clo/m/Plu

l A r:umplete np-eratlng guldetu
-+ Sinclair LOGO

. @ Practical|information on _eu?lity__
aspect — from getting started to
. turtle graphics and list pracessing

@ Clear, concise explanations/to

~maximise the simplicity and power |

jof LOGO|

il

" Grham Field | _? =

-—t

LOGO
ON THE SINCLAIR SPECTRUM

0ok

Other titles in the Papermac Computer Library:
Women and Computing: The Golden Opportunity
by Rose Deakin

How to Buy Software
by Alfred Glossbrenner

LOGO
ON THE SINCLAIR SPECTRUM

GraHaM FIELD

UNIVERSITATSBIBLIOTHEK
HANNOVER

TECHNISCHE
INFORMATIONSBIBLIOTHEK

M

MACMILLAN

EH F738

Copyright © Graham Field 1985

All rights reserved. No reproduction, copy or transmission of this publication may be made

without written permission. No paragraph of this publication may be reproduced, copied or

transmitted save with written permission or in accordance with the provisions of the Copyright

Act 1956 (as amended). Any person who does any unauthorized act in relation to this publication

may be liable to criminal prosecution and civil claims for damages. p Conte nts
First published 1985 by

PAPERMAC

a division of Macmillan Publishers Limited

4 Little Essex Street London WC2R 3LF

and Basingstoke

Associated companies in Auckland, Delhi, Dublin, Gaborone, Hamburg, Harare, Hong Kong,
Johannesburg, Kuala Lumpur, Lagos, Manzini, Melbourne, Mexico City, Nairobi, New York,
Singapore and Tokyo

Series consultant: Ray Hammond

Acknowledgements
1 Whatis LOGO?
British Library Cataloguing in Publication Data 2 Getting Started
Field, Graham 3 Words and Variables
LOGO for the Sinclair Spectrum. — (Papermac) 4 Lists and Words
1. Sinclair ZX Spectrum (Computer) — . .
Programming 2. LOGO (Computer program language} 5 Repeatmg Instructions
1. Title :
001.6424 QA76.8.5625 6 More Turtle GraIJ]_“CS
ISBN 0-33-38376-1 7 More List Processing .
8 Some Mathematical Operations
Typeset by Bookworm Typesetting, Manchester
Printed in Great Britain by 9 More Input and Output
Richard Clay (The Chaucer Press) Ltd 10 When Things Go Wrong

Bungay, Suffolk
Index

vii

14
25
40
49
60
69
86
93
104
113

Acknowledgements

[should like to thank Sinclair Research Ltd and especially Julian Goldsmith
for help with the provision of software and documentation and all my
colleagues of the ITMA Collaboration for their support and suggestions.
Thanks are particularly due to Doreen Johns who typed the manuscript for
the care and thoroughness which she brought to this task.

What is LOGO?

LOGO is a computer language developed at the Massachusetts Institute of
Technology from 1967 onwards as a suitable way for children to learn
programming and with the belief that it would contribute to the learning of
mathematics and the development of problem-solving skills. Its use in this
way has been the subject of considerable successful research at MIT and
other places in the United States and at the University of Edinburgh, which
also reports an improvement in word handling and language skills of children
who are familiar with LOGO. For teachers, parents and even pupils interested
in the educational aspects of LOGO there are a number of excellent books
available, notably Mindstorms by Seymore Papert (Harvester Press, 1980),
one of the language’s originators.

Despite its design for the use of children, LOGO should be considered a
serious computer language, not a toy. Possessing a number of advantages
over BASIC, it is certainly a possible replacement for that language for the
home or school computer. Although LOGO is easy to learn and use, and
therefore suitable for children — or for adults unused to computers — it is also a
powerful tool for controlling the full capabilities of the computer.

Turtles and lists

Young children are usually introduced to LOGO by making use of the
computer to control the movement of a turtle — a small mechanical cart,

10 Logo on the Sinclair Spedm,

usually connected by wires to the computer, which can be moved around on
the floor, preferably on a large sheet of paper. The original turtles were
covered by a domed ‘shell’, hence the name. This device carmies on its
underside a pen which can be raised or lowered so that as the turtle moves it
can draw its path. In order to control the turtle, you must present the
computer with an ordered and organized series of instructions, its program,
which can be neatly stated in LOGO.

Although the Spectrum has facilities for the control of a floor turtle, we shall
be thinking of the term as referring to a small arrowhead displayed on the TV
screen, where it can both draw lines like a floor turtle and also change colours
and rub lines out.

The fascination and power of LOGO as a computer language derive from
the fact that once you have told it how to do something you can give that task
a name and then use that name as a new command (called a procedure). So
you effectively construct your own commands and your ow. computer
language, which develops as your understanding does. The only restriction is
the amount of memory space in the computer needed to store your
procedures. You can, however, store them on cassette or microdrive, only
having in main memory those you need at the time.

LOGO was originally developed and subsequently used by research
workers in the field of artificial intelligence — the study of human thinking and
how machines can imitate it and throw light on how it works. This study often
makes use of a computer language called LISP (a LISt Processing language).
A list is a natural and easy way to store information, and fist processing is the
term used to describe the methods of handling lists. It is unfortunately the
case that LISP has proved difficult to learn, possibly because it looks more
complicated than it is and because it still incorporates some code words used
for the first computer on which it was implemented, even though this machine
no longer exists. This has led to the idea that list processing is mysterious and
difficult to understand. That this is not so will, I hope, become apparent as
you work through this book, for LOGO provides straightforward and easily
understood list processing commands which children have used to write
poetry-generating programs and teaching programs.

It is regrettable that some people have come to regard turtle graphics as the
most important aspect of LOGO. There even seem to be a few who believe it
is the only important aspect of the language. As a result there have been a
number of programs developed which provide turtle graphics — often very
worthwhile as programs, and written to a high standard — many of which are
quite wrongly called LOGO, or incorporate the word in their names. LOGO
for the Sinclair Spectrum does not belong in this category; it provides all the
facilities to be expected of a full implementation of the language and adds
some — access to machine code routines, for instance — which are not part of
LOGO proper but may enable you to write more ambitious programs. These

. What is LOGO? 11

extra techniques are outlined in LOGO 2 but are not covered in this book.

Like other computer languages and indeed all branches of computing,
LOGO is described using a lot of jargon words. Many people seem to hate or
fear jargon, unless it is connected with their own jobs or areas about which
they are knowledgeable. Some jargon is, however, necessary if we want to
discuss certain aspects of the language and show how they relate to others or
develop techniques which depend on knowledge of how information is
represented and organized. It does not help you to drive a car to know that
the four things sticking out of the top of the engine are spark plugs — at least,
not until you find that the car will not start; then such knowledge will help
someone explain to you what steps to take to improve the situation, and it is
essential when it comes to ordering spare parts. This book is not written
entirely in jargon, nor does it attempt to insulate you from it, but it sets out to
give a simple explanation of all the technical terms used when they arise. One
item of jargon, or a specialist way of writing, needs to be explained
immediately. We have already used the word ‘LOGO’ to refer both to the
language we will be using and the program, which you load in from
tape, that understands the language and uses it to control the computer. This
should cause no real confusion, as only rarely will it be necessary for you to
know which is which.

LOGO and BASIC

Now for those acquainted with BASIC, a short comparison of the two
languages. If you are not used to using BASIC you can skip this section.

The two languages differ in a number of ways. Possibly the most obvious to
someone meeting LOGO for the first time is that it does not have line
numbers; there is no need for them. If you need to change part of what you
have written in LOGO you use an editor, a special program or part of the
LOGO system written for that purpose. Unlike the BASIC line editor, this
handles a whole procedure or more at once, and provides more extensive
editing features than are available with BASIC. LOGO procedures tend to be
shorter, often very much shorter, than BASIC programs; this makes them
easier to handle, to write and to understand. Although the editor will take
more than a screenful of instructions, it is usually not a good idea to put so
much into a single procedure.

Another feature which will cause some surprise if you are used to BASIC is
that while you might expect just one BASIC program to be in memory at a
time, LOGO can have a number of procedures that may be quite
unconnected with each other stored simultaneously in the computer memory.

A difference which will perhaps not be obvious at first is that each BASIC
instruction has its own structure and always has to be written in this way.
LOGO, on the other hand, has only one structure for its instructions with two

minor variations which do not have to be used but are allowed for the
convenience of the user.

If you have got used to entering BASIC keywords by means of single key
presses, safe in the knowledge that BASIC will know whether it is expecting a
keyword or not, you will be disappointed to learn that the structure of LOGO
does not make this approach possible; you will have to adapt to spelling
words out more fully. Many of the built-in instructions, however, have
abbreviations, and the nature of LOGO is such that you can define
abbreviations for any others if you think them necessary. There are more
fundamental differences in design of the two languages that can only be
appreciated after using them, but [hope enough has been said here to
prevent you from thinking of LOGO as just another form of BASIC.

12 Logo on the Sinclair Spectrum

LOGO dialects

If you examine LOGO procedures written out for other computers you may
think they look very different from those given in this book or in the manuals
with Spectrum LOGO. This is because LOGO seems to have produced more
and more different versions or dialects than any other computer language.
This is unfortunate, but there are some who would argue that LOGO is not so
much a programming language as a way of thinking. Certainly the general
structure will be similar, as will be the things which LOGO will do. With a little
thought, you will be able to translate LOGO programs that you find
Sl[sewhere for other computers. The words may be different but the ideas are
e same.

How to use this book

When writing LOGO it is customary for books to use capital letters and to
indent sections for clarity. I shall adopt the same practices but it will not be
necessary for you to do so as the version of LOGO available for the Spectrum
is quite flexible. Lower-case letters may be used without problems and
indentation is merely a convenient way of making procedures easy to read.
So, when I have something like

TO SAYHELLO

PRINT [WELCOME TO SINCLAIR LOGO AND
A NEW EXPERIENCE]

END
your screen will show:

?to sayhello

>print [welcome to Sinclair logo a!

>nd a new experience]

>end

The ? and > signs at the beginning of the lines and the ! at the end of

. What is LOGO? 13

the second are provided by LOGO and will be explained at the appropriate
time.

As mentioned above, many of the built-in instructions have abbreviations
provided. In my examples I shall avoid their use so as to make things as clear
as possible. LOGO 2 shows clearly which instructions have abbreviations,
and a full list is given on the reference card which accompanies the manuals.

This book is intended to provide a full introduction to Sinclair LOGO, so
Chapters 2 and 3 repeat much of the information from LOGO 1, partly for
completeness and partly to provide fuller explanation. If you feel you have
already mastered this and are simply seeking for further information or ideas,
| nevertheless suggest you read quickly through those chapters, particularly
the last part of Chapter 3, to acquaint yourself with what is there before
starting Chapter 4.

Chapter 10 can be read at any time, although it uses ideas from a number
of previous chapters; you may need to debug (jargon meaning ‘find and
remove the errors in’) your procedures at any stage.

You are advised to try all the examples given, for only by seeing how
LOGO reacts to your instructions, and mistakes, can you begin to understand
how to use it effectively. If any changes or improvements occur to you, you
should try them. All the examples, except possibly the simplest, are
deliberately left open to improvement and development. Some ideas for
improvements are suggested in the exercises which are given throughout the
hook. No ‘answers’ are provided for these; if LOGO accepts it and does what
you wanted, then your procedure is ‘right’. The exercises should be regarded
as suggestions for investigation and experiment only.

Now all that remains is to begin.

Getting Started

Unlike BASIC, which is built into the Spectrum, LOGO must be loaded in
from cassette tape. Consult your Spectrum introduction manual for the details
of connecting up computer and cassette recorder and loading programs
before doing this. The procedure, which is also to be found in LOGO 1. is as
follows. Put the LOGO cassette into the cassette recorder. Type: ’
LOAD*
(Press J. on the keyboard, followed by symbol-shift and P, twice.) Now press
the ENTER key and then PLAY on the cassette recorder. When the program
is found on the tape, a moving striped pattern will appear on the screen
border and a star-like design will build up in the centre. Eventually, when the
program has finished loading, you will see displayed on the screen the
message:
WELCOME TO SINCLAIR LOGO

followed by a copyright message. Below this should be a question mark, used
as a ‘prompt’ to show that LOGO is ready for your instructions, and a small
flashing square, called the cursor, which shows where you are to type them.
In addition, in the bottom right-hand corner is a small letter " which indicates
that LOGO expects you to type a letter or number which will appear on the
screen. You may now stop the cassette recorder and begin.

We will start by experimenting with turtle graphics. Type SHOWTURTLE
and press the ENTER key. You will probably type in small letters (lower case)

but LOGO will not mind. I will always use capitals (upper case) to indicate
what you type in or what LOGO replies. You will see the turtle appear as a
small arrowhead in the centre of the screen. At the same time, you will find
that the screen splits to give you two lines at the bottom in which to type
instructions while the rest of the screen is for the turtle’s drawings. From now
on [will stop reminding you to press ENTER at the end of an instruction and,
except for certain cases which will be explained when we come to them, one
line on the page will be one line of LOGO, ended with ENTER.

Try the instruction:

FORWARD 50
You should see the turtle move in the direction that it was pointing. It is
important to realize that LOGO expects your instructions to it to consist of
words, separated from other words by spaces just as in written English. So if
you have been used to a programming language like BASIC and thought you
could type:

FORWARDS0
you will have found that LOGO could not understand you. Whichever of the
above two instructions you used, try the other one now, so that you can
appreciate the difference. When the error message is displayed an upward-
pointing arrow appears in the bottom right-hand corner; it means that you
must press a key (any key) before continuing.

In the same way,

BACK 50
will cause the turtle to move in the opposite direction, the same distance. 50 is
a number used to tell the turtle how far to move. This is called the input to
FORWARD or BACKWARD, while these words, the names of things to do,
are called procedures. It is difficult to say what units the number 50 is
measured in, since that will depend on the size of your television screen, but
there are 175 ‘turtle steps’ up the screen and 255 across.

Try going forwards and backwards by varying amounts to get used to the
distances involved. Watch what happens when the turtle goes off the edge of
the screen.

When you've had enough of movement forwards and backwards in a
straight line, it is time to try a different direction. First type:

CLEARSCREEN
This instruction, not unsurprisingly, clears the screen and also moves the
turtle back to its starting position in the centre. To turn the turtle we use
RIGHT or LEFT according to which way we want it to turn. Each of these has
an input, the angle in degrees through which the turtle is to turn. Remember
that there are 360 degrees in a complete circle, so that

RIGHT 180
would make the turtle ‘about turn’, and

LEFT 90

Getting Started 15

16 Logo on the Sinclair Spectrum

will turn it through a quarter turn. Now try:

FORWARD 50

RIGHT 120

FORWARD 50

RIGHT 120

FORWARD 50

You might like to add another RIGHT 120 to finish with the turtle pointing
in its original direction. It might occur to you that there must be an easier way
tg draw a triangle; using this method, pentagons /five sides) or decagons (ten
sides) would get a bit laborious. After all, all we have done is repeat a pair of
instructions three times. Fortunately, LOGO provides an easy way to do just
that. Use CLEARSCREEN to start again, and this time putin:
" REPEQ[')I'S [FORWARD 50 RIGHT 120]
se square brackets, not round ones (press SYS Y to get th

bracket and SYS U to get the close bracket). The differgnt ki:dgl:)(;lrsa(lcl:;z
have, as we shall see later, different meanings in LOGO: for the present, look
upon the square brackets as enclosing the group of instructions which z'ire to
be repeated. The above instruction should again draw a triangle.

RIGHT
120

FORWARD
50

Figure 1 The effect of FORWARD 50 RIGHT 120 FORWARD 50

A REPEAT instruction can get rather long. To make them easier for you to
read, the line will be split at a convenient place and the remainder indented
further than usual. This will be a sign that you are to type it in as a single
LOGO line. Don’t wonry if your typing reaches the end of a line on the screen
and begins another; LOGO will not recognize the completion of the
instruction until you press ENTER. It will, however, put an exclamation mark
at the end of the first screen line to show that it continues below. So, for
instance, when in this book you see something like

REPEATS8 [FORWARD 20 RIGHT 90
FORWARD 10 RIGHT 90
FORWARD 20 LEFT 45]
it should be typed as a single LOGO line with only one use of the ENTER key,
at the end.

The great power of LOGO lies not in the ease of repetition but in the ability
it gives you to define new instructions. Since you now know how to draw a
triangle, all that remains is to tell LOGO how.

Type:

TEXTSCREEN
This removes the turtle arrowhead and makes all twenty-two lines of the
screen available for text. Now type:

TO TRIANGLE
You will see a new prompt, >, appear. Type in the instruction:

REPEAT3 [FORWARD 50 RIGHT 120]
This time the instruction is not obeyed. This is because the word TO has told
LOGO that you are telling it how to TRIANGLE (you are in what is called the
“TO’ mode of use). Instead another > sign appears. This is because your
instructions may consist of a number of lines of text. To signal that you have
come to the end, type:

END
LOGO will respond:

TRIANGLE defined
and display its ? prompt to show that it is ready for instructions; this is called
the command mode. Use SHOWTURTLE and then type:

TRIANGLE
If all is well your triangle should be drawn. If not, try again. Like FORWARD
and BACK, TRIANGLE is a procedure and can be used like them as an
instruction to LOGO; it may even be incorporated into more complicated
commands or other procedures. No book on LOGO can be complete without
rotating patterns, so clear the screen again and try this one:

REPEAT 12 [TRIANGLE RIGHT 30]
See how the instruction TRIANGLE is now understood by LOGO.

Getting Started 17

18 Logo on the Sinclair Spectrum

Exercise:
Convert this into a procedure, giving it a suitable name.

As an example of how procedures are combined, we will draw a stick man
or, to avoid allegations of male bias, a slim woman in trousers. He or she
consists of a head, a vertical line as a body, arms and legs. So, starting with
the turtle in the home position pointing upwards, we would want to define the
shape as:

Figure 2 Design for a stick figure

B

i

. Getting Started 19

TO MAN
HEAD
BODY
LEGS
-‘ARMS

END

You can type it in just like that, or ignoring the indentation of the middle
lines which I have used for clarity. Don’t be worried that neither we nor
LOGO know yet how to draw HEAD, BODY, ARMS and LEGS; we will
simply write procedures for each of these in turn. If at any stage you are
unsure about what a particular instruction does, try typing the instructions of
the procedure one by one in command mode to observe their effects.

We can draw the head as a square for convenience. The basic design will
be found in LOGO 1 and it bears a considerable resemblance to the triangle
we drew above. When it is finished, however, we will need to position the
turtle in the centre of the bottom edge pointing down ready to draw the body;
this requires three extra instructions.

TO HEAD
REPEAT 4 [FORWARD 20 RIGHT 90]

RIGHT 90
FORWARD 10
RIGHT 90
END
The body is easy:

TOBODY
FORWARD 40

END

To draw the legs, as a downward V shape, turn slightly to the left, move the
turtle forward and back to draw a line and return to the same position; turn
twice the previous angle to the right and repeat the same process. We will
finish by turning once more to the left so that the turtle again points vertically
down.

TOLEGS
LEFT 30
FORWARD 30
BACK 30
RIGHT 60
FORWARD 30
BACK 30
LEFT 30

END

The arms can simply be dealt with by moving back up the body and drawing
another pair of legs!

20 Logo on the Sinclair Spectrum

TO ARMS
BACK 35
LEGS
END
Notice how the original problem was broken down into simpler parts, then
each of these was considered separately. This is called top-down program-
ming. It is a method of solving problems to which LOGO is particularly suited.
If at any time you want to make a copy of a turtle drawing on the printer,
enter the command
COPYSCREEN
This causes the printer to copy everything on the top twenty-two lines of
the screen.

Editing

If you have made no mistakes so far you have been very fortunate, but you
will need to know how to correct or improve your procedures in the future.
You can change a procedure by means of the editor. To use it, type EDIT
followed by a space, inverted commas and the name of the procedure you
want to change; for instance:
EDIT “LEGS

The screen will display the LEGS procedure. Try moving the cursor, the small
flashing block, around the screen using the CAPS key with one of the keys 5,
6, 7 or 8 Now type some extra characters, for instance PRINT “HELLO.
They should be inserted into the procedure at the position of the cursor. Now
use DELETE (CAPS 0) to delete them one by one. Pressing ENTER
produces a new line at the point where the cursor is. Think of this as
producing a ‘new line’ character which you cannot see but which instructs
LOGO to put the following text on the next screen line. This character can
also be deleted like any other, causing two lines to join together.

Extra facilities are available in the editor using what is termed E MODE; to
get it press CAPS and SYS at the same time; a letter E will appear in the
bottom right-hand comer. The next key pressed will then have an effect
different from usual. You will find that E MODE, followed by CAPS and keys
5, 6, 7 or 8, moves the cursor by greater amounts. In this case, 5 and 8 move
the cursor to the beginning and end of the line respectively while 6 and 7
move it to the beginning and end of the screen. With longer procedures which
take up more than one screenful, E MODE B and E MODE E can be used to
move the cursor to the beginning and end of the text respectively (remember
that E MODE B means select E MODE and then press B). A great
convenience is the ability to move lines around inside the procedure. Move
the cursor to the beginning of the line RIGHT 60, press E MODE Y. The line
disappears. Move the cursor two lines down and press E MODE R to put

. Getting Started 21

‘RIGHT 60" in this position. Imagine this pair of instructions as picking a
whole line up in one place and putting it down in another.

