

INVENT AND WRITE
GAMES PROGRAMS FOR THE SPECTRUM

I

O

Invent and Write
Games Programs for the
Spectrum

NOEL WILLIAMS

McGRAW-HILL Book Company (UK) Limited

London - New York - St Louis - San Francisco - Auckland - Bogota
Guatemala - Hamburg - Johannesburg - Lisbon - Madrid

Mexico - Montreal - New Delhi - Panama - Paris - San Juan

Séao Paulo - Singapore - Sydney - Tokyo - Toronto

84 4426
OON. b

IVYLN 30

Published by
McGRAW-HILL Book Company (UK) Limited
MAIDENHEAD - BERKSHIRE - ENGLAND

British Library Cataloguing in Publication Data
Williams, Noel

Invent and write games programs

for the Spectrum.

1.Sinclair ZX Spectrum (Computer)—
Programming

I.Title
794 QA76.8.5625

ISBN 0-07-084719-3

Library of Congress Cataloging in Publication Data
Williams, Noel.

Invent and write games programs for the Spectrum.

1. Computer games. 2. Sinclair ZX Spectrum (Computer)—
Programming. L Title.

GV1469.2. W54 1983 794.8'2 83-16265

ISBN 0-07-084719-3

Copyright © 1983 McGraw-Hill Book Company (UK) Limited. All rights
reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior permision of
McGraw-Hill Book Company (UK) Limited, or of the original copyright
holder.

12345 CUP 86543

Printed in Great Britdin at the University Press. Cambridge

For Carrol, for everything.

Contents

Preface

Chapter 1 An introduction to adventures

Chapter 2 Components of the adventure game
2.1 Choice

2.2 Stories

2.3 The player character

2.4 Monsters

2.5 Objects

Chapter 3 Techniques in planning the game
3.1 Structures

Story structure

Game structure

Input/output

Program structure

Example plan

Suggested themes for adventures

@ 00 0 0 00 00
=1 O N W GO BO

Chapter 4 Planning the display
4.1 Strategies and menus
4.2 A look at windows

Chapter 5 Controlling movement
9.1 Keys

Moving a character

Method A: random movement
Method B: seeded random movement
Full screen movement

The Ramtop map

The puzzle game design

5.8 TFilling in the map

5.9 Moving objects

Program: The Throne of Camelot

o on o ot o o
=1 U1 o QO B

Chapter 6 The combat game
6.1 Values and choice

6.2 The Mines of Merlin
Program: The Mines of Merlin

X

]

Chapter 7 Text
7.1 Input
7.2 Talking to monsters

Chapter 8 Chrome
8.1 The need for chrome
8.2 Intelligence in adventure

8.3 Sound

Chapter 9 Puzzles, tricks and traps
9.1 The HELP command

9.2 An anagram puzzle

9.3 A cypher routine

9.4 Teleport

9.5 Bribery and gambling

Chapter 10 Graphics

10.1 Graphics and the Spectrum
10.2 Minigames

Program: Treasure Trove

Chapter 11 Micros in games without micros

11.1 GAPs
11.2 Play by mail adventure

viii

122
122
132

137
137
141
148

152
152
154
156
159
161

165
165
176
177

182
182
189

Preface

The aim of this book is simple—_ to bridge.the gap between program-
ming and games playing. This book tries to help games players
become better programmers and to help programmers design better
ga']rfl}f; book goes through all the stages of designing and ‘cDQing a
game, from formulating the 1_deas todebugging. Onthe wayitaims to
help those new to programming to become familiar with many of the
concepts which, though easy to understand, are usually beset by
unfriendly jargon—terms like ‘modular programming’, ‘random
access’, ‘error checking’, ‘file handling’, and ‘artificial intelligence’.
The terms are used as a games player might need them, not as an
arcane code comprehensible only to computing graduates.

This book is for the novice programmer who can just about find his
way around most of BASIC and now wants to know what to do with
his knowledge—how to go about building a substantial program.
Using the adventure game as its main theme and the Spectrum asits
major micro it looks at all the ingredients of good games, including
structure, display, originality, friendliness, and logic. Whether your
microisa Spectrumor not if you are interested in games you will find
a great number of strategies and tips for programming games on any
micro. Whether you are interested in adventure gamesornot youwill
find many of the principles discussed here are used indesigning other
kinds of game.

As you work through the book you will take part in designing two
complete adventures, both of which are fully listed and documented,
as well as over twenty-five game routines. Where useful features of
the Spectrum can be exploited these are described, but care has been
taken to detail some of the main differences between Spectrum and
other micros in order to make adaptation of the routines to other
systems easier.

If you own a Spectrum or you want to write an adventure thisisthe
book you need. Processing verbal commands, constructing maps,
designing puzzles, storing data, defining graphics, ‘intelligent’ pro-
grams, character and monster variables, plot construction, combat
routines, idea generation, program construction, controlling move-
ment, and many specific ideas for adventures are all included,
together with many routines in Spectrum BASIC for incorporation
Into your own games. In particular, a number of the features of
Spectrum BASIC which are not well documented elsewhere are used
In this book to develop your knowledge of the language.

ix

My grateful thanks are due to Carrol, Kay, and Owen who
helped in the preparation of this book in their own special ways, and
to Mike Costello of The War Machine for permission to reproduce the
Name Generator of Chapter 7.

AN INTRODUCTION
1 TO ADVENTURES

You are in a green tunnel with wet walls. On the ground you see:

a scroll
an ebony box

What do you do?
* PICK UP THE BOX

Suddenly a wart-encrusted troll leaps out from a crack in the wall.
‘Steal my emeralds would you?’, he screams and raises a thick bronze
club. Do you want to:

1. RUN

2. STAND AND FIGHT

3. TALK YOURSELF OUT OF IT
4. SMILE SWEETLY

* SMILE SWEETLY

You smile sweetly. The troll smiles back, as his club bounces off your
head.

This is an encounter you might find in any adventure game. The
adventure could be a board game, a tabletop game with miniatures, a
pencil and paper game, or a microgame. Adventure games come in
many shapes and sizes and are played in many ways. Almost every
micro has atleast one adventure written for it, and the mainframes of
many a college and business have among their most-used software
Zork or Wumpus or just plain Adventure.

This book tells you how to write your own adventures. Because
there are many kindsofadventure game and many different microsit
cannot cover every aspect, but it does describe ways of designing and
programming all the essential features(and some non-essential)ina
way that every micro user should be able to use for his own particular
machine. Wheredifferent approaches are possible, different routines
aresuggested, so agreat variety of games is possible within the broad
heading of ‘adventure’. Most of the routines are written in one of the

1

most popular BASICs, Sinclair Spectrum BASIC, but where there
are important differences between this and other versions of the
language, alternatives are given that can be used, especially for
Microsoft and BBC BASIC. A cassette of all the major Spectrum
routines listed in the book is available separately.

The approach used is that known as modular or structured pro-
gramming. This means that a program is thought of as a structure
made up of a series of modules. Each module is self-contained, gener-
ally as a subroutine (or, in languages like BBC BASIC, a procedure),
sodifferent modules can be defined in different ways to give different
programs. Inthis way many different games can be written withonly
very small changes— the same modules can be used again and again
with minor modifications. Modular programming has a number of
other advantages. It encourages programming habits which make
error-checking and debugging easier; it makes the transition to
structured languages such as Pascal much easier for those who want
to learn a new language; and it makes program design both easier
and more elegant. Its only real disadvantages are that it requires
some self-discipline from the programmer and programs may use
more memory or take more time than unstructured equivalents;
however, these possible losses are well worth the gains. If you only
want to write one game which saves as much memory as possible and
runs as fast as possible, you have little to gain from structured
programming. But if you plan to write several such games, or to build
a library of routines for such games, the initial work will be amply
repaid later on.

So what is an adventure game? The only simpie answer to this
question is that it is many things, because there are many, many
variations. Some are fantasy, some are science fiction, some histor-
ical, and some based on novels; some use graphics and some of these
are 3D; some arereal-time(i.e., like arcade games you have toreact to
the game immediately— you cannot leave it running while you make
a cup of coffee because when you get back you will have lost); some use
animation; some involve mazes; some involve problem-solving; some
offer real money prizes; some require huge databases while some fit
into less than 8K of memory. So a general definition of an adventure
game is not going to be worth a lot. However, there are some elements
fundamental to all adventure games and we will look at those first.
After a general survey we will use these elements as a way first of
designing and then of programming several adventure games.

Broadly speaking, an adventure game is a simulation of a particu-
lar world. Playing the game means behaving as if you were living in
that world, and the sequence of actions that you make in playing
would read like a story if written down. Your average adventure

2

game thus has three basic elements: si!:nulation, playfer beh:a}vin‘ur,
and story. Inthe example that bggan this chapter the su:nulat.mrt isa
fantasy world like Tolkien’s Mldd_lg Earth; the player’s behgw.:mur
includes pickingupthe box a.nd sqnli ng sweetly; and the story is how
] persuaded a troll to part with his emeralds and nearly lived to tell
tale’.

th%he development of adventure games, though it has happened
quite rapidly, has been quite complex. You do not need .tﬂ know
anything about where they have come from to be able to write them,
but it is worth knowing that the three main strands have come from
several different sources which have combined in many different
ways. Almost certainly you can learn something about writing
adventure games by knowing more about those sources, but it is
equally certain that you will be able to bring something original to
the games because of your own backgrounds and interests. Oneof the
main reasons for the flexibility and variety of adventure gamesis the
range of backgrounds of the people who have developed them.

The main sources of adventure games have interrelated inextric-
ably, but four important ones can be identified. Firstly, the rise of the
popular fantasy novel, due to authors such as Robert E. Howard (the
originator of Conan) and J.R.R. Tolkien, has meant that more and
more people are interested in fantasy stories. Secondly, in the late
'sixties war games became a popular hobby, and one type of war game
in particular, the fantasy campaign, seems independently to have
interested several different players in different places. The most
important of these was the game played by Gary Gygax, which
gradually became the enormously popular fantasy role-playing
game, Dungeons and Dragons. The success of this game has led to
dozens of other such games, some set in the Wild West, some on post
holocaust Earth, some among eighteenth century pirates, some in
outer space, even one called Bunnies and Burrows which is based on
Watership Down. All of these games can be sources of inspiration for
microgames as we shall see in Chapter 2.

Thirdly, at about the same time that fantasy novelsand war games
were becoming popular important research in computational
!lngui:stics (the study of language by using computers) and artificial
intelligence (learning about human intelligence by trying to make
machines intelligent) was taking place, notably at the Massachusetts
Institute of Technology. Here programs were used which analysed
and acted on ordinary, natural language; programs investigated the
nature of puzzle-solving and problem-solving; and programs were
used to manipulate fictitious worlds.

Finally, in the fields of business and education people have for
many years used games and simulations for teaching about the real

3

world. It is not possible for students to learn about banking or the
Norman Conquest at first hand, buttheycan learnbytaking partina
simulation which makes them act as if it were at first hand. Micro-
computers are excellent for such simulations, and simple educa-
tional games such as Kingdom (in which the player learns elemen-
tary economics) have become popular outside the classroom.

We will look at all of these in later chapters. Fantasy novels can
give us ideas for stories; tabletop and board games can suggest game
structures and mechanisms; linguistics and artificial intelligence
can help in text processing and in making games both more interest-
ing and more life-like; and'serious’ simulationscan tellussomething
about how and why players play. But the main purpose of this book is
to help you in game programming. We will look at the different
components of the adventure game, such as maps, monsters, and
magic, and how these can be programmed. Wewill look at the advant-
ages and disadvantages of different techniques, such as variousways
of storing data. We will look at some of the more common jargon
words such as ‘random access’ and ‘menus’ to explain them in a
straightforward context. We will look at ways of designing games
and how those designs can be turned into BASIC. We will also look at
ways the microcomputer can be used in assisting adventure games
which are not played on a micro. We willdo all thisby writing our own
adventure games as we go along.

The book isorganized in the following way. We begin by looking at
the different components in the game and different kinds of adven-
ture game. Then comes the main part of the book— seven chapters of
programming and design techniques for use on such games,
beginning with overall design and working through all the major
components. Each section gives one or more routines you can incor-
porate in your own programs until gradually we build up two com-
plete games, The Throne of Camelot and The Mines of Merlin,
Between them these two games illustrate most of the essential
principles discussed in each chapter, as well as containing many
routines which can be used in other adventures.

COMPONENTS OF
2 THE ADVENTURE GAME

2.1 Choice

Playing a game, using strategy and tactics, is a question of making a
series of choices. Each choice depends on previous choices, so if the
player makes the wrong ones, he loses. Writing a game is a process of
establishing a set of possible choices for the player to make. The
fundamental BASIC command for a game isthusIF ... THEN. . . If
the player chooses to do (a) then (b) will happen, but if he chooses (x)
then the result will be (y).
Ifwe want towrite a good game, therefore, we mustdo three things:

1. Offer the player some interesting or testing choices.

2. Organize those choices in a coherent way, so that the conditional
choices fit together sensibly.

3. Make the interrelations between the choices complex enough to
be worth while to solve but simple enough to be solvable.

We will look at the programming implications of these later, but the
simple lesson is that the game should play in a straightforward
manner although that apparent simplicity should depend on com-
plex hidden balances in the programming.

Adventure gamescan depend on many kindsofchoice. Initially the
player may be able to choose the type of character he plays before the
game starts, or the configuration of the game (such as its level of
difficulty or the number of events it might have), various actions in
different situations (e.g., running from, talking to, or fighting an
encountered dragon), when to use limited resources, or even when to
end thu? game (as with the SAVE facility incorporated in many puzzle
games).

To be a little pedantic for a moment, we could call a player’s
strategy a series of choices aimed at optimizing rewards in a game.
Thus the choices that make a game interesting depend on the kind of
I‘e‘fvards the game offers. At the most abstract level a game offers
points (as with The Mines of Merlin in Chapter 6). The better the
Plﬂ}{E!‘, the higher his score, i.e., the better his strategy, the series of
choices he makes, the more points he will get.

We could have a very simple game in which the player has to guess
anumber between one and nine chosen by the computer. The player

5

selects a number, makes a guess, and the computer tells the player if
itschosen numberis higher orlower than the guess. The playerstarts
with a score of 100. Every time he makes a guess, he loses 10 points, so
the better his guesses the higher hisfinal score. Initially he has three
major choices—three possible strategies. He can guess numbers
randomly; he can start at one end of the scale and work up (or down)
till he hits the right number; or he can use the following routine:

1. GUESS 5

2. IFNUMBERISLOWER THAN 5 CHOOSE 3 ELSE CHOOSE 7

3. IF 7 WAS CHOSEN AND THE NUMBER IS LOWER THEN
THE ANSWER IS 6

4. [IF7TWASCHOSEN AND THE ANSWER ISHIGHER CHOOSE
9

5. IF 9 IS CHOSEN AND THE NUMBER IS LOWER THEN THE
ANSWER IS 8

6. IF 3 WAS CHOSEN AND THE NUMBER IS HIGHER THEN
THE ANSWER IS 4

7. IF 3 WAS CHOSEN AND THE ANSWER IS LOWER THEN
CHOOSE 1

8. IF 1 WAS CHOSEN AND THE ANSWER IS HIGHER THEN
THE ANSWER IS 2

If the player chooses the random strategy he may take up to eight
guesses to get the correct answer and should average about five. If he
chooses the second strategy the same is probably true. For the third
strategy, however, the number of guesses is never greater than four
so the player will always score at least 60 points, and will probably
average around 80. Obviously the best strategy is the third strategy
because at each stage in the game the best choice of all the available
choices is made, i.e., the choice which reduces the number of possible
future guesses to the fewest.

In order to get an idea of how balanced your game is while you are
designing it use a points system against all the options as a rough
measure of the difficulty, reward, and balance built into the game.
You do not need to incorporate that system into the actual game
itself, but it can be a great help in designing to enable you to know
how easy and/or complex your game is. For example, if you think that
each problem in your game is so easy to solve that it is only worth one
point youwould be surprised during play-testingifyou found that the
way you had put all the problems together meant it took half an hour
to score two points. There would have to be a design flaw for some-
thing like that to happen. Perhaps the problems are harder than you
thought, perhaps the rewards of the game are not great enough,

6

perhaps the overall structure is at fault, or perhaps more clues or
instructions are needed.

Points are not the only kind of rewards, however. If we think of our
compulsive adventurer (or Cad, for short) asbeing a playing machine
running a program called ‘Tll enjoy this if it kills me’ we can regard
REWARD as one of the variables in that program which determine
whether it is successfully run or not. FREWARD falls below 1 then
the program will END. But values can be given to that variable by a
host of functions, only one of which is the ‘increase points’ function.

There are typically two kindsof rewarding function which Cad will
respond to, namely, local rewards and global rewards. A local reward
is one which temporarily increases REWARD as a result of an action
just completed, but which has no permanent effect on the rest of the
game. Forexample, our hero may slay the Great Green Slime Beast of
Trag. He will feel rewarded the first time he achieves it, but if he gets
no points, finds neither treasure nor clues, does not increase in skill,
etc., he will forget it. Some games are made up of a series of such local
rewards— there i1s no cumulative REWARD, just a series of tempor-
ary increases in its value. For such games to work they must keep the
successes close together, so that there isno time for REWARD to fall
below 1; in addition, each victory must be different or new, or
REWARD will not be incremented.

Global functions which increase REWARD are the basis of good
adventures. The player must be given enough local success to keep
him going from stage to stage, but he will only want to complete the
game, to keep returning to it, if some successes increase his chance of
overall victory. In our simplistic number-guessing game above, Cad
will continue to play as long as he thinks he is getting nearer to a
solution, but if every guess did not affect the chance of a future guess
being correct he would rapidly lose interest. And quite right too!
What is the point of playing if nothing you do increases your overall
chance of winning?

So the typical adventure has a series of hurdles to be overcome in
order to achieve the final solution. Each hurdle jumped will act as a
local reward and temporarily increase REWARD. After a while that
temporary increase will be lost, but there will still be an overall
Increase because the player will know that now he is much nearer to

the answer’. These hurdles may be problems to solve, objects to find,

mazes to get through, monsters to defeat, riddles to answer, and so
forth. A simple problem like ‘How do I open the door? can provide
Eﬂ0u§h reward to keep a player going for several hours if he knows
that ‘the answer’ is on the other side.

Global rewards do, however, come under four headings: solutions,
Points, treasure, and increased abilities. Solutions allow puzzles,

7

problems, riddles, and the like, tobe solved. These provide thebasis of
one main type of adventure game, which I shall call the puzzle game.
Essentially a puzzle game is a web of interrelated puzzles making up
one total puzzle. In order to find the overall solution each of the
separate problems must be solved and in the correct order. At any
stage in the game, therefore, Cad will have two objectives: (1) to solve
the particular local problem that faces him at the moment and (2) to
solve the overall problem. Obviously anything which helps with the
former will count as a local reward for him and increase his enjoy-
ment temporarily, whereas anything contributing to the latter will
give a permanent increase in REWARD. Winning in this kind of
game is like solving Rubik’s Cube. There is pleasure in getting each
individual coloured square in place, but that is nothing like the
overwhelming smugness that comes from being able to put the lot
together, every time.

We have already discussed points. Treasure and abilities belong to
the second class of adventure game, the combat game. Here the
overall task may be very much the same as in the puzzle game—e.g.,
the finding of a hidden amulet— but the method of achievingitis very
different. Instead of a series of problem-solving sessions the player
acts like an adventurer in a ‘swords and sorcery’ novel, meeting
beasts, felling them, and then taking any treasure they may have.
Accumulating treasure is thus like increasing points—it is an
abstract kind of reward. However, it becomes global if treasure can
then be used for other purposes, such as buying equipment which
helps in other combat or searches, bribing monsters, or magically
increasing abilities. In some games the task cannot be achieved until
the player’scharacter has developed to a certain level of ability (often
called the experience level, after the concept used in Dungeons and
Dragons). He may achieve this by success in combat, just as in real
life people get better at things by practising them successfully, or he
may achieve it by receiving magical increases through particular
treasures found.

The interrelations between treasures, ability, points, and some
other variables will become clearer in Chapter 6 when we design a
combat game. Chapter 5 involves the design of a puzzle game when
we shall see how local and global rewards can fit together. The
problem we find throughout the book, however, is that the two types
of game are difficult to combine. Almost all adventure games are
either puzzle games or combat games, and there are hardly any
which attempt to combine the two approaches. This is a result partly
of memory constraints on micros but mainly because programmers
have not been willing to come to grips with the intricacies of mixing
the two. Hopefully by the time you have read this book you will

8

understand enough about the workings of both kinds to be able to
develop the first of anew kind of adventure— mixing both puzzle and
combat.

In the rest of this chapter we will look at some of the fundamental
elements of an adventure in outline, before going on to detailed
programdesign and coding in subsequent chapters. Youwill see from
the above discussion, however, that the basic elements in the game
are a player persona or character of some kind, astory line made up of
a series of choices, and a number of hazards.

2.2 Stories

First let us look at the story structure of games. The story is what
givessense to the game, makingit intosomething whichis acoherent
pattern rather than a random series of events. Planning an original
story, or what games’ designers generally call a scenario, can be the
difference between a game which feelslike acomputer programanda
game which feels like a world worth exploring.

A story is a series of events leading up to a major consequence. The
events happen to a major character or group of characters and the
consequence is often either the character’s death or the achievement
of a particular objective. In game terms the character is the player’s
‘piece’ or persona (discussed in the next section) and the consequence
is either successful completion of the game (= achieving the objec-
tive, setting REWARD to maximum) or unsuccessful completion
- (= death).

An event in a story usually fits the following formula:

MAIN CHARACTER + PLACE + TIME + OTHERCHARACTERS
+ OBJECT(S) + POSSIBLE ACTIONS + POSSIBLE CON-
SEQUENCES

So an event in an adventure game should ideally have all the com-
ponents in that formula, and our program is a system for producing
setsof such components, eachset forminga coherentevent. Notevery
event willneed all the components but some will alwaysbe needed. A
series of such events forms the story, and this corresponds to the
progress of the player’s character through the mapped locations in
the adventure game.

The links between mapped locations may be totally random or
totally structured or a combination of both. Similarly with events.
The advantage of random determination is that it is easy to program
and can give great variety. Its main disadvantage is that a random
game rapidly becomes boring because it consists of a series of unpre-
dictable events with no logical relationship, i.e., a series of purely

9

local rewards. A decision made in one location will have no effect on
subsequent actions unless the player’s character is altered in some
way in that location—becoming weaker, perhaps, or finding a laser
sword. Adding this kind of alteration to a basically random game is
quite easy todo as we shall discover in Chapter 6. It provides a simple
way of adding some structure to our game. However, if no such
alteration occurs in any location the events are unconnected and we
really have a series of small games rather than one large one.
This approach— using a random series of events which connect
only by their effect on the central character—is typically a series of
rooms or caves in each of which there is a percentage chance of
OTHER CHARACTERS (usually monsters) or OBJECTS (treas-
ures, weapons, food) or ACTIONS (falling into a pit, becoming ill,
reading an inscription) occurring. For example, each room in a dun-
geon could contain an event constructed in the following manner:

GENERATE RANDOM NUMBER A IN THE RANGE 1-10
GENERATE RANDOM NUMBER B IN THE RANGE 1-10
GENERATE RANDOM NUMBER C IN THE RANGE 1-10

[F A IS GREATER THAN 4 THEN GENERATE RANDOM
NUMBER D IN THE RANGE 14

THIS ROOM CONTAINS MONSTER(D)

IF B IS GREATER THAN 4 THEN GENERATE RANDOM
NUMBER E IN THE RANGE 14

THIS ROOM CONTAINS OBJECT(E)

IF C IS GREATER THAN 6 THEN GENERATE A RANDOM
NUMBER F IN THE RANGE 14

THIS ROOM CONTAINS ACTION(F)

Random numbers A, B, and C decide whether there should be a
monster, object, and action in a particular room; random numbers D,
E, and F select the appropriate monster, object, and action if there is
one. These would be set up in the program using arrays or sub-
routines from which random items could be called. Each randomly
chosen item would then be a set of variables which potentially modi-
fiesthe character in some way. Sample monsters, objects, and actions
are outlined in other chapters.

The opposite approach, that of a totally structured series of events,
is typical of the puzzle game. Here the task is not to survive as many
randomly generated events as possible but to discover the puzzle or
story and pass through each of the planned events in the correct
order. For example, Cad may find that he cannot progressin the game
until he hasdiscovered how to open arusty trapdoor. Todiscover this,
he must bribe a goblin, which means he has to find some money. To
obtain the money he must first get past the headless ghost, and so on.

e e el

= el Qi

10

The advantage of this type of game is that it is a real test of the
player’s abilities, his intelligence, logical power, and imagination,
not merely a test of reactions or responses to a random series of
accidents. The puzzle adventure game has been likened to the cross-
word— it demands the same classof skills, including language skills,
and all parts must be solved to complete the whole.

The main disadvantage of a totally structured series of events is
that the game is the same each time it is played. There is none of the
novelty or unpredictability of a random dungeon, the initial stages
may become tedious with repetitive play, and the game once solved
will never be played again. It is also a much more severe test of the
programmer’s imagination and ability, as a fully structured game
demands a highly structured program.

Indesigning our game we must bear in mind that the player should
feel, in part at least, as if he is progressing through a story. [t does not
matter if some of the elements are random or fully predetermined,
but they should seem coherent from Cad’s point of view. It is import-
ant, therefore, that his character makes sense.

2.3 The player character

The character is the player’s persona and is the unit that represents
Cad in the game. Ifthe character is destroyed, the game is over. We
will use the word character even when it is a monster or spaceship or
vehicle that the playerispretending to be because essentiallyitisthe
abilities and behaviour of that ‘playing piece’ that make combat
adventure games entertaining. In the puzzle game, however, the
playerseldom has adefined or variable character, thisbeingone ofiits
drawbacks. It would be better if puzzle adventure games were
designed so that different character configurations were able to
approach the solution differently, but this would cause enormous
programming problems, as you will see later. In the puzzle adventure
game, therefore, it is the player’sown personality that isbeing tested
and not the surrogate personality of his character.

What the character is in game or programming terms is a collec-
tion of numbers that become altered as the game goes on. For
example, if the character is a medieval knight, he might be regarded
as:

Speed 4
Defence 5
Attack 4

Where the maximum is6. If he lost his horse, his armour, or his sword
these numbers might decrease. If he drank a magic potion, found a

11

mace, or rode a dragon, they might increase. Every time the player
has to make a decision in the game his chance of success will depend
on the current value of one or more of these numbers. So if he had to
decide whether to enter a race, success would depend on speed; if he
wanted to fight a giant, success might depend on both attack and
defence.

In other words, a character is a collection of variables. Those
variables may or may not be related, but to increase the interest of a
game it is often a good idea to link such variables in some way. This
gives Cad more to think about. For example, mounting a dragon
might increase speed but could decrease attack (because the knight's
sword cannot reach the enemy from the dragon’s back). However, if
he gets alance, this would increase attack value on dragon-back, but
mightreduce defence because it is more difficult touse a shield with a
lance than with a sword. Now, Cad, are you going to get on that
dragon or not?

Normally a collection of variables is best kept as an array, so let us
start to build up the array for our first character, who will also be used
in alater game. We will call him SirJon (his mother wanted him to be
a doctor). We will hold his variables in array A(4) and give him four
variables to start with: strength, skill, constitution, and knowledge.
Therefore, we need to DIMension an array with just four variables.
This might be wasteful on memory, but when we develop SirJon later
on we will need the flexibility of an array. Having dimensioned the
array we can READ into it the initial DATA, i.e., the values the
variables are initially set to, the abilities that Sir Jon starts off with.
Let us make strength and knowledge 2 and skill and constitution 1.
Our routine to set up the character would thus be:

80090 REM Set up Sir Jon
8010 DIM A(4)

8020 FORI=1TO 4
8030 READ A(D)

8040 NEXT I

99990 REM Sir Jon’s data
9919 DATA 2,2,1,1

Naturally these values will not be arbitrary. We must have some
idea what the range of values is likely to be. So designing a character
istieduptoalarge extent with what the characterisgoingtodointhe
game and what the game might do to him. For example, if we wanted
the possibility of a weak character fighting strong monsters we
might allow arange of 0 to 9 for strength, but not allow any character
to be greater than 6. :

12

However, if strength, A(1), is a variable to be used in routines other
than the combat routine (such as a routine for lifting heavy objects),
we must ensure that the range is also suitable for these routines and
that the initial value is set to a meaningful level. Usually we will
want the character’s variables set to the lowest in the range (if the
game is primarily concerned with improving abilities) or to the
highest value (if it is a game about avoiding weakness). We might
also want to set some variables at mid-point, meaning ‘normal’ or
taverage’, if they are the kind of variables that could get better or
worse. Let us assume that Sir Jon is average in strength and knowl-
edge, startsoff withlittle training (hence low skill), and, being rather
undernourished, is weak in constitution. If the range for all the
variables is 0 to 9 Sir Jon’s values could be:

Al =4
A(2) =4
A3 =0
A4 =1

We are expecting him to improve his skill and constitution through
discipline and hard work, and are also assuming that he could get
stronger or weaker, more knowledgeable or less knowledgeable.

Let us also add a variable that starts at a maximum of 9 and can
only be reduced during the game. Let us say that Sir Jon has nine
magic wishes granted to him at his birth. We will add LET A(5)=9 to
thearray, remembering that we have tochangethe DIMand FOR. . .
NEXT statements also. Sir Jon will be able to use these wishes at
crucial points in the game.

Sir Jon’s aim in this adventure will be to become a knight of the
Round Table. Not only can we use the variables which make up the
character to calculate each situation as it occurs but we can also use
them to decide when SirJon is worthy of becoming such a knight. We
will make the test easy to start with and then complicate it as the
game is developed. We will say that if Sir Jon has knowledge of 8 or
more and his strength is 8 or more then he can become a member of
the hallowed order of the Round Table. We can expressthisasasingle
line of BASIC:

IF A(1)>=8 AND A(2)>=8 THEN LET ROUNDTABLE=1

The variable ROUNDTABLE is being used as a flag, i.e., a variable
marking whether SirJon is a knight of the Round Table or not. If the
flag is set to 1 then he is; if it is set to 0 then he is not.

The main aim of Cad will thus be to increase strength and knowl-
edge, while his subsidiary aims will be to increase skill and constitu-

13

tioninsofarastheyhelphiminhismainaim. Atthe same time he will
want to preserve his nine wishes for the most vital moments. The
rewards of the program will thus be increases in these variables.

However, we can also add a more abstract points reward for those
players who like such things. We can invent an overall score depend-
ent on how well the character is doing. In the case of Sir Jon it seems
important that a knight should behave as honourably as possible, so
we will give him the honour points depending on how well he does in
particular situations. If we make thisscale 1to 100 and record this as
A(6) (remember tochange those statements), we can also incorporate
this rather abstract score into the test for knighthood. Suppose that
to be admitted to the Round Table a knight must be very honourable,
with an honour’s total of over 90. We can add the proviso that this
honour is worth more if he has not used his wishes to aid him— he has
done it under his own steam without supernatural aid— so that for
every wish he has left he scores five honour points. This means that
total honour points will be those normally added to A(6) plus5 *A (5).
Our test for knighthood has now become a short routine:

7799 REM KNIGHTHOOD TEST

7800 LET HP = ¢: REM CLEAR ANY PREVIOUS VALUE
7819 LET HP = (A(5)*5)+A(6)

7820 IF A(1) >= 8 AND A(2)> = 8 AND HP>9¢ THEN LET
ROUNDTABLE =1

7830 RETURN

Line 7810 has more brackets than some BASICs might think necess-
ary. Different versions of the language have different priorities for
evaluating expressions so it is best to keep the expression explicit.
Inthe puzzle adventure game the character is less important than
inthe combat game. Usually the characterhasnovariable character-
istics. Instead, the player’s persona only varies according to the
objects or items collected. In effect the difference is that whereas in
the combat game the persona has a constant set of attributes whose
actual values vary, in the puzzle game it is the attributes themselves
which vary but each particular attribute has a constant value.
For example, the puzzle may involve finding an apple (in order to
bribe a teacher), finding a bomb (to blow a hole in a door), or finding a
coin (to get past a guard). Each of these objects, (a), (b), and (¢c), has a
constant value in terms of the program: (a) has the value ‘enables
bribe of teacher’, (b) has the value ‘opens door’, and (¢) has the value
‘gets past guard’. The character may carry any combination of these
at atime, e.g.,(a +b),(a +c); (b +c¢), ete., which means that the tasks

14

the character can carry out successfully at a particular time will
vary, just as in the combat game.

An array could be used to hold this information just as in the
combat game. Each variable in the array will be used as a flag to
represent a particular object. If the correct flag is set to one the
character possesses that object; if set to zero he or she does not.
However, you will see in The Throne of Camelot, when we build it in
Chapter 5, that these flags can be used for other purposes to indicate
various states of the object in question. After all, any particular
variable in a program uses at least one byte of memory, not just one
bit. A bit of information is effectively a flag which can only be set to
one or zero, i.e., it has only two possible states. In other words, it is
binary, and bit stands for Binary InTeger.

However, a byte can have 256 different states, which is why many
aspects of BASIC are limited to 256. If you look at the Spectrum
character set in Appendix A of the manual you will see that this
consists of 256 codes. A byte is made up of eight bits which allows
coding of numbers up to 256 using the binary system of counting.
Consequently, any variable which can be set to one in a BASIC
program can also be set to 255 (the 256th state being zero, which is
alsoanumber). Soifwe use suchflags in apuzzle game, we could usea
system like the following:

0 means the object is hidden.

1 means the object can be seen.

2 means the player has the object.

3 means he has used it correctly.

4 means he has put it in the correct place.
And so on up to 255.

The system of flags used in The Throne of Camelot is similar to this
and is explained in Chapter 5.

The combination of such a set of flags thus amounts to a description
of the current level of achievement of the character, i.e., the stage he
or she has reached in solving all the problems. If your game is
primarily a puzzle game, in order to design your character you will
have to consider all the puzzles that are to be solved and what set of
flags will best record all their possible stages. It is certainly possible
to have a different flag for every possible state or stage, but that
would be very wasteful. Instead we might decide that there are eight
main puzzles, each having four stages. Though it would be possible to
record thisinformation withonly two flags(using methods we cannot
discusshere), itiseasierto have eight with four possible states(0 to 3)
rather than 32 different flags.

15

2.4 Monsters

If the game is to have a combat element then there have to be
opponents for the player’scharacter. Even ifthere is no combat there
will probably be beings of some kind which the character will be able
to interact with. To make things easier we will regard all such
creatures as monsters, even though some might be perfectly friendly
humans. In my experience no one in an adventure has any real
interestin helpingthe character—they are all participating for some
monstrous purpose of their own. Monsters could be anything from
rustlers to dragons to Klingons—it is a catch-all term for any
creatures not controlled by the player.

A monster will be a configuration of numbers similar to the
player’s character. Although it may contain exactly the same range
and type of variables as the character, it will usually have fewer, the
range and type being a reflection of and related to a subset of the
character’s attributes. For example, if the character has an attack
rating, a speed rating, and a treasure variable, the monster might
have a defence rating, a speed rating, and a hoard of treasure. The
combat routine will then depend on the relations between the
character attack and speed and the monster defence and speed, with
the reward for winning the combat being the monster’s treasure, or
more points, or both.

As monsters are one of the key hazards in this type of game,
providing much of the interest, some thought should be devoted to
their design, bearing in mind the following criteria:

1. A monster should only have variables and values which are
meaningful in terms of the rest of the game. This usually means
that those variables are related to the player—character vari-
ables, but, in the case of an ‘intelligent’ monster which can act in
the program independently of the character, other variables will
be needed.

2. The character should seldom encounter monsters which are
extremely powerful, comparatively speaking, unless asthe result
of a major mistake (otherwise the game becomes ‘sudden death’).

3. No monster should be invincible, nor too easy to defeat! Actual
monsters encountered should either be in a range of powers, all of
which can be overcome by the character, or should have their
powers related to the current powers of the character.

4. Each monster should be different, not simply by virtue of the
magnitude of its variables but also in terms of its overall config-
uration, i.e., its name, its behaviour, the kind of problem it
presents, and consequently the choices or strategies needed for its
defeat.

16

Broadly speaking, this gives us two kinds of monster— the monster
who is randomly encountered and the intelligent monster. The
random monster can be found at any suitable location, but the intelli-
gent monster will only be called by the program if certain conditions
are met. Random monsters are relatively fixed in their function,
which is to respond to the player, usually in combat. Intelligent
monsters may be programmed with more complex behaviour and
attributes, which may lead them to have purposes independent of the
character.

Let us work on the random monster, as this is the usual type in the
majority of adventures and is the easiest to design. Intelligent
monsters will be discussed in Chapter 8.

Wecanhold thedata, the numbers describing each monster,inany
of a number of ways, the three easiest in BASIC being an array, a
character string, and a DATA statement. We will look at each of
these in turn before considering the exact data we are going to store.
So we will assume a set of data made up of the numbers 1, 2, 3, and 4.
To hold such data in an array of one dimension would mean a differ-
entarray foreach monster, which is a possible though usually clumsy
and wasteful method. It would be better, therefore, to use a two-
dimensional array in which one dimension holds the list of monsters
and the other the data for each of those monsters.

If our monsters were Bugblatter Beast, Oozler, and Giant Turnip
and their respective data were 1,2,3 and 2,3,4 and 1,3,2, then our
array can be thought of as the following matrix:

Bugblatter Beast 1 2 3
Oozler 2 3 4
Giant Turnip 1 3 2

The column here represents value and the row each particular
monster. If we called the array M, then a Spectrum BASIC routine to
create and fill such an array would be:

10 DIM M(3,3)
20FORI=1TO3

30 FORJ =1TO 3

490 READ M(LJ)

50 NEXT J

60 NEXT I

70 REM BUGBLATTER BEAST
80 DATA 1,2,3

9¢ REM OOZLER

100 DATA 2,34

17

11¢ REM GIANT TURNIP
120 DATA 1,3,2

To find the appropriate piece of data at any stage in a game the
program needs to know two things in addition to the name of the
array it is to consult. These are the number of the monster being
looked at (the row of the array) and the number of the value required
(the column on the array). If we were calculating a combat and
needed to know the attack value of the Qozler, we would use M(2,3),
the third item in the second row.

Arrays are very useful for this type of procedure, a process usually
known as random access because any random item randomly
selected can be accessed as easily as any other. However, arrays use
memory and if there are a large number of monsters in the game an
array to hold them all would use a great deal of memory, which would
be particularly wasteful ifthe values were only in asmall range, such
as the 1 to 4 range above. The array M will use at least 20 bytes on
most systems, but nine numbers in the range 1 to 4 can be stored in
only five bytes, and could actually be crammed into less.

One way to save some of this memory is to hold the monster data as
character strings. Such a string can be declared at the beginning of
the program just as we might dimension the required array. For our
current example the declaration of the string would be:

LET M$="123234132"

This string would only occupy nine bytes, less than half that of the
equivalent array. However, to access the information in the string
requires a more complex procedure than Just referring to an array
subscript.

Inthe first place we need to know in which section of the string the
required monster data are held; then we need to know which piece of
datainthat section isrequired, and finally we have to turn the string
data into numerical data which can be used by the program. If we are
interested in the Oozler’s attack value, for example, we want section
2 (asubstring of three characters), item 3. We have to look along the
string in groups of three characters at a time till we reach the second
group and then look within that group till we find the third item.
Spectrum BASIC allows us to create a string function which can do
this job; other versions of BASIC would require a series of loops. The
function could be defined as:

DEF FN K$(M$ M,D) = M$((M-1) *3) +D)

18

M is the monster number and I is the item number. When we want to
find the Qozler’s attack we write:

LET J$=FN K$(,2,3)

But we would then have to go through the process of turning the
character we have just extracted into a number by using VAL, so we
might as well make the function more complex in the first place:

DEF FN K(M,)=VAL(M$ ((M-1) *3) +I)
and use it by writing:
LET J=FN K(2,3)

This might not appear too complex. However, writing such astring
is more difficult. If we wanted to alter the Oozler’s attack value
within the program and it was stored in array M, we need only write:

LET M(2,3) = x

where x is the new value. However, using a character string we have
to find the correct item, delete it, and insert the new item, having
turned x into a character. Again this could be done by a few lines of
program used as a subroutine, but functions can also do the job:

DEF FN A$(M$,M,D = M$(1 TO (M-1) *3) +I-1) + STR$(X) +
M$(((M-1) *3) +1 +1 TO LEN(MS$))

It is not necessary to define all parameters for this function because
some are already defined in the rest of the program— M$ is the string
of characters we are using, M is the number of the monster, I the
number of the item we want to change, and X is the new value.

What this complex function does is to take the string to the left of
the required item and add that to the string version of the new value,
adding to the result the remainder of the string beyond the old value.
The old item is cut out of the string by selecting halves before and
beyond it, while the new value is inserted between them, in the
equivalent place.

This is a complex procedure, but probably worth while if you are
handling large amounts of data and available memory is crucial.
Storing data in this way does have two other defects, however.
Firstly, in an array random access means that it takes virtually the
same time to find any piece of DATA, regardless of whether it is held

19

at the start, the end, or the middle of the array. However, to process
the information in a string, particularly if using nested loops but
even with functions that access information in sequence, the further
the desired information is in the string, the longer the search will
take. Consequently, it is a good idea to store the data which will be
used most at the beginning of such a string and those used least at the
end.

In order for the functions to work properly the string must stay the
same length and the data cannot move position. This means that the
original string has to be the maximum length needed by the program
and all positions in it must be filled. Thus, if the values of particular
itemsare likely tochange from 1 to 20, each slot in the string has to be
treated as a two-position slot from the beginning. This is true even if
only one item in the string will be two characters long. So our
example string would now be: “010203020304010302” and all func-
tions would have to operate on items two characters long rather than
one.

One way to get around this problem, if we do not mind our data
being somewhat limited, is to use characters instead of numbers in
the string. Each character in a computer’s character set will have a
distinguishing code. For the Spectrum these are returned by the
function CODE; for other machines ASC serves the same function.
As most of these codes are two- or three-digit numbers, storing a
string of single characters is the same as storing a series of numbers
between 32 and 255 if we look at the codes of the characters rather
than their display values.

Unfortunately the codes up to 32 are usually control codes and are
difficult to manipulate in such strings, so if we want a range of
numbers starting at 1 we have to subtract 32 across the board. We
would also want to avoid the “character as this may cause problems
with string handling, so we startour useful range at CODE 35, giving
us an actual range of 1 to 221. This is nevertheless a useful improve-
ment on the clumsy handling that number strings involve. Our
sample string would now be “ #3$ %$%& #%$”. To decode it we use a
routine like the ones above, but substituting CODE for VAL. For
example, to represent 1 we must add 34 to 1 and then turn it into the
character equivalent of that number using CHR$. CHR$(35) is #.

To write to the string we use function A$ above, again substituting
CODE for VAL. In both cases we must remember to subtract or add 34
to turn the actual range into the allowed range.

Our final method of data storage involvesdirect handling of DATA
statements. You may have noticed that in getting our data into an
array earlier in this section we read the data from data statements.
This means that, in a sense, the same data are held twice in the

20

program— once in the array and once in the data. The reason that
arrays are used is that they can be manipulated with ease, whereas
string handling can be more complex and data statements cannot be
manipulated at all within a normal BASIC program.

Consequently, data can be read from DATA statements but cannot
be written to them. If our program is such that we do not want to
manipulate these data (or to manipulate them only temporarily and
not store the results), we might find that an array is a waste of time
and coding, and simply read from DATA instead. Some applications
of this are discussed in other chapters. However, the method is
simplicity itself.

Every monsterisgiven itsown DATA statement on a separate line
ofthe program, the databeing held in a known order corresponding to
thefixed order of our array orstring. Then, to find the particularpiece
of information we want we simply RESTORE the DATA pointer to
thecorrectlinenumberand READ DATA intoasingle variable until
we have READ the correct number. If our Oozler’s DATA are stored
thus:

1010 DATA 2,3,4
the following short routine finds the attack value:

50 RESTORE 1910

60 FORI=1TO3

70 READ A

80 NEXT I

90 PRINT “OOZLER’S ATTACK VALUE IS”; A

Having looked at how we might store the monster’s character-
istics, let ustake a brieflook at what those characteristics might be.

Itis generally better to give the monster a range of abilities as well
as a range of values. In a fantasy game this means such devices as
giving them magical powers, special forms of attack or behaviour,
and different descriptions. In a more realistic game, such as a wild
west adventure, personalities might be developed for different
‘monsters’ as well as giving them a range of skills (such as lassooing,
shooting, wrestling, rustling, drinking, gambling, etc.). For intelli-
gent monsters such differences are crucial.

The aim, ofcourse, isto give variety sothat the playerdoesnot have
agoodideaof what to expect and always finds something new about a
particular game. Any feature which can alter the player—monster
interaction is worth considering for incorporation— perhaps differ-
ent monsters communicate in different ways; perhaps the playercan

21

befriend some monsters by offering gifts or by smooth talking; who
then accompanies him or her through the adventure; perhaps
monsters are of different ages, sexes, heights, weights, or religions
and consequently may be sensitive to certain kinds of remark;
perhaps some monsters have other friends or enemies within the
adventure; perhaps some monsters know information about others;
and so on. Almost any feature that can be found in a real-life
encounter or anovel can be programmed into a game by setting upan
appropriate routine and a database.

Youwill find in Chapter 10 a short routine which should stimulate
your imagination in this direction. What is important to remember,
however,inturning any of theseideasintocode isthat abalance must
be achieved between the amount of program (memory, time, coding)
that is required and the effect of the monster on the game. If halfthe
programisused simply to generate one clever monster, foundinroom
100, the player is unlikely ever to appreciate the intricacies of your

design.

