control
| I8 FLASH control
19 BRIGHT control
20 INVERSE control
21 OVER control
i AT control
E 23 TARB control

These live in the memory like any other character, but they won't PRINT or LIST
Vhen vou use the top row of keys in extended mode, you input certain of these
characters. For example, key 4 in CAPS SHIFT has the effect of the INK control
‘haracter. with the colour green.
Although you won’t see a control character in a listing, you will see its effect. And you
:an check it's reallv in memory, either by PEEKing the relevant addresses {(Easy
rogramming, page 93) or by the following experiment. Hit, in turn,

a) 1
b) REM

¢) E-mode/l

d} E-mode/2
¢) E-mode/3
E-mode/4

g} E-mode/s
hy E-mode/6

wnere E-mode refers to extended mode. Note that, unlike graphics mode, vou have to
0 i E-mode each time.

“ou’ll see that the cursor doesn’t move. after the REM: it just keeps changing colour.
Now use DELETE, held down for auto-repeat: sec how long it takes to work its way past
ill those control characters? Try again, pressing DELETE repeatedly in single steps:
vatch the changes in the display. Obviously there are a lot of characters in memory that
iren t getting PRINTed.

‘LASHY LISTINGS

You can actually use this facility: it’s not just a pretty trick. For example, you can make
REM statements stand out in a llStll‘lE for easy visibility:

REM [E-mode/CAPS SHIFT/9] This will stand out [E-mode/CAPS/8]

REM
% REM
'IC.

AST this program, and check that the REM statement continues to flash. Now SAVE it
n 1ape, NEW, LOAD back . . . yes, it's still flashing.

amitlarly you can colour-code sections of program, for example subroutines. Put the
-ontrol characters into the start of the first line of the routine (after the line number—or
*1se at the end of the previous line: anything before a line number is ignored). All
upsequent lines will be LISTed in that colour.

T'o make a listing invisible. set its INK and PAPER colours to the same thing. (But it
il LLISTs correctly; or it will list from a ling after the one with the control character, so
/OU can 't protect against pirates this way. Nothing gives completely foolproof pirate-
rotection, but there are tricks, of which this is the simplest, to discourage amateurs. }

JSE IN PROGRAMS

“ou can make use of control characters in programs, to avoid having to set INK,
'APER, etc. all over the place. This is especially useful in creating colourful displays,
itle papes for programs, and suchlike.

or example. to print out the French tricolour at any position r{row) and ¢ (column),
150 Ths:
1 PAPER @ INK 7: BORDER @: CLS
@ INPUTr, c
® FORi=@TO2
W PRINT AT +1, ¢; “(E-mode/1) O O (E-mode/7) O T
E-mode/2) 0 0"
@ NEXTi

vhere the boxes are SPACE characters.
"o pet the Italian flag. change the number 1 in line 4 to 4.
“ou won't have failed to notice that the string in line 4@ is LISTED in its blue-white-
ed glory.
¥hich leads us to something a tiny bit more ambitious: Old Glory as a single string.
“ou can PRINT an approximation to the American flag using control characters, by
ising Figure 4.1 and the graphics mode. It takes time and care; but at the end you'll
inderstand the control characters from keyboard pretty well!

Red

/_/,
2 /&
7/

A A AR
7 —

| White

’% Blue
B T o0l e /
S T e t e . Black

! |

doire 4.0 (OHd Glory entered from the Kevboard as a single sering.

tere’s a blow-bv-blow account: you'll soon see the flag buiiding up as you work, and
'ou’ll be able to anticipate what'’s needed next. With practice, you can do this kind of
hing from scratch without any initial sketches. (g3cis key 3 in graphics mode with CAPS
‘HIFT.)
PRINT “{E-mode/1) (E-mode/CAPS/7):::::

E-mode/2) g3c g3c g3c g3c g3c (E-mode/@)

22 spaces) {E-mode/1) (E-mode/CAPS/T) : : 1 = :

E-mode/2) g3c g3c g3c g3c gic (E-mode/@)

22 spaces) (E-mode/1) (E-mode/CAPS/7): ¢ 1 1 :

E-mode/2) g3c¢ g3c g3c¢ g3c g3¢ (E-mode/id)

22 spaces) (E-mode/2)

g3c ten times) (E-mode/@)

22 spaces) (E-mode/2) (g3c ten times)

E-mode/®) (22 spaces) (E-mode/2) {g3c ten times)

E-mode/@) (22 spaces) (E-mode/2) (E-mode/C APS/®)

g3c ten times) (E-mode/CAPS/7) (E-mode/@)”
“hew! Now, set the PAPER and BORDER to black, INK to white, and RUN. The stars

»art could be improved (think about user-defined graphics), but it’s clear what it’s meant
o be. And all in one string . . .

‘or fast, colourful, lo-res graphics, you can use this technique to turn an entire
creenful of coloured graphics characters into a single string, and PRINT it almost
nstantly. So any picture you can design on a 64 X 44 grid can be input. from the
cevboard, as a string with 704 characters. It takes time, and patience; but it’s worth it for
in artractive display, and it’s an effictent use of memory. (In practice, for ease of keying
n and editing, I suggest 5 or 6 strings of 128 or 160 characters.)

What's he No-res

graphics

*’t's not what vou do, it’s the way that
vou do it.”’ The same data, displayed
n different ways, can be crystal clear or
‘dear as mud. Graphics and colours add
comprehensibility. But have you ever
hought of using a formula to play a tune?

% Display lechnigues

“omputing 1s not just a matter of generating vast swathes of numerical print-out, even if
his does impress visiting bureaucrats. It’s important to find suitable ways of presenting
1ata too. 1 explore several of these at various peints in this book. Here I'll take a look at
ive possible ways of presenting a series of numbers produced by a rather interesting
mathematical process. The process itself is discussed at the end, because [know a lot of
»eople are less entranced by mathematics thanfam . . .

I'he program asks you to choose the type of display required from a menu of five
yprions: then you must input a number between @ and 100Q. The listing is so simple that
Il give it all in one go:

@ DIM a(5)
@ LETa(l)=49: LET a(2) = 255:
ET a(3) = 704: LET a(4) = 1000:
ET ai5) =704
33 PRINT “Choose type of display:
. Numeric
". Graphic
. Colour
. Sound
). Both”
110 INPUT d
9@ PRINT ' “Choose a number between ® and L1 U LJ U1 1060@”
‘18 INPUTk: CLS
20 LETk =k/250: LETx=.7
50 FORt=1TO a(d)
IETx=k=x*(l —x)
GOSUB 1000 = d
NEXT t

STOP

£&383

0?3 REM numeric
#4180 PRINT x,
20 RETURN
‘@) REM graphic
2010 IFt=1THENPRINT k = 250
@28 PLOTt.»: DRAWR 1700+ x
‘W3¢ RETURN
%M REM colour
P10 PRINT PAPER INT (8 + x); “[0";
320 RETURN
403 REM sound
i@1% BEEP .05,2¢0 — 4f» x
2% RETURN

¥ REM both
@18 GO SUB 30: GO SUB 4066
W20 RETURN

jefore going on you might like to try this out. Any number in the 0—-10 range is
illowed; but numbers bigger than 750 produce more interesting results. Option 1 prints
wt rather meaningless lists of numbers; option 2 produces some quite pretty spiky
things; option 3 draws coloured bars and blocks all over the screen; and option 4 plays
auite striking tunes, sometimes rhythmic and repetitive, sometimes more complex.
“ption 5 combines 3 and 4.

1 SYSTEMATIC APPROACH

2t’s take a more systematic look, by picking a value of the number to be input, and
-omparing the types of display. In fact we'll take four standardized values.

66 R8¢ 897 985

vhich between them illustrate the crucial points.

{UN the program with option 1, and input 766. You'll get a table of numbers in two
:olumns. Reading along the rows in turn these give successive values of a number
:alculated by line 368 of the program. It's not easy to see anything significant (which is
he trouble with numerical. tabulated output); but the trained eye will notice that in each
column the numbers become more and more alike as you read down the screen. The
eft-hand one is close to #.58, the right-hand one ta #.75. So the values are alternately
flioping from one value {or near it) to the other. The sequence of values is (tending
owards) something that is periodic, that is, repeats the same values over and over again;
and the periodis 2.

{epeat, with option 1, but input the next test number, 880. Now the result is different:
he numbers don’t settle down at all. However. each column is tryving to alternate
yetween two values: 8.82 and (.87 on the left; 9.51 and .37 on the right. The whole
ilequence repeats every four goes, so it's periodic of period 4.

Now trv option 1 with 897. Hmmm, well . . . is there a pattern or not? There are quite
i Tew §.89s on the left: and several things near .33 on the right; but it’s not very clear.

Not to worry; option | with 985 is even worse. In fact, it looks a total mess.

Jotion 2 makes life much easier. For the number 766 it gives Figure 5.1, and the
reriod-2 behaviour is very clear from the way the spikes go up-down, up-down. For 880
he period 4 is also very apparent (Figure 5.2},

K

feure 3.1 Graphic displav: k = 766, Period 2.

Genre 5.2 Graphic display: k = 880, Period 4.

‘or 897 there are definite traces of periodicity, but it's a little irregular (Figure 5.3).

tgure 5.3 Graphic display: k = 897. Traces of periodicity remain.

‘or 985 the spikes are pretty much random (Figure 5.4).

igure 3.4 Graphic display: k = 985. Chaos!

he colour plot {option 3) brings out the periodicities even more strikingly—partly
recausc the periods 2, 4 ete. all divide the number of characters in a row (32), a fortunate

8

‘oincidence. For 766 vou will see vertical green and cyan stripes (except near the very
yeginning), period 2. For 880 (Figure 5.5) the stripes repeat the 4-fold pattern red-
rellow-green-white. For 897 (Figure 5.6) there is a definite striped effect. with colours
‘nosen from vellow-magenta-white-green-red: but there are occasional lapses where a

:quare gets a different colour from the stripe. And for 985 (Figure 5.7), you just get
random-looking squares.

K

drure 5.5 Colour plot (here in black and white). Pattern of bars shows periadicity when k = 850,

K

Figure 5.6 Colour plot (in black and white): partial periodicity
vith occasional lapses when k = 897,

‘feure 5.7 Colour plot (in black and whitey: & = 985, random pattern of squares showing chaos.

One doesn’t normally think of representing data by a fune; but here it produces
ntriguing resuits: the ear picks up the periodicity as rhythms. RUN with option 4, the
wmbper 766 produces a monotonous doo/dah doo/dah sound, like an ambulance (but
10t the right notes). 880 is more compulsively rhythmic, repeating a four-note phrase
wer and over again: you could use it as a backing to a pop record. 897 has a pleasant
mxture of rhythm and irregularity: certain phrases recur again and again. but at oddly
‘paced intervals. %85 sounds like bad Schinberg.

Jotion 5 lets you see the celours and hear the sound together: they tend to reinforce
:acn other.

“rv other values for the number. now. You'll find that for numbers less than 750
evervthing settles to a single value (very dull) and that the behaviour gets more and more
»eculiar, the larger the number gets.

OPULATION MODELLING

‘ery fascinating, no doubt: but what’s it all about?

The program is based on a formula that is used in theoretical models of animal
yopuiations. Imagine a lake large enough to support 19 hippopotami (at most). Dep-
:nding on the reproductive rate per generation, how does the number of hippos vary?
Aith this particular program, the number x that is output or plotted {or beeped) is given

T

:'])."
number of hippos in the current generation

naximum number possible (= 100)

ina the reproductive rate is 1/25@ of the number k that you input. If this is less than 1
k << 25@) the number of hippos tends to zero: the hippo population slowly dies out. Ifitis
wetween 1 and 3 (k between 250 and 75@) the number settles to a single steady value.
ibove that, it starts to oscillate more and more wildly.

‘or examnle. the period-2 sequence for k = 766 corresponds to having 58 hippos one
rear, 75 the next, then 58 again, then 75 again, and so on. What happens is that the
»opulation a 58 is less than the lake can sustain, so the number of hippos increases; but it
sversnoots the happy medium to give 78. which is too many. So the next year it
rops—too far again—to 58; then repeats.

The random behaviour seen at k = 985 (and partly at 897) is very interesting
nathematically, because we know it isn't reglly random at all. It’s produced by the very
ampie formula on line 360 of the program. But it certainly loeks random. It's called
1eterministic chaos, and it's a two-edged sword. On the cne hand, it shows that
ipparently random events can have a simple underlying structure; on the other, it casts
1oubt on the ability of apparently well-behaved theories to make useful predictions. This
sn’t the place to teach you about chaos; but if you want to know more, | can recommend
pages 37-318 of Concepts of Modern Mathematics by lan Stewart (no, it’s not Shiva
ictually: it’s Penguin Books}).

’EEK lets vou see what information an
address holds, and POKE lets you change it.

T'he guestion is, where to PEEK and what to
POKE it with!

O System Variables

Spectrum memaory, as you are ng doubt well aware, comes in two kinds: Read Only
viemory {ROM) and Random Access Memory (RAM). Only in RAM can you change
he contents of a memory location (address). Most of the machine’s operating system
lives permanently in ROM; but a certain amount is set up in RAM so that it can be
:naneed as necessary. This is the system variable area of RAM, and it runs from address
73552 to 23733, The Manual gives a comprehensive (but not always comprehensible) list
n pages 173-176.

Most of these variables are not especially useful, as far as incorporating them into
rograms is concerned; but some are. Although they are given names in the Manual,
these are for reference purposes only and are not directly accessible from BASIC.

To find out the value of a systems variable, you use PEEK: to change it, you use
POKE (see Easy Programming, page 93). For more detail, see below,

“he aim of this chapter is to describe those system variables that you are likely to find
iseful. and to give you a few ideas for using them. The important thing is to realize that

he system variables are there, and that you are free to bend them to your will should the
¥}CCAsION arise.

tEYBOARD RESPONSE

"able 6.1
Mnemonic Address Standard Value
REPDEL 23561 35

i REPPER 23562 5

| PIP 23609 0

These control the waiting time for a key to auto-repeat; the speed with which it repeats;
and the length of keyboard BLEEP on entering a character. For a faster-responding
sevboard with audible BLEEPs, enter {in command mode or from a program):

*OKE 23561, 1¢
'"OKE 23562, 1
POKE 23609, 50

“ou can vary the numbers to suit your tastes: sensible ranges seem to be (respectively)
0-20; 1-3; 46-100.

T'o avoid having to type these in every time you switch on, you can make a tape with
hem on, and LOAD it first. This of course takes even more time than typing them
wi—nbut if vou also include on the tape your favourite utilities (Line-renumbering, see
‘hapter 12; Attribute-changing, see Chapter 7; some common user-defined graphics) it
an make 2 heloful package to have sitting up in the BASIC area.

ORGANIZATION OF MEMORY

The computer’s memory is divided up into blocks that do different jobs. The boundaries
yetween these blocks can wander around: the addresses of the boundarnies are held in the
;ystems variables as given in Table 6.2.

Table 6.2

| Mnemonic Addresses Value after NEW (16K machine)
(16384 start of display file) 16384
(22528: start of attributes file) 22528
{23296: start of printer buffer) 2329
{23552: system variables area) 23552
{23734: used for microdrive) 23734
CHANS 23631-2
PROG 23635-6

| VARS 23627-8

| E-LINE 23641-2

| WORKSP 2364950

| STKBOT 23651-2 1
STKEND 23653-4
RAMTOP 23736-1 32599
UDG 23675-6 32600
P-RAMT 23732-3 32767

ill of these are 2-byte variables. This means that to find, e.g. where the program is, you
must use

PRINT 23635 + 256 » PEEK 23636

ina in general (first byte)+256+(second byte). Conversely, to change PROG to, say,

3244 (1 don’t recommend this! It's just chosen to give the general idea) vou have to work
out what 13244 is in the form (byte) + 256 * {byte). In fact the second (or senior) byte is
s1ven by

NT (13244/256), which is 51
and the first (junior) byte by
3244 — 256 = INT (13244/256), which is 185.
20 the command would be
POKE 23635, 188: POKE 23636, 51

Similarly to change RAMTOP to the value n (see below for reasons for wanting to do
his) you use

POKE 23730, n — 256 = INT (n/256): POKE 23731, INT (n/256)

Inlv RAMTOP and UDG can usefully be POKEd, among this set of system
-ariables: but each can be PEEKed to find out whereabouts each section of memory lies.
"HANS is the arca for the microdrive communications system, and you won't find
nuch use for that. PROG is the start of the BASIC program area: you need to know it
‘or (e.g.) the line-renumbering routine in Chapter 12. VARS is the place where the

ariables arc stored: if vou want a fancy line-renumbering routine you might find a use
or it. Or. given enough persistence, you could write a routine to delete from memary
: nﬂcmu variables (a kind of local C'LI:AR} though Machine Code would be better here.
-LINE up 1o STKEND are of more interest to the Spectrum than to its user.
he space between STKEND and RAMTOP, however. is important. [Us the amount
of free memoryv available. { Actually, the machine puts two stacks (see Machine Code and
fetter Basic) in there: one for the ZBOA chip, onc for the GOSUBs; but these are
1ormatlv guite small.) So to estimate (to within a few dozen hytes) the memory that™s
nare, you use:

?RINT PEEK 23730 + 256 « PEEK 23731 -~ PEEK 23653 — 256 « PEEK 23654

 ncorporate such a command into a program. In fact 256 + {PEEK 23731 — PEEK
3654} is simpler and close enough.

LAMTOP normally sits at the start of 1he user-defined graphics: but it can be lowered
o make room for things that you don’t want the BASIC system to clobber. For example.
vlachine Code routines (see Machine Code and Better Basic) or extra user-defined
‘naracters {see below). Stuff above RAMTOP is not affected by NEW, (It’s also not
aved: but you can use byte storage. see the Maniwl page 142, Lo get round that.)

JDG is where the vser-defined praphics area starls. The main reason for wanting to
‘nange this is if you're short of memory and don’t want all 23 uscr-defined characters,

“hen vou raise the value to release the extra space.

IUILT-IN CLOCK

“he systems variable FRAMES counts the number of TV screen frames that have been
canned since the computer was last switched on. Tt scans 500 frames per second, so
:tfectively vou have a built-in clock. The Manual, pages 129-131, goes into this quite
thoroughly, so I won't repeat the description here: but the main point to notice is that the
vanaole has three bytes: its numerical value is

'EEK 23672 + 256 * PEEK 23673 + 65536 « PEEK 23674
ind the number of seconds elapsed 1s this, divided by 500. Notice that address 23674 only
‘hanges every 65336/50 = 1310172 seconds, or about twenty minutes. So for a lot of
inplications {such as the next) the first two bytes arce all that matter.
lere’s a program to test your reaction-time.
¥ PRINT “Reaction time test™
4 RANDOMIZE
¢ PAUSE (10 + 304 - RND)
) LET thh = PEEK 23672 + 256 = PEEK 23673
¥ PRINTAT 14, 15, =GO!"
W IFINKEYS = “ " THEN GO TO &l
% LLETtl = PCEK 23672 + 256 «+ PEEK 23673
W LETt=1tl -1
W IFt<@THENLET!t =1+ 635536
¢ PRINT AT 15, 2; “Your reaction time is 717 /50 V' seconds”
_ine 9@ takes carc of the {unlikely but possible) event that the third byte of FRAMES has
iicked over by 1 during the reaction period.

"o use the program, RUN it: as soon as "GO appears on the screen, press any key.
Den't cheat by holding it down!)

THE CHARACTER SET

I'he systems variable CHARS holds the address of the character set—a table of s and 1s
‘hat defines the shape of the screen characters. More precisely, it holds 256 less than the
iddress: and the table starts with character 32, a SPACE.

Jrdinarilv, CHARS takes the value 1536@. The instructions for printing out character
iumrer n are conlained in bvtes 15360 + 8 * n to 153600 + 8 * n + 7, and give the eight
aows of the 8 X 8 square of pixels for that character, in binary, just as for user-defined
‘naracters { Kasy Programming, page 49).

‘ou can PEEK these, to see how a given character is stored in ROM and built up on
:creen. using this program.

INPUT **Character ?7; c$
IFc§ = “"ORLENc$ > 1 ORCODE ¢$ < 32 THEN GO TO 10
LET n= CODE c§
#$) FORi=4TO7
‘@ LETx=PEEK (15360 ~8+n ~ i)
LETp$ ="
P FORt=1TO8
W LETxs=INTI(x/2): LETxj=x —2=*xs
0¥ LETp$ = (“»’ AND xj) + (“.” AND NOT xj) ~ p$
® LETx=xs
[NEXTt
20 PRINT p$
3¢ NEXTi

This takes the binary numbers in ROM and turns # into a dot and 1 into an asterisk. So
he letter “"a™ gives this:

‘! Address in ROM Contents in binary Giraphic effect
16136 ¢oocoene |
16137 boonononw ;

16138 priltioan ok oA

| 16139 peoBc1d0 |
16149 pBd111100 R
16141 P1dped100 LA
16142 P11 1140 Eix % %
16143 eeeeoeOO® |

.ee the “a” shape among the stars?

"he dots and stars are for clarty: to get the true effect, change *.” to “00" and “+" to
n-"‘J.

You can use this technigue in programs to produce letters cight times the usual size.
iy replacing each square by a 2 % 2 square, you can get 16 times original size: a bit
:hunky, but dramatic. By manipulating the eight binary numbers in 2 % 2 blocks, you
:an bring the graphics characters into play and produce letters 4 times the usual size (see
werl. Ahd, by inventing suitable user-defined graphics, you can produce characiers
10uble the usual size.

vlore striking is the effect of POKEing CHARS.

yet a program into RAM which has about a page of listing, for better effect. Enter by
direct command

*OKE 2366, 2
Hmmm . . . that’s a bit weird: the characters have shifted a couple of lines and got a bit
sroken up. Now try

POKE 23606, 8
and ignore the screen display messages, which also look weird). Now vou've got nice
ctters again, but the listing seems to be in some sort of code . . . In fact each letter has

rot changed to the one next to it in the character table, becavse we've fooled the
-omputer into looking eight bytes ahead of where it thinks it is.
For real fun, enter

*OKE 23607. 50

'udicious use of this command. in a program, would make listings of it incompre-
hensible. However, a bit of detective work by the would-be-pirate would edit them out
igain . .. LifeisSad. ..

T'o get back to a comprehensible display, enter

POKE 2366, §: POKE 2367, 6

but be careful since vou won't be able to see what you're doing on the screen until it’s all
wer. Pulling the plug for a second will reset if all else fails.

I'his is all very fascinating, but what’s the point? The main point is that you can provide
he computer with entire new character sets—as many as you have room for in memory

rather than just the 23 user-defined characters. The way to do this is explained in

“hapter 13, because it would make this chapter too long at this point; the idea is to build
Ip the new character set in a part of memory that the BASIC system doesn’t use, by
owering RAMTOP and POKEing in the codes for the rows. Then the odd POKE to
'HARS and all your new characters become accessible. POKE it back, and the old ones
.now up. Two tiny subroutines to do the POKEing, plus 2048 bytes of data, and you've
*ot 256 new characters—graphics symbols, mathematical symbols, or whatever. Of
:ourse vou don’t have to go the whole hog: fewer than 256 characters can be set up by the
:ame method, if vou prefer.

By using the graphics characters {mp row of keys) you can draw sy mbuls at four times
their usual size, which is quite nice for dramatic captions. Here's a program which
iccents any string of length 8 or less. and expands it fourfold. (The limit on length is just
:0 that the result fits the screen: vou can easily modify it if you want to write several
ines_) It’s based on the clever way that the Sinclair people have (this time!) coded the
rraphiics svmbols. To get the CODE for a graphics symbol, add together the numbers in
he grid

sorresponding to its black squares; then add 128. For example Mg has code 2 + 4 + 128
:34. You can check this from page 92 of the Marnual.

DIMa(8,8)

® LETi# = PEEK 23606 + 256 » PEEK 23607
@ INPUTc$

i LETs=LENCc$:IFs>8THENLETs =8
FORr—=1TOs

LETi=ip+ 8 + CODE c$(r)
FORa=QTO?7

€ 2z =

18 LETm = PEEK(i + a)

20 FORb-GTO7

130 LETa(a+1,8—b)=m—-2+INT(m/2)

40 LETm = INT (m/2)

56 NEXThb

60 NEXTa

M FORu=1TO4

‘10 LETtS ="

20 FORv=1T1T04

'3 LETk=q(2*u 1,2+*v)+2+q(2*u—1,2=v—-1)
4+xa(2*u.2*v)+8*q(2*u,2sv—1)

4 LETtS =135+ CHR$ (128 + k)
M NEXTv

o0 PRINT ATu.4=r1~ 4;1$

70 NEXTu

8 NEXTr

figure 6,1 shows the result of inputting *“I'esting’?”.

TeEsting”?

‘igure 6.f Testing quadrupled characters.

IMPOSSIBLE JUMPS

"he Spectrum lets you leave out lots of line numbers (a major objection to BASIC—why
wmper lines vou don’t want to refer to?) by writing several statements on one line:

' LETa=1:LETb=49:PRINTa+b:GOTO 19

‘'say). All well and good, but you can only jump (with GO TO) to the first statement in
such a line.

"Inless vou POKE the svstem variables NEWPPC and NSPCC, in addresses 23618-9
2 bytes for NEWPPC) and 23620 {1 byte for NSPPC). This forces a jump to the line held
in NEWPPC, and the statement number in NSPPC.
Rather than elaborate the theory, here’s a test program that makes all clear.
INPUT a
POKE 23618, 10: POKE 23620, a
PRINT *'I wasn’t supposed to come here”
B PRINT “1"™: PRINT “2": PRINT “37
2UN this. and INPUT 1 for a: try againwitha =2 and a = 3.
ine 7 is never reached at all. The first command in line 5 forces a jump to line 1. Ifais
, the second command in line 5 forces a jump to the first part of line 10; if ais 2 it causcs a

‘ump to the second part; if a = 3, to the third.
in general the jump is forced by the command

*OKE 23618, nj: POKE 23619, ns: POKE 23620, a
which has the same effect as

3O TO nj + 256 * ns, a-th statement
(were such a command possible in BASIC, which it isn’t).

Ine oddity: IF/THEN statements. The THEN part is treated by the computer as a
:eparate statement in the line, which has to be included in the count. And if you jump to
he THEN part. using NSPPC, you’ll get an error message “"Nonsense in Basic™. To see
vnat happens, try this:

INPUT x
7 INPUTa
POKE 23618, 10: POKE 236213, a
PRINT “1 wasn't sunposed to come here”

@ IFx=0THENPRINT “1": PRINT “2": PRINT 3"

-

I'he computer thinks of line 19 as having four commands:
IF x = @) (THEN PRINT “1”) (PRINT “2") (PRINT “3”)

.0 vou'il have to try the values 1, 2, 3, 4 for a. Putting x = 0 makes the IF true; x = [
nakes it false. The resulting print-out is like this:

X | a Print-out on screen
.[@11 (123 (incolumns)
' 2 | Nonsense in Basic
3123
4 13
1 | 1 | (blank-—cendition not true)
I 2 | Nonsense in Basic
- 3]23
| 4

3

Notice that even with x = 1, jumps to the third or fourth statement produce a print-out:
he IF/THEN is ignored (as it would be if the statements had been on separate lines, and
ou'd used a suitable GO TO).

"HE BOTTOM OF THE SCREEN

“he attributes for the lower part of the screen (where the error messages come) are set by
he maching; and occasionally you can end up with a block of colour at the bottom which
ioesn’t match the border. if you change the border in a program run. The system
raniable BORDCR at address 23624 contains 8 # ¢ where ¢ is the colour number.
*OKEing it doesn’t produce an immediate effect, however; but if you don’t mind
slgaring out your variables, vou can reset the colour using

*OKE 23624, 8 = c: CLEAR

“ou may find a use for this. See also Chapter 7 on the display and attribute files.

Vhile on the topic of the “Message” section of the screen, there's another way to get
i1 1t by using a command designed for the microdrive. Try this program ($Fis on key 3,
wymbol shift).

¢ PRINT #4@: “Hello there!”
GO TO?24

The last command is there just to stop the “OK' message appearing and obliterating
-vervihing.) Using PRINT # @ you can print to the “*Message™ section. There are some
wirks; for example, vou tend to lose line 21 of the main section, or get scrolls when you
10n’t expect them. You can PRINT 0 a message of more than 64 characters: the lower
:ection expands and scrolls vp. Using colour commands and/or control characters you
*an get colour into the act as well.

f vou've got a printer attached, try using PRINT # 3 instead. This time, the message
70es 1o the printer—just like LPRINT.

'RINT # 1 also produces messages in the lower section of screen; and PRINT $#2
yroauces them in the vsual place—Iike plain PRINT. The other PRINT Hn commands,
or n > 3. refer to the microdrive system.

"his is useful to know if vou want to print out a series of messages {say) with the
opuons of using the screen or the printer. Use

PRINT fn; ‘Whatever the message is™

Then setting n = 2 gives screen, n = 3 printer. Thisis a lot better than the alternative

Fn =2THEN PRINT “Whatever the message is™
Fn = 3 THEN LPRINT “Whatever the message is"

SCROLLING

"o my mind. the most infuriating feature of the Spectrum is the way it asks for scrolls.
“ou have to keep hitting the keyboard to make it scroll, or stop it scrolling: and mine
1suaily ends up scrolling when I want it to stop, and stopping when I want it to scroll. The
vnole system 1s distinctly perverse and [wish Sinclair had thought a bit harder about it.
f vou want to force a scroll from a program, you can use the systems variable
'CR-CT. address 23692, This holds the number of lines left before a scrull request is
printed out. So the command

YOKE 23692, 2: PRINT AT 21, 31: PRINT

‘auses 11 to seroil up one line, withour asking for a keyboard input. {I mentioned this in
wasy Programming, but it's worth mentioning again for completeness.)