Don’t be afraid to play with the editor at this stage so that you get to know
how it behaves. All editors have their peculiarities and time spent developing
understanding by using this one now will be well repaid in the future.

You can leave the editor in one of two ways. If you want LOGO to ignore
all the changes you have made and return to the original version of the
procedure, press CAPS and BREAK/SPACE simultaneously. On the other
hand, if you want LOGO to incorporate your changes into the procedure you
have been editing, use E MODE C.

You can use all the editing keys outside the editor when typing in
instructions or data, provided you always stay within one LOGO line. So if
you have reached the end of a long input line and, before you press ENTER,
notice there is an error near its start, you can move the cursor back, make the
change and replace the cursor at the end of the line without difficulty.

If you type EDIT followed by the name of a procedure which has not yet
been defined (remember to include the quotes mark before the name),
LOGO will assume you want to define it and enter the editor showing TO
followed by the procedure name and a blank screen. This gives you an
altemative way of defining a procedure to the use of TO on its own. In writing
procedures for you to copy, | shall continue to start them with TO, but it is
probably better for you to use the EDIT method because this puts the full
resources of the editor at your disposal — including, for instance, the
opportunity to go back and insert lines when you realize that you have
forgotten them. (If you think it is unlikely you will need this, you probably
haven't been programming very long.)

Storing programs on cassette

We have now got to the point where you might want to keep the procedures
you have written, for future use. Remember that when your Spectrum is
switched off it will ‘forget’ what is in its memory, including both LOGO and
your procedures. Even if you do not want to save what you have written so
far, it is better to try doing so now to make sure that everything works and that
you understand the process, rather than wait until you have written an
earth-shattering collection of procedures that you don’t want to risk losing.

Like most computer languages, LOGO makes use of the idea of a file, a
‘chunk’ of information recorded on cassette tape (or microdrive) and
identified by giving it a name. File-names, unlike other words in LOGO,
cannot be more than seven letters long, a limitation imposed by the
Spectrum’s filing system.

For instance, to save the procedures to draw the stick figure in a file called
PERSON, type:

SAVE “PERSON [MAN HEAD BODY LEGS ARMS)]

Start the cassette tape by pressing the PLAY and RECORD keys on the
recorder. LOGO meanwhile will tell you to press any key when you are
ready. When the tape is moving — be sure that it has got past the plain
‘header’ section at the start of the tape which is non-magnetic and won't
record anything — press a key on the keyboard. As usual, the border of the
television screen will flash while the file is being saved. When it stops flashing
and the prompt, ?, appears once more, stop the tape recorder.

To get the procedures back from the cassette tape into memory, rewind the
tape, type:

LOAD “PERSON
and press PLAY on the recorder. You will see the usual striped pattern
around the screen border as the file loads.

Microdrive owners will need to tell LOGO to use the drive rather than
cassette. This is done by giving the instruction

SETDRIVE 1
to select microdrive number 1. You need to give this instruction only once as
it will remain in force until either you type:

SETDRIVE 0
to change to the cassette system, or you switch off.

You can save more than one file on a cassette, but be sure to leave a gap
between the end of one and the start of the next. It is a good idea to write
down what files are on the cassette and the approximate tape-counter reading
for the start of each one.

22 Logo on the Sinclair Spectrum

Managing the workspace

Part of the computer’'s memory is used to store the LOGO program itself.
Some more is used by LOGO to store information that it must use either to
keep track of what it is doing (we will see just how complicated and important
that is at a later stage) or to hold intermediate results temporarily (for instance,
calculating 2 + 5 — 3 means working out 2 + 5 first and remembering it ready
for the next part of the calculation). The rest of the memory is used to store
information and procedures for you; it is called your workspace. It is
important to know what procedures etc. you have stored. Sooner or later
every really imaginative programmer will start to run short of memory space.
The solution may be to get rid of the procedures you do not want.

Most of the instructions for handling procedures have names which seem
amusing but meaningless. Possibly this helps you remember them easily! You
can try them out only if you have a few procedures in memory, so either type
some in or load them from cassette tape. Remember that we may want to
practise deleting some, so either type in procedures you don't want to keep or
record them first.

. Getting Started 23

Try the instruction:
POTS
You will get something like:
TO TRIANGLE
TO MAN
TO HEAD
TO ARMS
TO BODY
TOLEGS
As you can see, this instruction, which stands for Print Out Titles, tells you the
names of all the procedures that you have defined. LOGO, of course, knows
many more, like FORWARD and BACK, but as they are always present,
being ‘built in’ (called primitive procedures), you are not told about them by
POTS.
You can look at the instructions in all the procedures you have defined by
means of the instruction:
POPS
This stands for Print Out Procedures and does exactly that, showing you the
definition of each procedure, one after another. You can look at one
procedure on its own either by using the editor, as explained above, or by
means of the instruction PO (Print Out) followed by the name of the
procedure to be printed, for instance:
PO “LEGS
These two are the commands to use if you want a printed copy of your
procedures or a procedure. First make sure your printer is correctly connected
and then type:
PRINTON
which will instruct LOGO to copy all the text that appears on the screen from
now on to the printer. So you can now type:
PO “LEGS
for a copy on the printer (this is called hardcopy). Use the instruction:
PRINTOFF
to stop producing a printed copy.
To erase a procedure from your workspace, simply type:
ERASE “HEAD
or the name of whatever procedure you wish to remove. Try this and then
use POTS to verify that the procedure has disappeared.
Finally, should you wish to clear all your workspace to start again, the
instruction:
ERPS
(standing for ERase ProcedureS) will remove all procedures from memory.
All the commands in this chapter which have been able to take a procedure
name preceded by a double quotes mark , “, as an input — namely, EDIT, PO

24 Logo on the Sinclair Spectrum

and ERASE - can also have a list of procedures as their input. In this case, the
list is enclosed in square brackets exactly as in the case of SAVE and the
instruction applies to all the procedures in the list, in the order that they are
foundinit. So

EDIT [LEGS ARMS]
will give you two procedures to edit at once (useful if you want to move a line
from one to another);

PO [HEAD BODY]
will print out both, with the definition of HEAD being first; and

ERASE [MAN TRIANGLE]
will remove both those procedures from the workspace.

Printing text

If you want to print a message on the screen (or on the printer by using
PRINTON as well), LOGO provides the instruction PRINT. If you wish to
print a single word it may follow the instruction with a double quotes mark in
front of it:

PRINT “HELLO
This time it does matter if you use capital letters or not after the quotes but
only because LOGO will print exactly what you type in. For a sentence (or list
of words) enclose them in square brackets:

PRINT [WELCOME TO LOGO]
If you want to print a blank line use PRINT [] or PRINT*.

We will illustrate this instruction with a simple procedure. If you have not
studied LOGO 1, it may pose a problem as to what is happening. If you have,
it may serve to illustrate and explain an important idea:

TO FINEGAN
PRINT []
PRINT [THERE WAS AN OLD MAN CALLED MICHAEL
FINEGAN)]
PRINT [HE GREW WHISKERS ON HIS CHINEGAN]
PRINT [THE WIND CAME UP AND BLEW THEM INEGAN]
PRINT [POOR OLD MICHAEL FINEGAN]
PRINT [BEGIN AGAIN]
FINEGAN
END
Run this procedure by typing:
FINEGAN
Stop it by pressing CAPS and BREAK/SPACE at the same time.

Words and Variables

In LOGO, as in most other computer languages, we can use words to
represent other information such as numbers. The reason we want to be able
to do this is that this is how we normally convey general instructions. For
instance, in a procedure to handle the calculation of VAT we might want
to talk about the price of an article. Let us suppose that the price is £20. Then
the LOGO instruction:

MAKE “PRICE 20
makes the word PRICE stand for the number 20. The double quotes mark
indicates that PRICE is a word and not the name of a procedure; that is, not
an instruction to do something.

Now try:

PRINT “PRICE
LOGO, not unnaturally, prints the word PRICE. Again, the quotes mark
shows that PRICE is just a word. However, there is a special symbol to
indicate that we want the thing which PRICE represents, it is a colon, :. Try
the instruction:

PRINT :PRICE
This time you should get the number 20 printed out on your screen. So
means the word; : means the thing it stands for. In the same way, we can
translate the instruction ‘VAT is 15% of the price’ straight into LOGO as:

MAKE “VAT :PRICE * 15/100

The MAKE command expects two inputs; the first should be a word which is
going to stand for something else, often a number, the second, as you might
expect, is the thing to be represented by the word. Remember to put quotes,
“, before the word which follows MAKE. There are occasions when these
quotes are not needed but they are rather special.

Notice that the word PRICE, in the calculation which follows, is preceded
by a colon, :. This is because it is the thing (the number 20) which we want to
multiply by 15 and divide by 100, not the word PRICE. As you can see, * and
/ are the symbols for multiply and divide, respectively. Try this instruction and
then type in:

PRINT :VAT
— the colon, remember, because we want the value, not the word.

In computer terminology, the words PRICE and VAT are called variables
because they represent unknown, and possibly changing, things. To see a
variable used to represent a varying length, try this procedure:

TO TRISPI
SHOWTURTLE
MAKE “LENGTH 10
REPEAT 21 [FORWARD :LENGTH RIGHT 120
MAKE “LENGTH :LENGTH + 5]

26 Logo on the Sinclair Spectrum

END
(Remember to enter the REPEAT instruction as a single line.) Look carefully
at the last instruction in the REPEAT brackets. It tells LOGO to make the
word LENGTH represent a new value which is found by taking the number
which LENGTH now represents (:LENGTH) and adding 5 to it. Try using the
procedure to see what happens.

When handling variables, LOGO distinguishes between names in upper

and lower case; that is

MAKE “VAT 7

MAKE “vat 4
refer to two different things;

PRINT :VAT
gives 7; and

PRINT :vat
gives 4. This can cause a problem if you type in lower case and forget the
quotes or colon. If, as part of a procedure, you type in:

print vat
and later edit the procedure, you will find that LOGO has changed both
words to capitals because it thought that both were the names of procedures:

PRINT VAT
It will not be sufficient to put a colon before VAT; you will have to change it
back to lower-case letters as well!

. Words and Variables 27

Arithmetic

Corresponding to the mathematical signs which we have already met, *, / and
+, are named procedures which do the same or similar things. SUM adds up
its inputs. Normally it expects there to be two of them but it can have more; in
this case, you must put round brackets around both SUM and its inputs:
PRINT SUM23
b
PRINT (SUM12345)
15
PRODUCT behaves in the same way but multiplies all its inputs together.
Again, it normally has two inputs but may have more if brackets are used:
PRINT PRODUCT 73
21
PRINT (PRODUCT2357)
210
A warning: a number of the built-in procedures can take more than two
inputs by using round brackets in this way. This seems to cause a problem if
used inside square brackets (for a REPEAT instruction, for instance) and it
should be avoided.
DIV has two inputs only and gives the result of dividing the first by the
second:
PRINT DIV105
2
A warning: LOGO cannot divide by zero any more than we can; try:
PRINT DIV50
to see what happens. Trying to divide by zero is a common cause of failure of
programs written by beginning programmers, usually because what has been
written is something like:
PRINT DIV :TOTAL :NUMBER
and the programmer has forgotten to check in case :NUMBER is zero.
For subtraction, you can only use the sign, —.
PRINT 12-4
8
The minus sign is used with two meanings. Between two numbers, it means
subtract, but if used in front of a number it shows that the number is negative
(so —4, for instance, represents the temperature which is four degrees below
freezing point on the centigrade scale). LOGO will try to make sense of what
you type in, and is quite successful at doing so. It will, for instance accept:
PRINT 124
or
PRINT 12 - 4
if you want to subtract 4 from 12. To subtract negative numbers you can use:
PRINT12 - — 4

28 Logo on the Sinclair Spectrum

or
PRINT 12—-4
Nevertheless there are occasions when LOGO can be confused about the
meaning of the minus sign. It is best, therefore, to get into the habit of always
putting a space before a negative number and leaving no space between the
minus sign and the following digit.
If you are not used to the idea of subtracting negative numbers, try a few
more examples to get the hang of it.
You can combine the ‘four rules’ to get more complicated arithmetic
expressions, for example:
PRINT3 *4+2
14
It is important to know in what order LOGO will do the various operations.
This is not just from left to right; for instance:
PRINT 2+3*4
will also give the answer 14. The rule is that arithmetic is done in the following
order:

Things in brackets.
Division.
Multiplication.
Subtraction.
Addition.
This means that you can use brackets, (), to alter the normal order of
operations:

PRINT (2 +3)*4
gives 20 by calculating 2 + 3 first then multiplying by 4. When LOGO works
out what is inside brackets it uses the same rules over again. If you are unsure
of the order in which arithmetic will be done, always use brackets to show the
order that you want, or do the calculations in short, simple steps. Two more
examples:

MAKE “CENTIGRADE (:FAHRENHEIT -32)*5/9
does the subtraction first, and

MAKE “FAHRENHEIT :CENTIGRADE *9/5 + 32
divides by 5, multiplies by 9 and then adds 32.

It makes no difference to the value of the answer that division is done
before multiplication, but it may help LOGO to prevent numbers from getting
too large for it to cope with.

One of the most helpful things about variables is the way we can use them
to define our own procedures with inputs. For instance, we might want a
procedure SQUARE which would draw squares of different sizes according to
an input. So SQUARE 50 would produce a square of side 50 units while
SQUARE 100 would give one with a side of 100 units. We begin by telling

. Words and Variables 29

LOGO:

TO SQUARE :SIZE
meaning that SQUARE will have one input which we will call SIZE during the
definition of the procedure. Notice the colon, telling LOGO that it is the value,
the thing which SIZE represents, which matters, not the word itself. If you are
using the editor, type EDIT SQUARE and then add :SIZE when in the editor.

TO SQUARE :SIZE

REPEAT 4 [FORWARD :SIZE RIGHT 90]

END

Now try using this to draw squares of different sizes.

Exercise:
Write a procedure with two inputs, :SIDE and :NUM, to draw a figure which
has :NUM sides, each of length :SIDE. Call it POLYGON. You will need to
change the procedure for SQUARE, given above, in two ways. The number
of times the repetition is done — obvious, [hope — and the angle turned
through each time. This is a bit harder, but notice that 90 times 4 is 360.
Before we get even more ambitious, here are some more useful turtle

commands. Normally, when the turtle goes off the screen, it reappears
immediately on the opposite side as if the two were connected together in
some way — what is called the wrap-round effect. For some applications, you
might want the turtle to stop when it reaches the edge of the screen. Use the
command:

FENCE
to instruct that this is to happen. Alternatively, you might want the turtle to
leave the screen, still obeying the same rules, and possibly come back later, as
if the screen were a window looking down on to a much larger table that the
turtle was moving on. You can use:

WINDOW
to tell LOGO that this is to be the case. With WINDOW in operation, the turtle
will travel up to 32 767 turtle steps from the centre of the screen. To get back
from either of these ways of using the screen to the original wrap-round, use
the instruction:

WRAP

A number of instructions allow you to control the colours which appear on

your screen, Firstly, we can move the turtle without drawing a line at all. The
instruction to command the turtle not to draw is:

PENUP
and to start drawing again:

PENDOWN
If you remember that the turtle robot, on which the ideas are based, carries a
pen on its underside and draws on sheets of paper on the floor, these
commands will make more sense. The screen turtle can, however, do things

30 Logo on the Sinclair Spectrum

which are impossible for a floor turtle.

PENERASE
instructs the turtle to rub out any lines it comes across while moving, and

PENREVERSE
reverses whatever it finds, drawing lines where there are none and removing
lines where there are. You can switch either of these effects off by using
PENUP or PENDOWN.

The Spectrum uses eight colours which for convenience are numbered:

0 Black

1 Blue

2 Red

3 Magenta

4 Green

5Cyan

6 Yellow

7 White
You can set the colour which the turtle is to use for drawing by instructing
SETPC (SET Pen-Colour) followed by the number of the colour that you
want:

SETPC6
for instance. You will see that it changes the colour of the turtle too. Any line
drawn in a new colour will, unfortunately, change any lines which fall
within the same character space (the position occupied by a printed character
on the screen). To allow anything otherwise would mean that a lot more
memory space in the computer would have to be allocated to the screen (the
colour of each point would have to be recorded rather than the colour of each
character space), and this would reduce the amount of memory available for
your procedures. LOGO also provides a procedure which will output the
colour being used by the pen as a number. It is PENCOLOUR. You might use
this with a MAKE command to record the colour being used at the start of a
procedure:

MAKE “STARTCOLOUR PENCOLOUR
and, having drawn a shape in some other colour, return to the original at the
end of the procedure with:

SETPC :STARTCOLOUR
Two more commands, SETBG (SET BackGround) and SETBORDER,
control the colour of the background and the screen border respectively.
Each must have a number as its input to specify the colour required. In
addition, the operation BACKGROUND works like PENCOLOUR to output
the number of the background colour.

Here are some procedures which seem to need the use of WINDOW to

give their proper effect; you might like to incorporate some colour changes
too. Firstly spirals, another essential ingredient of books about LOGO: let us

. Words and Variables 31

start by drawing a ‘square’ one. We do the instructions:
FORWARD :SIZE RIGHT 90
just as for a SQUARE, but then, to get the spiralling effect, increase the size of
:SIZE. Unlike SQUARE, we want to go on repeating this for ever (or until you
get tired of watching). How is this done? Remember FINEGAN?
TO SQUARESPI :SIZE
FORWARD :SIZE
RIGHT 90
MAKE “SIZE :SIZE + 5
SQUARESPI :SIZE
END

—

Figure 3 SQUARESPI 10

Remember that you can interrupt this by pressing CAPS and BREAK/SPACE
keys at the same time. This method, in which a procedure uses itself as one of
its own instructions — we say that it calls itself — is a useful way of getting things
to repeat for ever. It is called recursion.

Spirals do not have to be square ones. You can modify the above
procedure to give many different kinds of spiral by changing the angle which
is turned through on each step. Perhaps you might like to have some control
over the amount by which the distance moved increases as well; this is useful
in case the turtle goes off the edge of the screen too soon.

Here is a spiral procedure with three inputs. SIZE will be the distance
moved at first, ANGLE the angle turned through and INC the amount that the

32 Logo on the Sinclair Spectrum ‘

distance is increased by.
TOSPIRAL :SIZE :ANGLE :INC
FORWARD :SIZE
RIGHT :ANGLE
MAKE *“SIZE :SIZE + :INC
SPIRAL :SIZE :ANGLE :INC
END
Try this with some values. The most interesting spirals seem to be obtained
with angles which are almost, but not quite, the angle of a polygon. You
might like to try:
SPIRAL 101215
or SPIRAL 101195
or SPIRAL 101355

Figure4 ASPI309 90

Words and Variables 33

Figure 5 RESPI 101205

Exercise:
To see what happens when the distance moved on each leg of the ‘spiral’
stays the same and the angle increases, write a procedure called ASPI with
three inputs as above but with the increase added on to the size of the angle.
Try it with:

ASPI1005

ASPI 1040 30

ASPI10220

Equally interesting are the patterns formed by drawing part of a spiral, then

beginning it again from the point that the turtle has now reached. In this case,
instead of changing the value of SIZE (which we will need as the same starting

34 Logo on the Sinclair Spectrum

value each time), we go FORWARD by an amount which is :SIZE multiplied
by a number called COUNT, which runs from 1 up to a maximum value:
TORESPI :SIZE :ANGLE :MAX

MAKE “COUNT 1
REPEAT :MAX [FORWARD :SIZE * :COUNT
RIGHT :ANGLE

MAKE “COUNT :COUNT + 1]
RESPI :SIZE :ANGLE :MAX
END

Words and things

We will now look more thoroughly at the reasons for all those colons and

quotes marks. The ideas in the following section are not in themselves

difficult, but they are more easily understood by experience than by

explanation. If at first some of it seems a little complicated, don't worry — you

can always look back at it when you have written a few more procedures.
LOGO handles four different kinds of LOGO objects:

Words.

Numbers.

Procedures.

Lists.
Lists will be dealt with in the next chapter.
Numbers are officially classed as words but since they are subject to slightly
different rules it might be best to think of them as a different kind of object.
Numbers are made up of digits (0 to 9) with possibly a minus sign at the start
and a decimal point. Above 10 000 000, LOGO prints out numbers in
exponent notation. Using, this, 2.3E+9 means 2 300 000 000; that is, the
decimal point should be nine places to the right of where it is shown. For small
numbers a negative sign is used: 1.4E-6 means 0.000 001 4 with the decimal
point six places to the left. You can use this system to type in numbers if you
wish. If a calculation will produce a number greater than 1E+38 the message:

Number too big

is produced. If a number is calculated to be smaller than 1E-38 it is considered
tobe 0.

