USBORNE INTRODUCTION TO-'

MACHINE CODE
FOR BEGINNERS

I.‘I,:_l‘

e L=

USBORNE INTRODUCTION TO

MIRICHINE CODf
FfOR BEGININERS

Lisa Watts and Mike Wharton

lllustrated by Naomi Reed and Graham Round
Designed by Graham Round and Lynne Norman
6502 consultants: A. P. Stephenson and Chris Oxlade

Contents

4 What is machine code?
6 Getting to know your computer
8 The computer's memory
11 Hex numbers
12 Peeking and poking
14 Inside the CPU
16 Giving the CPU instructions
18 Translating a program into hex
20 Finding free RAM
23 Loading and running a program
27 Adding bytes from memory
28 Working with big numbers
29 The carry flag
30 Big number programs
32 Displaying a message on the screen
35 Jumping and branching
38 Screen flash program
40 Going further
41 Decimal/hex conversion charts
42 780 mnemonics and hex codes
45 6502 mnemonics and hex codes
46 Machine code words
48 Index

First published 1983 by Usborne Publishing Ltd, 20 Garrick Street, London WC2E 9B], England.

1983 Usborne Publishing .
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or tansmitted in

any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior
permission of the publisher.

The name Usborne and the device == are Trade Marks of Usborne Publishing Ltd.

Printed in Spain by Printer Industria Gréfica, S. A. - Depésito Legal B. 33.756/1983

About this book

This book is a simple, step-by-step
guide to learning to program in
machine code. Machine code isthe
code in which the computer does allits
work and programs written in machine
code run much faster and take up less
memory space than programs in
BASIC. A machine code program,
though, is much more difficult to write
and less easy to understand thana
program in BASIC.

This book takes you in very easy
stages through the basic principles of
machine code. It shows you how to
write simple machine code programes,
for example, to add two numbers or
flash a message on the screen, and how
to load and run a machine code
program on your computer.

Machine code is difficult and very
laborious, with lots of rules to obey and
small details to remember. Don't worry
if you find it very hard at first. It seems
confusing as you cannot read and
understand a program in machine code
—1it's just a string of letters and numbers.
Bugs are very difficult to spot, too, and
have disastrous results if you miss them.
When you are working in machine code
you have to be very carefuland
methodical and check everything two
or three times.

Unless you are really dedicated there
is no point in writing long programsin
machine code - some things can be
donejust as well in BASIC. For certain
tasks, though, such as speeding upthe
action in games programs or creating
fantastic screen effects, you need touse
rmachine code. This book shows you
how to make your programs more
exciting by using short machine code
subroutines in BASIC programs.

The book is specially written for
computers with a Z80 or 6502
microprocessor.* The microprocessor
is the chip which containsthe
computer’s central processing unitand
computers with different
microprocessors understand different
machine code. All computers with the
same type of microprocessor, though,
use the same machine code.

Atthe back of the book there are
some conversion charts to help you
when you are writing machine code,
and a list of machine code wordsto
explain all the jargon. There are also
lots of puzzles and ideas for short
programs to write, with answers on
page 44.

*The Spectrum and ZX81 (Timex 2000 and 1000) use the Z80 microprocessor and the VIC 20, the BBC,
the Atari computers and the Oric use the 6502. The Commodore 64 uses the 6510 and understands

Whatis machine code?

Machine code is the code in which the
computer does all its work. When yougive
a computer a program in BASIC, all the
instructions and data are translated into
machine code inside the computer.

In machine code, each instruction and
piece of information is represented by a
binary number. Binary is a number system
which uses only two digits, 1 and 0. Youcan
write any number in binary using lsand
0s.*

A\ 8
A WO W
. -

£1° W (SAF

i\ =

v X lli \
N
.
-
\ l .

b
o -

L .,

.,

Inside the computer, the binary numbers
are represented by pulses of electricity,
with a pulse for a 1 and no pulse fora 0. The
pulses and no-pulses are called “bits”, short
for binary digits.

The bits flow through the computer in
groups of eight and each group iscalled a
“byte”. Each byte of pulses and no-pulses
represents the binary number for one
instruction or piece of information in
machine code.

Each task the computer can carry out, such
as adding two numbers or clearing the
screen, involves a sequence of several
instructions in machine code. When you
give the computer a BASIC command, a
special program called the “interpreter”
translates your command into the machine
code instructions the computer

*You can find out more about binarv on paage 28.

understands.

The term machine code is also used to
refer to programs written in a form which is
much closer to the computer’s code than
BASIC is. Ina machine code program you
have to give the computer all the separate
instructions it needs to carry out a task such
as clearing the screen.

Programming in machine code

There are several different ways of writing machine code programs. You could write allthe
instructions in binary numbers, but this would be very tedious. Instead, you can use another
number system called hex, short for hexadecimal. Once you get used to it, hex ismuch
easier to work with than binary.

Machine code programs can also be written in a code called “assembly language”. In
assembly language each instruction to the computer is represented by a “mnemonic”
(pronounced nemonic) - a short word which sounds like the instruction itrepresents.

LD A isthe mnemonic
for an instruction.

Assembly
language

3Eisthe hex code foran
instruction.

Thisisa
programto

This is a program for
computers with a Z80
microprocessor. You
can find out how the
program works later in
the book.

This is the same program in assembly
This is part of a machine code programin language. Each line contains the mnemonic
hex. The hex number system has sixteen for one instruction and is the equivalent of
digits and uses the symbols 0-9and A-Fto the hex number in the same line on the left.
represent the numbers0to 15. (Youcanfind For example, the mnemonicLD A

out more about hex later in the book.) The (pronounced “load A”) means the same as
hex number atthe beginningof eachlineof the hex number 3E. In both these programs,
the program is an instruction (e.g. 3E). Itis each line contains an instruction which is
the hex equivalent of the binary code for the equivalent of a single instruction inthe
that instruction. computer's own code.

own code.

IR SRENE
To give a computer a program inassembly mnemonics of assembly language (they are
language you need a special program easier to remember than numbers), then
called an “assembler” which translatesthe translate them into hex before yougive
mnemonics into the computer's code. Some themtothe computer. Some computers will
computers have a built-in assembler; with accept hex numbers; with others you have

others, you can buy an assembler on to give them a short program, called a “hex
cassette and load it into the computer’s loader”, which translates them for the
memory. Alternatively you can writea computer. There isa hex loader program
machine code program using the on page 24 which you can use to load the

machine code programs in this book.

Getting to know your computer

When you program a computer in
machine code you have to tell itexactly
what to do at each stage: where to find
and store data, how to printonthe
screenand so on. (When youare
working in BASIC, special programs
Inside the computer take care of all this
for you.) In order to give the computer
the correct machine code instructions,
you need a good 1dea of what isgoing

Inside a computer

TS\

on inside your computer. The pictures Insidef the kl_a',rboa;d ofla micmcorqputer
on these two pages show the parts there is a printed circuit board. This has
inside a home computer, and what they metal tracks printed onit, along which

electric currents can flow. Attachedto
the printed circuit board there are a
number of chips.

A '

are for. You can find out more about
them on the next few pages.

What the chipsdo

This picture shows the work carried out by
the different chips inside the computer.
Messages flow between the chips in the form
of bytes, 1.e. groups of eight pulse and no-
pulse signals representing data and
instructions.

The ROM chips

Bytes of computer code flow
between the chips along the tracks
of the printed circuit board. There are three
separate systems of tracks for carrying bytes'
for doing different jobs. Each system of '
ROM stands for “read only memory”. The tracks is called a “bus”.
machine code instructions which tell the
computer what to do are stored in the ROM
chips. It is called a read only memory
because the computer can only read the
information in ROM, it cannot store
new information there. On most home
computers, the interpreter (the
program which translates BASIC
into computer code) is in the RQME

e

memory”. This is where

the programs you give the

computer are stored while the '
computer is working on them. It is
called a random access memory
because the computer can find, or access,
any piece of information anywhere in the
memory. When you switch the computer off
the information stored in RAM is wiped out.

Enlarged view /
of circuits
inside chip.

circuit board |
The proper name for a chipisan instructions in binary code, flowing
“Integrated circuit” and inside each chip through the circuits in the chips. There

there are microscopic electrical circuits.
All the computer's work is done by
streams of pulses representing

are different chips for carrying out
different tasks. The work done by the
different kinds of chips is shown inthe
picture below.

Clock

This is a quartz crystal which pulses millions of
times a second and regulates the flow of pulses
inside the computer.

the computer’s work is done. The CPU does
calculations, compares pieces of data, makes
decisions and also co-ordinates all the other
activities inside the computer. The information
telling the CPU what to do is in the ROM.

The computer’'s memory

The easiest way to think of the computer's memory is as lots of little boxes, eachof
which can hold one byte, 1.e. one instruction or piece of information inmachine
code. Each box in the memory is called a “location”, and each location hasa
number, called its “address”, so the computer can find any box in the memory.

Different areas of the memory are used for storing information for different tasks
and a chart giving the address where each area starts is called a "memorymap”.

When you are programming in machine code you have to tell the computer
where to find or store each instruction or piece of information. You do this by giving
1t the address of a memory location. You even have to tell it where to storethe
machine code program Itself, so you need to get to know the memory map of your
computer.

The memory map

The picture on the right shows the memory map of
a home computer. There should be a map for your
computer in your manual. The memory is
organized differently in different makes of
computer, so your map will look different from this
one.

The memory map may be drawn as a column Variable sturage
like this, or horizontally. The address at which each et
of the different areas in the memory starts is given
alongside the map and it may be a decimal number User RAM
or a hex number, or both, as here. In this book hex
numbers are distinguished by a & sign
(ampersand) before the number. Your manual may
use a different symbol, e.g. §, %, or #.

The boundary
between user
RAM and
variable storage
moves up or down
depending on
how much space is
needed for variables.

The highest address in user RAM
is called "RAMTOP", oron some
computers, “HIMEM".

The memory map includes

both ROM and RAM. The

operating system and the

BASIC interpreterarein

ROM and the rest of the

4 areasonthemaparein
' | RAM

Memory addresses

Inside the computer, memory addresses are
represented by two bytes of computer code, i.e. 16
pulse or no-pulse signals or “bits”. The largest
possible memory youcan haveona
microcomputer which uses a Z80 or 6502
microprocessor is 64K (ROM and RAM combined).
This is because the biggest number you can make
with 16 binary digits is 65535, so this is the highest
possible address. This gives 65536 locations,
numbered from 0 to 65535. Each location holds one
byte, 1024 bytes make a kilobyte (K) and 65536
bytes equal 64K (65536 + 1024 = 64).

Onthe ZX81 (Timex
1000) the boundary
between the screen
memory and user
RAM changes
= dependingonthe |
-------------- sssass T Size Ufthe png{'ar'I"l
inuser RAM.

User RAM
This is where the programs you type inare
stored. The data for variables and arraysis

&2E00 11776 stored at the top of user RAM.

s
i

; J“-.-

If you add extra memory
to your computer, the
addresses of some of the
areas may change. There
should be information
aboutthisin your manual.

Inside the computer’'s workspace

This picture gives a closer view of the area of the computer's memory reserved for use by
the operating system. There may be a second detailed map of this area in your manual, ora
list of the various addresses and what they are used for. On some computers(e.g.
Sinclair/Timex), the locations used by the operating system are not in one group and are
distributed throughout the memory.

N=E)
2 WEQ)

.

More about stacks

The computer uses the stacks to store
temporary data in a particular way. The last
item to be stored must always be the firstto
be retrieved. Thisis called LIFO storage:
last in, first out.

Hex numbers

In a machine code program, numbers and addresses are always written in hex.
Below you can find out how to convert decimal numbers to hex, and viceversa.

Decimal 0|1|2|3|4]|5)|6|7|8 |9 [|10]11(12|13|14(15

Hex 0112|3815 |8 17|89 A B|IC|I-D|IE|F
This chart shows the hex digits (0-9and digits, just as you do in the decimal system
A-F)and their decimal values. To make to write numbers over 9. The value of each
numbers over 15 (F) youuse two (or more) digit depends on its position in the number.

: 4CAis hex
Decimal for1226.
1000s | 100s | 10s | 1s
1 2 2 6 s wY
Inthe decimal system the first digit onthe In a hex number the first digit on the right
right of a number shows how many 1sthere also shows the number of 1s but the next
are, the second shows the number of 10s, digit shows the number of 16s, and the third

the third, the number of 100s (102), etc. " digit shows the number of 256s (16).

Canyou convert
&A7 todecimal and
decimal 513to hex?

(Answers page 44.)
- NS

Decimal to hex
To convert a decimal number e.g. 1226, to 1226+ 286 =4i 4is4inhex
hex, first you divide by 256 to find howmany remainder 202

256s there are in the number. Thenyou S
divide the remainder by 16 to find the 202 + 10 g SRR 12_13(.‘.1_nhex
number of 16s and the remainder fromthis remainder 10.................... 10isAinhex
sum gives the number of 1s. Finally, convert : 3

the answer to each sum to a hex digit. * 1226is4CAinhex

Converting hex addresses
Ina hex address, e.g. 5C64, the two left-hand digits show which page (see opposite)the
location is on and the second pair of digits shows the position on the page.

