HHHHHHHHHHHHHHHH

MMASTERING
MAGHINGODE
ONRVDUR

ZX 84

-0 G

Mastering Machine
Code on Your ZX81

Toni Baker

with illustrations by Cathy Lowe

Reston Publishing Company, Inc.
| A Prentice-Hall Company
h Reston, Virginia

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

Contents

AN INTRODUCTION 9
A brief summary of the book,

INTRODUCTION TO HEXADECIMAL AND
MACHINE CODE 11

Computers count |n sixteens, not tens, This system is called
hexadecimal, and is quite useful to get to know,

SIMPLE ARITHMETIC 17
“sSimple’’ means very simple! Plusses and minuses only.
Shares and timeses are lefr till later!

PEEKING AND POKING AND MORE ABOUT
LOADING 29

Anexplanation of how touse memaory in RAM. A “SCROLL
Backwards” program is included to demonstrate this.

MORE PLACES TO STORE MACHINE CODE 39
A very explicit guide to the use of REM statements, vari-
ables area, and protected regians of RAM,

STACKING AND JUMPING 47
How to use the stack to store data, Jumping and condi-
tional jumping, and the use of subroutines explained.

PRINTING THINGS TO THE SCREEN 55

In BASIC the PRINT statement is perhaps the most widely
used instruction of all. Here's how to use it in machine
code.

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

CHAPTER 16

A DICTIONARY OF MACHINE CODE 63
All the instructions. A complete explanation of every single
machine }ang_uagc instruction used by the ZX.

A PROGRAM TO HELP YOU DEBUG 75

A machine code editing program, itself written largely in
machine code. The speed it offers is likely to make your
fluency in machine code develop very strongly.

SCANNING THE KEYBOARD 87

Using the keyboard in programs has obvious advantages.
Here we cover the function INKEYs for the NEW ROM and
explain how to recreate it on the OLD. An elegant little
program called GRAFFITTI is developed which shows how
the character set is generated.,

DRAUGHTS PART ONE 99
The first part of this program, which allows a player to in-
put a move, and checks for cheats!

A TOUCH OF CULTURE 109
Music and pictures, Music from the keyboard, and pictures
fram the sereen. Watch out for the program LIFE.

DRAUGHTS PART TWO 119

The output of the computer’s move. This section daes not
decide upon a move to make; it merely outputs a move
assuming the decision has been made already.

GRAPHICS GAMES 125

A section intended only for the ZX81 because the games in-
cluded here rely on the SLOW mechanism. (And in machine
code the word "SLOW" should absolutely not be taken
literally,)

DRAUGHTS PART THREE 133
The making of the big decision. . . . Which move ta choose.

HOW TO DISASSEMBLE THE ROM 143
The ROM holds many secrets, but it, and any other machine
code program, may be disassembled fairly simply. A hex-
listing program is given, and an outline as to how a full
disassembler-program may be written is-also given.

CHAPTER 17

THE ARITHMETIC SUBROUTINES 155

Have you ever wondered how floating point numbers work
in machine code? How you can add and subtract them?
Multiply and divide them? Even take sines and cosines!?
This chapter will tell you how.

APPENDICES 165

Useful information you might need when writing programs,

Foreword

| was staggered when Toni first brought the manuscript for this book to us
at the National ZX80 and ZX81 Users' Club, We'd tatked about it, and Toni had
given me a broad idea of the contents of the book, but until | had the chance to
read it, | did not realize just what a comprehensive and casy-to-understane work
it would be.

The book has been written For those who know BASIC, but haven't much
idea about machine code, and want to get down and master this most useful addi-
tion to one's programming skills. We've waited for over a year for a book like this,
and now it is here. !

If you've decided that GUESS MY NUMBER and SIMON are OK for a
while, but now it's time to start exploring the full potential of your computer,
and time to begin developing all your potential programming skills, then this
book may well prove just what you've been waiting for.

When Tonl first came to us with the idea for the book, | stressed that it
must be designed to lead someone who knew absolutely nothing about machine
code through from the true basics to the point where they would have a rea|
knowledge of how to use it. I'm pleased to say that she has done just that, and if
you work through the book with your ZX81 or ZX80 turned on, entering the
programs and routines as instructed, you'll certainly end up Mastering Machine
Code on Your ZX8T or ZX80.

Tim Hartnell

Nationgl ZX80 and
ZX81 Users' Club,

London,

August 1987

Mastering Machine
Code on Your ZX81

,.-“'-‘

f% -

—qamE—

% -

m&&&m&:&&m@&m&m@
)
ey

N\
AP
N TR
RS NN -\>>\\\l§‘\’\-—‘1.|m
“T“ R

i

o

s
$
¢ o0
F
o
HE
=
— =y
3
:
a0
i 1}

3

SRR

/

R
-
-

AR AR AR R A [y

iz |lIE

AT I]

SRR R AR

AN INTRODUCTION

This book is designed for those people who have a ressonable understanding
of BASIC, but whose kmowledme of machine code is mero. Starting at first
principles with BASIC programs, we gradually introduce the concept of a
machine code subroutines, and develop thio theory throughout the book.
Befors long you'll find your undexstanding of machine language inereasing,
and you'll soon begin writing your own routines and Programs.

Machine language is no more than a smecond computer language - very much

like BASIC is in fact, We start by learning the simplest of instructioms,
ard baceme familiar with them by using them in RASIC programs, An example
would be a SCROLL progrem given in chapter four, which moyes the scrzen
downvard instead of upvard. This effect is rather interesting, and certainly
aurprizing«

Printing strings is the next thing coversd, and thia involves making use of
the PRINT subroutine in the ROM. The routine ia demopsirated by printing a
draughts board which later on in the book we shall make use of.

We explain the machine code eguivalent of the INKEY# finction, and use the
technigue of scanning the keyboard to write a typewriter=type program which
uses greatly enlarged versions of the keyboard characters.

The same keyboard scanning technique is used to generate rusical notes in
rgther surprizing manner. Two whole octavea can be produced from your machine,
enabling wou to play a wide variety of tunes mt the touch of the kéyboard,

The computer 1o made to generate many intricate and fascinating displays in
the praogram IIFE. It ehallemges the skill of an unwary human operater in
graphice games such as SPIRALS, A draughts program is included, with sevaral
interpatipme featured. This is actually a teaching game becavae you are
exicauraged o add your own features to it as you progress.

Careful study of the lisiings of these programs will teach you a great deal
about mechine code, but of courss the biggest steps In learndng will come
from experiment. By writing your own programa, or by sdapting mine -.by all
means do = they are intended for this purpose, and some in fact are
deliberately improvable for this reason.

To make the best use of this book you are-sdvised to work through from sisrt
te finish, and where asked to altey or improve programs yeu should make an
attempt to do so, It's not difficult, since the book progresses very slowly,
but will require some thought.

The last two chapters in the book are rather ambitigus. An algorithm by wnich
the HOM may be dimassembled im given, but only guidelines are given ss to how
you may write a program for it. All of the arithmetic subroutines are
explained in detail, even MEW ROM floating point functions like SIN and COS,
and how the numbera are atored.

The heavily tebulated appendices at the bask are designed te be uged as a
source of reference throughout the beok. Any piece of information you nieed
to know can generally be found in these appendices, or in chapter aight,
which ig a kind of "catalogue" of machine code.

The first chapter begins on the next page, and starts with an introduction
s the use of "hexadécimal®, ...

10

WA

CHAPTER TWO

7 NI\

AVs
2N B¢
e 0./
= ol
L)
INTRODUCTION TO NSt
§
%h SRR \\\\'\\\\\\\\\\\\& : : M
O
&

- :_')&@%} e
ol

be

|

OK; =0 your ZX80/81 is all fired up and ready ;) Vel
C i ady, and that cminous inverce-K is
sitting there glaring ai yom from i%s little corner end walbing fc
type sonething in. What do you dof st T
Well the firei thing 1s to set up the machine =o that it
- : d cant ace
Eggl'sm in mechire sode {nstead of in BASTC, This is not Gifficult, but oL
B b:::ux_mta_ly,rn: us, when Sinclair designed his machine he forgat to imclude
on saying GO-INTO-MACHINE-L0) s 80 the routine for doing this is
golng to have to be a BASIC program.
; If you have NEW ROM machine tyze one of the followl
depending on hiow much memory you haver 2 e ey S

1K

TOKE 16388,173
FOKE 16389, 67
KEW

16K
POKE 16380,48

Ax
TOKE 16388, 32 ‘
FOKE 16389,117
¥EW

FOKE 16%69,78
WEV

The effect of this ig quits stratghtforward. The sddress
and 16389 togsther hold = sjotem variable called EAITOP. Tt ucnta.j.:: -mE“
lﬂdz;uﬂ of the rﬁ:ﬂl byte which the computer cammot use - at leasi not Tor
BASIC. Undex ordinary ciroumst this address is ine one imnediately af:
'th: éut byte ‘in memory, so thet the whole of the memory ie available }-rnr el
thM’ 2 “;»i:zmmy v Lr\:‘;‘\;jhs:lm have done ia to alter that address, so thah some of
b et vailable for BASIC, and becomes'a safs plate im which to stere
If you have an OLD ROM machine, don't WOrTy - you E; 3
machine code in spars areas of | : MOST il el
e of the memory, but you HOT Lype NEW, or you
‘Tha best addressss in which to store machine cod
trial snd error. We shall adopt the Iollowt o A ke
e atand.
perfagtly for all of the Toutines in thia bun:h e At \fﬂf_'ll:..

OLD ROM 1K: 17225
NEW HOM 1K1 17525
e 20000

16K: 30000

Throughout the remainder of this book I shall
_ 1 ai 1 ube the address 30000,
Flease read this 48 one of the altermativas abeve if you have less 4hmn iﬁ'ﬂc.

OKi- How we'rTe ready to start. Type in the following BASTC programs

10 LET X=30000

20 LEm Agown

‘ 30 IF AB="" THEN INFUT A

"HED ana Gorve 40 I L-vSe rEEN OB

forget 1o g © 30 POKE X,16CODE 48 + CODE -
forkck T SR 6 vxe - M

70 LEF Ag=AB(5 710)
GO TO

(For the OLD ROM you must replacs lines 50 and 70 as follows:)

50 TOKE X, 168
o 180 iéx&ﬁﬂ ﬁ;;wm(mﬂm)ms

Can you see how the program works? Or at le
L " \) Aeast what it does? In brief = it wil:
ggg;gt & machine code program im, & will stors it st addresses 30000 opwerds. E{]};
e or whatever.) The program will stop vhen you input mn "S", Note that
though it will entar mechine code, it will NOP attempt to xun it.

12

How fo¥ the bip guestion you've 811 baen dyipg to ask = what exactly 18 meching code?
well machine code, or machine langusge as it's otherwise known, is another computer
)angwage - mich like BASIO ia — only at a much lower level, whien means that very
complitated instructions, such s FOR/NEXT loopa, are simply not svailadle. lowever
this alza makea 1t quite an easy language to learn. Like BASIC it consiats of &
set of inatructions, each of which tells the computer to do a different, and
guite specific, task. One such instruction is RET, which i= more or lese equiva-
lent Lo BASIC'a HETURN.

Unlike BASIC, however, the compater isn't programmed to understsnd =1l
of the various inetructicns as we do. If you were to RUN the ebove program and
snter "REP! thes this eimply would not maks sense to the poor old zX61 (or '6Q).
To make life easier for it, every instruction has a numerical cods, which it DOES
understand dirsetly. For example the code for RER is 201. Every code lies
somewhers im the range 0-255, and it is uswally more convenient to write these
codes in 2 system called HEXATECTMAL.

COUNTIRG I HEXATECI!

ur friend Yo, Sinclait brisfly covers thim cbacuxe eyatem of ceunting in the ZX81
inatmiction manual by deseribing an imaginary Tace of gixtaen finpsred "Martians”
who would regard counting in tens as being equally absurd. In these modern days of
soience we lknow encugh about Mars to realise that it is extramely unlikely to host
sixtesn Tingered peopls, but the principle of counting in sixteens ig =ti11 very
very sound.

Briefly, for those who have net read the ZX8l manual, hexadecimal, ox
nex for short, is & means of counting which usea sivteen symbols instead of ten.
The first ten symbols are the seme as the cnes ve're used to. These sre:

0p 1y 2y 3y 44 5y 6y To 8y 9.
There are six new aymbols which represent the numbers 10 to 15. These are:

A %, 6, D, B, F.

The fun really starte when we want to represent numbers bigger tham fifteen, for
believe it or not, aixteen is written aa 10l Worse still, sevenieen is written
11. Thie continues up as far an twenty-five, wrlttea 15, and then uhen we come

;n twenty=aix ve have to start using the new symbola again) tweniy-six beoomes

A

A conplete table of all of the numbers fxom O to 257 ia ahown here.
This is intended to help you to undsystand tha hexadecimsl systen of counting.
You should try to refer to it as litile as postible, Bat don't werry if you
find yourself using it all the tims ai first, you'll find you get used to it
much quicker than you expaci.

The Symbols down the left hand side ers the first her digit, the aymbols
along the top are the spoond digdt, The lesding geros may of course bte cmmitted
if ihere ere any, but it la sometimes more comvenient to leave hex codes as two
digite rather than one,

If there is sver any confusion about whether a number is written in hex
or niot, you should meke it cleer by writing o small letter h (standing for hex)
ot a small letter d (for decimal) after the mumbex, so thet 19h means twenty-
five, and 19d means nineteen. Usually you wont need to do this because numbers
1ike €D can only pesaibly be hexadecimal, and numbers like 118, which are thres
digite long, can only be in decimal, {Computing does not u=me hex nusbers which
ave thpse Afgits lona, though it dees use ones which are FOUR digita long).

Knewing &t least the fundamentals of counting in hex is virtually
pararount s far as machine code is concerned, so don't be afyaid to keep coming
back to this section, or Lo keep refering to the tmble - thalls what it'e there
for.,

13

e = b e i o

| e e N -

1D B ko

=]

o

o (e
==
I
(¥
e
(€]
o
1]
]
o
s
Ies
la
[~}
I
L]

16 17 18 19 20 21 22 2% 24 25 2 2 @ 29 I 3
320053 3 35 36 3T 38 39 40 41 42 43 44 45 46 47
48 45 50 51 52 53 84 55 56 57 58 59 60 6L 62 &3
64. 65 66 67 €8 €9 70 TL T2 I 4 5 M 7T W M
80 Bl B2 B 84 685 86 BT 88 89 90 91 92 93 94 95
99 100 201 102 103 104 105 106 107 108 169 110 111
112 113 14 115 16 117 118 119 120 121 122 127 124 125 126 127
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 158
160 161 162 163 164 165 166 16T 168 169 170 170 172 173 1M 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 151

192 193 194 195 196 197 198 199 200 201 202 0% 204 205 208 207
208 209 210 21l 212 P13 214 215 216 217 218 215 220 221 222 203
224 205 226 227 228 229 230 231 232 233 T34 235 236 237 0% 239
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

There are fundanental differences between machine code pregramning and
remuing. One of the moat fundamental differsnces ia thaf! p'g umwc i
! A8 you know, every BASIC insiruction in a prog must be pr ded by
;flm n}:nb-e;, l.; tjha:h_the computexr knowe in which order to sxecute them. If no
ne numnber is given the copputer will interpret the dnatruct ¥
and will execute ii fmmediately. i it

In machine code, thers are no line numbers. Also, the ZXBO/EL will net
allow you to use maciine oode instructions as commands, they NUST ferm part of
a progren. The instructions ave sxecuisd in the ordex that they are stored. Por
example, if the computer had just finished axecuting the instruotion which was
stored in location 30000, it would then go on to execute the instruction held in
location 30001. It will eontinue iv. this way until it reclieved ma imetzuction
telling 1t 4o do othexrwiae.

Unlike BASIC, it will KOT swtometicly stop when it remches the ond of
the program. It will pleugh right on through the addreeses, and every time it
finds a rumbsr which is not zero it will Bimply treat that number as a code for
gone instruction and iry to execute it. Uoually this will result in what is
called a GRASH.

ABOUT CRASHING
Crashing is the nane we give to what heppens when your (up until now st lesst

moderately vell-behaved) Sinclafr machine unwitiingly tries to execwte aonething
it shouldn't, or if there ia a drastic mistake in your machine=coding wvhich will

14

the machine and give it & rather nasty headache. The effect of a

2:3! 5 :&mutmhlu— The soreen will either go blank or will-xotintn its
MR G- PRODUCE-SOME-NODERN=ART™ modes If this happens you will get pretiy (or
otherwise) pattexns on your TV moi unlike those w.-nduea_& during S.lwh‘ e

J When this happens you will undoubtedly try to brsak out, 'y paing the
EREAK key, and will discover to youx horror that tha BREAK key doesn't n-ari:; Int
fapt NOKE of the keys will work after a orash, except possibly to produce a igh
veriations in the TV plciure, Thia is the prime reason why we dialike mp:,;i
for THE ONLY WAY TO THEN GET BACK TC NCRMAL TS TO DISCORNECT THE POWER SUP
Wnen you recomnect you will of course have lost all of your program and will
i 1 upually FOT WORK.

If = BASIC program contains & mistake it wil
If a machine-code progrem conteins o mistoke 1t will usually CRASH!

HOW TO PREVENT CRASHES

€ sady stated that a maghina code program will net automaticly stop at

::an::: :?-a : cam - 1t must be lqld(totdu 80 :y : :mi{icﬂ_i;ﬁ?cuum Fox
0, that instxuction is RET. (Returm - i& xed -
T fﬁ;:‘“‘ is an instruction similar to STOP in BASIC, that instruction ia
HALT. T WSTROGTION! On other computers you an use EALT Lo end &
program, but not on the ZXx's. HALT produces e condition similar to a cxash, for
it means "Tio nothing whatsoever until somebody bzeaks out.” The problem is u{ﬁl:mnuu
thet you CAN'T break eut because you'll find thal the keytoard no longer worka,
To surmarise; To end a mechine code program ALVAYS use RET, MEVER use Eﬂﬁ.
A grom muet have et least one return instruction in it somewhere,

otherwige it will never return to BASIC, unless you actuslly disconnect the power
supply, 8nd this is not usually & desirable thing to do,

hapter has deslt with how to reserve spaca for mashine code progrema, and
'::?givei you a program with which to load it. It has not told you how to make
yse of this progran, nor hes it explalmed how to run machine code programa uun;
they have been loaded. The fundementals of counting in hex have been introduced,
apd the notion ef a crash has been mentioned.
onoe you have understood this chapter, you may turn
for your first lasgon in machine lenguege pro ng.

to.chapter three

15

,_ \-\\\\}\\\\\\\}\\\\\‘-&\\\\\\\\\\\W‘\L\\

\\W\.\\ \\\\\\'\\\‘K\t\\\\\\&ﬂ\ SR

N P)

SRR
/

=3
=

-
"i!

b
Ly
W

Tihimg)
1l

. P§$ﬁ}ﬂ§ﬂﬁ§hﬁﬂﬁﬁw‘\ﬁﬁ

\\\\\\‘\\\\\\hﬁ&i\&\\\\\\&\\\i\\\\

\\-_%_\

2

f

7 .
W%
.%%%,/

P

(e
Y

4

K
U E

f-7
[r
/
.g

/7 5
R

Le NI TLRS \\\\\k\\.\\\\'\\x . 1 O
O
|

R AL ED
%
"-

.,

a4 o0

¥

WEEX D™ TED

You remember Lhe progrem I asked you to aave in chapter two? Well mow it' time
4o break it out, wipe the dust from it, ard after you've reserved yourssli some
machine code apace o8 desoribed at the atart of the previous chapier, you can
LOAD it.

New prese RUN, emd nevline.

The program ia waiting for a string inpat. what it in fact wents is
some kind of HEXADRCIMAL input, Thia means that every time you want to input
‘@ machine larguage inatruskion you have to know its rumerical code, ard you have
ts kmow 1t in hex. ;

g The code for RET is, sa we have already etsted, 201, What ie this in
nexpdeoimal? Divide it by aixteen and you get twelve remainder nine. Now the
hex symbol for twelve is ¢, the hex symbol for nine is 9. If you look 201 up
4n the table in chapter two you'll find that it is written €9. Is this a co=
Ancidence? ¥ i

Tnpat C9, You have now told the computer that the Iirst instruction
of you machine language program is RET.

The computer 18 now waiting for another input. Areak out of the progwam
by inputiting "gh.

Your program ia now complete, It consiets of the single dnstruction RET. This is
usually written
cy RET

to remind you that the hex=code for RET is O9. Ths mashine language instuctisns

are ecmetimes called OPCODES to diatinguish them from thelr corresponding HEX-GODES,

0% 18 2 —cada, RET is an Opoode. Hex-codem ave used by the machine — it will
not underatand opeodes. Conversely, opecdes re uaed by humans, because we would
find it extremaly difficult to work in hex-codes.

p 11 you now look et the screen you'll see that the computer has gone
I?e_;c't ta =n_mmyﬂ mode. _It ds welting for an instruction. Suppose we now wish to
Tun the machine coce progrem that we've just typed in, We can do this either as
part of & BASIC program, or, aa we ere going to do, as a dirvect command, If jyour
routing was loaded to address 50000 then: the command is ' v

FRINT USR 30000
If your routine began at dome other addreas simply Ase this {lgure instead of the

30000 4n the avove command. N that OLD ROM users will need brack
nunber following the word (SH. 3 ackets around the

~ You %111 have found Lhat the computer has printed 30000 in the top left
hand corner of the screen, Can you See why this £5 sof Tt started off wiih the
runber 30000 ~ this im tha-addrees you gave it when you typed FRIND USR 3000C.
The program told it to RET, or return to BASIC, having done nothing at all to

this number, so that's exmotly what it did - it returned to BASIC =nd it weturnsd
the nunber 30000 with it,

Beflore we can mdvance to learning any more instmictions, We are godng
to have to bresk for & while and explore the coneept of RECTSTERS. A Register in
!ﬂura variable, in that it hes = nape - usually = letter of the alphabet - and
it can ators pumbers in much the sape way that BASIC vaviables can. The big
diffezerice s that reglsters can only store nunbers in the range O to 255. (o
in hex, 00 Lo FF).

18

There are seven regigfers which mre most commonly used for machine code
routines. Their names are A, 3, C, D, E, H, L. To give a larger derree of
flexibility it is also possible to use the reidsters in pairs. When this
15 done you cen alternatively store rumbers either in the range =32768 to
32767 or in the range O to 65535, using the register-pairs, ss they are
known, BC, IE,and HL.

2, ond register L
meke this clear, if regieter H contains the value 2,

:':nt;ina the vu!.wol'ﬁ. the register—pair HL is sald to contain the value
TWOSKR33, wnich is 535. If H vere %o contzin a value of 178 or more, then
HL nnplﬂ'imhaa' be theught of as containing & negaiive value, equal o

(F-256) %256 L.

THE TNSTRUGHION LD

der the BASIC instruction IBT A=42, In machine lengusge we 2esign varibles
%::;’igtaﬂ-) using the instruction LD. We could, for exsmple write mi‘-uﬁa fnte
thera is no equals nymbol as tieye is in BASIG, instead e conma () s_u m:
separate the A from ihe numbsr, The effect of this instruciion is exactly e
yourd expect it to be — the previous velue of & i3 overwritten, sand a new value,

@ 2, l= assigned in its place.
Wi c“;m: l;ﬁfcnnt.z‘;m instruction has e different code. For example the
code for 1D A, is 3E. The rumber 42 is 2i in hex, 80 the full instruction inbh:z)
im 3mZ). Note that this is TWO BYTES in lengih (every tuo hex digits l; one byte)s
compare this with the samber of bytes in the BASIC inatruction LET A=42.
Tha remaining codes are as fallows:

1D A, 23
1D B, 06 weme, O
LD C, 05
1D B, 16 Lo B, 11
DB E
ID A, 2% Ay, 2
Lb 1, ®

the symbala
Using the program "HEXTD" enter he following program, by inputting ko1
in :fm 1;[::!52\1 celumn, Once the whole program hee been entersd, break out by

inputiing "8".

2600 LD H,00R
m2A LD L, 24h
(i) RET

Now that the program is leaded you cen 7un it by typing as a direct command
PRINT TSR 30000. What happena?

Now try entering this program:

Q600 D B,00
OR24 in.c,24
(o] RET

1f you possess an OLD ROM then the first prosren should returm = value of
forty-two, and the second program should reiurn & value of 30000, However
the NEW ROM will work the othexr way round, and return 30000 for the first
program, and forty-two for the mecond, The reason is the fact that ISR
vorke differently for the two ROMs. Fer the CLD RCM, USR semething means
losd HL with that something and then Tun the machine code, On the NEW RoM
it megne load BC with that semething before tunning the machine code. Wnen

BASIC returns the mimber you are left with iz the value of HL (0LD HOM)
or BC (NEW ROM). The firat program leaves BC unchanged (on the NEW ROM it
will have been ‘sseigned 30000) but will loed HL with 42, The OLD ROM will
retum AL (42) end the WEW ROM will return BC (30000). The second program
is the reverse, It will leave HL unchanged. (fm the OLD ROM HL will have
been pasigmed 30000) BC will then be loaded with 42. Which ROM will
return wvhich number? Which ROM do you have? Try it and aee.

X HL, by the way, stands for Eigh/Low. Because any number in HL di= stered
in two paryts the part that is stored in H i= called the HIGH part, and the p::-t
that is stored in L is called the TOW part, BC and DE also have high and low
p:xr:u. with the firat letter for the high part, and the pecond letter for the low
P .

What is 42 in hexadscimal to FOUR digita? Answeri- 00ZA. What do wou
think the following program will do? Try it and find out. i

QLD FOM JEM FOM
210024 01002
3 c9

You may be surprized to discover that when you type FRIND TER 20000
to run it you gei the anewer 10752 - KOT 42! Now run this program:

LD ROM
212400 %ﬂ
9 Lol

NOW you will get 42, Notice the way the 24 and the 00 have b
tmhi « Although this (s rather strange it fs in fact USTAL for ::;z;;;;ls;“:gpd
i zk of ita rupbers aa having the low part FIRST, and the high part SECOND. In
T vi:l; *gheizmuptim of line nuabers, and in FOR/NEXT lcope ihe ZXBO/BL will
e :nsh tm-:cu e nombers Mhe wrong way around,” In the instmetion 1D HL, the
ot byte 1s always 21h, The second byte im the new value of L, end the lest byte
18 the dew value of J. Totd tnai thio do clwaye tnres byten long.
erise: The LD insiruetions whic) . 1
than on #ingle registers, use valuee ptored "thehu::en;‘ ::f;ﬁﬁf-i““ e s

m One Variable To

(2

If we wera regtricted in BASIC to only using LET instructions of the Torm LET A=
a pumber ¢ would be & bit stuck. We need to be & Bit more Plexable than that. F
inatance something like LET k=B would be useful, Well we can certainl. mnsge-. o
that in machine code. The codes sre i

ID 4 A (i I B i L

A T 7€ i) TA T8 e T
B 41 40 41 42 43 44 45
G 4F 48 49 ah 48 40 4D
D 51 50 51 52 53 54 55
E SF 58 59 Sk 5B s¢ 5D
i &7 60 61 62 £3 4 65
L &F 68 &9 &A 68 EC 6D

20

Tn the above table you read the left-hand-tolurn reglsters fizet, and
the top-Tow registers second; so that the opde for LD D,A 18 57y and the cods
for LD A,D is TA. NMotice how sach of these 15 & mere ONE BYTE in langtn. Compare
this with the equivalent BASIC dpsiruction LET AeD, whick takes m iotal of itan
tytes in 811 (eight on tha old ROM) if you include the lime number, the line
1length, and the end of line charscter,

And now fox soms simple arithmetic. Thome of you vho have been thinking ahead may
have been wondering how we can add and subiracl registers like we can in BASIC.
After sll, the singls=-byie representation of 1D A,3, for example, doesn't leave
a lot of room for manoeuvre.

In fact, we use & differént instruction sltogetner to edd registers
togethes, Tha instruction is ADD, You can think of an ADD instruction »8 being
a LED statemant with an expression involving "plus" on the right hand alde of
the equala. A wseful example would be

ALD HL,IE
which hea the effsct LET HL=HL+TE
The fnstruction ADD HL,DE will take the contents of the register—peir IE, and will
add this pumber to the contents of register-pair HL, The result i this ealoulatie
will than be atored in register-pair HL. A8 you aan see, if we wexe working in
BASIC and we wers dealing in varisbles inslead of register-paira then we would
have performed the operation LET ALHL*IE.

Well almost, but wot culte., There is in fact one smmll differenas - the
difference is what happens when you get what is called an overflow. You
see register paire cén atore all of the (hexadscimal) vumbera batwean 0000
and FFFF, Those from 0000 to 7FTF are the integers O to 32767 in degimal,
those from 8000 to FFFF san sither ropresent numbers [rom 32768 to 65535,
or numbere in the range -32768 to -1. You ¢an use either form, but when
the USR fumetion returns @ decimal number to BASIC the ODD ROM will use
-32760 to 32767 snd the WEW ROM will Teturn & number between O and 65535.
#n OVERFLOW i& what happena when you go beyond these ranges. In BASIC any
averflow will sinply stop the program and give you &n error message, What
do you suppose will heppen in machine code?

QLD ROM first them: the BASIC for the OLD ROM deals with pumbers from

~32768 to 32767. What is the number 32747 in hexadecimal? Dividing by 256
1o split it Into two bytes pivea 127 remainder 255, So the first byte iz

127 (7F) and the second byte is 255 (FF). Now enter thim program:

LD ROM CHLY 110100 LD IE,1

" ' 2LFFTF LD HL, 32767
19 AID HIL,TE
(1] RET

The eram will simply sttempt to =dd one to the number 32767, Run it
(\m?ﬁe direct sommand PRIND USR(30000)) and the result may estoniah
you. By the way, did you nmotice how the 00 and 01, and alss the TF and FF,
had besn swoppad arsund in the sbove 1isting? You must always remember to
do this in machine code, Did you notice also that the code for adding the
registers (ADD HL,TE) was only one byte long? In fagt the byte 19h, All of
the ATD codea are one byte in lenath.

If you went to add one to BC for {nstance then you must do something like

this
210100 LD HL,1
09 ADD HL, BC
a4 LIy B,H
40 1L QL
21

Notice how B and C have to be loaded sepatately aince thave is no such
instiuction as LD BO,HL. If you have a NEW ROM and you went to ses what
happens on &n everflow losd and run this program;

HNEW ROM_ONLY: 210100 LI FL,1
OLFFRR L B0, 6R538
03 AID HI ,BC
44 LD B,
4D LD G,1
c3 jazed

Another thing you should metfee 1s that enl
t8 register pairs, and that only single-registers ma
Tou may NOT add & single-Tegister to a registsr pai:

¥ reglster-paire may be added

VRON: ry or vice versa. ADD A,EL is
ADD BL,BC 09 ADD A4 87
ADD HIL,DE 19 ATD A,B 80
ADD HL,HL 29 ADD &,C 81
ADD A,D 23
AID A,E 83
ADD AR 84
AID AL 85

If overflowing register~PAIRS had you thinking, then think about over—
{lowing SINGLE regiotera, for they oan only hold numbere frem O to 255. What
happens vhen they overflow? Well yes, they simply siart again at zero, but the
question ia can we do enything sbout this? In fact we can, Whenever we add two
rumbers, sometimes there is an overflow, or GARRY, snd sometimea there isnt, The
compuier sets mside m NEW register, called ¥ (vhich we carmot use directly) to
store various bits of Information. Cne of these Bits of information is celled
the CAEAT BIT,

An ADD imstruction will always reassign the CARRY BIT, If there is no
carry, it will be set to sero. If there is a carry, it will be set to.one. We
onn uge the value of the CARRY BIT by using the machine code imstyuction ADC,
which mesns "ADD with CARRY".

It works like this, Suppcse the machine comes amcross the instruction
ADC A,B, It will take the contents of regieter B, and it will add the contenis of
regioter A, as in the previcus instruction ADD A,B, and then it will add the
CARRY FIT to thxg nay number, Having done this it will store the result in vegister
Ay overflowing if necessary, The carry bit will alweye be resssigned to either
ZeTo 0T one, depending on whether or not there is am overflow.

Jo ACD &,B effectively means IET A=A+B
followed by LET CARRY-INT{(A+B)/256)

wheras ADC A,B effectively means LET A A+BtCANRY
followad by LET CARRY=INT((A+B+CARRY)/256)

Study the programs that follow, If the value of the A vegister is
irrelevant, then are these programe equivalent {ie do they both do the sane
thing?) or notf Can you understand why?

The first progrem is
118553 LD DE, 13189
21CTTE 1D HL,%1687
,(19 ABD HL, TE
44 1D B,H
{4 1p ¢,1f T ROM only
G3 RET
22

y be added to sing‘lu-mnntm.l

and the second propram 1S

k 1o b,51
e 1o £33
36TR LD H,123
ZECT Ib L,199
D LD A1
83 ATD AR
(34 ID L,k
ic D AH
8A ADG A,T
&7 1D H,A
(a4 i 3'“; KOM onl
{p ey ™ e
RET

s "

In actual fact they are exacily the same. You can learn two things from
thisj firetly that the insiruction LD does not in any way affect or alter the
yelue of CARRY, for if it did the two ID imstructions between ADD 1,E and ATC A,D
wauld reslly mess things up; secendly thet the ingtruction ADD HL,IE is much
shorter, and much peaier, than geing a1l Tound the houmes by adding each hyte
separately. ind never forget to Swop the order of the bytes Tound in LD instructiona
on padrs - compaxe the firet twe lines of program cne with the firat four lines
of program two.

 Now run both of the sbove programs just to verify that they are the
same: What would happen if the 4DC A,D in program two were replaced by ATD 4,D7

Now thet you understand the difference between ADD and ADG we &hall go
an to cover some other wayd cf adding. Firat though, the codea for ATC:

ATC HL,BC EDGA ADC AA ar
APC HL,TE EDSA a8
ADC HI,HL EDGA 89
1%
:):]
BC
ED

AIC 4,3
AIC A,C
"
\

BRER

' ther than
Hotlee how the ssdes for ADC HL, mre all TVO bytes long, =
cre. Ths £iset hyte 1 ED, and tne secend bybe depends on What you sre Mﬁmghm
oot thnink of ED &a meaning ATC HL, though, since it may have many other poasible
neenings ma well, dependlog on what ollows it.

ADDIHG CORSTANTS

al conatants divecily
We gan aleo uae the ADD and ARC instructions to add nmr:ln

15 the A register. An exsmple would be ADD A,J which would, es you'd expect,add
Ahzee to the current vslue of A. 1t would also sseign CARRY %o one Oi ;g;u.
depending on whether or not ihis mddition ceused A te overflow beyon .

The code for ADD A, 18 C6, snd the code for ADC A, is OB, Hote that we cennot
add tants to regiater other than A,
i 3;1W!I:§ vwished ta sdd 57 to HL. One way would be as followa:

113900 b I8, 57d
1-;55 ADD H]I».I!E

uires the use of DB,
tut this methed hea the dismadvantage that 1% weq
wileh may be needed for other things, Another way of achleving the same thing,
but this time only bringing the A register into use, ie thust

™ LD 4L
c639 ATD 4,574
£F ID LiA
1€ 1D 4,0
CRO0 AIC 4,0
67 ID H,A

23

Notice how the instrustion ADG A,0 was used to add mny carry digit there

The codes for SUR are:
may have been from adding 57 te L.

SUB b n

AND FTNALLY, . . SUB 4,8 90

SUB A,C a1

Thexe is one more way that we can add constants $o & vegteler, and that is by SUB 4,D 22
using the imatruction INC. SUB A,E 5
THC A means mdd one %o the valua of A. Unlike ADD, TR may be usad on SUB 4,8 9

\NY register, so statamenis like INC D (add cne to the value of D) or INC TB SUB A,L 95

add one to the value of register=peir TE) nre allowed.
If A contoined the value 255, then INC A will cet A to Tero; but
WITHOUT setting CARRY equel to ome, In fact INC will not alter the value of
GARRY at all. If it wes ome Befere an 1N instruction, it will be one alter such
an instruction. It it was zero before an INC, it wil' be zerc after an 1ne,

t nstante from the & regimtee.
t ig also poasible to aubtract numerical co
For “mpli the m'n::t lon SUB 4,100 wil\lis:h‘tr:nt ;mtgn:a‘;l;; ;n{:ﬂ;nfae::fad
iatar A. The Tesult is etored in regiser A, a
:a;;iigtto :en if there 1s rio overflow, or to one i there is an overflow. The

i ce 100 is
Firia & code for subtracting constante is D6, eo tnat SUB 4,100 ie D64 (since 100 i
INC 3 is squivalent to 1ET Bap+l written s €4 in hexadecimal)
INC BC @3 IN A 36 R =
INC DE 1 2
i ?g i;g g g You should note the fact that although t_h:retare inn;runtinna such as
i 3 ADD HL,BG, theTe sre N0 instructions Lo mubtract register-paire.
e i 24 UBTRAGT hand, WILL wozle for register pairs,
WITH GARRY (SBC) on the other hand, : o p
:x : gg bul as vitE ADD and ADC, only the value ef HL may be altersd. For single Tegistera

jue of A that may be changed.
wE unlysg;;;l::ﬁ sth‘trmnt the value of € from the velue of {i ;enda::ﬁdt::n
subiTact the value of CARRY from this result, The finel answer wi
registey A, CANRY will be reassignec es before,
The codes for SBC are:

Remember, the difference between ADD 41 and INC A fs that ADD 4,3 will
as=lgn a new value to CARRY, wheress INC & will leave it unaliered, ING, by the
way, is short for TNCREMENT.

The valué of CABRY can be altered diredtly without any of the other

Tezietera being affected, There i an Lnstraction SCF, which stands for SED QARNY 530 HL,2C Fhiz % :.2 33
FLAG, and ita job {6 fo sasign to BARRY = value of one. The coda for this inat= SEC HIL,DE 32 Lc 99
ruetion is 3Th. Allernatively, it 1s possible to reset CAERY to zeTo, although SBC HL,HL W62 333 D 9
‘hare ia no ppeoific imstruciion 4o 4o this. One vay would be to 8oy ATD 4,0 for i ggc i'i: 9B
eranple. Adding mero will of course leave the value of A unchanged, but an ATD SBC H %
dnstzuction will always resssign CARRY. SBC i.l. I

CAMRY is called a FLAG Tather than a register, because it cen only i

Stoze ‘the numbers one and mere. Ii is 1ot posaible to assign a value of two to
OARRY, moT any other number im fact, only one and zero.

‘There i8 one ather way te direstly thange the value of the caryy flag,
that 18 by using the insiruction COF, whioh standa Tor COMPLEMBENT CAREY FLAG.
It will change the value of CARRY frem one to zero, or from zero to one, In BASIC
terms these three instructions mey be 1isted thua,

i CT WITH CARRY a numerical conatant Irom the A register the code
i: is)gsggi‘lwad by the number itself in hex, What is the code for SBC A.P007
What precieely does ihie imatructien do?

37 SCP IET' CARRYsl DG ip ahert for DECREMEND. Tt ie, as you may heve gathered from lta wierd a?\m&ing
S el e nams, the opposite of THC (Imerement), Its pupose is to decremae the gh}:ﬂ nth:ny
3F CCF IED GAHRY=1=CARRY Tegifter by one without changing the valus of the carry flag, So DEO asihe
effact of LET TE=DE-1, remembering of course that if you decrement zerg you geh
SUBIRACTION

255,

5 Compare theoe two routinea:
In machine lamguege, there ave codes for subtraction, which are used in exaotly

the same vay s the addiilon codes. The fnstruction is 3UB, for SUBTRACT, and

: choa ADD 4,0
in exactly the same wsy as ALD, there is alse an instruciion SBC, for SUBTRACT D602 5UR 4,2
WITH GARRYs ED52 SEC HL,IE

It works like this. SUB A,B will take the value of reglster B, and :
will subtract 1t from the value of Tegister A. The result af this caleulation and
is stored in rogister A, The carry flag is reassigned to zere if there is no
ovexflow, or to one 1f the result overflows to below zero (in which case the chon ADD 4,0
value of A will have 256 afded to it.) Ip IEC 4
3n IEG A

SUB A,B may alse be written as simply SUB B, because it is only the & EDse SEC L, T8

i from it, Do not get confused
registier which may have things subtracied . v ge
by this comvention - the two terms meen exactly the same thing.

Are they the sama? And Lf nat, why not? One of these two routines will
243

subtract two from A, 8nd will subtract IE from HL = The other routine is wrong.
Which 1is which? 25

In fact 4% 4w the first example vhinh {8 urone. The Inskruction SBe HI,
will mubbtract both DR and the carry flag, ao the carry flag muat Firet be reset L
Ao zero. Thim is what ADD A,0 is for, put having done that, lhe firal ezemple will
alter the carry flag AGAIN with the insiruction SUB Ay2. The chances are that 1t
will be veschk o nero, but If A happens to equal one or gero then the SUB wE11
not only change L 6 255 or 254, 14 will slro set tus carTy [leg to OME, Go that
ihe effect of SPC HL,IB would then be to apoaisn L & value of Hl=DE=1, MOT HL-TE.
In the vecond exanple, the inatruction TEC A La used tuwice. DG will not
channe the carry-flar, 89 it will still be zero when the instiuction £BC
HL,TF. is reached, snd ths sublraction will then go ahead correctily,

Cat 147 INC and IEC do not altsr the walue of the carry flag - ths othar
arithmetio instzucilons do. The other inatructions we've coversd are KET and LD,
Nelther of thesa will alisr CARRY &t all.

TED BC oB TEC A 5D
IEC TF 15 DEC B L]
DEC HL 2B DEC © 0D
et b 13
G E 1
EC R 25
T8G 1 m

In this chapier we have dealt with how to load machine langusge programs, and how
‘to run them, The uas 5f the instrucstions HET and LD wers explained, ard the
orithmetic dmatructions ADD, ADC, SUB and SPC were introduced slong with INC and
TEC, The purpsss of ths carry {lag ham bsen aoversd, and tha inmatrustisns OCF
(Set Carcy Flag) and CUF (Complement Carry Flag) have becn montioned,

You are not expected to remember any of the hex-codes vhieh the computer
umss - not even the experts do that! All of the codes mre printed in an mppandix
in the beck of the book. All you have to know are the words we use for them =
the OFCODES ~ and what thay de.

Bofore you procesd to chapter four; ses if you can tackle somo of the
following excercises. I you find some of them difficult don't worry abeut it
Just take them alovly; and think clearly.

Fnter the following machine lenguage progrem using HEXLD: You will have %o look
up the various hex-codes yourselfl

ED BG,0

LB Hy,0

ALD HL,BG

Em B

LD C,L3~-NE¥ ROM only
RET

Now use the dlrect comrand FRINT USR 30000 te xun
If you got zere well done. If, on the
then you did semething fundamentally
LD HL, both need THR

4t. What d1d you get?
other hand, you got =31004 or 34532
wreng. The instructions LD BC, and
EX bytes altogether to make them work, not tmo., What
dnetructionn d1d you resll:
or 345327 And how exactly
you get mero,

Y giva the computer o make it come up with -31004
did it srrive at that answer? How try spain until

26

Delels HEXLD by typing NEW (or on the old ROM by deleting each line
individuelly) Ths mashine code program will STILL BE THERE. Type in the following
BASIC programi 3

10 INPUT A

PO INFUT 3

30 POKE 30001, A-TiP(A/256)256
40 POKE 30002,INT(4/256)

50 POKE 30004, B-TNT(B/256)» 256
60 POKE 30005, INT(B/256)

70 PRINT A,B

80 FRINT D3R 30000

90 PRINT

100 Go TO 10

This BASIC progrem will replace the second, third, fifth, and sixth bytes of the
machine code routina by the valuss you imput in lines 10 and 20, Run the progr
mdﬁ;l.npu‘! some Yalues to sse what happens. Try going outside the range -32768 to
32767,

Now see if you can vzite a similar progrem, includdng e COMPLETELY NEW
mechine code routine, which will print a TABIE of values of A and B on the scresn,
&nd the result of sublracting A from B in each case. Let A and B both ieke on ell
of the veluea fxom 1 to 10 inclusiva.

write a machine code wouvine which will produce s one if BC is greatsy
than or equal to ¥, and o zerc otherwise, How cculd you test thie? (HINI: see
previous excercises on this pege) Da se.

Write a short mechine code routinme which will et the carry flag equal

to ome, but without altering any of the registers. Do it WITHODT using the
instructions SCF, CCF, or ADD 4,0,

27

§;========?
e e \\\Q\\\\}\\\}*\\\\\\W\\\\

. .'II_—_"i-lllni—D
Imgy=>
Wt

EEKING AND PGKEIN
AND MOR
ABOUT LOAD]NG
dxhicxwﬁsmam

\ llll/

///ﬂ// m"l‘l‘u‘*‘"

‘\\\\\\}\\‘.\\\\ S \\.\\\\\

W C.{ ETREUER \\\\\\‘&\t\\\\‘\. AN

=7

=~

e
!—_%.-) 5
i E

4

4
1

//'ﬂ'

/[

’///////

For those of you who thought maybe severn
Juutnwtuwcinl?ﬁﬂlndmn. and th

ir iher-'a any munber we have to mtors somewhers
or temporarily, then it makes ssnse 4o Juat POKE that number momewhars -
(almost anyuhere will da) then when we nesd it sgain 211 va have to do
ia 1o FEEX at that addrsss and volla — there it is!

A LESSON T pEman

If you've ever ssen any machins lanau Trinted anywhere, you may have
wendered why obscure brackeis kept turning up here and thers. What, for
exanple, is the difference betwean LD HL,16396, and Lb AL,(16396)7

A It'e not just for veriety, or to make it lock pretiy, they
4o actuslly mean something: brackets around a numbar or register—pair
vill refer to the contents of the ADIRESS in the brackele, So g

» #ither permanantly

LD BT, 16396 meana LET HL=16396
and LD HE,4(18396) mEans IET HL=PEEK 16306+2564PEEX 16397

The second sxample may have corifused you. The only eddzess in brackets fa
16396, so how does 16397 come into 1t7 What happened 1 & kind of eide—
effect. H and L can each hold ONE BYTE, so the pair HL storea TwQ BYTES
altogether. The address 16396 only holds ONE byte, sc encther one has

1o come in from Ssomewhexs. Tn practice this other byte comes from the

next possible addrese, in the above case, 16397. The reml effsct of ths
dnstruction I EL, (16396) ia IEP T=PREX 15395, followed by LET H=PEEK 16397,

There is also & revsrss imstmuctien, which is
LD (16396€) ,HL

This is effectively POKBing: The result of the dinstruction s

POME 16356, HI~TNT(HL/25€ 1% 256
POKE 16397, 1w {Hx,/258)

or if you think of H and L Beparataly:

POKE 163961,
POKE 16397,

In BASIC, this paxticular pair of instructiona is used quite fraquently.