LOGO normally assumes that any word it comes across is an instruction,
the name of a procedure which it is to obey, and will try to find that procedure
in memory before either obeying it or giving an error message if it cannot be
found. So that LOGO will know the difference, a word which is just a word is
preceded by a double quotes mark, “. So for instance:

“FRED

is a word and, if you type it in on its own, LOGO will be puzzled about what

you want done with “FRED. Be careful not to leave a space between the
quotes and the start of the word. This is because LOGO recognizes the
existence of an empty word, without any letters in it. It is shown by means of
the quotes mark followed by a space. This curious object is not quite as
pointless as might at first seem. When we handle words by taking letters from
them one by one, it will prove very useful as an indication of when to stop.

A word can also be the name of some other object. We have seen words
used to name procedures and to name numbers. This last, remember, is done
by the MAKE command:

MAKE “VAT 15*40/100
gives “VAT the value 6 (that is, 15 * 40/ 100). We say that 6 is the THING of
which “VAT is the name. Try the above MAKE command and follow it by:
PRINT THING “VAT
This should give the result: 6. Because we so often need to refer to the thing
which a word names, rather than the word itself, we can abbreviate THING to
a colon placed immediately before the word, and omit the quotes mark:
PRINT :VAT
(Actually the colon is not a perfect abbreviation for THING for a reason which
will be explained later.)
The MAKE command is always:
MAKE name thing
and because its first input must be a name, it is usually preceded by quotes.
The second input may be a word, number or list.
MAKE “PRICE 27
PRINT :PRICE
27
27 is the THING corresponding to PRICE.
MAKE “MARY “CONTRARY
PRINT “MARY
MARY
The quotes mark means that the word is to be printed.
PRINT :MARY
CONTRARY
Here the colon means the THING named by MARY should be printed.
MAKE “JEAN :MARY
PRINT :JEAN
CONTRARY
The MAKE instruction gives the name JEAN to the THING that MARY
names, so the word CONTRARY now has two names!

It may seem unnecessary to use a word to name another word, but this is
not always so. You may want someone to type in his or her name during a
procedure. You cannot know in advance what word will be put in so you
must call it, for instance, ANSWER:

Words and Variables 35

36 Logo on the Sinclair Spectrum

TO GREET
PRINT [WHAT IS YOUR NAME]
MAKE “ANSWER READLIST
PRINT “HELLO
PRINT :ANSWER
END
To handle the input here we have used a procedure, READLIST, which is
covered more fully later. For the moment it is sufficient to say that it will get a
word, or list of words, typed at the keyboard and pass it on, as its output to
the MAKE command.

Just as the word ‘John’ names the man at the keyboard, so the word
“ANSWER names the word, ‘John’, while it is in the computer memory. Now
try these:

MAKE “GIRL “MARY
PRINT “GIRL

GIRL

PRINT :GIRL

MARY

PRINT THING :GIRL
CONTRARY

GIRL MARY CONTRARY

JEAN

Figure 6 Words and the things that they name

Remember that :GIRL gives the result MARY, so in THING :GIRL you are
really asking for THING “MARY. This is the way in which THING is different
from the colon, you can have THING :GIRL or even THING THING “GIRL
(try PRINTing these and see) but not ::GIRL.

Why should we need more than one level of name? Let us suppose that we
have a procedure to handle costs of goods, and we want a procedure to print
out the name of a quantity (VAT, PRICE etc.) and its value in pounds.

TO NAMEPRINT :0OBJECT
PRINT :OBJECT
PRINT THING :OBJECT
END

. Words and Variables 37

MAKE “VAT 21
NAMEPRINT “VAT
VAT

21

The word OBJECT appears as a THING, preceded by a colon, throughout
the procedure, because it really is the thing it represents (VAT in the example)
that we want to deal with, not the word OBJECT. When we give the
command NAMEPRINT “VAT we pass to the procedure the word “VAT (not
its value but the word itself, which is why the quotes mark is used) as the thing
which OBJECT is to name. In the next line the thing of OBJECT is printed out
(that is, the word VAT). In the third line of the procedure the THING of this is
printed, its value, 21.

Using the operation SENTENCE (dealt with more fully later) we can tidy up
the output:

TO NAMEPRINT :OBJECT
PRINT (SENTENCE “THE :OBJECT “IS THING :OBJECT)
END
MAKE “PRICE 140
NAMEPRINT “PRICE
THE PRICE IS 140

On occasions we may want to use a similar technique with the MAKE
command, assigning a value to a variable indirectly. It is in these cases that the
first input to MAKE does not have a quotes mark. For instance, if firstly you

MAKE “QUANTITY “PRICE
and then instruct
MAKE :QUANTITY 27
PRINT :PRICE
you will get:
27
Here the second MAKE operation assigns the value 27 to the THING of
QUANTITY, i.e. to PRICE.

As we have already said, LOGO assumes that a word which is not a
number and does not begin with “ or : is an instruction to obey a procedure.
So:

JUMP
will either do the procedure JUMP or, if you have not defined one, give
an error message to say so. Should you wish to do something else with the
procedure, the name needs to be introduced by quotes:

ED “JUMP
for instance, to edit it. Similar rules apply to PO, ER and SAVE.

38 Logo on the Sinclair Spectrum

Kinds of procedure

It is useful to distinguish two kinds of procedure: commands, which instruct
the computer to perform some action, FORWARD 50, PRINT “HELLO,
PENUP etc.; and operations, which output a result for another procedure to
use, e.g. SUM or DIV.

In writing LOGO each procedure takes its inputs from the right, if it expects
any, and each operation outputs its results to the left. For this reason, every
LOGO line must start with a command; which is why when demonstrating the
arithmetic operations the PRINT command was always included. The only
exceptions to the ‘input from the right, output to the left' rule are the
arithmetic signs, +, —, /, >,< and =, which are placed between their two
inputs (we will look at the last three in this list in a later chapter).

Procedures which are built into LOGO and not defined by you are called
primitives.

Occasionally LOGO lines can look quite complicated:

MAKE “P LIST FIRST THING :A SENTENCE “PR WORD CHAR 34 :A
for instance. There is, however, a simple way to understand them. Firstly, pick
out the names of all the procedures involved — they are the words which are
not numbers and do not begin with quotes or a colon. Find out how many
inputs each expects and write this under the name. You will be unfamiliar
with most of those used in this example but they are all primitives explained in
LOGO 2.

“p
MAKE< FIRST — THING ——: A

LIST

/N

SENTENCE CHAR — 34

A
AN

WORD

/N

Figure 7 Analysing a LOGO line

Words and Variables 39

MAKE “P LIST FIRST THING :A SENTENCE “PR WORD CHAR 34 :A
2 2 1 1 2 2 1
On a piece of paper write down the first word of the line, which must be the
name of a procedure. From it draw lines, one for each of its inputs, Write the
next word at the end of the first of these lines. If it is not a procedure go on to
write the next word at the end of the next line. Otherwise draw lines for the
inputs from it in the same way as before. Continue with this until you reach
the end of the LOGO line. The result for this example is given in figure 7; it
shows clearly where each procedure expects its inputs to come from. If this
method does not work — if there are extra words at the end when all the input
lines have been completed or there is a line without an input — then there is a
fault in the instruction.

Lists and Words

We are all familiar with lists; for instance, a shopping list:

sausages peas butter stamps
As an object which LOGO is able to handle, a list is no different from what we
are used to. LOGO likes to have the items of a list enclosed in square brackets
and separated from each other by spaces. The order of the items within the
list is important; that is

[JANUARY FEBRUARY MARCH]
is considered to be a different list from

[JANUARY MARCH FEBRUARY)
The items in a list are either words or other lists. We will deal with the latter
possibility in a later chapter, confining our attention for the moment to lists of
words. Normally it is not necessary to precede the words in a list by the
quotes mark; LOGO will assume that

[JANUARY FEBRUARY MARCH]
is the same as

[“JANUARY “FEBRUARY “MARCH]
Just as with numbers, we can give a name to a list, and this is done in the

same way, by means of the MAKE command,; for instance:

MAKE “SHOPPING [SAUSAGES PEAS BUTTER STAMPS]
which makes the word “SHOPPING represent the whole list which follows.
The advantage of this is that we can handle the list as a whole by referring to it

Lists and Words 41

by name; for instance:

PRINT :SHOPPING
will produce the output:

SAUSAGES PEAS BUTTER STAMPS
Notice that in printing out a list, LOGO misses off the outer square brackets.
As with numbers, the THING of the word is what it represents, in this case,
the words, taken in order, which make up our shopping list. We can therefore
give the list another name if we wish:

MAKE “BOUGHT :SHOPPING

PRINT :BOUGHT

SAUSAGES PEAS BUTTER STAMPS

Selecting items

There would not be much point in using lists if all we could do was to handle
them as whole things. We need some way of getting at individual items in a
list. LOGO provides several ways in which we can do this. The simplest, and
most standard, is the operation FIRST, which not surprisingly gives the first
itern on the list.
PRINT FIRST [JANUARY FEBRUARY MARCH]|
JANUARY
FIRST can handle named lists also:
PRINT FIRST :SHOPPING
SAUSAGES
Now we need a way of looking at everything else in the list. This is done with
BUTFIRST. It outputs a list which consists of all the items except the first.
PRINT BUTFIRST [JANUARY FEBRUARY MARCH]
gives the output:
FEBRUARY MARCH
and:
PRINT BUTFIRST :SHOPPING
PEAS BUTTER STAMPS
There is an important difference between FIRST and BUTFIRST; FIRST
gives a word, BUTFIRST a list.
For convenience, LOGO also provides us with a means of getting at the
iterns in a list from the other end. LAST outputs the last item in the list:
PRINT LAST :SHOPPING
STAMPS
It will not be a surprise to find that BUTLAST gives all items except the last
one:
PRINT BUTLAST [MONDAY TUESDAY WEDNESDAY THURSDAY
FRIDAY]
MONDAY TUESDAY WEDNESDAY THURSDAY

42 Logo on the Sinclair Spectrum

In order to pick out items between the first and the last, we use the ITEM
operation. This has two inputs of which the first is the number specifying the
item that is wanted and the second is the list that it is to be selected from. It
outputs the corresponding word.

PRINT ITEM 2 [APRIL MAY JUNE JULY)
MAY

PRINT ITEM 3 :SHOPPING

BUTTER.

It will also be useful to know how many items there are in a list. This is done
with COUNT. Its input is a list and its output the number of items in that list.
You can test this with such examples as:

PRINT COUNT [JANUARY FEBRUARY MARCH]

3
PRINT COUNT :SHOPPING
4

Many standard LOGO procedures expect lists as their inputs. A number of
themn we have already seen, for instance the REPEAT instruction; it expects
two inputs of which the first is a number and the second a list of instructions. It
is one example when the quotes mark might actually be needed inside a list;
for instance:

REPEAT 4 [MAKE “COUNTER :COUNTER + 1]

Here, although REPEAT takes a list as its input, the MAKE command, which
is inside that list, needs to have its first input specified as a name. (Should you
wish to try this instruction, be sure to give COUNTER some value first.) Some
of the built-in procedures, primitives as they are correctly called, will handle
either lists or words. An example of this is the PRINT command which can
take as its input either a single word or a single list. This is why we have found
that a sentence of several words to be printed out must be enclosed in square
brackets while one word need only be preceded by its quotes mark.

We can also write our own procedures to handle lists. For instance, here is
a procedure to take a list and print it out with the items on separate lines. It
does this by repeating, for the number of items there are in the list, an
instruction to print an item from the list. Picking out which item is required, we
use the ITEM operation, controlled by a counter which is increased by one at
every repetition.

TOLBL:ALIST
MAKE “COUNTER 1
REPEAT COUNT :ALIST (PRINT ITEM :COUNTER :ALIST
MAKE “COUNTER :COUNTER + 1]
END
LBL [LBL STANDS FOR LINE BY LINE]
will give the result:
LBL

Lists and Words 43

STANDS
FOR
LINE

BY

LINE

Exercise:
Wirite a procedure to print a list, line by line, in reverse order.

With these tools we can use lists as stores for information. Let us take a
simple example. If we want to store expenditures for the months of a year so
that we can find their total and average, it is possible to put them into a list in
which the first item is the expenditure for January, the second for February
and so on. The procedure given below reads through the list, picking out each
item in turn, in the same way as LBL. Instead of printing them out, though, it
adds each to a running total which has to be set initially to zero. The average
can then be found by dividing by twelve.

TO AVERAGE :ALIST
MAKE “TOTAL 0
MAKE “COUNTER 1
REPEAT 12 [MAKE “TOTAL :TOTAL + ITEM :COUNTER :ALIST
MAKE “COUNTER :COUNTER + 1]
MAKE “AVERAGE :TOTAL/12
PRINT “TOTAL
PRINT :TOTAL
PRINT “AVERAGE
PRINT :AVERAGE
END

Try this procedure with a suitable list of twelve numbers.

Exercise:

Modify the procedure AVERAGE so that it will work with a list of any length
not just twelve. Write a procedure which will request a number from one to
twelve and print out the expenditure for that month. (Use FIRST READLIST
to provide the number.)

Typing in lists and words

A list can be obtained from the keyboard by the operation READLIST. It is
necessary to pass its output list on to some other procedure, usually the
MAKE command.

MAKE “ANSWER READLIST
causes the computer to pause until you type something in at the keyboard. It
indicates this by printing a question mark. The input list then consists of the
words that you type before pressing ENTER. Try the above instruction and

44 Logo on the Sinclair Spectrum

verify that what you have typed in is now called ANSWER by typing:

PRINT :ANSWER

LOGO does not provide a corresponding operation READWORD, but you

can produce your own easily enough. The standard technique is to use FIRST
READLIST, which will, of course, pass on the first word typed in and cause
the rest to be ignored. You cannot use

MAKE “START FIRST READLIST

MAKE “REST BUTFIRST READLIST
to provide the two parts of an input list. This is because the two uses of the
READLIST procedure will each cause the computer to pause for input, so
you will get two parts of two separate lists. If you want to split the input up you
must use

MAKE “ANSWER READLIST

MAKE “START FIRST :ANSWER

MAKE “REST BUTFIRST :ANSWER

The empty list

An unusual but occasionally useful object is a list without any items in it. It is
indicated by [] and called the empty list. We will need to use it as a starting
point for building up lists and, later, as an end point to be tested for when
breaking them down one item at a time.

Joining and building lists

The procedure SENTENCE, which we have already used in conjunction with
the PRINT command, takes as its inputs two or more words or lists and
outputs a single list. So, for instance:
MAKE “PROVERB SENTENCE “MANY “HANDS
PRINT :PROVERB
produces the result:
MANY HANDS
Or, using lists as its inputs:
MAKE “PROVERB SENTENCE [MANY HANDS]
[MAKE LIGHT WORK]
PRINT :PROVERB
gives:
MANY HANDS MAKE LIGHT WORK
Or:
MAKE “NEWSAYING SENTENCE :PROVERB [OR SPOIL BROTH]
PRINT :NEWSAYING
which gives:
MANY HANDS MAKE LIGHT WORK OR SPOIL BROTH
If SENTENCE has more than two inputs then it and its inputs are enclosed in

Lists and Words 45

round brackets:
o PRINT (SENTENCE [A ROLLING] [STONE GATHERS] [NO MOSS])

r:

MAKE “OLDSAYING (SENTENCE [THE SAYING] :PROVERB (IS
TRUE))
PRINT “OLDSAYING
which gives:
THE SAYING MANY HANDS MAKE LIGHT WORK IS TRUE

The PRINT procedure always requires a single word or list as its input. So

you could not use

PRINT “MANY “HANDS
Instead you would need to make them into a single list by using square
brackets:

PRINT [MANY HANDS]
but you would need the SENTENCE operation for anything more compli-
cated; for instance:

PRINT SENTENCE [THE SHOPPING LIST IS] :SHOPPING
prints:

THE SHOPPING LIST IS SAUSAGES PEAS BUTTER STAMPS

We will now use SENTENCE to build up a list. The problem is to construct
the list of monthly expenditures which we used as an example above. The
procedure needs to print out the name of a month, take in from the keyboard
the expenditure and add it to the expenditure list.

We begin by constructing a list of the names of the months, making the
expenditure list an empty list, and then repeating twelve times a procedure
which will input the value for each month.

TOBUILDLIST
MAKE “YEAR [JANUARY FEBRUARY MARCH APRIL MAY JUNE
JULY AUGUST SEPTEMBER OCTOBER NOVEM-
BER DECEMBER]
MAKE “EXPEND []
MAKE “COUNTER 1
REPEAT 12 [INMONTH)]
END
The second procedure prints the name of the month, gets a value — by using
the FIRST READLIST technique which we have seen before — and appends it
to the EXPEND list using SENTENCE:
TO INMONTH
MAKE "MONTH ITEM :COUNTER :YEAR
PRINT :MONTH
MAKE “EXPEND SENTENCE :EXPEND FIRST READLIST
MAKE “COUNTER :COUNTER + 1
END

46 Logo on the Sinclair Spectrum

Actually there is a more sophisticated way of doing this which does not
make use of the SENTENCE operation. Sophisticated methods are not
necessarily improvements, but this one does give us one advantage. This
method uses the ideas explained at the end of the previous chapter; the
words in the YEAR list are considered to be the names of variables which are
the monthly expenditure, that is “JANUARY names the expenditure for that
month. The INMONTH procedure then becomes:

TO INMONTH
MAKE “MONTH [TEM:COUNTER :YEAR
PRINT :MONTH
MAKE :MONTH FIRST READLIST
MAKE “COUNTER :COUNTER + 1
END
The second MAKE instruction uses the THING of MONTH as its first input.
The first time round, this will be JANUARY so that name will represent
whatever value is typed in. The advantage this gives over the building-up
process is that indivdual items can be changed quite easily. (It is always good
practice in writing programs to allow for the possibility that a user will make a
mistake.) If we tackle the problem in this way, there is no need for the list
EXPEND.
Exercise:
Write 2 CHANGE procedure which will get the name of a month and new
expenditure from the keyboard and change the value in the list.

If you want to convert this to a collection of procedures for handling your
accounts, say, you will need some way of saving information on cassette.
LOGO provides only one way of doing this. The command SAVEALL
followed by a file-name; for instance:

SAVEALL “MONEY
saves everything in the workspace in that file — that is, all variables and
procedures. This has the advantage that LOADing the file will give not only
the information you want but also the procedures to handle it.

Handling words

Many of the procedures used to handle lists and words in lists can also be
used for words and characters within them. For instance, if we give FIRST a
word as its input rather than a list:

PRINT FIRST “ABC
we get the first letter of the word:

A
In the same way:

PRINT COUNT “FRIDAY
gives 6.

Lists and Words 47

Of all the procedures we have considered in this chapter, the two which will
not apply to words are ITEM and SENTENCE. We will need to deal with the
lack of an equivalent procedure to ITEM at a later stage, making use of
FIRST, LAST, BUTFIRST, BUTLAST and recursion.

In order to construct words we can use the procedure WORD, which works
in much the same way as SENTENCE, taking two or more words as its inputs
and combining them into a single word.

PRINT WORD “BLACK “POOL
BLACKPOOL
Like SENTENCE it needs round brackets if it has more than two inputs.
PRINT (WORD “BIRM “ING “HAM)
BIRMINGHAM

Here is a simple example, using some of the given procedures, to ask for a
word from the user and print out a new word which is the reverse of the one
typed in. In order to get a single word we again use the FIRST READLIST
technique. Then each character is taken from the end of the input word and,
using the WORD operation, put on to the end of the new word. To make this
possible we first set up the new word to be empty.

TO REVERSE
PRINT [GIVE ME A WORD)]
MAKE “INWORD FIRST READLIST
MAKE “NEW WORD *“
REPEAT COUNT :INWORD [MAKE “NEWWORD
WORD :NEWWORD LAST :INWORD
MAKE “INWORD BUTLAST :INWORD)]
PRINT :NEWWORD
END
Those used to programming in BASIC will be familiar with the idea of
procedures which split off left and right portions of words. There are no
corresponding primitives in LOGO; instead, we will write a procedure which
will take as its inputs a word and a number, split off that number of characters
from the front of the word and form two new words, to be called LEFT and
RIGHT. It works in a similar way to the REVERSE procedure above, starting
by setting RIGHT to the whole word input and LEFT to the empty word. The
required number of characters are then transferred one by one from RIGHT
to LEFT.
TO SPLIT :AWORD :NUM
MAKE “RIGHT :AWORD
MAKE “LEFT “
REPEAT :NUM [MAKE “LEFT WORD :LEFT FIRST :RIGHT
MAKE “RIGHT BUTFIRST :RIGHT]
END

48 Logo on the Sinclair Spectrum

Try:
SPLIT “DEFINED 4
PRINT :RIGHT
PRINT :LEFT

LOGO should reply:

NED
DEFI
to the two PRINT instructions.