PLOT COORDINATES

mentioned these too: same reasoning applies. The two-byte systems vanable
“OORDS holds the pixel coordinates of the last point PLOTted. The addresses are:

40

3077 row coordinate,

3678 column coordinate.

w0, 1f you've just used
LOT 47,124

then address 23677 holds 47, and 23678 holds 124, Check this:

1@ INPUT row, column
2 PLOT row, column
) PRINT PEEK 23677, PEEK 23678
You use COORDS, of course, to find out where you are at the moment before doing a
JRAW (which moves you from the current PLOT position by the offsets specified in the

JRAW command, as you well know). If you want 1o draw to a specified point a, b—and
iave forgotten, or not stored in the machine, the current PLOT position— you can use

DRAW a — PEEK 23677, b — PEEK 23678

""he main use for this would be in curve-plotting, but you might also find a use foritif you
use the kevboard to move a pixel around (as in Chapter 1, the Sketchpad program) and
vant to know where you are.

cver got a really nice diagram on the screen,
ut in a terrible colour combination? And
he only way to change it is to change the
yrogram, which wipes the screen, so you have to
start again . . .
There’s a better way.

! Anribute and Display Hles

if vou've owned a ZX81 you’ll know that it runs at two speeds, scnsibly called FAST and

:LOW. and that the screen display blanks out in FAST. You'll also be aware (see
vachine Code and Better Basic) that the screen display is held in a part of RAM called
‘he display file, which moves around and is held by a system variable called D-FILE. (If
vou haven't owned or used a ZX81, skip this paragraph. Oh dear, too late.)

The Spectrum isn't like this: it is pure and un-D-FILEd.

The hardware for the screen display works all the time, so there is no SLOW speed
and hence no need for speed commands). The information for the screen display is held
w two chunks of memory. the aftributes file and the display file. These live in fixed
aositions in RAM, and work in different ways.

\TTRIBUTES

The attributes file is easier to understand {and. unless you're a Machine Code buff, more
1setul anyway). :

I'he screen display consists of 22 lines (24 including the bottom bit for messages) of 32
‘haracters each. making a total of 22 + 32 = 704 (or 24 = 32 = 768) positions. PRINT AT
. ¢ proauces a character in the ¢-th position along row r (counting from @ upwards). The
“haracter printed there is held in display file; but its attributes {colour, flash, etc.) are
1eld in the attributes file. The order in which the attributes are held is straightforward:
start at too left and read along rows from left to right, just like reading a book. The
ittnbutes file starts at address 22528: so the attribute for row r, column c is held at
wadress:

02528+ 32+*1+¢

“ou can POKE this to change the attribute without clearing the screen. This is usetul,
ecause the PAPER and INK commands only affect newly printed stuff.
{ach attribute is a single byte, whose eight bits are divided up like this:

,[FLLASH
on/off

BRIGHT
onfoff

three paper three ink
bits for colour bits for colour

vhere “on” is 1, “‘off”’ is @ as usual.
in other words. for FLASH value f, BRIGHT value b, PAPER value p, and INK
raiue 1, the attribute value 1s:

28+«ft64+bt+t8+=p+i
You can find out the attribute of row r, column ¢, by using
LET att = ATTR (r, c)

anda vou can convert this to a list of valuesf, b, p, i using:

ETf=INT (att/2)

ETb = INT (att/4) — 2 + f
ETp=INT (att/32) — 16+ f—8+b
_ETi=att — &+ INT (att/8)

The following program converts the screen display so that every cell has the same
chosen}) attribute. For example, if you've laboriously fed in a world map in black ink on
viite paper, and now you want red ink on yellow paper, you can make the change
vithout losing the map or starting again. Use direct entry, and type:

ETf=@:LETb=@:LETp=6:LETi=2:
ETatt=128*f+64*b+ 8+p+i: FORt=#
'O 7¢3: POKE 22528 + t, att: NEXT't

Yetter still, have this in memory already, as part of a general utility program: then you
can INPUT {, b, p, i. Of course, you could also work out in your head thatatt = 8+ 6 + 2
= 5@ here; so the command becomes

‘ORt=0TO 703: POKE 22528 +t, 5¢: NEXT't

ana you're in business!
f vou change the loop to

‘OR t = @ TO 767 etc.
*hen vou'll also change the lower part of the screen: and
‘OR 1 =704 TO 767

“hanges just that bit. The main time you need this is when you've loaded in a picture
LOAD “Mona Lisa” SCREEN$) and it ends up with the wrong colour for the lower
vart of the screen, thanks to changes in BORDER since the picture was SAVEd. Unlike
3ORDCR. Chapter 6, you don’t have to CLEAR variables. You won’t need this often,
ut it might just be useful.
“or rapid attribute-changes, this routine is too slow. The remedy is to go to Machine
‘ode, see Spectrum Machine Code, by lan Stewart and Robin Jones, Shiva, Chapter 14.

DISPLAY

This is much more complicated, because each character in the display is stored as a list of
s#ght bytes (its rows in 8 x 8 pixel form; see Chapter 15). And these are not stored in the
»bvious order.

I vou've ever loaded a picture using SCREENS vou’ll have noticed the curious order
nwhich the computer “paints in” the picture. It does it in exactly the order that the bytes
are stored in the display file.

"o see this clearly, RUN this program:

0 FORr=@TO2]
'@ PRINT “[32 inverse spaces, or graphics character g8c's|"
@ NEXTr

T'hen save it: SAVE “blank” SCREENS. Finally, CLS and LOAD “blank” SCREENS$
ina watch what happens. (If you miss out the CLS you'll not get much joy . . .)

It’s easier to describe the process in terms of the coordinates used for hi-res graphics, a
256 x 176 grid. Number the rows from 175 at the top to @ at the bottom, and the columns
rom @ at left to 255 at right.

'he display file starts at address 16384.

“he first 32 bytes hold the instructions for line 175. Each byte governs an 8-column
:cgment of that line. The first byte deals with columns $-7, the next with 8-15, and so
m. tf you CLS and then input

YOKE 16384. BIN 01016101
ot the decimal equivalent
POKE 16384, 85

sou i see a row of four dots

it top left. Change it to POKE 16385, 85 and so forth, and sec how the row of dots
noves. 1he dots, of course, are the binary number @1319%1@1 converted to graphics: 1
»eing “plot a pixel” and @ “plot a blank " on the hi-res grid.

tach horizontal line of display goes into the display file as a sequence of 32 bytes, in
rder.

Infortunatelv, the lines themselves don’t go in numerical order at all, as we've just
een.

‘irst these lings goin:

75167 139 151 143 135 127 119

think of them as the top line of the first eight rows of characters). Then the computer
roes on 1o the second lines:

74 166 158 1500 142 134 126 118
Then
73 165 157 149 141 133 125 117

ina s0 on until it reaches line 112. By now the top third of the screen (rows @7 in lo-res)
1ave been dealt with.

“hen the next third is dealt with in a similar order; and finally the last third. including
he “‘messages’ section of screen.)

"ve described this mostly to satisfy your curiosity: you'll only need to know it if you
vani to write moving graphics in Machine Code, or that sort of thing. 1f you do want to
10 that, it would take too much space here to describe how: Spectrum Machine Code
akes the topic further.

He went to a stag-heetie

party last night

‘rojects

Modify the attribute-changing program so that different sections of screen get
iifferent attributes, by using suitable DATA statements. Use it to produce a “solid™
nap of the world, like the one in Chapter 2 but with the continents (so far as is
practicable) shaded in different colours, and cyan oceans.

If vou're mathematically minded, show that the following sequence of instructions
caiculates the position in display file corresponding to a hi-res pixel in row r, column

o
L

19 INPUTI, ¢

0 LETr1=175—1r

‘0 LETb = INT (r1/64)

LETcl = INT (c/S)

S0 LETc2Z=c—8#cl

W LETr2=INT(rl/8)

7@ LET3=r11—-8+12

B0 LETa=2048+b + 256 +r3 +32+12 + ¢l + 16384
¥ LET bitpos =c¢2 + 1

@3¢ PRINT “The pixel with hi-res coordinates O r; *“00"; ¢;
‘isstored in the display file at address (0" a; ““ O at bit number O bitpos
Here the bit-position bitpos runs from @ to 7 along the byte from most significant

figure to least, like this: 01234567.)
sinclair presumably have a good reason for using this particular order . . .

\nd now the Sp=ctrum gets its own back
yy taking a look at your system
rariables . . .

3 Psychospecirology

. . The art of psychological experiment with a Spectrum.

The 1dea of this chapter is to use the computer to investigate certain curious pheno-
nena mn the psychology of visual perception: how we see things. The computer is ideal
or this: it can sct up carefully controlled pictures {*“stimuli’ as the psychologists say) to
sring out specific features of the perceptual mechanism. (See, I'm getting the hang of the

jargon aiready, and we’ve barely got started.)

AFTERIMAGES

f vou stare at a bright object for long enough, the cells in the eye that receive the light
recome “‘tired” and cease to respond so strongly to it. This results in the formation of

‘afterimages’”: dark spots the same shape as the original bright object. The effect wears
f after a few seconds.

suppose the original object is not only bright, but coloured. How do the afterimages
yehave? The following program lets you find out. using the Spectrum to generate and

maintain the original stimulus.
1@ PRINT AT 19, B; “Afterimages”
'@ PRINT “Stare at the square™
i INPUT “Colour?”, p
i@ FORi=1TO#6
0 PRINT BRIGHT I; PAPER p; AT8 +i,13;*000 000"
o NEXTi
'@ PAUSE 500
5@ CLS
GO TO 19

8

When vou RUN this, input the colour by pressing the corresponding number in the top
‘ow of keys. A bright square will appear: stare at it, trying not to move your eyes off it.
¥hen it disanpears, you should see a fuzzy, phantom square, which fades in a few
;econds. (If you don’t, or it’s very pale, try increasing the PAUSE to about 100d.)

f vour eyes are working like mine, the colours you see should be roughly these:

Jriginal Afterimage
olack white
Jue yellow
ed cyan
nagenta green
green magenta
yan red
yetlow blue
vhite black

Vell. OK, maybe the “‘black” looks grey, and the red is a bit brownish; but it should be
lose.

Notice that the codes for the original and the afterimage add up to 7 (¢.g. red + cvan =
>+ 5 = 7). This means that the iinage colour is complementary to the original: it contains
reciseiv those colour signals that are not present in the original.

Nhy? Presumably because overexposure to these has reduced the eye cells’ capacity
o respond to them, which shows up as a kind of exaggerated response o the comple-
nentary colours.

n ordinary circumstances, you won’t notice afterimages much (unless you look too
[iose to the Sun, which is dangerous if done for more than a split second, so don’t). This
s because the eve is constantly hopping from one point to another. (It's called saccadic
novement.) But this Spectrum experiment shows them up quite vividly. (Don't stare too

long at the Spectrum screen, either!)

THE HERING ILLUSION

'his dates from 1861. and is named after its discoverer Ewald Hering.

@ FORi=35TO255STEP 12

2} PLOTI,®: DRAW 255 — 2+, 175
‘@ NEXTi
@ FORi=5TO1758TEP 12
W PLOT®,i: DRAW 255,175 — 2 +i
@ NEXTi

¥ INPUT “Spacing?”, g

110 PLOTA.87 — q: DRAW 255, 0
20 PLOT®,.87 + q: DRAW 255, 0

't draws a bunch of rays through the centre of the screen. Then it asks for an input. Try
omething between about 10 and 20 first. Two lines appear. They look curved (although
he curvature of the TV screen can spoil the illusion a bit).

tHowever, it’s clear from lines 119 and 12@ that they must be straight. The other lines
00l the eye.

“rv this with different values for the “*Spacing” INPUT, and different INK/PAPER

‘ombinations. What values give the best illusion?

THE WUNDT ILLUSION

t took until 1896 for someone to try the obvious, and make the lines curve the other way.
'he genius responsible was Wilhelm Wundt, the first man to suggest that psychologists
night care to carry out experiments. Big Oak Trees and all that . . .

20

FORi= —125TO 125 STEP 10

PLOT 127 ¢: DRAW 1, B7: DRAW —i, 88
NEXTi

FOR1=2T1087S5TEP 10

PLOT®, i: DRAW 127, —i: DRAW 128, i
PLOT®.175 —i: DRAW 127,i: DRAW 128, —i
NEXT i

INPUT *“‘Spacing?”, q

PLOT®.87 — q: DRAW 255,0

PLOT®.87 + q: DRAW 255, @

t works verv much the same way. I reckon the illusion is more cffective on the TV screen
han Hening’s version: what do you think?

"HE POGGENDORF ILLUSION

Tave vou noticed how they’re all German? Johann Poggendorf proposed this one in

86D,

- & S 8 a s o

10

FORi=0TO?20

PLOT 20, 70 + i: DRAW 20, §
NEXT i

PAUSE 5¢

PLOT 20, 10: DRAW 200, 13@

IF INKEY$ = “ " THEN GO TO 6§
OVER 1: PLOT 113. 7¢: DRAW 30, 20
OVER®

This draws a rectangular block, and two lines radiating out from it. They look as if
hey're offset.

dgure 8.1 The Poggendorf Husion. is the whole line straight?

FHowever. if vou press a key, a white line is drawn between them, to show that they are
aiigned with each other: the whole line now looks straight.
Sqmmm . ..

THE MULLER-LYER ILLUSION

st first [thought it was twe Germans . . . but no: Franz Miller-Lyer had a double-
harrelled name (Doppelname, as they say).
PLOT 44, 130: DRAW 180, ¢
PLOT 40, 60: DRAW 180, #
PLOT 25.45: DRAW 15, 15: DRAW —15, 15
PLOT 235, 45: DRAW —15,15: DRAW 15,15
@ PLOTS55,115: DRAW —15,15: DRAW 15, 15
W PLOT 205, 115: DRAW 15, 15: DRAW —15, 15
‘@ IFINKEY$ =“"THEN GO TO7¢

i FORt=1TO7

¥ PLOT49, 140 — 10 =t: DRAW®@, —7
30 PLOT 220,140 — 10+ t: DRAW®, -7

10 NEXTt

= = a =

b

“ou’ve seen this one. There are two arrows. with heads pointing different ways. The
bottom one is clearly longer. Oh yes? Hit any key; watch the dotted lines . . .

‘igure 8.2 The Miiller-Lyer Hlusion: are the lengths the same?

THE WERTHEIMER ILLUSION

Due to Max Wertheimer in 1912 . . .

® PAPER @: INK6: BORDER @: CLS
2@ INPUT “Pause?”,p
25 INPUT “Number?”, n

@ FORt=1TO20

% FORj=1TOn
) PRINTATS,15+2+«(j— 5);~“0O"
15 NEXTj
@ PAUSEp
25 FORj=1TOn
W PRINTATSB, 15+2+(j—5)"“M"
® PRINTAT 14,15+ 2+ (j—5); 0"
5 NEXTj
@ PAUSEp
33 FORj=1TOn
¥ PRINTATI14,15-2=+(;—5):"“®"
5 NEXTj
O NEXTt
When you RUN this, you'll be asked for a PAUSE—anything between | and 100 is
ine—and a NUMBER. I suggest you input 1 for the first few tries.

he screen displays a vellow square (or two). If PAUSE is small, you'll see two
possibly flashing) lights. If PAUSE is large, you'll see one light for a while, then the
sther. But. if PAUSE is in between, what you see is one light. bouncing up and down.
Try PAUSE = 35.) You can see this effect with the fog-warning lights on British
motorways.

f you try NUMBER at values bigger than 1 (and not more than 10 or 12) you'll see a
vnole array of lights. What vou perceive depends a bit on the fact that they aren’t
lashing quite in synchrony: the BASIC program takes time to go round a loop.
iXperiment.

T'his illusion is important for computer-games: moving graphics wouldn’t work with-

it it. For that matter, neither would TV or motion pictures. No Logie Baird, and no
“ogi Bear.

THE SCHWINDEL ILLUSION

.. Due to Hans-Wilhelm Schwindel in 1872. Well, actually, no: T invented it mysell, but
ou'd never have guessed—unless you knew that “Schwindel” is German for “fake™
hence “swindle”). No doubt half a dozen Germans invented it half a century ago, but
101 ON a Spectrum.

OVER 1

POKE 23687, 59

FORi=1TO 784: PRINT CHRS$ (35 + 18 =+ RND): : NEXT i

iy POKE 23607, 60

= =

@ LETi=125+RND: LET =85+« RND
® LETil =125+ RND: LET j1 = 85+ RND
/@ PLOTI, j: DRAW L, j1

3 PAUSE 20

% GOTO 50

This draws a random screenful of hi-res dots. (Don’t BREAK in the middie of this bit, or
you'll get weird messages. If you do BREAK, enter POKE 23607, 60.)

hen it starts drawing lines. You'll see the lines goin: but once they re in, you'll totally
ose track of where they were. The eve is detecting changes in the random screen. but it
:an 1 hold the resulting image in any detail. Something to do with the way we perceive

CXIures.

‘ot a vaniant, try ¢ircles, Change lines 53-90 so that thev read:

= & =

&

L)

LETi=50+ 150+ RND: LET) = 48 + 99 + RND
LETr=28+RND + 10

CIRCLE i, j.r

PAUSE 20

GO TO 5¢

veain, you'll see them going in: but the image won't last. If you're not even convinced
he circles are going in at all. add a colour-change:

3

INK 3

Vow vou'll see that semething’s changing: but you won't start to see the circles until a
roodly part of the screen has gone magenta. The colour change seems to impress the eye
and brain) even more than the change in the individual pixels, and it obscures the latter
umost entirely.

viost commercial uses of computers require
arge guantities of data. These are stored
n aisc or tape in the form of . . .

“? Hles

¥hat s a file. in the computing context? Scientists have a disconcerting habit of taking a
vor@ in common use and giving it a subtly altered meaning to suit their purposes.
‘omputer scientists have done just that with the word file. To them, the word implies a
usually) large collection of data items related to some specitic topic.
+0 for instance. an estate agent would hold a file consisting of all the properties which
1c has available for sale. He should beware of saving to his secretary, “Bring me the file
m 36 Acacia Avenue. please,” within earshot of a computer man because he will be
:mugly told that he is misusing the word, since he only really wants one item of the file,
vnich the computer man calls a record. Our estate agent may retort, with considerable
“ustfication, that he was using the word **file”’ before the computer man was thought of.
“he computer man will, wisely. ignore this line of argument, and camouflage the fact
hat he hasn’t responded to it by remarking that a single feature of a record, such as. in
his case. the current owner of 36 Acacia Avenue, or the price being asked for the
ywoperty, 18 called a freld. At this point the estate agent will almost certainly disengage
nimself from the argument, since he doesn’t see much percentage in selling figlds,
rarticularly without outline planning permission.
et’s look at another example of a file of a more personal nature. Suppose you wanted

he details of vour record collection kept. The file is the sum total of all the information
ibout this collection. A record of the file is. coincidentally, information about one
‘ecora (thing that whirls round at 33%3 r.p.m.} in the collection. We'll assume for
ampiicity that all the (gramophone) records are of the pop variety, and therefore have
welve separately titled tracks. We’'ll worry about what to do with the Brandenburg
‘oncertos later. So each file record might consist of the fields given in Table 9.1.

"able 9.1
| Field No. Description No. of characters (max)
| 1 Artist 30
| 2 Date purchased 6
3 Track 1 title 20
| 4 Track 1 length (minutes) 5
5 Track 2 title 20
6 Track 2 length (minutes} 5
7 :
8 .
l ; and so on
— :
25 Track 12 title 21
26 Track 12 length {minutes) 5
Total no. of characters/record: 336

‘ach of the fields described in the table has a fixed length. So, for instance. if the artist
s “Pink Flovd™, which only occupies 1@ characters (including the space between the
voras) a further 20 spaces will have to be added to make up the standard 3@ symbols.
Thus “30" is just a reasonable guess as to the maximum number of characters which the
irtist’s name might take up. It should be adequate for most purposes: even “Bonzo Dog
Yoo-Dah Band™ fits OK. But not “Dave Dee, Dozy, Beaky, Mick and Titch™,

Now, you may object that a lot of memory is going to be wasted this way, and that it
vould be better to allow fields to have vaniable lengths, and to delimit each of them with
:ome speciai character. To that, I can only answer that your argument is sound but that
o do things like that would make the programming much more difficult than I am
wepared to make it, so there. Anyway, in at least some cases. there is no question about
he field length. For example, the “Date purchased™ flield always contains exactly 6
‘haracters: 2 for the day, 2 for the month and 2 for the year, as in 831178 for *3rd
November 1978". Similarly, the duration of a track is @/mesi fixed. I've allowed for 2
iecimal places, so that the time can be quoted as 3.16 minutes, for instance. That only
akes up four characters, however (including the decimal point), and I've allowed five.
This is just to guard against the possibility that a track is ten minutes (or more) long.

18 I've shown, the whole record occupies 336 characters using these assumptions. S0
f you've got 208 records in your collection, the file is going to occupy 67200 bytes, which
's a good deal more than the Spectrum has space in memory for at one time!

This is a typical feature of computer files; by and large we expect them to occupy more
:pace than there is available in main memory. That means they have to be held on some
sacking store, and for our purposes, that means cassette tape.

“ILES ON TAPE

What form should the file on ihe tape take?

Hefore answering that question, it will be helpful to think a little about how we’re
#0INg to use it when we've got it. One thing that’s going to be necessary fairly frequently
s 1o revise the file to include newly acquired records, and to delete discarded ones. This
s known as file maintenance.

Now, we can't acfually delete Some[hmg from a small segment of cassette tape. The
only way to do the job is to copy the entire file, except for the bit we want to delete, from
mne tape to another. The original tape is unaffected, but the new one no longer contains
‘he deleted record. Figure 9.1 indicates how this can be arranged, at least in principle.

Play Record

Old Updated
ile file

R A

ar Mic

Spectrum

Figure 9.1 Use of two cassette-recorders to handle taped files.

~ Sowe need two tape recorders, one in “play” mode (connected to the “ear” sockets),
he other in “record” mode (connected to the “mic” sockets).

¥hat are the programming considerations here? In outline, the code is:

. Read a record.

~. If it’s the terminating record then end.
. Ifit’s the one to be deleted then go to 1.
1. Write a record.

.. Gotol.

~ow. if the tape is left running, there’s no guarantee that by the time steps 2, 3 and 4 have
seen executed the next record hasn’t passed through, so obviously. every time a record is
‘ead, the tape will have to be stopped. Similarly, there’s no point in leaving the tape
yeing written to running when there’s nothing being written to it. Since it’s going to take
ess than 2 seconds to read or write a record. the starting and stopping of tapes is going to
g1 pretty tedious pretty quickly.

3LOCKS OF DATA

0 what we need is a compromise. We can’t hold the whole file in memory and we don’t
want to deal with it record by record, so why not split it into blocks of so many records
*ach. so that a block can be comfortably held in memory at one time? For a 16K
pectrum. about 9K 1s available to the user. If the program occupies 1K, we can afford
slocks of about 4K in size so that, at any given time, there is a 4K block which has been
ead in (to an input buffer) and whose contents are being transferred 1o an output buffer
or subseauent writing out to tape. So now our organization looks like Figure 9.2.

Play Record

‘ar Mic
"
| Input QOutput
Pl buffer buffer
-

| 4K 4K F
: Program
| IK

dewre 9.2 Arrangement of memeory for fife-handfing.

‘or the record coliection example, we’ll be able to get 12 records per block.
;0 far as the user is concemed. it’ll be convenient if he doesn’t have to think about the
wusekeeping aspects of this arrangement. In fact, it'll be simplest if it eppears as though

angie records are being read and written. We'll need two subroutines for this, “read a
ecord” (read) and “write a record™ (wrire). Most of the time, these routines won't
ictually be doing any reading or writing at all, but simply transferring data from the input
buffer or to the output buffer. However, when the input buffer is empty it'll be necessary
io read the next block, and conversely, when the output buffer is full, we’ll have to write
i block. We’ll call these routines gethlock and putblock.

“here are a couple of other considerations: first. we need two pointers, ip and op. to

:now how full each buffer is at any time. These will have to be set up to zero to start with,

-0 we il have a routine called irtefs (for “initialize cassette file system™) to do this. and
- any other initializations which turn out to be necessary. Second, we haven't thought
ibout how the file should be terminated. Obviously, there’s no guarantee that the file is
:xactly so many blocks long, so that we have to have some way of forcing the activation
it putblock when a file delimiter of some kind is recognized. We™ll adopt the convention
that field 1 of the terminating record is “cfsend” (on the grounds that it’s very unlikely
that these letters are going to mean anything within a file), and that the other fields of this
ecord are insignificant, so that, in practice, they may contain anything.

Ine more thing; we haven’t said exactly how the input and output buffers are to be set
1p. Clearly, they are both string arrays. We’ll allow the user the facility of deciding how
vig the buffers should be for a particular application. The simplest way of doing this is to
yrompt him for the number of records per block (nrb} and the number of bytes per
‘ecord {bpr). Then we dimension two arrays:

DIM i3 (nrb, bpr) [input buffer]
JIM o5 (nrb. bpr} [output buffer]
T'his can be done in inircfs.

vrmed with these ideas, we can start to look at the way read and wrire will work. In
witline they are as follows.

Read

. IFip = @OR ip > nrb THEN getblock
. IFi$ (ip) = “cfsend” TIIEN PRINT “ Attempt to read past end of file”: STOP
", Transter i$ (ip) tor$
. Incrementip
7. RETURN

“he action of the pointer ip needs a little explanation. To start with, initcfs will set it to
"e10, 50 oI course that means the buffer 1s empty. If a call to read occurs now, we'll have
o mvoke gethlock. Thisis catered for in line 1. getblock will have tosetipto 1, to indicate
vnere the first record to be read is. and this is then passed to r$ (line 3) for use by the
-alling program. Now we increment ip so that, on the next call to read, it's the second
ecord that is transferred to r$. This is fine until all the records of the block have been
ransterred, when ip will point beyond the end of the array (i.e. ip is greater than nrb).
"hat’s why there are two conditions under which gethlock s called in line 1.

Nrite

. Increment op
". Transfer 18 to o$ (op)

. IF oo = nrb OR 1§ = “cfsend” THEN putblock
i, RETURN

ine 1 increments the pointer op straight away. because initcfs sets it to zero., and
hat's before the beginning of the output array 0%. So. on the first call, what's in r$ will be
ransterred 1o 0% (1) which is what we want. We know the buffer is full if op = nrb but,
ils0. we want to force the execution of putblock if our end of file marker has been
»assed. That's why both conditions are tested for in line 3. Incidentally. purblock has to
‘esetop to zero, so that it gets reset to 1 at the beginning of the first call to wrize after a call
o putblock.

retblock and putblock are pretty straightforward too, but we need to overcome one
nore prodlem betore cutlinimg them: we haven’t thought about how to name the data
vnich are going to be saved. We could give each block the same name, but this could
casiiv get confusing and is asking for trouble. A better technique is to allow the user to
wrovide names for his files {within initcfs again) and then alter the name automatically
vithin puthlcock , so that every block has a different number. For instance, if the user calls
i Tile “fred”. the blocks will actually be saved as fred®, fredl, fred2, etc. Similarly.
reiblock will have to keep a record of the block count on input. Again, the blockcounts
viil be initialized in initcfs.

:0 the outlines are:

=etblock

PRINT “turn on PLAY recorder™

OAD input file + inblockcount DATA I8 ()
PRINT “turn off PLAY recorder™

FETip -1

ET imblockcount = inblockcount + 1
RETURN

puiblock

*RINT ““turn on RECORD recorder”™

(AVE output file + outblockcount DATA 0% ()

'RINT “turn off RECORD recorder™

LETop =0

ET outblockcount = outblockeount - 1

RETURN

Note that inblockcount and outblockcount are going to be slightly trickier to handle

han it appears. because part of the time they're used as strings to be added to the
1lenames. and part of the time they are numbers to be incremented. Also we've now got
wite a few strings lyving about which won't be easily identifiable because they can only

1ave single character names, so before we write the actual code here’s a list of string
lames and functions.

stringname Function

5 input buffer

3 output buffer

+ record which user apparently writes to or reads from
$ imput file name

a3 output file name

nd block number to be appended to input or output file name

"HE CODE

We'll start the cassette file system from 9500 onwards, allowing 104 for each routine, so
nitcfs is at 95K, read is at 9600 etc. So we'll need lines 1to 3:
LET initcfs = 9500: LET read = 96}
LET write = 970@: LET getblock = 930¢
LET putblock = 9500
in any program which uses cfs.
Let’s write initcfs:
58 LETip=¢:LETop=49
1510 LETinbc = @: LET outbc =6 [block counts]
1526 INPUT “input file name™; £$
1525 INPUT “output file name™”; g$
530 INPUT “no. of bvtes per record”; bpr
1540 INPUT “no. of records per block™; nrb
1550 DIM i$ (nrb, bpr): DIM o3 (nrb, bpr)
1560 RETURN

No problems so far. read should be pretty straightforward:

W} IFip = B OR ip = nrb THEN GO SUB getblock

(10 1F 1% (ip) (TQ 6) = “cfsend” THEN PRINT “attempt to read past end
i Bile™: STOP

9620 LET r$ = i$ (ip)

2630 LETip=ip+1

‘o4 RETURN

ind so should write:

78 LETop=op+1

1718 LET o3 (op)} =13

1720 IF op = nrb OR 1§ = “cfsend” THEN GO SUB putblock

Y130 RETURN
Thev're pretty well identical to the outline programs, aren’t they?

setblock and putblock require a little jiggery-pokery to handle the string-to-numeric

ONVersions:

'8 LET m3$ = STRS inbc

8190 PRINT “Turn on PLAY recorder”

1820 LOAD S + m$§ DATAS()

1830 PRINT “Turn off PLAY recorder”

840 LETip =1

185@ LET inbc = inbc + 1

86 RETURN

M LET m$ = STR$ outbe

K1 PRINT “Turmn on RECORD recorder”
W20 SAVE gb + m$ DATA 0% ()

03@ PRINT “Turn off RECORD recorder”
04 LETop=49

1950 LET outbe = outbe + 1

W6 RETURN

TESTING

Now what’s needed is a little program to test that it all works. We don’t want to have to
tev in huge piles of stuff, so we’ll set up small buffers and get the program to generate its
ywi lile. The simplest thing is just to generate a sequence of ascending numbers.