To convert a hex address to decimal, first To convert a decimal address to hex you
convert each pair of digits to adecimal have to divide by 256 to find the memory
number, as shown above. Then multiplythe page number. The remainder givesthe
page number by 256 (there are 256 position on the page. Then you convert the

locations in a page) and add the numberfor figuresto hex digits as described above.
the position on the page. 11

*gﬂﬂ Lat=Tafl =1 dl Fﬂf "Inllf"ﬂ f"ﬂ 'hiﬂ FatalB=1 ﬂﬁ1-""l'l‘|:l'ﬂ'l"

12

Peeking and poking

Two BASIC words, PEEK and POKE, *
enable you to look at the bytes stored n
the computer's memory locations and
change them. Youuse PEEK and POKE
with the decimal, or onsome
computers, hex, address ofamemory
location. Remember, to give the
computer hex numbers youmust typea
signsuchas &, # (called hash) or$
before the number. Check this in your
manual as it varies on different
computers and some computers will
accept only decimal numbers.

Using PEEK

r

FRINT PEEK (123435)
46

PRINT PEEK (720)
240

FRINT PEEK (B&643)
(o)

LET A=PEEK (1024)
PRINT A

176

You can peek into any location in your
computer’'s memory, but you can only poke
new bytes into RAM locations because the
bytes in ROM cannot be changed.

r

30 NEXT J

4N

10 FOR J=700 TO 725
20 PRINT PEEK(J)3","s

S|

These are the

A B 7 decimal equivalents
‘ : oaes) of bytes of
- computer code.

To tell the computer to look ina memory
location you use PEEK (or your computer's
command) with the address of that location.
To see the result on the screen, use PRINT
PEEK, or store the result in a variable using
LET and then print out the variable, as

shown above left.

Poking

Try writing a short program using a FOR/
NEXT loop, like the one in the centre above,
to print out the bytes from a series of
locations. Look at your computer’'s memory
map and experiment with addressesin
different parts of the memory.

Thistellsthe
computerto put 60
in location 16763.

to seetheresult.

The picture above shows you how to use
POKE. You can poke anywhere in RAM, but
if you poke new values into the area
reserved for use by the operating system
you may disrupt the workings of the
computer. You canrestore it to normal by
switching off and on again. Try writinga

This putsa

number, N,
into
Use PRINT PEEK location A.

short program like the one above to poke
several numbers into a series of locations in
user RAM.

The numbers you poke must be between
0and 255, the highest number than can be
represented with eight binary digits (one
byte of computer code).

B e e R e e e ol L T I L e T e it

What the numbers mean

When you tell the computer to print the
contents of a memory location on the
screen, the result is always a decimal
number from 0to 255. This is because each
memory location can hold one byte, and the
highest value that can be represented with
eight binary digits is 255. There are only 256
(0 to 255) possible different bytes of
computer code and each byte can have
several different meanings for the
computer.

For example, the binary number
00110000 (decimal 48) could be the code for
one of the instructions in the instruction set,
for a letter on the keyboard, or for part of
the address of another memory location
(each address consists of two bytes).

Use an add
inyour
computer's

Now find the screen memory for your
computer, then try poking numbers into
screen memory locations. You do not need
touse PRINT PEEK because bytes stored in
the screen memory are automatically
displayed on the screen. This time the
computer interprets the number asthe
code for a character.*

Put an addressin
yourcomputer’s
screenmemory

70 - .
i = - i [

Try a short program like the one above to
print your computer's character set. The
program uses ASCII codes, starting with 33,
the code for !, and ending with code 90.
Other numbers in the range 0-255 are for
special keys such as SPACE and DELETE,
for printing the alphabet ininverse or
flashing characters, and for graphics
characters.

e,

ress [

Typeinthe address for
your computer'’s
operating system.

Look in your manual to find the addressin
ROM of your computer’s operating system
and then try this program. The numbers
which appear on the screen are the decimal
equivalents of bytes of machine code from
one of the programs in the operating
system.

Thisisthe
ASCIl code
forZ.

(pronounced “askey"), to decide which
numbers represent which characters, but
some, such asthe ZX81 (Timex 1000) use
different numbers. The VIC 20 has a special
set of numbers, called screen codes, for
characters to be displayed on the screen.
There should be a list of your computer's
character codes in your manual.

HEHNERE N RN AN RN RN NN RN AN NN NN NN
HHRARKHEERN AR EN AR NE NN RENRY
EER S RS
HEHAKA RN A AN KN N MM

™ Location 1120.
y

4

Firstlocation in screen memory.

On most computers you can printa
character in a particular position on the
screen by working out the address of the
location for that position. For example, ifthe
screen memory starts at location 1024 and
the computer can print 32 charactersona
line, the address for the first position onthe
fourth line will be 1024+ (32 < 3) whichis

1120. (Address 1024 is counted as zero.) 13

*On the Spectrum (Timex 2000) the information for each position on the screen is stored in several
different memory locations and vou cannot print characters by poking codes into the screen memorv.

Inside the CPU

All the computer's work is done by
fetching bytes of instructions and data

from the memory, then carrying out the

instructions in the CPU.

There are three main areas inside the
CPU: the registers where bytes of data
are held while they are processed; the

ALU, or arithmetic/logic unit where
bytes can be added, subtracted or
compared; and the control unit which
organizes all these activities.

The arrangement of the reqgistersin
the Z80 and 6502 chips is different, as
shown in the pictures below.

The Z80 registers

Fetch a byte
fromthe
memory
and putit
inthe
registers.

the sort of
instructions
the CPU can
carry out.

These pictures show the sort of instructions
which the CPU can carry out. They areaall
very simple. It can fetch bytes from the
memory and put them in the registers, move
bytes from one register to another, process
them in the ALU and store the results inthe
memory. Even the simplest task, such as

The main difference between the Z80 and the 6502 chips is that the Z80 has more registers.
This means that bytes can be stored temporarily in the CPU, whereas in the 6502 they haveto

be sent back to the memory.

A stands for “accumulator”. Fisthe “flags register”. It holds eight
bits but only six of them are used.
Each bit acts as a signal. For
example, the carryflagissetto 1
when an answer is greater than 255
and will not fit in one byte and the
sign flag shows whether a number is
positive or negative.

It i1s the most important
register in the CPU and
stores bytes on their way to
and from the arithmetic/
logic unit. It can only hold
one byte atatime.

IX and IY are called
“Index registers”.
They can each hold
16 bits and they are
used in certain
instructions to work
out the addressofa
byte in the memory.

B,C,D,E,Hand Laregeneral
purpose registers where bytes
can be stored on their way to or
from the memory. Each can hold
only one byte but they can be
grouped together in pairs, e.g.
14 BC, DE or HL to hold two bytes.

SP stands for “stack
pointer”. Itisa 16-bit
register and stores the
addressof the lastitemin byte to be fetched fromthe
the machine stack - the
place where the CPU
stores temporary data.

PC is the “program counter”.
It is a 16-bit register and it
holds the address of the next

memory. The number inthe
program counter increases
by one eachtime an
instruction is carried out.

Transfera
ST byte from one
:Jumptq e registerto
instruction6. | another.

adding two numbers and displaying the
result on the screen, involves over a
hundred simple steps like these and the
CPU can carry out over half a millioneach
second.

For each operation the control unit
fetches an instruction byte from the ROM or

“Flip the bits"’,
thatis, make
allthe 1sinto
Os and all the
Osinto 1s.

Move all the
bits one place}
totheright.

. _-‘.,‘\.. +

RAM, loads a data byte into the registers
and then performs the operation specified
by the instruction. In machine code, youcan
tell the CPU what to do with the bytes inthe
registers, but the ALU and control unit carry
out their work automatically and you cannot
tell them what todo.

The 6502 registers

The main registers in the 6502 are the same as those in the Z80, but some of them are called

by different names.

A is the "accumulator”
where bytes are stored on

P stands for “processor
status register” and it has

their way to and fromthe
ALU. Itisthe same asthe
accumulator in the Z80 and

the same function as the
flags register in the Z80. It
contains eight bits, seven of

can hold only one byte.

Xand Y are“index

which are used. Each bit is
setto 1 torecord a certain
condition, such as whether a

registers”. They are used in
certain instructions to work
out the address of a byte of

number is positive or
negative.

data. They can also be used
as general purpose
registersto hold bytes

Thisisthe

PCisthe

“program
counter” and it
worksinthe

ninth bit of
the stack
pointer
(register S).

same way as the
PCregisterin
the Z80.

Sisthe “stack pointer”. It stores the address of the last item onthe
stack —the special area in the RAM where the CPU stores data. Inthe
6502 the stack pointer is an eight-bit register. In order to store
addresses a ninth bit kept permanently at 1 is wired uptothe S
register. This represents the page number of the address, so inthe
6502, the stack is always in page one of the memory. The numberin
the stack pointer gives the position on the page.

15

16

A program in machine code consists
ofa list of instructions telling the CPU
exactly what to do with bytesinthe
reqisters. You can use only the
instructions that the CPU
understands, so for computers with a
Z80 or Z80A microprocessor you
must use instructions from the Z80
instruction set and for computers
with a 6502, 6502A 0r6510
MICTOProcessor, you must use 6502
instructions. There 1s a list of Z80and
6502 instructions at the back ofthis
book.

e Ne o NN
Opcodes can be written as mnemonics -
short words which represent what they do—
or as the hex equivalents of the computer's
binary code for each instruction. For
example, LD A onthe Z80 and LDA onthe
6502 are the mnemonics for “load a byte into

the accumulator”. The same opcodes in hex
are 3E for the Z80 and A9 for the 6502.

280

Here are two machine code instructions in
mnemonics, one for the Z80 and one for the
6502. They both tell the computer to load the
number 05 hex into the accumulator (&isthe

*You can find out about assemblers on page 40.

Most machine code instructions consist of
two parts: an “opcode” and an “operand”.
The opcode tells the CPU what to do and the
operand tells it where to find the datato
work on. (The word operand means “object
on which an operation is performed”.) Each
opcode is an instruction from the instruction
set.

These are hex codes.

Mnemonics are much easier to
understand then hex, but you cannot type
them into your computer unless you have an
assembler (a program which translates the
mnemonics into the computer’s own
code).* Most people write machine code
programs in mnemonics and then translate
themto hex.

sign to indicate hex numbers). Numbers are
always written in hex in machine code. On
the 6502 a number is preceded by a #
(hash) sign to show that it is a piece of data.

A simple program

Here are two programs, one for the Z80 and one for the 6502, which tell the CPU to add two
numbers. They are both written in mnemonics. Strictly speaking, a program in mnemonics
is called an assembly language program and one which uses hex codes is called machine
code. Over the page you can find out how to translate the programs to machine code, and
on the next few pages, how to load and run the version for your computer.

The 280 and 6502 programs follow the same steps, although the actual instructionsare
different.” In the 6502, data on which calculations are to be carried out must alwaysbe
placed in the accumulator. In the Z80 it 1s placed in the accumulator, or for big numbers, in
register pair HL.

To add two numbers you load the first accumulator and store the result inthe
number into the accumulator. Thenyouadd memory. The mnemonic opcodes for these
the second number to the one inthe instructions are given below.

Opcodes and

] Z80 are separated
Load A with a number. A stands for “accumulator”

by commas.
LD A, number and LD is short for “load”. e -

Z80 mnemonics] Meaning j operands forthe
I
I
|
| Addto A (the accumulator), a number.
|

ADD A, number

' Load a certain address with the contents of A (the accumulator).
LD (address), A - Addresses are always written in brackets.

6502 mnemonics | Meaning

LDA number ﬂfwﬁthanumber.ﬂstands for “accumulator” and LD is short for

ADC is the mnemonic for the instruction “add with carry”. It tells the

ADC number I computer to add a number to the accumulator and to set the carry flag in

; the flags register if necessary. You can find out more about this on page 29.

| ; ; :
STA address } s&hﬁ f-%&;;?:lrming of thlef wulam{:& certain address. ST is
20 siiing shren Speodes: LD A, The # sign indicates
program ADD A, and thatthe operandisa

LD (address), A. piece of data.
LD A, &02 _
ADD A, &04
LD (&7F57), A
¥~ Address

Now you can fill in the data and addresses. and 4 decimal), and storing the resultin
Inthese examples the programs areadding memory location 7TF57 hex.
2 hexand 4 hex (which are the sameas?2

17

*From now on, if you have a Z80 you can skip over the 6502 programs and if your computer uses 6502
instructions, ignore the Z80 programs.

