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PREFACE

1 Who should read this book

Maths used to be a lot of hard work for the brain, but now the
home computer has arrived we can save our brains for
tUnderstanding the ideas in maths, leaving the sums to the
computer. This book is meant for people who want to (or have
to) learn maths and are looking for an easy way to do it.

Then there are those who've been playing Wobbly Gobbly
games and are beginning ro wonder what else their computers
can do.

Finally there’s the serious programmer who is looking for a set
of maths routines to incorporate into his or her programs.

2 How to use this book

Like everything else in this book, it’s straightforward: start at the
beginning and read until you get to the end, stopping to enter
and run the programs you come across. (Chapter 1 is an optional
chapter especially for those who know absolutely nothing about
the Spectrum.)

3 What the book covers

I've tried to cover most of the basic applications you can put the
computer to work on, without getting too complicated. You'll
find most of the material in an O-level or A-level syllabus, and it
will certainly help if you are doing maths at school or college.
The idea was to cover the mathematical functions available on
the Spectrum and to show you ways of making your computer
deal with functions which do not appear on the Spectrum
keyboard.

1

(If you can do BASIC programming you might want to skip this chapter.)

THE JOURNEY BEGINS

(for those who've never written a program on the Spectrum —but would like to).

Plug the Spectrum in and get the TV tuned in, and you’ll see a
message at the bottom of the screen that reads:

© 1982 Sinclair Research Ltd

ress any key, and it will disappear leaving a flashing K in the
bottom left-hand corner. This flashing letter is the cursor; you
can read all about it on pages 13-22 of the Spectrum manual, as
well as learning how to get at the keys properly.

There are two ways of getting the Spectrum to do something:

1 You can command it,
2 You can write a program.

Let’s try a command. Find the B key B ®
Border

and press it. The word BORDER appears, and you are expected
to press one of the number keys to choose a colour. Try any
number from @ to 7 (they have the numbers on the top row of
keys, and each one has a colour written above it). You ought to
choose 6. (That’s YELLOW, check?) So the screen reads:

BORDER 6

Now press ENTER. See what happened? The border of the
screen went yellow, the centre remained white, and theré is-some
gubbins written at the bottom. (Forget that: it just means the
computer has carried out your command.)
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If that small triumph has filled you with delight, try pressing
BORDER, followed by any key from 0 to 7 and then ENTER,
“and you can make the border any colour you like.

Tired of that? Well, make it go yellow again, because we’re going
to write a program, and I think yellow might just serve our
purpose.

The difference between a command and a program is that a
program is a series of commands, one after the other, that can be
entered into the machine’s memory. When you’ve got a bunch of
them together, you can make the Spectrum go through them in
order and carry out each command. It does them in order, and it
knows the order because you number each command. That way
you can build up a sequence of things the computer can do one
after another, and the result could be quite complicated.

You want an example? This is a program that goes through
your border colours one at a time. Type it in (don’t bother with
the spaces), starting with ‘10":

Program ]

Line no. Instruction
10 BORDER @ ENTER
20 BORDER 1 ENTER
30 BORDER 2 ENTER
40 BORDER 3 ENTER
50 BORDER 4 ENTER
60 BORDER 5 ENTER
70 BORDER 6 ENTER
80 BORDER 7 ENTER

You’ll notice that when there’s a line number in front of the
instruction, and you ENTER it, the line gets printed up at the
top of the screen. Then the next line gets tacked on below it, and
so on. You will have noticed, however, that the border hasn’t
done anything. In other words, the Spectrum has not carried out
your instructions. To make it do so you have to command it to
RUN. That is, press RUN and ENTER.

Did you catch that? Maybe not. Well, believe it or not, it just
turned the border eight different colours from black to whire,

The Journey Begins 3

one after the other, but it’s interesting to note that it did it so fast
you probably couldn’t see it.
Now type the line:

15 PAUSE 50 ENTER

(If you make a mistake on any of these lines you can delete a
letter or number by pressing the key called CAPS SHIFT —it’s
hottom left of all the keys—and whilst it’s pressed down pressing
the @ key—it’s top right of all the keys.)

You may have wondered why the line numbers went up in
1ens, 10, 20, 30, 4@, etc. It would have been possible to number
the lines 1, 2, 3, 4 . . . but then it wouldn’t have been possible to
wedge a line between, say, lines 1 and 2. As it is, we can stick line
15 between lines 1@ and 20.

When you pressed ENTER, you will have seen line 15 jump
into the program in the correct place. Now I want you to do the
same between the other lines, i.e. type:

25 PAUSE 5@ ENTER
35 PAUSE 50 ENTER
45 PAUSE 50 ENTER

and so on until each of the lines containing a BORDER
instruction has a line containing a PAUSE instruction after it (no
need to put one right at the end of course).

Let me rell you what the PAUSE instruction does. Big
surprise: it makes the computer pause. But what about the
number after PAUSE? That is the number of fiftieths of a second
it will pause. So if you write PAUSE 50, it will wait just one
second. If you write PAUSE 100, it will wait two seconds. If you
write PAUSE 25, it will wait half a second. The only exception is
PAUSE 0. This means, ‘Wait for a key to be pressed before
continuing.’

Anyhow, you can find this all out in the orange manual that
comes with the machine and in loads of other books. Let’s stick
to our own business.

When you’ve got your sandwich ready, take a look through it
and decide what it will do. Not hard, is it? You know that the
computer does each line in order of its line number. So it will
start at line 10 and do BORDER 0 which turns the border black.
Then it will wait one second, for a PAUSE 50, giving you a
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chance to check that the colour is really black. Then it will move
on to line 2¢ and do a BORDER 1 (and turn the border blue),
followed by line 25 and PAUSE 50 again to let you see the blue
border. Andsoon . ..

Run it and see if you were right.

This is all very well, but it’s no big deal messing around with the
border colour. It’s like playing with the ash trays of your new
Jaguar. So let’s get into the meat of the screen display, the big
white patch in the middle. (Before we start, command the
machine to give a yellow border.)

Really, we want to dump the program you’ve just written
overboard. Happily there’s a command to make it do that, It’s
called NEW and means, ‘Start again.’ It also means ‘erase all
program material from memory,’ so be careful that that is what
you want to do before using the NEW command. We ought to be
back at square one now with no program lines and Sinclair’s
copyright message back on the bottom of the screen. (The NEW
command also got rid of my yellow border too=1I told you you've
got to be careful of that NEW command-so command the
computer to give me another yellow border, please.)

Now you will see why I’'m so keen on a yellow border. It makes
a good clear edge round the area of the screen that is available to
us to make marks on.

There are three instructions that I want you to think about.

1 PLOT  (it’s on the Q key)
2 DRAW (on the W key next door to Q)
3 PRINT (on the P key above ENTER)

PLOT puts 2 tiny little dot on the screen. Where on the
screen? Well, you have to tell it where. And how do you tell it
that? Simple. The screen is built up out of dots in a huge
rectangle like the boxes containing the letters in a crossword
puzzle. There are 45,056 of these dot locations. 256 across and
176 up. So if you say PLOT 0,0 ENTER, you will get your spot
at point 9,8 or right in the bottom left-hand corner. Try it. Do
you see the little black dot down there in the corner?

If you remember that the first number (the one before the
comma in the command) means the across position, and the
second number (the one after the comma) means the up position,
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you can see that the command PLOT 255,0 will position the dot
i the bottom right corner, the command PLOT ,175 will place
the dot in the top left position, and (yes, you guessed it!) PLOT
255,175 puts it in the top right corner.

But before you dash off to the keys to test it all out, try it as a
program. Just enter the following lines:

Program 2

S5 REM PROGRAM 2
1@ PLOT 0,0

28 PLOT 255,0
3@ FLOT @,175
4@ PLOT 255,175

And run it with RUN followed by ENTER.

Have you found out what a colon (:) means in Spectrum
BASIC? It separates instructions that you want to write all on the
same line. Why would you want to do that? I'm not going to tell
you, so find out yourself. The only clue is that it has something
1o do with saving memory and sometimes also with the IF
instruction. Anyhow, you could, if you feel adventurous, enter
I'rogram 2 as:

Program 2a

5 REM FROGRAM 2a
1@ PLOT B,@: PLOT 255,0: PLOT
@,175: PLOT 285,175

It’s not as clear to read, but it was less work on the index
fingers, and it does exactly the same thing when run. You must
e careful, though, in every case when you use PLOT, to make
sure you include the comma, otherwise it won’t work. And if you
make the numbers bigger than 255 for the across number or
bigger than 175 for the up number, it will fail to work (obviously
because there is no location on the screen where you’re asking it
10 plot). The error report at the bottom of the screen will say:

B Integer out of range, 0:1
Try it with, say, PLOT 300,¢ and see what you get.
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How about the DRAW command? It too must be followed by
some numbers, and again these two numbers are separated by a
«omma, the first meaning ‘across’ and the second ‘up’. The
dillerence is that DRAW puts a line on the screen, not a dot, and
the numbers are telling the computer how long the line is going
o be across and up.

The line it draws will start at the last position plotted, or the
end of the last line drawn. If there were no other PLOTSs or
DRAWS, it will start from 0,0 (the bottom left-hand corner,
1emember?).

[ you’re not clear about that lot, don’t worry because you can
see what’s happening much better with an actual example. Try
this lot out:

Program 3

5 REM PROGRAM 3
1@ PLOT @,0

2@ DRAW 50,8

3@ DRAW @,50

40 DRAW 28,15

5@ DRAW -50,0

40 DRAW @,-50

[f you run it, you might see a pretty meaningless pattern
appear, but you will see that it has done exactly what you told it
tv do. I must stress that if you want a line to go towards the right
or in the up direction, the draw numbers must be positive (bigger
than zero). If you want lines drawn towards the left or
downwards, you must make them negative (less than zero).
tioing down or to the left is like taking away from the up and
across numbers.

One of the reasons why any so-called complicated subject is
thought to be difficult is because the people connected with it are
like members of a club. There are yacht clubs and darts clubs and
Reggae clubs and clubs whose members are architects. The
BMA is a club of doctors, Parliament is a club of politicians,
Spurs is a club of footballers. The whole world is a mass of
mterlocking clubs, and nothing stops you being a Spurs-
supporting, yacht-sailing, Reggae-dancing architect who’s also
A MP!
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If you were sitting in a hotel lounge and a convention of any
one of these clubs came in, sat down around you and started
chatting about their speciality, as an outsider you’d very quickly
find yourself adrift. You’d be as left out of it as if you were a
foreigner who couldn’t speak the language, and the reason is
because clubs speak their own languages. They call it ‘jargon’,
and why should computer people or mathematicians be any
different? They’re not. And so it is useful to pick up a few words:

Vocabulary
The x direction: across the screen, the number before the comma
in DRAW and PLOT.
The y direction: up the screen, the number after the comma in
DRAW and PLOT.
Coordinates: the numbers in PLOT and DRAW, so that there is
the x coordinate and y coordinate.

This system was introduced by a Frenchman, René Descartes
(1596-1650), so the system is often called ‘Cartesian’ from the
Latin version of his name. It just means up and down and across
and back, like graph paper, and it’s ideal for a rectangular display
on a flat TV screen.

Try taking the coordinates in Program 3 and altering them.
You should take care, though. If in PLOT or DRAW you use an
x coordinate greater than 255, or a y coordinate greater than 175,
it will be out of range. If you tried to make the Spectrum draw a
line beyond the edge of the screen, you'd be given an error report
saying ‘Integer out of range’.

As you can see there’s scope here for drawing pictures, but
what a laborious business! Is that all there is to it?

Happily the answer is No!

By combining it with other computing instructions you can
make interesting programs to draw some very geometrical
creations. I didn’t want to ask you to run before you can properly
walk, but try a few of these programs without worrying too much
about why or how they work. I guarantee that you will know all
about it by the time you reach the end of this book.

First a note about finger technique:

1 To get at a red symbol on a key, press the red SYMBOL
SHIFT key at the same time as the key you want.
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2 To get at a green symbol above any key, press CAPS SHIFT
and SYMBOL SHIFT until the cursor turns into an E,
then press the key you want.

3 To get at a red symbol under a key, get an E cursor as in 2
above, but hold down the SYMBOL SHIFT when you
press the key you want,

It sounds quite a rigmarole, doesn’t it? In fact I had second
thoughts about buying a Spectrum in the first place because of
this stuff, but it’s amazing how fast you get into it, and now I
find it laborious to use an ordinary typewriter style keyboard!

Just one more thing. If you think about it, the coordinates of
the centre of the screen will be x=128 and y=88, so that if you
PLOT 128,88 you get a dot in the middle of the screen. Now for
some automatic PLOT ’n’ DRAW graphics:

Program 4 GREEN CROSS

5 REM PROGRAM 4
GREEN CROSS

10 BORDER @: PAPER 4: INK 7: C
LS : PLOT 128,88

20 FOR N=3 TO 8@ STEP 3

3@ PLOT 128+N,B88+N

4@ PLOT 128+N,88-N

5@ PLOT 128-N,B8+N

6@ PLOT 128-N,88-N

78 NEXT N

Program 5 SCREEN BORDER

= REM PROGRAM 3
SCREEN BORDER

1@ PLOT @,0

28 DRAW 255,0

3@ DRAW @,175

4@ DRAW -255,0

5@ DRAW @,-173

This one will only show up if you have a paper and border of
light colour with ink dark colour, or vice-versa. Otherwise it gets
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lost in the border. It can be quite a useful little routine for
making your displays look more professional.

Program 6 CHARACTER SQUARES

S REM FROGRAM &
CHARACTER SQUARES
1@ FOR X=B TO 255 STEP 8
20 PLOT X,@: DRAW 0,175
30 NEXT X
40 FOR Y=B TO 175 STEFP 8
5@ PLOT @,Y: DRAW 255,0
&@ NEXT Y

Type in Program 6, run it and you will find a grid of lines
appears that cuts the screen into a number of small squares. Each
of these squares is eight by eight pixels. (A pixel is a screen
location like the dot made when you use a PLOT command, and
so each of the squares on the screen is 64 pixels.)

If you count up the number of boxes on the screen after .

running Program 6, you will find there are 32 across and 22 up,
so the total number is 32 times 22, or 704. Work it out yourself.
And these boxes are used by the computer as printing locations.
If you print anything on the screen, it must be printed in one of
the little boxes generated by Program 6.

The command for printing something is PRINT, and another
command will let you choose where you want to print it.

Try this procedure: command the Spectrum to PRINT 2. It
will print ‘2" at the top left corner. Next command it to PRINT
8. It will print the number ‘8’ on the next line down. If you want
it to print a letter or a word, you must enclose that word in
double quotation marks (sometimes called inverted commas), so
that PRINT “Fred” will print the word ‘Fred’.

The AT instruction needs two numbers. The first is a row
number, from @ to 21. The second is a column number, from @ to
31. (Don’t these numbers seem kind of familiar?)

But don’t confuse them with the PLOT coordinates. They’re
different because the coordinates are for drawing, whereas the
PRINT AT numbers are strictly line and column numbers. The
main point to note is that the y coordinate of the plotting
instructions starts at @ at the bortom of the screen because graph
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paper does that. The row numbers start at @ at the top of the
screen because you read words in a book from the top line on a
page and work your way down.

Anyhow, the form of the printing instruction is like this:

PRINT AT 10,10;x”

Be careful to remember the row number is the first one and the
column number the second. And take care to put in that semi-
colon (3} or it won't work properly.

I suggest that you run Program 6, get that crosshatch on your
screen, and then add to the program the following two lines
(Program 6a). It will choose boxes at random and print a letter ‘x’
in the box. Experiment with the various bits of it and see what
you can learn.

Program 6a

S REM FROGRAM ba

70 FOR N=@ TO 1@: PRINT AT (RN
D%21) , (RND#31); X"

B@ NEXT N

That just about covers the main areas of how to ger instructions
into the Spectrum and how to get it to put what you want on to
the screen. You can now have confidence to experiment with the
Spectrum, and when you have read a bit about the display in the
accompanying manual, there’s no reason why you shouldn’t
dream up some programs of your own.

You may be interested to add a couple of extra things to your
repertoire,

First, the DRAW instruction. I said you have two coordinates
after the word DRAW. True, if you want to draw straight lines,
but what if you want lines that bend?

Then you have to have a third number after another comma
that controls the amount of bend.

Try this program:
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Program 7 ONION

S REM PROGRAM 7

ONIDN
1@ BORDER @
2@ FOR N=-PI TO PI STEP 0.5
30 PLOT 80,40: DRAW 10@,100,N
4@ NEXT N

‘I'I’ appears twice in line 20, and in case you aren’t sure what it
15, I'll tell you. PI is on key M and is a number with a value of
about 3,14, It is quite famous and has to do with circles and
triangles and Greek geometry, and you can meet it again many
times later in the book. For now, just remember that it is a Greek
letter used as shorthand for the number 3.14.

Now when the third DRAW number is 0, there is zero bend.
When it is exactly P, the line bends so that it has turned through
|80 degrees. Negative numbers will bend the line to the right,
positive numbers will bend it to the left. So you can maybe see
how the onion pattern is built up.

The idea of FOR ... NEXT loops can be found in the
Spectrum manual, Chapter 4, pages 31-33, and it helps to read
about it to understand Program 7. What’s happening is that, as
you know, the computer takes instructions one by one in the
order of the line numbers. So in Program 7 it reads line 10 and
sets the border to colour @ (black). Then it reads line 20 and sets a
number called the FOR variable (in our program called n) to the
number —3.14 (~PI). Then it sees line 30, plots a dot at 80,40
and then hops over the colon (:) and does a draw of 100,100 with
a bend ot n. (Remember that n was given a value of —3.14 by line
20.)

The clever part comes in line 40. Because NEXT n means that
the computer’s attention is directed back to the line containing
the FOR instruction (line 20), and because in line 20 the STEP
instruction is .5, it takes .5 and adds it to the FOR variable n,
making it —3.14+0.5 or —2.64. So that when the Spectrum
moves on to line 3@ again, it plots 80,40 just as before; but now,
when it hops over the colon, it draws a line of 106,100 with a
bend of —2.64. Then it goes down to line 4@ and is sent back to
20 to do the same thing again.
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That’s why they call it a loop, and you will keep your
Spectrum going around and around until its loop variable has
reached its upper limit (which is PI). Then it will go on to line 50
if it exists.

If you work your way through this bit of barbed wire you will
find that it will go round the loop 13 times, and if you look at the
display that Program 7 draws, you will find 13 curved lines.

The other goody in store is an instruction that draws circles for
you. Mr Sinclair’s design engineers have thoughtfully given us a
CIRCLE command. It’s very simple if you know what a PLOT
command is. (If you don’t, then go back to the beginning of
Chapter 1)

Remember that a PLOT command needs x and y coordinates.
The CIRCLE does too (because it needs to know where to locate
the centre of the circle). The difference is that, although a dot is
just a dot, a circle is a circle of certain size, In other words you
need to tell your Spectrum how big a circle it should draw. The

number it needs is the radius —that’s the distance from the centre

to the edge of the circle. So you would write:
CIRCLE 128,88,10

if you wanted to write a circle with its centre at the centre of the
screen and with a radius of 10 pixels. Try it out!

When you’ve done that, maybe you could work out the biggest
radius you can get on to a Spectrum screen. (The answer is 87,
because 88 would try to draw a circle 2 times 88 or 176 pixels
across, and that’s just one pixel too big for the screen to take.)

The same applies to the CIRCLE command as applies to the
DRAW command as far as running out of screen is concerned.
The Spectrum will stop and give you an ‘Integer out of range’
error report if you do. .
One last thing before we leave chapter 1. Have you noticed that a
zero with a diagonal mark through it is used to represent zero on
computers? It’s done to make sure you don’t confuse a zero with
a letter O, which is an entirely different thing you must agree.

Computers also use a star symbol ‘** instead of a *X’ to mean
‘times’. So you can’t confuse ‘times’ with the letter ‘x’.

For example:

2%3=6
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Very last thing: a small program to show you the famous FOR
.. NEXT loop in operation using CIRCLEs.

Program 8 CONCENTRICS

S5 REM PROGRAM 8
CONCENTRICS

1@ FOR N=1 TD 8@ STEP S

20 CIRCLE 128,88,N

I8 NEXT N

And when you have run that, try to figure it through as we d?d
lor the ONION program, and see what’s happening in detail.
I'hen make the number after STEP into x, and add line 5:

5 INPUT *“Step select”;x

When you add line 5 to the program, you will find that it will
stop at that line and print at the bottom of the screen whatever
vou put inside the quotes. (If you'd put, ‘My name is Julius
(aesar’ inside the quotes, it would have written that instead!)
When it stops, it is waiting for you to choose a number for the
STEP variable which you have turned into x. So the way to
satisfy it is to put a number in: key any number from, say, 1 to 80
and press ENTER. As soon as the number goes in, the Spectrum
will continue and . .. well, do it and see the effect. And don’t
forget to experiment.
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THE REAL LINE

1 The real line

Either you’ve come here after reading chapter 1 or you skipped
chapter 1 and came here directly.

I'm going to assume that you can follow all the stuff covered in
chapter 1 without too much difficulty. And since computers
ultimately deal with numbers, I thought I'd begin with the
Number System. It’s simply overflowing with jargon. So let’s
wade through it.

Start with zero.

This line is called the Real Line:

Actually, it’s only a bit of it. The Real Line is infinitely long
(meaning that it stretches from minus infinity to infinity), but
happily we only have to bother with the middle bit of it.

At the absolute centre is zero. At regular intervals to the right
are the numbers 1, 2, 3 and so on, and to the left are minus 1,
minus 2, minus 3 and so on. Thus:

-5 -4 -3 -2 -1 0 1 2 3 4 5
| O NSO (NP 'S A | I I
(0 10—
minus infinity infinity

You can do adding and subtracting calculations on the Real
Line. Step to the right for every one you want to add and one to
the left for every one you want to subtract. Why not draw your
own sketch of the Real Line on a sheet of paper and get a counter
{you could use a tiddly-wink or a penny) and try it out.

Take the sum 2+ 3. You and I both know that the answer is 5.
Let the Real Line prove it. Put your counter on 2, and move
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your counter three spaces to the right to add. The answer? Five!

Easy! But what about 3—8. There are those who say it can’t be
done, but we know that by using the Real Line we can get at the
truth: 3—8=-5.

Now you know why the Real Line needs to be infinitely long.
Because numbers can be as large positive or large negative as you
like.

But what’s all this got to do with the Number System? And
what about the Spectrum? It has much more to do with the
Spectrum than it seems at first, so hang on in there.

Let’s look at a smaller stretch of the Real Line, the bit from
zero to 2. Now both 1 and 2 are whole numbers, and in
mathematician’s jargon are called ‘integers’. An integer is any
whole number, and there are positive integers and negative
integers: for example, 1, 2, —5, 2000, —37, 67,831. I'm sure you
can think up numerous other examples of your own. Integers are
strung out along the Real Line like a necklace made of pearls,
and at first sight you’d think that all numbers were there
amongst the integers. After all, one of the first things you learn
as a child is to recite the list of positive integers.

But it’s not the whole story. There are in fact numbers
squeezed slyly in between the integers, and when you bring your
spyglass to bear on the spaces between the integers, you see that
they are crammed with masses of numbers rammed up against
one another cheek-by-jowl.

You may think this is all very elementary and that I'm making
a4 mountain out of a molehill, but I'm not. It’s peculiar, and some
very queer things go on in the crevices between the pearls.

Let’s have a look at the Real Line between zero and 2:

I 1 1 | 1
] 1 Vo 2 1 12 2

As vou can see, half way between @ and 1 there’s Y2, and half way
between 1 and 2 there’s 1%2. I've also marked the % and %
positions, so that you can see where they live.

You probably have a wooden model of the positive side of the
Real Line over several integers. You call it a ruler. Some rulers
have all sorts of subdivisions: quarters, tenths, eighths, twelfths,
sixteenths, and if you think about it you could magnify a portion

| B
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and magnify that portion again and again and so on until you
were looking at hundredths, or thousandths or millionths. All
these fractions are important to us, but how can we handle
fractions on the Spectrum?

There’s no fractions key, no ¥z or %, so when we want to talk
fractions we have to convert them into decimals. Thus:

V2 equals 0.5
4 equals 0.25
% equals 0.75

and so on. There’s a calculator facility built into the Spectrum,
so that you can instantly transform any fraction into a decimal
with a single command. Just type:

PRINT 3/4 ENTER

and the Spectrum will give you back 0.75 printed neatly at the
top left-hand corner of the screen. Try it out and prove that:

3/8 =0.375
17/34=0.5
715 =1.4

Or you could get really adventurous with 355/113=3.1415929.
Jargon in fractions is usually restricted to calling them ‘vulgar® if
the number on top is bigger than the number underneath.
(Because that makes them bigger than one, like 7/5 is 1.4.) And
there are names for the top and bottom numbers in a fraction,
The top number is the ‘numerator’ and the bottom number is the
‘denominator’.

But some fractions can’t be turned into decimals quite exactly.
Try it with our friend the third. Simple task for a computer like
the Spectrum with all the computing power it has, you might
suppose, dividing 1 by 3. But it can’t do it. And neither can the
finest computer in the land.

Why?

Because it’s endless.

It’s easy enough. Numbers can be exact or unending. Exact
ones end after a few decimal places, like 1.23456789 or 5.75 or
0.383838. Exact numbers are exact. Once you have them, you
know all about them, the whole story.

With unending ones it isn’t so simple. You can never know all
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about them because you can never write them down completely.
And why? Because the string of decimal places never ends!

Some numbers just go on and on and on and on and on and on
and on and on and on . . . forever.

You don’t believe me?

I told you it was mighty peculiar, didn’t I? Let me give you an
cxample of an unending number:

1/3

‘There you are. No computer could ever write that out in decimal
form: it has an infinite number of decimal places. It goes
something like:

0.3333333333333333333333333333333333 . ..

and then I get bored and stop.

If you run it on the Spectrum, you'll get 8.33333333 and then
it gets bored too.

Then there’s the case of %5. That’s an unending number too. If
you divide 2 by 3, you will come up with this neverending
stream of numbers. And in this case the repeating decimal is 6. If
you command your Spectrum to:

PRINT 2/3
it will give you back:
0.66666667

Can you think of a reason why the eighth place is a 7 instead of
a 62 It’s what we call rounding. This is quite interesting because
in applications like computers where you sometimes need
accuracy there’s a common way of handling these unending
numbers. The Spectrum will display numbers to eight decimal
places. (That means it will list up to eight numbers after the
decimal point. Not when the decimal doesn’t go that far: it
wouldn’t bother to write out 3.50000000 for 3.5 for instance.)
But when handling these unending numbers it has to stop
somewhere, and it has been designed to stop at eight places. But
do you see the problem?