This should do:

@ GO SUB initcfs

B FORn=1T0O1M
9 LET$=5TR%n
d GO SUB write

@ NEXTn

W LET r$ = “cfsend”™
@ GO SUB write

P STOP

Run this. The first thing that happens is that initcfs asks you for an input filename. Of
course, there isn’t one because we haven't created a file vet—that’s what we're about to
ao. 8¢ just give it some arbitrary name, “null” for instance. Now vou're asked for the
output filename, which you might call ““test” or “fred” or whatever. Then, initcfs asks for
the number of bytes per record. In this case, it’s never more than 3 (when n = 10¢) but
eware! “cfsend” occupies 6 bytes, so all records must be at least 6 bytes long. (If you
ion’t like that, you can always use some special character. Watch it, though—control
‘haracters may have odd effects!) Finally, initcfs wants to know the number of records
per block. Choose 2@, for reasons which will become ¢lear in a minute.

Now the beast docs a bit of processing until it’s filled the output buffer, when, of
course, putblock will be called. So you see displayed on the screen the message:

“Turn on RECORD recorder™

since the next thing is a SAVE command, you then get the usual prompt to switch on the
recorder and then hit any key. So if you wished, you could dispense with line 9919. The
ynly disadvantage with this is that the standard Sinclair prompt does not point out that
'he tape must be in RECORD mode. Incidentally, when you're handling one input and
me output file you seem to require more than a natural number of hands. Things can be
naae slightly simpler by leaving the two recorders in PLAY and RECORD modes
espectively, and controlling their movements using the PAUSE button (provided yvou
have one. of course).

vieanwhile, back at the program, as soon as the block has been saved, you get a
srompt to turn off the recorder. In this case, because the buffer is very rapidly filled, you
iimost immediately get another “Turn on RECORD recorder” message, so it's hardly
vorth the bother. All that happens if you don’t turn off between block SAVEs is that you
ret slightly longer gaps on the tape between blocks.

ltogether, six blocks will be saved by the program, since exactly five are needed for
‘he numbers 1 to 1), which means that a sixth is required just to hold “cfsend™.

Now we need Lo check that the file has indeed been saved correctly. The simplest thing
o do is to change lines 20, 30 and 44 like this:

¥ GO SUB read
i PRINT S
g GOTO?Z2)

ind RUN again, with the tape in the PLAY recorder. What should happen is that after
nitcfs has asked for the file details (this time it’s the output file which is null, remember)
ihe svstem prompts for the PLAY recorder to be turned on, getblock then reads 2
1wumbers which it passes to read, which in turn passes them to r$ one at a time, after which
‘hev're printed, and a prompt is issued for the recarder to be turned off. And that’s what
10¢s happen, with a couple of additions. Firstly, of course, the Spectrum displays the
ilename of the file it’s reading, so we should see:

‘naracter array: fredd

1rst time round.

SCROLLING PROBLEMS

This is indeed what happens, but there is a small fly in the cintment: the scrolling
nechanism now gets in the way. The system prompts you with “scroll?”” and when you
‘espond affirmatively it immediately comes up with:

“Turn off PLAY recorder”

‘o if vou're slow to re-enable scrolling, you could find the tape haltway through the next
ock before the program has started to read it. (This problem is particularly obvious
vith a block size of 28, which is why I chose it.) This isn’t a total disaster because the
‘pectrum will only try to read the block it’s suppased to be reading next, so you can
ilways rewind a bit; but that is rather tedious. A better alternative is to disable paging
iitogether during calls to getblock.

Recall from Chapter 6 that there’s a system variable called SCR-CT at 23692 which can
e made to do this. It holds the number of lines (plus 1) that will be printed before the
iext “scroll?” prompt is issued. So we could set this to 255 (the largest possible)
whenever getblack is called by adding the line:

825 POKE 23692, 255

It must 2o ajfter the LOAD, because that resets SCR-CT to 1.

0 now every call to getblock allows 256 lines of output before a “scroll?” prompt will
appear. Whether this is adequate will depend on the application. In this case it's more
than enough, but it might be safer to include the statement in read as well as gethlock
since this routine is going to be called more often. Even then, the effect isn’t absolutely
ruarantced since it depends how much the user program is writing to the screen between
reads, but under normal circumstances there should be no problem.

;O FAR SO GOOD. ..

¥e should pause for breath here, and revicw what’s been going on. First note that initcfs
13s been used in two distinct ways:

. to create a file to be written to;
*. to open a file which already exists, to be subsequently read.

0 we could have written two separate routines instead of initcfs, called create and open,
and there is indeed something to be said for this approach, since as we've seen, if we
ion't happen to want an input and an output file we have to allocate dummies to keep

nitcfs happy. Secondly, the user is being asked to handle the termination of files himself.
In other words he has 1o know that the file delimiter is “'cfsend”’. We could have written
inother subroutine called close which would do the job automatically. so that lines 6@
ind 70 of our test program could be replaced by:

B GO SUB close

ind close would just be:

WET r$ = “cfsend”
(O SUB write
RETURN

VIICRODRIVE

Now, if vou look at the Spectrum keyboard, yvou'll find the keywords CLOSE it and
JYPEN . These are the equivalent commands to those I've been discussing for files held
i the microdrives. (There’s no CREATE #, so OPEN 3t must do both jobs, just as
nitcfs does.) The equivalents for read and write are INPUT $t and PRINT#. Everything
is¢ (i.e. the organization of file blocks and so on) is handled by the Spectrum operating
:ystern and so the file structure on the microdrives is just as transparent to the user as cfs
s. Actually, the microdrive handling routines have to do a lot more than read. write,
setblock, putblock and initcfs do, but the principles are similar.

WWUTOMATIC CONTROL

"here’s a auestion which has probably been niggling vou for some time: “Could we get
the Spectrum to control the cassetie motors automatically?".

The answer is “ves™, and it isn’t very difficult. You need recorders which have remote
;tart jacks {most do). You also need a parallel 1/0 port and a couple of 5 volt low current
-elays. The relay contacts are used to complete the remote motor start circuits and their
:o1is are driven from anv convenient two bits of the port. Then, instead of printing
nessages, we simply POKE the port with a bit pattern (using BIN) which turns the
ippropriate line on or off. Appendix B gives hardware details. Unfortunately SAVE still
iutomatically sends its prompt 10 switch on the recorder and waits for a key to be hit. So
otal automation is still tantalizingly just over the horizon.

ISING FILES

Now. you may recall that the impetus for all this effort was the idea of writing a program
0 handle our record collection details, and that seems to have got lost in the welter of
1etails about utility subroutines for handling the file system. But, of course, now that
ve've got them, it’s going to make the main program a lot easier to write.

'here are three basic functions of any file system:

. Create the file from scratch.
*. Maintain it by doing necessary additions and deletions.
i. Search the file for some desired entry.

‘or simplicity we’ll write these as separate programs, although it would be a simple
natter to link them together via a menu (see our book Machine Code and Better Busic).

The create routine starts pretty straightforwardly. There’ll be a call to initefs in which
the input file will be set to “nuil”, the output file to “reccol” (say), the number of bytes
ser record to 336, and the number of records per block to something like 5 to allow a
‘omiortable space for the program.

Now we hit the only serious problem in this routine: it is to set up each record in a
convenient way for the user. For instance. we know that the “artist™ field is 3@ bytes long,
but we don’t want the user to have to kev in “ABBA™ followed by 26 spaces. So we’'ll

1ave a subroutine called irrrec which handles the input of a single record in a user-friendly
‘a?'ile creaie program then looks like this:
@ GO SUB initefs
18 GO SUB inrec
20 GO SUB write
30 INPUT “Anv more? (v/n)’: q$
140 IF q$="y"THEN GO TO 110
5 GO SUB close [assuming you've implemented close]
60 STOP
Now we can worry about inrec. Let's set up a string array, a$, which is to hold the record
18 11 builds up. So if inrec is at SOGR:
M DIM a$ (336)
Now prompt the user for the first required piece of data, and put it in the right place:
WP INPUT “Artist™: a$ (TO 30)
“hen
020 INPUT “Date of purchase™; a$ (31 TO 36)

sfter that we want to handle 12 tracks in the same way:

30 FORt=1TO 12
IMP PRINT “track”;t

Now we want to write something like:
060 INPUT “title™; a$ (begin TO end)

having worked out what ““begin’ and “end™ are in line 8350.

Yoviously “begin” and “end” change depending on what track we're on at the
moment. Let's write down a short table of their values to give us an idea about the
elationships involved.

[Track (t) Begin End
! 37 56
‘ 2 62 81
3 R7 106

0 begin =37 + 25 {1— 1)
indend =56 +25+*(t—1)

o

30:

050 LETbegin=37+25+(t—1): T.ETend =56 + 25+ (t — 1)
The track length goes fromend + 1 toend + 5:

3870 INPUT “length”; a$ (end + 1 TO end + 5)

wnd then:
W8 NEXTHt
’ass the result to r$:
W0 LETr§ = a$
ang that's it:
7100 RETURN

MAINTENANCE

What about the maintenance program? Again, it will start with a call to initcfs, and, for
‘he first time, we want to define both input and output files. The input file is “reccol”,
ina we need to identify the output file as being an update on this; for instance, “reccola™
¥ouid do. Subseauent updates might be called *‘reccolb”, “reccolc™ and so on, in the
nanner of car registrations. Or, you might prefer to provide date information, and call
the file, say, rc982, for “record collection as at September "82”. In any event, you need
;ome tormal system. Otherwise it's too easy to pick up the wrong file and modify the
vrong miormation.

Ve’ll keep life pretty simple to start with, and allow the user to make just one addition
r one aeletion from the file on one run of the program.

0 we have:

® GO SUB initcfs

18 INPUT “add or delete (a/d)?”; g$

20 [F g% = “a” THEN GO SUB add: STOP

308 IF g$ =*d” THEN GO SUB delete: STOP

40 PRINT “Entera ord”

50 GOTO 113

DELETE

Now for the delete routine (because it’s easiest). Suppose it’s to run from 6000 onwards.
We need to dimension a string array to hold the artist name and date of purchase to
dentify the record uniquely. Of course, this assumes you haven’t bought two LPs by the
:ame artist on the same day. This kind of ambiguity often causes problems in file design,
ind the usual way out is to add an extra field called a key, at the beginning of each record,
which contains a number used only for this one record. A bank account number is an
:xampie of this. Anyway, assuming that we're OK. we’ll need:

D00 DIM a8 (336)
W10 INPUT “Artist™; a$ (TO 3@)
2@ INPUT “date purchased”; a$ (31 TO 36)
vhich sets up the required string in just the same way as the inrec routine we wrote just

now. Fine: now all we have to do is to pull records in from the input file, see if they match
‘he one we want to delete and, if not, shovel them out to the output file:

WP GO SUB read
W40 IF r$ (TO 36) = a$ THEN GO TO 6030
W30 GO SUB write

o GO TO 6030

;imple enough? Unfortunately it's too simple by half. Let’s think about what happens
tose to the end of the file.

ec 179
rec 180 rec 179
‘1send rec 180

R =E
‘nout output
wffer buffer

We'll suppose we've just read record 180, found that it's not a candidate for deletion,

ind so it’s been transferted to the output buffer with the write routine. Now read is called
again and “‘cfsend” is found. read says that’s beyond the end of the file, and it halts with
in e1Tor message. Now you may say ‘“That’s no real problem, because we've finished at
nat stage anyway™. But we haven't quite, because the output buffer still has records 179
ind 18@in it which haven’t been output, and there’s no end-of-file marker on the output
ile, so mysterious things are guaranteed to happen if we try to read our newly created
ile. Incidentally, when this kind of thing occurs, the output buffer is said not to have
ween flushed, a picturesque piece of jargon.

I'here are a number of ways out of this hole that we—all right I—have just fallen into.
Ferhaps the simplest is to have two end-of-file markers, one for the benefit of cfs (cfsend)
ind one for the user’s benefit. Let’s use “}}7.

0 we need to rewrite the close routine to generate both end-of-file markers:

740 LETr$="“}}"

17580 GO SUB write
Y160 LET $ = “cfsend”
YI7g¢ GO SUB write
780 RETURN

i Of course, we have to identify cfose for BASIC’s benefit; we could edit line 3:
LET putblock = 9990: LET close = 9744)

MNow we can modify the delete routine to test for the user’s end-of-file marker, and close
the output file when it’s found:

o0 DIM a$ (336)
o@190 INPUT “Artist”; a$ (1 TO 3)
o2 INPUT ““date purchased™; a$ (31 TO 36)

3¢ GO SUB read

W40 IF r$ (TO 2) = “}}" THEN GO SUB close: RETURN
W50 IF r$ (TO 36) = a$ THEN GO TO 6930

P60 GO SUB write

W7 GO TO 6830

Notice that, in lines 6348 and 6053, only the first 2 and first 36 bytes of r$ respectively are
1sed for the comparisons. This is important, and easy to forget if you're not careful. The
»oint is that r§ is 336 bytes long and, even if it's empty, “}}” isn’t the same thing as “}} +
134 spaces™ as far as BASIC is concerned.

WDD

Now for the addition routine. We haven’t said anything yet about the order in which the
ecords are stored on the tape. Let’s assume for the minute that they arc alphabetical by
irtist name. but where there is more than one record by the same artist, the order is
andefined. So our problem can be stated broadly like this:

. Input addition.
. Read a record.
.. Ifit's end of Ale then close file: RETURN.
i. If artist name (record) is before artist name (addition) then write record: go to 2.
. Write addition.
1. Wnte record.
" Goto?2,

In other words we do exactly what we would do with a card index: make out a new card,
10 through the file until we find the right alphabetical niche, pop it in. The only
tifference is that, in the computer case, we're physically moving records from one place
o another {input to output) every time we read them. It’s as if we had two card index
ravs, and the rules were that, as soon as we've read one in the “input™ tray it has to be
ransferred to the “output” tray.
There 1s, however, a subtle bug in our algorithm. Suppaose that the last record in our
oilection is by Surzi Quatro, and we wish to add a Yardbirds album. The procedure
vorks through the file, transferring records as it goes, finally dealing with the Suzi
yuatro LP. Then it sees an end of file marker, so it closes the file, leaving the addition
ietails still in memory! So we need to modify step 3:

I, Ifit's end of file then check: close file: end.

cneck will be a routine which checks to see if the additional record has been written out
vet, and, if it hasn’t, check will write it.

et's write the add routine from 5008 on. First we have to input the additional record.
Jut we've already got a routine which accepts a full set of record details: inrec. So call
that. No point in reinventing the wheel . . .

000 GO SUB inrec: LET transfer = @
@10 GO SUB read

SO IFr$(TO 2) = “}}” THEN GO SUB check: GO SUB close: RETURN
S5@3@ IF r$ {TO 30) < a$ (TO 30) THEN GO SUB write: GO TO 501¢

1 couple of things need some explanation before we get too far. First, the “LET transfer

4" 1n line 5M0@. check is going to need some way of knowing whether or not the
iaditional record has been transferred to the output file. As soon as the addition has
yeen accepnted, we set “transfer’ to zero. When the addition is transferred to the output
ile. we'll set transfer to 1. So check only has to test “transfer’ tosee if it's zero. If it is, the
wddition has vet to be output.

second. line S@30@ compares two strings; r$, which has just been returned by read, and
i3 which was set up by inrec. (r$ was also set by inrec, but this was immediately
werwritten by read.) The use of the *less then' symbol, here, has the meaning “alpha-
retically precedes”, so dealing with strings in alphabetical order presents no problem.
I'o continue:

40 LEThE =18 [save last record read]

050 LET r$ = a$ [transfer addition to rf for writing . . .
060 GO SUB write and write it]

@7 LET transfer =1 [signal that it’s been written]

B80 LET S =b% |put last record read back inr§ . . .
90 GO SUB write and writesit]

1 GO TO 5010

Now, finally, to write check (from 5208 on):

200 IF transfer = 1 THEN RETURN [no action necessary because addition

1as been output]

2180 LETr$ = a$ [transfer addition to t$
220 GO SUB write and write it]
239 RETURN

.. . aial iy Eevgie Actually, we advertised for

someone with exoerience in
dealing with files

Mroject

\ll the foregoing assumes that only one alteration to the file is to be made. If you go out
n a mad record-buying spree and get 15 new records, and then donate 4 of your old ones
o Oxfam, you'll have to run the file maintenance program 19 times to get the file up to
late!
7Ty to write a maintenance program which will accept all alterations at the beginning.
“ou’ll have to read all the additions into an array and all the deletions into another. Then
ou’ll have to compare each record read in with each of the entries in the two arrays to
iecide whether to delete or copy the record, or make an insertion. Note that each
:ddition will need its own transfer flag (i.e. there'll have to be a transfer array rather than
i singie variable). Note also that the order in which the additions are entered is
inimportant, because the program will search for any addition in the array which should
be inserted. Don’t forget to allow for the fact that more than one insertion may be
1ecessary between two existing records. It's an interesting thought that if you create the
ile with just a couple of records, and then use this maintenance program to add the rest,
he file will automatically be generated in alphabetical order!

SEARCHING THE FILE

iaving spent a considerable time creating this file, we ought to find some use for it.
‘uppose that we want to make up a tape of background music for a party. We want a
-ange of tracks all about 3 minutes long. So what we would like is a list of tracks which last
setween 2.7 and 3.3 minutes, for instance.

S0 we want a program which does this:

nt artist, date of purchase
for all
‘ecords

i duration in range 2.7 to 3.3 then print track title
or all
racks

"his is pretty simple;

% GO SUB initcfs
18 GO SUB read
20 IFr$(TO?2)="*}}”" THEN STOP
30 PRINT r$(TO 30)
40 PRINT r$ (31 TO 36)
5 FORt=1TO12
60 LETbegin =57+ (t— 1)=25
70 LETd = VAL1S$ (begin TO begin + 4)
B3 IFd<2.70Rd=>33THEN GO TO 2
9% PRINT r$ (begin —200 TO begin — 1)
Wy NEXTt
16 GOTO 11¢
Votice that, since we’re only reading a file, there’s no need to do a ¢lose operation when
‘he end of it is detected at line 120.
“he only tricky bit here is evaluating the duration of each track as a number. First we
1ave to find the relevant portion of r$ (line 166). Then it’s necessary to create a numeric
‘alue from this string (line 17¢) so that comparisons between numbers can be done in line

80. Of course. the 2.7 and 3.3 could just as casily be variables entered at the beginning
i the program. That would allow other questions to be asked, like:

‘T ist all tracks at least 4.5 minutes long” (by making the low boundary 4.5 and the
iigh one something unreasonably large: 9999, for instance)

r;

‘* ist all tracks exactly 3 minutes long™ (by making both boundaries 3)

“roject

dentifying other specific features of the file is just as easy. Try the following:

. List all tracks by a given artist.
', Asfor(1). but purchased between two given dates. (This is slightly more difficult than
1 looks. because of the date comparisons.)
I. List all tracks whose titles include the word “rock”. or any other word entered in an
NPUT statement.

"ARTABLE LENGTH RECORDS

I said to begin with that [was going to assume that all records had 12 tracks, that each
track title occupied exactly 20 bytes, and so on. What I've created is a file of records all of
which are guaranteed to be 336 bytes long. | doubt if it will surpnse you to learn that such
i file is said to have fixed length records. Further, each record contains fields of fixed
ength, so that, for instance, each track title has to be padded with spaces (or abbre-
nated) to 20 bytes. Now, in an ideal world, it would be nice to allow variable length fields
terminating each with a field delimiter of some kind) and variable length records (also
terminated with some other delimiter). Then we would not waste 27 bytes with every
““es” album. and there would not be 8 null wacks for everv classical symphony
assuming we treat each movement as a track).

However, what you gain on the swings you lose on the roundabouts. First, the
srograms Tor extracting fields from a record become more complicated. We have to
iearch, byvte by byte. looking for field delimiters, and we can no longer talk about “the
ifth field” —there may not be one. Second, the utility routines for reading and writing,
ind handling file blocks becomne rather hairy. After all, in our fixed system it was easy to
iefine a block as (effectively) a two-dimensional array, which was number of bytes per
ecora X number of records per block. If the number of bytes per record changes, we can
10 longer think in that comfortable way. On the other hand, if we keep the buffers a
ixed size then the number of records per block changes, depending on the record sizes!

don’t want to give the impression that handling variable [ength records is beyond the
vit of man; only that it may not be as sensible as it appears at first sight. The point is that
18 we mcrease the complexity of the utility programs, we also increase their size, which
«orrespondingly decreases the quantity of main memory lefl for the user program and
he file buffers. Also, unless a lot of space is being wasted in the fixed length format, the
ntroduction of extra delimiters mav use up most of the file space being saved. (Often,
careful choice of field lengths in a fixed length system provides a perfectly adequate
answer. We should also think carefully about the file contents. Do we really want
s1assical and pop records on the same file? Wouldn’t it be better Lo have two files, so that
:ach can be deflined in a sensible way, without having to cater for the features of the
sther? '

S0 much for your
file- handling

n any event, we should never forget that we are trading cassette backing store, which
s cneap, against RAM, which isn’t. In fact, 5 Kilobytes (KB) of data will cost you around
‘0 on cassette tape. (It’s easy to calculate—just remember that. at a transfer rate of
iround 200 byies/second it will take 25 seconds to save 5 KB, and then work out 25 = (60
¢ 60) of whatever you paid for your last C60. You'll probably find my figure is
sessimistic.) 5 KB in main memory is, even today, as memory prices fall like lead
salloens. still going to cost you around £10. No contest, I think,

f the above treatise sounds like the plausible ramblings of somebody who doesn’t
vant to have to think too hard unless he’s actually forced into it, then you've caught my
nood exactly. Computers are supposed to make life easier, not more difficult.

» modest proposal

“here’s onc niggling feature of cfs as it stands: inircfs asks the user for details of the
‘ecord and block sizes. even for files which already exist.

Aodify cfs so that a “header” block is written first to any output file. containing the
ecord and block size details. Then, if an input file name is specified to initcfs, this
‘outine no ionger asks for the buffer size details but reads them from the header block of
he input file.

For aless modest proposal see Chapter 17.)

“here are lies, damned lies, and
computer print-outs.

10 Statislics made Simple

MNational Wealth Servers Ltd. (NWS) employed 24 staff at £50 per week. The Managing
Director got £144,00) per year. When the Regional Organization of Wealth Serving
Employees (ROWSE) went on strike for more pay, the management took out a full-page
id in the Gardener pointing out to the public that the average wage was £128 per week.
The Managing Director was quoted as saying “These layabouts should get back to work
atonce and stop whining: £128 is a perfectly fair weekly wage.”

Statistics can be used, and misused. Averages can be a fair measure of the “norm”, the
“+ypical value”—sometimes. They can also be distorted by the odd exception that is
viidly out of line, as here. The calculation is correct:

2'otal weekly wage
Number employed

4 x50 + 2000
25

4% 2+ 80 =128

jut the interpretarion—""Most workers get about £1287—is not.
Vhich goes to show that an understanding of basic statistics is well worth having. In
this case ROWSE published its own ad, pointing out that a more appropriate statistic is
he mode. the commonest wage, here £59. Recognizing the impeccable logic of this
irgument, NWS sacked its Managing Director, handing ever control to a committee of
‘mpioyees, and upped their wages to £128 per week, leaving a saving of £4)56 per
innum—which, over the next ten vears, almost defrayed the cost ol the original
wdvertising campaign.
Of course. it doesn’t always happen that way . . .

Averagc =

PRESENTATION OF DATA: HISTOGRAMS

This isn't the place to teach you statistical theory. What I'm going to do is wnite out some
yrograms that let you explore statistical ideas without having to go into their inner
workings. That way you can get some feel for what they mean in practice. And an
important part of statistics involves the way that data are presented.

The Spectrum being a visual beast, I'll concentrate on two standard types of graphic
tisplay: the histogram and the pie chari.

i histogram displays how often a given “event” has occurred. For example, suppose |
hrow a die twenty-eight times, with the results:

1 is thrown 3 times
" 15 thrown 6 times
T is thrown 5 times
' is thrown 5 times
: is thrown 4 times
yis thrown 5 times

"hen a histogram display will have six vertical bars, labelled 1-6, of the corresponding
1eights. So bar 1 has height 3, bar 2 has height 6, and so on: See Figure 10.1.

/

j° =

it 7

thrown 3 j///// %//// %
Yy 7

i i

1 2 2 4

N

Value

Jeure 0.1 Histogram showing number of timtes a given value occurred when throwing a die.

The average, or mean value of the throw is given by

X3 4+2XB+3X54+4X5+5%x4+6X%X5
8

3.57

Motice how each score is multiplied by the size of the bar above it. Now a fair die, in the
long run, should give roughly equal numbers of occurrences for each of the values 1-6,
vith a mean value

1+2434+4+546
5

(%)
Ln

o this particular statistic agrees pretty well with theory. Note, however, that the
commonest value in the experiment—the mode—is the number 2, which occurs 6 times.
The mode tells you where the highest point of the histogram is. The mean tells you
whereabouts to draw a vertical line so that the total area would balance there. These
need not be the same: and the mean only gives an idea of the “typical” value if the
numpers aren’t too spread out. Here they are very spread out.
‘Il talk about how to measure the degree of spreadoutness later on: for the moment all
reallv want is the idea of a histogram. To get you used to that, here’s a program that
lisplays a histogram for throws of a die, which you input as you throw. It also says what
he mean value thrown is at any stage.

@ LET init = 50@
@ LET valin = 1000
@ LET hist = 1504
44 LET mean = 2000
LETwtot = @: LET num = @
@ DIMd (6)

9

% GO SUB init
18 GO SUB valin
20 GO SUB hist
3¢ GO SUB mean
49 GO TO 210
%) REMinit
18 PLOT 103, 175: DRAW @, —160: DRAW 48, @
120 PRINT AT 21. 13; <123456™
38 FORi=1TOG6
A0 PLOT99 +8+i,15: DRAWD, -5
50 NEXTi
6 FORi=0TO20
7@ PLOT 103,15+ 8+ i: DRAW -5 -5+ (i= l#ORi=20).0
83 NEXTi
%9 PRINTAT®@,9:“20"; AT 18, 9; “1¢"
) RETURN
103} REM valin
01¢ IFINKEYS$ < > " THEN GO TO 1010
20 IFINKEY$ =" THEN GO TO 1820
030 LETc = CODE INKEYS — 48
340 IFc<@ORc>6THEN GO TO valin
050 IFc=0THEN STOP
060 LETd(c)=d(c)+ 1
070 RETURN
500 REM hist
1510 IF d({c) =21 THEN INPUT “No room for display™; x$: STOP
520 PRINTAT20 - dic).c + 12; PAPER ¢; “00”
1530 RETURN
00 REM mean
319 LET num = num + 1: LET wtot = wiot + ¢
020 LETa= .01« INT (18 * wtot/num)
2039 PRINT AT 2,22; “Mean ="
7840 PRINT AT4.23;a;0O0001"
7850 RETURN

“ype this in and RUN. Take a die, and throw it: hit the corresponding key. (That is, if
you throw a “4”, hit key 4, and so on. No need to press ENTER.) A coloured histogram
rulds up: for each number 1-6 it shows how many times that number has been thrown.
'he mean is orinted out oo, as you go. If any number gets thrown more than 20 times the
program hnalts with a message (actually you have to hit a key to get the halt). To
erminate before that, hit key @.

“ou’ll easilv see how this works. The main program is in lines 200—24: init sets up the
ixes and scales: valin reads the key: fist plots the chart: mean works out the mean and
JCIs it.

"he INT business in line 2020 is just a way to ensure that only two decimal places (or
ewer) are printed. It's a useful trick. (For 3 decimal places, use LET a = .91 = INT

1000 * wtot/num) and so on, with an extra zero in both slots for each extra decimal place
‘equired.)

'RESENTATION OF DATA: PIE CHARTS

Aptly named. these show how the cake is divided between different recipients . . . well,
airly aptly named. A circle is sliced into pieces, with bigger sharcs represented by a
ngger slice. You know the kind of thing.

"he next program is an automatic pie-chart slicer. Tt accepts as input a series of named
tcms (of cxpenditure, say) and produces a pic chart. It works best with 10 items or fewer,
ina preferably no item should amount to less than 3% of the total. It works even if these
riteria are not met. but pie charts themselves aren’t very useful if they have too many
pices. or slices so thin you can’t see them.