Translating a program into hex

The only way to translate the mnemonics into hex codes is to look upeach
mnemonic in a chart. There 1s a chart of mnemonics and hex codes at the back ofthis
book. You have to be careful, though, as there are several different hex codesfor
each instruction depending on whether the operand is a piece of data, an addressor
the name of a register. For example, here are some different versions of the
opcodes for loading the accumulator, and their hex codes.

When the operand is a piece of data itis this book includes all the instructions
called “immediate addressing”. Whenitis covered in this book. If you want to write
the address where the data is stored it is more advanced programs you will need to
called “absolute addressing”. The list of geta complete list of Z80 or 6502 codes and

mnemonics and hex codes at the back of there are some suggested books on page 40.

Here are the hex codes for the Z80and 6502 code and those in hex are called object
adding programs. Instructions in code.
mnemonics are sometimes called source

Now you can fill in the data and addresses.
This is quite straightforward - except for
the addresses. In machine code you haveto
reverse the order of the two pairs of digits
which make up an address. You can find out

18 more about this on the opposite page.

You havetoreverse
the two pairs of digits
in an address, like this.

You leave out the &
and # signsinthe hex
code version.

More about hex codes

Machine code programs are written in hex rather than decimal numbers because the
binary numbers used in the computer's own code translate more neatly to hexthan

-t

For example, the highest address you can number that can be represented by one
have with sixteen binary digits is 65535 in byte (eight binary digits) is 255 decimal and
decimal and FFFF in hex and the highest FF hex.*

Most of the opcodes in the computer's though, take up two bytes so they need two
instruction set are one byte long, so in hex pairs of hex digits.
each opcode is two digits. Addresses,

The first pair of hex digits is called the high (one page = 256 memory locations).
order byte and itis the page number inthe Because of the way the CPU handles

memory on which the address islocated addresses you must always give it the low
(see page 10). The second pair of digits is order byte (position on page) first, followed
called the low order byte and it isthe by the high order byte (page number).

position of the memory location on the page

*You can find out how to convert binary numbers to decimal on page 28.

20

Finding free RAM

There are several things to do before you canload and run the adding programon
page 18. First you need to choose an area in the memory in which to storethe
program. When you type ina BASIC program, the BASIC interpreter automatically
stores your program in user RAM. When you give the computer a machine code
program, you bypass the interpreter so you have to tell the computer whereto
store the program.

You need to choose an area in the RAM where your machine code will not
interfere with any other information stored in the memory. For instance, youmust
not store machine code in the areas reserved for use by the operating system, such
as the systems variables or the stacks. If youdo the system will probably crashas
your machine code will have replaced vital information which the computer needs
to organize all its work. You also have to be careful to keep your machine code
separate from any BASIC program you may give the computer at the same time. If
the computer crashes the only way to restore it is to switch it offand on againand
you will lose your program.

How much memory will you need?

, Each memory
{ location holds
2 one byte.

It is quite easy to work out the length ofa Most machine code programs are quite
machine code program - you just count up short and to start with a hundred bytes of
the number of pairs of hex digits (eachpair memory space will probably be plenty for
takes up one byte). For example, theadding your machine code programs.

program has seven bytes.

Finding free RAM

The normal place to store machine code
programs is at the top of user RAM, the
place where BASIC programs are
stored. You have to make sure, though,
that the machine code will not get mixed
up with any BASIC programs. To avoid
this you can lower the top of the user
RAM area. This makes a “no-man’s land”
above user RAM which the computer
will not use until youtell it to when you
load your machine code program.

The top of user RAM is called
RAMTOP, or HIMEM, or just top of
memory. You can find out how to lower
RAMTOP on the opposite page.

Lowering the top of user RAM

The computer keeps a record of the address of RAMTOP in the systems variables and you
can change RAMTOP by changing the address stored in the systems variables. The
instructions for doing this vary on different computers, but most follow the principlesgiven
below. You should check how to change the top of RAM in your manual though, as your
computer may use different instructions, or may even have an easier way to make space
for machine code.

Position Page
onthe i jﬁ number.

page.

The address of RAMTOP takes up two just top of user RAM). The computer stores

consecutive locations in the systems the two bytes of the address inreverse
variables, one for the page number of the order - first the position on the page, then
location and one for the position on the the page number, so the first location inthe
page. Look up the addresses of these systems variables holds the position

systems variables locations in yourmanual ~ number and the second, the page.
(they may be listed as RAMTOP, HIMEM, or

v

PRINT P'EEKuddr‘es!sﬂl SPEERY) " L
(address. 2525607) Tu, BTSN o 1

A"

& | i

You canuse PRINT PEEK (or your This command automatically converts the
computer's command) like thisto peekinto twobytes ofthe RAMTOP addressintoa
the systems variables and print outthe decimal address by multiplying the page
address of RAMTOP. Fill in the addresses number by 256, then adding the positionon
of your systems variables. the page.

V¥)

CLEAR ramtop address — 100

' % \%mmmm

"HIMEM ramtop address - 100

k. o

Most computers have their own special

NEW N
| RaMTOP

machine code as shown above left. Check

command for changing the address of the your computer's command in your manual.
top of user RAM. For instance, for the These commands lower the top of user
Spectrum (Timex 2000) the command is RAM by 100 locations and so reserve an

CLEAR and for the Oricitis HIMEM. These ~ area of 99 bytes for machine code starting at
commands are followed by the address of the address after RAMTOP. Youcan

the top of user RAM minus the number of change the figure 100 to reserve more space.
bytes of memory you wish to reserve for 21

*See over the page for how tolower the top of RAM on the VIC 20, and where to store machine code

22

VIC 20 tip

The VIC 20 has no special command for
changing the address stored inthe
systems variables. Here are the
instructions for lowering the address of
the top of user RAM on the VIC.

[g

-’- -

P s
= ""p,- {,ﬂ- -
ﬁnﬁ-m- 1 B B I
The addressis held in systems variables

55 and 56. Remember, the second
location holds the page number.

To lower the top of user RAM by 256
locations, i.e. one page, use the direct
command shown above. This makesthe
computer peek into location 56 (the one
which holds the page number). It
subtracts 1 from the value held thereand
then pokes the new value back into
location 56. In other words, it reduces the
page number part of the address by 1. To
see the new address of the top of user
RAM type this command:

PRINT PEEK(55)+PEEK(56)*256.

ZX81 tip

Onthe ZX81 the best place to store
machine code programs is at the
beginning of user RAM. To do this you
type a REM statement as the first line of
the hex loader program given on page
24 and fill it with as many digits asthere
are bytes in your machine code

program.

Each of the digits in the REM statement
takes up one location in the memory.
Now you can poke your bytes of
machine code into the locations
reserved by the digits in the REM
statement.

The first byte
of machine
code will be
stored in
location 16514,

User RAM
starts at

location
16509.

Todo thls you need to know the address
where the first digit is stored. User RAM
starts at location 16509 and the computer
needs two bytes to hold the REM line
number, one for REM, one for NEWLINE
and one to record the length of the line,
so the first digit is in location 16514.

oo

Other places to store

machine code

There are a few other places inthe
memory where you can store machine
code, if you are not using them. For
instance, if you are not planning on
saving your program, you can store itin
the cassette buffer, or if you are not
creating any user-defined graphics, you

could store it in the area set aside forthis.

Look in your manual to find the

~ addresses of these areas in the RAM.

Your manual may also suggest suitable
places in your computer's memory for
storing machine code. You should look
out, too, for tips mww :

M.EM

Og
B=r Cassette
buffer

User defined
graphics area.

a7 3

Loading and running a program

The next few pages show you how to load and run the adding program on page 18.
To give the computer a machine code program you have to poke each byte intothe
area of memory that you have chosen for storing machine code (e.g. above
RAMTOP). On most computers you can only poke decimal numbers so you usea
short BASIC program called a "hex loader” to do this for you. The hexloader
converts each byte of machine code to a decimal number, then pokesitintothe
memory. There is a hex loader program over the page. First, though, youneedto
change the address for the answer to the adding program, to an addresssuitable
for your computer. There is also one more instruction (see below) youmustaddto

the program.

Choosing an address for the answer

Data produced by a machine code
program, such as the answer to the sumin
the adding program, is called “data bytes”.
It is important to store data bytes where

they will not get mixed up with the program
itself. The best place isright atthe
beginning of the area you have reserved for
machine code, in front of the program.

-

For example, if you have lowered the top of
user RAM to, say, location 16000, the first
address of the area for machine code will
be location 16001. This is where you would

To convert the address to hex youdivide by
256. The answer is the decimal page
number and the remainder is the position
onthe page (see page 11).

The return instruction

store the data byte and the program would
start in location 16002. You will needto
convert the address for the data byte to hex
so you can insert it in the program.

Address
16001 is
3E81in hex.

To convert these to hex you divide by 16
and then convert the answers and
remainders to hex digits as shown above.

Z80 mnemonics Hex codes
LD A, &02 3E,02
ADD A, &04 C6,04

LD (&7F57), A 32,577F

.

Atthe end of every machine code program
you must always have the instruction RET
(for the Z80) or RTS (for the 6502). This
makes the computer stop running the
machine code program and return to where

- s

GacoNmemanies _ Faxuodes
ADC#&M 04

STA&TF57

it left off. Without this command, the

computer would carry on attempting to

follow an instruction for every byte it found

in the memory and the system would soon

crash.” 23

*There is more about the return instruction on page 35.

Hex loader program

Here is the program for loading machine code into the computer's memory. To use this
loader you put the hex codes of your machine code programin line 160, followed by the
word END, as a signal to tell the computer there is no more data. At line 40, the computer
reads a pair of hex digits, converts them to a decimal number in lines 70to 110 and then
pokes that number into the memory in line 130.*

24

10 FRINT "ADDRESS WHERE MACHINE
CODE IS TO BE STORED?™

Aisthe address of the first location where

20 INPUT A you wish to store your program.

30 LET C=0 Cisacounter.

40 READ H$ Puts first pair of hex digits in line 160 into HS.
50 IF H$="END" THEN GOTO 180 Tests HS for word END, the signalto

60 IF LEN(H$)<>2 THEN GOTO 170

70 LET X=(ASC(H$)-48) %14

80 IF ASC(HS$) >*57 THEN LET X=

indicate end of data.

= _I— Checks to make sure HS contains two digits,

and if not, goes to line 170.

{ASC (HE) -55) #1546
20 LET Y=ASC(RIGHTS (H$,1})

Converts first hex digit to a decimal number
and storesin X.

Converts second hex digit to a decimal

number, Y,and addsto X.

Checks for bad data by making sure
decimal number in X is between 0 and 255.

Firsttime, C=0, so pokes X into memory

location A.

100 IF Y<58 THEN LET X=X+Y-4B

110 IF Y>S7 THEN LET X=X+Y-55
120 IF %<0 OR X>255 THEN GOTD 170
130 POKE A+C, X

140 LET C=C+1

150 GOTO 40

REM SAMFLE DATA ONLY

Adds one to C, so pokes decimal value of
next hex code into memory location A+ 1.

L Backtoread next hex code.

Put your hex codes here, followed by signal

1650 DATA EF.F&,E2,.A9.,.END word END.

170 PRINT "RAD DATA" Prints this if it finds bad data in lines 60 or

s ST 120, then stops.

How the loader works

Hex o1 2 Vala¥slelzbBlol AFEREPDEEY ¢

ASCIl |48 |49 (50|51 52i53154;551‘55 57| 65| 66| 67| 68| 69| 70
“ minus 48 —/ - minus 55 —

Pecimall 0 [1 [2 [3]a]s5[6]7[8]a]10]11]12]13][14] 15,

=3
-55 -

I+

Decimal

Decimal
value of
hex code

-8
X 16=48 <4 +
[62 (

Atline 70, the computer converts the first
digit in HS to its ASCII code using the BASIC
word ASC. It then converts the ASCII code
to a decimal value by subtracting 48, or for
codes over 57, by subtracting 55, as shown
inthe chart above. Then it multiples by 16
because the first hex digit represents the
number of 16s and puts the answerin X.

At line 90 it uses the same method to
convert the right-hand digit to an ASCII
code and storesitinY. Inlines 100 and 110it
changes Y to a decimal number by
subtracting 48 or 55 as before, and addsitto
X. (This time it does not multiply by 16 as itis
the digit which represents ls in the hex
number.) The value stored in X isthe
decimal equivalent of the pair of hex digits.

*For the Spectrum (Timex 2000) change the ASC command to CODE and put each pair of hex codesin
quotes. See page 48 for alterations forthe ZY¥81 (Timex 1000) and Atari computars

Using the loader

Now you can use the hex loader to try out the machine code adding program. This is nota
very exciting program, but it is simple and it shows you how machine code works. Typethe
hex loader into your computer. At line 160, replace the sample data with the hex codesfor
the adding program, as shown below.

Datafor the hex loader

Replace Ib and hb with the two
bytes of the address for the
answer,

END signal
to computer.

These are the hex codes for the adding answer will be stored in your computer.
program. You need to replace the letterslb Remember to put the bytes inreverse

(low order byte) and hb (high order byte), order, i.e. low order byte (position on page)
with the two bytes of the address wherethe followed by high order byte (page number).