Think of this: if I had a number as the result of some calculation
that came to @.123456789, and the computer would only display
to eight places, then I would read on its screen 0.12345678 which
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is pretty close I'll admit. But it could have displayed the number
0.12345679 which would have been only 0.00000000! out from
the real number instead of ¢.000000009 out. Follow?

If you don’t follow, don’t worry. This isn’t school, and if you
don’t mind about the intricacies of rounding, I don’t mind either.

If you think you’ve got that rounding idea in your head, let me
just add a couple of things to make it a bit clearer, If you have a
number in the first non-displayed decimal place greater than five,
it is clearly more accurate to bump the last displayed decimal
place up by one. And that is why 2/3=0.66666667 on the
Spectrum.

Equally, just cutting the first non-displayed number off and
throwing it away if it is less than 5 (or equal to 5) is getting the
best accuracy. Thar’s why 1/3 is shown as 0.33333333. Just
cutting the last figure off is called ‘truncating’. (When I first
came across the word ‘truncate’, it conjured up visions of
someone cuiting off an elephant’s trunk, so that's how I
remembered it!)

So what else is there about the Real Line? Well, I suppose you
could ask why we call it the Real Line. And I could say because
it’s a line full of real numbers. There are also unreal numbers,
but we’re not going to discuss them here, I absolutely insist we
leave it all until later.

2 Variables and constants

Try:
PRINT 3/11

and you will get 0.27272727. Here the repeat is a pair of
numbers, and if you try 22/7 you’ll get 3.1428571. There are
only seven decimal places in that one, and it’s not irrational (an
irrational numbers is one that cannot be written as a fraction),
but it’s a good approximation to perhaps the most famous
number of them all, PI. Pronounced ‘pie’ as in steak and kidney
pie, it’s the Greek letter writtenw. It looks to me like a Little
stool.

Those of you who've read Chapter 1 will have heard about PI.
It’s on the M key (or rather, above it, written in green), and the
reason Mr Sinclair’s engineers have gone to the trouble of
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putting it on a key is that it comes into lots of different areas of
maths, and it saves the tedious keying-in of the number every
time you want to use it.

It is, in fact, irrational and if you type:

PRINT PI

you will get 3.1415927. So the approximation 22/7 is not bad, is
it? Try PRINT (22/7)-PI, and you’ll get back 0.0012644893
showing that there’s very little difference between the two
numbers.

The approximation 22/7 was discovered by the Greek
mathematician Archimedes (287-212 gc).

I happen to know that a 35-figure approximation to PI is:

3.14159265358979323846264338327950288

because I've read it in a book. Can you see where the Spectrum
rounds it off? PI is an example of an irrational number that just
goes on and on without any repetitions at all,

Those of you who are good at noticing things might have seen
a coincidence. Back on page 18 I said that if you were really
adventurous you might like to try 355/113. Look back and see
what it comes to.

That is the best approximation to PI I've ever seen just by
dividing two numbers! And it didn’t escape the attention of Tsu
Ch'ung Chi (430-501), a Chinese engineer who found it too. If
he’d had a Spectrum, he could have got to it much more quickly!
He could’ve used Program 9.

Program 9 looks for an approximation by dividing integers by
other integers; it never lets an integer go above a thousand, and it
looks for PI to three decimal places. Try it and see if it will find
both Archimedes’ and Tsu's approximations. It takes over 15
minutes, so wait for it!)

Program 9

S5 REM PRDGRAM 9

FI1 APPROXIMATIONS

18 FOR n=4 TO 100

20 FOR d=INT (n/4) TO n/3
30 LET p=n/d
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4@ IF p>rPI-8.0001 AND p<PI+0.0
BB1 THEN PRINT n;"/"id,n/d

S8 NEXT d

&0 NEXT n

7@ BEEP 10,15

This program looks a bit more complex than those in Chapter
1, and so it is. But it does contain some quite subtle points in
there, and so I thought I'd better explain them to you. You might
have sussed out that ‘n’ stood for numerator and ‘d’ for
denominator, and it would have been possible to run both n and
d from 1 to 1000. But that would have taken ages, even on the
super Spectrum. So line 20 has some means of keeping the
running time short by excluding obviously wildly wide-of-the-
mark examples. We know that d is going to be between a quarter
and a third of n. Line 40 selects values within the required
accuracy range, i.e. between PI-0.0001 and PI+0.0001.

Program 9 is rather daft from a mathematical point of view
because it relies upon knowing PI to find approximations, bur it
does serve to show just how clever old Tsu must have been. We
have shown in a program taking over 15 minutes to run that his
approximation is the best that could be got using two integers
less than a thousand!

This is all very well, but what is PI? We know its value pretty
well and lots of its history, but what's all the fuss abour?

It’s a fundamental constant. It’s so important in maths it gets
into almost everything, and a couple of good examples are circles
and triangles.

The reason the ancient Greeks got to know about PI is because
they were into architecture, and that meant they had to be into
geometry. (Just you try building temples without understanding
circles, squares and triangles!)

Consider this. If a piece of string is laid in a circle and the
circle is one yard wide, then the piece of string is PI yards long.

Yes, it's true: the diameter of any circle (the width, if you don’t
like the word ‘diameter’) is related to the distance round the
circle (called the circumference) by the constant PI.

PI is called a constant because its value never changes. Other
constants are all over the place in maths and the sciences~the
speed of light, for example, or the constant that converts inches
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(v centimetres, or something called ‘e’ that you’ll be meeting
later in the book. There are lots of them, but PI is probably the
ling of them all.

Consider also this. If you have a circular table top, and the
Jistance from the centre to the edge is one yard, then the area of
ihe table top will be PI square yards.

Again we have the odd result that the distance from centre to
edge (radius) is related to the area by our pal PI. We can write
cquations for both these results (if you are uncertain about what
cquations are, read section 3 of this chapter and find out):

C=PI*d (where C is the circumference and d is the

diameter)
A=PI*r*r  (where A is the area and r is the radius)

You can see, if you draw an accurate circle and a diameter and
radius on it that a diameter is twice as long as a radius, or as an

cquation:
d=2*r

Let’s put the Spectrum to work on circles:

Program 10 CIRCLES AND PI

5 REM PROGRAM 1@
CIRCLES % PI
1@ INPUT "Radius in cm? (1 to
g7 " -
20 PLOT 12B,88: DRAW R,0: PRIN
T "Radius ";R;" cm": BEEF 1,20
Z0 PLOT 128,88: DRAW —-R,0: PRI
NT "Diameter ";R*2;" cm": BEEP 1
20
' 4@ CIRCLE 128,88,R: PRINT "Cir
cumference ";R*2%FI;" cm": BEEP
1,20
M@ PRINT "Area "iPIXR¥R;" sq0.C
m"

The BEEPs are in there because otherwise it zooms through the
program, and you can’t follow it. It could have been done with
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PAUSE instructions, but BEEPs sound better!

When run the program stops to ask for a radius length in cm. It
then draws a scale model of the circle (approximately 10 rimes
smaller: measure it and see) and gives you its vital statistics.

If you want to use radius lengths greater than 87 it will not

work, but if you just want to work out the vital statistics alone try
program 10a:

Program 10a CIRCLE STATISTICS

S REM PROGRAM 10a
CIRCLE STATISTICS

18 INPUT "Radius? ";R

2@ PRINT "Diameter "IR®¥2;" uni
tsll

38 PRINT "Circumference "j;R#2#
FI;" units"

48 FRINT "Area "jR*R*PI;" sgua
re units”

The beauty of that is that you can get radius lengths of any size
and any units. You can choose inches, centimetres, miles, chains,
rods, poles or perches . . . anything you like. I always found it
strange that the area of 2 circle is measured in square inches.
Well, the volume of a sphere is in cubic inches, isn’t it?

Anyhow, all this PI stuff is getting off the beaten track. This
section is supposed to be about Constants and Variables so let’s
talk about them. What are they?

For once we have a piece of reasonably plain English:
‘constant’ meaning unchanging, and ‘variable’ meaning the
opposite. Now when you apply that to numbers it comes down to
this: in an equation like C=PI*d, PI is a constant. You know its
value and that value never changes no matter when you use it.
You also have other quantities, d and C, which are variables. So
that if you’re talking about a big circle, both C and d would be
bigger than the C and d in a small circle. The PI, however, is
always the same.

In the Spectrum, variables are specified using a letter or a word
made of letters and numbers, e.g. R, C2, Diameter, Area7. This
is s0 because it often helps to have a name of a variable give you a
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. lue to what it’s a variable of, So if we called a variable for the
1adins of a circle R, we’d be able to read the program better than
il we called it C or f or something. .

[n ordinary non-computing maths, \.rariables are usually just a
wingle letter, like the three sides of a triangle might be‘ called a, b
and ¢. And when ordinary letters run out they sometimes go on
lo Greek letters, especially for angles. Theta is a favourite. It
looks like a circle with a bar in it: 8. )

Constants are often found on old exercise books, converting
one set of units into another, such as Imperial units into metric.
So that you might read:

1 metre=3.28ft
1 litre =35.2 fluid ounces
1 mile =1.609 kilometres

Those unhealthy looking numbers are constants. They relaa_i
Imperial measures to metric measures and vice-versa, bccaus? i
you ask how many feet there are in, say, 10 metres, the equation
would be:

10 metres=3.28*10ft
=32.8ft

The 3.28 stays in there all through until you do the
ltiplication.

mlllf ttlfe Spectrum had not had a PI key, it wouldn’t have stopped
you using it to work out the areas of circles and so on. ¥t would
have meant that you’d have had to find an old exercise book
somewhere that told you the value of PI, and then you could
have defined it to the Spectrum with a LET instruction.

LET instructions are how you get the information into the
computer in many cases, and sometimes they tell the computer

rform a calculation. )

me:mgmber how all along we’ve been using the Spectrum‘s
built-in calculating facility? We just tell it to PF_&I].\IT 5+4,and it
rerurns 9. LET does the same thing, only invisibly!

If you were to write:

10 LET a=5
20 LET b=4
30 LET c=a+b
4¢ PRINT ¢
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it would give you 9. But it only prints it because of line 40. So
what if you delete line 40 and run it again?

Nothing!

Wrong! It does do something. It sets a variable called ‘a’ equal
to five, it sets a variable called ‘b’ equal to four and it adds the
values of a and b and sets ¢ equal to the sum, 9. In other words,
the Spectrum has been thinking about it all without writing
anything.

And almost all BASIC computing is like that: there are
instruction that make the computer #hink and other instructions
that make it show you what it has thought. In this book, we're
most concerned with the thinking part, because, as Programs 10
and 10a showed, if you want pretty displays, you’ve got to make
sure the Spectrum doesn’t try to draw off its own screen or plot a
letter on the other side of the room! Program 10 gives nice
circles, but 1¢a is far more powerful as far as being a calculating
aid is concerned.

But don’t worry! We shall have both!

3 Equations

Albegra: what a horrible name! But what a powerful idea. It was
algebra that built the pyramids and St Paul’s Cathedral. It was
algebra that put those men on the moon.

My dictionary is interesting on algebra. It says that the word
comes from the Arabic (another race famous for their
mathematics, the Arabs) words, a/ meaning the and jabr meaning
to fix (more or less). So algebra is the fixer.

Most people have a hazy notion that algebra is arithmetic with
letters instead of numbers. But that idea is misleading, because
there doesn’t seem to be any way you can do arithmetic with
letters. I grant you, though, it does look like arithmetic with
letters.

An equation is, if you like, one of those weighing scales you see
on a zodiac sign for Libra. You know the sort: a couple of dishes
hanging on the ends of a crossbar. Put something in the right-
hand pan and some weights in the left-hand pan, and when the
two weights are equal, you have your answer.

With equations, the same applies. You have something on the
left-hand side, something on the right-hand side and between
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them is an equals sign (which looks like this: =) meaning that
what is on the left equals what is on the right. And that’s all an
equation is. . )

Algebra is concerned with tinkering around with equations to
get a useful result and has rules that help you to alter equations
to suit yourself. .

Remember page 237 We had a couple of equations for the
circle. Remember C=PI*d relates the distance round a circle to
the distance across it. We could write:

Circumference=PI*diameter
but it’s better shorthand to write:

C=PI*d
So there we are. We know the value of PI: it’s 3.14159. . . etc.
We only need to know the diameter and we can calculate the
circumference. Do you see how it works?

By getting to know what the right-hand total is, we can say Lhat
since it is an equation the left-hand must equal the righr-hand side,
and we have our answer.

We try to arrange equations so that the thing we want to find
or calculate is on its own on the left-hand side and all the other
constants and variables are on the right-hand side. But what if; in
the example above, we knew the circumference and wanted to
calculate the diameter? That is why we have to rearrange the
equations. '

Now, we’ve decided that we want to know the diameter d 'fmd
that we already know the circumference C. PI, of course, is a
constant, and the Spectrum remermbers its value even if we donjt.
So let’s start off with understanding that we need to get d on its
own on the left-hand side. (I'll abbreviate ‘right-hand side’ to
RHS and ‘left-hand side’ to LHS))

Rules for algebraic rearrangement

RULE 1: You can make an LHS into an RHS and vice-versa.

That is, you can swap sides )
(So we can make C=PI*d into PI*d=C, just swapping RHS and

LHS.)
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RULE 2: You can do anything to one side so long as you do it
to the other side as well.

This means that you can add anything to both sides, subtract
anything from both sides, multiply both sides by anything, divide
both sides by anything. But take care. If you do it to one side,
you must do exactly the same to the other side.

And it’s no good just deciding, say, to add 5 to both sides and
divide both sides by 14.8. You’e got to look carefully at the
equation, bearing in mind what your aim is, and choose to do
something that helps you achieve your aim.

In our example we have now got, PI*d=C, so that our aim of
getting d alone on the left is only one step away. We can see that
PI times d on the left could be made into d alone by dividing the
LHS by PI. (Think about that carefully, What I’m saying is that
PI*d/P1 is really the same as d on its own, because it’s taking d
and multiplying it by PI and then dividing it by PI, and the two
operations cancel one another out.)

But we must do the same to the RHS too. Giving:

PI*d/PI=C/PL

and because the LHS is really the same as d alone, we can write:
d=C/PI

And that’s it! We’ve achieved our aim of getting d alone on the
LHS.

Now let’s step back a couple of paces and have a good look at
exactly what it is we’ve achieved. What does d=C/PI mean?

It contains the same information as the equation we started out
with, the same constant PI, and the same two variables d and C.
We've just changed it round so that if we know the
circumference we can calculate the diameter.

So let’s try it out. Back to the Spectrum.

Program 11 REARRANGEMENT

S REM PROGRAM 11
MASSAGE

1@ INPUT "Enter diameter ";d
20 LET C=PIxd
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3@ PRINT "Circumference is ";C

AQ INFUT "Enter circumference
II;C

5@ LET d=C/PI _

6@ PRINT "Diameter is "“3d

Line 10 asks you to choose any d'iameter. Line 20 u;es ow;‘;
original equation to calculate the v:.lrcumference, and line
prints it out for you to sec. Then line 4@ asks you to input a:
circumference, and you should read the one you have w;f
calculated and whose value is printed at the top of the. screen.
you enter that one, line 5@ will do the reverse of what lu}e 20 dﬁd,
and you should get back to the dia{neter you started w1'th. lT zt
way we prove that the line 50 :cquatcllon (the one we manipulated)

; ing what we want it to do.

) Ir{et?rlnl );tc;mfrel\gv times, but remember the diameter you used and
compare it with the diameter it gives you back. . .

If you do it often enough you will _finc_l that sometimes : e
Spectrum gives you back a diameter which is not exactly qu.;al t’o
ihe one you started with. Can you see why, this should be? It’s
hot that our equation is a bit inaccurate. It’s that the Spectg;m
can’t use the actual value of PI, but only the_one rounded o to
vight decimal places. If you look at 'the error involved, 1:hough,f it
is really tiny, and unless you’re going to use your Spectrum for
astronomy or nuclear physics, it probably won't worry you too
m;celi]';)re we leave the subject, we really ought to have a look at a
few more of these manipulations. Stick to‘Rules 1 and 2, a'nd you
won’t go far wrong. Remember that ad.dlpg_ and subtracting are
opposites, and multiplying an:li ) dmdtqg are opp!cl))slzttfs.
Remember also that any number divided by itself is 1 (P1 or
«xample is 1, and you can try it with other numbers,) and any
number minus itself is zero, (PI-PI=0)

Try a few of these with a pencil and paper:

Ifx=a+b+c, get b as the subject of the equation. (Subject just
means the one on its own on the LHS.)

This is it in full:

x is the subject of the equation at present, let’s write it out as,
atb+c=x

—
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If we now subtract a from both sides we ger,
a—atb+c=x-a

and a—a is zero, so we have,

b+c=x-a

If we now do the same subtracting ¢ from both sides,
b+c—c=x-a-c

and since c—c=0, we have,

b=x—-a-c¢

And that’s our result.

It’s odd, but for ages after learning how to do algebra to the
point we've now reached, being able to manipulate equations and
s0 on, I had a kind of mental block over mathematical equations
found in books. It was as if I'd been reading a book, and suddenly
there was a line of Arabic, just some utterly unknown language 1
couldn’t begin to read, which was silly because I could have read
it to myself if I'd tried. I just seemed to skip over it, and so it took
me a long time to get into the language of maths.

So I advise you to read equations when you get ro them.
Pronounce them to yourself just like you might pronounce a line
of poetry to yourself. If, for example, you read:

x=(2*a)+((5*a*b)/c)
{c=d)

it looks like a muddle of marks on the paper and it’s easy for your
eye to tell your brain that it has found a mess of barbed wire and
you ought to miss it out. But try to read it; it sounds like this:

‘x equals two times a . . .

plus ...

five times a times b over c . ..
all over ¢ minus d’

Notice how I've had to present the ‘poem’ in several lines in
order to break down the parts of the right-hand side so that it
means something unique. The real equation itself is broken
down that way too, by using brackets. The brackets are like little
parcels of numbers and variables that must be worked out as a
group first.

I’s a great idea because it sorts things out and makes the
equation a lot easier to work out. If we represent the first bracket
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i the above equation by a letter A, the second one by B and the
third by C, it would simplify matters quite a lot:

ITA =(2%3)
and B=((5*a*b)/c)
and C=(c—d)

then we could substitute the letters for the brackets and write:

x=A+B
C

which gives you the general idea. .

We'll be coming back to this bracket business later, because it
is really important for the Spectrum to get the brack‘ets ?ntered
correctly, If you're not convinced of that and are inclined to
yawn a bit and say it’s all a bit too technical, just take a look at -
this example:

Enter this in your Spectrum
10 LET a=2: LET b=3: LET c=4
20 PRINT a*b+c

You ought to get back 10. Then add,

30 PRINT (a*b)+c
40 PRINT a*(b+c)

And yow’ll find line 3@ gives you 10 as before, but line 40 gives
you back 14.

Same variables, same order, same multiply and add signs, but a
different result! I told you it was important. If you evaluate (that
means ‘work out’) the two expressions (that means ‘combination
of variables’) you will see why. The one in line 30 is (2 times 3),
that is 6 .. . plus 4 . .. which is 10. .

The line 40 expression is 2 times (3 plus 4), or 2 times 7, which
is 14.

You might ask yourself why line 2¢ gave 10 as a result instead
of 14, Why indeed. It’s actually because the Spectrum has an
inbuilt order for working out expressions. It will evaluate the
multiplys and divides before it evaluates the adds and subtrat_:ts.
Unless of course you tell it you want it to work out an expression
in a certain way by using brackets, like we did in line 40. This
idea of some operations being carried out before other types of

—
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operation is called priority. Before discussing it properly,
though, we have to get a few other things under our belts,

Let’s look at a couple of other things. On my list I have a note
to talk about FOR ... NEXT loops again, and I want to do so
because they’re devices that automate program operations. They
make programs easier to use, and it’s a good idea to get to know
them.

There are four instructions in Spectrum BASIC used with
FOR ... NEXT loops: FOR, TO, STEP and NEXT.

The purpose of a FOR . . . NEXT loop is to stop the program
going just from top to bottom and to make it loop back over itself
several times. If that’s not very clear, it’s a quite simple thing to
understand on the machine itself, and at the risk of boring you
folks who read Chapter 1, here’s a simple example:

Program 12 SIMPLE FOR ... NEXT LOOP

= REM PROGRAM 12
SIMPLE FOR LOOP
10 FOR N=1 TO 1@
2@ PRINT “L-DOD number n;n
30 NEXT n

Run it and see what happens. Line 10 tells the Spectrum how
many times to go round the loop. You can change the values that
the loop variable n starts and ends at. (Try it! Experiment with
different numbers than 1 and 10.)

Line 20 is the part of the program that is being looped
through. It happens to contain a PRINT instruction to help you
see what’s happening, but it could contain just about anything.
Line 30 is the NEXT instruction. It serves to send the program-
watching Spectrum back to line 16 where the FOR instruction is
to be found and make n take its next value (in this case 2).

But what if you’d wanted to count the number down from ten
to one, instead of up from one to ten?

No problem: you just use STEP. The number associated with
STEP tells the Spectrum how many to add to or subtract from n

each time it goes around the loop. So that if you make line 1@ of
our Program 12 into:

10 FOR n=10 TO 1 STEP -]
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] r ill find the numbers do indeed run from 10 to 1.
mll'!.x}p(::l:iriem! Use different values of STEP variable. .Get a feel
tor how the FOR ... NEXT loop wc:r;ks. Try using small
Jdecimals like 1.5, or expressions like 2*5/3.

h;’:;r)i will find ,that fo[r, a FOR ... NEXT loop to work, the
number before the TO must be smaller than that after the: TO
when the STEP variable is positive, and it must be the bigger
number first if the STEP variable is negative. That makes sense,

1CS - .

! F?:ntq 1c:ur point of view, it is going to be a lot easier using FOR

.. NEXT loops to take the drudgery out of some of the more
complex equations we’re going to get on to later.

Have you ever seen a nest of tables? It’s a set of three or four
voffee tables each one slightly smaller than the last so that you
an stack them inside one another.

FOR ... NEXT loops can nest as well. _ ‘

You can fit FOR . . . NEXT loops one inside another like this:

Program 13 RANK AND FILE

5 REM PROBRAM 13
RANK AND FILE

1@ FOR x=8 TO 248 STEP B

20 FOR y=8 TO 148 STEP B

30 PLOT x,y

40 NEXT vy

50 NEXT x

You see how the y loop is entirely inside the x loop. If you
swapped lines 4@ and 50 into:

40 NEXT x
50 NEXT y

it wouldn’t work. o -
Get DIAGONALS by changing line 30 into:

30 PLOT x,y: DRAW 7,7

or more interestingly,

30 PLOT x,y: DRAW 7,0: DRAW 0,7: DRAW -7,0:
DRAW 0,-7

to get some LADDERS.
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Now go back to Program 13 in its original form, run it and
count t_he dots made in each vertical line. That tells vou how
many times it goes round each y loop for each x Ioof). If you
count thc‘ number of dots horizontally you will find the number
of times it passes round the x loop. And it does it all in five
seconds, which is much faster than you trying to specify each
plot individually yourself,

The use of PLOT and DRAW in FOR . . . NEXT loops forms

the ba;is ol_' the graph plotting we’ll be meeting later, and that
really is quite spectacular.

3

OPERATORS AND POWERS

I Operators

What are operators?
We've already met them as a matter of fact. Try these in your
head:

3+4=
2-1=
5%3=
6/2=

If you got 7, 1, 15 and 3, you certainly know your operators.
And that’s really all there is to it. That’s really all there is to
maths in general. The universe comes down to chemistry, and
chemistry comes down to elements, of which there are some
ninety odd. Maths is based on the number system and four basic
operators, and everything comes down to them in the end.
The famous four are:

Add +

Subtract -

Multiply * (or x if you are not into computers)
Divide [/ {or + sometimes)

I doubt whether you’ve lived as long as you have without doing
a few operations yourself sometime.

I might just have mentioned in Chapter 2 somewhere that add
and subtract are opposites. (Surely this must be so, because if you
take any number and add any other number to it, then subtract
the same number, you get back to the number you first thought
ofl)

Quilte true: 8+7=15 and 15-7=8, and it works for every pair
of numbers you care to try.
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The same is true of the operators * and /. There are two pairs
of operators then, and the pairs are:

Add Subtract
and
Multiply Divide.

We've established that the relationships between add and
subtract are that one is the inverse of the other— meaning that if
you do one and then the other, you get back to where you started.
You can establish for yourself that multiply and divide are
inverses of one another.

But what about the relationship between, say, add and
multiply? Is there a relationship?

Yes, I suppose you could say that multiplication is just a way
of adding lots of times repeatedly. For example, I could say
5%4=20 (5 4s are 20, or 5 times 4 equals 20). But it would be the
same as saying 4 groups of 5. And we could arrive at the answer
by doing:

5+5+5+5

that is, 5 added together 4 times. And that’s where the word
times comes from when we say 5 times 4.

Now if we can reduce all mathematics to four operators, and
we can reduce those four operators to two pairs of inverse
operations, and we know that of those pairs multiplication is just
a kind of repeated addition, then ... all mathematics is just a
matter of one thing: adding.

And since you already know about addition, we should have no
trouble with the rest of it, should we?

Try this:

Is a+b the same as b+a?
or, in symbols,
Isa+b=b+a true?

The answer is, generally, Yes, although (believe it or not) there
are some quantities that that can’t be said of. But they’re not
ordinary numbers like we’re used to, and we can leave that
problem until later.
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What about this, then:
Is a*b=b*a?

Again, generally speaking the answer is Yes, so it doesn’t
matter which way round we write the sum or product. (‘Sum’
means numbers added together, ‘product’ means numbers
multiplied together.)

What about this, though?

Is a-b=b—a true?

Try it out with a few numbers for a and b. And you can soon
see that it would not be possible to replace a—b with b—a in an
equation, because they’re not equal.

Then again, could we write:
a/b=bla?

Nothing stops us writing it, but it isn’t true!

Division is one of those peculiar inverse operations, and you
can’t replace a/b with b/a. Tty it with a=5 and b=2, or any other
pair of numbers you like. (With 5 and 2, a/b=2.5 and b/a=0.4)

In fact division can be a real pain in the neck to computer
users, because it’s often the source of a nasty little bug that will
crash a program with the report Number too big.

The Spectrum will only go so far along the Real Line. (Naturally,
it would have a job going all the way along it because it’s infinitely
long!) In fact the biggest number the Spectrum will handle is
around 100,000,000,000,000,000,000,000,000,000,000,000,000.
Not bad, you might think, but it’s surprising how easy it is to
exceed that limit with calculations involving probability (which
we’ll have a look at later on).

Consider this, though.