I'1l give you an erample. SuppoEe yeu've Just writton a BASIC progzam,

;::rwu vant ta hl::: h:' lb;:a- At {8, You cmn find out the mmber of bytes
© Program accuples by using the expression PERX 1 O4-+256uFEEK 16

t0 find the sddrees of the BND of Program (imlg‘d‘.lng Ehn ut:l'eenw5

and e11 of your varizblea) and them subtract 16509 (the START of your

m&ﬁ Lrom ;.gl};‘?:;.r. Ll‘b‘a-;j;;,s zi;.tlh‘r expression for the GLD ROM,
d FREK(6mPEEK =16424, & very aim machi;

mrogran to caleulate this velue womid bag i s i i

30

OLD ROM NEW ROM

128, ED B8, 16424 117040 LD IE, 16509
Sa0040 ID KL, (16394) 241440 ID AL, (16404)
c600 DD A, céo0 A a0

SBC HL,IE D52 :
gj? RED 1 ID B.H
4D 1D €L

9 HET

inatruction ADD A,0 is used to get the carry flag to zexro, so that
r{:: Immsdiately following inmtruction will slways produce the eurmtf
answer. Remember that there is no puch imstruction me SUB EL,IE, .zdl
we ever need to subtract HL from IE ve are forced to use SEC instead.
i won't subiract properdy unless CARRY equals wero,

—code for 1D HL,(16404) is bullt up. The first byte is
2:?1;:"?0:1:2;“;;”“'“ not amm(;ml to remembex this, the last e:l.?r wa
umed & LD HL, instTuotion the code wea 21 (hex). The difference i= the
FRACKETS! LD IRSTRUCTIONS WHICH USE ERACKEI'S HAVE -A COMPLETELY DII'!’?.EI:E
HER-COLE. The mext two byles are 14h and ACh:~ this ia the mumber 164
{n hexadecimal = if you divide 16404 by 256 you get sixty-four (40n) e
remainder tventy (14h). In the HEX-COIE these two bytes huve been mwi ‘:Iha
sround to give 1440 rather then 4014. You must always remember io do L]
in machine code.

i 3 is something
1f yow atore this machine code prograi above RAMIOP (This
mm’;’n only NEW ROM users can do eaaily) as I've described then you cen
type Ln or LOAD any BASTC program and find ita length in bByies simply by
the by now familisr dirvect command PRINT USR 30000

the variables din
16404 will AIWAYS contsin the address of %he &nd of all

yatrdp:bmnm— this is its job. It im one of the SYSTEM VARIABLES vhtoh are
used to help the ROM know whet 1t is doing. If you siter this V’i-'!\lg ¥
POKRirg or IDing then the poor mechine will get very confused, although,

45 've phall see later, this is sometimes an advantage.

Tk, and why
Meke bure understand exactly how the above program wo .

evary Une?:: nesded. The most importent instruction is still the rk“t
one we learmed - RET, If any of the others are miesing then you will ge
tha wrong answer, but at least you'll get AN mnswer, Without RET the
Program will CRASH,

! . The
Net all of the veriables (regisiers) can ba mdtﬁhﬁd:ﬁ:zu “'1: B
instrustiona you sre allowed to use, together wi ’
breakdown of gaactly what they do, are listed here.

1D 4,(:m) 4 i g;ﬁﬂ
ID B2, (m) o 1ET B-PEEK{3a+1)
IET E=FEEK 7
0 18, (pa} 5B 1ED D~FERK{ pg+1)
1ET L-PEEK pq
1D HL, (pa) sl TED HePED(pq+l)
A porEnE:
10 (pa)ia 32 Firm Bk
POKE pq,C
i (i = 0B LB
FPOXE pa,E
LD (pa),IE EDS3 POKR pa 1,1
1D (ga),HL 33 POXE posls

31 POKE pg+l,H

TYou will notice that omly the wariable A may be sssigned a FEEK value, or

POKEd snywhere, by itself = all of the other registeras may be used in paivs.

Usually thia is quite @ useful featurs, but there are times whem you'll
want o assizn a single register (a usupl chofce is L) without disturbing
the value of A. There isn't remlly any vay eround this I'm afraid, but
what you cen do is to assign both halves of a register pair as desoribed
ebove, and then reset one of the registers to zerc afterwards.

Suppose you needed to know how far down the sereen tha PRIND pasition was,
If you look in your imstruction manual you'll find that PEEKing 16442 will
fell you exactly that, (On the OLD ROM you'll need 16421 instead) The
Problem is to LD this into HL, beciuse the number ve're alter is ONE BYTE

long - 4t ISN'T ptored in aither 16441 or 16443 = and one way of doing it
is thiss

OLD ROM HOM
242540 1D HL,(16421) ED4B3440 s LD BC, (16442)
2600 1D 4,0 0600 1D 5.0
it HET o9 Rer |

48 you can mee, the first ‘instruction will
of 16421/16442 into the L or C register sa required, but it will also losd
11 n;.g[;itht;mi/m_gﬁ. 20 H or B muat be remet to wero befors we Taturn
a B, otherwises figar rinted i 3
uauugi;ga. ¢ printed by the rowtine will be virtually

successfully load the contents

The other way of getting PREK 16442 into BG 1a-to o via the

x

Bince this register can be Lbed directly all by itself. But a: y:slﬂg.aee
this offera no adventages, since we still have to veset B to zers Bnyvay,

OLD RoM ! HEM R
522540 LD A,(16421) 3a3040 LD 4, (16442)
2600 LD H,0 0600 LD B,0
&7 LD L,4 4F LD C,a
cg REP ¢ RED

I you sti11 aventt convinced that the second instyue

onltting it to sea what happens. ¥ou'll fing you get

added %0 the real answer, 3y

30000 and only sltered the IOW part, The HIOH pert was unchanged [
! { : aaged. (Th

HICH part is INP(30000/256).) Tt happens to be o

comea in because 117=256 1a 23952,

Both of the above FTOATRNS, a8 they are wriiten, will nave the same
effoat - they will 1ell you the line number 6f the FRINT position, thet

is, they will tell you how far down the screen the next tharacter to be
printed will be,

tion ia necessary try
the number 79952

Try feading in ONE of the above two Programa, and then type in this BASTC
programt
10 FOR I=0 10 20
30 FRINT USR 30000
50 WEXT I

Remember, only NEW RCM usern may typas NEW without wiping eut the machine
¢ode, Run it and mee what heppena. Now fnsert more lines,

20 FOR J=0 10 3
30 PRINT TAE(8xJ);USR 30000;
40 HEXT J

and agein, RUN it and ses vhati heppensa, OLD ROM users should replace the
new line 30 by FRINT USR 30000, (ie with s comsa et the end of the state—
ment). g

32

KEING I3 MAGHITE COTE

0 of your BASI
t ae easy. To put ldne 5 y

P?"filﬂi:ei‘fn the mext automatic listing y_:;l‘ cgﬁ .
GLD ROM 4t 1o FOKE 1640%,50.) You muet make s ; .

aore Pirat though. In machine codet

¢ program at the top
POKE 16419,50, (On the
is 50 ox

Wi
HOI 1
a5 DR k50 o Lo (16419) 0
a0 ;nﬁus-wa).s % RET
3

- {in
it number returns to BASIC {
14 getunlly matter what nunl 23y
3’?? ;h?:oiti?::‘il be 30000) - the important _Y-h:h;g j:ﬁt:aiatt;a?tm
i;?:h:.u callad S-10P (Sereen Top) is POKEA with 50.

progzan does.

] 38h. This is

Lok at the FTEX-GOIE of LD (16419),A. The first l;{iptin 'zir;e et
el ; 1D (pq), Ay where pq représenta some ubé 11'; {n ditwed, Tre
. Wg'a 0,1: the uod'n is 2340, which is the nunber 164 et
remainder o the firet and laet bytes switched arcund} o e
(“thumzsauf “m;: srite our OPCOIE with the {1£419) first, “1'1' nw': -
Fts mum]:an age code always pats tne:instruction qumpuﬂ.tah s
s a-mhme faog"thﬂ the instructlon Lteelf aut,ua}'ly ni ki
i;::i:;': e:m of the OPCODE, You muat m‘-tp‘:hg:edz;ge::t‘ P

£ sonethl otal] '

fﬁ?ﬁiﬂ:&?ﬁ ::u}zm:?nng,nbenm:g it would take it to:mean

o3 1 5L
10 17 B,B
10 LD (T727)sh

{ ine code.
With the (7772) sddress nade up of your mext two bytes of mach

There are some other FEEK and POKE inetructions which use register names
thmughnut, Thesa aret

1D &, (50) oA i St
LD 4, lﬂ; A LET A+PEEK HL
LD A, (EL, = LET BrPEEK HL
LD B, (HL) 48 LET CPEEK HL
LD Cy{HL o= DPEEK HL
1D n.-iﬁl- % LB BevREC
1 E, (AL a3 LED H-PEEK L
e & T LA L
L}
agas o e
LD (ZE) A L BB LA
1D (HL), 4 1 e
1D (HL),B 70 s HLG
I (81),C n Fo ulb
b (HL),D 12 RO HLE
(@) e 4 FORE HL,H
FE & FORE KLyL

33

If you study the ccdes of the insiructions that have (HL) in them you'll
see that they form a regular pattern, In fact it looks very much like there
ought to be an instruction LD (HL),(HL) with scode 76 just to £111 up &
small hole in the regular pattern. In sctual fact there is mo sush
ipstruction, and cede 76 corresponda to an fnstruction called HALT,

To demenatrate what I mean. here is & small table of all of the LD eod
which use registera A to L, and sddress (HL): el

IDIB ¢ » E H 1 (&) i
B 140 41 42 43 44 45 46 47
C (48 49 44 4B 4C 4D 4E AF
D |50 51 52 53 54 55 55 57
F |98 5 5% 5 %6 5D Sm&Y
E {60 61 E2 &3 64 €5 &6 67
L |68 €5 €a 6B 60 ED BE 6F
(E) |70 71 2 78 ™ 75 —~ 17
A |78 79 7 7B € D TR TF

Do you mee what I mean about a Tegular patt wi

5 1 4 pattern with LD (OL), (EL) missi
Of oouras, it's not an instruction you'll over want to &sq?'nsinze it aﬁ:
abzolutely nothing, tut itis worth pointing out that you muni never even
ATTENFT 1o use it becmuse, as I've said, 76 im the osde for TALT,

Why ia any variable in brackets a register pair rather than a single
Teglaster? Why is any variable WOT in brackets a single register rather
then a register paixr? If HL contained a value of 16434, what is the diff=
eratice between LD 3,(EL) and ID BC,(1€434)P What is the precise effect of
each? S¢¢ if you can wriie & program in machine language which will asaign
to HL & value of PEEK 16442 ONIY, using one of the LD ,(HL) Instructions.

We have now coversd all of the basic LD instructions which operate on the
registers A, By G, B, B, H; L. We shall now take a look &t some of the
other ways of loading these variadles.

HOW. BLOCKS

Loading BLOCKS means loadimg huge chunks of memory all in ome go. For
example, if you had & machine cods rToutine atored beginning. at location
30000 and you wanted to move it completely te lopation 20000, then if
you wers really really patlent you could write a new mschine code routine
8long the linets of

112048 1D IE, 20000
213075 LD HL, 30000
T 10 4, (1)
12 ID (IE),A
23 IRC HL
13 INC DE
TR LD 4, (HL)
12 LD {IE) A
23 INC HL

and 86 on,

You could shorten things a bit if yeu knew absut the instruction LBI, which
means LOAD WITH INCREMENT, This is & very special instruction which doea
four thingm all in one go. First of all it will transfer the contents of
the ANDRESS stored in FL into the ATDRESS stored in IE, then it will
ingrement both AL and DE, and it will decrement BC. It will not alter the
value of regimter A. To summarias:

34

LI EDAG POIE- DE ,PEEK H1
IED HL<HL1
LET DEeTE:+1
LET BC*BO-1

The aboye program could therefore have been completely rewritten as

112048 LD T, 20000
213075 LD HL, 30000
EDAD LBI
EDAO IDL
EDAO LpI

and 80 On.

There 18 1o list of veriables aftsr the opecode LDI, bacause tha l(nstrustiss
will AIWAYS losd from (HL) to (IB). You muet not wxite LDI (DR),(HL) becsuse
this does not make sense, Further, it is imposaible to load im thiam mannex
in any other combination. Loading from (HL) to (BC) for exemple simply
camnot be done in & single inetruction.

Thers im alss an instraction LID, or LOAD WITH DECHEMENT, which has the

same eifect @8 LDI except thet IE and HL ere decremented and not incremanted,
Meither of these instructions, as with all LD imetructions, will in any

way alter the value of CARRY, The code for LLD ia EDAS.

REFEATING THIHGS

Fven with LDI and LDD st our disposel, it would still be & very tedious
affair to move something from, say, 30000 ic 20000 if that something were
sround fifty bytes lomg, If 1t were a hundred we'd probably give up in
dispair. Pertunately for us both LDI and LID have & REPFAT fecility. If,
inetead of writing DI we wrote LDIR, with the extra R standivg for REFEAT,
then the imstruction LDI would be carried out over and oyer again, and
would mot stop until the valug of BC was zexo, So if tme routine we

wantad to move wes in fact 100 bytes long then we could move it vsing the

routine

016400 LD 2C,100
112048 LD DIE, 20000
213075 LD HL, 30000
EDBO LDIR

when the machime Teaches the inatruotion LBTR, BC will comteim & value of
100, After IDI haé baen cerried out once, the first byte would have been
transfered, TE would be incrsesed to 20001, HL would be inoreased to 30001,
and BC would be decrecsed to 99, After = second atiempt, the second byte
Would have been transfered, snd BC would conmtain a wvalua 98, After LDI

had baen sarried out one Tundred times, the whole routine vould have been
suocesafully txensferred, end BC would contain a value zero and so tha
progran would eontimue with the pext instruotion. If this routine were the
entire progxam then the mext inatrustion should of course be RET.

The four instructions LDI, LDD, LDIR, LIDR each do slightly different things.
Meke suro you understand the differences batween them. They alec each have
a different code, all beginning with ED, The codés ara

1B EDAD
10D EDAB
1DIR EDEO
1DIR EDBS
35

I shall nwow glve you & prosraem which will enable you to SCROLL the screen
BACKWARIS, do that the soreen moves downwards, not upwerds, and thé print
position is moyed to the teop of the soreen. It will work on the 01D ROM
provided 1)all twenty-two lines of the screen arve full, ie contain thirty—
two cheracters plus a newline character, 2)you do not sttempt to FPRINT
anytning agmin (however yeu ecan alter the sereen by POKEing the display
file), Tt will work on the NEW ROM provided 1)RAMICP is at lesst 19712
(effectively this meana if you have 4K or more plugred 1n) 2)every time
you use the statenent SCROLL you fill the bottom line (for example by
usi‘lg.mthu statement FRINT "thirty-two spaces", your next FRINT should be
a AT.

A conmplete explanation of the program will also be given,

Q1602 LD BG, 726

2A0040 b HL,{16386)

09 ADD HL,BC

54 1D b8

5B LD E\L

018502 1D BC, 683

2A0040 LD HL, (16396}
ADD HIL, B

ED38 LITR

€9 RET

The Ecreen may now be sprolled BACKWARDS by using the NEW ROM mRistament
FRINT AT USR 30000,0; Cn the OLD ROH the corresponding atatement is

LET L USK({30000) but remember that on-the OLD RCM once the screen s
full you can only "PRINTY by FOXPing into the display file. The machine
code routine will leave a value of zero in BG (See the description of the
laet instruction, EMMR) &o having executed the machine code it will then
FRINT AT 0,0; de it will move the NEW RCM print position to the top of
the soreen. Mhis ie precisely the opposite of SCROLL.

The firet imstructlon is LD BC,72€, This is the mimber of chavaoters in
the scoreen. Thexe are twenty-two lines and each line contains tnirty—three
charactexs _éthi:-ty—tun plus one new-line charsater) hence the 1otel mumbes
is 22w33=726. The addreses 16396 (togetner with 16397) contains the addr=ss
of the START of the diplay file, (The firet character in the display file
18 3 new-line, eo the moredn itself actually starts one cherecter further
on.) This addresa is LDea into’ 5T, Remember that D HL,(16396) will load
TWC bytes into HL, mot eme. The ADD imstruction will then calculate the
address of the LAST byte of the scxeen.

In oxder for LITR to work, we rieed this addreee in DE, mot in HL, end so
aince LD DE,HL is not a valid instruction it needs TWO inmtructions,

10 L,H and ID E,L to accomplish this, We can now use HL for something
else.

We need tne address of what WILL EE the last charactisr sf the sorechn after
welve finished sarolling (or entiscrolling if you want to call it that),
Since 1t is the bottom line that will be lost, then thia will be the last
charseter of what is currently the TWEMIY-FIRST line. So we need ine start
addrese plus 21=%3, or 693.

The next three instyuctions in tne program; LD B0,693; LD HL,(16396); &nd
AED HL,BG will achisve this, and the Tesult will be left in HL, This is
precisely vhat we need for LODR to work, LDDR will transfer from ‘the address
contained in HL Eo the address contained in IE, ie it will move the last
sharastar of the twenty-fizet line to the last cheracter of the twenty-
#gcond 1ing, belore HL and IE are both decremented, or decreased by one.

36

How many times do we nesd to make such o tianafer? We have to move twenty-
one 1ines altogether, 8o we have to make sure that we do not use

until BC contains a value of 2133, o 633. A it happens, it slready does,
oinge we sssimed it ta 603 earlier om in the program. We mey new guite
happily use the instruction LIDR to BIOOK LOAD the first t_untr-ﬁne Lines
of screen down to their new position oocupying the LAST tuemy—nn--lim

of screen. Note that the old soreen will be completsly overwritten by tha
new screen with the exceptlon of the first (top) lime, whioh will be left
wrehangsd. This is why the BASIC siatement FRINT AT 0,0;"thirty-two
spaces” ia needed efter overy antisercll.

The following MEW ROM. BASIC program is designed to demonsirate the
ANTISCROLL Feature at wotk. Tt isn't a terrificly exciting game, cr =
pattern making artistie genius, or anything, but it will show you e.xm:t]y
what the machine code we've just been working on will do. You can of course
insert the routine intc any program - thers are some graphics games which
would be immensely enhanced by the ability to SCROLL in either direction.
This program sets up a etriped patiern aceross the screen, with each stripe
conpaned of ‘a random charactex chosen from the whole ZXB1 set, The pattern
on the sereen will then wait for you to tell it what to do, Preasing the
mip" key will meve the pattern upwards, and pressing the "down™ key will
wove the pattern downvards. These are of course the standard cursor control
keys 1'm refering to, except that you don't need to use SHIFT.

: 0 should
fhe Listing ia written for bokh FAST and SLOW modes. In FAST, line 110 e
read PAUSE 40000, but in SLOW it should be changed to IF m!#”" THEN GOTO
110, Othervise enter the program as listed.

TE AND DOWN

10 DM Ag(22,32)

20 FOR I1=0 TC 22

30 LET BIsCURE(63*Rme 1282 (AR5))
40 TOR J=1 T0 5

50 LE! hi=Bi+BE

£O NIXT T

70 LE] A;{(;E@ﬁ
B0 FRIND AZK(L)

90 MEXT I

100 TET A=

110 PAUSE 40000

120 LED B=Mal

130 IP B=2% TREN LED B=1

140 LED C=A-1

158 IF c;% THEN §E?r =22

160 LET Bg=TNKEY,

170 1F Rg='g* THEN PRINT AT USR 30000,0;A%(C)
T80 TF Bg="7" THEN SCROLL

190 TF Bg="7" THEN PRINT A3(B)

200 IF Bg="t" THEN LET A=C

210 1F Tg="7" THEN LED A=H

220 GOTO 110

37

Thia chapter has tried to develop a desper understanding of tha LD
instruction, snd has explsined how LD can be used to mocess the memory
addrecoen of the computer, The opecialised lomd instructions LDI (Load

vith Increment), LDD (Load with Decrement), LDIR (Losd with Incremeni and
Repeat, or BICCK LOAD with Increment), LITR (Losd with Decrement and Repest,
oT BLOCK LOAD with Decremsnt) have besn cowsred.

EXERCISES

Based on the Amtincroll program in this chapter, write m machine language
program to BCROLL forvarde, as the keyboard SCROLL dope, {Thia exexcise
in @specially useful if you do mot have SCROLL on your kayboard.) Then
see if you can write a machine language program which scrolls forward, but
¥hich will OMLY SCROLL THR. BOTTOM HALF OF THE SCREEW, so that the %op ten
lines are unaltexed, the eleventh 1ine is lost, and the twelfth to twenty
fizet Iinea are 6ll moved up one line.

Write m PASIC progrem making use of the routine. You will need the BAsIC
sigtement PRINT AT 21,03™hiriy-twvo spacea®™ every time the machine code
routine {e used. Try leaving this out just to mem what happena,

If you can't cope with the challenge of writing puch a SCROEL progran,
then I'11 give you & hint or two. You will nesd to use LDIR instead of
LDER, otherwise all you'll get is m pretty pattern, mnd ¥ou'll need to
riart block loading at the BEGINNING of ihe soreen, HOT the-end. Tha
inatrustion LD HL.?!EB%) will always glve you the sddresr at which the
nexeen banino. Don't forset that a full line conteinas thirty-thres
charsatsrs, ot thirty-iwo, since there 1s always u new-line charmcter
there as well.

38

%

%

P
=

i

11

et 1 1 1

Y R R R R AR Ry |

A

Y

it
Y

L

L
%%

MORE PLACES
v TO STORE
MACHINE CODE

J

R e R A TR

WRARRAR SRR
LT

— S
T

\

CODE

Steoring mechine code abeve RAMIOP will proteci it from being erased by
HEW, or overwritien by a program, but it hes the disadvantage that you
can never save it. There sre meveral aliernetive locations in which we
can atore machine languege programs, and we shall explere & few of the
poseibilites in this chapter,

Usire BN,
To store a mechine language roubine thet ie fifty bytes long, make the
first 1line of your program

1 REM 1?}455‘?3‘301234557830123455739.012545573901234561390

is a REM statement with [ifty characters after it. Il your routine was
sixty bytes long then you'd need sixty chargoters aefter the word REM.
If it ware only thres bytes long you would only need thrae characters
after the word HEM, It doean't sctually matter whai theme chavacters
actually are, but counting upwards im enes, as 1 have dona, will ensure
that you don't loee count halfway thxough. You will need to LOAD "HEXLD"
before you add this ney lina one, and then change lime 10 to

10 LET X=165L4 (or 16427 on the QLD ROM)

OLD ROM users should ensure that line one does not appear on the matomatic
LISTing. You can use ths command FOKE 16403,10 to remove L%, If this has
no effect try moving the cursor to lime 10 and try sgasin.

NOW you cam enter & machine code program exactly as before, except that

to sxsoute it you must say UER 16514 instead of USR 30000. On the OLD ROM
you must say USR(16427). BUT you MUST NOT type NEW. Deleta HEXLD by entering
the line mumbers one at & time, and do mot delets line onal On the OLD ROM
you must not even attempt to list lime ome or you may cause & crash.

40

Now there aré twe very important differences batveen using 16514 and using
30000. Firstly, SAVE will store the machine cods aa well as the BASIC
program = this i semetning von canmat ds in upper memery. Secsndly, the
command WEW will erase it. It is tnus an integral part of the progrem,

apd can only be used witn that one BASIC program and no other (unless you
delete it line by line and then type in a new program line by line). If
you have written a machine code routine apecifically to sccompany =ome
BASIC program then this methed is en obvicua choice, but it does have one
big disadvantage - on the OLD ROM the command LIST will uoually cause a
aystem érash,

There is snother Very very good place to store machine code, that is immediately

after the program area, This nae meveral advantagesr 1) The BASIC surrounding
nrogram can be safely listed - &vén on the OLD ROM. 2) The MACHINE CODE oan
be SAVED, 3) Using RUN, =8 opposed to GOTC 1, will net wipe it out. To load
8 machine cods routine that is, say, 20 bytss long, type the following
FEFCRE yow type ineny BASIC:

OIT AOM: 1 REM 45678901234567890
MW ROM: 1 RIM 678901 234567890

Then ae o direet sormend typs:

OLD FO: FOKE 16424 ,=1
VEW ROM: TOEE 1650%,-1

You Heve now Teserved s epece of twenty bytes in which to store vhatever
Ta=nine code you like. The sterting addvess is a little more complicated
though = it i@ on the OLD ROM P‘E.*%1&39?)-!‘2&&:-}7151((155933-201 end on the

YEW LOM TEEY 163064 PSEwPEER 16707-20 . The PEEK expression is the end of

e machine cede, and the mimis twenty is there to fimd the start, Thie is
24 eyepllent way of stering machine language routines. You begin loading
it From addrvess TREK L€396+25F»FERK 16337-length-of~routire, and you can
sxecuta 14 with ihe oxpresoion USK (FEEK 16396+256wPEEX 16397-length—ei-
reutine). Fizet though, there is one dimadvantage to get round. As 1'we
ey~lrined thinge =o far there in no weay you can actuzlly load &n editing
propram 1ice HEXZD: 11 you TCAL before you apply the above technique then
TXLD will gi=eppear along with the R stetement da spon as you H:llCE
16805, If you try to LOAD pfter you've recerved a apace then the very

rot ool LCATHNg will overwrite this space.

Fers then % & step by atep method of Teserving a space for machine code
in & plece thet i= 1)editable, P)GATEable, and 3)unlISTsble.

STUR ONE, TOAD an aditing program such ss HEMLD,

QUTE TN, Add A new line £1 the EFD AL the progvam: 9999 REN followed by
& number ¢f arbitrary chazacters. On the OID BCM you'll need three charac—
tore leer thew the number of bytse in the machine eode rvoutine, on the
new ROM you'll need five byies less than the machine code, The best wey of
Aafpp thic is fo £il1 the PR stotement ulth digits, gnd simply start
counting from 4 (OLD ReM) or & (MW RCM). Iike this - for a fifteen byte
routine s

OLD RCN: 9999 REM 456789019345

NEW ROV 9999 Rixt 6789017345

Of oourss 4t desen®t getually matter if you heve too meny charscters, but
it im p waste of npace if ycu reserve area mnd then don't use it.

41

STEP THREE. 4dd the followang lines aoywheres in the program. T've pat them
at 9000, but 1t doeen't matter. If you use BOOO then just remember to reed
8000 every time you see 9000 written on thie pepe.

QLD ROM 9000 LET X=FEEK(16392 Jr256MPREL(16393)

NEW ROM 5000 LET X=PEEK 1£396F2EERFEEE 16397

OLD RO 9010 POKE X—(four more then the number of
characters in the REM otetenent),-1

WEW RCH 9010 FOKE X~(six more than the nunber of

characters in the REM statement),-1
BOTH 9070 STCE

If you counted up te fifteen in line 9299 fus abeva) then 9010 =hould be
IOKE ¥-16,-1. If you eeunted up ta twesty then lime 9010 ehould instead
be POKE X-21,~1, and so on, Remember though to start counting at four or
siv though, as above,

% Run the progrem from line 9000, snd then delete lines 9000, S010,
ant 20,

STEP FIVE, Replace all references to the machine-code~starting-sddress on
your editing program by the expreseion FEEK 1639€+756»FILK 16397 minus the
number you counted up to in the REM etatement, OLD ROM meers should instezd
use PEEK(16392)+256wFREX(16393) minus the number you gounted up to in the
REM statement.

You are mow complete. The only thing you must not do La type TVEM, since
thia will erasa the machine code, Other then that you are in complete
command.

REM STATEMENTS

For the purpoaes of sioring machine code, OLD ‘and NEW ROM REM statements are
completely diffarent. Let's axamine them one at a time. Firat of all for the

01d"ROMs

Theze are seversl important points about OLD ROM REM statements. Most people
already know that a "blank” REM statement - that is a statement consisting
of the werk REM and nothing elae — has the effect of ensuring thet the next
line {8 not executed, It is therefors the same aa GOTO the-line-after-next,
and can be used in BASIC programs deliberately with this meaning.

The biggesat limitation of an OLD ROM REM statemsnt is the fact that yeu may
not stors tha byte 76 (hex) in the line, except in extzemely limited cases,
Which I shall explain. The reason ia that a character 76 is interpreted by
the ROM 85 an gnd of line marker. The two bytes immediately after such a
character will ba interpreted as representing the line number of the mexi
BASIC program line, and the fellowing byte will be the first character in

that 1ima, Thus if ths follawing gata were POKEA into a REM statement in line

one the folleowing would happent
DATA: 39 76 01 OL FB B4 D5
RESULTy 1 REM T
257 LET < THEN

2 next line of program...

42

If you tried to RUN this program you %ould get a syntax error in "line 25?_"‘-
Typing RUN 2 would be useless, because the program aem:-_mu for lina numbers
from top to botiom, and as soon as it hit the "line nunber" 257 it would
tnink to itself "ah - there obvicusly jan't a line 2 in the program - I'11
have to RUM 4t [rom here instead." The mame applies to all GO T0%s in the
program which have destinations batween 2 and 257. You muat only allow

76*s in your data IF the next two bytes form & ™line number" less than the
next 1ine pumber in the program, and IF you never try to axecute this “mnew
line",

o the other hand = this treatment does offer one or two advantages. For
i{natance, if you made your REM statement too long and you want to shorten
{4, if your machine code data ends at address A Just type

FOKE A+2,2
POKE A+1,0
FOKE 'A,118

{hen aimply delets "line 2" by typing im it's line number. It doesn't matter
i there ism already a line numbered 2 im the program = typing the line number
alone will only delete the firet "line 2% in the program - all your extess
REM characters in other words.

conversely, if you fird you don't have enough charactera after the woxrd REM
juat type in a line 2 consistiing of a second REM statement full of arbitrary
Zharacters. In this vay as poon aa the "real” end of line maxker is over—
writan 1ine 2 will bepome part of line 1, with emough sharacters for whatever

you need,

Alas, the NEW ROM does not fit any of these deacriptions, NEW ROM REMs are
quite, quite diffewent.

The first, and most imporiant difference, ie that you san put character 76'as
into the REM data and the machine wom't notice, BUT if you do &0 ba prapared
to be confused by the LISTing = even the ROM geta confused over it - but you
don't meed to worry becauss eéven with supposed new=line markers in mid-line
the program will RUN quite smoothly, and will not intexpret the remainder

of the line ms 'm different line.

On the other hand, it"s a little more difficult to extend the lergth of &
REM statement, If you want to sverrun into line two you'll have to do some
wery clever POKEing first, tmt I'll explain how Lo get round that in a minute,
The obvious way of making a line longer is simply io use EDIT and add more
charactera. Unfortunately for us thie ia usually not o very vise thing to da.

If the data in the lime does not contain a byte TE then by all means go ahpad
and wss EDIT - you arve quite sale, and nothing will go wrong.

If the data in the line does contain m bykte 7E then I0 ROT use EDIT, In the
Maoting, o byte TE is invisible, and the five bytes of data that follow
immediztely after it will also be inviaible, but ‘they are still there! If
G0 the other hand you use EDIT, all six of these invisible bytea will simply
Vaniah without a trace.

TE is used by Sinclalr to mean "This is = (fleating point) number®. Whenever
You wse a decimal number in a program listing the ROM will sutomatically
follow this mumber with a bybe TE, followed by five more bytes which contain
the nunber itself in floating-paint-binary-form. Hoth the byte T& and the
Tive bytes that follow will be invisible from the listing. This is what
®fiuses g1l the problems in editing REM siatements. Now although I agree that
thia s a very very efficient means of storing floating point numbers in

% program, it is alse trtie that Sinelair Research could have used ANY hyte

43

for this purpose = they didn't specifically have to uge TE. It is of couvas
the purest of céincidences that 7TE happens to be one of the most commonly
uoed machine langusgs instmictions of alle

The only practical means of adding more characters {0 a REM statement
containing machine eoda on the NEW ROM is to let the data overrun inte line
two, but there are: problems even there, thanks to our kind friends at Sinclair
Regearch. You see the start of every line of pregram is preceeded by 4wo
invisible bytes which store the length of the line, o that even if you
overwrite the end-of-line-marker, the ROM will still try to interpret the
second line from the same point, To get round this you have teo actually

POKE these invisible bytes with different velues. The following is & small

routine which will enable you to increase the length of a REM statement at
Lline one,

Step one is to insert a new line 9 to your BASIC program consiati

: mert ! 8.1 ng of the
word REM followed by a number of arbitrary characters. Then, at ANY point
in the program insert the following five lines - (They will shorily be
deleted anyway):

LET A=16515+PERK 16511+256uPREK 16512
LET A-A+PEEX A+256#PEEK (A+1)=16511
FOKE 16511, A-256uIND (A/256)

POKE 16512, INT (A/256)

STOP

Simply run this routine and line 2 will automatically be a part of line 1.
You can delete thia routire now - it job has been done, LIST line one -
you'll see that line two still looks quite separate, but try moving tha
sursor down - you'll find it skipa over line tws altogether. Try daleting
Line 2 by typing in Ita line nunber - it won't work because rnow the computer
doesn't know that line 2 ia thera! Whatevar tha listing may look like, the
ROM will now ignore line 2 altogether, taking it to be part of line one.

You may now gquits happily overwrite the end-of-1line-marker at the end of
line ome with no 111 effects. :

Conversely, the following routine will shorten a REM statement
of Bix bytes, statement by a minimum

IET A=the address of the last byte which you wish to preserve
in the REM statement of line 1.

1ET Bep-16511

IET C=PEEK 1651 14256wPEEK 16519-B-4

POKE 16511, B-256MINT (B/256)

POKE 16512, INT (B/f256)

POKE A+1,118

TOKE A+2,0

POKE At3,2

POKE A+4,0-256%INT (C/256)

FOKE A+5,INT (C/256)

STOR

Again you simply RUN the rToutine once, and then delete it. Now LIST the
program and you'll find a new line 2 has appeared. Delete this by typing its
liné number and your REM statement will now be as shoTt asm you need it.

44

USING THE VARTASLES AREA

other place where machine code may be stored is in the variables axea.
;a; do u:; you must first of all reserve the space. Mo store a machine code
routine of n bytes (n is the langth) OLD HOM users should type TINM 0(n/2),
and NEW ROM users should type TIM Of(n). You may now write your machine
code.

On the QLD ROM the starting address will be PEEK(16192)+256wPEEK(16353)42,
provided the array O is the first item in the variables ares, This will be

tha case if the DIM waa the [izot DIM, FOR, INPUT, or LET statement executed
since the last time you used RUN or cm.\a.fn' iou‘jDIHanaiunedtg a3 a direct
command you should remember to type CLEAR first, You cen aay your

program ﬁmthing aleng the lines of LET ASFEEK(16392)4256aPEEK(16393)12
right at the very start, and this value will mot change ihrougheut the program.

the ROM the start address is PEEK 16400+256wFEEK 1640146, provided
me uhaf::‘ta!' array Of J:‘-Ethe firat item in the variables area, This will be
true il the DINM was the first DIM, FOR, INFUT, or LET atatement executed
since the last time you used RUN or CLEAR, You can dimension Op 83 @ direct
gommend, tut you must remember to type CLEAR firsi, There is however one
pig difference between the OLD and NEW ROMs here. Gn the NBEW ROM Lhe value
PEEK 16400+256uPEEK 16401+6 will change during the rurning of your program
if you have less than 33K plugged in, If you have more than bi 18 then you
don't need to worry, but otherwise you musi recaleulate the expremsion every
time you wish to access the machine code.

One last important point is that having stored machine-code in the variables
area, any future use of either RUN or CLEAR will complatsly wipe it all out,
never to be seen again, For this reason I do not advise using it for machine
code storage. Tt WILL SAVE and RE-LOAD, again provided you never type RUN or
CLEAR

45

}///r/////J$

e 1772277,

\\\ \\

THE STACK

There 1o an area of RAM that is set aside for storing varicus pisces of
information to help the machine know what it's doing. It works 1ike thisg

The word "stack" In something that the compuler pecple hava got smtraight
out of & dictionary, It memns exsctly what ia ecunds like! Imesgime a stack
of eardboard boxes. Bach box is rerlly & memory location, so each has an
address, but il you vant to kmow what's in sny particuler csrdboard box
then the only sne you can eacily look at ia the top ome. I you iried to
11 one of the boxes from somewhers in the middle then all the boxen
above it would fall down. Conversely, to sdd a nev box to the stmck, Lhe
only place you can essily put it 1a ab the top.

The memory lecations in the stsck sre just like that. You eem put things

on top of it, but ONLY at the top., and you can take things FRHOM THE. TOP,
There are two apecial words that o wWith the stsck = one word which means
"atacking a new number onto the top”, and & mecond werd that mesns ™remowing
& number from the top". The firat word is PUSH, snd the secomd word ie

TOP, ‘#¢ LI you FUSH the number five onto the stack, and then you PUSH the
munbey one-thousand, and then you PUSH say 164265, the fixet nunber

you can FOP is 16426, because this number is at the iop sinoe 1t was put
there lnet. The next numbsr ta be POPped will be 1000, and then five.

The atack is stored very wary hizh {n the address, so that thers is less
chance of programq “oolliding™ with the oteck ms either one or tne other
s built up. In the old ROM the bottem of the stack is at the very top of
nemoxy — 17407 for 1K, 20479 for 4K, end 32767 for 16K. In the new FOM the
whole atack moves Around = the bottom of the stack is at an sAdvess atored
in one of' the eystem variables - ENR-SF = to be found at 16386 and 1£387.
The stack 1o aotually very peculiar, because it's UPSIDE IOWN, Tha BOTTOM
of the stack im al the TOP of available memory, and tne TOP of the stack
ds BHLOW %1 I% turne out Lo be more efficiont this way, It's not ectually
a deliberaie plot to confuss the whele human race 80 that the world may
be taken over by ZX compulers, evan Lf 1t does at timen seem Like it. So
Tenember - the atack, or tha MACHINE STAOK a8 il's sometimea celled, is
like o stack of cardboayd boxes piled Up on & Bhop floor, except that in
@ dering feat of defiance of Wewton's lavs this slack instead decidea to
réside om the ceiling and build up downwarda, The top - the only part you
oan easily get at = i8 lower down than tha battonl y

The mtack da so important to the computer that a special RECISTER ia ast
snide just to store the peaition of the TOP of the stack. (The part with
the lowcat mddress - the part we can get 10.) That register in called BF,
which stands for STACK FOINTER. It iz actually a rogleter=PAIR, becausa
it can rlore iwo separate bytes, but unlike the other regisier-paira BG,
I8, and HL, we CARNCT treat the two halvee tndependently = they fust won't
Beparate.

Here's how the instruciions PUSH and FOP vork. Suppese HL contained & valus
12345, Thie peans that H contmine a value of INT(1234%/256), or 48, and

L containa a value of 12345-256=INT(12345/256), or 57. Now the Imstruction
PUSH HL would store the number 12345 at ihe top of the atack. It would do
it by firet of ell stacking the HICH part, and them stacking the LOW part.
It would slao alter the wvalue of 8P socordingly since two more bytes have
been sdded e the stack, and the pseitisn of the Lop will thercfore have
moved (down) by two mddresses,

It de unfortunately not posaible to PUSH ningle registera onto the stack;
you may cnly PUSH repieter-paire, me BC may be FUSHed but 3 en its own may
not. It s worth noting Lhat the ipstruction PUSH NG will not in Bny way

slter the value of BG, it will eimply copy it without changing it. This
of. couras goes for all PR iuntmel{nnl.

48

PUSH can be thought of in BASIC =a 2 gequence of three atatementsi

HL FOKE ‘SP-1,H
e POKE SP-2,1
LB SP-5P-2

' 11 firet of all remove
works the other wey round. FOP HL wi i .
50};1-:: :::r:iack. and will then ramove H. SP will be changed, since the
tap af the stack will have moved,
FOF HL LET L'MESP)
LET H-FEEK(SP+1)
LET Sp-SP+2

that PUBH HL follewsd by
4, using the BASIC equivalents given,
;:;; D‘E :: the sems thing as LD D,H followed by 1D B,Ls

PUSH

Here are the codes for the instruction PUSH. (me of them will require
a small degree of sxplanation.

PUSH AF 5
PUSH BC c5
PUSE IE b3
PUSH HL B

The register-paiz AF, which camnot normelly be used in this way, ia made

up of smaller single registers A and F, in the sane way that EC is composed
of B and C, A L6 the register which we've been using throughout the boak

so far, but F is something ecempletely different. The F sienda for FLAGS,
and is so called becsuse it stores the valus of all the FLAGS uued.'(.ll FLAG
is 2 memory that can only siore zero or one). Onc of these FLAGS we've
alremdy seen — the OARRY flag. The F register haa ithe papnb!.]:lty. ta store
eight flage altogether, but in fmct only six of them are vsed, We shall

ses what these are, snd how to use them, later on.

P

The godes for the POP inatruction are very similar %o the eades for PUSH.
They are:

FOP AF n
POP BC Cl
FOF TB Dl
FOP HL EL

One of the major uses of PUSH AF and POP AF is simply to put the value of
A onto the atack, The fact that ¥ has been stacked with it is irrelevant.
FUSH AF will conveniently stora the value of A uniil it's needed agein,
&t which point ite value may be Tecovered by the use of FOP AF. Thie can
bs umeful if you have to use the A register to perform caleulations of
Some kind that couldn't be performed by eny other register, but when the
¥alue of A will Btill be needed later on in the program.

For example, to add twenty=five to the value of B without altering the
¥alua of any other register:

L] PUSH AF

& LD Ay

c619 ADD A, 25d

47 LD 8,4

¥ FOP AF
49

Vhy will only B and no other reginter be altered? (Net svan the CARRY

Tlagt) See if you van work out preoisely wna: L
s rea s precisely what the abeve routine is doing,

ALTERTNG SP

We cen actyally uss SF In mach the BAmE Wa;
; 8y that we use DE and BC, W
add and subdtrast it, and ve can load it. The hex codes are e

1D 8P HL 9
L3 SF,mn 3
LD 5P, (pq) EDTB
LD (pq),sp ED73
ATD HL,SP 39
ADG HL,SP EDTA
8B HL,8P EDT2
INC SP 33
DEC SP 38

This is very powerful, and vary useful. Suppose you wanted to exchange the

values of D ard E without alte: R X
Mg sl Ting anything elae. The following routine

5 FUSH DE
5 PUSH Dk
13,? TNC 3P
POP DR
33 1NE 8P

gz {lnajt. _lhitmphlqn e 5P was necessary in order 10 reatore the Stapk
nter to i1s original value, IF this is not d i
o T not done you may cause a pretty

SP is not the only very specialised Tegister in usme :

byte regiater dalled BC, or PROGRAM cosum. Itau;nl.i T:G:: :::-::ﬁar o
::o;:;ﬁ’g? ¥e exe in the program, Every time it has ts execute an instruction
ﬂ“\'l . H: & look Bt what PC saya. If it says 30004 then 1t will exncite

a mvn; Puction at location 30004, and then it will increment the value

of 20 by the number.of bytes in that indtruction, so thet WENT time round

1t will be laoking at the next instruction in sequence. For example, if

30004 contained the imstiruction ID A,B then thi= would be carried cu'it

and IC would be increamed to 30005, IT I
then onoe thie was carried out FC would be increased by TWO, since 1D A,2

If you alter the value of PO then the effeot is like
:_n.l-)- difference ik that machine code does not use ;Ln; ﬁggrfc :'2. yﬁq
&8 to G0 10 the right ATDRESS rather that the rizht line samber. the
;lﬁl;:.n; language instruction that doos this Jeb i JP, which of m;urss is
e JUMP. JP 30000 meana G TO acdress 30000 and sontinue exeeuting
8 machine code program from thers. Of course g1l thia instruction
REALLY does is to load ::: ::I_IE:I: %ﬂﬂﬂo_ tm-lin'ln Tegieter PO (but without
3 @ instxuction), =
is the next address in the Program, It ie l‘:r)l;'ur: ;f::uftf::lﬂ‘?uﬁ)nm

v y
u:::g:::u think of it as kind of GO TO though, Yeceuse that's what we're

Be gareful with JP though. If you creste an infi

then TOUCH! You're stuck with §t, and whatts m:l;:ﬂl::: ::v::ugj::k“d.
out unleas you sctually awitch the machine off at the mains. Some other
computers will let you bresic out sf machine sode, but the zx81 will pot
neither will the ZEO. 4n exanple of an infinite loep would be i

50

= 30000 LD (HL), A
23 30001 INC HL
c33075 30002 ek

this ism't
tvé written the actusl addresses in t.l:.m middle columm. Usually
gons. and important lines are marked with LABELS, or words which tell us
Jhick lines Oo what. Theae LASKLS do not sppesr in the hex, and ws only
in fect writa them for our own convenience. If for imstance we decided 1o
a1l the Cirst line SPART then our pretiy bad program could be written

.” START 1D (HL),A
23 ING HL
e33075 TE SR

thsr inotuotion similex to JP, called JR or JUMP RELATIVE.
ge:n{: m forward a given number of bytes, In many ways it ia better
them JP becaums it im only two bytes lomg instead of three, and becauss
» whols routine may be RELOCATED without changing JP destinationa all over
the place, JR O hes no effect yhatscever, and the neit instructiom will
pe executed in sequense, however JH 1 will cause the next imstrucilon
{aesuning it to be a single byte instruction) te be nkip_pod. Te akip
over a tws byte imatmetion, or two singla=-byte imstructiowa, you will

need to uee JR 2.

Tt is mlee pomsible to jump backwards using JR, since there is a convention
tbet any hex mumber greater than 7F will be treated as & negative nunber,
obiained by subtracting 256 from the number it would normelly represent.

To make life easier I have included a second table of hexedecimal numbers,
only this time usimg the negative sign convention.

e e e T e Do O

[B

= W ¥ o

=128 =127 =126 =125 =124 =123 =122 =121 =120 =119 =118 =117 =116 =115 =114 =113
=117 =111 =110 =109 -10B =107 -106 =105 -104 =103 =102 <101 =100 =93 =88 =97
=96 =95 =94 =93 =92 ~91 -90 -BY -BB -B7 =85 -8 =Bj =83 =52 -8l
“B0 =79 =78 =77 =76 =15 =Tk =T3 =12 =TL =70 =69 =68 =G] =46 =65
60 =63 =62 =61 =60 =59 =58 =57 =56 =55 =54 =53 =42 =51 =50 =49
4B -47 —46 -d45 -44 -43 -4Z -41 -40 =33 =38 =37 -36 -35 =34 =33
-32 =31 =30 -29 -28 -27 -26 -85 -24 -2F 22 -21 -20 -19 ~-1&8 -1T
=16 =15 -14 =13 =12 =11 =-10 =9 =8 =T =& a5 =4 =3 -2 =1

Here the number -5 is represeated im hex by FB, and so it is therefore
pessible to use the imatruetion JR -5, but nste that b of this ion
we are unable to say JR 129 for instance, because 129 in hex is 8], which
would here be teken to memn -127, end would be a jump backwards. The range

we are limited to is therefore from -128 to 127,

Ji 0, ms we have said, does absolutely nothimg, It will continue with the
next ipstruetion. It is important teo remember that mll relative jumps are
counted [rom the HEXT insiructiom, JR O meens execute the NEXT PLUS ZERC
inatruction, JR 1 means execute the NEXT PLUS ONE imstructien. Consequently
if we were to eay JR -2 then you must count backwmrde for two bytes, atarting
8t gerp with the WEXT inetruction. You will fimd thet two bytes leads you
to exactly the instruction we have just exeouted - the instruction JR -2.
JR =2 is therefore an infinste loop, and is mot a recommended instructiom
to uge in a program.