‘™ REM data in

‘18 INPUT “Number of items?""; n

20 DIMi$(n, 9): DIM v (n)

3¢ DIMain+1)
FORi=I[TOn
INPUT “Name of item?""; 1% {1)
INPLUIT “Value of item?"; v (i)
PRINT AT 5;i8 (i), v(3); *OO O
INPLUI'T “Is this correct”? v/n™"; q$
IF g% = “a” THEN GO TO 25¢
LPRINT i$ (1), v (i): REM only type this line if you have a printer
NEXTi
20 LETtot=4#
3 FORi=1TOn
40 LET tot = tot + v (i)
58 NEXTi
‘@ REM piechart
10 CLS: CIRCLE 84, 84,75
20 LETang=9
3 FORi=1TOn
40 LETang =ang + v(i)«2+PI/tot
50 LETaf(i+1)=ang
680 PLOT 84,84
70 DRAW 75 = COS ang, 75 * SIN ang
W@ REM label
10 LETu= S=+{a{i}+a(i+1))

SE88d2Ls

280 PRINTAT 11 -7+SINu, 10 + 7+ COSu;i

30 NEXTi

708 REM table

1 FORi=1TOn

20 PRINT AT 1, 21:1; %218 (1)

30 NEXTi

40 COPY: REM if vou have a printer

ines 303 and 74 should be left out unless you have a printer and actually want a

-ecord of the results. Lines 280 and 299 provide a way of correcting mistakes if you catch
them straight away: if this feature annoys you, delete them. (Incidentally, you don’t
need to hit “y™ for yes: any key except “n”" will work. ENTER is the obvious one.)

‘or example, key in the following figures, which give the Gross National Product (per
head) of the EEC countries in 1978.

| Number of items: 9

Name of item Value of item y/n

Belgium 129 n ta correct
| Denmark 144 HE
| France 116 2
| Germany 137 i
| Holland 123 i
| Ireland 5@ it
| Ttaly 6 2%

Luxembourg 126 &
UK 73 e
ol N i

Figure 10.2 shows the resulting pie chart. Experiment using other sets of figurcs, real or
imaginary.

i:Belgium
2.:Denmark
w:France
a-Germany
s:HOoOLLand
5: Xretand
Z: Xtaky @
irluxemb’g
"i'-u:mg

‘dgure 10.2 How the EEC pie is divided . . .

VIEANS, MODES AND ALL THAT

I've already explained means and modes. (There’s another creature called a median, but
let’s not get confusing.) The mean is an “average’ value, the mode a (there may be more
than one) “commonest” value.

also mentioned that the mean is reasonablv “typical” provided the data aren’t too
:oread out. To measure the spread, statisticians use a gadget called the standard
teviation. It's the root mean sguare deviation from the mean, if you must know.

“hev also have a favourite curve, called a normal curve, used to approximate histo-
grams: 1t is chosen to have the same mean and standard deviation, and it’s shaped like a
camei’s hump.

Rather than present you with a mass of mathematics (you can always look the stuff up
'n a statistics text—any will do) I've written a program which lets you produce your own
histogram, and then tells you the mean, the (smallest mode, the standard deviation, and
siots out the normal curve approximation as a bonus.

f vou (or your child) are studying statistics at school, this program will help you (her,
him} get a good feel for what these things represent.

LET init = 500
LET draw = 1064}
LET stats = 2(0¢
LET normal = 3%
I3EM a (24)
LET step =3
(O SUB init
GO SUB draw
GO SUB stats
GO SUB normal
STOP
) REM init
10 CLS
20 PLOT 15, 165
30 DRAW®, —150
40 DRAW 240, 0
50 FORt=1TO24
60 PLOT 15+ 10+t,15: DRAW®, -3 -3+ (t= 10OR1=20)
7@ NEXTt
80 FORt=1TO15
99 PLOT 15,15+ 1@+ t: DRAW —3 -3+« (t=19),0
W) NEXTt
)10 PRINT OVER 1; AT 21, @; “[13 spaces] 19 [11 spaces] 20
120 PRINT AT7,0;“1”
330 PRINT ATR, 9; 0"
W) RETURN
1000 REM draw
@S LETh=15

S L 2B E1ss¢eg <=

019

55

185
110
129

10
029

@35
Q4P

979

FORi=1TO24

IFINKEYS < >“ " THEN GO TO 1020

IF INKEYS$ = “ " THEN GO TO 1¢3@

LETk$ = INKEYS

LETh=h+ 1@« (CODE k$ — 53)
IFh<1STHENLETh =15

IFh > 165 THEN LET h = 165
LETa(i)=(h—15)/10

PLOT15+ 1¢+i— 10, 15: DRAW®, h — 15:
JRAW 18, 3: DRAW @, 15 —h

NEXTi

RETURN

REM stats

LETtot =@: LETnorm =@: LETm = @: LETmv =@
FORi=1TO 24
IFa(i}>mvTHENLETmv=a(i: LETm =i
LET tot = tot +i*a (i)

LET norm = norm + & (i)

NEXT i

LET av = tot/norm

PRINT AT#, 3;: “Mean = (0 av

PRINT AT 1, 3;“Mode = O0"; m

LET std = ¢

FORi=1TO24

LET std =std + a(i) + (i —av) * (i — av)

NEXT i

LET std = SOR (std/norm)

LET-std = .01 « INT (100 * std)

PRINT AT 2, 3; *Standard deviation = O, std
RETURN

REM normal

FOR i = @TO 248 STEP step
LETy=EXP(—(5+i1/1@—av)*(5+1/10—av)/(2*std * std))
/(std « SOR (2 +« PI))

LETy=y+*tot

IF y > = IS8 THEN GO TO 3060
IFi=@THENPLOTIi + 15,y + 15

IFi > @ THEN DRAW step, v + 15 — PEEK 23678
NEXT i

RETURN

JSING THE PROGRAM

The program is designed to make it very easy to set up trial histograms; and in
onsequence the way these are entered is fiendishly unorthodox and infuriating until you
ret used to it. It goes like this. The bars at positions 1-24 are entered in turn. Initially the
ireight is @ (and is always between @ and 16). The next bar-height is 5 — k larger if the
number key k in the top row is hit. That is, the number-keys control the change in height
’f the bar from one column to the next, like this:

sev Effect on height of bar

4 smaller
3 smaller
4 2 smaller
1 1 smaller
same
y 1 higher
2 higher
3 3 higher
4 higher

‘or instance, RUN and then hit {no need for ENTER) the keys
3 6667 85 2 344435 535535355 3555
o pet the result of Figure 10.3,

Pt

i
LY

1ih
i

WLl W
1
i

& L
i
[
.
L.
T
ot
i
2
[
]
|
i

i —
4
- r
4
B -
- i ﬂF E
g '.‘
. 3‘9
i'—*—'F

19 20

‘igure 10.3 Normal curve approximating a histogram fairly well . |

Invent vour own histograms, and check that:

The mean is a reasonable “‘average™ value. If you cut the histogram from sheet metal
it would balance at the mean.

The mode is the first “peak’ value. {The other places at this height are modes too,
but the program doesn’t notice other peaks. It would be easy to change this.)

Histograms that are more “spread out™, like
56 66 7 8 5555 5234 445555 5535
inputs) have larger standard deviation; histograms that are “bunched’” like
$ 5 55 599% 11T% 5553 553555335
have smaller standard deviation.
The normal curve is a reasonable approximation to histograms that have a single
neak, are not too spread out, and are roughly symmetric . . .

jut it can be quite bad for other histograms: for example when there are two humps
ike

s 57779 114 455 588 333 535509
¥nich gives the result of Figure 10.4.

T
13
i
im
iL)

.
a
i

&

O

deure 10.4 ... and very badly.
"roject
“hange lines 13451060 so that you input the heights of bars directly. {This is easy to do:

the only reason I didn’t use it above is that the program as it stands produces histograms

rery quickly and without much thought, once you get used to it, so it's ideal for
*Xpernmentation.)

lixperiment

Throw 4 dice, and note the total. Do this 180 times. Enter the resulting histogram into

‘he program above (via the Project) and see what the results are. Is the normal curve a
good fit, or not?

Simulation

Jse the Spectrum’s random numbers to simulate throwing 4 dice: repeat the analysis.

\ little attention to detail can work
vondaers—such as translating from
‘pectrumese into algebra . . .

1 Improving the Display

vlany programs can be made much more attractive by setting up user-defined characters
0 get a more accurate representation of the desired effect. Here I'll consider one project
ilong these lines, which takes polynorgials in several variables x. y and z, in the form that
he Spectrum uses, and makes them look like ordinary algebra. (If you don’t like
slgebra, bear with me: the computing is the main thing.)
Jrdinary algebra writes polynomials like this:

-+ bx+c

X'+ 5y

¥ <k b+ o' —3abe

jut the Spectrum uses “*” for multiplication, instead of just writing the symbols next to
-acn other; and it uses **1”" rather than raising symbols off the line, like this:

1*xT2+bsx+c
CaxT3+5+917
1i13+b1t3+ct3—3+a+bs*c
“he first step is to develop user-defined characters for the raised exponents 1,2, .. ., 9,

@. Figure 11.1 shows a possible layout. Enter these as graphics characters “a”-*{” in the
usual way (Easy Programming, p. 49).

= :
.and it has 256k WOM ? What on earth can you Produce manifestos
of WOM : do with write- only for the Conservative
write- only memory ! Party ?

e
Zx-64

memory

e

m

(a) (b) (c) (d)

|

Ll

]
0 |

) (f) (g) (h)

igure 111 Graphics data for exponent characters.

Next. type in the following program. It accepts an expression in Spectrumese, and
-uns through it performing three tasks:

. Strip out all *'s.
’. Turn all numbers after T into user-defined graphic exponents.
:. Strip out the 1's once (2) has been done.
LET pow = 200
LET prod = 680
LET print = 1000
INPUT “Expression to be tidied?””; e%
LET/=LENe$
LETf$ =""
LETi=1
IF e$ (i} = “1" THEN GO TO pow
IF e$ (i) = *“+” THEN GO TO prod
LETf$ = f$ + e$ (i)
LETi=i+1
IF i > { THEN GO TO print
GO TO 50

M

s & 2 & & & =

2 g

280 REM powers

210 LETj=i+1

12 IF i = { THEN GO TO print

15 LETc=CODE¢e$(j)

20 IF ¢ < 48 OR ¢ = 57T THEN GO TO 50¢
30 LETf$ =18+ CHRS(c+95+ 10+ (c=48))
40 TETj=j+1

45 IFj=!ITHENGOTO p:int

250 GOTO?212

500 LETi=j

10 GOTO S

W) REM products

1@ LETi=i+1

20 GO TOS)

¢ REM print result

9190 PRINT “Old: [0"; 8’ " “New: O7; f§

TESTING AND SAVING

'ty the expressions listed above, Spectrum version, as the inputs €$; check that the right
resuits appear. Now try some other expressions like:

rexey*z—17+at552
m[77+n788
a*hbrcrdrexfrg+45+h 199 + 32

ind so forth.

The program won’t cope with everything: see what it does to 2 » 2, for example! But it
tlustrates the idea.

"o SAVE this in useful form, we must do a little more work, because user-defined
rraphics don’t save automatically. First we must work cut where they are.

n the 16K Spectrum, they start at address 3260@. But you may have changed this (via

he system variable UDG. which lives in addresscs 23675-6). So you may prefer to work
‘he address out as

'‘EEK 23675 + 256 » PEEK 23676

Iowever. there’s an easier way, because the graphics character “’a” has to start the
IDG-area. So

USR *a”

viil work. (PRINT these, and see.)
Wind your tape to the place you want to start, and add a further line in preparation for
what comes next, namely

LOAD “exp” CODE USR *“a”, 80
Now save the entire program, using
SAVE “algebra” LINE 1

or an automatic start on line 1.
"ou haven't finished vet: now use byte storage to save the graphics:

SAVE “exp” CODE USR “a”, 80

This takes the 80 bytes starting at USR “a”, the user-defined graphics area, and saves
hem on tape. The 8 is there because each character takes 8 bytes, and we have 10
:haracters. so the total is 8 * 1{ = 8@. Note that the added line 1 reverses this procedure to
LLOAD these bytes back in again.

f vou've got both safely on tape, rewind to the starting position. and type

OAD “algebra™

“ou’ll get the usual buzzes and beeps and red/blue/yellow stripes and so forth, and a
nessage

*rogram: algebra

eave the tape running. “Algebra” will automatically start at line 1; and this auto-
naticaily loads the user-defined graphics back in. There will be more buzzes and beeps
ind stripes, and the message

Bytes: exp

irter which “algebra™ will go on to its next line, and continue to run as usual. Stop the
ape, and away you go. o
This is an example of chaining taped programs together, making use of the fact that
L.OAD commands can be written into a program. For another example. see Chapter 15:
Changing the Character Set.

’rojects

Modify “algebra™ so that it works out any products of ruwmbers, such as 23 » 45,
-ather than just sticking them together to give 2345 (which is wrong} as the current
rersion wiil do.
Modify it to change all expressions like x * x into x?, or x * x * x and x * x*into x*, and
:0 on.
Modify it to sorf vanables into alphabetical order, so that abcbab becomes aabbbe or
better) a*b’c.

1. Modify it to remove any term that gets multiplied by @.
Devise an expression which your best-modified version gets wrong; and modify it to
eal with that.

0. GOTOS.

"here are programs that do things in their
wwn right, and there are programs that help
rou write other programs. The latter are
cailed uatilities. For example:

12 line Renumbering -

Tidying up line numbers can be a terrible chore—so much so that on the whole, nobody
ioes . . . unless they have a utility program to do it for them. You can buy very fancy
ine-renumbering programs; or you can write your own, thereby saving anything
etween £5 and £10. possibly at the price of having something less versatile.

The program below is a compromise. It’s written on the premise that this isn't a
Machine Code book, so the program has to be in BASIC; and since BASIC is slow, the
program has to be quick enough for actual use. That, in turn, means it has to be fairly

vdimentary. Specifically, it only renumbers the lines: it does not automatically re-
numper GO TO or GO SUB numbers. I'll sav a bit more on this, after listing the
yogram.

INE NUMBERS IN PROGRAMS

In common with most utilities. this one requires some actual knowledge of what goes on

‘nsidc the Spectrum when the buttons are pushed. You'll remember (Easy
’rogramming, p. 93) that the program itself is stored in RAM as a series of character-
wytes, beginning at the address held in the system variable PROG and ending
immediately before the address held by VARS. Consulting the Manual, vou'll discover
hat these addresses can be found using the commands:

’ROG: PEEK 23635 + 256 » PEEK 23636
7ARS: PEEK 23627 + 256 * PEEK 23628

“ou’ll also find that each program line is stored in the format:

NS NI LJ LS code for line | ENTER

where NS and NJ are the senior and junior bytes of the line-number, and LJ and LS are
he iunior and senior bytes of the number of characters in the line altogether.
pecifically, if the line-number is n, then we have

NS = INT (n/256)
NI =n—256 NS

ana similarly for LJ and LS. So for line 7, for example, you get:

NS = INT (700 / 256) = 2
NJ =700 — 256 =2 = 188

and these are the first two bytes in the section of RAM that stores line 7080.

31

3v changing NJ. say to 198, we can fool the Operating System into thinking that this
line is actually line 710 (= 2 + 256 + 198). This suggests how to renumber the lines:

Run along the program area, PEEKing to find occurrences of the ENTER character
whose code is 13). Having found one. we know that the next two bytes are a line-
wmber. POKE thesc to the desired new valuc.

‘IRST ATTEMPT

f you write a routine to do just this, you'll find that there are snags. First, it fails to
renumber the first line, because that does not follow an ENTER character. Second (and
nore ooscurely) if either of bytes LS, LI happens to be 13, you'll get trouble.
I'hese faults are easily remedied: renumber the first line as a matter of course; and
;ump over L.J and LS.
swssuming for the moment that you want the new numbers to start at 1 and go up in
|05, this leads to a piece of code along these lines:
100¢ LET prog = PEEK 23635 + 256 «+ PEEK 23636
1619 LET vars = PEEK 23627 + 256 + PEEK 23628
020 LETns=@:LETn)=10
030 FORi= progTO vars — 1
1#40 IFi= prog THEN POKEi, ns: POKEi + 1. nj:
ETi=i+4LETni=nj+ 10: IF nj > = 256
"HENLETni=nj— 256: LETns =ns + 1
185¢ JFPEEKi= I3THEN POKEi+ 1,ns: POKEi+ 2, nj:
ETi=1i+5 LETnj=nj+ 10: IF nj > = 256
"HEN LETny=nj— 256: LET ns =ns + 1
p6@ NEXTIi

Type this in; precede it by some lines to renumber:

REM
REM xxxx
17 REM

ana so forth; hit GO TO 100.
Oh dear: it crashes with an error message:

~ Statement Lost, 1068 1

Vhy?
AST, and think hard.

SECOND ATTEMPT

Of course . . . the silly thing eventually starts renumbering itself. Once 1330 has been
renumpered, the NEXT iin 1068 sends the machine back to 106, which doesn’t exist any
more . . .

Vell, that’s casily cleared up: stop the renumbering before hitting the renumber
‘outine itself. The easy way is to change line 1830, replacing vars-1 by vars-len, where len
s the length of the renumber routine in bytes. (Find this using vars-prog.) With this
particular routine, len = 385, so line 1038 should be

1830 FOR i = prog TO vars — 385

and now it works. And. for BASIC, relatively fast. It takes about 2@ seconds to

enumoer a 5@-line program, which while not instantaneous, is quick enough to save a lot
ot work. (For a simple and equally limited Machine Code routine, that is instantaneous,
see Machine Code and Better Basic p. 159, or Spectrum Machine Code Chapter 16.)

"HIRD ATTEMPT

Now, it may be occurring to you that we're possibly being a bit dumb. Those line-lengths
wtes LS and LJ are exploitable: instead of PEEKing daboriously along looking for
‘NTER. we should be able to jump immediately to the next line-numbcr bytes by

aading on the line-length {give or take a byte or two).

't may also occur to you that this may not save very much time, because of the
rocessing required for the addition and so forth. The only way to find out if it does is to
TV it.

lere’s a program written along these lines: it clearly has at least one advantage—it’s
shorter.

#190 LETi= PEEK 23635 + 256 * PEEK 23636:
ETns =@ LETnj= 1¢: LET fin =
’EEK 23627 + 256 + PEEK 23628 — 285
‘2@ IFi> = fin THEN STOP
3@ POKEi,ns: POKEi+ 1. nj: LET nj = nj + 10:
Fni > = 256 THEN LET nj = nj — 256:
[ETns=ns+1
‘049 LETi=i+ PECEK(i +2)+ 256+ PEEK (i + 3) + 4:
YO TO 1020

"he variable fin is of course the old vars, less the length (285) of this routine.

"o see which method is faster, we load into each a reasonably long program using
WERGE, and time the execution of the renumbering routine. (You'll need programs
vith line numbers less than 1000 to avoid overwriting part of the routine, though: see
below.) Do this before reading on . . . or at least make an educated guess . . .

Jn my test run, with a 5¢-line program, the times were:

st routine: 20 seconds
vecond routine: | second

“his utterly dramatic improvement shows how important it is not to stop thinking about
i program, just because it works.

INAL (?) VERSION

We haven’t finished yet, though. The final job is to refine the routine to maximize its
usefulness. What criteria should be satisfied?

i. The routine should occupy as little memory as possible.

". It should be written on as few lines as possible.

i. Those lines should be somewhere that is seldom, if ever, used in a normal program.
‘ailing a Machine-Code cheat and a lowered RAMTOP, the place to put them is on
lines 9995-9998. (Save 9999 just in case you want to tack on an extra piece of
srogram, using 9999 GO TO wherever . . .}

4, The names chosen for variables should be things you don’t normally use, so that the
routine can be safely MERGED and used on a program with directly entered
rariables.

. It would be nice to start and end on arbitrarily chosen lines, and to have arbitrary
ncrements and start values for the new numbers. {The first requires extra checking
viich will cost time. and I won’t include it. The second is essential: you may want to
VIERGE one of vour favourite routines into something whose line-numbers overlap:
;0 vou'd first want to renumber the routine suitably.)

“aking these criteria into account (and noting that it’s not possible to be all things to all
men: some conilict with each other. requiring a compromise) I ended up with this:

994 INPUT “Start. inc?™"; 01, 02: LET 03 =
NT (01/256): LET od = 01 — 256 * 03

95 LET o = PEEK 23635 + 256 » PEEK 23636:
ET oo = PEEK 23627 + 256 * PEEK 23628 — 315

W6 IF o > = oo THEN STOP

W97 POKE0.03:POKEo + 1.04: LET 04 = 04 + 02!
Fo4 > =256 THEN LET o4 = 04 - 256: LET
=o03+1

998 LETo=o0+PEEK{o +2) + 256+ PEEK (0 + 3) + 4:
10 TO 9996

T'his takes a little longer—about 3 seconds on a 5@-line program. That’s the price paid for
1 little more flexibility.

I'he reason for all those o’s. of course, is that I bardly ever use ‘o’ for variables in
wormal programs, because of the danger of confusing it with ‘zero’.

This is a genuinely useful routine. The idea is to save it under a name like “ren”.
Jefore writing a program, load it in up at the top end of the program area (thanks 1o its
figh line numbers). Then write your program. Tidy the lines by calling ren, using GO TO
W04: edit the GO TOs and GO SUBEs to their correct values; and when you're happy,
edit out lines 9994-9998 and save the final program.

f vou’ve forgotten to load ren to begin with, you can always MERGE it later.

BLOCK RENUMBERING

This program is fine if you want 1o produce listings that go 10, 2@, 3¢ . . . inexorably and
vithout gaps—or 102, 184, 186, . . . for variety—but that’s not always what you want. It
tdies the listing; but it may make it less useful.

If you've read pages 87-92 of Easy Programming, on good style, you'll know that one
¥ay to produce civilized programs that work is to break them into blocks, each block
wing a subroutine; to use named line numbers for the blocks {such as LET block =
108@); and to start each block off at a nice round number (1100, 2008, etc. depending on

how many blocks you've got to deal with).

Renumbering from start to finish will somewhat subvert this carefully produced
structure. On the other hand, when you're developing block 1000 you'll rapidly find that
rebugging gives lines like 1035, then later on 1832 and 1933, and so on; and it cither ends
1p ail untidy or it may even leave you needing to insert a line between 1046 and 1347, The

SASIC interpreter won't like the idea of line 1846%2 or 1(46.5.

50 1t would be nice to renumber within a block (where, incidentally, the GO SUB and
GO TO problems are much less, and in a well-structured program, largely nonexistent).
The following routine does this: you input the start and end of the block, the new starting
numoer, and the new increment: it does the rest.

I'f vou ask it to renumber a block starting from a lower line number than the current
one, 1t BEEPs and asks for the input again. (This is done because the BASIC system is
mhaopy if lines get out of order in RAM.) Similarly if you finish renumbering the block
with a line number that is larger than the following one, it BEEPs and keeps on
renumbering to the end.

"he routine as written lives on line 90@@. If vou input by direct command LET ren =
M} you can access it by typing GO TO ren. Of course, a higher line number like 9999
might be preferable, and you can change the vanables to less common ones as above:
1ere I'll avoid such side-issues for clarity.

999 STOP
¥ INPUT “Start/end of block™; stt, end:
NPUT ““Start/inc of new numbers’’; nst, inc:
F nst < stt THEN BEEP .1, & GO TO 9900
W19 IF end > = 8999 THEN LET end — 8998
W20 LETns = INT (nst/256): LET nj = nst — 256 * ns
30 LETi= PEEK 23635 + 256 » PEEK 23636
W@ IF 256+ PEEKi+ PEEK (i + 1) < stt THEN
10 SUB 998): GO TO 94
¥5¢ TF 256 = PEEK i + PEEK (i + 1} > end THEN
30O TO 9099
W POKEi. ns: POKEi + I, nj: LET nj = nj + inc:
Fnj>=25THENLETnj=nj— 256: LETns =ns + 1
W70 GO SUB 9%980: GO TO 9950
WM8@ LETi=1i+ PEEK/(i+2)+ 256+ PEEK (i + 3)+ 4: RETURN
W9 IF256+=ns+ny—inc>25 * PEEK 1+ PEEK (i + 1)
"HEN BEEP .1, 20: LET end = 8998: GO TO %0c8

Avgain this is a genuinely practical utility, especially in conjunction with MERGE.
roject

“hink about automatically taking care of GO TO and GO S5UB renumbering. (I haven’t
talked about this here, partly out of laziness, partly because the result is much slower-
‘unning, and partly because the use of named subroutines, often good programming
rracitce, requires even more thought. For instance, in SUPERFILLER the subroutine
‘est 18 on line 208, and this is set up by initializing the variable test = 2008 in line 20.
Mhen line 2000 gets renumbered. you don’t need to change GO SUB test (line 25¢):
what you do have to change is line 2@, the value given to fest. And even if you take care of
‘his, there are tricks with GO SUB that renumbering messes up.)

"he routines are not protected against line numbers going too high (above 9999). Do
this. (It will slow the thing down a bit more, though—is it worth it7)

-

L¥

Not only is this simply beautiful —
t's beautifully simple too.

'3 Polvgons

" 'his is basicallv a straightforward idea, but you can only do it on your own if you're
1anpy about trigonometry (SIN, COS, TAN, and the like). The object is to develop the

Spectrum’s graphics to allow the construction of polygons—and fancicr creatures of the
ame 1ik.

1 polygon. you’ll no doubt recall. is a figure made up out of straight line segments. [na
.ense, that's all the Spectrum can draw anyway, but when the segments getshort enough,
(he results approximate curves. Which is why a hi-res picture of Bo Derek doesn’t fook as
T her figure is made up of straight lines . . .

farcumph: back to the Spectrum. A polygon is regudar if all of its sides and all of its
ingles are the same, 5o it’s nice and symmetrical. To draw a regular n-sided polygon. ina
1rcie of radius . centred at x. v, use this:

1@ INPUT “Number of sides?"; n

B FORi=0TOn

M LETa-x+r+COS(2+«i*PI/n):
ETb=v+1+8IN(2+i+«PI/n)

@ IFi=@THENPLOTa.b

0 DRAW a - PEEK 23677, b — PEEK 23678

W NEXTi
s il stands, th;re’s a danger of going off-screen, so add:
IFr>xORr>vORr>25—-x0ORr>175—y
THEN RETURN

The "RETURN i1s because I'm thinking of using all this in a subroutine; so of course I’ll
ils0 need

® RETURN
o tidy it all up. Great, but so far there’s no way to use it. So we add:
INPUT “Radius?"; 1
1¢ INPUT “Centre?”’:x, ¥
20 CLS
3 GOSUBS

“rv this out; but remember to start it with GO TO 100.

ine. but it soon gets boring. Howcever, we can make the results much prettier by using

a ioop. For example, delete line 10 and input

‘W LETn=5LETx=127:LETy =287

2 CLS

10 FORr=5TOS85STEP S5
20 GOSUBS

30 NEXTr

viich gives 1 .gure 13.1.

[

teure 131 Concentric pentagons.

f vou like that, get rid of the "LET n = 57 in line 2(4), and add:

285 INPUT “Number of sides?”: n
:0 that you can try different numbers. GO TO 20 now.

Try n = 5§ pretty good circles (though slower than CIRCLE will get). Which is what |

neant by the remark about Bo Derek . . .

It'll never catch on,
you know

ROTATIONS

\fter a time, even this palls. ‘Those wretched polygons always point the same way. So
e1’s add in a rotation:

B0 INPUT “Rotate?”: ro

and now we rotate it all by ro degrees, provided we change line 30 1o:

‘@ LETa=x+r*COS(2+i*PI/n+ro+*PI/18#):
LETb=y+r*SIN(2+i+*PI/n + ro+*PI/ 150}

That lets us do even fancier things:

W LETn=7:LETx=127:LETy =87
5 CLS
1@ FORr=5TOB85STEPS
320 LETro=r=*2
339 GOSUBS
40 NEXTr
Use GO TO 30: you'll get Figure 13.2. Change the n = 7 to an INPUT command, for

saniety. Change the r * 2in line 32@ to r, or r * 3, or whatever takes vour fancy. Evenr*r/
@ is quite nice.

‘tgure 13,2 Rotating heptagons.

©ooking at line 3@ in its current form, I can’t help wondering what would happen if the
plot positions a and b were rotated by different amounts. In other words, change it to

W LETa=r*COS{2+1+PI/n + rol/184):
ETb=r+SIN{2+i*Pl/n+ ro2/180)

~nere rol and ro2 are input using:
6 INPUT “Rotate 1 and 27", rol, ro2

Tv this on a GO TO 20 start. first. It kind of twists the polygon up. Now adapt line 329
f the routine starting at 300, say to

20 LETrol=r*»2:1ETto2 =r=3

'hat’s getting quite complicated now; and the designs are getting less predictable.

CURVED SIDES

‘What else? Well. the DRAW command can be used to draw curves as well as straight
ines (Easy Programming, p. 34). So we can add that as an option; change line 5@ to:

@ DRAW a— PEEK 23677, b — PEEK 23678 bend
ind arrange to input the amount of bend somewhere, such as
@7 INPUT “bend?”, bend

“ou’ll find that bends between about —4 and +4 work best: and 1 prefer the negative
saiues myseif,

xperiment for a while with GO TO 2. Now put the bends into the loop at 30@. For
:xampie, add

15 LETbend = —r1/25
ind change 320 to
20 LETrol =1/2: LET ro2 =r/3

Tetting quite complex, now . . .

STARS

f you change line 2@ to (say)
@ FORi-=@TO2+n
hen vou can input values n = 5/2, 7/2, etc. to get a 5-pointed or 7-pointed star. With
B FORi=0TO3+n
voucan try n = 5/3, 7/3, 8/3, and so on; and in general with
¢ FORi‘—UTOk*n

raiues of the form n = (whole number) / k will produce star-like creatures. (You'll need
o Input or assign k.)
{'hen vou can add colour commands; plot using OVER 1 . .. The varicty is endless.
lere’s quite a nice one to finish with: key it in and GO TO 489. Figure 13.3 shows the
Tesuit.
‘irst change line 2¢ of the subroutine to:

B FORiIi=0TO3=+n
ind then add:;

i LETn=11/3:LETx=127LETy =87
@5 PAPER @: BORDER @: OVER 1: CLS
i10 LETrol =0:LETro2 =0

115 FORr =5TO75STEP 16

i18 LETbend = —1/25

9

120 INK 1 +1/16
130 GOSUBS
44 NEXTr

dgure 13,3 Curved-sided 52 -gons.