Take the number 1, and divide it (on your Spectrum) by 1.
Command it to

PRINT 1/1

And it will return 1.
Then decrease the denominator by a factor of ten,

PRINT 1/0.1

and you get 10 returned.
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Now try,
PRINT 1/0.01

and you have 100. There you can see the denominator getting
smaller and smaller, and the result getting bigger and bigger. If
you were to carry on reducing the denominator by a factor of ten
(that just means in practice slipping in an extra @ after the
decimal point each time), you will find that on commanding your
Spectrum to

PRINT 1/0.00000001

it will give you back 1E+8. And I guarantee that, if you don’t
know what that means now, you will after reading the rest of this
chapter.

Eventually, you will find that the Spectrum has given up
giving you back reasonable numbers like 1@ or 100 or even
1000000 (one million) and has automatically converted to giving
answers in a condensed way. 1E+8 is an example of that. It’s
called ‘scientific notation’ because scientists often use it. It’s
sensible, in fact, because it saves cramp when writing out a string
of zeros, or eyestrain (or brainstrain more like!) when trying to
read it. The number quoted above with thirty-eight zeros is a
good example. Far better to write ‘one followed by thirty-eight
zeros’, and better still to abbreviate that to ‘1E + 38’. More about
that later. For now, I must get to the point I was trying to make
all along: that as you make a denominator smaller and smaller,
the result gets bigger and bigger. And if you try to make the
denominator zero you are in big trouble, because the result will
be too big for the Spectrum to handle. (It doesn’t handle infinity,
and neither as mathematicians can we. The mind boggles!)

So, we have to avoid any sttuation where we might divide by zero
when programming.

Summary

1. There are four mathematical operators to remember: +, —,*,/

2. atb=b+a and a*b=b*a

3. But a/b does not=b/a and a—b does not=b—a

4. There is no way of handling a fraction whose denominator is
zero
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5. A shorthand system of writing very large numbers exists
called ‘scientific notation’

It might be useful to add a note about abbreviation as used by
mathematicians and in mathematical texts. You will see products
written without any multiplication operator between them. So
that, to use an earlier example,

C=2*PI*R becomes C=2nR

Whenever the operator is absent you can be sure that you are
meant to multiply the variables together.

And you would read it ‘C equals two pir’.

Remember the formula for the area of a circle?

Let me refresh your memory:

A=PI*R*R

That was how we remembered it. A mathematician might not
recognise it as we’ve written it, at least not immediately. That is
because mathematicians (famous for their shorthand) have the
habit of replacing PI with their favourite little Greek letter and
leaving out the multiplication operators. Moreover they co!lect
all the similar factors together and write a number above it to
remind themselves how many they’ve collected. So they end up
with:

A=1R?
And they read that ‘A equals pi r squared”.

And that brings us to section 2.

2 Powers

This business of multiplying and a_dding is worth thinking about

for a second or two. If we can write:
A=B+B+B+B as A=4*B

why can’t we have a shorthand for,
A=B*B*B*B

Well, we can:

A=B*
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But do you see how we have to write the 4 above and to the
right of the B? That causes people who write books problems,
and it is pretty inconvenient for Spectrum users too, and to get
around it, computer scientists came up with a flashy little symbol
that says it all:

t (found on the H key)

It is an ‘up arrow’ and is easy to remember because it gives you
the clue by pointing up to where the little number might have
been. So now we would write:

A=B14

which is read as ‘A equals B to the power four’.

Remember that: ‘to the power’.

Here’s a few for you to have a crack at. Try them on the
computer. Enter,

PRINT 213

You will get back 8 as your result, and this is so because 213
really only means 2*2*2 (2 multiplied by itself 3 times). Try
Program 14.

Program 14 POWERS OF TWO

5 REM PROGRAM 14
POWERE OF TWO

i@ FOR p=2 TO 1@

20 PRINT 2p

I@ NEXT p

Try replacing line 20 with: 280 PRINT “2 to the power ”;p;“
equals 7;2tp

This gives a better view of what’s going on. 2 to the power 0 is
1, 2 to the power 1 is 2, 2 to the power 2 is 4, and so on.

If you incorporate a FOR . . . NEXT loop to draw a graph as it
does its calculating, your Spectrum will show you how the
results rise dramatically. By the time p has reached 7, and the
string of 7 2s gives a result of 128, we have reached the limit of
our graph plotting capability (with program 14a that is!) because
p=8 means that 2tp=256 and our lines are out of range.
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Program 14a  GRAPH OF POWERS OF TWO

5 REM PROGRAM 14a

GRAPH OF PDWERS OF TWO
1@ FOR p=@ TO 8
2@ PRINT "2""jp3" is "327p
32 FOR n=@ TO 40
4@ PLOT n+128,@: DRAW @,2"p
5@ NEXT n
68 NEXT p

Which ought to give you a ‘feel’ for the way powers of
numbers soon take-off, growing very large very quickly.

Now go back to simple program 14, and, in line 20 instead of
putting 21p, replace the 2 with 3. Run it. The results are growing
even faster now, because you are looking at powers of three. Now
try it with 1@ instead, so that you are looking at powers of ten:

20 PRINT 101p

This is an interesting result because our old friend the
scientific notation has reappeared. (Because the numbers have
grown as big as 100 million, and that’s where the Spectrum gets
bored with writing the number out wholesale.)

Try,

20 PRINT 91p

And you can see that the last two values reached are in
scientific notation. If you look closely at the first of them, you
will be able to see that it's in two parts. It might be difficult to
read it, but in fact the 3.8742049 is just an ordinary decimal
number and the E + 8 part means ‘times 10 to the power 8, ‘10 to
the power 8’ is just a 1 with 8 zeros after it: 100,000,000, (Unlike
computers, people often write really big numbers with commas
in so they can keep track better. Don’t do that on your Spectrum:
it won’t understand at alll)

So we can write the whole thing out as:

3.8742049* 100000000
or,

387420490
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or, in English,
387,420,490
or even more in English,

Three hundred and eighty seven million four hundred and
twenty thousand four hundred and ninety.

What a saving in effort 3.8742049E+8 turned out to bel

But actually the Spectrum wasn’t giving us exactly the right
answer. Because it only quoted the number to seven decimal
_places, it couldn’t handle the whole number, which ought to
have been 387,420,489, I know, because I have a calculator that
works to nine decimal places!

It may worry you that you are bound to lose some precision by
quoting numbers to a limited number of decimal places. But
really it’s better to say that the number is accurate to a millionth
of one percent, and scientists rarely manage thar sort of precision
in their data anyway.

So where does that leave us?

So far we have considered powers which are positive integers.
What about other sorts of number? It can be done. Tty raising 9
to the power 1.5 by entering,

PRINT 9t1.5

and you get 27. Which is really very surprising indeed, since we
have defined powers as repeated multiplications, and how can
you multiply 9 by itself 12 times?

Let’s take a new section to see how it works.

3 Powers, Episode Two

Remember our circle? Long ago we talked about its area and its
circumference (circumference being the length round the
outside), and we had:

C=2*PI*R (where R is the radius)

Could you, here and now, build up an equation for the perimeter
of a square? The perimeter of a square is the line round the
outside. It is probably true to say that a perimeter is to a square
what a circumference is to a circle.
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Have you thought what you need? First you need a variable for
the perimeter, and P seems a reasonable choice. Then you };aye
10 decide what you want it in terms of. Suppose we want it 1n
terms of the length of one side, which we can call s.

Then, we have to think what makes a square a square and not a
iriangle or a rectangle. Just that it has four sides, all the sides are
the same length and each corner is a right angle.

From these things we can say that,

P=s+s+s+s
or,

P=4*g

And there we have it! We have successfully developed a
formula for the perimeter of a square.

What about area? You did it for a circle: what about the area of
a square? . )

Take the square which has sides 1 centimetre long;

H t]

mathematicians might use the phrases ‘a 1-centimetre square’ or
‘a square of side 1 centimetre’ to describe it. It looks like this:

+

lem

v

<+ lcmp

1f we are going to make a square by stacking these lcm squares
together, we can’t do it with two or with three. We need four:

T

2ecm

l

And the next biggest square is going to have nine squares in it.
Now comes the clever part. If our first square, lcm on a side,

has 1 unit of area, then a square of side 2cm has an area of 4

units. And a square of side 3cm has an area of 9 units.
Suppose we have 6 lcm squares stacked so that there are 2

e 2CM ——p
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rows of 3. Then the area of the rectangle (oblong) vou get is 6
units, the length of the rectangle is 3cm and its height is 2cm.

Cap you see what’s happening? To ger the areas we're just
multiplying the length by the height.

When you look at the general formula for a rectangle, it can be
Wrltten:

A=L*H (Rectangle)

where‘A is the area, L is length and H is height. The squares are
a Spemal‘sort of }'ectangle, though. We know they have a length
and g height which are equal, and so we can write:

A=g*s (Square)
where s is the length of a side. And we can write:
A=512

‘Aﬂd that’s why they call any number raised to the power two a
square’, Program 15 will generate squares. You can enter the
length of a side, and it will tell you the area. It also handles units
t0 your taste. But you can enter any kind of unit you like, so if
you enter ‘eggs’ for the unit of length, you will get ‘square eggs’
for the area! Better to stick to metres, inches, etc., I think.

Program 15 SQUARES

S REM PROGRAM 15
SQUARES

"1B INPUT "Enter length of side
is

2@ INPUT "Enter unit of length
”;s$

3@ PRINT s;" "psHi" s ’

guare

4@ LET A=s"2 ’ ’

5@ PRINT "has area "3A;" sguar
e "i5$

4@ FAUSE 300: GO TO 1@

Use the SHIFT CAPS and BREAK key to get out of this
program.
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By the same token, think of cubes. Cubes are three-
dimensional squares, squares with depth, and they have length,
height and depth all equal.

The volume (meaning the block of space inside the object) of a
cube is going to be the product of height, length and depth,
which for any old 3D oblong is:

V=L*H*D

where V is the volume, L the length, H the height and D the
depth. For all cubes, we said that L=H=D, and we can call it s
(for side), so that:

V=s*s*s
or,
V=st3

And we can write Program 16 to calculate cubes. As with the
case of squares, any number raised to the power three is called a
cube.

Program 16 CUBES

5. REM-PROGRAM- 16

CUBES™
1@ INPUT "Enter length of side
II;E
20 INPUT "Enter unit of length
";s¥

sa PRINT 5;" "‘5‘;“ ':uhe“

40" LET V=s"3

50 PRINT "has volume ";Vi" cub
ic ";s¥

&@--PAUSE- 3@@: GO TO 1@

Remember the circle? If a 3D square is a cube, a 3D circle is a

sphere.
Spheres enclose space much as cubes do (like all 3D shapes do)
and so a sphere has volume. What’s the formula for a sphere’s

volume?
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_ I have no intention of developing it for you. I'll just quote it
instead:

V=(4*PI*R13)/3 (where R is the radius)
or, in mathematical form,

V=4nR’
3

The volumes of all solids, as 3D shapes are called, are

measured in cubic centimetres or cubic inches. They don’t have
to be cubes.

Interestingly, if we look at what we’ve been doing in general
terms, we’ve just looked at the instruction:

PRINT X1Y

?nd Yve’ve seen that X can be any kind of positive number. What
if X is a negative number?
Try this on the Spectrum:

Program 17 INVALID ARGUMENT DEMO

S REM PROGRAM 17
INVALID ARGUMENT DEMOD

1@ FOR N=5 TO -5 STEF -1

20 PRINT N~2

3@ NEXT N

It goes all right with the positive values of n, but as soon as the
n steps down to —1, the Spectrum objects.

So don’t try to raise a negative number 1o a power on the
Spectrum.

Although the Spectrum doesn’t like it, a negative number can
!:)e squared or raised to any other power. The point to remember
is that if the power you are raising a negative number to is even
(2, 4, 6, etc.), then the result is positive, but if the power is odd
then the result is negative. This is so, because pairs of negatives
Fancel‘one another out. But when you have an odd number of
items in the product, there’s one left over after all pairs have
cancelled out, and it makes the result negative.

Which brings us back to peculiar kinds of Y in X1Y. We could
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have numbers other than positive integers. Let’s take positive
fractions. What is the meaning of X%(1/2) for example.
Try this:

Program 18 ROOTS

5 REM PROGRAM 18
ROOTS
1@ FOR n=1 TO 1@
28 LET s=n"2
30 LET r=s"(1/2)
4@ PRINT n;TAB 1@;s3TAB 2@5r
5@ NEXT n

This program gives some insight into the meaning of a fractional
power. Line 20 gives a variable s the value of n squared. Then we
raise s to the power of (1/2) in the next line. And when you run
this program, you’ll find that raising a number to the power 2
and then raising it to Y brings you back to the number you
started with. Does that process ring a bell? Doing some operation
and then another operation and getting back to where you
started?

It means that you've just done something and then done its
inverse. So if raising to the power 2 and raising to the power )
are inverses of one another, can we make a general rule?

Yes, we can. In fact, XtY has an inverse XM1/Y). Try it out
yourself with Program 18, making the 2 in line 20 and the 2 in
line 30 into say 3 or 5 or something.

The name of the inverse process to raising to a power is called
‘taking a root’. And the power (1/2) is called a square root, and
the power (1/3) is called a cube root.

For instance, with the area of a square, suppose you had a
square and you knew its area was 100 sq. cm. Then you could
calculate the length of its side, because we already have that

A=st2
and inversely,
s=AN1/2)

(Remember that you can do the same process 10 both sides of an
equation.) So in our case
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s=100%(1/2)

Check it on the Spectrum with
PRINT 10010.5

The answer is 18, and you can check it by raising 10 to the power
2,

Suppose we take a look at our original example now: 911.5

When you instruct your Spectrum to PRINT 9%1.5, it will
return 27. Can you see why?

It makes it much easier if we write 1.5 as 3/2, because the two
processes at work here are made more visible. (Just satisfy
yourself that 1.5 is equal to 3/2 first.)

At one and the same time we are cubing 9 and then taking its
square root: that s, raising it to the power 3 and then raising that
to the power (1/2).

If you are not crystal clear on that, try the following:

PRINT 94(3/2)
And then

10 PRINT 913
20 PRINT 729%(1/2)

and you can see the secret laid bare.

This subject is often found in maths books under the heading
‘indices’ (pronounced in—di-sees) because the power number is
called an ‘index’ and, being Latin, the plural is indices. (Later
we'll be meeting another Latin term ending in x, matrix, and the
plural of that is matrices.)

So it is with decimal indices. T'ry to think of them as fractions
in which the numerator raises to a power and the denominator
takes a root. Program 19 runs through a few possibilities.

Program 19 FRACTIONAL INDICES

5 REM FROGRAM 19
FRACTIONAL INDICES
1@ INPUT "Enter X ";X
28 INPUT "Enter a "ja
3@ INPUT “Enter b ";b
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40 LET Y=a/b

5@ LET R=X"Y

6@ PRINT X3 to the power ("ja
=ll',ul;b;u, 15 n'R

And you can make the numbers as involved as you like.

There remains one major category of indices we’ve not looked at
yet: negative indices.

What does 2%( - 3) mean?

We can show its value is 0.125, and because I'm used to
numbers I happen to recognise that as 1/8. Which is interesting
because 213 is 8. Is it possible that in general,

XN~ Y)= 1L(X1Y)

Indeed it is. In general X to the power minus Y equals one over X
10 the power Y.

It might be possible to put together a program that
demonstrates this rule:

Program 20 NEGATIVE INDICES

5 REM PROBRAM 20
NEGATIVE INDICES

1@ INPUT "Enter X "3X

20 INPUT "Enter Y ";vy

3@ LET L=x"(-y)

4@ LET R=1/(x"y)

5@ PRINT L,R

If you like you can automate the program:

Program 2da  AUTONEGATIVE INDICES

5 REM FROGRAM 20a
AUTONEGATIVE INDICES

10 LET x=RNDx10Q

20 LET y=RND%*1@

30 LET L=x"(~y)}

40 LET R=1/(x"y)
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5@ PRINT L,R
&0 GO TO i@

And the pairs of numbers you generate are identical. Although
the electronic routine in the Spectrum’s ROM that deals with
powers is slow (very slow!), it nevertheless seems to be accurate.

4 Scientific Notation

We’re now in a position to take a full look at the idea of scientific
notation:

Program 21 POWERS OF TEN (COMPLETE)

5 REM FROGRAM 21
POWERS OF TEN (COMPLETE)
18 FOR p=-10 TO 1@
28 PRINT 107p,p
3@ NEXT p

It is just an extension of Program 14 and throws up some
interesting points. It shows that scientific notation can deal with
very small numbers as well as very large ones. That’s what the +
and - signs are all about. The results also bring to light a small
bug in the Spectrum ROM. Run the program and see what I
mean.

The first point to note is that 18t@=1. (In fact any number
raised to the power 0 is defined as 1.)

The second point to note is that 1011 is 10. (In fact any number
raised to the power 1 is itself: Xt1=X.) Perhaps you could write
a small program to demonstrate those two points,

The next point to note is that when the number of zeros gets
beyond seven, scientific notation kicks in and we get numbers
like 1E+8 (which reads ‘1 times 10 to the power 8’). Also, as the
numbers go smaller than 0.00001 we get scientific notation
coming in with numbers like 1E—6 which is read ‘1 times 10 to
the minus 6’ or zero point zero Zero zero zero Zero one, six zeros
in all, one of them before the decimal point and five of them after
it.

And finally, the bug. I think that 10t - 10 should be 1E-10.
The Spectrum gives 9.9999999E—11. This is very nearly

l
Q:

k'_sifil!—-t.i,
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18E—11 which is equal to 1E—18, but it isn’t exact. I think
something must have happened with rounding in the ROM, It’s
not a very serious problem, though.

By the way, the letter E stands for Exponent. Exponent is just
another word for index. There is a word for the decimal part of a
scientific notation number too: mantissa. So that in the number
6.397E~5, the exponent is —5 and the mantissa is 6.397.

This is the way the Spectrum does it, but if you look at a
physics or astronomy book and find some large numbers, or look
elsewhere for very small numbers, you’ll see them written in this
form:

2.35x10°
1.42x107*

2,350,000)
(0.000142)

which makes it very much clearer.

As an added extra, the Spectrum has a special function for
giving square roots. It is called SQR and can be found on the
green label above the H key. Test it out with this program:

Program 22 SQUARE ROOTS

S REM PROGRAM 22
SAUARE ROOTS

1@ LET X=INT (RND%1020)

2@ LET Y=X".5

3@ LET Z=80R X

4@ PRINT Y,Z

5@ G0 TO 1@

All we are doing here is comparing the square roots generated
by the two different expressions in lines 20 and 30. You would
expect the two columns to be identical, and so they are. So we
must have been right about all that fractional index stuff.

SQR is not happy about negative numbers, and in your use of
this function you must be careful not to try to use it on one. Can
you see why this restriction should be?

Try to think in terms of the square and the square root as being
inverses of one another. If you start with a number that is a
square of another number, say 100 which is the square of 10,
then the 10 is the square root of 10@. So far so good. But consider
this: 10 is the number which when multiplied by itself gives 100,
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but there is another way of multiplying a number by itself to get
109: —10*-10=100 (because the negatives form a self-
cancelling pair). So the answer to SQR 100 is really a double
answer, 10 and also — 10. (This is the doorway to a whole branch
of mathematics called complex numbers, and we can investigate
that later.)

So, since (— 18)12 is actually 100 (though your Spectrum won’t
deal with it), what number when squared gives —100? Well,
without starting a discussion on complex numbers, I'd have to
say there isn’t any such number. The very act of multiplying a
number by itself if creating a self-cancelling pair, so that the two
minus signs are also cancelled.

Program 23 is intended to give you a feel for the SQR function,
drawing a graph of the square roots of the integers from @ to 255.

Program 23 ROOT GRAPH

S REM PROGRAM 23
ROOT GRAPH
1@ PLOT @,2: DRAW 255,@: DRAW
®,175: DRAW -255,@: DRAW @2,-175
2@ FOR N=@ TO 255
3@ PLOT N,@: DRAW @, (SER N)*1@
4@ NEXT N

Line 10 draws a border line, the FOR ... NEXT loop draws
the graph, and the number 1@ is in line 3¢ to enlarge the graph so
it fits the screen better. Try leaving it out, or use another figure
as scale factor instead.

As you can see the graph rises quickly at first and then more
slowly as the numbers get bigger, just the opposite of what
happened when we graphed out the powers of 2 in Program 14a.
It’s just what we might have expected, because powers and roots
are inverses.

The next program rather obligingly draws out the graphs of a
whole host of roots. Not just square roots, but cube roots, fourth
roots and so on, and you can see that as the Y in X%1/Y)
increases, the result is an increasingly flat graph.
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Program 24 ASSORTED ROOTS

5 REM PRDBRAM 24
ASSORTED ROOTS
1@ PLOT @,@: DRAW 255,@: DRAW
@,175: DRAW —255,0: DRAW @,-175
20 FOR ¥Y=2 TO &
3@ PRINT AT 1,1;"Graph of “;VYj
“th root o
4@ IF Y=2 THEN PRINT AT 1,9;"
square root"
5@ IF Y=3 THEN PRINT AT 1,93"
cube root"
4@ FOR x=0 TO 175
7@ PLOT %,(x"(1/y)) %13
B@ PRINT AT 3,6;" Ve
PRINT AT 4,6;3" .
9@ PRINT AT 3,63x: PRINT AT 4,
bR (1/Y)
18@ NEXT X: NEXT Y

The values are flashed up (literally!) as the graph draws itself
across the square. The scale factor (to make the graph fit the
screen better) is in line 70. I've used 13, but you can try other
values if you like.

1t’s only when you see a program like this one (slow though it
is) that you realise just what a saving in time is achieved by
computers. If you could take the time to do with pen and paper
and a book of tables (and I doubt whether you could find sixth-
root tables) what Program 24 just did for you, you would see
what I mean.

Take a look on the back of a 1984 pound note and see Sir Isaac
Newton.

T'll let you into a secret about Isaac. He was, you might know,
perhaps the greatest scientist who ever lived. But did you know
that, although he laid the foundations of optics, dynamics and
mathematics during the course of his life, he failed a scholarship
examination in 1663 (when he was 21 years old) due to ‘woeful
inadequacy in geometry’!

Imagine what Newton could have done with a Spectrum. If
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Cambridge had had Sir Clive Sinclair around in 1663, they
might have shared the back of a five pound note!

The problem of the Chinese typewriter

Before we leave this subject, I'd better mention something.
Firstly, you haven’t heard the last of this powers and roots
business, and secondly because it was Isaac Newton and people
several centuries ago who dreamed up the language of
mathematics we are stuck with a small problem. Because Chinese
came first and the typewriter came only in the nineteenth
century, Chinese typewriters are not very practical. They don’t
fit the language, and with six thousand separate symbols in use in
everyday language, you have to have a good memory and good
eyesight to find the right key!

So it was with maths. I’m writing this book on a typewriter. It
does numbers and a percent sign, but it can’t deal with
mathematical symbols. I have to break off every now and then
and write in a symbol by hand. Unfortunately, this technique is
not much good with the Spectrum. It’s not much good getting
your felt-tip out and scribbling on the TV screen, and so
computers have their own methods of describing mathematical
expressions. But what about books?

The square root sign is \/ x (meaning square root of x) and is
very common in maths texts. Often it is used over a whole
expression like \/ab=bc (meaning root of (ab—bc)). And if you
want different kinds of roots, a small number is hung over the
beginning of the root sign to indicate the kind you want. So that
/y means cube root of y, and ¥ z means 6th root of z.

So there we are. If you have been thrown by all this talk of
powers and roots, it’s not as haphazard as it seems. In any case
squares and square roots are guite common, cubes and cube roots
less common by far, and the other kinds quite rarely met with. So
don’t despair.

Have you begun to get used to equations now? I hope so. As I
say, it’s a weighing scale that’s in balance; one side equals the
other side. But there are non-equations too, things that are not in
balance, where one side is not equal to the other.

They’re called inequalities (not surprisingly), and you will
have to wait until the next chapter to learn about them.

4

INEQUALITIES AND
FUNCTIONS

1 Inequalities

Equalities (otherwise known as equations) are shown by a sign
like this: =. So a=b means a equals b. .
On the Spectrum you will find five inequalities:

> meaning greater than (>)
< meaning less than (<)
>= meaning greater than or equal to (=)
<= meaning less than or equal to (<)
<> meaning not equal to (#)

The symbols in brackets are the symbols you would find in
maths books (Chinese typewriter, remember!), and you will find
that there is a subtle difference in meaning between a computer-
type inequality and a maths-type inequality. .

The use you put an inequality to is the important thing. An
equals sign (=) is used in two ways, and this illustrates the
distinction nicely. You can either use an equals sign to define a
relationship, as you do on your Spectrum when you use 2 LET
statement:

LET a=b+c

defines the variable a in terms of b and c.
Or, you can use it with an IF statement:

IF a=10 THEN PRINT “X”

meaning, ‘when the variable a has taken the value 10 you must
print “X"’. )
With the inequalities, however, you only use them in the
second sense, because you can’t use an inequality in a defining
way.
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Try LET x<1@, and you can’t get it to work.

But if you were to use the inequality as part of an IF statement,
it would provide a way of sorting out variables that take on
different values.

Try this program:

Program 25 SORT OUT

2 REM PROGRAM 25
SORT OUT
18 FOR n=@ TO 21
2@ LET x=RND-.5
38 IF x>@ THEN PRINT x,"POSIT

4@ IF x<@ THEN PRINT x,"NEGAT

5@ IF x=@ THEN PRINT x,"ZERO"
&@ NEXT n

This program will go round the loop 22 times and generate a
random number. The number (stored in the variable x) will be
between Y2 and - %2, then it will be tested by lines 3@, 40 and 50
in turn. The number must be either positive or negative or zero,
so each time there will be a number printed, and because the
program has sorted the numbers out, the correct category will be
printed alongside. This is the basis of all routines that make a
distinction between numbers.

So that’s the way inequalities are used on the computer. It is
possible, however, to use inequalities in a defining way with
ordinary maths.

For example, we can write:

x<3 (meaning x is less than three)
or,
y>X (meaning y is greater than x)

I think you can probably see that these sorts of definitions are
not precise in the same way that equations are precise. They only
set the limits of the value that a variable can have: they do not tell
you its exact value.
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These inequalities can be used to define a range of values too.
So we can say, for example,

3<x<10

meaning ‘3 is less than x, and x is less than 10” or, if you like, x is
between 3 and 10. Or we could have,

3<x<10

meaning x is greater than or equal to 3 and less than or equal to
10.

