GOsSUBS

100

Program-Building Subroutines

n
Timex/Sinclair BASIC

Ewin Gaby and Shirley Gaby

McGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco Auckland Bogota
Guatemala Hamburg Johannesburg Lisbon London Madrid
Mexico Montreal New Delhi Panama Paris San Juan
Sao Paulo Singapore Sydney Tokyo Toronto

The author of the programs provided with this Dook has carefully

reviewed them to ensure their performance in accordance with the
specifications described in the book. Neither the authors nor McGraw-Hill,
however, makes any warranties whatever concerning the programs.

They assume no responsibility or liability of any kind for errors in the
programs or for the consequences of any such errors.

As used in this book, the terms **Timex/Sinclair 1000°" and *“T/S 1000™
refer to the Timex/Sinclair 1000, a computer manufactured and sold

by the Timex Computer Corporation. Timex/Sinclair 1000 is a

registered trademark of the Timex Corpe [imex/Sinclair
1500 and Timex/Sinclair 2000 are also registered trademarks of the

Timex Corporation

GOSUBS: 100 Program-Building Subroutines in Timex/Sinclair BASIC

Copyright © 1984 by Ewin Gaby and Shirley Gaby. All rights res
Printed in the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a data base or
retrieval system. without the prior written permission of the publisher.

A BYTE Book

1234567890 SEMSEM 8932109876543

ISBN 0-07-022k77-b

LIBRARY OF CONGRESS CATALOGING IN PUBLICATION DATA

Gaby, Ewin
GOSUBS : 100 program-building subroutines in Timex/
Sinclair BASIC.

Includes index.

1. Timex 1000 (Computer)—Programming. 2. Basic
(Computer program language) 1. Gaby, Shirley. II. Title.
QA76.8.T48G23 1984 001.64 83-16220
ISBN 0-07-022677-6

The editors for this book were John A. Aliano and Paul Farrell;
and the editing supervisor was Charles P. Ray.

Contents

Preface

Chapter

How to Use this Book
Introduction to Subroutines
Area and Volume
Conversion

Statistics

Business

Maximum, Minimum, and
Sequence

INKEY$ and SCROLL
Graphing

Tables

Preface

Books about the Timex/Sinclair Computer are becoming more

and more common. Yet, a great majority of them seem to

address only games or the intricate generalities of **program-
ng.”’

Now, here is a book that addresses specific needs of the
home, business, and school; describes how to assemble pro-
grams in cookbook fashion; and provides a large number of
tested subprograms which can be used straight from the book.

With this book, your programming skills are less impor-
tant than your ability to determine what you want to accom-
plish! What's more, your skills will grow as you use it. The
content is arranged to lead you from simple to more complex
concepts, and to support you all the way. By using the building
blocks provided, and the many helps and suggestions which
accompany them, you’ll soon be able to construet many useful
programs.

Combining your own creative ideas with this book’s con-
cepts, you'll quickly develop better and more unique pro-
grams. You become the powerful force behind your computer.

Using the building blocks furnished, it is possible to de-
sign programs for checkbook registers, budgets, accounts pay
able, ledger sheets, statistics. test scores, percentile ranking,
inventory, tax retumns, directories and much more. In addition,
the many conversion, mathematics, plotting, and program
control subroutines will enrich your ability to write unique and
exciting programs.

If you want to use your computer for more than games,
then this book is for you. With it, you can easily learn to
design quality programs that will do all of those useful things
you thought a computer should do—and more!

viii / Preface

Ewin Gaby and Shirley Gaby

[J ﬂ ®
Chapter

How to Use this Book

The equipment

The audience

Typographical conventions used in this book

® Using this book with the T/§ 2000 and Spectrum

Suggestions: keywords and SAVE

The Equipment

The programs in this book are designed to run on the Timex/
Sinclair 1000, the Sinclair ZX81, and the Sinclair ZX80 (with
8K ROM). With a very few exceptions, these programs also
will run on the Timex/Sinclair 2000 and the Sinclair Spectrum
color computers. (Even the few exceptions will run on the
2000 and the Spectrum with only minor modifications.)

The Audience
The book is designed to provide both the novice and the ex-
perienced programmer with useful “‘building blocks™ from
which programs can be constructed, modified, and refined.
These building blocks are parts of programs which perform
specific tasks and they are called subroutines.

The subroutines are arranged in a sequence that should
make it easy for the novice to proceed from simple, easily
understood computer concepts toward fairly complex ones.
And while this arrangement will give the novice a better un-
derstanding of the operation of the computer, it will also pro-
vide the experienced programmer with a wide range of ready-
to-use subroutines.

Each chapter begins with a careful description of the sub-
routines under discussion, and makes suggestions about how
the subroutines may be used. In some cases, illustrative sam-

ple programs demonstrate how subroutines can be combined.

2 / Chapter 1 .

In order to use the subroutines in this book, it is not
necessary to read the text. However. the text will provide the
reader with useful information about the design, use, and pos-
sible modification of all the subroutines. For the novice, the
text should be considered a self-teaching guide, starting with
the simplest applications and leading to complex computer
functions, including an introduction to machine language pro-
grams.

Typographical Conventions Used in
This Book
The conventions used throughout the book are relatively stan-
dard, and will for the most part be familiar to those who have
used the Timex/Sinclair and Sinclair Manuals. All keyword
commands and all functions are printed in BOLDFACE. Con-
sider the following program line:

20 LET Z=SQR(X*Y)
In this line, LET is a keyword command and SQR is a func-
tion, and each is obtained with a single keystroke.

A single space is represented in program lines by an un-
derscore (__). Care should be taken to key in the proper num-
ber of spaces within quotes. For example, consider the fol-
lowing two lines:

20 LET Ag=""

and

20 LET Ag="_"

In the first example, there is no space between the two quote
marks. In the second example, there is a space.
Occasionally, when a long line of similar characters is
required, the number of characters will be indicated. Thus, if
we want you to put the following line on the computer’s screen:

N

we would indicate it as follows in this book:

20 LET A$="::[25 colons]::"

In order to indicate an inverse character we will show the
character much as it will appear on the screen:

Bl

This character is the inverse version of the letter B. It is ob-
tained by first putting the computer in the graphics mode
(shifted-9) and then pressing the B key.

How to Use this Book / 3

Using This Book with the T/S 2000
and Spectrum

The Timex/Sinclair 2000 and Sinclair Spectrum color com-
puters have many facilities not found in the Timex/Sinclair
1000 or ZX Computers. With a few exceptions (noted in later
chapters), these added facilities neither facilitate nor inhibit
the use of the subroutines in this book.

If you do have one of the color computers, however, you
may wish to modify some of the subroutines to take atlvnnt—ngc
of your computer’s special features. One obvious feature avail-
able on the color computers is the ability to compact a number
of program lines into a single program line. You may wish to
apply this feature to some of the subroutines. Two examples
of this feature are:

[T/S 1000, ZX] [T/S 2000, Spectrum]
10 LET X=0 1@ LET X=0: LET
20 LETY=0 Y=0: LET Z=0
30 LET Z=¢ 20 [etc.]

40 etc.]

and

1@ FORI=1TO 10 FOR I=1TO 10:
20 PRINT | PRINT | NEXT |
30 NEXT ! p STOP

40 STOP

If you have a T/S 2000 or a Sinclair Spectrum, it is not

4 / Chapter 1 .

necessary for you to make these changes. If you choose to
compact a program with your color computer, take care to
adjust the line numbers in any GOTO statements so that the
compacted program will operate properly.

Suggestions: Keywords and SAVE

Although the following suggestions are not confined to sub-
routines, they will be helpful to you in programming the
Timex/Sinclair computer.

Many of the subroutine titles contain words which are the
same as the computer’s keywords. When this occurs, memory
space and typing time will be saved by simply using the key-
word instead of typing in the letters one by one. For instance:

20 REM INPUT X AND SAVE

All the characters except the line number and X are keyword
commands. The method for typing keywords is simple, once
it is understood. In the example above, type 2 and @, then E.
(Because the computer is looking for a keyword after the 20,
the E will be interpreted as REM.) Now type THEN (shifted-
3), and notice that the cursor becomes a [, which indicates
that the computer is expecting a keyword following THEN.
Now, press the I key, and INPUT will appear on the screen.
To remove the THEN, backspace (shifted-4), delete (shifted-
@), and forespace (shifted-8). Now, type X and type AND
(shifted-2). At this point we are ready to type the SAVE, using
the same method as was used for typing INPUT: Type THEN
(shifted-3), type SAVE (on the S key), and then backspace,
delete, and forespace.

Anytime that you want to use any keyword in a REM
statement or within quotations in a PRINT statement, you can
type THEN, type the keyword, backspace, delete, and fores-
pace. Doing this is usually easier than typing the word letter-
by-letter, and will also conserve memory.

We also have a suggestion about how to SAVE a program.
Your computer manual describes how a program can be saved
on tape by using a tape recorder. If your program contains
stored data, then that data, too, will be saved. However, if

. How to Use this Book / 5

the program is RUN after LOADing, the data will be cleared.
In order to use the program and the stored data, you must
GOTO the first line of the program, which does not initialize
your data.

A convenient way to SAVE your program and data is to
make the last two lines of your program read as follows:

9998 SAVE "PROGRAM”
9999 GOTO 2000

On line 9998, we have placed SAVE, followed by the name
of the program in quotations. On line 9999, we have told the
computer to GOTO 2000 (or whatever line number is needed
to start the program).

When you are ready to SAVE the program and data, just
start your recorder and then tell the computer GOTO 9998,
Doing this will SAVE the program in the normal manner.
When you LOAD the saved program back into the computer,
the program will go to line 2000 as soon as it is loaded. Thus,
if line 2000 leads to a printing routine, your printed data will
“pop’” onto the screen as soon as the program is loaded.

Conclusion

Although some of these subroutines are simple operations,
many of them contain interesting and complex ideas. If you
are interested in learning more about your computer, then ana-
lyzing these subroutines will provide you with new ideas and
directions for your programming efforts. In Chapter 2, we’ll
introduce the fundamental rules by which subroutines operate.
In Chapter 3, our first group of subroutines is introduced and
explained.

2 @
Chapter

Introduction to Subroutines

A definition, with examples
Numbering subroutine lines
Subroutine formats

Variables

A Definition, with Examples

Let’s begin with a definition: A subroutine is a section of a
computer program that is called into execution by a GOSUB
command, and is terminated with a RETURN command.

The GOSUB command, just like GOTO, causes a com-
puter to “‘jump’’ to a specified program line. However. the
GOSUB also causes the computer to store in its memory the
line number from which it jumped. This stored line number
allows the computer to come back to that line after the sub-
routine is completed.

As the computer moves through the program, it encoun-
ters a GOSUB command. The computer immediately jumps
to the line specified by the GOSUB, and continues to progress
through the lines of the subroutine until it comes to a RE-

TURN command. The computer then returns to the body of

the program exactly one line after the line containing the GO-
SUB instruction. (The RETURN line is part of the subroutine;
the GOSUB line is not.)

That is all there is to a subroutine. It is a segment of a
program to which the computer will jump as the result of a
GOSUB command, and from which the computer will jump
back when it encounters the RETURN command. Here is an
example:

10 LET A=0
20 FORI=1TO 10

. Introduction to Subroutines / 7

30 GOSUB 200
49 PRINT |7 —":A
50 NEXT |
60 STOP
20¢ REM SUBROUTINE
210 LET B=A+l
220 LET A=(A+B)3
230 RETURN

Each time the computer executes line 30, it is told to GOSUB
2000, and so it jumps to line 200, where it continues its step-
by-step execution. When the computer reaches the RETURN
command at line 230, it jumps back to line 40, which is the
line following the last line executed in the main program, and
then continues its step-by-step execution.

According to the definition given earlier, a single line
containing only the RETURN command would qualify as a
subroutine:

100 GOSUB 300

300 RETURN

This example is not a useful subroutine, however, since the
program simply jumps from line 100 to line 300 and imme-
diately returns.

A two-line subroutine, by contrast, can be made to per-
form a useful task:

100 GOSUB 490

400 LET X=3+%(Y-5)
410 RETURN

8 / Chapter 2 . . Introduction to Subroutines / 9

The problem is, why use a subroutine to accomplish what can ain Frogram

be accomplished in a single program line? What is the point] e

of sending the computer to search for, find, and process the

single line in a subroutine, and then return to the previous COSUES

program? The answer depends upon your personal preference. ==
Compare Programs A and B:

Subroutine B

|Program A] [Program B]
(with subroutine) (without subroutine) (No retumm), . |

100 GOSUB 400 100 LET X=3#(Y-5)

Subroutine A

GOSUB A

RETURN

GOSUB 400 00 LET X=3+(Y ~5) \ﬂm'

Figure 2-1

IF Y>5 THEN IF Y>5 THEN LET
GOSUB 400 X=3=(Y —5)

STOP If you wish to use a subroutine from this book, but need

REM SAMPLE to use it only once in your program, then you can simply insert
the subroutine in the proper place in your program and remove

SUBROUTINE the RETURN command.

LET X=3+(Y-5) Figure 2-1 depicts the single use of Subroutine B and, in

RETURN contrast, the multiple use of Subroutine A.

One subroutine can call for another subroutine. This
““nesting’’ of subroutines can sometimes simplify the writing
. of programs, but makes the program difficult to follow. An
A two-line subroutine may be useful as a conve- example of this is shown in Figure 2-2, where Subroutines A,
Menees but is not likely to be an efficient use of com- B. and C are each called only once by the main program.
puter time and memory space. | However. subroutines A and B appear a number of times,
since they are called by the other subroutines.

Subroutines can be called conditionally. By this we mean
that a subroutine will be called only if a certain condition
exists. Consider the following statements:

Observation 1

While we are on the subject of efficient use of time and
space, we might make another observation:

Observation 2
f‘\ll)-' subroutine that is called only once by a program | 10 IF A>B THEN GOSUB 200
is better placed within the body of the program. 10 IF X>0 AND X< 100 THEN GOSUB 300

10 / Chapter 2 .

]-n the first line shown above, the program will GOSUB to
line 2.()0 onl)'v if A is greater than B. The second line requires
that X must lie between 0 and 100 for the program to GOSUB
300,) '

Vthr(lminr:s can also be called to a line designated by a
variable, as follows: ’

10 LET NUM= INT(RND=3)+ 1
20 GOSUB NUM=100+ 1000

10 INPUT Z
20 GOSUB Z+1000

Main Program

V]
R

Subroutine A
————

Subroutine B

GOSUB A
— | GOSUB B

RETURN

RETURN

Subroutine B

GOSUB B

i RETURN
Subroutine A

Subroutine C

Subroutine B

| —
GOSUB A GOSUB B

RETURN

‘Gosus C | RETURN |

Subroutine B

GOSUB B
sTOP

RETURN RETURN

Figure 2-2

l Introduction to Subroutines / 11

In the first pair of lines, the program goes to a subroutine at
1100, 1200, or 1300, depending upon the randomly generated
value of NUM. In the second pair of lines, the program jumps
to a subroutine determined by the value of Z, which is supplied
by the operator.

Numbering Subroutine Lines

The subroutines in this book have been designed to have a
wide application. In order for these subroutines to work prop-
erly. however, they must be modified to match the numbering
and the variables of your program.

The first and perhaps the most obvious modification you
will have to make is to change the line numbers shown in the
subroutines. You will notice that each line number is three
characters long. with the first character being X. This form is
used so that you can assign a line number to the subroutine
by simply replacing the X with an appropriate digit. Consider
the following subroutine:

X090 REM SAMPLE SUBROUTINE

X190 LET A=B

X20 RETURN
If you wanted to begin this subroutine at line 800, you'd sim-
ply replace the X with 8, as shown:

800 REM SAMPLE SUBROUTINE

810 LET A=B

820 RETURN

Any GOTO commands embedded in a subroutine in this
book will also show up with an extra X, and will require your
modification. Note the reference at the end of line X30:

X00 REM SAMPLE SUBROUTINE
X190 LET A=5

X20 LET R=R+A#5

X30 IF R<50 THEN GOTO X20
X40 RETURN

12 / Chapter 2

If you were to use this subroutine in one of your programs,

you'd have to replace six. not five, X's.
When the command GOSUB is embedded in a subroutine,

the first digit of the following number is indicated by the letter

Y or Z. The Y or Z indicates that some digit other than X is
required. The name of the required subroutine is then shown
in brackets, as in line X40:

X00
xX10
X20
X309
x40
X50

REM SAMPLE SUBROUTINE
LET A=5

LET R=R+Ax5

IF R<50 THEN GOTO x20
GOSUB Yp0
RETURN

[Feet to Meter Subroutine, 4 6|

Subroutine Formats

The subroutines in this book are constructed so that the name
of each subroutine and its input and output variables are al-
ways listed in lines X00 to X09. The subroutine itself is alw ays
listed from lines X10 to X90. Thus, all subroutines begin at
a line number which is a multiple of 100, and use no more
than 90 line numbers in the subroutine.

This numbering method is very helpful to the program-
mer, since it allows subroutines to be : signed in sequential
hundreds. For instance, You might assign the subroutine lines
as follows: line 600 to the conversion subroutine. line 700 to
the printing subroutine, and line 800 to the Z-Score subrou-
tine.

Now you would simply use 6 to replace X in the conver-
sion subroutine, 7 to replace X in the printing subroutine, and
8 to replace X in the Z-Score subroutine. (Line numbers such
as: 2100, 3500, and 8800 could just as easily have been used,
replacing the X with 21, 35, or 88, respectively.)

Variables
There are three types of variables used in the subroutines in

this book: input variables, working variables, and output var-
iables.

Introduction to Subroutines / 13

Input variables are those variables wh.ich -ﬁl'quﬂl\.\C;l-l |:(\!
the subroutine when it is called by the main program, or by
“HOtI:;.IJ;;\l::;:u:'l(l;\r::hIr-w are those variables wh_irh are used (T:ll;\:
within the subroutine. As such, they are a kind of temporary
; ““a(‘;::*”:”” variables are those variables which nrclpnssc‘(! |I(;2|
the subroutine to the calling program .\\'hcn the unnpl.ml:‘ "
turns from the subroutine. Output \::1r1:1hlics are the results «
the subroutine’s calculation or manipulation.) .

Consider the following example, where ‘(is an 'mptn ;\d!g
jable and is passed to the subroutine as u.dclumc 1\ .‘xlm.-. ’ wY
a working variable and is used only within the subroutine,

'k a definite value to the
is an output variable and passes back a definite value t
5 4

main program:
10 LET X=INT (RND*15)+1
20 GOSUB 300

300
310
320
330
340

REM SAMPLE SUBROUTINE

LET A=0
IF <10 THEN LET A=5

LET Y=3+Ax*5
RETURN

Notice that if the value of X had been changed wmlnln llui

. ani sariable anc
subroutine, then it would have been both an input variat e :40
:an output variable. We can illustrate this by replacing line

with:
340 LET X=X+A
350 RETURN

ki Varle is . Llnd
Now the input variable is X, the working variable is A

jables are Y and X.
the output variables are .) ‘
When you use any of the subroutines in this book, .
e variables in your program match the

you

must take care that the v

14 / Chapter 2 .

appropriate input and output variables of the subroutine.
Matching the variables will usually require that the names of
the variables be changed either in the subroutine or in the main
program. Suppose, for example, that you are writing the fol-
lowing program:

LET A=3xX
GOSUB 300

200 STOP
309 REM INCHES TO FEET
301 REM INPUT IN

302 REM QUTPUT F1

316 LET FT=IN/12

32¢ RETURN

In this program, the variable to be passed to the subroutine
from the main program is named A, but the subroutine input
variable is named IN. One of these variables must be changed
so that the variable passed to the subroutine and the input
variable are the same. This can be done by changing line 50
in the program to:
50 LET IN=3%X
If we change line 50, then we must be careful to change every

A in the entire program to IN.
Alternately, we can change line 310 in the subroutine to:

310 LET FT=A/12

In most cases, changing line 310 will be the best approach.
However, in some complicated subroutines, this change may
be difficult or impossible without much rewriting. In such a

o i e i g

. Introduction to Subroutines / 15

case, the easiest method of changing the variables may be to
simply insert a line like the following:

55 LETIN=A

I this conversion line is used, then no other changes related
to the input variable are necessary. Output variables may be
handled in the same manner, by converting the output variable
back to a main program variable. This last method allows the
use of multiple variables, as shown below:

LET A=3#X
LET IN=A

GOSUB 300
LET AF=FT

[convert A 1o input variable IN]
[convert IN to FT]

[convert output variable FT 1o AF|

INPUT B

LET IN=B
GOSUB 300 feonvert IN 0 FT
LET BF=FT

[convert B to input variable IN]

[convert output variable FT to BF]

LET C=15
LET IN=C
GOSUB 3¢9 [conven N F1j
LET CF=FT

[eonvert C 10 input variable IN]

[convert output variable FT to CF

STOP
REM INCHES TO FEET

16 / Chapter 2

301 REM INPUT IN
302 REM OUTPUT FT
310 LET FT=IN/12
320 RETURN

In the above program. AF, BF, and CF are the equivalent, in
feet, of the variables A, B. and C, which are in inches.

Observation 3

Program variables passed to subroutines must match
the subroutine input variables. and subroutine output
variables passed back to the program must match pro-
gram variables.

Observation 4

In some cases, in order to avoid confusion, program
variables should be converted to subroutine input var-
jables in the program line immediately preceding the
GOSUB line. Likewise, subroutine output variables
should be converted to program variables in the pro-
gram line immediately following the GOSUB line.

Working variables may also require some changes. Al-
though working variables are used only within a subroutine,
they can affect your program. If the name of a working vari-
able is the same as the name of one of your program variables,
then the computer will not be able to distinguish between
them. Under some circumstances, this confusion between var-
iables will cause problems

Because the computer searches for subroutine line num-
bers sequentially, beginning at line 001. programs will run
slightly faster if the subroutines are placed early in the pro-
gram. This can easily be done. You can assign your first 99
lines (lines 1 through 99) to be used for “*initialization,”” lines
100 through 2999 for subroutines, and lines 3000 and up for
the program. This means that your program’s name and any
dimension or presetting statements—such as DIM A(4,20) or
LET N=@—can be placed in the first 98 lines. Line 99 will
then be: 99 GOTO 300A. The main program will be contained

. Introduction to Subroutines / 17

in the lines beginning at 3000. All of your subroutines will
then be placed between line 99 and line 3000. Such a scheme
will leave space for up to 29 subroutines of 100 lines each.
and they can all be placed near the front of the program.

As a final observation. it should be noted that the com-
mand STOP should be placed between the main program and
any subroutines which follow the main program. I’I;lcinu the
STOP in this position will make certain that when the :'um-
puter completes the main program, it will not continue merrily
on through the subroutines which follow. (See the example on
page 14, which includes the STOP command in line 290.)

Observation 5

Ise a ST .

Jse a STOP command between the end of the main
program and any subroutines which follow the main
program.

The remainder of this book consists of listings of various
subroutines which can be used in your progrnms: Used care-
fully, in the manner described in this chapter, subroutines will
add flexibility to your programs with little effort on your part.
As your confidence and understanding about subroutines grow,
you will begin to modify them to meet your needs, and soon
you will be writing your own subroutines.

Chapter @

Area and Volume

The subroutines in this chapter and in Chapter 4 are all simple
computations and conversions. Many of them contain only a
single line of operating program. Still, they are useful sub-
routines, and can save you much time and effort in construct-
ing your programs.

For many of the calculations in this chapter, more than
one subroutine is given. If you encounter a number of sub-
routines that all solve the same problem, the type of input
information you have will determine which subroutine you
should use. For instance, if you wish to find the arca of a
square, you will want to use either Subroutine 3.5 or 3.6.
Subroutine 3.5 requires the length of a side of the square as
input variable, while Subroutine 3.6 requires the length of the
square’s diagonal.

Notice that in those subroutines dealing with circular mea-
surements, the symbol PI is used. PI is obtained by pressing
the M key when the computer is in the function or [@
mode. (Other trigonometric functions, such as TAN and SIN
are likewise obtained only when the computer is in the [@
mode.) Putting the computer in [l mode iccomplished by
pressing the SHIFT and ER keys simultancously. Doing
this changes the cursor from o [@.

In the event that the input variables of a needed subroutine
do not match your available data, you can modifly the subrou-
tine to accommodate your data. An example of such modifi-

18

. Area and Volume / 19

cation can be seen in Subroutine 3.9, which calculates the area
of a regular polygon. If your data includes the perimeter of
the polygon but does not include the length of a side, then
simply delete line X10 from the subroutine and change line
X01 from:

X@01 REM INPUT S AND N

X@1 REM INPUT P AND N

This change in line X01 will serve as a reminder that the input
variables of the subroutine have been changed.

Although the subroutines given in this chapter should meet
most of your needs, you can easily design any additional sub-
routines which you may find useful. If you have a formula
which is of the form:

(Some formula for X stated in terms of Y)
then your subroutine is simply:
X190 LET X= (Some formula for X stated in tenms of Y)

X20 RETURN

For example, if X is the volume of a sphere, and the
formula for that volume is :

then the BASIC subroutine would look like this:

X190 LET X=4+Pl+Y++3/3
X20 RETURN

You can apply a similar process to any formula to design a
new subroutine.

20 / Chapter 3 .

AREA OF A TRIANGLE

PURPOSE: Calculation
NAME: Area of Triangle, Given Base and Height.
INPUT VARIABLES: H = height; B = base.
OUTPUT VARIABLES: T = area of triangle.
X0 REM AREA OF TRIANGLE

(B,H)
X@1 REM INPUT B AND H —1-
Xg2 REM OUTPUT T iq
X190 LET T=B=#H/2 J_
X20 RETURN |a—p—]

NAME: Area of Triangle, Given Base and Two
Angles.
INPUT VARIABLES: B = base; Al = angle one;
A2 = angle two.
OUTPUT VARIABLES: T = area of triangle; H =
height.
X00 REM AREA OF TRIANGLE
(B,ANGLE)
X@1 REM INPUT B, A1 AND A2
X@2 REM OUTPUT T AND H
X10 LET H=TAN A1+TAN A2:+B/
(TAN A14+TAN A2)
X20 LET T=B+H/2 Ja £\
X30 RETURN e

NAME: Area of Equilateral Triangle.
INPUT VARIABLES: S = length of any side.