51

The Tether silly (infinite lesp: & cou i
reveiTien S oo o Byse detng . Tawtect ol Jp."" RS R con nox ve

7 START LD (HL),A
23 ING HL
1erg TR -4 or JR START

You have probably by mow realioed that JP end JR are more or less usele

on their own, in the same way that the BASIO statement COTO would :: tei:uas
if it weren'i for IF/THEN statements and GOTO N. We nesd some kind of a
CONBRITIONAL jump, 8o tnat we oan gay IF scme condition ia trus THEN jump

o @ nev address pq, ethervime we ave virtually certain to produce an
infinite loop. Although meohine langusge deesn't have quite the same kind
of flexibility s an IF/THEN statewent, there ars four conditioms we can
::;c;k Tor using JR, and eight conditions we can check for using JP. These

JR e 1a JUME REIATIVE by o bytes.

JR EZ e o8 IF the last result calculated was zero
‘then JUMF RELATIVE by e bytas.

JR N2 e 20 IF the last result oaleuleied was non-zerc

\ then JUMP RELATIVE by ¢ bytes, i
JROs 38 IF CARRY=1 THEN JUMP HELATIVE by e bytes,
JENC e 30 IF CARRY=(THEN JUMP RELATIVE by & bytes.
and for JB:

JE pq c3 JUOMP to address pq.

JPZ g Ch IF the last result calculsted was zero
THEN JUMP to pa.

JP Nz pq €2 IF the last result calculated was nom-zero
THEN JUMP to pq. g

JP 0 pn DA IF CARRY=1 THEN JUMP to pq.

JPRC pq D2 IF CARRY"0 THEN JUMP to pq.

JEFE pg EA 8see below,

:;‘ POpg E2 ses below.

Mpg TFa I¥ the last result caleu
e (Minus) THEN JOMP to pq.hd'er1 G
Q. F2 IF the last result celeuleted wan peaitive

(Plus) THEN JUMP to pq.

1::v n.'lfhbugh thin &3 a far ory from IF A "HELIC" THEN ¥RIND "GOODBYRY

mguvﬁg ;Beﬂ to, you'll =soon mee that aven this horrendous taak ; be
4 1;2!im:£§:hj;n?;uaaé Er;g though I think T ought to explatn shont
th B « The P actuslly stands T j
the @ and Q mean Even and 0dd. What we are deing ia te:ti:a: §fg.t;2d

flage - a flog cal
it ndrke lllm&t:;siﬂd B/V. T4's not all that difficult to S

:g: P::x:x_ﬁ’ﬁ-. Ei;yﬂ:;ﬂ:m. v :tandslfur Overfloy because 0 is ton
: O L TETQ OT could mean 0dd (as in JP PO
::lﬁ.ri:ivndoge_lg;ve;mtisa at :ﬁéllin,g. the ;ommﬁtfh& b,:zcln dacigéﬁaicm
. & 8 rather overworked littls Beast & i
does two joba at once. The firet Job i 3 e r et
aoua « The B to check the PARITY of t a
::B#: g-;:ula:_sd_. Thia means you simply count the numbew ofnl'ah?:zl- :L)
o ﬂigtsaﬂe:fz}h:}j:a;e L—auulgéi.('.l'&:g binery form is always writien
e e Ang adding Feveral leading seroes.) If
T ¢ 1 n the 8
i EVEN thén the parity fe Eviy, Parity is ODD. If the mumber of 1'a

do s 4o wheck foy on overflow, If we
acsitive; snd from 80 1o ¥ se mEgetive

S AREeT the senticn flov happens if the
(€ Qeserihed in the sectics on JR) Then ar ever
Weizn® im shanoad accidently. For expapie Al (positive) plus A1 (pgss.twej
enuals 82 (wnich ie nepetive). This is an gverilow, bul note this is
NOT a CANRY, JFP PE in this case means JOF 1T there Hzs heen an overflow,
an@ JF PCimeanc JUYP LT there hoe not been an overflov.
The verious tests, if combined with otner instructions prcperly, can really
check for any situation conceivable. In fact there's only one other kind
of instruction you need in ordexr to make JP and JR as powerful as IF,
COTO - thet instrustion is CF, or COMPARE.

The second job this flaF has to
regard numbers from 00 ta T as

CP will compars the rerister A with any other reglster, or with any constant
aumber. It will do thie by working out what would happen if that register
or number were to be subirasted from A. It will not alter ths value of any
of the reglsters, but it will slter all of the FLACS. The conditional JP
and JR i{nstwietions york by checking the valpe of the flags. Apart iTom

tne cexry Fleg, sowe of the other flags are the sign flag, which stores

& one if the last caloulation wse negetive, and a zero if the last caloulation
was positive; the zero flag, which stores a ore if the result of the last
salculetion was zero, and & gero otherwise; and the parity flag, which
atores a one for parity-even, and & mero for parity-odd. Although this

may sound complicated you don't actually remember &ny of it, as long as

you know how ito use CF.

If 4=3 TWEN COTC pg iv quite easy to represent in machine code, It is CP B
followed by JR Z,;8. CF B will compere B with A (CP slways compares with 4,
&p that CF A is meaningless) which ia does by working out A=B. The result
i=n't etored in eny of the registers, s0 4 and B both remain unchanged. The
next instruction JR E,e, will only Jump if the result A=B is zaro = in ‘other
worde if 4 equals B,

IF A<B THEN GOTO pe may be ochieved in machine code in iwo ways. The first
inatruction is CF B which will eompare B with A by performing A=3. Now if

A is leeo than B then A-B will be negative, and so you could well uee

JP M pq, but you could mlse do kt in amother way which will allow you to
use JR instead of JP, since if A ia positive, and A-B is negative, then
tnere will Be a carry, and so you may use the ipstruction IR C e,

Of course this will not work if A was "pegstive® (le in the vangs B0-FF)
to start with umlese subtracting B caused enother overflow by gwing through
00, This could not happen unless B was in the range 80-FF as well.

CALLJNG . o'y

Even in machine oode we can have subroutines. GOSUB the reutine starting

at apdresa pq is CALL pq, RETURN ig RET. This particular instzuctiion shonuld
look very familiar, since it is the very same RET that we've been using to
zot back to BASIC at the end of & routine. Thiz is because every USR routine
i8 really SUBROUTINE, even though we consider it as & pragram in its own
right. Unfortunatety there's no such thing as a GALL RELATIVE insiruction,
as theve {m with JUMP, so GALL must always be a three byte instruction, In
exactly the same way as with JP we can impose IF/THEN conditiene, which
work in precisely the same way snd are written with the same latters to
define the conditions, These Arel

CALL pa L31] RET 3

CALL 2 pq (] REP 2 CB

CALL NZ Do G4 RET HZ co

CALL € mq e RET D8
53

CALL WG B RED NG 20
CALL FE B RET PE B
CALL PO E REP PO B0
CALL M ¥o KR M ¥e
CALL P ¥ EET P)

48 you may ox may not have gusssed, Lnstructions 1ike RED Z (return if zerc)
ean also bs used to ond & mashine code routine, iw IF RESULT O THEN RETurn
to BASTC.

It de very importmnt however that the velue of SP im not alterad during

& oubroutine, sinee the snatwactions CALT and RED both use the stack,
CALL works by PUSHLng what would have been the next address to be axseuted
onto the staok, and HEP works by POPping the first item on the etack.
Thereaftar both of thess i{nstructiona act sxactly like JP. Therefars it

is posaible to alter the RED address, should you need to, by FOPping the
firat liem on the stack {the previous RET eddreas) and then PUSHing o

new address, For exanple, tc change the HED address to 20000 you could
use the zequence

El TOP ML
21204 1D HL,2000
B PUSH 1L

Another useful trick is io stoxe the value of the 8tack pointer mome

8t the start of g subroutine, and then retrieve it at th: 03. on -tn:h:::
FOM & good place ta Btors this value ia the address 16507 because naither
thie nor 16508 are used at 811 by the ROM - it is the two "spare" bytes
belween the system variables and the program. On the 0ld ROM you don't
have thia spare 29866, Dut you can overwrite mome of the other aystems
Parlatles, for exampls the frame oounter at addrass 16414, The sdvantage

of Golng this i thet you can FUSH amd 0P to Brarbt
81411 be sure of m safe REMurm, jour heart's gentent and

At the start of a subrontine:

ED737840 Lb (16507),

and &t the end of a subroutine; ; oy
EDTR7B40 LD 8P, (16507)
c9 RET

[EXERCIEES

To make sure you have understosd using the stack, and conditional Jumps,
write a program which will PusH &very number between one and Tifty onts
the stack Eusing FUSH AF) and them somehow menage to successfully return

to BASIC. (HINT: CP'32 (fompare with 32 (hex) (50 decimal)) is auite
uzeful instruction here,

You'll need to know the verfous codes for CP. These are as Tfollowss

CP 4 BF CPE b1}

3 B8 1.8 1§ 0

Cr ¢ B9 P L ID

CF D BA CP (ML) =
CPF n FEnn

In the next chapter we'l]l begin loading a program whish ie deslgned 4o
play a geme of draughts, Now don't worry 1f this sounds rather complicateds=
I did say we'd begin loading 1%, I'm afraid you won't get-the whole
program until you've pearly completed the whole book, so keep a cesaette
handy reseried Just for thia propram, and ¥Ou can reSAVE it at sach new
stage. You'll need et lerat AK for this,

64

=\

R
R AT R R A B R R R T

AN S s s s e e

NN Ny
.

AR N e
V([
8 PR R R R

SPRINTING THINGSK
TO THE SCREEN

S -9 ¢ - 3

/2227

L
\\-

7
%

%
=
b

¥ =,
Y=Y

o
%

r

o
)

4
L
%

L

AUGHTS

In order to write a program se extons
ol . ive ao draughts, we'll ne £
xmr::la?ﬁ;mmn‘ . in order (o help us load {t. ';h- !'n!'lm:-:x“l:‘:':z:m
At led HEXLD2 - which has a couple of improvemantia over Ila
L "'l\u.b-n ar'mmt ::p:::.:!.l‘thl'i::! abllity to inpit strings of characters
r ch will then be d in 1 !
code one character at a time. To achisve thim mmmﬁm 1'.'1;“;:’;;";3; 0

BEI" = that s, the 2
A text must ba surrounded by memicolons = thin la very

HIALD2 1ista sa follows, OTD 1
il 0 o vqmil;h o ﬁ! :T::.uhuutﬁ use the version on the left, and

OLD Wik EEM_ KON
ig }ggm: "VHITE 70 " 10 IRINT "WRITE
e HeE ITE T
i s
5118 200 co :
e L. 40 Gosun 200
60 LED At nm 550 L
70 T pgenv Tiny INpUT Af i

80 I¥ 4¥r5e aHEN arop 7O XIF ag=*" THRN INPUT v
90 IF COTR(AR) =215 TikN GoTo 80 IF Ag=ms mky sy
100 FRINT 'cm?ﬁ{cum \-JoT0. 00 90 TF oo Agez5 411k G010 300

B (COTRTLECh)) 1 100: FINT. WE('70 2)j*vo spacea=;
two Apacea™)

£§§ E’Eﬁiﬁ;‘(’:ﬂﬁcm(m‘m»ss 3 e ;iﬁucom ABYGOTE AB(2)=476
i % £ o s

;23 :g H T 4 200 LET X-4096wCUBE: Af+256ncone: AR(2)
R s e
240 WXL 1 210 TETURN

250 RETINN

o) :
T T ICHIE .

Sy "hu: .ggf:‘:?(un' 310 IRTNT % M AR(1) ;4w apacen®)

370 POKR. X, GOIF(Ag A

330 17 COIR(k)~ 226 Tie 120 1OKE X,C0IR A

340 i #xurz i e co2% j;f;a:g TGN FORE 1,118

350 TET X=X+
360 1¥ pop cn}#(g)-m THEN GOTO 310 360 I¥ mn::'};e,gg. THEN Coto 310

370 LET AF=TLA(A
180 Govo. 370 LET Ag=gi2 To
8D oo 70 $5o nqt;“ﬂ)

300 LET afi=ag(2 m0

This propram s basicly the pame pa
::u ue;‘.remund to input the start{
“:‘:;: ::wdcnlﬂ- 1: fo he lozded, and mecondly it will allow you to input
FEETaS of g -uaing their tharscter codem, rather than hex - this luw
Mk e 3w ptgt.re1ng at line 300 is for, If you input ®CDOBOBCO™ it
Wik ne::rT” ;q 40 CALL 0808 followed by RET - thie is exncily th
b = however I_..I‘ you Inatead input "jLR graphic) graplidc :
i huuﬂelgﬁz '?'ﬂﬂ-‘f the ename thing., IT you compate character codem
5 L T Y lonking 4 up fn the mAnual you'll find the hex for *
T8 umeg tonex fox graphie A n OA, and hex for TAN ia (9. The nemicol

© 1211 the nprogram where the dats pterts and ends, g

HEXLD except for-two femtures, Flraily
ng addreen (in hexadeoimal) at which

STTROUTINES WITH D

Let's lopk at some usea far this. Perhaps the most useful pubroutine we
could impgine would be one whioh prints a atring of characters to the
soreen, Therse is already a subrovtine in the HCM which will print a
single character, Myy this prerram. Lead it tc sddress AEDO. (1f you oaly
have 1K you'll heve to find some other suitable pddress).

CLD ﬁ? NEW ROM
OTECO START CALL PRPCS (OLD ROM only)

3894 IEFT LD A,inverse asterisk

cr2e07 CDOB08 CALL PRINT

342540 D A, (5.POEN))

i TEC A = (OLD HOM ONLY)
ce RET Z

1871 18¥9 JR START

You'll diseover wpon running it that the sereen fills up with inverse
asterisks, ard that it fills up very, Vvery fast, {Much faster than PRINT
rinverae asterisk”/RUN). The ROM subroutine PRINT will place the character
vhose code im stoved in ths A register at the ourrent FRINT position on the
soreen. In the pew ROM, locating the print position is aulomatic, but in the
old ROM you have to call up & cempletely different aubroutine = PRRUS {Print
Position) = first, in order that the second subroutine, PRINT, knows where 1o
place the imege on the scresn. FRPOS wipes out the value of the A regiater,
but FRINT does not, Note that OLD-ROM-PRINT, and YEW-ROM-FRINT, work by tuo
completely different methods, even though we ave using them in precisely the
same way, exeept tnat for the (LD ROM we have to cheek For end=of=scTEEn.

1t i& in fact possible to pul this entire program inte & HENM statement.
NEW KON users with only 1K might like to try clearing iha machina with
NEW and then typing line 1 REM Y inverse asterisk IN graphic A grephic A
/ RAND {You'll need to type THEN RAND and delete the woxd THEN to get the
word RAND in position) Thie is precisely the above propxam, bt entered
direct from the keyboerd instead of loaded via & aeparate program. Now the
command RAYD USR 16514 will almost instantly fill the soreen! Shock —
Horror — A full screen in 1K!17

What we want though 15 a subiroutine which san print any meesage, fxran
"YES® {o "OH WHAT A DEAUTIFUL MGRNINGT, Suppose such a subroutine exista
and it's called SPRINT (Siring Print) We want to be able to use an inst=
ruction Bomething along tne lines of GALL SPRINT WITH "OH WHAT A BEAUTIFUL
HORVING™. Here's how it will work:

L2917 CALL SFRINT
2DZA3l3134 DEFM HELLO
FF DEFB FF

Here DEFM means Define Mesmage. Tt's mot motually a machine language
ipatruction, but is woed to specify date within a progrem. If you leak

st the hex equivalent you'll see that 2D is nexadecimal Fox the character
code of Hy 2A fox E, 3. for L and 34 for 0. TEFE ie also data - it means
defina byte. We could have put TEFB C9 and it would nave meant the byte
9. Here we are using it to apecify the end of ‘the data to be used by
SERINT. We must ensure, however, that the machine doss not try to execuis
these bytes, since in machine languaze texms they dom't make a great deal
of mense. Lat'n taks n look st how we could g0 about writing sweh a
aubreutine as STRINT which at the same t+ime ersurTer that we don't iry

to execute the data (e the word "FELIO" and the byte FF

Yo way Temember Trom the last chapter thai CALL works by PUSHing the
return address onto the stack and then jumping to the required mddress.
RED worke similarly = it POPs an address fzxom the stack snd then jumps
to it. Therefore if the word "RELLOM immediately follows 3 CALL instruc=
{ian then the sddrose at the top of the siagk will be the address of the
first character of dsta - tha VH" - we oan-ebtain this with the single

57

Instruction POP BL. IT we then increment AL by one and PUSH it back onts
the stack then the effect of the mext RETURN will be to Jump back to the
HEXT sddxesa in Line - the "EM. We can test for the end of the data by
looking for the byte FF (which is not a printable character). Follow
thia subroutine through.

[
[
é

i ®E A, (HL)
23 23 INC HL
E5 ES POSH HL
FEFF FEFF GP FF

ca ce RET 2

Ed
i

mms} OLD ROM ONLY

=
g
-

Ch200T CDoB08
188F 1874

.
-

z::r:::ﬂ;e :‘g iﬂi::n:::n gu::gns: 9 look at the oharacter stored at the
lines will ozi]y return from t:: s:m:::ut:l; :;:m T b
:{::::hzt CP FF vill compare A with FF, mot HL which was &
Fol v:‘::ue-t:i ﬂi-hvlll ‘#l¥ays compare A with something = in'this case the
e ;thsfg mmtmn gqctmuy & REM 2 or return if zero, but
. same way) will, if you examine 1| ey
;iuunr enough, ““f’“ You to the byte mmj ihs FP, nu: t:até?;'?ftaur.
mﬁi!- i FF has not yet besn found, the subrontine BRIND will be called
one the single character mow in the A register will be printed te the
creen. The whole routine will then be repeated over and over again until
the end of the meseage ie found. 3 o

Enter the program HEALDZ to enable you to load machin
g € code.

additional line to it = line one = which should ba a REM atat:lﬁnsrn:n with
{ ;!t.r_arbitﬂry_ charagters after the word REM, OLD ROM usars must ensare
m;: ﬂ;in: 13;. ie never listed. LIST 9999 followed by LIST 2 will ensure
"4025" " BN the progtam. The massege WRITE T0 wili Ereet you. Input
’; " for the OLD HOM, or "4082" for the NEW ROM. This is the addresa
t:eﬂfkilpr the first shavacter alter the word EEM. When fromted type in
Wm’no &ul:gu;lgh:n / msans newline) = E1/TE/23/E5 [FEFP/CB) (o014 BOM
el 10 yme ype F5/CIRO06/FL) CDR00T or CHOBOS/18EF or 18¥4/

28B40 ox 40/10H VHAT A EEAUTIFUL MORNING 1/FF/C9, The Laat fous lines
¥ere CALL SFRINT (Notice how the two bytes of the addreas have bacy
8witohed arcund), TEFM OH WHAT A BEAUTIFUL MCRRING, IEFB FP, and RET.

New do you see the purpose of the BASIC routine in HEXLD? be,
g:.g;ogm_. Inagine how tedieus it would have been to have nﬁ‘:: t;yi:):n:n“
3 3C2D263900. .. and so on inatead of jOH WHAT A BEAUTIFUL MORNING Tt
28 $xactly the smane effect. Now type 4n &a a direct command RANDOMISE USR
(16444) (OLD ROM) or RAWD USR 16526 (MEW. ROM) &nd what happena?

We shell use this routine to print a draughta board for ve. You'll need
8t least 4K to load this program, but snee loaded it will quite heppily
fit and min in 1€. If you only have 1K altogether it might be an ides to
t:j-and DOETOW sone memory from momewhere, and then give it back only once
You've got the whole of draughte in - but be warned - the listing is
apread very thinly throughout the whole of the book.

If you take = look at line 330 of HEXLDR you'll mee that every time you
input a double-asterisk (wm) it will sutomatically be changed into a newline.
This is a point of convenience. We can input a niewline if we wani, by jusi
deleting the quote marks at the input prompt and instesd typing CHRg(118),
but it im far simpler, and far more convenient, to enly have to type shifi-H,
If of course you ever need two asterisks in a row you can always type a
single asterisk twice.

The next mashine code program forms the very First part of IRAUGHTS. It ia
‘the routiné which enables us to print the playing board. For the OLD ROM we
#hall bagin loading this program such that the firat address used is 4C04:
For the NEW ROM the fizet sddxess will be 4C09. NEW ROM users should remember
{or write down) the seq of BASIC

FOKE 16389,76
HEW

wnich should be typed in BEFORE HEKLDZ s entered, Now enter the Following
machine code. WRITE TO 4C04 (OLD) or 4C09 (NEW).

El SPRINT POP ML Increment the return
TE LD &, (HL) address.
23 INO HL
ES PUSH HL
FEYF CD FF Return if no more text.
ca RET 2
F5 PUSH AP
GDROCH CALL PRPOS) OLD ROM ONLY
F1 POP AP
Tp200T/CI0808 CALL FRINT Print one character of
1BEF /1874 JR SPRINT the text at a time.
€D044C/CI094C CALL SFRINT Eint the draughts

[R
OOIDLELRZ02122232476 TEFY 12345678 Date for
1TO0RC 00BCODECOOREINTE LW WW W the SPRINT
1EBCOOBCOUBCOORCO01IETE WM 2 subroutine.
1F00BE 00BCODECO0BCIRT6 MM
2080008000800080002076 | e
2100800030008000802176 L
2EAT00ATOOATCOATO022T6 EEBBEE
2300ATOOATOORTOOATE3TE 7333 a7
24A7T00ATO0ATO0ATOC24TE ﬂ% L] § 2B
001 DIEIFE02122232476 Te3a5678
76
i
76 i
00000000000000C0C0C0ANC0000
¥R End of data,
c9 Return to Basijc.

The command RAND USR 19477 (The sddress of the CALL SFRINT instruction)
will produce a complete draughts boazd picture or your soreen elmost
instantly, Try it,

There is now one thing left te rectify = that is, we cannot as yet SAVE

machine code thet 1= stored high in memory, We shall now learn how to da
2o, add the following lines:

OID ROM ¥EW BOE
500 PRINT #4000 T SO0 THIND o007 vy
510 IMFUT 4% 510 INFUT A

£20 FRINT 43 500 FRINT 43

530 GOSUB 200 520 GOSTR 200

540 LET Ye(X-19154)/2 540 1ET ¥Y=x-19456
550 DIM o(Y) =50 1EM OA(Y)

560 FCK K71 TC ¥
570 LED cA(a)-CHng FERK (1945¢+X)

560 POR Xa1 TOCY

570 LET A=PEER(19455+2mx)

573 IF AD127 THEN IET Ass=F56

576 EET O{X}=FEEX (19454+2eX)+2%6mh
X

580, NEXT 580 NEXT X

580 SAVE 550 SAVE Minverse specsn
600 POR K=1'T0 ¥ 600 FOR ¥+] TC ¥

610 POKE 19454 42sX ,0(X) FI0 FOXE 1094564%, 4008 of()
615 FOKE 1955vewx,a{X} /256

620 WEXT ¥ 620 HEXT X

630 CLEAR 630 CIEAR

640 STOP €40 BTET

Now, to SAVE weur machine ende iype RUW 500. At thie stape enter 4040,
16 doesn't actuslly metter which address you give it, so long as this
addrase is larger than the 1a8t addréss of machine code, (G¢ far the Jast
address hoppens to be 4[:9'&%: ! ! ;
8. program will then SAVE sutemetionlly (lime
590). Ireidently if you're voridering why I've put SAVE "inverse spage"
in the NEW ROM version try Instead using SAVE "space" and =ee what hampens
to the line, When you LOAD the program back, OLD ROM users will need to
type GOTO 600 before doine anything else. NEW ROM users won't because the
progran will continuve sulomatically. Here's now the program works: An
aryey of sufficient sdze dc hold all the bytes to be saved is dimensicned
in line 550, after which the machine code is copled Into this array and
SAVED, The routine at B0O does the reverse = it copies the machine code
from the array up to the vequired addresa.

ANDuass

language instructione which we'll nead in order to sontinie with the

The l‘ir_s_ig‘qr these ls AND, Unfortunately for sanity the word AND do'eamgmm'
masn guite the same thing aa it does in BASIC. We're all used to seeing
exprasajons like IF X21 AND V=1 THEN... In mechine tode Boweven wa uge the
word in a completely different context. For example AND B i & ssmplete
machine code instrustion. So is AND (HL) or aND ¥0, In order to see how

it worke it is necepsary to take e brief look at numbers in BINARY.

Ve leave draughie for the mement in order to introduce & few more machine

BINARY is yet snother form of counting - like decimal or hex, Teeimal makes
une of the digits O, 1,2, 3, 4, 5, 6, 7, 8 and 9, jex uses x, H,-G.- D,

E and F as well. Binary en the hané uses only tne digits O and 1. Converting
from hex to binary is very simple - mich simplex than changing from

decimal to hex - eimply cenvert each diglt one at a time from this table:

HEXATECTMAL BINAR
FAW;M BINARY HEXADECIMAL NATY
i 9000 8 1000
5 S 9 1001

QoR9 L 1010
3 na11 =5 oL
: oo G 1200
2 0101 o 1101
6 0110 5 B

0111 7 et

60

Therefore 69 (hex) ie the same as 11001001 (bipary), Can you see how the
binary splits up into two hmlves, 1100 (C) and 1001 (§)? The same im true
of 811 numbers. What is 1E (hex) in binary? What is 01100111 in hex? Now
see if you can work ouwk what 123 (decimal) i@ in binary. (Hint: convert
to hex firat)

AND sseigns a new valua to the A register, This new value is determined by
a) the previous value of the A repister, and tl) the value writtem after the
word AND in the instruction. Suppose & containe 54, and B aontains 1P, and
the computer then comes across the instruction AND B, Here's how the new
value ia ealoculated:
A 01011010
B 00011111
new value 00011010
as you can see, the digits of the mew value
are zero if there is a mero in the corresponding pesition of either or
both of the old values, and a one if Both the old values contmined & one
in that position. To make this clear just look at the columns - you'll mee
that in all cases two zerces lead to a zero, tuoe cnes lead to a ene, and
a mixturs of zeroes and ones lsad to a mero. The function is called AND
since g one is only obteined if A AND B have a cogreaponding one. It may
appeer to you to be rather a useless function, but it is in fact one of
the most widely used mechine langusge instructlons there is. Some examples
of its use ave;
AND A leavea A unchanged, but resets the carry Tleg.
\ AYD TP if A contains a printable character, preventa
Lt from being inverse - both of these examples we shall make use of.

ORueas

UK is pretty similar. The Tules are that two merces lead to m zero, two ones
lead ta 8 one, The difference hers is that a mixture of zeroes end ones

lead to = one raether than s mero, Inatead of AND A then we could have used
CR A to reset the cermy flag. The function ie ¢alled OR #ince = one is
obtained if A OR B have a corresponding one. Cne use for the OR function
could be OR 80 which, if A is a printebls charmeter, will snsure that it

s an inverse character. Thir alee we shall uee. There is one other function
we need to'kmow = it is called XOR.

KR nsr

X0R is not a cheracter out of Flash Gordon, despite its seund, it is in
fact ehert for Exclusive—R, which is & variatien on ordinary OR. Its
difference is that two ones will lead to a gero. Everything else is the
same =8 in ordimary OR, le two zerces equals zero, a mixture equals one.
It follows then that XOR FF will change every single binary digit of 4
(this fs oalled "com'pl_men‘_t.lng") from & zero o a one or vice versa. ilso
note that XOR A4 will combine A with itself and hence come up with elght
zeroen, It dn effect resets bokh A and the carry flag to zero, having the
same effect as SUB #,4. This too is useful.

The reason we are interested in thesa funstions is the mamner in whioh ve
shall reprecent kinge in our draughts game. As you have seen from the
initial pleying board ordinsry piesss cre inverse B or inverse W (for
Black or White}, Kinge however shall be ORDINARY B or CHIINARY W. Thu= a
human'e pisce ¢an elther be 27 hex (the sheracter code of B) or A7 (the
character code of inverse B), sc o check whether or not we've found

one we just put it into the A regiater, use OR B0, and compare it with
AT, Thia saves us from meking two sepurate comperisons.

61

Y™
> "’-ﬁ‘\\‘}“\\“}\w‘a‘\w‘“ﬁ‘\m

—1I Illlll—'

\\\\\ \\%\\\{\\\\\\\\{\\\“\km

\\\\\\\\\\\\\\\

\\\:}

; ﬁ\}!ﬂk‘{\\{*\

Ijl-"
.

- =

A%
\\\\\\\\\\\\\w‘\\\\\“\\ \‘w&\\\

::s:zr:zz:

W\
7

s
7

\\\\R\\\\ \\\\\\\\\k\\\i\\\\&\m&\\\\\

\[wy/z/

P
%%zézé,r

o
; 'ﬁ}'.//r, =4
% !

L};’-?Ji %

\ \

/

-
1

S

The 280 has two speclal repisters which cap beomade use of. The first i=
called I1X.

Jt iz apecial because as well am just assipning 41, &s it cen be uged
just like any sther vegister pair with ID TX,0000 for instance, we can
use it to find the contents of an address = using (IX) = just like we
can with (WL). IX is different becanse we can add & constznt Lo the
address, Thus LD B,(IX47B) worke! If IX were 0000 then LD B, (TXT7B) will
load B with the cantents of memory losalisn O0TR. In no other Way dan
we aselgn a single register from en zddress in one instruction.

There is & verning that moes with ualng IX thouph. IS you are wring SLOW
then you must not alter the value of [X 2t all, atherwiee you might
cause a crash,

The other speclal register ie called IY. It i& ifed in expctly tha srme
way ms IX, except that the ROM iteelfl pives ue an added mdvantsge. Whan
you Jump into 2 machine language voutine, IY storte off es 4000 (hex), en
that mll of the syptem varisbles may be accoseed diveetly. (The system
variables start off at 4000.) For example, LD L,{I¥+0C) will load T with
the low part of the address at which the display file begins.

Changing the value of IY will not cause a crash. It will be reset to
4000 as soon ms you'return to BASIE. This f= done automatically by the
ROM:

Tp find the hex code of any instruction imvolving IX or T¥ pretend you
are using HL instesd and look up the code for that, Then preceed it by
D0 for IX, or TD for IY. If the IX or IY is in brackets then it must
have & diaplecement, even if that displacement is 00. (Fer lnstence, in
1D 8,(1v204) the displacement is 0d.) This byie should be added to the
hex eode, and should be the thisd byte of the code, even if thls means
Splitting the original eode in two,

Thue If the code of LD (L},44 is 3644, then ths code of LD (IX¢20),44
ie DD362044. Note how the displacement 20 has Been inserted into the
niddle of the origimal cede in order to make it the third byte. We have
now rezched the ciape of using four byte instraction codes, This is the
longest a ZBO instruction 2an possibly be, : ¥

THE FLAGS REGISTER

Another special register is the FLAGS rerister, sometimes called the STATUS
regiater. Usually it abbreviates itself to just F, and cohabitates with 4
in the hope that no-one will notdce 1t, Tts murpode ia to atore various bits
of information about tne results of caleulatisns. Seme instructions will
alter all of the flags, some will alter only some of them, and some won'l
actually alter any [lage at all. 4 complete list of vhat instruction does
what is included in an appendix at the back of this book.

As for the register itself: it ds, 1like any other repister ht

length, btut each bit has a different mpgzu {anhnﬁ twlu;lfhenbix':n{:
used). Thess bBits are each used as an individual flag which can store a value
of either zeTo or one. The flags are, from left to might} Sign, Zero, not-
used, Half-carry, not-used, Parity/Overflow, Subiract, and Carry. The two
unused {lags are both more or less random, but the rest are quite speeific.
They werk like thia:

64

The SIGK flag atoren the sign (positive or negative) of the last zesult, A

umber resets thia flag to sero, and 4 negative mimber sets it to
ﬁp::ll-_té:: Eﬁe 'purposes of this flag, zero is coupted as positive. The. value
of the § {lag s thersfore always squal to the lefimost hii_. r:\F the reault.
It may be tested using instructions like JP P (Jump if positive) of JP ¥
{Jump iF negative (*imaa)).

v 0 flag chesks whether or not the last result was actually zerd. If se
f:: ?;:gg i;fset to one, but otherwise it La reset. Watch out for this_ flag
though = it can be very deceiving - many of the register-pair instrections
simply do mot change it a2s you'd expect: instructions like DEC &f ABD far
fnstanes will only change the zero flag if applied to single registers. You
are adviaed to check with the appendix if you are unaurée.

HALF-CARRY [lag is met if there is a carry from bit 3 into bit 4, or, in
Tﬁ,h: case of n_zgi_s’tagr.tpau_a. from bit 11 into bit 12, It is used internally by
the Z80 for such instructions as DhA, but cannot sasily be: tested by the
programmer, 1t ia posgible to examine it using the sequence FUSH AF/rop B/
BIT 4,C and then testing the zero flag, but this ia warely done.

The PARITY/OVERFLOW flsg does twa jobs at once. The PARITY of a repult is
sither odd or even, depending on the pumber of ones in the result (when
written in binary). The Parity flag is assigned in exactly the opposite
manner to that which you'd expect. If the parity is even, the flag ia one

(an 0dd number), and if the parity is odd, the flag ia zero (an even number).
The following instructions abaign this flag according to the parity of the
result: AND r, OR r, X0R ¢, RL r, RLC », RR 1, HRC r, SLA r, SRA ﬁ; SHL 1y
HLD, BRD, DAA, and IN ¥,{C)s An OVERIOW represents an "accidental! change of
sign of the result - a carry from bit 6 into bit 7 effeotively. The following
inatructions asaign this flag according to whether ‘or not we have an overflowi
ALD A,r, ADC A,r, ADO HL,s, SUB A,x, SBG A,r, SBC HL,s, CF r, ¥EG, INC Ty and
TEG T.

The sobtrast flag, ales ealled the W flag, simply lets the machine know
whether or not the last inatruction was an additien, or a subtraction. You
can't get hold of this flag unless you make use of PUSH and FOP as I've
described under HALF-CAFRY, bt in general you'll know what the last inst-
ruction was anyway. This flag is primarily used internally by the Z80 for
inatractions such as T4A.

The CARRY {lag you know about, It detects a carry from bit 7 into (the men-
exiatant) bit 8, or in the case of register-paira, from bit 15 inta what
wenld have been bit 16, Tt 1s also assigned by shift and rotate instrustiona,
in which one bit is "leat" from a register and moves inic ihe carry. This ia
Probably the mest freguently accessed flag of all.

ALL THE INSTRUCTIONS

BY now we've seen a fair number of ZB80 instructions, &c you'll be wanting
1o expand your vocabulary of theee. Here mow ia a detailed list of all of
the inetTuctions thet are available to you. I shall ecver them in alpha-
batical srder &0 that you may uee this chepter as e kind of dictionery of
Inatructions. For precisely the same reason I sghall re-cover the. ones you've
&lresdy seen. You should réread them amyway sdnce it will prove a useful
merory aid, i

ADC Starting with ADC. It comes in two forms: ATC A,r and ADC HL,®.
Here we are using T to stand for either &, B, €, I, E, H, L, & numerica]
constant, or sn addreas pointed to by either (HL), (IJ.N}S or (IY+d). &
stends for one of the register pairs BC, IR, HL, SP, IX, or IY, ATC 4,r
is a single byte inetruction. It celculates the aum A plus T plus the
carry flag, The result ie stored in A, ADC HL,s is a two byte fnstructien
vhich eveluates HL plus & plus the o flag, and stores the result in
HL. Can you see why (ignoring tha flaga) ADC A,A does précisely the same
Job s= RLAT ADC alteras all of the flags.

ADD Very similar to ADC except that the carry flag is not used in
the initisl calculation. It is however still altaved by the final rasult.
There are one or two important differences betwegn AID and AIC however,
Firatly the eet of inatructions AND AL,s (whers & mesnm the same as it dig
in ADC) are ome instructions rather than two, and mecondly it ie
permisaable to ume two further sets of instructions ATD IX,s and ADD TY,s.
Altering the value of IX however im noi sdvisable if you sre uping SLOW
i‘r g:.jrm be aafely altered but will plways be reset te 4000 (hex) on return
L] T

ARD Only one form here - AND r. The walue of the A vagiater is
altered onme bit at a time, Tf such a bit is zero it will be unaltered.
If & bit is one it vill teke on the value of the corresponding bit of

F. Thus AND O0. 18 always mero, AND FF will leave A unchanged. AND alters
all of tha flags — apeeifically the carry flag will always be remet to
2ETC,

EBIT NWow this ia & new one. What happens is thati from time to time
youtll went to lmow whether an individual bit of asme register is one

or not, but for some remsen or other it becomes impractical 4o tzy and
rotete or shift it into the cerry. BIT s spacially designed to help

you out here. Suppose you wented to know the value of BIT 5 of B. The
instruction is simply BIT 5,8 = the result is then elther zero er nen—
wero, whioh you cen exploii using JR Z for instancs, or RET Nz, BIT does
1ot alter the value of ANY of the vegisters, mor dees it changs the valus
of the carry fleg. Its hex codes are listed in'a table at the end of this
ook = 1t i8 B two-byte inntruction. I tend te find i1's not used very
aften, but vhen it is used it comes in very handy indeed,

CALL You've seen this ome before - it's Tather like GOSUB. Ite. exact
function is as follows: FUSH the return address orte the stack, anmd JUMP
to the call address, The xeturn addrese is used by the RET imstrustion
sg it is vitally important that a subroutine should mot alter the atack.
You may only push things onto the stack in a subroutine if you pop them
of f pgain before you attempt to return. CALL msy also be used with
conditions - for example CALL Z,pq (pq is an absclute address) which
means CALL pq if the last calculation was zero, otherwise continue with
the next instrustion.

CCF Complement carry flags If the carry flag was zero then change
it to one, If it was one then change it to zsro.

In the form CP r it will calculste the result of subiracting
T from 4, however the answer NOT stored anywhere, nor is the previouas
value of either A or r altered, It will on the other hand alter all of
the flags, so conditiops like jump if zero, or jump if caxry, will still
work. CF ¥ fcllowad by JR 2 will jump if A equals r.

66

Imagine this as CF (ALY, followed by D¥C HL, followed by IEC BC,
'f:['-:l: zero fl?:;giia altered s 1.5 a aingle OP (HL) inetruction had been
executed. Another flag alieved is the PV flag, whish works as follows:

iF B0 decrements to zeve then the F/V flar is alao sero. If KC does mot
jacTement to mero then the F/V flag is met to one. Thus JP FO will jump
only if B0 vow equals zers. JP FE will jump only if IC is net now equal
tc zexe. The carry flag is mot alteved at all by this inatruction.

i the seme an CPD except that the imstructicn is
‘ﬁgutw 03::1:3 ;5:: i::nﬁi - :mk.hxa of automatic loop. CFIR stands for
compare With Decrement and Repeat, The loop will end in one of tw: :;?as.
a) Af A squals (HL) - in which cane the zexo flag will be ae;, m‘th) 8
50 renches zeroc = this will affect the P/V flag s in CPD. If neither o
these conditions it true the instruction is re-exscuted.

oer A5 CPD except that HL is tnoremented instead of decremented.
=4
CPIR 48 CPIR except that HL 18 inoremented inetead of decremented.

| abbreviation for complement, The Tegister A is altered bit
%%‘bit. :rlﬁny ;pztinular bit starts off ms zerc it is changed to one and
viee versa. In other words Lf A starts off ss 11010101 (binery) the
jmstruction CPL will change it te 00101010 (binary), The flags are not
pltered, nor are eny of the other registera.

Suppone you vanted to add 16 (decimal) te 26 (decimal). without
'i"".;ﬁnmm.ﬁ to hex, The follawing seems plausible: LD A,16 then
AID £,26, Unfortunately, because the mechine works in hex the fimal value
of A will be 3¢, not 42, The instruotion DA (Decimal Adjust accumilator)
will change A from 30 to 42. How it wozks i Tather complicated — it makes
a note of what's been oarried whore and whether you've added or subtraoted
and 80 on = but it doss always work. For instence the seguence ID 4,42
then SUR A,06 will again leave 4 with 3C, but this time round nu\ will
chenge A to 36, eince 42 (decinel) minus & (decinal) dis 36 (decimel). The
instruction changes every flag appropriztely.

IEC Thig ie snother ome of those instructiona that comes in two
Totms, It can be dec T (& eingle register) or dec a (a regleter pair).
dec v is very mimple to understznd = the value of tha xegister r is
decreaned by one, the carry flag ie unaltersd, and the zero flag is
changed appropriately. Dec & is the one you wemt to watch for, because
the zero fleg is NOT AUTERED! Nor arve any of the other flage! Thus IEC BC
followed by JR NZ,=3 is either en infinite loop or has no al_‘iecﬂ Yourll
Lisve to he very caveful to rTemember this - a let of my earlier programa
trashed because 1 didn't.

n Mot a Welsh name, mor ia it short for Diane or Tiana, It is in
fact an abbreviation (aurprize! surprizet) It stands for Disable Interrupks,
and zlthough this scumds pretty sconfusing its use is immensely eimple. An
interyopt is what you get Lf you send little bleeps into the pins of the
ZH0 chip, DTSABLING the interrupts means that if such a thing happens in
future it is to be ignored. That's about all T can tell you I'w afraid -
¥oulll have to comsult the hardyere baffs for s more detailed explanatlion.

¥et snothey abbreviation - this time for Decrement B and Jump-
Telative if Not Zero, So if B Ls T, DONZ will reduce it to 6. If B is mero,
IUWE will ehange it to FF. If A is one however, DUVE will l:h.z_mg'z it-tn
2éTa, ard will then Jump to 2 new destination. The form of the instrustion
iz nenz g, where @ is a single byte. If B ie not decremented to zero the
28 ignored, 17 it is then e apecifies how far to jump. If e is between
and TF then the jump is FORWARDS, if e is betwaen 80 and FF then ihe

67

Jump is BACKWARDS (with P -1, ¥E =2, and m¢ on). Start countine from the
next instruction, so that DINZ 00 ia just the same as IEQ B, exaept that
WINZ does not alter any of the flags.

E Guess what} Arother abbreviation. EI stands for Enable Interupts,
and is the opposite of DI. From now on, if the ZBO recieves an interrupt,
then execution of the current instruction is completed, and control then
Jumps to'an interrupt routine. For a slightly better explanstion loak
under IM.

EX At last - -an instruction with @ sensible name. Ex means exchenge.
There are five different EX instructions = these are EX AF,AF', EX DE,HL,
EX (SP),HL, EX (SP),IX, and BX (SP),TY. They don't alter any of the ilage.
What they do is, an you'd expect; awnp the valuss over = thus EX DE,HL
replaces DE by the value FL used to vontain, and HL by the value DE wsed
%o oontain. The last three are rather interesting = the old value of HL
(or IX or 1Y) is pushed onto the stack, but similtanecusly the old valpe

at the top of the stack is popped and loaded into HL. The position of

the stack pointer is therefore unchanged. AF' (Pronounced AF dash) is

8 rTegister pair distinet from the real AF, and this is the only ipstruction
wnich uges it, It is used by the SLOW Hardware, so don't use EX AR AR'
while you're in SLOW.

Exx As vel] &s AF' there are alse BC', IB' and HL', which axe just

a set of six new registers (or three new register pairs) which can only

be acoemsed by this ome single instruction. EXX is an exchange inatructicn,
I% means exchange BC with BC' (ie B with B! and C with C'), DE with LE',
and AL with EL' ~ all in the same go. This 1= guite safe, and dges not
affect SLOW in the way that dF' does, It is useful for preserving the valuss
of the registers when calling a ROM subroutine which relies upon A but
wipes cul the other registers, eg EXX/CALL ROM=SURROUTINE/EAX. The previcus
values of BE, TE, and HI are now unchanged. Some of the programs later on
in this book will make use of this technigue,

HALT. Ton't be fooled by your own infuition = this isn't the same ae
STOP. It means do nothing, or walt forever. Once you hit a EALT instruction
it will just sit therey effectively exeouting NOP inatructions, over and
over again. Tn fact the only way you can get out of it, once you're stuck
there, is by sending the 1Ltile chip an interrupt signel, so EI followed

by HALT is safe since the hardware epsures that interrupts torm up pretty
frequently, vheras DJ follewad by HALT fs rather disaetercua. ‘

M There are three fomms of this inetrucilon. These are TV O, IM 1,
and IM 2, They are there ¢o change the Interrupt Nods (yes, ancthex
abbrevistion) to either zero, cne, or iwo, What this neans is that the
next time an interrupt is detected the following will happen. TP THE
INTERRUET MOTE IS 2FRQ; The interzupt device itself must supply an
inatruction to be executed, IF THE INTERRUFT MOIE IS ONE: The inetruction
RST 38 iz executed, IF THE INTERRUPT MODE IS TWO: The interrupt device
muat supply one byte of data. This is used es the low part of an address,
There is a register called I {which we so far haven't uscd) and the
value of this regioter is used aa the high part of an address. The
machine then looks up this address and should find & second address
atorad there. Confusing isn't it§ This second address is naed a= 2
subroutine call,

pe:f Short for input, but nothing like the INFUT we ere uned to
in BABIC. It ie this instruction frem vhich Sinelais builds the T0AD
routine snd a keyboard scan, It has two forms - the first is IH A,(n)
where n is & nunerical constant, n Tefers to an external deyics - a2

different n for each different device, Cne byte of data ie read from
device n, and loaded into A. IN A,(n) has no effect om the flags. The

second Form DOES alter the flags - 4t is T r,(C). The number held h.v
the € register is ussd to specify the device, The pumber input 1s loaded
into register r.

I Input with decrement. This is a deliberate digression from
alphabeticel order so that all of the input instructiore can go together.
1D can be thought of as IN (HL){G) followed by DEC B followed by DEC HL.
The cerry flag ia not altered, but the zero flag is altered to shoy
wnether or not B has decremented to zeros

;_lv_nﬁ _As IND but the inatruotion re-executes over and over agein,
stopping only when B reaches mero.

1N As THD except that HL ia incremented instead of decremented.
INIR As INIR except that HL is imcremented instsed of decremented.
I Pon't Panic! At long last we're back to sensible instruetions

we can all understand. ING r increases the value &f register T by one.
Every flag except the carry flag is altersd, INC @ on the other hand
(where & ie a vegister-pair Tather than & single reglster) will not change
ANY of tha flegs. Tt still does tha same job of course, increasing the
value of register-pair & by one and zooming back round to 0000 if = sterta
of f at FFFF, but don't uae o sheck for zers after an INC & instruction
becsuse it simply won't work, ING HL/UR 2 means jump if the instruction
bafore ING UL came te zevo, MOD if HL hes repched zero, TNO HfJR Z does
wWorke

JF If you can underatand GOTO 10 you can understand JP 4300. The
destination is an address, not a line number, but the principle is exactly
the same, JP im the mechine language GOTO. We can also have conditional
jumps, for example JP NZ,4300 meana jump to 4300 IF NOT ZFRO. (In other
worde if the serc flag is not aet.) There is another Form of JF whith
alec hes an enalogy in BASIO = variable destinations. If you understand
0OTO N you'll understand JP (HL). In this form you can't have conditioms.
JE WG, (ML) for instance is not allowed. Also.only three regiaters nay

be used as varishbles - these eawe HL, IX, and IY. Fven 8o these sre very
poweriul instructions = HL cen be the resuli of a calculation, pessibly
even generated at random.