I'm using maths symbols here because you can’t use
inequalities like this on the computer to calculate anything. I
think you might like to know that inequalities can be used on
paper like equations. You can add the same to both sides of an
equation, or divide both sides of an equation by the same
number. It is possible to write an inequality,

a>b
add the same to both sides and it will remain true,
a+x>b+x

Think about this. Replace the letters with numbers. For
instance, you can let a be 3 and b can be, say, 2. Then the
inequality

a>b

is true (because 3 is greater than 2). If you choose any value for x,
say 5, then the inequality:

at5>b+5

is also going to be true.
You can try (in the same way) to test out the following rules
that govern inequalities, which I will list in a table for you:

INEQUALITIES
If a>b then atx>b+x
If a>b then a*x>b*x (when x>0)
and if a>b then a*x<b*x (when x<0)

If a>b then 11a<1/b
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If 0<a<b then atx<btx {when x>0)
and if 0<a<b then atx>btx (when x<0)

Really, the subject of inequalities is straightforward, just
common sense, in fact. The trouble is thar it gets very involved
after a while, so we can leave it at thart, if you like. A good
summary is to consider the idea that if a number is compared to
another number, it must be either greater than it, less than it, or
actually equal to it.

So that the opposit of 2 is <, and the opposite of < is >
(because if it’s not one it must be the other!). Here’s a good way
of testing it out:

Program 26 LOGICAL SORT QUT

S REM FROGRAM 26
LOGICAL SORT OUuT
1@ FOR n=0 TOD 21
20 LET »=INT (RND#2R)}
3@ IF x>=18 THEN PRINT AT n,0
; g n o X
4@ NEXT n

and you will get a printout of a star (asterisk) and the value of the
randomly chosen variable x only if it is greater than or equal to
ten.

Substitute this for line 30:

30 IF x<10 THEN PRINT AT n,0; “*”x

you will get printouts only for x values less than ten.
So if we write:

30 IF x>=10 OR x<1¢0 THEN PRINT AT n,0; “*x

we should pick up all possible choices of x and get a printout on
every line. If we'd used > and < as opposites, we could not
guarantee picking up all values of x (because it is possible that
x=10) and if you substitute the line below you will see it happen

3@ IF x>10 OR x<1¢ THEN PRINT AT n,0;"*”,x

Dutifully, the program leaves a gap wherever it has generated a
10.
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The use of the OR command may have intrigued you. There is
another one like it:

AND

You can use them as you would in English to chain together
conditions like IF x is less than 1 AND y is not equal to @,
then. ..

Another exclusive pair is, of course, = and <>, because two
numbers are either equal or not equal.

This may not seem very uscful at the minute, but it’s all
necessary ground work for some much more interesting and
useful mathematical concepts we shall be looking at later.

2 ABS and SGN

Here’s a convenient spot to introduce ABS and SGN. They are
Spectrum BASIC commands: actually ‘functions’ is the correct
term. And they are not used much at all. We’ll have a look at
them, though, because they are connected with numbers, and
this is about maths.

ABS is a function just like INT was a function. Do you recall
the effect of INT? 1 hope you do because we’ve just used it in
Program 26. Put INT in front of a number (or variable), and it
will hack off the decimal places and give you back a decimal-less
number known as an integer (integer means ‘whole number’).

Try:

PRINT INT 8.4

and you get back 8: the decimals have been hacked off!
Unfortunately, if you do it with negative numbers you will get
the next lowest number, so that

PRINT INT -6.4

gives you back —7 (which is not very satisfactory to my way of
thinking, but there we aref)

Anyway, we can investigate the ABS function in the same way.
Try this:

PRINT ABS 4.7 (ABS is in green above the G key)
PRINT ABS 0
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PRINT ABS 78639
PRINT ABS le+6

It isn’t doing anything to those numbers. But not all numbers
go through untouched. Try:

PRINT ABS -57

We seem to have found a number that is altered. And in fact it
was because it was negative. In general, the ABS function finds
the absolute value of a number. In other words, it looks to see if
the number is negative, and if it is, it hacks off the — sign and
makes it positive.

No big deal then. We understand ABS. Can we think of a use
for it? Not easily. It’s one of those things that makes its need
apparent as you're programming: to stop values being used that
will print at negative line or column numbers, for example. That
kind of thing. Also, if you think back about the restrictions on
the square root funcrion, we don’t want a square root of a
negative number, so it is maybe safer to put SQR ABS x in some
circumstances.

What about SGN. An even more singularly unused function.
SGN stands for SIGNUM, which is the Latin for ‘sign’. It
returns a 1 if the number you apply it to is positive, 2 ¢ if it is @,
and a -1 if it is negative. The best way to get a feel for it is by
running Program 27. SGN is above the F key.

Program 27 SIGNUM

3 REM PROGRAM 27
SIGNUM
1@ PRINT "Number","8ignum"
20 FOR n=1 TO 21
3@ LET x=INT ({RND-8.5)#*1@)
4@ PRINT AT n,@;%,86N x
5@ NEXT n

And you will find your two columns of numbers
corresponding as I said they would. Where the number
generated by the function in line 3@ has a positive value, SGN
has returned a 1, and where the number is negative we get — 1.
Where it is zero, SGN x is zero too.
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Simple, and maddeningly difficult to find a use for.

So far, this chapter has been a mixture of lifeless inequalities
and insipid functions that don’t do much, but the rest of the
chapter is Most Important. Happily those of you whe have
plugged on through the marshes and bogs of sections 1 and 2 of
this chapter are amply rewarded now, because you have already
been introduced to the concepts we are about to examine without
realising it.

Have a look at the opening paragraph of Chapter 9 of the
Spectrum users’ manual (the orange one that comes with the
computer, I mean), the one that begins: ‘Consider the sausage
machine . ..’ ‘

That’s what it says. You are now in & position to understand it.
And Sinclair has a point: the function is indeed like a sausage
machine.

3 Functions

It took me ages to get to grips with the idea of functions when I
was a kid. It will take you about fifteen minutes (if that).

So far we have considered several functions. Look at the
expression below:

x=ABSy

You know that if you plug in different values for the variable y,
the equation will yield (give you back) different values of x
according to some rule. Once you know what the rule is (and you
should know the rule for ABS now, because we've just talked
about it) you are home and dry and able to use the expression.

Another example of a function is:

x=8GN y

and again, once you know the rule telling you how it works,
you’ve cracked it.

And so with x=INT y, or x=SQR y, or x=PI*y, or even
x=LN y, which you may not know.

There are a whole lot of functions on the Spectrum keyboard
you might not have met before, but it is, after all, the purpose of
this book to give you a little background about these functions,
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so that you can use them with confidence and make them work
for you.

I will list all the functions we might get to talk about. Then
you will know what’s coming:

PI LN SIN ASN DEF FN
SQR EXP cos ACS FN

ABS TAN ATN

SGN

Column one isn’t going to pose you any problems. I bet you
can explain them all. If you can’t, you might like to flip through
the book up to here and refresh your memory.

Column two I’m going to deal with in the rest of this chapter
because I think you’ll be ready for it after Chapter 2. LN is a
function called ‘natural logarithm’, and it is one of those
functions that non-mathematicians have no idea about. But you
will soon. The other column two function EXP is, interestingly
enough, the inverse of LN, and we should therefore have no
difficulty understanding one if we can crack the other.

Column three functions you may well have heard about.
They’re used in geometry, are important when dealing with
circles and triangles and will be quite easy to understand. In the
same way that LN stands for ‘natural logarithm’ and EXP is
short for ‘exponential’, so SIN means ‘sine’, COS ‘cosine’ and
TAN ‘tangent’. But the abbreviations are so common that they
can be used when ‘speaking’ an equation involving one of them
to yourself, so you might say,

x=COS y+TAN y

as ‘x equals cos y plus tan y’. Anyhow, before we get sidetracked
once again into the world of geometry, let’s discuss column four.

Column four is simply the inverse functions of those in
column three. Remember, inverse means ‘reverse’, just like
squares and square roots.

We meet the problem of the Chinese typewriter again here,
because the Sinclair functions ASN, ACS and ATN are short for
‘arc sine’, ‘arc cosine’ and ‘arc tangent’. But mathematicians
write them as in the column on the right:

ASN  arc sine sin™!
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ACS  arc cosine cos™'

ATN  arctangent  tan”'

The little ‘to the minus 17 indices are there really to show that
the functions are the inverses of SIN, COS and TAN.

Once again, we can't go off into a discussion of these strange
beasts until we’ve laid the foundations, no matter how tempting
it might be, so let’s just keep to the business in hand.

Column five: DEF FN and FN are very useful little additions
to the Spectrum’s mathematical repertoire. They stand for
DEFine FuNction and FuNction and allow you to create
combination functions of your own. (Have a look at Appendix V
at the back of the book.)

But for the moment let’s look at this function business in
greater depth.

If we write an expression like y=SQR x, we say that y is 2
function of x. It’s just the way it is talked about, and we could
write a general expression:

y=fx)
which reads ‘y equals f of x’ and means y equals a function of x,
and that can be any function we care to put in. So that we could
have y=ABS %, or y=SGN x or, as we had above, y=SQR x. All
we’re doing is plugging in any function we want to choose into
the general equation y=1{x).

(Yes, we could even have y=LN x, or y= EXP x).

See what I mean about most of the difficulty in maths being a
question of learning the jargon? The meanings are not that hard.

Why call it a function?

Well, don’t you see, if you were to ‘perform a function’ you
would be doing a job on something. Like if your function is to
control railway engines, then your job would be an engine driver,
and if you were an engine driver, your function would be to
control railway engines. With mathematical functions, they
perform their functions on numbers. You put a number in and
get a (sometimes) different number out. Just think back over the
ABS and INT and SGN functions and think what they did to the
numbers that came their way.

Bearing that in mind, let’s take a couple of functions you've no
idea about and do something with them that changes numbers.
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Try this out, without worrying what’s going on:

Program 28 EXPONENTIALS

S5 REM PROGRAM 28
EXPONENTIALS
10 FOR x=1 TO 21
28 LET y=EXP x
32 PRINT x,y
4B NEXT x

You will get a column of x values (running from 1 to 21) and a
second column of y values running from 2.7182818 to
1.3188157E+9.

Does the speed with which that function grows remind you of
anything? :

Mflybe it reminds you of the powers of 2 function we
considered earlier. Try replacing line 20 in program 28 with,

20 LET y=21x

and see how that goes.

That function is taking off fast too! But not quite as fast as the
one for y=EXP x. Let’s compare them directly:

Program 28a EXP INVESTIGATIONS

5 REM PROBRAM 28a
EXF INVESTIGATIONS
10 FOR x=1 T0 21
20 LET y=EXP x
30 LET z=2y
4@ PRINT x;TAB S:y: :
S@ NEXT x Sl L

We can make a direct comparison now, and it seems that the
exponential function is taking off faster than 2 to the x.

b{ow edit out the 2 in line 30 and insert a 3, so that you're
letting z=31tx. And what do you get?

I ran it and got a result taking off faster than EXP this tine.
. Now edit 2.5 into line 30 instead of 2 or 3, It’s getting close,
isn’t it? Try a few other values, see if you can choose a number
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by trial and error that mimics the EXP function exactly.

It might be possible, and then again it might not be possible. It
remains for you to try to zero in on the number.

In fact, I think you might be surprised to find that the number
you are looking for has been staring you in the face for some
time. When x=1, line 20 generates y=EXP 1 and prints it at the
head of the second column. This number is 2.7182818. Try
using that number in line 30, writing: 30 LET z=2.71828181x

Now the two columns are almost identical. Does this imply
that the function in line 20 and the function in line 30 are almost
the same?

Yes, it does. If we can produce an identical effect on all
numbers, then it must be an identical function, and in fact EXP,
known as the exponential function, is defined as this curious
number 2.7182818 to the power x.

Now instead of writing this horrendous number out every time
we want to use it, why not do whar we did with the equally
peculiar 3.14159. . .etc? (And in fact the exponential number is
irrational, an infinitely long decimal, just as PI was.)

The letter we choose for the exponential number is, not
unexpectedly, ‘e’. I said we would get around to it later.

Because e is irrational, we can’t get a value for it precisely, but
e=2.7182818 is good enough for our purposes.

An actual mathematical definition of the exponential function
is that it is the function whose rate of change equals itself, but
let’s not dwell on that for the time being!

Another interesting thing about this function is that you can
get at it using a series. And since we’ve not covered series yet, it
may not make much sense to say

EXP x=1+x+x’+x'+ ...
20 31

And what are those numbers with exclamation marks after them?
It is going to have to wait.

4 Introducing graphs

There is no doubt that a picture is worth a thousand words in
mathematics. It is so much easier to see what’s going on with
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some qf‘ these things when you can have a picture of it, and a
graph is nothing more than a mathematical picture.

\_'Ve‘ve used graphs before, notably in Program 14a and in the
quite complicated Program 24. We looked at the graph plotted
by the functions for square roots, cube roots, fourth roots, etc.

Undoubtedly you’ve seen graphs on TV, in the newspapers, in
books, on wall charts and a million other places besides, and ’it’s
su.ch an easy thing to ‘read’ that you understand what it means
without necessarily knowing what it’s based on.

' Really, it comes down to scales, like a ruler, or the Real Line: a
line marked off at equal intervals with a suitable scale. You could
draw out a section of the Real Line and do something with it.
Suppose you had the data to represent on a graph, and you
wanted to make some sort of comparison between the figures
then you could plot them aleng the real line. i ’

For example, suppose we had the populations in millions of
the twelve most populated countries in the world in 1973:

1 China 782
2 India 584
3 USSR 252
4 USA 214
5 Indonesia 128
6 Japan 108
7 Brazil 100
8 Bangladesh 74
9 West Germany 62
10 Nigeria 61
11 Pakistan 59

12 Great Britain 56

We could chml)se a Real Line running from zero to, say 800,
m?.kp a note on it to remember that the 800 marked means 800
million, mark it off in equal sections and plot our data

And we would get: )

1110 5 43 2 1
12 9 6
0 87

800
TN 1 ([

(all other countries in this space) Population (millions)
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Why did we bother to draw the Real Line to zero? Why not
end it at 55 million, just below the last value? The reason is that
it would distort the data in this particular case. (Populations
actually start at zero: that’s the theoretical limit. If you originated
the graph at 55 million, it would seem as though the graph was
telling you that 55 million is a minimum population.)

But that’s by the by. I don’t happen to think that plotting data
along the Real Line is very informative anyway. It would be
much better to have a two-dimensional display instead of a one-
dimensional display.

Here’s a Spectrum program that does both:

Program 29 POPULATIONS 1-D

5 REM PROBRAM 29 -
POPULATIONS 1-D

1@ PLOT @,88: DRAW 200,0

2@ FOR n=1 TO 12

38 READ X

4@ PLOT %/4,89

5@ NEXT n

6@ DATA 782,584 ,252,214,128,10
8,100,74,62,61,5%,56

This reproduces the Real Line with points all along it. It’s worth
detailing the operation of Program 29, because it introduces a
fresh computing concept (which I'm sure some of you will have
already conquered). Line 6@ holds the data, our twelve
populations, and the computer is told that it’s our data by the
command DATA (which is on the D key).

So the program draws a line with line 18, then goes round the
FOR ... NEXT loop, READing the data points each time and
plotting them along the line (actually, one pixel higher than the
line, so that you can see them). If the READ command tells the
Spectrum to pick out the DATA values, and we have used the
variable name x to take the data, you can see that before plotting
it we divide it by four. Why?

Easy. Line 10 is 200 pixels long, and we are plotting points in
the range @ to 200. The problem is that our data spans 0 1o 800,
(it really spans @ to 80¢ million), so we divide it by 4 to make it
fit. Qur scale factor is @.25, therefore.
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Now for two dimensions:
Program 29a POPULATIONS 2-D

S5 REM PROGRAM 29a
POPULATIONS 2-D
1@ FOR n=1 TO 12
20 READ x
30 PLOT n*2@,x/5
4@ NEXT n
5@ DATA 782,5B84,252,214,128,10
8,100,74,462,61,59,546

And you can make it better to see by adding 35 DRAW 0,—x/5 to
it. g

Can you see the scale factor in line 3@? I had to make it 5 this
time to get the vertical values to fit nicely into the picture.

Now think on this: if we have a list of values connected to
another list of values, then we ought to be able to get a graph out
of it. If we have a function, or any old expression involving a
couple of variables and a few constants, we can get a graph out of
it.

There’s a convention to drawing graphs. I mentioned in
Chapter 1 the French philosopher Descartes. He left us with a
standard way of writing equations and graphs.

We normally use two-dimensional graphs because they fit on
sheets of paper best, and we say the across-the-page direction is
the ‘x direction’, and we call the up-the-page direction the ‘y
direction’. We take a couple of Real Lines and lay them ar right
angles (90°) so that they cross at zero on each of them:
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5
d
- 4
2 1
3
- x (4,2)
-1
-5 -4 -3 -2 -1 e 1 2 3 4 5
— -
-1
-2
-
3 4
-4
k=5

The lines are called axes (singular axis, plural axes,
pronounced ak-seez), and where they cross is c?.llcdlthe origin.
Obviously, we have four areas of paper crea}ted in this way, and
we call each part a quadrani, from th‘e Latm' for a quarter.

The quadrants are numbered anticlockwise starting at top
right: 1,2,3,4 as shown, and any point in the f'ul'st quacirant has a
positive x value and positive y value. Any point in quadr_ant‘z
will have a negative x value, but a positive y value. Any point in
quadrant 3 will have both x value and y yalue negative, and
quadrant 4 has a positive x value, but negative y value. We can
summarise this in a table:

Quadrant X value Y value
1 + +
2 = +
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3 - o
4 + -

There is a pleasant symmetry about it.

To underline exactly what I mean by ‘any point in the first
quadrant’, I've chosen to mark the point I'd like you to consider
in quadrant 1 with a cross. Next to it is:

4:2)

And that is the name of the point. We say the little cross is at
the point (4,2), and so that there’s absolutely no confusion
whatsoever we always specify a point by quoting the along-the-x-
axis distance first, then the up-the-y-axis distance second, so that
(4,2) means ‘along four and up two’.

Do you recognise this lot? I should hope so: it’s all in Chapter
1 and is the basis of the plotting the Spectrum has been doing for
us. We have been writing things like PLOT 100,50, to mean plot
the point 100 along the x axis and 50 up the y axis, so it shouldn’t
be very hard for us to keep in mind.

So all we have to do to get quadrant-1 type graphs, where x and
y values are both positive, is to treat the screen as quadrant 1,
with the origin (pint @,0) at the bottom left-hand corner. It’s
tailor-made for it.

And we can move the origin to the centre of the screen (pixel
128,88) if we want a four-quadrant representation.

That’s the basics. Now how about showing a function?

Try this first, so that we have the basics on the screen:

Program 30 AXES WITH CURVES

S REM PROGRAM 30
AXES WITH CURVES

i® PLOT @,0: DRAW 255,@: PLOT
@,0: DRAW @,175

20 PRINT AT @,1;"Y": FRINT AT
208,313 " X"

3@ FOR n=@ TO 13

4@ PLOT n,n"2

9@ NEXT n
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Again you can do our little trick of drawing in the graph to
make it clearer to see by adding this: 45 DRAW 0,-nt2
Not very good is it? It’s a graph of the function,

y=x

and it uses the values, ‘

Y X
1] 1]
1 1 i
4 2 |
9 3
16 4
25 5
36 6
49 7
64 8
81 9
100 19
121 11 i
144 12
169 13

Now you see why I had the FOR . . . NEXT loop stop at 13,
because 14% is 196, and a ¥ value for 196 wouldn’t have fitted on
the screen. )

What can we do about the fact that it’s squashed up into a
portion of the screen near the Y axis? You might be pleased to
hear there’s a good fiddle. You can get the program to interpolate
quite easily. (Interpolate means to fill in the vaiu.es between two
values.) And you can make your Spectrum do it for you: just |
change line 30 to: |

39 FOR n=0 TO 13 STEP 0.1
and change line 40 to:
40 PLOT n*10, nt2

The Spectrum now obediently calculates the inbetween valules,
ten at a time, and gives you a ten times expanded graph thgh
shows off the curve a bit better. Maybe there are a few steps in
the curve, but it’s almost a smooth one, and there you have a
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graph of a function. The curve is actually called a parabola.

It may strike you that you can get at any function using this
methed. If you have your function in line 48, what stops you
making it into any function you like? So we could plug in EXP n
if we wanted. We might have to alter our scale factors, or at least
replace line 45 with an appropriate substitute {or get rid of it
entirely again.)

Let’s try it out.

Program 38a EXPONENTIAL CURVE

3 REM PROGRAM 30@a
EXPONENTIAL CURVE

1@ PLOT @,0: DRAW 255,@8: PLOT
2,8: DRAW @,175 :

28 PRINT AT @,1;"Y":t PRINT AT
20,313 "X"

30 FOR n=@ TO S5 STEP B2.02

4@ FLOT n#30,EXF n

S@ NEXT n

And there we have it, a perfectly reasonable representation of the
equation

y=EXP x
or, as mathematicians write it,

y=e

How did I get figures like 5” and ‘0.02’ in line 30?7 Actually, I
did it by trial and error, using a bit of common sense. I think that

after playing around with it for a while you’ll get the hang of it
easily too,

But as usual in this book, we’re running before we can
properly walk, and so we must go back to pick up on a few things
now.

We've done exponential curves and a parabola, but what about
the humble straight line? Try this:
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Program 30b THE HUMBLE STRAIGHT LINE

% REM PROGRAM 3@b
THE HUMBLE STRAIGHT LINE

1@ PLOT ©,@: DRAW 25%,@: PLOT
©,@: DRAW @,175

2@ PRINT AT @,1;"Y": PRINT AT
20,31;"X"

3@ FOR x=@ TO 255

43 LET y=88

50 PLOT x,Y

6@ NEXT x

You get what you might have expected. A representation of the
line whose equation is,
y=288
A general form would have been
y=(a constant)
and we usually use k or c as letters to represent a constant, so that
y=k

is a general way of writing the equation y=88. ffou can aflgpt
line 40 to define the whole family of horizontal lines by writing

40 LET y=k
and inserting
25 INPUT “What value for k?”’;k

and,
76 GOTO 25

Each time the program asks you for a new value fgr k, you
should enter a number between ¢ and 175, an_d you will get the
members of the horizontal straight line family drawn on the

raph. _ _
£ \Xl;hen you get fed up with that, think about the reial.lenshlp
y=x. That means we can generate a few values without difficulty
as before:
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X b §
(] )
1 1
2 2
3 3

etc.
255 255

How do we generate these values? I’ll remind you: we just
choose our X values as we want and use the equation to give us
our Y values. Our equation this time happens to be y=x, so that
the X and Y columns are identical.

If I ask you to convert this into a graph, can you do it?

It’s not hard. When x is @, y is @ so the curve goes through the
point 0,@, i.e. the origin. Also, when x is 1, y=1 too, so the curve
goes through the point 1,1. Also, when x=2, y=2, so the curve
goes through the point 2,2. And so on. And you can automate it
by writing, 40 LET y=x in Program 30b. Run it and see the
result. It’s a line that goes up from the origin at 45°, but it is a
straight line. (And it stops at x=175).

There is a general equation for all straight lines, in fact, and
perhaps we should take a look at it:

y=mx+c (or in full, y=(m*x)+c)

where m and ¢ are both constants.

I’ve written a program that lets you investigate the way that m
and c affect the line, and also shows you the four-quadrant
representation of a graph. It's a goody, so try it out now.

Program 31 THE STRAIGHT LINE

S REM PROGRAM 31
THE STRAIGHT LINE
1@ PLOT 128,0: DRAW @,175: PLO
T 8,88: DRAW 255,0
20 PRINT AT 9,15;"Y": PRINT AT
18,31;"X"
3@ INPUT "Enter Slope ";m
49 INPUT "Enter Intercept ";c
o@ FOR x=-128 TO 127
6@ LET y=m#x+c
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7@ IF y<88 AND y>-B87 THEN PLO
T x+128,y+88
80 NEXT x
%@ GO TO 3@

To exit from this program simply enter the STOP command
when the computer asks “Enter Slope” or “Enter Intercept”.

First, the program will ask you for a slope, and you should
answer with a number between —3 and +3 (experiment with
numbers outside this range later if you like). You will find that, if
you give m a negative value, the slope is down from left to right,
and if m has a positive value, the line slopes up from left to right.
So now you know what mathematicians mean by positive and
negative slopes. And you can also see that the constant m is a
measure of the slope of the line.

The other input value is for the intercept. This simply means
that, since the line must cross the y axis at some point, the value
of the constant ¢ will fix it. If you enter zero for the intercept, the
line will cross the y axis at zero (i.e. through the origin), and you
can try shifting the intercept up and down with values in the
range —87 to +88 (because the y axis is 176 pixels long). Try a
family of lines with slope 1 and different intercepts.

Slope 1 means you have a line going up at 45°. Slope @ is
horizontal. If you experiment with bigger values the line gets
steeper and steeper until it exceeds the TV picture’s ability to
distinguish it from the y axis. For the line to be truly vertical its
slope would be infinity.

And all that from the general equation of the family of straight
lines:

y=m*x+c

This goes for all straight lines you can draw across those
Cartesian coordinates and is not something specific to the
Spectrum. You can try it out with graph paper or on a brick wall
if you like!

At the end of the day, you might ask yourself whether there
might be families of other sorts of curve. We know that there is a
family of straight lines all summed up by the general equation for
a straight line. Might there not be a family of parabolas, or a
family of exponential curves each with its general equation?
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Yes, indeed there are.

The whole subject of 2-D graphs is known to the trade as plane
analytical geometry, and we shall be returning to it later.

But before we leave all this let me ask you something. Can you
think of a condition for two lines to be parallel? Two straight
lines. I’ll give you a clue: write out their equations as

y=m*x+c, (for the first line)
and
y=m,*x+c, (for the other line)

5

NUMBER SYSTEMS

1 Number systems

I expect you're like me, four fingers and a thumb on each hand,
making ten digits in all.

If so, you are equipped with a simple calculator with some
quite startling implications.

It is generally believed that we use a decimal counting system
because we were tipped off by our fingers and thumbs. And
really it seems quite reasonable to count on your fingers, so that
when you get to the end of ten you start again with a fresh
handful.

The word ‘decimal’ comes from Latin and means a number
system based on ten.

In what way is our number system based on ten?

If you compile a list of all one digit numbers you will get:

01,2,3,4,56,7,8,9

So what do you do when you get to the end of your ten
symbols? You go on to 1@ —in other words you start doubling up
the digits, and when you reach 99 you have to start tripling them
up, and so on.

This may seem a mite elementary, but it does have some
interesting knock-on effects. With our usual butterfly style, no
sooner have we learned about a number system using ten
symbols than we begin to wonder about systems using some
other number as a base.

That word ‘base’; we use base to mean the number of digits
employed in the system. Decimal has a base of ten.

Actually, the use of numbers to other bases has found its
greatest application in the world of computers and
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microelectronics, and you will be able to see why when I've
explained a bit more.

Look on your Spectrum keyboard. The green legend above the
B key is BIN. It stands for ‘binary’ and means a number system
that has only two types of number, zero and one.