2.5 Objects

In an adventure program objects are of two kinds: portable and fixed.
Portable objects can be moved from location to location in the game,
but fixed objects cannot. In game terms this means that the fixed
objectis essentially a feature of a particularlocation— an aspect ofits
description. From the player’s point of view there is no difference
between the output*You are in a dark and smelly tunnel’ and "There
is a brass candlestick hanging on the wall’ if no input of his can have
any effect on the description. Therefore from now on we will use the
word ‘object’ to refer only to items which can be moved from location
to location and will regard fixed objects as features of particular
locations.

Objects serve several purposes in adventure games. In terms of
player psychology they provide the immediate rewards (you will
remember that we previously analysed the game as being a strategy
designed to gain rewards). In other words, each time the player first
finds an object he can take with him or manipulate in some way he
has scored a little victory or “won’ part of the game.

In terms of the narrative realism of the story which forms such a
game, carrying things around is a key aspect of a plot, though some-
times the thing carried is information or ability rather than an
object.

In terms of the program structure, having objects is one of the
simplest ways of adding complexity and variety to our game. After
all,asmall game of 10 locations and 10 objects could give 100 possible

22

events in the game; a large game of 1,000 locations and 100 objects
can give 100,000 events, which is probably more than even the most
dedicated Cad would care to solve.

Anobject may have nosignificance in the game, being some kind of
red herring, time waster, or obstacle, but it usually has a more
specific purpose. In the puzzle game it will usually form part of the
solution to the puzzle, e.g., to find the missing formula Cad must
enter a room with a locked door, so first he must find and bring the
key. In the combat game objects normally improve the character’s
abilities, making him or her more efficient in some otheraspect ofthe
game. For example, finding a shield may improve the defence value
and hence the likelihood of surviving future combats; acquiring a
magic potion may increase the character’s strength and hence attack
value and/or ease of carrying other objects.

However, certain penalties may also go along with such advant-
ages. In puzzles itis often the case that having found an object needed
to get past one problem, finding the object itself creates another
problem. Finding gold dust may help you bribe the bartender, but
how do you now get past the bank robber? Finding a two-handed axe
addseight to your attack value, but you cannot carry a shield so your
defence goes down by two.

From the programming point of view, therefore, an object can be
regarded either asaflag, signalling that a particularconditionis met
(the object is found) and therefore certain consequences are permit-
ted, or as a function which acts on one or more of the character’s
variables, usually by increasing them. This means that objects may
be represented in our program in several ways, and one object may
have several representations. It also meansthat, just as the construc-
tion of monsters depends on the overall program structure, and
particularly the character’s structure, so objects must be thought of
as extensions of the character, modifying it according to built-in
rules and allowing certain developments in the game to take place.

Letusexplorean example. Suppose we wanted a game in which the
player was a nineteenth century explorer in Egypt. One of the key
problems we can give Cad is the deciphering of hieroglyphics (a good
opportunity for some interesting graphics). We would want him to
start off with minimal skill in decipherment, but to be able to build it
up. He starts with D=10, which gives him a 10 per cent chance of
understanding any hieroglyphic he encounters. If, however, he finds
the Rosetta Stone he will have a dictionary of the majority of the
signs, so his chance goes up to 60 per cent.

Such ideas can easily be complicated without much extra coding.
Inside a pyramid or tomb, because of the darkness, the chance goes
down to a quarter of its normal rate, unless a lamp is used, in which

23

case it is a half of the rate. If the player is able to decipher a magical
hieroglyphic then his chance goes up to 100 per cent for a limited
period, but if he commits sacrilege it drops to 5 per cent. Unfortun-
ately the stone is very heavy, so cannot be carried at the same time as
any treasure, and if a mummy sees the stone it will immediately
attack the bearer.

In this way a complex story potential is built around a few simple
variables, and eachelementisfitted together with all the others. The
monster and object arerelated (the mummy and stone) and character
abilities and the object are interrelated. The situation may affect all
ofthese and success can lead to further success. Yet there are possible
penalties and pitfalls, and the reward itself might be a peril (such as
in successfully using the stone to read a curse which is then
activated).

As with monsters, it is therefore important that objects not only
make sensein programming termsbut should also make sense inplot
and game terms. Good adventures are not a series of arbitrary
actions. Nor should they be a series of highly structured actions
which appear to be arbitrary. Good games, from the player’s point of
view, are not those which are well written but those which appear to
be well written. The effect of a game and its appearance is often more
important than its actual nature or content.

24

TECHNIQUES IN
PLANNING THE GAME

3.1 Structures

Almost all adventure games can be reduced to a number of key
elements, the relationships between these elements being shown by
one simple flowchart. In this chapter we will look at each of these
basic elements and the whole flowchart, so that in the following
chapter these general ideas can be turned into a map and then a
game. Each of the following chapters takes one or more of these
elements and discusses them in detail, exploring some of the differ-
ent ways they can be handled.

The elements will vary slightly according to the particular
machine used (e.g., whether it has colour or high-resolution
graphics), but at the most general level all adventure games have
each of the following: some form of input/output, made up of a textual
component (what is written on the visual display unit, such as a
description of aroom and its contents), a visual component (perhapsa
graphical picture of that room or a flashing warning), a sound com-
ponent (magical explosions, beeps, and burps), together with three
structures— the game structure (what the rules of play are and how
they are to be carried out), the story or puzzle structures (what the
player is meant to be doing in the game), and the program structure
(how each of the above elements fits together in a way that a com-
puter can understand). This basic model of a game is shown in Fig.
3.1.

These are the seven areas we must consider at the earliest stage in
designing our game. Clear and original ideas at this first step will be
repaid later on. On the other hand, if we only have ideas on what the
game is about without considering how it will look to the player or if
we decide we are going to design a game using speech recognition but
wedo not have anyidea about how it will be played, soonerorlaterour
coding will come to a complete stop, or need large amounts of
rewriting, or, if it ever is finished, result in a dull and unplayable
game. Of course you should not plan each of these areas in a way
which is completely separate from the others. They are convenient
abstractions to aid design, not completely closed categories which
must be adhered to. Later in this chapter we will look at some design

25

Input/output

Game Story
structure structure
Frogram
structure
Visual Textual Sound

Figure 3.1

strategiesthat may be used, but first we will make a briefexamination
of each of the boxes in Fig. 3.1 in order to find the kind of content they
may have and the decisions it is necessary to make in filling them.

3.2 Story structure

Many adventure games begin with an idea for a particular story line
or scenario. Aha! you think, wouldn’t it be a good idea to have a game
about climbingdown the inside of a volcano to the centre of the earth?
How about a game in which players sail the Kontiki across the
Pacific? You might wish there was a game where you could travel the

26

I

|
h 4

Actual
play

universe to piece together the history of an ancient race. However,
having had your initial flash of inspiration, you may not know how to
turn that into a description which can be coded for the micro. After
all, many people have tried writing stories but there are only a few
Flemings and Macleans.

You do not need to be a great novelist to write a story, scenario, or
puzzle that can become the basis of a program. All you need to
remember are two things:

1. A story is a series of linked events in which a character (or group
of characters) is changed in some way.

2. An event is made up of a place, a particular time, one or more
characters, one or more objects, and some possible actions or
consequences.

Now we can draw up our story structure. We write down, either
descriptively or as a flowchart, all the events we would like to include
and how they might be linked together. This in turn involves decid-
ing on the character or characters, how they might change (e.g., they
could become rich, be injured, learn to fly, etc.), what places or
locations there will be, what period it is set in (the Napoleonic wars,
the far future, prehistoric times), what kinds of objects might be
found or used (starships, treasure chests, maps, weapons, horses,
boats, religious relics), and what kinds of actions can be taken
(whether the charactercan bekilled, can talk or write, can move from
place to place, whether objects can be carried and if so which ones,
whether magic or futuristic devices are to be included). You will find
at the end of this chapter a list of possible story lines which have not
been used much, ifat all, in adventure games for you to adapt to your
own games.

We also have to decide onthe way or ways the story might end. Will
it only end when the main character is killed? Will there be a task to
fulfil or a problem to solve? Will a certain amount of treasure have to
be gathered or a particular social level reached? These questions
obviously relate to the game structure, because the waysour story or
scenario might end determine what counts as winning or losing the

ame.
- Toillustrate how we can do this, here isthe framework for a simple
story.

ChiefIron Buffalo (the main character) must lead his tribe to new
hunting grounds before winter sets in. The tribe can pass through
mountains, forests, and plains (the possible locations) where they
may meet wolves, bears, the Long Knives, or settlers (these are the
other characters) and may find ponies, buffalo, and a magic
tomahawk (objects). They can chonse to attack, run from, or talk to

27

other characters, to ride or hunt the ponies or buffalo, to take or leave
the tomahawk, and they must eat a certain amount of food each week
(possible actions). They might be given extra food, be shown a short
cut, or be attacked by other characters (further actions). Possible
consequences are that the tribe will starve, become lost in the wilder-
ness, all be killed by the white men and wild animals, revolt against
thechiefandscalp him, orfind new hunting grounds(storyendings).

Here are all the elements of our story. We must then decide how to
string them together and how to fit them with the six other basic
program areas. For example, what are the chances of encountering
settlers in the forest? Will there be graphic illustration of any
combats? How will the tribe move from place to place?

3.3 Game structure

All games have essentially the same structure— the player makes a
move; the consequences of the move are calculated; if the player has
won or lost then the game ends; otherwise that player or another
player makes another move. In the case of an adventure game there
are seldom moves in the traditional sense of, say, a move in Chess.
What happens instead is that the player is periodically presented
with a series of choices which represent the kinds of actions his
character(s) could take in the type of world represented in the story.
The choice made is the ‘move’ and its consequences will be some effect
on the character (he is poisoned) or on the world around him (he
breaks down the door) or on both (the starship explodes, hurling the
character into space).
This can be represented by a simple flowchart, as in Fig. 3.2.

1. Character options are printed.
2. Player chooses an option.
3. The effect of the choice is calculated.
4. The character is modified if necessary.
5. The game world is modified if'necessary.
6. If the game is over go to number 7; otherwise go to number 1.
7. End the game.
Figure 3.2
The kinds of options, choices, and modifications depend on the

story or puzzle structure we choose, but the basic flowchart remains
the same. However, there are obviously variations which can be

28

chosen; otherwise adventure games would all be roughly the same
and rather tedious. For example, one of the options may lead immedi-
ately to a choice of further options without any modification of the
playerorthe world. The player could be presented with the following
list of choices:

1. ATTACK
2. HYPERSPACE
3. RESEARCH

If ATTACK is chosen, a second series of choices may immediately be
given, each of which is a subcategory of attack:

1. FIRE MISSILE
2. FIRE TORPEDOES
3. RAM OPPONENT

Such increasing specificity can be continued indefinitely, up to the
capacity of the microused. Many microsonly allow a limited number
of embedded subroutines which would restrict this kind of nested
specificity.

A second game variation involves the effect which the choice hason
the player rather than on the character or the world. For example, a
request for further instructions or to print the character’s current
status is a partof the game structure which has no effect on the game.
However, it would be perfectly possible for such choices to affect the
game. For example, every time a player asks for instructions the
intelligence variable of his character could be reduced. This kind of
modification makes playing the game more skilful, and that is a
primary consideration in designing a game. An enjoyable game is
one that is difficult enough to be taxing yet easy enough to under-
stand. Abstract games such as Othello and Chess are very popular for
just this reason— they are simple to learn but difficult to play well.
Similarly, the game structure of an adventure should make play easy
but good play difficult.

This is why there are twobroad categoriesofadventure game— the
puzzle game and the combat game. The former builds the game
structure around a puzzle or series of puzzles, each of which must be
solved in order to win the game. Here intelligence and imagination
are tested. The latter type of game is closer to the arcade game or to
the table top war game. The game structure depends on the tactics
and strategy of combat between the character and monster, with
decisions having to be made rapidly, and the consequences such as
injury having an effect on subsequent battles. This type of game tests

29

reactions and tactical planning. The ideal adventure game should
combine both these approaches, involving player choices which are
intellectually challenging in as broad a way aspossible, aswell asthe
challenge of quick reflexes and the traditional strategic and tactical
skills of board games.

A third variation is to alter the possible options and consequences
and/or to make them affect each other. In a good game a choice made
in the first few moves can have a significant effect on choices avail-
able much later on. Part of the game structure should therefore be a
description of how choices are related to each other. For example, if,
in Chess, you choose to place all your pawns on black squares you
make movement easy for your white bishop but difficult for your
black. Our game may involve designing a spaceship. If the player
chooses a great deal of weaponry, perhapshe should only be allowed a
slow ship. Or suppose a player finds a magic staff. In the short term
this may do him some good as he can now cast spells, but perhaps it is
cursed to destroy its owner in a room with goblins in it, which would
be a long-term disadvantage.

In particular, in designing a game structure we should decide on
how each option will function. No choice in an adventure game
should automatically result in success. Either the choice should
bring success only if made together with other correct choices (e.g.,
you must choose the black bow but only the white arrow) or there
should only be a chance of success represented by a function curve of
its probability. Such curves are at the heart of many games. For

r 3

Knowledge

Social level

Figure 3.3

30

example, suppose our game involved the character moving up the
social scale from peasant to king and each turn represented a year in
his life. As he goes higher up the social ladder his knowledge
increases. We could represent this by the curve in Fig. 3.3. However,
as he gets older his intelligence decreases, as in Fig. 3.4,

Suppose his chance of passing to the next social level depends
equally on knowledge and intelligence. Then the curve for age
against chance of increasing social level would be Fig. 3.5,

Asincreasein ageisuniform(one yeareachturn)butsocial level is
variable so that keeping your chance at 50 per cent depends on
previously being successful (which initially you will be only 50 per
cent of the time), the actual curve of chance of success in increasing
social level as the game progresses will look more like Fig. 3.6, i.e.,
initially age and social level cancel each other out in determining the
chance of increasing social level, but as time goes on age becomes
more and more important.

Every probability in a game can be given a curve like this, and the
chance of winning the game will depend on the curve which summar-
izes the combination of all the curves. This can involve some very
complex mathematics. However, it is not necessary to go so far as to
compute all the curves of all the functions in our game, especially if
Juck (the random factor) plays a large part. What we have toensureis
that we choose functions, formulae, and algorithms which (1) make
sense in the world we are creating and (2) never produce 100 per cent
certainties. We must work out the consequences of a few sample

'Y

intelligence

Age

Figure 3.4

31

choices and play-test the most frequently used functionsin our game
before we finally decide to incorporate them into the game. It is
always possible to adjust the formulae later on, but it is much better
to have a balanced structure worked out from the beginning so that
we do not have to resort to tinkering which could upset the whole
game.

You will find some appropriate suggestions for functions at differ-
ent points in this book as we explore each particular feature.

3.4 Input/output
SOUND

Many micros have no sound facility and others have Very poor ones,
S0 you may not wish to incorporate sound into your game. It is
certainly less worth while for adventure than for arcade games, so is
by no means essential. However, some micros have excellent sound
facilities and there are certain uses of sound which can enhance an
adventure game (see Chapter 8), so if we decide to use sound we
should do so early on in the design process to maximize effective use,
as with every other feature of the game.

The main decision we must make initially is whether sound is to be
an integral part of the game, giving information which is not avail-
able in any other way (such as using musical clues as part of the
puzzle), or simply an enhancement containing no essential features
(e.g.,atuneplayedatthebeginning andend ofeach game). Naturally

T

Chance of
increase in &0
sacial level
0 Age
Figure 3.5

32

sound can be used in both ways in one program. In the case of
non-essential sound it can always be added during the final stages of
coding, when we know how much memory there is to play with and
which sections of the game need such enhancement. However, essen-
tial sounds must be built into the design as early as all the other
essential information so that we can see how to fit it into the overall
structure and be able todevelop aural effects parallel tothe restofthe
program rather than tagged on superficially.

VISUAL

Unless your adventure only gives printed hard copy (as in play-by-
mail games, discussed in Chapter 11) there will always be a visual
component. The information for each turn will be displayed on the
visual display unit(VDU). It may beentirely graphical, in which case
it will be an arcade-type adventure, or it may be entirely textual.
With the current generation of microcomputers it seems rather
wasteful to have no graphical output, but on the other hand graphics
can use a large amount of memory and adventures generally require
as much memory as possible for their logic. The traditional adven-
ture game is entirely textual, but there is an increasing demand for
games which use real-time graphics, colour, high resolution, three-
dimensional illustration, etc. As memory becomes cheaper such
developments will become more practicable.

It is a good idea, therefore, to make your first adventure mainly
textual as this simplifies matters, but toset aside one or two kilobytes

F'y
Chance of
increase in 50
social level
0 »>
Age
Figure 3.6

a3

of memory for experimentation with graphical enhancement, such
as in titles or warnings.

If, on the other hand, we want to illustrate every room and every
monster, or to use some form of animation, then we will need much
more memory, which will limit the size and scope of the program.
There are ways of using files on discs or cassettes which allow storage
of graphics outside the random access memory (RAM), thereby
giving the best of both worlds (but slowing down execution of the
program). For a discussion of this see Chapter 11.

For the moment we need to decide:

1. If we wish to use graphics
2. For what purpose
3. How much memory is to be set aside for this

Essentially there are three types of graphic display used in adven-
ture games, namely:

1. Decorative display, as in titles, flashing warnings, decorated
text, etc.

2. Illustration, asinapicture ofthe monster the characterisabout to
grapple or the view seen upon entering a new location

3. Essential information, where the graphics hold information
which is essential to the game and not given in any other way,
such as when visual clues are used or an arcade encounter is
Incorporated.

The first of these is easiest to do and can greatly increase the
attractiveness of a game, but strictly speaking is unnecessary and so
is often neglected. The third is most interesting, but also most diffi-
cult, so we will concentrate largely on the second. We should always
attempt to use a micro to the limits of its resources. One way to do this
1s by aclever mixture of sound, graphics, and text which is not merely
illustrative and could not be emulated in a board game.

Unfortunately, because of the many different implementations of
graphics, it is not possible to go into great detail about how a particu-
lar design could be implemented on a number of systems. Later
chapters will outline ideas which can be adapted for your particular
machine, but most of the graphics in this book use the Spectrum
system. Fortunately this has some similarities with other popular
systems.

Inplanning ourdisplay it is a good idea to draw up at an early stage
rough sketches of the kind of displays we wish to see. While it is
unnecessary to go the lengths of the film-maker’s storyboard, on
which every shot in the film is drawn before it is photographed, it is a
good idea to sketch the key pictures so that we can decide where they

34

will fit into the program, how they will use available screen space,
how they can be mixed with text, which graphics mode(s) will be used,
and if our ideas are too ambitious for our skills or machine.

Eventually we will need to plot all the major displays on graph
paper or a special plotting sheet, but at the planning stage simple
freehand sketches are sufficient. Bear in mind that an illustration, to
be worth while, must be attractive, but a piece of important visual
information, such as a clue, can simply be a functional, unaesthetic
use of graphics. Remember also that one of the things that makes a
playerreturnagainand againtoagameisitslook and'feel’, sopaying
some attention to how the game presents itself, including its output
on the screen, can be very important.

TEXT

Text is the most common form of input/output used in adventure
games. We need to consider how text will be used, how it will be
presented, how it will be stored, and how it will be processed. The art
of adventure design has a great deal to do with variety of text output
and versatile analysis of text input. Unfortunately, storing large
quantities of text uses large quantities of memory and in BASIC
stringhandling is generally slow, thus slowing down the game. Some
compromises will have to be reached.

We need to consider if all instructions will be included in the
program or if they will be described on an accompanying sheet; if
commands are to be normal English or abbreviated words, numbers,
or single letters; if some form of data compaction is to be used to store
more text; if description is to be full sentences or abbreviated words;
and if it is possible to use commands which can be interpreted in
different ways. We also need to decide how to display the text and how
to do so in conjunction with any graphic displays. For example, if we
want text and graphics together on the screen throughout the game
we will need to define text and graphics ‘'windows’ of some kind or
even several different windows for different purposes(such asone for
character update and one for choice of possible actions).

Each of the topics ‘screen display’, ‘data compaction’, and ‘text
processing’ deserves a book in its own right, so they cannot be
handled thoroughly here. Instead a number of relevant approaches
will be suggested, together with some BASIC coding routines which
deal with detailed examples. These can be incorporated at relevant
points in your own programs. Essentially, however, the principles to
abide by are:

1. Use anything which saves memory.
2. Use anything which speeds execution.

a5

3. Use anything which adds variety to the game,
4. Use anything which makes the program easier to play and more
enjoyable for the player.

Because of its fundamental importance it is worth considering
text at length in the planning stage. Text processing is often
neglected by BASIC programmers despite the fact that many
interesting procedures can be carried out. On the one hand we must
consider ways of making the game more attractive to the player, in
termsoftextual variety, correct spelling, easily read displays, etc. On
the other hand we must see if we can come up with any original ideas
for using text, such as making a punon the player’'sname, using jokes
inresponse toplayermistakes, displaying text asfragmentsofparch-
ment found at different places in the game, using cypher routines
which change cypher from game to game, generating a series of
verbal clues, routines for ‘conversation’ with encountered monsters,
etc. Some of these ideas are developed in Chapters 7 and 8.

3.5 Program structure

When the ideas on the story, the game, and the forms of input and
output, together with some sketches of what the display will be like,
have been sorted out, we are ready to begin programming. An adven-
ture game is like any other program, but there are some aspects
which it is wise to pay attention to and which may modify your
normal programming techniques.

Probably most important is the fact that an adventure game is
generally long. To be interesting it must be varied and complex as a
story/game/puzzle and this means that it will generally be varied
and complex as a program. The easiest way to cope with these three
related problems of length, variety, and complexity is to adopt a
modular structure. Modular programming is a good idea in general
because it prevents tangled nets of GOTO statements and encour-
ages BASIC programmers to adopt structured techniques which
make the transition to languages like Pascal and FORTH somewhat
easler. Modules enable us to test each section of a program as we
develop it and enable us to debug complete programs more easily.
Furthermore, modules can be used in different programs with little
ornoalteration, soonce we have writtenone adventure game weneed
never start from scratch with any other. The designs in this book are
therefore modular in nature, designed for versatility in use.

What is meant by modular design? Essentially it is the same as
dividing your program up into a number of subroutines, plus a main
program which calls each subroutine as it is required. In BASIC a
very simple program might look something like Fig. 3.7.

36

10 GOSUB 1¢0¢¢: REM INSTRUCTIONS

20 GOSUB 20¢¢: REM INPUT ROUTINE

3¢ REM COMBAT ALTERNATIVES

40 IF A =1 THEN GOSUB 3¢0¢

50 IF A =2 THEN GOSUB 3500

60 IF A =3 THEN GOSUB 4000

70 IF A = 4 THEN GOSUB 4500

80 GOSUB 5¢¢¢: REM COMBAT

990 GOSUB 6(0¢¢: REM IF CHARACTER IS DEAD THIS
RETURNS D =1

100 IFD = 1 THEN GOSUB 7¢¢¢ ELSE GO TO 10

119 END

1000 e

PN | e

BTG, oo

7069 REM END ROUTINE
Figure 3.7

Using a series of subroutines is not the only way to design a
modular structure, but it is one of the easiest. Each module or sub-
routine has a particular task— it may print instructions, or calculate
combat, or display spaceship movement. That task may be called
once or several times per turn. If called only once, and particularly
only once per game, there isnoneed to put the module in a subroutine.
Instead it can be a clearly marked section of the main program.
However, to encourage flexibility and variety it is a good idea for as
many as possible of the subroutines to be capable of being called up
more than once, depending on conditions. For example, the combat
subroutine may be called if the player decides to fight, or, later, if the
monster decides to fight, or perhaps even if both wish to avoid fight-
ing but the ‘gods’ (i.e., a random number) decide otherwise.

If we have done our preliminary designs well it should be clear
what modules the program will need and in what order they will be
used. If it is not clear then our first programming task is to make it
clear by writing down all the ideas we have for the game and linking
them together. There are various methods fordoing thisbutIsuggest
two:

1. The mind map
2. The general flowchart

The mind map is a way of generating ideas with links between them.
The flowchart is away of structuring ideas in alogical and systematic
way.

37

THE MIND MAP

Take a blank piece of paper and write in the centre the main idea
you have for the program (what it is about, how it will work, what it
will look like, what it is called). Then, as rapidly as possible, so there
is not much time to think consciously about it, jot down an idea,
phrase, or word which seems to be connected to that main idea. Link
the two together with a line. Think of another idea connected with
one of the two you now have on the page, write it down, and draw in
the link. Now write down another idea connected with one of these
three.

Carry onin this way, thinking up new ideas related to one or more
of the ideas you already have on the page and writing them down.
Then draw in all the major links to ideas already down. Do not pause
to evaluate any of the ideas. Just jot them down, as fast as you can,
and draw in the links. Carry on until you have definitely run out of
ideas. You should end up with something like Fig. 3.8. Here the
central idea I started with was ‘Mines of Merlin’.

This is your mind map. It is a plan of the ideas you have about your
program or game linked in the ways that make most sense to you at
anintuitive level. Now take all the notes, lists, sketches, jottings that
you already have on the game and if they have not been incorporated
inthemind mapadd them andtheirlinksatthe mostlogical place(s).

You should find that certain ideas have many branches coming
from them, whereas others have only one or two. Those with many
branches are the main ideas, which will therefore become the major
routines in your program; those with only a few branches will be
small modules, used less; and those with only one branch do not need
to be separate modules at all but can be included in the larger idea
they branch from. For example, in Fig. 3.8 the ‘weapon’ routine and
the ‘retreat’ routine can be included in the ‘combat’ routine, but the
‘death’ routine will not as it may be called by another routine.

THE MAJOR FLOWCHART

A mind map crystallizes all our ideas and clarifies the relation-
ships between them, so that we can see what gaps there are and
whether the logicissensible. Howeverit isnot an exact description of
a program by any means. The best way to achieve this is probably by
constructing a flowchart or algorithm. This is a much more precise
model, but is more difficult to construct, particularly if we are still
unclear about some aspects of the program. So it is a good idea to
construct a mind map first to generate the ideas, as a way of doing the
groundwork, and then to turn it into flowcharts to make the relation-
ships unambiguous. You cannot easily code a program from a mind
map, but you can from a well-constructed flowchart.

38

FOOD

POISON
INSTRUCTIONS MAP FOTIONS
MINES OF MERLIN MAGIC
HAZARDS
PITS MONSTERS
DEATH COMBAT
RETREAT WEAPONS

Figure 3.8

There are several examples of flowcharts in this book. Some are
quite precise, beingquite close to anactual BASIC routine; othersare
very general, leaving some stages implicit or undeveloped. It is this
latter kind you should first aim for in planning your game, giving a
broad description of everything that will occur in the program, with
some indication of the order in which they will occur. Using the mind
mapinFig.3.8 wemight construct aflowchartliketheoneinFig.3.9.

Having worked out the major flowchart we can then take each
block in turn, treat it as a separate module, and draw a flowchart for
all the processes involved in it (possibly by producing another mind
mapjust of that section). Each of these processes should, ifnecessary,

39

have its own flowchart. We continue in this way until our flowchart
begins to read like a program, and we are ready to code our module.
Assign line numbers to each of the blocks in the most specific drafts
and we can then begin to translate the stages of the flowchart into
appropriate lines of BASIC code.

. PRINT INSTRUCTIONS

. DISPLAY EXITS

. MOVE CHARACTER

. IF THE CHARACTER MEETS A MONSTER THEN GO TO 6

. IF THE CHARACTER FALLS DOWN A PIT THEN GO TO 9

. CALCULATE COMBAT

. IFCHARACTER IS DEAD THEN GO TO 10 OTHERWISE GO
TO 2

. DISPLAY THE PIT OUTPUT

. CALCULATE THE EFFECT OF THE FALL

. IF THE PLAYER IS DEAD THEN END THE GAME OTHER-
WISE GO TO 2

Figure 3.9

=13 O o Q3 BD

===y o

1

Work through the ‘instructions’ module in Fig. 3.9 as an example.
Firstly, we decide that there will be written instructions displayed
before the game begins. Then we draw a flowchart like Fig. 3.9,
putting the instructionsblock in the correct place. Taking a separate
sheet of paper we produce a flowchart of the instructions module,
perhaps like Fig. 3.10.

1. FLASH UP THE TITLE OF THE GAME TEN TIMES

2. PRINT THE DESCRIPTION OF THE GAME _

3. DESCRIBE POSSIBLE PLAYER ACTIONS AND THE AVAIL-
ABLE CONTROL KEYS

4. PLAYER PRESSES 'S’ TO START THE GAME

Figure 3.10

Each of the parts of Fig. 3.10 needs further elaboration. Instruction
might be redrafted like Fig. 3.11.

1. ADD 1 TO COUNTER

2. CLEAR SCREEN

3. PRINT TITLE OF GAME

4. IF THE COUNTER < > 10 THEN GO TO 1

5. CLEAR THE SCREEN

6. GO TO THE NEXT SECTION OF THE PROGRAM

Figure 3.11

40

This looks very much like a BASIC program. It is only a small step
from Fig. 3.11 to a section of code like Fig. 3.12.

10FORI=1TO 10

20 CLS

30 PRINT “The Mines of Merlin”
40 NEXT 1

50 CLS

Figure 3.12

Although this piece of programming is elementary, the same pro-
cedure should be used for more complex tasks. In fact, it is more
important to use it for complex tasks because without it we may well
miss crucial stages of coding when it comes to actually writing the
program. Using a series of flowcharts like this may seem tedious, but
adventure games are very long programs and so are prone to many
different kinds of ‘bugs’. Time we may lose in the planning stage will
be amply repaid when we find we have almost no debugging to do.

However, this procedure cannot on its own ensure a perfect, bug-
free design. Other stepshavetobetaken. One importantthingtodois
to ensure that the program is amply documented. Do not throw away
any design notes, make sure that all thoughts and changes are
written down at the time so they are not lost, and keep the program
full of REM statements. A good idea is to use incrementsof 10 lines in
writing your BASIC programs, and place all the REM statements on
lines ending with 9. In this way each section of code will have its
identifier immediately before it and you will know what lines to look
for as you scan through your program during development looking
for a key section. Then, when the program is finished, if you wish to
delete them (to save memory or to make the listing opaque for a user)
it is a simple task to go through and delete all lines ending in 9.

3.6 Example plan

Most of the principles discussed in this book will be illustrated
through the sample adventure games listed in Chapters 5 and 6,
which are also available on a separate cassette. Let us conclude this
chapter by showing how I thought up one of these programs, and the
design stages it went through before coding began.

Firstly, I decided I wanted to show as many aspects of program-
ming a puzzle game as possible, but in a way which was not too
complex to understand. 1 therefore wanted a reasonably conven-
tional game, so decided on a story based on a knight journeying to
Camelot. I wanted the parts to be modular so other programmers

41

could use them if wanted, and I wanted some variety of input, output,
and player decisions as well as the usual text.

Because of the need to make the principles clear to someone rela-
tively new to the idea I decided early on that this specification for a
program was really too intricate and could better be done by two
programs rather than one—one basically a puzzle game and the
other a combat game, which is why the two adventures in this book
are so different in approach.

AtthispointIsat down and drewup anumberof mind maps, oneon
all the aspects of games I wished to illustrate, one on all that] knew
about Camelot and knights, one onotherpossible storyelements, and
one on the game features I wanted to include. As a result of all this I
had my first major flowchart, shown in Fig. 3.13.

1. Instructions.

2. Display map.

3. Print description.

4. Input command.

5. Calculate effect.

6. If the player has not won or lost then go to stage 2.

Figure 3.13

At this point I also had some brief notes on the kinds of puzzle I
might have and a sketch of a simple screen display.

Only now could I think about coding but I could not go as far yet as
writing any of the program. [wrote down a list of all the routines and
modules that would be needed and assigned a large block of line
numbers to each one, trying to overestimate rather than under-
estimate the number of lines that would be needed for each. It is best
when doing this to remember that, when looking for a subroutine,
most machines, including the Spectrum, look through all the lines
starting at the lowest number until the right routine is found. There-
fore, it is best to put frequently used blocks early in the program and
infrequently used blocks towards the end. Typically routines for
movement and screen display would go at the start because they are
used at almost every turn of play, but instructions and initialization
routines, which are only used once in the game, would go at the end.
Though this seems slightly illogical, it can make the program run
much more quickly. However, if we want very fast execution we need
to use machine code or a compiler (which turns BASIC into machine
code), but these are beyond the scope of this book.

42

Atthisstage, the programdesign for The Throne of Camelot wasas
shown in Fig. 3.14, though as you will see later the final program
differs slightly from the initial design. The instructions, initializa-
tion routine, and DATA statements, which are usually only used
once, are at the end, whereas the most used routine are at the
beginning.

The main program, lines) to 999, is actually no more than a part of
the initialization (which I placed here to make it easy to find during
programdevelopment), three calls to subroutines which in turn print
the instructions, complete the initialization, and print the first dis-
play, and five lines ofloop which do the following: acheck is first made
toseeifthe gameisover; then the inputblock iscalled and ifthe input
isalright the appropriate verb block iscalled; the verbblock will then
either call the movement block, which in turn updates the display of
map and verbal description, or will call one or more of the routines
from the object description and location description blocks; ifthese do
not end the game (by setting a variable called ‘dead’ to some value
other than zero) then the loop is repeated.

BLOCK 1 §-999 MAIN PROGRAM

BLOCK 2 108¢-1999 PROCESS INPUT COMMANDS

BLOCK 3 200¢-2999 MOVE PLAYER, PRINT MAP AND
PRINT DESCRIPTION

BLOCK 4 3009-3999 VERB ROUTINES

BLOCK 5 5000-5999 OBJECT DESCRIPTIONS

BLOCK 6 600$-6999 LOCATION DESCRIPTIONS

BLOCK 7 8000-8499 SET UP AND INITIALIZATION

BLOCK 8 8500-8999 INSTRUCTIONS

BLOCK 9 9000-9499 DATA STATEMENTS

BLOCK 10 9900-9999 END ROUTINE

Figure 3.14

The block diagram represents the flowchart of control which Idrew
up (Fig. 3.15). The reason there are some gaps in the numbers in the
block diagram is simply that I left space for any major addition
thought up after the main design. In the event there were no addi-
tions, but thereisalogical space for any modification that you wish to
build into this program. Figure 3.14 shows the modular nature of a
program like this and Fig. 3.15 shows how such an adventure is
almost completely built around the IF .. . THEN test.

43

o o W e

8.
9.

10.
11,
12.

13.
14.
15.
16.

17,

18.

INPUT NEW COMMAND
I[F THE COMMAND IS A MOVEMENT

COMMAND THEN GO TO NUMBER 7

IF THE COMMAND REFERS TO AN OBJECT THEN GO TO
NUMBER 12

IF THE COMMAND IS‘HELP’ THEN PRINT A CLUE AND GO
TO NUMBER 1

IF THE COMMAND IS ‘INVENTORY’ THEN PRINT THE
INVENTORY AND GO TO NUMBER 1

[F THE COMMAND IS NONE OF THESE THEN PRINT 'I
DON'T UNDERSTAND’ AND GO TO NUMBER 1

IF THE INTENDED MOVEMENT IS IMPOSSIBLE THEN
PRINT‘ERROR’ AND GO TO NUMBER 1 OTHERWISE GO TO
NUMBER 8

MOVE THE CHARACTER

PRINT THE NEW DISPLAY

UPDATE THE VALUES OF ALL VARIABLES

GO TO NUMBER 1

IF THE COMMAND IS NOT POSSIBLE THEN PRINT'ICAN'T
DO THAT AND GO TO NUMBER 1 OTHERWISE GO TO
NUMBER 13

CALCULATE THE RESULT OF THE COMMAND

PRINT THE RESULT

UPDATE THE VALUES OF ALL RELEVANT VARIABLES
IF THE GAME IS OVER THEN GO TO NUMBER 17 OTHER-
WISE GO TO NUMBER 1

IF THE PLAYER HAS WON THEN PRINT ‘WELL DONE’
OTHERWISE PRINT ‘HARD LUCK’

END THE GAME

Figure 3.15

3.7 Suggested themes for adventures

FANTASY

L0 O

o

44

An underwater world (Atlantis, Mu, Captain Nemo)

A world entirely of winter

A world in the sky, peopled by winged creatures

A world inside a living organism (like The Fantastic Voyage) or a
machine (like Tron)

The player is to learn the magical skills of a lost race, not through
combat but by correctly interpreting a series of magical clues
A game based on a series of competing religions or magics, in
which similar symbols have differing meanings (hence
ambiguous clues) g

1,

8.

The player designs and plays as a monster of some kind, such asa
dragon or vampire

A game based on some unusual geographical feature, such as
inside a volcano, on a series of floating islands, inside a glacier,
among tree tops or entirely on a cliff face

SCIENCE FICTION

1.

5.
6.

A planet with an unusual shape or topology, not a globe, such as
a world which really is flat, or a game based on Larry Niven's
Ringworld

. A game in which the player has the role of a robot

A game inwhichthe playerisamachine, such asthe computerina
starship, the starship itself, or an exploratory vehicle on a new
planet

. The player chooses an alien race to role-play and must behave

within the constraints of that race (e.g., a giant insect or an
intelligent plant)

A game based on time travelling, in which players must pick up
clues from different milieus

Prevent the mad scientist from conquering the earth

HISTORICAL

1.

A game based on a remote or exotic culture, such as those of
China, Japan, Tibet, The Pacific Islands, or on the Incas or
Aztecs

A game based on a particular historical period or event, such as
the rise and fall of Rome, the discovery of America, Alexander’s
conquest of Asia, the wars between Mongol and Chinese, or the
spread of Islam

. A sporting event or competition used as the theme, such as a

round-the-world yacht race, a season of cricket, a Grand Prix

. Real-world simulations, such as a game on the recording indus-

try, or advertising, or the cinema

Spies, espionage, and terrorism

An ecological game in which the player must take on a different
biological role

45

PLANNING THE
DISPLAY

A crucial aspect of most games, but particularly computer games, is
the physical appearance of the game—what it looks like on the
screen. Thismeansthat you must devote a greatdeal ofthought tothe
display of your game. What will the playeractually see? In agraphics
game the answertothisquestion may control almost allother aspects
of the game and an adventure game may be the same if, for example,
it is primarily a maze to be solved or a real-time game. However, in
the majority of adventure games you cannot let the display be the
most important aspect; the structure of the game must come first.
You will, however, need to display text and probably to display
graphics, so you must decide how they will be shown and how they
will fit together.

4.1 Strategies and menus

The preliminary questions to answer are as follows:

1. Isthedisplay to be purely text, or purely graphics, or a mixture of
both?

2. Will there be any real-time interaction and, if so, what will the
time interval be for displaying information on the screen?

3. Do we wish to use any of the special features of the machine? For
the Spectrum this means deciding if we want to use any of the
following:

flashing colours
high-resolution graphics
use of the two-line separate screen
colour
user-defined graphics
4, How much information will be shown at a time?

There are two display strategies. The first is successively to add
lines to the display so that it is continually scrolling up the screen.
This is the easiest method but one of the most untidy and unattrac-
tive. It fillsthe screen with a great deal ofinformation which makesit
difficult for the eye to find the exact piece it wants, and most of that
information is unwanted at any particular point in the game
anyway. Each time it scrolls the whole display moves up in a ragged

46

way and, on the Spectrum, the need to answer the Scroll? request
adds an unnecessary complexity and delay to the game.

A slightly more convenient and attractive method is to clear the
screen at regular intervals. This can be done each time the screen is
filled, which saves the need for continual scrolling, but isbetter after
each block of information is shown. The displayed information is
divided into separate classes, each with its own subroutine or pro-
cedure, and each class is then called when it isrequired. Todo this we
would normally use what is called a menu-driven approach. Roughly
speaking amenuisasetofoptionsdisplayed onthescreen from which
the user makes his selection. He inputs his selection and the appro-
priate subroutine is called, clearing the menu from the screen and
displaying the appropriate information for that subroutine. For
example, the main menu might read:

Option Select

Combat 1
Refuel 2
Status 3

If the user wants the combat routine he types “1” and the display
changes to that of the combat routine. For example, it might show a
graphic display of the view seen by a spaceship’s combat computer.
Typing “2” might give a different graphics display, let us say a
real-time graphic game in which two spaceships shown on the screen
have to be docked together for refuelling.

It is quite possible that making a selection on one menu could lead
to the display of another menu, representing in effect a series of
nested subroutines. Therefore selecting option 3 above might result
in the following display:

Option Select
Fuel 1
Ammunition 2
Battle damage 3

Selection of one of these could lead to a further menu, and so on,
until the nesting limit of the microcomputer is reached. A series of
such menus is a way of guiding a user through the complex structure
of a program to the actual routine required. It is mainly used in
business programs and it is unlikely that you will produce a game as
complex as such commercial software. However, it is a useful way of
relating displays to each other. When the user has found his way to
the routine he wants and has carried out the task he requires by

47

navigating through a series of screens of information (each of which
clears the previous screen), the screen will clear again and return to
the original menu. Thismenuisgenerally knownasthe‘main menu’.

Using the scrolling method requires no planning or programming
at all as the usual method of most microcomputers is to display each
line of information at a time and scroll upwards when the screen is
full. To clear the screen at appropriate moments, whether using a
menu-driven system or not, demands careful programming. There
will usually be a BASIC command for clearing the screen, often of the
form used by the Spectrum, CLS. For most purposes we need only to
divide all output into appropriate blocks, place each block in a sub-
routine, and make the first command of each subroutine CLS. How-
ever, In some cases we might not want to place outputin a subroutine,
e.g., in the instructions at the start of a game. In this case we must
compose each screenful of information so that it is easiest to inter-
pret, placing a CLS command after each successive screen.
Remember here that the screens will clear too quickly for anyone to
read, sowemust place adelay of somekind at theend ofeach section.

There are two forms of delay—either causing the computer to
perform a process without result for a fixed period or to hold up the
program until the user inputs some information. Using the first
alternative meansthat the reader has a predefined period in which to
read, which may be too long or too short for some readers, but guaran-
tees that the rest of the program will be carried out. Using the second
alternative allows the user to read the information in his or her own
time, but involves some action to ensure continued operation. There-
fore an instruction explaining what kind of input is required must be
added.

The first type of delay can be achieved simply by using a repeated
loop, generally a FOR . . . NEXT loop, e.g.,

109 FOR I=1 TO 1000
11¢ NEXTI

The precise interval this achieves will depend on the microcomputer
used, so has to be discovered by trial and error. The Spectrum has the
PAUSE command and other micros have commands like INKEY
which wait for a specified time or until a key is pressed. For such
micros the best methodis therefore toinstruct the program to wait for
along time using these commands so that plenty of time is given even
for the slowest reader. However, faster readers can interrupt at any
time simply by pressing a key. So if we decided that it takes 10
seconds to read a particular screen slowly, add a further 5 seconds for
good luck, multiply by 50 (the number of television frames that the

48

PAUSE command waits per second), we can use a routine like the
following:

10 REM FIRST PRINT THE SCREEN

.................

40 PRINT “PRESS ANY KEY TO CONTINUE”
50 PAUSE 750
6¢0 REM NOW PRINT THE NEXT SCREEN

If your microcomputer lacks such commands, you must choose
between the repeated loop (above) or user input. As the input does
nothing more than allow the program to continue, it does not matter
what that input is, so it is usual to allow any key to be pressed. A line
such as:

100 GET A$: IF A$="" THEN GOTO 190

will be allowable in most dialects of BASIC. The first part of the line
looks for the input character while the second part loops back to the
first if no character has been input, causing the loop to continue
endlessly until a character is typed in.

It is possible to write a small routine in most dialects of BASIC to
perform the same function as the Spectrum’s PAUSE, such as:

100 FOR I=1 TO 10¢¢

11¢0 GET A$

120 IF A$ <> THEN I1=999
130 NEXTI

However, different microcomputers use different forms of GET,
GET$, INKEY, and INKEY$, so you should make sure you under-
stand the quirks of your own system thoroughly.

4.2 A look at windows

A better method than either continual or periodic screen-clearing is
to use screen ‘windows’. A window can be thought of as a section of
screen defined for a particular type of display. For example, the BBC
micro allows you to define separate text and graphics windows, using
separate portions of the VDU screen. In the text window only text
appears while in the graphics window only graphics and text treated
as graphics appears. These windows may be any rectangular portion
of the screen.

49

Such a capability is, however, non-standard, so we would normally
have to write our own software routines to create such ‘windows’. In
the case of the Spectrum two windows are already defined. The top 22
lines form one window and the bottom 2 lines another. From BASIC
the lower window can usually only be used in INPUT statements,
which rather limits its usefulness. As an INPUT statement is in
many ways like a PRINT statement in Spectrum BASIC we can use
the bottom window to display text. For example, we could write a
‘press any key’ routine which printed a sentence in the bottom
window, the actual sentence being chosen according to circum-
stances.

Suppose we had three types of advice in our game, held as three
strings, namely:

10 LET A% = “1 wouldn’t do that if I were you”
20 LET B$ = “You can’t do that”
30 LET C$ = “You need more strength”

We would therefore have routines elsewhere in the program which
chose theappropriate warning, depending on the circumstances. The
result of the routine would be to assign to the warning string W$, one
of these chosen warnings, with a statement like:

200 IF A=2 THEN LET W$=BS$

This could be read as ‘If the circumstances are such that the player
cannot do what he wants to do then the warning will be “You can’t do
that”. To print the chosen warning in the bottom window we would
call our special INPUT subroutine which looks like this:

500 INPUT (W$); AT 2,0; “Press any key to continue”; Z$
510 RETURN

In other words, we can use the same subroutine to print any sentence
we like in the bottom window, providing that sentence has been
assigned to W$.