Repeating Instructions

Conditions

By condition, we mean an operation which gives the result TRUE or FALSE
in answer to a question like ‘Is one number equal to a second?’ In the study of
logic and list-handling programming languages, such operations are correctly
called predicates. This perhaps explains why the primitives which fall into this
category all have names ending in P. Try typing:

PRINT EQUALP 5 5
which should give the result:

TRUE
Here the condition EQUALP tests if its two inputs are equal. If they are it
outputs the result TRUE. Otherwise it outputs FALSE.

PRINT EQUALP5 7

FALSE

Mathematical conditions

Like other mathematical operations, these are used as symbols placed
between their two inputs (this is called infix notation). These symbols are >
(greater than), < (less than) and = (equal to).

PRINT1>2

FALSE

50 Logo on the Sinclair Spectrum

PRINT5<8

TRUE

MAKE “FACT 5=5

PRINT :FACT

TRUE
= can be used to compare two objects of any kind, whether numbers, words
or lists, and will always give the result TRUE if they are the same. It is
equivalent to the operation EQUALP which we used above and which is used
before its two inputs.

MAKE “SHOPPING [SAUSAGES PEAS BUTTER STAMPS]

PRINT :SHOPPING = [SAUSAGES PEAS BUTTER STAMPS]

TRUE

MAKE “GIRL “MARY

PRINT :GIRL = “MARY

TRUE

MAKE “NAME “MARY

PRINT :GIRL = :NAME

TRUE

PRINT (7-5) =2

TRUE

PRINT EQUALP (7-5) 2
TRUE

Conditions are very often used in an IF command. IF expects at least two,
and sometimes three, inputs. The first is a condition, the second a list of
instructions which are to be obeyed if the condition is true; for instance:

MAKE “TODAY “FRIDAY

IF:TODAY = “FRIDAY [PRINT “TGIF]

TGIF
When the IF command has three inputs, the third is a list of instructions to be
obeyed if the condition is not true.

MAKE “TODAY “MONDAY

IF: TODAY = “FRIDAY [PRINT “TGIF] [PRINT [NOT FRIDAY YET]]

NOT FRIDAY YET
Like REPEAT instructions, IF commands can get rather long. I will use the
same technique to make them readable; the line will be split and continued
below with extra indentation. Usually it will be possible to put the first list of
things to do on one line and the alternative list below it. When typing them in,
however, press ENTER only when you have reached the end of the complete
instruction.

We might use conditions to make communication with the user a bit more
friendly. For example, the procedure KNOWNAME of Chapter 4 would be
improved if, when referring to the user’s first names, the plural was used only
if there was more than one name. To do this, we use a variable called [ISARE

which is the list [YOUR FIRST NAME IS] if there is only one and [YOUR
FIRST NAMES ARE] if there is more than one. This is assigned using an IF
statement and used as part of the print-out.
TO KNOWNAME
MAKE “FULLNAME READLIST
IF COUNT :FULLNAME < 3 [MAKE “ISARE [YOUR FIRST NAME
1S]]
[MAKE “ISARE [YOUR FIRST NAMES ARE]]
PRINT SENTENCE [YOUR SURNAME [S] LAST :FULLNAME
PRINT SENTENCE :ISARE BUTLAST :FULLNAME
END
We will now look at the various primitive conditions and consider the
circumstances in which they can be used.

Repeating Instructions 51

MEMBERP

This is used to check if its first input — which may be a number, word or list — is
a member of the second, which must be a list.
TO CHECKSHOP :STUFF
MAKE “SHOPPING [SAUSAGES PEAS BUTTER STAMPS]
IF MEMBERP :STUFF :SHOPPING [PRINT [GOT IT]]
[PRINT (OH DEAR FORGOT-
TENIT]]
END
CHECKSHOP “PEAS
GOTIT
CHECKSHOP “BACON
OH DEAR FORGOTTENIT
Because it is often important in LOGO to know what kind of object we are
dealing with, we have five conditional procedures which check the type of an
object.

NUMBERP

This procedure gives the result TRUE if its input is a number and false
otherwise. You might use this to check if the user's input is a number before
trying to handle it as one. Itis of little use asking ‘HOW OLD ARE YOU?' and
then trying to add the input to a total age if the user answers NOT VERY.
TO CHECKNUM
MAKE “ANSWER FIRST READLIST
IF NUMBERP :ANSWER [PRINT [THANK YOU]|
[PRINT [WANTED A NUMBER]]
END
Notice that we must use FIRST READLIST for the input here. If READLIST

52 Logo on the Sinclair Spectrum

were used on its own then the result would be a list. Even if it were a list
containing a single number, 5, it would be recognized as a list and not a
number.

WORDP

This operation gives the result TRUE if its input is a word. Remember that
numbers are considered to be words too, so they will also produce a TRUE
result from this procedure.

PRINT WORDP 3

TRUE

PRINT WORDP “WISE

TRUE

PRINT WORDP [MEN]

FALSE
Again, the last object is a list containing one word, and is not itself a word.

LISTP

This gives the result TRUE if its input is a list. So
PRINT LISTP :SHOPPING
gives:
TRUE
We will need to write a number of procedures to handle lists in various
ways. It will be a good idea to check first if the input to such a procedure is a
list.

EMPTYP

This checks if its input is empty. It will check for the empty word, “, or the
empty list, [], and give the result TRUE for each. This check is of fundamental
importance when breaking down lists or words or examining them one item
or character at a time, and we will need to make frequent use of a statement
like:

IF EMPTYP :ALIST [STOP]
in order to end such a process.

NAMEP

This gives the result TRUE if its input is the name of something else; that s, if it
has a THING attached to it.

MAKE “MONTH “APRIL

PRINT NAMEP “MONTH

TRUE

PRINT NAMEP “FRED

Repeating Instructions 53

FALSE
We mean, of course, that the procedure gives the output TRUE if the word is
the name of a LOGO object, not if it is a name like FRED.

Recursion

We have already used procedures like:
TOTRI
FORWARD 50
RIGHT 120
TRI
END
What happens when the procedure is run? Stop it using CAPS BREAK/
SPACE. The important thing about this procedure is that it repeats, not by
using a repeat instruction, but by starting itself again, TRI. So TRI obeys the
first two instructions, FORWARD 50, RIGHT 120 and then does TRI, which
obeys the instructions FORWARD 50, RIGHT 120. . . and. ..

Recursive procedures can have inputs like other procedures. In the simplest
case the inputs are the same each time the procedure is called. We can
change TRI to give any polygon:

TOPOLY :SIDE :ANGLE
FORWARD :SIDE
RIGHT :ANGLE
POLY :SIDE :ANGLE
END
This procedure is different from the one suggested in Chapter 2 using the
REPEAT command. It can draw some polygons which that one cannot. Try:
POLY 50 144

When a procedure refers to itself, this is called recursion. It is the main way
of getting repetition done in LOGO. Seymour Papert, one of LOGO's
originators, asks us to consider the plight of a man who always keeps his
promises and can be tricked into saying ‘l promise to repeat the last thing [
said’. Actually, repetitions by means of recursion will not go on for ever, as
LOGO keeps a note of every use of a procedure. This requires memory
space; when memory is used up the recursion will stop.

In the TRI and POLY examples the use of recursion was very simple, with
the consequence that the procedure did not know when to stop. Recursion is
not solely used to repeat things, however. There may be additional gains.
Suppose that buying a tube of toothpaste from your local supermarket you
find that the packets carry a voucher ‘20p off your next tube’; when do you
buy your next tube? The answer is ‘immediately’; after all, it does have 20p
off (from the voucher on your first tube) and it has another voucher.

We can use the same sort of principle in LOGO:

54 Logo on the Sinclair Spectrum

TO ADDON :NUMBER

PRINT :NUMBER

ADDON :NUMBER + 1

END

ADDON 1

1

2

3

4

etc.
Here the first use of ADDON prints 1, its input, and passes 2 to the next use of
ADDON,; this second use sees its input, NUMBER, as 2, so prints 2 and passes
on 3 to the next use of ADDON and so on.

Now let us suppose that you find toothpaste tubes whose packets each

carry a voucher for ‘20p off each of your next two packets’. Eager to save
money, you buy another two packets, each of which carries a voucher for two

more. . . . Your subsequent saving of cash and gains of toothpaste might lead
you to appreciate the power of recursion until, like LOGO, you run out of
storage space.

As a further example, suppose that we want to add up all the numbers from
1 to N, with the number N starting at 1 and increasing. We might decide to
stop when the total becomes greater than one thousand. Here we introduce
the STOP instruction which causes the current procedure to end, just like
END itself, although STOP can be put anywhere in the procedure.
Remember that it only stops the procedure it is in. If that procedure has been
called by another, then that previous procedure will continue.
TO ADDUP :NUMBER
IF:TOTAL > 1000 [STOP]
MAKE “TOTAL :TOTAL + :NUMBER
PRINT :TOTAL
ADDUP :NUMBER + 1
END
MAKE “TOTAL 0
ADDUP 1
1
3
6
10
15
etc.
Notice that we have to make the initial value of TOTAL zero outside the
procedure as we do not want it returned to zero every time the procedure is
obeyed. ADDUP works in much the same way as ADDON with the exception

. Repeating Instructions 55

that its second statement checks the current value of TOTAL and stops the
procedure if it is greater than one thousand.

When we are doing things with lists, recursion is often the best method to
use. For instance, the line-by-line print-out of a list, which we introduced in
Chapter 4, can be done more elegantly by a recursive method. We might
decide to handle it this way:

TO LBL :ALIST
PRINT FIRST :ALIST
LBL BUTFIRST :ALIST
END
Quite simply, the procedure prints the item at the start of the list and then
does the same thing with the remainder. How is it to know when to stop?
When the list is empty.
TOLBL:ALIST
IF EMPTYP :ALIST [STOP]
PRINT FIRST :ALIST
LBL BUTFIRST :ALIST
END
Try this with a suitable list, then modify the procedure so that it prints a list in
reverse.

Itis true that some uses of recursion can become quite complex but simple
recursion really is simple. Apart from the kind of recursive procedure that
goes on for ever (or until space in memory runs out) there are two
possibilities. In the examples given so far the procedure begins with a test. In
‘structured’ programming languages like Pascal (and at least one recent
version of BASIC) this is called a WHILE loop. In LOGO it looks like this:

TO WHILE input
IF some condition [STOP]
rest of the procedure
WHILE input
END
In this case the remaining lines of the procedure are not obeyed when the
condition is TRUE. In particular they are not obeyed if the condition is true to
start with.

The alternative would be put to the test at the end of the set of instructions
to be repeated. This corresponds to what in other languages is an UNTIL loop
and has the following structure:

TO UNTIL input
lines of procedure
IF some condition [UNTIL input]
END
Here, the lines of the procedure are always obeyed before the condition is
met and so they will be obeyed at least once.

56 Logo on the Sinclair Spectrum

Very often in using recursion to repeat, we will find the need to create a
start-up procedure to set up initial values, make the first call to the recursive
procedure and handle any final output. In the following example, to find the
sum of a series of numbers typed in at the keyboard, DOTOTAL first sets a
running total to zero and calls the recursive procedure TOTALUP. When all is
finished, DOTOTAL then prints out the result.

TO DOTOTAL
MAKE “TOTAL 0
TOTALUP
PRINT SENTENCE [THE TOTAL IS] : TOTAL
END
TOTALUP illustrates the use of NUMBERP to test if a number has been typed
in. It enables the user to put in a series of numbers and finish them with the
word END or some other non-numeric input. The procedure is arranged in a
similar way to the UNTIL pattern shown above, the only difference being that
an extra instruction (MAKE “TOTAL :TOTAL + :NUM) is inserted in the list
of things to do if the condition is TRUE. It would be possible to put this at the
start of the procedure but only if NUM was also given the value zero by
DOTOTAL which would produce the somewhat artificial situation of having a
zero value of NUM added on to the zero value of TOTAL the very first time
that the procedure was called from DOTOTAL.
TO TOTALUP
PRINT [TYPE IN A NUMBER]
MAKE “NUM FIRST READLIST
IF NUMBERP :NUM [MAKE “TOTAL :TOTAL + NUM
TOTALUP]
END

When the word END is typed the current call to TOTALUP will end. This
will cause the whole process to end since it will return to the instruction after
TOTALUP in the previous call, an END, and so on. Eventually the very first
call of TOTALUP will finish and return to the following line in DOTOTAL, the
instruction to print out the result.

Exercise:

Modify TOTALUP so that it only ends if the word END is typed and ignores
all other non-numeric input. Do this test for END separately and use the
STOP instruction if it is found; then use the NUMBERP condition to control
whether the input is added to the total. You will need to call TOTALUP again
regardless of whether the input is a number.

A random sentence generator

We will use the ideas of this chapter to write a procedure which will produce
random sentences. You can look upon this as an amusing idea or as the first

Repeating Instructions 57

step towards computer-written poetry.

Firstly we need to look at how you can instruct LOGO to produce random
numbers. The operation RANDOM does this and will output numbers chosen
at random in much the same way as rolling a pair of dice. (Actually the
numbers are calculated in some way but we need not bother about how. You
are unlikely to notice any variation from true randomness.) RANDOM 5, for
instance will output one of the numbers 0, 1, 2, 3 or 4. That s, it gives one of
five numbers which run from O to 1 less than the input to the RANDOM
procedure. In the same way, RANDOM 6 would give one of the numbers 0,
1,2,3,40r5 Try:

REPEAT 50 [PRINT RANDOM 6]
and see what happens.

If you wanted the random number to be chosen from 1, 2, 3, 4 or 5 then
you would have to add 1 to RANDOM 5. Type this in as 1 + RANDOM 5,
because RANDOM 5 + 1 does the addition first and would actually give you
the same as RANDOM 6, i.e. from 0 to 5.

We will use this procedure to pick out a random item from a list. Firstly we
make ITEMNO a randomly chosen number from 1 to the COUNT of the list
and then use this to select the item.

TO CHOOSE :ALIST
MAKE “ITEMNO 1 + RANDOM COUNT :ALIST
MAKE “CHOICE ITEM:ITEMNO :ALIST
END
Try this with, say, a list “PRESENT which is:
[DOLL TRAINSET COMPUTER] and
CHOOSE :PRESENT
To see the effect of the RANDOM operation you really need to CHOOSE a
number of times.

In order to produce sentences, we will need a pattern to work from; for
instance,

THE SMALL DOG QUICKLY BITES THE CARELESS MAN

For the benefit of those who have not studied English grammar, we will
explain some technical terms as we look at the structure of that sentence. It
consists of:

® AnARTICLE, ‘THE', an alternative would be A.

® An ADJECTIVE or describing word, ‘SMALL', like any of [BIG
BROWN SPOTTED CARELESS].

e A NOUN, ‘DOG', the name of a thing, such as [MAN TREE TABLE
KENNEL].

® AN ADVERB, ‘QUICKLY' which describes how something is done,
such as [VICIOUSLY SLOWLY CAREFULLY HAPPILY].

e A VERB, ‘BITES' which says what is done, like [LIKES CHASES

58 Logo on the Sinclair Spectrum

CARRIES HIDES].
® Another article, ‘THE'.
® Another adjective, ‘CARELESS’.
® Another noun, ‘MAN'.

So, using abbreviations, ART, ADJ and ADVB for article, adjective and
adverb, the pattern is:
[ART ADJ NOUN ADVB VERB ART ADJ NOUN]
We will make a variable, “PATTERN, equal to this list and then use each of
the names ART, ADJ, NOUN etc. to represent a list of the possible words that
can be used in the corresponding place in the pattern. So, for instance, “ADJ
will be the list [SMALL BIG BROWN SPOTTED CARELESS]. All this is done
by the procedure RANDSENTENCE, which will then repeat, however many
times you require, the procedure DORANDOM to construct and output each
sentence. This second procedure sets up an empty list, “OUTLINE, to hold
the finished sentence, makes the first call to the procedure FOLLOW, which
will actually follow the pattern to produce the sentence, and then prints the
results. Those two procedures look like this:
TO RANDSENTENCE
MAKE “PATTERN [ART ADJ NOUN ADVB VERB ART ADJ
NOUN]
MAKE “ART [THE A]
MAKE “ADJ [SMALL BIG BROWN SPOTTED CARELESS)
MAKE “NOUN [MAN TREE TABLE KENNEL DOG]
MAKE “ADVB [QUICKLY VICIOUSLY SLOWLY CAREFULLY
HAPPILY]
MAKE “VERB [BITES LIKES CHASES CARRIES HIDES]
REPEAT 50 [DORANDOM]
END
TO DORANDOM
MAKE “OUTLINE []
FOLLOW :PATTERN
PRINT :QUTLINE
PRINT*
END
The procedure FOLLOW first checks if its input list, which will be the
pattern or what remains of it, is empty. lf so it can stop immediately.
Otherwise, it takes the first item of the pattern, which will be the name of a list
of words, makes a random choice from this list and puts the chosen word on
to the end of QUTLINE. It then calls itself to handle the rest of the pattern.
The random selection routine is the same as CHOOSE, which we looked at
above.
TO FOLLOW :APATTERN

IF EMPTYP :APATTERN [STOP]

MAKE “THISWORD FIRST :APATTERN

CHOOSE THING :THISWORD

MAKE “OUTLINE SENTENCE :OUTLINE :CHOICE

FOLLOW BUTFIRST :APATTERN

END

Notice the use of THING. If the first word of the pattern is ART, then
THISWORD names ART which names the list [THE A]. This is the list we
want to choose from. #

Repeating Instructions 59

Exercise:

Try incorporating some fixed words into the pattern. Do this by using NAMEP
to test if : THISWORD is the name of something; if so, it is the name of a list,
and a word is to be chosen from the list. If not, the word itself can be used.

More Turtle Graphics

We can illustrate the ideas of the two previous chapters by modifying the
RESPI procedure of Chapter 3 so that it turns right on some occasions and
left on others. We do this by providing an extra input to the procedure which
will be a list of numbers, the values of COUNT for which the turtle is to turn
left. When COUNT is a member of this list a left turn is to be made, otherwise
a right turn. This might be rather a lot to get into the REPEAT list, so this will
be turned into a separate procedure:
TO RESPIZ :SIZE :ANGLE :MAX :ALIST
MAKE “COUNT 1
REPEAT :MAX [SUBSPI]
RESPI2 :SIZE :ANGLE :MAX :ALIST
END
TO SUBSPI
FORWARD :SIZE * :COUNT
[F MEMBERP :COUNT :ALIST [LEFT :ANGLE] [RIGHT :ANGLE]
MAKE “COUNT :COUNT + 1
END
Try this procedure with the following inputs:
RESPI25120 6[13]
RESPI25 9011[345]
Now that we have looked at how to stop recursive procedures, it might be a

More Turtle Graphics 61

]

L

Figure8 RESPI25907[1234]

good idea to think how we can stop procedures like this one which draw
closed diagrams, i.e. those which come back on themselves. Firstly we want
to know if the turtle has got back to its starting point. There is a primitive
procedure which gives the turtle's position at any time. POSITION outputs a
list of two numbers. The first is the distance horizontally across the screen
from the centre, positive if it is to the right and negative to the left. The second
is the distance vertically up the screen from the centre, positive if it is above
the centre and negative below. If you like mathematical jargon, they are
called the x-coordinate and y-coordinate respectively. If, on the other hand,
you have not met this sort of thing before and find it potentially confusing, it
may help to remember that everything goes in alphabetical order; the first
number is x, Horizontally, Across, and the second y, Vertically, Up.

62 Logo on the Sinclair Spectrum .

LOGO provides three instructions for moving the turtle to points specified

in this way.

SETX 50
moves to a point which is fifty units across to the right of centre, the distance
above or below the centre remaining fixed.

SETY -50
moves to a point where the distance down from the centre is fifty units but
keeps the horizontal distance from the centre fixed. If at any time you want to
know either the distance across or up from the centre on its own, you can use
XCOR to output the former and YCOR the latter. (These are operations;
output means provide a result for another procedure to use, not ‘display on
the screen’.)

SETPOS [-20 30]
changes both at once, putting the turtle in this case twenty units to the left of
centre and thirty units up from it. For each of these instructions, if the pen is
down, a line will be drawn from the starting point to the finishing point. Since,
as was pointed out in Chapter 3, the minus sign has two meanings, LOGC
has to adopt a simple rule for minus signs inside a list to decide which
meaning should be used. If there is a blank space or nothing (in the list) in
front of it and a number immediately afterwards, it is considered to be part of
that number and means that the number is negative. In all other cases it
counts as a separate word. That is, [~ 10 10] has three words; so have [10 —
10] and [10-10] and none of these could be used as inputs to SETPOS. On
the other hand [10 —10] and [-10 10] each have two words and can be
inputs to SETPOS. The same care will need to be taken for other procedures
which expect a list of numbers as input.

The other thing we would need to know if we wanted to check for a closed
diagram is the direction in which the turtle is pointing, its heading. The
operation to output this is, naturally enough, HEADING. It gives a number
between 0 and 360 which works like a compass bearing. Imagining straight
up as being North, this is a heading of 0, East is 90, South is 180 and West
270. So as you turn the turtle towards the right you increase its heading; left
decreases it. Just as you can set the turtle’s position, so you can set its
heading. Use the command SETHEADING, followed by a number between
0 and 360, to do this.