Now, consider decimal again. If I were to write the number
4394, how would you know that it meant four thousand three
hundred and thirty-four? Odd sort of question, but think
carefully. The position of the number digit within the whole
number is important. It would not be true to say that 4394 is the
same as 3494 or 9443, because the positions of the digits matter.

In 4394, we know that the digit on the right, 4, means 4, but
the 9 is really 9 times 10 or 90, the 3 is really 3 times 100 which is
300 and the figute 4 on the left hand end is really 4 times 1000
which is four thousand. ;

So we can draw up a table showing how the positions are
allotted in the decimal system:

& ? ; & &
& &"P tens | units |decimal| tenths ‘5"5-“ q?b&
“‘.‘00 s | & 1 point & ¥
<10 -~ 102 10 100 10! -..;'3'10'2 l‘5;5510—3
4 3 9 4
0 1 2 5

The table shows the meanings of three decimal numbers, 4394,
0.125 and 1234.567, with the column heads showing the effect of
the digit being in that particular column. Notice that the first
place to the right of the decimal point is used to indicate tenths,
the second place to indicate hundredths and the third to show
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thousandths. And of course you can extend the columns to deal
with as many digits as there are in your number.

It’s easier if you look at the way I’ve written the column heads
as powers of ten. So 4394 would be:

(4%10%)+ (3%107)+(9*10") + (4% 10°)

And you can check that it works on your Spectrum by using this
command:

PRINT (4%1013)+(3%1012)+(9*1011)+(4* 1010)
You might also check the second number whilst you’re at it:
PRINT (1*11 - 1)+(2*10t = 2)+(5*10t - 3)

This unlocks the door to us, because now we have scen exactly
what decimal means, and we can extend the idea to numbers with
other bases. We can try it with BIN.

Only two digits in the binary system, remember? Binary means
‘connected with two’, so let’s see what a binary number might
look like:

100101101

Not very exciting is it? And what might 10¢101101 mean?

What if we take the number on the right to start with. That
particular digit is a one, and so it will mean (1*210)—and you will
recall that any number raised to the power zero is 1, so that
bracket simplifies to (1*1) which is 1.

What about the next number in from the right? It’s a zero, and
means (0*2t1) or simplifying (0*2). Recall that any number
raised to the power 1 is itself, so that 2t1=2, Remember also that
any number times Zero is zero, so that (0*2)=0.

We can carry on, moving in to the next number from the right,
but 1 think it will be clearer to see if I make another table:

3001011@1Dig'ﬂs

8 7 6 5 4 3 2 1 ) Power of 2

256 | 128 | 64 | 32 16 8 4 2 1

Multiplier

—
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I've just copied the number into the top row, numbered the
column in the second row, so that the 1 in the far right column is
really (1*210) as we said above, and the middle row therefore
shows powers of two. The third row just works out the powers of
two for you. It just remains for you to go along the number from
right to left. If there’s a 1, you add the number in the bottom row
on to your total, like this:

[+4+8+32+256=301

But don’t panic! I can take the sting out of it for you by telling
you that the Spectrum will recognise numbers as binary if you
give it the BIN command. We can just enter the number with
BIN in front of it, and you will get the decimal equivalent
automatically worked out for you. Try

PRINT BIN 1001¢1101

and if you’ve got the ones and zeros in the right order, you’ll get
back 301.

Binary systems have a great application in microcomputers
because electric circuits only recognise two states: ON and OFF.
If we use zero for off and 1 for on, we can get a circuit to simulate
counting in binary, and then we can translate that into decimal
(which we can understand). Happily, unless you’re an electronics
buff, you don’t have to know how it does it: it is enough that it
does do it

Where it impinges on the Spectrum user most is in the process
of getting up a user-defined character. Let’s say we are after a
letter that the Spectrum doesn’t already have and want to print it
on the screen, we can use a tiny little BASIC program to do it for
us. We can use the BIN function to hold the data too, if we like.

Suppose we want a symbol for a half, 1.
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Design one on a grid of eight rows by eight columns like this:

Next, take the design one row at a time. Convert the row into
an 8-digit binary number by making the black squares into 1 and
the white squares into a @. So the top row:

I’ AEER A

becomes:
1000010

And you can convert that binary number into a decimal number,
either by working through the multipliers like I showed you, or
simply by getting the Spectrum to do it with:

PRINT BIN 1000010

which returns 66.
Break the Y2 symbol down row by row and convert the
numbers and you will get:

Row 1 01000010 66
Row 2 01000100 68
Row 3 01001000 72
Row 4 01010111 87
Row 5 00100001 33
Row 6 01000111 71
Row 7 10000100 132
Row 8 00000111 7
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If you half shut your eyes you can make out our symbol-to-be
from the position of the 1s in that block of binary numbers. Next
we have to employ the little BASIC program that loads our eight
data numbers into the correct section of the Spectrum’s memory.
If you look on page 94 of your Spectrum manual, you will find
the program on which this is based.

User defined character loader

S REM USER DEFINED CHARACTER
LOADER

1@ FOR N=B TO 7

20 READ row: POKE USR "a"+n,ro
w

30 NEXT n

40 DATA 64,468,72,87,33,71,132,
7

When you’ve run it, it will have put the %2 symbol onto the A
key; when it’s in graphics mode you can get it to print out just by
pressing ‘A’.

The Y2 symbol won’t be recognised as a number by the
Spectrum’s arithmetic handling unit. So far as the innards of the
computer are concerned, the symbol is just like any other pretty
graphic invention, and if you want it to be printed you must
enclose it in quotes (*).

Now I must tell you about ‘hex’.

Hex is short for hexadecimal, meaning sixteen, and describes a
number system that has sixteen different types of number. We
know that binary has two types of number, 0 and 1. We know
also that decimal has ten: 0,1,2,3,4,5,6,7,8 and 9. But sixteen?
There aren’t sixteen different kinds of number to write, so how
do we cope with it?

We use the capital letters from A to F. Like this:

W =
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(=10
(=11
(=12)
(=13)
(=14)
(=15)

And that’s our complete number set. When we want to write
the equivalent of 16, we have to roll over and start doubling up
those digits again: 10. (Note carefully that the number 10 in hex
means not ten, but sixteen.)

It would not be beyond our powers to write a small program to
convert decimal numbers into hexadecimal numbers, or perhaps
to do the opposite. But first we should have to know the way the
powers of 16 go. Try this preliminary program to provide us
with the required numbers:

TEHOO®E»O®uIS

Powers of Sixteen
10 FOR n=0 TO 4
20 PRINT n,16tn
3¢ NEXT n

You would perhaps expect the results to get bigger very
quickly, and you should get:

n 16"
0 1
1 16
2
3

256
4096
4 65536

It happens to be a property of powers of 16 that they end in the
digit 6! Anyhow, they do get bigger quickly, and if you think
carefully, you should be able to convince yourself that any power
of sixteen must also be a power of two (because sixteen is itself a
power of two: 16=2%4 to be precise). And this is why hex has
found computer applications. It’s better suited than decimal
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because decimal, being based on ten, generates numbers that are
not powers of two.

I’'m not going to go into the application of hex in this book,
because this book is not going to deal with sophisticated
computer matters like machine code and assembly language, etc.
But perhaps it might make those topics easier when you do get
around to them if you know what it’s based on.

Program 32 HEX TO DECIMAL CONVERTER

S REM PROGRAM 32
HEX TO DEC CONVERTER
1@ INPUT "4-DIGIT HEX NUMBER?

20 LET d=2
3@ IF LEN a$<>4 THEN GO TO 1@
4@ PRINT AT 5,13;3a%
5@ LET x%$=a$(4): LET n=1: GD S
UB 100
40 LET x#%=a%$(3): LET n=1é: GO
SUB 100
7@ LET x$=a$(2): LET n=25&: GO
SUB 108
B@ LET x#¥=a%$(l1): LET n=4B%4: G
0 SuUB 100
9@ PRINT AT 15,18;"IS: "3;d: S
TOP
122 IF CODE x%$>=48 AND CODE x$<
=57 THEN LET d=d+((VAL x%)#*n)
118 IF x¥$="A" THEN LET d=d+(1@
*n)
120 IF x$="B" THEN LET d=d+(11
*n)
130 IF x#$="C" THEN LET d=d+ (12
*n)
142 IF x#%="D" THEN LET d=d+(13
*n)
I?E IF u#$="E" THEN LET d=d+(14
*n
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160 IF x$="F" THEN LET d=d+ (15
*n)
170 RETURN

By far the longest and most involved piece 0% BASIC we’ve dealt
with up to now! But it’s not as forbidding as it might seem (see
Appendix II, page 000, for a real conversion program). And
before trying it out, understand this: you must enter the hex
number in a four-digit form, and you must make sure that any
letter digits that occur are entered as capital letters.

For example, if you want to know what FF is in decimal form,
just run the program, and when you are asked for the number,
enter: Q0FF. The answer will appear quickly: 255. If you tried to
enter G0fT, you would get the wrong answer, so the best thing is
to put the Spectrum into CAPS LOCK as soon as you have
loaded the program. You could add this to remind you:

5 PRINT PAPER 2; INK 7; FLASH 1; AT 21,1¢;
“USE CAPS LOCK!”: PAUSE 200: CLS

And to get CAPS LOCK you press the 2 key whilst keeping
your finger pressed down on the CAPS SHIFT button. You
know you have got CAPS because the L type cursor is now
flashing C.

As for the program itself, when it has got the number in hex
form, it makes a variable called d take the value zero. (We are
going to use the variable d to represent the decimal number by
adding the numbers in hex notation from each place of the hex
number.}

Line 3@ then sees if the number has been put in with four
digits and, if not, sends the program back to the beginning. Line
40 prints out the hex number you’ve put in, so you can see it and
check if you’ve entered it correctly.

Lines 58 to 80 all look similar, and they are doing a similar job.
They examine the digits in turn (line 5@ examines the rightmost
digit, for example) and sets the value of a variable x$ equal to it.

These four lines also give a value to a variable called n that
holds the place value of the digit. Remember that the rightmost
digit is ‘units’, so for this digit n=1. For the next digit in, since
we are dealing with hex, n must have the value 16. The next digit
n=16 squared which is 256, and the last one (line 80) is 1613
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which is 4096. That’s how we assign the values implied by the
position of the digit in the number.

Youw’ll notice that the lines 5@ to 89 end in the instruction GO
SUB 100. This makes the computer jump straight to line 100
and carry on doing instructions until it finds the instruction
RETURN when it will go back to where it jumped from. (This
handy parcel of instructions, in our program from 108 to 170,
known as a ‘subroutine’, shows you why the instruction GO
SUB is called GO SUB. It means GO to the SUBroutine starting
at line (number).

So what does the subroutine in our program do? Line 100
checks if the digit is a regular number-type digit, and if so adds
the value of that digit to our variable d whose purpose,
remember, is to collect the sum total of values of the four digits
together, Lines 110 to 160 check if the digit is a letter-type and
give the appropriate value, so that A gives 10, B gives 11 and so
on.

So the full progress of the program is as follows:

It executes lines 10 to 50

Goes to the subroutine to do the first digit.

Returns and does line 60.

Goes to the subroutine to do the second digit.

Returns and does line 70.

Goes to the subroutine to do the third digit.

Returns and does line 8@

Goes to the subroutine and does the last digit.

It then returns and does line 9@, which prints the number
held by variable d, and stops.

[V Tw < = N ) Y L O I o6 T

What a complicated business! If you’ve followed that, you’ll
follow anything in this book and more besides.

If you haven’t followed it, don’t worry because we’re leaving
this subject, and so long as you've got clear the idea behind
number systems you’ll be OK.

Before we do leave the subject, I have a bonus for those of you
who plugged on to the bitter end. I’ve included a ser of data in
the appendix that can be used in line 40 of the User Defined
Character Loader on page 95.

It will let you define some Greek letters. (If you're feeling
adventurous you might like to try a Russian alphabet!)
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2 The elusive log

Some of you may have noticed that when I was introducing
functions back in the last chapter, I quietly slipped off without
an explanation of the logarithm.

It might have been bothering you, so perhaps I'd better
remedy the situation before going on. Most people who dimly
remenmber them from the days before calculators think of them as
columns of nasty numbers in a booklet called ‘a set of log tables’!
They further remember that, before calculators, it was a
morning’s work to multiply two five-digit numbers, and a day
and a half to divide 0.3479 by PI times 8.96584. Whole maths
lessons used to consist of rows of victimised schoolboys bashing
through such meaningless calculations helped (it was supposed)
by the mysterious log tables.

Fortunately those days are over, and we can cause the mystery
of log tables to evaporate like vampires in the first rays of dawn.

Cast your minds back to the function,

y=EXP x
which can be found in maths books, looking like:

y=¢
and which means e to the power x (where e=2.718281828 . . .).

It is called the ‘exponential function’ and the ‘logarithmic
function’ is the inverse of the exponential. Considering this: if y
equals e to the power x, what does x equal?

In other words, how can we manipulate the function y=¢" to
get x on its own on the LHS? It turns out that we can’t, because
we have to have the inverse of the exponential function first. We
defined the idea of inverses earlier on, but let’s think about it
now. I said earlier that if you have a function, apply it to a
number, and then apply the inverse of that function to the result,
you get back to what you started from. For example, if you were
to take a number and multiply it by PI, then divided the result by
PI, you'd get your original number back. Thus, supposing I'd
chosen 4:

If y=PI*4
then y=12.56637061 . . . etc.
and 12.56637061/P1




88 Maths Tutor for the Spectrum

will give us back 4, which is indeed the number we first thought
of! '

So we need a function that is the inverse of the exponential
function. Then if

y=EXP x

we can apply the inverse function to both sides. Because the
effects of applying the function and then the inverse of that
function will cancel one another out, you will get:

(INVERSE EXP)y=(INVERSE EXP)EXP x
which is the same as:

(INVERSE EXP)y=x

And Dve already told you that the real name for the
(INVERSE EXP) function is the logarithm, found on your
Spectrum keyboard on a green legend above the Z key. It is
abbreviated in Spectrum BASIC (and also in some maths books)
to LN. (The letters stand for Logarithm and Natural, and I’ll
explain that later.)

Let’s get it straight, then. The manipulation can be performed
on the equation y=EXP x by doing the same thing to both sides.
What we choose to do is something that will cancel out the EXP
function and leave x alone on the RHS. The something that will
do that is the inverse of the EXP function, and the inverse of the
EXP function is the LN. So we get our new expression

x=LNy
which is exactly the same as,
y=EXP x

except that one expresses the relationship as x in terms of y, and
the other expresses it as y in terms of x.

Get ir? Got it? Good!

So whenever you find an e to a power, you can deal with it.
The log to the base e, as it is called (since it deals with e raised to
some power) was invented or discovered by the Scot John Napier
(1550-1617). If you ever see a reference to ‘Naperian
logarithms’, you will know that it’s talking about logs to the base
e, often written in maths books as,

e
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log, x or Inx

But why choose e, that peculiar and ungainly number, for a
base? Hopefully, we’ve already explained that it has to be a base
of e in order to represent the inverse of e*. It just so happens that
there are many processes in nature that follow exponential
functions (like the growth of populations) so it is convenient to
have a log to the base e to help us deal with it. And that’s why it
is called ‘natural’.

But that doesn’t mean we can’t have logarithms to any other
base. We can have, in general terms, a log to base b, written,

log,x  (meaning log to base b of x)

and b can take any positive value. The most common value
happens to be 1@, because we use a decimal system, and so we
have

log, ¥  (meaning log to base 10 of x)

Because it is the most common form of log, it is frequently found
without the little 10 being written after and below it as a
reminder. So if you see

log x
it means log to the base 10 of x, and if you see
In x
it means log to the base ¢ of x.
That covers most of it. How about some programming?

Program 33 NAPIER’S BONES

5 REM PROGRAM 33
NAFIER ‘S BONES

1@ FOR x=1 TO 20

28 LET y=LN x

3@ PRINT R,v¥

4@ NEXT x

That will print out the numbers from 1 to 20 with tht_air
corresponding logarithms. As you can see, it takes off quite
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slowly, as you'd expect for a function that is the inverse of an
exponential.

We can construct an even more striking representation of the
function y=LN x by putting it on a graph:

Program 33a NAPERIAN GRAPH

% REM PROGRAM 33a
NAPERIAN BRAPH

1@ BORDER 4: PLOT 128,0: DRAW
@,175: PLOT @,88: DRAW 255,D

2@ PLOT 128+32,0: DRAW @,175

30 PRINT AT 1D,31;"4": PRINT A
T 1@,@;"-4": PRINT AT 1@,15;"@":
PRINT AT 1@,19;"1": PRINT AT 21
y155"=-1,75": PRINT AT @,15;"1.75

4@ FDR x=@.2 TO 3.95 STEFP .01

50 LET y=LN x

60 PLDT (x%32)+128,y»50+88

7@ PRINT AT @,@;x: PRINT AT 1,
sy

B@ NEXT x

And you will observe that this is more or less the same kind of
thing we were doing before with the exponential function.

It’s good enough to tell us quite a bit about the LN function.
First, notice that it’s in the positive half of the graph, which
means that the values of x we chose never went negative. (In fact
we chose to take values between 0.2 and 3.95, because this is the
most enlightening region of the graph.)

You can see that as x gets closer to zero, the value of y gets
more and more negative, and it looks as though when x is zero we
can’t put a definite figure on the function LN x. Mathemaricians

say that the function is not defined for this value. I have a -

sneaking suspicion that LN x equals infinity, but we can’t use
that result on a computer, nor does it help to use it in any
mathematical calculation, so let’s just leave it at that.

As x grows towards 1, the function grows closer to zero, and
the curve actually crosses the x-axis at the point 1,0 meaning that
LN I=0. Enter the command,
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PRINT LN 1
and you will get @. And come to think of it, enter,
PRINT LN ¢

and you will see what I mean about invalid arguments!

That was Napier’s achievement. Napier had an English friend
called Henry Briggs (1561-1631) from Halifax in Yorkshire,
who might be said to be the father of the log table, and he
popularised the log to base 18. They, as I have been at pains to
point out, are called common logarithms, but more formally (and
nowadays rarely) they are called Briggsian logarithms.

The trouble is that you won’t find any LOG function on the
Spectrum. But as we shall see, it is not going to stop us using logs
to base ten, or any other base we want either for that matter. So
long as we can reduce them to a combination of those functions
that do appear on the computer we should be all right.

Remember my saying that multiplication is just repeated
adding? There is a relationship between logs of different bases. It
goes like this:

log.b=log.c*log.b

This was discovered by mathematicians way back, and I don’t
want to prove it or even do much explaining about it. But if you
take it on trust as being true, we can get on and use its results.

First let’s take the Naperian and Briggsian logs and find a
relationship between them. Try to follow this argument; if

log,b=1og,c*log.b
then we can let a= 10, b=x and c=e, and write:
log,ex=log.e*log.x

So if we have a log of the Naperian kind (log,) of a number we
can find the Briggsian log (log,,). We can simplify this equation,
because log,ge has a value 0.1434294481. (If you can find a set of
log tables or a scientific calculator, you can check this.) So our
equation becomes:

logex=0.1434294481*logx

Perhaps I can say the same thing another way, then. It’s true to
say that
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logx=LN x/LN a

And that holds true for any base you want to use.
See if this impresses you:
If 100 =107 (check that it does!) then it follows that,

log,, 10¢=2
And if you enter this in your Spectrum,

PRINT LN 106/ LN 10

you get the answer 2, showing that it all holds true.
Also, we said that

log,e x=0.434294481*logx

so we have,
log,, 100=0.434294481*LN 100

If you PRINT LN 100, you will get 4.6051702, so we have
log,, 100=0.434294481%4.6051702

and a straightforward calculation of the RHS gives the result 2,
by using PRINT ©.434294481*4.6051702.

That’s how to get at logs with bases other than e if you want to.
What else can we do? Well, I still haven’t explained in a
satisfactory way how logs come to be associated with multiplying
and dividing in the minds of schoolboys. Is it because of some
sound mathematical principle?

Yes! And this is an aspect of powers that we never investigated
in their two episodes in Chapter 3, so let’s look at it now.

First, I’'m going to write an equation and I want you to satisfy
yourself that it is true:

100,000=100*1000

Not difficult? A hundred times a thousand is one hundred
thousand. “
What if we rewrite the above equation as powers of ten? '

10°=10**10°

All we’ve done is convert 100,000 into its power-of-ten form,
and convert 100 and 1000 into their power-of-ten forms. It still

b < et B e B S A
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holds true. But do you notice the index numbers? 5, 2 and 3 are
related to one another, since 5=2+3. Might this just be a
coincidence? It could be, but in fact it isn’t. It’s a general rule
that if

X=x"*x
then,
a=b+c

©

And it appears that we might have found a method of
simplifying the operation of multiplication. It’s obviously easier
to add two numbers together than multiply them together (unless
you do it on a calculator!), and so we have only to get our
problem into index form to make that simplification possible.
Taking logs does just that.

In general we can say that

log (a*b)=log a+log b
and also
log (a/b)=log a—log b

Adding replaces multiplication, and subtraction replaces
division.

It goes further. You can make raising to a power simpler: by
taking logs you will see that raising to a power is simplified to
multiplication:

log (atb)=(log a)*b

Very interesting, but, since the invention of the calculator,
only in an academic sort of way. It is important to remember,
however, that our log function crops up in lots of different
applications in maths and the sciences, and a superficial
understanding of how it works, what it is and what it does might
cast some light on other areas.

And talking of other areas, why don’t we take a trip to Ancient
Greece.
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ANGLES

1 Angles

Ancient Greece? How about Babylon instead?

Babylon was a Middle Eastern empire that flourished berween
3000 and 1000 BC, and they were very keen on astrology there.
So the astrologers did a brisk trade and unwittingly founded the
first flowerings of science in the form of astronomy.

Now, the Babylonians used a number system that had a base of
not ten, but sixty, and because they were chiefly concerned with
astronomy, they used their number system in measuring angles
and time.

Does this mean that the Babylonians of old had sixty fingers?
Probably not. But they did have the longest surviving system of
measuring time and angles at their fingertips. It has survived
until today (and maybe even until tomorrow) and its base sixty
aspect is intact. What about hours, minutes and seconds? And
degrees, minutes and seconds?

60 seconds =1 minute
60 minutes=1 hour (or 1 degree)

That holds true for both angles and time.

And 6 times 60 (360) degrees is one complete revolution. The
way we show degrees, minutes and seconds is similarly
antiquated, but old-fashioned traditions ought not to be thrown
out of the window without any thought. Degrees are shown by °,
minutes by ', seconds by ". So if I were to write 24° 15’ 30", you
would know what it meant.

In geometry, angles appear most often in connection with the
corners of triangles (about which we shall definitely be hearing
much more) and, because things that rotate are connected with
angles, circles tend to crop up a lot.

B R

L
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Just so you get a feel for these units, perhaps we should draw a
few examples out.

1 revolution=360°

2 revolution=180°

Ys revolution= 90°

1 degree=60"=3600"

1 revolution =21,600'= 1,296,000"

Angles of these commonly found sizes look like this:

This is an angle of 90° known to
the world as a ‘right angle’.

LA

Angles less than 90° are called
‘acute’. 60° is a common acute

angle.

/7
45°, not surprisingly, is half a
right angle, also acute because
45°<90°,

7

The last of our examples, again
acute, again very common. Note
that 30°+60°=90°,
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But this is old-fashioned. Let’s get into the modern world and
get the Spectrum to demonstrate it.

Program 34 ANGLE DRAW

S REM PROGRAM 34
ANGLE DRAW

18 CLS 1 BORDER 4: CIRCLE 147,
88,87: DRAW INK 2;-87,0

2@ INPUT "ANGLE IN DEGREES?"1A

3@ PRINT AT 8,08;A;" DEGREES"

4@ IF A<9@ THEN PRINT AT 1,0;
"18 ACUTE"

9@ IF A=9@ THEN PRINT AT 1,0;
"I8 A RIGHT ANGLE"

4@ IF A>98 AND A<1B@ THEN PRI
NT AT 1,0;"IS OBTUSE"

70 IF A=18@ THEN PRINT AT 1,0
$:"1S A STRAIGHT ANGLE"

8@ IF A>182 THEN PRINT AT 1,0
;"1IS REFLEX"

@ LET X=87%C0S (A*PI/180)

100 LET Y=87+3SIN (A*PL/180)

110 DRAW X,Y

120 PRINT AT 21,8; "PRESS ANY KE
Y": PAUSE @: GO TO 1@

A few words about the program. You should have no trouble
seeing what the different lines do, with the exception of lines 90
and 100 which you should not understand.

Line 10 draws our circle and a red line to measure the angle
from. Line 20 lets you put in your choice of angle. (What if you
put in an angle greater than 360°?) Lines 40 to 8@ sort the angle
into whatever type it is: acute, right angle, obtuse, straight angle
and reflex. (Study the conditions for these names.)

When measuring angles with this program, remember that you
are looking at the angle starting at the red line and going
anticlockwise until you reach the other line,
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I think this simple program gets the point over quite well.

But I’m avoiding the issue: what about lines 99 and 1002 It
must be said, lines 9@ and 10@ are the clever bit. They work out
the variables X and Y that the DRAW command uses to put the
angle line in the right place. They are two equations, and you
might be able to recognise parts of them:

X =87*COS (A*P1/180)
Y=87*SIN (A*P1/180)

In fact you should have no difficulty wirth the insides of the
brackets. A is the variable holding your choice of angle, PI is no
stranger (and I did say before that it crops up in geometry a lot,
especially in circles and angles), and 180 is a number (you might
recognise the fact that 180 is half of 360, and that might ring a
bell). 87, some of you might have spotted, is the radius of the
circle we have drawn (check it out in line 10). And so, we have
only two strange items remaining. The functions COS and SIN.

2 Sine, cosine and tangent

Start with a look at triangles. Now, somewhere in this book
we’ve got a pretty good definition of a square. We said it was a
shape made of four lines all the same length and all joined
together at 90° to one another. How about a definition of a
triangle? A triangle is three lines all joined together, and the lines
can be any lengrth, and the angles between them can be just about
any angle, so long as no two lines are parallel.

That gives us a whole lot of different kinds of triangle. Some of
them we can see are special kinds of triangle (with special jargon
names) if we throw in a few more conditions:

An equilateral triangle has three sides all the same length, (the
name gives it away since in Latin aequus means equal, and Jatus
means side):
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An isosceles (pronounced i-sos-sell-eez) triangle has two sides
the same length:

And a right-angled triangle has one angle in it of 90°, like so:

We shall concentrate our efforts on an investigation of the
right-angled triangle and reach some important conclusions. It’s
sneaking up on Sin, Cos and Tan by the back door really.

What we need for a proper investigation is a triangle which has
been labelled with names for the sides and angles so we can keep
track of what we’re talking about:
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That’s better, and you’ll notice that I’ve made the angle A
special by drawing in a little arc in the angle. And just so we can
remind ourselves, it’s usual to make the right angle obvious by
drawing it in with a little L-shape. So we have angles A, B and C.
We know that B=90° (because B is the right angle) and we have
three sides, a, b and c.