This gives us a hint as to how we can create windows on other parts
of the screen. We can write subroutines which print variables at
certain positions on the screen and assign to these variables the
actual values or strings we want to be printed. This solution is in
many ways more elegant and useful than having to put the AT or
TAB coordinates in every PRINT statement, because we only have to
calculate the necessary coordinates once for each window and then
hold them in the subroutine.-However, if you prefer you can define

50

text windows so that every kind of PRINT statement must be in a
particular place on the screen and must therefore have the appro-
priate AT or TAB coordinates.

This can be demonstrated easily. Suppose we wanted two small
windows for text, one displaying the current strength and magical
power of the player’s character and the other a list of the things he
could see. In the first case this would probably be two numeric
variables which would be updated at regular intervals. So the up-
dating routine can also be the PRINTing routine, as follows:

1090 REM FIRST DO THE CALCULATIONS

.......................

14¢ PRINT AT 1,3¢; STRENGTH
15¢ PRINT AT 2,3¢; POWER

This works very well. As the variables STRENGTH and POWER
change throughout the game they are updated and immediately
PRINTed over the old values.

For our second class of output, a list of items, this might not work so
well. Presumably in the whole game there will be a large number of
thingstobeseen, butthe character will notbe able tosee allofthemat
any one time. This implies that the list will vary from situation to
situation. Sometimes there will be no objects and sometimes there
will be many. Consequently the techniques of overprinting an exact
location will not work, especially as strings tend to be of different
lengths. What is needed is a routine which fills as much of the
predefined window as is needed with the current text, but also clears
the whole of the rest ofthe window in case the previous text printed in
that area took more room.

Let us suppose that no list of items will fill more than three lines of
the screen. Therefore we need a three line window, a routine to clear
that window, a routine to put together the actual text from the set of
possible strings, and aroutine to PRINT the chosen text in the correct
window. Let us use the last three lines of the Spectrum screen (lines
19, 20, and 21) and suppose that the items are listed as items in the
array X$(10). From the set of possible variables the program has
selected X$(3), X$(5), and X$(8) which are ‘a sledgehammer’, ‘a fir
cone’, and ‘a green and gold necklace’ respectively. This list will be
preceded by the phrase “You see:”.

Firstly, we produce a list of items using the string concatenator
(the plus sign) to turn our separate strings into one string, adding the
chosen items to the phrase “You see:”. The routine has to know how

ol

many items to look for and what they are, so the choosing routines
will compile a string (L$) made up of the numbers of the selected
items in the array X$. In this case L$ will be “358”. The length of the
string L$ tells the display routine how many items to look for and to
add, as well as the actual item numbers. This is done by lines 60@ to
640 below. Line 650 then clears the selected window by PRINTing
three blank lines. Finally line 66¢) PRINTs the new string at the
correct position:

600 REM TO PRINT A COLLECTION OF STRINGS AT A
PARTICULAR POSITION

6190 LET P$="You see:”

620 FOR I=1TO LEN(L$)

63¢ LET P$=P$ + X$(VALLS$(D))

640 NEXTI

650 PRINT AT 19,0,,,,,,

660 PRINT AT 19,0;P$

The same procedure can be used whatever the number of lines of
screen or the number of items in the list. Simply change the number
of commas inline 650 and the PRINT AT number. However, suppose
we want a window on the left-hand side of the screen rather than the
top or the bottom, and a window which is only, say, eight characters
wide. We will have to PRINT only eight blank spaces, not complete
lines, and each successive eight-character string must be separate. It
cannot be printed as one continuous string or it will overwrite a
portion of the screen outside the desired window.

Inthis case we will have to use variables as specifiers of the PRINT
position so that the vertical position can be incremented for each new
PRINT item. Let us rewrite lines 60Q to 67¢ to produce an eight-
character by six-line (maximum) window on the left-hand side of the
screen, starting five lines down:

609 REMTO PRINTA COLLECTION OF STRINGSINANS8X 6
COLUMN ON THE LEFT

620 FORI=1TO 6

630 PRINT AT 4+1, ¢ ”;REM 8 SPACES

64¢ NEXT I

650 FORI = 1 TO LEN(L$)

660 PRINT AT 4+1, §:X$(VAL(L$(D))

670 NEXT I

From these two examples you should be able to see how text

windows can be defined almost anywhere on the screen. Every separ-
ate PRINT position is itself a text window, so the maximum number
of windows would be the number of these positions (22 x 32 = 704),
though you will seldom want more than two or three. The key pointis
to decide as early as possible how many windows you require and of
what size. It makes sense to write the PRINTing subroutines before
you have decided on all the text you are to display, but this should be
done after you have classified the types of text you will show. It also
makes sense in the planning stage to draw a rough sketch of the
windows making a full screen display so that you can get an idea of
how cluttered or organized the screen will appear to a user.

There are three major advantages to using text windows. Firstly, a
clear and attractive display is produced which is pleasant to see, well
organized, and easy to understand. Secondly, the process of deciding
what to print, where, and when is simplified. And, thirdly, by using
text windows a large amount of information can be displayed on the
screen at one time without chaos. Several classes of information can
be displayed simultaneously without the need for scrolling, menus,
or constant screen clearing. Of course, you can also use one window
for several purposes, as if it was a miniscreen. If you wish to do this,
and the window-cleaning routine is complex, it is often better to have
this as a subroutine separate from the PRINTing routine, but called
by it. In this way several different types of text can use the same
cleaning routine and the same window without the need to duplicate
code.

Graphics windows on most machines can be defined in a similar
way by using graphics coordinates, which are called the PLOT posi-
tions in most systems. The Spectrum has an advantage over several
systems because its text and graphics screens are identical. Thus the
method used to create graphics windows can be identical to that used
to create text. The only crucial differences are that the graphics
windows will be defined using PLOT and DRAW rather than PRINT
AT, and the reference point or origin is the top left-hand corner for
text but the bottom left-hand corner for graphics.

Suppose we want two graphics windows. The first is eight charac-
ter positions square, starting at the bottom left corner, while the
second is ten by four in the topright. Remembering that each charac-
ter position is an 8 X 8 matrix of pixels (see Chapter 17 of the
Spectrum manual) this gives us a window of 64 x 64 pixels and
another of 80 X 32. Soone window has the PLOTting coordinates 0,0;
0,64; 64,0; 64,64; and the other has 255,153; 175,153; 175,175; 255,
175. These become the maximum and minimum coordinates for
PLOTting within. If we wish to turn the second window cyan and
draw a circle on it, we could use the following routine:

53

100 FOR X = 175 TO 255 STEP 8
11¢ FORY =153 TO 175 STEP 8
12¢ PLOT PAPER 5;X.Y

130 NEXTY

14¢ NEXT X

15¢ CIRCLE 215,164,5

Naturally we could print at the same area using a cyan block
graphic to achieve the same effect.

54

CONTROLLING
MOVEMENT

5.1 Keys

It is usual in adventure games as well as graphic games to control
player movement by use of a set of keys. Normally these would be the
cursor keys, or the arrow keys (with the arrows representing the
chosen direction), or the keys N,S,E,W (for north, south, east, and
west), or in some cases the number keys, especially if a numeric
keypad is available. In practice any set of keys could be used and it is
possible to define a ‘graphics keypad’, that is to say, a subset of the
keyboard made upofnine keysin asquare, with the orientation ofthe
external eight keys representing the points of the compass, and the
central key either ignored or used for a special action, such as the
ubiquitous ‘hyperspace’. On a QWERTY keyboard the most likely
graphics pad is the sector shown in Fig. 5.1.

QWE
ASD
Z X €

Figure 5.1

Having decided on the set of keys which will control player move-
ment we must design a routine to interpret the keyboard.

5.2 Moving a character

The method used to move a player through the different events in a
game depends on the type of game and the nature of the events. Ifour
game hasaconstant graphicdisplay we would probably use method C
or D below. If, on the other hand, our adventure game is primarily
textual we will probably use a method like E. However, the simplest
methods are those I have called A and B: A israndom movement and
B is seeded random movement.

5.3 Method A: random movement

Whether our adventure is textual or graphic, we can make the link
between successive events purely random. In this case there will be

85

no map as such because returning to the same ‘location’ may well
resultin adifferentevent. A typical structure mightbeasinFig.5.2.

1. PLAYER MOVES PIECE

2. GENERATE ARANDOM NUMBER BETWEEN 1 AND3 =R
3. CHOOSE A SUBROUTINE ACCORDING TO R

4. DO CHOSEN SUBROUTINE

Figure 5.2

Hereonly three typesofevent are possible, called routines1, 2,and3.
The choice of a particular routine is made only when the player
makes a movebutisrandom,i.e., unrelated to the actual move made.
If the player moved south and then north, i.e., returned to the same
position, there would be only a third of a chance that the same event
would occur at that location. For such a routine it makes little sense
to build a map into our program as the player’s ‘movement is purely
illusory.

9.4 Method B: seeded random movement

This method is probably the most economical on memory, which is
useful for machines with only a small amount of RAM or for programs
where anunusual amount of memory is required for storing data. Put
simply, each time the program is run a different map will be gener-
ated, but that map remains the same, unalterable, throughout the
game. The ‘map’ is actually a series of numbers, but only an
extremely able mathematician would be able to predict the map from
theinitialrandomly chosen number. The method works asin Fig. 5.3.

1. USE A FORMULA TO CREATE A NUMBER WITH A
DECIMAL POINT
2. GET RID OF THE INTEGER IN THE NUMBER

3. USE THE FORMULA TO INDICATE POSSIBLE
DIRECTIONS

4. USE THE FORMULA TO CALCULATE EVENTS
5. NEXT MOVE

Figure 5.3

Because the formulaisthe same and the sequence of numbersisthe
same throughout, the result of the formula will be the same at a
particular ‘location’ every time it is run.

56

A Spectrum routine to do this is used in The Mines of Merlin in
Chapter 6. Thekey lines are lines 1000 to 2220. Line 22¢@ iswhere the
seeded random function is used for movement and line 8310 is where
it is defined. Each of the digits in the decimal part of this number can
be used to control different events, as, for example, digit 2 is used to
control selection of the main event in line 546.

5.5 Full screen movement

This is a graphic method which moves a character, which may be one
of the ASCII set or a predefined character, across the screen. If you
wish to use a user-defined character it should be defined before the
routine is run. Essentially the method works by displaying the
character at a certain point at the screen, using PRINT AT, or, if
memory-mapped graphics are available, POKEing the screen loca-
tion. When the character is moved a space will be printed at this
location and the character now PRINTed or POKEd at the new
location. The routine therefore hasthe following stagesshownin Fig.
5.4.

PRINT/POKE CHARACTER AT OLD LOCATION = OL
INPUT MOVEMENT

CALCULATE THE NEW LOCATION = NL
PRINT/POKE SPACE AT OL

PRINT/POKE CHARACTER AT NL

LET OL=NL

GO TO 2

Figure 5.4

- LI S

A Spectrum routine to do this is Fig. 5.5, which is used in the
Treasure Trove program in Chapter 8.

The method becomes more complicated ifthe screen over which the
character is travelling is not itself blank. There is little point in
having a blank screen, however, so we will want to PRINT or POKE
at select locations on the screen characters representing locations in
the game and hence possible encounters. For example, let us have a
lake routine and a castle routine in our program. We will represent
the lake by O and the castle by * to keep things simple, though
user-defined graphics will give better results (see Chapter 8).

Using a visually mapped screen in this way means that we must
add two further subroutines to our movement routine. The first must

a7

809 REM MOVES “p” AROUND SCREEN
890 LET x=¢: LET y=0
90¢ LET a$=INKEYS$: IF a$="" THEN GO TO 90¢
905 LET p=x: LET q=y
919 IF a$="5" THEN LET x=x-1
929 IF a$="6" THEN LETy=y-+1
930 IF a$="7" THEN LETy=y-1
949 IF a$="8" THEN LET x=x+1
950 IF y>2¢ THEN LET y=20
960 IF x>31 THEN LET x=31
970 IF x<¢ THEN LET x=0
989 IFy<¢ THEN LET y=0
99¢ PRINT AT q,p;"”
1000 PRINT AT y,x;"“p”
1019 GO TO 9¢¢

Figure 5.5

check to see if the position the figure will be moving to (NL) contains
the lake or castle. If so it must record the fact (e.g., by setting a flag)
and call up the appropriate event. The second routine must use the
flag to reprint the castle or lake character after the figure has moved
on. So the first would look like Fig. 5.6.

1. IS NEXT LOCATION (NL) A SPACE?
2. IFIT IS ASPACE THEN RETURN TO THE MAIN ROUTINE

3. IF IT ISN'T A SPACE CALL THE APPROPRIATE ROUTINE
AND SET THE FLAG TO THE CORRECT NUMBER

4. RETURN TO THE MAIN ROUTINE

Figure 5.6

Ifthe graphicsbeing detected have standard character codes, these
codes can be used as the values of the flag and be passed therefore to
the second routine, which would look like Fig. 5.7.

1. IF FLAG IS SET TO ¢ THEN RETURN TO THE MAIN
ROUTINE

2. OTHERWISE SELECT THE CORRECT CHARACTER
ACCORDING TO THE FLAG NUMBER

3. PRINT AT THE OLD LOCATION THE SELECTED NUMBER
AND RETURN TO THE MAIN ROUTINE

Figure 5.7
58

5.6 The Ramtop map

A short routine using the machine code provision of BASIC (i.e.,
PEEK and POKE) can be used to store a map as a series of bytes and
another routine can be used to recall the set of bytes around the
current player location to control movement and print environment.
This technique can be used for simple or more complex purposes but
the principle remains the same. Firstly, it is necessary to reserve
sufficient memory for storing the machine code map. On the
Spectrum this can be done by resetting Ramtop, and similar relocat-
able pointers for the highest location of user RAM exist for most
systems (e.g., HIMEM on the BBC). The reserved memory must be at
least as large as the total number of locations in the map.

Into this reserved area 1s POKEd a series of bytes, each represent-
ing one location in the map. These bytes can then be used as the code
for a description of the player’s current location, or even for direct
visual mapping. Let us take the latter first. Suppose the map is a
series of rooms arranged within a matrix of 12 X 12 possible loca-
tions. Within these possible 144 locations, 48 are rooms and 96 are
blank walls. Each of the 48 rooms will be given an identifying
number and the blank walls ¢, so that the whole map if drawn looks
something like Fig. 5.8.

1 2 3 4 5 6 7 8 9 190 11 12

1 ¢ ¢ 1 0 ¢ ¢ ¢ o o ¢ ¢ 0

2 0o 0 2 ¢ ¢ o0 0 0 ¢ ¢ 0 0

3 ¢ 12 3 4 5 24 ¢ ¢ ¢ 0 o0 0

4 ¢ 13 ¢ 6 @ 23 25 26 32 44 45 @

5 ¢ 14 ¢ 7 21 22 ¢ ¢ 33 ¢ 0 @

6 ¢ 15 16 8 ¢ O ¢ ¢ 34 0 0 ¢

7 ¢ O 17 ¢ ¢ 28 37 36 35 ¢ 0 ¢

8 @ ¢ 18 19 20 27 ¢ ¢ 38 46 47 @

9 ¢ ¢ ¢ ¢ ¢ 29 ¢ ¢ 39 ¢ 0 ¢

19 6 0 o ¢ ¢ 30 ¢ 0 46 ¢ ¢ ¢

11 ¢ 6 0 ¢ ¢ 31 43 42 41 48 @ ¢

12 ¢ ¢ 06 ¢ 0 o ¢ o ¢ o0 ¢ 0
Figure 5.8

Then after each movement the player can be shown his current
position un'the map by displaying the eight locations around him,
together with his current location. This obviously works well in

conjlznctinn with the ‘graphic keypad’ method of controlling move-
ment.

59

If any of the surrounding locations are @) they will be displayed as a
wall character, such as the graphicsblock above the Spectrum 8 key.
Ifgreater than @, the display will be a blank space. Thus, if the player
is at location 9,11 in the above matrix, the map of his surroundings

v

Each time the player moves not only will the map be updated but a
test will be made beforehand to see ifthe player can move tothat next
location, i.e., testing to see ifthe nextbyte (location) isgreaterthan .
To use such a matrix we would need to reserve 144 addresses and
POKE into each in turn the appropriate value. The first 12 addresses
will be locations 1,1 to 12,1 on our map; the next 12 addresses will be
1,210 12,2, and so on. Thus if the first address is 32120 (decimal), we
would POKE @ into it— similarly with the next address (32121). But
32122 would be given the value 1. An easy way to achieve such a
series of POKEs is as follows:

Figure 5.9

50¢ LET P= 32119: REM ONE LESS THAN THE START
ADDRESS

51¢ FOR I=1TO 144: REM THE NUMBER OF BYTES

520 READ A

530 POKE P+LA

54¢ NEXT I

550 DATA 0,0,1,0,0,0,0,0,0,0,0,0

560 DATA ¢,0,2,0,0,0,0,9,0,0,0,0

57@I DATA Q112939415r2 Wy 3919:9

ETC.

To read a map like this in checking the player's movements and
printing the map, we simply PEEK the nine relevant bytes. [f X isthe
horizontal position of the map and Y the vertical, then the locations
around him will be x-1,y-1; x,y—1;, x+1,y—1; x—1,y; x+1,y;

60

x—-1,y+1; x,y+1;x+1,y+1. However, the map is kept in memory not
as a matrix but as a sequence. Each x is 1. Each y is 12. To find the
desired byte we must make it x+(y*12). So if the player is located at
point 3,2 in the matrix then x=3 and y=2, and we need to read the
byte located at 32120 plus 3 plus 2*12 = address 32147. The bytes
surrounding the position are thus 13 less, 12 less, 11 less, 1 less, 1
more, 11 more, 12 more, and 13 more. We candraw the nine necessary
bytes using the following routine:

609 LET P=32120 +X +(Y*12)

610 LET Q= PEEK(P-13): [F Q=0 THEN PRINT AT (relevant
screen location) (block graphic)

620 LET Q= PEEK(P—12): IF Q=0 THEN PRINT AT (next screen
location) (block graphic)

etc.

This search can be reduced to a formula as we will see in the next
section.

5.7 The puzzle game design

We have spent enough time looking at theory and method; let us now
actually create our first game. We will make it a puzzle game to use
some of the mapping techniquesjust discussed, but if we aretohavea
puzzle game we first need a puzzle. Usually this takes the form of a
maze, so we will begin our design with the map of our maze. Because it
is a puzzle that has to be solved it will be fixed in form, and does not
change from game to game. However, because we are going to use a
modular design our method allows the same routines to be used with
different maps. The game can be changed totally by changing the
map, yet in programming terms this might be no more than changing
five or six DATA statements, perhaps only one or two hundred bytes
of information. Unfortunately, however, it is usually a little more
complex.

We will now design a map, then code it, then look at ways that
routine is used in the game and ways that it can be changed for
different games.

The maze in an adventure game is a combination of disorientation
(asin a real maze like Hampton Court) and logical complexity (some-
thing like a crossword). The logical maze can be thought of as an
algorithm or flowchart. Cad has to work through all the stages of the
algorithm in the correct order to produce the correct result from a
program. The algorithm is a series of obstacles to be overcome.
Usually each obstacle, each separate problem, will be solved by
bringing the necessary object or objects to a particular location and

61

doing the right thing with it/them.

The first stage of designis therefore to list the sequence of obstacles
or solutions. We can write each obstacle location as a ‘need’ location,
meaning that you need a particular object to pass through that
location, and each solution location asa‘get’ location, meaningthat it
is the place where Cad will find what is needed to overcome a particu-
lar difficulty. At this stage we do not need to worry about what the
obstacles might be nor what cleverness might be added to the
obstacle/object relationship; we simply draw up a map of the
sequence of ‘gets’ and ‘needs’ required to solve the overall puzzle. For
every ‘need’ location there will be at least one ‘get’, though we may
have some ‘gets’ without ‘needs’, i.e., red herrings. We will use the
letters of the alphabet to show that two locations are linked in this
way. We will also draw up our map from the final location (the
player’s goal) backwards to the start position.

This game is to be called The Throne of Camelot, so we will make
the player’s goal the City of Camelot itself. The previous location will
be the final obstacle, so this will be NEED Z. Therefore earlier in the
program there will be a GET Z square. If we work backwards in this
way we will end up with a list like Fig. 5.10.

START
GET J
NEED J
GET K
GET L
NEED K
GET M
NEED M
NEED L
GET N
NEED N
GET R
GET Y
GET P
NEED Y
GET Q
GET H
GET S
NEED H
GET X
NEED X
GET I
NEED P

62

NEED Q

NEED R AND NEED 1
GET Z

NEED S

NEED Z

END

Figure 5.10

If this was a list of locations it would look like a corridor with a
series of rooms. If Cad goes along the corridor from room to room all
the obstacles will be found in the right order. This would be pretty
pointless. So instead of just a straight line, or a corridor, we have to
draw a map which allows the player to travel along many different
routes and gives him a number of choices. To do this we can add
‘empty’ locations, i.e., locations which have no importance in the
game, though they may appear to have (such as by containing red
herrings). We can draw up a network map in the following way:

1. Firstly draw the starting square and a route out of it.

2. Draw another square with more than one exit route. At each exit
route draw another square. In each of the blank squares write E
(for empty) or write the first GET or any NEED on your list. In our
case they are GETJ and NEED J. So our map might look like Fig.
5.11.

NEED

START E GET J

Figure 5.11

3. Theplayer cannot go through a NEED square until he has passed
through the relevant GET square. In this case his route would be
START—E—GET J—E—NEED J. However, he can pass
through GET squares, so now we draw routes out of the GET J
square. These cannot lead to any more GET squares because Fig.
5.10, our logical map, says Cad hasto pass through NEED J before
he receives any other rewards. Thus every route out of the GET J

63

square must terminate in a NEED square, though the routes
could pass through empty squares. The route of the NEED J
square must also eventually lead to GET K, so we can add some
squares, as in Fig. 5.12.

GET K
1

NEED
J

START E GET E NEED
J N

NEED NEED

L Q

Figure 5.12

4,

64

The next stage after GET K is GET L, so we can add routes out of
GET K which lead to GET L. However, since he already has K, the
player could be allowed to by-pass L.and go straight to NEED K. If
he doesthis, he will discover at alaterstagethat he needs L, so will
have torevise hisstrategy, but thisis what the game is about. The
relevant part of the map' will look like Fig. 5.13.

GET K E E GET L
NEED NEED
J K
GET NEED
E E
START J N
NEED NEED
L Q
Figure 5.13

9. Youwill see thatone of the routesoutofthe NEED K square is the
next stage on our map, i.e., GET M. Another is to NEED M, which
is a dead end until GET M has been reached.

6. We carry on in this way, making sure that there are no routes
which make it possible for a player tosucceed by by-passing stages
in our elementary flowchart. It does not matter if this can be done
temporarily, i.e., by ‘making a mistake’ (as in neglecting to GET
L), as long as the player has to go back there eventually. Figure
5.14 shows the network map I used for The Throne of Camelot. If
you follow its routes you will see that you have to visit all the
squares to get to Camelot, and you have to do most of them in a
fixed order, but you also have to retrace your steps several times.

65

GET

I

START GEI

/
suzzee| NEECD GET /

N

NEED REED SET
R -1 !

ET
K
NEED GET /// ///
g z
END HEED / GET NEED GET
z 5 H X

Figure 5.14

NN\N\\E

A z
SNENNEN

We have now completed our basic network map, which combines
the logical structure and the maze structure. We can therefore add a
little variety to the plan. Various ways to do this are discussed
elsewhere in the book, but some simple ones are:

1. To make more than one object necessary to pass through a par-
ticular NEED square. You will see that my network includes
several of these.

. To make some objects prevent Cad going through some squares.
This can be very frustrating to the player, especially if he finds
that anobject he hasjust discovered afteralong search causeshim
to be killed in the very next room.

3. Toadd extra puzzlesor problems which act as NEED squares, i.e.,
obstacles, but do not need objects or solutions from elsewhere in
the game. For example, the player might have to unravel an
anagram to proceed further. An anagram routine can be found in
Chapter 8. We will add two extra puzzles to Camelot.

]

When all this is done we can finally draw the map we are going to
store inour program. Use gridded paper which gives enough room for
all the squares needed in each direction. We must add some space to
our map so that the only squares which are adjacent to each otherare
those which can be travelled to. Our map is not drawn like Fig. 5.14
but like Fig. 5.15, because it is not possible to travel directly from

66

START to GET N.The reason for adding these gaps, aﬂd cgngequEnt_
ly extraempty rooms, is because of the mapdisplay routine we will be
using. The routine displays the square currently occupied by the
player and its surrounding squares, as described in Sec. 5.6.

F=] o e =] o o =] =] [=- o o
.
= o
o o o o oz |3 izEs|gh-]l e o -
] R
-
o = o @ o B = gm}: = . o o
fa' [
= = e
o |oGaly |o |e82=|s |35-|28~|s |sfe| o o
T > T 2 T
L'!E_' UJ[_'
—i [
(=) [0} (=] Cs E (=} =] ur o o ! xﬂﬁ” [=
= ..
T
oy
= — I T =) @ T o By i &
= Ll - - el | A = o o o
= E
[
[=]
@@
] w0 o =} b =] =1 - = & m @ o
A
= o
e £ w@> | @ =
< w = Tae| NE= | dw=1 5 THEls | W0 N o 2w o
[T T o
= =
=3 T =) o - o = ' = o = o
w5 W o @ MEH =3 Fu:‘
o - i
= b e o o wg_‘w} vmT| wm nHE® | o 2
= =
i
- a
o o e o o o o -] = o o Lhw =]
(=] =
w
(=1 o r—; a] vﬂ
o L] - s - =t
= 2! w5 pat e A | = © i ™ =
oo
[
= [oy
o = T o o = - =]
=] o o - = m O w
w
= =3 (- =1 =" (=] =] — =} = = =
|
g
Figure 5.15

Figure 5.15 shows our completed map for Camelot. Note the addi-
tions— some more empty rooms, the NEED R square has become
NEED R+1, the NEED P square has become NEED P—Y, and there

are two puzzle squares.

67

You will see that the mapisona 12 X 14 grid, giving a 168 square
matrix. We could store this in an array, or a series of strings, but for
speed of use and convenience we will store it above Ramtop using the
method described in Sec. 5.6. You will see that it is easy to work out
thenecessary DATA statements because of the regular grid used. We
could simply give eachsquare a number from 1 to 168 and store these,
but there is no point in storing different numbers for all the blank
walls, so these become @ and the only numbered squares are those
which the player could possibly travel through. Each DATA state-
ment can be one line of the grid to make it easy to refer to, so the full
code of our map will be the DATA statements kept in lines 9504 to
9600 of the program.

(Note the border of zeros around the map to prevent wandering off
its edge.) You will also see that the start location is number 17, the
end number 63, and the total number of locations is 68. This may
seemratherillogical butitdoesnot affect the nature of the game (and
it also makes ‘cheating’ a little more difficult).

Once the map has been placed in memory using the routine
previously described it can be read using the routine in lines 2070 to
2165 of Camelot. The DATA statements can always be deleted while
the program is running if you want to save memory or to prevent the
player from BREAKing into the program and looking at the map, but
a machine code program would be needed to do this. As the player
moves around the adventure each of the 68 numbers will key the
appropriate routine. One way to do this would be to use a series of
lines such as:

100 IF LOCATION=1 THEN GOSUB 100¢
11¢ IF LOCATION=2 THEN GOSUB 1§10
12 IF LOCATION=3 THEN GOSUB 102¢
etc.

but we would need 68 such lines! Some BASICs such as Microsoft
BASIC and BBC BASIC have a computed GOSUB which allows

statements like:
100 ON LOCATION GOSUB 1000, 1910, 102¢

which acts identically to the three lines above, but Spectrum BASIC
lacks this function. However, Spectrum BASIC dces allow us to use
variables in GOTO and GOSUB statements. For example, if all the
routines for each of the 68 locations are written in lines 6(() to 6689
of our program and each routine has 10 lines, we could use just one
line of BASIC to select the correct routine. Assuming LOCATION is
the variable which stores the player’s current position, then:

68

10¢ GOSUB (LOCATION * 10) + 6009

willdo the trick. Ifthe player is at the start location, number 17, then
this line will send control to a subroutine starting at line 617¢. If the

player is at the end, number 63, control is passed to line 6630, and so
on. The only thmg to remember is that all the location routines
should beregularly spaced. If some locationshave routineswhich are
longer than others, use the length of the longest routine as the
interval between routines. For example, ifone routineis 15 lineslong
but all the others are only 6 lines, they should still be placed 15 lines
apart.

I}The other feature of this method of mapping is the display that
results. In order to test the player’'s memory and intelligence we do
not want to display the whole map at once, just the current location
and its immediate surroundings. We also want to check that the
player does not walk into, or through, walls, i.e., that he can only
travel in a permitted direction. Both of these can be done using the
kind of map we have just stored in memory.

The display method has already been outlined. If colour is avail-
able on your micro then choose two colours for the wall and open
blocks which are different from the background colour of the screen.
Inthisway the whole area can be seen clearly aswell asthe particular
type of each block. Choose colours that will also show up on a black
and white set. Remember that the relative locations of the surround-
ing bytes are as held in the following table:

Direction Address

NW L-13
N L-12
NE L-11
W L-1
LOCATION L
E L+1
SW L+11
S L+12
SE L+13

Can this be reduced to a formula? Yesit can, by using FOR. . . NEXT
loops, as below:

1) REM M = FIRST ADDRESS OF MAP LOCATIONS
20 REM A AND B ARE PRINT COORDINATES

30 REM X IS WEST TO EAST

40 REM Y IS NORTH TO SOUTH

69

5¢ LET A=2: LET B=2
690 FOR Y=-12TO 12 STEP 12
79 FORX=-1TO 1STEP 1
8¢ LET P= PEEK(M+X+Y): REM LOOK AT ADDRESS OF
LOCATIONS
90 IF P=¢0 THEN PRINT AT A ,B;"*”:GOTO 110
10¢ PRINT AT A B;*”
11¢ LET B=B+1: REM MOVE TO NEXT PRINT POSITION
120 NEXT X
13¢ LET A=A+1: REM MOVE TO NEXT PRINT LINE
140 NEXT Y

A similar easy routine can be used to test for ¢, to check that the
player is not trying to walk through a brick wall (some adventures
make playersthink thisisquite a sensible action!). The main advant-
age of this method is that no complex checking of screen memory is
needed. The Spectrum organizes its map of the screen in a somewhat
peculiar way, which is difficult to process in a program. By using our
own map of what is on the screen we do not need to look at the
Spectrum’s own screen map at all.

5.8 Filling in the map

Having designed our puzzle map, placed it in memory, and written
routines for examining it to display and act on what is there, we need
to know what each location means. With only 68 locations it is
possible to have a small routine for each location, but it is easier to
writeratherless. We will have three typesofroutine which are called
by the unique map location. These will be:

1. Simply a display routine with a simple description

2. Adisplayroutine, asimple description, and aroutine whichisalso
used by other locations

3. A display routine, a simple description, and a routine unique to
this particular location

Thus each of the 68 subroutines will involve a description. Some will
have additional routines, some of which will be general and others
specific to the unique location. For the sake of simplicity we will say
that the EMPTY squares are of the first kind, PUZZLE squares are of
the second kind, and NEED and GET squares of the third kind.

It is at this point that creativity, imagination, humour, mind
maps, and fun come into the design. Each ofthe 68 places will need a
description, which can be as simple as ‘a tunnel’ or as complex as you
like. More importantly, the list of GETS and NEEDS, until now a
series of abstractions, will have to be filled. The way to work is to

70

produce a long list of clever ideas, two or three times the amount you
willneed, and then select the ones that fit together best for the kind of
game you want. You may already have some ideas based on the
general setting of the game, but now they have to be turned into
specific words.

One way to do this is to draw up a list with three columns—the
names of the GETS/NEEDS (in our case the letters of the alphabet,
with some not used), the objects (the GETS), and what the object is
needed for (the NEEDS). A simple example is that NEED J is ‘a
locked door’ and GET J is ‘a key'. However, it is best if most of the
relationships are not as straightforward as this. In fact many puzzle
adventures make a point of being as esoteric as possible, often using
puns or long trains of thought to make the thing work. For example,
GET K might be ‘aduck’ and NEED K might be ‘a steep cliff . What is
the relationship? Well, in order to go further you have to descend the
cliff. How do you do that? It is easy— you get down off the duck. (Not a
very good joke perhaps but it can really test the intelligence of the

layer.)
i Once we have a complete list of such relationships we have all the
basics of our game. It is a good idea if some sort of theme links them
together, but it is not necessary. The list of relationships used in
Camelot is in Fig. 5.16, but if you want to play the game first you
might want to ignore this figure.

(GET) (NEED)
square square

Location Destina- Solution to
Number Code Noun tion Problem
1 K Monkey 2 24 Give the monk-key
2 L Sword 9 35 Cut pack of wolves
3 I Feather 56 53 To write with
4 Y Crowbar 29 48 To lever fallen tree
5 N Orange 34 22 Gives juice(deuce)
6 P Torch 39 44 Makes rock light
T J Compass 28 10 Guides through fog
8 Q Helmet 62 42 Carries water to
counterbalance
9 H Wheel 49 61/69 Has a tyre (attire)
Fix cart
10 S Stocking 67 65 Has a ladder to
climb cliff
11 X Letters 68 64 Provides mail

(armour)

(GET) (NEED)
square square
Location Destina- Solution to
Number Code Noun tion Problem
12 M Horn 46 26 Summons
Robin Hood
13 Z Witch-
doctor 60 50 Cures witch
14 R Scroll 14 53 For writing on
15 T Bananas 6% 61 Peeled for slippers
16 Tree
4 Sign (These nouns are
18 Cupboard understood by the
19 Wolves program but are not
20 Turnstile key parts of the
21 Rock problems.)
22 Cage
23 Jester
24 Gilant
25 Cart
26 Goose
27 Juice
28 Tyre
29 Ladder
30 River
31 CIliff
32 Around
33 Pack
34 Basket
35 Mail
36 Peel
37 Armour
38 Counterbalance
39 Deuce

Figure 5.16 Objects: nouns, 'gets’ and needs’

It is now mainly a question of writing and coding each of the
separate location routines. This can require some thought.

Before coding we write a list of all the objects, which will be our
noun list, and the action or actions that can be performed with each
object. Inaddition, we need alist of all the descriptionsof the different

72

locations. At each map location two types of routine will be used, one
which prints the description including any objects there and one
which accepts input and gives conditional responses. The description
routine will thus have two components, but the player should not be
able to separate them. One part will simply print the description of
the location. The player will not be able to manipulate or respond to
thatoutputindetail. Theother part willmention any objects thereor,
if the objects are hidden, a clue as to the presence of such an object.

In essence anything that can hold a person can be regarded as a
location with its own description. Some commonly used places are
listed in Fig. 5.17. The description can be as long and involved as
memory allows. The larger it is the more the player will need to
interpret, but a description which is too long without any possible
playerinteraction will only serve to annoy. The locationsshould be as
interesting as possible.

Try to make the relationships between places of some interest,
rather than the straightforward ‘You enter another room’. Charac-
ters can travel into and out of buildings, up and down hills and cliffs,
across ravines and rivers, into secret passages, under bridges, etc.
Where possible, extra puzzles can be set by making the entranceto a
particular location problematic even if it does not depend on an object
to be found. A simple example is to give in the description a choice of
routes, only one of which is correct, with the others ending in sudden
death; an example would be to describe two treacherous pathsdown a
cliff face, one of which will crumble away. More intricate can be
locations which are unreachable unless the correct command is used.
Forexample, tocrossastream the player might try toJUMP, WADE,
LEAP, PADDLE and CROSS before he thinks of SWIM. This is used
in location 27 of The Throne of Camelot as one of the puzzles.

In writing descriptions of locations we should also make them
appear relevant to the objects which are originally located there. This

FIELD FOREST MOUNTAIN BRIDGE HOUSE

MANSION CASTLE CAVE TUNNEL ROOM CHEST
WARDROBE CLOCK ROCKET VALLEY HOLE Pil
BOX DESK CAR CART CARRIAGE TREE
FRIDGE CUPBOARD WINDOW ATTIC CELLAR
ORCHARD BARREL CHIMNEY BOAT RAFT ROOF
PLANE LADDER STAIRCASE LIFT ALLEY ROAD
VOLCANO GLACIER PYRAMID DESERT SWAMP
SHRUBBERY POOL LAKE GLACIER ISLAND

LAGOON HILL THEATRE LEDGE CLEFT

HOLLOW

Figure 5.17

means that they make sense to the player (which might not matter if
we are designing a nonsense or absurd game such as one based on
Alice in Wonderland) and that the important aspect of each location
may not at first be apparent, thus adding more problems for the
plaver.

The program will hold the descriptions for Camelot in lines 600@ to
6689. Aswe have 68 locationsthis gives 10 lines each. You willnotice
that I have added some small routines to increase the variety of the
game. The player may be fooled into thinking these are important,
but they are not really necessary.

5.9 Moving objects

Moving the available objects around the maze is the crucial aspect of
the puzzle game from the player’s point of view. He or she should be
allowed to take any object anywhere, providing that the necessary
puzzles can be solved. Thus, at any stage in the game we need to know
where any object is and which objects the player is carrying. The
character must be able to pick up objects (Camelot uses the common
verb TAKE for this) and to leave them behind (Camelot uses
LEAVE). We might also allow an inventory command so that the
player can be reminded of what he is carrying.

Camelot takes care of these problems by using three arrays,
namely, 0(30,3), 0$(15,13), and Y$(15,30). O(x,1) holds the location
of object x; O(x,2) holds the length of the name of the object in
characters (this is to prevent the Spectrum inserting extra spaces
when we read 0$); 0%$(x) holds the name of object x, which isup to 13
characterslong; Y$(x) holdsthe description associated withobject x.

During initialization each array must be set up, with O() being
given the initial locations of all objects (lines 8200, 8240, and 9300).
Then the following routines can be implemented:

For player’s inventory (routine begins at line 301¢):

FOR I=1TO 30
IF O(1,1)=99 THEN PRINT 08%(1,1 TO O(1,2))
NEXTI

For describing the objects in a room (routine begins at line 50¢@):

FORI = 1TO 3¢
IFO(1,1) = LOCATION THEN PRINT Y$(I), O$(1,1 TO (O(1,2)))

NEXTI '

To take an object (routine begins at line 307):
LET O(I,1)=99

To drop an object (routine begins at line 3090):

FOR I=1TO 30
IF E$ = 08(1,1 TO 3) THEN O(1,1) = LOCATION
NEXTI

If an object is used or destroyed:
LET O(I,1) = 0

These routines should be self-explanatory once you know that 99
means that the object iscarried by the player. The first routine prints
a list of all the object names that have the code 99; the second prints
all the object names and their descriptions for all objects that have
the code of the current location; the third simply sets the code to the
possession code; the fourth looks for the object held in the three-letter
noun code E$ and setsthe object’s code to the current location; and the
fifth wipes the object from the game by setting it to a number which
none of the other routines recognize. This need not be zero, of course,
but it is usually the most sensible choice.

Exactly which objects are manipulated and in which ways depends
on the verb routines. These are described in Chapter 7.

The Throne of Camelot

1 REM THE THRONE OF CAaMELOT
< HEM MAIN ROUTINE STARTS HER

B REM %55 %N # RN R R

4 RESTORE

S CLEAR &5347

& LET fl=a: LET w=465425

T LET u=vy

B GO SUE 8560

20 GO SUR BOaa

S0 BORDER 7

4 GO SUER 2046

42 REM #5580k

4% REM MAIN LOOF STARTS HERE

44 REM #5555 0E%EREEFH

4% IF dead»@ THEN GO 10 9960
a9 B0 sUR 999

&0 IF fl=1 THEN &GO TO 4%

70 GO SUE 2970+ (verh=20)

20 IF ex=0 THEN LET +&=e${l)

Y0 GO T0O 45
D7 FEM XEx##¥#2HHEEsuis
98 REM END OF MAIN LOOF
FE O OREF RN E R ¥R
9% FAUSE 1666
FIT7 FEPM ##%%%%%5%5%% 4445
778 REM TWD WORD INFUT
G REM ¥R
1o [ET ag=" "
1aa3 INFUT "What ne=zt?",a%: IF &
g="" THEN GO TO 1000
190098 FEM ##%¥#sddeidsriiny
1009 REM DECLARE VARIABLES AS SF
ACES
1610 REM 3 a¥drrugxsdsmuns
1411 LET k=6: LET h%=" "+ LET
CcE=" "2 LET d%=" ": LET eg="
121 IF LEN (a%)<3 THEN LET at=
ag+" i
199175 REM #2346 %3 8 iemsiuy
1214 REM CHECEK FOFR HELFP AND INVE
MTORY
1315 REPM #%58H 555258 EHEER
1016 IF a$(1 TO 3I)="inv" THEN L
ET verb=2: RETURN
1917 IF as(l TO F)="hal" THEN L
ET d$="hel": LET verb=3: RETURN,
1919 FOR i=1 TO 12 STEF 3: IF a%
(1 70 3)=x%(i TO i+2) THEN LFT
der=13 LET verh=1 _
1222 NEXT i: IF dr=1 THEN LET d
=0 IF verb=1 THEM LET e${l1)=a
£(1): RETLIRN
1923 FOR i=1 TO LEN (a$)
lalie IF at(i)=" " THEN LET b$=sa
$(1 TO (i-1)): LET c$=as$((i+1) T
O LEN {a%)): LET k=k+1
1840 NEXT 1
1956 IF k<:>1 0OR c#="" THEN FRIN
T "Two words please": GO TO 1000
1045 LET bhE=h%+" "+ LET cE=cE+"
1970 LET d$é=b$(1 TO 3): LET e%$=c
¥(1 TO =)
1a75 LET fl=9: LET verb=0: LET n
ourn=g
1478 IF d$="go " THEN LET té$=w%
LET u%=e%$: LET verb=1: GO0 SUB
20z IF F1=1 THEN RETURN
1679 IF déeé="go " THEN LET b%="g
a ": RETURN)

76

1486 LET t$=v%: LET u%=d$: GO SU

E 1200

1@84 LET verb=k+3: REM number of
detected verh

1985 IF +1=1 THEN KRETURN

1ava LET t$=n$: LET us=e%: G0 5U
1200

LAGE FEM #5855 s M e 3 W R
109% REM number of detected noun
163948 REPM #5838 8 %3600 RS
1?5 LET noun=k

1924 FRINT * 77 "0.K."

1095 RETURN

1197 FEM *¥*#=2xksiiixizsix

1198 REM FROUTINE T0O COMFPFARRE TEST
STRINGS AND ROUT INES

1195 REM #¥##FerEsdisis

1260 FOR i=1 TO LEN (&%) STEF 3
219 IF t&d{i TO i4+2)=u% THEN LE
T k=INT {(i/3)+1: RETURM

1220 NEXT 1

1270 FRINT "Don™t wunderstand "ia
$: LET fl=1

1240 RETURN

19599 REM %55 543 6 3 %5 % 3% 5

2866 BEEM MOVEMENT

201 REM SR

2002 IF swim=1 THEMN LET ex=G: L
ET swiin=0

2092 REM Check for barriers

2004 IF ex=1 AND sF{1)<2f% THENM
LET e$(l)=Ff%: FRINT "You can or
ly go back": PAUSE S00

2005 LET x=y

20648 LET su=0

2016 IF e${l)="n" THEN LET x=u-
14

202¢ IF efi{l)="g" THEN LET x=u+
14

2030 IF ef(l)="a" THEN LET u=u+
i

2040 IF e$(l)="w" THEN LET x=x-
1

2050 IF PEEK (x)=0 THEN FRINT "
impassable terrain': RETURN

2055 CLS

2060 LET location=FEEK (x): LET
Y=u

ZOEG REM 03555653 5063955
290465 REM DISFLAY MAP

LOGE REM 5 %%5 56 %% 53 5 5 55 5505 KK %
2070 LET a=72

71

208H¢ FOR c=-=14 TO 14 STEF 14
2985 LET b==2

2898 FOR d=-1 TO 1 STEF 1t

2190 LET p=PEEE (v+c+d)

2116 IF p=@ THEN PRINT AT a,bsi"
m': GO TO 2138

2120 FRINT AT a,bs"™ "

2130 LET b=bh+1

2140 NEXT d

2159 LET a=a+l

2140 NEXT c

21485 PRINT AT 3,35"¢"

2195 PRINT AT 4,5 "You are ";
2179 REM Call location routines
2209 G0 5UEB (5900+ (locaticn*16))
D207 REM RRE#EHE R
2208 REM Check for aobjects

2200 REM %% %555 % %% % 0K N0 R W
2218 G0 SUEBR Soo

2296 RETURN

2297 REM #R%E#% % FARRAAREEBEERRER
2298 REM control exits

DETY FEM MmN R KK
2200 IF e3(l)="n" THEM LET +¢="
!