You can obviously use these routines inside other programs: for example, we haven’t
tried changing the centre x, v at all. See if you can draw a 4 x 4 array of pentagons; a line
ot overlapping heptagons; a curved line of hexagons growing larger and larger and
rotating; a random arrangement of randomly coloured random-sided polygons and
stars . . .

3ut if vou've followed me this far. you shouldn’t need further urging to have a go
vourseif,

“snes erom sekam ti sdrawkcab
enidaeh siht daer uoy fi . . .

‘4 Cryplography and
Cryplanalysis

The art of putting things into code; and decoding the results without knowing what the
-ode is.

t is a sad comment on the human condition that the earliest recorded use of coded
nessages, to avold interception by the enemy, goes back to the Lacedaemaonians in 400
BC. The earliest book on the subject was On the Defence of Fortifications by Tacticus in

he fourth century BC.

I'he converse problem—decoding a message without knowing the code—has more
han just military significance. Historians need to know what was communicated in
nessages between commanders during the Amencan Civil War; and linguists need to

ungerstand ancient scripts such as Egyptian hieroglyphs or Mycenaean Linear B. Some
if these may not have been code then, but they sure are now,

"he computer can be a powerful weapon for the cryptanalyst, because it can carry out
‘enlightened™ trial-and-error at high speed. (Unenlightened trial-and-error takes far
o0 long, even on a Cray-1. Your Spectrum wouldn’t stand a chance.)

The simplest codes are substitution codes, in which each letter of the original message
s encoded according to a fixed jumbled-up alphabet: to keep the chapter within bounds
"Il concentrate on those.

SUBSTITUTION CODES

‘or example, suppose the message is
‘My dog has four legs™
ind the code is defined by

ibcdefghijklmnopgrstuvwxyz
vetrsnbipkcuxdfgayohlqimw

'he the coded message reads
“um tdn bzy sdha crny”

eading off from top row to bottom row.

The following program accepts a message and encodes it by a random substitution
‘ode. It will be developed into a routine to decode such messages, given an intelligent
15er.

1@ LET a$ = “abedefghijklmnopqrstuvwxyz”
#5 PRINT a$

‘10 LETbf=""

20 FORi=1TO26

3 LETm=INT(1+ (27 —i)* RND)

M

140 LETbf=bf +ab(my:LETa$ —a$(TOm—1)+as(m+1TO)
5 NEXTi
o3 PRINT b3
0 far this iust randomizes the order of the alphabet by selecting the first letter at
-‘andom. then the second at random from those left, and so on. Study it carelully: the
nagazines are full of “randomization™ routines that pick two letters at random, swap
hem. and repeat a great many times: that’s an incredibly slow way to achieve the result!
Now to inout and encode the messape:
Wy INPUT mS$
18 PRINT m$
15 LETcf=""
20 FORi=1TOLEN m$
25 LETc=CODE m$ ()
30 TF ¢ =32 THEN GO TO 250
25 IFc<97THENLETc=c+ 32
40 1F¢>=97ANDc < 128THEN LET c$ — c§ + b$ {c — 96)
50 NEXTi
63 PRINT c$
"he main points to note here are that line 235 converts capitals to lower case; 230 ignores

:paces; and the ¢ — 96 in line 240 occurs because the alphabet occurs for characters
7-123
! ot

‘REQUENCY ANALYSIS

iow would a cryptanalyst approach such a code? (Of course, in practice this method of
:ncoding messages is too casily broken to be of any real usc: our immediate job is to sce
vny.)

I'he essential thing to notice is that ordinary English does not use letters equally often.
The letter ““E". for example. occurs far more frequently than “Z”. Here's a table of the
iverage rare of occurrence (per 100 letters), determined by analysing government
elegrams.

; 74 n @70
) 010 0 73
.31 p W7
1 M2 q a3
3 130 r 76

H28 s 961
4 6 t 92
1 B34 u 426

@74 v A5
; 2 w 916
k 3 X 5
w6 y 819
n 25 z KLY

(e)

n other words. the most common letter is ““e”, occurring about 13% of the time; next
‘" at 9.2%: then “n”, “r”, “0”, “a”, “i", *s", “d”, after which the frequency of
securtence s less than 49, So it’s a goed guess that the commonest letter in a coded
rersion of a fairly long message should represent “e” . and so on.

‘or the messape above (which is rather short) the frequencies are:

1 1 out of 16
] 1
: 1
1 2
i 1
m 1
1 2
1
1
. 1
] 1
s 2
; 1

The commonest are “'n” and “v”, standing for “’g” and *s” respectively; not much help,
sut then it's a very short message. If we started with a longer text, such as

‘PFEK. POKE. BYTE and RAM is an excellent computer book "
‘hen the coded version would be:
“trrk fdkr vmor zxt azu iy zx riercerxo edufhora vddk™
and in practice the spaces would be omitted). The frequencies are then:
out of 43

.

g

I

2
2
4
2
3
1
I
1
g 3
1
3
3
1
2
2
3
1

&

3

"he commonest letter is “‘r”", which we assume stands for “e’'; next come “d”, “f”, “k",
‘a7, “x. If the frequencies held good, these should be “t”, “n™, “r", “o", "a”
respectively, in some order. In fact they are o™, “p”, “k”, “t”, “n"". We've got “n",
‘2", and “t” in there: a little trial-and-error will sort them out.

Indeed. just knowing the “‘e” tells us that the message is:

BE. B i€ widaae s BalBnBin canBl sk

ind we're well on the way. Some four-letter words that go “.ee.” are beef, beer, been,
beet, beep, bees, deed, deem, deep, deer. feed, feel, feet, heed, heel, jeep, jeer, keel,
een, keep, leek, leer, lees, leet, meed, meek, meet. need, neep, peek, peel, peep, peer,
eed, reef, reek, reel, seed, seek, seem, seen, seep, seer, teed, teem, weed, week, weep.
That’s 48 to trv: eventually you'd get the answer.

THE PROGRAM

S0 a crvptanalysis program for substitution codes should present you with an analysis of
the relative frequencies of the various letters; then let you try guesses and see what the

esuit is. Which leads to the following program:

) REM Freguency analysis

10 DIM n {26)

15 LETcol=9

2% LETtot=LENCS

25 FORi=1TO26

30 FORj=1TOtot

40 TFCODECS () —96=1THENLETn{i)=n{i)+1
58 NEXT ;|

554 TETs$ =STR$ (.01 +INT (18 = n (i) / tot)):

Fs$(1)=“"THENLETs$ = (" + s§

155 PRINT TAB col: CHRS (i + 96); “007; s%;
60 LETcol=col +8

70 IF col = 32 THEN LET col = ¢

89 NEXTi

“his works out the Irequencies. Lines 555 - 580 produce a 4-column print-out. Ling 554 1s
an attemot (successful) to produce only two decimal places. If you omit the second bit
ipout s$ (1) you’ll find that some numbers print out like

»
ina others like

2.34

vhich is messy and untidy. Putting an initial zero clears this up. But it's a piece of
jeaantry, really.
Now for trial-and-error decode:

1) REM decode
010 LETp$=*“":FORi=1TO tot:
ETp$ = p$ + “.": NEXTi
@20 PRINT AT 15,0; p$
10¢ REM trial
11¢ INPUT “Code letter?"; k$: IF LEN k$ <2 > 1
"HEN GO TO 1119
1120 INPUT “Guess at decode?; gé: IFLEN pf << =1
"HEN GO TO 112¢
130 FORi=1TO tot: IF c§ (i) = k$ THEN
ET0$ (i) = g$
135 NEXTi
149 PRINT AT 15,9; p$
150 GOTO 1110

Not bad. But there are snags. You can attempt to use the same letter to decode different
etters in the coded message, and not notice: that way lies disaster! So it would be nice to
‘neck on this. To do so, we need to keep a record of the current state of knowledge.

o
125
500
510
520
525
530

DIM d (26)

GO TO 1500

REM record of choice

LETk = CODEk$ — 96: LET g = CODE g$ — 96
FORa=1TO26

IFd (a) < >g ORd (a) = k THEN GO TO 156¢
INPUT “You have used C™"; CHRS (g + 96);

‘71 for code letter 117" CHRS$ (a + 96);

‘1 do vou want 1o leave it that way?"; v§

IF v§ = “y" THEN GO TO 1110

LET d(a) =0
GO SUB 200¢
NEXT a
NEXTi
LETd(k) =g
GO TO 1130

FOR b = 1 TO tot

IF p$ (b) = g8 THEN LET p§ (b) = *."
NEXTb

RETURN

1l we need now is a way to exit, properly informed, when we think we've cracked it:

115

IF k$ = “0”" THEN GO TO 2500

This lets us input “¢"" when asked “code letter?” to wrap it all up.

2579

REM wrap it all up

CLS

PRINT “Code message: ™ '¢$ "
‘Decoded message: * ' p§ T’

PRINT “Code known so far:™

FORi=1TO26

PRINT AT 12,i + 3: CHRS (i + 96)

IFd(i}< =@ THENPRINT AT 13,1 + 3;
"HRS (d (1) + 96)

NEXT i

"o avoid cheating, you must now delete lines 105, 160 and 219. Get someone else to input
he message. Or . . .

i)

PROBLEM

Tere are four messages for you to decode (answers at the back, page 139). They are all
vell-known quotations. Each is in a different substitution code.

iluruorufqfuofbdgcjavoadtegtidjrmgjgipjrgwonnoadofbuyuradgfpnutfutejluhqdr

!:!lﬁgl'iqbzzy]iﬂqanxnzyngkrlyvrlhc:cq xnfzefzflxhbnfxjylgxniyvxzgeyjlgxbaax]fixrigx

: Efxiuszzyumajrtijsrbrs jxtydhogbrobrabrakxrryzxtrevdqyzardxemnchrtodnro
i ::iriwgmwgzj vdjmvzgiozyzvlzznzil jxvvlzuxnhljgdnzmmegzjvvloxc

“rojects

Modify the program to display the table of letter-frequencies if asked (say by input
17 when asked for “code letter?”).
Add a bubble-sort (Easy Programming. p. 635) 10 list the letters used in order of
Teauency. This makes guessing easier.
Add an ootion {enter 2" at the “code letter?” stage) to print out the table of normal
Tequencies of letters, for reference.

1. The commonest two-letter combinations in English (digraphs) arc:

n A1l on 77
e 98 in 75
r MRT te W71
1 82 4an 64
h @78 or 64

¥rite a digraph-counting routine to take advantage of this extra information.
Write programs to implement other codes (good references are the Encyclopedia
srittannica and The Code Breakers by D. Kahn) and to allow you to try to decode
hem. :

Veed more than 23 user-defined graphics
naracters? Now vou can have 256 of
hem with a single POKE.,

15 Changing the Characler Sel

mentioned in Chapter 6 that you can set up new characters above RAMTOP and access
hem bv POKEing the system variable CHARS. This chapter describes the process in
1etail.
‘or simplicity, assume we want &4 new characters. Then we'll need 64 * 8 = 512 bytes
oI clear space. RAMTOP normally lives at the value 32599 in a 16K Spectrum, so it has
0 be lowered to 32599 — 512 = 32087 to leave a 512-byte “‘attic™. To do this, enter
directly)

'LEAR 32087

The cleared areasiarts at the next address. 32088, This is 125 + 236 + 88, so its junior byte
is 88 and its senior is 125. We fool CHARS into pointing at this new arca by deducting 1
nore from the senior byte {remember, CHARS holds 256 fess than the address of the
:haracter table}. The actual command is thus

*OKE 23686, 88: POKE 23607, 124
Jut don’t input this vet.
I'his program lets vou set up 64 new characters, and tests them to make sure all 1s well.
¢ FORi=32TO9%
B3 GO SUB 400
@ PRINT1-31,
i) GO SUB2M
@ PRINTCHRS i
PRINT
% NEXTIi
0 GO SUB 40
W STOP
'™ REM new address for CHARS
10 POKE 23606, 88: POKE 23607, 124
20 RETURN
W) REM usual address for CHARS
14 POKE 23606, §: POKE 23607, 66
20 RETURN
@3} REM input routine for new character set
01 LETi= 32088

‘8

920 INPUT j
#30 PRINT j; “I";
B0 POKEi|, j

058 LETi=i+ 1: GOTO 1420

Tere 200 resets CHARS 1o the new area; 490 sets it to its usual position; and 1900 is an

npui routine.

itart with GO TO 1000. For a test, we'll onlv use six characters. Exactly as in
iser-defined graphics, you need to draw a piciure of the character on an 8 x 8 grid;
:onvert the rows to binary @s and 1s; then input this value (see Easy Programming, p.
19). Here I'll use the six characters shown in Figure 15.1: that means T must input, in

wder,

355 1255 255 235 235 255
'35 129 129 129 129 129
5 7 13 31 63
5 105 195 195 195
2 4 8 16 32
4 126 126 255 255 126

55 25

'hat’s enough: input STOP, then RUN. You should sce the six characters listed as 1, 2,

126

{for W

(for [1
(for A

(for B
(for 7

(for @

.4, 5, 6 on the screen. If not, check vour work carefully!

4)

Teure I5. 1 A serof six test characters.

faving seen that the method works, the final task is actually to input those 64

‘naracters. That comes in stages:

. Design them. You could use CHARACTER-BUILDER, a utility routine in Easy

Programming.

*. Read off the data for the rows. (Ditto).

", Input the data at line 10(4) as above.

)
)
)
)
)
)

\lpha Beta Gamma Delta

ipsilon Zeta Eta Theta

ota Kanpa Lambda Mu

Nu { Omicron Pi

iho Sigma Tau Upsilen

Chi Psi Omega

igure 152 Design for a Greek alphaber.

'm sure vour mind is already thinking of lots of fancy tricks to make all this easier, such
a8 compining CHARACTER BUILDER with the little program above. Let me just
menton one. For direct input of the rows in binary, avoiding the tedious conversion to
decimal {which is a nuisance since the Spectrum promptly converts back to binary)
change line 1028 to:

920 INPUTbS
#25 LETj= VAL (“BIN” + b$)

Now you input the rows as sequences of (ks and 1s, read off from the 8 X 8 gnd: @ for a
slank, 1 for a blacked-in square.

What characters should you put in? The above suggest some possible graphics. Figure
5.2 shows a comblete Greek alphabet.

ISING THE NEW SET

"o use the new characters in programs, once they’re up there in memory, all you need do
s reset CHARS and call them by number. If you set CHARS as in line 200, then ask for
"HRS 31 + n. or simply ask for the usual character with code 31 + n directly, you'll get
he n-th character in your new list. For the usual characters, change CHARS back as in

inc 404,

SAVING THE NEW SET

To SAVE vour hard work on tape. you need byte storage. If you enter
JAVE “newset” CODE 32088, 512

hen vou get the 512 bytes starting at address 32088 on tape, and they are named
‘newset”. (Run the tape the usual way for SAVE, of course.)
U0 load themn back in, you use

OAD “newset” CODE 32088, 512

Now there’s an even better way. Write a program to do the loading. First enter the
orogram:

LOAD “newset” CODE 32088,512

Now SAVE this. under the name “newload” (say). Use SAVE “newload”” LINE 10.
‘mmediately after it, on tape, SAVE the new characters using SAVE . . . CODE as
ibove. 50 now vou've got two chunks of stuff on the tape.

Lewind, enter LOAD “newload”. push the buttons, and watch.

The first screen message will be:

Program: newload

Immediatelv this has loaded in, it will run starting from line 19, because of the LINE 16
-ommand in the SAVE. Leave the tape running and the newload program will now
automatically load in the bytes for newset (with message Bytes: newset). Saves re-
membering all those address numbers and suchlike . . .

This method opens up new possibilities altogether. You can chain programs end-to-
:nd. in such a way that each calls the next. Provided you're nippy with the tape controls,
and don’t want to go backwards, you can make use of this idea in all sorts of ways, to
eifectively increase the power of the machine, by making full use of the extra memory
-apacity on the tape. Chapters 9 and 17, on Cassette Files and Data Management
svstems, explore this idea in one useful context.

One minor snag with the Spectrum’s PLOT
and DRAW commands is that they lead to
error reports if the points being plotted

0 off the screen. The answer is to

lesign a utility routine for . . .

b Crashproof Curve-plotling

he easiest way to draw curves is to write a loop which, after PLOTting a starting point,
JRAWSs successively to other points, generated from either a list of data or a formula.
fowever. this runs into trouble if points go off the screen. What follows is a blow-by-
blow account of the development of one method of getting aver this. It gets a little bit
nathematical in places; but if maths isn't your strong point, ignore the algebra and
“oncentrate on the overall structure.
2ecall that for hi-res graphics the Spectrum employs a coordinate grid having 176 rows
ind 256 columns (numbered 0—175 and B-255) starting from the bottom left corner of the
icreen. The edge of the screen therefore forms a rectangle 176 % 256 pixels in size. The
ey to the whole game is to devise a subroutine which, when fed the coordinates (x1, y1)
ind (x2, y2) of two points, not necessarily on the screen, works out where the line joining
hem hits the edge of this rectangle (Figure 16.1).

SCREEN

255

‘igure 16,1 Where does a line between two points meet the edges of the screen?

01

1 smidgin of the old coordinate geometry lets us compute these points. The algebraic
cxpression

ﬂ—li;):(d —8) +e

TODS up repeatedly in various disguises, which is a sign that maybe a user-defined
unction is in order (see Chapter 3).
sing this, we get the following reutine. (The hine-numbers may look a bit irregular:
he idea 1s that if you follow through this chapter and input all the program lines as you
0, you Il end up with the complete program; but the description will go subroutine by
subroutine. It's always easier to key in, and to design, long programs this way.)
DEFFNaf(a,b,c,d,c}={a—-b)*(d—c)/{c—b) +e
00 REM seg
310 DIMx(2): DIMy (2)
920 1Fx1 =x2THEN LET xt = x1:
ETxb=x1:1LETyl=—-1:LETyr= -1
#25 IFvl =y2THENLETxt=-1:LET
xo=-1:LETy/=yl: LET yr = y1
@30 IFx1 <>x2 ANDvl < =>y2THENLET
xt = FN a (175, y1, y2, x2, x1): LET
<b=FNa(®, yl, y2,x2, x1): LET
i=FNa(® xl,x2, y2,¥1): LET
T=FNa (255, x1,x2,y2,y1)
W LETq-1
18} IF xt > =@ AND xt << = 255 THEN LET
t1q) = xt: LETy(q) = 175: LETq=q + 1
11¢ IFxb> =@ ANDxb < =255THEN LET
tiq) =xb: LETy(q) =% LETq =q + 1
120 IFvi>=0ANDyl < =175THENLET
Q) =% LETy(q)=y:LETq=q+ 1
130 IFyt > =@ AND yr < = 17STHEN LET
aq) =255 LETvy(g) = yr
149 RETURN

In a program, this routine needs to be supplied with the four numbers x1, y1, x2, y2
‘giving the coordinates of the two points): it puts the coordinates of the points where the
ine through these meets the rectangle into

(i1}, vy (1)

112}, y(2)
T'o be able to call this subroutine we either use GO SUB 1000, or. writing in a civilized
style, we initialize

72 LETseg = 1000

in which case we can use GO SUB seg. So add line 22.

t’s wisest to fest this beast before poing any further: the algebra is messy enough lor
nistakes to go undetected at this stage, causing havoc later. Add temporary lines:

#) LETx1=127:LETyl =87
10 FORt=1TOS50
20 LET x2 = 530 + SIN (t * P1/50):
ET y2 =500 + COS (t * P1/50)
30 GO SUB seg
43 PLOTx(1).y(1}: DRAW x(2) — x(1),y(2) — y(1)
56 NEXT1
60 STOP

Now RUN: if vou get a set of radial lines through the middle of the screen, stopping at

he edpes, all is well. If not, check the listing again. Delete 108—16@ once the routine is
JK.

"hat’s done the brainwork. Most of the rest is now routine... oratleast, subroutine...

10W TO DRAW CURVES

first 10b is to decide the general structure. There are two main ways to draw a curve:

A graph. Plot FN (t) against t, where FN is some function. See Easy Programming,
p. 79 for details.

A parametrized curve. Plot FNb (t) against FNa (t}, where FNa and FNb are iwo
unctions, and t is called a parameter.

t would be nice if our routine allowed either option. (This isn’t hard, because a graph

s actually a special kind of parametrized curve, with FNa (1) = t. But one generally
ihinks of them in different ways.)

I'he user is going to have to set up these functions. We could have a line in the program
ike:
7777 DEF FNb (t) = some rubbish or other

ind ask the user to edir this line to his desired function. But wouldn’t it be nice to let him
npur his chosen function during the program run?

T'he VAL command (Easy Programming, p. 71} is tailor-made for this kind of
ipplication. If the user inputs FNb (1), say, as a string f$, then we can evaluate it by
isking for VAL f$. For instance, if t = 71 and f§ = “t + (. then

VAL = VAL “t #t" =71+ 71 = 5041

ind this is the value of the “square” function at t = 71.

It’s also going to be a nuisance if we can only plot curves where the coordinate values
ange from @ to 155 and @ to 175 (the usual problem of shifting and stretching axes, see
sasy Programming, p. 81). A standard technique is to set up a window covering the

sesired area, and to transform the coordinates suitably during the drawing routine
Figure 16.2).

0 the structure in outline is as shown over page.
|.eaving the details to take care of themselves (top-down programming; see Easy
Mrogramming, p. B7) we write the main program:
®@ PRINT “SPECTROGRAPH"
1 PRINT’ “OPTIONS:™ '’ “00 0O 1. Parametrized

curve {11 spaces] 2. Graph™

03

120 INPUT “Select option number™; opt
130 GO SUB window
140 CLS

5¢ [IF opt = 1 THEN GO SUB param
60 IF opt = 2 THEN GO SUB graph

M STOP

Choose option

'

Crraph Parametrized curve

‘hoose window

+

nput function{s) that
detine the curve

!

Draw the curve

utline structure for sexting up a window.

SUBROUTINES

T'hat [eaves us with three subroutines to write: window, param and graph.
window is simplicity itself:
‘@ LET window = 500
53 REM window
i@ INPUT “Window coordinates: left, right,
»ottom, top™; wl, wr, wb, wt

20 RETURN

"ve alreadv said that graph is a special case of param, so obviously the thing to do is write
param Tirst and then hope graph takes care of itself.

To plot a parametrized curve, with parameter t, we need to know two things: the range
of values for t. and the size of steps along this range at which points are computed. So
param has to ask for these, and then draw the curve.

26 LET param = 200
2 REM param
2010 INPUT “Parameter range: left, right”; t/, tr
2020 INPUT “Number of steps?”’; ns

urve

LX1S

AXis WINDOW to be
ransformed to
4255 horizontally,

A-175 vertically

igure 16.2 The screen area used as a window.

W30 INPUT “Specify x and y as functions of t”'; x§, v$
B4Q LET stepsize = (tr — t/} / ns

050 GO SUB draw

‘%60 RETURN

That’s managed to leave most of the work to the subroutine draw, not yet written. Great!
rrapn works much the same way, and jumps into draw at a suitable point:
74 LET graph = 1500
1500 REM graph
51¢ LETt=0:LETtr=255
520 LETns =255
530 INPUT *“Specify function of t”’; v§:
ET x$ = “t”
540 LET stepsize = 1
1559 GO SUB draw
564 RETURN
*ve deliberately written this to bring out the analogy with param: graph automatically
sets all of the variables in param except for y$, which is the function input, and then calls
draw in exactly the same way. (You could replace the last two lines by GO TO 2050, but

zood style suggests otherwise provided it doesn’t waste a lot of memory or time.)
‘We can't put off the evil moment any longer . . .

'8 LET draw = 250

500 REM draw

510 LETt=1d

520 LETu=VALx$:LETv=VALYy$

53¢ GO SUB transf

540 IFFNo(u,v) THENPLOTu.v

550 FOR 1 = tI + stepsize TO tr STEP stepsize

560 LETu= VALx$: LETv=VALYyS$

57 GO SUB transf

‘580 GO SUB flag

'599 GO SUBA (ff)

680 NEXTt

619 RETURN
.. ¥ell, maybe we can after all. We've managed to invent three new subroutines (one
it which has four parts):

ransf which transforms the variables so that the chosen window fits the screen area
:xactly,

/fag which sets up a flag to tell us whether the points to be joined up in draw are both on
creen. both off. oron and off respectively. This sets a variable ! to one of the values 1, 2,
*. 4 depending on the precise combination of positions. :

i (fl) which is actually four routines & {i}—d (4), for each flag value, because the
actions needed are quite different from one case to the next.

We've also introduced a new user-defined function FN o (see Chapter 3). This is
:upposed to be an “on screen’ flag. That is, if we define

DEFFN o {x,y) =x > =0 AND x < = 255
ANDv>=0ANDy< =175

hen FN o (x, v) = 1 if (x, y) is on the screen, and FN o (x, y) = @if (x, y) is off the screen.
Now isn’t that pretty? Of course you could do it other ways: my other half would
provably define a flag called onscreen and write 2548 IF onscreen THEN In fact,
his works with onscreen = FN o (x, y). Anything to make the listing look like the
(Queen’s English rather than Einstein’s Law of Gravity.

You may feel we're not getting anywhere yet, because we haven’t approached the
central problem of actually drawing stuff. Have faith: can’t you feel the problem getting
:mailer as we knock bits off the corners and break it up into smaller pieces?

Transforming for a suitable window is easy if you've had six years of mathematical
training like I have:

i@ LET transf = 3000
3 REM transf
010 LETu = (u— wi)/(wr — wl} = 255;
ETv=(v—wb)/(wt— wh)+*175
#20 RETURN
And vou can even check that I'm right. What we want is for the u-coordinates w/ and wr
o transform to @ and 255; and wb, wt to transform to @, 175. Now putting u = wi on the

ight-hand side gives u = ¢ on the left; and putting u = wr givesu = (wr — wl) / (wr — wl)
+ 255 =1#255=1255... gosh! And wt, wb work just the same way.

"o pick up the thread:

12 LET flag = 3200
200 REM flag
210 LETfI=FNo(xo,yo0) +2*FNo(u,v) + 1
220 RETURN

“hat works like this: suppose we want to join the ofd point (xo, yo) to the new point (u,
r). Then we have:

.l_ Old point New point Value of ff
[on 1 on 4
. on off 2
| off on 3
| off off 1

where on/off refer to whether the point is on or off the screen). So the value of fl
distinguishes the cases.
Vhy distinguish? The required action is:

| Value of ff Action required
I | Draw that part of the line between the old and
new points, that lies on-screen (if any)
2 Join the old point to the edge of the screen,
along the line towards the new point
3 Join the edge of screen to the new point, along
the line from the old ene
4 Join the old point to the new

The reason for action (1) is that it may happen that, while both old and new lie

if-screen. part of the line between them should fall on it, hence be drawn in (see Figure
6.1).

DRAWING ROUTINES

Iere they all aré, written in the easiest order for my poor little brain at the time.

4 DIMd({4)
17 LETd(1) = 3800
8 LETd(2)= 3600
9 LETd(3)=73700

4@ LETd(4)= 3500
1500 REMd (4)-bothon
1510 DRAW u — PEEK 23677, v — PEEK 23678
1520 RETURN
680 REM d (2)-old on, new off
610 LET x1 = xo0: LET y1 = yo:
ETx2=uw:LETy2=v

107

3624
1630

1650

670
1700
1710

720
1730
1740

1750

3760
3770
3800
3810
31820
3839
1840

GO SUB seg

LETz=1

IF u < > xo AND SGN (u — x (1)) < > SGN (x (1} — x0}
'HENLETz =2

IF u = xo AND SGN (v — ¥ (1)} < > SGN (y (1) — yo)

THENLETz=2
DRAW x(z) - PEEK 23677, v (z) — PEEK 23678
RETURN

REM d (3)—old off, new on

LET x1 = xo: LET vl = yo:

ETxX2=u:LETy2=v
GO SUB seg
LETz=1

IFu< >x0 ANDSGN(u—x(1))<>SGN (x (1) — xo0)
THENLETz =2

IFu=x0 ANDSGN (v —y(1})< >SGN({y (1) — vo)
"HENLETz=2
PLOTx{z),y(z): DRAWu —x(z),v—y (z)
RETURN

REM d (1)-both off

LETx1 =x0: LETvl =yo: LETx2=w: LETy2 = v
GO SUB seg

PLOTx(1),v(1y: DRAW X (2) — x(1),¥y(2) — v(1)
RETURN

All that stuff with SGN is to find out which of the points x (1), y (1) or x (2), y (2} is the
rignt one to use. Ignore it if you hate maths.

That’s almost it. The variables xo and vo for the old point’s coordinates haven’t been
set up anywhere, though. The right place is at:

2535

LETx0o=uw:LETyo=v

snd again at
2575 LETur=u:LETvr=v
2595 LETxo=ur: LET yo=vr

TESTING

Now we're ready to test.
RUN, and type in:

Option 1

¥indow =5 5 =5 5
Tarameter range -5 5

Yumber of steps 100

‘unctions of 1 t t

Allis well: a (not entirely straight) line climbs from lower left to top right. (It didn’t?
You've boobed!)

something a bit harder? Let’s go for a parabola, part of which is off-screen. {The first
est didn’t use subroutines d (1)-d (3) at all . . . which is the main point of the whole

:Xercisei)
Jption : |
Vindow -5 < s IR
‘arameter range —5 5
Yumber of steps 100
‘unctions of t t bt

‘igure 16.3 shows the result. It’s pretty—but it’s « funny parabola . . .
‘ou may or may not be surprised how long it took me to find the bug. Too long—I
must have been getting tired. A LPRINT trace showed that the culprit was subroutine
i (1)—joining up two points, both off-screen. But what was wrong with it?

deure 16,3 A parabola! Well, almost . | .