. Area and Volume / 21

OUTPUT VARIABLES: H = height; T = area of
triangle.
X090 REM AREA OF
EQUILATERAL TRI
X@1 REM INPUT S
X@2 REM OUTPUT H AND T
LET H=S*SQR 0.75
LET T=S+H/2
RETURN fe—5 ——

NAME: Area of Isosceles Triangle, Given One Side
and the Base.
INPUT VARIABLES: B = base; S = side.
OUTPUT VARIABLES: H = height; T = area of
triangle.
X090 REM AREA OF ISOSCELES
TRI
X@1 REM INPUT B AND S
X@2 REM OUTPUT H AND T /\
X10 LET H=SQR(S*S—(B/2) 5

##2) &
LET T=B+H/2

RETURN fe— 5 —

AREA OF A SQUARE

PURPOSE: Calculation

NAME: Area of a Square, Given One Side.
INPUT VARIABLES: S = length of one side.

22 / Chapter 3

OUTPUT VARIABLES: A= area of square.
X00 REM AREA OF SQ(SIDE)
X01 REM INPUT S

Xg2 REM QUTPUT A

X10 LET A=S%S

X20 RETURN

NAME: Area of Square, Given the Diagonal.

INPUT VARIABLES: D = length of the diagonal
of the square.

OUTPUT VARIABLES: S = length of a side; A =
area of square.

X0p REM AREA OF SQ(DIAG)

X01 REM INPUT D

X@2 REM QUTPUT S AND A

X190 LET S=D/SQR2

X20 LET A=S8sS

X30 RETURN

AREA OF A RECTANGLE

PURPOSE: Calculation

NAME: Area of Rectangle (or Parallelogram) Given
Length and Height.

INPUT VARIABLES: L = length; H = height.

OUTPUT VARIABLES: R = area ol rectangle.

X00 REM RECTANGLE AREA == e |

(LH)

X@1 REM INPUT L AND H

X02 REM OUTPUT R

X10 LET R=L+H

X20 RETURN

3.8

. Area and Volume / 23

NAME: Area of Rectangle Given Diagonal and
Height.

INPUT VARIABLES: H = height; D = diagonal.

OUTPUT VARIABLES: R = area of rectangle; L
= length.

X00 REM RECTANGLE AREA

(DIAGNL)

X@1 REM INPUT H AND D

X@2 REM OUTPUT R AND L

X180 LET L=SQR(D*D—HxH)

X20 LET R=L#H

X30 RETURN

AREA OF A REGULAR POLYGON
PURPOSE: Calculation

NAME: Area of any Regular Polygon.

INPUT VARIABLES: S = length of a side; N =
number of sides. .

OUTPUT VARIABLES: A = area of polygon: H=
height to center; P = perimeter of polygon.

X008 REM POLYGON AREA
X01 REM INPUT S AND N
X@2 REM OUTPUT A.H, AND P
X10 LET P=S+N 4\
X20 LET T=2+PUN 5

) , Y
X30 LET H=S5/(2+TAN(T/2)) N=4

LET A=PxH/2
RETURN

AREA OF A CIRCLE

24 / Chapter 3

PURPOSE: Calculation

NAME: Area of Circle, Given the Radius.
INPUT VARIABLES: R = radius of circle.
OUTPUT VARIABLES: C = area of circle.
X00 REM CIRCLE AREA

(RADIUS)
X@1 REM INPUT R
Xp2 REM OUTPUT C
X1@ LET C=PI+R+R
X20 RETURN

NAME: Area of Circle, Given the Perimeter
(Circumference).

INPUT VARIABLES: P = perimeter of circle.

OUTPUT VARIABLES: C = area of circle; R =
radius.

X@@ REM CIRCLE AREA (PERIM)

X@1 REM INPUT P

X@2 REM QUTPUT C AND R

X1@ LET R=P/(2+PI)

X20 LET C=PxP/(4=Pl)

X30 RETURN

AREA OF AN ELLIPSE

PURPOSE: Calculation

NAME: Area of Ellipse.
INPUT VARIABLES: Al = major axis; A2 =

minor axis.

. Area and Volume / 25

OUTPUT VARIABLES: E = area of ellipse.

X@0 REM ELLIPSE AREA

X@1 REM INPUT A1 AND A2 ~ !
X02 REM OUTPUT E e
-~ A,

X1@ LET E= PI=A1xA2/4
X20 RETURN

SURFACE AREA OF SOLIDS

PURPOSE: Calculation

NAME: Surface Area of Sphere.

INPUT VARIABLES: R = radius of sphere

OUTPUT VARIABLES: SS = surface area of
sphere.

X0@ REM AREA OF SPHERE

X@1 REM INPUT R

X@2 REM OUTPUT SS

X10 LET SS=4=P|+R=R

X20 RETURN

NAME: Surface Area of Right Circular Cylinder
(Including Ends).

INPUT VARIABLES: R = radius of cylinder base;
L = length.

OUTPUT VARIABLES: SC = surface area of
cylinder.

Xp® REM AREA OF CYLINDER

X@1 REM INPUT R AND | \/'\

X02 REM OUTPUT SC T
X10 LET SC=2+Pl=R+(R+1)

X20 RETURN B

. . Area and Volume / 27

3.15 NAME: Surface Area of Right Circular Cone VOLUME OF A SPHERE

(Including Base Area).
INPUT VARIABLES: R = radius of cone base; T
= distance from vertex to edge of base. 5 NAME: Volume of Sphere Given the Radius.
OUTPUT VARIABLES: AC = surface area of INPUT VARIABLES: R = radius.
cone. OUTPUT VARIABLES: SV = volume.

X008 REM AREA OF CONE /\‘ X@0 REM SPHERE VOLUME
X01 REM INPUT R AND T X01 REM INPUT R
X@2 REM OUTPUT AC \, Xp2 REM OUTPUT SV
-
v

26 / Chapter 3

PURPOSE: Calculation

X1@ LET AC=PI *R+(R+T) X10 LET SV=(4/3)#Pl+R=+3
X20 RETURN X20 RETURN

VOLUME OF A CUBE . NAME: Volume of Sphere Given the Surface Area.
INPUT VARIABLES: SS = surface area of sphere.
PURPOSE: Calculation OUTPUT VARIABLES: SV = volume of sphere.

NAME: Volume of Cube Given One Side. X@0 REM SPHERE VOLUME
INPUT VARIABLES: S = side of cube. (AREA)

OUTPUT VARIABLES: CV = volume of cube. X201 REM INPUT SS
X@0 REM CUBE VOLUME (SIDE)

X@2 REM OUTPUT SV
X@1 REMINPUT S X108 LET SV=SS+R/3
X@2 REM OUTPUT CV X20 RETURN
X10 LET CV=S3
X20 RETURN s}

&

VOLUME OF A CYLINDER AND CONE
N,/\II\JF,: Volume of Cube Given the Diagonal of a PURPOSE: Calculation
“ace,

INPUT VARIABLES: D = diagonal. | NAME: Volume of Cylinder.
OUTPUT VARIABLES: CV = volume; S = side. INPUT VARIABLES: R = radius; L = length.

X@@ REM CUBE VOLUME (DIAG) | OUTPUT VARIABLES: CY = volume of cylinder.
X01 REM INPUT D Xp@ REM CYLINDER VOLUME

X@2 REM OUTPUT CV AND S P ’ X01 REM INPUT R AND L

X180 LET S=D/SQR2 \ . Xp2 REM OUTPUT CY

X2@8 LET CV=5#%3 » X190 LET CY=PI+R+R+L

X33 RETURN \/ X20 RETURN

28 / Chapter 3 . @]F .
Chapter

3.21 NAME: Volume of a Cone.

INPUT VARIABLES:
height of cone.

OUTPUT VARIABLES:

X@0 REM CONE VOLUME
X@1 REM INPUT R AND H

X@2 REM QUTPUT CN H
X10 LET CN=PI+H=R+R/3
X20 RETURN

R = radius of base; H = COI’]VG!’SIOH

CN = volume of cone.

Conversion subroutines are usually the most easily under-
stood. A conversion subroutine is simply a method for chang-
ing the form or base of a value without changing the value
itself,

For example, all football fields are 100 yards long. If the
yards are converted to feet, the field can be said to be 300 feet
long. The value of the length of the field has not changed, but
the form of the measurement has been converted from yards
to feet. If the measurement is converted from feet to inches,
then the football field is 3600 inches long. If, as some famous
coach has said, football is a game of inches, then it is a game
of 3600 inches.

A conversion subroutine is usually a change based upon
a relationship or ratio. Consider the relationship between feet
and inches. 1 foot equals 12 inches, and 1 inch equals 1/12
foot. If we let F equal the number of feet, and I equal the
number of inches, then:

X10 LET F=(1/12)+l
X20 RETURN

X100 LET I=12+F
X20 RETURN

In the first pair of lines, you supply the number of inches I,
and the subroutine gives you the equivalent number of feet F.

30 / Chapter 4 .

In the second pair of lines, you supply the number of feet F,
and the subroutine gives you the equivalent number of inches
I.

You can write your own conversion subroutines for any
relationship that can be stated as follows: LET X=C=*Y, where
C is the conversion constant which changes the form of Y to
the form of X.

The following subroutines provide conversions for a large
number of common forms of measurement. In each case, the
conversions are provided in sets, so that the conversion from
one form to another is accompanied by the reciprocal con-
version, which will convert from the second form back to the
original.

In very few cases, such as in Subroutine 4.4 (LIQUID
ENGLISH : LITER). a number of conversions are grouped in
a single subroutine. Such a multiple conversion is often useful,
but be sure to notice that in 4.4a, the GOSUB used must
match the input variable which you are furnishing. If in the
case of Subroutine 4.4a you are furnishing CP (cups) as the
input variable, then you must enter the subroutine at line X40,
rather than at line X00. In this case, if you do not enter the
subroutine at line X40, then the computer will be looking for
undefined variables. Likewise, if you are furnishing QT
(quarts), then you must enter the subroutine at line X20 (GO-
SUB X2@). If the subroutine is not entered correctly, the com-
puter will return an error code 2 (undefined variable used).

Finally, you will notice that the binary : decimal and dec-
imal : hex conversions (4.22, 4.23, and 4.24) are divided into
“‘small-number’’ conversions and ‘‘large-number’’ conver-
sions. The large-number conversions can be used for any num-
ber, but large number conversions use up more memory space
and require more processing time.

The Timex/Sinclair machine code works with and rec-

ognizes only decimal numbers between 0 and 255. The small-

number conversions will handle exactly the same numbers,
and are less complex conversions than those required for larger
numbers. Thus, the small-number conversions should be used
when working with machine code numbers.

. Conversion / 31

OUNCES : MILLILITERS

PURPOSE: Conversion

NAME: Ounce to Milliliter.

INPUT VARIABLES: OZ = ounce.
OUTPUT VARIABLES: ML = milliliter.
X00 REM OUNCE TO MILLILITER

X01 REM INPUT OZ

X02 REM OQUTPUT ML

X190 LET ML=29.586+07

X20 RETURN

NAME: Milliliter to Ounce.

INPUT VARIABLES: ML = milliliter
OUTPUT VARIABLES: 07 = ounce.
X090 REM MILLILITER TO OUNCE
X01 REM INPUT ML

Xp2 REM OUTPUT OZ

X10 LET OZ=0.0338+ML

X20 RETURN

QUARTS : LITERS
PURPOSE: Conversion

NAME: Quart to Liter.

INPUT VARIABLES: QT = quart.
OUTPUT VARIABLES: LT = liter.
X090 REM QUART TO LITER

X@1 REM INPUT QT

X02 REM QUTPUT LT

X1@ LET LT=0.9464xQT

X20 RETURN

32 / Chapter 4 .

4.2b

NAME: Liter to Quart.
INPUT VARIABLES: LT = liter.
OUTPUT VARIABLES: QT = quart.

X00 REM LITER TO QUART
X01 REM INPUT LT

X@2 REM QUTPUT QT

X10 LET QT=1.0567+LT
X20 RETURN

GALLONS : LITERS

PURPOSE: Conversion

NAME: Gallon to Liter,

INPUT VARIABLES: GL = gallon.
QUTPUT VARIABLES: LT = liter.
XP@ REM GALLON TO LITER

X@1 REM INPUT GL

X@2 REM OUTPUT LT

X190 LET LT=3.7854+GL

X20 RETURN

NAME: Liter to Gallon.
INPUT VARIABLES: LT = liter.
OUTPUT VARIABLES: GL = gallon.
X090 REM LITER TO GALLON
X01 REM INPUT LT
X02 REM OQUTPUT GL
X1@ LET GL=0.2642+LT
RETURN

. Conversion / 33

LIQUID ENGLISH : LITER

PURPOSE: Conversion between Liters and a Number
of English Measures

NAME: Ounces, Cups, Pints, Quarts, and Gallons
to Liters.
INPUT VARIABLES: OZ = ounce; CP = cup; PT
= pint; QT = quart; GL = gallon.
OUTPUT VARIABLES: LT = liter (= 1000
millileters).
X@@ REM LIQUID ENGLISH TO LITER
X@1 REM INPUT GOSUB 50=07, 40=CP
X02 REM 30=PT, 20=QT, 10=GL
X@3 REM QUTPUT LT
X1@0 LET QT=4+GL
X20 LET PT=2+QT
X30 LET CP=2+PT
X40 LET 0Z=8+CP
X50 LET LT=0.02957+0Z
X60 RETURN
NOTE: This subroutine requires that you enter it only
at the line appropriate to your input variable.
These inputs are: X10 (or X00) for GL, X20

for QT, X30 for PT, X40 for CP, and X50
for OZ.

NAME: Liters to Ounces, Cups, Pints, Quarts, and
Gallons.

INPUT VARIABLES: LT = liters (= 1000
millileters).

OUTPUT VARIABLES: OZ = ounce; CP = cup:
PT = pint; QT = quart; GL = gallon.

X@0 REM LITER TO LIQUID ENGLISH
X01 REM INPUT LT

34 / Chapter 4 .

X@2 REM OQUTPUT OZ, CP, PT, QT, AND GL
X190 LET GL=0.2642=L.T

X20 LET QT=4=GL

X309 LET PT=2xQT

X4@ LET CP=2+PT

X50 LET OZ=8+CP

X60 RETURN

INCHES : CENTIMETERS

PURPOSE: Conversion

NAME: Inches to Centimeters.
INPUT VARIABLES: IN = inches.
OUTPUT VARIABLES: CM = centimeters.

X@0 REM INCHES TO CENTIMETERS
X01 REM INPUT IN

X@2 REM OUTPUT CM

X10 LET CM=2.54«IN

X2¢ RETURN

NAME: Centimeters to Inches
INPUT VARIABLES: CM = centimeters.
OUTPUT VARIABLES: IN = inches.
X00 REM CENTIMETERS TO INCHES
X@1 REM INPUT CM
X@2 REM OUTPUT IN
X190 LET IN=@.3937+CM

RETURN

. Conversion / 35

FEET : METERS

PURPOSE: Conversion

NAME: Feet to Meters.

INPUT VARIABLES: FT = feet.
OUTPUT VARIABLES: MT = meters.
X@@ REM FEET TO METERS

X@1 REM INPUT FT

X02 REM OUTPUT MT

X10 LET MT=0.3048+FT

X20 RETURN

NAME: Meters to Feet.
INPUT VARIABLES: MT = melers,
OUTPUT VARIABLES: FT = feet.

Xp@ REM METERS TO FEET
X01 REM INPUT MT

X02 REM OUTPUT FT

X10 LET FT=3.2808+MT
X20 RETURN

YARDS : METERS

PURPOSE: Conversion

NAME: Yards to Meters.

INPUT VARIABLES: YD = yards.
OUTPUT VARIABLES: MT = meters.
X@00 REM YARDS TO METERS

X@1 REM INPUT YD

XP2 REM OUTPUT MT

X180 LET MT=0.9144+YD

X20 RETURN

36 / Chapter 4 . . Conversion / 37

4.7b NAME: Meters to Yards. 4.8b NAME: Meters to Inches, Feet, and Yards.
INPUT VARIABLES: MT = meters. INPUT VARIABLES: MT = melers.
OUTPUT VARIABLES: YD = yards. OUTPUT VARIABLES: IN = inches; FT = feel:

YD = yards.
X9 REM METERS TO YARDS) = yards
01 REM INPUT MT X@@ REM METER TO INCH, FOOT, YARD

X02 REM OUTPUT YD X@1 REM INPUT MT
X10 LET YD=1.0936+MT X@2 REM OUTPUT IN, FT, YD
X20 RETURN X10 LET YD=1.0936+M1T
X20 LET FT=3+YD
X30 LET IN=12+FT

X40 RETURN
INCHES, FEET, YARDS : METERS

PURPOSE: Conversion between Meters and a MILES : KILOMETERS

r “nglish Measurements
Number of English Meast i PURPOSE: Conversion
NAME: Inches, Feet, and Yards to Meters. _ | B NAME: Statute Miles to Kilometers,
INPUT VARIABLES: IN = inches; FT = feet; INPUT VARIABLES: MI = miles.
YD = yards. OUTPUT VARIABLES: KM = kilometers.

TPUT VARIABLES: MT = meters.
ouTr » TER X0@ REM MILES TO KILOMETERS
X0@ REM INCH,FOOT,YARD TO METE X01 REM INPUT Mi

X@1 REM INPUT GOSUB 30=IN. Xp2 REM QUTPUT KM
X02 REM 20=FT, AND 10=YD X10 LET KM=1.6093+M
X@3 REM QUTPUT MT X20 RETURN
X190 LET FT=3+YD
%20 LET IN=12+FT { : NAME: Kilometers to Statute Miles.
i INPUT VARIABLES: KM = kilometers.
X30 LET MT=0.8254%IN OUTPUT VARIABLES: MI = miles.

TURN
X40 RE X00 REM KILOMETERS TO MILES

X01 REM INPUT KM
NOTE: This subroutine requires that you enter it_ r|u|rl_v : X@2 REM OUTPUT MI
at the line appropriate to your input variable. ‘
These inputs are: X10 (or X00) for YD, X20 X108 LET MI=0.621+KM
for FT. and X30 for IN. } RETURN

38 / Chapter 4 . . Conversion / 39

FATHOMS : FEET (and Meters) X02 REM OUTPUT MI AND KM
X1@ LET MI=FL/8

X2@ LET KM=1.6093xMI
NA[\']_E_: Fathom to Feet and 1'\1.(!lt'l'h'. X30 RETURN

INPUT VARIABLES: FM = fathom.

OUTPUT VARIABLES: FT = feet; MT = meters. NAME:

PURPOSE: Conversion

Statute Miles to Furlongs.

X0@ REM FATHOM TO FEET AND METER INPUT VARIABLES: MI = miles.

X@1 REM INPUT FM
@2 REM OUTPUT FT AND MT X00 REM MILES TO FURLONGS

OUTPUT VARIABLES: FL = furlongs.

X10 LET FT=6+FM X01 REM INPUT M|

X290 LET MT=1.829=FM X@2 REM OUTPUT FL

RETURN X10 LET FL=8xMI|
X2 RETURN

X30

4.100 NAME: Feet to Fathom.
INPUT VARIABLES: FT = feet.
OUTPUT VARIABLES: FM = fathom.
X@9 REM FEET TO FATHOM
X01 REM INPUT FT
Xp2 REM OQUTPUT FM
%10 LET FM=FT/6 ‘ PURPOSE: Conversion
X20 RETURN 4.12a NAME: Nautical Mile to Statute Mile and
Kilometers.
INPUT VARIABLES: NM = nautical mile.
OUTPUT VARIABLES: MI = statute mile; KM =
kilometer.
X090 REM NAUTICAL MILES TO
DIRPOSE: rersi i
PURPOSE: Conversion X¢1 REM MILES AND KILOMETERS
4.11a NAME: Furlong to Statute Miles and Kilometers. X@2 REM INPUT NM

INPUT VARIABLES: FL = furlong.

OUTPUT VARIABLES: MI = miles; KM = | X@3 REM OUTPUT MI AND KM
kilometers. ! X10 LET MI=1.15@779+NM

XP0 REM FURLONG TO MI AND KM | X20 LET KM=1.852+NM

X@1 REM INPUT FL ; X30 RETURN

NAUTICAL MILES : STATUTE MILES AND
KILOMETERS

FURLONGS : MILES (and Kilometers)

40 / Chapter 4 . . Conversion / 41

4.12h NAME: Kilometers and Statute Miles to Nautical 4.130 NAME: Miles and Kilometers to Light Years.

Miles. INPUT VARIABLES: MI = miles; KM =
INPUT VARIABLES: KM = kilometer; MI = Kilometers.

statute miles. OUTPUT VARIABLES: LY = light year.
OQUTPUT VARIABLES: NM = nautical miles.

X00 REM KILOMET AND MILES

X00 REM MILES AND KILOMETERS %01 REM TO LIGHT YEARS
X@1 REM TO NAUTICAL MILES .
X@2 REM INPUT GOSUB X10=MI, X20=KM
X03 REM OUTPUT NM

X02 REM INPUT GOSUB 10=KM,20=M|
X3 REM OUTPUT LY
X190 LET MI=0.621371+KM

Al9 LELIM=:E050MI X20 LET LY=1.701111E—13+M
=0.54 =K\

X20 LET NM=0.54+KM %30 RETURN

X3@ RETURN

NOTE: This subroutine must be entered only at the
line number appropriate for your input vari-
able. Input lines are X10 (or X00) for MI,
and X20 for KM.

FEET PER SECOND : MILES PER HOUR

PURPOSE: Conversion

NAME: Feet per Second to Miles per Hour.
INPUT VARIABLES: FS = feet per second.
OUTPUT VARIABLES: MH = miles per hour

LIGHT YEARS : KILOMETERS AND MILES X@@ REM FEET/SEC TO MILES/HOUR
X@1 REM INPUT FS

PURPOSE: Conversion : X02 REM OUTPUT MH

NAME: Light Years to Kilometers and Miles. | X10 LET MH=0.6818+FS
INPUT VARIABLES: LY = light year.) g
OUTPUT VARIABLES: KM = kilometer; MI = X20 RETURN

miles.

) - NAME: Miles per Hour to Feet per Second.

X@® REM LIGHT YEARS TO INPUT VARIABLES: MH = miles per hour.
X@1 REM KILOMET AND MILES | OUTPUT VARIABLES: FS = feet per second.
X@2 REM INPUT LY } X090 REM MILES/HOUR TO FEET/SEC
X@3 REM OQUTPUT KM AND MI | X@1 REM INPUT MH
X100 LET MI=5.87851E12+LY X@2 REM OUTPUT FS
X200 LET KM=1.609345=MI | X10 LET FS=1.4667+MH

X30 RETURN } X20 RETURN

42 / Chapter 4 . . Conversion / 43

METERS PER SECOND : KILOMETERS X10 LET KH=1.6093+MH
PER HOUR X20 RETURN

PURPOSE: Conversion 4165 NAME:

Kilometers per Hour to Miles per Hour.
NAME: Meters per Second to Kilometers per Hour. INPUT VARIABLES: KH = kilometers per hour.
INPUT VARIABLES: MS = meters per second. OUTPUT VARIABLES: MH = miles per hour.

OUTPUT VARIABLES: KH = kilometers per
P X00 REM KMETERS/HR TO MILES/HR

hour.
Xp9 REM METERS/SEC TO KILOMET/HOUR X01 REM INPUT KH
X02 REM OUTPUT MH

Xp1 REM INPUT MS v

X@2 REM OUTPUT KN 2 LET MH=0.6214=KH

X10 LET KH=3.6+MS el mETVRN

X20 RETURN

NAME: Kilometers per Hour to Meters per Second. ACRES : SQUARE KILOMETERS

INPUT VARIABLES: KH = kilometers per hour. | PURPOSE:
OUTPUT VARIABLES: MS = meters per second. " et
NAME: Acres to Square Kilometers.

X0® REM KILOMET/HR TO METER/SEC -
| INPUT VARIABLES: AC = acre.
X01 REM INPUT KH OUTPUT VARIABLES: SK = square kilometers.
X@2 REM OUTPUT MS X0@ REM ACRE TO SQ KILOMETER
X10 LET MS=(.2778+KH | X@1 REM INPUT AC
X260 RETURN | X02 REM QUTPUT SK

MILES PER HOUR : KILOMETERS PER | X180 LET SK=0.004047+AC
HOUR X200 RETURN

Conversion

PURPOSE: Conversion NAME: Square Kilometers to Acres.
NAME: Miles per Hour to Kilometers per Hour. [(l:lfll‘;’[l]_VJ_’.‘:E\MBLE& SK = square kilometer.
INPUT VARIABLES: MH = miles per hour. | L RIABLES: AC = acre.
OUTPUT VARIABLES: KH = kilometers per | X00 REM SQ KILOMETER TO ACRE

hour. | X01 REM INPUT SK
X@0 REM MILES/HR TO KMETERS/HR | X@2 REM QUTPUT AC
X@1 REM INPUT MH X10 LET AC=247.1+SK
REM OUTPUT KH ‘ X20 RETURN

44 [Chapter 4 . . Conversion / 45

SQUARE YARDS : SQUARE METERS 4.196 NAME: Acre to Square Yard.
, INPUT VARIABLES: AC = acre.
PURPOSE: Conversion OUTPUT VARIABLES: SY = square yard.