Jr The same sz JP but slightly less powstiul, and one byte shorier.
Only four of the eight conditions may be used - JR 2, JR N&, JR €, and

JR NE. Tt is impossible to say JR PO, It ia slao impossible to say JN {HL).
JB does not use an absolute address = the R stands for relative. You
write the inatruction sa JR e (or JR Z,s or whetever) whers the e is

2 single byte vhich specifies how far we mast jump, JR O has no effect,
and JR FE is an infinits loop, sinoe FE vepresents minus twe. The jump

is forvazd if ¢ is between O and TF, end backward if e is betwoen €0 and
o The most used instruction in the whole of machine language.

AL1 it does ia toc transfer data from one place to another. It has many,
many foxms, the simplest being LD rl,r2, that is to trapafer data from
one regiater to apother: LD A,(X) is alse]eiu and {8 a ome byte code,
=0 ig 1D A,(IE). These are reveragble, ie LD {BC),4 and LD (IE),A are
aloo legal. Remember that the brackets mean the cantenis of the al;ﬂrﬁ_!:
B (or IB). Two apecial registers R (the memory refresh register as it's
called which is used in outputting to the soreen) and I (see IM) may be
loaded to and from A (but only A) sa in 1D A,I, 1D A,R, LD 1.4, and LD
B,4. The regiater psira may all be loaded with either numerical constenta
or the contents of abaolute addresses - 1D s,mn or 1D -s,(pa). Conversely
any eddress may be loaded with the contents of one of the regioter palrs
~ 1D (pq).s. Note that regieter-pairs hold two byies not one, and these

69

are tranafexred to and from pq and Do#l. You oén do the same with A on
Ats own = LD &,(pqa) and LD (pa),A are both allowed, bub no other register
tan do this on its own. Pinzlly the regleter pair SF - the stack pointer
= may be-loaded direcily with either HL, IX, or IV.

In other words there's a lot you can de and & Lot you can't do.
You can't say ID HL,SP for inetanee, even though LD SP,HL is allowable.
Fortunately, since IT is used ec very, very often it is extremely easy
to become familiar with:

LhD Lead with decrement, Effectively LD (IE),{(HL) followed hy
IEC HL, DBC TR, and IEC BC all in one go. The earry flag and gerc flag
ore uneltered, as im the mign flag, but the F/V flag becomes zero if
3C becomse zero, one otherwise, thus JP PO will Jump enly 47 BE is wexo
after the instruction,

1DIR Ao LID, but the instruction ie repeated contimuelly until B
Tesches LEro,

D1 Ae 1DD, except that I® and HL are both incremented jnstesd of
decremented. :

LIR 48 TITR except that DE and HL are both incremented instead of
decxemented,

BEG Neg alters the accumilator and all of the flags. As you may
'r_xavg gatherad Trom the name 1t negates A. IF 4 containa 1 then NG will
change L% to minue one (FF). If A conteine minue sdx (FA) then MG will
altor 4% £o plus glx (06). The same effect may be achisved wging CFL
Po;]_.oved by INC A - this alternative means of negating n number dsss not
aflfect the carry Fleg as MWD does, but NEG is faster,

NoB This wonderons 1ittle inatruction (which incidently is short
Ft_:r Ho l‘pera_._tiun') har & very simple purpose - its purpose is to weste
time, for it does nothing at alll T+%a almest 1ike a REM statement in
fact; except that you cantt Mt messages after i1. It has two major uses:
1) as a delay, and 2) to overwrite previous mechine coding when debugging.
I'd ssy it was virtually indispensablo. ;

OR In the form OR r this inetruction is practically the opposite

of AND ©, Bit by bit, the value of tha A repister is chnn:ed. prguhit.

is one then it 411 be unaltered, but 1f it fs zerc it will take on the

Veluo of the corresponding bit in . If A4 containe 00 then OR r is the

:.\;’:aoﬁ LD .1\1.‘1- ilmim?ténr the flaga). If A containa ¥F then O x will
nge ita (i} & Tlags pye oh ad as youtd i

the carry flag ie reset to mero. il 7 Sl

ouT Aa with IN, OUT is nothing like the BASIC underetanding
aur 5 3 ng of outpdt.
The instruction OUT (n),A, where o is a one—hyte numerical conatant, mﬁu
transfer the contents of A to external device n. Similarly 0ur (€),r will
trenefer the contents of reglster r to the device ¥ointed to by register

':J;eogi ;:-.wed in the RCM to SAVE things. OUT hes no effect whatsosver om

omp OQutput with Decrement. The carry flag is unchanged, but the zero
Elue degends on the final zesult of B, QUID is equivalent eu'mrr (c),(5r)
folloved by DEG HL followed by DRC B, i

OTDR . A elightly different spelling in no w
oTIR 3 - 0 |y slters the faot that this
ia atill an Cutput with Decrement and Bepeat Inatruction - all it does is

leads us to digress from alphabetical drder in order to maintein coneistancy.

Bouivalent to OUTD repsated until B is zero,

0TTT A= OUTD exespt that HL is incramented instesd of dseremented.

70

OTIR A2 OTTR eycept that HL is incrémented instead of decremanted.

POP Remove two bytes of data from the top of the simck and lead ihem
Tnto & register pair. iny register palr may be used except for 8P. In
addition the flags repister may be combined with A, allowing the instruc—
tion DOP AF. Specifically, the lew part of the register pair is popped
first, and then the high peri. The machine remembers that the stack is

now two bytea shorter by altering the value of SP autematically.

PUSH FUSH & i3 the eppesite of POP m. It storea the contents of any
Tegister pair (escept SP, but including AF) at the topof the stack. It
nyemembars®™ that it has done this by aliering the value of §P. The high
paTt of 8 is pushed first, then the lov part, sg that the low paxt is at
the top. After a PUSH instruction SF will point to the address of thim
low pert.

RES With this instruction you omn actually alter individusl bits
of any Tegister. In computing circles Ymet™ means change Lo one, and
"reaet! means change to zero, 8o RES ia the instruction that changes the
required bit to mero, ¥or instance, to reeet bit 3 of D the regquired
imstruction is RES 3,D. RES has no effect on eny of the flags,

BRET RET is used to return from = subroutine, It works by popping
an addresa from the tep of the stack, emd then jumping to that address.
It is possible to alter the address to which a subriutine will return by
altering the value st the top of the stack. For example POR HL/IRC HL/
FUSH HL will increase the Teturn addréss by one. You could for instance
atore one byte of data immediately after the CALL inatruction, then

POP HI/ID A, (HL)/IN: HL/PUSH fL will store that byte in A while at the
same time ensuring that the subroutine will return to the =ddress after
thet data. Another trick is to push an Martificial” return address onto
the stack and then JP (or JR) to a subroutine instead of calling it. Now
it will Mreturm™ to wherever you want it to go! Return may be used with
conditions if needed, It does not alter the flegs.

RETT fsed to end an interrupt subroutine {see IM). Its Tunckion is
the same as RET, but RETT musi be used instead of RET bacause ihs chip
doas elever things if you get 2 mecond interrupt in the middle of an

intermupt subroutinét As socn as an interTupt subroutine 15 called a DI
instruetion is sutomatically executed, but there are such things as

ton-meskable interrupts, thet it almighty superhigh-powered interrupts
that override even DI, these can causa esnfusion if you don't use RETT.

‘RETH Used te énd a non-maskable lnterrupt subrouting. Its funttion
is the same as RETI except that the Interrupt Mode (which was altered
by the non-maskable interrupt in the first plece) is elao restored io
iis previcus value.

RLA 4n abbreviation for Rotate Teft Accumulator, Eash bit of A

1o moved ane position to the left. The lsftmest bit is moved inte the
carry, and tha rightmost bit takes on the previous value of the carry.
¥or example, i A contained 10010101 (binary) and the carry contained

0 then after s RLA instruction A will comtain 00101010 end the carry
w111l contain one, Only the cerry flag is altered by this instruction,

RL tn the other hand, there is snother instruetion which may be
‘apnlied to any repister. It ie AL x. In fact every now and again the
inatruction RL A terds to disguise iiself as RLA = due pomaibly to printing
eTTors or bad handwriting. On the face of it they seem to do the same
thing - RL means Rotate Left and its functlom is exactly as desoribed

in RLA. The aifference however, is in whai heppens to the flage, fox RL
will alter ALL of them, RLA will only elter the cerry. RL may of courae

te applied to any register, not just A.

il

Innidently = R A doen precisely Lhe same thing aa AIC A,A,
dewn 40 the Tart Flapg — fxcept ane — one yon can't ot A = cnlled ihe
H Tlope The anlz w2y yon can paraibly tell the differnnca 18 by Tollsuing
11 with n DAR {nstriotion, AD? A A, by the way, im twlce as famt.

RICA AImert tha mema 2 RTA, But ant nuite, Fach bit of A fa maved
o po=ition to the 1eft, The leftmost bit in moved BUTH into the corty,
ALD into the righimemt parition of L. If, nr before, A mbavied off with
1N01NIM And the earry was zero, then after RICA Lt will Le 00101011,
The carry will mlmn be one, Only the ssrry flag is chanped - the previoun
¥alue af which is 1eat forever,

hig TIE v wi]l Rotete Left with Gavry the register r dn the snne
WAy that RICA doem with A. HIC A 1R 8 valid inatroction, which ia not the
fame as RICA. RIC B ie n valld ipstructlon, but plenme note there is no
fuch dnetruction as RICH. The mpacing is very important here. RIN v will
alter all of the flagn.

RiD Hot to he sonfused with RL T, this ia a COMILETHLY DIFPENTHT
inatruction which works as frollowss Write the valus of A and the wnlve
nf sddresn (HL) in hex. The second hex-Aiglt of {1} la shil'ted 1ait nn
that {t hecomer the firat dipit., The Firat digit overwrites the second
Ofrit of A. The serond d4zit of A moves to the mecond digit of (ML), Thuo
Af) eontaina 25 (hex) and (HL} contains ER then after sn RLD haa been
earried out A will contain 2B end (HL) will contain BS. RLD, incidently,
#itande for Motate Lell Tecimal,

ERA Am RLA except that the bits are moved right inetesd of left.
HR As RL excapt that the bits are moved right instead of lelt.

BRCA A= RICA except thnt the bits are moved right Lnstead of Left.
Ine Am RID except that the bite are moved right instesd of laft.

R The contenta of (fL) ave moved one hex-diglt to the right, the
rightmest digit moving into the rightmost dipit of Ay which in turn
becomen the 1eft dipit of (WL}, If A sguala 25 and (HL) equals EB then
alter RED A will equal 2B and (HL) will equal 5B Noie that RAD twice
la the aone e RLD ance, and vies versa. All of the flags except carry
Bre aliered.

Ra? 'The aeme o OALL, except that it &= only one byte long
ALTOUETHERY T4 dn much lesa powerful thongh for two Tensomss 1) yew may
nat uss conditions, RET 0 in legel but RST WZ,0 is not, 2) only one of
eight epecifio addrarses may be called. There ave o, 8, 10, 18, 20, 28,
30, or 38. 0n the OLD ROM, RST O is the rama an NEW. On the WM ROM
however RST 0 will move RAMTOP to its highemt ponsible location, uhich
the PASIC inalruction NEM will nat do. ROT O i the seme thing ae pulling
out the mains lead and then Teconnecting it. ’

8BC 50, like AT, acmes in two forms, The first is Sp° Ayxy which
%L1l fizot of al) cubbract T from A, and will then mubtrant the earry
digit. Similarly SRC HI.,& will subtract both n and the caxry flag from
HI, SPC A A 18 quite umeful = I the carry 1s zero both A and the earry
will end up £ors - {f the earcy in one then A will be reassigned }F and
the eoxry will still be one,

it The opponite of NES, SFT ';hll will chisnye the value of bit 4 of
H to one. Any bit of any register may ba set.

LA Shift left Arithmetic. The fnrm 1a SIA v, It is sindler 4o RL r
txaepl Lhat the rightmont bit is autemntioally replaced by zoro. It altern
11 of Lhe flaco. Note thal BIA A doon Lhe mame thing ae AMD A,A, excapt
Lhat ADD A A ia fmater, 72

Shif% Right Arithmetio, Any reglster may be shifted xight using

%% Format SRA . The rightmost bit falls inte the cervy, but the lalt-

| p Bit 6 will
most bit remaina wnaltered. Thus alter o SRA ipstryction bi
always be the same as bit 7. The effect of SRAL is io divide both positive
and negative numbera by tvo: FC (minus four) becomes FE (minus two).
What happens {f the number is odd?

SRL ghifi Right Lopical, As SLA except that the bits are shifted
Tight inetesd of leit, and the leftmost bit becomes zero,

etime written as St r, sometimes as SUH A,r, both mean the
%mge thing?n?‘he value of r is subtracted from the A register. ;Nuta that
unlike ADD, there is no corresponding instruction STB HL,s. If you wish
to do thie you must firet of all reset the carry fleg (uswally by use of
ATD &) and then use SBO AL,s.

KCR YR v alters all of the flags, resettine the ecarry to zero, and
the § register alone. T is not aliered. What happens ia that A la ni;-_ce?:'_ad
bit by bit, in the same manner as AND and CR. If a bit is zers it tekes
o the value of the correaponding bit of r. If on the other Rend 2 bit is
one then 1ts new vyalus ia the complement of ‘the appropriate bit of r. L
XOR & ia very useful ainece in one byte it zevoes boih the accumulator an
the carry flag. Incidently so dees SUB A,

73

®_\~

y E
g fﬁ_\‘a«\\‘\\wv"e\w\\w‘\\%\\\\\

\\l\&\\\&\%\\\%&\&\\\\\%ﬁ\\\{\\\i

BT (e

h\%’_’-

wv\\\\\\\\\\ \

ﬁ\\t\z\ *@.\\\.\\\ \t

:’-"

--'_dllllllr—-)

=
E
!
=
T‘

A ;
\“‘1‘\\\\\\\‘%‘\\\\‘\\\\}\\\\\\}\

\\\\ . 5 \\

/7

L7

\\\\\\\\\h\\\\\\\\\\i\i\\\\(\\\\\ |

—_——
7 %
,”,///ff//?}/

Y

i _{//'/) .f

%

[
G |

: .";{l
K
%

(|
re

7

ey
Ll

How we more or lesa kpsw uhat machine lansuepe 1g, it's about time

we learred & bit more about how to hendle it. Vhat we shall 4o now

fa io write & mew propram = HEXID3 = which will sllew ua to do five
thinge. 1) Input machine code. 2) Insert mechine cofe in between
previous réutines, but without overwriting anything, 3] Delate machine
code, closing up the gap that it occupied. 4) List machine codes 5
SAVE machine sode. The important point about this program ie that the
principle parts of it will themselves be in machine code slthough all
of tme surrounding fabric will be BASIC. Te work it all you will need
ta do is enter one of the Following,

RUN. To List your shoered mechine code.

RUN 100 To Write new machine code.

RUN 200 o Insert ney machine codew

RUN 300 To Delete previous mechine code,

RUM 400 Mo Save machine code.

GOTO 500 To Relvad seved machine code {OLD ROM enly)

More to the point = you'll need HEALD? in oxder to help you load it.

The addresses usad in this chapter assume that the machine eode i being
loaded into a HEM statement in line ane of & NEW ROM machine. If this is
80 you'll actually need 255 characters after the word KEM. However, you
‘don't have o use the same addresses as ne if you don't want to. OLD ROM
folk ave specifically advimed MOT to use a REM statement, oince the

machine code gantaina newline characters, To store machine code at different
addresnes to those I'we usad simply change the listed addressee to yours.

Letla ovente it ons part at a time, First of all a special aubroutine for
OLD ROM people - designed to AUTOMATICALLY print a character to the screenm,
in much the same vay that the NEW ROM PRINT routine does. The routine will
glso protect all of the registara. Study this listing:

FOR OLD ROM PLE OHLY

ES APRINT PUSH HL ‘Store the value ol HL. X
9 B ‘Storé the remaining registers.
¥5 FUSH iF And the A regiaier. ¥
CIEOCS DALL PRPOS Find print-pesition.

P FOP AF Retrieve A.

D200y CALL PRINT ‘Print cnaractier A.

9 EXX Retrieve BO and IE,

K FBOP HL Retrieve HL.

©9 RET End of subroutins.

Kote that HL needs to be atacked, since CALL PRINT changes the value of HL'.
The next subroutine we'll nesd is a mechanism for printing to the sereen
the value of the A Teglster in hexadecimal. This subroutine will INCLUDE
a subroutime—call to APRINP, at least for OLD HOM people. New ROM pecple
in fact slready have an sutomatic print routine which protects all of
the registers, since there le ona in the ROM itself. It is not quite the
same as the FRINT i‘niuu-ne, gince it alsc preserves the values of all the
registers - this is something that CALL PRINT will not do. CALL FRINT
will erase the values of B, C, Dy By H, and L, The addresa at which
APRINT bepins {n the NEW ROM is 0010, and so CALL 0010 would print a
character without changing any register. This is very wseful indesd,

Ore of the %80 instructions designed to mpeed things up 8 bit is RST. It
ie in effact the mame as CALL except that only cne of eight addresses
moy be called. It just so happens that 0D01C is one af these posaible
addresses, RST ig better than CALL for iwo reasonsi 1) it is faster to
execute, and 2) ii is only one byte in léngth, Tha code for RST 10 ie
D7. D7 then has precisely the same effect as CDI00D, that %8, to print
& character. OLD ROM users should note that although 17 still produces
call o 0010, it will not print.a character, sines in the OLD ROM there
ia ne PRINT mib:‘,-‘euﬁina‘n%;utna at this point. BST im short for RESTART,
76

¥3 HFRINT PUSH AF Store A for later use.

EEF0 AND FO This isolates the first digit,

iF RRA Move this first digit te

1F HRA its proper pomition within

1P RRa the A register.

1F RRA

cele ADD A,1C Add twenty-eight to the chaxmcier
code, making it a hex=digit,

n RST 10 Print this hex-digit. OLD ROM
users should of pourse Teplace
RST 10 by CALL APRINT.

1; FOP AF HRetrieve the original value of A,

60? AND CF Isclate the mecond digit.

célc AQD 1C Add twenty-sight.

7 RST 10 Print it. OLD ROM users should
instead wae CALL APRINT.

co RET.

By the way, did you understend gll those ANDs and BRAS? If you didn't
1111 explain exactly what's going on.

In binary, RO is 1111 0000, This means that vhen you apply AND to FO and
another mumber, then the fizet four binary digits of A will be umchanged,
and the second four binary dicits will all become zero. Do you remember
how to chenge from binary to hex? You have to lock at £t four bits at a
time, The first four representing the first digit, and the second four
the second digit. Thue all we heve done is to change the second digit to
B0,

ZEI A'were %6 then 1t would dbecome 30. If it were 99 it would become 90. If
it were D5 i1 would become DO, ind so on, This ia not what we want. We must
shift A four bits to the right,

FRA moves 4 one bit to the right, replecing bit 7 (the leftmost 'bit} by the
value of the carry, In this case the carry is zers, 8ince we have juet done
an m: instruction, The new velue of the carry will be.the previous value
of bit 0 (the rightnest bit}. This will also be zere since thers are riow
four zercea at the right of A, :

FRA then, Tepeated four times, will change A from 30 to 03, from 90 4o 09,
emd from DO to OD. ALl that remaina mow is to add 28 (decimel) to this
mumber znd print it. We print it using the instruction RST 10,

::ik to our new program, The BASIC part of tha List reatine will look like
L8-1

10 FRINT "keyword LISTY

20 GOSUB 600

30 R&NB USR 16539

1o sbfain the keyword LIST in 1 THEN

3 dne 10, either type LEST (NEW ROM
b k:a:.e_m the word THEN, or type the whole lime as 10 LIST q_\Ents oz
ackapace becksrace PRINT quote newling,

£00 LET A = 16533
610 FRINT "ADDRESS mpacen;
620 THPTT AF

630 TRINT 4%
630 FOC 441, 162C0m Aacone ()

77

50 POKE A,16#COTE. 43 (3)+E0DE 1f
(4)-476
GEEAR

570 RETTRN

What about this USE routine at 16539 then? What will that do? And what about
this business of POKEing 16533 and 165347 What'a that all about? Well using
my addresses, 16539 is the start of a routine called HLIST, which we haven't
yet writtan, It ia desigred to actually LIST a machine code program in
hexadecimal (hence H-List). The address 16533 is the nunber I've used to
hold a "variable" called ADIRESS, Tnat is to say, it is a place at which

ve can store a two-byte number, Any address may be used for this purpose
provided that BASIC will not change that two=byte number.

This program demands four sush "wariables", or tue-byte memory loeations,
They will be called BEGIN, ADDRESS, ADDZ, and LIMIT. They will be used by
the program as follows:

BEGIN The sddress at which the subject-program begina.
ADDRESS 'The address we are currently leoking at,

ADD2 The address beyond which we must not progress.
LIMIT The addrese at which the subject-program ends.

I ought to explain hers what is meant by "subject-program®. The program we
are writing i a replacement for HEXLDZ. As such it is to be called HEXID3.
This is the Mobject-program® - the one we are writing now. Bui the purpose
of HEAID) i to enable us to be able to creats and exramine machine code
programs, The program that HERLD3 will be umed to examine is called the
*subject-program’. These distinctions are clearly necessary in order to
avoid confuslion between the two different concepts. If ia of course possible
to use HEXLD3 to examine itmelf, in which came it becomss both the objsct
‘and the subject, but for the time being kesp thess twe ideas separate in
your mind.

The addresses which I've used to store the "variables" EBGIN, ADPRESS, ATDZ,
and LIMIT are as followat

Decimal Hex Explanation

16514 4082 The start of %he subroutine HPRINT
16531 4093 The variable BiGIN

16533 4095 The veariable ADIRESS

16535 4097 The wvariable ADDZ

16537 4099 The veriable LIMIT ;

16539 4098 The start of ithe USH routine HLIST.

Lines £40 and 650 FCKE into the variable ADIRESS = Giving the addvesa

at which out listing {Input in hex as Af) is to begin, This idea of using
part of the RAM in machine-code-area to store numbers 13 a very useful
one. You 'can use it in many diffexent programs. The numbers will be safe
there even alter the program enmds and you are in command mode. You can
tm;‘ﬂﬂ &¥ CLEAR end they won't be wiped out. They will even SAVE ang
TELOAD.

Now fox the subroutins HLIST {Short for Hexadecimal List). It is a very
very simple routine indeed, and should be no treuble for you to follow.

78

2A9940 HLIST 1D BL,{ LIMIT) Ensure that we don't progress bayond
229740 LD (ADD2),HL the end of the subject-program.
LD D,H
D LD E,L
249540 LD HL,(ADIRESS) Compare the current zddress with
16 LD B,16 (OLD ROM ONLY) final address.
AT BXATAD AND A
ED52 SBC HL,DE
19 ADD HL,DE
301F JR KC,DONE
ki LD A, Print the high-part of the current
cnezA0 CALYL, HPRINT address in hex.
™ LD &, Print the low-part of the eurrent
cpazan CALL HPRINT address in hex.
AF XOR A Reaet 4 to zero,
o7 RST 10 Frint a space,
1B Lh A, fHL) Print the contents of the eurrent
£T8240 CALL NFRINT address in hex,
cB7é BIT 6,(HL) If this chayacter is unprintable
2004 JR N, NOPRINT then do met print {1,
AF XOR A Reaet A to zera.
7 RST 10 Print a space.
B LD A, (EL) Load p with this character
7 RST 10 and PRINT it.
IBT6 NOPRIRT LD A,76 Toad A with a newline character.
n? RST 10 Print newline.)
23 THG HL laook at the next addrees,
229540 LD’ (ADDRESS) ,HL Stors the current address,
1803 JR NXTAD (NEW ROM ONLY)
1018 DINZ MATAD (OLD ROM ONLY)
i DONE RSP 08 Sea below.
o0 DEFE 00 :

The gbove program will run as listed on a NEW HUM machine. OLD ROM users
should raplace every RST 10 instrustiom by CALL AFRINT as before, mnd are
reminded that the JR byte-count must be changed secerdimgly at two points
in the program.

There ara several things we can note about this program, Firatly, two new
instruction= have been used - BIT &, (ML) and RST 08, Here's what they do,

BIT &, [HL) tests the value of bit & of the address {HI.). The result will
either be 1 (if bit 6 4s 1) or 0 (if bit 6 is 0). This result is not
stored in any of the registers, but we can still check it with the next
line JR NZ,NGFRINT, which saye jump to NOFRINT if the lmst wesult (that
ia bt & of (HL)) 45 not zero.

Why do we need to do this? Teke a lock at the character eel. In particuler
look at their charmcter codes in hex, Notice thet all of the expandable
characters 1ie between GO and FF (except for RND, INKEYH, and PI on the
NEW ROM = theee are treated slightly differently by the HOM) and that all
of the charscters between 40 and TP are not printable at all (again,
exgept for RND, INKEYY, and ¥I on the NEW ROM. The machine has to make a
special cheek for these.) {You could argue that tha NEW ROM cursar (TF)
was printable, but of ccurse it locks different depending on what mode

the mashina 15 fn.) In faet all of the printabls charaseters sre either
between 00 and 3F, or between 80 and BP, end conversely every charscter
betvean 00 and 3F, or BO end BF, is printable. What have all these in
common? The fact that BIT £ of the character cede is gero, In binary these
codes run between 0000 0000 amd (011 1111, and then from 1000 0000 to
1011 1111, Se all we have %o do io find out whether or noi a character

in the set is printable, all we have to do ia to look at BIT &, The

abgve program won't atiempt to print them unless BIT 6 is zero, This is
bacause the RST 10 rontine won't expand the sxpandable characters, rior
will it veplace the others by question marks. It will crash though!

79

Tha other new instruction ia RST 08. This vill cause an immediate return
to BASIG, stopping the program with an error code, The byte immediately
after the RST 08 instruction tells it which error code to use, An error
cede 1 needs the data 00, since this byte has to be onm lesa than the
report code. If we wanted to De really flash we could have used 10 and
ot an srror code of P!

Now follow the program through carefully end gse what it doepas Note the
way we check whether ar not the addrvess ATD2 hea besn reached (14 is
stored in HE) - especially the use of AND A to resct the carzy flag.

You can check that this program works by FOKEing the address at which
HPRINT atarts into both BEGIN and ADIRESS, and by POKEing the addresa at
which HFRINT ends into LIMIT. Then, if you type RAND USR HLIST (thia is
the lecation 16539 using my sddresses) you should end up with a mere or
less inatant listing of the subroutine HPRINT.

Now if you'simply type RUN and enter 4082 the program will instantly list
out the start of this program. In othar words we are vsing it to examine
itself, Tyoing CONT or CONTINUE repeatedly will continue the listing until
the &nd of the program is reached, when you will get a report code of 9.

){n\r for the second part of our program; HERLD3. The BASIO part ia to loock
ike this:

100 FRINT "WRITE™

110 GOSUY 600

120 INPUT A%

130 PRINT A_ﬂl'“ﬁ\m apaces™;
140 RAND DSR 16585

150 GOT0 120

This part caleulates the length of the etring A, which because of the
CLEAR Statement in subroutine 600 is the first (and only) item in the
variable store,

OLD ROM OMLY:
3 240840 WRITE LD HL, (VARS)

ES PUSH KL
D6FF. LD 3,FF
23 AROTHER INC HL
B LD A, (HL)
04 e B
3D G A
28FA JR 7, AROUHER
El POP HL
£B28 T

This routine leaves the length of the string divided by two (mince it
nseds two characters to specify cne byte of machine code) in the B
register and leaves HL pointing to the byte immediately befare the
start of the contents of the atring. Notice hov LD A, (HL)/INC B/IBC A/
JR 2 8 usad ta chack for a charastsr 1 (a quste mark, ar and of string
character) as well &s counting the mumber of characters so far (im B)s
Can you also see how SRA B will divide B By twe?

Strings are storsd differvently in the NEW ROM. ‘this actually mekes things
easier, not hazder! Look at the corresponding MEW ROM routine uhich doas
the same job.

HEW ROM ONLY:

16589 241040 WRITE LD HL, (VARS)
23 INC HL
46 LD B, (HL)
B3 INC HL
CB28 SAA B

80

This works because the NEW ROM works by atoring the length of a string
immedistely before the string itself. It takes two bytes for this, but
notica that in ‘both of our versions we are only uaing one byte for the
length, so don't input moTe than 255 charasters in one go.

Here's the rest of the roia_s.ine.

2EF4 JH Z,TUNE
EL539540 LD DE,{ ADDRESS)
23 INC HL
i LD A, (HL)
BT ATD 4,4
a7 AT Ay 4
BY ADD A,A
By ADD 4,4
23 ING HL
8 ADD 4, (HL)
chz4q ADD Ay 24
12 LD (DE), 4

INC DR
ED539540 Lh (ADDRESS),DE
ES PUSH.
249940 LD HL,(LIMIT)
ED52 SEC HL,IE
El FOP HL
3004 IR NC,CHETK
ED539940 LD (LIMIT),IE
1081 CHECK DINZ NEXTEYTE
€5 RET

You can learn smeveral things from this routine. Firsily, notice that if you
inﬁut the empty string the program will jump back %o the RSP 08 instyuction
in the previous section, Ithis is so that yeu can end tha program without
actually having to break out.

How lock at the first few lines from GHBCK onvards. What they do is ihis -
if the end of the progvam (the program that WRITh is editing) is greater
than the current address, do. nothing, otherwiee make a note of the fact
that the program has got longer by altering our variable LIMIT.

You now have two segments of maehine eode which, if you've typed them in
properly, will work first go. How delete the WHOLE of HEXLDZ (except of
course for line 1) but be very careful not to attempt to list line one.
The fizst line new contains more characters, when the keywords in the REM
are expanded, than will fit om the seresn, In this ocircumstance the ROM
will go into an infinite loop if it triss to llst it - this is a deaign
fault - the ROM should not be capable of making infinite loope, Yeu won't
be sble to break out if it happems. To sveid Lt, typs POKE 16403,10 (OLD)
or POXE 16419,10 (NEW). Then type in lines 10 to 30, then delete the z=at
of the program one line at a time, lowest line number firat. New type in
the west of the program and SAVE it before you do anything elaes

For NEW ROM users, it should be made clear that the FEM statement will,
when keywords ave expanded, be longer than will fit on the screen, thus
although the command LIST ia acceptable (the result of which la that part
of line one in listed and an error 4 messaze displayed), if you LIST 10,
1o ensure that line 10 ia alvays st the top of the screen (sometimes this
doean't work - if not type FOKE 16419,10 which always works) be warned
never to delete line 10, I you do the ROM will go into an infinite ldop
trying to reshuffle the lines so that it can list them. In SLOW this can
ve quite amuzing to watch, but it is always irritating because the only
way you can get out of it is by pulling the plug.

81

Now 1o complete the Lrammition from HFXLDZ to HEXLDI 1ek*a sewrite Lhe
seation that will SAVE thinga in upper memory. The BASIC:.

QLD NEM !K_)E

400 NEM O(USH(ARKAY)) 400 DIM OF(USR ARRAY)
410 RANDOMISE USR(STORE) 410 RAND USR STORE
420 SAVE 420 SAVE "HEXLD3®
500 MANTOMTSE U RETRIEVE) 500 HAND USR RETRIEVE
510 GLEAR 510 CLREAR

520 sTop 520 STOP

A7 you can see there are three different partn of machins nods. The firat,
:n 1.1':0 40:5 :'.lh'ru nothing, but returns a numericel value to |ASLE, which
a N us ¥ MASIC to ressrve the correct amount of space usi

statement. Let a look at that part firsts s e

Uning my addresses, AHRAY {s 16635, STORE is 16651, and RETRIEVE la 16669,

249940 ARRAY Lp m..ELw:'r

ET539340 LD D&, (BEGIN
AT AND A
FI52 SEC HL,DE
229740 LD (ABD2),HL
for the OLD KOM onlys
CcB2C SAA 0
GBID B L
Tor the NEW ROM onlys
44 LD 8,H
an b 6,1
Tor bothy
RET

The Iirat part 1s oovious. The beginning addresn im subtracted from the
end addrens, Again we 8s AND A being used to zers the carry flag so that
5B glves the right amawer. Fow, for OLD ROM users, this number im divided
by twe, because arrays use two bytes per slament. For NEW RONM uders we
m;cthgmmmr T into the BE ragister because this is what will retuwrn to
IC. for the machine code 5 3
to lead it in the flral phez. e e

Tou may be wondering why ADD2 was loaded with th

¥ L 4 e nuaber of bytes in
the cede ko be SAVEd. Well ATD? ia Just a convenient place ‘turulnu it
#ince it will be needed in 1ine 410. i

241040 STORE ED ML, (VARS)
110600 LD DE, 000§
19 ADD HL, DE
EB EX IE,HL
249340 LD HL, (BBCIR)
ED4BITA0 LD BC, (ADD2)
EDBg LBIR
cg 3 RET
281040 RETRIEVE LD BL,({VARS)
110600 LD DE,0006
19 ADD HL,DR
ED5B9340 LD DE,{BEGIN)
ED4B3T40 LD B, {AND2)
EDBO LR
09 RET.

82

I'n case yeu're beginnimg to lose track, here's a guick round up of all
the addresses we've used so far:

Decimal Hex Routine/Variable
16514 4082 HPRINT'

16531 4093 EBEGIN

16533 4095 ATIRESS

16535 4097 ADD2

16537 4099 LIMIT

16539 4098 HLIST
16589 406D WRITE
16635 4078 AHBAY

16651 4108 STORE
16669 411D RETRIEVE
16687 412F next spare byte.

Briefly, STORE moves machine-code from upper memory and atores in an
array, RETRIEVE moves it back from the array to its previous position.
Both of the routines start off by working cut the addrsss of the first
{ree byte in the array, The array is the first item in the variable
stora, but begause the OLD and NEW ROMs think differently, we have Lo add
two te this location in the OLD ROM, and aix on the NEW ROM. Can you
5pot the diffevent woys in which this ia done?

This is alsc the firast time we've used the Imstruction LDIR. What is doss
ia to automatically move a block of elements from address (HL) to address
(DE), asmuming that the number of elemenis centained in this ¥leck is BC.
This ie of course precisely what we want to do. LDIR dees alter the value
of each of the regiater pairs BG, DB, and HL, but that doesn't concern
ua since the next thing we do is RET,

LOIR is very, Very useful indeed, but you must remember whish wey Tound
it goes. It loads from (HL) into (IE). Have you ever pressed 'mecord'
instead of 'play' when trying to load programs from tape? Well that'a
expotly what will happen to your machine code if you get I and HL the
wrong way round for LDTR - it will just be wiped cut - and there's no
going back,

A8 long & you can See exactly what's happening you're OK. If you can't
then get a pleca of paper and writa down the values of each register at
each atage, Work Yhrough until you're convinced you kmov exactly vhat‘s
happening all the vay through.

We now have & BASIC program called HEXLD? which contains & fair number of
machine code subroutines. As it stands it will both LIST and WRITE machine
code, and can also be wsed to SAVE any machine code or data whish ia
stared in apare RAM spice high in memoxy. This is all that EEXLD2 did.
You now have the ability to enter your own machime code programs very
easily, but what you can't yet do is edit them if you make a mistake.
That is what the next section is for = it ia called INSERT, and will
insert whatever you input between the surrcunding code, without over-
writing it. The Bjps16 Part of the reutine is this

200 PRINT "INSERTH

210 GOSTUB 600

220 INPUT Ag

230 PRINT Afi=two spacesh
240 RAND USR 16687

250 GUro 220

83

And the meohine eode which goes with 1t (which MEW ROM users sHowld write to
address 16687) ia as follows: F iy]

QLD ROM NEW EOM
240840 INSERT LD HE,(VARS) 241040 INSERT LD HL, (VARS)
5 PUSH HL 2 INC HL
OLFITF LD BG,FFFP 4E LI C, (L)
23 MORE ING HL 23 INC HL
= LD A, (HL) 46 LD B, (HL)
03 INC BC
3b DEC A
26FA JR Z,MRE
El POP HL

CB2G COFYUF SR B

CcH1g BR © 3

2007 JR N, NOTEMETY

CF¥ RST 08

o8 DEFB 08

o5 NOTEMPTY EOSH BC

249940 ID HL, (1IMIT)

KDSE9540 LD DE, (ADDRESS)

A7 AND A

ED52 SHC HL,TE

23 ING HL

44 1D B,H

4D 1D C,L

Bl FOP HL

RI559940 LD IE, (LIMIT)

19 ADD HL,TE

229940 LD (LIMIT),HL

EB BX IE, KL

FIBS LOTR

CDOD4O CALL WRITE

o9 RET

Now exactly how this works is quite cemplicated, @a think carefully. The

part between INSERT and COPYUP finds the length of the atring Af. As you

tan 8@e it required a completely different methed for each ROM. See WRITE
on this, since it is very aimilar hers.

Beiveen COPYUP and NOTEMPTY the length of the string is divided by two,
and if it is mero returna to BASIG with error code 9. Thim is the job of
the RST 08/DEPE 08 sequence. From then on we are concermed with moving
part of the program being edited. Look at the diagram below.

EEFORE: 1
] t
begin addreas 1imit
AR Knew AN |
begin address Ii!lit

A8 you can see, we need to load a complete block of elementa from one point
to ancther, but unlike before the new and old positions overlap. This is s
elight problem, and we have to be very careful how we load it, If we were to
simply assign HL to ATTRESS(before) ard DK with ATDRESS(after), and then use
LDIR me before (having aszeigned BC to the number of elements in the block
firsl} then sinee LDIR movas things ome byts at & time tha first few elamenta
would end uwp in the middle of the block, only o be copied up for a second
time. The program would be completely corTupted.

84

We can get Tound this flew by snesking up on the problea sideways whils it'a
ot looking. What we do iz we block load it from the other end! This meamns
loading HL with LIMIT(before) and DE with LIMIT{after) and use LDIR inatead
of LDIR.

Having found the length of the new section, thia length ia pushed onto the
stack. BC is then loaded with the lemgth of the block to be moved. See how
this is worked out. Then HL and DE are correctly assigned, making use of the
fact that the length of the new section is at the top of the stack, and the
new limit is stored in our "variable" LIMIT.

After the block load is succeselfully carried out we call the WRITE subroutine
4o 111 the shaded area in the diagram with the contents of the input string.
‘this will work bscause the above program doss not change the velue of the
wariable ATDHESS. WRITE will simply overvrite the shaded region, moving the
current address pointer to its new position, We then returm to BASIC for the
pext input.

Ts test the program, usa WRITE to write "9DGEIFAOALAZAIAMAS™ 1o the point
Just beyond where our program currently enda, This will list as
FNow use INSERT. Give i1 the address of tho Inverse five, and input
«201E"/"00%, Hewxe / mesne mewline. When you list it you'll find four new
charaeters have baen inmerted, Hotice that the routine mllows you to inpat

as many characters os you like in one go, and that it allows you to press
newline as many times es you like. Newline on its own (ie inpuiting the enpty
string)uill break out of the program.

The final section to add to our program is DELETE. %his will lock (in BASIC)
1ike this

300 PRINT "IELETER
310 GOSUB 600

320 LET A 16535
330 GOSUB 610

340 RUN USK 16732

The firat four lines losd ‘the initial and final addreases imts the variables
ADIRESS and ADDZ. Iine five calls the machine language routine that will do
the task for us.

Hers's what the machine code has to do. Look at the diagram belcw. Here the
shaded region must be Temoyed,

BEFORE: 'I’//////% [

o
begin addreas add2 Timit

APTER: I [
be;in addreas 1dmit

This is quite simple - we just use LDIR quite stralghtforwardly. You might
think there would be some effort involved in calculating the new limit, but
not so. IDIR alters the valus of HIL and IR for us in guite an sdvantageous
¥By - as we shall see.

e I\ _—

249940 IELETE LD O
i s O R T T e Y
a1 mL I; N
Eéanssqo Egn;',(mmss) 9/-? & SRR

0 e ! A R R T Y
o e . o A

4 2y 0 T

As LDIR moves from one end of the blocks being shifted to the other, HL and
IE move with it, so HL ends up to the right of the original block, amd TE
ends up to the right of the copy. Thus a simple IEC IR after the LITR will
set ik to exmctly the righi plase for our naw limit. Load this routine to
address 410D (OLD)/415A (NEW), using INSERT. You should mow have one or two
spare gharacters after the end of the program, Use TELETE to wipe them out

= this will of course test whether or not you have typed in DELETE correctly.

SN !

Sty

gy

(

Now SAVE this program permanently: Thims is the final version. All you have L AT A b i
to do in order to use it in future is to type RUN 100 and antsr the addrsss B e e S S O
of the variable BEGIN, (403C or 4093). Then iriput the address to which the ; (aXavaNaNaNavataty NORT Y LLNLARR LS o

you are about to write will begin, then simply newline on its own. A \

SCANNING

THE
EYB.UARD 7
R Ry

progran ;
RUN 100 a second time to actually begin inputting a program.

§\\\

7%
;:,’/%
1

NS

A

PN
%
%

—
U

7{//(,;

1/
il)

(=

>
%
%

L~

N \
\. e
*‘c\i‘\.w«%':&:

AP
/

Bow ii's time to explore hov we can make use of moms of the other
subroutines that are remazkably well-nidden within the ROM, Specifically
we'll eover tuo of these subroutines, whish between them will enable
un to scan the keyboard and locate which, if any, of the keya on the
keyboard are being depressed. On the NEW ROM we can make use of these
subroutines just by calling them, but we can't on the OLD ROM because
they're simply not there. For the benifit of the psople with OLD ROMs I
shall Include a section at the emd of this chapter explaining how theae
prograns may be made to work by sctually inputting these subroutines
yourselves. This section will almo be of interest to those of you with
NEW ROMs, since it will give you an insight into how the subroutines
actially work.

The first such subroutine i8 an amazing litile keyboard sssn, wnich
begina at adirese 02BE. Tt may be accessed mimply by calling that address,
ie CALL KSCAN, or CDBEOZ in hex, It dessn't actually preduce a very
useable answer though. Let's sse exactly what it does do.

It retumna a value to the HL vegister pairs Actuslly it returna separate
and independent values = one to H and one to L. Here's how the value of
L ip interpreted;

Inagine the keyboard (ax_cluﬁing_saii'n) divided up into eight horizontal
seoblons, esch contuining five keys (exeept for seation zexo which snly
contains four, because SEIFD ie ommitted), Notice how each section
has 4 corrésponding number between zers and aeven, Now, if there is ro
key depresmed then L'will veturn & walua FF. Howaver, if one or mére

Keys are depreased, then the appropriste EIT (of 1) will be Taset to zero,
In other words, if you are pressing g, W, E, R, ox T then bit 2 will be
resat - if you are pressing B, N, M, full-stop, or epace, then bit 7

will be reset, This means that L can return the following:

ia;m‘! 148
If no key ia depredsed 111111 FF
LI a section 0 key s depressed 11111110 FE
If a section 1.key is depressed 11111101 Fp
If a gection 2 key is depressed 11111011 ¥B
If a section % key i depres=ed 11110111 ®7
If & section 4 key s depressed 11101111 =P
If a seotion 5 key is depreased 11011111 IF
If a section 6 key 1a depresmed 10111121 B¢
If a ssotion 7 key is depressed 01111111 7®
SECTION 3 SECTION 4

SECTION & SECTION 7

88

e an exercise see if you could work out what L would ¥eturn i both
5 and P were depresasd at the same time.

= walus returned by E is determined by a Bimugr principle, hr;t 2;1.1.—:5
2 the keyboard is divided up here - fot hordzontally bui vert: u; ya
hwi ‘ua}sa thai ihe SHIFT key has a sesotion all to itaelf = asection O,
Lot d; ou prase key S for instance them E will retumn FB (in bim:ryt
m:!.;ol{) We have already seen tnat L would give FB as well, so hn“
E reh:r.n; . Gan you see why it is impoesible for thias value to

obtained from any other key?

1 §OVLO3S ‘

£ ROILDIS

Now let's see what would happen il you pressed SHIFT 8. Joth bite zero
and tye weuld Be reset giving, in bimary, 11111010, In hex this is ¥4,
#e HL would Teiurn as FAFE — which is diffarent to the value produced
without shift. We can eee the precige effect of SHIFT from this table:

BINARY HEX EINARY HEX
If ne xey i= dapressed 11111111 FF 11111110 FE
If a section 1 key is depressed 11111101 ¥D 13111100 ¥C
If a section 2 key is depreassed 1111011 FB 11111010 ;2
If a section 3 key is depressed 11110111 B7 11110110
If g saction 4 key ip depressed 11101111 EF 11101113 g
If a section § key is depressed 11011111 IF 1101111

It should now be reszonably clear how each individusl key, uiﬂ,h or
without sh:Ft. produces its own unique code in the HL '.re_g-!._n‘:_er _pn:h:. Ik
fwo keys pre hoth in the mame horizontal section they cannot posaibly
Both be in the same vertical section. Note that SHIFT on ite own returns
2 value of FEFF which is not the same as no key depwession at all,

The subroutine which I've called KSCAN docas have one big disadvantage
though - it will eompletely wipe out the previous values of all the
Thzisteral Tf you want to preserve them you'll have to male use of the
Stack as follows;

F5 FUSH AR
c5 PUSH BC

5 PUSH IE
CDBBOZ CALL KSCAN
n POP IE

cl POP BC

Fl FOF AF

?:vjxi‘::thﬁu imt:h:e:lra‘thar obscurs numbers Intc zgal character codes
\=ppens that all of these codes are rather cleverly stored {

:hﬂvﬁﬂ P:ﬂﬂnlﬂz at sddress 0OTE. By "rather oleverly" I meag inn:em:]:

cnvenient order, as followa; First the straightforwerd characters:

BOTE ZXCV ASTFG QWERT 12345 09876 POIUY newline LIJH space .MNB

(Thers are no spaces betvesn the ch
€ e aracters = they are printed here t
make the ordering more obvious,) Then the shift characters; i

O0AS ;‘;‘?/ STOP ﬂiﬂ? SIOW FAST LLIST "M OR STEP 4= <> EDIT AND THEN
cursor-left RUBOUT GRAPHICS curaor-rigi -
“)(j > FURCTTONmee me s or=rignt cursor-up cursor-down

Can you gee how the ordering relates ts which = <
] £ ections the Ke:
:9 Ewld quite essily write a subroutine now to convert. from inﬁ:r:ﬂ;
l:tﬂl.t:; ::r::zythgn in 31 tn)}' en address between OOTE and 00CB (the
st e table - the w) but it turns out that we dontt
:::::a?!.:?h nice man Unole Clive has alrasdy done it i‘ordﬁa m.::e: i
b !1: b:hieh I shall oall FINICHR beginning at address O7RD. The RCM
Bf probably ha\ra_t-t}ﬁir own name for it mut they keap it shrouded in
Hﬂ:'—;‘g- E’Ev subroutine perfovme the £ollowing tesk - given a value as
i above, in the BC register, it will work cut the addrese st which
e eppropriate charactsr ds stored - the final remuli ending up in HL

It does have a problem thoughk, If
. If yo
yeu shouldn't end up with & eharact
: L up = 6T 1o printl You'll hawe to
;ﬁ:ﬂngg:liﬂun?z‘::y Hg:iﬂ be as follows. Fotice thouth how u:':;:';tm-
it Ry 't subroutine into the BC repister hefars ealling the

u're not pressing a key then surely

CDBBO2 START CALL KSCAN

44 LD B,H

4D e

_153: 1D B,
me p

3R00 LD &,00

2604 JH 2, NOCHR

CTEpOT)

¥ 1D &, (HL)

rest of program

There are several things to note absu
; Y thia example. Firstly that
:::::a:: instruetiona, m_n,n and LD O,L,are needed to tr‘nn:i‘u- mt;’: B
eail m:“r; i:]r;niamgle inatruction LN 32, H1. Secondly that the sondition
D 18 zere, riot A - LD does not 2lter any of the flags, If

D is nero after being incremented’ th
which means thst [muat have been l*‘i‘e:f:: S gy o b

T it ceme out of the first
:;l::a::ins. Z“'b}.a is the check that a key ia being pressed, Aeis Jl.-:adad
mit :gdan f:lf N0 key 18 preased it remains zero, otherwise it takes
® of whichever chaTacter you're touching sn the keyboard,

20

There is here a slight embiguity in that zexs da also produced _i_t‘ you

press space. You could use LD 4,01 inatead of LD 4,00 sinpe the charmctex
whosa code is one () is nol availsble from the keybeard. Now thers is

no ambiguity since zero means gpace and one meant no character is being
pressed. 1{ you have SLOW at your disposal you eould omit LD 4,00 altogether
end use JR T;START inausad of JF ZNOCHR. New the program will WATT unmtil

a key ds pressed before oontinuing. Without SIOW it will still wait but
you'll have to suffer a blank screem in the meantime,

The A Terister now containa & value corresponding precinely to the function
THYEYE. In this vay real time games are justi &8 feamable in machine code

as they are in BASIC.

gnother interesting part of the ROM is the very last bit - the hall of & K
that Tuns from 1BOO to 1FFF. It's not a subroutine, it's a table - & very
long tsble — actually the longest table in the HOM. It stoves the dot
pattern af every symbol used by the computer — that is all of the printsble
chatacters. Tt tekea eight bytea to store a single character symbol, 80

for example, the characters A, B and C &re Tepresented; in binary, by

oo OOOo0

oo
01
10
10
11
1o
10
0.0

cooroore
cooroQrQ
sooHODHD
PR oe
opDocooDOO
DooDoRoO
O b i el el)
OHOOHONO
CHOOMONO
orFoD-HOoHO
aroororRo
corHoHoco
QROLOoRO0
coocooDOO
ooHHHEHOO
oHDoOoOHO
ocroocoorO
OFHDOOOHO
oHOoCOORO
OOoHCOMOO
o000 00

Can you pick the letters A, B end ¢ from the diglis abova? The pattern ia
neld by the pomitions of the "ones™ anonget the "uerces'. When they finally
appear on your TV screen they look like this:

Suppoas we now wished o yesonstruct thase letters in an enlarged form -
using a pivel (querter-square) for each dot. Thie means that each character
we print should be m graphies character (spase snd inversesspece both count
a= graphica characters) chosen Bo that the eorreet quarters ere black.