Now to solve the problem of drawings which go over themselves. We need
to record the turtle’s position and heading when it starts. For convenience, we
can put the three numbers into one list with heading last:

MAKE “STATE LPUT HEADING POSITION
We can then keep testing to see if the turtle ever gets back to this state, when
it will be in the same place and going in the same direction as it was initially.

IF EQUALP :STATE LPUT HEADING POSITION [STOP]
Of course, you must be careful not to do this test before the turtle gets a

(T
T 87
T 360 | O
YCOR
HEADING
270 90 B
=]2.8 127
180
—— XCOR —»
-88

. More Turtle Graphics 63

Figure 9 Turtle coordinates and headings

chance to move, or the present position and heading will still be the same as
at the start and it will be stopped before it gets anywhere.

Exercise:)
Try incorporating this test into some of the procedures of Chapter 3. You will

find that you need to create special ‘starting-up’ procedures to hold the initial
instruction.
MAKVEVe can use the procedures for setting x and y to draw the more nc?nnal
kind of graphs. Suppose that we have a list of twelve monthly expendl.tures
(or pocket money or team scores, say) and that this is to bg passed asan input
to a procedure which will draw a graph. For the time being we will assume
that the numbers have maximum value of 160 and are nqi too small
compared with this. Firstly, we need to draw a pair of axes. S.tarhng f_rom 1he
bottom left-hand comer, at position [-125 —80], draw a horizontal line with
twelve vertical marks for the months.
TO XAXIS
PENUP
SETPOS [-125-80]

64 Logo on the Sinclair Spectrum

PENDOWN
SETHEADING 90
FORWARD 5
EN!;ZEPEAT 12 [FORWARD 20 SETY —-82 SETY -80]
The vertical strokes occur every twenty units, so twenty turtle steps across will
correspond to one month in the list. In a similar way, a vertical line is drawn
for the other axis. It should also be marked with a scale, but since that
depends on the size of the quantities in the list, [will leave this to you to
decide on and include.
TOYAXIS
PENUP
STEPOS [-120-85]
PENDOWN
SETY 80
END

Figure 10 Design for the procedure GRAPH

. 65

More Turtle Graphics

The axes actually cross at the point [-120, 80] so this will be our starting point
for the graph. Now we move through the list, using a variable, COUNT, to
pick out our position in it, and for each item drawing a line to the point which
represents it. This point is twenty units across the screen for each one of
COUNT and its distance above the base line is the value of the item. Because
the starting position of our graph is 120 units to the left and 80 units down
from the centre of the screen we must subtract 120 and 80 respectively from
the horizontal and vertical values when they are calculated.
TOPLOT
MAKE “COUNT :COUNT + 1
MAKE “XCOR :COUNT * 20—-120
MAKE “YCOR ITEM :COUNT :VALUELIST-80
SETPOS LIST :XCOR :YCOR
END
COUNT will need to be started off at zero, so the first time this procedure is
done it will be brought up to one, and VALUELIST must be provided as the
input list of values to be plotted. We can now incorporate all this into the main

procedure:

TO GRAPH :VALUELIST
XAXIS
YAXIS
SETPOS [-120-80]
PENDOWN
MAKE “COUNT 0
REPEAT 12 [PLOT]
PENUP
SETPOS [-120-80]

END

If the values in the list are likely to be greater than 160 or are very much less
than this, so that either the turtle goes off the screen or the graph is too small
to be seen, the values will have to be scaled. That is, they should be multiplied
or divided by a suitable number to make them a reasonable size to graph.

Exercise:
Put an instruction to do this into PLOT.

So far we have used recursion with graphics, only as a convenient way of
repeating things. As a change, here are some interesting shapes which need
recursion.

Firstly the snowflake curve (mathematicians seem to call all drawings
‘curves'). Draw an equilateral triangle. Now, in the middle of each side, draw
another triangle one third the size (point outwards) and on each of the four
lines so formed put a triangle one third their size and so on. . . . Now, to draw
a triangle, we simply repeat FORWARD :LENGTH and RIGHT 120 three

66 Logo on the Sinclair Spectrum .

Figure 11 The first stage of the Snowflake curve showing how ‘snowlines’
are constructed

times. To draw the snowflake, we need to replace FORWARD by a procedure
to draw a ‘snowline’ which has a triangle one third of its size at its middle.
TO SNOWFLAKE :LENGTH
s REPEAT 3 [SNOWLINE :LENGTH RIGHT 120]
D
To draw the ‘snowline’, go along it for one third of its length, turn outwards
(to the left if you are going right around the triangle) by 60°, draw a line of one
third the length, turn back (right) by 120°, draw a line of one third the length,
and finally turn left through another 60° to get back on to the right path and
complete the line with a further one third:
TO SNOWLINE :LENGTH
FORWARD :LENGTH/3
LEFT 60
FORWARD :LENGTH /3
RIGHT 120
FORWARD :LENGTH/ 3

More Turtle Graphics 67

LEFT 60
FORWARD :LENGTH /3
END
That gives the effect we want, but wait! Each of the four lines produced has to
be broken up with a triangle one third its size; it should be a snowline, in fact.
So each FORWARD in the procedure must be replaced with a SNOWLINE
command. Eventually the steps will get too small to see. We can use a limit,
and when the length of a line is less than this amount, simply go forward
rather than try to introduce another even smaller triangle. If we make this limit
an input to the original SNOWFLAKE procedure you will be able to start with
it fairly large and, by gradually reducing it and re-drawing the diagram, see
how the shape is built up.
TO SNOWFLAKE :LENGTH :LIMIT
REPEAT 3 SNOWLINE :LENGTH RIGHT 120
END
TO SNOWLINE :LENGTH
IF :.LENGTH < :LIMIT [FORWARD :LENGTH STOP]
SNOWLINE :LENGTH /3
LEFT 60
SNOWLINE :LENGTH/3
RIGHT 120
SNOWLINE :LENGTH/3
LEFT 60
SNOWLINE :LENGTH/3
END
A suitable demonstration of this curve is:
PENUP
SETY -30
PENDOWN
SNOWFLAKE 100 5
although you might like to start with higher values of the limit to see how it is
built up.

Finally, a curve called the dragon. It consists of two procedures which call
each other alternately. In between the two calls one of them does a right turn,
the other a left turn. The distance to move remains the same throughout the
recursion, so we need another method of indicating when the process is to
stop. Instead, we can say that when the procedures have got down to a
certain level of recursion that will be enough. To do this we introduce a
counter, which we will call LEVL, that will actually count in the opposite
direction to the levels of procedure calls, starting off at five, for instance, and
gradually reducing until zero is reached. The two procedures are, then:

TO LEFTDRAGON :SIZE :LEVL
IF :LEVL = 0 [FORWARD :SIZE STOP]

& ®

Logo on the Sinclair Spectrum

LEFTDRAGON :SIZE :LEVL - 1
LEFT 90
RIGHTDRAGON :SIZE :LEVL — 1
END
TO RIGHTDRAGON :SIZE :LEVL
IF:LEVL = [FORWARD :SIZE STOP]
LEFTDRAGON :SIZE :LEVL -1
RIGHT 90
RIGHTDRAGON :SIZE :LEVL - 1
END
It does not matter if you begin with the left or right version. It is recommended
that you keep the values of both SIZE and LEVL small to start with. If you
increase LEVL you will get a more complex diagram. The following sequence
of instructions show the curve well, but may take some time to draw,
CLEARSCREEN
PENUP
SETH %0
SETX 100
PENDOWN
LEFTDRAGON 2 20

Suggestions for further investigation

You might like to investigate what happens if the triangles on the snowflake
curve point inwards rather than outwards. Is it possible to do the same thing
with other shapes, say a square, which the snowflake does with a triangle? Is it
possible to write a procedure to ‘snowflake’ any polygon? There are a
number of ways you can modify the dragon procedures too, but I will leave
you to decide them for yourself.

More List Processing

We have already seen some procedures which output results, i.e. operations.
You can create your own operations in the usual way using the command
OUTPUT to specify the value that is to be retuned as the result. For instance,
if we want to supply a named procedure that will fill a gap in LOGO - that is,
one to give the difference between its two inputs, coresponding to - in the
same way that SUM corresponds to ‘+’ — then we could use:

TO DIFFERENCE :NUM1 :NUM2

OUTPUT :NUM1 - :NUM2

END
Then

PRINT DIFFERENCE 7 5
will give the result:

2

When LOGO meets the OUTPUT command, it passes on the value which

is found on the right of the word OUTPUT and stops the procedure. So
DIFFERENCE 7 5 gives the value 7 — 5. You can have more than one
OUTPUT in a procedure if you wish, but their use needs to be controlled by
IF commands because, since the procedure ends when QUTPUT is met, only
one of them will ever be obeyed; you can, after all, have only one output
from any operation. For instance, you might want to adapt the above
procedure so that it always gives a positive number as a result, regardless of

which of its inputs is larger. To do this it m
subtract the smaller f'romgt?:e larger. R i
TO DIFFERENCE :NUM1 :NUM2
[F:NUM1 > :NUM2 [OUTPUT :NUM1 - NUM2]
QUTPUT :NUM2 - NUM1
END
PRINT DIFFERENCE 10 3
7
PRINT DIFFERENCE 2 6
4

70 Logo onthe Sinclair Spectrum

We could have written:
IF :NUM1 > :NUM2 [OUTPUT :NUMI — :NUM2] [OUTPUT :NUM2 —
:NUM1
but this is not necessary. If the first OUTPUT command is obey!ed, then the
procedure will come to an end and the second will never be encountered.

It is also possible to construct an operation to output a word or a list as its
result in exactly the same way. For instance, we may want to find if a word
begins with a vowel or not so that we know whether to use A or AN in front of
it. Since this means locking at the first character in the word, it is a good idea
to check if the work is empty first. Here is an operation to output AN if the
word begins with a vowel, A if it does not and the empty word if the input
itself is empty.

TO ARTICLE :AWORD
IF EMPTYP :AWORD [OUTPUT*]
IF MEMBERP FIRST :AWORD [A E10 U] [OUTPUT “AN]
OUTPUT “A

END

Exercise:
Change the procedure ARTICLE so that it deals with words written with
either capital or lower-case letters.

In some situations you will need to be careful about how you use
operations. Firstly, some operations may have side effects; that is, they may
also behave like commands. For instance, we might write an operation to ask
the user for his or her name and give the first name as its output.

TO GETNAME
PRINT [WHAT IS YOUR NAME]
OUTPUT FIRST READLIST
END
So:

MAKE "YOU GETNAME
will give the message:

WHAT IS YOUR NAME

. More List Processing 7

and wait for an answer from the keyboard before passing its first word on as
output from the operation. This seems simple enough, but what happens if
you try the following?

PRINT GETNAME
Remember that there is a PRINT instruction in the procedure too. LOGO
works out the results of procedures from the right, and so first of all obeys
GETNAME and passes its output on to PRINT. In the instruction

PRINT SENTENCE “HELLO GETNAME
the same thing happens, GETNAME and “HELLO provide inputs to
SENTENCE, which then passes its output on to PRINT. Try:

PRINT (SENTENCE GETNAME “ALIAS GETNAME)
Does it give the result you would expect?

A second thing to remember is that every time an operation is used the

result will be obtained afresh. This causes no problem for

PRINT DIFFERENCE 7 5

2

PRINT DIFFERENCE 7 5

2
because we expect to get the same result every time. (It takes time to perform
the calculation repeatedly, though.) We have already seen that the RANDOM
operation gives a different result each time it is used (that, after all, is the
whole point of using it), and the operation GETNAME, if used repeatedly, will
always print the message and wait for input from the keyboard. If you wanted
the first name to be preserved you would have to name it znd refer to it by
name in all subsequent instructions:

MAKE “YOU GETNAME

PRINT SENTENCE “HELLO :YOU

PRINT SENTENCE [I AM GLAD TO MEET YOU] :YOU

Levels of procedure

When a procedure refers to another one, we say that we have gone to a
second level of procedure. If this then uses another, we are on a third level
and so on. For instance, here are three procedures which do not do very
much:
TOPROC1
PRINT [LEVEL 1]
PROC2
END
TOPROCZ
PRINT [LEVEL 2]
PROC3
END

72 Logo on the Sinclair Spectrum .

TO PROC3
PRINT [LEVEL 3]
END
PROCI is the first level. When it calls PROC2, we move to the second
level. When PROCS3 is called we are at level 3 and then have 3 END, STOP
or OUTPUT commands to obey before we can get back to level zero, the top
level, which is the LOGO command level with the prompt ‘?’. There is a
command TOPLEVEL which will do this all in one go from any level of
procedure. It is not recommended that you make much use of this instruction
except in emergencies. The level does not depend on what procedure is used,
but on how many procedure calls you have come down through to get there.
Imagine each procedure name, including the built-in primitives, as being a
step down, and each END, STOP or OUTPUT command as being a step up.
So if from LOGO command level you use
PROC3
you will go down to level 1, even though the procedure is constructed to print
out LEVEL 3. A recursive procedure can go through a great many levels.
TO DOLEVEL :N
PRINT SENTENCE “LEVEL :N
IF:N <10 [DOLEVEL:N + 1]
END
The command:
DOLEVEL 1
then gives the output:
LEVEL 1
LEVEL 2
LEVEL 3
LEVEL 4
LEVEL 5
LEVEL 6
LEVEL7
LEVEL 8
LEVEL 9
When :N finally becomes equal to 10, we have to obey the end statement
at level 9, then at level 8 and so on to get back to the top level. You can
confirm this by changing DOLEVEL to:
TO DOLEVEL :N
PRINT SENTENCE “LEVEL :N
IF:N < 10[DOLEVEL:N + 1]
PRINT “ENDING
END
DOLEVEL 1
LEVEL1

More List Processing 73

LEVEL 2
LEVEL 3
LEVEL 4
LEVEL 5
LEVEL 6
LEVEL 7
LEVEL 8
LEVEL 9
ENDING
ENDING
ENDING
ENDING
ENDING
ENDING
ENDING
ENDING
ENDING

Local and global variables

If a word is used as an input to a procedure when the procedure is defined,
then when that procedure is used, the word must take whatever value is given
itasinput. As a simple example:

TO SAYNUM :N

PRINT SENTENCE [N IS] :N

END
then

SAYNUM 5
gives the not unexpected result:

NIS5
But try this:

MAKE “N 7

SAYNUM 5

NIS5

then enter:

PRINT :N
This time the result is perhaps surprising, 7.

LOGO has remembered what value N had outside the procedure
SAYNUM and has restored it once the procedure is finished! We say that N is
local to the procedure; that is, SAYNUM has its own private value of N
restricted to its own use. Words which do not occur in the definition of a
procedure are called global (i.e. their values are the same everywhere). This
has an important consequence if we use several different levels of procedure.
We will illustrate it by changing the three procedures, PROC1, PROCZ2,

74 Logo on the Sinclair Spectrum
PROC3:
TOPROC1 :N
PRINT SENTENCE “PROC1 :NUM
PROC25
PRINT SENTENCE [PROC1 AGAIN] :NUM
END
TOPROCZ :NUM
PRINT SENTENCE “PROC2 :NUM
PROC37
PRINT SENTENCE [PROCZ AGAIN] :NUM
END
TO PROC3 :NUM
PRINT SENTENCE “PROC3 :NUM
END

Here procedures 1 and 2 print out the value of their input before and after
calling another procedure, so
PROC13
produces the display:
PROC12
PROC25
PROC37
PROC2 AGAIN 5
PROC1AGAIN3,
So LOGO remembers which value of NUM belongs to which level of
procedure. It is probably easiest to think of local variables as being different
variables inside the procedure even if they have the same name as any which
occur outside it. (In fact, LOGO just makes a temporary change to the value
and remembers the old value. This is one reason why memory is taken up
every time you call a procedure.)
If a local variable is changed inside a procedure it has no effect outside it. If
a global variable is changed, the new value is kept outside too, e.g.
TO TESTIT :NUM
MAKE “NUM :NUM + 1
PRINT :NUM
MAKE “OTHER :OTHER + 1
END
MAKE “NUM 5
MAKE “OTHER 7
TESTIT 5
6
PRINT :NUM
5
PRINT :OTHER
8

This has an important consequence in recursion. You can rely on LOGO
when it finishes a procedure to remember exactly where it was and what the
values of any local variables were.

More List Processing 75

Qutputs from recursive procedures

We can use an operation recursively by using the procedure name in its own
OUTPUT command; but if you want the procedure to end and actually give a
result, you will have to have at least one other OUTPUT which does not use
the procedure recursively. To make this clear, we will change the procedure
GETNAME used earlier in the chapter so that it requests the name of the user,
outputs the first name, if possible, but otherwise issues a suitable message and
calls itself recursively to try again. Remember that this will result in the request
message being printed out once more too. We do not use FIRST READLIST
because, not unreasonably, FIRST does not like the empty list as an input, so
FIRST can only be used after we have checked for this.
TO GETNAME

PRINT [PLEASE TELL ME YOUR NAME]

MAKE “YOU READLIST

[F EMPTYP :YOU [PRINT [YOU MUST HAVE ONE]

OUTPUT GETNAME]
MAKE “YOU FIRST :YOU
IF NUMBERP :YOU [PRINT [ARE YOU A CONVICT ?]
OUTPUT GETNAME]
OQUTPUT :YOU
END
We can illustrate the effects of all this by designing a procedure whose

inputs will be a number and a word, and whose output will be a word
consisting of that number of characters taken from the start of the input word.

0
START 5 “RECURSIVE
is to produce
RECUR
as its output.

If :N is the number and :INWORD the input word, we want to get the first
:N characters. Now, we have a way of stripping off the first character of a
word. Then all we need to do is apply START recursively to give the first :N —
1 characters from the remainder of INWORD, i.e.

START :N-1BUTFIRST :INWORD
then put the first character on to the front of this with

WORD FIRST :INWORD START :N - 1 BUTFIRST :INWORD
and OUTPUT it.

So far so good. As always, the question is, when does the recursion stop?
Since N is gradually being reduced and always says how many characters are

76 Logo on the Sinclair Spectrum .

wanted, we stop when :N is zero and output the empty word at that point to
provide a result for START to the next level up.
TO START :N:INWORD
IF:N = [0 OUTPUT"]
OUTPUT WORD FIRST :INWORD START :N — 1 BUTFIRST

(INWORD
END
PRINT START 5 “RECURSIVE
RECUR
Follow the procedure from level to level using the following table:
Level :N :INWORD FIRST BUTFIRST OUTPUT
(INWORD :INWORD
1 5 RECURSIVE R ECURSIVE
2 4 ECURSIVE E CURSIVE
3 3 CURSIVE C URSIVE
4 2 URSIVE U RSIVE
5 1 RSIVE R SIVE
6 0 “
5 1 RSIVE R R=WORD“R*“
4 2 URSIVE U UR =WORD“U“R
3 3 CURSIVE Cc CUR = WORD“C“UR
2 4 ECURSIVE E ECUR = WORD “E “CUR
1 5 RECURSIVE R RECUR = WORD “R “ECUR

Exercise:

The start procedure is incomplete since it lacks checks to see if N is not less
than 1 or greater than the length of the input word. Decide on appropriate
output in these cases and supply the instructions.

Lists within lists

The items in a LOGO list may themselves be lists. We have already seen this
in the random sentence generator where NOUN was an item in the
PATTERN list and was itself the name of another list. There is nothing
particularly difficult in this idea; if I make a list of all the things I have in my
pocket, it might be:
[STRING POUND.NOTE SHOPPING.LIST]

Notice that the items on my shopping list are not items on the list of things in
my pocket.

In the same way, the above list is quite acceptable to LOGO and has just
three items in it even if one of them, SHOPPING.LIST, is itself the name of
the list:

. More List Processing 77

[SAUSAGES PEAS BUTTER STAMPS)
and SAUSAGES is not a member of the list of things in my pocket! LOGO
allows us to write this list as:
[STRING POUND. [NOTE SAUSAGES PEAS BUTTER STAMPS]
and this list still has three items in it even though the third item is a list with
four members.
So how many items are there in the following list?
[[SAUSAGES PEAS BUTTER STAMPS] [JANE DAVID ROSEMARY]
[GARDENING IRONING] [MAY8 JUNE20 JULY1 SEPT10 NOV23]]
There are four, all of them lists. It may make it clearer to give them names:
[SHOPPING PEOPLE JOBS DATES)]
Ignoring what significance these lists may have to me, suppose you were to
compile four lists like these for yourself and a friend. Then we could have a
list:
[MINE YOURS FRIENDS]
Mine is a list of lists: [SHOPPING PEOPLE JOBS DATES], and so are
YOURS and FRIENDS. We could go on putting lists inside each other for a
long time but it is probably best to leave the work to LOGO.

Procedures for constructing lists

We have already made use of SENTENCE to form a list from two or more
inputs, which may be lists or words. It constructs a single list by taking off the
outer square brackets and rewriting the whole list; that is,

(SENTENCE [THIS IS] [A SENTENCE] [EXAMPLE])
outputs [THIS IS A SENTENCE EXAMPLE].