NAME: Square Yards to Square Meters. X@@ REM ACRE TO SQ YARD
ITV JES: SY = square yards.

](I)\IL].T-TIi‘l;‘lJ']'P{f!{r‘:gI}‘;t\l[_]‘;:]_q,}i.s:b\ﬁh’l fl::lcln};rﬂh:u’l's. X091 REM INPUT AC

X0¢0 REM SQ YARDS TO SQ METERS

X01 REM INPUT SY

X02 REM OUTPUT SM

X190 LET SM=0.8361+5Y

X20 RETURN

X02 REM QUTPUT SY
LET SY = 4840+AC
RETURN

CELSIUS : FAHRENHEIT
NAME: Square Meters to Square Yards.
INPUT VARIABLES: SM = square meters. PURPOSE: Conversion

OUTPUT VARIABLES: SY = square yards. .
4.20a NAME: Celsius to Fahrenheit.

X0@ REM SQ METERS TO SQ YARDS ‘ INPUT VARIABLES: C = celsius temperature.
%01 REM INPUT SM | OUTPUT VARIABLES: F = fahrenheit

temperature.
X@p REM CELSIUS TO FAHRENHEIT
X@1 REM INPUT C
X@02 REM OQUTPUT F
X190 LET F=1.8+C+32
X20 RETURN

X02 REM QUTPUT SY
X1@ LET SY=1.196+5M
X20 RETURN

SQUARE YARDS : ACRES

PURPOSE: Conversion

NAME: Square Yard to Acre. 4.20b NAME: Fahrenheit to Celsius.

INPUT VARIABLES: SY = square yard. INPUT VARIABLES: F = fahrenheit temperature.
OUTPUT VARIABLES: AC = acre. OUTPUT VARIABLES: C = celsius temperature.
X0@ REM SQ YARD TO ACRE X0@ REM FAHRENHEIT TO CELSIUS

X@1 REM INPUT SY i X01 REM INPUT F

X@2 REM OUTPUT AC i X@2 REM OUTPUT C

X10 LET AC=2.066E —4=SY { X10 LET C=5+(F-32)/9

X20 RETURN : X20 RETURN

46 / Chapter 4 .’ . Conversion / 47

DEGREES : RADIANS : GRADS BINARY : DECIMAL (SMALL NUMBERS)

PURPOSE: Conversion PURPOSE: To Convert from One Number Base to
. Another

NAME: Degrees to Radians and Grads.

INPUT VARIABLES: D = degree.

OUTPUT VARIABLES: R = radian; G = grad.

NAME: Binary to Decimal (Base 2 to Base 10).

INPUT VARIABLES: B$ = binary number; 8
digits long. ’

X00 REM DEGREE TO RADIAN-GRAD OUTPUT VARIABLES: D = decimal equivalent

X@1 REM INPUT D of B$.

X@2 REM OUTPUT R AND G X0® REM BINARY TO DECIMAL

X1@ LET R=PI+D/180 X01 REM INPUT B$

X2p LET G=10+D/9 X02 REM OUTPUT D

X30 RETURN X180 LET D=0

NAME: Grads to Radians and Degrees. asl EOR| =1 308

INPUT VARIABLES: G = grads. X30 IF B3()="1"THEN LET D=D+(2++(8-1))
OUTPUT VARIABLES: R = radians; X40 NEXT |

D = degrees. X50 RETURN

X0@ REM GRAD TO RADIAN-DEGREE

X01 REM INPUT G

X02 REM OUTPUT R AND D NAMF_‘: Decimal l_u Binary (Base 10 to Base 2).
INPUT VARIABLES: D = decimal Number < =

X1@ LET D=9+G/10@ 255.

X20 LET R =PI=G/200 OUTPUT VARIABLES: BS$ = binary equivalent

X3¢ RETURN o
X00 REM DECIMAL TO BINARY

NAME: Radians to Degrees and Grads. X@1 REM INPUT D

INPUT VARIABLES: R = radians.)
OUTPUT VARIABLES: D = degrees; G = grads. X02 REM OUTPUT BS$
X190 LET B§=""

X@0 REM RADIAN TO DEGREE-GRAD
X290 FORI=1TO8

X@1 REM INPUT R
X30 LET B$=BS$+STRS INT(D/(2+(8 1))

X@2 REM OUTPUT D AND G
S HED ARSI X40 LET D=D—(2#+(8) INT(D/(2++(8 1))
X50 NEXT |

X20 LET G=200+R/PI
X390 RETURN X60 RETURN

DECIMAL : HEX (SMALL NUMBERS)

48 / Chapter 4

PURPOSE: To Convert from One Number Base to

Another.

Decimal to Hex (Base 10 to Base 16).
D = decimal number not

4.23a NAME:

INPUT VARIABLES:
greater than 225.

OUTPUT VARIABLES:
equivalent of D.

@@ REM DECIMAL TO HEX

¥@1 REM INPUT D

¥p2 REM OQUTPUT H$

X1p LET H$=""

X20 LET H3=CHRS$(28+INT(D/16))

¥30 LET H3=H$+CHRS$(28+D—16+INT (D/16))

X400 RETURN

H$ = hexadecimal

Hex to Decimal (Base 16 to Base 10).
H$ = a two-character

4.23b NAME:
INPUT VARIABLES:
hexadecimal number.
OUTPUT VARIABLES:
equivalent of H$.

D = the decimal

X0@ REM HEX TO DECIMAL

X01 REM INPUT H$

Xp2 REM OUTPUT D

X190 LET D=16+(CODE H$—28)+CODE
H$(2 TO 2)-28

%20 RETURN

4.24a NAME:
INPUT VARIABLES:

4.24b

. Conversion / 49

DECIMAL : HEX (LARGE NUMBERS)

PURPOSE:

T'o Convert a Number hetween Base 10

and Base 16

Decimal to Hexadecimal,
D = decimal (base 10)

number.,
OUTPUT VARIABLES: H$ = hex (base 16)
number. .
X090 REM DEC TO HEX(LARGE)
X@1 REM INPUT D
X02 REM QUTPUT H$ il
X10 LET N= LN D/LN 16
X15 DIM H$(1+INT N)
X20 FORI=1TO1+INTN
X25 LET H$()="@"
X30 NEXT |
X4 LET H=LN D/LN 16
X5@0 LET H$(1+INT N—INT
H)=CHRS$(28 +INT(D/16++INT H))
X600 LET D=D—(16++INT H)*INT(D/16++INT H)
X7@ IF D=0 THEN RETURN
X8@ GOTO x40
NAME: Hexadecimal To Decimal,

INPUT VARIABLES:
OUTPUT VARIABLES:

H$ = hex (base 16) number.
D = decimal (base 10)

number.

X00
X@1
Xp2
X1@

REM HEX TO DEC(LARGE)
REM INPUT H$

REM OUTPUT D

LET D=0

50 / Chapter 4

X260 LET N=LEN H$

X30 FORI=NTO 1 STEP —1

X460 LET D=D+(CODE H$(TO
1) —28)#(16++(N —1))

X50 NEXT |

%60 RETURN

DECIMAL BASE TO ANY BASE

PURPOSE: To Convert a Number in Base 10
(Decimal Number) to a Number in any other Base

NAME: Decimal to other Base.

INPUT VARIABLES: D = decimal number to be

converted; B = base to which D is to be
converted

QUTPUT VARIABLES: AS$ = number in base B

equivalent to D in base 10.
X@0 REM BASE CONVERSION
X@1 REM INPUT D AND B
¥@2 REM QUTPUT A$
X10 LET N=LN D/LN B
X165 DIM A$(1+INT N)
¥20 FORI=1TO 1+INT N
X30 LET A$()="0"

X4¢ NEXT |

X50 LET H=LN D/LN B
LET AS(1+INT N—INT
H)=CHR$(28 -+ INT(D/B++INT H))

LET D=D— (B=+INT H«INT(D/B++INT H)

IF D=0 THEN RETURN
GOTO x50

Chapter

Statistics

The statistical procedures in this chapter are used in many
disciplines, but are especially useful in the behavioral sci-
ences. Although the procedures described in this chapter are
relatively simple, they can be very useful and can save much
manual mathematics once the initial requirements are met.

Almost every one of these subroutines can be modified to
be an independent program. However, they may present the
best possible use when linked together into a complete, flex-
ible program which will meet your needs. For example, in-
formation stored in strings (as shown in Chapter 6) or infor-
mation stored as an array can be arranged in sequence by using
the subroutines found in Chapter 7. This sequenced informa-
tion can then be processed by using the subroutines in this
chapter. The information can then be plotted using subroutines
from Chapter 9, or can be listed in a table as shown in Chapter
10. Your task is to determine what you require, and how to
link the subroutines together in order to obtain the results you
want.

The first two subroutines in this chapter will accept data
and condense that data into a frequency distribution. As with
many other subroutines in this book, the data must first be
converted into the form of an array. What follows is a program
that will accept your input and place it into a properly dimen
sioned array:

REM "ARRAY INPUT”

LET MX=0

PRINT “INPUT NUMBER_ OF _ITEMS _IN _

DATA"

INPUT N

DIM A(N)

cLS

FOR =1 TON

PRINT "A(":1") = _

INPUT A(l)

IF I=1 THEN LET MN=A()

PRINT A()

IF A(l)> MX THEN LET MX=A()

IF A(l)< MN THEN LET MN=A()

GOSUB Yg[_’») [To AUTO-SC ROLL. Subroutine 8.6]
99 NEXT |

52 / Chapter 5

".

This program places your data into an array, A(I), and also
provides N (the number of items in the array), MX (the _nuw
imum value in the array), and MN (the minimum value in the
array). If MX and MN are not needed, you may wish to delete
lines 10, 60, 70, and 75. o

The purpose of line 80 is to avoid overfilling the screen
when you have more than 22 items to input. Although]I.TIC 80
is not necessary, it (and the AUTO-SCROLL subroutine to
which it goes) will help avoid getting a 5 error code, and will
allow you to concentrate on inputting your data.

As we have said, the first two subroutines in this chapter
use data in the form of an array and will provide a frequency
distribution of the data. A frequency distribution l: a very
useful way to group data. An example may make this useful-
ness more obvious. A frequency distribution lists a value (or
class, or score) and the number of times (or the frequency with
which) the value occurs in your data.

. Statistics / 53

In the output of both of the frequency distribution sub-
routines in this chapter, the B(I,1) array is a list of the values
and the B(1,2) array is a list of the corresponding frequencies
of the values. For example, suppose that your data happened
tobe:0,4,9,.50,5,8,6,5,5,7,2,8,6, 6. Tobe used
in the subroutines the data must be in the form of an array
such as the one shown in Table 5-1, where there are 15 values
(N=15) with the maximum value equal to 9 (MX=9) and the
minimum value equal to 0 (MN=0). In this data, there are 2
zeros, so it can be said that the frequency of zero is 2. Like-
wise, the frequency of ones is O (there are no ones), the fre-
quency of twos is I (there is | two), and so on. If we enter
this data into subroutine 5.1, the outcome could be printed to
show how many of each score (the frequency) there are in the
data. The printout would look like Table 5-2.

Table 5-2 shows that in the data there are 2 zeros, 0 ones,
I two, O threes, | four, 4 fives, and so on. This can be seen
by looking first at the freguency column B(1,2), and then re-
ferring to the score column B(I,1). In other words, the first
column of Table 5-2 is a listing of the values, and the second
column is a listing of the frequency of these values in the data.

The data array shown in Table 5-1 could be used with
Subroutine 5.2 with slightly different results. In order to use
Subroutine 5.2, however, we must first decide upon an “‘in-
terval width,”” which is the number of scores to be grouped.
An interval width of 5 would group the scores 1-5, 6-10, |1-
15, etc. An interval width of 2 would group 1-2, 3-4, 5-6,
etc. If we choose an interval width of | and run Subroutine
5.2, we would expect to get data as shown in Table 5-3.

__Table 5.1

A(6)=5
A(T)=8
AR)=6
A =5
A(10)=5

A(I1)=7
A(12)=2
A(13)=8
A(14)=6
A(15)=6

54 / Chapter 5 .

Table 52

B(,1) B(1.2)
(score) (frequency)

0

Table

B(L,1) B(1,2)
(upper limit) (frequency)

9§ 1

1.
0

Because the interval is | in the example shown in Table
5.3. the information is the same as the information obtained
from Subroutine 5.1, except that in this case the values in

. Statistics / 55

B(I,1) are given as “*upper real limits.”” The *‘upper real limit"’
means that instead of simply measuring the frequency at a
single value, such as 6, we measure the frequency over a range
of values, such as from 5.5 to 6.5. The interval of | (6.5 -
5.5 = 1) determines the range of the value over which we
will measure the frequency.

If we choose an interval width of 3 the result will be as
shown in Table 5-4, where the frequency of scores between
9.5 and 6.5 is 4. This listing represents the same data as used
in Tables 5-1, 5-2, and 5-3, but here the data is grouped in
larger clumps. For further information about frequency distri
butions, you may want to obtain an elementary statistics book
from your library.

Subroutine 5.3 calculates the mean, median, and mode
for an array of scores. As noted, however, the median may
be slightly in error if there is more than one score equal to the
median. Subroutine 5.4 provides an accurate median value for
grouped frequency distributions.

The two **Z Score’” subroutines in this chapter (5.8 and
5.9) calculate Z scores. The difference between them is that
while Subroutine 5.9 is a complete subroutine within itself,
Subroutine 5.8 can be used only in a program which also
contains the Variance and Standard Deviation Subroutine (5-
7). If you have no other need to calculate the variance or
standard deviation in your program (and therefore no other
need for Subroutine 5-7), then use only the Subroutine 5-9 to
obtain Z scores.

~ Table 57477
B(I,1) B(1,2)

(upper limit)

.5

The last subroutine in this chapter (5.10). titled LINEAR
REGRESSION. can be extremely useful. Using paired values
such as height-to-weight or advertising dollars to sales income
(or any x-coordinate-to-y-coordinate ““bivarient’’ value), this
subroutine will calculate the parameters of a prediction line.
The pairs of input data for Subroutine 5.10 must be in the
form of a two-dimensional array.

What follows is a program which will allow you to input
a set of paired values to obtain the required array. The two
halves of the set are identified as X and Y:

1 REM "X-Y INPUT”
1¢ PRINT "INPUT NUMBER OF PAIRS IN
DATA"

20 INPUT N

30 DIM B(N,2)

35 CLS

40 FORI=1TON

50 PRINT "X("I,") _=_

55 INPUT B(l,1)

60 PRINT B(,1)."Y(";1,") _=_":
)
)

56 / Chapter 5

65 INPUT B(l.2

70 PRINT B(.2

80 GOSUB Y00 [To AUTO-SCROLL, Subroutine 8.6]

90 NEXT!
Again, as in the ARRAY INPUT program given earlier in this
chapter, line 80 goes to the AUTO-SCROLL subroutine (8.6)
and will keep the screen from filling and giving a 5 error code.

The X-Y INPUT program above will provide the input

array required for Subroutine 5.10. If the paired values of this
array have a linear relationship (if plotted, they will fall in a
relatively straight line), the calculated prediction line will ac-
curately estimate where other values can be predicted to fall.
The value R2 (the coeflicient of determination) provides an
indication of the accuracy of the prediction.

. Statistics / 57

DISTRIBUTION OF SCORES

PURPOSE: To Condense a Set of Raw Scores into
a Frequency Distribution

NAME: Frequency Distribution of Scores.

INPUT VARIABLES: A(I) = array of scores: N =
number of scores in the array; MX = maximum
score; MN = minimum score.

OUTPUT VARIABLES: B(l,1) = array of score
values; B(I,2) = frequency of score B}].{) in
array A(I); R = number of score values.

X090 REM FREQUENCY DISTRIBUTION

X@1 REM INPUT A(l), N, MX, AND MN

X2 REM QUTPUT B(,1).B(1,2), AND R

X180 LET R=MX—MN+1

X20 DIM B(R2)

X30 FOR I=MN TO MX

X480 LET B(—MN+1.1)=I

X50 FORJ=1TON

X680 IF AW)=B(I~MN+1,1) THEN LET
B(I—MN+1,2)=B(~MN+1,2)+1

X790 NEXT J

X80 NEXT |

X990 RETURN

NOTE 1: MX and MN can be obtained by using the
MAX/MIN/MEAN subroutine from (::hup-
ter 7, or MX and MN may be set arbitrarily
if MX is set equal to or greater than the
maximum score and MN is set equal to or
less than the minimum score.

NOTE 2: All scores are assumed to be integer values.

. | . Statistics / 59

PURPOSE: To Condense a Set of Raw Scores into | MEAN, MEDIAN, MODE
a Grouped Frequency Distribution

58 / Chapter 5

PURPOSE: To Provide Central Tendency

NAME: Frequency Distribution of Grouped Scores. Characteristics of a Number Array

INPUT VARIABLES: A(I) = array of scores; N =
number of scores in A(I); MX = maximum score;
MN = minimum score; W = interval width of
grouping.

OUTPUT VARIABLES: B(I.1) = array of upper DUTP[_"T VARIABLES: ML = mean; _MZ -
real limits of interval values; B(I,2) = array of median; M3 = mode; K = number of modes
frequency of scores within group; R = number of
groups in B(l,1).

5.3 NAME: Mean, Median, and Mode.
INPUT VARIABLES: A(J) = ordered list of
scores; N = number of scores in list.

Xg0 REM MEAN, MEDIAN, MODE

X1 REM INPUT A(J) AND N

X@2 REM OUTPUT M1, M2, M3, AND K

X190 LET SUM=0

X15 LET M3=0

X2@ LET K=0

X25 FORI=1TON

X3@0 LET SUM=SUM-+A()

X35 IF A)=M3 THEN LET K=K+ 1

Xa@ IF A)>M3 THEN LET K=1

X50 IF A()>M3 THEN LET M3=A()

X6@ NEXT |

X65 LET M1=SUM/N

X780 IF Nj2< >INT (N/2) THEN LET M2=A(INT
(N/2)+1)

X80 IF N/2=INT (N/2) THEN LET M2=(A(N/
2)+A(1 +N/2))/2

x99 RETURN

X¢@ REM GROUPED FREQ DISTR
X01 REM INPUT A(),N,MX,MN,W

X@2 REM OUTPUT B(l,1).B(1,2).R

X190 LET R=INT((MX —MN)MW) +1

X15 DIM B(R,2)

X20 LET T=MX+05

X25 LET B=T-W

X30 FORI=1TOR

X35 LET B(,1)=T

X490 FOR J=1TON

X50 IF A(J)<B OR A(J)>T THEN GOTO X6@
X55 LET B(,2)=B(,2)+1

X60 NEXT J

X70 LET B=B-W

X75 LET T=T-W

X80 NEXTI :
¥90 RETURN NOTE: If more than one score in A(J) is equal to the
median (M2), the value of M2 may be slightly
in error. For an equal or better median value

NOTE: See Note 1 in Subroutine 5.1. in all cases, see Subroutine 5.4.

60 / Chapter 5 .

5.4

NAME: Median for Grouped Frequency
Distributions.

INPUT VARIABLES: B(I.1) = array of upper real
limits of possible scores or of possible score
groups; B(I,2) = array of frequency of scores in
B(I,1); R = number of scores or groups in B(I,1).

OUTPUT VARIABLES: M2 = Median Value.

X090 REM MEDIAN

X001 REM INPUT B(l.1), B(,2),

X02 REM AND R

X03 REM OUTPUT M2

X10 LET N=0

X20 LET CF=0

X390 LET W=B(2,1)-B(1,1)

X490 FORI=1TOR

X50 IF < =R/2 THEN LET CF=CF+B(l,2)

X60 LET N=N+B(,2)

X70 NEXT |

X80 LET M2=B(R/2,1)+W=(@.5«N—-CF)/B(R/

2+1.2)

X990 RETURN

NOTE: B(I,1), B(L.2), and R may be obtained by
using the GROUPED FREQUENCY DIS-

TRIBUTION subroutine (5.2).

PERCENTILE RANK
PURPOSE: Calculation of Percentile Rank of a
Single Score

NAME: Percentile Rank in a Nongrouped
Frequency Distribution.

. Statistics / 61

INPUT VARIABLES: A(l) = array of scores; N =
number of scores in the array; X = score to be
ranked.

OUTPUT VARIABLES: PR = percentile rank of
score X; CF = cumulative frequency of position
of score X.

X00 REM PERCENTILE RANK

X@01 REM INPUT A(l)N, AND X

X@2 REM OUTPUT PR AND CF

X109 LET R=0

X20 LET CF=0

X30 FORI=1TON

X490 IF A()<X THEN LET CF=CF+1

X509 IF A()=X THEN LET R=R+1

X60 NEXT |

X70 LET CF=CF+R/2

X80 LET PR=100+CF/N

X90 RETURN

NAME: Percentile Rank in a Grouped Frequency
Distribution of Scores.

INPUT VARIABLES: B(I.A) = array of score
groups and group upper limit values; R = number
of groups; X = score to be ranked.

OUTPUT VARIABLES: PR = percentile rank of
X; CF = cumulative frequency to score X.

XP0 REM GROUP PERCENTILE

X01 REM INPUT B(l,A),R,AND X

X@2 REM QOUTPUT PR AND CF

X10 LET W=B(2,1)—-B(1,1)

X15 LET CF=0

X20 LET N=0

62 / Chapter 5 .

X30 FORI=1TOR

X35 LET N=N+B(l2)

X4@ IF B(1,1)<X THEN LET CF=CF+B(,2)

X50 IF B(l,1)> =X AND B(l,1)-W< X THEN
GOTO X80

X60 NEXT |

X65 LET PR=10@+CF/N

X70 RETURN

X80 LET CF=CF+((X-B(I—1)+W)/W)%B(l,2)

X90 GOTO X60

NOTE: Input variable array B(l,1) is the upper limit

value of group I and B(I.2) is the frequency

of scores in group B(I.1). See Subroutine 5.2
for score grouping.

VARIANCE AND STANDARD DEVIATION

PURPOSE: To Calculate the Variance and
Standard Deviation for a Set of Values

NAME: Variance and Standard Deviation.

INPUT VARIABLES: A(I) = array of values; N =
number of values in the array.

OUTPUT VARIABLES: AVG = mean of values;
VAR = variance of values; STD = standard
deviation.

X0@ REM VAR AND STD DEVIATION

X01 REM INPUT A(l) AND N

X@2 REM OUTPUT AVG, VAR, AND STD

X10 LET SUM=0

X15 LET SQS=0

X20 FORI=1TON

X30 LET SUM=SUM+A(l)

. Statistics / 63

LET SQS =505+ Al)+A(l)
NEXT |

LET AVG=SUM/N

LET VAR=(SQS/N)-AVG*AVG
LET STD=SQR VAR

RETURN

Z SCORE

PURPOSE: To Calculate the 7 Score Equivalent of
an Array of Values

NAME: Z Score (Using GOSUB).

INPUT VARIABLES: A(I) = array of values; N =
number of values in array: YO0 = line number of
subroutine for variance and standard deviation (see
Subroutine 5.7).

OUTPUT VARIABLES: Z(I) = array of Z scores.

X00 REM Z SCORE (GOSUB)

X01 REM INPUT A()AND N

X02 REM OUTPUT Z(I)

X190 DIM Z(N)

X290 GOSUB Y0@ Jto Subroutine 5.7

FORI=1TON

LET Z(I)=(A()—-AVG)/STD
X50 NEXT |
X60 RETURN

NAME: 7 Score (without Using GOSUB).

INPUT VARIABLES: A(l) = array of values; N =
number of values in the array.

OUTPUT VARIABLES: Z(I) = array of 7 scores.

X00 REM Z SCORE

64 / Chapter 5 .

X@1 REM INPUT A(l) AND N
Xp2 REM OUTPUT Z()

X190 DIM Z(N)

%15 LET SUM=0

X2¢ LET SQS=0

X25 FORI=1TON

X30 LET SUM=SUM-+A()

X35 LET SQS=SQS+A(l)+A()

X40 NEXT |

X45 LET AVG=SUM/N

X50 LET STD=SQR((SQS/N)—AVG+AVG)
X60 FORI=1TON

X70 LET Z()=(A()—AVG)/STD

X80 NEXT |

X9¢ RETURN

NOTE: The expression SQR on line X50 is the square
root function, obtained by pressing the H key
computer is in the

while the

I mode.

LINEAR REGRESSION

PURPOSE: To Calculate the Linear Equation
which Comes Closest to Describing a Set of
Paired (x,y) Values

NAME: Prediction Line by Linear Regression.

INPUT VARIABLES: B(l.2) = array of paired
values; N = number of pairs

OUTPUT VARIABLES: B = slope; C = the Y
intercept of the prediction equation ¥ = BX + C;
R = Pearson correlation coefficient; R2 =
coeflicient of determination.

Xoo
X0l
Xp2
xX10
X12
X14
X16
X18
X20
X25
X30
X35
X40
x50
X60
X70
X75
X80

X85
X90

. Statistics / 65

REM LINEAR REGRESSION
REM INPUT B(,2), AND N
REM OUTPUT B,C,R, AND R2
LET SX=0
LET SY=0
LET XX=0
LET YY=0
LET XY=0
FORI=1TO N
LET SX=SX-+B(1,1)
LET SY=5Y+B(,2)
LET XX=XX + B(l, 1)+2
LET YY =YY +B(],2)#2
LET XY =XY+B(,1)
NEXT |

LET B=(N#XY —SX+SY)/(N#XX — SX+5X)
LET C=(SY—B**SX)IN

LET R=SQR(B+(N=XY —SX=5Y)/

(N#YY —SY+SY))

LET R2=R+R

RETURN

1)+B(l,2

NOTE 1: The value R2, when multiplied by 100,

provides an indication of the percent valid-
ity (or of accuracy) of the prediction line
Y = BX + C.