You might have noticed that P've labelled the sides opposite
the angles with the same letter: side 2 is opposite angle A, side c
is opposite angle C, and side b is opposite angle B.

There is a jargon word for the side opposite the right angle. It
is called the ‘hypotenuse’ which comes from a Greek word
meaning ‘to stretch under’. I can sce the point, because the
hypotenuse does stretch across the right angle.

Now let's look at the angle A. So far as the angle A is
concerned, we have:

side a is the opposite side
side b is the hypotenuse
side ¢ is the adjacent side.

The word ‘adjacent’ means ‘next to’, and as you can see, the
only two sides next to angle A are the hypotenuse and side c.
How about a small program to show it nicely?

Program 35 OPPOSITE, ADJACENT &
HYPOTENUSE

5 REM PROGRAM 35
OPPOSITE, ADJACENT AND HYFO

TENUSE
1@ BORDER 4: PRINT AT 21,1;"A"
INPUT "ADJACENT SIDE? ({233) "

3iC
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2@ PLOT @,0: DRAW c,@: PRINT A
T @,@; "ADJACENT SIDE "3c

3@ INPUT “OPPOSITE SIDE? (<175
) ";a

4@ DRAW @,a: PRINT AT 1,03;"DPP
OSITE SIDE “;a

50 PAUSE 10@: DRAW -c,-a

6@ LET AA=ATN (a/c)

70 PRINT AT 3,0;"ANBLE IS “;AA
*18@/P1;" DEGREES"

80 PRINT FLASH 1;AT 4,0;"PRES
S ANY KEY": PAUSE @: CLS : GO TO

12

Line 60 is the one you’ll have to ignore for the moment this
time! Suffice it to say that it works out the angle A from the
lengths of the sides you have entered. What I want you to get
from this is that you can calculate the size of an angle in a right-
angled triangle once you know the lengths of two sides.

And it doesn’t have to be the opposite side and adjacent side, it
can be any two sides. We’re very close to finding out what these
trigonometric functions are now!

If you want to find the angle in terms of the adjacent and
opposite sides, you use the TANgent function.

If you want to find the angle in terms of the adjacent and
hypotenuse sides, you use the COSine function.

If you want to find the angle in terms of the opposite and
hypotenuse sides, you use the SINe function.

And we’ve exhausted our pairs of sides, which is why there are
three functions connected with this. It might be a good idea to
put it down in black and white with reference to our labelled
triangle above:

TAN A=alc

Thar’s the first one. The tangent of angle A is equal to the
length of the opposite side divided by the length of the adjacent
side.

COS A=c/b
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which means the cosine of angle A equals the adjacent side
divided by the hypotenuse.

SIN A=a/b

meaning sine of A is equal to opposite divided by hypotenuse.

And that’s it, a complete set of fundamental definitions of the
three functions. Not so complicated after all: they are just the
ratios of sides in a right-angled triangle when it comes down to it.
But the range of applications of that trio of functions is
absolutely stunning.

3 Inverse trig functions

If SIN, COS and TAN are known as the trigonometric
functions, or trig functions for short, there must be a set of three
inverse trig functions, And indeed there are:

The inverse of SIN is ASN (sin”™")
The inverse of COS is ACS (cos™)
The inverse of TAN is ATN(tan™")

Is dawn breaking over some of the lesser mysteries of program
352 I hope so. In maths books you can ofien find the inverse trig
functions written with the strange form shown in the brackets
above. It is read ‘sine to the minus one’ or more simply arcsine,
and so on for the other functions, and that’s why the Spectrum
has the abbreviations ASN, ACS and ATN beginning with A.

We could rewrite the three trig functions in terms of their
inverses. It’s just like the tricks we got up to with EXP and LN,

Remember that if

y=EXP x

then another way of writing it would be
x=LNy
And by the same rude logic we can write
SIN A=a/b

or inversely as
A=ASN (a/b)
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The poetry of which is: “Angle A equals arcsine of a divided by
b.’
Also if

COS A=c/b
we can write
A=ACS (c/b)
Figure out the poetry for yourself.
And lastly if
TAN A=alc
then we have
A=ATN (alc)

I hope this last bit of information casts a twinkle or two over
our impenetrable line 60 in program 35. We had

60 LET AA=ATN (a/c)

and I used AA as the variable holding the angle we’ve been
calling A. I had to use AA because I'd used the variable a to mean
side a. Anyhow, line 60 reads: “ LET the angle AA equal the
arctan of a divided by c¢.”” and that would be mathematically
equivalent to having written

60 LET TAN AA=alc

The trouble is that this version of line 60 is not good BASIC
grammer, and the Spectrum would have turned its nose up at it,
leaving us no choice burt to use the inverse trig function form.

One final point: the use of brackets here will not have escaped
your notice, and it’s quite necessary to use them in this case.
Because if we’d written,

60 LET AA=ATN alc
without brackets, the Spectrum would think we meant:
“LET angle AA=arctan a, this result then divided by ¢”
instead of

“LET angle AA=the arctan of the result of a divided by ¢
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Is that clear? It’s the same as our argument about (a+b)*c not
being the same as a+(b*c).

If in doubt, it’s a good idea to put brackets into an expression
to make sure the Spectrum doesn’t get the wrong idea.

Try a few goes at Program 35. Try entering the same number
for adjacent side and opposite side. Start with 100, then try 150,
then anything you like, so long as it’s inside the limits specified.
(If you choose numbers bigger than 255 for the adjacent side or
bigger than 175 for the opposite side, our program will not be
able to draw the triangle and will stop with the report, “Integer
out of range”.

The point of putting in adjacent and opposite sides that are the
same length is that you would expect the angle to be 45°, and
you can check that the program works correctly by seeing if it
gives you 45° every time.

You might also like to verify this business of dividing by zero,
by trying to enter @ when you are asked for the adjacent side. In
effect you are setting variable c=0 in line 6@ and trying to get the
Spectrum to evaluate the bracket (a/@) which it can’t do. It seems
that the TAN function goes towards infinity as our angle goes
towards 90°. If you make the angle very small by entering, say,
255 for the adjacent side and 1 for the opposite, it will not give
you a very satisfactory triangle, but might illustrate that, as the
angle gets smaller (closer to zero), the TAN of the angle gets
closer to zero, and in fact TAN 0=0.

Enter zero for the opposite side, and you can show that.

At this point, we will have to break off and follow a small
digression to cast the final lumen of light over the mysteries of
Program 35. It involves the expression in line 7@. (It also
involves the expressions in lines 90 and 180 of Program 34.) The
mystery in question is P1/180 and 18@/P1, which crop up without
(so far) any explanation and ought to have one. The mystery
turns out to be something called a ‘radian’.

4 The radian

Degrees have proved a durable form of measure. The
Babylonians used them, and so do we, but we have another form
of angle measurement as well. It’s called the radian.

There are 360 degrees in a revolution. Perhaps we would do
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well to find out how many radians there are in a revolution.
Actually there are 2*PI radians in a revolution.

But why in heaven’s name pick such a crazy number? 2*PI is
about 6.2831853 (just do PRINT 2*PI). Why didn’t
mathematicians decimalise it, and let there be ten per revolution
instead?

It’s not the mathematicians’ fault: it’s just the way circles
happen to be. If you draw a circle with a couple of radius lines
drawn on it (and make them 1 unit long), and if you arrange them
so that the part of the circumference between the radius lines is
also one unit long (a part of the circumference is called an arc),
then the angle made by the two radii (radii is plural for radius) is
1 radian. It’s much clearer on a diagram:

As you can see, it looks to be about 60 degrees or so, but we can
work it out exactly:

If
1 revolution=360°

and
1 revolution=2*P1I radians

then
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2*PI radians=360°

and, more simply, dividing both sides by 2,
PI radians=180°

So we have

1 radian=180°=180/3.14159 etc.
PI

which brings us to

1 radian=57.29578 degrees
orin?®, ', " form,

1 radian=57° 17" 44.8"

Now, the reason we’ve been in so much trouble with equations
34 and 35, is because the Spectrum is set up to expect angles
quoted in radians and not in degrees. So if we want to have it
print out the angle in degrees, we must incorporate an equation
that converts the units, and that's what's been going on.
Multiply a radian quantity by 180/PI, and you have it in degrees:
and, inversely, multiply a degree quantity by P1/180, and you get
it in radians.

This is a handy little program to generate a table of
conversions:

Program 36 DEGREES AND RADIANS AND
TANGENTS

5 REM PROGRAM I&6

DEGREES, RADIANS AND TANGENTS

1@ FOR x=0 TO %0

20 PRINT x:TAB 4;x»P1/18@;TAB
163 TAN (x*PI1/18@)

3@ NEXT x

And immediately you will sce that when the angle x is less than
about 10 degrees the radian measure of x is very similar to the
TAN x value. As the conversion enters its third screenful, you
can see that TAN 45° is 1 (which is what we would expect since
the ratio of opposite and adjacent sides is one when the sides are
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equal). You will also see that 1 radian is between 57 and 58
degrees (which is another result we have had) and, in the last
screenful, that the value of the TAN function takes off rapidly
getting too big to calculate when we reach 90°.

Mathematicians would say that ‘as x tends to 90°, the value of
the function tan x tends to infinity.” That’s the best they can say,
never coming out with it and saying that when x is 90° tan x is
infinity. They can’t say that because they’ve never been to
infinity to explore it— infinity is just out of the mathematical ball
park.

This ‘tends to’ business is quite convenient, though. We could
say that as the angle tends to 180°, then the radian measure tends
to PI... It has possibilities.

Something tells me there ought to be a program 36a. Wherever
we can generate a table of numbers we can usually get a graph
out of it somehow:

Program 36a  GRAPH OF TAN & RADIAN

S REM PROGRAM 34a
GRAPH OF TAN % RADIAN
1@ BORDER 4: PRINT aT 1,5;"
"+ PRINT AT 2,46:3"

28 FOR x=0 TO 9@ STEP .S

25 PRINT AT 1,&;3" r

26 PRINT AT 2,73" Y

@ LET y=TAN (x*PI1/18@)

4@ PRINT AT By13"x="3INT %t PR
INT AT 1,0;"X(r)=";x*P1/1B0: PRI
?T AT 2,83 "TAN x=";TAN (x*P1/18@

S8 PLOT 2#x,y#*10: PLOT (2%x)-1
y (x*P1/180) %10

S5 PAUSE 1D

6B NEXT x

And I think you must agree that that is a bit more pleasant to
watch. Pretty green border. The trouble is that the numbers
printed up top have to leave their decimal places on the screen
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when they get overprinted, so we could find this useful:
25 PRINT AT 1,6;“ ” (11 spaces)
26 PRINT AT 2,7;* (12 spaces}
and
55 PAUSE 10

Which creates a slower program, but more accurate figures.

Why don’t you see if you can improve on this program,
making it stretch across the whole screen, or using a white-on-
black colour scheme to simulate a blackboard effect. Or maybe
you can get rid of the super green border!

But those of you more interested in following up the further
ramifications of trig functions might like to get a table together
for the SIN and COS functions. If we bear in mind that we’ll be
constructing a graph of the function, maybe we can choose a
program that shows us some useful details and clues.

It might be nice to see a range of values for the function that
cover not a Y% revolution, but a whole one, that is from 0° to
360°. And let’s choose intervals of 5° so that we can get through
all the data generated without trouble.

Program 37 SIN & COS

S REM PROGRAM =7
SIN & COS
1@ FOR x=0 TO 3&@ STEFP S
20 LET y1=8IN (x+PI/18@)
3@ LET y2=C0S (x+*F1/180)
4@ PRINT %3 TAB 4;3;y1:TAB 143y2
S8 NEXT x

The first page full of data shows that, when x is @, Sin x is @
also, but that Cos x is 1. Then as x goes towards 90°, Sin x rises
from @ to 1, so that when x=90°, Sin x=1. At the same time,
Cos x is doing the opposite. It’s going from 1 down to @, so that
when x reaches 90°, Cos x=0.

The next page follows the functions from 90 to 180 degrees, at
which point Sin x has declined to zero again. Cos x, on the other
hand has continued to decline right down to minus one.
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By the time the functions have reached three quarters of a
revolution at 270°, they are at minus one for Sin x and zero again
for Cos x. By the time they have done one complete revolution at
360°, they have got right back to where they started from, with
Sin x=0 and Cos x=1.

A graph is definitely called for here, so we can check out
exactly what shape these functions give us.

We must first see that both functions are in the range from
minus one to one. A mathematician might write:

- 1<f{x)<1 (where f{x) is Sin x or Cos x)

Do you remember the function notation? ‘fx)’ is read as ‘a
function of x’ or ‘f of x’ for short.

Anyway, if we use the horizontal axis to measure off degrees,
five at a time, and the vertical axis to measure from minus one to
plus one, then we will get a good graph extending over 255%5
degrees, =1275 degrees, or a shade over three and a half
complete revolutions. I want you to see how these functions
repeat. First the SIN:

Program 38 SINE GRAPH

5 REM PROGRAM 38
SINE BRAPH
1@ BORDER 5: PLOT @,88: DRAW 2
55,
20 PLOT @,0: DRAW 0,175
38 FOR x=@ TO 1275 STEP 5
4@ LET y=SIN (x*PI/18@)
5@ PLOT /5, (y*87)+88
6@ NEXT x

And as you run it you can con yourself into thinking that you
are Jooking at something moving in a spiral down a tube. The Sin
function seems to have a lengthways straight-line aspect and a
circular aspect giving the helix or spiral.

But let’s not forget that this is a 2-D graph, and what you are
looking at is a set of just over three and a half revolutions of the
sine wave. To get just one revolution do:
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3¢ FOR x=0 TO 360
and
50 PLOT x*255/360,(y +87)*88

as replacements. You can identify the points along the line.
Where it starts is zero degrees, and where it ends is 360 degrees
(and notice that the sine curve has a value of zero at these points).
It also has a value of zero at the middle, and a quick cross-check
will reveal that this point must be 180°. Similarly, when the
curve goes down to — 1, it must be 270° along the line, and when
it’s up at 1, it must be at 90°. Talk about symmetry.

Now consider the data thrown up by Program 37, and think
how a cosine wave will differ from a sine wave.

Failing that, use your amended program 38 with the further
alteration:

40 LET y=COS (x*P1/180)

and see what you get.
It’s the same form of curve, except that it’s shifted along the x

axis by 90° (or PI/2 radians).
For a good comparison, reconstitute our abandoned original

line 40, this time making it line 35:

35 LET z=SIN (x*P1/180)
and add this, so that it plots out:

55 PLOT x*255/360,(z*87)+ 88

D’you see what I mean about the shift? And here’s a stray
mathematical thought: the curves actually cross one another at
two places. One is up in the positive top half of the screen, the
other time is below the line. If we just think about the positive
one, we can see that it lies somewhere between 0° and 90°. For
the curves to cross, at that point Sin x must equal Cos x, so we
could write:

If Sin x=Cos x

then what value of x are we talking about?
And we can see that if we do:

PRINT SIN (PI/4), COS(P1/4)
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we will get two numbers that are the same. PI/4 is equivalent to
45°, so if Sin x=Cos x, then x must be 45°. (What about the
negative cross-over point?} True! Correction: if Sin x=Cos x,
then x must either be 45° or (180 +45)°. Only these two values of
x satisfy the equation. And we’ll be looking at that concept later.

For the moment I'd like to recap what we have here.

First, three trig functions that come from the triangle. Then
we had three inverse trig functions. Then we had the idea of
measuring angles in radians so that:

2n radians=360°
n radians=180°
/2 radians=90°

etc.

Now we have the sine and cosine waves, and the observation
that the tan function goes off to infinity and isn’t well behaved
like the other two.

What was that value for Sin 45° again? The same as Cos 45°, I
know, but what was its value?

Well, Sinclairs like radians, so:

PRINT SIN (Pl/4)

and we get 0.70710678.

Do you remember my saying that maths was like a case of
everything being connected to everything else? It might not seem
80 yet, but you only have a quarter of the jig-saw pieces in front
of you so far. Just to prove my point, and elegantly introduce the
next topic, try this:

PRINT 1/SQR 2

and we get . .. 0.7710678. It’s that number again!
And why should that be?

(which means Sin 45°)

5 The theorem of Pythagoras

What does theorem mean? In maths a theorem is a statement that
requires proof. And Pythagoras?

Pythagoras was an Ancient Greek mathematician. Pythagoras
came from Samos (572-497 Bc)and wandered around the Middle
East before founding his school of geometry. He thought that the
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Earth was the centre of the universe, which shows that even
great mathematicians can have some faults. But h? is
remembered most for his theorem which states that in any right-
angled triangle the length of the hypotenuse is equgl to the
square root of the sum of the squares of the other two sides. And
what does that amount to?

Bring back our labelled right-angled triangle:

d
In symbols, Pythagoras’ Theorem states:
=2+ bl
or, taking the square root of both sides:

c=V@FH)
The bracket contains the ‘sum of the squares of the other two

sides’ and the square root of it is equal to the hypotenuse.
I feel another program coming on:

Program 39 PYTHAGORAS

% REM PROBRAM 39
PYTHAGORAS
1@ BORDER 4: INPUT "SIDE No.l

20 PLOT @,@8: DRAW a,d
3@ PRINT “SIDE 1L = ";a

4@ INPUT “SIDE No.2 "j;b

5@ DRAW @,b

6@ PRINT “SIDE 2 = ";b

70 PAUSE 10@: DRAW -a,-b
80 LET c=SER ((a"2)+(b"2))
98 PRINT "HYPOTENUSE = ";c
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You may recognise this as being sort of based on Program 35,
except that it works out your third side instead of an angle. And
you will no doubt recognise Pythagoras’ Theorem doing the
working out in line 80.

Try entering a side of 4 and the other side of 3, and you will get
5. This is the schoolmasters’ favourite, the 3, 4, 5 triangle. It will
be shown to ranks of bored and lifeless schoolboys until the end
of time, and all because, conveniently, 57=3%+4¢ (or if you like,
25=9+16).

Now for the punch-line. In Program 39, try entering 1 for side
1, and 1 for side 2. Just consider it first: it won’t draw a very
good triangle, but what the hell. We have:

Hypotenuse=/(112)+ (112}

1 squared is 1 times 1 (which is 1), so our hypotenuse is the
square root of 1 plus 1, or in other words, the square root of two.

Hypotenuse=y/ 1+ 1=y2

But let’s look closer at that triangle:

V2

1

We said that we could define trig functions in a right-angled
triangle, and so if we look at the Sin of the angle marked as x, we
will have

Sin x=_opposite = 1 =0.70710678
hypotenuse /2

which is where we came in . . .

1
I
1
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7 Cofunctions

Everybody knows what Sin, Cos and Tan are now, but here’s a
few you might meet in maths books of the smart kind where they
try to shake off the beginners:

SEC Also known as Secant
COSEC Alias the Cosecant
COoT Often called the Cotangent

You won’t find them on the Spectrum keyboard, but that need
not stop us.

These cofunctions are rarely used, so you can forget them if
you please. If you must know about them, then know this.

The sum of the three angles of any triangle will be 180°. If the
angles are A, B and C, then we have:

A+B+C=180° (=PI radians})

In particular, the right-angled triangle for which we already
know one angle is 90° (let’s suppose that was angle C) will obey
this relationship:

A+B+90°=180°
or, subtracting 90° from both sides,
A+B=90°

Angles A and B are called complementary angles because they
complement one another (meaning they add up to 90°). You will
find that the two left-over angles of any old right-angled triangle
are always complementary. (If one is 45 the other is 45, and if
one is 30, the other must be 60, and so on.) And this is a
consequence of a right angled triangle already having one angle
of 90°, leaving 90° to be split between the other two.

And that’s where the ‘co’ comes from in cofunction. The sine
of 30° is equal to the cosine of 60°, for example. And in fact we
can generalise:

SIN x=COS (90-x)
Then we have also
TAN x=COT (90-x)
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And also
SEC x=COSEC (90-x)

So, for example, we can say Tan 20° is 0.36397023: just do
PRINT TAN (20*PI/180). So Cot(90-20)=Cot 70° is
©.36397023 to0o0.

This crops up again when we examine something exotic called
‘trigonometric identities’. But that, as they say, is something of a
different story.

To summarise the six trig functions:

(Note that the angle here has
¢ b | been marked 8, the Greek letter
‘theta’.)

Reciprocal Relations

SIN 6=b/c  COSEC 6=c/b COSEC 8=1/SIN 6
COS #=alc SEC@=c/a SEC 0=1/COS 8
TAN 8=b/a COT 6=a/b COT6=1/TAN 8

The word reciprocal (pronounced re-sip-ro-cal) means ‘one
over’ so that the reciprocal of n is 1/n, the reciprocal of Sin x is
1/8in x or, as we have just seen, Cosec x.

It might have struck you that

if Sin x=b/c and Cos x=a/c
then Sin x/Cos x is blc
alc

And we can simplify that complicated looking fraction by

multiplying the top and bottom by c, leaving b/a. Now, if we

look back, we can see that b/a is equal to Tan x. So we have
Sin x
Cos x

And let’s take the reciprocal of both sides: remember that,

=Tan x
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when you do ‘one over’ to a fraction, it just turns upside down,
so that 1/(Sin x/Cos x)=Cos x/Sin x. Now we have

Cos x

: =Cot x
Sin x

(because 1/Tan x is Cot x). We really need a program to put it all
up on the screen for us:

Program 40 TRIGONOMETRIC FUNCTIONS

5 REM FROGRAM 40
TRIGONOMETRIC FUNCTIONS
1@ INPUT "ANBLE IN DEGREES? “j

28 PRINT "ANGLE IN DEGREES "

30 LET r=x*P1/180
4@ PRINT "ANGLE IN RADIANS "

5@ LET sin=SIN r
&@ PRINT "Sine of Angle A

78 LET cos=COS r
8@ PRINT "Cosine of Angle K

9@ LET tan=TAN r
100 PRINT "Tangent of Angle "

110 LET sec=1/C0S r
128 PRINT "Secant of Angle -

13@ LET cosec=1/SIN r
140 PRINT “"Cosecant of Angle "
s cosec
150 LET cot=1/TAN r
140 PRINT "Cotangent of Angle "
;jcot
17@ PRINT : PRINT : GO TO 1@
You will find that, for any of the interesting values of angle like
0°, 90°, 180°, etc., you will have no print out. That’s because
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there is usually one function that scoots off to infinity and stops
the Spectrum executing the program. That’s why in making a
program that will make a graph of these functions over one
revolution, it’s not going to be as easy as it was to draw out SIN
and COS in Program 38 and its variants.

Nevertheless, difficulties can be overcome. We can use
Program 4 to show us the danger points.

Let’s suppose that the vertical scale is 80 pixels above and 80
pixels below the line. Let’s also suppose that to get a good SIN
and COS curve we have to have it go up 20 pixels above the line
and down 20 below it. So, if those well behaved functions have a
maximum of 1 and 2 minimum of -1, we can accommodate
points up to 4 and down to —4. And if we exclude values of angle
that give function values outside the range -4 to 4, we should be
OK.

Using Program 40 we can see that the zones of danger are
around the values 0°, 90°, 180°, 270° and 360°, and by looking
at figures around these danger zones we can see that the
functions are only well behaved in all six cases if we go beyond
15° or so on either side of the danger points. (Within 15° of 90°,
for example, and that means the range 75° to 105°, the values of
both Tangent and Secant are too big to plot on the scale we've
chosen.)

So we must write a program that selects only the safe ranges if
we want it to run OK, and that’s not hard.

Program 41 SIX TRIG GRAPHS

Y REM PROGRAM 41
SIX TRIG GRAPHS

1@ BORDER 5: PLOT @,88: DRAW 2
55,0@: FLOT 44,8: DRAW ©,175: PLOD
T 128,08: DRAW @,175: PLOT 192,6:
DRAW 8,175

2@ FOR x=0 TO 360

38 IF <15 THEN GO TO 100

40 IF x>75 AND x<1@5 THEN GO
TO 100

90 IF x>165 AND x%<195 THEN GO
TO 100
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68 IF x2>233 AND x<2Z85 THEN GO
o 100

7@ IF x>3Z45 THEN GO TO 129
8@ LET r=xxPI1/180

980 PLOT »*255/360,88+(SIN r)*2

71 PLOT x%235/360,88+(COS r)*2

P2 PLOT x#255/348,8B+(TAN r) =2
a

Q3 PLOT x*#255/368,88+(1/5IN r)
*20

94 PLOT x#255/360,88+(1/C0S r)
*20

5 FLOT »x#255/360,88+(1/TAN r)
*20

10@ NEXT x

And what a beauriful piece of Japanese calligraphy we get.
[Lines 30 to 70 have ensured that we have left gaps around the
danger zones, and lines 90 to 95 do the donkey work.

Very beautiful. But to clarify things we need a method of
selecting which function we are going to plot, and do them one at
a time. So here are a few amendments I've cooked up:

5 POKE PRINT “Select SIN, COS, TAN, SEC, COSEC or
coT”
6 INPUT a$: CLS

and alter lines 90 to 95 making them conditional by adding this:
90 IF a$="SIN” OR a$="sin” THEN
on to the front of it, making the whole thing:

99 IF a$="“SIN” OR a$="sin” THEN
PLOT x*255/360,88 +(SIN r)*20

Remember that the condition must be appropriate to the line,
so that line 9@ deals with SIN, 91 with COS, 92 with TAN, 93
with COSEC, 94 with SEC and 95 with COT.

Now we can choose each function in turn and get a picture of
it. I know it’s infuriatingly slow to draw, but think how much
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longer it would have taken with pencil and graph paper and a
book of tables!

Let’s analyse what we have. The first vertical line represents
90°, the second 180° and the third 270°. The right-hand edge of
the screen is 360°, and the left hand edge is 0°. Both Sin and Cos
have done as we might have expected from what we already
know. But what about the Tan function?

The Tan function tends to infinity as the angle tends to 90°,
then it reappears as if from minus infinity, until it reaches zero at
180°. Then between 180° and 360°, it does exactly the same as it
did between 0° and 180°.

The Cosec function comes down from infinity ar 0°, levelling
out at value 1 when the angle is 90°. It then does the reverse
between 90° and 180° zooming up from 1 to infinity, Then
between 180 and 360 it does something similar, only with minus
infinity and minus one.

The Sec function draws a picture that looks like a sad face. It is
a shifted version of the Cosec function, its limits being again plus
and minus infinity and plus and minus 1.

The Cot function makes a double journey from infinity to
minus infinity.

It has just occurred to me that if you are trying to read this
book without looking at the programs on the screen as well, it
will sound like gibberish! It’s like symbiosis in biology, where a
plant and animal rely on one another to survive: you've got to
run the programs and read the book, or else it doesn’t make
much sense.