We shall now look at three other operations which construct lists in different
ways.

FPUT (First PUT) has two inputs. It expects the second one to be a list and
outputs a new list with its first input as the first element and the second input
as the rest of the list. So

FPUT “ONE [TWO THREE FOUR]
outputs [ONE TWO THREE FOUR]. Unlike SENTENCE it does not operate
by removing the outer brackets of lists and then putting them all together. If
the first input is a list, then it is treated as the single first item of the result. So
FPUT [ONE TWO] [THREE FOUR]
gives the output [[ONE TWO] THREE FOUR]. Imagine FPUT as taking its
first input and pushing it into the first position of the second one.

LPUT (Last PUT) works in a similar way but makes its first input become

the last item in the output list. Again it expects its second input to be a list.
LPUT [FINAL ITEM] [THIS IS THE]
gives the output [THIS 1S THE [FINAL ITEM]). Notice that it seems to expect
its inputs in the wrong order.

78 Logo on the Sinclair Spectrum .

The operation LIST takes two or more inputs and makes a list of them

regardless of whether they are lists or words.

LIST “BANK [SAUSAGES PEAS BUTTER STAMPS]
has two inputs and forms a list with two items:

[BANK [SAUSAGES PEAS BUTTER STAMPS]]
If LIST has more than two inputs then it and its inputs must be enclosed in
brackets:

(LIST “BANK [SAUSAGES PEAS BUTTER STAMPS] [JANE DAVID

ROSEMARY]),

outputs the list:

[BANK [SAUSAGES PEAS BUTTER STAMPS] [JANE DAVID

ROSEMARY]]

You can think of LIST as simply taking its inputs and putting an extra pair of
square brackets around all of them. Used with more than two inputs, LIST
cannot always be relied on to perform properly if it is used as an input to itself.
As we have already noted, it will also cause problems if included within the
square brackets of a REPEAT or IF list Complicated structures may,
therefore, need to be built up in stages.

Sorting numbers

We will now look at how lists can be used to represent more complicated data
structure and how this can be used for practical purposes. Firstly we consider
the problem of sorting into order a series of numbers, typed in at the
keyboard. Sorting is an important application of computer power and many
methods have been develped to do it. This is just one of them.

We are going to store the numbers in a structure called a tree. Figure 12
shows such a tree. If it is not obvious why it has this name, turn the diagram
upside down. Each circle holding a number is called a node. At each node the
tree splits into, at most, two branches. To see how it is arranged, we will
consider putting another number, 6 for example, into the tree. We start at the
top of the tree and, at each node we come to, compare the number we are
adding with the number at the node. If it is less, we go down the left branch,
otherwise the right. So imagine the 6 being put in at the top where, being less
than 7, it goes down the left-hand branch to the 3. Here it is greater and so
goes down the right-hand branch to the 5. Again, being greater than this, it
goes right. This time, however, there is no right-hand branch so we make
one. Simply draw in another arrow going down to the right and put the 6 at
the end of it.

So each node has two branches; the left one holds numbers less than the
number at the node, the right, numbers greater than it. A simple decision —
bigger than the number at the node or not? — sends us down one branch or
another.

. More List Processing 79

e

@
()

[mm\ (118[1]
(120 1] /15[1

[
(e 140 11

Figure 12 A number tree and its implementation in lists

80 Logo on the Sinclair Spectrum .

We can build up a tree with lists quite easily in the following way. Each
node is represented by a list with three members. The middle member is the
number at the node and the other two are lists; the first item is the left-hand
branch of the tree from there on and the last item is the right-hand branch.
Each of these two is then built up in the same way. If there is no branch then
the list is empty. So the empty lists serve as markers to show that we have
reached the end, at least as far as that branch is concerned. You may not be
surprised to leamn that such end points are called leaves, while the original
node from which the tree grew is called its root.

The list structure is also shown in figure 12. Where a list is not empty, it is
shown by a spot with an arrow pointing to its contents; so although the lists
are actually inside one another, this ‘exploded’ view shows the similarity to
the tree. Look again at how the number 6 would be put into the tree. First
look at the main, outermost, list which is at the top of the diagram; it has three
members, the middle of which is 7. The new number 6 is less than this so we
go down the left-hand branch by considering the first item. This is a list whose
middle element is 3; 6 is greater than this so we look at the list following the 3.
This has 5 as its middle element; 6 is greater than this so again we look at the
list after it. This time the list is empty — we have come to an end point and
found somewhere to put the 6. It goes into this empty list and, to mark the
new end points, empty lists are put on either side of it: [[] 6[]].

So there are just two rules for putting a number into the tree:

® If a number is put into a list which already has a number in the middle
position, it is compared with that number and, if less, is put into the list at
the start; otherwise it is put into the list after it.

® If a number is put into an empty list, it becomes the middle element, and
two empty lists are put on either side of it.

We begin with a single empty list. If, for example, the numbers are put in in
the order 7, 3, 5, 8 ... then the list is built up as in the following table: at each
stage, only new things are shown in order to make the structure clear without
a clutter of brackets:

Stage

5 [1811

You can see that the numbers are already falling into the right order.

Now we will consider how to do this in LOGO. Firstly, we need a
procedure which will give the user some instructions, set up an initially empty
list, handle the input of the numbers and print out the list in order:

. More List Processing 81

TO SORT
PRINT [INPUT SOME NUMBERS ONE BY ONE]
PRINT [WHEN YOU HAVE FINISHED TYPE END]
MAKE “NUMLIST []
INPUT
PRINTINORDER :NUMLIST
END
Now the INPUT procedure must get the first word typed in from the
keyboard, in the usual way, and check whether it is a number. We can use the
occurrence of something which is not a number to signal that we have
finished typing numbers in. If it is a number, however, it must be tried in the
list to see where it fits, and a new list be formed with the number in its place.
TO INPUT
MAKE “NUM FIRST READLIST
IF NOT NUMBERP :NUM [STOP]
MAKE “NUMLIST RENEW :NUMLIST
INPUT
END
This makes use of the operation NOT for the first time. This takes a condition
as its input and changes the result from TRUE to FALSE and vice versa. So it
is used in the obvious way to give the result TRUE if :NUM is NOT a number.
We now need to write the RENEW procedure which will try the input
number in any of our lists and put it in its rightful place. This procedure needs
to construct lists with three elements, usually as the result of an IF command.
As pointed out in an earlier chapter, LIST cannot be used with round brackets
inside a list, so we must begin by writing a procedure which will take three
inputs and make a list of them.
TOLIST3:A:B:C
OUTPUT (LIST :A:B:C)
END
Now, when the input number is tried with a list (which we will call ALIST
inside the RENEW procedure), there are three possibilities. The list may be
empty, in which case we replace it by a new list of three items, the outer two
being empty lists and the middle one the number:
LIST3 []:NUM(]
If the number is greater than the middle item, then our new list to replace it
must have the first and second items unchanged and the third replaced by a
new list containing the incoming number:
LIST3 FIRST:ALIST ITEM 2:ALIST RENEW LAST :ALIST
If the number is less than the middle item of the list, then it is its first list which
must be changed to incorporate it:
LIST3 RENEW FIRST :ALIST ITEM 2:ALIST LAST:ALIST
So the RENEW operation is:

82 Logo on the Sinclair Spectrum .

TO RENEW :ALIST
IF EMPTYP :ALIST [OUTPUT LIST3 [] :NUM []]
IF:NUM > ITEM 2 :ALIST
[OUTPUT LIST3 FIRST :ALIST ITEM 2 :ALIST
RENEW LAST :ALIST]
[OUTPUT LIST3 RENEW FIRST :ALIST ITEM 2 :ALIST
LAST :ALIST]
END
As we have already seen this will result in the numbers being in the right
order; the problem is the large number of square brackets that seem to be in
the way. After all, our main list is left with just three items in it no matter how
many numbers have been typed in. Fortunately the power of recursion helps.
To print in order a list consisting of a list, a number and a list, all we need to do
is print the first list in order, print the number and then print the second list in
order. If the listis empty then we need print nothing at all:
TO PRINTINORDER :ALIST
IF EMPTYP :ALIST [STOP]
PRINTINORDER FIRST :ALIST
PRINT ITEM 2 :ALIST
PRINTINORDER LAST :ALIST
END
When you have typed in the procedures, give the command:
SORT
Type a few numbers, one on each line. End them with END or some other
convenient input which is not a number. After the numbers have been printed
out in order you might also like to try:
PRINT :NUMLIST
which will show how the tree is stored in a list. If you want to see the list built
up while the SORT procedure is running, put the above instruction into
INPUT, just before it calls itself.

A learning game

We will now make use of the tree structure to write a program to play
ANIMAL. In this well-known computer game, the program, by asking
questions which are answered ‘yes’ or ‘no’, endeavours to guess what animal
you are thinking about. The program’s most interesting feature is its ability to
learn. Initially, it ‘knows’ about only two animals; as you play the game, it
leamns the names of more and what questions to ask to distinguish between
them.

The information is stored in a tree. Each node is a list consisting of three
items. Normally the middle one is a question to be put to the user. If the
answer is ‘yes’ then the program uses the first item, also itself a list, as the next

. More List Processing 83

node to consider, if ‘no’ then the program moves to the last item. Eventually
we reach an end point. This is picked out by the fact that the first and last
iterns in it are empty lists. The middle item in this case is not a question but the
name of an animal. Imagine working down the number tree of figure 12 in
this way. Is it bigger than 7? No. Is it bigger than 3? Yes. Is it bigger than 5?
And so on. When the animal is suggested to the person playing the game,
there are two possibilities. If the program has guessed right, it obviously has
nothing to learn, but if the user was thinking of a different animal the program
will require a question to give the difference between the one found and the
right answer. This question now becomes the middle item in a new node in this
position with the two animal names in lists before and after it. Again, empty
lists are put on either side of them to show that end points have been reached.
The basic procedure must provide a suitable introduction to the user and
then set up the root list before calling a procedure which will handle the actual
working of the game.
TO ANIMAL
PRINT “
PRINT [WELCOME TO THE ANIMAL GAME]
PRINT [ANSWER THE QUESTIONS YES OR NOJ]
MAKE “NODE [[[][A DUCK][]] [DOES IT SWIM] [[l(A PIG](]]]
GO
END
The working procedure GO then invites the user to think of an animal, tries
the list in order to guess it and provides for the whole process to be repeated
with another animal.
TO GO
PRINT [THINK OF AN ANIMAL]
PRINT “
MAKE “NODE TRY :NODE
PRINT [ANOTHER GO ?]
MAKE “YN FIRST READLIST
IF:YN = “YES [GO]
END
The procedure GO ‘tries’ the current node. Eventually this may resultin the
list being changed, so the TRY procedure is an operation which outputs the
new value of the node. There are two possibilities to consider. The middle
item of the node may either be a question to ask or an answer to guess. The
program distinguishes between them by looking at the first item to see if it is
empty, as explained above.
TO TRY :ANODE
IF EMPTYP FIRST :ANODE [OUTPUT GUESSANSWER]
[OUTPUT PUTQUESTION]

END

Now, the procedure GUESSANSWER must suggest the answer which has
been arrived at and, if correct, make no change, i.e. output the same node. If
wrong, however, a new node must be constructed.

TO GUESSANSWER
PRINT “
PRINT SENTENCE [IS IT] ITEM 2 :ANODE
MAKE “YN FIRST READLIST
[F:YN = “YES [PRINT [THOUGHT SO] OUTPUT :ANODE]
[OUTPUT NEWNODE]

84 Logo on the Sinclair Spectrum

END
The NEWNODE procedure requests the correct answer and constructs a new
node for the two animals involved using a question provided by the user. The
new animal must be put into a list with empty lists on either side. The old
animal is already arranged like this in the current node. The procedure LIST3,
explained above, is again needed.
TO NEWNODE
PRINT “
PRINT ([GIVE UP, WHAT IS IT THEN ?]
MAKE “ANIMAL1 READLIST
MAKE “NEWPART (LIST [] :ANIMAL1 [])
MAKE “ANIMALZ2 ITEM 2 :ANODE
PRINT (SENTENCE [GIVE ME A QUESTION TO GIVE THE
DIFFERENCE BETWEEN] :ANIMAL1 “AND :ANIMAL2)
MAKE “QUESTION READLIST
PRINT (SENTENCE [AND FOR] :ANIMAL1 [WOULD THE
ANSWER BE YES ?))
MAKE “YN FIRST READLIST
IF :YN = “YES [OUTPUT LIST3 :NEWPART :QUESTION
:ANODE]
[OUTPUT LIST3 :ANODE :QUESTION
:NEWPART]
END
This is the most complicated procedure involved in the program, but the key
to understanding it lies in following the two alternative OUTPUT instructions
which appear in the last line.

There remains the provision of the procedure PUTQUESTION. This must
ask the question that forms the central item of the node under consideration
and, as the answer is ‘yes’ or 'no’, operate with the procedure TRY on either
the first or last itern.

TO PUTQUESTION
PRINT “
PRINT ITEM 2 :ANODE
MAKE “YN FIRST READLIST

. More List Processing 85

IF:YN = “YES [OUTPUT LIST3 TRY FIRST :ANODE
ITEM 2 :ANODE
LAST :ANODE]
[OUTPUT LIST3 FIRST :ANODE
ITEM 2 :ANODE
TRY LAST :ANODE])
END
Again, the important parts to understand are the two QUTPUT commands;
the three items making up the output list in each case have been written on
separate lines to make easy to see which is which.
Now you can type the command:
ANIMAL
and, if all is well, see how it is possible for a program to ‘learn’ from its user.

Some Mathematical Operations

LOGO recognizes two different kinds of numbers: integers, i.e. whole
numbers like 1, 245 and —23; and decimals, 0.67, 28.91 etc. Usually you will
not have to remember that there is a difference. Possibly the only time the
distinction will be important is when you want to use a number which may be
a decimal as an input to a procedure which expects a whole number. Even
then, LOGO will usually take care of you.
The operation INT (INTeger) takes any number as its input and outputs a

whole number by removing any decimal parts.

PRINTINT 3.14

3

PRINT INT 6.999

6

PRINT INT-2.1

-2
Notice that, even though 6.999 is very near to 7, the answer is still 6. This is a
process called truncating. It always removes the decimals even though the
input might be very near to a whole number. In some cases this can be useful.
For instance, if you were sharing something out, say dividing a number of
objects into groups of 6, you might want to know the number of whole groups
and the remainder. The number of whole groups is INT (:NUM / 6). The
remainder will be dealt with later. You might also need to test a number to see

. Some Mathematical Operations 87

if it is a whole number. If it is then INT makes no difference to it.
TO TESTINT :NUM
IF :NUM = INT :NUM [PRINT “YES] [PRINT “NO]
END
We can extend this example to ask if one number is divisible by a second
(i.e. does the second go into it exactly?).
TO TESTDIV :NUM1 :NUM2
IF (:NUM1/NUM2) = INT (:NUM1 / :NUM2)
[PRINT “YES]
[PRINT “NOJ
END
If, on the other hand, you want the nearest whole number, you can use the
operation ROUND. Again, it takes any number as input and outputs a whole
number, the nearest one to it. In the case of an input like 2.5 it will take the
higher of the two whole numbers on either side of it.
PRINT ROUND 3.14
3
PRINT ROUND 6.99
7
PRINT ROUND -2.9
-3
This operation, which derives its name from the term rounding, used to
describe this process, is used if you want to give an answer to a certain degree
of accuracy. With a little effort it can be used to give answers to a certain
number of decimal places too. For instance, to give 3.14159 to two decimal
places, multiply it by 100 (314.159), ROUND it (314) and divide by 100
again (3.14). We can convert this to a recursive procedure by, at each stage,
multiplying by 10, finding the rounded number for one fewer decimal places
and then multiplying by 10. If the number of decimal places is 0, the number
is simply rounded.
TO CORRECT :NUM :DECPLS
IF :DECPLS = 0 [OUTPUT ROUND :NUM]
OUTPUT (CORRECT :NUM * 10 :DECPLS - 1)/ 10
END
Another operation which always outputs a whole number is REMAINDER,
which has two inputs. It outputs the remainder on dividing the first by the
second.
PRINT REMAINDER 12 5
2
This gives an alternative way to test if one number is divisible by another. If it
is, the remainder is 0.

88 Logo on the Sinclair Spectrum

TRUE and FALSE

We can write procedures which test conditions and give the result TRUE or
FALSE just like the procedures EQUALP, GREATERP etc. This can be done
in one of two ways. You can output the right word, TRUE or FALSE, e.g.
TODIVISIBLE :A:B
IF 0 = REMAINDER :A :B [OUTPUT “TRUE] [OUTPUT “FALSE]
END
or by getting the truth value as a result of a test and outputting the result
immediately:
TODIVISIBLE :A:B
OUTPUT 0 = REMAINDER :A :B
END
Here, 0 = REMAINDER :A :B gives the result TRUE or FALSE for
DIVISIBLE to output. So it is now possible to use this as an input to IF:
IF DIVISIBLE 20 5 [PRINT “YES] [PRINT “NO]
You have, in fact, defined your own predicate procedure. You might like to
call it DIVISIBLEP to emphasize your mastery of this type of operation.

We might find that something was to be true or false depending on one or
more other conditions. LOGO provides three operations to act on predicates.
We have already met NOT which changes the output of a condition. AND
gives the result TRUE only if all its inputs are true. It normally expects two
inputs but can take more if surrounded by round brackets.

PRINTAND1<23<7
TRUE
OR, on the other hand, gives the result TRUE if any one of its inputs is true.
That includes the possibility that more than one may be true. Like AND it can
take more than two inputs in the usual way. We can combine these two
together, provided we are careful. For instance, you can come to my birthday
party if your name is FRED or if you are female and beautiful. So my testing
procedure for issuing invitations takes as input a list of three characteristics:
TO CANCOME :ALIST
MAKE “NAME FIRST :ALIST
MAKE “SEX ITEM2:ALIST
MAKE “FORM LAST:ALIST
OUTPUT OR :NAME = “FRED AND :SEX = “FEMALE
:FORM = “BEAUTIFUL
END
This gives me the results:
PRINT CANCOME [FRED MALE UGLY]
TRUE
PRINT CANCOME [JOE MALE UGLY]
FALSE

PRINT CANCOME [VERA FEMALE UGLY)

FALSE

PRINT CANCOME [VANESSA FEMALE BEAUTIFUL]
TRUE

Some Mathematical Operations 89

Powers and square roots

We can find the square of a number by multiplying it by itself. Other powers
can be found by simple recursion.
TOPOWER A :B
IF:B < 2 [OUTPUT :A]
OUTPUT (POWER :A :B—1)*A
END
LOGO provides a special operation to give the square root of a number,
SQRT.
PRINT SQRT 25
5

We can use the theorem of Pythagoras to give the distance between two
points whose positions (x-coordinate and y-coordinate) are known. You will
find in mathematical text books that if the positions are [X1 Y1] and [X2 Y2]
the:; the distance between them is the square root of (X2 — X1)? + (Y2 —
Y1)*
TO DISTANCE :POS1 :POS2
MAKE “XDIF FIRST :POS1 -FIRST :POS2
MAKE “YDIF LAST:POS1 — LAST :POS2
OUTPUT SQRT(XDIF * XDIF + YDIF * YDIF)
END

Finding prime numbers

A prime number is one which is divisible by itself and 1 only. Mathematicians
have been fascinated by the problem of producing prime numbers for
thousands of years. It seems that there is no formula to give them all and
many suggested formulae to generate some of them have, after producing a
list of prime numbers, started to produce non-primes as well.

Although there may not be a formula for primes, there is a method. We can
simply take each number in turn and test it to see whether it is divisible by any
of the numbers smaller than itself. This is simplified by the fact that we need
only test for divisibility by numbers up to the square root of the one we are
testing. If it can be divided by something bigger than its square root then the
result of the division would be a number smaller than the square root which
we have already tested.

TO TESTPRIME :NUM :N
IF :N > SQRT :NUM [OUTPUT “TRUE]

90 Logo on the Sinclair Spectrum

IF DIVISIBLE :NUM :N [OUTPUT “FALSE]
QUTPUT TESTPRIME :NUM:N + 1
END
We need to start testing the number with 2, the smallest prime number.
TO PRIMESFROM :NUM
IF TESTPRIME :NUM 2 [PRINT :NUM]
PRIMESFROM :NUM + 1
END
The command
PRIMESFROM 2
will then print out the primes from 2 onwards.

Trigonometric operations

You should skip this paragraph if you are already familiar with trigonometric
operations, or read on if you need further explanation. If the turtle has a
HEADING of :ANGLE then for every turtle step it goes forward it will go
different amounts across and up the screen depending on :ANGLE. The
distance move horizontally is called the sine of the angle and the distance
moved upwards its cosine. (That is, the x-coordinate changes by the sine and
the y-coordinate by the cosine.) If the distance moved is one unit then
obviously these two will be less than 1. You might like to think of ten turtle
steps being taken forward, in which case the horizontal movement is 10 *
SINE :ANGLE and the vertical movement 10 * COSINE :ANGLE.
Mathematicians also use two other operations: tangent, which is found by
dividing the sine by the cosine, and cotangent, which is found by dividing the
cosine by the sine.