The prediction line is based upon the as-

sumption that the relationship between the
paired values is linear.

Chapter

Business

This chapter contains many useful subroutines, most of which
can be used not only in business, but in the home and in
school. The simple interest, discount, compound interest, am-
ortization, and sinking fund subroutines are all straightforward
and easily used. One caution, however: be certain that interest
rates are expressed as a decimal fraction rather than as a per-
cent. For instance, if the interest is 94 percent, it must be
entered in these subroutines as 0.095.

The Financial Analysis Ratio subroutine (6.11) will make
a functional addition to a trial balance or financial statement
program. This subroutine could also be added to a program
which lists the financial attributes of a number of businesses.
Using the subroutine in this way would allow comparisons
between companies.

The three depreciation methods (Subroutines 6.12, 6.13,
and 6.14) are very useful in that they not only provide a quick
calculation of the current year’s depreciation of an asset, but
provide the asset’s book value, after depreciation. as well. As
part of an inventory program, one of these subroutines could
be used to update the inventory value each year or to estimate
the inventory value in some future year. Using all three sub-
routines in a single program would allow comparisons to be
made between the three depreciation methods before a choice
of methods is made.

Subroutine 6.15 (TRENDS) is perhaps best used in con-
junction with a plotting subroutine from Chapter 9. This sub-

66

‘ Business / 67

routine makes trends more obvious, because it averages out
the misleading peaks and valleys. For instance, if you have
12 monthly sales figures®N = 12) and use a 3 month moving
average (G = 3), this TREND subroutine will provide 10
points (P = 10), each of which represents a 3-month average.
The larger the number of items grouped into the average (i.c.,
the larger you make G), the more the curve will be smoothed.
Data can be input to this subroutine by using the same ARRAY
INPUT program provided in Chapter 5 (see page 52).

The remaining subroutines in this chapter (6.16 through
6.20) deal with information storage in a string. This method
of information storage may be the most helpful programming
tool you will find in this book. Using this method of storage,
it is possible to store your data, both alphabetical and numer-
ical, in a single string, or to divide your data into a number
of strings (up to 26 strings, AS through Z8$).

This string storage method is predicated on groups of in-
formation called “‘substrings.”” The substrings are linked end-
to-end to make up the storage string. For a given storage
string, the substrings are all the same length. For example,
suppose that we want to store names and telephone numbers.
In order to determine the length of the substrings, we must
first determine a format for the data. Just for convenience, let
us use two initials (allocate 2 spaces for initials), and limit the
last name to 12 spaces (that makes a total of 14 spaces for the
name). Now, we need 10 spaces for the telephone number
(including an area code) and we should insert a space at the
end of each substring to separate the substrings from each
other.

If we place the last name first (so that it can be easily
alphabetized), our format would be as follows:

Substring Format
Place: Laws 12, 13, 14, 15 ... 24, 25
L IOV]

— e

Last name Initials Numbers Space

Total Length = 25 spaces = C

68 / Chapter 6

This “‘total length™™ which we have chosen, becomes (h_e con-
stant C. which is the number of characters in the substring. C
is an input variable of each of the subroutines. E\'-cnf‘ “‘group
of name and telephone data’” placed into a substring and as-
sembled into a storage string must be exactly C characters in
ine will not work.
Imlg()\]}::»:r];i::zni]l‘l][l::tt_v\:)ijlll' :,I;uu into a suhstrifug.callc‘d X5
with a length of C (LEN X$=C) might be similar to the
following:
1 REM "PHONEBOOK"
10 LET I$=""
15 LETC=25
20 PRINT AT 0,7;"INFO__STRING _INPUT";
AT 3,0;"LAST _NAME _AND
_SPACES”; AT 5,0;
25 LET X$=""
30 FORI=1TO 24
35 INPUT 7% [or GOSUB to an INKEYS subroutine]
40 IF Z$=" STOP " THEN STOP
45 IF Z$=" STEP " THEN GOTO 200
50 PRINT Z§;
55 LET X$=X$+78
60 IF 1=12 THEN PRINT AT 3.0;" _
_ _INPUT INITIALS"; AT 5,12;
65 IF =13 OR |=17 THEN PRINT " _";
70 IF I=14 THEN PRINT AT 3,12;"PHONE
NUMBER"; AT 5,17;
75 IF |=20 THEN PRINT " "
80 NEXT I
85 LET X$=X$+"_"
90 GOSUB Y00
95 CLS

to storage subroutine such as 6-16]

SR R s e e R AR e

100 GOTO 20

Business / 69

2090 REM DELETE SUBROUTINE #+
210 LET X$=X$(1 TO 1-2)

220 LET I=I-2

230 PRINT AT 5" "

240 PRINT AT 50.X$

250 GOTO 8d

As you can see, this input program is designed to fit the data
format we designated for names and phone numbers, and
would need to be changed to fit any other desired format. The
program also provides a stop (line 40) and a method to delete
the last printed character of X$ (line 45 and lines 200 through
250). Notice, if you replace line 35 with a GOSUB to an
INKEYS$ subroutine (sce Chapter 8), the task of inputting the
data becomes much easier. This same INKEY$ subroutine
can be used instead of line 60 in the following routine. This
DIRECTORY routine is simpler and more general than is the
PHONEBOOK routine:

1 REM "DIRECTORY"
10 LET I$=""
20 LET C=25
30 LET X$=""
40 PRINT AT 0.0,"INFO_ STRING INPUT "
50 FORI=1TOC-1
60 INPUT Z$
70 IF Z$=" STOP " THEN STOP
80 PRINT Z§;

90 LET X$=X$+7%
100 NEXT |
110 LET X$=X$+7_"
120 GOSUB Y(@0
130 GOTO 30

[this value can be changed to match your
substring format length]

[or GOSUB to an INKEYS$ subroutine]

[to storage subroutine

T S R O S T g SR

70 / Chapter 6

You can build into this input subroutine all the frills you want
or need. Too many printing frills may get into the way of
usefulness, however. Add only enough frills to make the pro-
gram easy to use. Start with a simple program adding them
one at a time.

The whole purpose of an input program such as PHONE-
BOOK or DIRECTORY is to get your data into the storage
subroutines properly. and thus into storage strings. You may
store almost any kind of data in these strings: names and test
scores, pantry items and costs, even employee numbers,
names, wages, dependents, and so on. You can adjust your
input and output programs to make this storage system more
uselul to you.

You need more, however, than just an input program. You
must also design an output program which will make the stor-
age system useful to you. If you are calculating payroll, for
example, your output program must manipulate the data which
is found in your storage system and then print the payroll
answers. You may wish to plot data averages, to search for
trends, or to calculate and plot the Z scores of a class. If we
used I$ as a bookkeeping journal, we can print ledger sheets
on the monitor by using the substring format given in Sub-
routine 10.2. In other words, every data input and storage
program you design will require an output program as well.

As you can see, the information storage string subroutines
ign input and

~an be very useful, but they require that you desig
output programs to meet your specific needs. The input rou-
tines given in this chapter can be modified to fit your data
format. Output subroutines appear in Chapters 9 and 10.

SIMPLE INTEREST

PURPOSE: To Calculate Maturity Value and
Interest Paid on Simple Interest Notes

6.1 NAME: Maturity Value at Simple Interest for a
Period Given in Days.
INPUT VARIABLES: P = principal or face value;
R = annual interest rate expressed as a decimal
value; T = time in days.

6.2

OUTPUT VARIABLES:
I = interest paid.

Business / 71

MV = maturity value;

X00 REM MATURITY VALUE

X01 REMINPUT P, R, AND T

X02 REM OUTPUT MV AND |

X10 LET I=P+R+T/365

X20 LET MV=P+I

X30 RETURN

NOTE: To change this subroutine to use a time given
in months, either multiply the number of
months by 30.4 (i.e., for 3 months, let T =
3% 30.4 = 91.2) or change line X10 to read
as follows:
X10 LET I=P«R+T/12
Likewise, if the time T is in years, either
multiply the number of years by 365 or
change line X10 to read as follows:
X10 LET |=P+R=*T

NAME: Total Simple Interest with Monthly

Payments.
INPUT VARIABLES:

R = annual rate expressed as a decimal value;

P = principal or face value;

S = value of monthly payments: N = number of

months over which calculation is to be made.
OUTPUT VARIABLES: 1 = total interest due for
N months; X = number of payments made: P =
outstanding balance after X months; LS
of last payment (if paid within N months).

value

X@0 REM SIMP INT W/PAYMNT
X01 REM INPUT P.R,S, AND N
X@2 REM OUTPUT I, P, X AND LS
X10 LET =0

X15 LET LS=S

72 / Chapter 6 .

6.3

X200 FOR X=1TON

X30 LET I=I+P+R/12

X400 IF P< =S THEN GOTO X80
X50 LET P=P+P+R/12-S

X60 NEXT X
X65 LET X=X-1
X7¢ RETURN

X80 LET LS=(INT(100+(P +P=R/12)+0.5))/100
X90 RETURN

DISCOUNT

PURPOSE: To Calculate the Maturity Value,
Present Value, and Discount Amount on
Discounted Notes

NAME: Bank Discount of Payable Notes.

INPUT VARIABLES: P = principal or face value
of note; R = annual rate charged on note
expressed as a decimal value (R = 0 if note is
noninterest bearing): T = time of the note
expressed in days; R2 = discount rate charged;
T2 = discount period in days.

OUTPUT VARIABLES: D = discount on note;
MV = maturity value of note; PV = present
value (or current value) of note.

X@0 REM BANK DISCOUNT

X01 REM INPUT PR, T,R2 AND T2

X@2 REM OUTPUT DMV, AND PV

X1@ LET MV=P+P+R+T/360.

X209 LET D=MV*R2+T2/360

X30 LET PV=MV-D

X40 RETURN

L R R A e R R < g SR

6.4

6.5

. Business / 73

NAME: True Discount of Payable Notes.

INPUT VARIABLES: P = principal or face value
of note; R = annual rate charged on note
expressed as a decimal value (R = 0 il note is
noninterest bearing): T = time of the note
expressed in days; R2 = discount rate charged;
T2 = discount period in days.

OUTPUT VARIABLES:
MV = maturity value of note; P = present value

D = discount on note;

(or current value) of note
X00 REM TRUE DISCOUNT
X01 REM INPUT PR T,R2, AND T2
X02 REM OUTPUT D,MV, AND PV
X10 LET MV=P+P*R%T/365
X20 LET PV=MV/(1+R2+T2/365)
X30 LET D=MV-PV
X4@ RETURN

COMPOUND INTEREST

PURPOSE:
Rate of Interest on Compound Interest Notes

To Calculate the Maturity Value or

NAME: Maturity Value at Compound Interest.

INPUT VARIABLES:
R = annual rate of interest expressed as a
decimal; C = the number of conversion periods
per year; N = the number of years (if the number

P = principal or face value;

is not an integer, then use decimal fractions).
OUTPUT VARIABLES: MV = maturity value of
the note; I = total amount of interest paid.
X00 REM COMPOUND INTEREST
X01 REM INPUT P.R.C, AND N
X02 REM OUTPUT MV AND |

74 / Chapter 6

6.6

6.7

X10 LET MV=P#(1+R/C)++INT(N=*C)
X20 LET |I=MV-P
X30 RETURN

NAME: The Compound Rate of Interest, if
Maturity Value is Known.

INPUT VARIABLE P = principal or face value;
MV = maturity value; C = number of conversion
periods per year; N = the number of years (if the
number of years is not an integer, use decimal

fractions).

OUTPUT VARIABLES: R = annual rate of

interest. |
Xp@ REM RATE OF COMP. INT | 6.8
X@1 REM INPUT P, MV,C, AND N |

X2 REM QUTPUT R
X18 LET R= CH{(MV/P)++(1/INT(N+C))) -C
%20 RETURN

MONTHLY PAYMENTS ON A NOTE
(AMORTIZATION)

PURPOSE: To Calculate the Number of Payments
Needed to Pay an Interest Bearing Note

NAME: Months to Pay Off a Note when Amount of
Payment is Fixed.
INPUT VARIABLES:

S = monthly payment;

as a decimal.
OUTPUT VARIABLES:

pay off note; LS = last payment amount.

X@@ REM MONTHS TO PAY OFF
X@1 REM INPUT P.S, AND R

P = principal or face value;
= annual rate of interest

N = number of months to

Business / 75

X@2 REM OUTPUT N AND LS

X10 LET N=0

X20 LET P=P+P=#R/12

X30 LET P=P-S

X490 LET N=N+1

X50 IF P<=S+1 THEN GOTO X70
X60 GOTO X20

X790 LET N=N+1

X80 LET LS=P

X90 RETURN

NAME: Amount of Payment Required to Pay Note

when the Number of Payment Months is Known.
INPUT VARIABLES: P = principal or face value;
N = number of months; R = annual interest rate
as a decimal.
OUTPUT VARIABLES: S = monthly payment
required.

X00 REM MONTHLY PAYMENT NEEDED
X@1 REM INPUT P, N, AND |
X@2 REM OUTPUT S AND V
X10 LET R=R/12
X20 LET V=1/(1 +R)**N
X30 LET S=P=R/(1-V)
X40 RETURN
SAVINGS (SINKING FUND)
PURPOSE: To Calculate the Amount of the

Monthly Deposit Required to Acquire a Certain
Value

76 / Chapter 6 .

6.9

6.11

NAME: Payment Required to Obtain a Certain
Value in a Sinking Fund.

INPUT VARIABLES: SF = required end value of
sinking fund; N = number of months in which
value is to be accumulated; R = annual rate of
simple interest paid expressed as a decimal.

OUTPUT VARIABLES: D = payment to be
deposited each month.

X0@ REM SINKING FUND PAYMENT

X@1 REM INPUT SF,N, AND R

Xp2 REM OUTPUT D

X1@ LET D=SF+R/(12#(

X2@ RETURN

FRIM12)#+N—12)

PURPOSE: To Calculate the Final Value of a
Sinking Fund

NAME: Future Value of a Sinking Fund
INPUT VARIABLES: D = amount to be deposited

at the end of each month; N = number of monthly

deposits; R = annual rate of simple interest paid
expressed as a decimal.
OUTPUT VARIABLES:
the end of N months.
X090 REM FUTURE VALUE
X@1 REM INPUT DN, AND R
X02 REM OUTPUT SF
X10 LET SF=12+D=*((1+R/12)*+N—-1)/R
X20 RETURN

SF = value of the fund at

FINANCIAL STATEMENT ANALYSIS
RATIOS

PURPOSE: To Obtain Ratios Useful in the
Analysis of Financial Statements

NAME: Financial Analysis Ratios.

6.13

. Business / 77

INPUT VARIABLES: NI = net income; CA =
current assets; CL = current liabilities; El =
stockholder’s equity at the beginning of the period;
E2 = stockholder’s equity at the end of the
period.

OUTPUT VARIABLES: WC = working capital
ratio; IE = ratio of net income to average equity.

X0® REM FINANCIAL ANALYSIS

X031 REM INPUT NI,CA,CL.E1,E2

X02 REM OUTPUT WC AND IE

X190 LET IE=2+NI(E1+E2)

X280 LET WC=CA/CL

X30 RETURN

DEPRECIATION METHODS

PURPOSE: To Calculate an Asset’s Depreciation
for a Given Year of its Useful Life

NAME: Straight Line Depreciation Method.

INPUT VARIABLES: C = cost price; S = salvage
value; L = life expectancy in years; Y = year of
life being depreciated (Y < = L).

OUTPUT VARIABLES: DS = depreciation in any
year of life; B = book value of asset after
depreciation for year Y.

X090 REM STRAIGHT LINE DEPR

X@1 REM INPUT C,S,L AND Y

X@2 REM OUTPUT DS AND B

X10 LET DS=(C-S)/L

X2@ LET B=C—(DS*Y)

X30 RETURN

NAME: Sum-of-the-Years-Digits Depreciation
Method.

781

6.14

Chapter 6
INPUT VARIABLES: C = cosl price; S = salvage

value; L = life expectancy in years: Y = year of
life for which depreciation is to be calculated
(Y <= L)

OUTPUT VARIABLES:
year Y; B = book value of asset after
depreciation.

DY = depreciation in

X0 REM SUM OF YEARS DEPR

X@1 REM INPUT C,S.L, AND Y

X@2 REM OUTPUT DY AND B

X109 LET X=0

X15 LET B=C

X20 FORI=1TOL

X3¢0 LET X=X+

X480 NEXT |

X580 FORI=1TOY

X6@ LET DY=(C—S)*(L—I+1)/X

X70 LET B=B-DY .

X80 NEXT I I

X990 RETURN

NAME: Double-Declining-Balance Depreciation
Method.

INPUT VARIABLES: C = cost price; S = salvage
value; L = life expectancy in years; Y = year of
life for which depreciation is to be calculated
(Y <= 1L).

OUTPUT VARIABLES: DD = depreciation in
year Y; B = book value after depreciation.

X@0 REM DBL DECLINE BAL

X¢1 REM INPUT C,S,L, AND Y

Xg2 REM OUTPUT DD AND B

X190 LET R=1/L |

X15 LET B=C ;
i s :

79

Business /

X20 FORI=1TOY
X30 LET DD=B#*R
X40 IF B—DD< =S THEN GOTO X70
X560 LET B=B-DD
X60 NEXT |
X65 RETURN
X70 LET DD=B-S
X80 LETB=S
X9p GOTO X60
TRENDS
PURPOSE: To Calculate the Moving Average
Trend
NAME: Moving Average Trend.

INPUT VARIABLES: D(I) = array of data; N =
number of items in D(I); G = number of items to
be grouped into moving average.

OUTPUT VARIABLES: C(I) = array of moving
averages; P = number of averages in the .’HT&I_\’T
MAX = maximum value in array C(I).

X00 REM TREND

X@1 REM INPUT D(l), N, AND G
X02 REM OUTPUT C(),P, AND MAX
X10 LET MAX=0

X15 LET P=N-G+1

X20 DIM C(P)

X25 FORI=1TOP

X30 LET B=0

X35 FORJ=1TO G

X40 LET B=B+DWJ+I—1)

X50 NEXT J

80 / Chapter 6

X60 LET C()=B/G

X780 IF C())>MAX THEN LET MAX= C()
X80 NEXT |

X980 RETURN

INFORMATION STORAGE

PURPOSE: To Store and Manipulate Groups of
Similar Types of Information in a Single Storage
String

6.16 NAME: Information Storage String.

INPUT VARIABLES: IS = storage string
containing groups of information: X$ = a string
containing a single group of information: C = the
length of each group contained in I$, a constant.

OUTPUT VARIABLES: I$ = the storage string
including X$.

X@0 REM INFORMATION STORAGE

X01 REM INPUT I$,C, AND X$

X02 REM QUTPUT I$

X10 IF LEN X$>C THEN PRINT "INFORMATION

_STRING_TOO_ LONG"; X%

X20 IF LEN X$>C THEN RETURN

X30 IF LEN X$=C THEN GOTO X60

X40 LET X$=X$+"_"

X50 GOTO X30

X60 LET 15=1$+X$

X70 RETURN

NOTE 1: I$ must have some value before this sub-

routine is called. The very first entry into
I$ must be either I$="" or I$=X$ in order
to initialize I$. If no value has been pre-

6.17

6.18

Business / 81

viously assigned to I$, line X60 will return
an error code of 2/X60,

If LEN X$>C, it cannot be added to I$
without upsetting the design of I$. You may

NOTE 2:

want to print a different message in line
X10, and you may want to substitute the
command STOP for RETURN in line
X20.

NAME:
String.

INPUT VARIABLES: I$ = storage string; C =
length of information groups in 1$; N = group

Delete Information Group in Storage

number of information group to be deleted.
OUTPUT VARIABLES: I$ = storage string with
information group N deleted.

X0@ REM DELETE SUBSTRING

X@1 REM INPUT I$, C AND N

X02 REM OUTPUT I$

X190 FOR K=N TO LEN I$/C—1

X20 LET IS(1 +(K—1)*C TO K+C)=I$(1 +K+C TO
(K-+1)+C)

NEXT K

LET I$(1+LEN I$—-C TO LEN I$)=""
RETURN

X30
x40
X50

NAME: Insert Information into Alphabetized
Information String.

INPUT VARIABLES: I$ = an alphabetized
information storage string; C = length of groups
in 1$; X% = an information group to be inserted
into I$ (LEN X$=0).

OUTPUT VARIABLES: 1$ = an alphabetized
information string including X$.

X00 REM INSERT ALPHABETIZED

[SRR T A e T e e RN,

82 / Chapter 6

X01 REM INPUT I$,C,AND X$

X02 REM OUTPUT I$

X10 FOR K=1TO LEN I$/C

X20 IF I1$(1 +(K—1)=C TO K+C)> =X$ THEN

GOTO x40

X25 NEXT K

X30 LET I$=1$+X$

X35 RETURN

X49 IF K=1 THEN LET I$=X$+i$

X45 IF K=1 THEN RETURN

X50 LET I$=1$+I$(1 +LEN I$—C TO LEN I3)

X60 FOR J=LEN I$/C—1 TO K STEP —1

X760 LET I$(1+(J—1)*C TO J*+C)=I$(1 +(J—2)*C

TO (J—-1)*C)

X75 NEXT J

X80 LET I$(1+(K—1)+C TO K+C)=X$

X90 RETURN

NOTE 1: This subroutine can be used to assemble an
alphabetized list of information groups, or
to insert a new piece of information into an
existing alphabetized list.

NOTE 2: As with the Information Storage String sub-
routine (6.16), this subroutine requires that
1% exists before the subroutine is called (i.e.,
LET 1$="" or LET I$=X$). Otherwise,
the computer will not recognize the symbol
I$, and line X10 will return an error signal
of 2/X10.

NOTE 3: To assure that LEN X$=C, you may want

to add the following lines to this subrou-
tine:

6.19

X@5 IF LEN X$>C THEN STOP

X06 IF LEN X$=C THEN GOTO X10
X07 LET X$=X§+"_"

X08 GOTO X06

Business / 83

NOTE 4: See Chapter 8 for a subroutine which will
order an existing list of unordered infor-

mation groups.

NAME: Retrieval of Storage String Information

INPUT VARIABLES: 1I$ = storage string
containing groups of information; C = the length
of each group contained in I$, a constant; P =
number of the required group in the sequence of
groups in 1$.

OUTPUT VARIABLES: R$ = information group
stored in position P in storage string 1$.

X@0 REM INFO RETRIEVAL

X@1 REM INPUT I$,C, AND P

X02 REM QUTPUT R$

X10 IF P>LEN I$/C THEN PRINT :"GROUP
NUMBER TOO LARGE"

X2¢ IF P>LEN I3/C THEN RETURN

X30 LET R$=I$(1+(P—1)+C TO P+C)

X40 RETURN

NOTE 1: Although lines X10 and X20 will avoid an
error signal if P is too large, you may wish
to print a different message in line X 10, and
may wish to substitute the command STOP

for RETURN in line X20.

NOTE 2:

If your program does not allow P to be
greater than LEN I$/C, then lines X10 and
X20 can be eliminated from the subroutine.

B s o o L% I i e

6.20

X00

NOTE 2:

84 / Chapter 6

NAME:

INPUT VARIABLES:
string; C= length of groups in I$; S$=
information string being searched for: L. = number

Search for and Print Item in Storage String.
1$ = information storage

of characters to be matched in search (L < = C).
OUTPUT VARIABLES:
of the found group and prints the found group.

Prints the position number

REM INFO SEARCH

X@1 REM INPUT I1$,C,S$, AND L
X@2 REM OUTPUT PRINT
X10 FOR J=1 TO LEN I$/C
X200 IFI$(1+(J—-1)+C TO L+(J-1)+C)=8%(1 TO
L) THEN PRINT J;" _"I$(1+(J—1)+C TO
J=C) |
X3@ NEXTJ
X4@ PRINT "END OF SEARCH"
x50 RETURN
NOTE 1: The choice of the value of L will be deter-

mined by your needs. For example, if L =
6 and 8§ = ““SMITH _"’, then only those
groups beginning with “*SMITH _"" will be
printed. If L = 1, however, all groups be-
ginning with the character S will be printed.

Line X40 can be omitted if it is not needed. |

- e

e ‘ e

ERE R R e e S

Chapter

Maximum, Minimum, and
Sequence

The ability to determine the maximum or minimum value of
a disordered array of numbers can be a very helpful start to-
ward bringing order from chaos. As a matter of fact. this
chapter might easily have been titled **Order from Chaos."
The subroutines described are used for maximums, mini-
mums, averages, sorting, searching, and alphabetizing.

The subroutines in this chapter which deal only with num-
ber manipulation require that the input data be in the form of
an array. A program for placing your raw data into such an
array is given in Chapter 5. (See ARRAY INPUT. p. 52.)

Subroutine 7.1 finds the maximum value in an array. It
searches the input data array and sets the variable MX equal
to the maximum value found in the array. Subroutine 7.2
works in the same way, but searches for the minimum value
in the array and sets the variable MN equal to it. These two
search functions are combined in Subroutine 7.3, which finds
both the MX value and the MN value, and at the same time
finds the arithmetic mean (average) of the array. These three
outputs (MAX/MIN/MEAN) provide the range of values and
average of the data.

In some instances the actual range of values is not as
important as is the range of magnitude of the data. Subroutine
7.4 finds the greatest absolute value in the data, sets MM equal
to it, finds the least absolute value (nonzero) in the data, and

86 / Chapter 7

sets NM equal to it. If zero is an acceptable value for NM,
then line number X40 can be deleted from this subroutine.

In the next two subroutines (7.5 and 7.6). the maximum
value of random numbers generated and the repetition of any
random number is controlled. Subroutine 7.5 generates ran-
dom number values which are between M and —M (where M
is an input variable of the subroutine).