2319 IF e#{l)="5" THEM LET +%="
n"

w29 IF es(l)="g" THEMN LET +$="
wll

2350 IF ed(l)="w" THEM LET f$="

E"

Z2EPY RETUEN

2990 50 SUR Zooo: RETURN

STV ORER e RN
2998 REM Verhs start here

ST REM R RN
3810 REM i1nv routine

F611 FEM ##%¥4XHFEEEHE LR T EEEEE¥
2012 PRINT 7

2013 PRINT "You haves "

3915 FOR i=1 TO 15: IF of(i,1)=9%
THEN FRINT TAEB 19io%ii.1 T0O ol
i,20)

Ze17 NEXT 1

020 IF olla,X) =2 THEN PFRINT ™

a2 ladder”

2024 RETURN

TODT FEM R R R R R AR R
2928 REM Help routine

ZO20 RFEM #%#5¥#d H N i Edimai e eess®
383¢ IF location=2 (0R laocation=3

4 THEN PRINY “"The problE&m is ov

78

er my head": RETURN
3031 IF locatiaon =23 THEN FRIN
T "How wowuld vouw deal with wolve
s7": RETURN
Ze3F IF location=13 THEN FRINT
"We reed a sense of direction':
RETURN
2033 IF location=24 THEN FRINT
"The monk is aping yow actions”
: RETURN
3034 IF location=Zé& THEN FRINT
"I+ vou can’t solve this then vo
wwve blown it": RETURN
Je33 IF location=50 THEN FRINT
"Maybe wvou should bone up on you
r medecine": RETURN
3036 IF location=&1 AND ol(l5,3)<
*3 THEN FRINT "Partially dresse
d he’s not very appealing. What
about some footwear?": RETURN
J937 IF location=4&1 AND o(9,3)4x
T THEM FRINT "He seems to need
some attire": RETURN
3038 IF location=464 THEN PRINT
"The armourer never moves fram b
is post": RETURN
2929 IF location=53 AND o(14,3)<
Z2 THEN FRINT "Right on?": RETUR
)
Sa4q0 IF location=95% THEN PFPRINT
"Where there’s a will there’s a
way": RETURN
ZJe41 IF location=48 THEN FPRINT
"ltsa besta leava wella lone": R
ETURMN
3042 IF location=45 THEM FRINT
"Oh dear! That’s torn it": RETUR
i
947 IF location=42 THEN PFRINT
"It711 be a weight off my mind w
hen vou've saolved this": RETURN
44 IF location=53 THEN PRINT
"Hez tells vou a tale of a tickli
s5h situwation": RETURN
2045 IF location=22 THEN FRINT
"You simply need a card with the
right number of pips": RETURN
344 IF location=44 THEN FPRINT
"Sorry I'm in the dark as well':
RETLURN
3048 FRINT "1 think vou're doing
fine': RETURN

79

2049 RETURN
ZTOSE REM R R R

3051 REM look

FTASZ REP 3 %R RN R

058 IF c$(l1 TO I)="aro" THEM G

0 SUR Seoo: RETURN

0546 IF nounx13 THEN GO TO Zas2

360460 IF ol(noun, 1)=99 OR ofnoun,l

y=location THEN GO SUE S199+{no

un#*5) : RETURM

J061 PRINT "I can™t see it": RET

URN

39462 G0 SUE S106+ (naun+*5)

I&s RETURN

AT BEM %55 0 % 0 0 000 N

TH4HE REM take

TOAD REM 358 5 500 0 3 5 30 3 50

70 LET g=0: FOR i=1 TO 15: IF

o(i,.1)=92 THEN LET g=g+1:

I071 MNEXT i: IF g>x4 THEN PHINT

"You can’t carry any more": RETU

EN =

3072 IF noun=2% AND o(l1e,1)=29 T

HEN LET o0(1®,3)=2: PRINT "You n

ow have a ladder": EETURN

3073 IF noun=24 THEN FRINT "She
won't come": RETURN

3074 IF noun=ZB8 AND o0(?,1)=99 AN

D ol(%,3)>2 THEN LET o0(?,3)=4:2 P

RINT "You now have a tyre': RETLU

R

3075 IF noun>1S THEN PRINT "It

won®"t move": RETURN

20746 IF olnoun, 1)=99 THEN PRINT
"You’ve already got it": RETURN

3077 1F location=5%9 AND noun=9 T

HEM LET o(?,3)=3

@78 IF location=olnoun,l) AND o

{(noun,) > THEN LET of{noun,l1)=%9

P: RETURN

6085 PRINT "Its not here ": RETU

RN

3988 RETURN

TEESD REM %R

Te%e REM leave

TP L FEM 9 0 MR

12092 IF clinoun, 1)=9% THEM LET o

(noun, l)=location: RETURN

294 PRINT "You don™t have it":

RETURN

214 RETURN

EAOT REM R R RN N

80

I168 REM give

T1OG REM 95 RN W W H R %

Z11a IF location=22Z AND noun=3

AND o(S,3)=2 THEN LET a(S5,3)=3:
LET rioun=%: LET ex=0: (G0 SUB 3

?@: RETLRN

111 IF location=22 AND noun=27

AND o(5,3)=2 THEN LET o(5,3)=3:
LET noun=S: LET ex=é: GO SUB 36
Fo: RETURN

3112 IF location=&61 AND noun=3é

AND 0(15,3)=2 THEN LET o{(15,3)=

F: LET ex=0: RETUEN

32113 IF location=&1 AND rnoun=28

AMD o{(?,3)=4 THEN LET ol(%?.3)=5;:
LET ex=0: RETURN

3114 IF location=53 AND noun=3 T
HEM LET o(3,3)=2

3115 IF location=353 AND noun=14

THEN LET ol(l14,3)=

21146 IF location=33 AND ol(ld4,3)=

2 AND o(3,3)=2 THE LET ex=9

Z117 IF location=24 AND noun=1 T

HEM LET @i(l1,3)=3: LET ex=8

3119 G0 SUB 3a90

2128 RETURN

12D REM %% 5 RN RN

3139 REM light

TAT1 REDM %8350 3550 5

3132 IF noun<>& THEN FRINT "It

won®t burn': RETUERN

3134 IF o(noun,3) >l THEN PRINT
"Its already alight!": RETURN
3135 IF ol(noun,1)=99 THEN FRINT
"The torch burns brightly": LET
rock=3: LET o(&,3)=2: IF locati

on=44 THEN LET EX=06: G0 SUB &£44

Bt: RETURN

3148 RETURN

T1AG REM 555055550 56 3 55 5 5 3% 3 %5 %

3159 REM peel

2151 REM %% %% %% 03 50 3 9 3 55 3 33 3 5 3

3155 IF o(15,1)=99 AND noun=15 T

HEN FRINT "You have a pile of b

anana peels": LET o(15,3)=2: RET

LIRMN

Z157 IF o(5,.1)=9% AND noun=5 THE
M FRINMT "You have a hand+ful of

ind": RETURN

2199 FRINT "You’wve nothing to pe

el": RETURN

3148 RETURN

Z AR

81

F1AET FREM %88 58 3 000 00 80N R
E176 REM wear

171 REM %% 56503 00NN
172 IF oi(l1l1,1)=%9 AND noun=11 0O
F noun=XZ53 THEN FRINT "What a2 sp
lendid fully armed figure": LET
ol(ll,3)=2: RETURN

F187 RETURN

F1EE REM R 0 5 R0
3189 REM fill

FIF0 FREM #EXEREARHEERREE RN
2191 IF location=42 AND o(8,1)=%
9 THEN GO TO 3212

92 IF 08,1499 THEN FPRINT "
‘a have mothing to fill": RETUR
]

194 IF location=27 IR location=
41 OR location=33 OR location=3é
AND nouwn=8 AND o3, 1)=2% THEN

LET o(8,3)=2: RETURN

Seg RETURN

E20% REPF #EXEREEEEEEEEEFEEEEER
‘“1@ REM empty

211 REM **********#*********#

3212 IF of(8,1)<>99 THEN FPRINT "
Yo have nnth1ng to empty": RETL
R

213 IF o(E,3)=1 THEN FERINT "Th
& helmet 1sn't full": RETURNM
32150 IF oid,3)=2 AND location< »4
2 THEN FRINT "What a waste": LE
T ad8,3)=1y RETLUREN

3218 IF oi8,3)=2 AND luocation=42
THEN FRINT "The turnstile open
ag"s LET 0(8,3)=4: LET ex=0: RETLU
il

229 RETURN

DEAT REM 3 % 5 38 0 %W
22599 REM cut

A9 FREF ##53HE4mfRdxtdgEsesases
E252 IF noun=37 AND location=35
AND o(2, 1=%9 THEN LET o{Z,3r=2

LET EX=o: RETLRM

3284 IF o(Z2,1104+%%9 THEN FRINT "
You've nothing to cut with": RET
LI

Z2586 FRINT YA waste of strength®
2264 RETURN

¢*&H FYE] 8 35 0 3 3 0
I26% REM bBlow

TOT0 REM # s E R R RN R
3271 IF location=26 AND o(12,3)

82

=1 THEN LET o{12,3)=2:
262: LET o(12,3)=1: LET
TURN

Z273 IF noun<>12 THEN FRINT "&
waste of breath": RETURN

3274 IF o(12,31<>1 THEN FPRINT *©
You don®t have a horn'": RETURNM
3285 RETURN

T2ET REM %% 0 N W N
290 REM fiux

ZE2F1 REM %8R R N
I295 IF noun=% AND location=5% A

NMD 0i(?,1)=29 THEN LET o(9?,3)=2:
LET ex=0: G0 SUEB Z690: RETURN
IEGD PRINT "You can’t"”

2309 RETURN

IR FEM %83 0 0 5% R
wos REM sgueere

TEATL REM #0555 9 % 5B R
3349 IF olS5,1)=9% THEN " PRINT "Y
ow now have a pocketfoal"," of ju
ice":t LET o0(5,3)=2: RETURN

3345 PRINT "6 waste of strength*
: RETURN

3348 RETURM

SE4T REM %% % %3 6555 65 04 5 6 %
3359 REM swim

SIE1 FEPM #EsEg s d s 0w
3392 IF noun=3v THEN LET swim=
1+ RETURN

L5268 RETURN

EEAT REM N R N
3379 REM climb

IETL O REDM W 3R N
XEV2 IF noun=1& AND location=2 T
HEMN FRINT s%: LET o(l1,3)=1: RET
LIEN

S373 IF noun=1é ANMD location=3d4
THEN FRINT s%: LET ol(3,3)=1: RE
TLURN

SE7% IF noun=31 AND location=&5
THEN FRINT "You climb halfway,
but 1ts too steep. You fall and.
semplat! Oh dear": LET dead=1:
RETLIRN

3389 IF noun=2% AND o(1e,3)=2 @A
ND location=&5 THEN PRINT "You
climb the clif+": LET ex=6: LET
o(1®,3)=3

S3HB RETURN

AEBT FEM # %% % %585 8 4 5 08 &4 H 5
3E9HD REM 1lift

EO SUR &
EX=0: RE

"_';3?1 F{EM e e e W N N
=392 IF location=48 AND noun=1é

AND o(4,1)=%% THEN LET oid4,3)=¢
¢ LET ex=@: GO TO 345

394 IF noun=Z1 AND rock=3 THEN
LET rock=4: LET ex=6: GO TO Z40

5

340 PRINT "It s too heavy": RET
LIRN .
34053 FRINT "You lift it out of t
he way"

Z4a9 RETURN

4997 REM %55 3% 5 3 5% 5 5 % % 3 % 3% 4 5 % %
4998 REM objects at location
495 REM %% 5% %5 5% 3 55 50050 %%
Soed FOR i=1 TO 15

oele IF of{i,li'=location AND oli.
Y@ THEN PRINT "You see "jo%(
1,1 TO {oli,2¥))3y${ids NEXT i:s
RETURN

Se20 NEXT i1

G939 RETURN

SOF8 REM %% %55 55303 05 06 5% %X %%
9999 REM Looking at objects

S1O6E REM %9 5% 5% 5 506 0 5 65 3 % %% %
5195 FRINT g#%: RETURN

S11@ PRINT g%$: RETURN

5115 PRINT "It has a sharp point
" RETURN

9128 PRINT g%: RETURN

=123 FRINT "Its a full of juice"
: RETURN

9139 IF o0(6,3)<2 THEN FPRINT "It
s unlit": RETURN

5131 FPRINT "Its alight": RETURN
5135 PRINT q%: RETURN

3140 PRINT "It's bucket shaped":
RETURN

3145 FRINT "It's a bicycle wheel
" RETURN

9158 PRINT "Its torn": RETURN
5155 PRINT "They ve all been pos
ted": RETURN

5160 FRINT g%: RETURN

G145 FRINT "He is casting a spel
1": RETURN

5176 FRINT "Its blank": RETURN
G175 FRINT "They're very appealil
rg"s RETURN

9186 IF location=34 AND ol{(5,1)=3
4 THEN PRINT "A giant orange ha
nogs from it": RETURN '

84

5182 IF location=2 AND o(i,1)=2
THEN FRINT "There's a monkay in
it": RETURN

5183 IF location=57 THEN FRINT
"They ' re full of bananas": LET o
(15,32=1: RETURN

5184 FRINT g#$: RETURN

5185 IF location=5 THEM FRINT "
It 2ays "1 wouldn™t go any ".," +

urther if I were you’": RETURN

5137 FRINT g%: RETURN

5129 IF location=22 0OR laocation=

D¢ THEN FRINT "The door is open
": RETURNM

5192 1IF location=14 AND o(l14,1)=
14 THEN LET o(14,3)=1: PRINT T

here’s a scrall in the dust": RE
TURN

5195 FRIMT g%: RETURN

5206 IF location=42 AND o(&,3){3
THEN FRINT "Thers’s an empty o

ounterbalance by the lock": RETU

Fih

0203 FRINT "Its extremely heavy"
: RETURNM

o21@ FPRINT "It has & goose in it
": RETURN

S215 FRINT g%: RETURN

9220 PRINT "He looks like a scori

be": RETURN

9225 FRINT "One wheel is broken”
t RETURN

G923é PRINT "It has long tail fea
thers": LET o(3,3)=1: RETURN

3235 FPRINT g%$: RETURN

D249 FRINT g%: RETURN

3245 PRINT "Its very long": RETU

RN

9299 FRINT q%: RETURN

9235 PRINT "It looks unclimbable
"+ RETURN

G260 PRINT "There’s a crumpled s

tocking in it": LET o(18,3)=1: R

ETURN

2265 FRINT g$: RETURN

D270 IF location=47 THEN FRINI
"There's a crumpled stocking ":
LET o(1@,3)=1: RETURN

3283 IF location=462 AND o(&, 1) =4
2 THEN PRINT "The helm=t is in
good condition": LEY o(8,3)=1: K
ETURN

85

5300 IF ol(l2,3)=0 THEN LET of(12
B)=

H55305 IF odlZ,1)=44 THEMN FRINT “

There’s a horn in the ash

5310 RETURN

SRT0 PRINT g%

5998 RETURN

OFFY REM #ERkxe e assdesnsssis

000 REM location descriptions

ST REM %5 5% %% 5% 555 5% 55 5 %4 % 453

691@ PRINT "on a rocky hillside"”
" with many loose boulders"”

&1Y RETURN

&9Z0 FRINT " by a tree on the","
fillside”

GRAET RETLRMN

S0 FRINT "on a steep hillside®
" with leafless trees"”

SHO5Y RETLIREN

6940 PRINT "on a dirt track"," w

ith many potholes"

&E47 RETUERN

H050 FRINT "an a dirt track.","

Beside the track is a sign"

Sa5EY FETURN

6060 PRINT "outside a large tent

a9aT RETURM

470 PRINT "inside a circus tent
"." A juggler throws a kriife","
at vou but misses"

HETY RETURN

69E9 PRINT "on a road covered","
i weesds"

AEREY RETUREN

5099 FRINT "outside a blacksmith
] E;. n

LHA%9 RETURM

6190 FRINT "on a well-kept road.
" RETURNM

6119 FRINT “on a path through®, "
a dark forest": RETURN

6126 FRINT “on the north face ",
"of a mountain': RETURN

4130 PRINT "in a thick bank of +

ag”: IF e(7,1)<>99 THEN PRINT

You're lost"s LET ex=l: (0 SUR 2

o0

H132 RETURN

6149 FRINT "in a very dusty”," c

upboard": RETURN

6139 PRINT "in a glade in a fore

86

st": RETURM

6160 FPRINT “on the south face",”
of the mountain": RETURM

H170 PRINT "on a road": RETURN
6180 PRINT Y"at a crossroads with
", " a broken signpost": RETLRRN
&199 FRINT "by & ravine with ","

a narrow bridge across 1t": RETU
B

Gope FRINT "on a meandering path
way'": RETURN

6210 PRINT "by a ravine with ", "
a rope bridge across it": RETURN

&226 PRINT "at The Gambtler® s Inn
G225 IF al3,3)<3 THEN FRINT "Yo
u need a playing card"," to go f
uwrther”: LET ex=1: 60 SUR 230a
&£22%9 RETURN
HEZO FRINT "in the vard of an in
n": RETURN
24a PRINT "in a monastery"”
4242 IF o(l1,3)<3 THEN FRINT "4
monk saye" " "You nesd a key to
g further®": LET ex=1: GO 5UR 2
e RETURN
H245 LET ex=0: LET +%=e%i(l}l: FRI
MT "You may pass": RETURN
&H230 FRINT "in the porch to a
monastery": RETURN
G260 FRINT "in Sherwood Forest. "
U Suddenly ten men at arms
surround vou. "
6262 IF al(l12,3r=1 AND o(l2,1)=99
THEM LET ex=1: GO 5UER 2300: K
ETLIRR
G264 IF oll12,3)=2 THEN FRINT *
Robin Hood to the rescue!"™" The
armed men run': LET ex=0: RETUR
i
b2b8 FRINT "They cut aff yvouwr he
atd": LET dead=1: RETURN
&279 FPRINT "by & river with a hbr
oken bridge across it"
4271 IF swim<>1 THEM LET ex=1:
GO SUBR 2Zo0: RETURN
HZ286 PRINT "on a beach": RETURN
6290 PRINT "imn a stables": RETUR
b
&30 PRINT "in a graveyard": RET
LIRM

87

H31é@ PRINT "at the edge of & for
est": RETURN -

&32¢ FRINT "by a bharred cave': R
ETURN

G330 FRINT "in a very dark caver
rn": RETURN

634@ FRINT "in an orange grove':
RETURN

63539 FRINT “on a riverbank amids
t"," twentyone snarling wolves "
6331 IF o(2,1)4:>99 THEN PRINT ©
They tear you to pieces": LET de
ad=1: RETURN

6352 PRINT "They fear your sword
"1 IF 0(2,3)<2 THEN LET ex=1: G

0 SUR 270d: RETURM

6354 LET ex=0: LET f$=e$(1)

SH355 RETURN

&368 PRINT "in a rocky bay": RET
IR

43709 PRINT "in a ploughed field®
! RETURRN

a3de PRINT "in a cornfield": RET

LIRM

6399 PRINT "in a farmvard": RETU
RN

44600 FRINT "in a narrow cave"
641 IF o(l2Z,3)<2 THEN PRINT Y

ou hear a scream to the south®

a402 RETURN

44160 PRINT "“on a dusty windinag r

cad": RETURN

&642@ PRINT "in front aof"," an ir
an turnstile"

&422 IF ai(8,3)<4 THEN PFPRINT "It
blocks vour wavy": LET ex=1: 50O

SUE 2F06: RETURN

425 LET ex=0: LET f¢=e${1): RET

LR

447260 PRINT “on a gravelly road":
RETURN

&44¢ FRINT "in a passage": IF ro
ck<4 THEN FRINT " filled with &
NUge Focl! e

ad442 IF rock<Z THEN FRINT "You

cant go any further": LET ex=1:
GO SUB 2360 RETURN

H444 IF ailb,11=9 AND o(s&,3)=2 T
HEM FRINT "Your torch makes the
rock"," much lighter": LET rock
=3t RETURN

&444 1IF rock=4 AND o(3,1)<:99 TH

88

ErR FPRINT "Your way is clear": L
ET ex=0: LET +#%=e$(1): RETURNM
6448 IF oi(3,1)=99 THEN FRINT "Y¥

our feather tickles you.","You s
tout out, causing a huge aval a
fche. """ Suddenly yaou f=el

rather depressed": LET dead=1:
RETLIRN
HE4% FPRINT "You can’™t ao any fur
ther": LET ex=1: 60 SUE Z23ed: RE
TURN
L4560 FPRINT "in a narraw winding"
" tunnel®: RETURN
6468 PRINT "in a farmhouse ™
6465 1IF o(12,3)=0 THEN FRINT "w
ith a smoking chimney"
L4b&H RETURN
&47% PRINT "in a farmyard": RETU
RN
64860 FRINT "on a narvrow path®
6481 IF ©2(4,3)4<2 THEN FRINT "wh
ich is blocked by a fallen"," tr
ee": LET ex=1: GO SUB 2300: RETU
R
6482 RETURN
6479 FRINT "at a cave entrance:
RETURN
&5060 FRINT "in a damp cave. ","T
here is an old woman moaning.","
Beside her is a huge cage. ", "Sh
g says I+ vou don’t cure"," my
headache 1711 turn you"," into a
toad"
6505 IF o(13,13<5399 THEN FPAUSE
200: PRINT "Oh dear - you’' ve cro
aked it": LEY dead=1: RETURN
6307 PRINT "Thank goodness — a w
itch—-doctor": RETURN
6310 FRINT "at a huge gateway':
RETURN
465260 PRINT "on a huge stone"," s
taircase ": RETURN
6536 FRINT "in a huge stone htowe
r.","There is a giant"
A331 IF o(3,3)<*2 OR ci{l14,3)<>2
THEN PRINT "He says "Give me so
mething"." to write to King Arth
ur with’": LET ex=1: GO SUB 2330
: RETURN
6332 PRINT " scribbling merrily"
t RETURN
H5E9 RETURN

@546 FRIMNT "in & narrow valley":
RETLIFM

6550 FRINT "on a drive to a mans
ion": RETURM

6566 FRINT "in a large cage": RE
TURN

&578 PRINT "in an avenue of tres
s": RETURN

6580 FRINT "outside a laundry":

RETURN

&57¢ PRINT "on a road "3

&2?1 IF ol(9,1)<2>99 OR o(9,3)<2 T
HEMN FRINT "blocked by a broken
cart": LET ex=1: GO SUB 23006: R
ETLURM

HOT2 LET ex=0: LET f$=s%(1)

&2 RETLURN

GE@0 PRINT "in & alade ": RETURN

6619 PRINT "in a study. There is
"v"an old man dressed only in",
"a towel. He shouts "Have you",
"brought me some clothes? "

G612 IF o(9,1)<>99 AND o(15,1)<

FY THENM PRINT "NO'!'' & lightrin

qg bolt ","flashes from his finge

re and ", "you suddenly fesl a 1i

ttle ashen": LET dead=1: RETURN

6614 IF a(?,3)<>5 AND ol(15,3)<*»3
THEN PRINT "Give them to me"

&416 IF oi(9,32<>5 OR aoli15,3)4>3

THEN FRINT "What about the rest

My LET ex=1: G0 SUE 2306: RETUR

W

@old PRINT "0O.E. You can pass":

LET ex=8: LET +%=e%i{l)

6619 RETURN

&&2@ FRINT "in an armoury. "°°"T

here is a suit of armour ","agai

nst one wall": RETURN

6650 FRIMNT "at Camelot .Well don

e": LET dead=2: RETURN

aa48 PRINT "at the gate to Camel

ok, "

6642 IF 011,342 THEN PRINT "7

he gatekeeper shoots at vou. ", "

Oh dear, no armour....": LET dea

d=1: RETURN

&£&44% FRINT "The gatekeepsr lets

vl through": RETURN

aahe FRINT "beneath a sheer clidf

+'": IF of(le,3)<3 THEN " LET ex=1:

90

GO SUR 23e6:; RETLURN

H£655 LET ex=0: LET fé=e$(l): RET
LIRM

Aé&EE FRINT "on a golden road": R
ETURN

6670 FRINT "inside a laundry. "7
*nThere's & basket 1n one corner
v: RETURNM

H6E0 PRINT "inside a librarv": R
ETURN

7998 RETURN

LG REM R R R R R R R R R

goae REM s=etup

Aol REM #x#idrkdtd iz ddiisedens
Bood LET dr=o

8005 LET cart=d: LET head=¢: LET
rock=0: LET tree=0: LET lo=@: L

ET dead=¢: LET g=@: LET eu=8: LE

T fH=""

ga1o LET vé="lootaklesgivligpeew

patilempwricutblofixdresguswicli
1 B R

BolS LET wi="n S & W 11orsouw

eseas"

Bo2Zé LET n$="monswofeacrooratorc

omhelwhestolethorwitscrbantresig

cupwolturroccagjiesgiacargoojuity

rladrivcliaropacbasmal peearmocoud

euchi"

Ba3@ LET s$="Up vyou go": LET swi

m=@3 LET q#%="1 see nothing speci

alll

8035 LET «$¢="n & & w "

Bag4e LET verh=a

G101 REM #5350 % 0 5K 500535 %5 %% 0

8192 REM *®*%%xFUT MAF IN MEMORY #+

* %

B1OTE REM %% %% % % % 0% 8 5 5% % 5 3 0% %554

g104 LET p=&534&7

8105 FOR i=1 TO 148

B1e8 READ &

B116 POKE {(p+i}.A

BiSo NEXT 1 =

8200 DIM v$(15,3¢): DIM (37,3
DIM o%(15,13)

8216 FOR i=1 TO 15: READ vy#%(i,.1
TO 3@): NEXT i

B220 FOR i=1 TO 15: FOR j=1 TO 2
: READ o(i,j): NEXT j: NEXT i

827¢ FOR i=1 70 1S: READ o%(i.1
TO 13): NEXT i

824¢ FOR i=1 TO 15: READ oli, 3):

91

MNMEXT i
B4%9% FAFER Y: INE @: CLS
8498 RETLURN
SA4GT REM %% %965 % 3 % %% 5 5 WA
85068 REM instructions
BTO1 FEM %85 506 35 0365 % % % 6 %0 %5
852¢ BORDER S5: FAFER 1: INK S: C
LS
8339 DRAW &,2: DRAW 1,4: DRAW 2,
S: DRAW 4,5: DRAW %,6: DRAW &, 81
DRAW 7,%: DRAW 8,11
85535 DRAW B8,20: DRAW 1,-10: DRAW
1,79 DRAW 4,-20: DRAW 16,0
8349 DRAW 1,15: DRAW S,0: DRAW 1
1032 DRAW @, 26
8545 DRAW ©,-40: DRAW 2,-30: DRA
W 1la,-15: DEAW &,-15: DRAW 2, 0:
DRAW @,-20: DRAW 406,-15
8550 DRAW 10,-20: DRAW 49,-10
#4540 PLOT 48,7¢: DRAW o.8: PLOT
o, 9% DRAW &,56
8399 FRINT AT 16,18: INK &3 "CAME
LotT*"
BEPE INE &
8599 FAUSE 1006
86600 BORDER 1: CLS
G405 FRINT AT 2,12
Li"CAMELOT"
861e FPRINT AT 5,35:"At Camelot is
ful some day "
84611 FPRINT AT 8,3 "Your lights

i FAFPER 53 INEK

will help vyou find t
e way"

8412 FPRINT AT 11.3:i"S5a0lve the p
uzzles, watch for clues

L1

B61F FRINT AT 14,33"Flay with w

ords to get aood

news "

8614 FRINT AT 17,33"Twa word o

rders help me play "

B615 FRINT AT 20,33"A verb and
then a nouns O.kE. "

8620 FALSE Soo

8621 CLS

8622 FRINT AT 1,1i"You can use t

he single letters",” N, 5, E, a
nd W for movement.",,,

B&624 FRIMT ™ fAnd the words “h
elp® and "," “inventory® can
be used”"," on their own
‘n!!, i

92

8628 PRINT " All other comman
ds must be"," two words, and all
words should "i" be 1owe
r case."

gu50 ERINT AT 16,19; PAFER &3 IN

¥ 13 "INITIALISING"

g&52 FRINT AT 1B,1¢: FLASH 13i"Fl
ease walt"

8999 RETURN

GO47 FEM #5335 35 5 505 58K E R R
2048 REM data for map

9349 REM ¥ k¥ %EEEREXRXEREEEEREFES
Qe50 DATA ©,0,0,0,0,0,0,0,0,0,0,
a,0,0

9100 DATA 0,0,1,2,3,4,95,4,7,8,9,
Q,0,0

211¢ DATA 0,6,10,0,0,0,0,0,11,9,
12,0,0,0

g12¢ DATA 0,0,13,0,0,0,14,9,15,9
W16,0,0,0

9136 DATA ©,17,18,19,20,21,22,23
28,25,26,0,0,0

2144 DATA @,0,27,0,28,0,29,0,50,
G, 31,32,33,9

2150 DATS ©,34,35,0,36,0,37,90,3H
B, 37,0,40,0

F1ia0 DATA ©,60,41,0,42,47,44,45,4
&£,47,48,49,00,0

176 DATA ©,0,51,52,53,0,54,0,0,
0,55,0,35,0

180 DATA ©,9,0,9,57,8,58,5%,60,
61,62,0,0,0

190 DATA 0,43,84,65,566,8,567,0,0
6B8,0,0,0,0

195 DATA ©,0,0,0,6,0,0,0,0,0,0,
L I

2192 REM Data on objects

2060 DATA "chattering","on the f
loor"," fluttering in the breeze
921@ DATA "on the ground",",Dig
and juicy","","in one corner"
220 DATA "on the floor"," on th
e ground”, "nearby ","in a muddle
d heap"

236 DATA "on the ground"," squa
tting in one corner","”, tattered
and torn","piled on the floor®

FPEDT REM %% %50 % %5 KKK KK KRR
9298 REM Initial object location
s and namne lengths

GGG REM HE#8% %K E R R RN

93

FIEO DATA 2,9.9,8,56,%,29,10, 34,

%,39,8,28,10,62,9,49,8,47,11, &8,
190,46,7,60,135,14,9,57,10

QEFTV REM ##EE%H RN R

F378 REM Obiect names

CEGY REF E# ¥ ¥ 2480 EREAEN T RER

Faoa DATha "a monkev","a sword","

a teather","a crowbar","an orang

W Ma toreh'","a compass',"a helm
et","a wheel”","a stocking","lett
ers”,"a horn","a witchdoctor","a
scroll", "hananas™

FABT HEP F##ss s ¥ imk ksl rissiene
F410 REM data on hidden objects
P41l REM # %% s kb ad b FisriadErsEsiar
7420 DATAH ©,1,0,1,9,1,1,0,1,9,1,
G,1,0,6

o959 INE &

FEYT7 FEM RigkE g4y sisfsanssnnn
2878 REM end

FEHTY REM *%3 #8835 00400055
P90 G0 SUB 3016

PS5 FRINT "Ancther game?"

996 IF IMEEY#$="" THEN GO TO %99

“é

FIP7 IF INEEY$="v" DR INEEY&="Yy"
THEN RUN

F9Y? STOP

e T
=

94

THE COMBAT
GAME

The key part of most adventure games is the combat system. Many
text-based puzzle games do not have combat, but most of the games
with graphics or features other than the central puzzle involve
combat. We have already considered some aspects along the way as
we have explored the characteristics of the player’s character and of
the monsters which might be encountered. Most of the beings we
build into our game have some combat rating. Indeed, at its simplest
you could say that monsters are only combat ratings, existing to test
the character/player, to provide a problem to be overcome. It makes
sense, therefore, tohave a good idea of your combat system before you
design the player character or monsters, otherwise you might find
your intended system cannot use the values you have set up.

6.1 Values and choice

To see what is involved in a game combat system let us proceed as we
have before— start with a simple system and gradually add to it.
Suppose therefore that Sir Jon were given just one value, 7, and all
monsters were given a value in therange 1to 9. Combat could then be
a simple comparison of the two values, so that whenever SirJonmeta
monster his value was compared with the monster’s value and the
one with the lower value was killed.
Our flowchart might thus contain the stages:

IF SirJon’s value > monster’s value THEN monster dead (= set to

)

IF monster’s value >= SirJon’s value THEN SirJon dead (= set to

')

We can see at once that problems arise with such a simple system.
In the first place, the player does not do anything. Cad has no control
over the situation, simply sitting back and watching his hero kill or
keel over. Secondly, there is no uncertainty, so no risk or reward.
Every time Sir Jon meets a monster of 7 or more, he is killed;
otherwise the monster is killed. This would be very boring and little
fun to play, even if the graphics involved were exciting.

895

A simple way to add uncertainty would be to randomize the
monster’svalue. However, ifit was totally random we would have the
opposite result. There would be no predictability at all. The player
would never know whether to fight or run, and the whole game would
depend on purely random numbers. It would be very unsatisfactory if
a great deal of points were lost because of a single random number.

The answer, therefore, is to restrict the range of values for a
particular monster, within which it can be random. Suppose we have
three monsters— a goblin could be values 1 to 7; a troll values 3 to 8;
and a giant values 6 to 9. This meansthat SirJon’s chances of beating
any goblin are 6 out of 7; of beating a troll are 2 in 3; and of beating a
giant are only 1 in 3. Once the player has learned this through
frequent encounters he can take his chances with a sense of the risk
and potential reward in each situation.

We can, of course, vary the configuration of monsters in other
ways. Forexample, we could vary the chance of it being of a particular
value. The goblin above has a 1 in 7 chance of being value 1,a 1in 7
chance of being value 7,and a 1in 7 chance ofbeing value 4(i.e., equal
probability of each value). More realistic, and also more predictable,
would be a greater chance of average value, as shown on the graph in
Fig. 6.1.

6

—
5 Mumbear

of

T throws
4

——
3
2
1

2 3 4 5] 6 7 8 9 10 11 12

Scare
Figure 6.1 Normal distribution curve for throwing two dice.

Thisisabar graph which shows 36 throws oftwo six-sided dice. The
resulting curve is what is known as a normal distribution. Out of a
total of 36 throws, only 1 would be 2, 2 would be 3, 4 would be 4, 2
would be 11, etc. The extremes are less likely than the middle, but

96

nevertheless possible. We could get such a curve with any range of
numbers we liked. To get one in the range 1 to 7 for our goblin we pick
arandom numberin therange Oto3andadd it to anotherinthe ran ge
1 to 4. In Spectrum BASIC:

109 LET R = INT(RND * 3)

110 LET S = INT(RND * 3)+1

120 LET MONSTER = R+8S

13¢ 1F SIRJON > MONSTER THEN LET MONSTER = ¢

We can devise formulae to assign just about any probability to any
value in any range, which makes for great variety in monsters,
though usually linear probability (equal chance) and normal distri-
bution are the only curves used. The important thing to remember is
that it should be balanced so that the player has at least some chance
of defeating it. Chapter 11 includes a routine to allow different
ranges of random number generation for use in non-micro adven-
tureswhich can easily be adapted for use in microgamesthemselves.

Let us return to the other problem, that of player interaction. All
we have added so far is the possibility that the player, learning from
previous games, may choose not to fight a particular monster. This
means that he must be given either prior warning of the monster or
given the opportunity of retreating when the monster is encoun-
tered. It is common for warnings to be available in one of two ways.
Either the character has some device for looking a small way ahead,
such as a lamp, a magical orb or radar, or a warning is flashed up on
the screen that ‘a monster is near’, but no indication is given of how
near or in what direction. A lamp routine is included in the game at
the end of this chapter. It is a simple matter, however, to program a
warning routine. The stages are as follows:

1. INSPECT THE CONTENTS OF ALL ADJACENT
LOCATIONS

2. IFNO LOCATION CONTAINS AMONSTER THEN END THE
ROUTINE

3. IF ONE OR MORE LOCATIONS CONTAIN A MONSTER
THEN PRINT A WARNING

The warning need not be in words, of course. It could be a flashing
danger sign, for example, or it could use the sound facilities of your
micro if it has them. If a player has to respond to visual and aural
signals as well as words, he has much more to learn and to pay
attention to in play.

Retreat can be written into encounters as a combat option. A
common mechanism is to program combat in two stages:

97

1. ASK THE PLAYER WHETHER HE/SHE WISHES TO
RETREAT OR NOT

2. IFTHE PLAYERATTACKS PRINT THE VARIOUS OPTIONS
AVAILABLE, INCLUDING RETREAT

Ifthe character retreats then the monster probably has a chance of
hitting him in the back (what players of war games refer to as a ‘free
blow’) and this chance can be dependent on the relative speeds or
dexterities of the character and monster. Retreat might automatic-
ally be to the previous location, in which case this might be
remembered by the program, usually by setting a flag, or can be in a
random direction, in which case the character may blunder into
another monster’s lair or worse peril.

This gives the player some choice, but not much. Other variables
are needed, and these can be added by considering the variablesin a
real combat. So far we have looked at the relative skill of character
and monster, and at the option of attacking or retreating. We can
further modify both of these, because fighters generally have differ-
ent classes of skill. A broad distinction can be made between ‘attack-
ing skills’ and ‘defending skills’, and these can be further broken
down, e.g., into missile skills, edged-weapon skills, bludgeoning
skills, manual dexterity, and so forth. In our games we will stick to
attack and defence.

Similarly the attack and retreat options could be supplemented by
other options such as the use of magic, the opportunity of talking to
the opponent, the possibility of bribery, and so forth. We will see
whether all of these options can be included in our combat game, but
will not take any of them further for the moment.

Inaddition toskill and a broad choice of strategy the character may
also have a choice of weapons and/or armour. These can be offered at
the very beginning when the game is being set up, or may be found or
bought en route (as local rewards), or the player may have a perman-
ent selection that he carries with him. We will use sword, spear, flail,
and knife as weapon choices, and have different pieces of armour,
including a shield. Whereas all the armour can be carried at once,
only one weapon can be used at once, so the weapon will be a fluctuat-
ing variable whereas the armour will be a cumulative variable
giving a cumulative improvement in defence.

All this armour would be rather heavy, so carrying it will also
entail a cumulative penalty we can call fatigue. It is also possible to
use weapons in different ways, such as slashing, thrusting, piercing,
etc. Wewill allow a simple tactical choice for all weapons, namely ‘up’
(raises the arm) and ‘forward’. We can regard ‘up’ as essentially
defensive but good against large enemies and flying enemies, where-

98

as ‘forward’ is essentially offensive, being good against smaller
enemies and enemies on the ground. Shield upis the best defence but
shield forward adds to the attack value.

Finally, certain environments might affect certain weapons or
strategies, and certainenemies may wellbe defended against certain
attacks. Let us decide that the monsters encountered will have their
own range of armour and weapons as well as different preferred
strategies, so the player will have to learn by experience what works
best with particular opponents.

There are two reasons for having so many different levels of com-
plexity. The firstis that it gives the player a large number of possible
tactical options and he must learn which give the best chance against
a particular opponent in a particular situation. This means that the
game will be a challenge for a long time, with a great deal to learn,
The second is that all these variables can be built into other aspects of
the game, so that combat is not simply a separate and independent
aspect. For example, different magical objects may improve certain
skills or weapons, or reduce certain enemy attacks. It may also be
possible to lure an enemy into a place where the player knows a tactic
is very successful, e.g., out into the open where a bow can be used. The
character’s chance in a particular combat will depend on whether he
has managed to obtain the correct armour or weapon for a particular
combat.

Before examining how we might turn all this into BASIC, let us
look at monster combat. Monsters could be given a set of choices,
weapons, and armour identical to those available to the character. If
so, then each moment of combat could be determined by a series of
random choices. It is more interesting, however, to give different
monsters different strategies, so that trolls, for example, tend to
attack with ‘flail up’, whereas goblins tend to use ‘sword forward'.
Trolls usually have helmets; goblins usually have hauberks. In such
a way no combat can have a certain result. The player can learn that
trolls tend to do certain things, but cannot be certain that any par-
ticular troll will do that.

It is also a good idea to give monsters a few options which are not
normally available to the player. A dragon might be able to breathe
fire, a griffon might be able to fly and attack from above, a magician
might be able to use a magical wand. If monsters are given wands,
weapons, and armour it should be possible for a victorious character
to take such objects from the dead. This is an obvious form of direct
reward for success.

Now, how do we code all this?

Initially we must decide how much information is available to the
player. At one extreme no information might be given, asina puzzle

99

game, and the player would be left to discover what weapons, skills,
and monsters were around and what they did. At the other extreme
instructions could list all possible alternatives and which to use
when. Both of these seem foolish, the former because the player
would become bored before learning sufficiently tobe able toplayand
the latter because there is nodiscovery, no learning to do. So it would
seem best to give some information to the player and make him
discover and learn the rest. So in our general instructions we will put
the following:

Thisgame involvesa choice of weapon, such asswordorspearanda
choice oftactic,such as‘retreat’ or‘sword up’. Youcanimproveboth
your attacking and defensive abilities, especially by collecting
pieces of armour. There are many monsters to be encountered.
Each monster prefers a particular weapon and tactic, but they do
not always use it.

During each fight the screen will display the current weapon, tactic,
and armour of both opponents, together with their basic offensive
and defensive skills, so that the player will gradually become famil-
iar with the range of options and variations, and gradually be more
able to predict what is likely to occur. In broad terms, this is how
people learn to fight in reality, by knowing what is possible, what is
likely, and what can be done when. However, we will not display the
calculations that are being used, so the player can only observe the
effectsofhisactionsand notthe hidden causes which are buriedin the
program’s functions and routines.

6.2 The Mines of Merlin

Let us now plan a second adventure game which gets rid of some of
the faults of the puzzle game, The Throne of Camelot. These problems
are:

1. It is fixed in form, so does not change each time it is played.

2. It uses a great deal of RAM.

3. It does not allow much overall strategy and has no combat
elements, unlike non-micro adventures.

What we will try to design is a game which uses only a relatively
small amount of memory, will vary from game to game, and will
allow some strategy and combat.

We will use the seeded random map method because this holds all
the information on the adventure in one function, avoiding the
necessity to hold a complex map representation separately in
memory. We will situate the adventure entirely underground in the

100

conventional way, so we shall want ‘up’ and ‘down’ as commands in
addition to thenormal N, S, E, and W. Let us call this adventure The
Mines of Merlin.

The function P=SQR(X*X +Y*Y*Z) will be used to determine the
features of any location, where Y is the north—south dimension, X is
the east—west dimension, and Z is the up—down dimension. As we
want a different game each time we shall start with different values
for X and Y (but not Z, because we always start at ground level with
7=1). Each time the player moves the function is used to determine
what exits are available from the new location, and only movement
in those directions is then allowed. So movement only Involves
changing X,Y, or Z each time and recalculating the function, a
subroutine we will house at lines 100@ to 150¢ as it willbe used quite a
lot.

However, the same function can be used to tell us a great deal more
about each location. What the function returns is the non-integer
part of a number (the part after the decimal point). The Spectrum
gives us eight digits after the decimal point. If we take the value 0of 0.4
as indicating a connection between two adjacent locations, and we
define a function accordingly:

DEF FNp() = SQR(X*X+Y*Y*Z)— INT(SQR(X*X+Y*Y*Z))

then we can use this function with suitably altered parameterstotest
for available exits, as in lines 100} to 2220 of the program. The
complete listing is given at the end of this chapter.

However, the formula can also be used to give other information
about a particular location. What the function is generating is a
pseudo-random number which is nevertheless always the same for
given values of X, Y, and Z. We can therefore use it as we would any
other random number, to determine if treasures are at that location,
or monsters, or if particular events are likely (and what their likeli-
hood is).

For example, suppose there are five chances in a hundred of gold
pieces at each location. We take any portion of the eight digits we
have at a particular location, turn it into a value between one and a
hundred, and see if it is above the limit of five. Thus if we decide on
digits one and two of the number and the number is 0.044 856 47 we
need to do the following:

1. Multiply by 100 to give 04.485 647.

2. Get rid of the decimal part to give 04, i.e., 4.

3. See if this number is less than 5, which it is.

4, Interpret the result—there are some gold pieces here.

101

We would then want to find out how many gold pieces there are, for
which we might use digits five, six, and seven. So here we do the
following:

1. Multiply by 10 000 to give 0448.564 7.

2. Get rid of the integer part to give 0.564 7.

3. Multiply by 1000 to give 564.7.

4. Get rid of the decimal part to give 564.

5. Interpret the result— there are 564 gold pieces here.

Naturally if there are no gold pieces here, digits five, six, and
seven could be used for other purposes, e.g., to calculate the strength
of an encountered monster or as a variable for sending control to a
subroutine. If a digit or set of digits is used for a particular purpose,
such as calculating the amount of gold, they can still be used for other
purposes, but remember that the two things will be connected. So if
the same digits are used to control a routine which turns the player
intoadwarf, and thekey testiswhetherdigit five is greaterthan four,
each time more than four hundred gold pieces are found the player
will be turned into a dwarf. This can be used to advantage, however.
Forexample, suppose we wanted to make the reward for overcoming
a monster directly related to the power of the monster; we can use the
same digits in the random number for calculating both variables.

The general routine to do this testing and calculation is held at
lines 2800 to 2820.

We will keep our game relatively simple. We will not have a map
display as there is no map, but will just give a verbal account of the
exits from each location. It will thus be a simple random wandering
game with asingle aim— towin as many points as possible. However,
wewillemploy anumber ofinterrelated variables so that each player
decision has to take more than one factor into account. These will be
his physical powers, his magical powers, the monsters’ physical and
magical powers, the weight ofitemscarried, his general constitution,
and the value of treasure.

As we are using a fixed formula it will not be possible to move
objects around the map because we cannot change the number in
each location. We could keep a separate record of objects and loca-
tions but our aim is to save memory so we will have to accept a major
limitation, namely, that in any given location the same kind of event
will recur irrespective of what previously occurred there. So if loca-
tion eleven has 247 gold pieces on its first visit, it will also have them
on all subsequent visits, even if the player takes them!

So we must use the numbers provided by the formula not to give
fixed values or routines but conditional ones. For example, if the
location is to have a treasure routine we can set it up so that some-

102

times treasure is found there and sometimes it is lost, Consequently
the player will have to decide whether it is worth the risk to retrace
his steps.