COSINE
:ANGLE

SINE :ANGLE

Figure 13 The SINE and COSINE of an angle

LOGO provides four trigonometric operations: SINE, COSINE, TANGENT
and COTANGENT, with the abbreviations SIN, COS, TAN and COT. There
is a big advantage over most other computer languages in that LOGO expects
the inputs to these operations to be angles in degrees. So if you have used
other languages which expected angles measured in radians you can heave a
sigh of relief. If, on the other hand, you have never heard of radians you can
heave a sigh of relief too because you will not need to.

In addition to the four operations given above there are another four,
ARCSIN, ARCCOS, ARCTAN and ARCCOT, which perform the opposite
function, taking a single number as an input and outputting the angle, in
degrees, which has that sine, cosine, tangent or cotangent. So

PRINT ARCCOS 0.5
will give you the angle whose cosine is 0.5, i.e. 60. (A reminder for those new
to these operations: this means simply that on a heading of 60 the turtle will
travel half as far up the screen as the distance it goes forward.)

These operations are of great importance in the study of electronics,
sound waves and all sorts of vibrations. They are also capable of generating
interesting and beautiful curved figures. Perhaps the reason will be clear from
the following pair of procedures which draw a graph of cosine of angles from
0 to 360. X and Y are calculated from the angle and the cosine respectively,
scaling them so they fit on the screen. You will get a ‘turtle out of bounds’
message when the edge of the screen is reached.

Some Mathematical Operations 91

TO SHOWCOS
PENUP
SETPOS [1200]
PENDOWN
SETPOS [-120 0]
DOCOS 0

END

TO DOCOS :ANGLE
MAKE “X 2 *:ANGLE/3 - 120
MAKE"Y 80 * COS :ANGLE
SETPOS SE :X:Y
DOCOS :ANGLE + 15
END
This has an oscillating movement up the screen only. What happens if we
allow oscillation across too? The resulting shapes are named, after the man
who discovered them, Lissajou's figures:
TO LISSAJOU :A:B:C:D:INC
SHOWTURTLE
CLEARSCREEN
PENUP
LISSO

92 Logo on the Sinclair Spectrum

END
TOLISS :ANGLE
MAKE “X 120 * COS(:A * :ANGLE + :B)
MAKE “Y 80 * COS(:.C * :ANGLE + :D)
SETPOS SE :X:Y
PENDOWN
LISS :ANGLE + :INC
END
The pen is put down after the first use of SETPOS (and kept down
afterwards, of course) so that the turtle will move to its starting position
without drawing a line. The higher the value of INC the more angular the
drawing will become due to the turtle ‘cutting the corners’. Try:
LISSAJOU 112021401
Incorporating random changes of pen-colour into the procedure can produce
interesting effects.
Here are some more turtle procedures to try:
TO CYCLO :K :ANGLE :SIZE
FORWARD :SIZE * SIN(:K * HEADING)
RIGHT :ANGLE
CYCLO :K ANGLE :SIZE
END
Try:
CYCLO11010
CYCLO4520
And:
TO LOBE :A:B:INC :ANGLE
FORWARD 1
RIGHT :A + :B * SIN:ANGLE
LOBE :A :B:INC :ANGLE + :INC
END
Try:
LOBE2390
LOBE10860
LOBE2860
LOBE2930
Some adjustment of the size of the turtle’s starting position may be necessary.
Experiment!

More Input and Output

So far we have considered only one method of getting information into the
computer — READLIST — and, apart from turtle drawings, one method of
getting information out — PRINT. In this chapter we will look at methods
which give you, the programmer, more control over input and output, though
possibly at the expense of having to write more complicated programs.
READCHAR reads a single character from the keyboard, waiting until the

user presses a key and then passing the character for that key on as its output.
You do not have to press ENTER after the key; the character is not printed on
the screen and there is no prompt printed to show that LOGO is ready for
input. Try:

MAKE “CHARACTER READCHAR
After pressing ENTER, press another character; the ? prompt should reappear
now as you are back to LOGO command mode. You will have to type in:

PRINT :CHARACTER
to see what it was that you pressed! This operation can be used whenever you
want to control a program with single keys but without anything appearing on
the screen. Here, for instance, is a procedure which enables you to steer the
turtle around the screen:

TO DRAW

MAKE “CHARACTER READCHAR
IF :CHARACTER = “F [FORWARD 5]

94 Logo on the Sinclair Spectrum

[F :CHARACTER = “B [BACK 5]
IF :CHARACTER = “R [RIGHT 10]
IF :CHARACTER = “L [LEFT 10]
IF :CHARACTER = “S [STOP]
DRAW
END
READCHAR will often be useful if the codes for the various characters are
also used. The computer stores and recognizes characters by using the
numbers from 1 to 126 according to a system called the American Standard
Code for Information Interchange, shortened to ASCII. Codes 1 to 31 are
used by the computer for controlling input or output (for instance, the ‘cursor
movement’ keys, CAPS 5 etc.) and cannot be printed on the screen. In
addition, for the Spectrum, character 127 is a ‘copyright’ character consisting
of a small ‘¢’ in a circle, and the coding is extended beyond that with codes
128 to 143 representing a blank and the fifteen ‘graphics’ characters which
the Spectrum provides. Codes 144 to 164 are definable characters. See your
Spectrum manual or LOGO 2 for details of the coding.
You can get LOGO to tell you what codes the Spectrum understands by
means of the following procedure:
TO SHOWASCII
MAKE “CHARACTER READCHAR
PRINT ASCII :CHARACTER
SHOWASCII
END
Type SHOWASCII and then press some keys to see their codes displayed.
You should find that the digits O to 9 give the codes 48 to 57. You can use this
to modify the drawing procedure by inserting the following:
MAKE “CODE ASCII :CHARACTER
IF AND :CODE > 47 :CODE < [56 SETPC :CODE - 48]
which will enable you to change pen-colour by pressing one of the number
keys.
The operation CHAR does the opposite of ASCII, turning a CODE number
between 32 and 143 into the corresponding character.
PRINT CHAR 65
should give
A
We can use this in combination with ASCII to change what is typed in. We will
also need a command which works like PRINT but does not take a new line
every time it is used. The command is TYPE. Try the following procedure,
which replaces the character typed in with the one with the next higher code.
TO CONFUSE
MAKE “CODE ASCII READCHAR
IF :CODE = 13 [STOP]

. More Input and Output 95

TYPE CHAR (:CODE + 1)
CONFUSE
END
The procedure ends when ENTER (ASCII code 13) is pressed.

If you do not want to wait for a key to be pressed, you can use the test
KEYP, which gives the result TRUE or FALSE accordingly as a key is pressed
or not. Here is another drawing program but one in which the turtle keeps
moving.

TO DRAW2
IF KEYP [DOIT]
FORWARD 5
DRAW2
END
TO DOIT
MAKE “CHARACTER READCHAR
IF :CHARACTER = “M [RIGHT 90]
IF :CHARACTER = “Z [LEFT 90]
END
The keys are chosen so that they can be operated by fingers of the hand
appropriate to the direction of turn.

The characters with codes between 144 and 164 inclusive are user
definable; that is, they can be changed by you to any shape you wish. Full
details about how to do this will be found in the Spectrum manual, but it
requires that certain locations in the Spectrum memory should have their
contents changed. This is done in LOGO using the command .DEPOSIT
which is explained in LOGO 2. Warning: this command changes memory
directly, i.e. without LOGO keeping a check on what it is doing; if used
without care, it can destroy procedures that you have stored. The following
pair of procedures re-define a character whose ASCII code is between 144
and 164 according to a list of values which will be put into the appropriate
positions in memory.

TO DEFCHAR :CH :ALIST
IF OR NOT NUMBERP :CH NOT LISTP :ALIST [STOP]
IFOR:CH < 144 :CH > 164 [STOP]
DODEF :ALIST 0
END
TO DODEF :ALIST :COUNT
IF EMPTYP :ALIST [STOP]
.DEPOSIT 64216 + :CH * 8 + :COUNT FIRST :ALIST
DODEF BUTFIRST :ALIST :COUNT + 1
END
You should consult the manual to see how to decide the numbers in the list,
and test the procedures on their own first to make sure that everything has

9 Logo on the Sinclair Spectrum

been typed in correctly.
DEFCHAR 144 [16 16 16 16 146 84 56 16]
is a suitable test and should make CHAR 144 a downward pointing arrow.

Text output is controlled by means of a number of instructions which we
will examine one by one.

SETCURSOR takes as its input a list of two numbers and puts the cursor at
the position that they indicate. Subsequent printing starts there. The first
number in the list indicates how far across the screen, in whole character
positions, the printing is to start, with O on the extreme left and 30 on the
extreme right; the second number gives the number of lines down the screen
with 0 at the top and 21 at the bottom.

SETTC (SET Text Colour) also takes a list of two numbers as its input. The
first is the new background colour for printing text and the second the colour
of the text itself. The usual numbers are used to give the colours. The normal
situation is [7 0. You can test this command with a procedure such as:

TO TESTCOL
TEXTSCREEN
SETCUR [12 10]
SETTC[16]
PRINT [HELLO THERE]
MAKE “G READCHAR
SETTC[70]
END
The final lines wait for a key to be pressed before restoring the normal
colouring.

The brightness of the ‘paper” on which the text is shown can be controlled
by the command BRIGHT which has one input. If the input is 1, the
background for printing is bright, if O then dull. 0 is the usual state. This
instruction can only be used inside a procedure but it may help to make things
more readable.

INVERSE prints with the text in the background colour and the
background in the text colour. FLASH swaps continually between inverse
and normal printing and back again. Finally, NORMAL restores the ordinary
setting for printing text, cancelling the effects of INVERSE, FLASH and
BRIGHT.

Here then is a group of procedures for those who want to see their names
in lights:

TO FANCYNAME
PRINT [WHAT IS YOUR NAME?]
MAKE “NAME READLIST
TEXTSCREEN
BRIGHT 1
SHOWNAME

SETTC[70]
SETCUR [021]
END
TO SHOWNAME
IF KEYP [STOP]
MAKE “X RANDOM 31
MAKE “Y RANDOM 21
MAKE “BG RANDOM 8
MAKE “FG RNDCOL
SETTC SENTENCE :BG :FG
SETCUR SENTENCE :X:Y
TYPE :NAME
SHOWNAME
END
TO RNDCOL
MAKE “FG RANDOM 8
IF :FG = :BG [OUTPUT RNDCOL] [OUTPUT :FG]
END
The procedure RNDCOL not only generates a random number for the text
but also checks to see if it is the same as the background; if it is, it repeats.
Now a group of procedures which demonstrate all these techniques. They
handle match results for a small football or other sports league. The main
procedure sets up the lists required and prints suitable headings in colour. It
then calls a procedure, HEADCOL, to print the headings to the columns of
the table, and a second procedure, DOTEAM, to handle each team’s results.
TO LEAGUE
MAKE “TEAMS [WANDERERS ROVERS RANGERS ALLSTARS]
MAKE “COLS [PWDL PTS]
TEXTSCREEN
SETCURSOR [90]
SETTC [50]
TYPE [LEAGUE TABLE]
SETCURSOR [02]
SETTC[7 3]
TYPE “TEAM
HEADCOL 1
SETTC[70]
DOTEAM 1
PRINT “
END
Notice that ALLSTARS has to be one word if we want it to be considered by
LOGO as a single item. You could separate the two parts by an underline sign
(SYS 0) or a full stop if you wished.

More Input and Output 97

98 Logo on the Sinclair Spectrum

The procedure HEADCOL selects an item from the list of column headings
and, by the use of SETCURSOR, prints it in an appropriate place. It then
repeats until all the headings have been printed.

TO HEADCOL :COL
IF:COL>5 STOP
SETCURSOR SENTENCE [3 *:COL + 11] 2
TYPEITEM:COL :COLS
HEADCOL:COL + 1
END
DOTEAM selects a suitable line for printing which depends on the team's
number in the list. It puts the team name at the start of the line and then gets
the number of matches played, won and drawn as typed in at the keyboard
by the user. It assumes the existence of another procedure called GETNUM
to do this, which takes as its first two inputs the position at which the number
is to be shown on the screen. The third input is initially the empty word as it
will be used as the word to hold the number typed in. The number of matches
lost and the points total can then be worked out. I have assumed that there
will be two points for a win and one for a draw. You can change the line in the
procedure to suit your own needs.
TO DOTEAM :TEAMNO
IF :TEAMNO > COUNT : TEAMS [STOP]
MAKE “LINE 2 *: TEAMNO + 2
SETCURSOR SENTENCE 0 :LINE
TYPE ITEM :TEAMNO :TEAMS
MAKE “PLAYED GETNUM 14 :LINE*
MAKE “WON GETNUM 17 :LINE*
MAKE “DRAWN GETNUM 20 :LINE*
MAKE “LOST :PLAYED —:WON - :DRAWN
SETCURSOR SENTENCE 23 :LINE
TYPE:LOST
MAKE “POINTS 2 *:WON + :DRAWN
SETCURSOR SENTENCE 26 :LINE
TYPE :POINTS
DOTEAM :TEAMNO + 1
END

Before looking at the procedure GETNUM we will consider another
procedure which it will use. GETDIG gets a digit typed at the keyboard and
supplies both the digit and its ASCII code. If ENTER (code 13) or DELETE

‘(code 12) are pressed these codes are also passed on. Otherwise, if the key
pressed is not a digit, it is ignored and the procedure called again. (Remember
that the digits 0 to 9 have codes 48 to 57.) This is an alternative solution to the
problem of what to do if the user does not type a number when one is
expected —don’t let it happen!

TO GETDIG
MAKE “DIG READCHAR
MAKE “CODE ASCII:DIG
IF OR:CODE = 13:CODE = 12 [STOP]
IF OR :CODE < 48 :CODE > 57 [GETDIG]
END

Now the procedure GETNUM: it begins, curiously, by putting the cursor in
the right place and printing out its third input. This is because we are going to
use the procedure recursively. Eventually this word will hold the number
typed in; it is printed out at this stage so that we can see how far we have got
in typing it. The instructions

FLASH

TYPE “?

NORMAL
provide a flashing question mark as a cursor when used within a procedure.
Then GETDIG provides the digit or ENTER or DELETE which the user types.
In case ENTER or DELETE is pressed we want to get rid of that flashing
question mark — otherwise it will stay in that position on the screen while the
user is typing somewhere else. We can remove it by putting a blank space
(character code 32) in its place. But where exactly is it? The best way is to go
back to the start of the number (we know where that is), print the number
again and put the blank at its end where the question mark was.

SETCURSOR SENTENCE :X:Y

TYPE :NO

TYPE CHAR 32
where :X and :Y are the position of the start of the number.

Now there are three possibilities for the result of GETDIG: the key pressed
may have been a digit (with a code between 48 and 57), or ENTER or
DELETE. If a digit, we just want to put it on to the end of the number we have
already got. In this example, [have decided to restrict the number to two
digits, so if this is the third digit it is ignored:

IF AND :CODE > 13 (COUNT :NO)<2 MAKE “NO WORD :NO :DIG
If the ENTER key was pressed and if the number is not empty then we can
output the number and press on. If the DELETE key was pressed then we
want to remove the last character in the number using BUTLAST. In this case
we also want to be sure that the number is not empty before we start. If you
look at the procedure below, you will see a rather unusual line below this:

IF EMPTYP :NO[MAKE “NO“]
which does not seem to be necessary. Unfortunately, when BUTLAST
operates on a word with one character in it, it changes it not to the empty
word but to an empty list, which WORD — which must be used to put another
digit in place — does not like as input. This instruction is to tumn the empty list
back to a word as it ought to be.

More Input and Output 99

100 Logo on the Sinclair Spectrum

TO GETNUM:X:Y :NO

SETCURSOR SENTENCE :X:Y

TYPE :NO

FLASH

TYPE “?

NORMAL

GETDIG

SETCURSOR SENTENCE :X ;Y

TYPE :NO

TYPE CHAR 32

IF AND :CODE = 13 (NOT EMPTYP :NO) [OUTPUT :NO]

IF AND :CODE = 12 (NOT EMPTYP :NO) [MAKE “NO BUTLAST

:NOJ
IF EMPTYP :NO [MAKE “NO"]
IF AND :CODE > 13 (COUNT :NO) < 2 [MAKE “NO WORD :NO
:DIG]
OUTPUT GETNUM :X :Y :NO
END
The above has a number of deficiencies; for instance, you can type in more

wins than matches played, giving negative losses, and it does not pick out an
overall winner, [hope, however, it shows how any sort of table can be built
up.
Exercise:
Change DOTEAM to keep a record of the best team so far. Start with a
variable, BESTSCORE, as zero; each time a team is found whose score is
better change BESTSCORE, appropriately and store the team’s name as
BESTTEAM. Then arrange for a suitable announcement to be printed out at
the end.

Sound

The Spectrum can also output musical notes. This is controlled by the
instruction SOUND whose input is a list of two numbers. The first, the
duration of the sound in seconds, must be between 0 and 10.5; the second,
its pitch in semitones above middle C (the central note on a piano keyboard)
must be between —60 and +69. The following procedure tums your
keyboard into an electronic organ, though not one that is easy to play.
TO KEYBOARD
MAKE “KEY (ASCIl READCHAR) -65)
IF AND :KEY > -59 :KEY < 70 [SOUND SENTENCE 0.5 :KEY]
KEYBOARD
END
You can play a list of notes, all of the same duration, using this procedure:

TO PLAY :ALIST
IF EMPTYP :ALIST [STOP]
SOUND SENTENCE 1 FIRST :ALIST
PLAY BUTFIRST :ALIST

END

A semitone is the difference in sound between adjacent frets on a guitar or
similar instrument, or between adjacent keys (black or white) on a piano. If
you do not know how semitones relate to a musical scale, try the following,
which plays the scale of C:

PLAY [0245791112]

Unfortunately, the input expected by SOUND is not very like ordinary
musical notation. It is possible, however, to write a procedure to do the
conversion for us. The following procedure expects a ‘rate’ to be given first
which will control the speed at which the music is played. It will be the length
of time, in seconds, for a note whose length is entered as 1, so the lower this
number, the faster the tune will be played. The procedure then gets a list of
notes, putting them into a list previously set up, called SLIST. Finally the
music is played.

TO MUSIC
MAKE “NOTELIST [CC# DD#EFF# G G# AA# B C’]
MAKE “SLIST []
PRINT [WHAT RATE?]
MAKE “RATE FIRST READLIST
PRINT [TYPE IN NOTES ONE PER LINE, DURATION FIRST]
GETMUS
PLAY :SLIST
END

The procedure GETMUS inputs a list of two items from the keyboard. The
first is the length of the note. I suggest that you call the shortest note in the
piece 1, and give all the others as multiples of it. How fast they are actually
played will be controlled by RATE, and the duration is calculated, in
GETMUS, by multiplying the length of the note typed in by RATE. The pitch
can be typed in as one of the notes given in NOTELIST above. Use SYS 3 to
get the sharp sign and SYS 7 to get the dash which indicates the C above
middle C. You could change the note names to Do, Re, Mi, etc. if you prefer
but you would need some way of writing the ‘intermediate’ notes. GETMUS
requires an additional procedure, FIND, which finds an object in a list. The
first two inputs to FIND are the names of the object and list, the third is the
number from which it is to start counting. In this case we want this to be 0
because we want our first note to be middle C.

TO GETMUS
MAKE “NOTE READLIST
IF EMPTYP :NOTE [STOP]

More Input and Output 101

102 Logo on the Sinclair Spectrum

MAKE “DUR :RATE * FIRST :NOTE
MAKE “PITCH FIND LAST :NOTE :NOTELIST 0
MAKE “SLIST LPUT LIST:DUR :PITCH :SLIST
GETMUS
END
The last-but-one instruction makes duration and pitch into a list of two items
ready for SOUND to use and puts this on to the end of SLIST. The procedure
is constructed to stop when an empty list is typed in.
TO FIND :OBJECT :ALIST :N
IF EMPTYP :ALIST [OUTPUT 0]
IF:OBJECT = FIRST :ALIST (OUTPUT :N]
OUTPUT FIND :OBJECT BUTFIRST :ALIST:N + 1
END
Finally, to play the music, the procedure PLAY. This differs from the
procedure called PLAY given earlier, but only in that it expects each item in its
input list to be a list of two numbers which it can pass on to SOUND
immediately.
TO PLAY :ALIST
IF EMPTYP :ALIST [STOP]
SOUND FIRST :ALIST
PLAY BUTFIRST :ALIST
END
After typing in the procedures, try the following. Your input is introduced by a
question mark at the start of the line.
WHAT RATE?
203
TYPE IN NOTES ONE PER LINE, DURATION FIRST
?2G
?24C’
?2B
?2A
?4G
?72A
?1B
r1C
?2E
?2E
?2F
?2D
?6C
Press ENTER when the next prompt appears. There will be a short delay
before the music is played. Once entered you can play it again by the
instruction:

e

PLAY :SLIST

Exercise:

You can have more than one tune in memory at a time by giving each a
name. Adapt MUSIC so that it starts by asking for a name. MAKE “SLIST this
name and change all the subsequent uses of SLIST so that its THING is used
instead of its name. You could then replay a tune called JINGLE by means of
PLAY :JINGLE.