Subroutine 7.6 generates positive random integers be-
tween 0 and M, and does not allow duplication of any number
generated (no two numbers generated will be the same). This
subroutine can be most useful when nonrepetitive random
numbers are required, such as when the goal is to draw sam-
ples from a pool without repeating any sample (as in Bingo).
Subroutine 7.6 could also be used to genegate a random list
of phone numbers for a survey, to list the order in which

questions will be placed on a quiz, to give the order in which
applicants will be interviewed, or to determine the order in
which bills will be paid. It is a very useful subroutine.

Equally useful are the next few subroutines in this chapter,
which sort data into order. Subroutine 7.7 is called BUBBLE
SORT because the smallest numbers ““float™ to the top of the
list. Subroutine 7.8, called SORT AND SAVE, is identical to
BUBBLE SORT except that SORT AND SAVE does not de-
stroy the original order of the array when it sorts the values
into ascending order. Instead of sorting the original array,
SORT AND SAVE transfers the original array into a new
array and sorts the new array. Thus, there is the original array
with its order unaltered, and there is a new array containing
the original values, which have been sorted into ascending
order.

The PARTITION SORT subroutine (7.9) divides the val-
ues into two groups. The one group is composed of values
which are less than the chosen partition value, and the other
d of values which are greater than the chosen

group is compos
partition value. For example, if you have a list of numbers,
as shown in column A of Table 7-1 and you choose a partition
value of 3, then PARTITION SORT will give you the list
shown in column B of Table 7-1.

Maximum, Minimum, and Sequence / 87

.

Table 7-1

A B

A(1)=9 A(l)=1
A(2)=2 A(2)=2
A(3)=3 A3)=3
Ad)=7 A4)=9
A(5)=8 A(5)=17
A(6)=5 A(6)=8
A(7)=6 A(N=5
A®)=6 A(B)=6
A9)=1 AD) =6

In column B of Table 7-1, A(l) and A(2) are less than
the partition value, and A(4) through A(9) are greater than the
partition value. The values are not sorted into any order; they
simply are partitioned into ‘‘greater than’* and *‘less than”’
groups.

As noted in the listing of the Subroutine 7.9, if the par-
tition value which you choose appears in the data more than
once, then the subroutine can become trapped. In order to
avoid this possibility, you only need to increase your partition
value by some decimal amount, so that the chosen value will
not appear on this list. For example, if we wished to use a
partition value of 6 with the values in column A, we should
use a value of 6.5 (a small decimal value) instead, thus avoid-
ing becoming trapped in an endless loop.

With the Timex/Sinclair string-handling abilities, sorting
alphabetical information is almost as easy as sorting numerical
data. Subroutine 7.10 will take a list of names or any other
alphabetical list in a string, and rearrange the string so that
the last name is first. The subroutine does this by beginning
at the last letter of the string, and backing up until it finds a
space (shown in the program as a *“_""). It then rearranges

88 / Chapter 7

the string so that everything between the space and the end of
the string (which should be composed of the last name) is
removed from the end and placed at the beginning of the
string. (Thus the name LAST NAME FIRST.) This subroutine
is very useful for converting names to last name first before
sorting them or inserting them into alphabetical order. (See
Subroutine 6.18 for inserting a string into alphabetical order
in an information storage string.)

The last sequence subroutine in this chapter (7.11) is titled
ORDER INFO. It will arrange the substrings of an information
storage string into ascending order. If the information being
stored is alphabetical, then this arrangement of substrings is
equivalent to setting the substrings in alphabetical order. 1f
the substring begins with alphabetical information (for ex-
ample : last name, initials, phone number), the substrings will
be alphabetized by the subroutine.

The last two subroutines in this chapter (7.12 and 7.13)

will search for a value in an array, and will return the position |
in the array where the value is found. Subroutine 7.12, which |

is the most widely used search method, will search any array.

It starts at the beginning, A(1), and checks each value in the

array, in order, until it finds a match. It then returns P as the
position of the match. meaning that the match was found at
A(P). If no match is found, then P = 0.

Subroutine 7.13 is a binary rather than a sequential search. |
A binary search is much faster than the sequential search, but |
requires that the values of the searched array be in ascending |
order. Subroutine 7.13 works by dividing the given list in half |
and jumping to the middle of the list. If the value found in

the middle is greater than the value searched for, the subrou-
tine then jumps to the middle of the half of the list containing

the smaller values. If instead the first value found is smaller |

than the one searched for, the subroutine jumps to the middle
of the half containing the larger values. The subroutine con-

tinues to jump to the middle of the dwindling group of halved |
lists, always jumping in the direction of the searched-for value. |

Searching for alphabetical data is covered by Subroutines |
6.19 and 6.20, in Chapter 6. These subroutines will allow you |

to find alphabetical information either by name or by list po-
sition number.

7.1

7.2

Maximum, Minimum, and Sequence / 89

MAXIMUM AND MINIMUM VALUES

PURPOSE:
of Values

To Find the Maximum Value of a Set

NAME: Maximum Value in an Array of Numbers.
INPUT VARIABLES: A(l) = array of values; N =
length of array (number of values in the array).
OUTPUT VARIABLES: MX = the maximum

value stored in the array.

X0 REM MAXIMUM VALUE

X@1 REM INPUT A(l) AND N

X@2 REM QUTPUT MX

X10 LET MX=A(1)

X20 FORI=2TON

X30 IF A(l)>MX THEN LET MX=A(l)

X4@ NEXT |

X50 RETURN

PURPOSE: To Find the Minimum Value of a Set

of Values

NAME: Minimum Value in an Array of Numbers.
INPUT VARIABLES: A(l) = array of values; N =
length of array (number of values in the array).

OUTPUT VARIABLES: MN = minimum value.

X0@0 REM MINIMUM VALUE

X01 REM INPUT A(l) AND N

X@2 REM OUTPUT MN

X10 LET MN=A(1)

X20 FORI=2TO N

X380 IF A)<MN THEN LET MN=A()
X409 NEXT |

X50 RETURN

90 / Chapter 7

MAXIMUM, MINIMUM, MEAN (AVERAGE)

PURPOSE: To Find the Maximum, Minimum, and
Average Value of a Set of Values

NAME: Maximum, Minimum, and Mean.

INPUT VARIABLES: A(I) = array of values; N =
number of values in array.

OUTPUT VARIABLES: MX = maximum; MN =
minimum; AV = average.

X@0 REM MAX, MIN, MEAN

X@1 REM INPUT A(l) AND N

X@2 REM OUTPUT MX, MN, AND AV

X1@ LET MX=A(1)

X15 LET MN=A(1)

X20 LET S=0

X3@ FORI=1TON

X4@ LET S=S+A()

X50 IF A(l)>MX THEN LET MX=A())

X60 IF A(ll<MN THEN LET MN=A()

X70 NEXT |

X80 LET AV=S/N

X990 RETURN |
NOTE 1: To find which number in an array is max-

imum or minimum, add lines X45 and X55

as shown:

%45 IF A(l)>MX THEN LET X=|
X55 IF A(l)<MN THEN LET R=|

X will be the position in the array of the

value MX, and R will be the position in |
the array of the value MN. If there is more |
than one array value which equals MX, then
only the first one will be identified by X. |

7.4

NOTE 2:

NOTE 3:

Maximum, Minimum, and Sequence / 91

Likewise, R will identify only the first value
equal to MN.

If you want to limit the value AV to two
decimal places, you can do it by changing
line X80 to read as shown below. The +0.5
value will cause rounding to the nearest
decimal. Without this +0.5 value, the
computer will round only downward.

X80 LET AV=(INT(S+100/N +@.5))/100

If average value AV is not needed, then
lines X20, X40, and X80 may be deleted.

MAXIMUM AND MINIMUM MAGNITUDE

PURPOSE:

(NONZERO)

To Determine the Largest and Smallest

(Nonzero) Magnitude in an Array of Numbers

NAME:

Maximum and Minimum Magnitude.

INPUT VARIABLES: A(I) = array of values; N =

number of values in the array.

OUTPUT VARIABLES:

MM = maximum

magnitude; NM = minimum magnitude.

X00
X
X@2
X10
X20
X30
X40
X50
X60
X70
X80

REM MAX AND MIN MAG

REM INPUT A(l).N

REM OUTPUT MM AND NM

LET MM=0

LET NV =ABS A(1)

FOR =1 TON

IF A()=0 THEN GOTO X70

IF ABS A(l)>MM THEN LET MM =ABS A(l)
IF ABS A(l)<NM THEN LET NM=ABS A())
NEXT |

RETURN

m. S i m—

92 / Chapter 7

7.6

RANDOM NUMBERS

PURPOSE: To Control the Degree of Randomness
of Generated Random Numbers

NAME: Range of Random Numbers.

INPUT VARIABLES: M = maximum value of
random number required.

OUTPUT VARIABLES: R = random number
generated.

X@9 REM RANDOM NUMBER RANGE

X@1 REM INPUT M

X@2 REM OUTPUT R

X@5 RAND

X190 LET R=INT(M+RND)+1

X20 LET S=INT(2+RND)

X3@ IF NOT S THEN LET R=-R

X490 RETURN

NOTE:
omit lines X20 and X30.

NAME: Unique (Nonrepeating) Random Positive
Number Generator.

INPUT VARIABLES:
number of values needed.

OUTPUT VARIABLES: R(I) = array of
nonrepeating random numbers.

M = maximum value; N =

X@¢ REM UNIQUE RANDOM NUMBERS
X01 REM INPUT M AND N

X@g2 REM OUTPUT R()

X@5 RAND

X190 DIM R(N)

X20 FORI=1TON

X30 LET R()=1+INT(M+RND)

If only positive numbers are required, then I

7.7

7.8

Maximum, Minimum. and Sequence / 93

Xag IF I=1 THEN GOTO X80

X50 FOR J=1TO I-1

X60 IF R(J)=R(l) THEN GOTO X3¢
X70 NEXT J

X80 NEXT |

X9¢0 RETURN

SORT NUMBERS

PURPOSE: To Sort a Series of Numbers into
Ascending Order

NAME: Bubble Sort.

INPUT VARIABLES: A(I) = list of values; N =
number of values in list.

OUTPUT VARIABLES:
values.

X0@ REM BUBBLE SORT
X@1 REM INPUT A(l) AND N
X@2 REM OUTPUT A(J)

X10 FOR I=1TO N—1

X290 FOR J=ITON

X3¢ IF A(J)>A() THEN GOTO X70
X490 LET X=A(l)

X50 LET A()=A({J)

X60 LET A(J)=X

X780 NEXT J

X80 NEXT |

X9@ RETURN

A()) = ordered list of

NAME: Bubble Sort and Save.
INPUT VARIABLES: A(I) = list of values; N =
number of values in list.

T— R—

94 / Chapter 7 qm\imum. Minimum, and Sequence / 95
“hapter

i
:. X25 IF A(l)> =L THEN GOTO X40
| X30 NEXT |

OQUTPUT VARIABLES: A(I) = unaltered list; B(I)
= odered list of values.

X0p REM SORT AND SAVE X35 RETURN

X@1 REM INPUT A(l) AND N i X480 FOR J=NTO |+1 STEP—1

X@2 REM OUTPUT A(l) AND B()) X45 IF A(J)< =L THEN GOTO X60

X190 DIM B(N) X50 NEXT J

X15 LET X=0 X55 RETURN

X20 FOR I=1TO N—1 | X60 LET Y=A()

X30 FOR J=ITON I X65 LET A()=A(J)

X40 IF X=0 THEN LET B(J)=A(J) ! X780 LET A{J)=Y

X50 IF B(J)>B(l) THEN GOTO X75 X80 IF J>1+1 THEN GOTO X2¢

X60 LET Y=B() { %eh RETURAN
X65 LET B()=B(J) | NOTE: If there is more than one number in A(l)
| whose value equals the value of L, this sub-
- | :
X70 LET B()=Y E routine may become trapped in an endless
X75 NEXTJ E loop. To avoid this possibility, simply in-
X80 LET X=1 | crease L to a decimal value which cannot be

found in A(I). For example: If A(I) is made
X85 NEXT | up of whole numbers and L is 22, simply
X90 RETURN increase L to 22.5. In this way no value of
A(I) can equal L, and yet your partition will

[» T wide = H \ H f
PURPOSE: To Divide a List of Numbers into be at the same place in the array.

|
those Numbers Less than and those Numbers I
Greater than a Given Value L

LAST NAME FIRST
7.9 NAME: Partition Sort.

INPUT VARIABLES: A(I) = array of numbers; N ¢ l’lTRVP(.N‘;E:‘ 'E:) Fr'tra‘n\-crl a Name in AS to the Form
= number of values in array; L = partition value ! of Last Name First
(value used to divide array). 7.10 NAME: Last Name First.
OUTPUT VARIABLES: A(J)) = soited array. [INPUT VARIABLE A% = name (last name last).
X3¢ REM PARTITION SORT OUTPUT VARIABLES: B$=name (last name
] first).
A0 BEMINE RN ANR f X00 REM LAST NAME FIRST
X@2 REM OUTPUT AJ) g 5 REEREUTYS
XY ERTe=H ! X902 REM OUTPUT‘B
X20 FORI=1TO J—1 | §
i

96 / Chapter 7

X1@ FOR |=LEN AS TO 1 STEP —1
X20 IF AS()="_" THEN GOTO X40
X30 NEXT |
LET BS=A3%(+1 TO LEN A$)+", _" +A$
(1 TO1-1)
X50 RETURN

ALPHABETIZING AN INFORMATION
STRING

PURPOSE: To Place Information Substrings into
an Ascending Order

NAME: Order Information Substrings.

INPUT VARIABLES: 1$ = an information storage
string containing groups of information; C = the
length of each information group in I$.

OUTPUT VARIABLES: I$ = an information
storage string containing groups of information in
an ascending alphabetic/numeric order.

X@@ REM ORDER INFO

X@1 REM INPUT I$ AND C

X@2 REM OUTPUT I$

X1 FOR |=1TO LEN I$/C—-1

X20 FOR J=1TO LEN I$/C

X309 IF I1$(1 +(J—1)=C TO J+C)>1$(1 +(1—1)+C TO

1+C) THEN GOTO %70

X40 LET X$=1$(1+(—1)*C TO I%C)

X50 LET I(1+(1—1)+C TO 1+C)=I$(1+(J—1)+C
TO J+C)

X60 LET I3(1+(J—1)+C TO J+C)=X$

X7@ NEXTJ

X80 NEXT |

X99 RETURN

Maximum, Minimum, and Sequence / 97

SEARCH FOR NUMBERS

PURPOSE: To Find the Position of a Required
Number in a Table of Numbers

NAME: Sequential Search.

INPUT VARIABLES: A(l) = array of values; N =
number of values in the array; S = value searched
for.

OUTPUT VARIABLES: P = position of S in array
(0 if not found).

X@@ REM SEQUENTIAL SEARCH

X@1 REM INPUT A(l),N, AND S

X@2 REM OUTPUT P

X190 LET P=0

X290 FORI=1TON

X30 IF S<>A() THEN GOTO X60

X40 LET P=|

X50 GOTO X7¢

X60 NEXT |

X70 RETURN

NOTE: This subroutine will search an array which is

in any order. It is very useful when N is not

large, and is the only subroutine to use when
A(I) is unordered.

NAME: Binary Search.

INPUT VARIABLES: A(I) = ordered array of
values; N = number of values in array; S = value
searched for.

OUTPUT VARIABLES: = position of § in array
(0 if not found).

X0¢ REM BINARY SEARCH
X1 REM INPUT A(l),N, AND S
X02 REM OUTPUT P

13
98 / Chapter 7 |
}
{ Chapter
X03 REM A(l) MUST BE ORDERED B e
X190 LET T=0
w0 LErT INKEY$ and SCROLL
X20 LET V=INT((T+B+1)/2)
X25 IF S=A(V) THEN GOTO X80
X30 IF V=B OR V=T THEN GOTO X65
X40 IF S<A(V) THEN GOTO X55
X45 LET T=V
X50 GOTO x20
X565 LET B=V
X60 GOTO X20 INKEY$ and SCROLL are very helpful functions in the Ti-
mex/Sinclair 1000 and Sinclair ZX computers. When properly
X65 LET P=0 | manipulated, they allow you to design programs which are
X70 GOTO X990 more ‘‘user friendly.”” The same is true of the INKEY$ func-
X80 LET P=V { tion in the Timex/Sinclair 2000 and the Sinclair Spectrum.
| However, because these color computers do not have a
]
X90 RETURN | SCROLL function that is completely operator dependent, the
NOTE: This search subroutine is rapid, but will work | SCROLL subroutines in this chapter apply only to the Timex
only on a list which is already sequenced in | 1000 and the Sinclair ZX Computers.
ascending order. ; Because operator control of the SCROLL function can be
| very useful, a separate discussion of the use of this function
| for the Timex/Sinclair 2000 and the Sinclair Spectrum is in-
| cluded later in this chapter.
i Although it is possible to write useful programs without
i using the INKEY$ or SCROLL function, these functions can
| be most helpful, especially if your program requires inputting
i or printing of data. The two functions INKEY$ and SCROLL
g can be applied in ways which will cause your programs to be
much easier to use.
The INKEY$ function scans the Timex/Sinclair keyboard
and reports the character of the depressed key. This function
| will report any regular or ‘‘shifted”” keyboard character. It
| will not, however, report keyboard actions, such as *‘delete’’,
**graphics™, or the direction arrows, and it will not accept a
! space. (If INKEY$ is asked to report a space, it will instead
i
} 99
i

oA A

100 / Chapter 8

report error code D and stop the program.) In spite of this
drawback, INKEY$ can be used for almost any input situa-
tion, and if required the space report drawback can be circum-
vented.

Subroutine 8.1 is an INKEY$ subroutine for numeric in-
put only. This subroutine places the variable X equal to the
value of the number which INKEY$ reports. Because IN-
KEYS$ is a string function, it must be treated as a string. Thus:

X200 LET X=VAL INKEY$

Line X20 is necessary in order to get INKEY$ into the form
of a numeric variable. The PAUSE 9000 instruction of line
X 10 in the subroutine provides 150 seconds of delay in which
a key may be pressed. If no key is pressed by the time the
PAUSE is complete, then line X20 sets X = 0 and the sub-
routine returns to the main program. The PAUSE function is
used so that the program can be run in the FAST mode (see
PAUSE and INKEY$ in your computer manual).

To use INKEY$ in the SLOW mode, or to use INKEY$
in the Timex/Sinclair 2000 or Sinclair Spectrum, two modi-
fications must be made. First, the PAUSE line must be
changed to read:

X0 IF INKEY$ < >"" THEN GOTO XX@

Then, the POKE line which follows the PAUSE line must be
changed to read:

XX5 IF INKEY$="" THEN GOTO XX5

These changes apply to Subroutines 8.1 through 8.4.

Cursor INKEY$ (Subroutine 8.2) is a printing subroutine.
The print position (line and column) is provided as two input
variables, First, a “‘cursor’ is printed at the designated print
position to indicate on the screen where the next character will
be printed. Then, when the keyboard is touched, the INKEY$
character is printed in place of the cursor. If you want to save
the value of the INKEYS$, line X25 can be added as shown:

X256 LET AB=INKEY$

A typical example of how Subroutine 8.2 can be used is
shown in the following program:
1 REM "TELE-NO"
1@ FORI=1TO 15
20 FOR J=1TO 10
30 LET L=l
40 LET C=J
50 IFC>3 THEN LET C=C+1
60 IF C>7 THEN LET C=C+1

INKEY$ and SCROLL / 101

betws
three and last
four numbers]

[to Subroutine 8.2, CURSOR INKEY$]

70 GOSUB YOO

80 NEXT J
90 NEXT |
100 STOP

The TELE-NO program will accept 15 telephone numbers and
print them on the screen. Line X50 places a space between
the area code and the local number. Line X60 places another
space between the first three digits and the last four digits of
the local number. The CURSOR INKEY$ subroutine pro-
vides a visual prompt, in the form of the cursor, as to where
the next number input will be printed.

This example program may be a trivial use of the Sub-
routine 8.2, but the program illustrates how this subroutine
might be used.

The next subroutine, ALPHA INKEY$ (8.3), is simply
an embellishment of the preceding INKEY$ subroutines. Here,
line X20 sets A$ equal to INKEY$, and line X30 changes A$
to a space (_) if INKEY$ is ““>"". This change in A$ simply
means that because INKEY$ will not accept a space as an
input, we have chosen the **>"" as the space bar. (Any other
acceptable character could have been chosen as the substitute
for the space.) If no decimals or periods are needed in your

102 / Chapter 8

printing, then the period (.) might be an excellent substitute
for the space bar. Simply change line X30 to read:

X30 IF A$="." THEN LET A$="_"

The last INKEY$ subroutine (8.4) has some word-pro-

cessing attributes, This subroutine will print up to 22 lines of

32 characters and will store this “*page’’ of characters in string
AS.

IF STOP is pressed or if the screen is filled, then Sub-
routine 8 4 will return to the main program. A BACKSPACE
AND DELETE subroutine could easily be added (see
PHONEBOOK in Chapter 6, lines 200-250), which would
allow you to correct any mistakes.

Notice that parts of Subroutine 8.4 are taken from Sub-
routine 8.3 (see lines X30, X40, X50). You could delete lines
X40 and X50 and change line X30 to:

X30 GOSUB Y00

Making this change will not affect the way Subroutine 8.4
works, but you must change the output variable of Subroutine
8.3 from A$ to B$ in order to match the input variables in
Subroutine 8.4.

[to Subroutine 8.3]

T/S 1000 and ZX81 SCROLL

Like the INKEY$ function. the SCROLL function is quite
helpful at times, but by itself seldom is adequate. If we are
putting data into a table and the screen is filling up, we must
keep an eye on the bottom line so that we can SCROLL before
we get a full screen and a 5 error signal. Without constantly
counting how many lines have been printed, it is often difficult
to be certain which line is the bottom line of the screen. More-
over, if we do SCROLL in time, the table heading goes off
the top of the screen. In such a case, it may be hard to re-
member whether column 3 was the sales volume for 1984 or
was the inventory of washroom keys. The SCROLL subrou-
tines in this chapter can be used to overcome many such prob-
lems.

f
t
|

INKEY$ and SCROLL / 103

The first SCROLL subroutine (8.5) allows you to scroll
by simply pressing ENTER. Initially, Subroutine 8.5 prints a
prompt on the bottom line of the screen (line X10). If anything
other than ENTER is input, the subroutine erases the prompt
(line X60) and returns to the main program.

AUTO-SCROLL (Subroutine 8.6) is very practical and
can be combined with other subroutines to give even more
benefit. Line X10 looks into the computer and determines if
the last line has been printed. If it has, the subroutine scrolls,
and line X20 tells the computer that it can now print on the
last line. This subroutine is truly an automatic scroll. Using
the subroutine will allow the computer to check for a full
screen and then to scroll, if necessary, before it prints.

The automatic function of Subroutine 8.6 can be expanded
by changing line X10 to read:

X10 IF PEEK 16442=2 THEN GOSUB Y00

If you were printing a table, the GOSUB might take you to
Subroutine 8.7, which will preserve a table heading while
scrolling the data in the table. This subroutine does so by
looking into the computer (PEEK). by taking the 33 chara]
which the computer is displaying on line 0 (actually 32 char-

acters and an “‘end-of-line’’ sign). and by storing the char-
acter’s code in an array A(X). The subroutine now scrolls (line
50). Scrolling rolls line 0 off the top of the screen, but we
have already stored it in array A(X). We can now tell the
computer (with POKE) to use the array A(X) as the codes for
printing line 0.

The functions PEEK and POKE are operations for look-
ing into and altering the computer’s memory. In Subroutine
8.7 we have PEEKed into the memory, stored what we found,
and later POKEd that stored information back into the same
place we found it. This whole operation could be accom-
plished much faster by using machine code (the language of
the computer), but to do this, as we will see in Chapter 10,
is much more complicated.

Subroutine 8.8 works in a manner similar to 8.7, but pre-
serves the footing of a table rather than the heading. By mak-

104 / Chapter 8

ing changes indicated in the notes of the subroutines, it is
possible to save two lines of heading and two lines of footing
while scrolling the 18 lines of body copy which fall in be-
tween.

It should be noted that the AUTO-SCROLL subroutine
(8.6) cannot be used in conjunction with the SCROLL WITH
FOOT Subroutine (8.8). This is because AUTO-SCROLL
will always see the footing printed on line 21 and will assume
that the screen is filled. You may find that with changes in
Subroutine 8.6 that you can circumvent this limitation.

T/S 2000 and Spectrum SCROLL

The Timex/Sinclair color computers provide for an automatic
visual scroll prompt when the screen is filled. This provision
does exactly the same thing that Subroutine 8.5 does, except
that it does it without using print space. Subroutine 8.5 uses
line 21 to tell you how to SCROLL, while the color computer
prints the question SCROLL ? below line 21 on the screen.
Pressing any key but STOP, BREAK, or N will cause the
screen to scroll up one line. In some cases, the computer will
operate identically to the AUTO-SCROLL in Subroutine 8.6.

Because of the built-in SCROLL function in the color
computers, Subroutines 8.7 and 8.8 cannot be used with them.
Additionally, the methods used by the color computers to store
the display data is much more complex than is the storage in
the other Timex/Sinclair computers. For these reasons, if you
use the color computers you should replace Subroutines 8.7
and 8.8 with subroutines which PRINT a head or foot on the
screen following a SCROLL.

The system variable SCR-CT on the color computers can
be used to control the SCROLL function by POKEing 1 or
2 into the memory address 23692, POKEing | will hold the
SCROLL for manual operation, while POKEing 2 will cause
one line of SCROLL (3 will SCROLL twice, 4 three times,
etc.). Additionally, the line number address of the system
variable S-POSN can be POKEd to fool the color computers
into not SCROLLing, or can be PEEKed to determine when
to SCROLL. The S-POSN address (23689) contains the line

¥
i
!
|

INKEY$ and SCROLL / 105

number of the PRINT position. A PRINT position line num-
ber of 24 indicates the top line on the screen, and 3 is the
bottom line of the printing area. Thus, if you get the answer
3 when you PEEK 23689, then the computer will print next
on the bottom line (line 21) of the print area.