Let us set up eight types of routine in our game, called by the
random number which also maps the dungeon. These are:

Monsters
Treasure
Magical treasure
Potions
Weapons
Accidents
Torches

Food

This means that the required player variables affected by these
possible events must include:

00 =1 O O i L 1D =

1. Strength C(1)
2. Skill C(2)
3. Constitution C(3)
4, Knowledge C(4)
5. Food C(5)
6. Maximum burden C(6)
7. Money C(7)
8. Magic bolts C(8)
9. Potions C(9)
10. Weapon value C(10)
11. Armour value C(11)
12. Burden C(12)

In addition we want to relate these to each other and give the
player the chance of setting up his own configuration of variables as
the basisofhis play. The usual way to do this is to let the player select
three or four basic variables(within set ranges) on which all theother
values will depend. Once these have been established the player is
allowed to ‘buy’ equipment according to his idea of the way he will
play. So we will start with the variables STRENGTH, SKILL,
CONSTITUTION, and KNOWLEDGE. Eachcanbeintherange 1 to
20, and the player will be able to assign 12 of those points in addition
to the base value of 8 which each is set to.

Furthermore, the player starts with a hundred silver coins which
he can spend on equipment. When thisinitial configuration has been
set up the program will calculate all the values to fit in the player
variables according to the player’s initial choice.

It should be clear that this is one of the simplest designs for an

103

adventure game, yet it is still fun to play. The rest of this chapter will
outline the main blocks of the program in turn and then discuss the
kinds of modification that can be made to improve it. You will find
other alterations that could be made in other chapters, and the best
adventure would actually combine them all, together with some form
of puzzle game. The trouble is that every improvement takes
memory. At present we are working on a minimal interesting game.

We start with a description of how the player’s character variables
will be set up. C(7) is straightforward— every silver piece adds to the
total. Magical bolts will be a similar total of available spells. Potions
will be a similar inventory, each potion when drunk increasing one of
the basic four characteristics of the character. Weapon value will be
set to the value of the best weapon found so far and will add to or
subtract from attack or defence.

The burden is the total of C(7) + C(8) + C(9) + C(10) + C(5) + C(11),
while the maximum burden is the product of STRENGTH and
CONSTITUTION. Food is a simple number depleted when eaten.
Eating raises CONSTITUTION temporarily. The attack value will
be a formula derived from STRENGTH, SKILL, tactic, and weapon.
Defence value is also based on STRENGTH, SKILL, tactic, and
weapon. Magical attack is similarly based on KNOWLEDGE and
SKILL.

The game will be divided into a number of turns, monitored by the
variable COUNTER, so that exhaustion can be calculated. Every
eight turns the player will lose a number of CONSTITUTION points
which depend on the amount being carried expressed as a proportion
of the weight able to be carried. If CONSTITUTION falls below one
the character dies. Every turn all values are updated, including the
carriable weight and the weight carried, so the program can check on
the current degree of exhaustion. Eating will increase CONSTITU-
TION, but carrying food will increase the burden. So the player must
always balance the value of the articles he or she carries, and their
potential value, against the cumulative penalty of carrying them.
The basic problem thus turns out to be the same as in the puzzle
game— what to carry where and when.

Having sketched the character’s configuration we can go on to the
eight subroutines. ‘Monster’ should be easy to design, if not to code.
The player will find a location containing a monster. He or she must
decide whether to retreat or fight. If retreat is chosen the monster
gets afree blow at the back of the character. Iffight is chosen, we must
work out who gets the first blow (i.e., who has surprise), for which we
will use the SKILL variable. Having decided on the order for blows,
the player and monster choose in turn whether to use magic or
physical combat, each blow being calculated by comparing the appro-

104

priate atiack value with the appropriate defence value, modified by a
random factor.

This means that we need a table of monster variables containing
the name ofthe monster, its attack and defence values, and its SKILL
value. Also it will need CONSTITUTION so that we can calculate
when it iskilled. Finally, as the purpose of the game is to accumulate
points, we need a formula for calculating the value of each monster
killed. Tokeep thissimple, we will make the formula the sum of all its
values before combat begins plus a small random factor.

‘Treasure’ must also be either positive or negative, so that the
player takes chances. We will scatter a number of thieves’ dens
throughout our dungeon. Sometimes the thieves will be in, in which
case they will steal something from the player. At other times they
will not be there, so the player can take some of their treasure.

‘Magical treasure’ will be relatively rare but scattered all over the
place. On the positive side it is able to aid magical combat, but some
treasureisheavyand someiscursed(i.e., it will help the opponent). It
is easy enough for the player to discover the weight of a treasure, but
he or she can only find out if it is cursed by attempting to use it in
combat.

‘Potions’ like magical treasure will be found all over the place but
may be cursed or advantageous. They will increase or reduce one or
more of the four basic abilities.

‘“Weapons’ may also be beneficial or harmful, of different combat
values, and may have to be paid for. Sometimes they will be on their
own, butoften they will be owned by someone who wants tosell them.

‘Accidents’ will include a miscellaneous set of subroutines which
can range from falling down a pit (so losing CONSTITUTION) to
breaking a weapon, to falling in love with a sorceress, and to gaining
maximum KNOWLEDGE.

The ‘torch’ routine will simply give the character a torch or deprive
him of one. The torch can be used for discovering the nature of the
next room before entering it. However, some torches are illusory, so
might not reveal the truth.

The ‘food’ routine will produce locations in which food can be found.
It will be of different weights, and some may have a mild poison in it.
Other food may have magical effects, which could raise the magical
combat value of the player, or reduce one or more values.

Other types of routine like these could be added indefinitely until
all available memoryisconsumed. Eachshould potentially affectone
or more of the player variables, but only in extreme cases should the
result be instant death. As such games are fundamentally random
the key to making them interesting is to add as many features and
variations and interrelations as possible so that there are always

105

several things for the player to think about. Any small modifications
which you can invent which have this effect will improve the game.
Suggestionsare giveninlaterchapters,suchastalkingandbribery.

The Mines of Merlin

2 REM Z950@=validate
& REM Z290d=Ccls
33 REM INSTRUCTIONS
4 G0 SUEB 8500
15 REM INITIALISE
e BEOSUR Boon
55 REM START OF MAIN LOOF
=9 REM FRINT UFDATE
da LET COUNTER=COUNTER+1
&1 IF DEAD=1 THENM GO TO 9940
&2 LET TURN=TLURN+1
&5 G0 SUR 25040
&% REM INSTRUCTIONS
7e B0 SUB Do
496 GO TO &6
491 REM ERND 0OF MAIN LOGF
495 STOF
4%% REM INFUT
Sae G0 5UR Z2Foa
S04 REM MOVEMENT
595 FRINT AT @,8;:5 "WHAT NOW?"
598 FRINT FAFER &3 INVERSE 13"
D"y INVERSE ©f"rink,"3s INVERSE 1
s"E"s INVERSE @ij"at,": INVERSE 1
:"L"; INVERSE 0:"eave an object,
", INVERSE 1:i"M"3 INVERSE ”'"DVE
« "5 INVERSE 1:"R"{ INVERSE @i"e
t oF use a "3 INVERSE 13"T"; INU
ERSE @3 "orch™>",
519 FRINT "“"Flease type the ap
propriate”,"initial letter.”
S2¢ LET T#="MRLEDT"
525 G0 SUB 2956
930 GO TO 4546+ (CODE A%)
534 G0 SUB S396: RETURN : REM D

I ME

539 GO SUb S200: RETURM : REM E
aT

542 GO SUR S1149: RETURN : REM L
EAVE

547 GO SUB 1oee: REM MOVE

344 LET N=100

545 GO SUR 28049: IF MOVE=9 THEM
RETURN

D446 G0 SUB 400+ (O*169): RETURN

548 GO SUR S4900: RETURN : REM R
106

EST .
=53 G0 SUBR 550¢: RETURN = EEM T
ORCH
292 REM input commands
1606 REM
ie4s LET MOVE=@
1656 IF TORCHFLAG=2 THEN LET TO
ECHFLAG=9: RETURN
151 IF MOVE=Z2 THEM LET MOVE=O:
FRINT "SOLID ROCE": RETUERN
1652 GO SUB Z900
1955 PRINT AT @,8:;"WHICH wWay?>"
1958 LET T#="NSEWUD": GO SUEB 295
5]
19260 IF A$(1)="N" THEN LET X=X-
i: GO SUEB Zove: IF MOVE=Z THEN
LET X=X+1: BO TO i165a
1106 IF A%(1)="8" THEN LET X=X+
1: GO SUER 20082 IF MOVE=2 THEN
LET X=X-1: GO TO 1650
1116 IF A%(1L)="E" THEN LET Y=Y+
1: GO SUB 2Ze0e: IF MOVE=2 THEN
LET ¥=Y—-1:=: GO TO 1656
112 IF A%{1)="W" THEN LET Y=Y¥Y-
1: G0 SUR 2e0a: IF MOVE=Z THEN
LET ¥=¥+1: GO TO 1056
1125 IF A%(1)r="L1" AND Z=1 THEN
FRINT "YOU'RE ON GROUND LEVEL'"
v GO TO 1656
1130 IF As{1)="U" THEN |LET I=7-
1: GO SUER 2e6o: IF MOVE=Z THEN
LET Z=Z+1: GO TO 1a56
1144 IF As(1)="0D" THEN |LET =Z+
e GO SUB 2000: 1F MOVE=Z2 THEN
LET Z=7Z-1: GO TO 165
1998 RETURN
1999 REM MOVEMENT
200 530 SUR 2266: IF MOVE=Z THEM
RETURN
2002 IF TORCHFLA4G=1 THEN LET MO
VE=2: LET TORCHFLAG=Z2: ILET MN=1&a
G GO SUB 280d9: RESTORE D+9261:
READ V$: FRINT "There is "iVé3"
here”: RETURN
2005 G0 SUR 29ea: PRINT AT 6,5
EXITS": LET MOVE=6
2010 LET X=X--1: GO SUBR ZIZ6o: IF
MOVE=1 THEN FRINT "NORTH"
2026 LET MOVE=0: |LET X=xX+Z: &G0 5
UB 22042 LET X=X-1: IF MOVE=1 TH
En FRINT "“SOUTH"
2030 LET MOVE=0: LET Y=Y-1: &0 5

107

U 2zZao: IF MOVE=1 THEN FPRINMT *
WEST"
2046 LET MOVE=G: LET ¥Y=¥+2: GO S
U 2200; LET Y=¥Y-1: IF MOVE=1 TH
EM FRINT "EAST"
20549 LET MOVE=éa: LET Z=Z+1: GO S
U 2Zoa: LET Z=Z-1: IF MOVE=1 TH
EN FRINT "DOWN"
2060 IF z:1 THEN LET MOVE=0: LE
T Z=I-1: GO SUB 220@: LET Z=2+1:
IF MOYE=1 THEN FRINT "“yp"
2200 LET F=FN F{(): IF F<.35 THEN
LET MOVE=Z: RETURN
2219 LET MOVE=1
2226 RETURN
2499 REM FRINT UFDATE
2599 FOR I=1 70O 12
2002 IF C{I)<® THEM LET C{(I)=6
2005 NEXT I
2514 LET COUNTER=COUNTER+1
2918 LET FIGHT=C(Z2)+C{(1)+C{15&)
2516 LET FOINT=(ME*S)+C(7)+ (TURN
*2')
2520 LET MAGIC=C(4)1C(2)
2525 LET C(&)=C({1)*C(3) =3
2038 LET CU12)=C{7)+(C(B)*5)+C {5
YHIC1A)25)+(C(S)*2)+(C(11)+%4)
2335 IF C(12) »>0(4) AND F<*1 THEN
GO SUE 2966: PRINT AT &,0:: FR
INT "You're carrying too much. ¥
ou must drop something.": GO S
U S1e6: LET DROF=1
2540 LET FATIGUE=INT ({((COUNTEE/
Bix{CC12) 712) Y /(Cl1)))
2345 LET C(3)=C(3)-FATIGUE
234& IF FATIGUE>.S AND F=0 THEN
G0 SUB 2998: PRINT AT @,0:"You’
re feeling exhausteg"”
2999 IF C(3)<1 THEN FRINT "You
collapse with fatigue and that
s the end of vou.": GO TO 996006
29592 LET Cil&)=C(1)*CI{T)=3
2003 LET C12)=C{(7y+(C(B)*5)+C (T
}+ECf1H¥*ﬁJ+(Lu-1*_J+trf 11 %4
2354 FRINT AT 1 sy "y FRINT
AT 15,299
2555 PRINT AT 15,125 INT {(TORCH+D
. F)
2558 FRINT AT 15,293 FOINT
2557 FOR I=1 TO 4
2558 IF C(I) =209 THEN LET i ¢
5]

=

108

2559
bl
2545
PETO
2575
2580
2585

PG

NEXT I

FOR I=1 TO &

PRINT AT 1%+71, 123" "
PRINT AT 15+1,12:0(1)

FRINT AT 15+I,29:" "
PRINT AT 15+1,29:C(I+&)
NEXT 1

IF DROF=1 THEN LET DROF=@;

GO TO 2515

2699
2799
GER

2EOO

HETLFEM
FEM TO SET CONTROLLING INTE

REM MOVES ALL IRRELEVANT 1IN

TEGERS BEYOMD THE DECIMAL FPOINT

2805
1é))
28a%

LET L=(P*(N/16))-INT (F*(N/

REM MOVES THE REQUIRED INTE

GER WF AND GETS RID OF THE REST

281
282

ZEYY
2906
205
2916

2915
2918
29260
2923

2924
2925
2949
2750
2952
2955
2940
CHR®
2944

ll;ﬁ$

29465
2970
2975
2980
2985
2998
2999
Z@la
ZO20

LET B=INT (O#*1a)

RETURMN

FEM CLEAR TOFP WINDOW

FRINT AT o,a

FOR I=60 T0O #

FRINT AT I,a5"

NEXT 1

IF TOFCLEAR=1 THEN RETURN
FOR I=92 TO 14

FRINT &7 I,63"

NEXT 1

RETLIRMN

REM VALIDATE INFUT

LET Af=INKEY%

LET KET=6

IF A%="" THEN GO TO 2956
IF CODE A$:70 THEN LET As$=
(CODE Aa$-32)

FRINT AT 11,0;"You”ve typed

FOR I=1 TO LEN (T%)

IF T#{I)=A% THEN LET KT=1
NMEXT 1

IF ET=1 THEN RETURN

GO TO 293¢

RETURN

REM COMBAT ROUTINES

FAUSE 109: GO SUR 2900
FRINT AT @,0:"Do you want t

o Retreat, use a magic Bolt or
Fhvsical combat™"

ZO30

LET TH="FBR"

109

o400 GO SUB 2956

ZaS0 IF As(1)="F" THEN GO TO 33

0

Ee60 IF A(1)="B" THEN GO TO 32

Do

Za7d LET R=FN R(3)

Fage IF R*1 THEN GO SUB Z900:

RIMNT AT ©,05"You escape unharmed

": LET RETREAT=1: RETLIRN

Iegdo GO0 SUB 2906: PRINT AT o,035"

You can’t get past": LET RETREAT

2190 RETURN

3200 IF Ca)<1 THEN GO SUR 2960
FRINT AT @,a5"You have no magi

c bolts": FAUSE S000: GO TO 2616

3205 LET R=FN R(4&)

3219 LET C8)=C{8)~1

2220 IF R>MAGIC THEN GO TO 3266

2238 PRINMT AT @,0f"Youwr magic bo

lt sends the ""M%3i" reeling"”

2249 LET MZ2)=M{Z2)~-FN R{12)

3256 RETURN

2269 G0 SUR Z900: FPRINT AT @o,03"

You miss": RETURN

S3ea G0 5Ub Z29aa: PRINT AT @,a5"

Weapon Up or Forward?"

D319 LET Ts="UF"

2320 G0 S5UR 2950

S325 LET AU=-1

Z330 IF A%="F" THEN LET AU=1

3340 LET AD=FIGHT-M(1)

2350 LET AD=INT ({(FN RAD))/2)

3360 LET AD=AD+AU-DU

3370 LET DF=INT (FN R(M(S5))/2)

3380 IF DF>AD THEN GO SUER 296¢:
FRINT AT @,05"4 miss": PAUSE 10

w: RETURN

3390 LET DAMAGE=INT (FN R(C(1o)r+

C{1))-FN R(M(S)))

oo IF DAMAGE<1 THEN LET Damac

E=1

34a1 LET M2)=M{2) -DAMAGE .

3405 G0 SUEB 2Z99v: FRINT AT o,0:"

You cause "iDAMAGE:" damage"

2404 FAUSE 1o

3416 RETURN

2499 REM MONSTER COMBAT

3500 LET R=FN R{M(3))

2519 LET S=FN R(M(43))

ST2e LET Du=1

3536 IF 8+1 THEN LET Du=-1

110

544 IF Rx*1 THEN GO TO 3600
5, IF MOSY<2 THEN GO TO 360

=540 LET R=FN R{Za)

=576¢ IF RXM1)Y THEN GO TO 35%5
I580 GO SUEB 2900: FPRINT AT @,a3"
A magical bolt sears out and
hits you": FAUSE 5@

x585 LET C(3)=C(3)-FN R{(3)

5960 RETURN

3595 GO SUER 2906: FRINT AT a,03"

A magical bolt rushes past your
head": PARUSE S¢@: RETURN

T4HO0 LET DA=(FN RM(1)+M{&)) /2)
T41@ LET DA=DA+DL-AL

24620 LET AF=INT (FN R(C(11)+2))

T&TO IF DACAF THEN GO SUB 2900:
FRINT AT 9,93"The monster strik

es at vou but misses !'!!": FAUS

E S@: RETURN

2649 LET DAMAGE=FN R (3)

3659 G0 5UEB Z29e0: FPRINT AT a,e3"
You're hit": FPAUSE So

3669 LET CC3)=C(3)-DAMAGE

36878 IF C(3)<é THEN LET c(3)=a

2675 PRINT "And suffer "iDAMAGES
" damage": FAUSE 5o

2680 RETURN

4a1e G0 SUR Z2Fe0: FRINT AT ao,a3"

Here®s a wandering gypsy. He has

some terrific bargains if you

have enough money."

4011 FPAUSE 10

4012 LET R=FN R(3): IF KH=3 THEN
30 SUE B49o: RETURN

4015 LET R=FN R(4)

4a2¢ LET S=FN R{{C(7) /2Y+{(R#4))
4a%0 PRINT B (R)3" for ";i5"" sil

ver plieces.”

4a35 FAUSE 10

4346 PRINT "How many do vou want

4045 INFUT Te: IF T#5>C(7) THEN

FRINT "Don’t be silly": FAUSE 1o

2: GO SUE 2900 PRINT AT o,e:1:2 G

0O T0 463

4056 LET CA7)=C(7)~(T*5)

4055 GO TO 4055+R

4056 LET C(51=C(5)+T: RETURN
4057 LET C(1o)=C(16)+T: RETURM
40358 LET TORCH=TORCH+T: RETURN

4959 LET C(2)=C(?)+1: RETURN

4999 RETURN

111

4166 LET R=FN R{20)

4191 1IF R:SER (FOINT)+S THEN GO
TO 4106

41a2 GO0 SUE 2966

413 LET TOFPCLEAR=1

4105 RESTORE 9249+R

4104 LET kKM=R

411e@ FOR I=1 TO &

4115 READ M(I)

4126 NEXT 1

4125 READ M<

4136 FRINT AT 9,01 "You see a "iM

;]

4131 FPAUSE loa¢

4132 LET RETREAT=®

4134 FRINT AT 10,03"CONSTITUTION
"iM(Z): PRINT AT 12,17 "SKILL ©
sMi1)

4135 LET R=FN R(M{1))

4140 LET S=FN R(C(1}))

4145 IF S>=R THEN GO TO 4155
41446 LET F=1: B0 SUBR 256d

4147 PRINT AT 11,03 "ARMOUR ":1M(S5
Y: PRINT AT 10,03"CONSTITUTION *
sM(2)5" ": PRINT AT 10,175"SKILL
"IMO1): FPRINT AT 11,175 "WEAFDON
"rUE (DU+2)Y

4148 IF M(2) >0 THEN GO SUE ZIS66

4149 (B0 SUR 2566

4150 IF RETREAT=2 THEN LET RETR

EAT=G: LET F=¢: LET TOFCLEA&R=(:

RETURN

4155 IF C(3) >0 THEN GO SUB I606

4160 IF RETREAT=1 THEN LET F=@s
LET RETREAT=¢: LLET TOFPCLEA&R=(:

RETURN

4142 LET RETREAT=6

41465 IF C(32)<1 THEN GO SUR 2960
: FRINT AT 6,95 "0h dear' You're

dead.": PAUSE 100: LET DEAD=1: L

ET TOFCLEAR=G: RETURN

4179 IF M(2)<1 THEN GO SUB 2966
¢ LET TOFCLEAR=O: FFRINT arT a,a3"

You kill him in no uncertain ter

ms": LET F=0: LET ME=ME+EM: LET

TR=M(Z2)+M (1) + (M{&) #*FN R{(3)): PRI

NT "He had "iTR:" silver pieces"
: PAUSE 100: LET C(7)=C(7)+TR: R

ETURN

4199 GO TO 4144

4199 RETURN

4205 GO SUB 298¢

112

4210 FPRINT AT @,9:"You're in a t
hieve's den"
4215 LET N=1040oH: GO SUR 2Z2BOG:
LET R=FN R{1o}
226 IF R>3 THEN FRINT "The thi
ef i=s in'": FPAUSE 1oo: GO0 TO 4256
22% FRINT "There®s no-one herg"
4270 IF R<Z THEN FRINT "and no
booty "2 FAUSE 19d: RETURN
4235 IF @<&6& THEN LET R=FN R({100
y: PRINT AT &,035"You find "iRs"
silver pieces": LET C(7)=C(7)+R:
FALISE 1&a: RETURN
4240 FRINT "You find a piece of
armour ": IF C(11)<% THEN LET C
(11)=C{11)+1: PFPAUSE S9: RETURN
250 LET S=FN R{(1@d): FRINT "He
wants "i1593" silver pileces"”
4252 IF S<=C{(7) THEN GO TO 4279
4255 IF S>*C(7) THEN FRINT "But
as you haven’t enough he’'ll take
something else as well"
4260 IF C(11) >0 THEN PRINT "a p
tece of armour": PAUSE 15¢: LET
Cli1y=C({11)—1:z GO TO 4270
4265 TIF C(1e) >0 THEN FRINT "a w
eapan ": FAUSE 150: LET Cile)y=C(
la) -1
/270 LET C(?)=C(7)~-5: IF C(7)<a
THEN LET C(7)=0: PAUSE 109: RET
URN
4298 RETURN
4299 REM TREASURE
43516 LET R=FN R(35)
4315 LET S=FN R{15)
4314 GO SUEB 2700
4729 IF R=1 THEN FRINT AT o,03"
You find "3 INT (5/3)+13;" magic b
olts": LET C(8)=C(8)+INT (§/3)+1
: FAUSE 150: RETURN
4325 IF R=2 THEN FRINT AT @,03"
You find "i5%#5:i" silver pieces":
FAUSE 199: LET C(7)=C{(7)+5%#5: R
ETURN
4330 IF R=3 THEN PRINT AT 6,0:"
You find a magical shield": PAUS
E 100: LET C(11)=12: RETURN
43I5 IF R=4 THEN PFRINT AT @,03"
You’re surrounded by pigmies who
run off with your weapons'": LET
Cl1e)=0: FAUSE 10¢: RETURN
4340 PRINT AT 0,0i"You find a si

113

lver monster who eats all wvour
armour": PAUSE 106: LET Cili=a
RETURN

47598 RETURN

4%%% REM FOTIONM

4400 PRINT "POTIOMN"

441e FRINT “You +ind a potion®
4420 FPRINT "Do vou wish to take
it (T} or drink it (D) or 1
geave it alone (L) 2"

44Z%e LET TH="TDL"

44480 G0 SUE 2950

4450 LET FOISON=FN R(Z)

4468 IF A%(1)="T" THEN LET C(9)
=C(Qr+1

4470 IF A (1)="D" THEN LET C(9)
=C{(2)+1: GO SUE 531d

4498 RETURN

4499 REM WEAFON

451a@ LET R=FN R(Z): LET S=FN R(8&
}+3

4515 IF R=1 THEN LET CURSE=1
4520 LET R=FN R(3)+1

4522 LET R=INT (5/R)

4523 GO SUB 2900: PRINT AT &,o03"

I
L]

4525 FRINT "You find a "+W$(R)
4526 GO SUB 5000

4528 IF A%(1)="N" THEN RETURN
4529 IF C1)*R THEN GO SUB 296

@: FRINT AT @,e:"You already hav

€ a better weapon. Are you
sure you want itY": GO SUR S5

GB: IF a$="N" THEN RETURN

4530 IF R=S THEN LET C(11)=C(11
)42 RETURN

4535 LET C(19)=R: RETURN

4598 RETURN

4599 REM ACCIDENT

45605 LET N=100000

4604 GO SUER 2800

4607 ILLET R=FN R{1&)

4610 IF Q<3 THEN PRINT "An empt
vy cave': PAUSE So: RETURN

4615 IF Q<5 THEN PRINT "Yau fal
1 down a pit": LET C(3) = C(3)-F

N R(3): FAUSE 106: RETURN

44620 IF R>S THEN GO TO 4430

4621 FRINT "You're caught in a w

eb": PAUSE 56: LET R=FN R(3): IF
R =3 THEN FRINT "but escape w

ithout harm": PAUSE S5o: RETURN

114

44522 IF R=1 THEMN FRINT " and v
ou're injured in escaping”": LET
C{3) = C(3)=FN R(5): FAUSE 164w:

RETURN

44624 IF R=2 THEN LET S5=FN R{C(1
y # 1.5): IF S<C(1)Y THEN FRINT
"Wau aescape but are weakened in
the struggle": LET Cil1)= (1) -
FN Ri4): FAUSE 1aa: REETURN

44670 IF P48 THEN FRINT "a guill

agtine descends from aboveand des
trovs one of vour WEADGNS
*: PAUSE 100: LET CClo)=C{(i9)~-1:
RETURMN

456560 FRINT "There is a magical w

ataertall here. A few drops sp
lash wou and...": FAUSE 56
4655 LET R=FN R{I)

44560 IF R=1 THEMN FRINT "vou fee
1l much stronger": LET STR=S5TR+I:
FAUSE S¢: RETURN

4665 IF R=2 THEN FRINT "it diss

oclves yvour armour": LET C{il) =

9: FPAUSE So: RETURN

4470 PRINT "you feel weaker": L
ET C(3) = C{(3)-FN R(3): FAUSE Sé
1 RETURM

4498 RETURN

4700 GO TO 49600

47798 RETURN

4759% REM NOTHING

48600 GO TO 4700

49aa GO SUR 2900: FRINT AT o,0:3"
You find an empty cave."

4998 RETURN

5006 FPRINT "Do vou wish to take
it?"

5910 LET Té="YN"

o902 GO SUB 2950

w30 RETURN

Sled GO TO S11i1

=119 GO0 SUR Z9a9: FRINT AT @,03

3111 FRINT "Do vou want to leave

5112 PRINT "Money (1)"

9113 PRINT "A weapon (23"

9114 PRINT "A magic item (3"
9115 FRINT "A& potion (4

=11l4s PRINT "Food (5"

35117 FPRINT "Armour (&)™

S118 PRINT "Nothing (A%

51260 LET T&="1234567"

115

5122 GO SUB 2956

5125 GO TO 5125+ (VAL (A%) *5)
59139 PRINT "How much?"

3132 INFUT A: IF AXC(7) THEN F
RINT Z%: GO SUB 2900: GO TO S116
o134 LET C(7)=C(7)-A: RETURN
S133 IF C(1e)<1 THEN FRINT Y$:
GO SUB 2909: GO TO S110

9136 LET C(1@)=C(10)-1

5137 IF C(9)=6 THEN LET CURSE=®
9138 IF CURSE=1 THEN LET R=FN R

(3): IF R=1 THEN LET CURSE=0
9139 RETURN

S140 IF C(8)<1 THEN FRINT Y%: G

0 SUB 279006: GO TO 5116

5142 LET C(B)=Ci(8)~1: RETURN

=145 IF C(9)<9o THEN PRINT Y$: G

D SUR 2900: GO TO Si114

9147 LET C(?)=C(9)—-1: RETURN

5150 IF C(3)<1 THEN FRINT Y$: G

0 SUR 2900: GO TO S11é

93132 LET C(S5)=C(S)~12 RETURN

3155 IF C(11)<1 THEN FRINT Y$:

GO 5uUB Z9aa: GO TO S1160

2157 LET C(11)=C(11)-1: RETURN

G160 RETURNM

5199 REM EAT

G200 IF C{(5)<1 THEN FRINT "You

can’t eat stone.": PAUSE 2¢: RET

URN

=216 LET C(5)=C{5)~-1

9220 LET C(3)=C(3)+INT (FN R((20

-=C{3}¥)/2))

5298 RETURN

299 REM FOTION

23a353 GO SUB 2900: FRINT AT o,as3"
L]

2318 IF C(M <1 THEN FPRINT "You®

ve rno potion": RETURN

wos@ LET C(?)=C(?)-1

o330 IF FOISON=1 THEN LET F=FN

RO

9340 LET R=FN R(&): LET S=FN R(4

)

29345 IF P=1 THEN LET FDISON=G:

GO TO S537@

2369 G0 SUR Z2906: FRINT AT o,61"

Your "3IC$(5)3: " "goes up "iR:i" poi

nts ": LET C(S)=C(S)+R: RETURN
9370 GO 5UB 2906: PRINT AT B, oy
Whoops!!! It was poisaned ! Your

"TCH(5)3" goes down "iR+1:" poi

116

nts": LET C(S)=C(5) K

5398 BETURM

5358 REM rest

=416 LET COUNTER=1

=420 LET R=FN R {53}

s4%0 IF R=1 THEN GO SUEB Z2900: P

RINT AT @,@5"Your nolsy breathin

g attracts a monster"s: FPAUSE 16

B G0 BUE 4100

5440 RETURN

5499 REM torch

E51e IF TORCH-®.1 THEN FRINT Y%
RETURMN

5520 LET TORCH=TORCH-o. 1

53¢ LET TORCHFLAG=1

5540 GO SUER 1645

7998 RETURN

799 REM SET UF VARIABLES FLUNCTI

ONS AND ARRAYS

good RANDOMIZE

gaal LET DROF=G: LET ME=6

go6e LET kEM=0: LET TOFCLEAR=®

BooI LET CURSE=a

8goo4 LET F=o

BooS LET MOVE=o

goas LET TORCHFLAG=@
B0©7 LET TORCH=@

Boe8 LET POISON=a

B90O9 LET DEAD=®

B@1® DEF FN F()= SOR (X*X+Y*Y*Z)
~ INT (SR (X®*X+Y*Y*Z))

BOol11 LET FOINT=0

B@12 LET TURN=a

8015 LET H$="How many for"

BO2® DEF FN R(x)=INT {(RND¥*:x)+1
BoZZ LET X=FN R({(1@)+1&: LET ¥Y=FN
R(20)+10: LET Z=1

BaZ3 LET Z%$="You don’t have enou
gh*

8u3¢ LET ¥Y$="You haven't any"
BO3X1 DIM U$(3,7)

BOZI2 LET Us(1)="UP"

BOIT LET U$(3)="FORWARD"

B35 DIM W$(5,6)

BoI& DIM B$(5,12)

8037 LET DA=0G: LET AD=@

Bo38 LET AU=9: LET DU=o

8039 LET AF=0: LET DF=0

B8040 DIM C%(12,12)

8045 DIM C(12)

Ba446 DIM M(b)

8047 LET Mg=""

117

ga48 LET RETREAT=

g05¢ LET J%$="Do vou want to take

i.t?“

8055 LET COUNTER=®: LET FATIGUE=

@: LET FIGHT=@: LET MAGIC=
gas6é FOR I=1 T0O 12

BobLS READ C#(1)

Ba7e LET Ci{l)=a

BO7S NEXT I

Bag8o FOR I=1 TO 5

8085 READ W#{I)

BoYa NEXT 1

Blwae FOR I=1 TO 5

8193 READ EB$(I)

8116 NEXT I

8195 CLS

8199 REM sets up character

209 FPRINT "You have 12 points t

-

(] distribute amongst S
trength, Skill, Constitution
and Friowledge"

8205 LET C(4)=12
820868 LET C(7)=166
8219 FRINT H%$:i" Strength”
8226 INFUT C(1)
8225 1IF C(1)=C(4) THEM PRINT
: LET Cl1y=0: GO TO #8210
8226 LET C{4)=C({4)-C (1)
8227 LET C(l1)=C(1)+8
B220 FPRINT H#:" Skill®"
8240 INFUT C(2)
B245 1IF C(2) :C{4) THEN FRINT
: LET Ci2)=0: GO TO 823
B2446 LET Ci4)y=C(4)-C(2)
8247 LET C{(Z2)=C(2)+8H
8259 FRINT H#:" Constitution"
Brée INFUT C(3)
8265 IF C(3)>C(4) THEN FRINT
: LET E(3)y=0: GO TO 82560
B2&66 LET C(4)=C{4)-C(3)
82467 LET C{(Z3)=L(3)+8B
BZ279 FRINT "That leaves "jC{4)
for Enowledge"
8275 LET C(4)=C(4)+8
8292 REM SETUF DISFLAY
BZ00 FOR I=1 70 &
H31e FRINT AT 1S+I,0:03%(1)
8320 PRINT AT 15+I,1&6:iCs(I+46)
83%0 NEXT I
B335 PRINT AT 15,9:"TORCHES ":
RINT AT 15,1863 "POINTS "
4 ([0 S5UR 2516 '

118

%

2%

%

Fr

a2x29 REM buving
gaan GO SUB Z5ea: GO 5UEB 29090
gao: IF Ci7)<8 THEN GO 5UB 2700
: PRINT AT 2,9 "You don’t have &
nough money ": RETURN
g40S FRINT AT @,a3" i
84160 FPRINT "You have "iC(7):i" =i
lver plieces”
8415 PRINT "You can buy 2"
ga26e PRINT “"ITEM
SF esach”

8475 FPRINT " (&) Armour iper piec
e) 15*
8430 PRINT "i{(F) Food pack

1a"
8475 FRINT " (k) Fnife

1é"
B44a FRIMT "{(M) Magic bolt

b
B44%5 FRINT " (F) Fotion

Sen
g45o FRINT "{5) Sword

San
8455 FRINT " (W) Torch

Ell
8446 FRINT "(Z) End buying"
8445 LET T&="AFEMPEWI": GO SUR 2
Foo
g847a GO TO 8404+C0DE A%
8471 IF C(71<1% THEN PFPRINT ZI%:
GO SUBR Z9oa: GO TO 89400
8472 LET C(11)=Cd11)+1s LET C¢7)
=C(7)-15: GO TN {400
8474 IF C(73<1& THEN FRINT Z%:
GO S5UB 2Pea: GO 7O 8400
B477 LET C(5)=C(S)+1: LET C{(71)=C
(7)=16: GO0 TO 8400
8481 IF C(7)<1& THEN PRINT Z$:
G50 [5UR 290a: GO TO B400
8482 LET Cc1@)=1: LET C(7)y=C(7)-
1: GO TO B4ad
8483 IF C(7)<25% THEN FRINT Z%:
GO SUR 29606: GO TO 8460
8484 LET C(B)=C(8)+1: LET (C(7)=0
(7)-28: GO TO 8400
B4846 IF C(7)<30 THEN FPRINT Z%:
G0 SUE Zeee: GO TO 8400
8487 LET C($=Ci{®)+1: LET C(7)=C
(7)-3a: GO TO 8400
8489 IF C(7)<30 THEN PRINT 2%:
G0 SUB 296a: G0 TO B400
8499 LET C(1@)=2: LET C(7)=0(7)—-

119

I GO TD 84oa

B493 IF CI(7)<8 THEN PRINT Z$: G
0 SUER 29046: GO TO 8404

8494 LET TORCH=TORCH+1: LET C(7)
=C{7)-8: GO TO 8400

8495 RETURN

8498 RETURN

8499 REM INSTRUCTIONS

8500 FRINT AT 16,835 FLASH 13 "MER
LIN"S MINES"

8503 PAUSE 5Soo: CLS

851& PRINT This is a random
dungeon containing combat an
d magic. The aim is to gain a
S many . points as possi
ble" '

85329 PRINT AT 4,4:"This is done
by finding treasures and sl

aying monsters."

8530 FRINT AT 9,93 "But you must

watch yourself. I+ your Constitu
tion drops below 1, youTre

dead. "

8549 FRINT AT 13,05 "You will los

e constitution ","if you forget

to rest, or if"," yOou are w

ounded.",,," Constitution and st

rength ","determine how much you
can carry"i"skill and strength

help combat,","skill and knowled

ge determine"," magical comb
at- 1]

8550 FRINT “@:;"Fress any key to

continue"

8555 FAUSE 1060

8539 CLS

8536 FRINT " Food increases con
stitution"®

8378 FRINT AT 3,.2i"Fotions may i

ncrease your"," abilities, but
they may be"," poilsone
d. "

8389 FRINT AT 7,2i"You start wit

h eight points","for each of vou

r abilities and"." have twaelwve
more points to"," distri
bute. "

Bbow FRINT ™~é3 "FPress any key to
continus"

B610 FAUSE 1006

8620 CLS : PRINT AT 1¢,85"INITIA
LISING" .

B8998 RETURN

120

g99% REM DATA

ooled DATA “STRENGTH", "SKILLY,"CO
NSTI®TION", "KNOWLEDGE", "FOOD", "M
ax BURDEN","MONEY","MAGIC BOLTS"
,"PDTIDNE","NEHPDN VALUE", "ARMOL
R VALUE", "BURDEN"

gp2e DATA "KNIFE ","SWORD ", "FLA
L ","SPEAR ", "SHIELD"

gp3® DATA “"Food ","A sword","A p

otion "“,"A magic bolt*," Tarches
9201 DATA "a gypsy"

92602 DATA "a monster"

9263 DATA "a thief’s lair"”

9205 DATA "a potion"

@206 DATA "a weapon”

g9z2a7 DATA "a& hazard"

268 DATA "nothing”

2269 DATA "nothing"

9216 DATA “"nothing"

9250 DATA 7,15.3.4,14,2,"=snake”
2251 DATA 12.8,2.3,16,4, "demon"
252 DATA 9,13,5,46,9,5,"gnablin”
9253 DATA B,16,6,5,7,8,"svart™
9254 DATA 13,8,3%,2,10,4, "grendel

a
a
&
9204 DATA "a treasure"
&
a
a

2255 DATA 16,6,B8,4,12,3,"grim re
aper [1]

256 DATA 14,4,5,1,13,6,"troll"
Q257 DATA 146,10,4,2,11,6,"2zombie
9258 DATA 14,12,5,3,16,3,"ghaul™
9259 DATA 10,11,6,3,13,7,"giant"
9240 DATA 12,16.46,4,12,5, "ghost”
9261 DATA 18,16,2,3,14,5, "vampir
Ell

Q2462 DATA 16,9.3,.2,14,.8,"dragon”
9263 DATA 14,14,5,3,12,9,"banshe
E“

92464 DATA 17,11.8,3,14,7,"gremli
mn i

?265 DATA 10,15,2,2,10,"devourer
F2&665 DATA 18,12,6,6,14,8,"bloods
ucker"

9267 DATA 17,14,2,2,15,9, "werewo
1+

9268 DATA 18,146,2,2,12,10,"cl awe
d demon"

P269 DATA 19,15,2,8,14,9,"Beelze
bub™

oo FRINT "END": STOF

121

7 TEXT

7.1 Input

The kind of input that an adventure game uses depends to some
extent on its type. A real-time graphics adventure, for example,
needs single-key entry, whereas a complex puzzle adventure needs
input that is as close as possible to ordinary English. There are other
types of input, but we will look at these two, using the second for the
puzzle game of Camelot and the first for The Mines of Merlin. In both
cases the procedure is the same:

1. INDICATE THAT INPUT IS NEEDED

2. PLAYER INPUTS INFORMATION

3. CHECK THAT INFORMATION IS ACCEPTABLE
4. INTERPRET INPUT

5. ACT ON INPUT

Single-key input is the easiest to program and in some ways the
easiest forthe player ifthere are only a few possible inputs. However,
iftoo many keys are required (more than about eight) the player will
forget which is which and make mistakes. While this can be useful in
some games, most players will dislike a game which is essentially
designed to test their knowledge of the keyboard.

For single-key entry, numbers are easiest to process, particularly
because numericinputiseasy tocheck. For example, ifthe numbers 2
to 6 are the only allowed input, a routine such as this will do the job:

90 PRINT “Please type a number between 2 and 6 and press
ENTER”
109 INPUT A
110 LET A =INTA
120 IF A>6 OR A<2 THEN GOTO 9¢

Line 110 is necessary to ensure that players do not try clever input
involving decimals.

As each key on the keyboard has a code, we can define a range of
allowable keys in the same way. The codes for all the Spectrum
characters are contained in Appendix A of the manual. For example,
lower case letters a to f are' codes 97 to 102 inclusive. To check this

122

input we would change the routine above to read:

9¢ PRINT “Please type a letter from a to f and press ENTER”
100 INPUT A$ '
116 LET A$=A%(1): REM JUST IN CASE MORE THAN ONE
LETTER IS TYPED
120 IF CODE A$<97 OR CODE A$>102 THEN GOTO 99

The problem with this is that the keys we choose are not likely to be
easy to remember unless each letteris the first letter of the command
it stands for, such as the usual N,S,E,W for the points of the compass.
Checking for errors in input as complex as these can itself be quite
complicated.

No matter how clever our program, there will be some possible
inputs we have not allowed for and the player can always make a
mistake. Therefore our error checking not only has to make sure that
the input is in the correct range but that it has to be sensitive to other
possible errors. Every time the player presses a key there should be
an appropriate routine to trap any errors. The error trap should come
early in the routine if a mistake is likely, but may come at the end if
mistakes are less likely. If in doubt the check should come immedi-
ately after the INPUT (or GET or INKEY) statement.

If an error is detected then some form of error message should be
sent to the player to inform him or her of the mistake. The best error
messages tell Cad three things:

1. That he or she has made an error.
2. The kind of error that has been made
3. The kind of input that is acceptable

The worst kind of error message is no message at all! The player will
have no idea what is going on or what he is meant to be doing.

If we are allowing a number of different single-key inputs, all we
can do to check them is to test for each one in turn. We could do this
mechanically by using an IF ... THEN statement for each of the
possible inputs each time input is required, with the default line
being ‘ERROR’, but this has the usual faults of inelegance, wasteful-
ness, and inefficiency.

What we want is aroutine to check that the input letteris oneofan
acceptable set of characters. It is quite likely that at different points
in the game different sets of characters will be allowed. For example,
during combat the possibilties might be:

A = ATTACK
M = MAGIC

123

R = RETREAT

whereas on entering a new location the options might be:

L = LISTEN
R = REST
S = SEARCH
W = WAIT

So the routine should be a general one which can be called whenever
single-letter input is expected to test for its validity.

The obvious method for us to use is to hold the valid charactersasa
string and compare the input character with each of the charactersin
the string in turn. We will call the string T$ (for Test). Then every
time single-letter input is expected we use INKEY$ rather than
INPUT, to maximize the main advantage of single-letter input,
which is speed, using the following routine:

80 REM FOR COMBAT INPUT
99 PRINT “Please type a single letter (A,M or R)”
169 LET T$ = “AMRamr”:REM DECLARE TEST STRING
119 GOSUB 1009
12¢ PRINT “0.K. That’s valid”
9090 STOP
999 REM CHECKS FOR VALID CHARACTERS
1009 LET A$ = INKEY$
1010 LETT =0
1929 IF A$ =" THEN GOTO 10¢¢
1030 FORI =1 TO LEN (T$)
1049 IF T$(I) = A THENLETT =1
1050 NEXT I
1060 IF T = 1 THEN RETURN
1879 PRINT “No, you idiot, A, M or R”
107¢ GOTO 1000

If you follow this routine through you will see that control only
returns from the subroutine if one of the correct keys is pressed. T is
set to 1 only if one of the correct letters is found and control only
returns to the main routine if T is set to 1.

Subroutine 199 can be called at any time in the game so long as we
remember to declare the test string before the call is made. Notice
that the declared string controls the subroutine by its contents and
length. It is important that we do not include any invalid characters
in the string, such as punctuation or spaces, unless these are possible

124

valid input. Remember also that the longer the string T$ the longer
theroutine will take torun, soit isbest to keep T$ limited to five orsix
characters in each case.

This method of checking isused in The Mines of Merlin, the routine
being held at lines 295¢ to 2998. Note two refinements here. Line
2960 converts any lower case input to upper case, thus making the
test strings much shorter and easier to code. Line 2964 tells the
player which character he or she has just typed so that any mistakes
can be monitored. One of Cad’s worst features is the way he blames
the program for the way his fingers slip around the keyboard.

If we use single-key input we should try to do the following:

Choose only a few keys.

Choose keys whose meaning easily stands for the appropriate
command.

Make sure we can check for potential errors in the input.
Choose a combination of keys that can easily be handled on the
keyboard, especially if the game is real-time.

'_bﬁi—l

oo

What about ‘English’ input? It is usual in text-based adventures
for commands of word pairs to be allowed, such as “GO WEST”,
“TAKE BOOK?”, etc. These are obviously more complex than single-
key input— they take more time to design, to code, and to use in play,
but they offer much more varied rewards than limited single-key
input.