Thare are two ways of doing this. Oue de to meke He of the WEW ROM
character codes, in whish the graphics are arranged in & very clever

order - unfortunately ve would not be able to adapt thie sytem fo the

old ROM. The Beeond is to inelude sixteen bytes of deta within our program
representing the graphics eymbols in any order we care to choose. let's
take a look ot the first methad firat,

Suppose the bottom right corner is WHITE. If we give the other pixels
numbers 1, 2 and 4 then simply adding them up gives the required cheracter
code. You can check this by comparing the diagram below with the character
set in the Sincleir manual,

a1

If the bottom right hand covner is BLACHK ithen we need to glve the oiher
pixels the pumbers -1, -2, and -4. To work out the code of eny graphics
symbol here we start off with the pumber 135 (decimal) and subbract
appropriately the required number for each black pixel, Again you cen
check this By comparing the disgram below with the Sinclalr Menual,

Incidently i1 is worth pointing out here that many copies of tne Sinelair
Manual incorrectly give the cheracter of 135 as B, This is a misprint -
it should of course be[d: Try typing FRINT CHRZ 135 to cheak. Charactar
seven is B - the manusl gives this correctly,

4 white

The character code of the CLD ROM raphica aymbals ave unfs 1n

Tather random, so there ia ne Bimpla system 13::;‘ working uutr-th:::ég. given
which pixels should be black and which should be white, In order that the
progrem to follow should work on both ROMs we shall adopt a elightly
different method. Inatezd of distinguiahing twe different cases (that is
the oelour of the bottom vightshand pixel) we shall treat BVETy quarter=
Sguare the same, and:code them as follows:

We would then have to include in our program a DATA section which lista
the graphlece symbols in the order spacs

Move RAMICP to address 4380 (this ia & hex address) by typing POKE 16388 12a
POKE 1638967 then NEW, Now load the following]mng‘!&i t?aﬁﬂm 4383. i
(In decimal this is 17280, meaning 1K users will still be able to zun it.)
s 1t stands this program is best run in SLOW. We ehzll mee hev o altser

it so that it will run in FAST later.

00870483 DATA DETM This ie the table of

02850681 TEFM ratitica: ayobols Hin
aeosse e s
03840780 TEEm he required order,

CDBEOZ2 START CALL KSCAN Wait for human to take
x nc :

3 L finger off of key.
20pA JI V2 START if

92

CIBROR WAIT CALL KSCAN Wait for mev key to be
44 ID B,H preseed,

4 IDC,L

51 1D p,C

14 INC D

26F7 JR 3, WAIT

0DBEDOT CRLL F Tocate appropriste

E LD 4,(HL) character code.

A7 AND A

17 RLA Multiply by eight, but
17 ‘RLA return to BASIC if a non-
8 RET G printable character ia
17 RLA preased .

1600 L D, 00

CBL2 RL D

SF ID Fiyh

21001E ID HL,CTARTR Find start of dot pattern.
19 ADD HL,IE

OEQ4 LD €,04

Q604 QUTERIOCE LD B,04

56 LD D, (HE) Tranetar twe lines of doks
23 IRC HL into D and E

SE LD F,(AL)

23 I¥C HL

E3 PUSH HL

AR INMERLOCF XCGR A Compute which graphica
GBL2 RL T character is to be

17 RIA printed.

CHLZ RL D

1T RLA

CHLY RL E

17 RLA

CBL3 RL E

é}m‘” %AHL TATA get this character from
& ATD A:L the teble of graphice
EF ID LA eymbols.

b ID 4, (HL)

) BxXX Frint this symbol
TR0 CALL PRINT

o ERX

1086 TJNZ [NNERLOCP Wext print pesition.
Bl POP HL

IRT6 LD A, TE End of current line.
9 FRX

CcTo808 CALL PRINT

9 EXX

ggm fé.ommm Next line begins,
18ar JR START Stert again.

program is now complete. Meto sure vou are in 510 mode.snd start the
Egg'l‘am off by typing RAMD USR 17296, DO HOT type RAND USR 17260 since this
is purely data and will not run. You should see & cmp_],ngly blank screen.
Press "G", and watch whet happens, Now press "A". Interesting imntt it? .
Try experimenting with different keys %o see what happens — and what happen
when you run cut of screen?

You may have been confused by the use of the instruction EXX which wea used
four times in the sbove program. Its Iunction is very eesy to explain.

As you know, the reglaters B, €, D, E, H, L, and A can be very easily

93

mandpulatod, bt {here pre alao ceven olher repdetens, oollod §1*, 0%, 1,
E's H'y I", and A*. (Fromounced a-desh nr A=priwe.) Theme are pot so

niry o wanipulate and ean In practice only be used Inr atorage purposens,
The inctruction EXX weane exchence B and BY, C ead C*y D and D°, K and R,
Hopnd HYy L and L' Thos all the resgistera except A lose their prowicus
values but kake on the walnee of their alternetive Teplatean. Likewlae the
altermative repinters take on the nriginsl veluer af tha uspal regiatera.

The reanon we need to. do thin is bacpuse ths KOM mubroutine FRINT destroye
the previnue values of G, DR, and HL, We could have preserved them by
puenine thom onto the mtmok, but FAX worke just ss well hers and ir only
one {natmiction.

Leta take a closer look #i the above propram and mort out exactly whai each
bit doen, Mivat of 211 we find the right charmcter code, which gets atoresd
in the A register. The inriruction AND A resets the cerry fiag to zero.
AIA will Shen multiply & by two. Now we know thet this cheracier is on the
keyborrd And can be obtained in ome touch, so it {a not an inverse
charpaters Roteting left then will move the leftmoat bit, which muoi be

o zera, into the esrry flsg. IUA 8 necond tims will again multiply by

twn (rince we know the carry in wero), howsver, if the charscter im WOT
FRINTAALE (ruch ra nevline or STOP) then Bit & of the original value

will be & one. Thic will now be moved into cerry. The inatruction RKT G
eroures that if this circumstancs ever sooura the progrom will terminste.

Knowing ihen that the carry is mtill gero we con use RLA onea more to
wultiply by two. Here however, bit 5, vhich m necessrry part of the
character code, will ba movad Into the carry [lag, To move the o

digit into D we nme two instructions LD $,00 and kL D. D will then contain
either zeco or one. LD F,A ensures that regiater-pair DE now containe
eight times tha original valuas of A.

The other intereating pert ism the firsi nine lines of the INNER-LOOP.

A dr londed with the fixet two bits of D and the fizsi two bits of E.

This givea » number between szero end fifteen which correaponds to ths
required graphics symbol, It is NOT the character code, it is the specinlly
denigned code we worked out earlier on. Notice how the NFXT bita of D and
E are now autaomatically in place at the extreme left.

For thoas of you who do not have S1.OW 1 suggest replacing the lsat
instruction, JR START by RET. You could then have a purromnding BASIC
program as fallows
3 10 RAVD 1=R 17296
20 FAUSF. AC000
30 RUN

THE SUBROUT

01d ROM unere will by now be feeling nuite envicus at NFNW ROM people (o
having these subroutines st their disposal, 0f course there is a keyborrd
scan in the OLD KCM, but it isn't m subroutine - ie it doeen't end in

RAT. Gne call to i1 and you're stuck there forsver! What we'll have to

do 18 rewrite them ourmelwea. We can do this by taking all of the important
bits From the Aubrontinen in the HEW ROW.

Firnt of all KSCAN. Thin da the required subroutine. Don't worry if thexe
&re parta of it you don't mnderstand = all will became clear in dus covrse.

94

AT KSCAN LD HL,FFFF

OLIEFE LD BC,FEFE

ED78 1k 4, (€)

F601 OR 01

FEED 100P R &0

57 LD Dy

i CPL

FEO1 CE 01

9 SBC A,A

BO OR'B

A5 AND L

P ID L4

L 1D AR

A2 AND D

67 LD H, 4

CE00 RIC B

EDT8 1N A (C)

3EED JR 0, LOCP
RRA

CBl4 RL H

o EET

now - 4f you emter this subroutine into RAM you ocan then raplace every
GDBEO2 in thé chapter by a call to the appropriate address in RAM. The
other subrowtipe you'll need to be eble to emulate l& FINIGHR. This may be
dorie as follows,

1600 TINDCHE LD T,00

62 SRA B

9F 5BG A4

F&26 OR 26

2B05 LD L,05

85] 8UB L

85 LOOP AD AL

37 SCF

CBLg R C

38FA J® C,LOOP
1K C

co RED HE

48 LD CyB

Fl DEC L

2E0L b L,01

2072 JR NEZ;,L0OP

217500 LD AL, KTABLE-1

5F LD E, &

15 ADD HI,TE

a9 RET

The address 007D, referred to in my listing ae KTABLE-1, is for the NEW
ROM oply. THE m:imﬁs OF KTABIE IN THE OTT ROM I8 006C, and so this line
Ehould be changed to 1D ¥L,0068. This is far essier to wnderstand than

the rirst subroutine. The aecond and third 1inss are rather interesting.

1f you remember BG should contain a code corrssponding to one of the keys
at 1h‘ek start of the subroutine. Now bit zerc of B ia a one if SHIFT i=
not preased, and zerc if shift is pressed. SRA B will shift B to the
Tight, will set bit 7 to one (Do you remember the difference between SHA
and SR17), and will set the carry flag equal to the previous value of

bit zero.

= 1y reseting it to
SBC A,A will first of all subtract A from A - effectively

Zero - and will then subtract the sevry flag. In other words, if SHIFT ia
yresced A will end up &a 00, if SHIFT is not pressed A will end up as FF.

95

The fourth 1ine, CR 26, will ensure that i Is 26 for & shifted character,
FF for a non-shifted character, ¥

You sheuld recall here tnat B contains information sbout which VERTICAL
section the key ia in, and C about which BORTZONTAL section, If you take

8 closer look at the order the characters are atored in the Keyboard

table (KTABLE) which was ehown R few pages back yon'1l see that the
horizontal-section-number nesds to be multiplied by five, and the verticsl-
section-number added to it, in order to find a specifie xey in the table,
Toils &= what the next part does:

L is loeded with 5 - tha miliiplying factor. Notice hew the next twe lines
cancel each other out the firat time Tound the loop. Thia is one wey of
adding L nought times should we riead ta. The hext two lines are SCF and

AR C. This is not the mame thing as SHA €, since bit T could be zexc. (ie
if a ho'rlstmtal-enet_ibﬂ-—? key is pressed,) apsrt from shifting € to the
Tight it alec movee cne bit into the carTy. If this bit ie & sne we haver 't
found' the right sectionm yet and the loop is re-executed. Note that five ism
added each tine reund the loop. Hote also thet if A starts off ae FF it is
Just as easy, if nct emafer, to think of it s minus-one,

Haw that we're out of the loop, € should be a1l ones, that isy it snould be
FP, 86 that INC 0 should ensure that it bedomes zero, so what's thia RET Mz
inatruction for? Of course this condition is simply to check that you're

not holding down two keye at once. What wowld ¢ contain if you wera?

LD C,B movem the vertiocal-section-data into the B Tegioter, =0 thst the
same loop mey be used over apain,

DEG L fellewed by LD'1,1 looks confusing. Actually it's not, At the momert
L io five, and so DBC L makes it four, which is NOT ZERC. LD L,1 doesn't
alter the sers flag, =o JR N2,100P sends it back through the same loop,
but this time checking the vertical sections, and only incrementing by ofe
instesd of fiva, ;i

When it comes cut ef the loop IEC L will reduce to zero, =o afier reloading
L with ene JR N2 will not be satisfied and the program will eentinue.

LD HL KTABLE-1. Wiy minus one? Well {f there was a "real key" in- the position
where SHIIT i8 and you ware pressing it then A would end up ss sera. Since
there imn't the amallest valus A can end up s ia one, which happenr 1f you
hold down "%", hence ED HL,KTABLE-1 takes this inte account.

LD B4 15 effectively leading A into IE. Thie worka because D le alresdy
2ero - cee the (irst line of the progrem. Then ATD AL, DE will find the
correct address. Notice that we could have replaced theme twc instructions
by ADD 4,L followed by 15 L;A, This has the advantage ihat the first
inatzuciion (LB D,00) becomes unnecessary, and that IE is rot at a1l
altered by the subroutine. The ROM hovever wees the veraion as listed,

KTABLE in the OLD ROM looks like this

006 2XCV ASDFC QWERT 12345 09876 POIUY newline LEJE space MNB
0033 117/ ISR K0T AND THEN TO cursor-laft RUBOUT HOME

curdor-right elirdor-up cirsor-down =) (g% edit =+- mn £,2< OR

sl = . ’ WT for the
ctual print process iteelf, the instruction CALL PRIN
::; ;ﬁ: :ha'.:m E: ‘r"e;?gneﬂ by PUSH AF/CALL PRPOS/POP AF/CALL FRINT. In HEX
tnis 18 F5/CIEO06/F1/GD200T.

or for the cheracters
- mable (CTABIR) which pives the dop. patterns r :
melg:::;?in t'l?e QI}) ROM et address OEOO, rather then 1E0D. Axlin‘fc iam
::or.ad_ at tihe very end of the ROM. A1l of the characters are slightly

gifferent.

dnting

for the table of graphics symbole in the character pr)
“:53::"“:1«1 run 00 07 06 03 05 82 08 84 04 86 02 85 B3 86 87 8O if
f:e progran 1s to be used with an OLD ROM. Replace the PAUSE 40000 BASIC
statement given in the following text by INPUT A®

GRAFFITTI

requires a slight modificaticon to the original veraion in prda?.'._
-{; ;:E a g;ap'!'ly ex_:;elflelm program, demonstrating the immense _ap:ud ;h_iuh
pachine code offers over BASIC. In this program, GRAFFITII, yn‘:h ouG -n
key and an enlarged versiom of the required symbol appears on the -sc}sr:: u
n this progfam the whole screen im uced (even the bottom 1$ ﬂmﬂ“]
allowing a totsl of ferty-eight eymbol om the _hprean. 5 1e i md 3
RAMIOP to any address not less than 4D00 and NEW (ie i-hiafo:_ﬁ: 1 be done
ip 1K - at least not in this version). The program iz am follows.

AFFTTTI LD HL, (D-FILE Set the print peeitien
G e T) to the ntart of tne moreen;
220B40 LD (TF-C0) AL
3680 START LD {HL),BO Print a cursor

CTBRO2 PAUSE CALL KScan Wait for human to take

20 ING L Tinger off of key.

JR N2, PAUSE
ggg@? WATT CALT, m Wait fgr new keay to
44 Lb B,A be pressed.
1D LD ¢,L
51 LD D,
14 IRG -_Dum

JR Z,
ggm GALL FINPOM Losate ths correct
TE 1D A, (HL) charecter codea

A

ﬂ ﬂ Multiply by eight, but
17 RLA reiurn to BASIC if a
8 RET' C non-printable character
17 RLA 1s pressed.
1600 LD D,00
(631 RL D
iF ID E:A y
21001E LD AL,CTABLE Find start of dot
19 . ADD HL,DE patteTn.
004 . IDe,04
0804 IMTERLCOF LD 8,04 4
56 2 n D:(RL) Tranafer tuo lines of
23 ING HL dots into D and B
SB 1D B, (M)
23 ING HL
B PUSH HL
AF INVFRIOCF XOR A Cempute which graphice
CHL2 RL D character is to e
17 RLA printed.
0BL2 RED
17 RLA
CBL3 RL E

a7

17 RLA
[5): 15 RL'E
17 BLA] \
2l-data-address LD AL, DATA Get this cheracter fren ') :
a5 ADD AL the table of grephice \
& 1D L symvols. 0T] CHAPTER ELEVEN
T D A, (HL) ez 4
240E40 1D WL, (BF-Go) Print this charecter =
i ID (RL),A in Tequired poeition. 8 D
23 INC EL Store new orint 0
220840 1D (DF-0C),HL position. a.o0NooY
10E3 DJNZ INNERLOOP O
o PUSH IE Move print position
111800 LD DE, (01D ready for next row
13 ALD HL,IE of symbola.
220840 1 (TE-ce), L o N
m POP ITE ‘
B FOP HIL
op TEC ¢
200F JR N2, 0UTERLOOP : » O
1180FF ID TF,¥F80 Move print pesition S X
2A0R40 1D 11, (DF-co) ready for next enlarged RN /]I O 0)
19 ADD KL, IE character., & iﬂ
220R40 ID (DF-Lo),FL /5 F PN LY
& 5 &, (Hn) Chetk for end of line. . 0)
FETH er 7% ; Q
2093 JH. ¥Z,5TART D))
116400 LD TE,0064 ¥owe print position te an
19 ADD HL, TE left of acreon reedy for DRAUGHTS =
220840 D (IP-gc), 5 next enlarged character, 0
23 ™0 HL PART ONE : L0
EDFBI040 ID DR, (VARS) Check for end of screen. \\\ - % 4 0
ED52 SBC HL,IE R 0) e
;gs ADD HL,DE X
5854 IR €,START : .
ey RET LN WO BN
Thie program de intended to be ryn on a ZX81 in the SLOW node, See if
¥ou can work out heow to adapt it se that it will print inverae characters
inatesad of crdinary ones, It may even be possible to offer a cholce!

‘\\mj'

2
0

o8

IRATGHTS
How that we can emnter and edit machine ceds, 11%s about time we started
usivig it for something useful, and hopefully interesting. Draughts im a
Progrem we have to be very careful with. Hers's what 1% will laok like
in BASIC:
1 INFUT Af
2 RAND/RANTOMISE USR(samething)

A8 you can see, the vast, vast majority of it will be entirely in machine
code, The machine code will begin immediately after the BASIC program ends.
However, in order that ve may edit it we shall temporarily store it a little
higher up in memory than that - in the fourth K. st |]

Alss, in order thai we may have the BASIC part of the program st the right

;;;uim 1:}[:&;. ‘be neceasary to MOVE the machine code part of HEXLDS,]f!:-
users ‘start typing POKE 1636%,74, and then NEW, and

vyt AL 114, nen » And then load

Now, to move it, write the follewi to the £
e At s BEN ntatamonty N ProgTam e few epare characters at

010002 MOVE LD BC,0200

110044 LD DE, 4400

210040 LD HL, 4000

EDEO JLDIR

(5] RET Run this,

Now for the tedicus bit. Every address used in the mach

begina with 40 or 41, _'row]lr:avg to go through the 115:2;;:‘:; E:::.g:i:h.::
40 to 2 44, and each 41 to'a 4B. (Ths changes are to be made in the copied
version, not the original version.) That done, change every address in the
BASIC parts fhat callp a USR routine. To make a change you must add 2560 1o
each mmber. Wow delete line one by typing ite line number. The program
should 81111 werk, but new you'll need te type RON 400 in oxder to SAVE it.
Make aure ihat the variadle BEGIN (Now at 443G or 4493) containe a value of
4800, "53; ROM usgm“mange Hine 500 to: - s

FAND USR (PEEX 16400+256wPERK 16401+ = ;

¥ called from within the v&u?ables aia:,jiiéigmzz ?ﬁ:g;::llmj-mh =2
ow _%m mlﬂﬂ to start the WRETE voutine and re-: ;
Toutine. dgzin you-11 need to load it to mdrdsajﬂ%fggh:h;iﬂb:?;: E:l::ing

same a8 it was bef| « Turn § 2
thing, efore. 1o chapter meven and simply retype the whols

The instruction RAND USR 19477 ehould) ;
in the top left hand corner of the nermu A
! i een, Try it and see. Now
:ﬂ: ‘prog*.-i“ ::e ::15 m:f;n:inqd in_,gwg; detail, so dont worry 1:'.':hﬂp=rt of
2 m! E - £} ¢
the fivet part. It atarts off uﬁ: Bn&ﬂﬂ:ﬂ:‘?v ST T e

of a draughts board

4c87 PAFBE0E0S TABLE IEFB FA FB 06 05

This represents the direstions in which we

: are
:::han- in the data are -6, =5, 6 and 5, which,
m‘;‘_xl.u;ur Will uee, sre simply the :

about to allew moves. Fhe
in the board numbering systan
nunbers we add to one aguare t:srazh

The first, and simplest thing to do, 1
v 18 to make . a ea i tha £
;fHP'IFB on the screen, The eopy im ealled WKBOARD, r:: :t is t;a::ﬂ“n?
i t:"hmuh t.h-_em:puter will do its working out. The sddress of WEBOARD
l& Dme-]&:}g;ﬁnth: n:t ; mleprint, it really dose say feur zero three C
_ 8 is just boyord the end of the BASIC part of the
Frogren, but for NEN ROM usere it is alap bang in the middle of :hs -‘s;i.m

100

yariables. Is this wise?
ya will in fact be overwriting the 33 byte arca FREUFF and patt of the
galoulating mtore MEMHOT. Thie doesn 't matter since we will not be using

{PHINT, not be attempiing to use floating point oaleulations, end in fact
pot using this area st all. This will not cause a crash.

puring the construction of this program, OLD HUM users should use the address
1B instead, since 403¢ im in mid-program. You can always change it when

the program is complete.

Here's the copying routine. You should load thie to addvess JCE4.

2A0C40 BOARTCOFY LD EL,(D-FILE) Meke a copy of the board
116p00 LD IE, from the screen to the
19 AUD HL, TE working: area.

113840443 LD TR, WKBOARD

0624 LD B2k

EDAD NSCOPY LDI

23 INC HIL

10PB BINZ, NSCOPY

c9 RET

Wotice the way LBI was umed inatead of LDIR. This is a very useful way of
saving space. What we are doing is incrementing HL each time round, oo that
gnly the black sguarea are copied, not the white ones. This loop is repeated

2% (forty=two) times, since in addition to the squares on the board, cne or

two characters from the border are also copled, Notice that although LDT
decrementa BC, it is C that is desrewsntsd, not B, so that the DINZ instruction
will still couni correctly.

OLD ROM users can ensily check thai the routine is working by listing from
485 using EEXLD3, after the program is run. NEW ROM users can check by
replacing the RET instruction to LD EL,WKBOART/LD (ADTRESS),HL/JP HLEST,
You must not return to basic (WEW ROM uaers that ia) since PREUFF will be
wiped out by doing so, You cen guite safely return after you've liated.

The next part of the program is just as simple. If you teke a look at the
board printing program, you'll see that the last thing printed is a xow of
fourtesn spaces, what thia is is & "window! in which our machine code program
can display messages to the user; so the next thing to do is to fi11 this
vindow with apaces in order to wipe out any sTvor messmage that may have besen
there.

4CF5 000000 NEXTLINE six NOF'a

ACPR 000000 :

ACFB 2A0G40 CLWIHD D EI.,(D-!IIE} Find start of window.
4CFE 117000 LD IE,0070

4101 15 ADD HL,IE

4102 DEOE: 1D B,0E Fill it with fourteen
4104 3600 WIFBOUT LD (HL),00 =paces.,

4106 23 INC HL

4107 10FB DJNZ WIFEQUT

4109 c9 RET HReturn io BASIC.

Notice that we have actually overwritten the previous routine's RET instr=
wetion, 8o thet it will sutomatically comtinue into this one. The next part
is for NEW ROM users only. OLD ROM users please ignore it.

101

The Following will cause line one (that is BASIC line ong) to be Te—sxecuted
as scon ms the next RET Instruction is recieved. Note that thie overwrites
¢he aix NOPs in the previocus section.

ACFS 217040 NEXILINE LD HL,FIRSTLINE
ACFB 222940 LD (EXTEIN),HL

Tuis fools the ROM imto thinking that the next 1ine to be executed begina
at msddress 407D, which is the first byte of the program. 1t doesn't return
4o BASIC immediately howsver, it will continue with draughts until a HEP
instzuction is resched.

Now the program sericusly starks. We assume that a move has been input as
A%, wnich is the first item in the variable aiores

Hepre's how to input a move. Look at the diagram of the board, Thers
are sixty~four sguares, tut only thirty-two of them are playable, Each
syuare has & coordinate from 11 to B8, Kotice that these are printed without
separation. The first digit refors to the number down the lef't (and right)
hand side of the board, and the second digit refers to the number along the
top or bottom of the board.

Fhere are four differsnt directions you may move in. These are callad 4 (pp—
left), B (up-right), G (down-Tight) and D(down-left), This is indicated on
the diagram. Ts input a move aimply type in the ccordinates and a letter (A,
B G or D). There ohould be no spaces in this input, For instance, io move
from squars 61 to square 52 you should input ME1B™,

Now for a program to interpret this input. Follow this carefully:

4009 241040 (NEW EQM) MOVE
2A0840 (OLD ROM) LD ML, (VARS)
23 C HL
TE ip 4, (1)
3D IEC A
A ol IEC A
) IEC A
2001 JR NZ,ROTZERO
2 CPL
4014 5F ROTZERC 1D E,A

A small amount of additional explanation concerning the input hare,which applies
1o OLD ROM users only. To input a simple move, such as frxom 61 to 52, you in
fact need to Lnput "ahift W space £1BY. A simple move must always be preceeded
by shift W apace, and thia also applies to eingle jumps, Double jumps, triple
jumps ete are a 1ittle different, and we ghall eover them later, As I hawe

aaid, this is for OLDR ROM users enly.

The above routine initially loads A with the length of the input etring, and
then subtracts three, so that for an ordinary move A €nds up as zero; for a
double jump A ends up as one, for a triple jump A ends up as two, and so on.
Thes IF A s OO0 it is changed to FF. This is so that we can check up on
vhether or net a player has made & move, or a jump, later on in the game,

This guantity, which is ordinarily ¥F, is stored in the register E. We then
continue,

102

4D15 23 INC HL The first characier of the

23 ING Hi; coordinates is found.

T LD A, (HL)

47 L Bya This number is multiplied

By ALD A, A by eleven, since the board

4F n-c, on screen is eleven char-

87 ATD A, A actexs across,

87 ATD A4

23 INC HL The position within the

ES PUSH HL otring is atored. .

80 ADD A,B

81 ADD) 4,8

'3 ADD A, (HL) The mext ceordinate {s added.

1r RRA Divide by twe, since the
copy sontains only the black
BQUATES

3805 JB G, NOERROR1 If the coordinste points to
a black square there ia no
cheating.

In the above routine the fizet coordinate ia multiplied by slaven, by

use of registers B and €, and than the aecond coordinate is added. Note that
Af you input ™12 as your square then Becaupe of the Sinclair charattsr codea
the program thinks that the first coordinate ia actually 1D, and that the
sacond coordinate is 1B, This actually leads to a Tesult of 5D. Botating
right gives 7K, together with a oarry indicating that the player hes not
oneated by giving a whits squere inetesd of & black one. The next five bytes
deel with what happens if the playes has chaated. These ars

4p25 El ERRORL FOP BHL Restore the stack pointer,
CDaT4C CALL ERROR Call to an error message
1 TEFM 1 subroutine.

The Bubxoutine ERRCR, which reguires one byte of data (here the byte 13, the
charaater cods of 1") looka like this:

4058 ZE313124 IMOVE IEFM 1LL® Theee are the worda "ILLEGAL
20_263100 DEFM GAL MOVE" - data to be printed.
32343824 TEFM MOVE

ADAT7 El ERROR FOP HL Feteh the byte of data
TE LD A, (HL)
240040 LD AL, (D=FILE) Find the start of the window,
117000 LD IE,0700
15 ADD HL,DE
EB EX DE,HL
2L9BAC LD HL,IMOVE Capy. the words onto the
010c00 LD Be,000C acreen,
EDBO LDIR
13 INC DE Print the byte of data onto
12 1D (ZE), A the screen.
ca RET Return to BASIC.

Notice what happena, The message "ILLICAL MOVE ‘1" appears on the screen,
and no piece is moved. The Player ds then required to re-input her move
which will then be checked in exactly the same way.

If no errer ia found (yet) the program continues,

4D24 [NHOERRORY - ADD A,O0E Find the position of the

square in WKBOARD.

104

impl ! ¢ : the low part of the
ia s the required factor to exactly match 4 %o
ﬁd’uua of :hé nar‘lr_?_ng-hnnzd square. For inatance, adding OE to ZE gives
%, and 403 is the start of WCBOARD.

407 EF LD LyA
WEBOARD=high
igw"m gg:(m) Pind which plece ia on
that square.
0880 LD B,80 Replace that sguare by &
TO LD (HL);B black esmpty Square.
4n33 B LOOP E (5P),HL Store the square position,

and retrieve the pointer
to the input string.

23 INC HL
22740 Lb (POINTER),HL Store this valus.

LD A, (FL,
an Anp is'n Tind the direction being
6F ID LA moved. from the TABLE.
264C LD H,TABLE~high

LD D, (HL)
%E FOP ﬁi Retrisve sguara position.
18 I AyB Check whether the player is
A2 AND D moving one of her own pieces,
& CPL and in & legal direction,
AL AND C
FE2T CF 27
20TE JR NZ,ERRORL

af explanation of the 1ast six lines here. A is lcaded by 80, D is the
és’iiimn 1‘3, be moved, which will be FA, FB, 05, or 06, AND D will therefore
produce 00 for a backward direction, and B0 for a forward direction. CPL
will change thia te FF or JF. € is the piece to be moved. If it ia & black
king it will be 27, if it im g blaok piece i1 will be A7, 8o AND D 'lnth'
produce a value of 27 if EITHER the plece being moved im a king, OR if the
piece is moving forwards. If you try io move a piece backwards, or glve a
squave vwhich doea not contein cne of your own pleces, than a value of 27 o
will NOT be produced, In this case the program will send an "ILLEGAL MVE 1
SrToT messsga.

4p48 e 1D A,L Find destinetion square,
j 82 ADB 4,3
1D 1,4
é'; D A:(Hl.) Check ihe contents of that ags
B8 CcP 3 Ia it an empty mgquare?
¢ JR NZ,NEAT
w& 1D A'.i If 8o, ia this a single
i ING & meve?
2815 JR 2;CONTINUE ’ :
CDATAC CALL ERRORE If not a single move, give
15 TEFN 2 *ILIEGAL MOVE 2" messaga,
R
e’ g'gm i gl’ J?I: Does Equare contain 2 comp=
R Z,NOERROR3 utex's pleca?
gﬂfmc ERROR3 ﬂm'mmt Cive message "ILLEGAL MOVE
¥ IEM 3 AR if mot, sl
MOERROR3 LD (HL),B Overwrite computer's piece
mu i * s with a black empty mquare.
™ ID 4,L Find next destination
a2 ADD A, square.
6K 1D L,A

105

4064 ™ CONTENT LD &, (HL) Fird the contenta of {he
new mguare,.
;‘:ﬂ“ :: o Is this square emptyp
e : TN Z, EHROR 3 Give “ILLEGAL MOVE 3% {f not.

At this stage the program will Jump or move asm the case be (in

th
it will decide For itoelf — you don't need & speaial input md(u].; nu“-r:.::l.dHI
check for three types of BFrors These are)

1) Attempting to move = piece that is not your own
2 :{ your own nmon=king pieces baskwards. ¥ N e
tempting to make & non—jump move in th
islo, fhag P ® middle of m multipls
3) Mrempling to move to m aquare which is mon onpty.

You may like to check all o1 theme things. This 1sn't too 4
i O ifficult to ds
8imply wrlie JP 4DDE to tha end of the program and add the following :w:;m.

4DDE 240640 BUIPRINT LD HL,(D-FILE
110000 LD DR, 000D)
19 ADD HL,DE
BB EX IEHL
213040/48 LD HL,WEBOARD
0624 1D B,24
EHD LD LIT

INC I

1078 1Nz LT
c? REP

Tais will copy the computer'a worki
y ng~board back onto the soreen so Lhat
e, o et et an b it Tt o tratal™
I3 ! T An ard
e -gane er to teal some of ths

To make the program vun, add the following BAHIC program linec,

by i

2 RANDORISE USR(19663) 2 RAND g 19683
3 RUN S10P

4 RAXPOMISE: USR(39477) 4 RAND DR 19477
5 RUN 5 RN

The program is activated by the command RUN 4. Ton't fes
T 2 t you san &
n:u_- HEX1D3 to ldist, but you must mow use ROW 10 to hrl.:;':u:‘mh np:f-::lun-
If you type RUM on ite own mccidently you will get sn inpat prompt. Dresk
out dlatlyl If you don't the results will be unpredictable. I don't
4 t will crash, but just to be on the eafe alde...,

dnd now m check to determine uhath'lr or not the human player bas reached

the other end of the board. If se, thi 3
change her piece inte a king, g an ‘W““n.. ML aftontioally

4068 ;:40 CONTINUE LD 161. If the low part of the
et cr currant addrese (= lesa than
IR W NOKE M :Oln:.ihlu the other side
a8 been reached.
TEE! i-'.l;:-l‘il if th.:; is not’ the laat
' move then give an “ILLEG
;:‘2 g 32 = MOVE 4% messaga, £
coaT4c "R
20 IEFH 4
108

OE2T NOERROF4 LD €427 Make plece & king.

2 NOXING 1D (HL),C Tut hack on board.

E5 = HL Stors currant position on
board.

Hotige the new error check. If a player attempts to make a king in mid-move,
that is, if she jumps to the back row and intends to jump out agein in the
same g0, then an error will be detected and "ILLEGAL MOVE 4* printed to the
screen. This is because according to official rules = piece does not become
a king until after you remove your fingers from it. Of course in thia geme

ur fingers are never on the piece in the firsi place, but we presume that
tnis ia what the rules are intended to mean. -

Remember that E contains FF for a single jump, and 01 for a double jump. LD
A,E/IHC A/CP 02 %i11 only give an error 1 'E ia one or mere. If E is 00,
(wnich if you've input a multiple jump it will eventually be) the move will
go ahead suocessfully.

4DTE 2ATR40 1D HL,({POIRTER) Retrieve the position pointed
+0 in the input atring.

1D IEC E Daorease the number of meves
left in a multi-jump seq.

7B LD A,E Check whathar last move

B3 EX (SP),BL has been made.

17 RLA

30AR JR NG, LOOP The input pointer is replaced
at the top of the stack
ready for the next time
round the loop.

B FOP HL

4185 C3DE4D JP BEFRINT Exit.

Wwell, all of the possible error checks have been made, apd the program
contains a loop which will allow for the imputting of multiple jumps, Here's
how a multiple jump should be imput. To jump from egquare 63 first in direction
A, then in directlon B, then finally in dirsction &, jusi inpat "&3ABCM — it's
that simple, OLD ROM users need to note the following convention though:

OLD single moves or single jumps should be preceaded by shift W space.
ROM double jumpa should be preceeded by shift B apace.
ONLY triple jumps should be precesded by shift R apace.

4=ply jumps should be preceeded by shift D space.

And 8o on,.. The sequenca is W, B, R, D, ¥, 8, A, T, G. T doudt very much
vhether you'll ever need a 4-ply jump though, Even using a triple jump scems
rather unlikely. -

The next thing that showld happen is that the computer should make a move
in responme, but we'll leave that to amather chapter, since it has a bit of
decision making to do, But there im one questicn to ba answered firet. What
if it now hss no piccea left to move? What if the player's lnq's move removed
its lmat plece? This has to b checked for. If this is the case then the
player ‘has won, and we must somehow indicate this.

Here ie tha final check:

4385 CERC IpC,BC
4DAT GDEC4C CALL GAMEOVER
4184 C3TE4D JP EDERINT

107

And the subrouting....

4CEC 213C40/4B GAMEOVER 1D HL,VKBOARD Look at first square,
0628 1D By 24
= POSSIBLY 1D A,(HL) Find ¢ontents of square,
FEAD OR BO Make it an inverse graphic.
By CF C Is it what we'ra looking
c8 RET 2 for? If so we're OK and

can return to draughtis,

23 ING HL Lock at next square,
10F8 IJUNZ POSSIBELY Try again.

4ce9 the next six bytea ave for the new ron only. 01d Hom users should

Teplace them with six NOPs (00).
215740 SMOFFROG LD HL, STOPLINE

Foel the ROM into thinking
222940 LD (NXTLIN),HL

that line 5 is to be carvied
out next.

Now we Teach the sxciting bit. What happems if the player HAS won? I'n not
actually going to tell you — just input it and find out. To test it you:ll
have te alter the dats that sets up the initial board, and arrange it so that
you can take all of the computer's pieces,

4ceF 240040 INVERT LD HL,(D-FILE)
Oeét LD B,60
23 COVER IBG HL
TE ID 4, (EL)
TE25 CP 25
3006 JR NE, NOINV
A7 AND A
2803 JR I, NOINV
FEB0 QR BO
1 LD (HL), A
1op2 FOINV DINZ COVER
El FOP HL
+] RET

Netice how, in the last two 1ines the return address ie removed from the stack,
so that the next item on the stack is the return to BASIC address. The next
RET will of course do just that.

108

O

A

T A T

N
3R

AR

AR Y

ol (%
ﬁéﬁ‘h‘}}‘.\‘:\‘h‘ﬁ}‘&\}ﬁ‘a}‘a\‘}\ﬁiﬁ?ﬁ‘&%

A

e
u

Y

i.:'.://

E

A TOUCH
OF CULTURE

1.

p- 2T (D

s i
=

C [TF =g

b

MUSIC

Music from your TV speaker? Ta it possible? More to the point — is it
possible on a ZX7 The anawer is yes!

A8 you know, your machine is deelgmed to work without sound. It does make
a kind of horrible buszing noise, but herdly anything you'd want to make
music out of, The memual iteelf tells u= to turn the volume right down so
as to cut the noime cut compiately.

The 1ittle computer, on the other hand, has a mind of ite cwn. Completaly
ignoring its own d.au:].an epecifications it thinks to itself "Anything a
bigger computer can do, T can do better", and as a result of this
rebellion you'll find that REAL MUSICAL NOTES cen be produced with just
a tiny speck of machine sode.

Those of you who have trisd the musie routires fn Interface ara umdsubtedly
ng to yourself MHuhl Itve heard this so called ‘masie! - it's

Tubbish!" well I assure you this is mot the agme thing. The reasom? well

one big adventage machine code does have over BASIC is precision - and

this program is in machine code, not BASIC. The music im musical, You

can even tune it if you have = tuning fork handy,

This is ‘called CATHY'S PROGRAM, dedicated to someons who belisves computers
should be artful, ‘not just attack you with space invaders, The machine
code 48 best stored in a HEM atatement. The addresses given inm the listing
Bsasune you have & NEW ROM machine, If you have an OLD ROM machine all you
have to change is the addresses (although you will have to supply twe of
tha subroutines yourself - see chapter ten)

Gk Fipiom

IBE3T369 NOTES C DEF This date represents
0093 TRO0SE - o¥pr - the varioua netes that
003B312824. -~ & DEF are gyailabls from the
0000362000 - - gt - keyboard,
O0000F161E - = gtk pE
000A0C1214 -G B AG
000004 14C = = ~ Mot
0038304653 - ¢ BAG
8 PATUSE 1D 4,B Subroutine cavsing @
3> HOLD TEC A delay of & precise
20FD JR NE, HOLD lemgth,

call Ha

Fore == CIER02 START CALL KSOAN Wit until @ key 18
44 1D B0 preased,
4D LD G;L
51 1in 3,0
14 Ine o
BFT JR N2, STARD
GDBIOT CaLL FINDGHR Find which key-is being
110440 1D DE, NOTES-TE pressed.
1 ATID AL, TE
4 1D 3, (HL) Select note.
AF XOR A
B8 CE 3 Check that this ncte is
28ER JR Z, START not & "pause",

IN 4,(FF) Play thie nete,

CTA940 CALL FAUSE
by OUT (FF), L
CDAR4O CALL PAUSE

JH START 110 Go round leep mgein.

1f you atora the whole machina code routine in a single REM statemeni in
line one, ther you cnly need one more lime of BASIC to make the program
cemplete, This is line 2 RUN USR 16558, which calle the mechine code
rrom the address labelled START. Delete any extra lires you may have,
and SAVE the program @ couple of times before you RUW it.

You now have twe océtaves at your disposal - the keyboard below shows
where the notes ars. A faiv rumber of tumes may be played quite
successfully.,

Always Tun the program in the FAST fiode - it's not thal the apeed makes

the notes sound different = 1t's simply that the program docan't work AT
ALL when in SLOW:

The notes as listed in the program are roiughly right. but exactly how they
sound will depend mainly on your television set, (incidently you may have
to mlter the funing slightly te get the best seund qualu.;r,) B0 in case
you need to "re-tune® the notes, heve's how you do its

The deta at the atart of the program (labelled NOTES) containa cne byte

for each note. A zero indicates there is no mote on that key. The data is
in the following ordex:

1) 00 5 (0) o O, 2
80 T R L L R
L e 0 o 0 N 650
50 | | 3 | O | 3 3 [

data key note

S5 89 73 69 BLXLOY t D EF lower octeve
00 93 TE 00 58 LS BFG - c® ¥ - 7 lower octave
00 5B 31 28 24 Q WERT = G D_E F upper octave
o0 04 36 2¢ 00 Teit g 8 - - C:J}* = upper octave
00 00 OF 16 1E 09 B 76 --.ld‘i"‘uypnrnctn’n
G0 DA OC 1214 P o e Y = € B A 4 upper ocotave
00 00 00 41 4C nkL K J H = = = 4*G" lower ootave.
00-38 3C 46 53 ap. M N B - & B A & lower ootave

to alter the frequency of any note just change the byie of date that
represents it. To maka a note higher you must decrease the number, and
to make it lower you must increass the number.

m

THE FROGRAM'S DISATIVANTAGES
(And how you can cure them)

The biggest disadvantage ie the lack of a RET instruction anywheré in
the program, wnich means that onee you enter the program you cen never
lemve, Yow can cure this by adding = few lines somewhere near the STURT
lakel. As an exercise, mes if you ean pdjust the propram so that 1%
returne to BASTC whenever the key SHIFP-ZERC (rubout) is prevsed. (RTHm:
HL squale PCEF when it returns from KSCAN)

The second disedventage is that if you presa SHIFT while playing notea
some very rendom thinge seem to happen. See if you can meke the shift
key inective (except for breaking out as described above) by adding
SET 0,H inatruction somewhere in the program.

7R Music is a fescinating subject, and it is posaible to store in dats a
1ist of notes to be played, and how long each note is to be pleyed - &
tune in other words. T'11 leave that one to you theugh, becguse the only
Teal way ko learn is by experiment, We'll leave the subject of music
altogether now snd turn teo something slightly different: pietures....

PICTURES

This ia yet another pzngrjn_uh;ch Telies on the artistic ability of the
human operator. It is strictly for NEW ROM users ONLY, but it is intended
to be run in the FAST mode. You will require at least four-K for this.

The program stores in memory thres or more different pictures, and cycles
through them one at a time, displaying each on the screen for as long aa
you wants A "picturs” can be anything whatgoever = you can compose it out
of graphics aymbola, letters, spaces, inverse asterisks - whatever.

The Tirst thing you do is to reserve some memory in which to store theas
plotures. If you have 4K \ype POKE 16388,182/P0KE 16389, 70/MEW for three
pletures, or POKE 16388,206/POKE 16389, 73/MEW for two pietures. If you
have 16X you can {ind enough Toom for about iwenty pletures. To work out
how far down you have to move RAMIOP with 16K 3usx't start off with 32768 and
subtract 793 for sach picture,

How you're ready: Write the following machine code to a REM statement in
1ine ones]

2AGC40 ST0RE LD HL, (D-FILE)

1 6 LD IE,PICTUREL

011903 LD BC,0319
EDBO LDIR
5 RET

The address labelled PICTUREL refers to those people using 4K. For those sane
pecple PICTUREZ would be 49CE and FICTUHE3 would be 4CE]. If only two picturea
Will be used you should omit PICTUREL, not PIOTURE3I. If you have 16K you have
moxre or less limitless freedom. In the interests of aimplicity you could use
addreases 5000, 5400, 5800, 5000, and mo on.

112

Now type POKE 16389,77 followed by CLS if you are using 4K, or if you are
using 36K but sarlier POKEA 16389 with & number lesa than 7T

Mow write a BASIC am (without deleting lins ons) which prints a pietura.
The last lins of thim program should be HAND USR 16314, 4K usero may find
themselyes Tunning out of space. If this is &0 you'll just have to Fun up
and make do with fwo plctures instead of threa. b

1 useful fact to know is that if you make the firet lime of your program
{firat apart from the REM that is) POKE 16418,0 then you can print to all
twenty=four lines of the screen. Even PRINT AT 23,03 worka:

Now delete all the PRINT lines, DO KOT TYPE NEW. Change the addresas in the
machine code to that of & different picture, and write a mew BASIC program
printing a different picture, ogain ending in RAND USR 16514. Do this until
every picture you wish to cycle through has been miored.