Conclusion

All of the subroutines in this chapter can help you to make
your programs more “‘user friendly.”” More importantly, how-
ever, they present interesting ideas and interesting directions
to explore. If you are not familiar with the PEEK and POKE
operations, you may wish to read about them in the section
titled *‘System Variables’’ of your computer manual. There
you will find that Subroutine 8.6 looks into the system variable
called S-POSN to find the line number of the next print po-
sition. You will also find that Subroutines 8.7 and 8.8 look
into the D-FILE system variable to read what is being dis-
played on the screen. You do not need this information in
order to use the subroutines, but as you learn more about how
the computer works, you can cause the computer to do exactly
what you want, pronto. And that can be exciting!

INKEY$
PURPOSE: To Provide the Value of a Depressed
Key

8.1 NAME: Auto INKEY$ Value.
INPUT VARIABLES: None (depressed key).
OUTPUT VARIABLES: X = numerical value of
depressed key.
X090 REM INKEYS$ VALUE
X@1 REM INPUT KEY PRESS
X02 REM OUTPUT X
X10 PAUSE 9000
X15 POKE 16437,255

106 / Chapter 8

8.2

X20 LET X=VAL INKEY$
X30 RETURN

NOTE: This subroutine is useful only for inputting
numeric information. For alphabetic or al-
phanumeric information, see Subroutines 8.3
and 8.4.

PURPOSE: To Print INKEY$ at a Point Indicated
by a Cursor

NAME: Cursor INKEYS$.

INPUT VARIABLES: L = print line number; C =
print column number.

OUTPUT VARIABLES: None (print at cursor
position).

X¢p REM CURSOR INKEYS$

X@1 REM INPUT L AND C

X@2 REM OUTPUT PRINT

X190 PRINT AT L.C;"B8"

X20 PAUSE 9000

X25 POKE 16437,255

X30 PRINT AT L,C;INKEY$

X490 RETURN

NOTE: The subroutine will not accept a ‘‘space’” as
an INKEY$ input. However, this limitation
can be overcome, as shown in the next sub-
routine (8.3).

PURPOSE: To Expand the Flexibility of the IN-
KEY$ Function

NAME: INKEY$ with Spaces.

INPUT VARIABLES: None (key depression).
OUTPUT VARIABLES: A$ = INKEY$ or space.
X0@ REM ALPHA INKEY$

X@1 REM INPUT INKEY$

8.4

INKEY$ and SCROLL / 107

XB2 REM OUTPUT A$

X10 PAUSE 9000

X15 POKE 16437255

X20 LET AS=INKEY$

X30 IF A$=">" THEN LET A§=" "
X40 RETURN

NOTE: Because INKEY$ cannot accept a space as
an input, this subroutine has been adapted to
provide a space when SHIFT and M are de
pressed together (this shifted-M would nor-
mally produce the > symbol). Depressing
SPACE in this subroutine will cause a D error
Cl)dc.

NAME: INKEYS$ Print and Save.

INPUT VARIABLES: None (key depression).

OUTPUT VARIABLES: A$ = string of printed
content.

X090 REM INKEYS$ PRINT AND SAVE

X01 REM INPUT INKEY$

X02 REM OUTPUT A%

X190 LET A$=""

X15 FOR =0 TO 21

X20 FOR J=0TO 31

X30 PAUSE 9000

X35 POKE 16437255

X40 LET BS=INKEY$S

X45 IF B$="STOP” THEN RETURN

X50 IF B$=">" THEN LET B$="_"

X60@ LET A$=A%+B$%

108 / Chapter 8

8.6

X7¢0 PRINT AT |,J:B$

X80 NEXT J
X85 NEXT I
X9» RETURN

NOTE: Control will return to the main program either
when the screen is filled or when "SHIFT”
and A are depressed (STOP).

SCROLL
PURPOSE: To Provide Controlled Use of the
SCROLL function

NAME: Enter to SCROLL.
INPUT VARIABLES: None.
OUTPUT VARIABLES: None.

X0@ REM ENTER TO SCROLL

X190 PRINT AT 21,0, __ _PRESS_""ENTER"
TOSCROLL "

X20 INPUT Z§

X30 IF Z$< >"" THEN GOTO X60

X40 SCROLL
¥50 PRINT AT 20,3;" __ _[23 spaces] _ __"
¥60 PRINT AT 21,3, _[23 spaces} "

X70 RETURN

NAME: Automatic SCROLL at Line 21.
INPUT VARIABLES: None.

OUTPUT VARIABLES: None.

X0 REM AUTO-SCROLL

X10 IF PEEK 16442=2 THEN SCROLL

8.7

INKEY$ and SCROLL / 109

X20 IF PEEK 16442=2 THEN POKE 16442,3
X30 RETURN

NOTE: This subroutine checks to see if another line
can be printed on the screen. If not, it scrolls
and sets up (o print on line 21.

PURPOSE: To Scroll Body Copy while Retaining
the Headings of a Chart or Table

NAME: SCROLL with Heading.
INPUT VARIABLES: None.
OUTPUT VARIABLES: None.

X0¢ REM SCROLL WITH HEAD

X10 DIM A(33)

X20 FOR X=1TO 33

X30 LET A(X)=PEEK(PEEK 16396 + 256+PEEK
16397) +X)

X40 NEXT X

X50 SCROLL

X60 FOR X=1TO 33

X7¢ POKE((PEEK 16396+ 256+PEEK
16397)+X), A(X)

X80 NEXT X

X90 RETURN

NOTE I: To save both print lines 0 and 1, change all
33s to 66s in lines X10, X20 and X60.

NOTE 2:

IT the heading has been previously stored
in A(X) [the subroutine has been used pre-
viously to store the required heading], GO-
SUB X50 will provide the same results
more quickly than will GOSUB X0(.

SRR M T R iy o e

e s

110 / Chapter 8

8.8

PURPOSE: To Scroll Body Copy while retaining
the Footings of a Chart or Table
NAME: SCROLL with Footing.

INPUT VARIABLES: None.
OUTPUT VARIABLES: None.

X@@ REM SCROLL with FOOT

X1¢ DIM B(33)

X20 FOR X=1TO 33

X30 LET B(X)=PEEK((PEEK 16396+ 256+PEEK
16397)+693-+X)

X40 NEXT X

X45 PRINT AT 20,0;" _ _ _[32 spaces]__ _"

X560 SCROLL

X60 FOR X=1TO 33

X790 POKE((PEEK 16396+ 256+PEEK
16397)+ 693 +X),B(X)

X80 NEXT X

X90 RETURN

NOTE 1: To save both print lines 20 and 21, change
all 33s to 66s in lines X10, X20, and X60.
Change the number 693 to 660 in lines X30
and X70, and change the 20 in program line
X45 to 19.

NOTE 2: If the required footing has been stored in
B(X) by previous use of the subroutine,
then GOSUB X45 will provide the same
results more quickly than will GOSUB
X00.

NOTE 3:

INKEY$ and SCROLL / 111

Both footings and headings can be stored
by combining Subroutines 8.7 and 8.8. To
combine these subroutines, take lines X 10,
X30, and X70 from the Subroutine 8.7 and
change the line numbers to X135, X35, and
X75. Then insert these lines into Subrou-
tine 8.8.

Chapter

Graphing

Most of the subroutines in this book deal with the input and
manipulation of data. In contrast to the other chapters. Chap-
ters 9 and 10 are devoted to methods for the owtput of your
data. It is assumed that you will devise output programs which
will present your data in a manner useful to you,

I'he graphing subroutines in Chapter 9 can be added to
almost any data manipulation routine to illustrate, to compare,
or simply to present the data. With the exception of the co-
ordinate system plotting subroutines (9.7 and 9.8), all of the
subroutines in this chapter have both a PRINT form and a
PLOT form. Each form has both advantages and disadvan-
lages.

T'he PLOT form has the advantage of using a pixel, which
is only one-quarter the size of a print position. pixel size
means the plotting screen is 64 pixels wide and 44 pixels high.
Such an increase in plotting points provides much more space
for data (if needed). and plots a smoother curve than can a
PRIT graph. However, the PLOT form uses only one char-
acter, which is the plot-pixel. This plot-pixel is simply a small
black square, one-quarter the size of a print position space.
All of the PRINT forms of these graphing subroutines can be
used as shown for all of the Timex and Sinclair Computers.
The PLOT subroutines, however, must be modified to be used
2000 or the Sinclair Spectrum. These
two color computers use a much smaller plotting pixel, so a
dimension conversion is required. Multiplying each of the
PLOT coordinates in this chapter by 4 will usually cause the

112

on the Timex/Sincla

aphing / 113

PLOT subroutines to work properly with the Timex 2000 and
the Sinclair Spectrum. (This conversion is not difficult, but
may be tedious.) Additional information about using the PLOT
subroutines for the T/S 2000 and the Spectrum is given later
in this chapter.

In contrast the PRINT form has only the normal 22 lines
of 32 characters on which to print (or a screen 32 units wide
and 22 units high on which to graphically represent points.)
Although this smaller number of graph points may be limiting
for some data, the PRINT form has the advantage of being
able to display a variety of characters. For instance, when
using the PRINT form, you can plot one set of data using the

*, while plotting another set (on the same graph)

character
using the character +. When p
ment can use a different graphic symbol (Cn, B ™ eic)or
a different identifying letter or character (A, B, >, ete.).
Graphing in the PRINT form can be impressive, if it allows

ng a pie graph, each seg-

enough detail for your data.

The first two subroutines in this chapter illustrate the dif-
ference between the two graphing methods. The first subrou-
tine (9.1) prints a dot () at the required graphing point. The
printed character (which in this case is a period printed by line
X30) can be changed to a +, an X, or any other print
character desired. This subroutine cannot, however, print more
than 30 points, and line X10 limits the input to the first 30
points of the input data array. If your data has less than 31
points, then this limit is of no consequence.

In contrast, the second subroutine (9.2) will accept and

plot up to 63 data points, but the plotting symbol cannot be
changed. The plotting symbol for Subroutine 9.2 must always
be the small pixel square provided by the PLOT function of
the computer.

Both Subroutines 9.1 and 9.2 will accept any positive max-
imum data value (MAX) and proportionately scale all of the
plotted data to fit onto the monitor screen. The value of MAX
is printed in the upper-left-hand corner of the screen to provide
the scale for the graph. The horizontal scale is also adjusted
to fill the screen. When less than the maximum possible num-
ber of data points are input, the subroutines will distribute the
points proportionately over the screen width.

114 / Chapter 9

All of the subroutines in this chapter will automatically
adjust the height and width of the graph to fit the PRINT or
PLOT parameters of the monitor screen. They will also limit
the maximum number of data points which can be plotted.
(This maximum will be determined by the format used.)

Subroutine 9.3 will print a bar graph, using your choice
of any print characters. The code for the character which you
choose is input as the input variable A. This code for the
different characters can be found in your computer instruc-
tional manual in the “‘Character Set’” appendix. Using the
character code 38 will cause the bars of the graph to be con-
structed of A’s, while a code of 8 would print bars of .

Subroutine 9.4 plots only solid black bars, but can plot
twice as many bars on the screen as can 9.3. Notice also that
the accuracy of the plotting is better with a PLOT subroutine
such as 9.4 than with a PRINT subroutine such as 9.3. This
is true simply because the plotting pixel is half the width of
the printing space.

The two horizontal bar graph subroutines (9.5 and 9.6)
are normal bar graphs turned on their sides. Because the mon-
itor screen is wider than it is high. the horizontal bar graphs
can print fewer bars than can the normal graph, but the bars
can be longer (which improves the accuracy of the graph).

The next four subroutines (9.7a, 9.7h, 9.8a, and 9.8b)
are in pairs. The “‘A’" half of the pair (9.7a and 9.8a) will
print a coordinate system. The ““B’" half of the pair will plot
points on that coordinate system. Subroutine 9.7a prints a
four-quadrant cartesian system. Subroutine 9.7h takes nega-
tive or positive x and y coordinates as input and plots on the

graph system the point described by the coordinates.

Subroutines 9.8a and 9.8b do exactly the same thing with
a polar coordinate system. Subroutine 9.8a prints the polar
system, and 9.8b plots points on the system. Both “'5"" sub-
routines will RETURN if the input data is not properly di-
mensioned to plot on the screen.

The FROM-TO subroutine (2.9) will plot a line between
two sets of cartesian (x,y) points. This subroutine accepts only
positive values of x and y. and the “‘origin™" of the graph (point
0.0) is in the lower, left-hand corner of the screen. Instructions

. Graphing / 115

are given for changing the coordinate arrangement into a four-
quadrant system with the point 0,0 appearing in the middle of
the screen. Subroutine 9.7a can then be used to print a graph
system for plotting FROM-TO.

The most interesting graph methods may be the pie graph
subroutines. Subroutine 9.10 does nothing but plot a circle in
which the pie segments may later be printed or plotted. Sub-
routine 9.11 plots a circle to outline the pie and plots one
segment of the pie graph. This subroutine is useful for two-
part graphs, or can be used with the next subroutine (9.12)
for multiple-part graphs. The segment plotted by 9.11 is solid
black, but 9.12 will plot solid or checked segments. depending
upon the value of the input variable X. The choice of plotting
solid, of plotting in checks, or of not plotting gives three
distinct segments. The following program will illustrate these
distinction methods by plotting nine 40-degree pie segments
with alternating patterns.

1 REM "PIE”

10 LET E=40

20 LET X=1

30 GOSUB Y0Q

40 FORK=1TOS8

50 LET S=E

60 LET E=S+4¢

70 LET X=X +1

80 IF X=3 THEN GOTO 100

90 GOSUB Z00
10@ IF X=3 THEN LET X=0
110 NEXT K
120 STOP

[to Subroutine 9.11, PIE GRAPH PLOT]

[to Subroutine 9.12. PIE SEGMENT)

Subroutine 9.13 PRINTS (instead of PLOTS) the pie graph.
The character to be printed is input as X$. This variable printed

116 / Chapter 9

character provides an almost infinite variety of distinctive seg-
ments. Either a character or a symbol which is associated with
the segment can be used. For instance, when showing the
distribution of income, you might print the mortgage payment
segment in M’s or [M's, the clothing segment in C’s, auto
with A’s, savings with S’s, and so on. This subroutine has
many possibilities.

The graph subroutines in this chapter will provide you
with a variety of possible output displays. With them, you can
plot a histogram of class scores, or a point graph of statistical
data. The PLOTTED POINT GRAPH (9.2) is an excellant
display output for the TRENDS Subroutine (6.15). With ma-
nipulation of the print character in Subroutine 9.3, you can
compare two or three sets of data on one graph. The possi-
bilities with these subroutines are numerous.

PLOT With the T/S 2000 and Sinclair

Spectrum

The Timex/Sinclair 2000 and Sinclair Spectrum color com-
puters provide a PLOT pixel which is one-quarter the size of
the pixel used in the Timex/Sinclair 1000 or ZX81. The color
computers also provide two very useful functions: DRAW and
CIRCLE.

In order to use the PLOT subroutine in this book with the
color computers, the dimensions must be changed. For ex-
ample, in Subroutine 9.2, a maximum of 120 values can be
plotted, rather than 30, so every PLOT number in the program
must be multiplied by 4

In general, you will want to use the PLOT subroutines
only as guidelines, and design your own subroutines using the
more sophisticated functions of the T/S 2000 and the Spec-
trum. For example, the DRAW function in the color com-
puters replaces Subroutine 9.9, and most of Subroutine 9.8a
can be replaced by use of the CIRCLE function. Similarly,
Subroutine 9.10 becomes:

X@@ REM PIE GRAPH CIRCLE
X1@ CIRCLE 128, 88, 82
¥20 RETURN

|
{

The Pie G‘rﬂph in Subroutines 9.11 and 9.12 can become
works of art with DRAW, CIRCLE, OVER, INVERSE. and
50 on. B

Graphing / 117

Y.UU will certainly want to modily some of the PRINT
gr_‘.lplnng subroutines to take advantage of the color capabilities
of lhess; computers. These PRINT modifications are not nec-
csrsﬂry in order to use the PRINT subroutines, but will cer-
tainly provide you with practice with using your computer’s
facilities. o : ’

Conclusion

Many of the subroutines in this chapter contain basic ideas or
methods which, when used, will produce good results. If K\'nU
take the time to understand these ideas, then as you u.sc your
own ingenuity to manipulate them, you will be able to evolve
other output subroutines which will fit your needs more ex-
actly. ’ .

POINT GRAPH

PURPOSE: To Plot Points on a Cartesian Graph
System

9.1 NAME: Printed Point Graph.

INPUT VARIABLES: A(I) = an array of values to
be plotted (a maximum of 30 values can be
plotted); MAX = the maximum value contained in
A(l); N = the number of values in A).

OUTPUT VARIABLES: None

X0@ REM PRINT POINT

X01 REM INPUT A(l), MAX, N

X1@ IF N>30 THEN LET N=30

X2f FOR =1 TO 31

X30 IF I<=N THEN PRINT AT 19—A()+20/
MAX, 1+ |+30/N;"

X490 PRINT AT 20,|;"™«

X50 IF | <20 THEN PRINT AT I,1.7[#"

LIB7 Chapeerd Graphing / 119

__
® i ®
i

%60 IF |<—7 THEN PRINT AT 21,1+4%l; INT ? BT = mmber o viibes fu bl & = e
(4+1=N/30) : 111}‘r11her' which will determine the character to be
| printed.
sl Nekl) | OUTPUT VARIABLES: None.
¥8@ PRINT AT 0,0;MAX;" =", AT 9.0;" >"; AT T
oo ? X01 REM INPUT A(). MAX, N, A
Xo0 RETURN | X10 IF N>30 THEN LET N=30
9.2 NAME: Plotted Point Graph. | X20 FORI=1TON
INPUT VARIABLES: A(I) = an array of values to X30 FOR X=1TO A()
be plotted (a maximum of f'\} values can be ‘ ‘ l X40 PRINT AT 20 INT (Xe20)
plotted); MAX = the maximum value contained in |
A(D): N = the number of values in A(I). | MAX+@.5)INT(1+30/N + 0.5),CHR$(A)
OUTPUT VARIABLES: None. } X50 NEXT X
X00 REM PLOT POINT i X60 NEXT |
X@1 REM INPUT A(l), MAX, N | X70 RETURN

X10 IF N>63 THEN LET N=63

X2¢ FORI=1TO 63

%30 IF <N THEN PLOT |#63/N,3 +A(l)+40/MAX
X40 IF 1<42 THEN PLOT 0.1 +2

X50 PLOTI.2

NOTE: 1If desired, CHR$(A) in line X40 can be re-
placed by a fixed character, such as 8. Al-
i ternately, each bar can be printed with a dif-

ferent character by adding:

' X55 LET A=A+1

X60 NEXT | | 9.4 NAME: Plotted Bar Graph.
%70 PRINT AT 0,0:MAX:" > | INPUT VARIABLES: A(I) = an array of values to
«80 RETURN | be plotted (a maximum of 60 values can be

I plotted): MAX = the maximum value contained in
A(l); N = the number of values in A(I).

OUTPUT VARIABLES: None.

X00 REM PLOT BAR

X01 REM INPUT A(l), N, MAX

X190 IF N>60 THEN LET N=60

X20 FOR X=1TON

X30 FOR Y=1 TO A(X)*40/MAX+0.5

X40 PLOT INT(X+60/N +0.5),Y

BAR GRAPH

PURPOSE: To Construct a Bar Graph, or
Histogram

9.3 NAME: Printed Bar Graph.
INPUT VARIABLES: A(l) = an array of values to
be plotted (a maximum of 30 values can be .
plotted); MAX = the maximum value contained in

120 / Chapter 9 Graphing / 121
9.6 NAME: Horizontal Plotted Bar Graph.
w60 IF N<21 THEN PLOT INT(X=60/N+0.5)+ 1. INPUT VARIABLES: A(l) = an array of values to
S TR be plnn.cd (a maximum ul'%—l values can be
plotted); MAX = the maximum value contained in
X70 NEXT X A(l); N = the number of values in A(I).

OUTPUT VARIABLES: None.
NOTE: This subroutine will plot up to 60 bars. When X00 REM HORIZ BAR PLOT

less than 20 bars are being plotted, the bars X@1 REM INPUT A(l),MAX,N

are printed double width. If desired, scale can 1

be added by including the following lines: S0 I N SHENLET Hisaia

X75 PRINT AT 0.0; MAX," =" ; X20 FORI=1TON

X30 FOR J=1 TO A(l)*40/MAX +0.5

X409 PLOT J 44—1+43/N
X5@0 IF N<15 THEN PLOT J 43 —+43/N

X80 RETURN

HORIZONTAL BAR GRAPH

PURPOSE: To Construct a Horizontal Histogram ! X60 NEXT J
9.5 NAME: Horizontal Printed Bar Graph. I X70 NEXT |
INPUT VARIABLES: A(I) = an array of values to |
; ; X80 RETURN

be plotted (a maximum of 21 values can be !
plotted);: MAX = the maximum value contained in
A(D): N= the number of values in A(I).

OUTPUT VARIABLES: None.

X@0 REM HORIZ BAR PRINT i COORDINATE SYSTEMS PLOT
X@1 REM INPUT A()), MAX N |

0 | PURPOSE: To Plot Points on a Chosen Type of
X1@ IF N>21 THEN LET N=21 i Graph T
X200 FOR |=1TON | 9.7a NAME: Cartesian Coordinates (Four-Quadrant).

INPUT VARIABLES: None.
OUTPUT VARIABLES: None.

X090 REM CARTESIAN GRAPH

X30 FOR J=1 TO A()*30/MAX+0.5
X4@ PRINT AT I+21/N—1,J—1,"8";
X50 NEXT J

X60 IF INT(A() 30/MAX +0.5) + LEN X1¢ FOR =0 TO 31
STR$A() < =32 THEN PRINT A() X208 IF <22 THEN PRINT AT |15 47
X70 NEXT | X30 PRINT AT 10,1," +"
X80 PRINT AT 216" MAX=":MAX X40 NEXT |
x99 RETURN X50 RETURN

E
g

e

122 / Chapter 9

9.7 NAME:
Quadrant).
INPUT VARIABLES:

9.8a

Plotting in Cartesian Coordinates (Four-

X = horizontal coordinate;

Y = vertical coordinate.

OUTPUT VARIABLES:

X00
Xo1
X10

X20
X30
x40
x50

NAME:
INPUT VARIABLES:
OUTPUT VARIABLES:

X00
X190
X15
X20
X30

X40
x50
X55
X60
X70
X75
X80
X90

None.

REM CARTESIAN PLOT

REM INPUT X AND Y

IF X>32 0R X< —-31 ORY>21 OR
Y < —22 THEN RETURN

LET X=31+X

LET Y=22+Y

PLOT XY

RETURN

|

Polar Coordinates. ;

None. I
None.

REM POLAR GRAPH

LET P=PI/180 f
FOR J=5TO 15 STEP 5 |
FOR |=P+10 TO P+360 STEP P+10 [

IF J=15 AND (I>5@+P AND | <130+P OR !
|>220+P AND | <320+P) THEN GOTO X50
PRINT AT 10+J#SIN |,15+J+COS I," +"
NEXT |

NEXT J

FOR =0 TO 31

IF |<22 THEN PRINT AT 15" +"

PRINT AT 10,1," +"
NEXT |

RETURN

i
i
.
|
|’
.
|
|
|
|
i
!
i
i

9.8 NAME:

9.9

Graphing / 123

Plotting in Polar Coordinates.

INPUT VARIABLES: AN = angle up from right
horizontal; DS = distance out from origin.

OUTPUT VARIABLES: None.

X0@ REM POLAR PLOT

X01 REM INPUT AN AND DS

X100 LET Y=22+DS+SIN(PI+AN/180)

X20 LET X=31+DS+COS(PI+:AN/180)

X30 IFX>630R X<@ORY>430RY<0
THEN RETURN

PLOT XY

RETURN

x40
X50

CARTESIAN LINE PLOT

PURPOSE:
Points

NAME: From-To Plot.

INPUT VARIABLES: X1 = x coordinate of
starting point; Y1 = y coordinate of starting point;
X2 = x coordinate of ending point; Y2 = y
coordinate of ending point.

OUTPUT VARIABLES: None.

Xp® REM FROM-TO

X01 REM INPUT X1,Y1,X2,Y2

X10 LET X=X2-X1

X15 LET Y=Y2-Y1

X20 IF X=0 THEN GOTO X70

X30 LET T= ATN(Y/X)

X35 LET X1=X1+(SGN X)/4

X40 IF X1<X2+0.1 AND X1>X2—0.1 THEN
RETURN

To Plot a Line between Two Cartesian

124 / Chapter 9

9.10

X50 PLOT X1,(Y1+(X1-X2+X)*xTAN T)

X60 GOTO X35

X70 LET Y1=Y1+SGNY

X8@ PLOT X1,Y1

X85 IF Y1=Y2 THEN RETURN

X990 GOTO X70¢

NOTE: This subroutine plots only positive values of

X and Y. To change the coordinate system
to a four quadrant one, change lines X50 and
X80:

X580 PLOT 31+X1,22+4(Y1+(X1—
X2+X)+*TAN T)
X80 PLOT 31+4X1,22+Y1

PIE GRAPH

PURPOSE: To Print a Pie Graph Using Symbols

NAME: Pie Graph Outline for Printed Graph.
INPUT VARIABLES: None.
OUTPUT VARIABLES: None.