More Input and Output 103

10

When Things Go Wrong

Firstly some words intended to be comforting to all those who have just found
an error in procedure: the most important thing to learn about computer
programming is that going wrong seems to be the natural condition of
programs. It has been said that the inexperienced programmer is surprised
when his or her programs do not work first time; but the experienced
programmer is surprised when they do. Programs can go wrong in two ways.
You may make a mistake in writing LOGO instructions, which will result in an
error message being displayed; or you may write a procedure which LOGO
understands and can obey but which does not do what you intended it to.
The methods of discovering and eliminating the ‘bugs’, as program errors are
usually called, are very much the same in each case. However, the former are
usually easier to handle, since you will be given an error message — in LOGO
usually more helpful than those of many other computer languages — which
will tell you exactly what LOGO found difficult and what procedure it was
obeying at the time. Despite the helpful nature of LOGO messages in general,
remember that they have been written by a programmer who has had to
guess, in advance what you were likely to have done to cause a problem. For
this reason they are not always completely accurate.

A look at some of the more usual error messages and their likely causes
might help.

You don’t say what to do with blah

A message which is easy to explain. Remember that an operation outputs a
result and must always have the name of a command, which will accept that
result as input, on its left. In my example, an operation has produced the
word ‘blah’ as output and either there is no command to handle it or the
command which is there does not expect that input. As an example of the
latter case, suppose that the word is produced by an operation, SAYBLAH;
then

PRINT “RESULT SAYBLAH
will produce the above error message as PRINT expects one input,
“RESULT, and there is no indication of what to do with the output of
SAYBLAH. Obviously, SENTENCE should be used in this case.

FIRSTNAME does not output to SECONDNAME
This happens when you have an instruction, like

SECONDNAME FIRSTNAME
and SECONDNAME expects an input when FIRSTNAME is a command not
an operation. It frequently occurs if you type:

PO FIRSTNAME
forgetting that there should be quotes before the name of the procedure to be
printed.

Not enough inputs to BLAH
If you examine your definition of ‘BLAH’, or that given in LOGO 2 if it is a
primitive, you will find that it expects more inputs than it has been given. This
may not be obvious if the line is complicated but, for this message and the two
previous ones, the method of analysing LOGO instructions given at the end
of Chapter 3 will usually find the error.

Too many inside parentheses
will occur if you have too many round brackets inside a list. For practical
purposes ‘too many’ seems to mean any at all. See my comments about the
use of brackets around primitives in Chapter 3.

FIRSTNAME doesn’t like SECONDNAME as input
(Sometimes there may just be a blank space between ‘like’ and ‘input’; in this
case the second thing is either a blank or the empty word.) There are two
possibilities if you get this message. Either the input may be of the wrong type
— it may, forinstance, be a number where a list is expected:

SETCUR 1015
or it may not be in the right range of values:

SETCUR [10 45]
You should check the manual carefully to decide what the procedure expects
asinput.

Not enough space to proceed
refers to space in memory, not space on the screen. It may be possible to do
something about this using the command RECYCLE. This performs what in
computer jargon is called a garbage collection; it finds all the memory

When Things Go Wrong 105

106 Logo on the Sinclair Spectrum

locations which have been set aside for something and which are no longer
needed for their original purpose, thus freeing extra memory. This is unlikely
to be of much help, however, as garbage collection does take place
automatically from time to time. A more useful solution would be to remove
all the procedures that you do not need. You may find RECYCLE of more
use if this automatic collection holds up a procedure when you want it to work
without interruption. Inserting RECYCLE at a point when you can afford to
wait means that garbage is collected at a time to suit you.

We will now consider the sorts of techniques which can be used to locate
and remove bugs in procedures. As an example we will look at the
development of a procedure that we have already seen. In Chapter 9 the
procedure GETNUM was used to input a two-digit number with a flashing
prompt at a point on the screen given by x- and y-coordinates. It uses a
procedure, GETDIG, given in the last chapter:

TO GETDIG
MAKE “DIG READCHAR
MAKE “CODE ASCII :DIG
IF OR :CODE = 13 :CODE = 12 [STOP]
IF OR:CODE < 48 :CODE > 57 [GETDIG]
END
Firstly, GETDIG was tested by running it several times, pressing keys and
printing the resulting values of DIG and CODE. This was satisfactory. Then
GETNUM was entered as follows:
TO GETNUM :X:Y :NO
SETCUR SE :X:Y
TYPE:NO
FLASH
TYPE“?
NORMAL
GETDIG
[F AND :CODE = 13 NOT EMPTYP :NO [QUTPUT :NO]
IF AND :CODE = 12 NOT EMPTYP :NO [MAKE “NO BUTLAST

:NOJ
IF AND :CODE > 13 COUNT :NO < 2 [MAKE “NO WORD :NO
:DIG]
OUTPUT GETNUM :X:Y :NO
END
You might find it interesting to type in this procedure and follow the various
stages of debugging.
The procedure was tested by entering:
PRINT GETNUM 10 10*

Since GETNUM is an operation, a command like PRINT was necessary to
handle its output, but this was also a useful check on whether the resulting

. When Things Go Wrong 107

number was correct. A flashing question mark was shown at the position [10
10]. So far so good. When the key 3 was pressed, however, the message

5is not TRUE or FALSE in GETNUM
appeared. Now, the only places where TRUE or FALSE were expected are
the three IF commands. But which one is giving trouble? The instructions

PRINT “I1

PRINT “I2

PRINT “I3
were edited into GETNUM, one after each of the IF commands, and the
procedure run again. Again 3 was pressed. The output was:

I1

12

5is not TRUE or FALSE in GETNUM
So the procedure passes the first two [Fs and finds the third one troublesome.
The three extra PRINT instructions were removed and, just before the third
IF, were put two more commands:

PRINT :CODE

PRINT COUNT :NO
to test the two things involved in that IF. The procedure was run once more
with the same input. This time it gave:

51

0

5is not TRUE or FALSE in GETNUM
Well, 51 is the code for the character 3 and 0 is the number of characters
expected in NO at that point. So where is the number 5 coming from? The
two print statements were changed to ones which printed out the results of
the conditions tested:

PRINT :CODE > 13

PRINT COUNT :NO < 2
This time the output was:

TRUE

5
and, inevitably:

5is not TRUE or FALSE in GETNUM
Well, the first condition seems all right but what has happened to the second?
It was time to test this on its own. The following instructions were typed in in
command mode:

MAKE “NO *

PRINT COUNT :NO <2
The second gave the message:

< does not like as input
Now, the only way the < could be getting nothing as input is if it were taking
:NO and not COUNT :NO. So the problem must be the order in which the

e

108 Logo on the Sinclair Spectrum

operations are done.

The solution, therefore, is to use brackets to make LOGO first of all find
COUNT :NO and then check if this is less than 2. So the IF instruction
becomes:

IF AND :CODE > 13 (COUNT :NO) < 2 [MAKE “NO WORD
:NO :DIG]
Running the procedure and pressing the 3 key gives a figure 3 followed by the
flashing question mark, exactly what was intended. It seems that LOGO
behaved a little differently inside the procedure than in command mode; for
somehow, in the procedure, it decided that :NO < 2 was FALSE. The
COUNT of this was 5, which of course could not form an input to AND.

Is the procedure working satisfactorily? After pressing 3, the 2 key was
pressed. The display showed 32 followed by the flashing question mark. After
ENTER was pressed the number 32 was displayed as the output from the
PRINT command. A few more tests revealed that keys other than digits were
ignored, and so were any extra digits after two had been typed in, exactly as
was required.

The next thing to test was the delete key. The procedure was run and the
digit 2 typed. The display showed:

2?
The delete key was pressed; the display showed:

7?
An examination of the procedure suggested that the first of these two
question marks was the one which should be there, while the second was the
one which had been there previously and should be removed. The technique
decided upon, as already explained, was to remove the prompt, as soon as a
digit was accepted, by printing a space on top of it. This was retried. As
before, 2 was first pressed, giving:

2?
Then delete:

?

Good! Now another digit, 3. The message

Word doesn't like [] as input in GETNUM
appeared. Now, what could be causing that? This time there was only one use
of WORD so there was no difficulty in locating the troublesome line. But the
message quite clearly stated that the input was an empty list, not a word. This
had only occurred after using delete so it must be the statement that handled
delete which was the source of the problem.

It was easy to experiment with that sort of statement:

MAKE “NO 2

MAKE “NO BUTLAST :NO
At this stage

PRINT :NO

gave a blank line as you would expect. However:

MAKE “NO WORD :NO 3
repeated the error message from the procedure. Now, in addition to PRINT
and TYPE, which we have already met, LOGO provides a third output
instruction which shows the outermost brackets on any list — a useful check.
Using it

SHOW :NO
gave []

It seemed that BUTLAST was creating a problem. The instruction

SHOW BUTLAST 5
gave immediately:

1l
which exposed the unusual behaviour of this operation. It is possible that
future versions of Spectrum LOGO will be changed to make BUTLAST
output an empty word under these circumstances, as BUTFIRST does, in
which case you will not need the solution, explained in Chapter 9, of testing
to see if NO is empty and ensuring, in this case, that it is the empty word.

This example illustrates some important techniques which can be used to
get things to work properly. Firstly, test procedures separately. Although
LOGO will helpfully tell you the name of the procedure in which it found an
error, the problem may be that the output from another procedure is not what
it ought to be. It is always a good idea to try each procedure alone before
incorporating it into a more ambitious scheme. Sometimes you may need to
write a special testing procedure to do this. For instance, if you have a
procedure to produce, at random, a list which will be the name of a playing
card such as

[QUEEN OF HEARTS)]
then you will need a testing procedure like

TO TESTCARD

PRINT CARD
TESTCARD

END
in order to assure yourself that the cards that it produces really do seem to be
at random. If you have thoroughly tested this alone, then when you run into
trouble with a procedure using it, which might be called DEALHAND, you
can at least start by saying ‘now I know that CARD works properly’. It has to
be admitted, though, that even then there may be occasions when you are
wrong.

The second technique is tracing. This means getting some sort of output
at intermediate stages so that you can see where LOGO has got to. For
instance, in the procedure to choose the name of a playing card, you might
decide not to allow one that has been chosen already. Certainly one way to
do this would be to keep a list, called CLIST for example, initially empty, of all

When Things Go Wrong 109

110 Logo on the Sinclair Spectrum

the cards chosen and check for membership of this. So with a deliberate
error, the end of CARD could be:
IF MEMBERP :CNAME :CLIST [MAKE “CLIST SENTENCE :CLIST
:CNAME OUTPUT :CNAME]
[OUTPUT CARD)]
END
With this instruction in place, the procedure would hang, the term used to
describe a situation when the computer apparently does nothing, giving no
output and accepting no input. Suitable messages printed out at points
throughout the procedure, like the instructions
PRINT “I1
etc. that were used above, would reveal that LOGO was doing something,
and might, if inspected carefully, reveal that this final instruction was the cause
of the trouble. (If you have not spotted why, remember that, when first used,
CLIST will be empty. Whatever card is selected will not be a member and
CARD will be called recursively and repeatedly. The two instruction lists
should be in reverse order.)

An alternative form of tracing would be to include a PRINT command at
the start of every procedure giving its name. This would be useful if the
interconnections of the procedures were complicated so that it was difficult to
follow how the action of the program moved from one procedure to another.

Either of these two forms of tracing might be usefully combined with single
stepping. If results are likely to appear on the screen so quickly that you will
not have time to follow what is happening, you can slow the action down by
introducing the use of READCHAR to make the computer wait until you are
ready to go on. So you might begin the procedure CARD with

TO CARD
PRINT [CARD STARTED]
MAKE “G READCHAR
These two instructions can be taken out later when you are sure the
procedure is working properly. Of course, you would need to be sure that “G
was not being used as the name of something else, whose value you would
destroy with the MAKE command.

A third technique used in my example above, is that of printing out values
of variables at intermediate places. This is of particular importance when the
method of deciding the values is particularly complicated or where something
seems to be going wrong which should not be possible if the variables have
the values they ought to have. This method ought to be used in testing
procedures even before you have reason to think they are going wrong. So, if
the procedure CARD is going to output for use in a procedure DEALHAND, it
might be a good idea to include a statement to show what card is actually
produced each time it is used:

MAKE “CNAME CARD

PRINT :CNAME

so that the cards which are in the ‘hand’ at the end of dealing correspond to
the ones actually produced by CARD. Again this could be combined with the
use of READCHAR if necessary to give you time to note down the results.
Instructions like this can also be removed before the procedure is said to be
finished. As happened in my example, the SHOW command is frequently of
use for this purpose because it displays lists as lists, including their outermost
brackets.

Finally, a group of three procedures which can be used to make
procedure-tracing a little easier. To use them with a procedure called PROC
(for instance), type in:

TRACE “PROC
Then, whenever PROC is called, each of its lines will be printed out before it is
obeyed. The procedure will then wait until you press a key before continuing.
To switch off this effect, type:
UNTRACE “PROC
These instructions can be used from within another procedure if required.
The method needs a lot of memory space since it creates a new version of the
procedure to be traced, renaming the old one by putting a full stop in front of
its name. For this reason it will not function if you already have a procedure
named in this way. It may also cause problems if you have used a full stop or
“ P as the name of a variable. Three new primitives are used: COPYDEF,
which makes a new copy of a procedure; TEXT, which converts a procedure
into a list of instructions which LOGO can handle; and DEFINE, which
converts such a list of instructions into a procedure. You should consult
LOGO 2 for an explanation of these instructions and use what follows here as
a demonstration of their use.
TO TRACE :APROC
IF DEFINEDP WORD “. :APROC [PRINT SENTENCE :APROC
[ALREADY TRACED] STOP]
IF NOT DEFINEDP :APROC [PRINT SENTENCE :APROC [NOT A
PROCEDURE] STOP]
COPYDEF WORD “. :APROC :APROC
MAKE :APROC TEXT :APROC
MAKE “.P LIST FIRST THING :APROC SENTENCE “PRINT
WORD CHAR 34 :APROC
TREST BUTFIRST THING :APROC
DEFINE:APROC :.P
END
TO TREST :ALIST
IF EMPTYP :ALIST [STOP)
MAKE “.P LPUT LIST “PRINT FIRST :ALIST :.P
MAKE “.P LPUT FIRST :ALIST :.P

When Things Go Wrong 111

112 Logo on the Sinclair Spectrum . .
MAKE “.P LPUT MAKE “. READCHAR :.P
TREST BUTFIRST :ALIST
END
TO UNTRACE :APROC
IF NOT DEFINEDP WORD “. :APROC [STOP]
COPYDEF :APROC WORD “. :APROC
ERASE WORD *. :APROC
END
You could, if you wished, extend TRACE to provide more information.
This would require some study of the TEXT operation in LOGO 2 and might
possibly use more space in memory than you could afford. Practical
debugging is more likely, therefore, to be successful using the general
methods outlined in this chapter. Happy bug hunting!

American Standard Code for
Information Interchange, 94

Analysing a LOGO line, 38

AND, 88

ANIMAL game, 82

ARCCOS, 91

ARCCOT, 91

ARCSIN, 91

ARCTAN, 91

Arithmetic, 28

ASCII, 94

ASPI procedure, 33

BACK, 15
BACKGROUND, 30
BASIC and LOGO, 11
BRIGHT, 96

Bugs, 104
BUTFIRST, 41

Calling a procedure, 31
CHAR, 94

Index

Character codes, 94
CLEARSCREEN, 15
Colours, 30

Combining conditions, 88
Command mode, 17
Commands, 38
Conditions, 49
Coordinates, 61
COPYDEF, 111
Copyright character, 94
COPYSCREEN, 20
CORRECT procedure, 87
CO0S, 91

COSINE, 90

COT, 91

COTANGENT, 90
COUNT, 42

Cursor, 14

CYCLO procedure, 92

De-bugging, 104 - 12
Decimals, 86

113

114 Logo on the Sinclair Spectrum

DEFCHAR procedure, 95
DEFINABLE characters, 94, 95
DEFINE, 111

. DEPOSIT, 95

Dialects, 12

DIV, 27

DIVISIBLE procedure, 88
Division, 26

Dragon curve, 67

E, 34

E MODE, 20
EMODEB, 20
EMODEC, 21
EMODEE, 20
EMODER, 20
EMODEY, 20

EDIT, 20

Empty list, 44

Empty word, 35
EMPTYP, 52

END, 17

EQUALP, 49

ERASE, 23

Erase procedures, 23
ERPS, 23

Error messages, 15, 104—6
Exclamation mark, 17
Exponent notation, 34

FALSE, 49, 88
FENCE, 29

File, 21

File names, 21

FIRST, 41

FIRST READLIST, 44
FLASH, 96
FORWARD, 15
FPUT, 77

Garbage collection, 105
Global variable, 73
GRAPH procedure, 63

Graphics characters, 94
Greater than, 49

Hanging, 110
Hardcopy, 23
HEADING, 62

IF, 50

Infix notation, 49

Inputs to procedures, 28, 29
INT, 86

Integers, 86

Intermediate values, 110
INVERSE (video), 96
ITEM, 42

Joining lists, 44

KEYP, 95
Kinds of procedure, 38

LAST, 41

LEAGUE procedure, 97
Leaving editor, 21
LEFT, 15

Less than, 49

Levels of procedure, 67, 71
Lissajou’s figures, 91
LIST, 78

LISTP, 52

Lists, 40

Lists within lists, 76
Loading LOGO, 14
LOBE procedure, 92
Local variable, 73
LOGO objects, 34
LPUT, 77

MAKE, 25

Managing the workspace, 22
Mathematical conditions, 49
MEMBERP, 51

Microdrive, 22

Mindstorms, 9

Moving lines in editor, 20
Multiplication, 26
MUSIC procedure, 101
Musical scale, 101

NAMEP, 52

Naming things, 35, 36
Node, 78

NORMAL, 96

NOT, 81, 88
NUMBERP, 51
Numbers, 34, 86

Operations, 38

OR, 88

Order of arithmetic operations, 28

OUTPUT, 69

Outputs from recursive procedures,
75

Papert, Seymour, 9, 53
PENCOLOUR, 30
PENDOWN, 29
PENERASE, 30
PENREVERSE, 30
PENUP, 29

PO, 23

POPS, 23

POSITION, 61

POTS, 23

Powers, 89

Predicate, 49, 88

Prime numbers, 89
Primitive procedures, 23, 38
PRINT, 24

Print Out Procedures, 23
Print Out Titles, 23
Printing text, 24, 94 —6
PRINTOFF, 23
PRINTON, 23
Procedures for constructing lists, 77
PRODUCT, 27

Index

Prompt, 14

RANDOM, 57
Random numbers, 57
Random sentence generator, 56
READCHAR, 93
READLIST, 36, 43
Recursion, 31, 53
RECYCLE, 105
REMAINDER, 87
REPEAT, 16

RESPI procedure, 34
RIGHT, 15

ROUND, 87
Rounding, 87

SAVE, 22

SAVEALL, 46

Saving procedures, 21
Selecting items from a list, 41
Semitone, 100, 101,
SENTENCE, 37, 44, 77
Set background, 30

Set pen colour, 30

Set text colour, 96
SETBG, 30
SETBORDER, 30
SETCURSOR, 96
SETDRIVE, 22
SETHEADING, 62
SETPC, 30

SETPOS, 62

SETTC, 96

SETX, 62

SETY, 62

SHOW, 109
SHOWTURTLE, 14
SIN, 91

SINE, 90

Single, stepping, 110
SNOWFLAKE curve, 65
Sorting numbers, 78
SOUND, 100

116 Logo on the Sinclair Spectrum

Spirals, 31

SPLIT procedure, 47
Square roots, 89
START procedure, 76
STOP, 54

SUM, 27

TAN, 91

TANGENT, 90

Testing procedures, 109
TEXT, 111

TEXTSCREEN, 17

THING, 35

TO, 17

TO mode, 17

Top down programming, 20
TOPLEVEL, 72

TRACE procedure, 111
Tracing, 109

Tree, 78

Trigonometric operations, 90
TRUE, 49, 88

Truncating, 86

Turtle, 9

Turtle coordinates and headings, 63
TYPE, 94

UNTIL loop, 55
UNTRACE procedure, 112

Variable, 26

WHILE loop, 55
WINDOW, 29
WORD, 47
WORDP, 52

Words, 46

Words and things, 34
Workspace, 22
WRAP, 29
Wrap-round, 29

X-coordinate, 61
XCDR, 62

Y-coordinate, 61
YCDR, 62

Symbols

Definitions of symbols appear on the
following pages:

* 26
+ 27
- 27
/ 26
< 49
=49
> 49