Even with this complexity a technique similar to that for testing
single-key input can be used. The differences are that INPUT has to
be used instead of INKEY$ (so the ENTER key has to be pressed after
each input by the player) and the string which is input has to be
divided into its separate words. We will asume a two-word input,
though the principles remain the same for longer phrases or sen-
tences. Camelot will only allow two-word input, though later on we’ll
discuss some ways this might be changed. We need to declare some
string variables as well as we will use the following:

A$ is the string input by the player

B$ is the first word

C$ is the second word

D$ is the first three letters of the first word
E$ is the first three letters of the second word
N$ is a test string for nouns

V$ is a test string for verbs

It will now become clear why all these are needed. It would be
better if we could use variable names with more mnemonic titles (to
make them easier to remember in writing and debugging the pro-

125

gram) but Spectrum BASIC only allows single-letter names for
string variables. The flowchart we will use 1s:

1. PLAYER INPUTS TWO-WORD COMMAND

2. WORDS ARE SEPARATED

3. D$ IS SET TO THE FIRST THREE LETTERS OF THE FIRST

WORD

4. D§ IS CHECKED AGAINST V§$

5. E$ ISSET TO THE FIRST THREE LETTERS OF THE SECOND
WORD

6. E$ IS CHECKED AGAINST N$

Although we could check the complete words that were input this
would take more time and memory than is necessary. A three-letter
code is enough to distinguish many words and, providing we can
ensure that no pair of valid command words in our program begins
with the same three letters, there will be no problems. Therefore do
not pick CANDLE and CANNON, forexample, in the same program.
If, for some reason, you have to have keywords which start with the
same three letters, you will have to use four-letter codes, or more if
more are needed to distinguish the words, but this should be avoided
if possible.

The Throne of Camelot uses two-word input. Among its allowed
commandsare: LIGHT TORCH, TAKE WHEEL, and SWIM RIVER.
The allowed verbs are thus LIGHT, TAKE, and SWIM, while the
allowed nounsare TORCH, WHEEL, and RIVER. Notice that no two
of these words begin with the same three letters. We can compile
strings made up of the three-letter codes of acceptable words in the
same way that we did for T$ in the single-key input routine above.
Thus somewhere in the program will be a line saying LET N$ =
“TORWHERIV” and another saying LET V$ = “LIGTAKSWTI”.

We can then compare the first three letters of our input words (D$
and E$) with each three-letter section of thisstring and, ifit matches,
we can then branch to the appropriate routine. Let us work through
the whole procedure a stage at a time in Spectrum BASIC. As we will
want this routine quite frequently it should be put early in our
program, at lines 100@ to 1500.

First, input the words:

999 REM TWO WORD INPUT
1000 PRINT “What next?”
1019 INPUT A$
Then separate A$ into two words:

126

163¢ FORT = 1 TO LEN(A$)

1640 IF A$(D="" THEN LET B$ = A$(1 TO I-1): LET C$ =
A$(I+1 TO LEN(A$)); LET K = K+1

19050 NEXT 1

1060 IF K<>1 OR C$ = *” THEN PRINT “Two words please”;
GOTO 1900

K is a counter which marks the number of spaces found, so line 145§
can check that there is only one space and that two words have been
found.

Next we take the first three letters of each of the two words. The
problem here is with words such as GO which have only two letters.
We have to add a space to these, which means that V$§ must include
GO plus space if it is an allowed command, e.g., “LIGTAKGO SWI”.
Line 1060 does this:

195@ LETB$ = B$ + ”: LETC$. C$ o NP
1079 LET D$ = B$(1 TO 3): LET E$ = C$(1 TO 3)
1075 LET FL = ¢

In a similar way we can use a string such as “N S E W” to define
movement commands which can be input as single-letter commands
but will not be confused with the initial letters of other words.

Now we check D$ against the verb codes (V$) and E$ against the
noun codes (N$). As the process is the same for both we can use the
same checking routine twice, providing we declare the relevant
strings before we call it:

1089 LET T$ = V$: LET U$ = D$: GOSUB 1200

1985 IF FL = 1 THEN RETURN

1099 LET T$ = N$: LET U$ = E$: GOSUB 1200

1095 IF FL=1 THEN RETURN

1¢96 PRINT “O.K.”

1099 RETURN

1199 REM ROUTINE TO COMPARE TEST STRING AND
INPUT WORD

120¢ FORI =1TO LEN(T$) STEP 3

1219 IF T$(ITO I+2) = U$ THEN RETURN

12290 NEXTI

123@ PRINT “I don’t know how to”; A$: LET FL =1

124¢ RETURN

Notethe flag FLsetatlines 1075 and 1230. Line 19375 sets it tozero,

127

in case it has already been used. Line 1230 will set it to one if the first
half of the command is invalid so that, on returning to 1985, the
routine is not run for the second part. Notice also the STEP command
in line 120@, which may be an instruction you have not used before.
This simply means that the FOR . . . NEXT loop between lines 12¢¢
and 1220 will increase I by three at a time, thus moving along T$
three characters at a time, which is how our codes are grouped.
Normally a FOR . . . NEXT loop will operate in steps of one, which is
the default value if STEP is not specified.

Having checked that the input is alright we now have to branch to
the appropriate routine in the program. The most elegant way to do
this would be to use numerical input or character codes as the basis of
sending control to subroutines. For example, a very elegant input
and selection routine would be:

90 PRINT “Please type an instruction from 1 to 9”
10¢ INPUT A: LET A = INT(A): IF A<1 OR A>9 THEN GOTO
109
110 GOSUB A * 1000

This sends control to subroutines beginning at lines 1009, 2000, etc.,
up to 99P0. However, such elegance is not always possible if the input
isinitial letters or full words. By careful design we could send control
toasubroutine related to the character CODE or the sum of the codes
in any three-letter combination, but the design effort is probably not
worth while. Consequently, a series of one-line tests is used to direct
control to appropriate routines, of the form:

IF input = keyword x THEN GOSUB routine y
For our single-key example appropriate lines might be;

130 IF A$ ="“A” THEN GOSUB 2000
149 IF A$ = “M” THEN GOSUB 210¢
150 IF A$ = “R” THEN GOSUB 2200

and for two-word input appropriate lines might be:

13¢ IF B$ = “TAK” THEN GOSUB 2000
140 IF B$ = “SWI” THEN GOSUB 210¢
etce.

However, Spectrum BASIC can go one better than this to make
things somewhat easier. The parameter of a GOSUB or a GOTO can
be a numeric variable and numeric variables may be any number of

128

characters. Consequently, each acceptable letter or three-letter code
can be used as a variable name, and the value of the variable can be
declared as the line number of the appropriate subroutine.

To clarify this let us use the example of SWIM. Suppose that the
swimming routine begins at line 211Q. During initialization of the
program we can assign a value to the variable called SWI, whichalso
happens to be our three-letter code for swim. When input has been
through all the validation checks B$ will hold “SWI” as the first part
of the first word. If we can turn the string held by B$ into the value
held by the variable with the same name, we can use the input string
to direct control.

The function which does this is VAL, which turns a string into its
appropriate value. If our program contains among others the follow-
ing lines:

19 LET SWI = 2110

.....................

ttttttttttttttttttt

||||||||||||||||||||

then it will work if “SWIM?” is the first word input.

The advantage of this is that it is easy to follow the workings of the
program and it saves coding. We need a LET command for every
acceptable input word, but can dispense with all the long-winded IF
.. .THEN statements. It also allows clever programmers to alter the
routine a particular command isrunning. For example, there may be
two locations in which a player might be allowed to swim, namely, a
placid stream and a dangerous river. If the player swims in the
stream there is no danger of drowning. For the river, everything is
the same as for the stream, except that there is the danger of drown-
ing. Therefore the same routine will be used for each, with an extra
piece of code for the river. If this extra piece of code was held at line
2005, with the common routine at 2110, then a line like the following
could make use of it:

135 IF LOCATION = RIVER THEN LET SWI = 20¢5

However, this trick will only be of use in a few circumstances, as extra
code can be held and called in other ways, e.g., by the use of flags or
nested subroutines.

129

Asthe most frequently used nouns will be those for movement we
canspeed things up by having two noun strings, one full of objects and
the other for directions, i.e., "NORSOUEASWES”, and only test the
latter when a valid movement verb is detected,i.e., in the case of
Camelot the verb GO. In addition, we will need two special com-
mands which do not need nouns, namely, HELP and INVENTORY.
The first of these gives help to the player with problems; the second
lists all the objects he or she currently has. Before the standard word
comparison routine we need three separate tests for these three
verbs. As the latter two have no nouns, we test for these before the
main routine, i.e., between lines 1015 and 102¢:

1016 IF A$(1 TO 3) = “INV” THEN GOSUB INV: RETURN
1017 IF A$(1 TO 3) = “HEL” THEN GOSUB HEL: RETURN

The test for GO will come before the main verb and noun tests, i.e.,
before 1080. If W$ is the string “NORSOUEASWES” then lines 1978
and 1979 will do the job:

1978 1F D$ =“GO” THEN LET T$ = W$: LET U$ = E$: GOSUB
120¢: IF FL = 1 THEN RETURN
1979 IF D$ = “GO” THEN GOSUB VAL(B$): RETURN

These check that the word following GO is a legitimate direction,
send control back to the main program if not, or forward to the GO
routine if it is.

We must also minimize the effects of faulty input of commands.
Likely mistakes involve typing only one word, or words of less than
three letters, or extra spaces. Because the checking routine uses the
string slicer these mistakes could give the error number 3, ‘subscript
wrong’, for example, because the string is not long enough to be
sliced. An easy way to avoid most of these problems is to declare the
variables not as empty strings but as strings of spaces and to clear
each string to the required number of spaces each time the input loop
is used. This is done in lines 1099 and 1011 of the program.

Once the loop has run it will return with a flag marking an error if
one has occurred, and input will again be repeated. However, if both
input words are all right control will have to be passed to other
routines in the program. In the case of Camelot the routines are
movement (block 3) or description (blocks 4 and 5). In order that the
detected verbs and nouns can be used in such control they have to be
given numerical values, and if we do not want to use the method
already outlined of declaring variables with the same names as the
verb codes and values equal-to the subroutine line numbers we have

130

one further alternative.

For every verb or noun we already have a value, namely, the
position of the three-letter code for each word in the relevant string.
This is counted by the variable I in the loop which attempts to match
D$ or E$ against these codes, but I is used as the variable in several
otherloops, so monitoring it might become confusing. Consequently,
thereisacommandinline 121@whichsets Ktothesame valueaslifa
match is found in the checking loop. Then K is passed back to the
main checking routine where it is turned into the appropriate vari-
able, here called VERB or NOUN.

If there are special words to be detected then VERB and NOUN
may have to be set specially. In Camelot there are two such words,
INVENTORY and HELP, which are looked for as special cases before
the general checker. For these, VERB has to be set specially.

With these two variables, VERB and NOUN, most of the descrip-
tive routines can be called. VERB is used as the control variable to
call the appropriate verb routines and NOUN is used as one of the
variables which determines the exact subroutine which is used.

As these are crucial values it is very important to approach them
from a logical point of view. While coding my adventures I use three
major reference sheets to find my way through the program. These
are doubly important if you have no printer so cannot obtain hard
copy of the problematic or unfinished areas of your program.

My first reference sheet is a map of the logical maze with each
location numbered as outlined in Chapter 6. Each location which is
either a GET or NEED square has G or N written in it, plus the noun
or nouns which are there. In addition any special puzzles or features
are also noted here, such as the river which has to be swum. Finally,
an H is placed in each square where an object is hidden, rather than
immediately obvious.

Tomake things easy I use the variable LOCATION in the program
to hold the PEEK code for each location on the map, and this is the
control variable for the description routines in block 6 (lines 6000 to
6999). The correspondence is as follows: the location numberisonmy
hand-drawn map, is held above Ramtop in a specific address, and
when multiplied by 19 and added to 630 gives us the number of the
description routine.

The second list isofall the verbroutines and theirstart lines. These
should be regularly spaced (I use 20 lines) and kept in the same order
asthe verbsin the verbstring. Consequently, ifyoudecide thata verb
is not to be used after all or a new one is to be added you can see at a
glance where it should go in the verb string and in the program,
without having to worry about keeping track of how many there are
or what VERB should be set. (As usual put the most frequently used

131

verbsfirstin thelist, early in the verbstring and early in the program
block.)

Finally, thereis the list of nouns. Thisis probably the most import-
ant of the lists. It holds the names of all the objects and the solutions
they are partof, aswell asthe linenumbersofthe verbroutines which
use them. The nouns are listed in the orderthey are held in the arrays
o() and 0$(), which roughly corresponds to the order the GETs and
NEEDsshould be encountered in the program to solve it. It is import-
ant to have a complete list because the noun routines, being the end
points of a series of calls, can seldom be held in a very logical way and
will therefore be difficult to locate during debugging. REM state-
ments would help with this problem, but as so many would be needed
that the size of the program may well be doubled they would have to
be removed from the finished version.

7.2 Talking to monsters

It is all very well killing monsters and stealing all their wordly
goods, but not every monster is hostile and some may be too powerful
for a lowly adventurer to pit himself against. In such circumstances
the wily adventurer is best advised to use sly flattery, gentle persua-
sion, high-sounding oaths, blood-chilling threats, or any other form
of conversation which seems likely to part the monster from his prize.
However, this means that the monster should be able to talk back,
and talking is a difficult thing to simulate.

Two approaches are possible on a micro. We can aim for as full a
simulation as possible in which many tests and transformations are
made on the language, attempts are made at meaningfulness, and a
wide and varied vocabulary is used. Or we can settle for a couple of
sleight-of-hand tricks, which appear to allow conversation but
actually just do random things with words.

The first approach is very complex, too difficult to give a full
account of here, but useful routines can be adapted from the Eliza or
Doctor routines found in many books of programs for micros. These
routines are based on two procedures— in the processing of input the
program checks for keywords by comparing each input word against
a dictionary of recognized words and, according to the match that is
found, will compile an output string with an appropriate meaning;
and in the processing of that output some changes are made to the
structure to make it fit grammatically with the input string.

Anexample ofthe first kind would be a test for a word like ‘fight’. If
this was found the monster might respond with ‘So you want to fight,
do you?’ and control might switch to the combat routine. An example
of the second would be the transformation of pronouns, where if the

132

first string is something like ‘I will give you my sword’, then the
output might be ‘O.K. I'll take your sword'.

This requires a great deal of thought. The least that is required of a
good routine to do this is that it should have a large and appropriate
vocabulary, that it should produce reasonably grammatical sen-
tences, that it should allow input of strings longer than two words,
and that the response should be connected to the input. This means
we would have to think of all the words likely to occur and find some
appropriate response for each, which might demand much more work
than the program justifies. However the essential design is easy to
describe (Fig. 7.1).

ACCEPT INPUT STRING

SEPARATE STRING INTO COMPONENT WORDS

HOLD ALL WORDS IN MEMORY

COMPARE ALL INPUT WORDS AGAINST THE

DICTIONARY OF KEYWORDS

IF A KEYWORD IS FOUND THEN EXECUTE THE

APPROPRIATE SUBROUTINE

IF THE SUBROUTINE USES THE ORIGINAL STRING THEN

DO THE NECESSARY TRANSFORMATIONS ON THAT

STRING

7. IF NO KEYWORDS ARE FOUND THEN EXECUTE A
DEFAULT OUTPUT

8. IF THE KEYWORD SENDS CONTROL TO ANOTHER

ROUTINE THEN EXECUTE THAT ROUTINE, OTHERWISE

GO TO THE BEGINNING OF THE CONVERSATION LOOP

Figure 7.1

o o ko

Stages 2 and 3 are simply expansions of the routines we have
already used to analyse two-word input, namely, looking for spaces
and holding all items between spaces as separate words. Stage 4 will
take each word in turn and each word in the database vocabulary and
compare the two ofthem. This could be a very long process, especially
if the input string or the vocabulary is large. It can be speeded
somewhat by using a three- or four-letter code rather than the full
word for matching (but this may result in faulty matches), by ignor-
ing all words of less than four or more than six letters (because these
arelikely tobe unusual or else serving grammatical but not semantic
purposes) and by using an indexing system, based either on the
alphabet or the CODEs of the characters, so that the search can
branch through the database rather than look at every item.

For example, suppose the input string was ‘Give me your jewels or
I'll chop off your head, you sycophant’. In consulting our dictionary

133

the simple method would be to take each word in turn and, using FOR
.. . NEXT loops, compare it witheachword in thedictionary. Butitis
unlikely that any interesting responses can be built into the
program todeal with or’, ‘off, ‘me’, ‘you’, or ‘sycophant’, which is why
these are all outside our word length limit. ‘'l could also be excluded
because it contains internal punctuation and this could be tested for.
Thismeansa 12-word string isreduced tosix. Foreach of these six the
program could then do the word-by-word comparison, but if we
arrange our dictionary in such a way that words can be compared
alphabetically, such as by using a number of string arrays, the
number of tests can be greatly reduced. If we suppose that only ‘give’
is held in this dictionary and the comparison is made alphabetically
it would take only two tests to find a match, as the program first looks
at ‘chop’ and then ‘give’.

Stage 5 is the heart of the program. For each keyword one or more
possible outputs should be allowed. These could be randomly selected
once control has been directed to them, or they could be motivatedin
some other way, as discussed in Chapter 8. For our sample string
some transformations might also be used. For example, the ‘give’
routine could take all the words between ‘give’ and the end of the
input string or a conjunction (in this case ‘or’), and invert any pro-
nouns found in that substring, in order to get ‘give you my jewels’. To
this the routine adds ‘If ' and ‘what will you give me?. So the output .
formula is:

‘If I + transformed input string + ‘what will you give me?

giving the perfectly meaningful response ‘If I give you my jewels,
what will you give me?’. Note that to do this, the program only needs
to recognize ONE keyword. It does not need to know what jewels are,
nor who ‘you’ refers to.

The default output, used if no keywords are found, would contain a
number of choices of non-committal remarks, such as ‘Tell me more’,
‘That’seasy for youtosay’, [don’t understand’, and soon. Even with a
firstclassstring processing program these remarks will be used more
than any other, so a wide choice is needed to prevent too much
repetition.

In principle routines like these could be used throughout entire
adventures, not just in exchanges with monsters. However, in prac-
tice this has not been done, for the reasons many other potentials of
adventures have not been realized— it takes too much time to code,
too much memory is used, there are many problems with design of
suitable algorithms, and no one has seriously tried it.

The easy option has been used quite successfully. This involves
more trickery than actual conversation, though the principles are

134

quite similar to those just discussed. Here no attempt has been made
to‘understand’ the input string, but the monster makes a more orless
random choice between a set of responses which make sense in the
context. '

For example, the player may be given a simple choice between
fighting and talking to a monster. He chooses the latter because
strength is low and says, ‘I'm very fond of goblins’. There are many
possible responses to such a remark— the monster could ask for more
information, could become angry, could become very friendly, could
be wary or deceitful. All of these possible attitudes can be expressed
by phrases which are unconnected to the phrase which sets them off:

Tell me more.

So all you can say is ‘I'm very fond of goblins, is it?’

I'm glad you've said that.

So that’s what you think, 1s it?

You'll have to give me some time to think of an answer.

Being unconnected to the input string these can be chosen random-
ly and, providing the next choice is reasonably consistent, this will
appeartomakesense and could eventually lead tocombatortogiving
treasure, or to the monster stealing from the character, or any other
action of the monster which is coded in the program.

A sample routine for this which could be added to The Mines of
Merlin is given below:

3800 LETR =0

3805 PRINT “What do you have to say?”

3810 LET R = FNR(3) + R

3820 INPUT A$

3822 IF R < 1 THEN GOTO 3950

3825 GOTO 3830 + (R*5)

3839 PRINT “I'm fed up with this, 'm going”: RETURN :REM
GOES BACK TO MAIN ROUTINE

3835 PRINT “So that’s how youfeelisit?”: LETR =R + 1: GOTO
3810

3840 PRINT“Idon’tquiteunderstandyou”: LETR =R —2: GOTO
3810

3845 PRINT “Haven’t you anything better to say than that?”:
LETR =R + 1: GOTO 3810

385¢ PRINT“Soyouwouldlikemenottoeatyou?”: LETR=R —3:
GOTO 3810

3855 PRINT “Do you want to be friendly then?”: LETR = R — 5:
GOTO 3819

135

3860 PRINT“I'mgettingimpatient”: LETR =R + 3: GOTQ 381¢

3865 PRINT “I detest adventurers like you”: LETR = R + 2

3879 PRINT “I could give you a reward if you behaved nicely”:
LETR =R - 5: GOTO 381¢

3875 PRINT“Ihate people whosaythingslikethat”;: LETR=R +

3: GOTO 3810

3880 PRINT“You'dbestwatchoutfor mytemper”: LETR=R — 1
GOTO 3810

3885 PRINT"You've one more chance to be pleasant”: LETR =R
— 2: GOTO 3810

3899 PRINT “I WARNED YOU!”: GOSUB COMBAT
ROUTINE: RETURN

3895 PRINT “Because I think you're so rude I'm taking your
treasure”: LET (treasure variable) = (: RETURN

3990 PRINT “Stuff this for a lark”: LET (treasure variable) = ¢
GOSUB COMBAT ROUTINE: RETURN

3905 PRINT “The monster works himselfup into an apoplectic fit
and expires on the floor”: LET (treasure variable) =
(treasure variable) + (monster’s treasure): RETURN

3950 PRINT“Youseemsofriendly 'm goingtoletyouhaveallmy
hard earned savings”: LET (treasure variable) = (treasure
variable) + (monster’s treasure): RETURN

This works quite simply by increasing and decreasing R according
to a random factor and according to the output string chosen. As R
goes down the monster is more likely to give his treasure away; as it
goes up he is more likely to fly into a rage. However, ifhe gets really
angry he may have a fit as aresult, and if R ever becomes one he may
Just get fed up and go away. The strings are muddled up a little in
order to make sure that R can fluctuate, because monsters are notor-
iously temperamental. However, the random variable added each
time will always tend to push him towards anger, so the longer the
character talks, the more likely he is to annoy the monster.

The routine can easily be expanded or contracted by adding and
subtracting lines, and other outcomes can be added by using other
values of R to direct control to other routines, or by building in other
variables. It would also be possible to incorporate simple checks on
the player’sinput to affect these variables. Forexample, adictionary
of swear words could be used as a database to check input, where two
such words would immediately send the monster into a rage.

136

& CHROME

8.1 The need for chrome

‘Chrome’ is a word used by board game designers to refer to the
decoration and additional detail that a game might have which has
no effect on the structure of the game or its play, but may, even so, be
essential to the flavour of the game. In a board game chrome would
include the scenario narratives, the attractiveness of counters, the
box design, background information, special presentation features,
additional variations, etc. Its purpose and effect is very much like the
chrome bodywork on acar— it is very attractive, it addstothe price, it
adds nothing to the performance of the car, yet it may very well be the
thing which attracts the buyer most. Inour case chromeis toattracta
player. It makes the game unique and intriguing, irrespective of
what actual play is like. So, though not strictly necessary, chrome
may be essential to the feel of a game and its overall effect on the
players, even if the shape and design of the game itselfis unremark-
able.

The success of a microgame such as Star Trek depends as much on
its appearance and theme ason its playability and design. The player
can take on the role of Captain Kirk and watch screen displays just
like those of a real starship captain (whatever that is!).

Poorly designed games pay little attention to chrome. Asfar asthe
designerisconcerneditisthe gamestructure whichis important, not
what the structure is meant to represent. This has led to a host of
poor quality abstract arcade-type games for the micro which, apart
from their packaging, have little to offer in the way of stimulating
intelligence or imagination. Programmers are not necessarily the
best people to write games. Many excellent programs are dull to play
because there is nothing original on the surface to catch the player’s
attention. On the other hand, there are some very poorly written
games which, because they are well presented and lavishly boxed,
sell much better than their programming deserves.

The aim of the good designer is to choose a game structure which is
not only interesting to play but is also a fair representation of a
reality. It uses detail, effects, graphics, sound, display format,
language, and documentation to create an atmosphere within which
the logical structure of the game program is a coherent and essential
part. :

137

So almost anything which enhances the appearance of the game
and makes its logic something real rather than abstract (more like a
simulation than an abstract game— the difference between Mono-
poly and Draughts) is likely to make it a better game, especially if it
adds variety to the game. We do not want to overburden the game
with superficial detail or else players will never actually play. Some
board games suffer from having so many rules and counters, so much
background detail, documentation, and supportive text, that players
never manage to penetrate it and to understand and play the game.
Ideally, therefore, the logic of the game should represent the logic of
the reality which is being ‘simulated’, and the chrome should be
sufficient to make it clear how the game logic is also the logic of a
particular world.

Forexample, one way of adding interest and variety to a fantasy or
science fiction game, whether it is a micro game or not, is by generat-
ing new names for people and places in the game. This could be done
quite simply by choosing a random sequence of letters from the
alphabet and stringing them together to form a new word. However,
the resulting word could be something like ‘ZXZQXL’, which is not
much like a real word. In fact it looks like a random series of letters.

Ifwe are talking about English, there are certain rules about letter
sequences that make our language what itis, such as the fact thata Q
is always followed by a U, or that a word always has at least one
vowel. Actually there are a large number of such rules, and it is
possible to write a program which makes up English words because
such a program can apply all of these rules in stringing letters
together. However, we do not need to go to such lengths to create
words which are varied, original, fantasy-like, yet sufficiently like
English to be regarded as real words and therefore a sufficient
representation of reality to make sense. A program to do this could fit
into about 2K for most machines, and could probably be squeezed into
less. All it needs to do is to take the following rules into account:

1. English words are made up of syllables (usually between one and
four).

2. Asyllable is a sequence of sounds, being zero to three consonants
followed by one or two vowels followed by another zero to three
consonants.

3. Certain sounds or letters occur more frequently in normal
language than others.

4. Some letters cannot follow other letters (e.g., in English F is not
followed by N in the same syllable).

The program should first choose a vowel and then decide how
many consonants will precede the vowel and how many will follow. It

138

then chooses a sequence of consonants, checking that they can follow
each other legitimately. It does this for both consonant groups and
thendecides ifthere will be any more syllables inthe word. This gives
you an English-like word. '

Waysofvarying the type of language essentially involve changing
-oneoftherules 1to4 above. For example, we could only allow words of
more than two syllables, we could change the relative frequency of
letters (Fig. 8.1 shows the relative frequency of occurrence in
English— this can be controlled by using DATA statements to hold
these letters and changing the number of times a particular letter is
held in these statements), we could change the number of consonants
before or after the vowel(s), and we could change the rules permitting
sequences of letters. The latter change might produce some very
strange words because there are some letter sequences which it is
almost impossible to say without making some other sound between
them.

Relative number
Letter of occurrences

Z 1
X 1
J 1
Q 1
K 2
\% 3
B 4
P 4
G 4
Y 5
4 5
F 6
M 7
C 7
1 10
D 11
R 15
H 15
S 20
N 20
T 22

Figure 8.1 Relative frequency of consonants in English

The flowchart in Fig. 8.2 outlines a detailed language generating
program along the lines just described. I have used variables with

139

SET UP CONSONANT ARRAY CO8(X). YOWEL ARRAY VWE(Y}

READ IN

WS ="": SL$="": GP§ =""g——

¥
CONSCHANTS AND VOWELS

v
S5Y = RAND{1-4}
I =1
¥
CHOOSE VOWEL

IF NV =1

v
NV = R.:'le—au
THEN CHOOSE EXTRA VOWEL

CL =48

-

—

Y

DOES CN = 97 ———4DOES CL = 87— — pCL = 1

lN

J 1

#FL a

« ,*

=

— »C0 = RAND[1-X}

GP$ = GP$ + CO%(CO)

o+

¥
CHECK CONSOMNANT ORDER
{1IF UNACCEPTABLE RETURN FL

—— DOES FL = 17

v
¥

DOES J = CNf ——

i

CN = RANDIO-3i+4

Y

= 1)

DOES CL = 17

Bt

—) = J + 1

SL$ = GP§ + SL§

SLE = 5L8 + GF§

+
GP§ ="* 4————

DOES I = SY? —Y __ pwD§ = WD§ + SL$

L Y

PRINT WD$
Im I+l +*

¢ PRINT " "
WDE = WDE + SL§

+

SLE = ** L z)

X = NUMBER OF CONSONANTS
TO CHOOSE FROM
¥ = NUMBER OF VOWELS
TO CHOOSE FROM
Figure 8.2 ¥

140

THE VARIABLES IN THE FLOW CHART ARE:

CO$ (NUMBER OF CONSONANTS| = CONSONANT ARRAY
VWE (NUMBER OF VOWELS| = VOWEL ARRAY

5Y NUMBER OF SYLLABLES PER WORD

V CHOSEKNK VOWEL NUMBER IN ARRAY

NV CONTROLS NUMEER OF VOWELS PER SYLLABLE
Ch NUMEER OF CONSONANTS

SLE VOWEL STRING

GPE CURRENT CONSONANT STRING

WDE CURRENT WORD

ZZg CURRENT CONSOMANT ORDER STRING

FL FLAG FOR CONSONANT ORDER

CL FLAG FOR FIRST OR LAST CONSONANT GROUP

longnames tomakeit clearer, though these would have tobe changed
for Spectrum BASIC. A version of the program for the Spectrum is
available on the separate cassette. *The main point is that to make
such an idea worth while it has to look like a real word, with all the
rules built in. There is no point in bothering with this kind of chrome
unless it is done as well as possible.

*The flowchart and description of a language generator program first appeared in Issue 10 of
The War Machine, August 1982,

8.2 Intelligence in adventure

‘Intelligence’ means here not player intelligence but machine
intelligence. Generating names for use in a program or non-micro
game is useful, but it is only a superficial aspect of a game. It can
consume memory which might be better used in terms of game
structure. However, if you write a program with a degree of intelli-
gence in it, you have provided originality at the fundamental struc-
tural game level. A program which can, in some sense, ‘think’ will
provide a degree of variety which is not superficial but fundamental
to the game, making each game different but in a significant way.

Such games are just beginning to appear for micros. A notable
success for the Spectrum has been The Hobbit, an adventure game in
which charactersrespond to the player’sactionsbut also have livesof
their own—e.g., the program ‘understands’ the concept of ‘friend’
and‘enemy’, so monsterswill behavedifferently according tothe way
they have been treated by the player’s character. Other program-
mers are currently working on war games in which the player has to
combat the computer. The computer makes strategic and tactical
decisions which depend on what the playerisdoing. In other words, it
seems to ‘understand’ what the player is doing and has a large range
of possible responses which are chosen according to its understand-
ing of the situation. Most advanced in this area are programs for
abstract games such as Chess and Othello, in which the computercan
consistently beat even good players because it has a better knowl-
edge of tactical possibilities.

These kind of games employ techniques used in the field of artifi-
cialintelligence. Artificialintelligence isreally a branchof the study
of human intelligence. Itsaim is to learn more about the human mind
by discovering what we need to know to make a machine act ina way
which we would regard as human. However, it has become very
important in various other areas such as robotics, missile guidance
systems, and medical diagnosis. As intelligence is what is primarily
being tested in non-arcade games, and as a game is a self-contained
world, games provide a good way of developing distinct artificial

141

intelligence techniques, and these potentially can make a new
generation of games which are much more exciting than the current-
ly available selection.

This is because programmed intelligence in a game allows us to
overcome (or, at least, to try to overcome) the two major problems we
haveseeninadventure programmingsofar.Ontheonehand, thereis
the puzzle game. This is a real test of the player’s intelligence and
imagination, but it has the major defect of being fixed in structure
and content, so thatonce it has beensolved it will not be played again.
Ontheotherhand, thereisthe combat game. Rather than being fixed
at the outset, this is fundamentally a series of random structures.
The player has relatively little to do in the way of developing a
consistent and intelligent strategy, and little chance of predicting
how the parts of the adventure might fit together. Monsters and
treasures are randomly distributed and alterations in the charac-
ter’s variables, abilities, and characteristics are more or less acci-
dental (depending on which locations he went to and when). So
though each encounter may be interesting, its fundamentally
random nature will eventually lead to boredom.

What is needed is a game which structures itself, so that it is
different each time it is played. However, it must have a logical
structure, so that player intelligence can be tested and strategies can
be developed, and its changes during play must respond to the
player’s previous decisions not randomly, but intelligently. Arti-
ficial intelligence can provide ideas and techniques on how to go
about achieving this. Unfortunately, however, the current genera-
tion of microcomputers has insufficient memory for large artificial
intelligence components, so at present we can only investigate the
possibilities and try to find new ways of development.

The key to making a program behave intelligently is to make it
understand. That means it has to know not only what the player has
just done but also what he has been doing for some while, and what
these actions mean (i.e., what the playeris likely to do in the future).
Normal games programs consist of a series of immediate responses,
based on what the player hasjust done. In the puzzle game the player
types in a command and the program interprets the command, then
forgets it, and waits for the nextone. In the combat game the program
calculates the effect of each blow, then forgets it, and waits for the
next one. It calculates each combat in this way. When it is over it
forgets it and waits for the next one.

Anintelligent program, however, remembers what has been done,
tries to interpret it (by discovering an underlying meaning or
strategy), and tries to predict what might happen next. According to
that prediction it will make a response which is not based on the

142

player’slast actions, but the overall trend of his actions, and which is

not purely responsive and dependent, but independent, directed by
the ‘goals’ of the program itself.

For example, let us look at the concept of enemy/friend mentioned
above. Asimple flowchartfor understanding thisconcept might be as
in Fig. 8.3.

PLAYER ACTS TOWARDS MONSTER

IFTHE ACTIONISHOSTILETHEN LETENEMY =ENEMY +
1

[F THE ACTION IS NOT HOSTILE THEN LET FRIEND =
FRIEND + 1

IF FRIEND < ENEMY THEN FIGHT THE CHARACTER

IF FRIEND >= ENEMY THEN GIVE THE CHARACTER
REWARD

Figure 8.3 The concept of friend/enemy

S| 9 P

In other words, this involves setting a variable for each of the two
concepts, updating the two variables every time the player performs
an action, and comparing the two variables every time a response is
needed. Consequently, two possible types of routine are also needed,
a friendly one and a hostile one. This could mean that for every
monster in the game two variables are needed and two sets of
response routines. Obviously this is likely to double the amount of
memory we will need for a fixed number of encounters, though there
are ways to reduce this. For example, the enemy/friend dichotomy
can be held in one variable, with hostility subtracting one from the
value of that variable and friendliness adding one. Thus if the
number is positive the relationship is friendly; if negative it is
hostile. Also the same response routines can be used with different
variables for different monsters. Even so, more memory is needed for
‘intelligent’ routines.

For every axis of intelligence we wish to add, the costs in memory
and coding will increase. So if we wanted to record generosity versus
miserliness, or caution versus recklessness, or talkativeness versus
shyness, or stupidity versus cleverness, we will need to add variables
and routines for each of these. While such additions will greatly
enhance the game, what we are actually adding is potential. In any
particular playing ofthe game many oftheseroutines might neverbe
used. A very unfriendly, generous, cautious, talkative, and stupid
player would only ever use half the game. Potentially the game
would be much more interactive and exciting, but some of it would
not be used.

This is the problem with such programming. Intelligence involves

143

being able to respond to a wide number of situations, so they have to
be programmed in, but if a particular situation does not occur, that
part of the program will not be used.

The same is true in writing a game which writes itself. It is quite
possible to build a game which is both logically structured and
different on each play, though it would be more complex than either
of the two game types we have so far examined. For example, a
version of the Camelot puzzle game could choose from a set of possible
puzzle types each time it was run. Suppose it had the choice of
anagram, cypher, and square-root problem. It chooses ‘cypher’. It
then uses the cypher routine to produce an actual cypher and it holds
this in memory as being the particular problem to solve. It then looks
at all the empty locations in the game and picks one to hold that
cypher. It then chooses another empty location, and sets a flag which
indicates ‘If the cypher has not been solved, this location is blocked’.
Then it selects from a number of possible descriptions the actual
description used: *Your route is blocked by a door with a combination
lock’. Finally, it checks that a route is possible between the two
locations.

The process just described is very much like the processes
described earlier in this book in more detail, to guide you through the
task of writing your own adventure. In other words, such a program
would be doing what a programmer could do and doing it intelli-
gently. However, it would involve at least eight routines which we
did not incorporate in our game, plus extra memory and variables to
hold the possible choices, and this would only set one type of location.
If this was to be a semantic puzzle, such as one based on a pun, a
different set of routines would be needed.

It therefore seems unlikely that micros such as the Spectrum will
support such elaborate games. However, it would be possible to
devise a suite of programs which would together ‘write’ such original
games. For example, all the above eight routines could be held as
separate programs, each producing data which were saved to cass-
ette or disc or microdrive and then used as the data for the next
program in the sequence. With the speed and capacity of discs or the
Spectrum microdrive, such a game-generating suite might be worth
developing, because the suite could be run by a single cqmmand as if
it was one program, and the result would be an original structured
game, as if the game was writing itself.

Similarly the problem of holding a number of potential routines
which might not be used, in making characters and computer
responses more ‘intelligent’, can also be reduced by using discs. Ifthe
least used routines are held on disc or microdrive they do not need to
use any of the computer’s RAM except when called and loaded. Thus

144

the same RAM could be used for different routines at different times
in the game. However, only expensive micros like the Apple
presently have such adventures, and even these slow the response
time of a game down quite noticably.

Even so, it is possible to improve existing types of game substan-
tially, even within the limits of the current generation of micros. One
way to do this is to combine both the puzzle and combat types. There
are one or two games which attempt this, but some programs which
claim to have been successful are really several separate games
masquerading as one.

If you understand the principles behind both types of game you
should find it easy to improve them and consequently may hit on
ways of integrating them. It is a relatively easy job to add combat
locations to the puzzle game, for example. A particular location could
be passed through not by solving a problem but by fighting a monster.
That fight could be helped or hindered by the objects which the
player’s character is currently carrying. A sword might make him
fight better; a plank might get in his way. By a device such as thisan
extra dimension can be added to the puzzle game as the player cannot
be certain that a particular set of objects will always lead to success.

Similarly the combat game can have puzzle locations within it.
Suppose the reward for destroying an enemy starship is that Cad
gains its cargo. The cargo could be fuel or ammunition, in which case
this simply improves the fighting abilities of the victorious ship.
However, it could also be an object without which the ship could not
go to a particular location; this could be a map of a new solar system,
or an electronic key to a starport, or a guidance system for use in
asteroid fields.

In this way puzzles, combat strategies, and even arcade-type real-
time action can be combined in one game. Variety is not only of
structure and content but also of play. The player will have to make
decisions of different kinds and in different combinations, testing all
of his abilities and not just a limited set of them.

It is also possible to use techniques like those used in artificial
intelligence to enhance a game without trying to go to the full extent
of making the program cope with every eventuality. For example, in
the combat game it is a comparatively simple matter to keep a record
ofthe number of victories the player has scored over a particularkind
of monster. If this record shows that the player tends to defeat one
kind of monster but run away from another kind, the program can
alter the game so that there are fewer of the ‘easy’ monsters and more
of the *hard’ ones. Or it can just keep count of the monsters killed and
use this as a variable which determines the strength of the next
monster encountered.

145

Intelligence could also be built in to a routine like that described in
Sec. 7.3 for talking between monster and character. For example,
suppose your program keeps track of the numberofgoblinsthe player
kills and the number he tries to bribe or use some other tactic. This
can be used as an index of ‘friendliness/hostility to goblins’. Suppose
that the player meets a very powerful goblin and does not want to
fight it. He does not have any money, so he cannot bribe it, and he
needs the treasure which the goblin is guarding. His only option is to
talk. In the program’s database will be a number of keywords to look
for in the talk routine and each will have a value, such as the
following:

Word Value
evil -3
nasty —
ugly =1
nice +1

intelligent +2

The talk routine, having detected such a word, addsits value to the
index of hostility and friendliness. If the index drops below —9 the
goblin will attack. Ifit goes above +9the goblin will give the treasure
away. Otherwise, providing the player does not attack, he will carry
on talking, but his response will depend on the current level of the
hostility index.

Ifthe index is —8, he might say ‘Clear off, you lousy elf’, but if it is
+8 he might say ‘T'm glad you came because I've been looking for
someone to give my diamonds to’. It would not be necessary to have a
different conversational gambit for every value of the index if there
wasnotroom tostore alarge amount oftext, and variety in output can
be achieved by combining phrases. Again, these phrases would have
to be valued in the range of the index (-9 to +9), but some phrases
might have a wide range of values, for example:

Value for
Phrase hostility
number Phrase of output
1 I'M GLAD YOUVE COME +7 TO +9
2 I HATE ELVES -6 TO -9
3 BECAUSE -9 TO +9
4 CLEAR OFF -5 TO -9
5 AND -9 TO +9
6 BUT -9TO +9
7 I LIKE ELVES - +6 TO +9

146

8 YOU LOUSY ELF -4 TO -9

9 TELL ME MORE —-7TO +7
10 I'LL SKIN YOU ALIVE -8 TO -9
11 I'VE SOMETHING FOR YOU -3 TO +4

12 I'M GOINGTOLET YOUHAVEIT -5 TO +3

The phrases used at any particular time would be chosen so that
they fitted together sensibly and all were allowed by the current
hostility index. Even more variety can be included in such output by
including variables or randomly chosen words. For example, phrase
8 could be held as “YOU” + A$(R) + N$, where A$() is an array of
insulting adjectives, R is a random number, and N$ holds the kind of
character that the player has chosen (wizard, elf, dwarf, etc.). By
building upsmall elements in this way a great deal of complexity can
be built into a game using relatively little memory and this complex-
ity will be meaningful, not random.

Donot forget thatif we puta variable or asetof data in our program
for one purpose we can use it for many other purposes. For example, a
simple routine can be used to allow monsters to give clues to the
whereaboutsof treasure as the reward for victory, rather than giving
out the treasure itself. Such a routine can use the data already
present and be given out either as a truth or a lie.

For example, we might want the output to be ‘Spare my life and T'll
tell you where x is’. The monster might know where x is, or he might
not, and as x would beone of the treasure itemslocation somewherein
the program, no new variables would be needed for telling the truth.
However, if the monster is to lie, it has to choose a treasure from the
set of possible treasures and a location for it. The following routine
would do the job:

99 REM ROUTINE FOR LYING MONSTERS
100 LET R = INT(RND*3) +1
1190 IFR=1THENLETL = treasurelocation: LETT$ = treasure-
name$: GOTO 140
12¢ LET R = INT(RND*4)+1: LET L = INT(RND * 29)+1
130 FORI =1 TO R: READ T$: NEXT I
149 PRINT “If you spare my life I'll tell you where the “;T$;” is”
15¢ REM (player spares monsters life)
169 PRINT “The “;T$;” is at™;L
189 RETURN
190 DATA silver crown, gold torque, ruby, emerald

Line 100 decides whethertolie or not. Thereisaonein three chance
that the monster will tell the truth. (Of course, some monsters might

147

be more truthful than others, in which case 3 will be replaced by the
truthfulness variable.) Line 11() sets variables T$ and L to the
treasure’s name and true location respectively and then sends con-
trol to the output lines.

Line 120 selects the lie, choosing one of four treasures and one of
twenty locations. Line 130 reads the name of the treasure into T$,
using the DATA statement at 180, which will be the same DATA
statement used to originally set up the map. Lines 140 to 170 output
the information. Here seven lines of new program add a whole new
dimension to the game; they could be reduced by, for example, letting
the random number which determines if a lie is to be told also
determine the actual lie to be told.

There are many ways of adding new aspects to a basic game by
using the existing structure. Monsters can be ‘disguised’ as other
monsters; puzzles can use data already defined in the program for
other purposes; the subroutine used to determine combat can also be
given different parameters or variables and used to determine if a
door can be opened, if a chest explodes, if a monster is asleep, etc.; a
record of generosity can be used todetermine the size of bribes needed
(monsters ask for more because they have heard that the player is
generous), the price of equipment, the friendliness of ‘good’ crea-
tures, the chance of a bribe being successful, or the effectiveness of
magic (the gods reward a generous player); input insults can be
‘remembered’ and used later about the player; objects which are
useful in one situation can be hazards in another— the possibilities
are endless.

8.3 Sound

Sound, like graphics, is one of those features which varies enorm-
ously from machine to machine. The Spectrum really has rather
limited sound resources. Even so there are a number of things that
can be done with it to enhance a game.

The simplest use of sound is as a reinforcer; that is to say, it is a
redundant signal, telling a player what he would already know from
some other information available to him. Many games BEEP every
turn to tell the player that his turn is over; or BEEP if the player is
moving into a wall or other obstacle; or BEEP to show that the game
has finished; and so on. Many players are only irritated by this, so if
we choose to build such redundant signals into our game it is a good
idea to give the player the option of switching the sound off.

This can be done easily. Include in the setting up of the game a
question asking if sound is wanted or not and use the answer to set a
flag. In every BEEP statement in the program include a test to see if

148

the flag is set; if it is not then make the BEEP or enter the sound
subroutine. The test statements would look like this:

IF FLAG = ¢ THEN BEEP 0.1,20

The other superfluous use of sound which can be irritating is the
decorative use. Some microshave sound facilitieswhich, though they
make tunes possible, are not very attractive to the ear. It is therefore
not a good idea to use them for a decorative effect. However, others
have very good multi-channel sound and can be turned into passable
synthesizers. The Spectrum is nearer the former than the latter, but
tunes played on it can be quite pleasant. The irritation comes when
the tune has been played for the three hundredth time!

Tunes can be used to introduce and end games. Attheend the game
can always be interrupted if the player is fed up with it. However,
they should be used within the game with care. Perhaps such tunes
are acceptable if used as victory fanfares or as interludes while the
program is setting up its DATA. Even here, if the tune lasts a long
time it will only be regarded by the player as an unnecessary delay.

If we want music in our game we must integrate it in a sensible
way. One way in puzzle games is to make music one of the puzzles.
Tunes can be used as clues, just as messages of other kinds can. The
clue could be in the title of the piece (Problem: How do I cross the
river? Clue: Yellow Submarine), in the construction of the music
(Problem: How do I attract the Wizard's attention? Clue: The 1812
Qverture, i.e., make a loud noise), or in the lyrics of a song, for which
the micro just gives the tune (Problem: Why does this valley keep
changing? Clue: The Sound of Music, i.e., ‘the hills are alive’). If we
wanted to be very nasty we could encode a message in musical
notation, so that the message ‘beg’ could be conveyed by playing the
notes B, E, and G.