X0@ REM PIE GRAPH CIRCLE
X01 REM s+

X1p FOR J=0 TO 360 STEP 3

X20 PLOT (20.5+SIN(J/180+Pl)+ 5)+
32,(20.5+COS(J/180+Pl) + .5)+22
NEXT J

RETURN

X30
X40

9.11

9.12

PURPOSE:

Graphing / 125

To Plot a **Pie”” Graph

NAME: Two-Part Pie Graph.
INPUT VARIABLES: E = arc (in degrees) to be
plotted.

OUTPUT VARIABLES:

X090
X1
X10
X20
X30
x40

X50
X60
X70
X80

NAME:
INPUT VARIABLES:
degrees); E =

None.
REM PIE GRAPH PLOT
REM INPUT E

LET V=360

FOR |=20 TO 1 STEP —1
FOR J=0 TO V STEP 3
PLOT |+SIN(J/180+PI)+3@,1+COS(J/180
+Pl)+20

NEXT J

LET V=E

NEXT |

RETURN

Pie Segment Plot.
S = start of segment (in
end of segment (in degrees); X =

plot spacing (1 = solid, 2 = checked).

Xo0
X1
X10
X20
X30

x40
X50
X60

REM PIE SEGMENT

REM INPUT S,E, AND X

FOR =19 TO 1 STEP —X

FOR J=5TO E STEP 3

PLOT [+SIN(J/180+P1) +30,1+COS(J/ 180
+Pl)+20

NEXT J

NEXT |

RETURN

126 / Chapter 9

NOTE: Subroutines 9.11 and 9.12 are designed to
work together. Subroutine 9.11 draws a circle
and plots one segment. Subroutine 9.12 plots
additional segments, and can be used without
9.11 if no circle is needed.

PURPOSE: To Print a Pie Graph Using Symbols

NAME: Pie Graph Segment Print.

INPUT VARIABLES: S = start of segment (in
degrees); E = end of segment (in degrees); X$ =
character or graphic to be used for plot.

OUTPUT VARIABLES: None.

X00 REM PIE PRINT

X@01 REM INPUT S E, AND X§

X10 FORI=1TO 10

X2¢0 FOR J=STO E STEP 5

30 PRINT AT [+SIN(J/180+Pl)+10,1+COS(J/180

+Pl)+16;X$

X490 NEXT J

X50 NEXT I

X60 RETURN

NOTE: X$ can be any character you choose. Try

graphic symbols, but also try letters and
punctuation marks.

®
Chapter =ﬂ @

Tables

The subroutines in this chapter are designed to display your
data in a number of table-like formats. These tables make it
casy to view a mass of data in an organized form. The dis-
played data may be interrelated or discontinuous. An example
of interrelated data would be a table showing interest paid
over a period of years for different interest rates. (The table
rows would represent years, while each column would show
a different rate.) An example of discontinuous data might be
the comparison of the performance of different employees who
work in different departments. The employees could be listed
as rows, and the different departments could be listed as col-
umns.

The data may be generated by your main program (as in
the case of the interrelated example above) or may be input,
point by point (as in the case of the discontinuous example).
When the table is in your program memory, it then can be
updated and modified, and can be used with other subroutines
for other types of outputs.

If you are using a T/S 2000 or a Sinclair Spectrum com-
puter, you may want to modify the subroutines to include
identifying colors for headings, data catagories, etc. It should
also be pointed out that the ledger sheet subroutines which
contain a GOSUB (o Subroutine 8.7 (see Subroutines 10.2,
10.3, 10.4, and 10.5) must be modified if you are using a

127

128 / Chapter 10

color computer. This modification is the removal of the three
lines related to SCROLLing:

LET R=24—PEEK (16442)
IF R=22 THEN GOSUB Y00
IF R=22 THEN GOTO X10

With these lines removed, you can SCROLL manually when-
ever SCROLL is needed, but the heading will not be saved.

Ledger Sheets
The first five subroutines in this chapter relate to a special type
of table called a ledger sheet. The ledger sheet allows you to
identify the source of an entry by name and to enter a debit
or credit value on the same line as the name. The ledger sheet
can be used as a normal business ledger or as the basis for a
checkbook register. Subroutine 10.1 prints the ledger sheet
form, and should be used with all of the other ledger sheet
subroutines

Subroutines 10.2 and 10.3 use a two-dimensional string
array for data storage. This meaning of *‘two-dimensional
string array’” is not difficult to grasp: The word **string™” tells
us that the array will accept both alphabetical and numerical
data. “*Array’’ says that the string is divided into specific
segments and will be both limited and defined by a DIM
statement in your main program. *‘Two-dimensional™™ means
that the string can change in only two ways. This two-dimen-
sional string can be illustrated by drawing a rectangle as shown
in figure 10-1. The rectangle has two dimensions—height and
width. Each of the 24 boxes can be uniquely identified by
number. If we compare this rectangle to a string array, then
each of the small boxes can represent the storage position of
a single character in the array A$(4.6). The first dimension of
A%(4.6) has 4 elements, and the second dimension has SIX.
The array would be formed by the statement DIM AS$(4,6).

Each “‘element’” of the 4 by 6 array can be individually
addressed. You can print a single element such as A$(2,1) or
a row of elements such as A$(2. 1 TO 6).

Such a string array has many advantages. In the case of

Tables / 129

Column
6

1.6

2,6

36

4,6

formed by the program statement DIM
AS$(4.6).

our example, we can store four sets of items, where each item
has up to six characters, and we can address each character
by number. If we say PRINT A$(2), the computer will print
the six characters stored in the array positions of: 2,1, 2,2,
2,3,24,2,5, and 2,6,

The disadvantage of a string array is that you must di-
mension the array at the beginning of the program. This sets
an upper limit on the size of the array. If you are using our
example rectangle array, A$(4,6), to list the names of your
friends, you have dimensioned the array with a statement,
DIM A$(4,6). Then you would enter your friends names:

ALICE
ROBERT
JANE
TARZAN

Because the second dimension of the array is 6, any name
longer than six characters would have to be abbreviated. (A
name like Shirley, for example, would need to be input as
Shirly). Also, this list of names is fine as long as you have
only four friends. As soon as you make a fifth friend, however,
you will find that the array will not hold the new [riend’s
name, because the array’s first dimension is 4. If you had
considered this limitation earlier, and had dimensioned your
array with DIM A$(100.6), then it would have been no prob-
lem to add a name to the list. However, with this larger array,
you have tied up 600 spaces in your computer’s memory and,

130 / Chapter 10

so far, with this larger array have used only 30 of the spaces
for five names.

The format for using a two-dimensional string array with
the ledger sheet is shown in Subroutine 10.2. The first di-
mension is the data number and the second dimension is the
twenty-five data characters. This format requires that you di-

mension your array in the following form:
DIM L$(N,25)

In this example, N is the maximum number of ledger sheet
entries you will need (like the maximum number of friends in
the earlier example).

Subroutine 10.2 will print on the ledger form the data
which is stored in L$(N,25). This subroutine will print one
line at a time and if the bottom line is filled, it then will jump
automatically, to a scroll subroutine, before printing. If you
are using the color computers, this automatic SCROLL func-
tion cannot be used, and lines X10, X20, and X30 should be
deleted. (With these lines deleted, you can SCROLL man-
ually.)

Subroutine 10.3 will accept a new entry into the ledger
data. There are few prompts, so you must remember what
input is required. The first prompt is the new line number,
printed on the ledger sheet by subroutine line X25. The ap-
pearance of this line number on the ledger means that you can
input up to thirteen characters for the entry name. When this
input is printed on the ledger sheet, you then must input either
a 0 for a debit entry code or a | for a credit entry code. There
is no prompt for this entry and the subroutine will accept only
a 0 or 1 as input (see line X55). Now, the program expects
you to input (without a prompt) the value of your entry. This
value can be no more than seven characters long, including
the decimal point, if any. These seven characters allow you
to enter up to 9999.99. Notice, if you want to keep the decimal
points in line, then initial spaces must be entered on smaller
numbers. Thus:

" 126,22
"10@1.00"
v sayr

Tables / 131

Entering 5.21 without spaces will print as 5.21 | since
the array will fill in the spaces to the right of the entry.

You might want to include in your program the following
subroutine controls:

GOSUB o Subroutine 10.1 and print the form]
FOR N=1TO 20

IF L§(N,1)="_" THEN GOTO 260
GOSUB Ito Subroutine 10.2 and Print Line "N"|
GOTO 270

GOsuB [to Subroutine 10.3 and input next line]
NEXT N

The program segment above will give you one idea of how to
link the first three subroutines together. Such a program seg-
ment assumes that L$ has been dimensioned as L$(20,25),
and may contain some previously stored lines.

Subroutines 10.4 and 10.5 are the storage string counter-
parts of Subroutines 10.2 and 10.3. Subroutine 10.4 prints
stored data on the ledger sheet form. and Subroutine 10.5
accepts new data to be printed and stored. These subroutines
work exactly the way 10.2 and 10.3 work, except that Sub-
routines 10.4 and 10.5 store the data in information storage
strings (see Chapter 6), rather than in string arrays.

Matrix Tables

The remaining subroutines in this chapter (10.6 through 10.15)
all relate to tables which display 4 columns of data, with each
column being 19 or 20 lines deep. The table element defined
by a column/line can have up to 6 characters of data in ir.
Depending upon the data storage method which you use, the

132 / Chapter 10

table data can be either only numerical or both alphabetical
and numerical.

The last table in this chapter is called “*Super-Matrix.”” It
is designed for numerical data only. but allows you to con-
struct a 12-column by 40-line table and to view any 4-column
by 19-line portion of this ‘‘super’ table.

The regular matrix tables, covered in Subroutines 10.6 to
10.11, will allow you to use any one of three data storage
methods. These methods are the array, the string array, and
the storage string. You should choose the data storage method
which best suits your needs and then use the subroutines which
match your chosen storage method.

Subroutine 10.6 (PRINT MATRIX TABLE) will print the
table of a two-dimensional numerical string. This string is
dimensioned as A(4,20), with the first dimension identifying
the column and the second dimension identifying the line.
Subroutine 10.7 (MATRIX TABLE INPUT) is designed to
work with Subroutine 10.6. Subroutine 10.7 allows you to
input new data to one element of the table or to change an
existing table element. No more than 6 characters should be
printed in a table element. (This limit includes the space needed
for any decimal point which may be required.)

Subroutines 10.8 and 10.9 are a pair of subroutines which
will print and input table information in an information storage
string (see Chapter 6). The PRINT STRING TABLE (10.8)
prints 20 lines of 25 character substrings. Each substring con-
tains the information for 6 characters in each of 4 columns on
the row described by that substring. The input subroutine
(10.9) allows you to input or change data in a 6-character
block of a substring.

Subroutines 10.10 and 10.11 are for use with a string array
method of data storage. The string array is three-dimensional.
The first dimension is the column number, the second is the
row number, and the third dimension is the 6 character ele-
ments to be printed in the row/column “‘box.”” Subroutine
10.10 prints the data table, and Subroutine 10.11 provides for
input or change of a table data element.

The Super-Matrix is a table 12 columns wide and 40 lines
high. The computer cannot print the entire table on the screen,
s0 Subroutine 10,12 (WINDOW) prints a 4-column by 19-row

Tables / 133

segment of, or window on, the table. Thus, you could view
rows 9 through 27 of columns 5, 6, 7, and 8. Or, perhaps
you are interested in the data shown in rows 16 through
34 of columns 8, 9, 10, and 11. The data to be printed is held
in a 12- by 40-element, two-dimensional numerical array,
A(12,40). ’

Printing the **window’" portion of the table in Subroutine
10.12 is perfectly adequate, but in order to move the window
over one column or down one row, you must reprint the entire
screen. If you are searching the table for a specific piece of
data, reprinting the entire window may be very time consum-
ing. We can, of course, SCROLL in order to move the win-
dow down one row, but there is no Timex/Sinclair BASIC
function for scrolling **sideways’” to the next column. Since
we need to scroll sideways across the screen, we must con-
struct such a scrolling subroutine.

First, we need a “‘key’” which will cause the new function
to operate when called. When the ENTER key is pressed,
Subroutine 10.13 (C-SHIFT KEY) will shift columns 2, 3,
and 4 into positions 1, 2, and 3, and then will print new data
in column 4. This operation effectively shifts the window to
the left on the table. The KEY subroutine does not actually
do the shifting. It merely identifies the pressing of the ENTER
key, goes to another subroutine to shift the columns, and then
does the clean-up job of printing the new column 4 and of
changing the column numbers along the heading.

Subroutine 10.14 (C/R-SHIFT KEY) is an embellishment
of the C-SHIFT KEY subroutine. C/R KEY will accept an
input of C or R. If C is input, this subroutine scrolls sideways,
exactly as does the C-KEY subroutine. If R is input, then the
C/R-KEY goes to a SCROLL subroutine to reveal another
row of data. Thus, by using Subroutine 10.14 you can alter-
nately C-SCROLL and R-SCROLL your way from left to right
and from top to bottom of the “*Super-Matrix Table.™

Line X70 of Subroutine 10.14 will not work with the color
computers. With these computers, it will probably be neces-
sary to POKE 23692,0 to hold the table window still, and
POKE 23692.1 in order to get the opportunity to manually
SCROLL the table.

Subroutine 10.15 will not work with the color computers,

134 / Chapter 10

either, because it uses machine code designed for the noncolor
computers. We suggest that if you have a color computer you
should avoid the roll and scroll subroutines (10,13, 10.14, and
10.15), and use only the WINDOW subroutine (10.12). By
inputting the column and row wanted, the window can be
manipulated to any desired position on the table, and will work
quite well with the color computers.

The SHIFT TABLE LEFT subroutine (10.15) is the only
subroutine in this book which uses a machine code program.
We hope that this subroutine will encourage you to learn more
about the use of machine code in constructing your programs.

The machine code program uses a series of numbers which
the computer recognizes as machine commands. The function
USR (see line X80) tells the computer to execute the machine
code found in the memory location which follows the function
USR. In line X80 that memory location is V+3. The rest of
the subroutine determines the value of V.

The machine code program is stored in the string A$ (see
line X20). When the computer sees numbers and has not been
told to USR., it prints the number as characters. That is why
line X20 appears to be so strange. The first code number is
62, which the computer prints as Y. The next number is 19,
printed as <. The next is 42, an E, and so on. The table for
the conversion of numbers to print characters is found in your
computer manual under the title **“The Character Set™".

The page following Subroutine 10.15 is the step-by-step
method for entering the characters of machine code into the
string A$. Follow the steps carefully, and you will have no
trouble. The page which follows the step-by-step input lists
the sequence (1 through 31) of the code steps and also lists
the Assembler Language, which is often used to describe ma-
chine code programs.

After the code is entered, we must be able to tell the USR
function where the code is found. Line X10 sets V equal to
the memory location of the variables file. The code number
for A$ in the variable file is 70. So, we are now looking
through the file for variable 70. If we find it (see line X25),
then we can immediately jump to line X80. Otherwise, we
must plod through all of the other variables until we find it

Tables / 135

(this plodding would include lines X30, X40, X50, X60, and
X70).

When the variable is found and the code is called by the
USR function, the code looks into the display file (to deter-
mine what is on the tube), shifts the last 19 rows over 9 spaces
(I column’s width), and returns to the subroutine. The sub-
routine requires a few seconds to find A$, but when A% is
found, the actual machine code does its work in milliseconds.

Caution

Because the machine code directly manipulates computer
memory, a mistake in typing the code can cause your system
to ““crash,” and you will lose any program in the system at
the time. It is suggested that after entering Subroutine 10.15
into your program, you save your entire program on tape be-
Jore testing the subroutine. By saving the program in this man-
ner, you avoid loosing the many hours of typing which you
have already invested in your program. ’

Conclusion

The subroutines in this book are designed to pique your cur-
iosity and to provide you with useful information for program
construction. As we have implied throughout this book, the
purpose of the book is to help you to learn to write your own
subroutines.

All of the methods used here are described in your com-
puter manual. The problem is that to be completely under-
stood, some of the descriptions require more study. The first
step toward understanding these methods is to understand how
your computer works and then to experiment with it. There
are many books available on the basics of computer operation.
There are also a few ‘‘basic’’ books printed on the Z-80 mi-
crocomputer chip, which is the core of the Timex/Sinclair
Computer.

The Timex/Sinclair Computer is an extremely versatile
machine. How versatile it can become for you will depend
upon your programming skill and your understanding of the

136 / Chapter 10 Tables / 137

machine. We hope this book will help you to build better, | X4D0 PRINT AT R.3,L$(N,1 TO 2);
more useful programs. X50 PRINT TAB 2;":";L$(N,3 TO 15):

LEDGER SHEET

PURPOSE: To Print a Ledger Sheet Form for Use
with Subroutines 10.2, 10.3, 10.4, and 10.5

NAME: Ledger Sheet Form.

INPUT VARIABLES: None.

OUTPUT VARIABLES: None.

X09 REM LEDGER FORM

10 PRINT AT 0,6;"ENTRY"; TAB 18,"DEBIT";
TAB 26,"CREDIT”

X20 FORI=0TO 21

X3@ PRINT AT 1.2;":": TAB 16;":", TAB 24,":"

X40 PRINT AT 1,1;"-"; TAB I+1@;"-"

X50 NEXT |

X6@0 RETURN

PURPOSE: To Print Information Stored in a String
Array onto a Ledger Form

NAME: Print String Array on Ledger Sheet.

INPUT VARIABLES: L$(1,23) = a two-
dimensional string array with the first dimension
the data number and the second dimension the
data; N = the data number to be printed.

OUTPUT VARIABLES: None.

X090 REM ARRAY LEDGER PRINT

X@1 REM INPUT L$(1,23) AND N

X190 LET R=24-PEEK (16442)

X20 IF R=22 THEN GOSUB Y00 [to Subroutine

8.7, SCROLL

with heading)

X309 IF R=22 THEN GOTO X10

X6@ PRINT TAB 16;":”; TAB 17 + VAL
L$(N,16)#8;L$(N,17 TO 23)

X70 PRINT AT R,24;"."

X90 RETURN

NOTE 1: The data format for L$ is:
Place: L2 B swedSy d6; 17 wus 23
Use: Item Item D/C Item
number name code value
NOTE 2: The debit credit code for place 16 is:

0 = Debit entry

1 = Credit entry

PURPOSE: To Input Data into a String Array and
Print it on a Ledger Sheet

NAME: Input and Print String Array on Ledger
Sheet.

INPUT VARIABLES: L$(1,23) = a two-
dimensional string array with the first dimension
the data number and the second dimension the
data; N = the data number to be input and
printed.

OUTPUT VARIABLES: L$(1,23) = the data array
with the added input.

X0@ REM ARRAY LEDGER INPUT
X@1 REM INPUT L$(,23) AND N
X02 REM OQUTPUT L$(1,23)

X10 LET R=24-PEEK (16442)

138 / Chapter 10

= 0 Subroutin
X15 IF R=22 THEN GOSUB Y@¢ It H.S?AS(I;{(\;:I.I.

with heading]

IF R=22 THEN GOTO X10
PRINT AT R@;N;
LET L$(N,1 TO 2)= STR$ N
INPUT L$(N, 3 TO 15)
PRINT TAB 2;”:",L$(N,3 TO 15); TAB
16:":";
INPUT L$(N,16)
IF L$(N,16)< >"0" AND LH(N,16)< >"1"
THEN GOTO X50
INPUT L$(N,17 TO 23)
X70 PRINT TAB 17 +VAL L$(N,16)+8;L$(N,17
TO 23); AT R,24;,":"
X990 RETURN
NOTE: See notes on Subroutine 10.2.

PURPOSE: To Print Information Stored in an In-
formation String onto a Ledger Sheet

NAME: Print Information String on Ledger Sheet.
INPUT VARIABLES: I$ = information string with
subgroup length C equal to 25; N = subgroup

number to be printed.
OUTPUT VARIABLES: None.

X0p REM STRING LEDGER PRINT

X@1 REM INPUT I$ AND N

X10 LET R=24—-PEEK (16442)

X2p IF R=22 THEN GOSUB Y00 [to Subroutine

8.7, SCROLL

with heading]

IF R=22 THEN GOTO X10

PRINT AT R,0;1$(25+«N —24 TO 25N —23);
PRINT TAB 2;":";1$(25+N—-22 TO
25+N—10);

Tables / 139

X6@0 PRINT TAB 16;":"; TAB 17+VAL
15(25+N —9)*8;1$(25+N—8 TO 25+N —2)
X7@ PRINT AT R,24;":"
X90 RETURN
NOTE I: The substring format for IS is:
Place; 125 3 ¢ 2519 16: 17...23 24,25

Use: Item Item D/C Item Spaces
number name code value

NOTE 2: The debit/credit code for place 16 is:

(0 = Debit entry
I = Credit entry

PURPOSE: To Input Data into an Information
String and Print it on a Ledger Sheet

NAME: Input and Print Information String on
Ledger Sheet.

INPUT VARIABLES: I$ = information string with
subgroup length C equal to 25; N = number of
subgroup to be input and printed.

OUTPUT VARIABLES: I$ = information string
including new input.

X00 REM STRING LEDGER INPUT

X@1 REM INPUT I$ AND N

X@2 REM OUTPUT I$

X10 LET R=24-PEEK (16442)

X15 IF R=22 THEN GOSUB Y0@ 1o Subroutine
8 .7, SCROLL

X20 IF R=22 THEN GOTO X10 il heading)

X25 DIM X$(25)

%30 PRINT AT R.0;N:

X35 LET XS$(1 TO 2)= STR$ N

140 / Chapter 10

X49 INPUT X$(3 TO 15)
%45 PRINT TAB 2;":":X$(3 TO 15). TAB 16":";
X5¢ INPUT X$(16)
%55 IF X$(16)< =>"1" AND X$(16)< >"@" THEN
GOTO X50
INPUT X$(17 TO 23)
PRINT TAB 17+VAL X$(16)+8,X$(17 TO
23): AT R.24:"-"
LET 1$=1$+ XS
RETURN

MATRIX TABLE

PURPOSE: To Construct a 4-Column, 20-Line
Table Using an Array

NAME: Printing a Table with Data Storage in an
Array.

INPUT VARIABLES: A(4,20) = a data array
containing four elements in the first dimension and
20 elements in the second.

OUTPUT VARIABLES: None.

X0 REM PRINT MATRIX TABLE

X01 REM INPUT A(4,20)

X1@ PRINT "NO.:_COL-1:_COL-2:_COL-3:_
coL-4:"

X20 PRINT "”: : :[32 colons]: : "

X3@ FOR J=1TO 20

X4@ PRINT AT J+1,0.J; TAB 3,":";

X50 FORI=1TO4

X60 PRINT A(,J); TAB 1%7+3;":";

X70 NEXT |

Tables / 141

X80 NEXT J
X890 RETURN

NOTE 1: This subroutine assumes that A(4.20) al-
ready exists due to the program statement
DIM A(4.20). The array A(4,20) may con-
tain data generated by some function, or
may contain discontinuous data inserted by
Subroutine 10.7.

NOTE 2: If the right-margin justification in columns
is desired, then change line X60 to read:
X60 PRINT TAB |+7 +3—-LEN STRS A(l.J);A(l,J);
TAB |+7+3:":":

NAME: Input to Change One Element of a 4 by 20
Matrix.

INPUT VARIABLES: A(4,20) = a data array
containing a 4 by 20 matrix of numbers; C =
column number of element to be changed; R =
row number of element to be changed

OUTPUT VARIABLES: A(4,20) = data array with
a new element at A(C,L).

X060 REM MATRIX TABLE INPUT

X@1 REM INPUT A(4,20), C, R

XP2 REM OUTPUT A(4,20)

X190 INPUT A(CR)

X20 PRINT AT R+1,C+7-3;" _ _

X3@ PRINT AT R+1,C+7-3;A(C.R)

X40 RETURN

NOTE 1: This subroutine may be used either to insert
information into A(4,20), or to change ex-
isting information.

142 / Chapter 10

NOTE 2: To print right margin justified, change line
X30 to read:
X30 PRINT AT R+1,C+7—-3—-LEN STRS
A(C,R),A(C,R)
NOTE 3: If A(C,R) may be longer than six charac-
ters, you may wish to add the following:
X15 IF LEN STR$ A(C,R)>6 THEN LET VAL
(STR$ A(C,R)(1 TO 6))

STRING TABLE

PURPOSE: To Construct a 4-Column by 20-Line
Table Using an Information String

NAME: Table Printing with an Information String
Data Storage.

INPUT VARIABLES: I$(500) = an information
string containing 20 subsets of 25 characters each
(see NOTE 1).

OUTPUT VARIABLES: None.

X0@ REM PRINT STRING TABLE

X01 REM INPUT I$(50@)

X100 PRINT "NO.:_COL-1:_COL-2:_COL-3:_

COL-4:"

X20 PRINT ": : :[32 colons]: :

X30 FOR J=1TO 20

X40 PRINT AT J+1,0,J; TAB 3;":";

FORI=1TO 4
X6@ PRINT I$(J+25+1%6—30 TO J+25+ |+6 —25);
TAB [+7+43;":";
NEXT |
NEXT J
RETURN

Tables / 143

NOTE |: The subsets of 1$ are arranged as follows:

Place: 1...6, 7...12, 13...18 19...24, 25
e e e S

Data Col-1 Col-2 Col-3 Col-4 Space

NOTE 2: Notice that both words and numbers can be
inserted into the six character “‘boxes.”
Column | can be used for row names and
row | can be used for column names. if this
would be useful.