Running the hex loader

Now type RUN to run the hexloader you are storing the answer. Type this
program. When it asks you for the address, address as a decimal number as it will be
type inthe first location after the onewhere used with the POKE command.

Running the machine code program

These are some ofthe
commands used on
different computers.

The command to tell the computer to start first byte of the program is stored. Check
running a machine code programvarieson this command in your manual. Whenthe
different computers. Some use CALL, computer receives this command it goesto
others use PRINT USR or SYS with the the address and starts carrying out the
decimal address of the location where the machine code instructions.

a5

Seeing theresult

 PRINT PEEK(16001) PRINT PEEK (16001)
. u 4 &
g |¢’ .-__& .'_, . _‘J‘_\ - e
The computer carries out the machinecode havetouse PRINT PEEK with the address of
instructions and stores the answer inthe the answer. The result will be the answer in

location you told it to. To see the result you decimal.

Programs to write
You now know enough machine code to write some simple programs. Thereisa

checklist at the bottom of the page to help you remember all the things you have todo
when you write a machine code program. Answers page 44,

1. Try writing a program toadd 25 and 73
(decimal) and store the resultinthe The adding program will only add
memory. numbers which total less than 255.
2. See if you can write a program toadd On page 28 you can find outhow to
64 and 12 and 14 (decimal) and store the addlarger numbers.

result in the memory.

':n;chme code che.‘:klls:nbl 6. Fill in the addresses in the program -

- Write your program Inassemo’y remember to put the two bytes inreverse
language and convert any data to hex. order. (See pages 18-19.)

2. Look up the hex code for each of the
mnemonics (there is a list of the
mnemonics and hex codes at the back of

check the hexcc
very carefully.

Don'tforgetto put END after your

list of hex codes in the hex loader. 1. Type in the hex loader (you could save

this program on tape) and fill in the hex
codes in line 160 followed by the END

: signal. (See page 24.)
3. Add the return instruction to the end of =
the program. (See page 23.)

4, Count up the number of bytes and
reserve your free RAM area. (See pages
20-22.)

8. Run the hex loaderand inputthe
decimal address of the first location
where you wish to store the machine
code. (See page 25.)

9. Run the machine code program using
your computer’s command with the
address (in decimal) of the first location
where the machine code is stored. (See
page 25.)

Make a note of the addresses of
data bytes and of the address

where you have stored the
program.

If you change the data in the hex
loader you have to runthe

program again to poke the new
bytes into the memory.

5. Work out what memory locations you
need for data bytes and convert the
26 addressesto hex.(See page 23.)

Adding bytes from memory

In the previous program the data was included in the program itself. Thisiscalled
immediate addressing. Sometimes, though, youmay want to tell the computer to
do something with data stored in its memory. In this case, the operand part ofan
instruction will be an address telling the computer where to find the data. Thisis

called absolute (or direct, or extended) addressing.
Absolute
addressing

These are just two of the several different modes”. There is a different hex code for
ways in which you can tell the computer eachinstruction depending onthe
where to find the datato work on. The addressing mode you are using.

different ways are called “addressing

Program to add numbers from the memory

Here is a program to add two numbers stored in the memory. Compare the hex codes for
the instructions in this program, which uses absolute addressing, with those for the
previous adding program which used immediate addressing.

Z80 program
Mnemonics Hex codes Meaning
LD A,(address1) 3A, address 1 Put the number in address 1 into the accumulator.
LD B,A 47 Put the number in the accumulator into register B.
LD A,(address2) 3A, address 2 Put the number in address 2 into the accumulator.
ADD A,B 80 Add the number in register B to the accumulator.
LD (address 3), A 32, address 3 Store the contents of the accumulator in address 3.
RET C9 | Return
To add two numbers from memory you straight from the memory, though, so you
have to load them into the registers first. For have to put the first number into A and then
this you can use the accumulator (A)and transfer ittoB.

register B. You cannot load register B

Running the program

To run this program, follow the steps given in the checklist on the opposite page. First,

though, you will need to poke into the memory the two numbers to be added. Youshould

choose memory locations at the beginning of the area you have cleared for machine code, to
keep these data bytes separate from the instructions. Then convert the addresses to hexand
insert them in the program. You need a third address for the answer. To see the result, type
PRINT PEEK(address 3). 27

28

Working with big numbers

The programs on the previous few pages only work with numbers which add upto
2585 or less. This is the highest number that you can represent with the eight bitsin
one register or memory location. To work with larger numbers you need to knowa
little more about the binary number system, and how to use the carry flag. Overthe
page there isa machine code program to add larger numbers.

Binary numbers
The binary number system works like hex and decimal numbers except that there are only
two digits, 0 and 1. To make numbers bigger than 1 you use several digits and the value of

each digit depends on its position in the number.
: 11111111 binary
128 + 64 + 32 +16 + 8 + 4 + 2 + 1 =255
Inabinary number, eachdigithastwice the third, the number of fours; the fourth the

x128 xB64 x32 x16 x 8 x4 X2 ®x 1
the value of the digit onits right. Thefirst number of eights and so on, as shownabove.
digit (the one on the right) shows how To convert a binary number to decimal you
many ones there are inthe number.The multiply each digit by the value of its position
second digit shows the number of twos; in the number and add up the answers.

X128 %64 %32 x16 %8 x4 %2 x1 %128 x64 x32 x16 xB x4 %2 x1

Canyou converttheseto
er.;imal? (Answer page
44,

0+ 0+32 + 0+8+4+2+0 128+ 0+0+0+0+4+2+1
=46 =135

Here are some more examples which show how you
convert binary numbers to decimal.

Giving the computer big numbers

Inside the computer, numbers over 255 are stored in two bytes, called the “high orderbyte”
and the “low order byte”, just like addresses. The high order byte shows how many 256s
there are in the number and the low order byte isthe remainder. As with addresses, the
computer always deals with the low order byte before the high order byte and you haveto

store them in that order in the memory.

- Numberover265 | [rowa e

12420 - 256 = 48 remainder 132 1

=

Highorderbyte
R
To give the computer a number over 255 If you want to use the number asdataina
you have to work out the value for each machine code program you have to convert

byte. To do this you divide the number by each byte to hex. To do this, divide each
256. The answer is the decimal value of the byte by 16, then convert the answersand
high order byte. The remainder is the low remainders to hex digits as described on
order byte. page 11.

——— - S What are the decimal high order and
307; 21214; 759; 1023. .. 3% low order bytes for these numbers?
Andwhat arethey in hex? (Answers
on page 44.)

P

The carryflag

The carry flag is a single bit in the flags
reqgister (also called the processor
status reqgister), which isusedto
indicate when the answer to a sumis
greater than 255 and will not fit intoone
byte (eight bits). Whenever this
happens the computer automatically You can think of the carry flag as a ninth bit
putsa | in the carry flag. Thisiscalled indicating that a binary 1 has been carried
setting the carry flagand making it Ois over from column eight of a number. For
called clearingt. example, look at the sum 164 + 240
(10100100+ 11110000 in binary), below.

oy g To add binary numbers you carry 1
Lt each time acolumn totals morethan

1just as you do in decimal addition

when a column totals more than 9.

Theanswer to this sum is 404 which takes the computer it would be represented by
up nine bits in binary. The ninth bitshows _ the bitinthe carry flag.
how many 256s there are in the number. In

Carryinginthe Z80

The Z80 has two different adding
instructions: ADD and ADC. ADD tellsthe
computer to add two numbers but toignore
any carry over from previous calculations.
If the calculation results in a carry over, the |
computer will set the carry flag and if there ADC stands for “add with carry” and it

is no carry it will make the carry flag0. tells the computer to add two numbers plus
the carry flag, and to set or clear the carry
flag depending on the result. If youare
doing a series of calculations it is best touse
the ADD instruction for the first sumto make
sure you do not include a carry left over
from a previous operation, and thentouse
ADCin case there was a carry from the first
calculation.

, Youcanseehowthe

{ carryflagworksin
the program over
the page.

The 6502 has only one adding instruction, it is important to clear the carry flag using
ADC, soit always includes the contents of the instruction CLC (clear carry flag) before
the carry flag in calculations. Because of this youdo any additions. 29

Big number programs

Before you can run the programs on these two pages you need to work out the high
and low byte for each of the numbers you want to add and poke them intothe

memory. For example, say you want to add 307 and 764.

High
order
byte

First number: 307
307 +- 256 = 1 remainder 51

Second number: 764
764 +~ 256 = 2 remainder 252

Loworder Highorder

Highorder
byte

Low order
byte

Next you need to poke these bytes into
memory locations at the beginning of the
area you have reserved for machine code.
For each number, the low order byte must
be in the first location, followed by the high
order byte. In the picture above, the two

Z80 big number program

bytes for the first number are stored in
locations W and W1 and the bytes forthe
second number are in locations X and X1.
Youneed three locations, Y, Y1 and Z for the
answer (one for the low order byte, one for
the high order byte and one for a possible

carry).

Adding the two numbers on the Z80 is quite easy as you can use the registers in pairs, with
each pair holding the two bytes for one number. You can use the H and L registers asone
pair and the B and C registers as another. When they are used like this they are referredto
as HL and BC. When you are not using the accumulator you use the HL registers foradding.
Here are the mnemonics and hex codes for the program. It may help youto look atthe
picture at the top of the page when you study this program.

Mnemonics Hex codes

Meaning

LD HL, (address W) | 2A, address W

Puts byte from address W (low order byte of
first number) into register L and byte from
address W1 (high order byte, first number) into
| register H.

LD BC, (address X) ED 4B, address X

_ This opcode is

two bytes long.

Puts byte from address X (low order byte,
second number) into register C and byte from
address X1 (high order byte, second number)
into register B,

ADD HL,BC t 09

Adds contents of HL and BC and leaves result in
HL. It does not add in the carry flag but it does set

the carry flag if necessary.

LD (address Y), HL 22,address Y

Stores low order byte of answer in address
Y and high order byte inaddress Y1.

-—-—f-._""'-'-_-
LD A, &0 3E,0 See opposite page for how the See opposite for
ADC A, &0 CE.,0 computer checks the carry flag. | howtodisplay
LD (address Z), A 32 address Z the result of
RET Cg Batom: 'Lthliprc:-gram.

To run the program you need to fill inthe

hexaddresses for W, X, Yand Z. (Don't

forget to reverse the pairs of digits.) When
30 youusetheregistersin pairs youneed only

specify one address for each pair. The

computer automatically puts the byte from |,
the next consecutive address into the other £
register in the pair.

Checking the carryflag

Add with
carry, 0.

q- 100NNNAR .
Lines 5-7 of the Z80 program are for accumulator (Sth line), thenadd {J. using the
checking the carry flag. Youcannot loadthe add with carry instruction. If the carry flag
contents of the carry flag straight intoa was set by the previous calculation the
register, or into the memory. The only way accumulator will now contain 1 (from the
to see if it has been set is to doanother carry flag) and this is stored in address Z
addition. To do this you put O into the (7Tthline).
6502 big number program

Here is the program for adding numbers greater than 255 on the 6502. Before you run ityou
need to work out the high order and low order bytes for the two numbers and pokethem
into the memory as described on the opposite page.

<

First the program Then it puts the low order by'te ofthefirst Ifthe resultisgreater

clearsthe carryflag number into the accumulator andadds than 255 it setsthe
in case it was set by with carry the low order byte of the carry flag.

aprevious operation. second number (2nd and 3rd lines).

It stores the result in location Y (4th line). Then it adds the two Lines 8-10 checkto

high order bytes and the carry (if there was one) fromthe see if the carry flag
previous sum. It stores the result in location Y1 (7th line). was set using the same

: method as shown at
Seeing theresult the top of the page.
The result is stored as three bytes. The low
order byte (location Y) shows the number of
units. The high order byte (location Y1) - — :
shows the number of 256s. This time thecarry | (Seeifyo g ;,g n '?hdiptt the progra rjt‘lh

. " on page 27 so that it can cope wi

(location Z) shows the number of 65536s. T?h " [results greater than 255. Hint: you
see the result use the instruction shownonthe =4 eedtoadd lines to check the carrys

right. (Replace Y, Y1 and Z with your ' flag. (Answer page 44,
computer'saddresses.) o

Displaying a message on the screen

The next program shows you how to use machine code to display a message onthe
screen. The program for the Z80 1s on the opposite page and the one for the 6502 ison
page 34. The two programs follow the same basic principles, although the methodis
slightly different for the different microprocessors.*

How the program works
Message e £ 1 RAM Signal «

T

2t

First you poke the character code for each ofthe message you poke inthe code 255asa
letter of your message into locations at the signal to tell the computer this isthe end of
beginning of your free RAM area. Each the message.

letter takes up one byte. At the end

The program loads each byte

of the message into the accumulator displayed on the screen. Thenthe

and compares it with 255. If the byte of computer jumps back to the beginning of
message does not equal 255, it storesitin the program to find the next byte of the
the screen memory and it is automatically message in the memory.