So there we are.

You have now got a grasp of the fundamentals of Spectrum
maths and are ready to go on to ideas that are a bit more
advanced.

7

POLYNOMIALS

1 Polynomials

2 ]
‘Poly’ means ‘many’, ‘nomial’ means ‘numl?er : \?Ue can a},lso have
‘monomials’ (‘mono’ means ‘one’) and ‘binomials’ (‘bi’ means

11 2
two’). o _
A monomial is an algebraic expression involving only one

term. So that

2x (2*x}
—5xy (—5%%*y)
3q’p (3*a*q*p)

are all monomials. ' ) .
A binomial, on the other hand, is an algebraic expression

involving two terms:

3x+4y (3*x)+(4*y)
P-q (p*p)—q
a+x

are all binomials. . ‘
You guessed, 1 supposed, that polynomials have many terms:

x'+3xy+15 (x*x)+(3*x*y)+ 15
is an example. _ )

Now, when we come to manipulating algebraic expressions,
we have to make sure that we follow a few simple rule§.

First, we can only add terms together if they are like terms:
they have to be the same type. You can’t add 5 oranges to 6
apples, but it is perfectly possible to add three pears to six pears.

So only like terms can be added (or subtracted)._ )
For example, if we have 8xy—2xy, it can be simplified to 6xy.
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Or, if we want to add 4x*-10xy+5y® and 2x’+4xy-2y*
together, the result would be;
4x* added to 2%’ giving 6x°
and,
—10xy added to 4xy giving — 6xy
and,
5y* added to -2y giving 3y
and when we collect them up, we have:
6%’ —6xy + 3y*
We only add like terms.
What about multiplying and dividing?

Suppose we had 3x and 5y and 6xy and wanted to multiply
them together. It would be:

3ix * Sty * ﬁtxky

which would be 3*5*6*x*x*y*y or, condensing it further,
90*x**y* which we could write,

90x%y*

Suppose we had a couple of binomials and wanted to multiply
them together:

(x+yP(x+y)

Thep we‘would have to multiply each of the two terms of the
first binomial by the two terms of the second binomial.
So that,

x*x would give x*

x*y would give xy

y*x would give yx

y*y would give y?
But notice that x*y=y*x, so that when we collect up the terms,
we get

X'+ xy+xy+y?
or,

X+ 2xy+y?
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Iu full, this result can be shown:
(x+y)x+y)=x'+2xy+y’

‘I'he reverse of this process is called facrorising, and the two
lactors of x*+2xy+y’ are said to be (x+y) and (x+y).

So much for that. Juggling with figures seems to be a pretty
meaningless pastime. But don’t forger that everything in
mathematics is connected to everything else! Do you remember I
asked you about something on p 76, the last page of Chaprer 4?
We had just got to showing that the equation of a straight line is
of the form

y=m*x+c
where m turns out to be the slope of the line and c is the point
where the line crosses the y-axis (called the y-axis intercept). I

asked what condition must be satisfied if two lines are parallel
when they are written .

y=m*x+c¢
and
y=my*x+¢

If the lines are parallel, their slopes must be the same, and that
means (in our two equations) that m, =m,.

Now we said that an equation of the form y=mx+c is called a
linear equation (because its graph is a line), but what about
equations that include terms that have x° in too?

We call them quadratic equations.

2 Quadratic equations

These have a general form:
a*x’+b*x+c=0

and it might be useful to examine this closely.

First, we can see that there is a term in %%, one in x', and one in
x°. The term in x* is multiplied by a constant here called a, but in
fact and practice it can take any value positive or negative. The
term in x' (and we leave out the index because x'=x) is
multiplied by another constant able to take any value and here
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called b. The term in x (quite right!) is one, and it is multiplied
by a third constant (here called c), and since writing c*1 would be
going the long way about it, the final form in general terms is:

a*x’+b*x+c=0

One further point about the form of the equation is that it is set
equal to zero. This is because if it was set equal to any other
number, you could always subtract that number from both sides
and get back to the standard general form. For example, if we
had,

3% +4x+5=7
we could subtract 7 from both sides and we would get, -
3x*+4x-2=0

which is in the general form,

But why go to all this trouble to get the equation into a
standard general form?

That’s a good question, and one that requires a better
understanding of what the equation is actually representing. If
we go back to a linear equation, we can see that if, for example,

3x+5=0
we can subtract 5 from each side and get,
3x=-5
and then divide each side by 3 and get,
=-5/3
In other words, we have found a value for x that satisfies the
equation 3x+5=0. We can see that it satisfies the equation

because, if we substitute —5/3 for x in our original equation, it
checks out as true:

3*%(-5/3)+5=0 (which is true)

Mathematicians say that they have solved the equation just as
if it was a puzzle (which I suppose it is), and they say that the
value x=—5/3 is the solution of the equation,

In this case, you can’t think of any other number that will
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-atisfy the equation. The equation has only one solution, a
unique solution.

But that’s just a straightforward linear equation. What about
other kinds of equation? Do other sorts of egquations have
solutions? And is there only one solution in every case? Maybe
thcre are equations with more than one solution that satisfies

them.
And in fact there are. Let me give you an example:

x-16=0

This pleasant little equation is obviously not linear because it
has a term in x squared, and in fact if you look closely at it, you
can see that it fits the standard quadratic form whereais 1, b is
zero, and ¢ is —16: !

I**+0*x+(—-16)=0
which simplifies to our equation:
¥'=16=0
Let’s try to solve it, first adding 16 to both sides:
=16
and then taking the square root of both sides:
x=4

And there we have it, a solution, and we can check ‘it out by
substituting this value of x back in the equation like this:

4’-16=0
which is,
16-16=0 (which is obviously true)

But is 4 the only solution? Because I can think of another value
of x that satisfies the equation: x= -4 .
Clearly, minus 4 times minus 4 is 16 (because if you multiply
two negative numbers together the negatives cancel one another
out, a case where two wrongs do make a right!). When we
substitute back into the original equation we have our check.
The most convincing evidence for this can be got from your
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Spectrum by commanding:
PRINT -4*—4

and you get 16.
Whilst you're at it, try this:

PRINT —4*-4*—4

and you get —64, and the minus sign is back because two of the
minus signs destroy one another, and one is left over to survive.

Anyway, before we get into that, let’s repeat that this particular
quadratic type equation has two solutions, 4 and -4, and we
could write the solution as x==4 (read as x equals plus or minus
four).

The next step is the substance of this chapter and the basis for
a very important equation that all students of maths know very
well indeed. Let’s sneak up on it.

So far we have seen how casy it is to solve a quadratic equation
which has the b constant equal to zero. It is much more difficult
if that b constant is non-zero. If the term in x' has a non-zero
coefficient, a mathematician might remark to another
mathematician, then the puzzle is locked. And it’s not obvious at
all how we solve it.

(Just to keep you on the tracks, you’d better know that the
constants a, b and c in our general form are called coefficients, I
don't know why!)

Let’s look at an example. With coefficient 2 equal to 2,
coefficient b equal to —3 and coefficient ¢ equal to 1, we get:

2¢’=3x+1=0

As I say, it’s not at all clear how you go about solving that, but
luckily the mathematicians have a secret weapon. Someone
found out long ago (I can’t seem to find out who it was) that the
solutions of any quadratic can be found from this equation:

2a

‘That means that the coefficients of any quadraric can be plugged
into the RHS of that equation, and it will give us the two values
of x that are the solution of the original quadratic. Two
solutions? Yes, two solutions: note the plus-or-minus sign.
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Wy don’t we demonstrate this magic sclution finder on the
(nadiatic we quoted above. We had a=2, b=-3 and c=1.
‘. ot solutions are given by

v =(=3)=SQR((-3)*(=3) - (4*2*1))
2%2

I ¢t's simplify it one step at a time:,

x=3+SQR(9-8

and SQR 1 is 1, so we have our two solutions:
x=3/4+1/4=1

and,
x=3/4-1/4=2

I’Il leave it up to you to substitute first one a_nd then the other of
these solutions back in the original quadratic to check that our
i tion finder works.

m;?;fi;i!‘;y, I’'m going to use this rcSult. to form A[he heart of a
useful program, but it’s not just a question (_)f going ahead and
doing it. There are some hidden dangers which fmght not have
made themselves apparent, and we ought to winkle them out
before going back to the computer.

You will recall that you can’t properly take [ht‘: square root of a
negative number. But our solutior_l finder contains a square root
of an expression, and it is possible that the cm:ﬁ'xmgnts will
happen to combine in such a \.;a})r that the expression goes
negative. And then what can you do:

gpeciﬁcally, our root is /b7 —4ac. If b? is ggreater than 4ac,
then we're OK, and we proceed as above. Ifb_= 43?" then the
root is zero, and our solution is just —b/2a. But lfb. is less than
4ac, then we have this square root of a ne_gatwe number
situation, and it means that we have no real solu_nons. .

Notice that I very carefully don’t say no solutions at all: I said
no real solutions. This might sound like a joke, but in fact there
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are things called imaginary numbers, and so although we have no
real solutions, we have a pair of imaginary solutions.

This intriguing and fanciful notion will be explored in a later
chapter, and so, until then, you will have to imagine . . .

How about & quadratic solving program then?

Program 42 QUADRATIC REAL ROOTS

5 REM FROGRAM 42
QUADRATIC REAL RDOTS
1@ BORDER 5: FOR n=@ TQ 7: REA
D r: POKE USR "a"+n,r: NEXT n: D
ATA 112,16,112,464,112,0,0,0
20 PRINT AT 2,7;"RODTS OF GUAD
RATICS"
3@ INPUT "ENTER coefficient a:
"sa: PRINT AT 6,4ja;"#x@ + “
4@ INPUT "ENTER coefficient b:
“§b: PRINT AT &,143bj3"#x + "
S8 INPUT "ENTER coefficient c:
"je1 PRINT AT 4,22;c3;" = @"
6@ IF b*b>=4%a%c THEN LET ri=
{(-b+ (SER ((b*b) ~(4xaxc)))) /(2%a)
61 IF b#b>=4%asxc THEN LET r2=
{(~b—-(SQR ((b%*b)—-(4%xa%c))))/(2%a
: B0 TO 70
65 PRINT INK 2; FLABH 1;AT 14
»85 "NO REAL SOLUTIONS": PAUSE 20
@: CLS : GO TO @
7@ PRINT AT 14,4; "FIRST ROOT
L] ; R1
8@ PRINT AT 14,4; "SECOND ROOT
" 3 RZ2
9@ PAUSE @: CLS : G0 TO 3@

N.B. The symbol @ represents key A in graphics mode to give
the squared symbol as defined in line 19. Chinese typewriter
again!

It is quite important for you to realise that the roots of a
quadratic are its solutions. It’s just terminology: the roots of a
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quadratic are its solutions, and a quadraric’s solutions are its

Honts,
3 More quadratics

i will be interesting if we can get a graph of the quadratic
function, because then we can visualise the effects of the
vonstants in the equation. It turns out that tl{e curve c!rawn by a
quadratic is a shape called a parabola, and it is posm]ole o see
how the coefficients affect it using Program 43. You will see {ha_it
if coefficient a is positive, then the curve is U-shaped. If a is
negative, then the curve is still U-shgped, but ups1de-ldown.

You can try putting in a range of different a _cocf‘ﬁments. The
range =5 to 5 will be enough to show that the bxgger the value. of
a, the narrower the curve. And the bigger negative values give
narrower inverted parabolas. ‘

Then you can try varying the b coefficient, keeping the a and ¢
coefficients the same in order to investigate what effect this has.
You will find that varying b shifts the parabola lf:f:l and right
(along the x-axis, that is) and varying th_e ¢ coefficient has an
effect on the vertical shift (along the y-axis). '

If you do, a=0, then you are reducing the equation

y=ax’+bx+c
down to
y=bx+c

which you must by now recognise as the general equation ofa
line. Lines can therefore be drawn with this program by setting
a=0. Try a=0, b=3, ¢c=0, and you get a good enough straight
line which goes through the origin (obviously, because c=@
implies the y-axis intercept is zero).

And without more ado, here it is:

Program 43 QUADRATIC PARABOLAS

S REM PROGRAM 43 QUADRATIC
PARABOLAS
1@ BORDER 4: PLDT @,88: DRAW 2
55,0: PLOT 128,0: DRAW @,175
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20 INPUT "CODEFFICIENT a?";3a

3@ INPUT "COEFFICIENT b7";b

4@ INPUT "“COEFFICIENT c?"3c

5@ PRINT AT @,1;"a="3a;" b="3b
'n C."i‘:

6@ FOR x=-10 7O +1@.STEF .@5

78 LET y={a*x#x)+(b#¥x)+c

8@ IF y<87 AND y>-=87 THEN PLO
T INK 23 (x#12)+128,88+y

98 NEXT x

198 PAUSE @: CLS : GO TO 1@

You will notice that as the curve (which plots in red) crosses
the axes (which are in black), there is a colour change. This is a
problem caused by the screen arrangements of the Spectrum,
Each character square is 8 pixels by 8 pixels, and this block of 8
pixels can have only one paper and one ink colour at a time. The
result is that as the curve comes down towards the axes, it alters
the ink colour to red.

Program 43a will be useful if you want to explore the effects of
varying only one coefficient at once. (You will find that the
apparently simple ‘shift’ caused by varying b is not really so
simple, It can best be seen by letting a=0 so that it reduces to a
linear form.)

Program 43a A FAMILY OF PARABOLAS

S REM PROGRAM 43a A FAMILY
OF PARABOLAS
i@ BORDER 4: PLOT BD,88: DRAW 2
55,0: PLOT 128,0: DRAW 0,175
20 LET a=0: LET c=0
30 FOR b=-6 TO & STEP 2
5@ PRINT AT @,13"a="3a3" b="3b
' emVpe .
4@ FOR x=—-10 TO +1@ STEP .@5
70 LET y=(a#x#*x)+(b#*x)+c
80 IF y<87 AND y>-87 THEN PLO
T INK 2; (x#12)+128,88+y
9@ NEXT x
180 NEXT b
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This program is set up to vary b between =6 and 6, stepping 2,
to give curves with b=—-6, =4, =2, 0, 2, 4, 6 and a and ¢ both
equal to zero. You can investigate the effect of varying other
coefficients by altering lines 20 and 3@ to suit, not forgetting to
alter line 100 to conform with line 30.

4 Conics

The shape of the parabola was known to the Ancient Greeks,
because it belongs to a group of curves called conics which they
did a lot of research into.

We should know by now that the Ancient Greeks were mad
keen on simple geometric shapes, and one of the simple solid
geometric shapes that caught their interest was the cone. You
know that a cone is a solid with a circle for a base and, instead of
rising straight up like a cylinder, it narrows to a point. Now if
that point is directly above the centre of the base circle, we call
the solid a right cone. (It’s just that the line that runs down the
middle of the cone makes a right angle with any radius of the
base circle.) The top of a cone is called the vertex.

If the vertex is not directly above the centre of the base, then
you have a cone, but it’s not a right cone.

Incidentally, if you speak of a cone, you could aisc mean one
with an oval base, so to be gquite unambiguous one must be
careful to say a right circular cone. But if you hear me talk of a
cone, ’m talking about a right circular cone, unless I say
otherwise.

Now consider a cone that's made of a soft marerial like
plasticine. Then take a sharp knife and swipe the top off the
cone, but do it so that your swipe is parallel with the base. The
shape of the cut will be circular.

e
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If you’re a surgeon you'll know that section means to cut, from
the Latin secare. In mathematics, then, the cutting of cones is a
subject called conic sections. Now, it’s pretty obvious that you
can get a circle by cutting off the top of a cone, but what [ want
to show you is that in fact there are four pretty interesting shapes
you can get by slicing cones up:

1 Circle

2 Ellipse

3 Parabola

4 Hyperbola

If the cur is exactly horizontal, we get a circle. If the cut is
slanting, we get an ellipse. If the cur is exactly parallel to one of
the slanting sides, we get a parabola, and if it is more vertical
than the slanting side we get a hyperbola. These four cones
viewed from the side (looking suspiciously like triangles!) give
you what I mean:

Just shut your eyes for a moment and meditate upon the shapes
you get from this sectioning of a cone. It is not readily obvious
what these shapes will look like {except probably the circle), but
like many of the shapes of geometry, they crop up in the real
world in the oddest places. The ellipse, for example, became the
talk of the scientific world in 1609 when Johannes Kepler
(1571-1630) published a book explaining that the planets moved
in orbits which were ellipses. (Until then, it was thought the
planets moved in a complicated combination of circles.)

But the real star of the conic sections was Apollonius, a Greek
who lived between 260 and 190 Bc, and who is responsible for
much of the work behind this chapter.

Because we know a circle quite well already, let’s look at it and
its equation, and at its coordinate geometry.

I want you to consider the coordinates we’ve been using that
let us get at the four quadrants; that is, the ones given by the
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instructions, PLOT @,88: DRAW 255,0: Plot 128,0: DRAW
®,175, which draw the axes so that the origin is at the centre of
the screen.

If we draw a circle with its centre at the origin, then the
cquation relating the x and y coordinates of all points on the
circle is:

x2+y2=Rz
where R is the radius of the circle.

This needs to be immediately transformed into a computer
program so that we can witness its effect. Suppose we choose a
radius of 10. Then, since R=10, we have R?=R*R =108, so our
equation becomes

= +y'=100

and we can get y alone on the LHS by rearranging it to:
y'=100-%°

and taking the square root of both sides:
y=SQR (100 - (x*x))

We now have it in a form where we can run it through several

values of x, and generate points we can plot out. (That way we
can see if we really get a circle.)

Program 44 CIRCLE ONE ROOT

S5 REM PROGRAM 44 CIRCLE ONE
ROOT

1@ BORDER 5: PLOT @,88: DRAW 2
55,0: PLOT 128,8: DRAW 0,175

20 FOR x=-1@ TO 10

30 LET y=-SGR {(1D2@~(x*x))

40 PLOT x+128,y+88

5@ NEXT x

Which gives a circle with a diameter of 10. We can magnify it
by making line 40 into: 40 PLOT (x*8)+ 128,(y*8)+ 88

But wait! This is not a circle: it is half a circle. Where is the
other half?
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Take a look at the equation we’re using. We have got a square
root again, and you know that square roots have two solutions
(one positive and one negative), and so we get the half circle
representing the positive root, and we can arrange the other
(negative root) as follows:

Program 44a CIRCLE BOTH ROOTS

3 REM FROGRAM 44a CIRCLE BOTH
ROAQTS
i@ BORDER 5: PLOT ©,88: DRAW 2
a5,@: PLOT 128,8: DRAW @,175
20 FOR x=—10@ TO 1@ STEP .1
38 LET y1=8S0R (1@@-(x%*x))
4@ LET y2=-SQER (1@0@-(x#*x))
S@ PLOT (x#8)+128, (y1%8)+88
6B FPLOT (x#%8)+128, (y2%8)+88
70 NEXT x

And that makes the point nicely. You may be worrying that the
two halves don’t join up exactly, but this is because we’re
choosing steps of 1 for x. If we use STEP 0.1 in line 20 you’d get
a better effect, and STEP 0.01 would be better still.

Is there a general equation for an ellipse then? Yes, there is.
And to see what it means, cast your eye over the diagram below:

"

The jargon of ellipses is that the long axis is called the major
axis, the short axis is called the minor axis (if the two are equal
then your ellipse has just become a circle!). An ellipse has two
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points called foci (which is just the plural of focus), and if you
choose any point on the ellipse, then the sum of the distances to
the two foci is a constant. This means we have a handy definition
of an ellipse: that curve given by a point which moves so that the
sum of the distance to two fixed points is a constant.

In symbols, we have this, which you can relate to the diagram:

F,P+F,P=a constant

It so happens that when the point P is at the end of the major axis
we can see easily that the constant is actually the length of the
major axis, so that, since we've written a for the semimajor axis,
We can say

F,P+F,P=2a

It can also be figured out by using geometry and triangles and a
couple of hours of valuable time that a*=b"+¢?.

The naming of the various bits of the ellipse has been
standardised by now, and the distances a (called semimajor axis)
for half of the major axis, and b (called semiminor axis) for half
the minor axis are well known and traditional. And because
things generally get to be traditional because they are good in
practice, you can be sure that they are good choices. You can see
that the distances a and b are the sort of maximum and minimum
radius lengths when you think of the ellipse as a squashed circle.
The use of the semimajor and semiminor axes gives us this
general equation for the ellipse when the centre of the ellipse is at
the centre of our coordinate (graph) system:

X +yi=]

& b

Which you can compare with the general equation of the circle
by setting both a and b equal to R. It amounts to what we said
above about an ellipse being a circle that has been squashed.

Anyhow, to get the subject of our equation as y (like we had to
do for the circle above) we must manipulate the standard
equation. First we multiply both sides by a* and b,

2,212 2212
z_aﬁzb__'_y azb = a’h?
a b
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Then we can cancel things that appear on the top and bottom of
fractions:

x’b*+y’a’ = a’b?

Then we can subtract x°b? from both sides:
ylal=a’h? - x’b’

Divide both sides by a*

y=bi-xt?
ai

And then make the RHS into a bracket by taking out a factor b2
y=bi(1-x)
aZ

and finally take the square root of both sides
y== SQR ((b*b)*(1 - (x*x)/(a*a)))

Then we’re all set to do our ellipse program.

Program 45 ELLIPSE

5 REM PROGRAM 45 ELI_IPSE

18 BORDER S: PLOT ©,88: DRAW 2
55,@8: PLOT 128,0: DRAW @,175

20 LET a=18: LET b=5

3@ FOR x=-10 TO 1@ STEP .5

40 LET y1=S0R ((b*b)%(1-(x#*x)/
(aka)))

5@ LET y2=-SBR ((b#b) % (1—(x*x)}
/{a*a)))

60 FLOT (x%B)+128, (y1%8)+88

70 PLOT (x#B)+128, (y2%B)+88

8@ NEXT x

If you compare this with program 44a, you will see there are a
great many similarities. The principal difference is that we have
altered the circle-giving formulas into the ellipse-giving formulas
of lines 40 and 50. Also, this time we’ve got a means of setting
values for a and b in line 20. There is the opportunity for you to
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vdit line 20 and put in values of a and b of your own choice, to
we the effect is has on the ellipse. You should note that as we
wiid before, when a=b (that is, when you give them both the
e value) you get an equation that is in essence the equation of
a virele,

‘I'he flattening of the ellipse is specified by the choice of a and
b, und mathematicians and astronomers call this flattening the
ceeentricity. The circle has an eccentricity of zero, and as the
veeentricity increases so the ellipse gets more cigar-shaped.

In actual fact, there is (as you might have supposed) a
efinition of eccentricity and a symbol for it: e {not to be
vonfused by the uninitiated with the exponential constant, e).
‘T'hink about the diagram of the ellipse we bad earlier, and see
that the distance we have marked as c is the distance from the
centre of the ellipse to its focus (or one of its foci: it doesn’t
matter which one because the ellipse is symmetrical). So we can
write

the focal distance is ¢
the semimajor axis 1s a

and we define the eccentricity as:
e=cla

and since we had earlier that a’=b?+¢%, then it follows that
¢*=a’-b’ and therefore

e=SQR(a’-b?)
a
and a quick manipulation will give you:
e=SQR(1 —(b%/a%)

So you can see that the eccentricity depends upon a and b in this
curious manner. It would, of course, be possible to add line 90 to
your program 45, giving a print-out of the eccentricity.

90 PRINT “ECCENTRICITY =";SQR(1 - (b*b)/{(a*a))
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This particular program can’t cope with situations where a<b,
but running through the sample of values we get:

a b €

1¢ 10 ] {(when a=bit’s a circle)
10 5 0.8660254 (=Sin 60°)

10 1 0.99498744

10 0.1 0.99995

You can see that as the ellipse gets more flattened, the

eccentricity gets closer to 1.

The question arises, what happens when the eccentricity is 1?

The answer is that you get a parabola.

Just to give you a practical example of the ellipse before we go
after the parabola, let’s look at those elliptical wanderers, the
planets.

Planet Eccentricity Mean distance from Sun
(millions of Km)

Mercury 0.2056289 57.91
Venus 0.0067864 108.21
Earth 0.0167209 149.60
Mars 0.0933791 227.94
Jupiter 0.0484550 778.34
Saturn 0.0556402 1427.01
Uranus 0.0472421 2869.6
Neptune 0.0085840 4496.7
Pluto 0.2502 5898.9

As you can see, the eccentricities are quite small, so the orbits
are very close to being circles. I might add that the mean distance
of a planet from the Sun is going to be important to us if we want
to calculate the maximum and minimum distances between
planet and Sun. The mean distance is equal to the semimajor
axis.

Planets travel in elliptical orbits with the Sun at one focus.
This is a statement of Kepler’s First Law (there are two others),
and it allows us to get at our distances. The mean distance is
going to be (if we refer back to the diagram) equal to the
semimajor axis a. The maximum distance is a+c, and the
minimum distance is a—c. So in terms of the eccentricity e,
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Mazximum distance=a+ae=a(l +e€)

Minimum distance=a—zae=a(l—¢)

And you could write a program that calculated these figures for
all the planets.

But enough of that: what about the parabola?

As we said, the parabola has an eccentricity of 1, and we also
know that parabolas are the result of quadratics. So it will come
as no great surprise to learn that the general equation of a
parabola is:

x'=4py

where p is a constant called the focal distance.

It has a quadratic sort of form, but has been panel-beaten into a
more useful shape for our purposes. We have to rearrange it to
get y as the subject:

y=(1/4p)x’

and the diagram is:

T X
directrix

R i)

This special form of parabola is the standard one. It is defined
as the curve given when a point P moves so that its distance to a
fixed point F and to a line RT (called the directrix) are equal. In
symbols, wherever you are on the parabola, and wherever you
put point P, this holds true:

RP=PF

where RP is the line through P at right angles to the directrix.
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Our equation above is for the parabola when you draw it on
Cartesian coordinates with the point O (not point T) as the
origin.

The focal distance p is equal to OF, so it must also be equal to
OT because of the definition of the parabola.

And once again, we have everything we need for a program.

Program 46 PARABOLA

S REM PROGRAM 4& PARABOLA

1@ BORDER 5: FLOT ©,88: DRAW 2
95,@: PLOT 128,8: DRAW @,175

20 LET p=3

30 FOR x=-1Q0 10 1@ STEP @.1

4@ LET y=u¥%x/{(4%p)

9B FLOT (x#8)+128, (y%8) +88

6@ NEX1

Experiment with various values of p to get parabolas with
different amounts of bend.

The parabola has proved very important to astronomers too,
but in a different way from the ellipse. Astronomers like to use
big telescopes, and the way to make big telescopes is by using a
curved mirror instead of a lens to focus the light rays. This type
was first developed by Sir Isaac Newton (the great English
genius), and the curve of the mirror is based on a parabola. (A
parabola in three dimensions is called a paraboloid.) The
parabola has the property of reflecting all the rays parallel to its
axis to the focus.