In combat games these kinds of use are seldom important. What is
useful, however, is a signal which tells a player something he might
not otherwise know, such as a warning that something is about to
happen or is happening. So when a monster is in the next room, or
when the Klingons are merely 50 parsecs away, or when the player’s
lifeblood is abouttodribble away, a well-timed noise will be anything
but irritating. It conveys exactly the information needed in a recog-
nizable form. In fact research has shown that people tend to pay more
attention to audible warnings than to most other kinds— one of the
reasons why Space Invaders seemed so compelling was the irresist-
ible quickening of its rhythm.

Onthe Spectrumone suchuseistosound a BEEPwheneverakeyis
pressed, because the keyboard is such that players may doubt if their
touch hasregistered, especially ifinput isnot immediately displayed

149

on the screen. This can be done by the command POKE 23609,N,
where N isthe length of the interval we want the BEEP to sound for.

If you want music in your program it is very tedious to keepwriting
BEEP plus the values for each note, especially if certain notes or
durations are repeated. It is better to hold the parameters for BEEP
asdatainany of the formswe haveexploredin previouschapters— as
simple variables, as arrays, as DATA statements, or as strings.
Rememberifyouuseastringthat the time taken to processthestring
might alter the duration of the notes played. Remember also that
BEEP interrupts the normal timing of the Spectrum, holding up
everything else, so if it occurs in the middle of a real-time routine
allowance must be made for the interruption.

Thislatter feature can be used to advantage, of course. If we want a
delay in our program we can always use PAUSE, but if we do, then
nothing is going on at the same time. BEEP acts very much like
PAUSE, except that it cannot be interrupted by the user but does
something else at the same time. In addition to playing a tune or
producing a particular effect the length of the tune also gives the
player an idea of the amount of time that has elapsed.

Toproduce effects with the Spectrum sound you will need to experi-
ment and keep notes of what you do and what the results are like.
However, some simple effects are easy to discover. The four simplest
to program are to increase or decrease the pitch and to increase or
decrease the duration. An increase in pitch with a decrease in dura-
tion sounds like acceleration; a decrease in pitch with a decrease in
duration sounds like deceleration; pitch which regularly increases
and decreases sounds like a siren; aslow increase in pitch followed by
a rapid fall mimics a climbing then falling object; and so forth.

To demonstrate some of these, the program in Fig. 8.4 allows the
pitch and duration values to be changed as the program runs and
plays the result.

1 PRINT AT 1,65" 1 TO DECREAS
E PITCH BY .1"

2 PRINT " 2 TO DECREASE FITCH
BY 1"

T PRINT " 9 TO INCREASE FITCH
E‘Y 1 i

4 FRINT " @ TO INCREASE FITCH
E{"rr i 1 i

5 PRINT AT 14,4:" a TO DECREA
SE DURATION BY .o1™

& FRINT AT 17,0:" s TO DECREA
SE DURATION BY .1"

7 FRINT AT 18,e:" k TO INCREA
SE DURATION BY .1"

150

(5]

FRINT AT 12,93"
SE DURATION BY

i o

1 T INCREA

2 FPRINT AT @,1¢35 "FRESE"

10 LET p=©: LET d=.1

=50 IF INEEY#="1" THEN LET p=p
1 1

51 IF INEEY#%="2" THEN LET p=p
-1

5% IF p<-57 THEN LET p=-57

&8 IF INEEY$="&" THEN LET p=p
+.1

&1 IF INKEY$="9" THEN LET p=p
+1

&5 IF pr&? THEN LET p=6&%

7¢ IF INEEY$¢="a" THEN LET d=d
-1

71 IF INEEY#$="s" THEN LET d=d
_..'1

B IF INEKEY$="1" THEN LET d=d
+.01

B1 IF INKEY$="k" THEN LET d=d
+,1

20 IF d<e.92 THEN LET d=&.62

95 PRINT AT 1@,1a5" DURATION =
"eESTR$ (dis" "

Fhad FPRINT AT 12,1035" PITCH: "i85T
R$ (p} : 1] i

160 BEEF d,p

159 GO TO S5

Figure 8.4

151

PUZZLES, TRICKS,
AND TRAPS

This chapter is an unashamed collection of bits and pieces, puzzles
and problems that can be built into a game to add to its variety and
challenge. We will start by looking at Cad’s favourite command,
HELP!, and then look at some of the things he might like help with.

9.1 The HELP command

Atany stage in an adventure the player may be stuck, either because
he or she does not know what to do next (especially in a puzzle game)
or because he or she has forgotten some vital piece of information,
such as the spells that can be used in the combat game. The HELP
command can serve two functions: it can give the stuck player clues
and the forgetful player reminders. Both functions can be used in the
same game, but usually only one is available. To use both, it is
probably best to have two commands—HELP for clues and
INSTR(uctions) for instructions. If you are using full-word input,
then INSTR need only call up the same instruction routines as the
initial set-up or a subset of these. It would be wasteful to use a
different instruction routine unless it is discovered that allowed
instructions are actually part of the game.

For example, in a space game the starship may be travelling
around gathering artifacts from an ancient civilization, and each
artifact might allow a different action by the ship (such as faster
travel, better detection, new weapons, etc.). We might not wish the
player to know that such possibilities were available until the appro-
priate artifact had been found. One way to do this would be to give
each artifact a code number and keep a record of all the numbers
possessed by the ship/player (using a method like that of object-
gathering in Camelot). Then, when the INSTR command was input,
a number of separate instruction routines would be called, one for
each artifact.

The HELP command can be more complicated. The kind of clues
offered may depend on the currentlocation, abilities, and possessions
of the character. Its simplest form is often found in the puzzle game,
where a single clue is available at each location, the clues not
changing at all. Thus if the player finds a stuck door, typing HELP
may get the response ‘The hinges are rusty’. This should be enough of

152

a clue to suggest that oil is needed. In some cases no clue might be
available, so a non-committal response is needed as the default
response, such as “You seem to be doing fine’ or ‘I don’t think you
deserve any help’. -

This means holding a series of strings, one for each location that
needs a clue and one default string for all other locations. Typing
HELP would send control to a routine which prints the string which
is appropriate to the current location. The easiest way to obtain such
conditional access to strings is by using an array holding all the
strings, where the subscript of the array is the number of the current
location. The drawback with this is that locations without clues will
still get reserved space in the array, which is very wasteful in
memory. So here we have a case for a conditional GOTO statement
(which the Spectrum does not have). The statement in Microsoft or
BBC BASIC would be (if there were five possible locations):

ON LOCATION GOTO 5005, 5¢3@, 5015, 5030, 5025

where 5030 is used twice because it is the non-committal response.
Each of the statements 500¢ to 5030 would PRINT the appropriate
clue.

In Spectrum BASIC we have to be more crafty. We use a GOTO
with a variable derived from the location number. If the room has no
clue it has to pass through two GOTO statements, thus:

8¢9 GOSUB 5000
4999 REM CLUE ROUTINES
5000 GOTO 5009 + (LOCATION *16)
5010 PRINT “The hinges are rusty”: RETURN
5020 GOTO 5060
53¢ PRINT “Locks need keys”: RETURN
5049 GOTO 5060
5050 PRINT “What kind of herb needs waiting for?”: RETURN
5060 PRINT “You're doing fine”: RETURN

The kinds of clues given should not make the solution too easy or
else the puzzle will be solved without much effort. They should aim to
set the player in the right direction without explicitly giving the
answer. An example would be line 550 above, “What kind of herb
needs waiting for?”. The answer is ‘thyme’ but the clue does not tell
the player that. It forces him or her todosome thinking, though notas
much as the problem it helps with.

We should bear in mind when writing the HELP commands that
different sets of conditions might be true in one location at different
times. For example, in a jail the player may have to go through the

153

following stages to escape:

Obtain a meal.

Find the file hidden in the meal.

File through his handcuffs.

Break a leg off the bed.

Use the leg to bend the window bars apart.

O L3 BO

This would probably be marked by a flag being incremented from 0
to 5; when it reaches 5 the player could escape. So if HELP was typed
while the player was at that location five possible helping hands
might be necessary. These would have to be accessed through a
combination of two tests, one sending control to the location routine,
the other within that location routine picking the correct clue from
the five. Thus:

5000 GOTO 50¢¢ + (LOCATION *1¢)

5019 REM JAIL

5011 GOTO 5011 + FLAG

5012 PRINT “I feel hungry”; RETURN

5013 PRINT “I don’t like lumpy cake”: RETURN

5014 PRINT “A file is a handy object”: RETURN

5015 PRINT “Now to unmake the bed”: RETURN

5016 PRINT “Just a leg through the window and we're free”:
RETURN

Wemight even wish to make the HELP commands more specific, so
that tests are made to see whether the player has the objects needed
for particular actions; if not, remind him of the fact. For example, we
could check that Cad had all the objects needed to pass through the
next stage of the adventure before entering that stage, and the HELP
command could indicate what might be missing.

9.2 An anagram puzzle

A simple puzzle routine which does not take up much room yet can be
used over and over again in a game is the anagram puzzle. The
routine listed in Fig. 9.1 uses words read from DATA statements and
1t would be quite possible to use statements whichalreadyexistin the
program for some other purpose to feed this routine, providing they
were strings and organized in the correct way. If you have memory to
spare you can add especially complex vocabulary, but it is not
necessary.

To use existing DATA statements proceed as follows. Firstly,
ensure that they have been READ properly for their primary purpose

154

(e.g., if they are to be READ into string arrays). Then RESTORE the
DATA pointer to the beginning of the string DATA which will be
used by the anagram routine. If they are the first DATA statements
in your program, you need only RESTORE at the beginning of the
anagram routine: if the relevant statements are not the first, then
put RESTORE n, where n is the line number of the first relevant
DATA statement. However, if you use DATA statements anywhere
elsein the program make sure that you RESTORE the data pointerto
the beginning of the set of DATA that you want.

The anagram routine works as follows. Firstly, a word is selected
from the data. This chosen word is held in W$ and in V$. Line 20 then
generates a random whole number, R, which is in the range 1 to the
length of the chosen word. Line 399 adds to the string Y$ (which is
initially an empty string) the Rth character of the input word, V§.
Line 40 then removes the Rth letter from V$. Line 45 checks that
there are characters left in V$ and if so repeats the random choosing
process. Lines 5@ to 90 ask for an answer and continue asking until
the correct answer is found. This would have to be changed in a full
game.

This is only an illustrative routine and should be modified for any
serious use. The player should be allowed only a limited number of
guesses and some option to end the routine. As it stands numbers and
punctuation will all be treated as if they were wordsor parts of words.
This might be useful (e.g., we might want the computer to generate a
code of four digits as the combination to a safe and then scramble
them using the anagram routine to give a partial clue to the player),
but generally anagrams are only words, so we would want to check
that all the selected characters were codes between 65 and 90 or
between 97 and 122 (upper and lower case respectively). This would
be even more important if the game depended on keyboard input for
its chosen word.

However, these are all simple adaptations. The problems that can
be created for a player by using sucharoutine are well worth the work
the routine might need.

There are many puzzles of similar types which can be incorporated
as elements of large adventure games. In a sense all adventures are
really a series of small games linked together— a number of puzzles
and/or tests of strategy and reaction which are all linked together.
Camelot incorporates tests of logic, tests of imagination (or, to put it
more bluntly, puns) and tests of verbal skill. Other small games
which can be included involve mathematical puzzles, tests of general
knowledge, cypher tests (like the Mastermind game), or tests of
language (such as synonyms, acronyms, or abbreviations).

155

5 LET V$="": LET Y$ ="
1 LETR = (RND * 1®)+1
15 FORI =1TO R: READ V§$: NEXT I
20 LET W§ = V§
25 LET R = INT (RND * (LEN(V$))) + 1
30 LET Y$ = Y$ + VS(R)
490 LET V$ = V8(1 TO R-1) + V$(R + 1 TO LEN(V$))
45 IF V§ <> THEN GOTO 20
5¢0 PRINT Y$; “ is an anagram of what word?”
60 PRINT “Please type your answer”
70 INPUT A$
80 IF A3 = W$ THEN PRINT “Correct”: GOTO 100
90 PRINT “Wrong. Try again™ GOTO 50

100 STOP
110 DATA “boomerang”, “hyphen”, “catastrophe”, “elephant”,
“waterfall”, “cormorant”, “computer”, “adventure”,

“programmer”, “analogue”

Figure 9.1 Anagram routine

9.3 A cypher routine

Elsewhere we looked at the possibility of using a routine which could
generate new cyphers foreachgame. The programin Fig.9.2isa very
simple routine which randomly selects one of five ways to produce a
string for such a code.

1 REM CYFHER ROUTINE
2 REM z$=correcct alNswer
3 REM s$=displayed string
S DEF FMN REdxr=INT (RND#®:2)+1
8 RANDOMIZE
1 LET vr=FN R({(2)
15 LET =z¢%=""
14 LET w&=""
20 LET c=FN r{Z)%*2
25 1IF c=4 THEN G0 SUB Zwoo: GO
TO 35
6 G0 SUEB 1o+ ({o+r)*1a)
IS5 PRINT "KEY STRING "iz%: FRI
NT "CODED STRING "ijxE
I8 FPRINTY = PRINT "PRESS A" FO
R ANOTHER STRING"
27 IF INEEYS$< -"A" AND IMNEEYS$: -
"a" THEN GOo TO =7
2B FPRINT
25 GO TO 16

156

4 STOF

129 REM +our random integers

131 FOR i=1 TO 4

132 LET +=FN r{9)

133 LET z%=z%+5TR% ()

134 NEXT 1

135 LET x$=z%

138 RETURN

139 REM four random letters

149 FOR i=1 TO 4

141 LET r=FN ¢ (24)

142 LET z#=z%+CHR% (&44F)

143 NEXT 1

144 |LET ugs=z

148 RETURN

149 REM four random integers en
coded

151 LET r=FN r (8)+1

152 GO BUE 17Zé

153 LET xs=""

154 FOR i=1 7O LEN (z%)

155 LET x=VAL {(z#%(i}))+r

15846 IF u»9 THEN LET u=nu-9

157 LET «$=x$+5TR® ()

158 MNEXT 1

159 RETURN

149 FREM four randaom letters endc
oded

is1 GO SUEB 146

162 LET r=FN r (24

1687 LET n¢g=""

164 FOR i=1 TO LEN {(z%)

165 LET w=CODE (z%(i})+r

146 IF w94 THEN LET x=x-2&

147 LET n®=u3$+CHR® ()

148 NEXT i

149 RETURN

2060 REM encode a real word

a1 LET r=FN r (2a)

2602 REM the number in brackets
= the total possible words

205 RESTORE 240

21e FOR i=1 TO r

226 READ =%

273 NEXT i

240 50 SUB 1&aZ2

259 RETURN

269 DATA "DOOR","CLAW", "SHOT","
FILL","CART"

265 DATA "HAND","HEAD", "SLAF","
BRAG" , "LION"

276 DATA "GOAT","TRIF","JUMP","

157

HEAL." , "CRAG"
275 DATA “HELF", "MOON", "SWAY", "
CHIF", "LEAD"

Figure 9.2

It produces twostrings, X$ and Z$, printed out atline 35. Each time
the program is RUN, Z$ will be assigned a chosen string and X$ will
hold a version of Z$ which will be displayed at some pointin the rest of
the game. In two of the five choices X$ and Z$ are the same. Therefore
they could be used as‘key’ and‘lock’. ANEED square holds Z$ and the
equivalent GET square, giving the information needed to pass the
NEED square, will hold X$. These are very simple codes, eachbeing a
string of either four letters or four numbers.

In two other cases a random string is chosen to fill Z$ and then the
string 1s manipulated before being held in X$. In the case of the
numbers, eachdigit has a value added to it (the same value for each of
the four) so the player, on discovering X$, must also discover the
value that has to be subtracted from each digit to give the correct
answer. A key line here is line 156 which tests to see if the addition of
the chosen number and the value is greater than nine; if it is, it
divides by 10 and gets rid of the decimal part of the number. This
makes the guessing more tricky. The player should therefore be
made to pay for each guess at the required value, perhaps having a
reduction in intelligence each time he fails.

The manipulated character string is similarly transformed. Each
letter in the chosen string is replaced by another letter a fixed
number of letters away in the alphabet. If the letters go beyond Z they
begin again at A, so that X plus 4 gives B. The player has a more
difficult task than with the digits as there are 26 possible answers to
the chosen value as well as a larger number of possible combinations
of characters in the original string.

The fifth choice takes a real word from one of the DATA statements
and manipulates it in the same way as the randomly chosen charac-
ter string. The player now has a better chance because he can use two
pieces of information—the letters are all encoded by other letters a
fixed distance away and the complete string makes sense. If other
DATA statements are added then the range of the random number in
line 201 needs to be changed to the total number of possible words.

As usual with the use of DATA, any DATA statements in the
program could be used. One possibility is to hold some form of clue in
the DATA, such as the whereabouts of a treasure, split up into
component words. The player can thendiscoverthe clueonewordata
time until he has sufficient to be able to guess the whole thing. Such a
use of this puzzle would thus have four stages: finding the original
encoded string(s), finding the ‘money’ needed to pay for guesses,

158

making the correct guess, and piecing all the words together to make
a coherent clue. Then, of course, the clue itself may be cryptic. . .

Using the same type of design it would be quite possible to devise
complete mystical alphabets for playersto decipher during the game
(e.g., in a game like the Egyptian game described in Chapter 2).
Instead of using the conventional alphabet as the encoding string a
string of user-defined graphics can be used, so that the player will
initially have no idea what they represent nor how they fit with
normal language.

It is also possible to build string functions to act assimple encoding
devices which can be applied at any point in the game. Suppose we
have one routine which allows Sages to give clues as to the where-
abouts of valuable artifacts. A function such as the one below could be
applied every time such aclueisuttered sothat the playeris given his
information, providing he can decode it:

DEF FN A$(B$) = B$((LEN(B$)—3) TO LEN(BS$)) + B$(1TO 4) +
B$(5 TO (LEN (B$)-3))

where B$ is the clue string and must be more than eight characters
long. This function simply splits itupinto three unequal portions and
recombines it, so that the actual string given out is a garbled version
of the original.

9.4 Teleport

A common trap in many adventures is the warp or teleporrter which
transports the character to some unknown destination in the game
world. In many puzzle games this cannot usually be used because the
player has to get through all locations in a more or less fixed order,
butinsomeitcanformaway of sending the playerinto the nextstage
of the game (so that it appears he has become lost because the
surroundings are unfamiliar, but in actuality he is on the correct
route through the logical structure of the game) or a limited trap
which sends the player back to an earlier stage. This may perhaps
create a problem, depending on the objects carried by the character
when the transportation occurs.

However, the random transporter is usually only used in combat
games where a maze of some kind is involved. The transporter
routine calculates a random location in the maze and then places the
character in that location. It would be possible therefore for aroutine
such as this in the Merlin game to locate the player in a section of the
caverns which has no surface exit (though the formula used makes
this unlikely). We must either use the device only in dungeons where
we can be certain there is a possible exit, namely, fixed map combat
games, or we must test toensure that thereisanexitfromthelocation

159

the routine produces. The latter choice can be difficult. The easy
compromise is to incorporate the inadequacy as an apparent part of
the design by PRINTing a comment which laments the loss of the
player.

Ifwewanted to incorporate such a routineinto The Minesof Merlin
we would thus have to make it rare (so the player was not arbitrarily
trapped too often) and to try to maximize the possibility of an exit as
in the routine below:

65090 REM TRANSPORTER

651¢ LET N = 1¢¢: GOSUB 2809

6520 IF Q <>1THEN RETURN

6530 LET Z = FNR(3) + 1

6540 LET X = FNR(20)

6550 LET Y = FNR(20)

6560 GOSUB 1000

657¢ IF MOVE = ¢ OR MOVE = 2 THEN GOTO 6530
6580 PRINT “Aaaaaaaaaaah!! You've stepped into a teleporter”
6599 PRINT “You may never get out of here now”
6599 RETURN

Note the use of FNR(x) in this routine. This is the same function as
that defined in The Mines of Merlin in line 832@, a single function
which can be used to generate any random number in any range
within a program. The number in brackets in the function call
defines the range of the potential numbers.

Lines 6510 to 6520 decide if there is a transporter at that location,
using the built-in random numbér. The routine assumes that it has
been called by another routine, probably the *hazard’ routine, and
simply returns there if Q is any value other than one. Lines 6530 to
6550 set the new value for the location, X and Y beinginalargerange
but Z being restricted to the second to fourth levels only, so the player
will not be sent to a remotely deep level with no hope of rediscovering
the surface. Subroutine 100 calculates the new movement and, if
movement there is not possible, loops back to do the whole thing
again. The final lines PRINT an appropriate message and return
control to the calling routine.

A similar trap can create an apparent maze without the need for a
complete maze-building program. The puzzle game can use this best
but it could be incorporated into a combat game with slight modifica-
tion. The idea is to give the illusion of a maze without actually
creating one. This is simple to do. We create an endless loop which
accepts all movement commands but continually PRINTs a message
like *You are lost in the maze's endless corridors’. Obviously there

160

would not be much point to this on its own, so there must be some way
outofthe maze(usingthe correct object in the correct way,ortypinga
suitably clever command) or some kind of limit set (such as using a
very long loop which nevertheless has an end, or always letting one
direction lead back to the start). Normally players entering such a
maze will persist for 10 or 20 moves, until they think they can go no
further, so if we set a counter in the loop such that after 25 moves an
object is found we reward persistence and make the maze appear
varied. If Cad finds the object he may well believe that the maze
actually exists and simply hasto navigate arounditinthe usual way.
Here is a simple version of this:

6600 REM A PSEUDO-MAZE

6610 PRINT “You are lost in the corridors of an endless maze”

6620 GOSUB (command routine)

6630 IF (commandis‘l am not amazed’) THEN PRINT*You have
found the exit”; GOTO 6690

6640 IF (move is West) THEN LET WESTCOUNT = WEST-
COUNT + 1

6650 LET COUNTER = COUNTER + 1

6660 IF COUNTER > 25 THEN PRINT “You see an emerald
statue”: GOSUB (object routine): LET COUNTER = §

6670 IF WESTCOUNT > 10 THEN PRINT “There is a little old
man in the corridor”: GOSUB (little old man): LET WEST-
COUNT =9

6680 GOTO 6610

6699 RETURN

Againthisroutine should be called by another. It is an endless loop
containing three tests. Test 1, at line 6630, leaves the loop if the
player has found the correct cryptic phrase. Test 2, at line 6660,
reveals an object if the player has gone sufficiently far into the maze.
Test 3revealsacharacterifthe player has gone far enoughwest. Note
that the twocountersare reset tozerobythese lines, sothe playerwill
find the statue every 25 turns. Consequently, an additional test has
tobebuiltintosee ifthe statue isstill there, sothe‘object’ routine will
havetoset an appropriate flagifitistaken ordestroyed and line 6660
must also ensure that this flag is not set. A similar test structure
would be needed for the little old man.

9.5 Bribery and gambling

In The Mines of Merlin we only allowed a simple response to
monsters— either Cad runs away from them or he or she fights them.

161

As the encounters with monsters form the main events in such a
game it is worth considering some additions that can make it more
interesting. Two such additions are bribery and gambling.

Both of these involve the same kind of exchange with probably the
same result— the player loses money and so is less likely to be able to
buy what he needs in other locations. Bribery consists of a request
from the monster for money or some other gift followed by the player
continuing on his way without harm if the monster gets what he
wants. The bribe function can be incorporated in one of two ways:
either the player has afree choice of it asone of his strategiesor before
he is allowed to make his choice the monster will ask for a bribe. Fig.
9.3 shows a way of constructing the routine to fit with our game.

11¢ PRINT “Do you want to:”
120 PRINT “(F) Fight”
1390 PRINT “(R) Retreat”
149 PRINT “(B) Bribe”
15¢ INPUT A$: REM CAN USE INKEY$ AND VALIDATION
ROUTINE IN MINES OF MERLIN
160 LETG =0
17¢ IFA$ ="B"THEN GOSUB3500: IFG=1THENRETURN
18¢ IF G = 2 THEN GOSUB (fight routine)
19¢ CLS: GOTO 11¢
35090 REM BRIBES
3519 LET R = FN R(money)
3520 PRINT “He says he will accept”; R “silver pieces”
3530 PRINT “Will you pay?”
3540 INPUT A$
3550 IF A$(1) = “N” THEN RETURN
3560 IF money < R THEN PRINT “Try to swindle me, would
you?”: LET G=2: RETURN
3570 LET MONEY = MONEY-R
3580 LETG =1
35990 RETURN

Figure 9.3

The variable ‘money’ represents the current total of silver pieces
that the character has. In The Mines of Merlin this is C(7). The
routine can be improved by making the monster ask for weapons or
otheritemsthat the character is carrying. This could be the fall-back
requestifthecharacter has notenough money oritcould berandomly
determined before the routine is run. Alternatively, the monster
could steal all of the player’s mhoney if he decides not to bribe.

162

Gambling is slightly different insofar as it must be possible for the
player to increase his money. The gambling could of course be for
something other than money, such asarmour oreven the character's
life, but in all cases there should be the possibility that the character
will gain something out of the encounter. As gambling contains its
ownrisk there isno need to combine it with any other type of routine,
so it could be a totally separate kind of encounter.

The key to a gambling routine is the curve of probability used. The
simplest would be a straight line graph, so that the chance of winning
remained the same throughout the game, irrespective of the results
of previous gambles or the amount of money gambled. This would be
represented by a formula like R = INT(RND*3): IF R = 1 THEN
PRINT “You win”. Here the player has one chance in three of
winning every time that he bets.

Gambling is more interesting if there is a correlation between the
amount of the possible prize and the degree of risk. We could set up a
table of odds where the lower the chance of winning the higher the
possible reward. Thus betting at three to one gives Cad aone in three
chance of winning, but would triple his or her money if he or she won;
betting at twelve to one gives only a one in twelve chance of victory
but success means twelve times the reward. A simple way to build
thisinto aroutineis to ask the player for the odds he requires and use
this in the random statement:

1090 PRINT “How much would you like to bet?”

1190 INPUT A

115 IF A >money THEN PRINT“I’'m afraid yourcalculator needs
new batteries”: CLS: GOTO 16¢

120 LET money = money—A

125 PRINT “What would you like to multiply your “;A;” silver
pieces by?”

13¢ PRINT “Please type a number between 2 and 2¢”

14¢ INPUT B: IF B<2 OR B>2¢ THEN PRINT “Perhaps you
should learn some maths before you play with the big boys?”:
CLS: GOTO 126

150 PRINT “That’s a cool”;A*B; “you could win”

16¢0 LET R = INT(RND *B) + 1

17¢ IF R = 1 THEN PRINT “And you win it!!!”’; LET money =
money + R: RETURN

180 PRINT“Ohwhat a terrible shame. You lose. Never mind, it's
only money”

199 IF money > @ THEN PRINT “Another go?”

200 INPUT A$

219 IF A$(1) =“Y” THEN GOTO 1¢¢

163

Any ofthe microgambling games, such as fruit machine orroulette
or dice, can be adapted to fit in as a subroutine in a larger game,
having the advantages of more complex and varied odds and often
interesting graphics. A simple way to test the player’s knowledge of
probabilities is to ask him to bet on the total of two six-sided dice,
giving either a flat doubling of the bet if he wins (in which case he is
best advised to guess ‘seven’ every time) or linking the winnings to
the odds. For example, throwing two dice will give an average of one
12in every 36 throws, so we can safely offer oddsof 3¢ to 1ona 12 and
be sure that the player will lose in the long run.

To make things slightly more difficult for the player we might
make it easy towin by gambling in the early stages of the game, when
the player may need all the help he can get, but increasingly difficult
as time goes on. The counter of time could be a real-time counter, a
counter of the number of moves the player has made, or could be some
measureofthe current successofthe player, such ashisoverall points
score or a counter which holds the number of times he or she has
previously bet successfully.

Oneotheroption touse in monster encountersis the TALK routine
discussed in Chapter 7. This can also be linked to bribing and
gambling so that if keywords on these topics are found the program
switches to the program in the appropriate routine.

164

1() crapHICS

There is no reason why graphics should be used in an adventure
game, particularly those games such as puzzle games where most of
the information has to be textual. Using graphics for the sake of it
may consume memory that might be better used for mapsordata, but
if there is memory left after you have written your masterpiece of a
main program you can improve attractiveness greatly by the addi-
tion of graphics. However, if you do intend to use some form of
graphics in your game you should try to make the decision asearly as
possible in the design. This ensures that your graphics are an
integral functioning part of the game rather than something added
on which contributes little, and makes sure you keep an eye on
memory consumption throughout your design.

10.1 Graphics and the Spectrum

There are so many popular microcomputer graphic systems thatitis
impossible to consider many aspects here. If detailed and complex
graphics are wanted in your games you should read a book on
implementing graphics for your system. Some aspects are quite
common, and the Spectrum contains several graphic functions which
are similar to those available on other machines. The key graphical
functions available on the Spectrum are:

1. Block graphics (using PRINT)

2. User-defined graphics (using PRINT)

3. High-resolution pixel graphics(using PLOT, DRAW, and related
commands)

Some form of block graphics are available on most micro-
computers. If we imagine the VDU screen divided into squares, or
character positions, each block will occupy one such position. On the
Spectrum the character screen is 22 lines by 32 columns, giving 704
squares. Eachofthesesquaresisan8 X 8arrayofdotsandeachblock
graphic (including the alphabet, numbers, and numeric signs) is a
particular combination of some of those 64 dots. If you do not under-
stand this you should reread Chapters 15, 16, and 17 of the Spectrum
manual.

The easiest way to understand this is to think of each little 8 X 8

165

block as a blank page. On this page are a number of dots; if you join
any combination of dots then, just like a child’sjoin-the-dots puzzle, a
pattern will appear. The only difference is that instead ofjoining dots
the micro produces patterns by switching dots on and off. The dots
which are switched on or lit give the pattern (the INK colour of
Spectrum graphics); those which are switched off give the back-
ground (the PAPER colour of the Spectrum).

The BIN statement of the Spectrum allows us to control all of the
dotsina particularsquare,sowecanjoinupourowndots,i.e.,definea
new pattern, a new character. If, for example, we wanted a small
triangle, we could plot it on a grid of 8 < 8 pixelsasin Fig. 10.1. This
drawing can be represented as the series of BIN statements next to
that figure. You will see that there is a direct correspondence
between the pattern of pixels which are used and the pattern of ones
inthe BIN statement. This isbecause eachrowin the characterblock
isheldin memory asabyte (i.e.,eight bitsof binary information). The
BIN statement allows us to address each bit in each of these bytes,
saying whether it is on or off (one or zero). Eight such bytes make up
one character.

BIN 000000p1
BIN 00000011

BIN 00¢00111
BIN 0001111

BIN 09911111
BIN 00111111
BIN ¢1111111
BIN 11111111

Figure 10.1

Other machines use different sytems to do the same thing. For
example, the user-defined graphics on the BBC use a number
between 0 and 255 to represent each row. You will remember that
this is the range of numbers that can be held by one byte (or eight
bits), so it can be seen that each of the numbers 0 to 255 will mean a
different combination of offs and ons for the row. Eight suchnumbers
form a character.

Onthe Spectrum we can have up to 21 user-defined graphics stored
at addresses USR “A” to USR “U”. These graphics can be printed in
the same way as the normal letters A to U using the graphics mode of
the Spectrum (the graphics mode is obtained by pressing Caps Shift
and 9). Twenty-one may seem quite a lot, but they can be used up
quite quickly in a graphics adventure. This is because to create

166

interesting new graphics one user-defined square is generally not
enough. Although one square can provide simple shapes, faces,
spaceships, cars, cannon, etc., it cannot give enough detail for
drawing things like trolls or dragons or elaborate buildings and
artifacts.

To get over this problem we have to draw our design not on one
8 X 8grid but on several adjacent grids. If our object isto have a long
vertical axis put two grids on top of each other; if it is long horizon-
tally put the grids side by side. Let us draw a cyclops and a dragon.
The cyclops will be tall so we align the grids as shown in Fig. 10.2,

BIN 00011000
BIN 00111100
BIN ¢110011¢
BIN 91111116
BIN 00111161
BIN 00011001
BIN ¢¢111101
BIN 01011011
BIN 01011001
BIN 110110¢¢
BIN 00111100
BIN 0¢1060100
BIN 00100109
BIN ¢11¢011¢
BIN 00000000
BIN (00000000

Figure 10.2 A cyclops

You can see that for the cyclops we have 16 BIN statements— two
setsofeight. Thefirst setisthe head and shouldersofthe monster, the
second set his torso and legs. In order to put these two characters
together to make one monster we must remember which letters each
partisstored under. We will make the toppart*A’ and the bottom part
'‘B.

We can control the printing of the monster by using the PRINT AT
statement. If we PRINT graphics A at 10,10, then we will have to
PRINT graphics Bat 11,10. This means careful programdesign when
using such graphics. The best way is to use a short routine for
printing each monster, even if the routine is only one line. The
PRINT AT parameters in the routine would have to be variables
passed to the subroutine by the main program. So the routine for
printing one cyclops might be like this:

167

8999 REM CYCLOPS

9099 PRINT AT Y,X; “(graphics A)”: PRINT AT Y+1,X;
“{g‘l‘aphics B)n

9910 RETURN

Fordrawing thedragon we use three blocksofeight and print them
onthe sameline, one after the other, thus: PRINT AT Y,X; “(graphics
CY’; PRINTATY,X+1;"(graphics D)”’; PRINT AT Y,X +2;“(graphics
E)’. The same instruction can be written as PRINT AT Y, X;
“(graphics C)(graphicsD)(graphics E)”, soitiseasiertoprint horizon-
tal than vertical designs. The dragon is shown in Fig. 10.3.

BIN ¢@911111
BIN 00000011
BIN 01000000
BIN 11106000
BIN 01600000
BIN 01100001
BIN 0@110011
BIN 0¢@11111

BIN 11000060
BIN 11111009
BIN 1111110¢
BIN 0$11111¢
BIN 11111111
BIN 110¢4100
BIN 11000100
BIN ¢0¢@1111

BIN 00000000
BIN 00000000
BIN 09106000
BIN ¢@110¢10
BIN 11111111
BIN 10011100
BIN 00000000
BIN 00000000

Figure 10.3

The drawback with these graphics should now be obvious. In order
to get a figure that is at all life-like, two, three, or even more blocks
must be used, and this rapidly reduces the available graphics. We
have used one-quarter of the available blocks to create two monsters,
so this would suggest that the average game could only get about
eight or nine worth while graphic elements.

Thereisawayoutofthis. We can redefine our graphicsaccording to
their current purpose. Suppose we have used all of the user-defined
slots and now wanted to use the dragon in the program. Providing we
do not want all the other graphics and the dragon displayed at the
same time, we can select three of the user-defined graphics which are
not being used when the dragon is wanted and read the dragon data
into these slots. Then, when the dragon is no longer needed we can
reread the original data back in.

To do this we will need a general routine for reading the BIN
statements which also reassigns the letter being used, all the
separate BIN statements, and careful planning. If we do not plan well
all the graphics will become confused and displays will end up with
cyclodragotrolls all over them. [t makes sense, therefore, to include
before each set of BIN statements a REM line reminding us what the
next eight BIN lines represént, and which letter (USR address) they

168

are held in. The first cyclops block might thus be stored in a program
as:

9499 REM CYCLOPS HEAD
9509 DATA “a”

9510 DATA BIN 00011000
9520 DATA BIN 0¢111100
9530 DATA BIN ¢1100110
etc.

To read this pattern into an existing graphic block we first have to
RESTORE the DATA pointer to the relevant line. To make things
easy we can point to the REM line, as the RESTORE statement
causes the DATA tobe read from the next line after the pointer which
has DATA in it; in this way we will find it much easier to remember
whateachrestore number means. The read-in routine would thusbe:

999 REM TO READ DIFFERENT GRAPHICS
10¢¢ RESTORE 9499
101¢ READ M$: REM USR ADDRESSED LETTER
1020 FORI =0 TO 7 -
1030 READ N
10490 POKE USR M$ +I,N
1050 NEXT I
106¢0 RETURN

However, because we want the RESTORE pointer to be a variable
as well, it is usually better to have a variable previously declared

which RESTORE will use. If we changed line 100 to:
1000 RESTORE monster

the variable ‘monster’ would have been set by the main program
which passes control to this read-in routine. For example, suppose
the monster that was used depended on the current strength of the
player’s character. Then the calling routine could be:

5¢¢ LET monster = 9909 + (STRENGTH *1¢0)
510 GOSUB 1000

Remember that the monster BIN statements can themselves be
variables, and we can use zero in place of BIN ¢00000@00. We might
wish to use variables in these DATA statementsifa group of graphics
had the same basic design. For example, we might use graphics to

169

show what the player was currently carrying or wearing, rather than
displaying an inventory. Insuch a case we could use a set-up with five

graphic blocks, like Fig. 10.4.

HEAD

BLGHT TORSO LEFT
ARM ARM

RIGHT LEFT
LEG LEG

Figure 10.4

Each of these five blocks could change according to the character’s
current status. He or she could be wearing leg armour, gauntlets, a
breastplate, boots, or nothing; could be carryinga shield, any number
of weapons, a torch, a sack, or any of a multitude of objects. Suppose
we wanted to show that the torch waslit and currently held in the left
hand. The graphic block, and hence the BIN statements, would be
exactly the same for the lit and unlit torches, except that a flame
would be added. By using one set of variables for ‘left arm’ and
another for ‘torch’ and a third for ‘flame’, we could make the required
graphic blocks simply by combining the required sets of variables.

Wecan usethe graphics we have defined in exactly thesame way as
ordinary characters or block graphics. Thus they can be repeatedly
PRINTed to make elaborate designs; they can be animated or moved
around the screen, as we will see in the Treasure Trove game below;
they can be combined with the standard character set for complex
effects; they can be added to block graphic designs; and they can be
combined in the same PRINT position using OVER. This means that

170

two (or more) user-defined graphics can be overprinted on the same
character position so that, for example, a figure can be shown walk-
ing through a doorway by PRINTing the doorway, then PRINTing
the figure over it, then PRINTing the doorway again.

We can also use a single graphics character in different ways by
giving it different attributes. This is an economical way of creating
‘different’ characters. For example, if we define a simple graphic man
using BIN, we can then make him a goblin by PRINTing him in blue
or askeleton in white, amagician by using BRIGHT, a ghost walking
through walls by using OVER, a magical creature by using FLASH,
and so forth. Similarly, if we are designing a graphical adventure
with a printed map the same sign on the map can stand for different
things by using different colours. A series of irregular triangles can
be hills, mountains, pyramids, or sea; vegetation could be swamp,
forest, scrub, ete., simply by changing the colour of the sign.

There is one problem with the Spectrum’s graphics, including the
user-defined graphics. The function SCREEN$(x,y) will normally
return the character found at position x,y on the screen. However, it
does not recognize characters with CODEs below 32 or above 127.
Consequently, we cannot use SCREEN$ to check on the screen status
if it is full of user-defined graphics, or even block graphics. Thus a
game whichmovesagraphicadventureracrossthe secreenlooking for
monsters and treasures will not work if the program is designed to
depend on the displayed symbols for these things.

There are three simple ways toget round thisproblem. Oneisto use
non-graphic characters for functions where screen detection is
required and reserve the other graphics solely for decorative effect.
This seems a waste of the Spectrum’s excellent graphic resources.

The second method is to hold in memory an exact map of what is
displayed on the screen and use this representation for collision
detection rather than the displayed screen map. This is essentially
the method used in The Throne of Camelot. However, for alarge map
and/or screen display this can be very expensive on memory and may
be slow to process. It also seems rather inelegant to hold two repre-
sentations of the same information simultaneously if it can be
avoided.

The third method is to use the attributes of screen locations as
indicators of the adventurer’s status. With eight INK colours, eight
PAPER colours, two flashing states, and two brightness states there
are 256 possible combinations that can be tested for (do you recognize
the magic number?).

Forexample, suppose the displayed mapisofawildernesscontain-
ingforests, mountains, alake, and cities. We can use the user-defined
graphics to draw this map, making it visually as interesting as

171

possible. If, in PRINTing it, we ensure that forests use green INK,
mountains magenta, lakes blue, and cities black then we can use the
attribute of the current screen position of the adventurer to control
the program. Just as in The Throne of Camelot the main loop moved
the player (changed the variable called ‘location’) and then used the
‘attributes’ of that location which had been coded in the program to
determine which routines ran next, so we can continually move the
player’s persona across the screen and useits attributestogovernthe
rest of the program.

This is done using ATTR(x,y). This function returns a number
encoding the current statusofany screen location— what colour INK
it has, what colour PAPER it has, whether it is BRIGHT or not, and
whether it is FLASHing or not. In the present example we are
interested in the colour of the INK, i.e., the range of numbers 0 to 7.
Consequently, to decode the number returned by ATTR we must
reduce the numberto beloweight. We must therefore dothe following
calculation:

IF THE NUMBER IS GREATER THAN 128, SUBTRACT 128
IF THE RESULTING NUMBER IS GREATER THAN 64,
SUBTRACT 64

IF THE RESULTING NUMBER IS GREATER THAN 32,
SUBTRACT 32

IF THE RESULTING NUMBER IS GREATER THAN 16,
SUBTRACT 16

IF THE RESULTING NUMBER IS GREATER THAN EIGHT,
SUBTRACT EIGHT.

(As we will see in Treasure Trove we do not need to go to such lengths
in one special case.)

This leaves us with a number between 1 and 7 which holdsthe INK
colour. We then ask which of the four colours possible on our map that
number is and send control accordingly, using lines like:

ok L e

IF N = ¢ THEN GOSUB CITY

IF N = 1 THEN GOSUB SEA

IF N = 2 THEN GOSUB MOUNTAIN
IF N = 3 THEN GOSUB FOREST
GOTO BEGINNING OF MAIN LOOP

The tedious part of using the user-defined graphics is actually
designing themin the first place and working outthe BIN statements
and how they are to be printed. There now follows a listing of a
number of predefined graphics for use in your own programs. Each is
preceded by a REM statement explaining how to PRINT it.

172

9009 REM A SACK OF MONEY: 1 BLOCK
9019 BIN 00000000
9020 BIN 00300000
9030 BIN 00111000
9040 BIN 00310000
9¢5¢ BIN 00111000
906¢ BIN $111110¢
907¢ BIN 01111060
9080 BIN ¢@11000¢

909 REM A TREE: 1 BLOCK
9910 BIN 01161110
9¢2¢ BIN 11111111
9030 BIN 0@111011
9049 BIN 00011116
9950 BIN (0001100
9060 BIN (0001000
9970 BIN 0001110¢
9980 BIN (1111110

9009 REM A GIANT FIGHTER: BLOCK 1 OF 4: PRINT THIS
AT Y, X
9919 BIN ¢@p11111
9¢02¢ BIN 00010011
9030 BIN 00000@11
9049 BIN 00000311
9¢5¢ BIN 0¢00a@1
9960 BIN 00app@11
907¢ BIN 00003111
9(8¢ BIN 0¢pGp111

9¢9¢9 REM A GIANT FIGHTER: BLOCK 2 OF 4: PRINT AT Y,
X+1
910¢ BIN 00000000
911¢ BIN 10060000
912¢ BIN 11000000
9130 BIN 10000000
9140 BIN 00000101
915¢ BIN 11041111
916¢ BIN 11100161
917¢ BIN 101101¢¢

918¢ REM A GIANT FIGHTER: BLOCK 3 OF 4: PRINT AT
Y+1,X

9190 BIN 000@1111

9200 BIN 00001111

173

921¢ BIN ¢¢@11111
9220 BIN 0¢@11111
9230 BIN ¢¢111110
9240 BIN (01111100
9250 BIN (¢111110¢
926(BIN 11111110

927¢ REM A GIANTFIGHTER: BLOCK40OF 4: PRINTATY +1,
X+1
9280 BIN 10011100
9299 BIN 10000000
9300 BIN 11000000
931¢ BIN 11100000
9320 BIN 01100000
933¢0 BIN 01100000
934¢ BIN 01100000
9350 BIN 01111000

9¢0¢¢p REM AN ORNAMENTAL CROSS: BLOCK 1 OF 2 PRINT
AT Y. X
9¢1¢ BIN ¢0010000
9020 BIN (0111000
9030 BIN 91010100
9040 BIN 1111111¢
9050 BIN 01010100
9060 BIN ¢p111000
9070 BIN 0301000¢
9080 BIN @G0 10000

9099 REM AN ORNAMENTAL CROSS: BLOCK 2 OF 2: PRINT
AT Y+1,X
910¢ BIN 00010000
9110 BIN 00010000
9120 BIN 00111000
9130 BIN 00111000
9140 BIN ¢111110¢
915¢ BIN 1111111¢
916¢0 BIN 11111116

90¢¢ REM CASTLE: BLOCK 1 OF 2: PRINT AT Y, X
9019 BIN 01010000
9020 BIN 01110000
9030 BIN 01010000
9040 BIN 01110000
9050 BIN 01119101
9060 BIN ¢1111116

174

9980 BIN 11111119

9099 REM CASTLE: BLOCK 2 OF 2: PRINT AT Y,X +1
9100 BIN 00010100
9110 BIN 00011100
9120 BIN (0010100
9130 BIN 00911100
914¢ BIN 01011100
915¢ BIN 11111160
9160 BIN 11111110
917¢ BIN 11111111

99009 REM RUINED TOWER: BLOCK 1 OF 2: PRINT AT Y, X
9010 BIN 01000000
902¢ BIN 01000000
99390 BIN 01100000
9049 BIN 01100010
9050 BIN 01100110
9¢6¢ BIN 01101110
9¢7¢ BIN 01111010
9¢8¢ BIN 01111010

9099 REMRUINEDTOWER: BLOCK20F2: PRINTATY +1,X
9100 BIN 01011110
911¢ BIN ¢191111¢
912¢ BIN $111111¢
9130 BIN ¢111111¢
9140 BIN 11111110
9150 BIN 1111111¢
9160 BIN 11111111
917¢ BIN 11111111

90¢¢ REM UNICORN: BLOCK 1 OF 3: PRINT AT Y,X
9010 BIN 00@00300
9¢2¢ BIN 10000000
9039 BIN (1000000
9940 BIN 00100000
905¢ BIN 00111000
9060 BIN (1111100
997¢ BIN 11111110
9¢8¢ BIN (0p(p111¢

9099 REM UNICORN: BLOCK 2 OF 3: PRINT AT Y+1,X
9100 BIN 000(1111
9110 BIN 0¢ap1111
912¢ BIN @¢@@11111
9130 BIN (0101000

175

914¢ BIN 0010100¢
915¢ BIN 00101000
9160 BIN 00101000
9170 BIN 00301300

918¢0 REM UNICORN: BLOCK 3 OF 3: PRINT AT Y+1, X+1
919¢ BIN 11110000
920¢ BIN 1111100¢
9210 BIN 11111109
922¢ BIN 01010110
923¢ BIN 10019111
9240 BIN 10010001
9250 BIN 10010000
9260 BIN 0@010000

10.2 Minigames

Arcade games have their attractions and there isno doubt that one of
the major reasons for the growth of the home computer industry has
been the popularity of fast-action screen games. It is not possible in
BASIC to write very fast arcade-type games— the language is just
tooslow, becauseitisaninterpreted language. If you have acompiler
or understand machine code, you will not have this problem, but the
majority of us have to make do with the slowness of BASIC.