Comparing things

Youuse the opcode CPonthe Z80and CMP resultis 0, the two bytes are equal and it sets
on the 6502 to tell the computer to compare the zero flag in the flags register to 1. If they
a byte with the one in the accumulator. The are not equal the zero flagis 0. You canthen

computer compares them by subtracting tell the computer to goto another part of the
one from the other. (Thisis justatest,infact, program, or carry on with the next instruction
32 thetwo bytesremain unchanged.)Ifthe depending on whether the zero flagis 1 or 0.

*On the Spectrum (Timex 2000) you will not get a legible message on the screen because of the way the
sCreen memory is organized.

Z80 message program

Here are the mnemonics and hex codes for the Z80. Before you run the program, poke your
message into free RAM. Then fill in the addresses in lines 1 and 2 of the program. The last
instruction of the program tells the computer to jump back to the third instruction.

You need to insert the address where the third instruction will be stored in your computer,
into the last line of the program.

Mnemonics Hex codes B, .
This is immediate
LD HL,screenaddress 21, screenaddress addressing - the operand is
LD DE, messageaddress| 11, message address the data to be loaded into
LD A, (DE) 4 1A the registers.
CP,&FF FB. XY
RET 2 C8
LD (HL).A 7 Inindirect addressing the
| INC, DE 13 operand is written in
INC, HL 23 brackets.
JP, address of 3rd \ C3, address of 3rd
instruction instruction

In this program, register pairs HL and DE are used as pointers to the addresses wherethe
computer should store or fetch data. This is called “indirect addressing”. The instructionsin
the third and sixth lines use indirect addressing.

Inthe first two lines, the computer puts the screen address (the address where data isto
be stored) into register pair HL and the message address (the address from which datais
fetched), into register pair DE.

a1
5 N

Address of
first byte of message.

LD A, (DE) tells the computer to read the
address in DE and then fetch the byte from
that address and put it in the accumulator.
This is indirect addressing. Thenit
compares the byte in the accumulator with

&FF (the hex for 255). RET Z tellsthe
computer to return to BASIC if the zero flag
is 1 (i.e. if the byte equals 255). If the zero
flagis 0, it carries on with the next
instruction.

LD (HL),A also uses indirect addressing. It
tells the computer to read the address in HL
and then store the contents of the
accumulator (the message byte) at the
location with that address. INC is the
mnemonic for “increment” and means

increase by one. In the seventh and eighth
lines the computer adds one to the
addresses held in DE and HL so that wheniit
jumps back to the instruction in the third
line, it fetches the message byte from the
next memory location.

33

6502 message program

Here are the mnemonics and hex codes for the 6502. Before you run the program youneed
to poke the character codes for your message into free RAM, followed by 255, the signal for
the end of the message. Then put the address, in hex, of the first location wherethe
message is stored, in the second line of the program. Put an address in your computer’s
screen memory in the fifth line.

You also need to fill in the seventh line with the address where the second instructionin
the program will be stored in your computer. This makes the computer jump backto
repeat the program.
Inthe fourth line of

Mnemonics Hex codes | > thehexcodesthe
LDX #&00 A200 By ' figure 07 tells the
LDA message address, X #BD message address : computer how
CMP #&FF COFF] . many locations to
BEQ to RTS instruction - F0 07 ¥\ jumpto reach the
STA screen address, X k 9D screen address RTS instruction.
INX | E8
JMP address of 2nd instruction| 4C address of 2nd instruction
RTS +60
This program uses another addressing Y registers are added to the operand to give
mode, called “indexed addressing”. In the address where the data is stored. The
indexed addressing, the contents ofthe Xor second and fifth lines use indexed addressing.
RAM
B EHEIE
o E 65? /761 e

In the first line, the computer puts Ointothe given in the instruction. The result givesit

X register. The second instruction uses the address of the data to be loaded into the
indexed addressing sothe computeradds ~ accumulator (a byte of message).
the contents of the X register to the address Seven bstos :
- - — | | | . . |8
. CMP #&FF {| k ; ﬂ I []
‘__m.__ nﬂﬁ b 4::: Y| ho\ &0
-nn~- e gt il Rl bl gl
15] - I—_lr_‘_lr = I H RSB
CMP in the third line makes the cumputer flagis 1). Inthe hex codesitis followed bya
compare the byte in the accumulator with number telling the computer how many
&FF (hex for 255), the signal for the end of locations to jump. We want the computerto
the message. If they are equal it sets the branch to RTS if the message byte equals
zero flag to 1. The next instruction, BEQ, 255 and there are seven bytes between the
stands for “branchif equal” (i.e. if the zero branch instruction and RTS.
¢ qf'_sczscu MEMORY /00 0
A
V224 E 0=
o o— = O I
Next, in the fifth line, the program uses the X register. Then it jumps back tothe
indexed addressing to store the byte inthe second instruction. This time Xis 1, soit
accumulator (the message byte) at the loads the next byte of the message intothe
address given in the instruction plus X. accumulator and stores it at the next screen
INX stands for “increment X" and it location.

34 makesthe computer add 1 to the contents of

RET

Jumping and branching

Making the computer go to an instruction in another part of the program iscalled
branching. There are three different ways of branching: jumps, subroutinesand
conditional branches. In a conditional branch the computer carries out a testand
then branches, or goes on with the next instruction, depending on the result ofthe
test. You can find out more about conditional branches over the page. Jumps justtell
the computer to go to a certain address.

The program counter

The program counter is a special 16-bit register which holds the address of the next
instruction the computer is to carry out. The computer reads the number in the program
counter and then goes to the location with that address to fetch its next instruction. Thenthe
program counter is increased by one so it points to the next memory location.

When you tell the computer to jump or Jump
branchto a certain address, thataddressis sequence from that address. The opcodes
put in the program counter and the for a jump on the Z80 and 6502 are shownin

computer then carries out the instructionsin the picture above.

Subroutines

The instruction “CALL address” on the Z80 and “JSR address” (jump to subroutine) onthe
6502, tell the computer to go to a subroutine. This is just like in BASIC and at the end ofthe
subroutine you need the return instruction (RET on the Z80 and RTS on the 6502).

When you tell the computertogotoa instruction after CALL or JSR) are stored or
subroutine, the address of the subroutineis “pushed” on the stack. The stack is a special
put in the program counter. The contentsof part of RAM set aside for the computer'suse
the program counter (the address ofthe (see page 10).

- =

~% RTS

-
\/
(7

Y

'-._.,‘g@ LJLJU

Lo

oL

When the computer reachesthe RTSor RET This is the address of the instruction after
instruction at the end of the subroutine, it the one which sent it to the subroutine. This
retrieves, or “pops”, the last item off the is also what happens when you tell the
stack and puts it in the program counter. computer to run a machine code program.

35

36

Conditional branches

In a conditional branch the computer tests one of the bits in the flags register and then,
depending on the result, either branches or carries on with the next instruction. Here arethe
bits in the flag register which you can test in conditional branches.

' -
0 ! o
¢ Nors|H B o9
i
| 1 Z Thisisthezero
flaganditissettol
if two pieces of data
are equal.
) O] N NI A=
Nor S Thisisthesign V or P/V This is called the overflow bitonthe 6502. C Thisisthe carry
bit. ItisreferredtoasN Onthe Z80 it has two functions and is called the flag.Itissetto]
onthe 6502and Sonthe parity/overflow. As anoverflow bititissetto l when whenthe answerto
Z80.Itissetto 1l when the result of a calculation in two's complement a sum will not fit in
the result ofa notation (see opposite) results ina carry overtothe one byte.
calculationisnegative signbit. _
and 0 for positive As a parity bititis setto 1 if there is an odd number
results, of ones in a byte and is used for checking purposes.
Various instructions in addition to the on the 6502 the instruction DEC
compare instruction cause these flagstobe (decrement) affects the sign and zero
automatically set or cleared. For example, flags.*

Conditional branch opcodes
Here are the conditional branch instructions for testing each bit.

o
*q | JP C address
Z80 |

280 6502

Jumpif. .. Branchif...

R e thereisacarry (C = 1). BCS................thereisacarry (C = 1).
N nocarry(C=0)

SO e equal(Z=1)

HENE not equal (Z =

1 S P minus(S= 1)

o oS plus(S = 0)

JPPO . parity odd (P/V

JPPE e parity even (P/V = 0)

Jump to a certain

addressifthereisa

carry.
Afterthe “JPtest” instructiononthe Z80you addressing
give the computer the address of the “displacement”, or “offset”.
instruction you want it to jump to. Onthe The Z80 has an additional conditional
6502 you give the computer a numberwhich branch instruction, “JR test”, which youuse
tells it how many locations it has to jump with a displacement rather than an address.
forwards or backwardsto find the JR stands for “jump relative” and you can only
instruction. This is called “relative test the zero flag and the carry flag withJR.

* A complete list of your microprocessor’s instruction set will tell you which instructions affect which
flags.

Rememberto count

Working out the displacement two bytes foran address.

When you give the computer a displacement number in a conditional branch, the
computer works out the address of the instruction it is to jump to by adding or subtracting
the displacement from the program counter. To work out the displacement, countthe
number of bytes up to and including the instruction you want to jump to. Start atthe
instruction after the conditional branch and count that as 0 (because the program counter
will already point to that instruction). For example, here are two short 6502 programs
which show how you work out the displacement. (The method is the same for the Z80.)

LDA address =
CMP #&FF
BNEtoRTS

(STA address
Lli LDAM [CMA| FF § [BNEY| O3 §f STAY| (b ¥ hb | RTS§ |
To make the computer jump to the RTS In the example below, the displacement
instruction in the example above, the to make the computer jump back tothe
displacement is 3. ADC instructionis —6.

LDA #&00

ADC #&01 -

(GNF 55 couas

RTS «—— mrvetion|fy pa Bl oo 4| apc Y| or W cmpt[FF {4 BNERL -6 | RTS

Forwards and backwards jumps

For forwards jumps you just translate the displacement into a hex number and insert itinthe
program. For backwards jumps, though, the displacement is a negative number and thereis
no way of indicating negative numbers in eight bit binary. Instead, you use a differentsystem
of notation called “two’s complement”. In two's complement, the left-hand bitisused asa
sign bit, If this bit is 1 the number is negative. If it is 0 it is a positive number.

Two’'s complement

1. To work out the two's complement of a
number, say 6 (the displacement forthe
program above), first write down the
number in binary.

2. ThenyouchangealltheOsto l andthe 1s
to 0. This is called “flipping the bits” or
“complementing” a number. The result is
called the “one's

128s 64s 32s 16s 8s 4s 25 1s
1 6=0 99 4307 10

=11 "3 80

1and 1 make
Ocarry 1.

complement”. L
3. Nextadd 1. The Thisisthetwo's 4. 1t 6D
resultis the two's complement of 6.

complement of the

number.

4, Now you need to convert this to hexto ¢ %0 B - W A ls
insert it in the program. The easiest way to 1 1.1 1 1 0.1 0
do this is to divide the number down the =decimal 15 = decimal 10
middle and work out the decimal and then = hexF = hexA

the hex value of each group of four digits.

Sothe hex representation of thetwo's backwards displacement you can have.

complement of 6is FA and forabackwards The biggest forwards displacement is 127,
jump you insert this number in the program. the highest number you can make withthe
Intwo's complement, the highest number eighth binary digit set to 0 to indicate a
youcanrepresentis 128. Thisisthebiggest positive number.

Canyouwork outthe hexforthetwo's
complement of 12, 18 and 97 (Answer page 48)

37

Screen flash program

On these two pages there 1s a program which swaps two blocks of display onthe
screen to make a flashing effect. It shows how simple animation works. The
program for the Z80 is given below and the one for the 6502 1s on the opposite page.
At the end there are guidelines for running the program for bothmicroprocessors.

Z80 screen flash
Put very simply, the program swaps the two blocks of the diplay by loading a byte from
each block into the registers, then storing the byte from block b in the screen address for

block a and vice versa.

(F)

P 0000000 oy gr,“m“***‘m*“*:z".:*m"“":*; Yoioia
EcoummLE 000000 e b e -] Block b

ADDRESS b H

ADDRESS Q. e ‘ J
The program uses indirect addressing. The the program repeats, these are the
screen addresses for the first byte of each addresses of the next two bytes in each
block are stored in registers HL and DE. block on the screen.
The computer reads the addresses in these Register B holds the number of bytes to
registers each time it loads or stores the be swapped. Each time the program
bytes. After swapping two bytesthe repeats, B is decremented (decreased) by |

instruction INC (mnemonic for increment) soitacts asacounter. WhenB=0allthe
makesitadd oneto HLand DEsothatwhen bytes have beenswapped.