Now move RAMTUP back to the addreas described in paragraph thrae
Type NEW, Now you are ready....

For the firet time in the book we are going to make use of the PAUSE

fecility, the instruction CALL PAUSE will diaplay the TV picture indefinately,
or until a key ia pressed. To PAUSE for a specific number of TV france it ia
necessary to LD (FRAMES) with the required mumber first. Enter this machine
language programs

0602 PICTORES LD B,number of pictures
218646 LD HL,address of first picture
u5 NEXTPIC POSH BO
0C40 1D IE,(D-FILE)
011903 1D 30,0319
LDLR
By FUSH HL
210001 1D HI,length of pause
223440 1D (FRAMES) ,HL
£72902 CALL PATER
El FOP HL
gl FOP C
1088 DINZ NEXTPIC
i) RET

This i8 the complete progwam. See how it worka - the first picture ia copisd
inta the display file using LDIR, mnd the PAUSE subroutine is called from the
ROM. Then when the PAUSE is over the next picture is copied onto the scresn,
end g0 on. The value of HL is not changed between each picturs, since they
ara atored in memory immediately after sach other. If théy are not {for
inatance if you are uging easy to remember addresmes) you'll need to alter
the program slightly . HL should point to the start of a mew picture each
time round the loop,

The BASIC program to go with this is

10 RAND USR pictures
20° RUN

In this way you can break out of the program at the end of the sequence.
Altemnatively you could replage the last RET instruction by JR PICTURES,
which would eliminate the need for a seeond BASIC imstyuctisn, You can of
course always breax out during a PAUSE,

113

LIFE

In the last program in this chapter we turn the tables slightly. We humans
have been artistic for long enough = mow it's time to let ths cemputera
take their turm.... ¥

This program is called LIPE - it is supposed to represent the birth/growin/
deatn cycle of a colony of cells living on & square grid, It produces rather
fascinating results. Before your very eyes you see a constantly evolving
patiern - starting off totally random = which finishes mometimes with the
ultimate death of the eell colony, someiimes with a fixed and unmowing cell
whish haa equilibrium, and somatimes with a continuous
eycla of patterns, called dynamic equilibrium, Tt really i= amazing to watch.

LIFE was invented in 1970 by a man called John Conway of Cambridge University,
and it's rather surprizing that ihe Tate Gallery basn't yet got a copy of

it. Although it is in fact about the growth of aslls which follow hard and
rast mathematical rules it.in Teality becomes a rather effective pattern
generating algorithm.

The principle of LIFE is very aimple. A grid - usually square — is dotted
with approximetely one quarter of its svailable squares filled with cells,
Thesa positions are usually shosen entirely at wandom. This configuration
of the grid is called GEWERATION ZEHO.

Successive generations are then worked out by a fairly simple to underatand
principle. Each square on the grid has eight neighbouring squarea. These
dguares either contain another cell or they are smpty. Every cell with two
neighbouring eslls; or with three neighbouring cells, will survive to the
next generation, but no other cella will survive, A new cell is born in every
empty apace which hasa precisely three neighbouring cells, but no other cella
ave born, With these falrly simple rules it is rather surprizing that the
game should produpe the Tather impresaive results that it does.

In this vexaleon of LIFE cur arid is oixteen by sixteen, because of course
sixteen i3 a fairly essy numbar to work with in hexadecimal, Further, our
grid is rather stxangely conatructied in a curved space comtinuum, meaning
that every sguare on the laft hand edge ia connected to the corresponding
square on the right hand edge, and vice versa, also every squaTe on tha top
edge is connscted to the sorresponding square on the bottem edge and vice
versa.

The program is best Tun in SLOW, although of course i+ will xun in FAST if
you add s PAUSE or INFUT atatement.

NEW ROM people are advised to store the machine code in & REM statement.
OLD ROM pecple are advised to store the machine code gnywhere but a REM
otatement, aince it contdine characters Téh. The machine code containa
sxactly one hundred and thirty nine bytes,
The surreunding BASIE program is

2 RAND USH START

RAND USR NEXTGEN
(4 PAUSE 25 or INFUT Af - optional extra for FAST users)
S GOTO 3 ; ‘

“ where START and WEXTGEN are addresses in the
machine code program. In the following 1isting we assume thai the firal
address is 4082, You can quite easily change it if you wish.

114

i3
=
48
38
as

|- N+]
Bg
oo

EEBEE
B
—--_r‘mﬁ
HEEEREE

EEBEEEE
BEHEEEE

g

EHEHIEE
rarogre
-°8§E§ =

: 8

SEpEE]
553?5§

B g

e
%

Sa%EYE BBE
hﬁﬁﬁ 5 BBg

525
E

&

H§§

Data represtenting the displacements
of the neighbouring squares.

C counts tha number of rows primted.

B counts the pumber of columnsa,
This next section generates a
random number.

The new randomenumber-seed is stored,

TPecide which character fo print, based
on choice of random mumber.

Print this character,
Same for the nexi character in the row.

Print a newline symbol at the end

of the Tow.

Same for mext row.

Ceneration zero printed completely.

B counts the mumber of cell positions.
T otozes the giart of the working-
area used to compute the next gen.

Stack the start of the display-file.
Copy the current generation (but not
newlines) fo the working space.

Stack the start of the 'dump.

€ Counte the number of neighbours a
particular cell has.

Skip over the mext character in the
Afsplay fila if it is & newline.

Stors the pesition within the dump of
the eell being examined in HL, and
also stack it.

115

1laz40 LD DE,TABLE Point DE to table of displacementa.
1A NEXDIS LD A,(DE) Find diaplacement.
FEOE P OB If this "displacement” is OE we have

2808 JR 2,COUNTED reached the end of tha table.

13 IHE TR Point DE to next Item in table.
85 ADD A,L Find peighbeuring cell-pasition.
6F LD LA

B LD A, {(HL) Is there a cell there?

FEB4 Cr B4

2073 JR- NZ,NEXDIS

oc Inc ¢ Inérease count if ao,

lavo JR NEXDIS)

ElL COUNTED POP HL Retrieve cell pomition:

19 LD A,C

FEO2 cP 02 Ara there less than two neighbours?
380F JR C,NOCELL If so no cell appears.

FEM4 CF 04 Ara there fouy or more?

30065 JR MO, HOCELL If 8o no cell appears.

FEG3 CP 03 Ara thera precisely three?

2803 JR 2,CELL If ao, a cell does mppear,

TE LD A, (HL)

1806 JR.PUT

SEB4 CELL LD A,B4

1802 JR PUT

3E80 WOGELL LD 4,80 4 now containa the right character.
3 FUT B (5P}, HL Retrieye print position.

7T LD (BL},& Print character.

23 INC EL Move print position aleng one,
B3 EX (SP),HL Retrieve cell-position.

23 I¥C HL Look at next cell-position,

E5 ‘PUSH HL Stack this poaition.

T 1D A,L Check the value of L to find out
AT MDA whether or not we have printed the
208F JR NZ,NEXTCELL last cell-pomition.

El POP HEL Hestore the stack to its origingl
:; I;P?H'P HL atete and Teturn to BASIC

If you used the samo- admnea as in the listing then START im 16522 and

MEXTGEN is 16562, SAVE the progrem, Do not RUN it yet because if you do it
will crash! NEW ROM users MUST fivst of all type POKE 163B9.67 followed by
NEW, and OLD ROM users should ensure that they have at least 2K of memory.
You will then have to TeLOAD the progran from tape.

The firat thing you should type is MMIHAHDDHISE.- You may now type RUN.

An interesting point about thia program is that it is capable of producing
ita own random numbers, The part labelled WEXT does this - you should atudy
how this is achieved, and by ell means use the same principle in your own
ProgTams.

LIFE will print out e randomly constructed genexation zero in just ONE SECOND
when in the SLOW mode, The succassive gensrations will then be produced at
the ntnggeﬂ.ng rate of three and a half generaticna per second! II you find
this is much too rapid you cen slow it dewn by adding a few more lines of
BASIC - I suggest LET X=O/LET X=X+1/FRINT AT 17,0i% with the last two being
inside the loop - this has the added mantm of telling you how many
gengrationa have been shown.

118

Finally you should follow the manner in which this program , unlike mome
other LIFE prograns, caloulates each new generation entirely on the bamis of
the previous one, It doea not work out the new first row and then ulculate
+he gecond row by counting the neighbours in the now=changed riew first Tow,
the second row is determined by the previous status of the first row, (thia
is what the area of memory laba11ed. DINE i the macalne cods ligting is
for), thus each new genevation s correctly set up.

Thers are many other patt ting , some much simpler, but none
with the elegance of LIFE. If you own 16[:’nu might like to try writing a

24 by 24 LIFE, or even a 24 by 312 version = remember, in machine code there
i= nothing to'stop you printing on the very bottom two lineas

The biggest LIFE you could possibly hope to achieve is 48 by 64 using white
quarter-squares for eells, but that would be quite a complicated program, If
you feel really enthuniaﬂtic you might like to nave a bash st this monumental
task. I will lst that decimicn Test with your sanity.

The next chapter completes the discussion on TRAUGHTS and laavas you with
the horrifying proapect of conpleting the program..s.

117

e _——

T Y

“"”TER EEN

'y

THIRT y
R R R Ry
’ AN > N

W

N

\ N

)
1o,
W

A

(I
HITIHN

L\N‘L\'\{{}'*:\‘\?&%{'\\'Z\“\\m b

/ R PR D Byl | 8
b

-
==

/5 A — ‘
B R R L R e R

ﬁ*ﬁ%

AR R R [
3])

%\\@\Q\ﬁ'j ;'m
72l

I

—
.q:‘,,;-' T,

v/ n)

e
AU
WY

7

7

N IR

'{/j,

an.-' };
i
%

TryrTe
/[,

K

AL Vel

This fs the sacilon which decides upon which is the “best™ move the computer
%an make, alter the human's move,

You may have to follew thie thinking we are about to embark upen very cares
fully. Here in brief im a systamstic breakdown of ths vay in which the move
is chosen.

We scan the board, ene (black) square at & tims, and whenever we find a
computer's pisce we mit and think about it for a bit. Ts sash meve we find
po=sible we aseign & numericel value, such that the bigger the number, the
better va think the move is. It then follows that to select a move we merely
have to choose the one with the highest possible value,

Of course this idea won't let the computer plen shead - it can only think cne
move at a time. In order to construct this list of moves, and acoompanying
numerical values we don't actuslly have to store aevery single move we find.
Having located a possible move, and worked out its score, what happens is
“thiat

If the score is LOWER than those on the 1list, the move is igrored.
If the score is HQUAL o those on the list, it is added to the end,

If the score ia HICHER than those on the list, then the 1ist is abolished
and a new ons started.

In this way the list ie always as short as it can possibly be, When the final
decipion time sctually arvives the, Anlq:utnr now merely has to select one of
these moves el Tandom. Nexi queation - where will the list be stored? Answer
Tha Stack. This minplifien things, but it does meéan that we mist keep a
record of where the start of the list is, We shall store this at address
4078 (DI.ZD ROM 4022) and eall this quentity LBASE. You will matice that in
@n earlier pact of the program we used 4073/4022 $0 store & guantity called
POLNTER. Don't worry = this is guite alright. POINTER ia not used in the
pxwieua aection, and dt'a value does not need to be pregerved., LBASE was
not used in the last section, and again its value does mot maad te be preserved.
Tsing the same space twice for two different th.ipga is & space-saving trick
you should gnt to know.

The deciaion making of the computer begine at address qDAA. The fivet insir—
ugtion ism LD (LBASE),SF. The start of the 1ist is now preserved., we can play
around with the ntmlc now 88 much A8 we like, as long &5 we remember to restore
its value before we return to BASIC, The sscond snd third inatructions are

LD B2,0000 and PUSH BO, which will indicate that there is nothing at all in
the surrent list.

The checking loop thus. laoks like this. Notice that a new variable SQCHK is
wused, 11 is listed as residing at 4077, but OLD ROM owners should replace
this addrass by 401C)

4DBk EDTHTBAC BOARDSCAN LD (LBASE),SP Initialise the list.
610000 LD BO,0000
c5 PUSH BC
213640 LD HL, VEBOARD Scan the board, ope aquare
= HXTCHK D A,fn-}. at a time.
120

Fée0 OR 80

FEBC 0P B Have we found & computer's
plece?

227740, LD (SQCHK) HL

CAI4E 1P %, EVALUATE

ZAT740 KFCHING LD HL,(SQCHK)

2c INC L Have we reached the end

m LD A,L of the board yet?

FROE oF &

20BC JR NE,NXTCHK Loop back if not.

Ag you can see, this particular Bit is guite siraightforward, You only mneed
to (temporarily) add a few extra instructions to avold crashing. These ave:

4B43 C3D54D EVALUATE JP 4DD5 These additional lines
4TAT C3054D GHGOSE JP 4005 are temporary only. They
ATT5 EDTE7RAD LD SP,(LBASE) will stop the program
4079 OEAT LD €,47 crashing, but will not
4108 CopeAc CALL CAMEDVER Tun it.

Can you see that loading SP with (LBASE) eliminates the need to POP everytiing
from the stack before returning, IDing SP will fool the maghine imte thinking
that the atack hasn't chemged since we went into the loop.

Now we need to think about what form we want the list to take, Lat'a examine
the problem in reverse. What form would we like the liat io iake, in order
to make removing items from ihe stack eaaiels

The first item on the gtack should be the numbex of steps involved in the
move — that is one for a single move/dunp, twe for a double jump, three for

& triple jump, and so on. The second item sHould be the numerical walue which
the items im the list nave been 28signed - the pricrity as we shall call it.
Following these lteme of information we should have the liat iteelf, starting
with the sguare to be moved from, followed by a seguence of one or moTe
directions in which to be moved, Immediately after this the second item in
the Iist in the sama form, then the third, and =0 on...

You'll motice that each thing we need on the atack will only need to be one
byte in length. The number of steps oannot possibly be more than 285, The
priority can be chosen however we like = we can alwaya make it one byte if
we wiah. The initial square can be stored by only stacking the low part of
its address in WKBOARD. The directions to be moved can be stored in the same
nannex as before - 05, 06, Fi, or FB for plus or minus five or six. In order
to make this program as space efficient as we can 1t makes senge te do just
thats

To make & random decision let's assume there are B possible choices. We want
therefore to choose a Tandom number between 1 and B - oF as we shall do between
0 and B-1. We shall do thia by the following means:

ADAY 343440 CHOOSR LD A, (FRAMES)1ow Select a random number
50 REFEAT SUB B between 0 and B-1. This

J0FD JR NC,REFEAT number to be stored in
BQ ADD AyB the A register.
CID54D JP 4DD5

OLD ROM users should replace the address 4034 by 401E. The Tinal JP 4115 is
merely a means of exiting the program.

1

Imagine the 1ist is complete and we are about to remove one itenm from ft.
The stack now looks like thiar:

0. of | priority | initial dircotion|initial direstionld § direction
ateps aguare one BQuUATE one one
'rp 1base

1f we now use the instruetion FOP BC, B will contain the priority, and C the
no, of steps, The priority is now a redundani piece of information, since it
vas only needsd t5 construct the list in the first place. C however iz very
importants In the disgram sbove C would be one; but it doesn't have to be.

The stack now looks like this - but let's generalise a bit more by assuming
there are two sieps per move, not one:

initial direction direction|initial direction direction direction
square ane two EquaTe one two two

ap 1‘::5.5.&\1

If A ia an indication of which of these moves wa are ic choose then it seems
logical that we must remove A of them from the stack. Then tha required move
would be at the top of the mtack. Thus if A is sexo we do nothlug, obherwloe
we must use aome kind of loop. Can you see that POP HL followed by DEG SP
will remove ome byte from the stack rather than two, and that ITHE SP can be
used to ekip over one of the byten.

The required loop is this:

ATBHO el FOP BC Find the number of steps
41 1h B0 PEY MOVE.
2808 JR 2, FIRSTOFF Do nothing i A is zero,
23 BEQOFP INC SP Remove a total of A
33 NEXTOFF INGC 8P ‘complete moves from the
10FD DJNZ NEXTOFF etack.
41 LD B,C
3D IEC A
20r8 JR NZ,RSQ0FF

The aselected move i8 now &l the top of the stack, To carry it out let's first
take a lock at what the stack is now like:

initial direction direction
Bquars one two sreaw

ap

4

To ind the initial square the sequence is POP HL followed by LD H,WKBOARD-high.
You see "initial square" is the low part of the address, By asaigning H with
the high part we ensure that the reglster pair HL contains the absolute

address of the square from which we must move. H must be mssigned after the

FOF HL instruction though, sincs there is no real way we can manage ko remsve

L on ita own. Finally the instruction LD B,C once more will assign B with the
number of stepa we have ic make. The proceedure for carrying cut thess steps

is much simpler than before pince we don’t have to check for cheating - we
shall write the prog¥am such that the computer cammot cheat.

ADBR EL FIRSTOFF FOP HL Find the absolute addiress
2640 LD H,WKBOARD-high Irom wiich we must move.

122

To remows one direction at a time from the stack we shall use the ssquence
DR SP/POF €. In this wey E will be assigned with the reguired directicn.
T will contaln useless information,

ADRF 41 1D B,C
3B NEXTSTEF IEC SF Find which direction the
DL PP IE computer is to move.
4E LD ¢, (HL) Get computer‘s pisce.
3680 Lb (HL), B0 oversrite with black sa.
™ LD A, T Find destination squars,
83 AID A,E
&F b LA
TE 1D A, (HL) Is this square empty?
FEBO CP 80
280% JR Z,SQUARE If a0, move,
3680 L5 (HL),80 If not, Jump.
T LD AL
83 ADD A,E
EF LD LA
7 SQUARE LD (HL),C Pul plece in position.

10E3 IWNZ NEXTSTEP Same for next direction.
You should now be at mddress 4DD5, at which is stored the sequence

415 EDTB7B40 LD SP,(LBASE)
OEAT LD C,AT
CDBCAC QALL GAMEOVER
403E 2K0CA0 EDPRTNT LD HL,(D-FILE)
;;15 20 on down to
4TFQ [+ EET.
This weans that ided the st is correctly @Mt up we can motually see

this whole mechanism working. What 1 want you to now is to write a short
routine to aet up the etack so that all of the possibls opening maves are
stored. You should be abla to do thia all by yourself, I will tell you though
that the routine should be placed at address 4B43 (vhat will eventually be
the EVALUATE routine) and should be terminated by the instruction JP CHOOSE
(C3A94D). One way of doing this bit would be LD HL,Something/PUSH HL/LD HL,
something/FUSH HL/and so on, but if you cen think of a better way by all
means use it,

You mey now RUN the draughts program by typing RUN 4. You will be asked for
an input = maike your move as you have been doimg in the past. Now watch what
bappens to the computer's side = one of the pieces should move] Bresk out of
the program, since as yet it can cnly decide upon the first move of the
fame,

Now RUN it sgain ~ agaln by typlog RUN 4. Does the computer nmake the mame
move? Il it does it's purely coincidemce, since choosing from the list is
done at random. Try again, and again, remembering to break out of the progrem
each time and re-run, You should get a difforent result emch times

We'll leave the program st tnis stage end continue later on with the mechanism
of metting up the stack correstly in the first place, and actually deciding
which moves are better than others.

In the next chapter we'll look at some complete (and short) gamea designed

to demonstrate what machine code can achieve in terms of speed, and in very
few bytes compared with BASIC. .

123

\\\w\\\\\}\\w‘c*\\w\“&\\\“}\\

\\.\\\\\\&\‘i‘\\\'.\{\\\\\%\\\\\\ﬂ\‘m\m\\\‘

\\\m\\\\\w}\y

\\\\\\\\\\

\\\\\\\\\\\m‘\\\\\\\\\\\\\-@*\ .

| /\ “GAMES §

\m\“\&\\‘\\\"\\\k\&\i\\\\%\\\\\i

\\\\\
i

/

y//{

Y

\2/
NN

DA

I/"’//‘gﬁ

Y
)

...'3
W

7 /

S REEEE
a8l 7

SPIRALS

In thim fani moving real-time graphics game (intended for uyse -,“h-smql}
you are placed at the atart of a sguare apiral and must reach the and of
it in the minumim possible time. Your score im constantly displayed — 1t
starta of at 99900 and desremenis continuously, but you can't cheat by
breaking out early vith & high score - the program won't allow that.Now
and sgmin the scors will remch smero bsfore you reach the end of the spiral.
If that happens you obriously nesd mors practies!

This ascinating mnd highly amusing game is unfortunately for NEW ROM users
with SLOW only. it will not work in FAST bacauns <hsugh the program wiil
8ti1l consider ilaelf o be running perfectly smoothly, the average human
operator won't know what's going on beeause of the fact that the acreen in
front of them is completely black,

This is a fascinating game to watoh - wiineoaing the scors decrease before
Your wery eyes is surprizingly effective. You can make the game as difficult
a8 youl like by altering the inftial Yaius of the "timing” = held in BC. I'va
given it 0400, but you could use DBOO for & slower gnne, 0200 For a festsr
gamé, ard so on. =

‘There ia one difffculty built in though = If you hit a wall you don't just
bounce off, you metually become embedded in ity mnd the enly vay you can
gut out is to exaotly reverss your direction.lt cun be quits tricky,

Well good luck en Your ¥ace - keep a recerd of the high scores (ne cheating)
and see i you can master it

The keys will move Jou mp follows: Any key on Lhe bottom row will move Yyou
dosmvards (except for shift, which has go effect)) any key on the top row
moves you ups The middle two rows move yeu lsft and right, with the lert-
hand ten keys (QWFRTASIFG) moving Jou to the Left, and the ten righthand
keya (YUIOFASKI/1) movink you %o the right. This system vas adopted instesd
of uaing the curmor eontrols 5, 6, 7, and 8 For two rensong,

1) It fa susier for people to underaiand and become Familiar with.

2) I% is easfer to Program, 8ince we only reed io test one register alter
ihe kayboard scan inatead of twa,

The progran 1ists as follows, and can be Telocated to any deaired ocation

Just one + Tha prog should be called from the 1
labslled START. ol o
E1 SIRINT FOP HL This mubrouiline printa
TR LD A(AL) out & picture of the board,
23 IKC HL along with your Lnitial
E5 FUSH HL geere. 1t muat howaver be
FFFR CP FF provided with a list of
ce RET 2z data terminated by FF.
b7 RST 10
1 JH_SPRINT
CD-sprint START CALL SFRINT Calls the subroutine, The
follovwing is dats for the
subroutine.
MBGBBHOHUBOMBOBDEUBOEDJS
m:swuuaummmoamm?a
!DWWWB&MN!DEODOBJ?S
80 00 80 00 B0 00 €0 00 &0 00 80 6
NWBQWEONBDQOMOOBD'IG
BO 00 80 00 BO B0 80 00 80 00 80 76
mmaooquojuommsooom-ps
B0 00 B0 BO 80 8O BO BO 40 00 B0 76
auonmmououoummnomrﬁ
ggmeuauaomsummuuao'r&
5234JAﬂTOOBBEIlM}?21003--55,&5(:0025252‘11(:10)?
126

DECIMAL

POSITIVE

DELAY

NOTRIGHT

CHEMOVE.

E
=

¥2LFE B
IwB

s
IgEESIEETaT I°F
SR E

ggaigé%or
&

THOVE)

rEy
%

B
-
gr‘

EYSCECYEEYENEEHONEESESEE
EE
R

4586
B

By

This section fnitialises the
two "wariables™ used in our
ProgTamn,

Decrement the score.

A timed delay. Altering the
initiel value of BC changes
the speed of the game.

Scan keyboard. I now contains
8 value corresponding to the
direction required.

Find direstion.

Is player embedded in wall?

1f so, iz player reversing?

127

2RTB40 MOVE 1D HL z (POSTTICN)

Reassign square with black

ID &, (BL) or white space as required,
FEa0 AND 80
il LD (HL) A
19 HIL.DE Pind new positien.
= LD &, (HEL) Iraw black or white crosa
F615 or 15 as approprista.
m LD (HL),A
227TB40 LD (FOSITION) ,HL
2106000 LD HL,0000 Store direction meved §I
17 RLA a wall has been hit,
1002 JR NG, HOMOT
62 LD H,D
68 LD L,E
227940 NOTHIT LD (LaS! T
2A0C40 D Eh,{i—ﬂLl} Check to mee whether the
113600 LD IE,0036 finishing square has been
19 ADD HE, T8 reachsd.
EDSBTRO 10 18, {poaTTION)
ED52 SBC HL,
€8 RET %
C3-loop JP loop

EREAOUT

In this version of HREAKOUT, which incidently may only be run on & NEW

in SLOW, you move the bat with any of the keye on ﬂuykaybum = thoss Eg!
the left will move you to the left, and those on the right will move you
to the right. The gams is intended to be played only by those people with
HE or more, but it can be persuaded to run in less if the following few
lines of machine code are added to the program - these shculd preceed the

Waln program:

FD362200 EXTRA. LD (Iy+22),00
210003 LD HL,0300
na SPACES XOR &

7 RET 10

28 DEC HL

e LD A4H

35 OR L

20F9 JR ‘MZ,SPACES

The reagon for this ia that the main BREAKOUT

am assumes that the scresn

PTOgTS
is initially completely full - that is, that it contains twenty—four rows,
each conaisting of thirty-two apaces followed by a mewline. If your machine
haa léss than }i! oni board then thie will not bé so, because of the way that
the ROM seta up the poreen. To rectify this we first LD (IY+22) with 00, IY
is always 4000 at the start of any USR routine, so I¥+22 is 4022, which ia

20002200 TABLESTART DFFW 0020 OG22

EOVFDEFY
2A0C40 BREAKOUT

DI FFED FMTR
1D HL,(D-FILE)

load all of the bricks into position.

118500 LD TE,008%

! ADD HL,IE

018080 LD BC,RBO80 B is the number of bricks; G is a
73 WXERK ING HL constant used quite frequently in
TE LD &,(HL) this section.

FET6 cp 76

28F L JR E, NKBRK

3608 1o (HL),08

1076 TUNZ NXHRK

280040 LD HL,{D-FILE) Put top wall in position.

D61E 1D B,1E This part puta in the first thirty
23 NXBL INC HL bloeks.

n LD (HL),C

10FG D2 YERL

;2'90 Lh (HL),9C Tha current seore = geTo = is entered.

HL.
’2.'2 th (HL),6 The last blsek is set in placa.
23 1IN HL
IRC AL : :

EUOD LD DE,00LF IE is one more than the pumber of
0617 LD B,17 spaces between the walla.

71 SIDES LR (HL),C Both side walls are loaded into
19 ADD HL,TE positien.

T 1D {HL),C

23 ING HL

23 ING HL o

1 DJNZ ST

0?2?’ 1D B,20 Wow the base=line is drawn im.
3618 BASE 1p (HL),13

23 INC HL

10¥E IJNZ BASE

Vou'1l notics that in this version of the game I've ensured that a Tow of
full stops ia printed belew the very ‘bottom of the screen, This provides a

convenient test for whether or not the ball nes hit ‘the base. Finally, to
set the ball position end speed, the procesdire is:

This is the displacement from the

ihe systema variable IF-SZ. This representa the number of rows Ln the botton
helf of the screen (the part wa cannot print to) = by ielling the machine that
this number dis gero it follows that the mumber of xows that we cannot print
to ig alao zero, thue the whole screen is at our disposal. HL counts the
number of spacea to be printed to enesure that we do not try to run off the
end of the sereen.

EREAKOUT ia a program in four parts, These parts are 1), Initialise every-
thing. 2). Restart the game for each new ball, 3}, Move the ball, 4). Move
the bat. We will go over each of these stepe In scrutinous detall.

Firstly te initialise everything. This involves a) printing the playing board,
b) defining the initial ball position, and o) setting the initial apeed of the
gamé. To print the board: 128

20 s current prirt pesition to the ball's
starting point,

19 ADD HL,IE Looate this starting pednt.

223C40 LD (BALLINIT) AL Store lt. :

210009 LD HL, 0300 This i3 the initial speed.

224640 LD (SHPEED),HL Store &L,

This is mctually all the initialisation we need., You'll notice several thinga
nissing - for example mlthough the ball is lecated it is not actually printed.
The bat 18 not mentioned at alll The reason is that the bat is redrawn every
time the game ia restarted, and so im the ball, Wny bother to find the Initial
position then? Well in this version, the ball starts off in a slightly diff-
evant position eash time. Thir ensures that it is possible to wipe out all of
the bricks.

The variable SPEED has a dual purpose. Firstly it determines the speed af_ﬂflp
game — that is, the speed at vhich the hat and ball will move (the bat moves
Bt precizely twice the ball apesd), bui secondly it dsterminea when tha game
is ever. When SPFED decrements to sero {the lower the number, the faster the
game) we know that the game is over.

129

Seation two of the game does the following taska. &) change the intiial
poaition, wiilst also noting the current ball position amd printing the ::ﬁ
D) Set the initial direction of movement of the ball to up/right. o) Ghangs |
the speed of tne game and check for end of game. d) print the bat, and at the
same time delste any previous bat symbol that may have been there. ¢) give
the human player a chance to recover from the last session, sinee Fresumably
she won't want one ball to leap into the game immediately the last one
venishes. The section is this, Look at the manner in whioh the bat is

printed and the previous bat overwvritten.

2A3C40 RESTART LD HL,(PAILINIT) Change the starting position of
23

Now, in order that we may choose o new random direction velidly we require
a table of di ions to choose from. These valid directions are D020, 0022,
FFED, and FFIE. You should store these mumbers, low part first, at any
address in RiM, end call the start of this table TABLESTURT. The program
which will then achieve all of this is as follows:

284640 1OOP LD HL, (SPEED)

This is a short delay loop which

| HL the ball.
223040 LD (BALLINIT) HL
224040 LD Emnms}.nz Start the ball hare.
3634 LD (HL) ;34 Print the ball.
21ECFP LD HL,F¥FEO Set the initial directien.
224440 LD. (DIRECTION) ,HL
3umT40 LD A, (SPEED)high Inerease the apesd
i DEC A :
ca HET 2 Heturn te BASIC i{f lives have wun
324740 LD (SFEED)high,A out.
240040 LD HL,(D-FLLE Reprint the bai in its starting
118702 LD bR, 02BT ‘position
19 ADD HL,IE
k00 LD (HL},00
3803 LD 4,03 A contains the bat symbol.
23 ING I,
T LD (HL),A
23 INC HL
Vi LD (EL),4
23 IN m
m-{xb)..\
224240 LD), HL Store the initial bat position. (This
INC HL is the position of the centre of the
77 1D (HL),A bat.
2% INC HL
il LD (HL),A
0618 1D 5,18 Now erase the rest of the row, in
23 ERASE INC HL case a pravicus bat synbol remains
3600 LD (mL),00 there.
1078 LJNZ BRASE
210000 LD 1, 0000 Set a very long delay, for the player
1803 JR IELAY to recover for the next ball.

The last two lines, which cause a ‘shorh pause between sessions, will become
clear when the atart of the next section is given.

To move the ball we first of all go through a timed delay loop (controlled by
SPEED ~ the speed of the gams) and then unprind the previous podition of the
ball, The contents of the next square in the direction the ball is travelling
are examined, and cna of the following will happen:

If a full stop has been reachad then the ball has gone off the bettom of the
ascreen - the game ia xestarted, 7] i

If either a space (ie nothing hit) or a brick is lecated, the ball ia
reprinted, at this new pemitien.

If anything other than a spase is reached, the direction of mevement of the
ball is changed at random. '

If the ball vas not reprinted then find the contents of the next square in
this new direction and re-examine the situaticn.

If = brick was hit, the score is increased by 1.
130

2B DELAY IFC HL controls the speed of the game.
7c LD AH
B GRL
20FB JR RZ,DELAY
04 INC B e ball is only moved svery sthar
B0 BIT 0,B time round the luop, oo that the
2058 JR WZ MOVEBAT bat moves twice as fast as the ball.
2464040 MOVERALL LD HL,(BALLPOS) The ourrent ball positicna is found.
LD (HL),00 Erase the ball.
ED5BA440 LD DE,{DIRECTION) Find the next position of the ball,
19 ADD HL,DE . e
B LD A, (HL) Tind the contents of this new
IEIB CP1B poaition.
2846 JR 2, RESTART Eas the ball nit the base?
AF LD Gyh Start next ball if so.
EEFT AND ET -
2005 JR Nz DONTHMOVE Only repxini the ball if the new
3634 LD E‘B'J'M position is either ompty or comtains
224040 1D (BALLFOS),HL a brick.
1 Ok C Retrieve previcus comtents
2838 JR 2, MOVEBAT Change direction if not a apace.
E5 PUSH HL ‘ :
ZA3240 LD HL, (SEED) Generate ney direction at random.
54 LD D,H
5D LD E,L
29 ADD HL; HL
29 ADD HL,HL
19 ADD HL,DE
29 ADD HL,HL
29 ATD HL,HL
29 ATD HL,HL
19 ADD HL,IE
223040 LD (SEED),HL
c LD A.H Chogae this direction from a
B606 AND table.
Cétablestartlow ADD A, TABLESTARTLow
& LD LA
6tablestarthigh LD H,TABLESTARThigh
& 1o &, (ML)
23 INC HL
1o D, (1)
ED534440 1D (DIRSCTION) ,DE
E1 POP HL
19 1D 4,G If the contents of the square is
FEO8 CP 08 not a briek, thea move again.
20RF K2,
240840 1D HL,(D-FILE) Heving cateblished that a brick haa
111700 LD DE,001F been hit, the score ia increased by
19 ADD HL, IE one.
T8 CARRY D A1)
FEBD CP 80
2002 JR ¥Z,DIGIT
3E9C 1D A,92
36 DIGIT IHC A
FRAE CF A8
2005 IR ¥Z,INCR
589C 1D (KL),5C
2B HL
1 JR CARRY 31

BEF
b INCHEASED 1D (HL),4

]
&

o

D e

Ha

e B
ﬁ B
=

=3

S

EEE
E

LZEEEEA

CEEPEI PELEE
3

g

E

An intercoting point to watch for is the way in which the scors ie increased.
Compare the mechanism to that uaed in SPTRAIS fo decrease the scére. There
are cne-or iwo diffevences betwren this and the last. Firstly of course we
are here using INVERSE digits instead of ordinary digits, though this]
difference ie rather trivial. Secondly the BREAKOUT score {ncreases instead
of decreases. Thirdly, the SPIRALS scove would terminate at zero, wheras
the BREAKOUT score can increase indefipately. '

To move the bat, first of all the keyboard is scanned, and if a left-hand
key ie pressed the bat ia moved to the left, provided of course there ia not
a wall in the way, and if a righi-hand key is pressed then the bat is moved
%o the right; if possible. Note that if a lelt and right key are pressed
simultanecusly the bat should not move st all, In cur program such a
circumatance would cause the bat to pove first to the 1sft, and then to the

Study this, the final part of the program, and watah the way tha bat is
actually moved. Remember that the variable BATPOS etores the position of
the middle of the dat.

Preserve the value of H.
Scan the keybsard,

Stack contains a valus corresponding
the key pressed.

If ihe player moves left....

Locate the bat,

Ia there a wall to sur left?
If a0, don't move,

Extend the bat to the left.

StoTe new bat positiom.

Decrease bat to the right.

If %he player moves right...,

T DA A SR PR A R

\ . CAPTE.R.FIFTEEN' \\\\;“
“
L)

Sy
NEW s E A —‘}\g\

.

N T 7

&‘C\i@&\‘\?&{\'\'\i&\i

f K\}}\\‘.'%‘ﬁ\.‘i‘}* \.‘m&‘.‘;‘

b

N . O==
H
38

SRS

;-{\Bgfm

SRR

'5,?’

N
DRAUGHTS - \\\b

/ \\ .
\ RT THREE
N MR
DRTIRNRNNS

AL A B

RS

o

7

5

%
2

=

[

T

The story ap Ffar... Once upon a time a human belng input m move toa
computer. The compater checked thim move to maks sure that no thaating was
golng on, mnd cast n wicked spell on the poor human If i1 van which meant
that the vhole mave had to be typed in all over again. The mova was made.
The computer started s mearch through the board for pisces that it could
®ove. Hlaving found a plece, but not knowing whether or not it eauld move,

it than iii‘mu}lml; found itself 4t an addresa called EVALUATE. Where do
we go from here? E i ;

Letta start of f by saying that m neutral move - that In a move which schi
aothing, but alno loses nothing = has m "priority® of BO. (hex). s

The fimt point worth noting im lhli if a plece {s in imminent 4 T bel
cBptured then it mtwnda to reason that we ought to move It out of the vey o
unless something more important crops up. Secondly, if a plece ia rreventing

another pince from balng captured,

then we phould be lema likely to move it.

Boih of theae conditions apply regardless of which dirsction W& conalder
moving the piece, It Btands to renson then that we should work out this
part of the priord iy firat, before we mtart analysing sach of the different
direcilona. We mist therefors work out a numerical value that gorresponds.

to the

2guare that we are looking at. This value will then be mdded 1o 8O,

aftor which each direction in turn will be anslymad,
EVALUATE will therefare start off

IHS

CIF14D EVALUATE CALL SQUAREVAL
céeo : ADD &, B0
522140 LD (INITIAL),A

The last -lm_-lruﬂipn alores the value we've found for ume later on in the

game. On the OLD ROM the addrean of INIT

TAL should be changed to 4019. Now

let's trke n clnser look at the subroutine SQUAREVAL. It will masign a velue

88 followa = atarting wilh zers, if &

plece la in denger it will sdd five,

or meven for a king. If it is protecting a plece it will subtract riva
Ten . [y i : ar
feven for a kings Further, the subroutise, as with all subroutines from naw

on, ‘miat not be allowed to alter the values of an
wey of doing thi= la to begin the subroutine

40F1

y Tegioter ‘except A, One

o5 SQUAREVAL PUSH 0
5 ~ FUSH IR
ES FUSH HL

lere in tho complete subroutine. Follow i through carefully. It should be

jur-fjulently annatated fox you t

5
5

E5
0600

119748

1k
aF

282)

1c

o make sense of exactly what it's doing.

SQUAREVAL PUSH BC Store the current value of the

PUSH T8 Tegintern on the stask, i be
PUSH HL reirlevad st the end of ihe subroutina,
LD B,00 B im being used as & flag hers. The

firat iime round the loop it will be
tero, the second time Tound it will Ye ona. Watch th:?mn on B
carefully. The loop will chack for protection the
for danger the second ifime round,

STARTUFF LD DE,TARLE IE is o polnter, vhich points ko the

table of dirsctions of movement .

NOWT LD A,{DE)
3;:5: € now contains such a direction,
JR Z,EXIT If thie "dlyection® in 2B we hav .
& 1 e pasned
the end of the table. We mhould exit
i with value rero,

Mova pointor o next direction in tabla.

134

firat time round, but

LB

POF HL
PUSH HL
LD H,40

LD AL
ADD A,C
BIT 0,B

L containe the low part of the currsnt
sguare. We retrieve it without aliering
the stack, and reassign H to tne high
part of this address.

Find square to be looked at in thim
direction. Watch how B affeats what
happens

Wateh haw A 1s constructed here. IT

a human's piece ia present A will end
up as 77 UNLESS that piece is a non=
king which can't move toward us. Then
it will produce AT. Mo other piece can
generate the result 27.

Look at next square toward us. If B is
gero we are looking at & posaible piece
being protected. I B'is one we are
looking at ourselves.

Thia ia another way of checking lox

a computer's plece rgardless of whethay
or not it is a king, but waich %he
caxry flag.

Now notice the clever way we decide
en 5§ for a piece, or T for B king.

A mow contains 5 or 7 as needed.
The loop is now ended,

This is what happens if B was zero.
The value 5, 7, or 0 ia stored on the
stack behind HL.

This is what happens if B was one.
D now contains the current value
0, 5, or T. :

The square behind us is '.luu_a'tad.

The contents of this square are
examined.

If it i8 not a blank mquare we are
not in danger.

The current value is retrieved,

D now contains the previous value

0, 5 ox 7,

The final square-value is calculated.
The remaining registers are removed
from the stack.

End of subroutine.

135

This works Decause if you take a look at the disgram bel u 1l e
nlqu‘l_:{ utl: conditions under which we define a piece as ::yn;“"ln d:;s:::y
or protecting. Compare carefully what the subroutine i TR
with sach of the diagrams. i i SRS

human‘s
g plece
PROTECTING
computer's human's
Plece plece

ook square
being being
valued valued

us u

blank IN DINGER
Sguare

Now far the vest of that decision making routine EVALPTE. It centaina m
deliberate mistake - ses if you can find itd (The program will atill rtun
perfectly amaothly even with the mistake still in.) If you can't sus it cut
on your own L['11 tell you later om.

This routine is designed to compute a numerical value - a "prioriiy" - for
any in!!_ivm_uul move. Having done mo it will campare this priority with those
moves stored on the stack. If the new pricrity is less, it will forget this
move and go on to explore a new ome. If the nav mowe 5 squal in prievity
it will be stored on the stack, If the new priority is more Then thoss on the
stack then the list will be abolished, and a new list started. ¢

The regiaters in the routine have the following joba:

A- & general purpose working register,

B- counta the number of iiems in the liat. You may remember the CHOOSE routine
earlier on relied on B containing this number af items, 3 i

C~ & general purpome working registerm.

TE- a pointer which looks at the table of allowable directions of movement,

H- the direction being moved. - i

L~ the lov part of the address of the current sguare.

The routine begina at address 4E43:

CIF14D EVALUATE CALL SQUAREVAL Check for danger and/or protection
cé80 ATD 60 at ourrent square. - 3
322140 LD (INITIAL),A .

136

11974C 1D [B,TABLE Set painter to start of table.

AD LDC, Remember low part of the address of
the current sjuare for later use.

£9 WD LD LG Retrisve this values

2640 LD H, 40 Assign high part of this address.

1A MTDIR LD A, (DE) Select direction of movement.,

1ic INC E Move table pointar.

ORTE BIT T,(HL) Gheck whether or not we arve looking
at a leing.

2804 IR Z, ARYDIR 1f ae we can move ip any direction.

CHTFP WA Check whether current direction is
forvard or backward.

20¥6 JR HZ, NXTDIR 11 backward, pick a new direction.

FEZE ANYDIR CP 7B 11 this direction is 2E then we have

CaA04D JP 2, KPCHNG soverad all four directions.

5] PUSH BC Temporarily etack B = the number of
items in the list of moves.

47 Il ByA Store current direction femporarily.

81 ADD A,C Find the address of the destinatian

bF LD LyA aquare in this direction. :

1E LD A, (HL) ¥ind the contents of this square.

60 LD H,B The direction being moved ia mow
stored in H, &8 Tequired.

Gl FCP BC The number of choices of moves on the
stack - B = ia recovered.

FEA0 CP 40 Is this destination square ampty?

2053 TEST JR NZ, NXTMRND If not, pick a new directien to examine,

EL537940 LD (SCANSQR), IR Temporarily blore the valus of IE.

Nete that while ye need to temporarily store TE here, ye mist not atack

it, since we are shortly about to use the stack to examine our list, QLD ROM
gwners should interprei the address (SCANSQR) as 4020,

CIFL4D CALL SQUAREVAL chack for danger andfor protection at
destination square.

Thia ig necessary becsuse & move into dangsr is bad, ‘and moving 1o protect
another piece ia good. Wotice that by design the ‘subroutine SQUAREVAL will
not change tha value of eny register except A. One unfortunate flaw Iin the
subroutine means that moving a king inte danger will only generate the value
five, rather than seven. Con you see why? Fallow the subroutine through if
you can't. Finally you should note that SQUAREVAL only reguires L o be
assigned initially, not HL. This is deliberate.

51 NEWFRI 1D D,A Fegate this quantity, since ve do
3A2140 1D A, (INITIAL) not want to move inte danger, and we
92 SUB D do want to move to protact another
5T 1D D,A piece. Add in the original square—

value and stere the result in D.
1801 LD E,0L The number one is the nunker of steps
69 LD L,C involved in thia move.

We now have T containing the computed priarity of ¢hia move, and E containing
the number of steps in this move.

E3 EX (8F),HL We mow have H containing the priordty

of the 1iat, and L containing the no.
of steps for each move on the list.

137

AT AND &
SHO

EL52 L, DE Compare these two sets of auantities,

280D JR %, EQUAL

19 ADD HL,DE Rectore HL and the atack-top

E3 Ex (57),hL

3013 JR NC,FORCETIT If computed priority is less, then
do nothing.

EDTBTB40 LD SP, (LBASE) Otherwise begin naw list.

0600 Lp 3,00 Zero items on list so far.

D3 PUSH DE Stack the priority and no. of steps.

1802 JR NEWITEM

19 EQUAL DD HL, IR Festore HL and the stack-top.

E3} ; | EX (SP),HL

o4 NEWITEM INC B Increase no. of items in liat,

ES. PUSH HL

Now H contains the direction moved, and L the low part of the initial square.
The top of the stack therefare now looke like thia:

wiuity!

This is not quite what we want - we want it to look ‘like thisg

initial directicn|ne. of
sguave one stapa

4ep

ne, of | prierdty |ini¥ial direction
stepa square ong ;

ﬁ-an

So we now want to swop the firat and sscond bytem at the top of the atack
with the third and fourth hytes, We want t6 do this without altering the
position of the stack pointer, and without altering any of the registers.
The following will achieve this - follow it through carefully — j

3% Im sP Move the stack pointer to the

33 me s® initial square. (final position)

B EX (5P),HL store initial sguare and direction 1.
3B DEC SP Move the etack pointer back where it
3B IEC SP came from.

E EX (8P),HL Store the number of sieps and priority.

Hote that even HL remalns unchanged by thia method, EVALUATE needs only
two more instructions to complete it, These are

EDSB7940 FORGETIT LD DE,(SCANSGR) Restore the previous values of D
1880 JR - NXTMR NTY d and E, and do the same for next
direction,

As it etands the program will not test whether or not a computer's piece has
reachad the back Tow (&nd thus bessme & king). This is not a programming
error, this is guite deliderate. The reason 3= that this ja something I1'd
like you to do for yourself. Study the way in vhich the eheck on a human's
piece i made - the low part of the destination addrcss is comparsd with
the low part of the address of the Boundry between the back row and the
eecond Tow — and make a similar test. You should find thia a very simple
addition to the program.

138

The EVALUATE routine is mow complete. The whole program is now a closed
stzucture — there are no holes in it now, no REM statements temporarily
taking the plase of subroutines that aren't there. If you now RUN Vhe progrem
(by typing RUN 4) it will actually make moves! O course it won't ds much
else, but you ahould now be able to see how far we've ‘progressed,

Oh - there is of course that deliberate mistake to think about. If you didn't
notice it in the listing you probably moticed it by playing it. The problem
is that the zomputer won't jump, As you can imagine this laads to a very poor
game on ita part. i

The mistake is in the line labelled TEST. It currently says JR Ni,NXTMRND,
which means that if a square in any particular direction is simply not empty
then it will try a different direction, The line should read JR NZ,WHAT,
vhere WHAT i a routine (which we haven't yet writfen) which is designed

to decide whether the destination square contains a human's plece, whether
& jump ig posalble - even whether or not a multiple jump is possible = and
to avaluate the priority of whatever it [inda.