Zventually the obvious dawned. If the two points joined are both off-screen on the

same side, the line through them can meet the screen even though the line segment
netween does not (see Figure 16.4).

i

SCREEN

AREA

‘igure 16.4 The source of the bug.

10

“his is easilv fixed. using vet another subroutine:

3 LET check = 46

4000 REM check

410 LETsegon =0

1920 TFx1=x2 ANDSGN (vl —y(1)) =
SGN (v2 — y(1)) THEN LET segon = 1

W30 IFxl < >x2 ANDSGN (xl —x(1)) =
SGN (x2 — x(1)) THEN LET segon = 1

40 RETURN

This sets up a flag segon, which is 1 if the situation in Figure 16.4 obtains. To get into it,
aad:

825 GO SUB check: TF segon THEN RETURN

On repeating the test with the parabola . . . it worked! Finally, a more stringent test:
Option 1
Window T 7 3 6
Parameter range 0 21
Number of steps 300
Munctions of t SIN(11+=PI+t) COS{13+Pl=t)

This is a Lissajous figure (Easy Programming, p. 111) but the window is chosen so that it
epeatedly goes off the screen and comes back on again. The result is shown in Figure
6.5 and it’s pretty clear that the program does what it’s supposed to do.

e

‘igure 16.5 A Lissajous figure going on/off screen a great many times, making an excellent test.

Projects

"his is a genuinely useful program. Try your own choices of option. windows, and
unctions. starting with the suggestions below. If in doubt, use the functions above and
just vary the other numbers, one by one. A good source for ideas is A Book of Curves by

E.H. Lockwood, Cambridge University Press.

t’s clear that some improvements are still possible. In several places there are very
amiiar chunks of code that are used more than once—no doubt a subroutine would
:norten the listing. An option to re-run while changing only a chosen variable would be
1setul. You may even be able to devise a more clever approach to the whole problem:
yne trouble with top-downing is that if you select a bad strategy to start with, you tend to

e stuck with it.

“ou can also add extra routines. Do you want axes drawn? Scales marked? Several
curves superimposed? I'll leave these as projects for those so inclined.

SUGGESTIONS FOR CURVES

Jotion 2: Graph

a) Catepary: window —5
XPt+EXP(—t)

b} Cissoid: window -5
/SQR (10— 1)

c} Neile's parabola: window -9
t*t) 1(1/3)

d) Serpentine: window - 10
st/ (d+t*t)

e} Strophoid: window =15

*SOR((2—-1)/(2+1))

Option 1: Parametrized curve

f) Cochlioid: window —20
JAramerer range =30
number of steps 500

+3INt+(COSt
+*SINt+SINt

20
30

—-20

100

19

20

dgure 16.6 The cochlioid.

i1

112

(g) Limagon: window —10 10 -10 19
range e | Pl
steps 100
3+5+COSt)+ COSt
3+5+COSt)*SINt

h) Rosace: window =2 1LZ ~—12 1.2
range ¥ PI
steps 500
COS(11*t) = COSt
COS(11*t)«SINt

Figure 10.7 An I1-petalfed rosace.

(i) Pseudo-Lissajous: window —-19 10 ~19 10
range =13 5
steps 500

B/(1+t=t)*SIN(GB~*1t)
B/ (1 +t+t)*SIN(5*1)

Figure 16.8 An elegant pseudo-Lissafous figure.

Viost files have a lot in common.
Nhy not treat them all alike?

1 Dara Management Systems

£1s develop the ideas on files (Chapter 9) further. There, it was assumed that before
‘reate, maintain and search programs can be written, we have to know the exact features
o the file we're dealing with. And yet all files are going to look pretty much the same.
lust the number of fields per record and their lengths will vary. So it wouldn’t be difficult
to modify irrec, for example, changing all those constants (30, 36, etc.) for variables. As
in eminent [rish computer scientist has remarked: “All your constants should be
ranaoles™.
lang on, though. How will inrec know what the field lengths are in a particular case?
¥ell, why not allow initcfs either to ask for them from the user when a file is being
reated, or to read them from the header hlock otherwise? The form of the header block
is now getting a little more complicated, so let’s look at it in some detail.

"HE HEADER BLOCK

Basicallv, it’s going to be two arrays. One contains a user-supplied name for each field
$0 it’s a string array), and the other holds the number of bytes allocated for each field.
¥e no longer need to know the number of bytes per record, because that's the sum of all
the field lengths, but we still need the number of records per block, so let’s build that into
he numeric array. There’s one other consideration. Fields can contain either character
»r numeric information. and will probably need to be handled differently in each casc.
w0 it would make sense to ensure that fields are distinguished in this way when they're set
0. We could have another array with this information but I'm going to tag each field
name with a ““c” or “n” in the first byte to indicate character or numeric type. So our
irrays might look like Figure 17.1.
Iere, I'm assuming that the file is to hold a set of bank account transactions. We have
i six-character date (held as characters because we aren’t going to do arithmetic with it; if
'ou want to, it would be best to have 3 separate numeric fields, nday, nmonth and
ivear), a cheque number, and an amount of money (both numbers) and a description
feld in which up to 25 characters may be put to describe the transaction. Cheque
wmbers are always 6 digits long (at feast, mine are), and 8 characters in the amount field
allows vou to enter up to £99999.99, which is somewhat on the optimistic side for my
rank balance. (Notice that a character space is used up by the decimal point.) The
wmber of records per block is 200 and, just so that ficld names match up with their
lengths, n$ (1) is left blank. I'm always happier when there’s the odd spare storage
:lement anvway, because it allows some leeway if I've forgotten anything. Since both
irrays are i1 clements long, there’s room for 1@ fields per record. Of course, it presents
10 problem to alter this if you feel it’s a bit restrictive.

13

14

n$

ks

-«———records per block

unused —m 1 20
cdate 2 6
ncheque-no 3 6
namount 4 8
cdescrip 5 25

5
7
3
3
10
1
— 10 bytes __g,.|

vide

ieure 7.1

Header block layow.

SETTING UP AFILE

nitcfs now looks like this:

|5w

505
1510
1514
9515
9524
1521
3525
2530
9535
540
1545
9547
2550

DIMn$ (11, 18): DIMw (11): LET ip = ¢: LET op = &:

ETinbc=@:LET outbc = 0: LET bpr =9
INPUT “Enter input filename:”; f$

IF f$ = “null” THEN GO SUB set up: GO TO 9525

PRINT “Start PLAY recorder”
LOAD f$ + “h1”" DATA n$ ()
LOAD f§ + “h2" DATA w ()
PRINT “Stop PLAY recorder™
INPUT “Enter output filename:™; g§
FORp=2TOC11

LET bpr = bpr + w (p)

NEXT p

DIM i$ (w (1), bpr): DIM o§ (w (1), bpr)
IF g$ = “null” THEN RETURN
SAVE g$ + “h1”" DATA n$ ()

1555 SAVE g + “h2"DATA w ()

1557 PRINT “Stop recording”: PAUSE 12¢

15680 RETURN
it's much the same as before, except that if we enter “null” as the input filename, it calls
.erup which will generate a new file description. Otherwise, it loads a file description
rom the first two blocks of the input file {(which, for a file called “*fred”, will be “fredh1™
ind “‘fredh2™), works out the number of bytes per record (lines 9530 to 9540) and sets up
he input and cutput buffers from this information. Finally, if the output file isn’t “null™,
t writes the header blocks out.

Ve'll write serup from 9400 on:

M@ INPUT “Enter no. of fields:"; nf

405 CLS

M1 FORp=2TOnf + 1

1415 PRINT AT 10.2; “field O0"; p— 1

4200 INPUT “Name of field {1st char:c/n):"; n$ (p)

1425 INPUT “No. of bvtes:™; w (p)

430 NEXTp

435 CLS

440 INPUT “No. of records per block:”; w (1)

445 RETURN
"here’s nothing much to comment on here. setup simply executes a FOR loop once for
:ach field, entering the field name and length of the appropriate array elements. There’s
a slight fiddle necessary to account for the fact that field 1 actually occupies array
:iement 2. of course. Finally, the number of records per block is specifted and entered
into w (1}.

Now we're in the home straight. We can rewrite inrec using the fixed format version to

give us ciues as to how to tackle this, more general purpose, routine.
I'he old one started:

5000 DIM a$ (336)

The 336 was the length of a record. Naw initcfs has evaluated this, and putitin bpr. Sowe
hiave:

W DIM a$ (bpr)
"he next line was:
310 INPUT *Artist”; a$ (TO 3@)

S0, in more general terms, what we would like to do is to have a loop in which the
=quivalent line says something like:

INPUT *“‘next field name™: a$ (beginning of field TO end of field)

ind this gets repeated for every field. You can’t write something like:

@ LET p$ = “next value”
@ INPUT p$; nv

hecause. although it's perfectly valid BASIC, its meaning is different from what we
want. Line 2 does not say “prompt with whatever’s in p$ and then accept a value into
nv’’. It says “accept a string into p$ and then a value into av”’. However, if you put
brackets around p$, this produces the desired effect.

SCREEN DISPLAY

16

¥hile this arrangement is conveniently simple, it can be a little confusing for the user.
1e onlv sees one field of a record at a tirne. and it would be helpful if he saw the whole
ecord being built up. Also he wouldn’t have any indication about the length of field he
ould use.

I'he simple solution is to build up a record on the screen by using PRINTS for prompts
ind copying each INPUT value on to the screen to match with its associated prompt.
'his will be a familiar technigue to vou if you cut your teeth on a ZX81 which didn’t allow
yrompt strengs in INPUTS!

S0 we would like the sereen display to look something like this for the bank account
xample:

s aate P2
11 cheque-no. 317462
n: amount =71.37
B! description Office armchair: tax ded.

vhere the underlined items are entered as INPUT values and immediately redisplayed as
shown. The underlines will actually be printed, and will show the maximum width of
:ach field.

Note several things: firstly, the field type has been separated out from the field name
ind 1s there just as a reminder to the user. Secondly, the amount is shown as negative,
ana vou’ll see why this convention is useful later. Thirdly, the user makes a note in the
iescription field that the item is tax deductible. He’s not using the system very sensibly.
recause he’s bound to want a list of deductible items at the end of the year, and that
neans doing a search on part of a field. He should have thought of this before he started
ind used a fifth field to identify deductible items.

Is there a tax on

(Gartuens aren't
cartoons ! aurgica supplies

e Sorry - |
No — surgical —_ theught you said
supplies are exempt osamcen N harpoons”
Zos o

Anyway, back to the problem:

8010 CLS: LET begin = 1 [clear the screen so the record
display isn’t cluttered, set
pointer to start of a$. . .

8028 FORp=2TO11 and enter loop]

8@25 IFn$(p,1)="“0"THENGOTOBS8126 [test for last field]

5030 PRINT ATp, ®;n$(p. 1); *:;

ATp,4;n$ (p){2TO) print
5340 FORc=1TOw (p) — field
585¢ PRINTATD,14+c; " template
5060 NEXTc =

Vow we need to know where the beginning and end are of the slice of a$ that this field
occupies:

W LET end = begin + wip) — 1

irst time round. begin = 1, because it was set up in line 8010 and end =6, which means
ve can write:

W8RG INPUT (n$ (p) (2 TO)); a$ (begin TO end)

and the effect will be to prompt with the word “date™ and transfer this to a$ {1 TO 6).
Now we put this on the screen display:

3099 PRINT AT p. 15; a$ (begin TO end)
‘inally we must set up the new “"begin’ position:
3180 LET begin = end + 1
ind close the loop:
310 NEXTp

*ass the result to ¥ and exit from the subroutine:

3120 LET r$ = a$
3130 RETURN

'ESTING

At this stage we can write a couple of test routines to see if it all works. First we need to
create a file. The routine used to create the record collection file will do without
nodification. Just to remind you:
1@ GO SUB initcfs
10 GO SUB inrec
20 GO SUB write
30 INPUT “Anvmore? (y/n)"; q$
40 IFq$ ="y " THENGOTO110
5 GO SUB close
60 STOP
Nhen vou run this, initcfs will ask for an input filename, which you'll enter as “null”, of
course, and then vou’ll be prompted for a record description. You could use the bank
iccount one as a fairly simple example. Make the block size small, 5 say, so that you
10n’t have to enter too many records before thg blocking mechanism is activated. That
vay everything gets checked without too much keyboard pounding. Finally, enter 18 or
15 records, to make up the test file.
Now we need to know whether the data have been saved correctly. Replace lings
18160 with:
10 GO SUB read
120 IFr$(TO2) = “}}" THEN STOP
30 PRINT r$

4 GOTO118

18

‘When vou run this you’ll get records like:
T28E212345021.76 O O O coconuts

printed out (if you've used the record format in the bank account example).

Now we know that the first 6 bvtes represent a date, so that’s 12/(#8/82, and that that’s
ollowed by the cheque number {123459) and an amount (21.76—note the 3 spaces,
recause there’s room for 8 bytes in the record definition) and finally, a description. But
mitputs like that are hardly user-friendly. So what we really need is a routine which
nnscramoles rf into its separate fields. [et’s call this outrec since it performs the opposite
unction to inrec, and we’ll store it from 8200 on:

3200 LET begin =1

210 FORp=2TO11

1220 IF n$ (p) = “0O0” THEN PRINT: RETURN
3230 PRINT n$ (p. 1); “:"; TAB 4; n$ (p) (2 TO);
3240 LET end = begin + w{p) — 1

250 PRINT TAB 15: 1§ (begin TO end)

3260 LET begin = end + 1

276 NEXTp

3280 PRINT: RETURN

Jnsurprisingly, this routine bears more than a passing resemblance to inrec, but there is
one important difference. We want the records to scroll through continuously, rather
han be displayed at the same position on the screen. If we arranged for the latter, you'd
1ave to be a pretty fast reader to see anything at all! So “PRINT AT" is no good. To get
the horizontal tabulation previously provided by a coordinate in a “PRINT AT”
statement, I'm using the “TAB™ function. If you haven’t used this before. you can think
ibout it as eguivalent to “PRINT AT" without a row specification. In other words, if you
ay
'RINT AT 2,15; ...
'ou are specifying row 2.
"RINTTAB 15;. ..

nves the same column position, but on the next available print line, wherever that is.
Now all we have to do is change line 13@ 10:

3¢ GO.SUB outrec

ana. when the result is run, everv record is displayed. in readable form. on the screen. Of
course. you're uniikely to want a complete listing of the file on the screen. It would make
nore sense to send one to the printer. So we should have a routine called loutrec which
outputs a record to the printer. It will look identical to ourrec, except that all the PRINTSs
wiil be changed to LPRINTs.

"HE GRAND DESIGN

Now we have all the tools we need to build our data management system proper. Sowe’ll
ake a rest from coding, take a few steps back, and consider the grand design.

Ve implemented three routines in the original file-handling system: create, maintain
ind search. We need all these. plus a few extra ones; and this time. we’ll link them via a
nenu itom the same main program. So there isn’t much point in having “maintain’ as
me of the ontions, and then immediately being asked whether it’s “*add™ or “delete™
hat we want. We might as well have *‘add™ and “delete” as major options.

Our main program looks like this, then:

i CLS

PRINT AT @, 5; “Spectrum Data Manager™: GO SUB initcfs
CLS

PRINT AT 2, §; “Options are:™
PRINT AT 3, 11; *“1) create”
PRINT AT 4. 11;*2) add”™

12 PRINT AT 5. 11: “3) delete”
PRINT AT 6. 11: “*4) search”

@} INPUT “Enter option no.:"; opt
10 GO SUB 208 + opt

20 GOTO26

—-_- - s O =

{;J

3o I hear murmurs of discontent? Is someone out there multtering that one minute I'm
;aving that we’ll need to implement some extra routines and the next I'm only allowing
or the ones we've alreadv thought of”? It's a fair cop, guv. But notice how easy ['ve made
L to tack on any new routines. We simply add another line to the option listing:

4 PRINT AT 7. 11; "*5) whatever you fancy”

ind then put the appropriate subroutine at line 100Q onwards, since the mechanism
vhich steers the main program to the correct subroutine simply multiplies the option
1umber by 200.

0 create is at 200
wdd is at 4}
1elete is at 63
earcn is at S0
vhatever

/ou fancy s at 100@

ind 50 on.

“his is altogether a better approach than to build the system in a cut-and-dried way.
10t allowing for any expansion. It's only when you've used a system for a little while that
‘ou begin to realize its limitations, and wish you'd implemented a routine to rule the
vorid. or whatever. Do things this way, and you can modify the program anvtime
nsoiration (or, more likely, frustration) grips you.

(NITIALIZATION

Jne more thing to note: inifcfs is called before any of the options is invoked. That saves
\nserting it in every routine, and responding to it more than once if we want to do several
hings to the same files. Of course, it means the program must be re-run to establish
different files. Unfortunately, it also means a little coding rethink, because initcfs does a
ew things other than just define filenames. It also sets pointers and block counters, and
these things do have to be reinitialized at the beginning of a second file read. So we’ll
introduce a further subroutine into cfs called reser which just zeros these pointers:

070 LETip=&:LET op =®: LET inbc = @: LET outbc = @
980 RETURN

Now the first line of initcfs can become
S5 DIMn$ (11, 13): DIM w (11): LET bpr = @: GO SUB reset

19

20

ind, of course, line 1 has added to it:
ET reset = 9970

‘inally, we can call reset in the main program before looping round to the menu display:

20 GO SUB reset
i GOTO?26

"HE ROUTINES

‘reate we already have, except it needs renumbering and a RETURN rather than STOP
on the end:

‘% GO SUB inrec

18 GO SUB write

20 INPUT “any more? (y/n)”; q$

30 IF g% = “y” THEN GO TO 200

40 GO SUB close

50 RETURN

1dd is more of a problem. For one thing, it was previously not implemented

.eparately, and for another, I've already commented on its rather primitive nature. S0
v¢'ll take the opportunity of rethinking the problem. We need to load all the additions
nto an arrav to start with, and then, as the file is read, compare each of them with the
-urrent record 1o decide whether to make an insert or not. Also, we need to flag each
potential insert to indicate whether it has been written out yet. For the time being we’ll
sigeon-nole that problem. So:

4% INPUT “how many records?”’; nr]

410 DIM b% {nr. bpr)

20 FORq=1TOnr

130 GO SUB inrec load additional

449 LETb$(q) =r$ [recoras into b$

450 NEXTq

—— $et uUp array

—d

Now, the next bit looks tricky. We have to identify the part of the record to be used as the
<ev. Using the bank account file for example, we could be ordering records by date.

cheque number or amount and, as usual, we want to allow the user as much flexibility as

possible. So we'll call a subroutine, whose details we’ll worry about later, called
*oxtractkey”. For the time being we’ll simply say what we would like extractkey to do for
us. it will ask the user for the name of the key field, and provide to the calling routine
hree values:

segin: the byte of r$ or bY (p) at the beginning of the key field
_nﬂ: fr fr L e [N LN} HE cnd LR LAl LN re
type: this will be @ 1f the key is numeric and 1 if it’s a string

defining extractkey as a subroutine has the usual advantage that we seem to be doing
very little work, since we've defined what it does, and can make use of it, before actually
1aving to work out how it does it. Looking ahead a little, though, we can see that there’s
: second tvpical subroutine feature present: because delete and search are also going to
neea lt!
Anyway, for the minute, we'll assume that extractkey is available. and work out how 10
ase 1t:

B GO SUB extractkey

SORTING

Next., we'll sort the additional records into order. We couldn’t do so before because we
1idn’t know what key to sort on until extractkey has been to work:

65 GO SUB sort
ind now we ¢an set a pointer to the first record in b$ to be inserted into the file:
170 LETap=1

I'hings are fairly straightforward from here in. All we need to do is compare b3 (ap) with
he next record from the file (r$). If r$ has the smaller key, then output it, otherwise
wiput b3 (ap). There’s a point to watch, though. If r$ is output we need to get the next
ecord from the file, but if an element of b$ is written we just have to bump the value of
ip by 1. In either case, we must guard against reading past the end of file or past the end
»f the array. What happens when the input file or the addition array is exhausted?
different things, unfortunately. So we'll call a subroutine loosends which will tie them
lp_
480 GO SUB read

9} IFap >nrOR 1§ (TO2) = *}}” THEN GO SUB loosends: RETURN

Now we want to compare the keys of r$ and b$ (ap). Let’s extract them into s§ and t$
first:

00 LETs$ = r$ (begin TO end): LET (8 = b$ (ap) (begin TO end)

Now to compare s$ and t§. But there’s a problem. s$ and t3 may be numeric or character
teys. If they're actually numeric, but are seen as strings, then 123 won't be seen as
dentical with 123.0. Worse still, 5 turns out 1o be greater than O0O12!

;0 we need two more subroutines, compn and compe, which do numeric and character
-omparisons respectively. Both of them will return a value called comp which identifies
he result of the comparison as follows:

Value of comp Meaning
-1 s$< 1%
A s§ =3
i s§ > 1§

“ou may be wondering why I've specified ““*="" and “>>" conditions when all we really
ieed is “<<"". The reason is that I've got one eye on the delete, search and sort routines
which will also use comparisons, probably in different ways from this one. So it’s best to
make the routines as general as possible.

Now we can write:

18 IF ctype THEN GO SUB compc
286 IF NOT ctype THEN GO SUB compn

“ou may not have seen this kind of construction before {unless you've read Chapter 3).
There doesn’t seem to be a test in the “IF. The point is that a condition in an “IF”
:tatement 1s evaluated to @ or 1 depending whether it is false or true. So if you write:

’5 IFa=bTHEN...

the “a = b” is replaced by 1 if their values are the same, and by zero otherwise. Since
‘tvpe 15 given the value @ or 1, we're just saving one process in the evaluation, and the
esuit reads more nicely than “IF ctype = § THEN GO SUB compn””.
Now to test comp. If comp is less than zero we want to output r§ and get the next file
ecord to replace it:

)30 IF comp < @ THEN GO SUB write: GO TO 48¢

Otherwise, we have to output the current additional record. But don’t forget that we can

21

22

miv output what’s in r§, and its current contents will have to be saved and restored
sefore and after this process:

40 LET1$ =r$: LET r$ = b$ (ap): GO SUB write: LET 1§ = t§:
ETap = ap + 1: GO TO 499

Jote the “GO TO 499" on the end. We don't go back to 480 because we haven't flushed
he current file record out yet, so we don't need another one!

MORE SUBROUTINES

Now comes the reckoning. The subroutines called with reckless abandon from the add
outine will have to be written. We'll give them the following line number starting points
wnd. of course, these will have to be initialized at the beginning of the program:

sxiractkey TR00
posends 7600
"OMpC 744
ompn 7200
sort 7000

-xtractkey has first to ask the user which field is the key:
‘B0 DIM k$ (9): INPUT “Enter key ficld name™; k3

«$ will be a field name from the second byte on. In other words. it will nof include the

lype character. It seems more natural to enter “amount” than “namount”, and the “n”

sn’t essential, since we already have that information in n$.
Now we have 10 search through the array n$ looking for k3, but we also have to keep

track of how many bytes along we've got. So let’s adopt this procedure: assume it’s the

irst field we're after. so begin = 1. Ifit’s not, bump begin by w (2), soit’s now pointing to
he start of the second field. If that’s not the one we want. bump begin by w (3) and so on.

810 LETbegin=1 {note: kS must be 9

828 FORp=2TO 1l bytes long because it’s
‘83 IFn$(py(2TO)=k$ THENGOTO 78 being compared with the
840 LET begin = begin + w (p) last 9 bytes of every

B3 NEXTp clement of n$)

8688 LET end = begin + w (p) — 1

sow we can identify the type of the field by looking in the first byte of the element of n$
eing pointed at by p:

87@ IFn$(p,1) = c” THEN LET ctype = 1

'88@ IFn$ (p.1)=*n" THEN LET ctype = #

893 RETURN
wctually guite painless, wasn’t it!

Now for loosends. If we've reached the end of the file first, we have to flush the
wdition buffer. Otherwise, we have to copy the rest of the file. So it’s pretty straight-

‘orward:
6 IF ap > nr THEN GO SUB cpyfile: RETURN
610 FORp = ap TO nr
620 LETt$ =08 (p)

630
648
650
66

GO SUB write
NEXTp

GO SUB close
RETURN

ina if cpvfile is at 7709:

7
710
720
730

GO SUB write

GO SUB read

[Ft$(TO2) = “}}" THEN GO SUB close: RETURN
GO TO 7706

COMPC and comprt are pretty easy:

gl
‘410
420
430

IF 5% < t$ THEN LET comp = -1
IF s$ = t$ THEN LET comp = 0
[F <% = tE THEN LET comp = |
RETURN

IF VAL s§ <~ VAL t§ THEN LET comp = —1
IF VAL s$ = VAL t$ THEN LET comp = &
[F VAL s$ > VAL THEN LET comp = 1
RETURN

THE SORTING ROUTINE

inallv, we need sort. If you've read Easy Programming you'll remember Tintroduced a
bubble-sorting algorithm in the Debugging chapters. We'll use it again here. It's not the
nost ctficient or clegant sorting procedure ever devised (quite the reverse. in fact) but it
s simpie and since b$ isn’t a huge array. it won't take too long to execute.

L
w5
010
¢
@30
5T

LETinc=1
1LET flag = 0
FORp=1TOnr inc

[.LET s$ = b$ (p) (begin TO end): LET t$ = b$ (p + 1) (begin TO end)

IF ctype THEN GO SUB compc

IF NOT ctype THEN G0} SUIB compn

IF comp = Q@ THENLET tS = by (p): LET b3 (p) = b$ (p + 1):
ETbS(p~1)=t§: LET flag = 1

NEXT p

[F flag > @ THEN LET inc = inc + 1: GO TO 7065

RETURN

(0. in retrospect, add has required rather a lot of effort. But it’s probably the trickiest of
he menu routines.

23

24

DELETE
‘We'll freewheel downbhill for a bit by writing defete.

50 INPUT “How many keys™'; nr . s
R
20 DIM d$ (nr, end — begin + 1) correct size array)

30 FORp=1TOnr

“@ INPUT “Enter deletion (key only):”; d$ (p)
50 NEXT p

" GO SUB read

1@ TFr$(TO2) = “}}" THEN GO SUB close:

set up array of keys
to delete in d$

ETURN I
80 FORD=1TO nr searcn for a match
between the key of r§
99 IF r$ (begin TO end) = d$ (p) — and an entry in d$. [f
I'HEN GO TO 660 one is found, get next
ecord.
M NEXTp
10 GO SUB write —] Nomatchfound, so
. -— write out the record . . .
20 GOTO 660 | and get another one.

Inward. ever onward . . .

;EARCH

Jefore rushing in where angels fear to tread, we should give some serious thought to how
the search routine ought to behave. The simplest thing 10 do, would be to allow the user
‘o enter a single key, and then read through the file, displaying on the screen every entry
vith that kev. To decide whether this will be adequate, try to put yourself in the position
of the user and imagine the kinds of questions he might want to ask. Let’s return to the
»ank account file as a convenient example. If there’s a field which indicates whether an
1em is tax deductible. then the user might well wish to display all records with this tield
et to “‘ves’’. On the other hand, he might want to display all records referring to cheques
wrawn for more than £200, or all cheque numbers greater than 318472, or cheques
etween 8th July 1981 and 5th September 1981, In other words, he is very likely to want
o consider a range of keys rather than just one. So we should allow both these facilities.
iecondly. will he afways want to display records found by the search? Certainly, he is at
east as likelv to want them printed. But there’s another possibility which will drama-
tcally improve the usefulness of the system without any significant perspiration (well,
:Xtra perspiration) on our part. It is to allow records found by the search to be written to
i new file. This way, successive searches can be used to isolate combinations of con-
iitions. For instance, if we need a list of all tax deductible items over £100 in value, we
rst generate a new file of tax deductible items, and then we search this for all items over
100.

said this was simple to arrange: all it entails, having found a target record, is to call
sutrec 1o display it, loutrec to print it, or write to output it to file.

0 let’s get to it:

00 GO SUB extractkey
310 IF ctype THEN DIM k$ (end — begin + 1): INPUT “Target key:™; k$
82¢ IF NOT ctype THEN INPUT *“Key range—low:"; low, “high:™"; high

\ little explanation is needed already. Obviously, the first job is to find out which field is
0 be used as the key for the search, hence the call to extractkey. Now, if the chosen key is
1 character field. the concept of a range is pretty meaningless (unless you want to deal
with a range of alphabetic keys, like all names between BROWN and ROGERS, butI'm
10t allowing for that here. It's casy enough if vou need to do it.) So we only ask for a
ingie target key (which must match the length of the correspending field in the
ecora—hence the DIM!). If, however, the key is numeric. we ask for a range of keys.
“ext. we need to know which output option s to be selected:

{30 INPUT “Dusplay (1), Print (2) or File (3):"; opt

~low we can start the search:

Al GO SUB read

150 IFc$(TO2) = “}” AND opt = 3THEN GO SUB close: RETURN

¥ IF rS(TO 2) = “}}” THEN INPUT “‘Enter c to continue™; k$: RETURN
"hat’s a slightly untidy piece of code. The problem is that, on identifying the end of file
here are two possibilities; if there’s no output file, we want just to return to the menu,
but if there is one, we have to close it first. The alternative would have been either to
jump outside the loop on identifying the end of file marker, and then test for option 3, or
to call a subroutine to handle the two conditions. T don’t like jumping unless I'm
insolutely forced into it (it can easily produce code which can most kindly be described
15 baroque} and a subroutine seemed a bit like overkill, here. (The problem arises
because Spectrum BASIC does not have an ELSE clause to it's IF statement. Some
SASICs allow vou to sav: IF this THEN that ELSE the other. This is quite useful

.ometimes. because the Spectrum equivalent is to have two TF statements. It's already
weeurred several times, although this is the clumsiest example so far.)