Z80 program =
n=number of bytes in one block; a=first address of block a; b=first address of blockb. =]

Mnemonics Hex codes | Meaning (HLholds address
LDB,n 06,n Counter. { forblockaand
LDHL, (addressa) | 21,addressa| PutaddressofblockainBL.) 1. 0/05 address
LD DE, (address b) 11,addressb| PutaddressofblockbinDE.
LDC, (HL) 4E Load C with contents of address in HL (indirect
LD A, (DE) 1A Load A with contents of address in DE (indirect
LD (HL),A 77 Store contents of accumulator at address in HL (indirect).
LDA,C 79 Put C (first byte block a) into accumulator.
LD (DE),A 12 Store contents of accumulator at address in DE.
INC HL 23
ING DE 13 Add oneto HLand DE.
DECB 05 Decrement B, the counter.
LDA, &00 3E, 00 Put 0 in the accumulator
CPB B8 Compare B with contents of the accumulator (0).
If B does not equal zero, jump back &F3 locations to load
JR NZ to 4thinstruction| 20, F3 next bytes into registers. F3 is hex for two's complement
of 13 (see page 37).
RET C9 Return.

Filling in the data and addresses

n (number of characters in addressesaandb If youwanttoswap the toptwo
one block) To find n, multiply] | lines of the screen with the next two lines, make
‘| the number of characters in address a the first address of your computer’s screen
aline by the number of lines [| memory. Address b is the address for block a plusthe
in one block. Convert to hex| [number of bytes to be swapped. Convertboth
addressesto hex.

6502 screen flash

This program swaps the two blocks, byte by byte (i.e. character by character), starting
with the last byte in each block. It loads these bytes into the registers, then stores the byte
from block a in the screen location for block b and vice versa. Then the programis

repeated to swap the next pair of bytes.

a' EREREERARAEREEEE R RS EE SRR RER l
FREHAEEAREEAER R ERRARERRRER AR AR

It uses indexed addressing to find the
address for each byte. The total number of
bytes in one block isloaded intothe X
register. Then, to store or load a byte, the
number in the X register isadded tothe

6502 screen flash program

starting address for each block. The
instruction DEX (decrement X) makesthe
computer subtract 1 from X so that, when
the program repeats, the computer fetches
the next byte back in the display.

See the bottom of the opposite page for how to work out the values of n,aand b. Then
subtract 1 from a and b so that when the computer adds X it gets the last address ineach
block, rather than the first address of the next line. (Make suren,aand bareinhex.)

Mnemonics Hex codes | Meaning

LDX #n A2n Load X with the number of bytes in one block.

LDA addressa, X BD addressa| Putcontents of location with address a a+Xinto accumulator. |

TAY A8 Transfer contents of accumulator to register Y.

LDA addressb, X BD address b| Put contents of location with address b+ X into accumulator.

STA addressa, X 9D address a| Store contents of accumulator ataddressa+X.

TYA 98 Transfer contents of Y register back to accumulator.

STAaddressb, X 9D address b| Store contents of accumulator ataddress b+ X.]

DEX CA Decrement X. Zeroflag is set to | whenX=0. [l
: ; Branch back &EF locations if X is not equal to 0. EF is the

BNE to instruction two | DOEF hex fortwo's complement of 17 (see pgglgle 37).

RTS | 60 Return

The best way to run this programisasa
“machine code subroutine in the hex
loader. To do this, follow these steps:

1. Type inthe hex loader and put the hex
codes for your computer’s
microprocessor in line 160.

2. Atline 180 you need two loops to poke
the characters for the display into the
screen memory. For example, here are
the lines for two rows of *s (code 42)
followed by two rows of Os (code 48), fora
computer with a 40 column screen.

FOR J=0 TO 79
POKE first screen address + J,42

NEXT J

180
190
200

210 FOR J=80 TO 159
220 POKE first screen address + J,48
230 NEXT J

Loading and running the program for the Z80 or 6502

3. Next, add the following lines to theend
of the program:

240 CALL address where machine
code is stored

250 FOR K=1 TO S00

260 NEXT K Change figure 500 in delay
270 GOTOD 240 loop to suit your computer.

4. Now type RUN to run the program. The /!
hex loader pokesthe hex codesintothe
memory, then pokes the display codes
into the screen memory. Lim240ma]:es‘
go to the location where the machine cod
program is stored and carry out the
instructions. By itself, the machine code
program only swaps the display once, so
line 270 makes it call the program again
and again to make a flashing effect. You
need the delay loop because the machine
code is so fast.

40

This tells the
computertogoto
location 16002 and
carry out the
instructions there.

Going further

[fyou want to find out more about machine code the best way is to try writing your
own short programs and to test and study programs written by other people. One
good way to use machine code 1s as a short subroutine to carry out a particular task
ina BASIC program. For instance, machine code is particularly suitable forsorting
data or filling the screen with graphics because it is faster and takes less memory
space than BASIC. You can find subroutines for doing things like this inmagazines.
If the subroutines are written specially for your computer you can run them without
alteration. If they are written for another make of computer which uses the same
microprocessor you will need to change any addresses in the program for
addresses in the area in your computer's memory that you have chosen tostore

machine code.

Machine code subroutines

Here are the steps you need to follow touse
amachine code subroutine in a BASIC
program.

1. Make room in the memory for the
machine code by lowering the top of user
RAM (see pages 20-22).

2. Put the codes for the machine code
subroutine into line 160 of the hex loader
program on page 24. (Make sure thereisa
return instruction at the end of the machine
code program.) Add lines to poke inany
data bytes if necessary, then type inand run
the hex loader.

3. Number your BASIC program using line
numbers starting after those used in the hex
loader. At the point where you want the
computer to carry out the machine code,
put your computer's command for running a
machine code program as a line inthe
BASIC program.

4. Type the BASIC program into your
computer and then type RUN. The
computer will carry out the BASIC
instructions and when it reaches the line
telling it to run the machine code program it
will go tothe address where the machine
code is stored and carry outthe
instructions. The return instruction at the
end of the machine code will send the
computer back to the next line in the BASIC
program.

Using an assembler

An assembler (a program which enables
you to type in a machine code programin
mnemonics) makes machine code
programming much easier. You can buy
an assembler on cassette for most home
computers and some, such asthe BBC,
have a built-in assembler.

With an assembler you cantype in
comments alongside the mnemonics to
remind you what each line does. The
assembler will then display the program
on the screen in hex and mnemonics, with
the addresses where the instructions are
stored and the comments.

The assembler will automatically
reverse the pairs of digits in addresses
and work out the address or displacement
for a jump. Some assemblers allow youto
use symbolic names for data, like
variables in BASIC. A good assembler
also has a debugger to find mistakes and
an editor to help you correct them.

Suggested books

There are lots of books on machine code
specially written for one particular make of
microcomputer. The best way to choose
one is toread the reviews in computer
magazines. You may also find the following
books useful:

Programming the Z80 and Programming
the 6502, both by Rodney Zaks and
published by Sybex. These are very
detailed guides with complete lists of all the
instructions for each microprocessor. They
are not easy to read for beginners, butthey
are useful for reference.

VIC 20 Programmer’s Reference Guide
published by Commodore.

6502 Machine Code for Beginners by A.P.
Stephenson, Newnes Microcomputer Books.

Decimal/hex conversion charts

This chart converts hex numbers from 0 to FF to decimal and vice versa.

Hex to decimal

To convert a hex number to decimal read

Decimalto hex
To convert a decimal number to hex, find

along the row for the first hex digitinyourhex the decimal number inthe chart. Thenread
number and down the column forthe second back along the row for the first hex digitand

hex digit. The number where the row and

up the column for the second hex digite.q.

to hex digits. A calculator would give you
the answer as 8 375,

S0 134 + 16 = 8 remainder 6 therefore
decimal 134 is 86 in hex

column meet is the decimal equivalent for 154is 9A.
your hex number, e.g. hex Al isdecimal 161.
Second hex digit
0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 | 64| 65| 66| 67| 68| 69| 70 71| 72 73| 74| 75| 16| 77| 78 | 79
=5 80 81 82 83 84 85 86 87 88 89 90 9 92 93 94 95
._E’ 6 96 97 98 99 | 100 | 1071 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111
x| 7 M2 | M3 | 114 [115 | 116 | 117 | 118 | 119 | 120 | 121 122 | 123 | 124 | 125 | 126 | 127
E 8 128] 129 [130 | 131 | 132 [133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143
19 [144|145 146 | 147 [148 | 149 [150 [151 | 162 | 163 | 154 [165 [156 | 157 | 158 | 159
[A[160 [161 [162 [163 | 164 | 165 | 166 [167 | 168 | 169 | 170 [171 | 172 [173 | 174 [175
B [176 [177 [178 [179 [180 [181 [182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191
C [192]193 | 194 [195 | 196 [197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207
DJ208 [209 | 210 (211|212 [213 [214 [215 [216 | 217 | 218 | 219 | 220 | 221 | 222 | 223
E [224 | 225 [226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 [234 | 235 | 236 | 237 | 238 | 239
F | 240 | 2471 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255
Converting addresses
Touse the chart to convert hex addresses, equivalent for the second pair of digits to
look up the decimal equivalent for the first find the position on the page. Multiply the
pair of digits in the address. Thisisthepage = page number by 256 and add the position
number. Then look up the decimal on the page.
Two’s complement conversion chart
This chart gives the two's complement in find the number in the chart, thenread
hex of decimal numbers from —1to —128. along the row for the first hex digit and up
To convert a number to two's complement, the column for the second digit.
Second hex digit
F E D | B A 9 8 7 6 5 4 3 2 1 0
| F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
o E| 17] 18] 19| 20| 21| 22] 23] 24| 25| 26| 27| 28] 29| 30| 31| 32
E D] 33| 34| 35| 36| 37| 38| 39| 40| 41| 42| 43| 44| 45| 46| 47 | 48
@icC| 49| 50 51| 52| 53] 54| 55[56| 57| 58| 59 60| 61 62| 63| 64
w|B| 65| 66| 67 | 68| 69| 70| 71| 72| 73| 74| 75| 76| 77| 78| 79| 80
= Al 81] 82| 83| 84| 85] 86| 87] 88| 8 | 90| 91| 92] 93] 94] 95| 96
9| 97| 98| 99| 100| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108] 109 | 110 | 111 | 112
8 113|114 115 116 | 117 | 118 | 119 [120 | 121 [122 | 123 | 124 125 | 126 | 127 | 128
DO i n g CDI‘IVEI"SiD nsona CEICUI atﬂl' To convert the remainder toa whole
When you do conversions on a calculator number you subtract the number before the
the calculator displays the remainderasa decimal point, then multiply by the number
decimal number. For example, if youare you divided by.
converting decimal 134 to hex you divide by 5
16 then convert the answer and remainder BAI5=8=0.3/6X10=6 4]

42

Z80 mnemonics and hex codes

The mnemonics and hex codes for the instructions covered in this book are givenon
the next few pages. The term "Implicit addressing” used in these lists is just the name
for instructions where no operand need be specified in the hex code. There area
few other instructions not listed here and if you want to go further with machine code
you will need a complete list of the Z80 instruction set (see page 40). The following
abbreviations are used in these lists:

n =number
nn = two byte number
r =reqgister

Xy = register pair
x = address

¢ = condition
d =displacement

ADC An Addwithcarry,a
number, n, to the accumulator.

CALLx Gotosubroutine
starting at address x.

DECr Decrementregisterr.
(Implicit addressing.)

of register pair rr to HL.

CP (HL) Compare contents of

(Immediate addressing.) (Immediate addressing.) DECA 3D
ADCA,n CE,n CALLx CDx DECB 05
ADC Ar Add with carry CALLc,x Gotosubroutine DECC 0D
register r to the accumulator. starting at address x DECLD 13
(Implicit addressing.) depending on condition c. DECE 1D
i c may be Z (equal); NZ (not DECH 25
ADCA.A 8F equal); C (carry); NC(no DEC L 2D
ADCA,B 88 carry); PE (parity even); PO :
ADCA.C 89 (parity odd): M (minus) or P DEC T D'EC?E.HIEI‘H reg1_$le:
ADCAD A (plus). (Immediate pair rt. (Implicit addressing.)
ADCA,E 8B addressing.) DECBC 0B
ADC A H 8C CALLZ,x CC.x DEC DE 1B
ADCA,L 8D CALLNZ,x C4,x DECHL 2B
CALLC,x DC,x DECIX DD2B
HDCh HL,rx Afdd with carry, CALLNC,x D4x DECIY FD2B
the contents of register pair rr CALL PE x EC .x
to HL. (Implicit addressing. 5 , DEC (HL) Decrement
g g.) CALLPO,x E4,x contents of address held in HL.
ADCHL,BC ED4A CALLM,x FC.x (Indirect addressing.)
ADCHL,DE ED5SA CALLP,x F4,x DEC (HL) 35
ADCHLHL ED6A CCF Complement carry flag. :
(Implicit addressing.) INC r Incrementregisterr.
ADD A n Addanumber, n,to (Implicit addressing.)
the accumulator. (Immediate CCF 3F INCA 3C
addressing.)
CPn Compare contents of INCB 04
ADD,n Cé,n accumulator with data n. INCC 0C
(Immediate addressing.) INCD 14
ADD A,x Addregisterrtothe CPn Fen INCE C
accumulator. (Implicit .
addressing.) CPr Compare contents of INCH 24
W - register r with the accumulator. INCL 2C
ADD A*B 80 (Implicit addressing.) INC rr Increment register pair
ADD A* C 81 CPA BF rr. (Implicit addressing.)
ADDAD __ 82 LiL - INCBC 03
ADDA,E 83 CPC B3 INCDE 13
ADD AH 84 EEE gg INCHL 23
ADDA,L 85 CPH BC INC (HL) Increment contents
ADDHL,x Add the contents CPL BD of address held in HL. (Indirect

addressing.)