Here is one such subroutine. Tt is not the only possible one, but a sugmestion
of one means of doing it. This particular veraion will cope only with single
jumpay not with multiple jumpa: The routine begins st JEIH:

537940 WHAT LD (SCANSGR),TE Temporarily store the value of IE
57 ID DA Store the contents of the aguare
we are now looking at in D.
ESTF AND TR Ts kit a human's piece?
FE2T CP 27
2806 JR 2, FOUNT
ET5BTS40 1D TE,(SCANSGR) If not, retrieve the original value
1893 JR HXTMRND of IE and resume the seareh.
LN FOUND LD 4,81 Kseign A with either five or seven
cE2 RL D depending on whether or not we have
3F CoF found & king.
17 RLA
17 RLA
51 1D DA gtors this in Ds
56 1D Eq.H Store the current direction in E.
™ 1D A,L Find the next sgquare in this direction.
a4 ADD A4 H
6F ID LA
2640 LD H,WKBOARD-Low y
= LD A,(HL) Find the contemts of this sguare,
63 LD HE Reatore H to its previous value.
FREO CP. 80 Is this square empiy?
2807 JR Z,JUMP
ED537940 LD TH, (SCANBOR) If not, restore the criginal value
G3AFAR JP XXTMRND of DIE and Teeume the search.
OIF14D JUMP CALL SQUAREVAL Check for danger and/or protection
at destination square.
g2 SUB D Take contents of square into acoount.
1842 JR HEWPRI Elhesk this mew pricrity to mee if it's

worth stacking.

A8 you san mee, the principle for Tinding & aingle jump ia relatively
atraightforward, With this routine in place the computer will now play an
adeguate game of draughts, but although whe human player is sllowed to make

multiple jumpa, the computer will not. This addition 1 leave you to write
yourself, I will, however give you a couple of hints.

139

Firat of all, the regiaters all have specific uses, A1l 4 e
A and €. Theee are aa followa: 5 B

B - The number of cheices of move available,

D - The priority of the current meve.

E - The number of stepe im the current move,

H = The direction being moved this step.

L ~ The low part of the address of the current square (within WKBOARD)

I suggeat giving € a use oo - it should be used to store which stepof a
multipla-stap move we are currently examining, In other words, on the second
:!:plc Will be two, on the third atep ¢ will be three, and so on. It la
faiTly eany to preserve the values of ‘all of the registers b 1

use of the atack, - X AR IS Hoee

Nesting the subroutines and loops properly, so thal the same Toutine is used
to check for a.third move as is used to nhl;pk' for & second move, is not as
diffienlt as you might think — it merely requires a bit of positive thinking,
It also has the advantage that, in theory, the computer can actually make

twelye=f y
‘?_mb\lrf-m.uid Jumpe With n6 exira programming. The looping is not the biggest

There are two problems which will face You. These are;

1) Having stored C-1 atops of the curwent move on bhe stack, How do we store
atep 07 (ie how do we insert it into the middle of the stack)

2) Having established that the current move now stands at C steps, and can
be increased no more, one of the following mast happenz T € is less than
E then the current move is shelishedj 1f C 18 squal to [, the stack is
left unchanged; if € is greater than E then the whole list of moves on
the stack except the current move in abolishsd.

Let's take a look at the first problem first, Assuming 0-1 et
the situation we now have is this: = SRE:AL Ehnccedy

E | priovity | inidial dir. aix;} l}.ﬂ_r. initial dir, dir, air.
Sguare 1 24/ C=1 |snuare 1 2 E

We wish 1o imsert "direction C" between 'direction £-1" and the Snitial
square of the second move, The following subroutine will do- just 'thal. but
follow it through very carafully because ite mechaniem is quite intricate,

€5 ADDASTEP PUSH BC The number of bytes at the top of the
stack which need to be shifted down
is G plus two, but once BC, DE, and HL

;

1D A,08 _have been pushed onto the stack the
81 ADD A,C actual number is C plus eight.
210060 1D HL, 0000 :
44 1D B,/
qF LD C,A This number is stored in BC,
39 ADD HL,SP HL points to the top of the stack,
34 LD D,H
5D LD E,L
1B IEC DE IE points to one byte below this,
EDEO LDIR Part of the stack is moved down.
3B IEC SP The silack pointer is moved also.
El FOP HL
c LD 4, H
12 LD (DB), A The current dirsction is put in place.
D1 FOP DE ;
c1 POP EC The registars are retrisved.
oc ING ¢ € is increased to indicate that we

are now at the next step.

140

You'll nrotice that the seguenes LD HL,0000/ADD HL,SP is necessary because
there ia no such instructicn as LD HL,SP (even though LD SP,HL is sllowed).
LDIR §s used ta snift the reguired part of the stack down one byte. The
exact number of bytes to be shifted must first be very carefully calculated,
and stored in BC in order that LDIR will work properly. Coincidently LIDIR
will leave DE Tinally pointing to just the right addrese for us to store

the current direction. Since HL is at the top of the stack we may remove

it, and load the current direction (B) into position, via A, before we remove
TE and BC.Thus the atack pointer is 5311l where we want ii, and none of the
values of any register (except A) have been changed.

The stack now looks like thisz

E| priesity | initial die. dfr.) ¢ dir. dir.|dnitiel dir. tan-.y
Sguare 1 g (__WE-1 c square 2 e g

sp
Finally, 0 is incremented besause we are now ready to examina the next step.

The two proceedures involved in the Becond problem may be solved by careful
study of the above process. To abolish the current move is simple - IE is
popped, the stack pointer is then incremented by the exact number of bytes,
and DE ia pushed back again, The second proceedure, that of sbolishing the
whole list exaept for the current move may be achieved by loading HL with
the popition within the stack of "direction C¥, TR with the contents of the
variabls LBASE, and then using LDER, however, you'll have to do aome think=
ing in grder to work out BC (the number of bytee to be moved) and the new
poaition of the stack pointer. If you understand how ATDASTEP works it will
not ‘be all that difficult to do.

With this problem to solve, I will leave you. It's not impessible I amsure
you. Pinally, censider the lemgth of this program so far - our addressea
#t111 begin with 4E, and we are allowed io go as far as 4FFF (although wa
nesd some left over for the screen and the otack). 1K draughts Le quite,
quite pomsible. With thought you may even be able té sherten it further,

IOWNMECAITNG

Although the: program ie only 1K it is currently stored im the fourth K.
To download it imts tha firet X the proceedure is this.

Change every address beginning with 4C tc the corresponding eddress which
begins 40. Do the same for 4D, changing it to 41, change 4B to 42, and 4F
to 43.

Dalete 21l lines of BASIC except the following:

01D ROM EEW_ROM

1 RANDOMISE USR(printboard) 1 INPUT A

2 INFUT 2 RAND USR game

3 RANDOMISE TSR(game) .
4 GOTO 2 : (USE aNY FIVE DIGLT NUMEER FOR NOW)

Reserve erough space Tor the machine code using a series of REM statements
from 1ine 5 onwards. On the OLD ROM a REM statement with 46 charactora after
the word HEM ocouplea exactly fifty bytes, On the NEW ROM a REM statement
with 44 characters after the word REM cecupies fifty bytes. The machime
code will eventually ovexwrite not only the characters after the word REM,
but the word REM itself amd sven the line numbers.

14

OLD KMt type POKR 16463 ,-1
NEM BGMe type POKE 16959,=1
All of your RFMs should disappear from the Listing.

How,using a machine code program, which you should ptors somewvhers in the

third K, copy all sl the draughis program from addrens 4057 onwards, down
to 4097 onwards,

CHAPTER SIXTEEN

OLD HOMe copy the board printing routine to the point immediately after ths
draughta program proper finishes,

NEM ROMr IO NOT copy the board printing routine at all. Instead, leave it at

4609, and replace the inatruction RET by the following machime code program. Ya@l0 O
&)
21740 LD WL, ¥IRFTLINE Fool the ROGM Into thinking that the
722940 LD {MXTLIN),HL Tirat line of program Is about to
¢30705 JP SAVE e executed, then Jump to the SAVE
routine.

Start your cammette Tecorder up, so thal it ia reeording, nat playing, and
type as a direct command RAND USR 19487. This should be done in the FAST mode.
The program will then do the following taska. 1) Print the plsying board,

2) Speeify that line one is about to be executed, and 3) SAVE the program,
And the current diaplay flle (with the board pre-set-up) and the faet that
line one im ahoul to be executrd, When you re-load from taps you will be in
mid-program, with the fizat move (youra) about to be made,

() \ ‘
///r///////)ﬁ i °
A v eststte—i| ./

o
The label “printboard™ for the OLD ROM refera io the addrens ab which the 0
board printing routine is te be placed. Ths label "game® rafors to the : N : 0 b
sddreem 16612, ate Y
: HOW TO DISASSEMELE : :
For the OLD ROM, the addreze WKDOARD phiould be changed to that of tne THE ROM \ \
Bon:d!yrinhing :uutl:;vthmmmut. In thia way the same mpase i effectively N Q
uned twice. For the ROM, the address WKBOARD should be left unchanged \ : Q
=t 403G, : \\ \\%\\\\\\(\\\ 'y
O
(4 - NN W N | A3 d
N\ Bz il
U A
\ &
r} &
O
L f (")
@
@ 8
2
L)
& o

142

There are three "levela" at which we may disassemble;, each slightly more
sophisticated than the previous; The First two lavels are not all that
satislactory, but they are very aby to progranm.

The first "lavel we have already achieved - the USR rouiine HLIST vhich we
gav earlier in the book will do this for us, That is, given an address such
as 0808 it will produce an output like this:

0808 57
0809 ED
080k 4B
0408 35 T
080C. 40

and so on., This is not really disassembly, although you can of course leck
these bytes up in the tabdles at the back of the book, but it's quite a time
consuming task, and you're also very likely to get loat halfway throusn, The
second "level" ia not much better, but again 18 quite eaay to program. What
I'm talking about is an cutput something like this: 3

0808 57

0803 ED4B3940
080D 79

O80E FE21

e

and 80 on. As you oan mpe, aach instructicn has its component bytes listed
out to e::uﬂy the r‘}.ght langth. This produces g very pleasing display,

and there im little or no chemce of you "getting lost" when actually looking
these bytes up in tables, The third "level" is the ona we are actually
alming at = the ocne evarybody wants. Wnat we'd really like is an output like
thiez

0808 LD D, 4

0809 1D B, (4039)
080D 1D 4,C

(0BOE €P 21

wiw

and &0 on. This gan be quite easy to program - simply make the computer look
up the appropriate werds frem a table inastead of doing it ourselves - howsver
this vould take up rather a large amouni of space just to Store the table.
Arcund 4K in fact, The methad I will describe to you will allow such a
program to f£it din just 1K, but be warneds it’s rather difficult, There .is
actually a "fourth level" of disassembly, vhich I won't even attempt to
touch, but you may like to think about, Imagine an outpui like this:

PRINT LD D,A

LD BO,{S-POSN)
LD A,C

cP 2l

JR 2, EXET

&s I've said, I'm not even going to touch this one, The only extra it involvea
iz storing yet another table, this time containing all of the labels used. Let's
£o back a bit now to something relatively simple. Let's consider a slightly
improved version of HLIST whigh Teaches the "second level® of disassembly, and
works out the length of each instructien before printing it.

144

a table containi ust two pleces of information far each
iijée\.‘e'l::::: 1':9 a) the number n?sujtas in an inetruciion beginning witn
this byte, and b) the number of bytes in an instruction beginning with ID
or FD followed by thim byte, As you know, some confusion may arise over
those instructiona beginning with CB or ED, but we don't astually need amy
tables or anything te cope with theme provided we romember the following

ruless
A1l instruetions beginning CB are two bytes in length.
All instyuctions begirning TICHB or FICB are feur bytes in length.

All instructions beginning ED ave tws bytes in length, axcept for

LD B0, (pa), 1D TE,(pa), ID 5P,(pa), D Kpa)yE¢, L2 (pa),PE, and ID (pq),SP.
The byle immediately after ED for these six imstructions is 4B, 58, TBs

4%, 53, or T3. In binary, all ef these numbexs have the foxm Ole= =011,
Ho other instructions have thia form.

There are ng dnstructicns beginning DDED or FDED.

Thus we néed & ‘table containing a very small amount.of gnfllamatton relating
to each byts, Firstly, those instructioms whioh do nat begin 1b, ED, or FD
can only be one, two, or nres bytes in length. This meana that w.ntur:
tne Tequired informatipn we only need two bits. Sannndl_:r those ;mtruat ons
which begin DD or FD can only be twa, three, or four bytes in length, s¢
ignoring the DD or FD itsell ihia leaves one, iwo, or three bytes. Again
we need only twe bits, Thim makes four bits altogether, and we can thus
represent the appropriate- lemgtha for each byte by a aingle hexadeeinal
digit. Our program them will make usa of the following 4able, called LEMS.
Tt should be stored such that each element of the table has the same high
part of its addressy

5 55 A5 55 55 33 43
65 A5 A5 55 55 AD
5545 A5 F5 55 A5
99 BS A5 FS 55 A5
19593 55 9593

555 55 55 95

5 59 5% 5399

LENS DEFB

g AU o
\a\.nu:u!‘EE_IQ'd
AD WP e A
U7 1 AD A U A A A
an
b

o
AD D ND NG W N D
) o D

g
U G N LR on
ann
o
e
feiiv
ey
R

w
i
n
ul
o
vt

AN
wn
k|
"
3
e
AV AN AV BN)

55 A F5 A5 55 FA
55 F5 F5 A5 55 F5 FA AD
55 F F5 45 55 F5 F5 A5

.

A8 you can ses, there are sixteen rows, and sixteen hex digits in each ToW:
Theme instruction beginning with TD or FD which do not exist, such as DDOO,
have simply been asgigned the appropriate number of bytes as if the D/FD
were net there.

The folloving program will “dissssemble" to a string of bytes of the right
lepgth, It nssumes that the table LENS exists, and it assumes that a
subroutine HPRINT exists which prints the contemts of the A register lp
hexadecimal without corrupting the other registers. This subroutine vas in
fact given earlier on in ths book.

145

28 START
23 NEXT
3E76

CDhprint
T
Chhgrint
W

7
OECO

TE BYTE
FEDD

2804

FEFD

2007

CPhprint TTFD
23

oo

16F0

FEED NORM
201A

Chhprint

23

TE

EfE3

FE43

2004

603

1802

0601 ONE
Chhprint THREE
23

TE

10F9

18g2

Bj KOTED
CEB2F

F5
C6lens-low
6r
261ens-high
Fl

v

3804

1F

1F

6D DIGZ

E&03 0K

23 HRBYT

DEG HL
ING HL

1D A, 76
RED 10

ID &,H
CALL HPRINT
D AL
CALL HPRINT
XOR A

HST 10

LB €00

1D A, (HL)
CF 1D

JR Z,DBFD
CPFD

JR N, NORM
CALL HPRINT
ING HL

HE €

JR BYTE
CPED
JR ¥, NOTED
CALL HPRINT
ING HL

1D 4,(HL)
AND €3

CP 43

YR NZ,GNE

1L 8,03

JR THREE

1D B,01

CALL HPRINT
INC HL

1n A, (mL)

TIRZ THRER

JR NEXT

PUSH HL

SRA A

‘PUSH AF

ADD AL LENS-low
10 L,A

1D H,LENS-high
TOP AF

1D A,(HL)

JR €,DIG2

HL im-Juat 'i..hnr._a,.&ﬂro'as' from which
we are disassembling.

Print a newline,
Print B in hex.
Print I in hex,

Print a apace,

C is just a flag to let us knmow
whether or npi an instructisn
beging with DD or FD.

Obtain the byte to be dissasembled,
Doea it begin with either DD or FD?

If so, print "BRY or "Fh and lock
at the next byte.

Change the flag € accordingly.
Continue with next byte,

Does the imstruction begin ED?

If so, print "ED and look at the next
byte.

Is itoof the binary form Ol-— =0117
B sounts the number of bytss to ba
printed after the byte ED.

Print the next B bytes,

Continue with next byte.

Temporarily store HL.

Divide A by two.

Store the carry flag.,

Pind the regired position in the table.

Retrieve the carry flag.

UDee the carry flag to decide on which
digit from the table will be used.

Use € to dszide which tus bits
to use, .

Put thia number in 8 to use as

a count.

Retrieve theaddress of the byte to
be digassembled,

print B bytes in hex,

CGontinue with next byte.

148

Now we Bscend to' the "third level" — REAL diszmssembly in other words. However,
1 am not going te write the program for you this time round - you'll have

to do it by yourself. 1 will explain precisely what it is you have io de

in order to make a 1K disassembler, but the actual program itoelf must be
your creation.

The following is an mlgorithm which will enable you to dissasemble the hex
codes into assembly, that la to change, for ewample, £9 té LT L,8, or from
CBTE to BIT' 7,(HL). One way would be to list & vast tmble - such as I have
included in the appendicea - but while alright for himan beings i
the elegance of a well thought out computer program. The data alons 2
occupy around 4K, Thia slgorithm will eénable you te writa your own machine
lenguage program occupylng significantly less — two or even one K sll told
depanding on how efficient your program is.

In this algerithm, the following conwentisns will be used:

*(0) means B, r(lg means €, ¥(2) means D, r(3) means E, v(4) means H,
r(5) means L, v(6) means X, T 7)_ neana A.

3(0) means BC, s(1) means DE, s(2) meuns Y, 8(3) means SE,

q(0) means BCy q(1) means IE, q(2) means Y, q(3) neana a®.

147

a0 means O, n(1) means 1j n(2) means 2, n(3) A e e
nfS} R 5: néﬁ. ey n'('?; S n(3) means 3, n(4) means 4,

o(0) means NE, c(1) meane 2, ¢(2) means NC, &(3) ndans €
={53 means FE, ciég means P, cET; means My Jiment de e mee K

*(0) means ADD A,, x(1) means aBC &,, x(2 sUs,
x(ﬂ; means: AND; x(5) nmagﬁ’n. x(6) mtgng omﬂ.?r-L:{'r] meﬁjc:?me it

Defing two variables, CLASS and INDEX, and initially let both of them
agqual zaro,

Write the byte being disassembled in binary, ard s i

L plit it into three parts;
¥, G, and He ¥ conaista of bita 7 and 6, G af bits 5, 4, and 3, and H of
bits 72. 1, and 0. Thus to disassemble the byte €3 (binery 0110 1001) just
aplit it into three parts thus: 01/101/001. In thie particular case P is
one, G is five, and H iz one,

Next, split G inta two parta; J and Kj with J consiati

ba ng of bits 2 and 1
and K just bit 0, If G then were binary 101 as above then split it like 4
thim: 10/1. In this case we would define J to be two, and K to be anc.

Set aside an area of memory called DIS, This is to contain a STRING of
unkmewn length. How you store this strirg is up to you. There are tua
different methods you could use - either terminate the dats with an end-
of-datn character (any character will do, ¥F is as good as any), or
begin the arga PIS with ons byte representing the number of characters
of data there are in the string. (You only need one byte since DIS will
never be more than 255 characters in length.) DIS should initially be
&n enpty siring, (ie containing mo chavacters at all.)

The algorithm begine here.....

| CLASS equals zero then the following applies
1) If the byte is T6 then complele dissasembled instruction is HALT.
2) If the byte is GB then let GLASS equal one and Btart again.
3) If the byte im ED then let CLASS equal two and start agéin.
4) If the byte is DD then let INDEX equal one and stark again.
5) If the byte is FD then let INIEX equal twe and start again.
€) If F equals zeTo theNasss
If H equals zars then....
If G greater than three then let DIS equal JR ofG=4),V.
If G less than four choosa the Gth item im this list:
HOB/EX AF, A/TUNG V/IR T
I H equals one then... :
If K is zero then let DIS equal LD a(J),vV
If K is one then lat DIS equal ADD Y,s(J)
Ir H equals two then,,.

Let DIS equal LD plus the Gth item in this listy
() AT A, (DB YA, (WYY A (V)
I H equals thres then...
If ¥ is zero then let DIS equal INC s(J)
If K is one then let IIS equal IEC &(J)
If H equals four then let DTS equal IRC r(C
If H equals five then let T1S equal ILEC r%G
If H equals six then let DIS equal LD r(G),V
If H equals seven then choose the Gth item from this list:
RLCA/RRCA/RLA/REA/ DAA/CEL/SCR/OOF .

148

If F equals ome then let DIS equal LD x(G),r(H).
If F equala two then let DIS equal x(G) r(H).
If F eguals thréee thén...,
1f H equals © then let DIS equal RET o(G)
If H equals one then... i
If K is merp then let DIS equal FOP q(J)
If X is one then choocse the Jih item from this liat:
RET/RX(/IP (¥)/LD s, Y.
If H equals two then lst BIS equal JP c(G),VV
If H squals three then choose the Gth item from this list:
JP VV/=fOUT (V),s/IN &,(V)/EX (SP),Y/EX DE,HL/IL/EI.
If H equals four then let DIS equal CALL e(G), W
If H equals five then...
If K is zerc then lét DIS equal PUSH q(J).
IF X is one then let DIS egual CALL VV.
If H equals six then let BIS equal x(G) V.
If H equals seven then let DIS egual RST plus the Gth item in
this 1ist: 00/08/10/18/20/28/30/38.

If CLASS equals ons then the followi lieat :
Tf T equals zero then chioose the Gih item {rem this list: RLC/RRC/RL/RE/
SLA/SRA/-/SRL and then add r(H).

If P equals one then let DIS squal BIT n{c;.r{}i;.

If F equals two then let DIS equal RES n{C),r(H).

If F equala three then let DIS equal SET n(G),=(H).

If CLASS eguals iwo then the following applies:
F cannot possibly equal zere.
If F equals ona theniess ;
If H equals zero then let DIS equal IN (@), (C)-
1f H equals one then let DIS equal OUT (C),x(C).
If H equale two them,,.
1f K equels zero then let DIS equal SBC HL,&(J).
If X equals one then let DIS equal ADC HL,a(J).
If H equals thres then... 1
1f K equals zero then let DIS equal LD (WW),s(J}.
If X aquals one then let DIS egual LD a(d), (W),
If H equals four then let DIS equal NEG.
I H equals five then... :
If X equals mero then let DIS equal RETH.
If X equals one then let DIS equal RETI.
If H equals aix then choose the Gih item from this lists
T O/~/TH 1/TH 8/=/~/-/~.
If H equals :;'vm ‘th}"n shu%t}}: G;hll.tum from this list:
In I, R,A/LD &,I/LD A,R/RRD/RLD/=/=. :
If F squals two then ohoose ihe Hth item from this List: LD/eR/TR/OT/=/</-/-
and {ken sdd the Gth item from this 1iste I/D/IR/DR/=/=f=/<.
P cannot posaibly be threes

To compute the Final outputs

If INDEX zquals zero Treplace every Y by HL.
If INDEX equals one replace every Y by IX
If INGEX equals two replace svery Y by IY

If INDEX squala zers raplace svery X by (HL) ;

If INDEX :\:iﬂa one re‘p‘]pu:e every X by (IXtd) where d is defined by the next
byte but one after the byte DD.

If INDEX equals two replace overy X by (Ived) where d da defired by the next
yte but one after the byte FD.

(Th:ia does not apply if the X i precesded by])

Replace every V by the next byts in sequence (of those being disassembled)s

TIS now contains the correctly disassembled instruction. This should now ve.
printed to the screen, 149

It is possible to write a machine lan : Whieh dia hlee
things by using this algorithm, In faci it is possible to write such
A program in just 1K. Surprizing as this may sound I should add that
although 1t is possible, the pregram itself is rather complicated, and
involves m completely new programming technigue.

What I will do is to mot actually write the program for you, but to give
you hints and suggestions as to how it may be done. The program revalves
around eight different subroutines, which are linked together by cne
MASTER subroutine which calls them all up in any required order. Thisg

is mchiaeved as follows.

Somewhere in the program there should be a table called SUBTAB which
contains eight different addresses — these are the addresses of the eight
subrautines which control the program. The register-pair AL' {note the
dash) will be pointing to a sequence of data which tells the MASTER
subroutine which order it must call the others in, The data in this
sequence is terminated by an item in vhish BLt 7 ia sne. The data consists
simply of numbera mero to aeven. ZeTo calls subToutine zere, one calls
subroutine ane, and 36 on, Thus this numbar =ayo to sevan datermines
exactly which subrouwtine the MASTER routine {s o call.

8o any item of data in this seguence looks, in binary, like this: 0— -nmn
for most itams, or 1— -nnn for the last item. (The part written nun means
the appropriate number zero to seven as described,) Now soma of these eight
subroutines will need to be supplied with DATA, which by coincidence will
also need to be a number between zero and sewen - if this number in binary
is ddd then it makes sense ig save apace by storing this number amongst
soma of the unuased bits of the subroutine-call, thus making it look, in
binary, like this: 0-dd drnn or 1-4d dnnn. We have now made uge of every
bit except bit 6. This ian't needed, so for sake of argument lets always
maka it zero, Any item of data in the sequence can then be 00dd dnnn, but
the last byte must be 10dd dnnn.

I hope that didn't confuse you, To make thimga clear, suppose HL' points to

an address at which is stored the sequence of data 00 01 22 83, This neans

‘that first of all subroutine zero is to be called, then subroutina spe, then

subrouting two {which will use the data binary 100 ‘somewhere), then finally

;:bﬁ;tém three, I say "finally" because bit 7 is set which meana ve are
nished.

The master subroutine which will schieve this is es follows:
MASTER

3 EXX

TE LD A, (HLY Pind byte of data, and increment

23 INC HL pointer.

pr:h B 3

S5F LD Eyh Btore this byte, in case bits 5y 4,
and 3 contaln data to be used in the
appropriate subroutine.

B6OT AND O7 I'n'ola,ﬁ bits 2, 1, and O.

17 RUA Multiply by two.

4F LD G, Stors this number in the BC register

0E00 LD B,00 pair.

21 Teturn LD HL,RETTRN Specify the raturn addreas from each

B FUSH HL of the eight subroutines,

21 mastrads LD HL,MASTRADS Polnt HL to the start of the table

! which atores the eight subroutine
call sddresses,

09 ATD HL,BC Polnt HL to the required addresa,

4E LD G, (HL) Store this address in the B0 register

23 ING HL pair.

46 LD B, (HL)

[4:3 FUSH BC Call this subroutire,

[5°] RET

B RETURN 1D A48 If Bit 7 was mot zero then cantinue

17 RLA ;

with the next byte of data.
3CE8 JR NC,MASTER

You can learn a lot from studying this MAST UTINE. Can you see how the
appropriate subroutine (one of eight) is called? Firat of all the label
RETTRN is pushed onto the stack, This meano that if each of the eight routines
ends with a RET instruction than control will jump to the label RETURN - just
as if the subroutine had be accesssd normally. To call the subrouting itself,
the address of which was in the Tegister—pair BC, we used PUSH BC followed by
RET. Think carefully about how this works. The required address is pushed onto
the stack, above tha address RETURN, Then a RET inatruction is executeds RET
has the effect of popping the First number from the stack (the subroutine
address) and jumping te that address, The first address left on the atack is
nov the mddrees RETURN, which enablea eontrol to return coxrectly. All of this
i8 necesaary because thers is no much instruction s GALL {BC) - in BASIC the
atatement GOSUB VARIABIE is allowed, but not in machine eede. Anathesr way we
eauld have achieved the same as PUSH BO/RET ia by using the sequence LD E,B/
1D 1,C/JF (HL). Can you see vhy this daes the aame thing?

e ; HL' in the
You may be wondering how ihe sppropriate addrese oame to be in | 3
first place. There are two means by which thia will ba determined, Note
that all of the alternative registers have specifis joba. Theae are:

BG! The address of the byte to be disacsembled.
i Tha variable INDEX.

E' The varizble CLASS.

HLY Poinis to subroutine data.

dissmsenbled i3 located and atored ia the D register by the
Tn::n:ﬂn;!ﬁﬁzombi,(n;)ﬁme BC/EXX/LD D;A. From this the quantities I callad
F, G, and H may later be disc de h in the progri the:'-u should
be a table called TABLE conteining twelve different adiresses. HL is
simply read from thie itable. The twelye sddresses correspond to the cases
CLASS mquals zero and ¥ equals 0, 1, 2, oF 3; CLASS equals one and F
equals 0; 1, 2, or 3; and CLASS equals tvo and T equals ﬂ_. 1, 2, or 3.

The cther Way in which HL' may be determined ia if subroutine sexo is
salled. Subroutine zevs is ealled by the data=byte 00, This will be
immedistely followed by eight different addresses corresponding to the
casea H equals zera, ap to H equala ssven, Subroutine sero has the task
of locating the appropriate address from this list and storing it im the
register-pair HL'.

One subroutine you yill need, (but not one of the eight clnha_]. ores,) ia

a subroutine to add a single character to the end of the otring DIS, Using
the convention that the etring begims al address DIS and ia tezm::.atigl' g;rﬁ‘
the bybe ¥F, tha string may be enmptied by the sequence LD HL, DIS/ID i
To add & character (held in the 4 register) the subxoutine is

€5 ADDDIS PUSH BS Stora the registers BC and HL so

ES PUSH HL that they won"t be altered by the
aubrautine.

0601 LD B,01 This is =0 that CFIR wont stop

becsuse of BC,

21dis LD HLyDIS Find the start of the siring.

5 PUSH AR Pemporarily stack A.

SEFF ID A,FF ;

EpBL CPIR Find the end of the string.

17 1D (HL),A Insert a new end-of-string marker.
23 IEC HL

¥l FOF AF Retrieve A.

77 LD (HL),A Add thia character. 3] '
El POP HL hetrieve the remaining registers.
€1 FOF BC

63 RET End of subroutine.

151

The eight nubroutines you will merd for this disnsnembly program are no
Toilowat

SUBROUTINE 0 = SPLIT

This is the ubroutine called by the byte 00. It is mlways the firat pubroutine

called, if it s uvaed at all. The byle 00 should he followed eight new addresacs

within the disammenbler propram. located at these addresses are eight. different

Aequencen of data, whieh eorreapand te the cases Il equala wero, H eguala one,

And =0 on up Lo H equals neven, One of these mequences is melected acaording

;: Hz :nﬂ the data umed to declde which nf the eipht rubroutines sheuld then
vaed.

UTINE 1 =
The byte 01 ior Bl if it i8 the leat subroutine-call in sequence) is followed

by a meri&s of eharaclers, such as N O and P, whizh represent part or all of
the disassenbled instruetiion, The last charsoter should have one of the unused
bits (6 or 7) set, to indizale ths fact that it is the lpat charaster. The
subrouting ohould ues one bit of data, with the meaning that if it la called
by ths byte 09 (or 89) then the literal dals following should have a mEpace
innexted after the last character, This literaml datm is to be added to the
end of the data storage srea called DIS.

T -

Means select the Gih item from the following list. The subroutine peeds dala
to spacify how many items there are in the following list. If there are four
items the data 011 (3) la required, If there are eight items, the dala 111

(7} is zequired, and no on, the data always being one less than the number

Human operatef

sddrees of byte to be

the byte to be dissasembled

b]

I~

(o ————

address in tnh10| |

points to an
address in
nemoTy

points to an
addresa in
memory

of items in the list, For example the byte 34 (in binsry 0/0/111/010 =
meaning call subroutine 2 and provide i1 with ihe data 111) meann selact

the Gth item from the following 1at of eight. The list could, for Lnatanee,
be R, L, C, inverse A, R, H, 0, invevse A, R, L, inverme A, H, Ry inverse
ADy Ay bnverse A, G, F, inverne L, S, €, inverse F, €, C, inverse ¥. 1've
used 'inverse' to indfeate the last oharseter in an individual item. You
don't have to do this - you can ume any means you choose aa long ss 1t works,
Thus {7 G (That Ls bitm 5, 4, and 3 of the inatruction belng dlsassembled)
ware 5, the literal DAA would be added to the end of DPIS. The next byte to
be interpreted as data will be the byte after the inverss F,

me [|
the addrsss of the start of ihe
disassembly data

J pointa to an
UTINE 3 - LIST- address in
Means select the HLR Item In the Following list. Its explanstion ia sxmctly it

ihe pame so that of subroutine 2.

SUBROUTINE 4 - SELECT.C

Agnin, three bits of data mre required. Interpret as follows, If the

data in 000 meleet v(C), Af the dnin 1a D01 aelect o€}, if the data ia

010 select q(G), if the data is 011 melect m{G), if (e date is 100

malect e(C), and IT the data Ia 110 aelect x(G). The item melectied is

to be added to the end of DIS, ; B
e i the data itaelf

= H
An subroutine 4, except that H is wsed inatead of G.

9

sddress in subroutine

3| INE 6 — SKIP table
Reseta bit 5 of E (the data=-byte), and if the previcus walue of Bit 5 wam

one akips over m bytes of data. The number n ks delermined by the imediately

following byte, If bit 5 wam zero thia immediately following byte (which s ﬂ;"*:é";n"‘
only there io specify n) is ignored, and the next byts afier is then inter- m.m::_’

preted as the nexi item of data.

= ——

1)
Replace bit 3 nf E by bit 4, replace bit 4 by bit 5, and resst bit 5. Effect- subzoutine call address

ively this is the same sa IKT G equel J. Then if the pravioun valve of bit 3)
¥08 spe 5 N byles are skippsd over, am in subroutine alx, This subroulins can I
be interpreted s IF K equaly mero TIFN.... sthervise IF K equals one then....

152

With €hea_e eight subroutines, which you will have to write yourself,

You ean disassemble every instruction. I will give you an example,
Suppose CLASS is zero, and F is three. The first byte it ha= to interpret
should be 00, Thiz alters the value of HL® accerding to the quantity H,
that is, bits 2, 1, end 0 of the byte being disassembled. Suppose now
that K is one, HL' should now be painting to the following sequence of
data, listed here along with its meaning.

CHAPTER SEVENTEEN

L)
dats) Deaning Y
Q7 05 0000 0111 KSKIP §
0935 34 BS 0000 100 LITERAL FOP (spece)
94 1001 0100 SELECT-G+q (EXIT)
94 1001 1010 LIST-G+4 ?’B:H)
37 24 B9 RET
2k 3D BD EXX
2F 35 00 16 3E 91 JB (¥)
31 29 00 38 35 1A BE LD 8P Y

To represent strings of data here you can mes I've used Just the character
codes, with the final character inversed to show that it is the last
character. In sther words EXX is written as 24 3D BD rather ihan just

24 3D 3D, It is of course very important to know whete one atring enda

and tha next begins.

8 ‘) \
, blllW//'/)j .
A [
- . | .
NN QN1
ARITHMETIC \ : Q
SUBROUTINES 0

If you follow through vhich subreutines havwe been called by the data and
what they are supposed to do you'll aee that in a total of only twenty-
seven bytes we have said IF K equals zero then LET DIS squal POP g(J),

IF K equala ene then LET DIS equal the Jth item from this 1ist: RET/
EXU/IP (Y)/LD SP.¥. If this proceedure is continued for every instruction,
following the algorithm I gave sarlier in the chapter, you'll find that
the data raquired for disasseably is now significantly LESS than 1K.

The entire disassembly program coneists of initialising the variables GLASS
and INTEX, asaigning BC' (usually input by the human operator), finding the
addreas HL" from tablea, and then going into the master-routine. On exiting
this it must then replace all Vis, X's and ¥'s as defined earlier in fhis
chapter, and then FRINT the result computed and go on to the naxt byte to
be disnssembled and treat it in the same ¥ay, The Test of the progranm
conslsta of the eight subroutines, ihe tabls of eddresses, and the data
required for digsssembly. The whole of thia will occupy rather less than
1K.

\.%\@7 il
N

2

However simple, or difficult, I may Have made thie pregram socund, you will
undoubtedly find writing it a challenge. The vest majority of the Program
is data, and each address in every table must point to exactly the right
byte. If you get any of it wrong it will be very difficult to trace,

You cen improve the program too. I haven't wsed bit € of the gata - you ma

Y
be able to think of a use for it, for example it could indioate that s comma
needs to be inserted, the choice is yoursa,

Like drsughis, this program is so vast that even though the machine code
listing itself will fit into 1¥, you will need more than 1K in order for

the machine code to be put there, Any editing program, BASIC or machine code,
will take you abowe the 1X,

Good luck.

154

ARTTS ¢ OUTY]

This chapter ia divided into two sectiona = one fer the OLD, end one for
the NEW ROM. We'll tackle the OLD ROM first becauge it's easier,

fumbers are remresented in two bytes, apd s& such is it possible to
atore them Ir repister pairs BC, TE, snd HL. Firet-of al) we shall take
a Yook at the five major srithmetic routines.

1). Addition. The eddrecs to p21l is OD3E, er move intellegebly, CIIL ADD.
The subroutine adds togethesr the ‘mumber etered in DB and the number stored
in HL. The raeult is then plseed in HL. Thie mey bo demonstrated by the
Fellowing groprams

113500 ADDIEMG LD DE,0039

211100 i LD HL ,cx_ln
ch CALL ADD
€3 RER

Were TE is loaded u.‘i"bh the number fifty-seven, ané HL with awsniv}a-n on
return to BASIC the rn*ﬂlt =%ored in AL showld be Eift.“-awe-n 1‘|1.LR seventeen,
a0 the command PHINT m(adddémﬁ) should genevete the munber seventy-four,

2). Subtraction. Juat the eame - TE lo enbirected from HI and the result
stored in HL. The address is 0039 Thue to prove it:

113900 SUBDEMO LD DE,0033

211100 LD HL,0011
€D390D CALL SUB
9 HET

3). Multiplication. Ts until now ve have fpncred miltiplication completely,
eince there 18 no sinple instruction whioh will miltiply two nunbers
together, However, thanks to Oncle €, the RCM will do it for ua. Simply
GALL MULT, which is stcred at pddress OD44, e1d ee 4F By masic DB will be
m.'ll':l.ylied by HLy the reenlt as usunl 'ueine stored in HL. Wetich out for
what happens 10 10 and TB thourh! They're not unsltered,

4. Division, As you'd by now expect, the instruetion CALL DIV will divide
HL by DE (lg'numng any Temainder of course, since we sre dealing in
integera}, The address of DIV ia ORI

5). Powers. Is raising one number to the power of another going to be any
mere difficult® Mo of course nots With elegant simplicity the ipstructiom
GALL POWER (=t GDQE-] will do just that, redsing HL te the power of IE,

nmi putting the emswer away in HL, using repeated multiplication to compute
the answer.

One yery important ftnetion is the RANDOM NUMEER CENERATOF., This is held
at Joi:e.t.i.on OBED, To generate a random punber between one and 8ix, (say
to 8t e the rokl of a dia,) s!.mp].y load HIL with Bix and CALL RND. This
is of ocnu'ﬁe the same thing aa RND('.1 The numbter in the brackets should
be plased in EL, snd the final snawer will end up in HL.

See if you can work out vhat this mgm does. Whet we're interested in
is the mumber that 4t yeturns to RASIC.

211400 START LD HL, 0014

CDEDOB CALL RND
110400 1D i, 0004
eD440D CALL WULD
116400 1D IE,0064
19 ADD HL,IE
(1] RET

156

Iet's sae If yeu got it right. HL is loeded with 14 and RND is called,asc
EL is replaced by p new value, RED(20). (Noie that 14 (hex) is 20 (dec).)

DA is stored in TE, and the two are then
rultiplied together. We then have 10mRND(20). Pinally &4 (hex) iz added,
£iving Y0wRVD(Z0)+100.

We could use this routine in a games progTam. Suppese wa neaded to jump
to a rendom destinmation. Wa could use the by now famous Tim Hartnell
method of GOTO 10sRND(20)+100. Alternatively, if the sbove maching code
were in = REM statement, say at zddrass 16427, ve could ingtead 2imply
say GOTO USR(16427). Thia weuld do exactly the seme job, except just a
1ittle bit faster,

We!ll lesve the OLD ROM now. and turn %o the rather more complex Tield
of arithmetic on the FEW ROM,.

NEW ROM ARITEMETIC

The firat and most importsnt peint to note is that MEW ROM numbers ave
stored as five bytea, not two, and so they can't Tit into ¢ register=
pair ms they stand, Wor are the pumbers in simple form, for while it

is true that zero is, ap you'd expect, 00 00 00 00 00, it is pot true
that ome 18 0000 00 00 01} Jn fact one is represented by 81 00 00 00 00,
Here ia-a 1ist of the Sinclair represeniation of the first few integers.

Decimal Sinclair Form
00 00 00

il

1 61 00 00 00 00
2 82 00 0O 00.00
3 B? 40 00 00 00
4 83 00 00 00 00
5 6% 2000 00 00
E 83 40 00 00 00
1 83 60 00 00 00
8 84 00 00 00 00
9 B4 10 0000 00
10 &4 20 00 00 00

BRd BOOOn. '1"!:9!9 ie = kind of pattern, but {t's not instantly
recogniseble, Take a look at the negative rumbers;

Decimal nelair Torm
= 81 80 00 00 00
-2 A2 B0 00 90 00
=3 BZ €0 00 00 00
-4 83 .80 00 00 00
=5 83 40 00 00 00
-6 83 £0 00 D0 00
-1 &3 EO 00 00 00
-8 84 BD 00 00 00
=3 B4 90 00 00 00
=10 84 A0 00 00 00

Az you can see, you can lnstantily change a mamber from positive to
negative just by adding 80 to the second byte. This doesn't mpply to
Zero by the way - wero is represented uninuely to help apeed the ROM
up a litile,

¥nowing how the Sincleir Perm is built up will slightly help your under-
otanding of the ROM, se T will pive here & Brief explanatien of how 1o
t:rn decimal numbers into Sinclair numbers, It only takes a few simple
etepa,

187

STEP CNE: If the number is zero, then its Sinclair representation is
00 00 D000 0. i

STEP TW0: Igmoring the sign of the number, write it in binary (hut
without any leading werves). For example:

7 111
-10 1010
425 100,01
0.325 0.011

Notice that the binary form has a BINARY point, not a DECIMAL noint}
100,01 meens oue 4 plus no 2's glus no 1's (here we Teach the binary point)
plus no halves plus one gquarter. The next columm would have been an sighth,

STEP THRFE {8 to work out a quentily called the EXFONENT. This is done ae
follows; If the part of the number to the left of the binary point is not
zero then the exponent ie the number of digite to the left of the point,
If_ the part of the pumber to the 1eft of the point is zero and the first
digit after the point i= one then the exponent iz zeva. If the part of the
nunber to the left of the point is zero and the firat digit after the
point ie zers, then count the nunber of zerces betwesn the polnt and the
first 1 - the exponent is minus this mumber. The first byte of the Sinclair
Tepresentation is $0 plus this exponent. @ i

cimsl Binery Exponent Pirst byte of Sincleir Yorm
% 117, 3 83 TS

Gl 1Mo 4 a4
= 4.25 100,00 3 83
0525 0.011 =1 i

STEP. FCTR: Now we- can ignore the binary point altopether - that 1s what
‘the expement is for - o tell the computer where tha point is supposed to
£0: 8o Lenoring the point, write the binary form atarting with the firet 1
and then add sufficlent seroes to the right to make the whele thing
thizty-two blnaxy dicite (bita) in lemgth.

n 1110 0OG0 0RO 000G GNOO 00AD 'DOCD OO0
=10 1010 G000 0000 DOOK H0CO 006D BO00 0a0O
—4,85 1000 1000 0DOD 0000 0000 00O0 DE0O 0OCH

0.325 1100 0OBO CNOD 000N 000D DOBG BONG O60D

:m;?rm. It is here thet we remawbar the sipm of the original number,
e originel nunber was negative then do nothing. If the original
oumber was positive then replase the [i¥st one by & sero, Thus:

T 0110 0000 0000 0000 DOBO 0000 0000 0000
-10 1016 0000 6000 0000 0000 0000 00GO. 0000
—4425 1000 1000 0000 0000 DODO 00A0 0000 GO0
0,325 0100 0000 0000 0OA0 0RO DIKD 0OGA G000

STEP SIX - New juat-change these numbers #tTaizht inte hex, like ec,
making sure you remember to put ihe exponent byte at the etarts

b 83 60 00 00 00

-10 84 A0 Q0 00 00

=425 83 B8 00 00 00

0.225 ¥ 40 00 00 00
158

This is the form in which the ROM will be working. The larpest exponent
you may hav ¥F, so the largeet positive number that san be stoved is
PP TP FP FP FP. This turns out to he 1.7014118E38, (If you can't
understand the "EM nototion the E means "with the decimal point shifted
(in the abeve cane) 38 places to the right" In other words the number
170,141,180,000, 000, 000,000,600, 000, 000, 000,006,000, which is a pretty
vast nuantity, Tt can still only =tore ten decimal placea sccurntely
though. The amallest positive mumber you can heve (apart from zere) is
01 00 00 00 00, which happens to represent 2,9387359E-39. To you and me
thatts 0,000,000, 000,400,000, 000,000, 000,000,000,000,000,002,938,735,9
which 1'd say was pratiy microscopic.

You can check all of this with the following BASIC program.

10 LET 420 ¢
20 IET B-FREX 16400+256aPRFK 16401

30 FCR I-1 T0 5

40 TNPOT A%

50 POKE BYT,1fmC0TE AZroCDE 48(2)-476
O NEXT I

70 ERINT A

The program meis up A veriable A, Bnd then cvervrites its previous
contents by POKEing inte the verisbles srea, one byte at a time. (That's
a letter T in lime 50, not a mumber 1). If you run it and in g2
nAON/A00N 000N /u00n (where / resns newline) you!ll fimd the ru
printed, And so on.

An interesting 1ittle quirk is that if you input "OOW/n8OW/wOON [mOOM fro0n
(in theory this is minus-zero) the machine actually prints =0.6E=56
The lstter € in mid-number, and an exponent of 561 TDon't p
doesn't really happen in the ROK. We made it happen by POKEir
that doesn't moke sense. The ROM doee behave slightly more
human beings.) ;

HOW 70 USE TIOATING FOINT NUMBERS PHOPERLY

Heving seen that a five byte number is too big to store In the Tegisters
the next question is undoubtedly "Well wheve dees it stors them then?!!
Antwer - it storea them in an arca of RiM called the GALOULATCR SPACK,
vhish works vary much like the erdinary etack evcept for two paints.
It can stere both floating paint numbers end atrings, end 2) it is
right way wp, net vpeide down 1ike the machine atack,

To push B number stored in the B¢ repieter onto the ealeulator
you meed to ¢ is cell up A subroutine In the RCV. CALL STACKHC
2211ed i%,will change BC ints five byte form as described above
pugh this number onte the top of the celeulator stack. You | [
same for & number stored in A (ie a nusher between 0 snd 255) by cal
STATKA, The sddresses to call ere: 1519 (STACKA) and 1510 (STAC

GALL STACKA op1915
CALL STACKRC c01015

Ireidently the firet two instructions in the STACKA Toutine ere [Gkl
and LD B,00, It then lesps straight into STACKBC!

Conversely, to retrisve » number from the caleulator stock ve ‘can. CALL

THSTACK (address OEAT), which Temoves & number from the caleulster
stack and stores it in the B2 reclater.