COMPARISONS
Enough of this nitpicking. (The BASIC is lovely, really—honest, Uncle Clive!)

378 IF ctype THEN GO SUB ckeytest
8@ IF NOT ctype THEN GO SUB nkeytest
Now we really do need a couple more subroutines, because the method of handling the
‘naracter and numeric comparisons is going to be significantly different. ckeytesr will do
the string comparnison, and nkeytest will do the numetric one. All they need to returnis a
angie value “match™ which is 1 if a match was found and zero otherwise. Then we have:
590 TF NOT match THEN GO TO 840 get next record
195 LET bs = begin: LET es = end
W} IF opt = | THEN GO SUB outrec
'19 IF opt = 2 THEN GO SUB loutrec
220 TF opt = 3 THEN GO SUB write
25 LETbegin = bs: LET end = es
130 GO TO 848 get next record

autput record to
appropriate device

~lote that we have to save “begin’ and “end", because they are altered by outrec.
Ve now have two little routines to write:

keytest 6800
tkeviest BOM

25

26

‘keviest is easiest, since there's no range to worry about, only a single key:

Wi T ETmatch =0
810 IF k$ = 1S (begin TO end) THEN LET match = 1
W2 RETURN

Tow for nkevtest:

6600 LET match = 1
6610 IF VAL r$ (begin TO end) < low OR
VAL 13 (begin TO end) > high THEN LET match = @
20 RETURN

;0 in ckevtest I've assumed there is no match, and then set match to 1 if there is one,
vhereas in nkeyiest I've assumed there is a match and reset match to zero only if the key
M the test record is less than the lowest kev in the range or greater than the highest key in
he range.

<ow | have a confession to make. The delete routine only really works for ¢ type keys,
recause line 699 does a straight string comparison. You probably wondered about this at
he time.

The reason I chose to do this is that search provides a more powerful way of
perrorming deletions.on numeric keys. After all, searching for a range of keys is exactly
he opposite of deleting those keys (using the “write” option in search), so for example,
o delete all records with kevs below 5, we just search for records with keys 50 or
rreater. Y ou could provide more complex range tests very simply by expanding nkeveest
o inciude a second range. low2 1o high2, say. That way, you could delete all records with
kevs between two values. (This can be done with the current implementation, but it
neans generanng two subfiles.)

VIORE FUNCTIONS

¥hat other options might be necessary. or at least desirable? Well, how about fist, which
vouid copy the entire input file? This could be useful, but vsually we can get away
vithout it by using search, choosing a numeric key, and giving a range which we know
:xceeds the actual range of values in the key field. Since we know the field width, we can
ruarantee to be able to do this. Now, you may wish to argue that it is unreasonable to
'xpect the user to indulge in this kind of sleight of hand, and I am inclined to agree: but
this suite of routines is beginning to get quite large, and if you've only got a 16K memory,
he size of your file buffers is beginning to be squeezed. So we should have a very good
"eason for wanling any new options. Of course, if you've got a 48K machine, vou can go
m mventing new and even more esoteric routines as the whim takes you,

“here is. however, one more routine which should unguestionably be present. We
:noutld be able 10 add together the contents of a given numeric field in every record.

‘2emember that when [was discussing the bank account example I suggested that debits

:nould be entered as negative and credits as positive? If we could simply sum all those
fields it would give us a current balance. Clearly a useful facility!
We’ll make this option 5, so we need:

14 PRINTAT?7.11; 5)sum™
ind 5o the routine will begin at line 1000, and we'll start by initializing the sum:
100 LETsum=40
Now we find out what key we're to work with:
910 GO SUB extractkey

and check that the key is numeric. Otherwise we can’t do arithmetic with it:

@2¢ IF ctype THEN PRINT “Key not numeric™: PAUSE 120: RETURN

Now all we have to dois read each record of the file, adding the contents of the key field
nro sum at cach stage:

P30 GO SUB read

M0 IFr$ (TO2) = “}}” THEN PRINT “Sum of 0'; k$; “= 0O”; sum: INPUT
““nter ¢ to comtinue™; k$: RETURN

05¢ LET sum = sum + VAL r$ (begin TO end)

e GO TO 193¢

Inly one point needs any comment here. If a RETURN were executed immediately
atter the PRINT on line 1049, vou would have to be rather quick to see anything because
o the CLS which lurks at the beginning of the menu display. So the INPUT statement
‘ust provides a way of hanging up the system until the user is ready to go on. The PAUSE
20 in line 1020 is there for the same sort of reason. In fact a PAUSE could be used in
woth cases. because PAUSE 65535 will hang up the machine for around 21 minutes, or
unul a kev is hit, so for all practical purposes, the effect is the same.

"IDYING UP

ind that's about as far as I'm going to take you on this particular excursion into file
iandling. As I've already remarked, adding new routines to the data management
system isn’'t going to be difficult and neither is the revision of existing ones to account for
mmnor modifications in reguirements. For instance, when you get your microdrives, it
s;nould be very easy to revise the system appropriately and the resulting program will, of
‘ourse, be much easier to use, since the Spectrum will handle disk control for itself.
Nevertheless. no piece of software is ever perfect, even within limited terms of
eterence. and I certainlv make no grand claims for this one. So I'll just make a few
:uggestions for revisions that you might like to make that will pretty things up a bit.
‘irst. a point about cfs itselF. cfs requires the user to know about the “'}}” delimiter.
Ne're forever writing:

Fr$ (TO2)="}"THEN...

Ne could build that test into read by having a variable called eof (for “end of file”} which
5 sel to Zzero in initcfs and then set to 1 in read if the first two bytes of r$ are “*}}". Then a
15€T DrOgram couid write:

[Feof THEN. ..

which is altogether neater.

second. the messages issued to request control of the tape recorders are messy (no pun
ntended!). It would have been better to wrnite four subroutines recon, recoff, plavon,
riayoff so that the same messages are always generated in similar circumstances. Also,
'U's then easy to revise the messages if necessary, or even to replace them by signals sent
{0 a port to control the cassette motors directly, as [suggested earlier (see Appendix B
or details of this). Simple revisions of the messages could include making them flash so
hat thev're more obvious; adding a BEEP for the same reason; adding a PAUSE (so
hat a RETURN to the menu doesn’t clear the message too fast).

"hird. there is no check in setup to ensure that field names begin with either *“¢” or
‘n”. Obviously that’s vital, because the rest of the system assumes it to be the case.
T'here are other situations of a similar nature where tests ought to be included. (For
instance what happens i you give extractkey a field name which doesn’t exist?)

Finally, at the moment vou can't actually exit from the menu. Obviously, it’s easily
ione by having an option 6 (exit) and making line 1200 STOP. 1 didn’t do so earlier,
hecause, of course. every time you add a new option, the exit option value moves up one,
and the STOP statement moves up 20@.

127

SORTING A FILE

-ust to round off this section finally, I'm poing to leave you with a problem.

“here is one glaring omission from our data manager. Any self-respecting system
;nould allow a file to be resorted on a new key, so that, for instance, we could take a field
ordered alphabetically on a “name’ field and reorder it numerically on. say, a “tele-
phone no." field.

"ve avoided this problem because it’s not too easy to solve using only one input tape.
In the davs when large computer installations commonly used magnetic tape a popular
echniaue was the grandly named *polyphase merge sort”.

Mhat happened was that you had two input and two output tapes. You read a record
Tom one tape, and then compared it with records from the other. writing them out to
yne of the output tapes until one appeared which had a key greater than that of the
ererence record. Then vou switched input and output tapes and repeated the process.
¥hen both input files had been read completely. you used the output files as a new set of
nout files, and the whole process was repeated. Eventually, after umpteen repetitions,
niv one of the output files is written to, and the switch never takes place. Then vou
know vou've got a sorted file.

sounds complicated? That’s what I think; and now you know why I haven’t addressed
the problem till row. (Although, in a sense, the addition routine uses a kind of merge
:ort. using the input file and the addition buffer as equivalent to two input tapes; the
iifference is that these two inputs are guaranteed to be separately sorted before we
start.)

(0. is it possible to do a tape file sort with only one input 1ape? Well, yesitis, and there
ire several well-known algorithms. But there’s one that I discovered recently which will
It our purposes very well, because it enables us to use the block structure built into ¢fs.

I say “discovered” rather than “invented” because, although I've never seen it des-
ribed in print, it’s such a simple technique that I'm sure it must have been used before. }

RATCHET SORT

t works like this:
¥e pull in the input file, block by block, bubble-sorting each block before writing it
»ut to the output file. Now. if that were aff we did, nothing very exciting would happen
recause. although the file would be locally sorted, there could easily be a low key at the
end of the file which cannot move back bevond the beginning of the last block however
nany times the process is repeated. In fact, nothing new will happen if we use this
technigue to resort the output file. The reason is, of course. that the partitions between
slocks remain in the same place, so records can only move within. not between, blocks.
f only we could change the positions of the block boundaries . . .
wctually, it's easy. Before transferring the first block to the output file, we write a
number of dummy records to it. For best results, this number should be half the number
i records per block. On reading the newly located file. the block boundaries are now
1alf-way between their previous positions, and this “overlap™ allows further sorting to
take place. We must ensure that the dummy records are ignored by the sort, and that
they are suppressed on output so that the block boundary positions are again changed to
allow another sort operation. On the next phase of the sort, the dummies are reinserted,
and so on, and 50 on. We know we've finished when no further swaps take place.
Iere’s an example which illustrates the principle. I'll just write the keys for simplicity,
as the numbers 1-12 in reverse order. We'll assume a block size of 4:

2 11 10 9 8 7 6 5

£
el
[
[

st pass: Sort blocks and insert 2 dummy records:

D D 9 © .11 12 5 6.7 8 1 2. 3 4

‘nd pass: Sort blocks and suppress dummies:

bt
=
(=
L]
=%
|
o

D D 5 6.9 10 1

tth pass: Sort blocks and suppress dummies:

5 6 1 2,9 1 3 4,11 12 7 8

Sth pass: Sort blocks and msert dummies;

D D 1 2. % &

tad
B
=
=)
]
oo
—
-2

sth pass: Sort blacks and suppress dummies:

's 6§ 7 s:qua 11 12

and we're there!

Provided there’s enough spare memory. there’s no reason why the block used for
;orting should be the input buffer, in which case, there's no reason why it should be
‘estricted to the block size for the file. Obviously, the number of passes necessary for the
0Tt decreases as the block size increases.

Ul leave the actual coding to vou.

what | said was, “see how much
of a database you can
squeeze into it ”

f you thought Canopus was a tin
»f cat-food, read on . . .

'8 Star Charls

This item will involve a fair amount of time spent inputting data—especially if you decide

30

o extend it. So don’t start unless you've a couple of hours to spare, because it's a
isance stooping in the middle.

"he idea is to write a program that plots out pictures of different constellations—
Jrion. Cvgnus. Gemini, and so forth. It will include as options:

. An automatic run-through of the pictures. naming them.
". A search by name for a given constellation, plotting it out.
1. A test: the computer draws out a constellation and the user has to name it.

‘or this illustration I'll only put six constellations in; but the program will be set up to
illow up to 20. If you want more than that, SAVE the data on tape, redimension the
irrays used to hold the data, and LOAD the data back. (You'll need to think that
hrough in more detail, but that’s the general idea.)

JATA STRUCTURE

switch the computer off for a minute. because we're going to have to do a little
brainwork first. “‘Program first, ask questions later” is a recipe for disaster.
Ne will need data for:

. Latin name of constellation { Ursa Major, etc.).

. English name of constellation {Great Bear).

1. Positions of the stars (lots of coordinates for PLOD).
i, Magnitude (degree of brightness) of cach star.

You could go further (e.g. colour of star, suitably exaggerated for a pretty display). but
‘hese will do to start with.
caving aside for a moment the problem of actually laying hands on the required
nformation, and getting it into the machine, we must first decide how to format the data.
Jbviously we want to hold the names in arrays: so for 20 different constellations we need
(0 set up two string arrays of size 20, say n$ for the Latim name and e$ for the English
name.
We'll also want to print cut things like

“vgnus (the Swan)

Now the nroblem with string arrays is that all of the strings in them have a fixed length.
suppose we've set that length to 12, say, to allow for names like **Camelopardus’™ (the
riraffe); and that Cygnus is item number 1. It’s not very satisfactory to use the obvious

PRINT n3 (1); “O (the O": e$ +)"
recause vou'll get something like
Cyenus OOOO0OO0OO(the Swan OO OO QOO O)

with the spacing all up the shoot.
"here’s a useful trick to avoid this. To each string we add a final, thirteenth character,
vhose cade gives the actual length that we want to use. So “Cygnus™ goes in as

'venusOOOOOOxr

vnere the < is actually the character whose code is 6, the length of “Cygnus™. (This is the
‘ontrof character PRINT comma. but everything’s fine as long as we don't try to print it
wt.) To print out the name “Cygnus™. we use

PRINT n$ (1) (TO CODE n$ (1, 13))

vnich omits the unwanted spaces.

Ve use the same trick on the English names e$. of course; and we have to be careful to
vrite the input and output routines to take this feature into account.

I'he obvious way to set up the coordinates for the stars within a constellation, and their
nagnitudes, is as an array. It needs one dimension of 3 to allow for horizontal co-
wcdinate. vertical coordinate, and magnitude: one dimension of (say) 20 to allow up to 20
:tars per constellation; and one dimension of 20 to say which constellation we're thinking
yt. That leads to a command

MM b (3,20, 20)

However, that would require 3 % 20 x 2@ blocks of memory, each 6 bytes long {for a

floating-point number), or 1200 < 6 = 72 bytes. Now a 16K Spectrum has about 9,000

wies spare after taking care of the display and attribute files. and by the time the

srogram has gone in, and the other data, and room for the machine to do its calculations
well, we'll prabably run out of memory. Think again.

t's really stupid to store the coordinates in ﬂndlmg -poini: we can only PLOT x, ¥
vhen x is an integer between @ and 255, and y is an integer between@and 175. Now §-255
s, bv a strange coincidence, the range of character codes . . . So, using a single character
ind taking its code, we can get the X-coordinate. Similar]y for the y-coordinate and the
nagnitude.

“ach star thus takes up three characters. Twenty stars take up 3 x 2(0 = 60, which can
onveniently be stuck end to end as a string. For 20 constellations we can use:

JIM p$ (20, 60)

vhich takes up only 20 X 6@ = 12§ bvtes—an impressive degree of shrinkage.
‘utting that lot together. we get the following input routine. (The actual program

comes later.)

29 REM input routine—can be deleted after use

o1 DIM n$ (20, 13): DIM 3 (20, 13): DIM p$ (20. o)

e FORi=1TO20

@3¢ INPUT ““Latin name?’"; a$

WM LETn$(i)=a%: LETn$(i. 13} = CHRSLEN a$

M50 PRINT TAB @:n$ (i} (TO CODE n§ (i, 13});

6@ INPUT “English name?”; a$

70 LETeS$ (i) =a%: LETe$ (i, 13} = CHRS LLEN a$

9989 PRINT TAB 14; ¢$ (i) (TO CODE ¢$ (i, 13))’

M LETc=1

210¢ INPUT ““horiz, vert, mag”; x, y, m

M10 IFx = @ THEN GO TO 9150

120 LETp$(i)(3*c—2TO3 +c) = CHR$x + CHR$ y + CHR$ m

13 LETc=c+ 1:IFc> 20 THEN GO TO 9150

M40 GO TO 9190

’150 NEXTi

31

"HE DATA

“he next step is to get the data into the machine. I'll explain later how to work it out for
sther constellations; and vou may decide to skip over this section for the moment, to see
he rest of the program.

{UN the input routine, and key in the following when asked. Each line represents the
‘esponse to an input prompt: note that you need to ENTER each item on the line
:enarately. The screen format won’t be quite the same. ENTER 0, 0, @ to stop.

Tancer
‘rab
35 54 4
11 141 4
13 K7 4
15 3] 4
49 42 4
56 89 4
“vgnus
“wan
H 1204 4
2 36 3
4 85 4
i) 76 4
1 107 4
i 54 2
s 66 4
14 111 |
22 36 4
24 86 2
39 123 4
42 118 4
61 S 4
68 100 3
79 146 4
bt 156 4
92 26 3
Cremini
fwins
i 113 1
it 04 3
6 186 4
'8 132 |
] 111 4
)7 82 3
o 54 3
(s 123 4
118 76 4
24 144 3
44 1M 3
43 36 3
3 54 2
62 76 &
|68 87 3
78 89 3
93 04 4

20
tion

e e N T T e MY

08-

k-

_— e S

88
™
16

Orion
tuntler
£
6
34
)
10
13
15
18
20
26
2R
34
34
42
44
48
54
34
171
72

)
49
74
a7
122
53
118
139

141
126

32
121
152

133
121
32
72
136
136
76
51
81
117
04
71

50
100
43
100
60
116
124

e

{
- \
\ L R TR I N R oy U T AL PR R 0 T P SN 16 T L R SN A L I PR P TPU R ST E ST SO W S PG T SN SR]
o

o

Zr=7]

FIMINL
i \ -TMCJELM’,{:

34

Ursa Major
Treat Bear

7 131 2

6 140 2

3 134 2

23 128 3
Lpd 116 D
6 87 4
24 21 3
26 15 4
33 70 3
30 142 2
37 118 2
73 6l 3
70 606 3
76 144 4
8 156 4
K3 117 4
"0 112 3
11 162 3
i) 143 3
26 149 3

Now, if vou're still with me. SAVE this lot before you accidentally lose it all. The easiest
vay 15 10 SAVE the whole thing. loading routine and all; this has advantages if you want
o load anvthing else in later. Or you can use array siorage: this takes three poes, using:

SAVE “Latin” DATA n$ ()
SAVE “English” DATA e$ ()
JAVE “Stars” DATA p$ ()

vnich load back using similar instructions, but with LOAD in place of SAVE.

"HECKS AND CORRECTIONS

f vou make a mistake while doing this, all is not lost. Suppose the fifth star in Leo 1s
vrong. 1hen you type in the direct command

ETi=4:LETc¢ =5 GO TOY1M
vpe n the corrected version of x. y, m: then STOP. To check your input, use this
autineg:
950 FORi=1TO2d
9519 PRINT n$ (i} (TO CODE n§ (i, 13))
1520 PRINT e$ (i) (TO CODE €S (i, 13))
3530 FORt=1TOMSTEP3
1540 TFp$ (i, t) = "“0" OR p$ (i, t) = “UU" THEN GO TO 9570
1550 PRINT CODE p$ (i, t); “[0";:
PRINTCODEp$ (i, t + 1); *[1";:
'RINTCODE S (i, t +2)
Kol NEXTt
¥57¢ NEXTi

Jnly use this if you're worried about your accuracy: if you've checked the display on
:creen during the input run, very ¢arefully, it shouldn’t be necessary.

‘hange each PRINT to LPRINT, if you've got a printer. and you’'ll have a hard-copy
isting for reference.

WORKING OUT THE DATA

t vou want to add extra constellations, you've got to find out what numbers to input.

"he simplest way is to draw out the desired constellation on a piece of graph paper.
with a 256 % 176 grid marked on it. (I actually used a 64 x 44 grid and multiplied by 4.)
itart with a reference work on astronomy: Norton’s Star Atlas, published by Gall and
nglis, is a good one. Copy the stars on to tracing-paper, transfer the result to your grid;
ind laboriously read off the coordinates. checking the star atlas to find the magnitude.
-ee Figure 18.1 for Leo.

Iy —1 T i i _E_.-.*J:L-JJ:_—- — LL.__.- |.|__.__: T l.Jl. =]

ek Lol 4ol L feflalm) . G il e Mt 4
r .l ."d'_-._i.r i - —— et J}j_

S e e e e e e R e

R G I e AR SR A i B S R R 3 B T Jr”

| el | Ik | 4 |

| — E R - — 4 J._J:i-ﬂ- i: -:.1 T, b ——-

R S BB ST E & o bl o el e o B
BE=aanesmsimer 1AMOREANANLERREERERE oiq dbudnl amS t

WA B B e .L,; SR maaa _jHJ_ H '} EiRaay
e e e e e
e ;-—-— e IR 31.._ o J_LA4__..4__!_ R Ij !!I _|l1|, ll .-.--.—:_:
e AR A R e sl LoD ARt B amn A o mm b e e b
et e T e e
FEErEL sl 1 0 N T L
g s | 28 S WS s AmaeE K AN §E SO EE EHEEE
s SRSy I [TT 1% T £l L Il
— e e L e ﬂ
o L g 8 b D e e R
o ittt B P S T | Al T
o T _I_" T
P e B RSE ey cnma N 0 FB B RS t'.'iUnt 2
Emma IEEEESEEIE Emsmm Ly rEET e s s s 8 1D R EEIN
. H . BEh e = Cmmdmmy eaae
PP ECEENEMMANGHEUEDARRAEANL NS A LRESAGESEE N0 e S AN J“HHJ
L e e e e e e e e
o T - R T — HH -

1 44 o 129 168 1 240

“ignre (8.1 Input data for Leo.

2¥-72

Sh movies.. 5o they Are you

_named us after

,

<our mothers were keen

I'm Beetlegeuse
’ Sirius ?

and I'm
Antares !

36

wlternatively, draw out the constellation on a transparent sheet and use a version of
he sketchpad method used to draw a map in Chapter 1. You'll need to write a little
ounne to transfer the pixel coordinates to p$. and to input the magnitude suitably.
'hat’s a project for you, if you're keen. The system variable COORDS (Chapter 6) may
prove usetul.

“igure 18.2 Screen display for Ursa Major. See the Plough (Big Dipper) at top left?

"HE MAIN PROGRAM

“ou can delete the loading and checking routines, if you wish. Just dor't type RUN, or
vou Il lose the data and have to reload from tape. Use GO TO 1 instead.

Jbviously we need a routine to plot out the stars. This one plots a star whose size 15
ietermined bv the magnitude m, at pixel position x, v. (Magnitude 1 stars are the
srightest; then 2, then 3, and so on.) The constellation is number i.

M REM star plot

010 PAPER®: INK7: BORDER & CLS

WH FORt=1TOMSTEP3

W30 LETk = CODEpS(i. 1)

WA IFk =320Rk =48 THEN RETURN

W5 LETx=k:LETv=CODEp$(i.t~+1):
ETm=CODEDPS(i.t+2)

W60 GO SUB 8500

W70 NEXTt

8@ RETURN

3500 REM draw one star
310 LETs=10—2=+m
1520 PLOTx.y —s: DRAW, 2 *5

3530 PLOTx —s.y: DRAW 2 +5. @

340 PLOTx—s/2,y~s/{2: DRAWs. s
55¢ PLOTx-s5/2.y+s/2: DRAWs, —5
3560 RETURN

=

b

=

e

Now. we wanted three options: automatic list, scarch by name, and random test. Let’s
et up a little menu:

W PRINT “Star Charts™ "'
10 PRINT “Options:
. Automatic List
. Name Search
. Astroquiz”
20 INPUT “Option number?; opt

“ou’re an old hand at this game. so I'll leave the fancy formatting to your personal tastes.

30 GO SUB 1000 = opt
40 PAUSE @: CLS: GO TO 100

Now write the options:

0 FORi=1TO®6
#¥10 GO SUB 3000
#2¢ PRINT AT#®, ®; n$ (i) (TO CODE n$ (i, 13) };
‘“1{the [J"; e$ (i} (TO CODE e$ (1, 13)); *)”
#30 INPUT “Hit ENTER to continuc”. d$
M NEXTi
1350 RETURN

‘@@ INPUT “Latin name of constellation?””; q$

‘B FORi=1TO6

MY IFn$ (i) {TO CODE n$ (i, 13}) < > g$ THEN GO TO 2¢45

@30 GO SUB 8000

W0 PRINT AT @, @: g$; “C] (the O e$ (i) (TO CODE €8 (i, 13));)"
445 NEXTi

2856 RETURN

W@ LETi=INT(1+6*RND)

2019 GO SUB 2000

@20 INPUT “Which constellation is this?""; q$

30 IF g$ = n$ (i) (TO CODE n$ (i. 13)) THEN
'RINT AT 0.%; FLASH 1; “CORRECT!”

@40 TFq$ < >n$ (i) (TO CODEnS$ (i, 13)) THEN

38

'RINT AT @, 0. FLLASH 1: “Sorry, wrong answer™™
PRINT AT 1,0, FLASH @; n3 (i) (TO CODE n$ (i, 13))
859 PAUSE 100: RETURN

To try this out, hit GO TO 1 (remember, not RUN). and follow the screen instructions.

f vou have put more than 6 constellations in, you'll need to change the 6 in lines 1@,

‘D10 and 3000 to the new number.

;ave this using something like
:AVE “Starch” LINE 1

mnd it will then run automatically on loading, avaiding the danger of wiping cut your
rarables.

JOLUTIONS TO CRYPTANALYSIES PROBLEM (page 96)

Code abedetzhijklmnopgrstuvwxyz
weoueplysenhfikird jmyveax
“here are nine and sixtv ways of constructing tribal lays. and every single one of

hem is right.
Kipling)
Code abedefehijklmnopgrstuvwxyz
rtgpxeugtwocvzyvasnrlkhidjm
vge cannot wither her, nor custom stale her infinite variety. Other women cloy the

inpentes they feed.
Shakespeare)

Code abedefehijklmnopqrstuvwxyz
yerrsnnipkeuxdigavohlgimw

¥hen a man has married a wife he finds out whether her knees and elbows arc only

rued together,
Blake)

Code abedelghijklmnopyrstuvwxyz
kvgzfclotsndxuiegmvwrabhp
Nature's great masterpicee. the ¢lephant: the only harmless great thing.
Donne)

) course. vou won’t be able to work out the entire code: only the letters actually used.

v

Appendices

42

Appendix A: The Cassette Hle System—
A Reference Description ol cfs

Althoueh, in this book, ¢fs has been used solely inside sdm (the Spectrum Data
vianager), there is. of course. no reason why vou shouldn’t build it into other programs.
To do so. vou simply enter all the ¢fs routines. together with their identifiers and starting
in¢ numbers. and save it as a program called “cfs”. When you've entered the program
viich uses cfs, you simply enter:

VIERGE cfs

ana olay the “cfs™ tape, as if vou were doing a normal LOATD. The effect is to combine
he program in memory with that on tape. providing a neat way of getting fs {or any
yther set of utility routines) into any program.

) course, the main program must not use any of the line numbers that ofs uses, and
:are must be taken not to allow contlicts in the use of variable names (otherwise it's too
‘asv (0 set g Lo 1, call a subroutine, and then find that g has mysteriously become 14},

" ’his appendix provides the information necessary 1o avoid such conflicts.

1 complete listing of ¢fs is given. together with descriptions of the actions of cach
outine. and variable names used by it. Note that the listing is nor identical with that

nven in the text. The improvements discussed elsewhere have been made, and some
enumbering has been done.

ANE NUMBERS

7y uses line 1 and all line numbers from 980 upwards.
TARIABLE NAMES

'he names used by ¢fs can be divided mto four types:

Global

1 global variable is one which may be used by a number of ¢fs routines, and con-
eauently must never be redefined by the user program.

‘or instance. inircfs seis up an array called n$ which holds the names of the fields in the
iles. If the user redefines it anywhere in his program, all ficld names will immediatcly

recome blank strings!

Local

i'hese are names which are used by a ¢fs routine, but have no significance outside it. The
ISer program may use such names provided it does not need their values preserved

icross a cail to the ¢fs routine which uses them locally. For instance. inrec uses p and ¢ as
oop counters. If we write:

FORp=1TO4
70 SUB inrec
NEXT p

the loop will only be executed once if the p-loop in inrec was executed four or more

imes!
Jut writing:
‘ORp=1TO4
10 something else
NEXT p
7O SUB inrec

s periectly legitimate.

Parameters paysed o ofs routines
"hese are the names of variables which ¢fs is to work with. For instance, r§ must be
Odssed to write for its contents to be output.

Parameters returned by cfs routines
“hese are the names of variables which a ¢fs routine generates for subsequent use by the
Iser progranm. For instance, 135 is returned by read.

sLOBAL VARIABLES

Vame Use

DT Number of bytes per record

0L End of File flag; # = notend of filc. 1 = cnd of file

i) Name of input file

3 Name of output file

o) pointer to next record in input buffer

F() 2D array acting as input buffer. Size determined by
¥ (1) and bpr

nbe Current input block number

13011, 1) array holding names of up to 18 fields per record.
‘ach field name mav be up to 18 bytes long

o Pointer to next recerd in output bufler

wi) 2D array acting as output buffer. Size as for 1%

wrhe Current output block number

witch Set to zero when no recorder is activated; set to 1 if
i recorder is activated

vill) Array helding the field widths, in bytes, of the fields

iamed in nS. w (1) holds the number of records per block

ROUTINE DESCRIPTIONS

close
sction Writes file delimiters to output buffer
Tarameters passed to close None
etumed None
lobal variables affected MNone (but note that r$ is overwritten)
.ocal variables None
1s routines called write
Listing

1740 LET S = “}}”
1750 GO SUB write
1760 LET ¢S = “cfsend”
IR GO SUB write
Y180 RETURN

setblock
Letion Inputs a file block
Tarameters passed to getblock Nomne
ewumed None
ilobal variables affected inbc. 1$. ip
.ocal variables m$
s routines called mesp

43

isting
1200
810
1820
1825
B30
1840
850
B0

niicfs

sction

LET m$ = STR% inbc

GO SUB mesp

LOAD S + m$ DATA$()
POKE 23692, 255

(30 SUJB mesp

LETip=1

LET inbc = inbc + 1
RETURN

Initializes the system and sets up file
names and descriptions. Dummy files are
named “null”

Parameters passed to initcfs None

eturned None

ilobal variables affected n$, w, ip. op. inbc, outbe, bpr. cof, switch.