(DAL s cressing) accumulator with contents of INC(HL) 4
ADDHL,BC 09 address held in HL. (Indirect JPx Jump to addressx.
ADDHL,DE 19 addressing.) (Immediate addressing.)

ADDHLHL 29

CP(HL) BE

JP x C3x

JP (xx¥) Jump to address heldin

LD A, (x) Loadaccumulator

LDE,r Loadregister E with

register pair rr. (Implicit with contents of address x. the contents of register r.
addressing.) (Absolute addressing.) (Implicit addressing.)
JP (HL) E9 LD A, (x) 3A, (x) LDE.A 5F
JP (1X) DDE9 LDEB 58
JP(IY) FDE9 LD, (x) Loadregister pair rr LDE,C 59
with contents of addresses x LDE,D 5A
JP¢,x Jump toaddress x and x+1. (Absolute LDE,E 5B
depending on condition c. addressing.) LDE,H 5C
Ginay Do (equel) i thot LDBC,(x) ED4B, (x) LDEL 5D
A LABRITYS e L LDDE,(x) __ EDSB, (x) - :
carry); PE (parity even); PO ' ! LDH,r Load register Hwith
(parity odd); M (minus) or P LDHL, (x) 2A, (x) the contents of registerr.
i Implicit ing.
23;;‘;”;;;;‘;? y S LD Ar Load the accumulator : LE = :ddressm;';
with contents of registerr. 1
[JP CA,x (Implicit addressing.) ll:g gg gﬂ
JPNZ,x : . 1
Fe= gi; LDAA 7F IDHD =
JPNC.x D2,x LDAB 8 LDH.E 63
JPPE,x EAX i 79 LD H,H 64
JPPO,x E2,x tg :‘ED ;g‘ LDH.L 65
JP M, x FA,x LD A}H 7C LDL,r Load register Lwiththe
JPP x F2,x LD A‘ L 7D contents of register r. (Implicit
. . addressing.)
Et‘;slﬁﬂ‘ep Ji?;‘;';zﬂ:gg_d LDB,r Load register B with LDLA 6F
(Relative addressing.) the sy i TEEERaGE Y LDL,B 68
(Implicit addressing.) LDL,C 69
JRd 18d LDBA a7 LDL,D 6A
JRc,d Jump relative. Jump d LDB,B 40 i .
bytes (the displacement) LDB,C 41 LDL.H 6C
depending on condition c. LDB,D 42 LDL.L 6D
c may be NZ (not equal); Z LDB.E 43 LDr, (rr) Load register r with
(equal); NC (no carry) or C LDB,H 44 contents of address held in
(carry). (Relative addressing.) LDB,L 45 register pair rr. (Indirect
JRNZd 20.d addressing.)
Rzd _28d ryetoblemtont ooyl | WRTN1 TR
JRNC,d 30,d o : 3 LD A,(DE) 1A
JRC.d 38.d (Implicit addressing.) LDA,(HL) 7E
LDC,A 4F LD B,(HL) 46
LDrn Loadregister r with LDC,B 48 LDC,(HL) 4E
datan. (Immediate LDC,C 49 LD D,(HL) 56
addreseing-) LDC,D aA LDE,(HL) 5E
LD A,n 3E,n LDC.E 4B LD H,(HL) 66
LDB,n 06,n LDC,H 4c LDL,(HL) 6E
LDC.n OE.n LG L a0 LD (x),A Store the contents of
LD D,n 16,n ; : the accumulator in address x.
LDE,n 1E,n LDD,r Loadregister Dwith (Absolute addressing.)
LDH.n 26.n the contents of registerr.
LDLn 2E n (Implicit addressing.) LD (x).A 32,x
LDD,A 57 LD (x),rx Store the contents of
LD rr,nn Load register pairrr LDD,B 50 register pair rr at addresses x
with two byte number nn. LDD.C 51 andx+ 1_. (Absolute
(Immediate addressing.) LDD.D 52 addressing.)
LD BC,nn 01,nn LDD.E 53 LD (x),BC ED43,x
LD DE,nn 11,nn LDDH 54 LD (x),DE ED53,x
LDHL,nn 21,nn LDD,L 55 LD (x),HL 22,

LD (rr),x Storethe contents of RETC D8 SBC A,(HL) Subtract with
register r at the address held in RETNC DO carry the contents of address
register pair rr. (Indirect RET PE E8 held in register pair HL, from
addressing.) RETPO EO the accumulator. (Indirect
LD(BC),A 02 RET M F8 addressing).
LD (DE),A 12 RETP FO SBCA,(HL) 9E
LD (HL),A 77 s
LD (HL),B 70 SBC A,n Subtract with carry sg;; Set carry flag. (Implicit
LD (HL),C 71 data n from the accumulator, ROCIREIDG.)
D {HL]'D 72 (Immediate addressing.) SCF 37
LD (HL),E 13 SBCA,n DE,n SUBn Subtractdatan fromthe
LD (HL),H 74 accumulator. (Immediate
LD (HL),L 75 SBC A,r Subtractwith carry addressing.)
contents of register r fromthe
LD (rr),n Storedatanat ST (mlr?'ltplicit SUB, n D6, n
address held inregister pair1r. | | 4dressing.) SUBx Subtract contents of
(Immediate/indirect register r fromthe
addressing.) SBCAA 9F accumulator. (Immediate
LD (HL),n 36 SBCA,B 98 addressing.)
SBCA,C 99
RET Return from subroutine. SBCAD 9A SUBA 97
j . ' SUBB 90
RET C9 SBCA,H aC SUBD 97
RET ¢ Return from subroutine SBCA.L 9D SUBE 93
d din condition c.
oy bl SBCHL,rr Subtract with carry | |—2UBH 94
equal); C (carry): Ilqc (no COII}'BEIS of register pair rr from SUBL 95
carry); PE (parity even); PO register pair HL. (Implicit SUB (HL) Subtract the
(parity odd); P (plus); M addressing.) contents of address held in HL
(minus). (Indirect addressing.) SBCHL,BC ED42 from the accumulator. (Indirect
RETZ c8 SBCHL,DE __ ED52 S g
RET NZ Cco SBCHL,HL ED62 SUB (HL) 96
A N PN

Puzzle answers Tip: an easy way to work out the two's
Page11 ‘ 4 complement of a number is to subtract it
&ATindecimalis 167. 513in hexis &201. from 256, then convert the answer to hex.
I]"a‘_;.qs«:r 2?% s E.g. 256—6=250 whichis FA in hex.
. is an is e,
Z30 6502 "/;' :
Mnemonics Hexcodes | Mnemonics | Hexcodes I
LD A, &19 3E, 19 LDA #&19 A919 Put &19 in accumulator.
ADDA, &49 C6,49 ADC #&49 69 49 Add &49 to accumulator.
Store contents of
LD (address),A | 32, address STAaddress | 8Daddress :ﬁf,}‘;“s‘;“‘“ atacertain
RET C9 RTS 60 Return
2.64+12+14(641is &40, 12is &0C and 14is &0E)
Z80 6502 Meani
Mnemonics Hex codes Mnemonics | Hex codes P
LD A, &40 3E 40 LDA #&40 A940 Put &40 in accumulator.
ADD A, &0C C6,0C ADC #&0C 690C Add &0C to accumulator.
ADD A &OE CB.,0E ADC #&0E 69 0E Add &0E to accumulator.
Store contents of
LD(address), A 32, address STA address | 8Daddress agztrunulator ata certain
d a58s.
RET C9 RTS 60 Return

Puzzle answers continued on page 48.

6502 mnemonics and hex codes

This chart shows the mnemonics and hex codes for all the instructions (plus afew
more) covered in this book. The mnemonic instructions are given down the leftand
the hex codes for each instruction in the different addressing modes are shown
across the chart. Zero page addressing is just like absolute addressing, 1.e. the
operand is the address where the data is stored, but the address must be inpage
zero (1.e. locations 0-255) of the memory (see page 10). Implied addressing is justthe
term used to describe instructions where no operand need be specified, e.g. CLC.
There are a number of other instructions not given here, and if you want to gofurther
with machine code you will need to get a complete list of the 6502 instructionset.

< & 2 > (A
Addressing mode T 3 Yy 3 3 3 2
E 3 o 2 2 2 5
E I N & £ & -yroig
Data |Any Address |Address | Address | None | Displace-
Operandis address |inpage |+X +Y ment
Zero register [register
BADC Add with carry, i.e. add a byte, plus the 69 6D 65 7D 79
carry flag, to the accumulator. =
BCC Branchif carry clear. ir\lotethatnot allthe instructionscan / 90
BCS Branchif carry set. 2 be used in all the addressing modes.) BO
BEQ Branchif equal A FO
BMI Branch if minus. % O 30
BNE Branch if not equal. Do
BPL Branchif plus. (AN 10
BVC Branchif overflow clear. 50
BVS Branchif overflow set. 70
CLC Clear carry flag. 18
CMP Compare with the accumulator. C9 CD C5 DD D9
CPX Compare with register X. EO EC E4
CPY Compare with register Y. C0 CcC C4
DEC Decrement (subtract | from) memory CE Cé DE
location.
DEX Decrement(subtract | from) X register. CA
DEY Decrement (subtract 1 from) Y register. 88
INC Increment (add 1 to) memory location. EE EB FE
INX Increment (add 1to) Xregister. E8
INY Increment(add 1to) Y register. C8
JMP Jump to address specified in operand. 4c
JSR Jump to subroutine starting at address 20
specified in operand.
LDA Load accumulator. A9 AD A5 BD B9
LDX Load X register. A2 AE Ab BE
LDY Load Y register. A0 AC Ad BC
RTS Return from subroutine. 60
SBC Subtract with carry. Subtract from the) ED ES FD F9
accumulator and borrow from the carry flag.
SEC Setcarry flag. 38
STA Store accumulator ata certain address. 8D 85 9D 99
STX Store X register at a certain address. 8E 86
STY Store Y register at a certain address. 8C 84
TAX Transfer accumulator to X register. AA
TAY Transfer accumulator to Y register. AB
TXA Transfer X register to accumulator. 8A
TYA Transfer Y register to accumulator. 98

45

Machine code words

Hash sign. Thisis the sign used onsome
computers to indicate hex numbers. For the
6502 microprocessor itisused to indicate a
piece of data.

& Ampersand sign. This is another sign
used to indicate hex numbers.

Absolute address. The actual address ofa
piece of data.

Absolute addressing. Anaddressing
mode in which the instruction contains the
address of the data. Also called extended
or direct addressing.

Accumulator. The register where bytes of
information on which arithmetical or logical
operations are to be carried out, are held.
Address. Anumber usedtoidentifya
location in the computer’'s memory.
Addressing modes. The various waysin
which you can tell the computer where to
find the data to work on in a machine code
program.

Arithmetic logic unit (ALU). Thearea
inside the CPU where arithmetical and
logical operations are carried out.
Assembler. A program which converts
instructions written in assembly language
mnemonics into the computer's own code.
Assembly language. A method of
programming the computer using letter
codes, called mnemonics, to represent
machine code instructions.

Binary. A number system with two digits, 0
and 1 and in which each digit in anumber
has twice the value of the digit on itsright.
Bit. A single unit of computer code, i.e.al
or 0 representing a pulse or no-pulse signal.
Buffer. Atemporary storage areainthe
computer’s memory where data is held on
its way to or from its final destination.
Branch. Aninstructiontellingthe
computer to jump to another lineina
program.

Byte. A group of eight pulse and no-pulse
signals (or "bits”) which represents a piece
of information in computer code.

Carry flag. Abitinthe flags register which
isset to 1 when the result of an addition will
not fit into eight bits.

Clear. Tomake a bit, e.g. one of the bitsin
the flags register, zero.

Complement. Alsocalled “flippingthe
bits” this is the process of changing all the

46 Osinabyteto]l andallthe l1sto0.

Conditional branch. An instruction which
tells the computer to jump to another line in
the program depending on the result of a test.
Direct addressing. See absolute
addressing.

Disassembler. A program whichcan
display the contents of a series of memory
locations on the screen in assembly
language. You can buy a disassembler on
cassette and it is useful for debugging
machine code programs and for examining
the programs in your computer's ROM.
Displacement. A number used inajump
or branch instruction to tell the computer
how many locations to jump to find the next
instruction. Also called an offset.