159

Arithmetic 15 quite straightforvard. The mddresses mres

ADD 1754 addition
S0B 1748 subtraction
NULT 17cs multiplication
DIV 1881 ddviaion

They work like thisy The five-byte number stored at an sddress apecified

%y EL (this means the mumber is stored in looations (HL),(HL)+1,(EL)+2.

(HI«)&-S and (HL)+4) i& added 4o, mltiplied by, divided by, or has a
econd nunber subtrscted from it, The second number is stored at an

lﬂﬂ:uu apecified by IE. After the caleuletion the result im stored

in the flve bytes beginning at address HL.

Ta m]tiﬂr together the two numbsre at the top of tha caloulator stack
one method would be as followes

201040 D R, (STEERD)

11FBIF 1D IE,FEFR

19 AED HL,DE
PUSH HL

221640 LD (STHEND),BL
ADD HI,, DB

»l TFOP 1B

Coe51T CALL MULT

Can you follow exacily whet ds going on? AL ls lceded with the contents

of tha system variable STHEND - which gives ths addvess of the first byte
after the end of the calculator stack. DE 48 loaded with mimus five, thus
HL 1a decransad by five, This new '!alu- 1s loaded baock into STHEND because
we BLart off with two items en ihe stack and want to end up with only one.
This is the address of one of the munbers to be multiplied, If you follow
the 1inting through carefully you'll mee that IR ende up with this valus,
First thoogh BL is decxreanmed by five sgain, to find: ‘the start of the other
wmunber to be Tultiplisd,

To check that it really does work, run this program,
SE06 START 1D 4,06

GI1915 CALL STACKA
=07 1D 4,07
cP1915 CALL STACKA
241040 1D L, {STXEND)
1IFEFF 1D m,m

19 ADD ngi'w
221040 5 {STXEND),EL
19 ADD HL,TE

ol FCP IR

CDC517 CALL ¥ULT

%m CALL TRSTACK

Bun it by typing PHINT ISR start, what do you get?

Bnt aure:l.x there must be easier ways to multlply six by seven. After all,
bove program does look very cemplicated, and not something you'd
e?t}f ;;TI;T Mell {t'a here that we really do start making full use
of the R(M. The following program docs exactly the came job, mnd I 1
shiortly explain whys 5 2 Ty

LD A, 06
D915 CALL ST
307 LD A,07
Lotat] CALL STACEA
EF RST 28
04 TEFB 04
34 TEFB 34
oaToR eALL THemACR
€9 BET

In the NIW ROM, RST 28 means "parform [loating point arithmetic.® The
data that follows Wlla it precisely what calculations it's supposed to
46, Tha Byte D4 means multiply = 21l of the suffling arcund of the
cglculator stack is done sutomaticzlly. The byte 34 is used after a
PST 28 instruction to indicate that there ie no more data te come, and
the next machine code instruction should follow.

The RST 28 deta codes are ATD: OF, SUS: 03, MULT: 04, and TIV: 05. Den't
forpet you'll need s byte 34 as well -though. 1o end the data.

You mey be wendéring what happens if ths number on the top of the calculator
atack is net an integer between 0 end €5535 (the meximun value any two

byte resister can hnld) Well my firat answer would be "Pry it for yourself
and find out," Write a program that adds 8001 to 8001, write a program

that divides eight by three, then & program that divides seven by three.
write & program that subtracts five from zero, and ancther thet subizacts

a thousand frem zero. But for these of you who are impatient I'11 tell

U anywaY.

1f the nurber at the top of the caloulator stack is greater than 65535
then attempting to Munstack® it inte BC will result in the progra

returning to BASIC - returning to cormand mode in fact - stopping with
sryor code B (which means out of range)

If thé number ia a decimal then it will be rounded up or down (ot just
mad) t6 the mearsst whole number. If the decimal part is less then 0.5
it will be rounded down, and if the decimal pert is greater than or equal
to 0.5 it wi1l be rounded up;

1f the number is negetive then error R will vesult, causing an immediate
return to BASIC and stopping the program, if tnere ie cna.

BST 28 allows you to do mach, much more than just simple arithmetic. All
of the functions of the ZXB1 are avallable to you, The data oode for any

particular function ie just the chazacter coge of that functicn minus AB.
For instance, the cherestar code of SIN is C7, C7 minu= AB is.1C. (11
you don't believe me we'll do i+ in deedmel - 199 minue 171 is 28.) This
means we can find the SIN of the number at the top of the calculater
atack using the sequence:

EF RST 28 :
1C TEFB 1C fSIN)
34 TEFB 34 (Bxit).

To miltiply two numbers {at the top of the caloulator stack) together
and then Tind theé sgquare root of the result we can use the ssquence

R RST 28

04 TEFE 04 Em'r)
25 DEFB 29 (SaR)
34 TEFB 34 (EAIT)

Tf you'rs not abeolutely convinced yet, run this program, which multiplies
five by twenty, and then takes the squere Took.

3E05 LD A,05
cH191S CALL BTACKA
E14 1D 4,14
cp1915 CALL STACKHA

161

EF RST 28

L BEFS 04 (wULT)
25 DEFB 25 (S

34 DEFE 34 (EXIT)
CDATOE CALL UNSTACK
9 RET

You®ll notice that this im the first time welve used more tha o 3

the RST 28 data, In fact yo o

bl oo ¥ou cen Use af many as you like, provided you ong

To save you working 1t out for yourselves here is a liat of the svailable

nﬁer::ti:m that we are Teady to use, together with their appropriate RS
‘codes i

FUNCTION COTE PFURCTIOR COmE
e 19 EXP 23
VAL 1k ;

‘ INT 24
AE 5 SGR 2
SN 1 ik %
oo 1D S 27
T 1E PEEK 28
Asy 1 fny £

TSR 29
as 0 STRY 28
aTR 21 .

CHRE 2B
i = wop 2

Some of the entries in that liat may surprize yow. For instance we havi
the use of USR. Thie ie very eonfusing - h’e;inqysllnuad to uae mein t;e
middle of a USR routine - but it's not really, Here's how it works. You've
worked your way through & lot of RST 28 data, done & lot of calgulstion,
&nd now you come soross the code 29. What happens next i that he number
al the top of the stack should be on inmteger batween 0 and 65535 - or else
you'll get an érvor B. This address is treated oo a subroubine and GALLeds
This subroutine will run exactly as you'd expact it tp. When it's over (ie
¥han 8 HED instruction is reached) the machine will go back to interpreilng
he RST 28 data from the mext byte, USR will of course leave 2 new value
at the top of the stack - the value held by BC at the end of the subroutine.

FEEC worka in the same way, finding en adétess, PEEKD i
v e e B i S

A1L of ‘the Munctions when used in this way will remove the number murre

8 wher 1 1l iy ¥ . ntls
at the top of the caloulator stack and replace it by a new ome, For 1nntnn:=
If the number at the top of the atack is 3.5 and the functicn INT is
called, the 3.5 will be veweved and replaced by a new value, 3,

The atring funotions CODR, VAL, =nd IEN, aloo CHPE and STRE need n emall

::uu;t of ‘explaining, You reg, as well a3 storing mumbers, the ealeulator

m:\?hmmral:c store sirings, ao if you atart off with the mymber 2000 on

an !.mgr: t:' e stack, and you then call STRE (By using code 24 in a ROT

e 1'°i m.)' then the item at the tep of the caleulator stack will now
Ting "2000". You can demonstrate this with the followings

O1p0o7 LD BC,07D0
emels CALL STACKRG
& RET 28

2 DEF® 24 Fmgj
13 DEFE 19 cﬁmg
24 DEFD 34 (BT
CDA7OR CALL TNSTACK
G9 RET

This should produce the result of CODE STHE 2000, Does 149
162

11 you take 2 quick glance at
system varizhles,

HEMBOT, is

ISING THE

15

the manual yeu'll see that one of the
thirty bytes long. This i3 the caleulator's

memoTy area. A guick calculation invelving dividing by [ive, i youlxe

.t this lemves snough room to store six differsnt

five byte rumbers. The six different areas of mamory may each Be used

by RST 28 to stevs, or retrieve, mumbars (but, numbers only) from the %op
of the celoulater stack. Thers are twelve different codes to achiave

up te dit, shows that

thiz - these are

o gtores mumber in memory locatien 0
cl stores number in memory location 1
cz stores number in memory location 2
c3 stores number in memary locatien 3
c4 gtores number in memory lecaticon 4
o5 akores number in memory location §
B recalls number from uigu?!y‘ location O
EL recalls number from memory locdtion 1
B2 recalls number from memory losatiom 2
E3 recalls number from memory locatiom 3
B4 resalls number from memory location 4
E5 recalls number from memory lecation 5

Storing a number copies it Trom the top of the stack, and recalling &
number sinply places it at the end of the stack = it docan't overwrite
the previoua top item.

Tet's sec how we can wse this. Suppose we vwant to find SIN X+COS X. We
must uas the follewing technimue. Aseume thet X 1a at the top of the
atack.

RST 28
IEFE CO

TEFD 1¢ (SIN)
TEFE KO (RCALIA)
TFFE 1D eosg
TEFD OF {AID
TEFS 34 (EXIT)

2EEBLGH

Yote that the SIN routine changes X ints SIN X. When
we again recall X there are now two items on the stsck: SIF X and X.
The COS Toutine changee X into COS X, so thet the two iteme on the atack,
are now SIN X, snd OCS K. The 4TD routine will replace both of thees by
one single number - the anawer we want - SIN X plus COS X.

Ve heve now performed a fairly complex trigonometric function in just

eight bytes!

let's see how we can remove a fleating point number from the stack
without resiricting curselves to integers lees than 65536, The wvay the
ROM dosa it is like thim:

2A1040 LD HL , { STKEND)
2B TEC HL

56 B, ()

B DEC HL

4B Ld &, (mL)

i | TEG HL

56 LD D, (HL)

163

2n e nL

5K LDk, (1)

2R Dix: 1L

i3 ID°A, (HL)
aredn 13 (STERVD),HL

An you can prabohly res fav yeirnelf, a five hyte number la removed [rom
the atack and rtored in the rerlatern A, K, 1, G, and B. (In Lhai order.)
Yon can CALL this routine from sddyszs 1394,

WS

1 the Cirat item in the vaviable ntore is X then ha¥ing popped ST X plua
2C5 X from the otack you can thep mkore the Tesult baok in K as followa

()
2A1040 1D 113, (VARS) 2
ks INC HL
7 P (ML}, A
23 ING HL N
5 0 (HL),B
73 ING L ‘
7 1D (WL),D
23 HI
7 1p (HL).e
2 o Yl 77
70 LD (HL),B
& e A e 07
You een siee that Lt tnkes more bytes ta store the snmower than it does to
find it in the firat placel \
Let's ree what elme we can do with RST 28, We cen ugs the legleal funations A
AND id OR (that La RASIC AND end BASIC OR). Both of thess are nvoilabla APPENDICES
from RST 2, nnving hyte coden 08 and OT respectively, Alao you cen SKOP 4 \ X
he tus numbara at the top of the alack. Gode 01 will do thia,
LIIIDT’iH<u
The follaving oequence will ralse one nunmber to the power of smother. Gan N Y L AN BB -
You mee wny? After RGT 28; 01 22 04 23 4.
& | - ¥ ¢ . 3 | §1 s
V477 ||
|
{ ¢

7

>

164

These appendices are designed %o give you easy and quick reference to
mast of the things you'd want to look up.

A detailed liat of the precise effect of each ZB0 instruction may be
found in chapter elght, This should be treated as @ separale appendix,
The appendices are =8 followst

APPINDIN'ONE = A listing of the program HEXLD3

APPENDIR ™0 = The system variables

APPENDIX THREE - A converaion table from HEX to ASSEMBLY

APPENDIX FOUR - A conversion table from ASSEMBLY to HEX, including the
effect of each imstruction-on the flags

APPRNDIX FIVE = The 2X character set

166

L7}
0 B0 ADOOE
i han habo

NOONSBNO-NENDUAE-NEY.

00 () sl b (31 TV D & O GO A
r ax-

MG O P 1)
OPOOTLARSS

BEF 5 5 B BUGL

B En @ an

[

<

~ Mo

Ci
14 =

00 ~ N ~M

sns o H

=
[
n
L]

FC

SOSRANT

o o ot
an
aaRDRSEme

P i

'S
iy
o1
o

PG
B

(EEPLTET Rl]

5B DO PO & S 10T

e rhat ot o m ot o8 ol

EE

AP0 ETm

S e R

REREERRERE PP R R PP RRRERARRRRARRRAREERER

3000 o G a1 G
OO D0 IO

87
22

10 I 5 T M 60 O T B A AT = 4 B) O
mstmm':gaﬂmeﬂaghuumoumsguwmon

I
DL

= HmE En

INDS 6D

v G- -mE B Bm -~

£ M E L M
LulvolF]ede)

a7

L]

mn @ o~y

=z

b

44 ~-mH #

0

mo+ e

D el
&
I

4140 S5 B
1333 28
43143 gg B
444
4348 40
4148 A7 B
43147 ED
a8 =52
4149 23 7
4145 44
4148 4D
adc

APPENDIX

El
ED
£B
|9
ae

19
22
32
£
i nn ONE
159 CD
15A 40
78 oF
15C 2R

415D 99

41EE 4@

418F ED

:- 51! 58

1978

4 al 4@

s

4185 ED

4188 52

4187 ad

4188 4D

4169 E1

4168R 23 7

4168 ED

£ 2 m

418E 40

418F ED

4170 20 5B

41vi 1B .

4173 ED

4173 53

4174 a5 W

4178 49

4178 cF

4?7 12
PR

IHNT " LIST ™
ag GOSUB & .
RUN

iza INP
28 s R
Te@ RAND USR' 18585
158 GOTO 1
28@ PRINT * INSERT"
Z1@ EOsUBS D
280 INPUT §
230 PRINT sfiv . v
24p RAND USR 18887
250 GOTO 220
389 PRINT "DELETE"
310 GoBuD o
338 LET A=i850S
3%@ Gosub B9
320 pUN Ush 18732
108 DIM O%(USR LEBAE)
41@ RAND USR 16651
3@ SAVE "HE
SA@ RANG USR 16669
g1e CLEAR
§3@ STOP
Ea@ LET RA=18%5
B1@ BRINT "ADDRESS *;
838 o 2t

POKE A+l,18%CODE AK+CORE AS

gia
12) -476 L

ELa"E0KE A, 165CODE A% (3) +CODE A
gid) 476

568 CLERR

67@ RETURN

16416 4020 W.ADLR
16418 4022 ACG
16420 4024 S.POSN
16428 4026 CH.ADD

NEW RCM MIMORY ORGANISATION

4000

4000
4028
VARS)
E.LINE
n-.m.si
DF.END
e

aysten variables
ProgTan

acreen
variables

edit line
caloulator atack
apare
machine atack
GOSUB stack
reserved avea

ORGANIS.

system variables
progran
variables

edit 1ine

screen

spara

machine stack

Dacimal Mex Hame
16384 4000 TRR,NR
16385 4001 FLASS
16386 4002 ERH.SF
16388 4004 RAMIOP
16390 4006 MODE
16391 4007 BRC!
16393 4009 VEHSH
16394 400A E.FEC
16396 400C D FILE
16398 400E DF:0C
16400 4070 VARS
16402 4012 DEST
16404 4014 m.LINE
16406 4016 CHLADD
16408 4018 ¥.PIR
16410 4014 STRBOT
16412 4010 STHEND
16414 401E BERG
16415 4017 MNEM
16417 4021 SPARE)
16478 4022 DW.S2
16419 4023 S,10F
16421 4025 TAST.X
16423 4027 DB.ST
16424 . 4028 MARGIN
16425 4029 NXTLIN
16427 4028 OLDPPC
16429 402D FLAGK
164%0 4028 STRLEN
16432 4030 T.ADDR
16434 4032 STED
16436 4034 FRAMES
16438 4036 DOORDS
16440 4038 TR.CO
16441 4039 8.BUSH
16443 A03E CDFLAE
16444 4050 PHEUFF
16477 405D MEMEBOT
16507 407H SPARE2
168

oLD [(NEM |NO.

SYSTEM |ROM |ROM | OF

VAR. ADDR |ADDR | BYPES | FURPOSE

ACC 022 |- |2 Value of last expression

BERG = 401E |1 Used by flaating point caleulator

CDFLAG |- 4038 |1 Flags relsting to FAST/SLOW mode

CH,ADD |4026 |4016 |2 Address of the next character to interpret
COORDS |= 4036 |2 Coordinates of last peint PLOTted

n,FILE [400C [400C |2 Address of start of display file

DE.S* |- 4027 |1 Debounce mtatus of keyboard

DEST - 4012 |2 Addrass of vaxiable being assigned

DF.CC |= 400E |2 Address of print position within display fila
DF.EA |400E |- 2 Address of start of lower part of soreen
DR.END [4010 |- |2 Addrega of end of display File

pP.5z |4012 |d022 |2 Number of 1ines in lower part of ascreen
E.ADDR (4004 |- 2 Addreps of cursor in edit lime

E.LINE |400R (4014 |2 Address of otart of edii line

E«PPC (4006 |4004 (2 Line number of lins vith cursor

ERR.MR (4000 [4000 |1 Current report code mimus one

ERR.SP |- 4002 |2 Address of top of GOSUE stack

PLAGS (4001 [4001 |1 Various flags

FLAGX 19 |402D (1 Various {lags

FRAMES |401E |4034 |2 Updated once for every [V frame displayed
LASTLE |- 4025 |2 Heyboard =can taken after the last TV f{rame
MARGIN |- 4028 |1 Number of blank lines above or below picture
MEM - 4017 |2 Addrese of start of calculatoXs memory &arIea
MEMBOL |- 405D |1E Area which may be used for caloulator memory
MODE [~ 4006 |1 Currant curdor mode

NXTLIN [= 4029 |2 Address of next program line 1o be executed
CLDPPC (4017 |402B |2 Line number to wiich CONT/CONIINGE jwaps
TEG 4002 4007 |2 Line number of line being executed

PR.OC |- 4038 |1 Address of LPRIND position (High part assumed 40)
PREUFF |= 403C |21h Buffer to store LPRINT sutput

RAMTOP |- 4004 |2 Address of Teserved area (mat wiped out by HEW)
S.POSN |4024 |4039 |2 Coordinates of print pesition

g.T0P |4013 (4023 |2 Line number of line at fop of screen

SEED 4o01c 4032 |2 Beed for random number generaton

SPARE] (= 4021 |1 One spare byte

| SPARE2 |- 407B |2 Two spare bytes

SPEROT |- 401A |2 Address of caleulator shack

STKEND |- ADAT |2 Address of end of calculator stack

STRLEN |= 4028 |2 Information concerning assigning of strings
?.ADDR |404A (4030 |2 Addreme of next item in syntax table

V.ADDR |4020 |- 2 Addreas of varlable name to be asgigned
VARS 4008 4010 |2 Address of start of variables area

VERSN |- 4009 11 First system variable te be SAVEA

X.FTR [4015 4018 |2 Address of character preceeding gyntax error marker

169

ORDINARY) g A B
0 EX AF,AF' ADD HL,BC 1D A.En‘cg DBC BC
5 2 ADD HL.DE LD A,(DE) DRC DE
2 R Gy ADD HL,HL LD T, (1%%) DEC HL
AP“"D'X 3 2 Ce mpmise 0 alwm) Do sP
4 LD G,B LD C,C LD €,D LB CyE
ORDINARY 5 : 2 3 5 1D E.B LD E.C 1D E,D LD E,E
: B e e e & 1D 1,B 1D 1,0 1D 1,0 ID LB
1 INZ e LD DE,m LD (DE).A INC DE 7 kR I s e
2 IR NZ,e LD HL,mn LD (pq),AL TNC HL g g 42 e g'c oD SBC AE
3 IR BC, e 1D'SF,mn LD (pa)sA INC SP 2 L oA i XORE
i 15 B,B 1D 3,8 LD B,D 1D 3, E # 103 o s o5
5 ID'D,B 1D 0.C D Db 1D DB 2 L3 0 S
3 LD H,B 1D H,C ID H.D 1D H,E L B E e ™ Au(n)
7 Ib (M),3 D (ML),c D (HL),D 1D (HL),E - i - T Phge W ODRE
8 ADD 4,B ADD A,C ADD A,D ADD AE B HED PE JP (HL) PE,pq el
3 SUB B SIB © S D 508 £ F RBEH D SENRL et
A AND B AND € AD D AND B
B Gk 0R € o> o & o % E P
T 17 POP BC IP NZ,pq P DEC
D RET NC POP DE JP NC,pq OUD {n),A f Hug L il ﬁ:ﬁ
E RET PO OB HL I Fojpq EX (SB),HL 1 PNk e e CEL
» RET P FOP A¥ Py O ’ L - A
; 3 TNE A DEC A LD Ay oer
e § ‘ 7 4 LD G} v 0,1 LD ¢, (HL) LD C,A
0 me s a0 B ID Byn RLCA 3 BB LBk e B
1 ™ D DEC D LD Don HA 3 Iy 12 Lk e B
2 me n DEO H LD Hyn DAL 1 LD 4.8 1 At e g
3 me (EL) DE0 (ML) ©D (HL)ym SO g (e ALoA ‘“’C"'ﬁ‘“‘} S50 Ay
: LD Byl 1D B,L ID B,(HL) 1D Byd 9 saoohd SO sk S a
5 th Bl DL b ByML) 1B DA & e R é‘;"(&‘%—) &
& ID HyH LD H,L Ib Hy(EL) 1D HiA L o GKLt ALC & ST 08
7 LD (EL),§ LD (HL),I HALT 1D (HL),A g b i o B0 18
8 ADD A, B ADD AL ADD A,(FE) ADD A,A 2 SHL L o ST 26
9 SUB B SUB L SOB CHL) SUB A 5 PN R e P 71 38
A AW B e am(mi mma F OALL My3g e gE3
3 OR E 0R L OR (HL) OR &
ol CALL NZ,pq PUSH BC ADD Ayn RST 00 ;
3 CALL NC,py PUSE DE am N RST 10
B CALL P0,pg PUSH WL A n ST 20 AFTER 0B
_ F CALL P,pa EUSH AF OR n ST 30
AFTER CB 3 8 A b} [0} bil E F
i 0 RECB RRCC RRCD RRCE RRCH RAC L RRC (HL) ARC A
i 0 1 2 3 4 5 6 7 A I i ok T L
RC3 PMOC RCD RGE ; ; : S Ak 4 : 2 ;
1 RLB RLC RLD AL E o %Q;,L %c{;(;ﬁ e 3 SALB SALC SRLD SRLE SRLE SALL SAL (W) = SRL A
2 SLAB SLAC SLAD SIAE SIAH SIAL GLA (L) SLAA 4 E[1 1,8 BIT 1,C BIT 1,0 BIP 1,8 BET 1,6 BIT 1,0 BI 1,(%Ly BIT 1,4
3 - = = L 2 = = ! 3 e 3,3 BIM3,C BIT 5D BITA,E BIR AR BII gt Ht 3 L ;-:
1 BIT 6,3 3I0 0,0 BIT 0,D BITO,E BIT 0,8 BrD o, BP0, (HL) 6 BIT 5,8 BIL 5,6 BIT 5,0 BIT 5,8 BIt 5 BIT 34 * ST
2 Fri'D BIneci Arrrin Breo'e aivoM den o éﬂ.-g: < 4 uIT 0B BIL7,C BTP7,D BILT,E BIT T,H BIT7,L BIT 7,(HL) BIT 7,4
& BIT 4,8 BIT 4,C BIT 4,0 BIT 4,E BIT 4,H BIT 4,L BIT 4,(HL B RES 1,8 RES 1,6 RES 1,0 RES 1, RES 1,8 RIS 1,1 RES 1,(HL) RES 1,4
7 BIT 6,8 BIT 6,0 BIT 6,0 BIT 6,8 BIT 6,H BIT 6,L BLT 6, (KL 9 RES 3,B RIS 3,C 3,0 RS LE RE 3H RE 50 N NI B 24
8 RIS 0,8 RES 0.0 RS 0,0 RES O,F RES 0,8 RESO,L RES O.(HL A RES 5.8 RIS 5,0 RES 5,0 RES 5,8 EES 5,4 KBS 5,1 RES 5,(HL) RES 5,k
9 RES 2,B RIS 2,0 RES 2,D HES 2,E RES 2,0 RES 2,1, BES 2,(HL B RES 7,B RES 7,0 RES 7, RES T,E RES 7,0 RES 7,1 RES 7,(HL) BES 7,A
A RIS 4,B RIS 4,C RES 4,D RES 4,B RES 4, RIS 4,1 RES 4,(HL g Ser 1,8 GEP 1,0 SET 1,D SET 1,E SEM 1, SEU1,L SED1,(NL) HEC 1.2
= RS 6.5 RS 6IC B 6.1 MBS 6LE HES G NS 6L RES 6.HL b gEv 3,8 SEP 3,6 SET 3,D SET 3,E SET 3,H SET 3,1 SED 3,(il SET Jgh
¢ SED 0)B BEMO,C SET 0,0 SETO.E SEMOH SHFO.L SEP O (HL E SET 5,8 SET 5,C SEv 5,D SED5,E SEPS,H SEP5,L SED 5,(HL) SHTO.A
D SET 2,B SET 2,0 SEP 2, BED 2,5 SBI 2,0 SEC 2,L SEP 2, (AL 5 SEN7,B SEI1,C BEP7.D SED7,E SEFT.E SE7,L SRT 7a{HL) SEETad
B SET 4,B SET 4,0 BET 4,0 SET 4,E SET 4,0 SET 4,L SET 4,(HL
7 SET 6, BET 6,0 SET 6,0 SEF 6,8 SEI 6,H SEU 6,L SE 6,(HL

170 m

o oo B O s R D

AFTER DD

rpiE oS e B S

a ¥ 2 3 4 G
= LD IX,mn LD (pa),IX NG TX - -
= 2 = - INC (Dd) B
LD (Diad),B LD (IXed),C LD (Ix4d),D 1T (Ted),E LD (IXed),H 1D (
: ;qg' I : EX ($P).IX = PUSH
AFTER DD
3 7 B: 9y A B s
= - - ATD IKBC - - ey e
- - = ADD IX,DE = - - -
- - - ADD IX,IX LD Ifa(pa) DEC X~ - -
LD (IX#d),n = - 3D IX,EF = Pl
1D B, ma) o = i = DS
1D D, - - - = = = = 1D
LD H'. ﬂhd - - = = = - - 1D
- LD (TH#d),R = = - - = = LD A%k
ADD &, (IXed) - - - - = — — ADC 4,
SUR Em_; = - = - = = = BBG(IX
AND (EX+dl = e - - - - ¥0R (Di
oR {Itwa) - - - - - - - o
& oo 5 . iy L
- - = JB(1X) - B ODE,IX - - -
- - - LD BR,IX = - - - -
AFTER KD
8 9 A 3 P B b
o o 2 ey 0 & i = =
1 - - - &3 - s A -
2 = 2 & & Ao A =
3 =) =5 o = e = = ;
4 g, (e) egr{e),C ALC HL,BC I-D.B‘"«EPE; - RErI - LD ®,A
5 IN B, (C) OU0T {C),E ADC HL,DE 1D DEe(za) - - m 2 LD AR
& Iy L,() 00T {C),L ADCEL,HL - St = FLD
7 IN A,(G) OUD (C},A ADC HL,SP LD-SPy(pq} - - = =
8 = R = £ AR = i
9 = = - = S e RS
i LUD CPD 0D 00D S = =
B LIDR CEDR THDR OTDR - - i =
i & £ 3 2 A e 2 5
il - - - ==, - - - =
E - - - = SRR T o
¥ - - = - = - - =
172

AFTER FD
o
o s
1 &
2 &
3 2
i =
5 =
3 -
7 1D (Te4a) 3
IS 2
9 o
L &
3 &
¢ -
] -
E -
ABTER FD
& T
[- -
1 - -
& i
5 LD.(I¥+a}yn -
4 LD B(I¥sd) =
5 LD Dy(Ir+d -
6 LD H,(Trd) =
1T A LD
8 ADD K, (Tr+d) =
g SUB (T¥ad -
A AND £Inc1 -
B OR (I¥ad) -
C - =
T - =
E = -
P & 2
0
o -
1 -
2 -
3 ¥:
4 v B,
5 IN Ty
& IN H,
1 -
8 =
9 -
A LIT
B LDIR
(4, -
I -
" -
F -

1 2
LD TY,mn 1D (pa)y 1Y
1D (TYed),C LD (TY+d),D
FoP Tf -
8 9 A
= ADD IY,BC =
- ADD IY,DE -
- ADD IV,I¥ LD
- ATD IV,SP -
{Tradjed = - =
-) =
-~ LD SBR,IY -
1 2
¢) our (c),B SBO HL,BC
0) cur {C},b SBC HL,DE
c uum C),H SHC HL,HL
§BG HL,SP
e NI
CPIR THIR

173

5

]_mc {I‘t&-ﬂ)

[.D: (TYsd), 1 ;;D (114d),L

3 4
e v z
- NG (7Y
LD (EXed),E
.1;':((sp), 1Y o
g (L
HI{“) DEC T¥ - -
. o
E!:X BEIH ek
3 A201 78
i %pqg.nc NS REIN
i (pa)eD® - -
arer - -
OTIR - -

lll-llll.ll—!gg_ll!lm

BEE‘EI b

é||||ll
2
=4

-0

Teh
AL

7
1
L
o

(JCER Jf ISt I FS Vo) et IR o it e B! O B |

AFTER ‘DDCRAA AFTER FDCBdd

6 & B
0 HLC (IX+d) ARG (TXd) RLC (1Y+d) HRC (174d)
1 AL (Iked) BR (1%+d) RL (T¥ed) RE (I¥+d)
2 sm (Tx+d) SRA mng SIA (TY+d) SRA imug
3 SRL (I¥+d { SRL (IY+d,
4 BIT 0,(IXed) BIT 1,(I¥ Ir+d) BIT 1, Ti+d)
5 BIT 2,(IHed) BIT 3,{ I¥4d IMad
6 BIP 4, (IX4d) BIT 54(IX4d IT+d
1 BIT &,(TM+d) BID 7,(1¥ed Tr4d
8 RES O, (IXed) RES 1,(IX+d Tf+d
9 RES 2,(IX+d 3,(IXed TT4d
A RES 44(T¥ed) RES 5l IXed A Ir4d
B RES 6, (IX+d) RES 7,(IXsd TTad
¢ SED Og(Ix+d) SEP 1(1Xed { 5 T¥+d
b SHD 2,{IX+d sm' 3,(IX+d Iy+d) SET 3,(TY+d
E BET 4y(IXed) SET 5,(I¥+d Ihd; SET 5, (Tr+4
bl SED 6, 1%+d) sm' 74(1X4d) ITed) SED T, (Tr+d+

APPENDIX FOUR

INSTRUCTIONS ¥

Opaode Hexcode
ADG Ayr
ADC HL,s
ADD A, r

ADD HL,a
ADD IX,8
ADD IY,a
AND ¢

table 1
table 2
table 1
‘table 2
table 2
tabls 2
table 1
BIT byr table 1
A R
CALL a,pq ;.nb-le 3

CoF i g o
{the H flag becomes the previous
value of the C fleg)

CPF ¢ table 1 @@-@-010

cP1 i 8x-@-x1-

CFD EDAY @x-@-%1-

CPIR EDB1 Bx-8-x1-

GPIR @x=-@=-x1=

(2 becomes 1 if BC becomes zero,

CPL

DaA 27

DEC- ¢ table 1
DEC 8 table 2
bi g F3
DIz e 10ee

EI FB
EX AF,AF' 08

EX [SP,

SP}.HL E3
SP

oY FDE3
n

B/V becomes 1 1f 4 = (HI-1))
2F

ek L

00=-0=0=0
Ge-0-81-

INSTRUCTIONS FLAGS
Opeade Hexcode §SE-H-PHE
HALD L
™ 0 EME - s e ===
m 1 T PRI R T
m3z ERE = == omimmm e
ING T table1 @@-@=-00 =
C & tabla 2 = === ====
N A,En; DEAN = = == = == ==
INr,(C) tablel @@ =-0=80=
b b EDba2 Px~-7T=21-=

I¥D EDAA FxmT=71=
(2 becomes 1 if B becomes 2810

INIR FI=%=11-

INDR EDBA b8 TP S, T

1P pq C3aqpp

JF oy table 3

IF {ﬁ‘-i B

JP L TX DDEY

JB (1Y FDE9

Ji e 1Bee

JR e, 8 falle § m mm - -—--

LD (BC),A 02 -

LD A,(BC) DA === == ==

Lntnﬁ)ut e

LD A (DE) A - =-====-

LY LA BEM] 0 - =-—m - -

LD ReA EMF @ mmmmm ===

LD A, T ED57 B88-0-x0-

LD AR EDSF. @@-0-x0-
(P/V is set to interrupt stornge
rlag)

LSE{HL FF., =~ == mmiea-

LD SB,T% DOFY === == -

LD SB,I¥ DM @ === ===

I CIIONS FLAGS

Opcods Hexcode S Z-H-PNC
LD Ty T table 1 ~—-—==—-=--=
1D s,mn table 2 -
LD Aulpq) Jhgapp -
LD a. table 2 -
Ly oA 32q0pp <
LD pu_ .8 table 2 -
LDI FDAD - -0-%0-
LD mAg - =0=-x0-=

(B/V becomes © if BO becomes b}
LBIR EREO -=-0- -
LDDR FDB8 -==0=0 o &
NES D44 co-9-010
NOP 00 R S R
OR T table 1 ‘0
our n%..l‘s D3Em =
oUr (C),x table 1 F=
ourI FDA3 2
oury EDAB b T A G
(z becomes 1 if B becomes zerv)

OTIR EDB3 T ==t =
OTDR, EDBB (-6 e, T, ik RS
FOP AP 8| X XXXEXXX

(Flags are determined by the

byte at the top of the atack)
FOP & wabhle 2
PUSH AF 55
PUSH s table 2
RES byt table 1
RED (]
RET ¢ sable 3
RETN EMS
REIT ED4D
LA 17 _
RL & table 1 @@-0-80@
RLCA T

INSTRUCTIONS
Oposde Hexcodo
RES b,r table 1
REP cg
REL ¢ vable 3
REIN EDMS
RETI EMD
RLCA o1
RRCA oF
RLA 17
RRA 1F
RLC » table 1
RRC table 1
R r table 1
RR * table 1
RED 67
HLD ED6F
RST 00 cT
RST 08 CF
RST 10 i
RST 18 IR
RST 20 £
EST 28 R
RST 30 &7
RSl 38 ¥
SBC A,r table 1
8 table 2
kil
table 1
table 1
table 1
taple 1
table 1
table 1

FLAGS
SZ-HPNGC

=
L=}
i
o
i
wE 8988
om SO0O0Q VO0o
DREE LB

11

1@

10

01
go-0-a0@
@E-0=000
@g-0-808
Bo-@-810

G@=-0=-9009

175

TARLE CHE

r |3 e p ¢ Rm oL () & (mea) (ITVA)
ADD A,x |80 Bl B2 A3 P4 85 86 AT TNB6Ad ¥TARAd cfnn
ADC AT |BR B3 BA BD AR 6D BE EF NDORAd FDEFda CEnn
AND T A0 AL A2 A} A4 A5 A6 AT TDAGAd PDAGAA Bfnn
BIT Oy | CR4D CA41 CRAZ CRAS CRAA GR4S OB4S CBAT TICBAA4E FIOMAA6 -
BIT X,r |0RAB CTMY CNAA CBIR CRAG CBAD ORAR CR4F DDCRdAE FDOBA4E -
RIT By | GRS0 GRS G052 GRS3 GB54 CBS5 CRSS OBST NICBAAS56 FICAIAS6 =
BLT 2,r | GRG0 OBS9 CBSA ORGSR CBSE CNSD CRSE ISP DICRAdSE FNCRIASE -
BIT 4,r | CRGO GBE1 N2 GRG3 OPF4 GBS GBAS CPAT TOGBAA6E FIGBAAGE =
BIT 5,r |CBA8 GRES CPEA CBEB ODGC CRED CBEE CPRF PICBAAEE FICBAA6R -
BIT €,r [GRATO GRT1 CDT2 CBY3 GBT4 CRTS CR76 CBTT DIGBAATE FDNBAATS =
BIT 7,7 [CHTA CRT9 CBTA CEIB €O CRTD CBTE CBTP DICBAATE FDCBAATE -
[B RY BA WE RI BD HBE R¥ TDEFAd FDERAd FEnn
we T 03 0p 15 1D 25 20 35 3D IDiSAd FD3SAd -
IN 7, (0) |FT40 EDAG EDSO EDSB ETHO FTGE = KDTE = - =
me r 9 0 14 1z M o WM G DDS4dd FD34dd <
LD Ayr (40 A1 AF 43 A4 45 46 47 D60 FD4EAd O6mn
IhC.r 48 49 4k AR AC 4D AR 4F DDRAd FD4Edd NEnn
IPD,r |50 51 57 5% 54 53 56 57 Db56Ad FD56Ad 1finn
LDE,r |58 59 S5A S5m 5 5D 55 SF DDSRAd FD5EAd 1Enn
IDT,r 60 61 62 &5 64 €5 66 €7 DDA6Ad FDo6dd 26mm
IR L.v 8 69 6y €8 6C €D GE EF DDERAd FIEEAE 2Enn
D (IL).rf70 71 12 T3 M. 5 - - - 3nn,
IDAr |78 79 TA TA TC TE TP DDTEdd FDTEAS IFan
Lp D70 DDTY DDT2 EDT3 DOT4 DOTS - DLAT - D36
(1%pd),r [dd @8 dd ad d4d dd daa ddnn
Lo FB70 FoT1 mz FDT3 FOT4 FOT5 - FOI7 - = L]
(1vfd)er [dd a4 dd dd dd ddnn.
R T 20 Bl 'ae- B5 B4 B B6 B TOBGAd FDRSAd Fhmn
our (C},r| ED4L EPA9 BUSL EMS9 FDSL EDEY - EMTY - 5
RL ¢
RES O,r |CBRO GBAL CAOZ GRO3 GRA4 CBAS CBBG CDBT TICBAA06 FEOBAARE -
KES 1,r | GBS CRB CBBA AR CBAG CAAD CHAE CHEF DPCRBAJEE IDODAAEE -
RES 2,r |Ga90 GBIL CB32 CBI3 GR94 CBIS GBI ChIT ITGBAAS6 TDCRAAgE -
RES 3,r |CR8 CHO9 CROA CRYB CBIC CISD CRIE CRSF DICUAd9R FROBAATE. -
RES 4,r |CBAD CRAL CBA2 CAA3 CBAA CPBAS CHAG CBAT NDCBSdAS FICBIAA6 =
BFS 5,r | CBAS CBAY CBAA CEAB CABC CHAD CRAE CHAF TDCBAGAE FDGBAdAE =
WFS &,r | CBRO CRBL CBB2 CEB3 CHBA CTB5 CRA6 CRRT TDCROGRS TFIOMADG =
RFS T.r CHPA CRBY CERA CBNB CBEC CRAD CBER CREM INCBAdBE FOGHAABE -

T |8 © D B H L (E) A (Dxd) (I¥W) =
RIC T CROD CBOL CBO2 CBOS CBO4 CHOS CRO6 CBOT DIDCBAJO6 FDCRAAOS =
RRC * CEOS CEO9 CBOA CBOB CHOC CBOD CBOE CBOF DICBAd0E FICBAdOR -
RL x CE10 CB11 CB12 CBl3 CB14 CR15 CBL6 CB17 DICBGd16 FDOBA1E =
R = CE18 CBEl9 CE1A CELBR CBEIC CHID CBLE CBIF m;cx&du: EI!HH.'I.E -
SET O,r | CBGO GBGL GAG2 GBC3 CBG4 CBCS CHCG CBOT DDCBAACE FDCBAACE =
SEF 1,r | CBCA CHCY CHCA CBCH CBCC CBCD CBCE CECF DOCBAGCF FDOBAACE -
£ET 2,r | CEDO CHDL GBD2 CHD3 CEIM CBDS CEDG CRDT DDCBAADE FICBAADE =
SET 3,r | CHDA CEDY CHDA CEDB CENC CHED CHOE CEIF DOCB4dDE FICBAAME -
SET 4,r | CERQ CBF1 GBE2 GCBE3 CBE4 OFES CEE6 CBE] DDCBAdR6 FICBAGES =
SET &,r | CBER CHE9 CBEA CEER OEEC CHED CEER CBEP IICB4dEE FOCBAAEE -
SET €,r | CBFO CHFL CBF2 CHF3 CBF4 CHFS OFF6 CEPT DDCBAAR6 FDCBAAFE =
SET 7,r | CEF8 CEF9 CEFA CEFB CEPC CHFD CIFE CEFF DDCBAAFE FICBAGE -
SUBAr |90 91 92 93 94 95 96 5'1 Dp96dd FD96d mbnn
SEG AT |98 99 9 93 € W SE DD9Edd FDSEAd TEnn
SIA T 0B20 0321 UB22 GB23 CHA4 CH2S CBR6 enz'? DOCBAA26 FIOBAAZE -
SRA T CB28 CB29 CB2A CBZB (B2C CBZD CB2E CBZF DOGBAAZE FIGBAAZE -
SRL OB38 CB39 CB3A CB3B CB3C CB3D CB3E CEIF IDCEGA3E THOBA,
XCR T 48 29 Ah AR AC AD AR 4F TDAE4d FDAE4d EBnal
TABLE WO
[B IE EL 5P X ¥
ATC Hhyo |EDan EDSa E6A EDTA - -
ADD HL,n |09 19 29 39 - -
ATD IX.a |DDOY D19 - 039 29 =
ADD 11,8 |FDO9 FD19 - ¥139 - o239
I & on 1B bi} 3B DER ¥D2B
INe 8 03 13 23 53 023 ¥D23
LD sytm |Olonms 1lunem 2lmnmm 3lonem JD2innam FD2lnnmm
LD &,{pa)|EMBqqpp ED5Bqapp 2Myqpp EDTEqqpp IDD2Aqepp FD2laapp
LD (pq),8{ED430q0p EDS3qapp 22q9pp ED73qupp ID22qqpp FD22qqpe
POP 8 o1 n El - IMEL FIEL
PUISHSs |05 5 £5 - TES FIES
BB HL,s |Em42 ED52 BDG2 EBT2 = -
TABLE THREE
© ¥z B W C 0 3 P]
CALL c,pq| Cdaqpp CCqqpp Ddagpp ICqapp Edqopp ECqqpp Fdqapp FGaapp
JP e,pq |Ciggpp Ciqqpp D2qqpp DAgqpp Bl2qqpp Efqgpr Fagpp Phqusp
JR c,e 20es ZBaw 30ee IBea - - - =
RET o oo o8 0 8 B EA FO FB

177

APPENDIX FIVE

0 1 3 E} Iﬂ, &
(1) BpACE bl =
space ™]H Rl (1]
1 E .5 + * i/ = >
b > < = + - L :
F 4 5 [7 8 9 A B
A° 5 [T 8 9 A B
3 K L M N [P @ R
bd L M H i1} B @ R
4 ? 7 ? 7 ? T T ?
AND Bl INKEYE |7 3 T 7 2
5 2 ? 2] 2 2 7 2
bd T b by 2 b i5 2
& ? L3 K 2 ? T 7 2
7 ? ki 2 2 7 o ?
7 up down Taft Tight |HowE | EDIT NEWLINE |RUBQET|
up down left right GREHCS | KD NEWLINE |RUBCUT 3
Gl | g] a |
g .
K
B
€ 7 7 %4 T T
e AT TAB) CcODE
1) T T T 1 i
| sar ol o] pEsx |usR
T AND O ELa g
STEP LPRINT |LLISP STOP SLOW
¥ T T ? T 7 7 i
LI8T LED PAUSE HEXT POKE PRINT PLOT RN

|| A C D E E
] F 1 f
B Ll £ i 1 e
1 [} * . ﬁ 1 2 3
H i 0] 1 2 3
2 2] D E P G H I J
C D B F G il I J
3 S) U v W X Y z
g T T Y W X 45 &
4 ? 'y 9 ? e ? ? 7
2 2 2 2 2 2 2 2
5 7 A 7 ? 2 ? T L
2 1 \i2 k7 2 ke 7 bl
6 2 7 7 7 z H T 7
i 1 i 7 s T s [
T 3 2, ? 7 2) T k3
IGTICN [oF: 2 ? number | cursor
a
B E H i
9
X
B
[} I -
4 ? % 7 ? 7 T 2
008 TAN ASH ACS ATN v EXE INT
] ¥ { HOT - + * /
o OR AND £= >= > THEN TO
B CLS DIM SAVE FOR GO 1O POKE INEUT RANDOMISE
¥ OONT I | EM FOR GO0 COSTE INPOT LOAD
F 8TOR CONTNUE | IF: GO SUB | LOAD CLEAR REM 7
SAVE FRAND IF CLS UNFIOT | CLEAR RETURN | COFY

Pirst row - OLD ROM characters
Second row - NEW ROM characters

178

179

.‘ 2
I A BLL PROCI

(%EW ROM users only?)

| This prosxam leoks particularly effective when rwn in bhe
SLOW mode, I'm not telling you what it does - feed it in
and find Sliteyye
BASIC: | REM one hundred and sixty one characters
2 RAND TSR 16514

MACHINE CODE: (_‘l'o be writien to address 4082 - decimal 16514)

215940 01 FFO001 DEFB 01 FF 00 O1
= O100FFFF DEFS 01 00 F? FF
23 FEO50C4E DEFB FE 05 0C 4E
1F 10540048 DEFB 7C 54 00 4B
s TESB4AE DLEFB TC 55 B4 Ak
D7 BOB2R1B1 DEFR B2 32 Bf B
M 1818181 DEFE B1 51 B1 B1
3070 B1B1BORA DEFE B1 B1 BO B4
0680 B5BSBIR3 DEFD B5 B5 B3 B3
3D BIB3EGR3 DEFh B3 B3 E5 B3
| 207D B3B5B3B3 DEFE B3 B5-B3 B3
1078 3B3B3 DEFE B3 B3 B3 B3
} 012404 B3ROR0B0 DEFB B3 B0 BO BO
‘ i [8i BORIBIBT DEFB BO B1 Bl 81
o) BOB1BOBY DEFS 30 B1 RO 81
I CIBE0B BIAEBIB3 DEFE B1 AE-B3 B3
ci B5ATBORO DEFY B5 AF BO BO
04 E1AEB1EO DEFB B1 AE B1 B0
&F B1B3BIBS DEFR BY B3 B3 B3
2640 B3BOEOB1 DEFR, B3 B0 B0 Bi
‘ SE B183B3B3 DEFB Bi B3 B3 B3
1 2 BiB1BOEO DEF) B1 B) 30 BO
56 AEB2R1B2 DEFR AE B2 B1 B2
Bt BIBZBIBZ DEFB Bi B2 B1 B2
i} 2B4BS. DEFB B2 BZ B4 B5
19 B5I5E4B5 DEFB B3 35 B4 BS
5] BYBABIES DEFR B 34 B5 BS
4D BABSESE4 DEFE B4 B5 BS B4 3
44 BSB5AERT DEFB B B5 AR B]
é“; "R DEF FF R
1819 &

180