(%, g5.15, 0%

.ocal varahles P
*Is routines called setup. mesp, mesr. reset

Listing
-‘Ism
Q2505

1510
514
1515
1520
9521
1525
1530
1535
1540
545
547
1548
550
)555
1557
156

nrec

wetion

DIMn$ (11, 1#h): DIM w (11): LET bpr = 8: GO SUB reset
[INPUT *‘Enter input file name™"; f$

IF f$ = “null” THEN GO SUB setup: GO TO 9525
GO SUB mesp

LOAD S + “h1” DATA n§{)

LOAD TS + “h2” DATAw{)

GO SUB mesp

INPUT “Enter output filename™; g$
FORp=2TO 11

[LET bor = bpr - w(p)

NEXTp

DIM i$ (w (1), bpr): DIM of (w (1), bpr)

IF g8 = “nuil” THEN RETURN

GO SUB mesr

SAVE g5 + “h1”" DATAnS$ ()

SAVE g$ + “h2" DATA w ()

GO SUB mesr

RETURN

Prompts for a record entry from the key-
noard, field by field, and packs the result
into r$

*arameters passed to inrec None

erumed r$
slobal variables affected MNone
.ocal variables a$, begin, p, ¢, end
-1s routines called MNone
isting
D@ DIM a3 (bpr)
W@ CLS: LET begin =1
e FORp=2TO1l
25 IFn$(p, 1) =“0"THEN GO TO912@
W@ PRINTATp.@;n$(p.1);“:": AT p.4;n$ (p) (2 TO)
Wk FORc=1TOw(p)
P59 PRINT ATp, 14+ "
Mol NEXTc
W0 LETend = begin +w (p) — 1
WEO INPUT (n$ (p) (2 TO)); a$ (begin TO end)
W9 PRINT AT p, 15; aS (begin TO end)
1M LET begin =end + 1
110 NEXTp
MN20 LETr$=a$
"33 RETURN
nesp
\ction Displays a prompt to turn PLAY recorder
»n or orf
Tarameters passed to mesp None
eturned None
1lobal variables affected switch
.ocal variables MNone
s routines called None
ASting
14 PRINT INVERSE 1: “Start”™ AND NOT switch; “Stop™ AND switch:
‘nlay recorder”
M58 BEEP .2.15: PAUSE 6: BEEP .3, 20: PAUSE 80
1168 LET switch = NOT switch
170 RETURN
mesr
sction Displays a prompt 10 turn RECORD
‘ecoraer on or off
*farameters passed to mesr None
eturned None
rlobal vanables affected switch
ocal variables None
15 routines called None

45

dsting

33 PRINT INVERSE 1: “Start” AND NOT switch; “Stop™ ANI} switch;
“recording”™
VI BEEPFP 2. 20: PAUSE 6: BEEP .3, 15: PAUSE 83
3200 LET switch = NOT switch
133 RETURN
outrec
Action Displays record in 13 in fields on the screen
Parameters passed to outrec rh
eturned None
ulobal variables affected None
«ocal variables p. begin, end
cIs routines called None
isting
200 LET begin = 1
210 FORp=2TO 11
215 IFn$ (p.1)="0O0"THEN PRINT: RETURN
220 PRINT n$ (p. 1);*:"; TAB 4;n8 (p) (2 TO):
1240 LET end = begin + w(p) — |
1250 PRINT TAB 15; r$ {(begin TO end)
260 LET begin =end + 1
270 NEXTp
&G PRINT: RETURN
sutblock
yction Qutpuls a block to tape
Parameters passed to putblock None
ecturned MNone
slobal variables affected op. outbhe
ocal variables m$
15 routines called None
Listing
W LET m$ = STRS$ outhe
0910 GO SUB mesr
1920 SAVEg$ + m$ DATA o3 ()
193¢ GO SUB mesr
194¢ LETop=40
W5 LET outbe = outbe + 1
Wl RETURN
read
Action Read a record into r¥

‘arameters passed to read
crurncd

rlobal variables affected

.ocal variables

s routines called

_isting

None

r$

ip, eof
MNone
getblock

W TF ip = @ ORip = w (1) THEN GO SUB getblock
W14 1F S (ip) (TO 6) = “cisend” THEN PRINT “Attempt to read past end

i file™: STOP
620 LET 3 = i$ (ip)

1625 IFr§(TO2) = “}" THEN LET cof = 1

W3 ILETip=ip+1
vl RETURN

‘omment: Note that eof is set to zero by reset. So if an input file is to be reread without
tsecond call to inécfs, and the test for end of file is of the form IF cof THEN
. itis necessary to insert GO SUB reset at the beginning of the reread.

I'his will also reset the buffer pointers and counters correctly.

eset

scton

‘arameters passed to reset
erurned

tlobal variables affected

ocal variables

15 routines called

listing

Sets buffer pointers, file flags etc.
None

None

ip, op. inbe, outhe, cof, switch
None

None

970 LETip=0:LET op = ¢: LET inbc = &:
EToutbc = 3; LET cof = @: LET switch =

2@ RETURN
etup
sction
Parameters passed to setup
ciumed
slobal variables affected
.ocal variables

Ts routines called

Listing

Allows the user to define record and block
‘ormats

MNone

None

nf, w

nf. p

None

4@ INPUT “Enter no. of fields™: nf

g5 CLS

410 FORp=2TOnf + 1

415 PRINT AT 10, 2; “Field [1; p—1
420 INPUT “Name of field (1st char: ¢/n):"": n$ (p)

147

1422 [Fn$(p. 1)< >*“c” ANDnS (p. 1) < >“n" THEN GO TO 942¢
1425 INPUT “No. of bytes:™": w (p)

430 NEXTp
435 CLS
M4 INPUT “No. of records per block:™: w (1)
‘445 RETURN
write
vction Writes a record in r§ to file
‘arameters passed to write r$
eturned None
jlobal variables affected op, 0%
.ocal variables None
s routines called putblock
isting

Y70 LETop=op+1

710 LET oS (op) =1}

17280 TFop — w (1) OR r$ = “cfsend” THEN GO SUB putblock
1730 RETURN

‘NITIALIZATIONS ON LINE 1

LET close = 9740: LET getblock = 9803: LET initcfs = 9508
ET inrec = 900¢: LET mesp = 9140: LET mesr = 9304:
ET outrec = 920¢: LET putblock = 999): LET read = 960
ET setup = 9408: LET write = 970¢: LET reset = 9970

Appendix B: Automatic Cassetie Control

t has alreadv been pointed out that, in principle, there is no difficulty about controlling
"assette motors automatically. Here is a specific technique for doing so.

A suitable I/O port is the ZX Spectrum PPI port marketed by Kempston (Micro)
“lectronics. This has three 8-bit ports on it which can be programmed to act as input or
yutput ports, or combinations of the two. So far as we are concerned here. only 2 bits out
i1 the available 24 are needed! So we'll select the low bits (bit #) of ports B and C to
-ontrol the PLAY and RECORD cassettes respectively. (This is because the connec-
ilons to the sockets for these ports are the same, whereas those for port A are slightly
ifferent.)

"'he port cannot be used to drive a relay directly, since only very small currents may be
irawn (TTL levels). So the output is used to switch a transistor, as shown in Figure B1.

“assette
lemote * Relay coul (120 ochms minimum})

Tack

12V

2elav
onLacts

‘ort B {or C})

31t N0, - ? 0

LAY

“Teure BI

The ports are initialized as output mode by the statement:
JUT 127, 128
This can be inserted at the beginning of initcfs.
t is then necessary to turn on PORT B bit @ to activate the PLAY cassette, and to turn
m PORT C bit @ to activate the RECORD cassette. To do this, we just replace the
:ubroutines mesp and mesr as follows:
nesp: 9149 LET switch = NOT switch
1150 OUT 63. switch

'160 RETURN

nesr: Y300 LET switch = NOT switch
31¢ OUT 95, switch
3120 RETURN
»3 and 95 are the addresses allocated to ports B and C, respeetively.
The circuit diagram (Figure B1) is based on one devised by Kempston (Micro)

“lectronics who mav be contacted at 60. Adamson Court, Hillgrounds Road,
Kempston, Bedford MK42 8QZ.

Appendix C: A User Guide o SDWV —
The Spechrum Dala Manager

;DM is a simple data management system which allows the use of one input and one
wrtput file. Either of these files may be specified as non-existent by giving it the reserved
1ame “null™. Records are of fixed length format, and may consistof up to ten fields, each
1aving a user-defined name and length. A Neld name may consist of up Lo len characlers,
he first of which must be either “¢” or *n" (lower case only) to indicate whether the field
s of tvpe character or numeric. This distinction is important, because it will determine
low searching of, and additions to, the files are done. For instance, an attempt to search
ot records whose third field contains 357 will not find a record whose third field is 357.¢
r +357 . if the field has been declared of type “c””. Also, itis illegal to attempt to sum “"c™
ype lields.

‘ile names are user-defined. They must obey the normal rules for BASIC file names,
xcept that they must not exceed 8 characters in length (2 fewer than the BASIC
estriction). If the file is to be very long, it mayv be safer to impose a limit of, sav, 6
‘naracters per name. The reason is that the final filename passed to BASIC is formed

rom the user filename plus a block number. In fact the blocks of a file called “filename™
H =

Glenamehl
ilenamch2
filename®
filenamel
1lename?
etc.

I'he first two blocks form a header label which describes to the system the record and
iield structure of the file. The data blocks follow this, and are labelled sequentially from
‘ero upwards. Consequently, a file having more than 100 blocks and an 8-character
1ame wiil transgress the rules of BASIC and the program will break with error F. In
ractice, however, a file of this size is unlikely.

Operations allowed by SDM are:

. The crearion of files.
*. The modification of existing files by adding or dcleting records, or by the creation of
:ubfiles.
!. The searching of files for records having specified attributes.
i, The totalling of all specified numeric fields within a file.

\ccess to these operations is provided via a menu which is displayed after each operation
s compieted. Note, however, that this repetition of the menu is to facilitate several
yperations on the same file. If several operations are to be performed, but on different
iiles. the program must be rerun.

ACTION OF SDM

vfter SDM has been loaded and RUN entered, the message **Spectrum Data Manager™
s displayed on the screen, followed by a prompt for the input filename. If there is an
nput file, this should be loaded into the PLAY recorder and the name of the file
:ntered. The svstem will request that the recorder is activated, and will enter the two
neader blocks. It will then ask for the recorder to be turned off.

If there is no input file, the word “null” should be entered. The system will then
equest a file definition.

150

‘The prompts are (in order):

|7 Prompt | Meaning
1. Enter no. of fields | Number of fields in 1 record
Thesc steps [2. Name of ficld Enter the name of aficldascorn
are repeated {1st char: ¢/n) followed by at most 9 characters.
for each field. e.g. a field containing a name might
The ficld = be “cname™, one containing a bank
number is balance might be “nbal”
l.dlS[')l‘c,l}'.C!j - 3. No. of bytes This is the maximum number of bytes
an additional -

which is anticipated to be occupied
by a value stored in the field whose
name has just been given

prompt

4. No. of records For simplicity of operation, this

per block should be chosen fairly large.
typically 2@ or more. However,
memory restrictions and the size of
cach record will create a practical
barrier to large block sizes,
particularly for a 16K machine.
Maximum block sizes can fairly easily
be calculated in a given case, but it is
usually easier to choose a value by
trial and error., simply ensuring that
code 4 “Out of memory™ does not

oocur

i'he system will then prompt for an output filename. If no new file is to be generated, this
:nould be entered as “null”. Otherwise a filename should be entered under the same

ruies as before. The svstem will then request the RECORD recorder to be turned on,

ind will save the header blocks, after which it will prompt for the RECORD recorder to
e switched off.
“he menu will now be displaved as shown below:

ptions are:
1) create
2} add
3} delete
i) search
1) sum
J} exit

and the user is prompted to enter one of these (numeric) options.

“ach ootion is now described individually.

) create

The user is prompted to enter each field of a record in turn. The allowed size of the field

s indicated bv the appropriate number of underline characters appearing against the
ield name. (The field type is separated from the rest of the name by a colon as in n:bal).
1s each field is entered, the record is built up on the sereen so that the user can check his
:ntrv. When a record is completed the prompt “Any more (y/n)?” will appear. If there
ire further records to be entered the user types “y”, otherwise “n”". In the former case
he procedure will be repeated: in the latter case the user will be prompted to turn on the
RECORD recorder and the file will be closed. (Note that the creation of a file will be
sunctuated by prompts to control the recorder as blocks are filled.)

51

52

%) add

The user is prompted for the number of records he wishes to add to the file. These are
hen entered in the same way as for the create routine (except that the process is repeated
the specified number of times, rather than a prompt for another addition being issucd at
the end of each record entry). They may be entered in any order.

"'he user is next prompted for the key field name. The name of the field which defines
he order of the records on the file should be specified. This name must not include the
icld tvpe (e.g. write “bal” not “nbal™). The new records are now inserted automatically,
vith the svstem prompting the user from time to time to perform cassette control.

) delete

"he user is prompted first for the number of record types to be deleted, and then for the
iame of the key field (excluding the type code).

‘inally, he is asked to enter each key whose associated record is to be deleted.

‘or example, suppose it is desired to delete the records of A. BROWN, G.N.
2ODDS and P. ADAMS. We enter:

Iow many records? 3
:nter key field name: name
nput deletion (key only): A. BROWN

nput deletion (key only): G.N. DODDS
nput deletion (key only): P. ADAMS

I'he svstem will then respond in a similar way to that to the edd routine.

*1 search

T'he user is first prompted for the name of the key field (i.e. that on which the searchis to
be made). If thisis a c-type key, the next prompt is for a target key. For example, if a field
-ailed craxded exists whose contents will be “y" if an item is tax deductible, and it is
1esired to list out all tax deductible transactions. the answers to the prompts will be:

‘nter key field name: taxded
i'arget key: y

f the key field is an n-type the second prompt requires a range. If only a specific target is
reguired, both ends of the range should be entered as the same value. For instance, if

there is a field called rarmmount. and we wish to examine all records whose amount field is

:xactlv 1@, then the prompts will appear as:

‘nter key field name: amount
Kev range—low: 100
gh: 100

f. however. the search is for all values greater than or equal to 108 we could enter:

Kev range—low: 100

tigh: 1004

srovided that we know that no values greater than 999 can exist. Such a value can always
e chosen because we know the field width, so the above specification is guaranteed to

e correct if namount has a length of 3 bytes. Similarly, if all entries less than some

:pecified value are required, the “low™ value must be set lower than any possible value
c.g. — 100 for a 3-byte field).

"he user is finally prompted for the device to which output is to be steered. This may
»e the display (device 1), a printer {device 2) or the output file (device 3).

I'he latter option allows the production of subfiles (e.g. a new file containing only tax
ieductible items can be created).

Note that, although there is no “list” option to list the entire file to a printer, search

-an mimic this function by using any numeric key with the “low" and “high” values both
witstde the allowable range.

i) sum

I'he user is prompted for a field name whose contents are to be summed throughout the
ile. The field must be numeric. otherwise an error message is printed and the system
‘eturns to the menu. The final total is displayed on the monitor. and the system waits
until a kev is hit before returning to the menu.

sENERAL COMMENTS

11l the standard overations are performed on the whole file. So a question such as
“What is the total of tax-deductible items?" cannot be answered directlv. However, the
wroblem can be solved by creating a file of 1ax-deductible items using search. and then
umming the amount fields in the new file.

amilarly, complex searches (example: how many tax-deductible items are there
vhose values are between £50 and £1007) can be performed by doing successive searches
ind generating a new subfile each time.

53

Appendix D: Specirum Data Manager— Pragram listing

I'he final revised listing of SDM is given below. For simplicity, it includes the cfs
outines: so if vou already have these SAVEd, you should nat copy lines 1 and 9(d)--998(
~OAD them in first, or MERGE afterwards.
4 ® lan Stewart and Robin Jones 1982
LET close = 9749: LET getblock = 980): LET initcfs = 9506
[ET inrec = 90@0: LET mesp = 914(: LET mesr = 93(i:
ET outrec = 9200: LET putblock = 9900: LET read = 960¢:
ET reset = Y970: LET setup = 9400 LET write = 9700
LET loutrec = 880@: LET extractkey = 780: LET loosends = 76(00:
ET compe = 7408: LET compn = 7208: LET sort = 7000:
ET ckevtest = 680@: LET nkeytest = 66(0
B CLS
@ PRINT AT®, 5; “Spectrum Data Manager”
5 GO SUB initcfs
26 CLS
‘@ PRINT AT 2. &; “Options arc:”
) PRINT AT 3, 11; ““1) create”
‘1 PRINT AT 4. 11;*2) add”
2 PRINT AT 5, 11;**3) delete”
13 PRINT AT6. 11; **4) search”
i4 PRINT AT 7. 11;*°5) sum”
5 PRINT ATE, 11; “6)exit”

10 INPUT “Enter option:™; opt
18 GO SUB 2¢¢ + opt

20 GO SUB reset

3 GOTO?26

0} GO SUB inrec

18 GO SUB write

220 INPUT “any more? (y/n)"; q$%
30 IF g8 = “y” THEN GO TO 204
4B GO SUB close

50 RETURN

i3 INPUT “How many records?”; nr
‘10 DIMbS (nr, bpr)

120 FORgq=1TOnr

133 GO SUB inrec

140 LETbS (q) = 1$

50
A0
65
S0

110
120
30

550
560
V7
30
W90

20

NEXTq

GO SUB extractkey

GO SUB sort

LET ap =1

GO SUB read

IF ap = nr OR eof THEN GO SUB loosends: RETURN

LET s$ = r$ (begin TO end): LET t$ = b8 (p) (begin TO cnd)

IF ctype THEN GO SUB compe

IF NOT ctype THEN GO SUB compn

IF comp < $# THEN GO SUB write: GO TO 48

IF comp = = @ THEN LET t$ = rS: LET 1§ = b$ (p): GO SUB write:
ETr$=t$: LET ap = ap + 1: GO TO 49¢

INPUT “"How many records?™; nr

GO S5UB extractkey

DIM ds (or, end — begin + 1)
FORp=1TOnr

INPUT “Enter deletion (key only):™"; d3 (p)
NEXT p

GO SUB read

IF eof THEN GO SUB close: RETURN
FORp=1TOnr

IF r$ (begin TO end) = d$ (p) THEN GO TO 660
NEXT p

GO SUB write

GO TO 660

GO SUB extractkey

IF ctype THEN DIM k$ (end — begin + 1}: INPUT “Target key:": k$
IF NOT ctype THEN INPUT “key range—low:"": low. “high:™: high
INPUT “Display (1). print {2) or file (3):"; opt

GO SUB read

IF cof AND opt = 3 THEN GO 5UB close: RETURN

IF eof THEN INPUT “Enter ¢ to continue™; k$: RETURN

IF ctype THEN GO SUB ckeytest

IF NOT ctype THEN GO SUB nkeytest

IF NOT match THEN GO T() 848

LET bs = begin: LET es = end

IF apt = 1 THEN GO SUB outrec

IF opt = 2 THEN GO SUB loutrec

IF opt = 3 THEN GO SUB write

35

150

200

10

624

6300
w10
820

mao
20
030
&40
050

W70
050

200
210
220
239

‘410

LET begin = bs: LET end = es
GO TO 849

LET sum = @
GO SUB extractkey
[F ctype THEN PRINT “Key not numeric”: PAUSE 120: RETURN
GO SUB read
IF eof THEN PRINT “Sum of [1""; k$: "= O sum:
NPUT “Enter ¢ to continue™; k$: RETURN
LET sum = sum + VAL r§ (begin TO end)
GO TO 1030

STOP

LET match =1

IF VAL r$ (begin TO end) < low OR VAL 1§ (begin TO end) = high
I'HEN LET match = @

RETURN

LET match =@
IF k$ = r$ (begin TO end) THEN LET match = 1
RETURN

LETinc=1

LET flag =@

FORp=110nr - in¢c

LET s$ = b3 (p) (begin TO end): LET 13 = b$ (p + 1) (begin TO end)

IF ctype THEN GO SUB compce

IF NOT ctype THEN GO SUB cempn

IF comp >#THEN LET 8 = b$ {p): LET b$ (p) = b${p + 1):
ETbS(p+1)=1t$: LETflag =1

NEXTp

IF flag = @ THEN LET inc = inc + 1: GO TO 7085

RETURN

IF VAL s$ < VAL t§ THEN LET comp = — |
IF VAL s$ = VAL t$ THEN LET comp - @
IF VAL s$ > VAL t§ THEN LET comp = 1
RETURN

IF s$ < t$ THEN LET comp = —1
IF s$ = t$ THEN LET comp = ¢

420
430

O
610

‘630

65
660
670
680
690
700

800
810
820
7830
840
‘850
860
870

890

1880

00
010
o020

W25

30

IFs$ > t$ THENLET comp =1
RETURN

IF ap > nr THEN GO TO 767§
FORp=apTOnr

LET % = b$ (p)

GO SUB write

NEXTp

GO SUB close

RETURN

GO SUB write

GO SUB read

IF eof THEN GO SUB close: RETURN
GO TO 7679

DIM k$ {9): INPUT “Enter key field name™; k$
LET begin =1

FORp=27T011

IFn$ {p) (2 TO)=k$ THEN GO TO 786i}
LET begin = begin + w (p)

NEXT p

LET end = begin + w{p) — 1
IFnS(p,1)=*¢c"THENLET ctype = 1
IFnS(p.1}="“n"THENLET ctype =0
RETURN

LET begin =1

FORp =2TO 11

IF n$ (p. 1) = “[0” THEN LPRINT: RETURN
LPRINTn$ (p, 1):*:"; TAB4;n$ (p)(2TO);
LET end = begin + w(p) — 1

[LPRINT TAB 15; 1§ (begin TO end)

LET begin =end + 1

NEXT p

LPRINT: RETURN

DIM a$ (bpr)

CLS: LET begin = 1

FORp=2TO11

IF n$ (p, 1) = “0O0" THEN GO TO 9120

PRINT ATp.®n$ (p, 1);“:"; AT p.4:n$ (p)} 2 TO

157

58

04
W50
ol
W74
R0
W0
M)
110
120
130
140

M50
V6P
170

200
21d
3215
29
240

250

270
280

144
405
1419
%415
420
1422
425
430

FORc =1TOw{p)

PRINTATp. 14+ ¢ "

NEXT ¢

LET end = begin + wi{p) 1

INPUT (n8 (p) (2TO }); a¥ (begin TO end)
PRINT AT p, 15: a% (begin TO end)

LET begin = end + 1

NEXT p

LETr$ = a%

RETURN

PRINT INVERSE 1: “Start”™ AND NOT switch: “Stop”™ AND switch:
LAY recorder™

BEEP .2. 15: PAUSE 6: BEEP .3. 2% PAUSE 8¢
LET switch — NOT switch

RETURN
LET bepin = 1
FORp=2TO 1l

[Fn$ (p. 1) = “00" THEN PRINT: RETURN
PRINT n (p. 1): " TAB4:nS(p)(2TO);
LET end = begin + w (p) — 1

PRINT TAB 15. r$ (begin TO end)

LET begin = end + 1

NEXT p

PRINT: RETURN

PRINT INVERSE 1; “*Start™ AND NOT switch:
*Stop” AND switch: “recording”

BEEP .2, 20: PAUSE 6: BEEP .3. 15: PAUSE 80
LET switch = NOT switch

RETURN

INPUT “Enter no. of fields:": nf

LS

FORp=2TOnf +1

PRINTAT 10.2: “Field O™ p — |

INPUT “Name of field {1st char: ¢/n):"; n3 (p)

[FnS(p. 1} < ="¢" ANDnS (p. 1) < ="n" THEN GO TO Y420
INPUT “No of bvtes:”; w (p)

NEXTp

1435
440
1445

et
505
510
1514
515
1520
1521
1525
1530
1535
1540
1545
1547
1548
B30
1555
557
1560

H10

620
1625
30
640

700
710
720
1730
740
1750
Y760
T
1780

CLS
INPUT *No ot records per block: "1 w (1)
RETURN

DIMn$ (11, 18): DIMw{11): LET bpr = #: GO SUB reset
INPUT “Enter input filename:™; 3

IF f$ — “null” THEN GO SUB setup: GO TO 9525
GO SUB mesp

LOAD S +“hl”" DATAn$ ()

LOAD S + "h2" DATAw ()

GO SUB mesp

INPUT “Enter output filename:™"; g8
FORp=2TO 1l

LET bor = bpr + w (p)

NEXT p

DIM i$ (w (1), bpr): DIM o$ {(w (1), bpr)

IF g% = "null” THEN RETURN

GO SUB mesr

SAVE ¢f + "h1" DATA n$%(}

SAVE g + “h2" DATAw ()

GO SUB mesr

RETURN

[Fip =@ ORip > w{1) THEN GO SUB getblock

IFi$(ip)(TO6) = “cfsend” THEN PRINT “Attempt to read past
cna of file™: STOP

LET r§ = i$ (ip}

[Fr$(TO2)="“}"THENLET cof=1

[ETip=ip+ 1

RETURN

LEI op=op +1

LET 0% (op) = r$

IF op = w {1) OR 1§ = “cfsend” THEN GO SUB putblock
RETURN

LET 8§ ="

GO SUB write

LET r$ = “cfsend”

GO SUB write

RETURN
59

180 LET m$ = STRS inbe

818 GO SUB mesp

W20 LOADIS + mE DATAS()
W25 POKE 23692, 255

1830 GO SUB mesp

840 LETip = 1

1850 LET inbc = inbc + 1

186¢ RETURN

M LET m$ = STR3 outbe

910 GO SUB mesr

928 SAVE p$ + m$§ DATA 08 ()

030 GO SUDB mesr

940 LETop=140

1950 LET outbc = outbe + 1

W6 RETURN

970 LETip=0:LET op = #: LET inbc = §: LET outbc = &
ET eof = §: LET switch = @

980 RLETURN

Appendix E: Make your own Load/Save Switch

fow many times have you forgotten to remove an “car” jack when saving a program?
In the fifteenth occasion I did this. [decided it was high time I took steps to prevent it.
Iere’s a simple but practical solution.

‘ou need:

a) 4 x 3.5mm jack plugs.

b) 1 miniature 2-pole. 2-way slide switch.

¢) 2 metres of screened microphone cable (single core).
d) An old cassetie case.

a), {b) and (c) are available in any electronics shop for something between 25p and 50p
:ach. (d) can be any convenient small plastic box.

Irill four holes in the narrow sides of the box large enough to allow the cable to pass
hrough. Make a hole in one of the large faces to accommaodate the slide switch. (The
-asiest wav 10 make sure this hole is just the right size is to cut a piece of PVC adhesive
apc to act as a template. Now make the connections shown in Figure E1.

Cassette
case
. ¥ 1
Bar C, | _ED Ear
oad
4 lear view of
. s shide switch
c_I_I_ ::ave
MicC__ | E:) Mic

‘dgure .1 Cireait diagram for LOADISAVE swirch.

doure £.2 Front view af switch.

6l

62

fgure £.3 Back view of switch.

‘inally, colour code the jack plugs with PYC adhesive tape to avoid confusion.

\ll this does is provide a break in the “ear” lead so that on SAVE you use the switch in
he SAVE position (logical!), and slide it back to LOAD for LOAD or VERIFY . Note
hat the “mic” lead isn’t actually connected to anything in the box, but it’s convenient to

*hread it through the case simply to avoid losing it.

her titles of interest
Lasy Programming for the ZX Spectrum
an Stewart & Robin Jones

Computer Puzzles: For Spectrum and ZX81
'an Stewart & Robin Jones

(zames to Play on Your ZX Spectrum
Martin Wren-Hilton

?EEK. POKE, BYTE & RAM! Basic Programming for the ZX81
lan Stewart & Robin Jones

Yar and away the best book for ZX81 users new to computing'— Popular Compuring
Yeekly

. . the best introduction to using this trail-blazing micro’—Computers in Schools

Ine of fiftv books already published on the Sinclair micros, it is the best introduction
iccessible to all computing novices'—Laboratory Equipment Digest

Viachine Code and better Basic
lan Stewart & Robin Jones

The ZX81 Add-On Book
Martin Wren-Hilton

shiva Software

spectrum Special 1
an Stewart & Robin Jones

1 selection of 10 educational games and puzzles.

\vailable from March '83
spectrum Machine Code
an Stewart & Robin Jones

spectrum in Education
iric Deeson

trainteasers for BASIC Computers
yordon Lee

Shiva Software

Spectrum Specials 2 & 3
lan Stewart & Robin Jones

63

Easy Programming helps you get

m compufer.

This sequel 10
more out of your ZX Spectru

Enhance it:

. Cassette files

o 'ﬂatamanagement

. Crashproof graphics
rlexible line-1€ pumbering

xploit it:
» Uses-defined functions
» System vanables
. Attribute and display files
« Brand new character sets

‘mploy it

« Star charts

« Code-breaking

 Psychology

» Statistics
al selection of programs and appli-
K of memory, and so0
odel of the Spectruri.

An Origin
cations needing only 16
RUN on either m

N YOUR SPECTRUM?

can be

wHY NOT BROADE

Sthv S A,
SR ERRIshi Dinnred ESHENSOSUDERED
-, & 20 -. '_‘4 0 y
. URopiice £35S
LAl nel