Flag. Abitinthe flagsregister whichis
used to indicate a certain condition, e.g. the
presence of a negative number, or ofa
carry over in an addition.

Hexadecimal, or hex. A number system
which uses 16 digits (the numbers 0-9and
letters A-F). Each digit in a hex number has
16 times the value of the digit on its right.
Hexloader. A BASIC program which
converts the hex codes of a machine code
program into decimal numbers and pokes
them into the computer’'s memory.

High order byte. The firsttwodigitsina
hex address which represent the number of
the page in the memory where the address
is. Also, the two digits which show how
many 256s there are in a number larger than
2585.

HIMEM. The highest address inuser RAM.
Immediate addressing. Anaddressing
mode in which the data for an instruction is
included in the instruction.

Implicit addressing. Anaddressing mode
in which the operand is understood and
need not be specified.

Implied addressing. Same asimplicit, see
above.

Indexed addressing. Anaddressing
mode in which the contents of an index
register are added to the address givenin
the instruction to work out the actual
address of the data.

Index registers. The registersusedin
indexed addressing and also, in the 6502, as
general purpose registers.

Indirect addressing. Anaddressing
mode in which the operand isused asa

pointer to the data. The operand may be an
address or, in the Z80, a pair or registers,
and it holds the address of the data.
Instruction. Anoperationto be carried out
by the central processing unit.

Interpreter. A program which translates
instructions in BASIC (or other high level
language) into the computer’'s own code.
Instruction set. All the operations which
can be carried out by a particular
MiCroprocessor.

Jump. Aninstruction whichtellsthe
computer to go to another line inthe
program.

LIFO. This stands for “last in/first out” and
describes the method used by the
computer to store information in the stack.
Low order byte. Thetwo hex digitsinan
address which give the position of that
address within a page of memory. Also, the
two hex digits which show the number of
units in a number larger than 255.
Microprocessor. The chip which contains
the computer’s CPU and which carries out
program instructions and controls allthe
other activities inside the computer.
Mnemonic. A letter code usedin
assembly language to represent an
instruction in the computer’s own code. The
word mnemonic (pronounced nemonic)
means “to aid the memory” and assembly
language mnemonics sound like the
instructions they represent.

Objectcode. A programwhich hasbeen
translated into machine code from
assembly language or another high level
language.

Offset. See displacement.

Opcode. The part of an instruction which
tells a computer what todo.

Operand. The part of an instruction which
tells the computer where to find the datato
work on.

Operating system. A group of programs
written in machine code and stored inthe
computer's ROM, which tell it how to carry
out all the tasks it has todo.

Page. A subdivision of memory. On most
home computers a page is 256 locations.
Pointer. A memory location (or pair of
registers) which contains the address ofa
piece of data.

Pop. Toremove anitem stored in the stack.
Processor status register. Thisisthe 6502
name for the flags register (the register
where each bit is used to record a certain

condition inside the computer).

Program counter. The register which
contains the address of the next instruction
to be fetched from the memory.

Pull. Same aspop, i.e. toremove anitem
fromthe stack.

Push. Toplaceaniteminthe stack.
RAMTOP. The highest addressinuser
RAM.

Registers. The placesinthe CPUwhere
bytes of instructions, data and addresses
are held while the computer works onthem.
Relative addressing. Anaddressing
mode in which the computer works out the
address of the next instruction by adding a
number called the displacement or offset,
tothe address in the program counter.
Screen memory. The locationsin RAM
which are used to hold information to be
displayed on the screen.

Sign flag. The bitinthe flagsregister
which is used to indicate negative and
positive numbers.

Source code. A program writtenin
assembly language, or other high level
language such as BASIC.

Stack. Anarea ofthe memory used bythe
computer for temporary storage and where
the last item stored is always the first tobe
retrieved.

Stack pointer. A register inthe CPUwhich
contains the address of the last item in the
stack.

Systems variables. Memory locations in
RAM which hold information about the
current state of the computer.

Top of memory. The highest addressin
user RAM.

Tweo’s complement. A system of notation
used to represent negative numbers. To
find the two's complement of a number you
complement (make all the lsinto Os and all
the Os into 1s) the binary for that number and
thenadd 1.

User RAM. The part of RAM where BASIC
programs are stored.

Zero flag. The bitin the flags register
which indicates when the result of an
operation is 0 and is also used to show when
two bytes are equal.

Zeropage. The first 256 locations in the
memory.

Zero page addressing. Used only onthe
6502, this is an addressing mode in which
the operand is an address in page zero of
the memory (i.e. from 0-255). 47

48

Puzzle answers continued Decimal Hex

Page 28 High order | Low order | High order | Low order

00011010 is 26 decimal. 307 1 51 &01 &33

11111011 is 251 decimal. 21214 82 2292 &82 &DE

10101010 is 170 decimal. 759) 247 &02 &F1
1023 3 255 &03 &FF

Page 31

To adapt the program on page 27 for

answers greater than 255 you needtodelete command:

the return instruction and add the lines

given below. To see the result you use this

PRINT PEEK(address 3) + PEEK(address4)*256.

2380 6502 4
Mnemonics Hex codes Mnemonics Hex codes Meaning
LD A, &00 3E,00 LDA #&00 AS00 Put 0 in accumulator.
' 0

ADCA, &00 CE,00 ADC #&00 6900 RS SR 10
LD(address 4),A | 32,address4 | STAaddress4 | 8Daddress4 RO Co N i
RET C9 RTS 60 Return.

Page 31 _

Hex for the two's complement of 12is &F4; 18is &EE and 91s &F 7.

Index

& ampersandsign, 8, 12, 16, 18, 46 dump, 19 13, 20-21

hashsign, 12, 16, 18, 46
absolute addressing, 18, 27, 46
accumulator, 14-15, 17, 30, 32, 46
address, 8-9, 11, 19, 46
converting to hex or decimal, 11
in machine code, 18-19
addressing modes, 27, 46
ALU (arithmetic/logic unit), 13, 14, 46
ASClIcode, 13, 24, 32
assembler, 5, 16, 40, 46
assembly language, 5, 17, 19, 46
Atari, 3, 24
BASIC, 4, 12,20, 40
big numbers, 28, 30-32
binary,
code, 4, 5, 16
numbers, 4, 19, 28, 46
to hex conversion, 37
bit, 4, 46
branch, 34, 35, 46
buffers, 10, 46
byte, 4, 13, 19, 20, 46
carry flag, 14, 15, 17, 29, 30, 31, 36, 46
carrying over numbers in addition, 29,
30, 31
character codes, 13, 32
clear, to, 29, 46
Commodore 64,3, 7
comparing, 32
complement, 46
conditional branches, 35, 36-37, 46
control unit, 13, 14
CPU (central processing unit), 1,
14-15, 16, 19
crash, 20
databytes, 23, 28
decimal numbers, 11, 41
decrement, 36, 38
direct addressing, 27, 46
disassembler, 46
displacement, 36-37, 46
display file, 8
extended addressing, 27
flags register, 14-15, 17, 29, 36
hex,
codes, 16, 18, 19
converting o decimal, 11, 41

loader, 5, 23, 24, 25, 46
number system, 5, 8, 11, 46
high order byte, 19, 28, 30, 31, 46
HIMEM, 8, 20, 21, 46
immediate addressing, 18, 27, 33, 46
implicit addressing, 46
implied addressing, 46
increment, 33, 34, 38
indexed addressing, 34, 38, 46
index registers, 14-15, 46
indirect addressing (Z80), 33, 38, 46
instruction, 4, 5, 13-14, 16, 47
instruction set, 16, 47
interpreter, 4, 8, 20, 47
jumps, 33, 35, 47
LIFO, 10, 47
locations, memory, 8-9, 10, 11, 12-13
lowering RAMTOP, 21
low order byte, 19, 28, 30-31, 47
machine code,
checklist, 26
length of program, 20
subroutines, 39, 40
where to store in memory, 20-22
memory, 8-9, 10, 12-13
memory map, 8
microprocessor, 1, 16, 47
mnemonics, 5, 16-1T, 47
object code, 18, 47
offset, 36-37, 47
opcode, 16, 18, 19, 47
operand, 16, 18, 27, 41
operating system, 8, 10, 11, 13, 20, 47
Qric micro, 3,7, 21
overflow bit, 36
page (of memory), 10, 11, 19, 21,47
parity/overflow bit, 36
PEEK, 12-13, 21, 26, 31
pointer, 33, 47
POKE, 12-13, 23
pop, 35, 47
position on page (of address), 11, 19,
21

processor status register, 15, 29, 47
(see also flags register)
program counter, 14-15, 35, 47

RAM (random access memory), B, 12,

RAMTOP, B, 20, 21, 47
lowering, 20-22

registers, 13-14, 27, 30, 31, 47

relative addressing, 36, 47

REM statement, storing machine
codein, 22

reserved for use of the operating
system, 8, 10

return instruction, 23, 35

ROM (read only memory), 6, 12, 13

running a machine code program, 25

screen memory, 8, 13, 47

set, to, 29

sign flag, 14, 36, 47

source code, 18, 47

Spectrum, 13, 24, 32

stack, 10, 14, 15, 20, 35, 47

stack pointer, 14-15, 47

subroutines, 35

systems variables, 10, 20, 21, 47

Timex 1000, 9, 13, 22, 24

Timex 2000, 13, 24, 32

top of memory, 20, 21, 47

two's complement, 37, 41, 47

user RAM, B, 20, 47

VIC20,7 13,22

zero flag, 32, 33, 34, 36, 47

zero page, 10, 45, 47

zero page addressing, 45, 47

ZX81,9, 13,22, 24

Hex loader conversions
Change these lines for the ZX81
(Timex 1000):

40 INFUT H%

70 LET X=

{(CODE (H®)-—-28) %154
Delete

LET ¥=CODE

(H&(2 TO »)-28

LET X=X+Y

Delete

155 Delete

160 Delete

Change this line for Atari computers:

90 LET Y=AS5C{AB(2I))

80
0

100

110

Other Usborne Books

There are hundreds of colourful Usborne books for all ages on a wide range of
subjects. Titles which may be of particular interest to you are:

— USBORNE NEW TECHROLDGY —,

Lt B | H

Lo e gty datat e v
R B

This exciting new series takes a serious look at what is happening now in the world of new
technology. Many people think that such things as lasers, robots, databases and interactive TV
belong only to the world of science fiction but, as these brilliantly illustrated books show, many of
them are already in use and affecting our everyday lives. The books take a straightforward approach
to these apparently difficult subjects, making them easy for everyone to understand.

Page size: 240 % 170 mm 48 pages

Usborne Guide to

Lishorne Elmnmc Worid

This up-to-the-minute series on electronic technology explores the worlds of computers, TV and
video, audio and radio and, in a new title, films and special effects. In a clear visual way, the books
describe the very latest equipment and show what it does and how it works. They also explain much
of the confusing technical jargon which usually surrounds these subjects. There are fascinating
sections on what computers can do for us and how they do it, how TV and video cameras can turnan
ordinary scene into a pattern of electronic signals that can be stored on tape, and how arecording
studio works. Audio & Radio also contains instructions for building a simple radio.

Page size: 276 x 216 mm 32 pages

Usborne Computer Books

Usborne Computer Books are colourful, straightforward and easy-to-
understand guides to the world of home computing for beginners of allages.

Usborne Guide to Computers A colourful introduction to the world of
computers. “Without question the best general introduction to computing | have
everseen.” Personal Computer World

L]
Understanding the Micro A beginner’s guide to microcomputers, how to use
them and how they work. “This introduction to the subject seems to get
everything right.” Guardian

Computer Programming A simpleintroduction to BASIC forabsolute
beginners. ... lucid and entertaining ...’ Guardian

Computer and Video Games All about electronic games and how they work,
with expert’s tips on howto win. “The ideal book to convert the arcade games
freak to real computing.” Computing Today

Computer Spacegames, Computer Battlegames ListingstorunontheZX81,
Spectrum, BBC, TRS-80, Apple, VIC 20 and PET. “Highly recommended to
anyone of any age.” Computing Today

Practical Things to do with a Microcomputer Lotsof programstorunanda
robot to build which will work with most micros.

Computer Jargon Anillustrated guide toallthejargon.

Computer Graphics Superbly illustrated introduction to computer graphics
with programs and a graphics conversion chart for most micros.

Write Your Own Adventure Programs Step-by-step guide to writing adventure
games programs, with lots of expert’s tips. I

Machine Code for Beginners A really simple introd uction to machine code for
the Z80 and 6502. 2

Better BASIC Abeginner's guide to writing programsin BASIC.

Inside the Chip A simple and colourful account of how the chip works and what
itcan do.

5 +001-99
ISBN 0-8L020-735-8

N“Wl ‘m ﬂu‘m“;g

e - o ISBN 0860207358 £1.99