NAME: Input to Change a Six-Character Group
within an Information String.
INPUT VARIABLES: I$(500) = an information
string containing 20 subsets of 25 characters each;
C = column of table to be changed; R = row of
table to be changed.
OUTPUT VARIABLES: I%(500) = the information
string with new data
X00 REM STRING TABLE INPUT
X201 REM INPUT I$(500), C, R
X@2 REM OUTPUT IS(500)
X10 DIM X%(6)
X20 INPUT X$
X30 LET I$(R+25+C+6—-30 TO
R#25+C#6 —25)=X$
X4@ PRINT AT R+1,C+7 —-3;I1$(R+25+C+6—30
TO R+25+C+6-25)
x50 RETURN
NOTE: This subroutine assumes that the string
I$(500) exists prior to the execution of the
subroutine. This subroutine can be used to
either input initial data into the string or to
change existing data held in the string.

144 / Chapter 10

STRING MATRIX TABLE
PURPOSE: To Construct a 4-Column by 20-Line
Table Using a String Array

NAME: Table Printing with a String Array Data
Storage.

INPUT VARIABLES: A%$(4,20,6) = a4- by 20- by

6-character data string.
OUTPUT VARIABLES: None.
X0@ REM PRINT STRING MATRIX
X01 REM INPUT AS(4,20 6)
X10 PRINT "NO.:_COL-1:_COL-2: _COL-3: _
CcOoL-4:"
X200 PRINT “: ::[32 colons]: : "
X30 FORJ=1TO 20
X490 PRINT AT J+1,0;J; TAB 3,":";
X560 FORI=1TO 4
X6@0 PRINT TAB |+7 —3;A%(1J); TAB I+7+3;":";
X70 NEXT |
X80 NEXT J
X990 RETURN

NAME: Input to Change Six Elements of an
Information String Subset.

INPUT VARIABLES: A$(4.20.6) = a 4- by 20- by
6-character data string; C = column of table to be

changed; R = row to be changed.
OUTPUT VARIABLES: A$(4,20,6) = the data
string including the changed subset AS(C.R.6).

X@0 REM STRING MATRIX INPUT
X01 REM INPUT A$(4,20,6), C. R
X02 REM OUTPUT A$(4,20,6)

PRINT AT R+1,C#7-3;" _
INPUT AS(C,R,1 TO 6)

PRINT AT R+1,C+7-3;A%(C.R)
RETURN

SUPER-MATRIX TABLE
PURPOSE: To Print A 4-Column by 19-Line
““Window™ on a 12-column by 40-Line Table

NAME: Window on the Super-Matrix Table.

INPUT VARIABLES: A(12,40) = an array
(matrix) of values; C = the minimum column
number to be printed; R = the minimum row
number to be printed.

OUTPUT VARIABLES: None.

X00 REM WINDOW

X@01 REM INPUT A(12,40), C, R

X10 PRINT AT 0,0;"COLUMNS_ ":C;" TO ":
C+3,TAB 15" _ _ROWS_":R;"
TO ";R+18
PRINT "ROW_.C—-";C; TAB
11;,".C-",C+1, TAB 18,":C~":.C+2; TAB
25":.C—";,C+3
PRINT TAB 4;" +———[1 “plus’ and 27

“minus’’ signg] —— —"

FOR |=¢ TO 18

PRINT AT |+3,2—LEN STR$(R+1);R+1
FOR J=0TO 3

PRINT AT [4+3,4+J+7:":" A(J+C,| +R)
NEXT J

NEXT |

RETURN

. . Tables / 147

number of the printed table: R = the minimum
row number of the printed table.

OUTPUT VARIABLES: C or R = the new value
of either C or R.

146 / Chapter 10

PURPOSE: To Manipulate a 4-Column by 19-Line
“Window™" on a 12-Column by 40-Line Table

10.13 NAME: Key for Shifting Columns on the Window. X00 REM C/R-SHIFT KEY
INPUT VARIABLES: A(12.40) = an array
; X@1
(matrix) of values; C = the minimum column i REM iNPUT A(12,49), C. R
number of printed table; R = the minimum row X@2 REM OUTPUT C OR R
number of the printed table X1@ INPUT 7%
OUTPUT VARIABLES: C = new minimum
X1 nRH g
l‘l’!lll“n n“l]lh(‘ﬁ 6 IF Z$< = R AND Z$ <> C THEN
Xp@ REM C-SHIFT KEY RETURN
X20 IF Z$="R" TH
%01 REM INPUT A(12.40), C, R EN.GO70.X65
¥g2 REM OUTPUT C X30 GOSUB YpQ [to Subroutine 10.15, SHIFT TABLE
LEF
sl s X35 LET C=C+1 il
iQIO |:'il;ﬁl - THEN RETURN A0 PORI~PTONE
. 7G>
X230 GOSUB Y@ 1w Subtowine 10,15, SHIFT TABLE X45 PRINT AT 14:3,25,"";ACC+3,R+])
;(5 - LEFT]| X50 NEXT |
4 LET C=C+1
X55 PRINT AT ¢,8.C;” TO " : O
x50 FOR |=0 TO 18 TAB 4G 1 TAB 0 ".CH+3AT 17.C;
P ; ; ; : 21;,C+2; TAB 28.C+3
X PRINT +3,25,":";A(C+3,R+I
qh E'NT ‘AT e FEraiEey X60 GOTO Xi0
&
XBS SR:(NT c"TOo"C Xe5 LETR=R
X7(AT 0,8,C.” "C+3
) . X70 GOSUB Z0¢ [to Subroutine 8.7, SCROLL WITH
X80 PRINT AT 1,7:C;AT 1,14.C+1,AT HEADING|
X75 PRINT AT 0,22:R;” TO ":R+18:AT
1,21;C+2;AT 1,28,C+3 '
X909 GOTO X190 210f 18
: ' X80 PRINT AT 21.4;":";A(C R+18); TAB
NOTE: After Subroutine 10.12 has printed the win- 11:7AC+1R
dow. this subroutine and Subroutine 10.15 '” ”' { R+18); TAB
18,":";A(C+2 R+18); TAB 31:"[" AT

will shift the window to the left when EN-

TER is pressed. 21,25/":";A(C+3,R+18)

X990 GOTO X10

10.14 NAME: Key for Shifting Columns or Scrolling NOTE 1: Subrontine 10.14 accepts either an R or a
Rows on the Window. C as input for Z$. If Z$ = "R", then llllc
INPUT VARIABLES: A(12,40) = an array table is scrolled up one line. If Z$ = "C"

(matrix) of values; C = the minimum column

148 / Chapter 10

then the table is shifted left one column.
You may wish to add the following line as
a reminder:

¥57 PRINT AT 0,0;"INPUT _R TO SCROLL,
_CTO SHIFT"

NOTE 2: The Graphic symbol near the end of line
X80 (TAB 31 2 5)is necessary in order
to correct a problem which could be caused
by the Timex/Sinclair SCROLL function.
The symbol can be any printed character,
but must be printed in position 31 of line
21, following a SCROLL. Without this
printed position, the SHIFT TABLE LEFT
subroutine (10.15) will not work properly
when preceded by the SCROLL subroutine

(8.7).

PURPOSE: To Shift Columns 2, 3, and 4 of the
““Matrix Table Window"" into Positions 1, 2,
and 3

NAME: Shift Table Columns to the Left.
INPUT VARIABLES: None.
OUTPUT VARIABLES: None.

X@0 REM SHIFT TABLE LEFT
X190 LET V=PEEK 16400+ 256+PEEK 16401
X20 LET A$="Y<EERNDM|O_|leuwd FAST
SGNFIIP & |- cosuB[@aMs7<
(UNPLOT X 4 PAUSE TAN"
IF PEEK V=70 THEN GOTO X80
IF (PEEK V>69 AND PEEK V <96) OR
(PEEK V> 133 AND PEEK V< 160) OR
(PEEK V> 197 AND PEEK V <224) THEN
LET V=V +3 + PEEK(V + 1)+ 256 +PEEK(V +2)

X45

X50
X55

X60
X65
X70
X80
ptel]
NOTE 1:

Tables / 149

IF PEEK V> 101 AND PEEK V< 128 THEN
LET V=V+6

IF PEEK V>229 AND PEEK V < 256 THEN
LET V=V+18

IF NOT (PEEK V> 165 AND PEEK V < 192)
THEN GOTO %25

LET V=V+1

IF PEEK V> 165 AND PEEK V< 192 THEN
GOTO X85

GOTO X50

LET V=V+6

GOTO X25

RAND USR (V+3)

RETURN

The strange-looking string of symbols appearing
in line X20 [in the SHIFT TABLE LEFT subrou-
tine (10.15)] are the characters and keywords rep-
resenting the machine code which shifts the table.
In order to work properly, the string must be input
exactly as shown. Because some of the characters
are normal, some are graphics, some are func-
tions, and some are keywords, care must be taken
lo enter each character using the proper mode. The
following chart will help you to enter each char-
acter in the correct mode and in the proper order.

Begin by entering the line number (X20), and
the initial statement (LET A$="). Now, input the
machine code by entering the next 31 steps in se-
quence. Finish the line with a quote mark (") and
ENTER.

When you have finished entering the line X20,
check it carefully against the line shown in Sub-
routine 10.15. Any errors can be corrected in the
normal manner.

Tables / 151
150 / Chapter 10

) In order to enter a keyword, first enter THEN
Step Enter Comment — (shifted-3), enter the desired keyword. backspace
- (shifted-5), delete the THEN (shifted-0), and fore-
‘i space (shifted-8).
E
£

NOTE 2: If you are interested in the machine code in the
preceding subroutine, the following table lists the
characters, the code, and the Assembly language
equivalent of the code.

Assembly language is a mnemonic code which
represents the actions of the machine code on the
registers. For instance, the machine code 62 tells
the computer to load into register A. the number
which follows. In Assembly language this action
is expressed as Ld AN,

Although most machine codes are expressed
in a binary or a hexadecimal number base. the
Timex/Sinclair computers use a decimal base code
for input to the machine.

RND Function mode, T ‘

] Graphics mode, shifted-1 (don’t forget
to leave graphic mode before contin-
uing)

O
(space) Space .
bl Graphies mode, shifted-D (don’t leave
graphic mode)
Graphics mode, shifted-D (now, leave
graphic mode)
Letter mode, shifted-F
Function mode, F
Graphics mode, shifted-1
1 Graphics mode, shifted-E)] ‘ ‘ l
(space) Space Machine Code for Subroutine 10.15, Shift Table Left
space Sps 1015, rable Left

o jraphics mode, shifted-D -

E ((J:r::::tx mode, shifted-1 Decimal Assembly Language
B e . Step Character Code Code

(space) Space =

GOSUB Keyword, see note below 55
Graphics mode, K in na
Graphics mode, shifted-T {3

64

|

52

(space) 0
= o Add HL.BC
9 Add HL.BC

b
FAST 229 Push HL
PAUSE Keyword, sce note below SGN Pop DE
L}

TAN Function mode, E] Ld BC.NN

Ld AN

INPLOT Keyword, see note below

152 / Chapter 10

14 [

(space)
(oo |

Add HL,BC
Ld BC.NN
(space)

LDIR

LD B,N

Inc HL.

Inc DE

DINZ
UNPLOT (DIS)
X) Dec A
4 2 Jr NZ
PAUSE (DIS)
TAN Ret

Acres, conversion:
to square kilometers, 43
to square yards, 45
Alphabetizi
substrings, 96
Amortization, calculation of.
74-75

of information

rectangle, 2
solids (surface arca), 25-26
square, 21-22

gle, 20-21

inputting into, 51-54
median and mode of. 55-56,
58-59
minimum, maximum and
mean of, 85, 89-90
AUTO-SCROLL subroutine.
52, 103-104. 108-109

Bar graph (histogram), 118-121
plotted, 119-120
printed, 118-119

Bar graph. horizontal, 114
plotted, 121
printed, 120
Base conversion, 47-50
BASIC programs:
how to SAVE, 4-5
placement of subroutines in.,
16-17
on Sinclair computers, |
suggestions for keyboarding,
4-5
typographic conventions used
in this book, 2-3
(See also Programming)
Binary. conversion to decimal,
47
Binary scarch, 97-98
vs. sequential scarch. 88
Bubble sort. 86, 93
Bubble sort and save, 86, 93
94
Business, subroutines for. 66-83

Cartesian coordinates:
displaying. 121-122
plotting within, 117-118,

121-124

156 / Index

Celsius, conversion to
Fahrenheit, 45
Centimeters., conversion to
inches, 34
Central tendency (mean,
median, mode) ol an
array, 58-59
Characters:
in graphing, 151
inverse, 3
Circle, area of, 24
CIRCLE function, for plotting,
16-117
Color computers, Sinclair:
graphing on, 116-117
maodifying subroutines for,
3-4, 104, 127-128
window subroutines on, 133
134
Compound interest, maturity
value at, 73-74
Compound interest rate, il
maturity known, 74
Cone:
surface arca of, 26
volume of, 28
Conversions, 29-50

multiple, in one subroutine. 30

Coordinates:
Cartesian, 117-118. 121-124
plotting within. 121-123
polar, 122-123

Cube. volume of, 26

Cursor INKEY$ subroutines,

100-102, 106

Cylinder:

surface area, 25

volume, 27

D-File system variable, 105
Data:
discontinuous vs.
interrelated, 127-128

generation of, by program,
127-128
input into an array. 51-56
input into a program. 127
128
SAVE of, 4-5
storage string used for, 80-
84
Decimal conversion:
to binary. 47
1o hex, 48, 49
of large numbers. 49
to other bases, 50
of small numbers, 47, 48
Degrees, conversion to radians
and grads. 46
Depreciation methods:
applications of, 66-67
calculations, 77-79
DIM statement, for string
array, 128-130
Dircctory routine, 69, 70
Discontinuous data, vs
interrelated data, 127-128
Discount of payable notes:
bank, 72
true, 73
Double-declining depreciation
method, 78-79
DRAW function, for plotting,
16-117

Efliciency, 8-9
(see also Memory,
conserving)
Ellipse. arca of, 24-25
English measures. converted to
metric, 36
Equilateral triangle, area of, 20

ﬁ mode, and trigonometric
functions, 18

Fahrenheit, conversion to
Celsius, 45
Fast mode, and PAUS
function. 100
Fathoms, conversion to feet
meters, 38
Feet. conversion:
to fathoms, 38
1o meters, 35
Feet per second. conversion to
miles per hour, 41
Financial statement analysis
ratio, 66-67, 76-77
Frequency distribution, 52-56
condensed from raw scores,
57
interval width of, 53-56
From-To plot, 123-124
Furlongs, conversion to miles
and kilometers, 38-39

Gallons, conversion to liters, 32

GOSUB command, 6
(See alse Subroutines)
GOTO command, and
GOSUB. compared. 6
Grads, conversion to radians
and degrees. 46
Graphics mode, 3
Graphing, 112-126
choices of methods of, 114
16
PLOT vs. PRINT form,
112-113

Grouped frequency distribution:

condensed from raw scores,
57-58

median, 59-60

percentile rank, 61-62

Hex numbers, conversion to
decimal:

Index / 157

large numbers, 49-50

small numbers, 48
Histogram (see Bar graph)
Horizontal bar graph, 114

ploted, 121

printed, 120

I key. use of, 4
I . . . GOSUB (conditional
subroutine call), 9-10
Inches, conversion 1o
centimeters, 34
Information group (see
Information substring)
Information strings (Storage
string: String storage). 67
70
alphabetizing substrings in,
96
to construct a string table,
142-143
deleting a substring from, 81
input and output programs
tor, 70
inputting and printing on a
ledger she 138-139
inserting a substring in. 80
81
inserting a substring
alphabetically in, 81-83
retrieval from, 83
utility of, 67
Information substring (of an
information string)
(Information group). 67
70
format of, 67-68
printing of, §3-84
INKEYS$ function:
advantages of, 99-100
limitations of, 100-101

158 / Index

INKEY$ subroutines, 100-102,

105-108

inputting a number, 105-106

inputting a space. 106-107

print and save input, 107
108

print input at cursor. 106

ables (for subroutines

Input v
in this book). modifying,
12-16

Inputting:

1o an array 54

to an information string. 70

for ledger form subroutines,
130-131, 138-139

Interest:

compound. 73, 74
simple. 70-72

Interrelated data, vs.

discontinuous data, 127
128

Interval width ol a frequency
distribution, 53-56

3

Inverse character:

Isosceles triangle. area of, 21

Jumps (GOTO.GOSUB), 67

Keyboarded characters, reported

by INKEY$. 99-100
Keywords, BASIC:
abbreviated forms of, 4
boldface used for, 2
Kilometers. conversion:
to light years, 41
to miles, 37
to nautical miles, 40
Kilometers per hour,
conversion:
to meters per second

to miles per hour, 43

[

Large numbers. conversion of,
30
Last-name-first subroutine, 95
96
Ledger sheet subroutines, 128,
136-140
displaying a ledger sheet,
136
input information string on
and print, 139-140
input string array on and
print, 137-138
print information string on,
138-139
print string array on, 136
137
Light years, conversion to
kilometers and miles. 40

ine numbers:
for subroutines in this book,
10-12
variable, 10-11
Lincar measures, conversion of,
34-41
Lincar regression:
calculating a prediction line
by. 64-65
in statistical subroutines, 55—
56
Liquid measures, conversion
between English and
metric, 31-34

conversion:

to gallons, 32
to quars, 32

M key. 18

Mach code programs
caution in use of, 134-135
example of, 149-152
for scrolling. 134-135

USR function to call, 134-135

Magnitude, maximum and
minimum, 91

Matrix table, 131-135, 140~
142

ng an array element
of, 141-142
changing an information

subgroup of, 14
changing a string-array
element of, 144145
constructed from an array.
140-141
constructed from an
information string. 142
143
constructed from a string
array. 144
(sec also Super matrix)
Maturity value:
at compound interest, 73-74
at simple interest, 70-71
Maximum, 85
of an array. 89-91

magnitude (absolute value),

91
Mcan. of an array, 55-56, 58
59, 90
Measures, conversion of, 20—
50
Median:

55-56. 58-59
for grouped frequency
distribution, 59-60
Memory, conserving, 4, 8-9
(See also Efficiency)
Meters, conversions:
to feet, 35
to various English measures,
37
to yards, 36
Meters per second. conversion
to kilometers per hour, 42

of an array

Index / 159

Miles. conversion:
to furlongs, 39
to kilometers, 37
to light years, 41
to nautical miles, 40
Miles per hour, conversion:
to feet per second, 41

to kilometers per hour, 42-
43

Millili
ounce
Minimum:
of an array, 89
magnitude (absolute value). 91
Mode, of an array. 55-56, 58
59
Moving average tre

conversion o
.31

79-80

Name routine (last name first),
95-96
Nautical miles, conversion to
miles and kilometers, 39
Nested subroutines, 9
Number bases, conversion
between, 47-50
Numbers:
conversion of, small vs.
large. 30
sorting, 93-95

Ounces. conversion to
milliliters, 31

Output variables (for
subroutines in this book),
modifying, 13-17

Outputting, from information
string, 70

Partition sort, 94-95

PAUSE command, for fast and
slow modes, 100

160 / Index

sable note:

bank discount of, 72

true discount of, 73
Payments:

at interest, 70-75

monthly, on fixed payment,

74-75
monthly, when number of

payments known, 75
PEEK function, 103-104
Percentile rank:
in grouped frequency
distribution of scores,
61-62
of single score, 60-61

Phonebook subroutine, example
ol information string, 68
70
Pl 18
Pic graph, 124-126
displaying, 124
segment plot, 125-126
segment print, 126
two-part, 125
Pixel, 112-113
PLOT statement:
for color computers, 116-117
in graphing, 112
Plotting:
within cartesian coordinates,
121-122
a cartesian line between two
points, 123-124
within polar coordinates,
122-123
Point graph:
plotted, 118, 123-124
printed, 117-118
POKE function, 103-104
Polar coordinates
displaying, 122
plotting within, 122-123

Polygon, regular, arca of, 23
Prediction line, by linear
regression, 64-65
PRINT graphing subroutines,
112-113
for color computers, 116~
117

ammers, novice and

Pr

experienced, 1-2

Programming:

ideas for, from subroutines
in this book, 5

subroutines as building
blocks in, 1
(See also BASIC programs)
Programs, user-friendly. 99
100

Quarts, conversion to liters, 31

Radians, conversion to degrees
and grads, 46
Random numbers, 85-86, 92
93
controlling range of, 92
generating unique values of,
9293
Raw scores:
condense to frequency
distribution, 57
condense to grouped
frequency distribution,
57-58
ngle, area of, 22-23
TURN statement, placement
in subroutine, 6-7

S-POSN system variable, 104-
105

SAVE command. suggestions
for use of. 4-5

Savings:
future value of, 76
payment for certain value,
75-76
Score, single, percentile rank
of, 60-61
SCR-CT variable, 104
Screen, pixels on, 112
SCROLL function:
enter to SCROLL. 108-109
overcoming defects of, 102
105
Scroll prompt. on color
computers, 104
Scrolling, 108-111
automatic, 108-109
on color computers, 133-134
with footing, 110111
with heading, 109
machine code for, 149-152
sideways, 133-135

and user-friendly programs,
99-100
window of super-matrix.,
146-152
Search. 97-98
, 88, 97-98
sequential, 97
Sct of values (see Array)
Simple interest:
calculation of, 70-72
and maturity value. 70-71
with monthly payment, 71-
72
Sinclair color computers (in
general) (see Color
computers; Sinclair

bina

Spectrum color computer:
Timex/Sinclair 2000)
Sinclair Spectrum color
computer, 3-4, 99-100,
H12-113, 116-117, 127-128

Index / 161

Sinclair ZX80 and ZX81
computers. 99-100
Sinking fund, 75-76
Slow mode, 100
Small number conversion. 30
Solids, surface area ol, 25-26
Sorting, 85-87
bubble, 86. 93
bubble and save, 86, 93-94
partition. 94-95
Space character:
input into INKEY$, 106-107
underline used for, in this
book, 2

Sphere:

surface area of, 25
volume of. 27
Square. area of, 21-22
Square kilometers, conversion
1o acres, 43
Square measures, conversion
of, 43-45
Square meters, conversion to
wds, 44
conversion:

square
Square yards
to acres, 44

to square meters, 44
Standard deviation. 62-63
Statistics subroutines, 51-65
STOP command, placed
between main program and
subroutines. 17

Storage string (see Information
string)

aight line depreciati
method. 77
String array. two-dimensional,
128-130
change element of, 144-145
to construct a matrix. 144
input into and print, 137-138
print on ledger, 136-137

B e e

162 / Index

String matrix table (see Matrix
table)
String storage (see Information
string)
String table (see Matrix table)
Subroutines (in general), 6-17
conditional calls of, using
IF, 9-10

definition and function of, 6
11

nesting of, 9

one- and two-line (useless),
7-8

placed near beginning of
program, 16-17

as program building
blocks, 1

single vs. multiple use of,
8-9

as source of programming
idcas, 5

variable, using variable line
numbers, 10-11

Subroutines (in this book):

angement of, 1-2

ari
modifying, for your
program, 10-19, 30,
51, 104, 127-128, 130
131
renaming variables in, 12-16
renumbering lines of, 10-12
Substring (see Information
substring)
Sum-of-the-years-digits
depreciation method, 77-
78
Super matrix, 131-135, 145
152
print a window of, 145
scrolling down, 146148
shifting the window of, 146,
148152

Surface area:
cone, 26
cylinder, 25
sphere. 25

Tables, subroutines for, 127
152

Temperature, conversion of, 45

Timex/Sinclair color computers
(1000 and 2000):

scrolling on, 104
string-handling capabilities,
87-88

I'imex/Sinclair 1000 computer,
1, 99-100

Timex/Sinclair 2000 computer,
1, 3-4, 99-100, 112-113,
116-117, 127-128

Trap. subroutine. how to avoid,
86-88

Trend (moving average), 66
67, 79-80

Triangle, area of, 20-21

Trigonometric functions, 18

Two-dimensional string array
(see String array)

Upper real limit, in stastical

subroutines, 54-55
User-friendly programs, 99-100
USR function, 134-135

Values, set of (see Array)
Variables (for subroutines in
this book), input, working,
and output, 12-16
Variance, of an array, 62-63
Volume:
cone, 28
cube, 26
cylinder, 27
sphere, 27

————

EL S s Rt

Window, of super-matrix:
printing, 145
sideways scrolling of, 133-
134
Working variable (for
subroutines in this book),
modifying. 13-17

Index / 163

x-v input, 56

Yards, conversion to meters, 35

7. score, 55-56. 63-64
7. score equivalent, 63

Catalog

It you are interested in a list of fine Paperback
books, covering a wide range of subjects

and interests, send your name and address,
requesting your free catalog, to:

McGraw-Hill Paperbacks
1221 Avenue of Americas
New York, N.Y. 10020

Computers

GOSUBS

100 Program-Building Subroutines in
Timex/Sinclair BASIC

Ewin and Shirley Gaby

Here in one book is a useful library of subroutines in Timex/Sinclair
BASIC. The subroutines were written on the Timex/Sinclair 1000,
but with minor modifications (clearly described in this book) can be
used in programs written for the Timex/Sinclair 2000

These subroutines have all been fully tested, and are ready o be
put to work immediately as building-blocks within larger programs
The subroutines can be used to perform a wide variety of tasks
including conversions between different measurement systems,
computations in statistics, geomelry, and finance, and instructions
for the storage and display of information.

Unusual and hard-to-follow routines are clearly explained. The
book contains a general introduction to the subject for novices and,
for those already familiar with the subject, suggestions about the
best techniques for writing original subroutines

Subroutines are among the most powerful tools available to a
programmer, and for owners of Timex/Sinclair computers, this
book is the ideal introduction.

Ewin and Shirley Gaby are the owners of S/E Gaby Associates, |
Inc., a business consulting firm specializing in communications |
and training. Mrs. Gaby is a graduate of Pennsylvania State Univer- |
sity, where Mr. Gaby completed all course requirements toward a |
Ph.D. in Learning Systems. This is their first book.

i

|
|

CHIlLB
ISBN 0-07-022L77-b |