However, speed is not everything. The growing popularity of
adventures shows this. It might be worth while putting some arcade-
type action into our adventure, even ifit is not of the highest quality,
toadd spiceofadifferent kind towhat is primarily a game of intellect.

Ifwe are going to include a mini graphic game of some kind we must
make sure that it connects with the main game, and that it does not
use a disproportionate amount of space. The arcade element must be
a bonus over and above the expected element in the game that it
represents. One solution would be to make all the monster combats
real-time graphics, though I have yet to see a reasonable attempt at
this which does not waste all the other resources available to an
adventure programmer.

Much easier, though using essentially the same principles, is a
treasure-gathering routine. A graphical version of monster combat
must hold and manipulate a large number of variables, and attempt
to simulate real combat with limited resources. In BASIC the level of
animation that this requires really is not possible. However, if we
simplify our graphics by using block graphics or user-defined
graphics, and reduce our aims, we can nevertheless produce quite
satisfactory arcade interludes which are testing in a limited way,
pleasanttosee, and functionin a meaningful way in the contextofthe

176

overall game.

There are only two real problems in arcade games— moving
objects and collison detection. Both of these have already been dis-
cussed. In brief, moving an object involves printing a graphic in one
position, calculating a new position, printing it in the new position,
and deleting it from the old position. If this happens fast enough, it
looks like movement. Collision detection involves adding a number
of tests within the movement loop to see ifthe new positionisalready
occupied and if so what the occupier is. The results of the two objects
meeting are then calculated.

Itiseasy to see why this slows a game down. If we have 40 invaders,
1 gun, 5 missiles, and 20 bombs on the screen at the same time, then
each‘turn’inthe game involves deleting 66 objects, calculating their
next positions, checking for contacts at those positions, calculating
the effects of any contacts and displaying the results, and printing 66
objects at their new positions. For all this to happen and still look
natural it must literally take place in the blink of an eye. For BASIC
it is more like ‘forty winks’.

We will now look at a simple version in whichonly one object moves
(a little man representing the player) and only one position needs
testing for collisions each turn—the position the man will next move
to. The idea behind the routine is simple. Instead of the player merely
being told “You have found forty-three silver pieces’, the treasure
routine involves him actually collecting the money himself. Hehasa
fixed number of moves, so can only collect a limited amount, and he
does so by racing round the room picking up jewels. This is the game
Treasure Trove, listed as Fig. 10.5.

Treasure Trove
1 CLEAR
2 CLS
3 LET w=1d64: LET n=16
4 LET money=9
5 INK 7
18 LET s=9: LET y=u
15 BORDER @
26 FAFPER o
389 GO SUR 1506
o CLS
49 DEF FN r{x)}=INT (RND#*x)
4% FOR j=1 TO 2
44 READ a%
56 FOR i=0 T0O 7
55 READ =&
He FOKE USSR a$+i,a
79 NEXT 1
89 NEXT j

177

a1
=
8%
34
s
16
11e
126
1358
14
150
140
17a
186
17
266
21l
22¢
2ae
240
476
566
D1l
D20
520
e 3
one
bt)
570
S8
598
Ty al5)]
hH1le
s
L36G
&40
HE6
HEo
H%a
B95
Fé

FOR 1=1 T0O 2o

LET w=FN r(Z21}+1

LET w=FN r {(31)+1]
FRINT AT x,wi INE 73"
HEXT i

FOR i=1 70 12

LET u=FN v {21)+1

LET y=FN r (31)+1

#]l

FRINT AT s,ys INE 238

NEXT 1

FOR i=1 T 5
LET #=FN r{Z1)+1
LET w=FN ¢ {31)+1

PRINT AT x,yi INK =

MEXT 1

FOR i=1 T0 3a
LET u#=FN r(21)4+1
LET wv=FN r(Z1)+1

PRINT AT w,vi INE 45

MEXT 1

DATE o

DATA BIN o061 1000
DaTa BIN #41111116
DATA BIN @t111116
DaTa BIN 11111111
DATA BIN 111111211
DATA BIN @l111111a
DATA BIN 91111119
DATA BIN oaall10066
DﬁTﬂ ﬂFiH

DATA BIN o311 1600
DATA BIN o611 1600
DATA BIN 00111000
DATA BIN 00010000
DATA BIN @1111i6e
DATA BIN O0010000
DATA BIN @alolada
DATA BIN 9100106
LET y=1é: LET x=10©
FOR i=1 TO 1oe
LET af=IMKEY$: IF a%=

N GO TO 206

S
F16
226
230
P
Fo
FaG
TG
QG
FES

178

LET p=x: LET g=v
IF a$="5" THEN LET
IF as="4" THEN LET v

o 'THE

=x-1

r.-.r+-1

IF a$="7" THEN LET y=y-1
IF a="8" THEM LET x=x+1
IF y>21 THEN LET w=21
IF x>»3) THEMN LET x=71

IF %<0 THEN LET x=

IF y<1 THEN | ET vy=1

IF SCREEN$ (y,x)="#" THEN

LET x=p: LET y=q

99¢ FRINT AT
995 PRINT AT
ney "imoney
Se& FRIMNT &7

g Left "ilo0-i
{ver)=2 THEM LE
DNEeY=Mmonay+ 1 :

1919 IF ATTR

q!Fj;H (1]
.11 INVERSE 13 "Mo

B, 1%: FLASH 1:"7Tim

i

T
FOR B=1 TO 5S5: BEE

Fro.onl, b*S: NEAT b

1az2e IF ATTR
DS Y MO Sy 5

(y,w)=2 THEN LET m

FOR b=5 TO %: BEEF

LOL h*%: NEXT I

1a2s IF ATTR
HHE?=MQH9y+l=

(vymd=4 THEN LET m

FUR bB=S TO 1&: BEE

P .&1,b*3: NEXT b

1926 FRINT &7

1827 BEEF .@1,

130 NEXT i
11846 FDR J=1

yyx3 INK 33"
1

TO 1o

1105 IME FN R{O7)

11as6 FAFER FNM

117 FRINT AT
1116 MEXT J
1120 PAFER &:
1199 STORF

R(7)
1a,25"0UT OF TIimME"

INE 7

1500 LET A%="TREASURE TROVE"
1510 FOR I=1 TO LEN (A%)

1520 LET R=FN
1525 LET S=FN
G0 TO 1525
1530 PRINT AT
FER HimR$(l)
1556 NEXT I

1568 FRUSE 10w

1576 CLS
1690 FPRINT AT

R(7)
Ri7Y: IF &=R THEN

I+2, I+45 INK R; FA

= “iw N

Cu oy Yo must gat

her the jewels"," ta build u

Boyvour wealth!"

1a1ae FRINT AT
F..E Nﬁr;thli, n
Eill

1626 PRINT
e worth","

L

o
-

16758 FRINT AT
are worth", "
each”

1443 FRINT &T

miovemasnt", "

keys., "

la5e FRINT AT

G345 "Blue jewels a
19 silver piece

8, 43

A
e
J

"Red jewsls ar
Zilver pleces
11,45 "Green jewsls
L silvar piece
el "You control
using the cursor

18,25"1t is not po

ssible to pass"," through t

179

he btraps (#3Y

1660 FRINT # 1:3"Fress a cursor k
ey to start”

16560 PAUSE 1666

1699 RETURN

1999 STOF

Figure 10.5

The jewels are worth three different values. This introduces a
limited element of strategy— given a limited amount of time, what is
the best route to pick up as many as possible of the high-value jewels
(cyan) while passing through as many aspossible of the large clusters
of jewels with smaller denominations? The maximum score would be
140 silver pieces, and an average score around 60. These can easily be
varied either by changing the values of the jewels (lines 1910, 1920,
and 1025) or by changing the quantities of jewels (lines 100,150, and
200).

As a slight complication there are a number of traps, which are
simply obstacles that the player cannot travel over. If we wanted to
increase the difficulty of the game we could add more traps(line81) or
we could impose a penalty ifa trap was hit (either the removal of some
treasure or a reduction in the remaining number of turns).

The program works quite simply and is given here as a complete
game so it can be typed in and run without incorporation in another
game. Firstly, titles and instructions are printed in subroutine 150@.
Points to notice are lines 1510 to 1550 which print the title as a
diagonal series of blocks of random colours. As the program stands
the colours are PAPER colours, with the letters in black. However, if
the zero in line 1530 is changed to R the ink on each block will be a
random INK colour which is different from the PAPER colour (line
1525 checks that they are different).

Line 1560 makes sure that the player has time to read the title and
lines 1600 to 1660 print the instructions. Notice how the instructions
have been placed on the screen to maximize the use of space and make
them easy to read. Notice also the command in line 1660 which
PRINTSs on the bottom two lines of the screen—normally impossible.
This is not generally a good idea, but permissible in this case because
it is cleared off the screen before anything else is done.

The subroutine returns to the main routine and then lines 45 to 8¢
READ the DATA for two user-defined graphics, the jewel which is
held as graphic‘c’ and the man, held as graphic‘p’. Note that not only
are the BIN statements held in DATA statements but so are the
addresses for each character (lines 490 to 660).

Lines 10¢ to 240 now print the display by randomly choosing a
PRINT AT position and putting firstly traps and then jewels of
different colours on the screen. Lines 895 to 111(are then the main

180

loop, run 10¢ times, which is the ‘time limit’ of the player. Line 91¢
looks for input from the keyboard, while line 920 sets p and q to the
man’s current position. Line 910 sets the new values for the position
according to the key pressed (note that, although the player believes
heis pressing ‘cursor keys’, itisactually the numbers 5 to 8 which are
tested for). Lines 950 to 980 ensure that the man does not attempt to
go off the screen by checking that x and y, the coordinates the man
will be printed at, are not outside the screen boundaries.

Line 985 uses SCREENS to check the nature of the position the
manwantsto moveto,inthe normal way. Ifthe positionisatrapxand
y are reset to theirold values, held at p and q. The old position is then
overprinted with a space by line 999.

Lines 995 and 996 print the current number of turns left and silver
pieces acquired. Note that ‘time left’ flashesin an attempt to increase
the tension of the game. Lines 1010 to 1025 test for jewels at the
current position by the means discussed above for checking the
ATTRibutes of the new position. This is because the jewels are
user-defined and hence invisible to SCREENS$. This is also why the
PAPER colourisblack. Allkinds of ATTRibute valuescould be tested
for, but as black is zero and so adds nothing to this value, the numbers
we are testing for can be small and simple—just the attribute
numbers of the INK colours for red, green, and cyan.

If a particular attribute is found then the variable ‘money’ is
increased by the correct amount and arapid BEEP scale is sounded to
indicate the fact. Then the man is PRINTed AT hisnew positionanda
rapid BEEP signals that he has moved and hence a turn has elapsed.
It has to be a rapid BEEP because the Spectrum sound slows the
program up substantially, as it interrupts the running of the
program, unlike other systems which process sound without inter-
fering with the running of the main routine.

The loopcontinuesuntil 100 turnshaveelapsed, when lines 1100 to

1119 FLASH in random colours the fact that the game is over; line
1199 then STOPs execution.

181

1 1 MICROS IN GAMES
WITHOUT MICROS

11.1 GAPs

To use a micro in an adventure game it is not necessary to play the
gameon amicro. As mentioned in Chapter 1, many adventure games
areplayed as board gamesor tabletop games. The most well known of
these are Dungeons and Dragons (a fantasy game) and Traveller (a
science fiction game). There are many advantagesofplaying board or
tabletop versions of adventure games: the game can be much more
complex and fluid than its micro equivalent (Advanced Dungeons
and Dragons has over 1000 pages of ‘rules’); miniatures and counters
can make the game physically and visually more attractive to play;
the game is more of a social activity, with the emphasis on role-
playing; and a greater degree of realism and detail can be achieved. It
is possible that micro adventure games will eventually replace these
games, but this will not be for many years until memory, graphics,
interactive control, and “intelligence’ have been greatly enhanced.

However, micros can add a marvellous new dimension to most
tabletop and board games. Many games players use their micros to
run games assistance programs (usually abbreviated to GAPs).
These are programs which handle some of the mechanical, tedious, or
complex aspects of the game, enabling the players to enjoy play
without worrying about its mechanisms. Examples are GAPs which
work out the complex details of combat between two armies in a
strategic game or which generate star maps for games such as
Traveller.

If you like micro adventure games, you will almost certainly like
the original tabletop versions, so this section outlines two GAPs
which you might like to incorporate in such games. Naturally any
program which can be used in a tabletop game can also be used in an
adventure played totally on a micro, so you could always use these
ideas as the basis of your own adventure programs. The main draw-
back isthat routines based on these ideas may use a disproportionate
amount of memory, because they calculate very detailed aspects of
games. Therefore, if you use them in a micro adventure, the game is
going to be rather unbalanced as you will not have much room for the
other routines. Unless you have a 16 bit machine or a micro like the
Newbrain which can address a greatdeal of memory through paging,

182

you will not have enough memory to use such routines in micro
adventures. There is, however, another solution which is discussed
in the next section, namely using a suite of programs as one adven-
ture, as in games played by mail. '

To be worth the programming time a GAP must either do some-
thing rather better than it could be done manually or it must save
time. Usually GAPs are written to save time on aspects of games
which are boring. Most frequent of these are the routines which
generate characters for tabletop role-playing. Normally a role-
playing game needsan hour or two beforehand while a number of dice
are rolled to set up the variables which form the character or
characters playing the game. As such a character may have more
than 20 such values, each of which affects or depends on the others,
this can take a great deal of tedious work. As the basic process is to
generate a series of random numbers and set up a list of values
according to how these random values interrelate, it is easy to writea
flowchart for this and then code it up.

Every game has its own version of this process, so there is little use
in giving a program here. However, as many ofthese gamesrequirea
complex series of random numbers to set them up, the following
general routine may be useful. It is a standard random number
generator which allows selection of either linear probabilities in a
chosen range or other probabilistic curves (chosen by selecting a
number of dice with any number of sides other than one). Figure 11.1
gives the routine.

5 CLS
1% DEF FN ¢ {)=INT (RND*F)+1
15 CLS : PRINT "™ Do vou wan
t a number in & . linear range
(1) or a set of dice

throws (27"

26 LET X$="For another set of
throws type 1"

24 LET Y$="To change parameter
s type 2"

28 LET Z%$="To end type 3"

30 INFUT A: IF A<1l OR AX2 THEN

CLS : GO TO 15

4@ IF A=2 THEN GO TO Seo

25 CLS

19 CLS ¢ PRINT ™ What is th
e lowest number in the r
ange?"

11 INFUT B

115 CLS

124 CLS ¢ PRINT " What is the
highest number in the ra

183

nge?"

13¢ INFUT C

135 CLS

174 PRINT AT ©,%:"LINEAR RANGE"
137 FRINT AT 2,9i"High

anll

138 PRINT AT 3,23€C: PRINT AT 3,
243 B

146 PRINT AT 16,43 "The number 1
s "3$INT (RND*{(C+1-R))+B

15¢ FRINT AT 16,@:"For another
number type 1"

166 FRINT Y%

179 FRINT Z%

186 INFUT A

185 IF A<1 OR A>3 THEN CLS : G
0 TO 158

186 CLS

190 IF A=1 THEN GO TO 135

200 IF A=2 THEN GO TO 1@

219 IF A=3 THEN GO TO %99

S99 CLS @ PRINT "How many sides
to yvour dice?"

51¢ PRINT "Flease enter a numbe
r between 2 and l1oea"

920 INFUT F

s34 LET a=INT (A): IF A<Z OR AF
1eé THEN CLS : GO TO Soo

546 CLS : FRINT "How many throw
s of your "iPi" sided dice?"

950 INFUT B

560 LET B=INT (B): IF B<1 OR B>
1606 THEN FPRINT "Only 1 to 1000
throws allowed ": GO TO 340

576 CLS : PRINT "Do you want th
e throws ","printed separately (
1)", "or added together (272"
58 INFLT C

526G LET C=INT (C): IF C<1 OR C>
2 THEMN CLS : GD TO 570

&0 IF C=1 THEN GO TO 7o

&85 LET D=o: LET E=@

419 FOR I=1 TO B

620 LET E=FN R ()

a&36 LET D=D+E

6H40 NEXT I

“45 CLS

&59 FRINT "Your number is "iD
660 FRINT X

670 FRINT Y%

68¢ FRINT Z%

&0 INFUT A -

184

&HP2 IF A<l OR A>3 THEWM CLS = B
O T &é&0

&24 IF A=1 THEN GO TO &a5

&95 IF A=2 THEN GO TO 1o

a%& IF A=3 THERN GO TO 999

7o LLET D=

7azZ CLS

765 FOR I=1 TO B

71w LET D=FN R{(): PFPRINT "You th
row "iD

720 NEXT 1

750 PRINT X%

Tae FRINT Y%

T7¢ FPRINT 7%

720 INFUT A

792 IF A<l OR A3 THEN (LS = 5
0 TO 735a

794 IF A=1 THEN GO TO 7oo

795 IF =2 THEN GO TO 1¢

794 IF A=F THEN GO TO 999

g9 STOF

Figure 11.1

Many other aspects of FRP games are essentially random, though
with certain fixed values, so this routine may be useful for many
aspects of the game, such as determining the numbers of rooms in a
dungeon, the number and types of monsters in a particular location,
the spellsavailable toa particular magician, the spaceshipsinafleet,
the troops available to an army, and so forth. No special
programming tricks are needed for these— simply careful structur-
ing. However, the program for any of these will be different for each
game system. In general it is better to generate all the random
numbers needed first and hold them in an array or file of some kind.

There are some general routines which can be of use to many
role-playing games. One example is the name-generating routine
given in Chapter 7. Another could be of use not only in game-playing
but also for stimulating ideas of all kinds; this is an idea generator
which creates new ideas for use as the basis of games or scenarios,
such as the one given in Fig. 11.2,

50 REM FANTASY IDEAS FROGRAM

89 REM INITIALISATION

F9 LET na=3é: LET aa=3é: LET v
a=3o

9% LET V=@

19® DIM n®(rna,11): DIM N(NA): D
IM as(aa,11): DIM A(AA): DIM v (
va.ld): DIM VIVA,2)

116 GO SUB 1060

115 DEF FN r (2)=INT (RND#%x)+1

185

L2

29
136
14o
145
156

LET flag=e
EEM STaRT OF mMaln LOOF
PRINT "THE "3
LET T=FN R (NA)}
LET VYW=
IF FLAG< »@ THEN GO SUE Za

oo: REM CHECE THAT NA AND V& AGR

EE -
146G
174
18
196
200
26

215
218
2260
238
RO0
1o
326
30
Z46
S50
ZE&G
361
506
=516
SO0
520
S0
feyale)
&la
L0
PeY
100
1916
1026
1a3a
1o4e
1656
1046
1076
1080
1100
200

RETURNS WW=1 IF NOT

IF =1 THEM GO TO 146

LET R=FN R{3)-1

IF R<Z THEN GO TO 360

FOR I=1 TO R

LET S=FN R{AA)

IF AMBY=N(T) THEN GO TO 22

IF A(B)=2 THEN GO TO 2¥0
GO TO Z2ve

LET C#$=A%$(5): (O S5UR 2500
MEXT 1

LET C4=N%${(T): GO SUER 2564
LET R=FnN R (3}

IF FLAGYR THEMN (O TO S0
PRINT "."

PRINT

LET FLAG=a

GO TO 136

REM END OF MAIN LOOF

LET U=FN R({VA)

IF YU, 1)=N(T) THEM GO TO

IF viU,1 =2 THEN GO TO &89
GO TO Soo

LET C#=V&(l): GO SUBR 250
LET FLAG=FI-AG+1

GO TO 13

REM READ DATA INTO ARRAYLS
FOR I=1 TO NA

READ MN$(I),MNCI)

MEXT I

FOR I=1 TO AA

READ A®{I), A1)

NEXT I

FOR I=1 TO VA

READ V&(I), V(I 1),VI(I,2)
MEXT I

RETURN

REM CHECK NOUN AND VERE AGR

EEMENT

2016
2020
2026
2040

186

IF V(U,2)=2 THEN RETURN
IF N(T)=V(U,2) THEN RETURN
LET vv=1

RETURN ;

2499 REM STRIF SPACES FROM DATA
2500 LET B$=CH
2505 FOR K=1 TO LEN (C%)
2519 IF C$(K)<»" " THEN LET J=K
2520 NEXT K
2540 PRINT B#(1 TO J)s" "3
2599 RETURN
o008 DATA "HOUSE", o, "DRAGON",1,"
TROLL", 1, "GOBLIN",1,"KEY",®, "STO
NE", ®, "BOOK", @, "SCROLL" , &, "POTI10
N", G, "SLAVE", 1
=5@10 DATA “"TREE",1,"HAT", &, "COAT
" 8, "ROBE", 3, "HELMET" , 0, "CROWN",
@, "BIRD", 1, "DOG", 1, "HAWK", 1, "APF
LE"”, @
5020 DATA "HORSE",1,"BEETLE",1,"
FROG", 1, "DEVIL", 1, "MAN", 1, "DWARF
"y1,"ELF", 1, "WOMAN", 1, "0OGRE", 1, "
MONSTER" . 1
5196 DATA "COLD",2,"STUFID",1,"S
TEEL", &, "GOLD", 2, "COPFER", @, "BLA
kY, 2, "BLUE", 2, "WHITE", 2, "GREEN"
2, "YELLOW", 2
51160 DATA "INTELLIGENT",2,"CLEVE
R",2,"IRON", 2, "WOODEN", @, "SAPHIR
E",®, "STRONG", 1, "WEAK" .1, "LAZY",
1,"SILLY", 1, "BROKEN", ®
=120 DATA "HOLY",2,"EVIL",Z2,"SOF
T, 2, "DRUNKEN", 1, "FRIGHTENED", 1,
"HUNGRY" , 1, "HARD" , 2, "ANCIENT", 2,
"UELY", 2, " ICY", 2
5200 DATA "ENEMY OF",1,1, "HATED
BY", 2,1, "PURSUING", 1,1, "CONCEALI
NG", 2,2, "HATING", 1,2, "MAKER OF",
1,0, "MADE EBY",&,1, "OWNED BY",®,1
."LLIVING BY",2,1,"AFRAID OF",1,2
5216 DATA "CURSED BY",2,1, "KILLE
D BY",1,2,"IN LOVE WITH",1,1,"TA
KEN FROM",2,1, "CHASED BY",1,1,"H
ATED BY",2,1,"HIDDEN BY",2,2,"FR
IEND OF",1,1,"ABSASSIN OF",1,1,"
HOME DF", 6,1
5228 DATA "SLAVE OF",1,1, "HIDING
FROM", 1,1, "STOLEN FROM",®,1,"CA
UBHT BY",1,1,"MASTER OF",1,2,"WOD
RSHIFFED BY",2,1, "ENCHANTED BY",
2,2, "FRIEND OF",1,1,"FOUND NEAR"
. 2,2, "DISCOVERED BY",2, 1

Figure 11.2

Such a program has some of the elements of artificial intelligence,
i.e., it simulates creativity, producing new ideas just as a human

187

being might(e.g.,in generating the mind mapssuggested in Chapter
3). However, the program does not evaluate any of the ideas. To do so
it would require a huge database of knowledge on what was practical
or desirable in the real world. Creativity in human terms is a ques-
tion of finding new linksbetween existingitems and that iswhat this
program does. The user has to evaluate them, deciding which might
lead to useful games or scenarios and which are trivial or useless.

The value of a program like this depends on its database. The
version included here attempts to create new fantasy ideas, but
different databases could be used for other types of plot or scenario,
such as Science Fiction or a Western. Other databases, rather more
remote from the type usually found in an adventure game, could
include different kinds of human social or political relationships, or
thekindsofrelationstypical of televisionsoapopera, or any situation
where two elements are linked in some way.

The program works by building up noun phrases concerning
objects/creatures/beings and then linking two or more such phrases
through a verbal relation of some kind. To avoid ungrammatical
constructions certain limitations are built into the database. How-
ever, all of the possible relations are semantically correct, though
some might seem a little odd. The basis of this correctness is the
numbersheld in the DATA statements after each word or phrase. All
nouns and adjectives have a single number code; all verb phrases
have two number codes. Code 0 means that the word is inanimate, 1
meansthatitisanimate, and 2meansthat it could be either. The verb
phrases have two codes because they are preceded by a word that may
be animate or inanimate as well as followed by the same choice. So
the phrase ‘hated by’ must be followed by an animate phrase because
only animate things can hate, but may be preceded by either an
animate or an inanimate phrase as both classesof thing can be hated.
Its code is therefore ‘2,1’.

Ifdesigning your own GAP it is best to begin with one small aspect
of the game which can be isolated from the rest and which you
understand quite well. You will realize by now that the reason for
thisisthatsuch programshave many more features than one expects
and therefore need very careful planning. The temptation is always
to begin with something very complex, such as a game’s combat
system. While itistrue that these systems are generally tailor-made
for micro adaptation, it is also true that you will find more problems
than you expect, so you are likely to end up abandoning the project
half-way through if you bite off more than you can chew.

It is much better therefore to begin with something elementary so
you can learn how to do it by practice without becoming frustrated or
bored, e.g., a dice-throwing.program or a program which generates

188

the armies in a war game. These are relatively self-contained yet
could be very useful in a game. Once you have successfully created a
simple GAPlike this you can begin to work on fuller programs. These
must be worked on in sections. Fortunately most games can be
described as algorithms or flowcharts, so the nature of the problem is
usually not too difficult to specify. However, make sure that you have
drawn up all the stages of the description before you begin coding or
youwill find that you have not allowed for all the intricacies of board
games. Even Monopoly is quite complex.

11.2 Play by mail adventure

Another way to play adventure is by post. Perhaps this seems
strange, but many games’ players now take partin postal campaigns
of one kind or another, such as war games, science fiction games, and
fantasy adventure games, as well as many other conventional
games. Chess, Diplomacy, and even Ludo are played by post.

The advantages and disadvantages of postal play are obvious. On
the one hand it is a good way to find keen players; you do not have to
arrange meetings or calculate elaborate timetables so that all
players can be in the same place at the same time; each player has
plenty of time to calculate his or her move; a large number of players
can be playing one game (impossible in the normal living room);
aspects of campaigns/adventures such as surprise, hidden move-
ment, spying, intelligence, morale, discovery of magic, finding
powerful secrets, meeting ‘new’ characters or races, or travelling an
unknown universe can be handled in a realistic rather than an
artificial way. On the other hand play by mail (or PBM as it is
commonly called) usually means strict deadlines for sending in
moves, little direct contact between players, a great deal of
administration for the umpire, and a degree of inflexibility. Games
may also take months or years rather than hours or days to complete
—some people would call this an advantage and others a dis-
advantage.

You can play such games without a computer. In fact most PBM
gamesdonotinvolve amicrocomputer. Computer-moderated PBM is
a very recent phenomenon as umpires and games masters have
realized that the computer can take on much of the tedious work in
such a game and can do much to make such games more interesting
and varied. Generally only the umpire or coordinator in a PBM game
uses the micro and players communicate with the umpire by post and
telephoneintheusual way. Eachturnevery playerreceives feedback
from the umpire on the results of previous moves, then works out the
next move, writes it down, and sends it in to the umpire before the

189

deadline. The umpire feeds it into his micro as data for a program or
suite of programs, the micro calculates the results, and the umpire
then sends those results back to the players. However, it would be
possible for such games to work entirely on micros, with moves and
results being communicated by exchange of cassette or disc, or even
transmitted directly down telephone lines by using acoustic couplers
or modems.

We will concentrate on the simpler game with one micro, one
umpire, and a number of players. There are two key differences
between this set-up and the usual micro adventure game. In the
kinds of game described in Chapters 1 to 10 usually only one player
playsthe gameatatime. In PBM games, the program must cope with
simultaneous input from a number of players. This causes several
programming difficulties.

Secondly, in an interactive micro game speed of response is
important. Any delay of more than a second or two while a player’s
instructions are being processed leads to frustration and boredom
with the game as a whole. In PBM the speed of response is not
important. Naturally the micro has to calculate all the results well
before the deadline to enable the umpire to write back to the players
in time, but the running of the program could take hours or days
between input and output withoutcausing any problems. This allows
several programming techniques not normally useful to the adven-
ture game programmer. These include:

1. Processing of natural language input

2. Production of varied natural language output

3. A high degree of complexity in rule systems (e.g., combat, magic,
etc.)

4. Large databases stored on cassette or disc (e.g., adventures with
thousands rather than hundreds of locations)

5. Interaction of different kinds of games (e.g., adventures, graphic
games, and strategic war games can be combined)

6. Programs split into several stages or sections to avoid micro-
computer memory limitations

In other words, PBM adventure gives the maximum scope in
design, content, and implementation of an adventure. The pro-
grammer is no longer limited to the micro’s RAM, nor to the specified
forms of input and output interactive games demand, nor to
programming with a view to a constantly attractive and updated
VDU.

There are some other preliminary considerations, however. In
order to run a PBM game efficiently it is best to have a printer (and
preferably one with some form of graphics output) and disc drives, or

190

some other form of mass storage. In principle a PBM game can
operate without either of these, especially a simple game. However,
it would mean that you would have to copy output from VDU to paper
by hand, which is a tedious task and rather wasteful of a micro’s
resources. Cassette storage can be used instead of dise, but is much
slower and operates by serial rather than random access. What this
means is that a disc allows almost instant use of any data or program
stored anywhere on the disc, whereas a cassette has to be searched
one byte at a time, from the beginning to the correct point. So if you
were in the habit of storing the data for your games on C60s, it might
take half an hour to find the correct data, whereas 5 seconds is
considered slow for discs.

The Spectrum will of course have the Microdrive, whichoughttobe
generally available by the time this book is published. Though
almost certainly a tape-based system the Microdrive will perform to
all intents and purposes very like a normal disc drive. If you can
afford one disc drive or Microdrive, then it is better to try and afford
two. Two drives allow easy copying of discs and the use of program
discs and data discs in separate drives. With one drive you would
either have to keep all the data for a particular program on the same
disc or to swop discs around while the program is running which,
though usually possible, is not a good habit.

However, the majority of micro owners cannot yet afford disc
drives, so we will assume in the rest of this chapter that the con-
figuration you have is a micro, a cassette recorder, and a printer. For
the Spectrum this means also having an RS232 or Centronics inter-
face to drive a sophisticated dot matrix or daisy wheel printer, as the
Sinclair printeris not really adequate for attractive output toberead
by players, excellent though it is for general use.

The design of your PBM game can be identical to a normal micro
adventure, except that output must go to a printer as well as, or
instead of, your television screen. The actual programming will
depend on the BASIC syntax of the interface you use. If you are using
a Sinclair printer, or the interface you have allows the Sinclair
commands, it is simply a matter of substituting LPRINT for PRINT.
If the game has graphics output or a complex or interesting screen
display then you will use COPY, which printsonthe printer a copy of
what is displayed on the screen. However, this facility might not
work on a number of printers, so you may have to redesign the output
as a series of LPRINT commands. Although much more tedious, this
does give you more control over the output. Consequently, if the

*printout for each playeris essentially the same with a few variations,
then the LPRINT command allows these changes to be made on the
printed output while screen display can remain the same.

191

Though it is possible to have a PBM which is exactly like an
ordinary micro adventure, it will not make a very satisfactory PBM
game. Very few people would like to wait two weeksfor a printed copy
of adisplay identical to the one they could get by playing the game on
their own micro, especially if it hardly changes from turn to turn.
Certainly it would not be much fun to keep trying different
commands, such as HIT DOOR, SMASH DOOR, BREAK DOOR,
etc., every fortnight only to have a ‘nothing happens’ result every
time!

So the design of a PBM adventure must build in at least two
differences from the standard adventure. Firstly, the player must be
allowed to input very complex instructions, rather than simple one-
word commands, and correspondingly output must be complex and
must change substantially each turn. It does not matter if some of the
output is unimportant in terms of playing the game, such as
elaborate descriptions of locations; what does matter is that itshould
demand a lot of thought by the player. Part of the fun of a PBM
adventure involves extracting from such complex descriptions
exactly those bits of information which are important and need to be
responded to.

For example, in a normal micro adventure output in a specific
location might be:

You see a room full of cobwebs. There is a great spider on the
ceiling.

The description cannot be much longer than this because of limita-
tions on memory. Because such limitations can be removed by a PBM
games master, the description could be aselaborate asthe following:

The room is very dusty. In one corner lies an upturned bucket. The
ceiling and one wall are covered in cobwebs, and a number of small
spiders are scurrying through the strands. There is a pool of
greenish liquid in the middle of the room, on which a fragment of
parchment is floating. The room smells faintly acid, especially
near a large clump of web. Faintly in the distance you hear a sound
like pebbles falling off a cliff.

Faced with such a description the player does not know which of
these items is important and which is not. He must therefore write
orders which take as many as possible of the circumstances into
account. We know that there is a huge spider in the main clump of
web and that the distant sound is actually a band of orcs scrambling
down the cliff because they have heard you coming. However, the
player may decide to ignore the web and the sound and instead
investigate the pool, the smell, the small spiders, the bucket, the

192

dust, or the parchment. If he or she does, then the spider will leapand
the ores will eventually attack from behind.

Two ways to build such complex output into your game are to
develop large descriptive databases or to have ‘random description’
routines. The first method involves no more than we have already
done when we designed the puzzle section of Camelot. For each
location we wrote adescription and stored itasaroutinein RAM tobe
called when the player came to the appropriate location. The only
difference we need implementis tostore the description on magnetiic
media—in our case, cassette. The Spectrum gives us two ways of
doing this. One is to use ‘MERGE’, the other to use ‘SAVE string
DATA array name()'.

In the first case we write our program to LPRINT a description
using data saved as a separate program. The description could be
held as a series of LPRINT or PRINT statements, or as DATA state-
ments which are to be READ and then manipulated, or as strings or
string arrays to be manipulated. To take the simplest example, we
would have a program which accepts the player’s instructions and
then has to print a description of the next location. Suppose the
program uses a routine starting at line 7009 to print this description.
Then the program needs to call the following routine before the
routine at 7000 is called:

5999 REM ROUTINE TO FIND AND LOAD A DESCRIPTION
6099 REM LOOK FOR RIGHT ROUTINE
6010 PRINT “Please place location tape in recorder, and pressthe
PLAY key”
6020 1F LOCATION = 1 THEN MERGE “CASTLE”
6030 1IF LOCATION = 2 THEN MERGE “ROOM”
6049 IF LOCATION = 3 THEN MERGE “SWAMP”
B s s R i e R S R

The routine asks you to put the correct tape in the cassette
recorder; it then searches for and MERGESs the program with the
appropriate name. Each of the named programs that it could be
looking forwillbe in lines 70¢¢) to 7999, and the line numbering for all
of them must be identical. This is because a program which is
MERGEd will only delete lines withnumbersidentical to those in the
MERGEd routine, so errors could result if one description had more
line numbers than the others.

A typical description might be like this:

7000 REM CASTLE

193

7010 LPRINT “You see a large black castle”

7020 LPRINT “A bat is fluttering around one tower”

7030 LPRINT“Overthegate fliesabannerbearing the emblem of
a red raven on a green field”

etc.

If such a description has no relevance to the game, being just local
colour, then the MERGEd routine need be no more than a list of
LPRINT statements. However, each different location will pre-
sumably have its own design features, such as the spider and orcs in
the above example. Consequently, these MERGEd routines must
also pass values to the main routine in the program which has called
the description. The kind of information which will be needed is the
same asthat used in previouschapterstodescribe monsters, environ-
ments, and objects—in short, values for all the variables in the
program which characterize that location and which the player’s
character could interact with. These would include combat values,
lists of possible objects and codes for the possible effects, magical
values of monsters and the environment, ete.

Itisalsopossible tobuild subroutinesinto theconfigurationofeach
room, so that different possibilities present themselves on different
visits. For example, the castle routine might itself have a routine
which determines whether the gate is closed or open (consequently
passing a value to the main program); or a routine which varies the
description, perhaps depending on the searching abilities of the
player; or aroutine which randomly determinesifthe bat attacksthe
player.

It is also possible for a routine MERGEd in this way to call and
MERGE another, either as a subroutine of itself or to replace itself. If
we use this method, we must index our tapes very carefully, and
ensure that the interactive request in each MERGE call, which asks
the games master to insert a cassette, specifies exactly the right
cassette in an unambiguous way. Every description requires a
unique name, every name should be written on the cassette, each
cassette should have its own name or number, and, preferably, there
should be an index of the whole lot.

You may be wondering why a location routine such as ‘CASTLE’
above might want to merge another which wipes it out. An obvious
example would be a travelling routine— either an arbitrary trans-
porter or warproutine, or aroutine which forces the player to move to
a particular location, such as in retreating, for example, or being
carried away by a giant eagle to its nest. For example:

720¢ LET R = INT (RND*3)

194

7219 IFR =1THEN LPRINT"A gianteagle descends and carries
you away”: PRINT “Please insert tape N1 and press the
PLAY key”: MERGE “"NEST”

7200 REM NEST ROUTINE

7210 LPRINT “You are in a huge, smelly nest”

7220 LPRINT “There are three eggs in the nest”

The second method of storing and loading descriptive locations is
less versatile than using MERGE because the programmeris limited
to loading data rather than routines. However, if we only need to
store descriptions and not subroutines of any kind, then these can be
held in string arrays. One major advantage of this method over the
MERGEing methodisthat thereisnoneedfor ustoworryaboutexact
matching between line numbers. LOADing a string array that has
previously been SAVEd only wipes out any other array or string
variable in the program with the same name.

This method would be used by micros without MERGE or other
cassette file handling routines, and would often be used if the main
program contained all the values, variables, and interactive
routines. It simply loads a particular array, which we can call L$,
with the information that the preexisting routines use for output. In
Spectrum BASIC, to SAVE an array we use ‘SAVE “CASTLE”
DATALS$()’,and to LOADit'LOAD“CASTLE” DATAL$()Y. From an
array called L$ this saves a stream of bytes called “CASTLE”. Thus
we can use virtually identical commands to call our descriptive data
into the program, such as:

6020 IF LOCATION = 2 THEN LOAD “CASTLE” DATA L$()

Remember to ensure that there is sufficient space to load the
largest of the SAVEd arrays likely to be needed. However, we do not
need to DIMension the array, nor to change the dimensions if the
possible arrays replacing L$() are of different sizes. This method is
therefore easier to use than complex MERGEing because there are
fewererrorstobuildin. Thusthe easeispaid forby therelative lack of
versatility.

SAVEing and LOADing data and routines from cassette can be
used in ordinary micro adventures, but always involve a long delay.
Consequently few interactive adventures use this method, except by
dividing the adventure into a series of large separate programs,
usually passing data from one to the next. Without any connection
between adventures inthis way, they canseemto be nodifferent from

185

independent adventures.

The second method of creating elaborate descriptions requires
more thought before coding, but less actual coding or code. Conse-
quently it requires less memory, storage, and time. The technique
involves mixing the significant descriptions which are location-
specific with randomly determined insignificant description. We
have seen how this can be done in Chapter 7, where both meaningful
and random ‘conversation’ were mixed.)

The problem to overcome is how to fit random descriptions to fixed
descriptions in a way that makes sense and also fits with the
surrounding plot and environment. It is necessary to devise a system
of markingsothatall locationsare given atype andeach type cancall
up typical random phrases. For example, one type of location may be
‘the castle’. Eachdifferent castle will haveits own unique description
and associated routines that can alter the player’s character. How-
ever, all castles would call routines which established random des-
criptions of additional detail using units like ‘the towers’, ‘the
battlements’, ‘the type of stone’, ‘the shape of windows', ‘the number
of doors’, ‘kinds of inhabitant’, ‘degree of dilapidation’, etc.

This kind of randomization can also be made more meaningful,
such as when arranging production of typical encounters. Just as in
an interactive adventure certain locations have certain types of
monster and treasure, so in a PBM game sets of routines can be built
up which not only add circumstantial description but also add cir-
cumstantial narration. Things which are going on around and
because of the player’s character, even if of no structural signifi-
cance, will add to the flavour of the game (pleasing those who play the
adventure because it feels like being in a fantasy novel), and may
give clues, hints, and apparent problems (for those who are more
concerned with discovering every aspect of a game’s possibilities).

All such systems have three basic parts. There are firstly the
descriptive units which make up the basis of the text construction.
Secondly, there are the coding systems which translate different
types of location into different possible descriptions. And thirdly,
there are the mini routines which support such descriptions with
appropriate happenings.

To demonstrate how such a system might work let us construct a
game with the following simple criteria:

1. There are three location types—underwater, on the water’s sur-
face, and on board ship.

2. There are four monster parameters—combat abilities, know-
ledge of secrets, type of mobility, and mode of communication.

The game will thus have a set of descriptions, coded as suitable for

156

one, two, or all three of the location types, a set of event structures,
made up of the components described in Chapters 2 and 3, 51m11arly
coded; and a set of routines whose codes match the descriptmn and
eventcodestoputtogether amonsterforthislocation whose valuesin
all parameters fit the chosen code.

Suppose that code 1 was ‘under water’, code 2 was on the ‘surface’,
and code 4 was ‘on board ship’; then descriptions and events could
havecodesfrom 1 to 7 indicating whichlocation type they were suited
for. Code 3 is both under and on water, code 6 is surface and ship, and
so on. All the event structures and monster parameters would be
similarly coded. Thus the parameter‘mode of communication’ might
have the following possible values and codes:

Value Description Code
1 talking 6
2 gestures |
3 slapping water with fin 2
4 singing 6
5 blowing bubbles 1
6 acrobatic movements 5

All other parameters would be coded in a similar way, with all
possible values of the parameter representing possible aspects of a
monster with anequivalent verbal description, and would be coded to
ensure compatability between the chosen location, event, and all
monster features. So if we randomly choose ‘floating amidst a tangle
of seaweed’ as our location, this would have code 2, so the monster
which was in this place might be able to communicate by any or all of
the following— talking, gesture, slapping water with fin, and
singing—but not by acrobatic gestures or blowing bubbles.

In this way a location description would be built up which was
essentially random, not designed by the programmer, but uniquely
configured and me aningful for the player because the elements were
all consistent and provided a new event for him or her to respond to.
Built in to the descriptive aspect would be possibilities similarly
coded. For example, the game may be built on the premise that
creatures on the water’s surface were generally hostile (hence the
variable ‘enemy’ is set to —6), but that creatures who can talk are
generally friendly (hence a chance that the variable ‘enemy’ will be
modified is denoted by a value between 1 and 9). The player will be
able to learn these tendencies through previous interaction, so will
then be able to react to this new situation with a degree of knowledge
but also a degree of uncertainty.

The only constraint on the designer of a PBM game such as this is

197

the time available to him or her for creating the original suite of
programs. The more time we have, the more we can build into the
game, all parameters can be coded; all parameters can themselves
have parameters. The degree of possible complexity is immense and
that complexity can be extremely life-like and meaningful — a good
compromise between the purely random and purely determined
adventures played solely on micros.

188

op

Software to
accompany this book

A cassette tape (48K Spectrum) is available to go with this book. It
mcludes the full listings of all the major programs, with various
iImprovements in formatting, etc:—

® CAMELOT

@ MERLIN’S MINES
@ TROVE

@ IDEAS

® BEEPER

® CYPHER

There is also a program that isnot in the book — TONGUES — a program
to generate different types of ‘alien language’, a ‘must' for Adventure
Games programmers!

The tape is distinctively packed to match this book, and comes complete

with an instruction leaflet, as well as a card enabling you to use the free
McGraw-Hill software support service.

SPECTRUM ADVENTURES

JUST £6 -95 INC. VAT

(07 084720 T)

McGraw-Hill books and software should be available where you bought
this book, but in case of difficulty, send direct to:

McGraw-Hill Book Company (UK) Limited
Shoppenhangers Road, Maidenhead, Berkshire

e P

Ll =