Which leaves us with one conic to go, the hyperbola.

It might be interesting to look over a complete list of
eccentricities for our conics:

CONIC SECTION ECCENTRICITY RANGE
Circle i)

Ellipse 0<e<1

Parabola 1

Hyperbola e>1

It might also be interesting to look at the general equation of
the hyperbola compared with that of the ellipse.
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Let’s compare the hyperbola and the ellipse in general
cquation form:

2 2

Hyperbola
a b

Very similar you will agree: just that minus sign. And there are
some interesting differences. First, we have to consider the cone
that is at the bottom of all of this, because it was never as simple
as you thought it wasl!

Do you recall the four cones we drew out to demonstrate the
four conic sections (page 130)? In the first three, that cone is
sufficient, but once you cut at an angle greater than the angle of
the cone itself and begin to get hyperbolas you have to include
the other cone, the cone that is upside down and standing on top
of the original cone.

To see this other cone, take a pencil or something else long and
thin. Hold it in the middle between thumb and index finger.
Now hold the end of the pencil and rotate it in a circle. You will
find that the far end of the pencil sweeps out a cone surface in the
air, but so does the nearer half of the pencil (because its end

. moves in a circle too!)

The upshot of all this is that the hyperbola has two curves,
because we are looking at the section of two cones.

I
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And in the case of the other conic sections, the angle of cut
means that the other cone escapes without being cut, and there is
only one curve,

And when you do cut the hyperbola, the curve is as below:

Each of the two branches of the hyperbola has a focus. The
general equation only holds true if the coordinate system used in
drawing a graph of the curve has its origin at O, As you can see,
each branch comes in from infinity and goes out to infinity,
getting ever closer to one of the diagonal lines (called
asymptotes), but never actually reaching it.

The definition of a hyperbola is a curve which has a constant
difference of distances from two fixed points, so that

ABS(PF,-PF,)=ABS(PF, - PF,)
It must be possible to rearrange our general equation to get y as
the subject, and so to exploit it for program purposes, but there

arises a potential problem. Watch carefully:
Starting with the general equation, we have

x:! 2
P ol

Rearranging,

27x2
e
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Al multiplying both sides by b7,

M2
x'b e
,‘l_‘f -—b

v

Amd taking out a factor of b? on the RHS, to form a bracket,

v'=b(xa)= 1)
Aud finally, taking square roots,

y =+b*SQR((x*x/a*a)— 1)

And we're all set. It must be remembered, however, that we
must avoid sicuations where the bracket that we’re going to take a

w«quare root of goes negative. In other words, x*/a* must always
iemain greater than 1. (Check line 35 in the program below.)

Program 47 HYPERBOLA

= REM PROGRAM 47 HYPEREOLA
i® BORDER 5: PLOT @,88: DRAW 2
55,8: PLOT 128,8: DRAW @,175
20 LET a=5: LET b=35
30 FOR x=-10 TO 1® STEF .1
35 IF ((x#x)/{a%a))<l THEN GO
TO 80
40 LET yl1=b*#SOR ({(x#*x)/(a*a))
-1)
SO LET y2=-b#SQR (({(x#x)/(a%*a)
y=1)
6@ PLOT (x*B)+128, (y1%8)+88
7@ PLOT (##8)+128, (y2%8)+88
88 NEXT »

And the safety measure that hops the program over dangerous
values:

35 IF ((x*x)/a*a))<] THEN GO TO 80

You will find that this program is more sensitive about the
values of a and b you can use. But again, your Spectrum won’t
burst into flames if you put in an out-of-range value, so don’t_be
afraid to explore the limits of the program, and play about with
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the variables so that the program will do what you want it to.

And thart just about wraps it up for the conic sections. They
came from solid geometry (solid just means 3-D) and found many
applications in science and engineering. You could certainly use
the parabola in games designing, because (as we shall sec later)
the parabola is the curve followed by a projectile. That means
that a cannonball, or any other kind of object thrown through the
air, moves in a curve that is a parabola.

I must stress that the equations we’ve used to describe the four
conic sections are only true if you consider their graphs to be
drawn on a Cartesian coordinate system (regular graph paper
with the x-direction at 90° to the y-direction). The origin of that
coordinate system must be where we have put it, which means at
the centres of circles and ellipses, at the vertex of a parabola and
between the two parts of the hyperbola.

But you know there are other coordinate systems. One major
coordinate system that we are going to have 2 look at is the one
used in radar screens and star maps and maps of Antarctica.

The idea is that, instead of the directions x and ¥; you have an
origin with lines radiating out from it in all directions and
concentric circles going round it. (Concentric just means circles
all drawn with their centres in the same place.)

It might not seem too promising an idea but in fact it makes
our equations simpler and is a great help in Spectrum
programming,

8

POLAR COORDINATES

I Polar coordinates

As [ sneakily explained after you’d read about conic sec[ipns and
how to do them on Cartesian coordinates, there is an easier way!
C.onsider this notion first, and I'm sure you’ll come to agree with
e .

If you have a point on a plane and an ordinary set of Cartesian
coordinates, then you can call that point (x,y).

v 4

& = >, (%.7)

Now try drawing a line from the origin to the point and,
instead of thinking of the point as so-far-along and so-far-up,
think instead of the length of the line from origin to point and the
angle that line makes with the x-axis. Take a little time off and
maybe take a pencil and paper, so that you can prove to yourself
that any point you like can be specified not oqu by x and y
values, but also by length and angle values. It is usual to call
these variables R (for length) and 8 (for angle), but we’ll have to
alter the theta, 6, into an ordinary letter that the Spectrum will
recognise as a variable. Let’s call it A (for angle).
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You can see on the diagram below that I’ve drawn both
coordinate systems, because it would be a good idea to be able to
convert from one to the other (much as you can convert from
metres to feet and back).

4y P

|
|
|
I
I
I
1] VAY: |
l—— % ——

A conversion can be made by considering the geomertry of the
situation. We have a right-angled triangle, and so we can use
both Pythagoras’ Theorem and the trigonometric ratios. It
follows that

X +y’=R?
or, if you like,
Ri=x’+y?
It also follows that
Tan A=y/x

So that we have a way of getting both R and A if we know x
and y. But what if we know R and A and want to work out x and
y? In that case, we need these equations:

x=R Cos A (from Cos A=x/R)
and
y=R Sin A (from Sin A=y/R)

Now we can convert our cumbersome and inelegant equation
for a circle (say) into a form far more suited to the Spectrum.
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I'his length-and-angle system is called the polar coordinate
wysiemy, and if you have a scientific calculator, you might be
lucky ¢nough to have a couple of buttons marked P and R. The P
stands for Polar and the R stands for Rectangular (meaning the
s,y system), and it shows that you can easily convert between
them. In fact, what such calculators are doing is to use the very
wiine equations as those we’ve just looked at.

l'or example, il you take the equation of the circle in
rectangular form, you have

X'+y'=R’ {where R is the radius)

You can see that it’s a perfect thing to convert into Polar form,
hecause you have automatically from the conversion equations,

x=R Cos A
y=R Sin A

Iurthermore, if we’re going to do a program, all we have to do
is run the angle A round one complete revolution, and since it’s
radians we have to use with angles on the Spectrum, the FOR
loop we use will have the form,

FOR A=0 TO 2*PI

The problem is that 2*P1 is a shade over six, so we don’t get
many points plotted unless we step .1 or something small. I
favour stepping at intervals that are multiples of PI, because that
way you get the points in a symmetrical pattern. Run program

“48 to see how superior this polar system is to the rectangular one.

Program 48 POLAR CIRCLE

S REM FROGRAM 48 POLAR CIRCLE
1@ LET R=5@

2@ FOR A=0 TO 2#PI

30 LET x=R#COS A

4@ LET y=R*SIN A

5@ PLOT x+128,y+88

6B NEXT A

Now do you see the problem with the step? Seven points, and
not particularly symmetrical either! Try STEP PI/10 in line 20
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and you get 20 plots (10 for each PI of the 2*PI) all nicely
spaced. Increase the denominator to choose how many plots you
want at will, and you can even test the circle with,

7¢ CIRCLE 128,88,50

Of course, you can alter the radius of the circle by setting R
equal to a different value, and you can draw semicircles or other
fractions of circles by changing the limits of the FOR . . . NEXT
loop. Try, for example,

20 FOR A=PI TO 5*PI/2 STEP PI/50

See what I mean?

And you can move the centre of the circle just as easily by
changing 128 and 88 in line 50.

But it gets better!

You can do ellipses quite casily, because for ellipses

x=R*COS A becomes x=aa* COS A
and,
y=R*SIN A becomes y=bb* SIN A

(Because I was using the variable A for the angle I couldn’t use it
for the semimajor axis which I would normally call a, but if I put
aa and bb I think you will realise what I mean.)

So we have:

Program 49 POLAR ELLIPSE

o REM PROGRAM 4% POLAR
ELLIPSE

1@ LET aa=127: LET bb=87

20 FOR A=@ TO 2%P1 STEP PI1/20

3@ LET x=aa*C0S A

4@ LET y=bb*SIN A

5@ FLOT x+128,y+88

6@ NEXT A

This time there’s no problem with any dimension that will fit
on the screen: make aa any value you like between zero and 127
and make bb any value between zero and 87.
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Furthermore, you can try a few polar equations out for other
shapes. There’s a famous shape called the cardioid (named for
the fact that it’s heart-shaped) which crops up in acoustics. Its
polar equation is

R=2a(1-Cos 8)
or, in Spectrum form,
R=2%aa*(1-COS A)

It's as easy as PI to convert it into a program!

Program 5§ CARDIOID

REM FROGRAM 5@ CARDIOID
LET aa=3@

FOR A=@ TO 2#F1 STEP PI/SQ
LET R=2%aax*(1-C0S A)

LET x=R#C0S A

LET y=R#3SIN A

PLOT x+128,y+88

NEXT A

1 always think it looks more like a kidney than a heart— perhaps
they should have called it a nephroid!

This polar coordinate thing is great, much better for some
applications than your common or garden rectangular system.

Try this:

Program 51 ARCHIMEDEAN SPIRAL

S REM PROGRAM S1 ARCHIMEDEAN
SPIRAL

1@ LET aa=15

20 FOR A=0 TO 2%FI1 STEP PI1/S0

I@ LET R=aa*A

4@ LET x=R=C0OS A

5@ LET y=R%SIN A

&8 PLOT x+128,y+E88

7@ NEXT A
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The spiral, which is named after its inventor, the Greek
scientist Archimedes (287-212 Bc), has the property that the
radius arm (the line from a point on the spiral to the centre) is
proportional in length to the angle through which it has rotated.
The bigger the angle A, the longer the line R. It can be made
easier to see if we make the computer draw the lines in for us.
(This can be done with any of our polar graphs quite simply.)

Just add DRAW -x,-y to the PLOT instruction:

60 PLOT x+128,y+88: DRAW —x,-y

The result is a beautiful pattern (obviously used by nature to
construct fossil shells!) made even more beautiful by the fact that
you now understand it mathematically.

Then there is the logarithmic spiral given by the equation

r=ac
or, in Spectrum language,
r=aa* EXP(k*A)

And if you're into definitions, its a spiral curve where the
logarithm of the ratio of any two radius arms is propdrtional to
the angle between them.

Now for the program:

Program 52 LOGARITHMIC SPIRAL

5 REM PROGRAM 52 LOGARITHMIC
SPIRAL
1@ LET aa=20: LET k=.2
20 FOR A=@ TO 2*F1 STEP PI/S@
3@ LET R=aa*EXF (k*A)
48 LET x=R%C0S A
0@ LET y=R*¥SIN A
&0 PLOT x+128,y+88
70 NEXT A

When you experiment with different values of aa and k, you
will find that the Spectrum comes up with an ‘Out of range’
error report if you go off the screen to the right or top. But if you
go off at the bottom or to the left, it will just bounce the curve
back off the edge of the screen in a strange manner. Beware this
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«1ect: it has nothing to do with the curves we’re trying to draw,
awdd the moral is to keep the figure away from the edgqs.

it is interesting to run spirals through more than just one
revolution (mathematicians use the word ‘convolution’ to mean a
-piral revolution). So try writing

20 FOR A=0 TO 8*PI1 STEP PI/50

suv that you get four convolutions.
" So far we’ve been taking the equations of curves I a]ready_knew
about (because I have been taught them!). But there’s nothing to
stop us experimenting with polar equations plucked out of the
air, trying them in the sort of equation form we’ve already u:sed,
and in the sort of program we’ve been using. They say that if an
infinite number of monkeys sit down at an infinite number of
Ivpewriters, sooner or later one will write 2 Shakesl?eare pllay!
Maybe it follows that we might throw up a few interesting
shapes. Let’s have a go!

For instance, this one:

R=2aa*COS(2*A)
(LET aa=80) gives you a butterfly shape. And
R=80*SIN A

draws you a circle of radius 8@, up from the centre of the screen,
and goes round it twice. (You can see that it goes round twice if
you put in a STEP value that’s not a multiple of PI, say STEP

0.1).

Then there’s
R=100*(COS A)*(COS A)

which means R=100 Cos’A, the mathematical way of writing
Cos A squared. As you can see it’s an infinity sign or a pair of
spectacles. Or try

R=30*(1+COS A)
or even

R=30*(1+3*COS A)
or perhaps

R=20*(1+2*SIN A)
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Then there’s
R=80*SIN (3*A)

{\nd I'm sure that you can experiment your way to many more
spirographic patterns,

2 Curve sketching

If you can plot the graph of a function, it can tell you a lot about
the way the function goes: remember the way the exponential
curve took off quickly?

You already know that some.: curves are ‘periodic’, meaning
that they repeat themselves after a certain period (examples are
the Sin and Cos curves). Is it possible to make satisfactory graphs
of polynomials on the Spectrum?

Yes, but we have to arrange it so that it fits the screen, and so
that the Spectrum can understand it properly. This means that
the figures used to plot the functions must be carefully set up,
and the equations put in as strings of x’s multiplied together
instead of as one x raised to a power:

x12 must be written x*x
and
x13 must be written X*x*x

Let’s ease ourselves into this business with a simple prototype:

Program 53 CURVE SKETCHER

S REM PRDOGRAM 53 CURVE
SKETCHER

1@ BORDER S: LET a=1: LET b=@:
LET c=1: LET d=1

2@ PLOT @,88: DRAW 255,0: PLOT
128,0: DRAW @,175

3@ FOR x=-16 TO 16 STEF .125
4@ LET y=x

9@ IF y>-88 AND y<B7 THEN PLO

T (x%B)+128,v+88
68 NEXT x
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I'ry it out and see that you get the straight line you would
vxpect from the equation y=x. (The graph is stretched 8 times.)
Then replace line 40 with,

40 LET y=(a*x)+b
so that you can plug in any value of a or b you want to test in line
1¢. This allows you to examine the linear equations.

‘Then try

40 LET y=(a*x*x)+(b*x)+c

letting you examine the various parabolas of the quadratic.
Then you can look at what are called cubic equations where
there is a term in x cubed:

40 LET y=(a*x*x*x)+(b*x*x)+(c*x)+d
and equations where the highest term is of degree four (called
quartic); youw'll need to define another coefficient, ¢, in line 10,
40 LET y=(a*x*x*x*x)+ (b*x*x*x)+(c*x*x)+(d*x)+e

And so on.

Now that we know what we can do, how do we get useful
information out of it?

First it’s important to appreciate the fact that a cubic equation
gives a new shape. You can see it if we let a=1, b=0, c=0 and
d=0 and have as our equation the general cubic:

49 LET y=(a*x*x*x)+(b*x*x)+(c*x)+d

Run it and see the curve come from the bottom of the screen,
zig-zag through the origin and go off the top of the screen. It’s as

" if the negative half of a parabola had been swung down. To see a

more general view of the cubic curve, plug in the values a=1,
b=6, c=4 and d=10.
Now try this. Let line 4@ become,

40 LET y=a*(x—b)*(x-c)*(x—d)

and plug in these values: a=—10, b=3, ¢=2, d=1

First you find that the curve crosses the x-axis at three points,
and then, if you’re observant, you notice that it crosses it at the
points where x=b, x=¢ and x=d. Furthermore, you can witness
the effect of making a positive (say 10 instead of — 1) - the curve
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still cuts the x-axis in three places and those places are the same
(because you've done nothing to the coefficients b, ¢ or d) but the
curve goes the other way.

The point is that when the curve crosses the x-axis, the value of
¥y 1s zero, and if the value of y is zero, either a is zero or one of the
three brackets is zero. We can see that a is not zero, so therefore
with no hesitation we can say that cither

x=-b=0 (i.e. x=b)
or

x—c=0 (i.e. x=¢)
or

x—d=0 (i.e. x=d)

So you see that it is possible to extract information from the
curve, and if our equation had arisen from a real application,
then examining the curve would give us information about that
application.

It is a powerful tool in science and engineering and leads us
neatly on to a notion that we will meet a bit later, that of maxima
and minima.

Isaac Newton (again!) dreamed up a whole branch of
mathematics on his own, and nowadays we call it calculus. It has
to do with the rates at which things change: like speed being the
rate at which distance changes, and acceleration being the rate at
_which spe?d changes. Anyway, the graphs of functions are
important in seeing how these rates of change work.
| For the moment, let’s just content ourselves with a jargon
esson:
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The curve above has two ‘turning points’. The turning point at
a is a maximum because it’s going from uphill to downbhill, and
the turning point at b is a minimum because the curve is geing
from downhill to uphill. (This is not a heavy-duty mathematical
definition, but I'm sure you get what I mean.) We say that a
curve going uphill has a positive slope (and you can knit that in
with what you already know about linear equations), conversely a
curve on its way downhill has got a negative slope.

The slope of the curve at these turning points is zero. If that’s
puzzling, consider this. Suppose a point I travels along the curve
from left to right, and suppose also that you’ve put a ruler up
against the curve so that it only touches it at P. (Try drawing it
out on a large piece of paper.) Now the slope of the curve at the
point P is the same as a line just touching the curve at that point
(the slope of your ruler). We call that line just touching the curve
a tangent, and it has absolutely nothing to do with the trig
function Tan.

You can see that as the point moves along the curve towards
point a, the tangent gets more and more horizontal, until when
vou actually reach point a the tangent is exactly horizontal. If P
continues to move towards the right along the curve, the tangent
begins to dip downwards and then flattens out again, becoming
horizontal at b. So at a and b, the slope (being horizontal) is zero.

Now, between a and b, there is a point where the slope is at a
maximum value, and this point is called a point of inflexion.

And for the moment that’s all we need to know about curves.

3 The solution of triangles

Breaking away from the heady world of functions, etc., let’s get
down to some hard-nosed calculations. Away from the mind-
numbing aspects of the square root of a minus number, far from
things that tend to infinity, is the humble triangle, and there are
a couple of equations that help us work them out.

Let’s suppose, for example, that you have a triangle made by
taking three pencils which are all different lengths. Now, you can
measure the lengths of the pencils (so you know the lengths of
the sides of the triangle), but can you work out the angles? The
answer is Yes.
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Or supposing you have two pencils laid so that they form an
angle of, say, 30° to each other, could you work out how long the
third pencil would have to be to make a triangle with the other
two? Again the answer is Yes.

And this is how it’s done.

If you know three sides:

Cos A=b*+c*~2°
2bc

This formula is known as the cosine rule, and you just plug in
the values of the three sides a, b and c.

Program 54 COSINE RULE

S REM FROGRAM S4 COSINE RULE
1@ INFPUT "Side a?"jaa
20 INPUT "Side b?":b
3@ INPUT "Side c7";c
4@ LET R=ACS ({((b"2)+(c™2)~(aa
“2))/(2#b%c) )
5@ LET A=R%18@/PI
60 PRINT "Angle opposite side
ais "i1A3" degrees"
S REM PROGRAM %5 COSINE RULE
AGAIN
1@ INFUT "Si1de a?"3a
20 INFUT "Side e£?7"3c
@ INPUT "ANGLE B (degrees)?";

40 LET R=B¥PPI/180

5@ LET bb=S8QR ((a"2)+{c™2)—- (2%
axc#C0S K

4@ FRINT "Last side 1s ";bb

Test it works by deliberately feeding it an equilateral triangle,
which has all three sides the same length and all three angles the
same length too (so they are 60° each). You could even test it
with a 3, 4, 5 triangle (you know that one is a right-angled
triangle), and put in the 3, 4 and 5 in different orders until you
come up with 90°.
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If you know rwo sides and the angle between them:
b*=c’+a*—2ac Cos B

This is just a rearranged version of the cosine rule into which
you plug your sides and angle.

Program 55 COSINE RULE AGAIN

5 REM PROGRAM 55 COSINE RULE
AGAIN

1@ (NPUT "Side a?"ja

28 INPUT "Saide c?“jc

3@ INPUT "ANGLE ¥ (degrees)?"j

48 LET R=p*P1/180
50 LE1T bb=SER ((a"2)+{c™2)— (2%
a*c#C0OS R}

6@ PRINT "Last side 13 ":ibb

Again, it can be tested with an equilateral or a 3, 4, 5 triangle.
Notice that the program takes the trouble to convert the angle to
radians, so that the Spectrum can handle it properly, and that I
have had to use the variable called bb to hold side b (so that the
computer doesn’t confuse it with the angle B).

If you know one side and rwo angles:

g .. b . &
SinA SinB SinC
This equation (or double equation) is called the sine rule. The
way I’ve written it is just the shorthand version of:

a b

Sin A Sin B

and

b __c
SinB SinC

and

L =8
SinC SinA
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If you know two of the three angles and remember that the
three angles add up to 180°, then you can work out the third
apgle. And once you know the length of one side you know what
size the triangle is, and so the lengths of the other two sides can
be got from the sine rule.

In solving a quadratic we are looking for values of x that will
satisfy the equation. In solving triangles we are trying to find the
values of the three angles and three sides. It is possible to solve
all triangles if we know three quantities, and the sine and cosine
rules help us.

Program 56 SINE RULE

5 REM PROGRAM S5& SINE RULE

1@ INPUT “Angle A? ";A

20 INPUT “Angle B? “;B

3@ INPUT "Side c? "jcc

4@ LET C=180-(A+B)

5@ LET aa=cc*SIN (A*180/PI)/SI
N (C*18@/F1)

6@ LET bb=aa*SIN (B#180/PI) /81
N {(A*1B@/PI)

78 PRINT "Side a is “jaa

80 PRINT "Side b is "jbb

7@ PRINT "Angle C is “3C

To summarise:

The Cosine Rule
a’=b’+c*—(2*b*c Cos A) REMEMBER TO USE RADIANS
ON THE SPECTRUM.
b’=c’+a’=(2*a*c Cos B)

USE THIS RULE FOR TWO

¢?=a’+b*~(2*a*b* Cos C) SIDES AND INCLUDED ANGLE.

Notice that the three forms are cyclic, meaning that if you
memorise the first version, you can get the second and third
versions simply by moving the letters on by one (i.e. when you
have an a make it a b, and where you have a letter b make it ac,
and when you have a ¢ make it into a: see what T mean about
cyclic?).
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And with a swift bit of rearranging you can get these:

Cos A=b’+c*—-a’ REMEMBER TO USE RADIANS
2bc ON THE SPECTRUM.

Cos B=¢?+22-b? USE THIS FORM FOR THREE

k 2ac SIDES.
- Cos C=2’+b’-¢’
2ab
Note again the cyclic aspect of this trio of equations.
F I don’t suppose it’s necessary to waste space summarising the

sine rule; it’s all set out nicely for you above, so let me throw in

an interesting little titbit for you instea_d. )
The area of a triangle can be found with a lot of messing about
with geometry and so on, but let’s just use the result:

Lets="%(a+b+c)

This quantity s is half the sum of the three sides and is known

as the semi-perimeter.
Then the area of the triangle is given by:

Area=\/5(s— a)5-b)(s— )

So we can solve our triangle to the point where we know all
three sides and all three angles. We can then apply our area
equation and we’ve got the lot.

Program 57 AREA OF TRIANGLE

5 REM PROGRAM 57 AREA OF
TRIANGLE

1@ INPUT "Side a?"ja

28 INPUT "Side b?";b

3@ INPUT "Side c?";c

4@ LET s=(a+b+c)/2

5@ LET area=S0R (s*(s-a)#*{s-b)
#(s~c))

6@ PRINT "Area is "jarea;" sqgu
are units."

(where a, b and c are the three sides)




158  Maths Tutor for the Spectrum

I have produced several of our formulas apparently out of thin
air. It is important for you to realise that these formulas have
been produced by hard-working mathematicians over the
centuries and should not be treated with disrespect.

Since these formulas have been developed from first principles
(that means from basics) by complicated arguments and buckets
of logic, it would be perfectly possible for me to reproduce them
here in glorious black and white. The drawbacks are that you are
probably not as interested in the proofs and theorems as you are
in the end result, and it would make the book twice as thick and
probably twice as expensive. And a waste of money it would be
too, because once you get a taste for maths (and a feeling that you
can understand it all right), you can get a book out of the library,
or buy one, even, and look up the proofs and theorems to your
heart’s content.

4 Trigonometrical equations

Those mathematicians also produced a number of other results
which you will find useful whenever you meet equations
containing trig terms. For example, one of the relations is:

Cos’x+Sin’*x=1
or, in Spectrum-ese,
{(COS x)*(COS x))+((SIN x)*(SIN x))=1

Now you can check that this relationship is true by using
program 58. It runs through the values of x from @ to 2*PI one
degree at a time, and evaluates the expression ‘cos squared x plus
sin squared x’ (which ought to be 1):

Program 58 TRIG IDENTITY

S REM FROGRAM 958
TRIG IDENTITY
10 FOR x=@ TO 2%P] STEP PI/180
28 PRINT AT @,0; ((COS x#*COS x)
+(8SIN x#8IN x)) ,x*18Q/PI
3@ NEXT
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which should convince you that the relationship holds true. This
«. & handy way of testing any relationship over the range ip
which you want to use it. With trig quantities it follows that, if
ihey hold true in the range @ to 2*PI, they hold true for any
value, because they repeat themselves.

tiiven the relationship that cos squared x plus sin squared x
yuals 1, we can solve the following trig equation:

; Cot x+Tan x=2

Now this is not an equation that holds true for all values ot_‘ X.
I1’s like the situation where we had a quadratic and were trying
to solve it; there’s a value of x that will satisfy cot x plus tan x
cquals 2, and we are trying to find that value of x.

If we start by noting that Cot x=1/Tan x, and that
Tan x= Sin x, then we can rewrite the equation as:

Cos x
Cosx, Sinx_,
Sinx Cos x

and if we multiply each term by Sin x and Cos x, we get
(Cos x)*(Cos x)+(Sin x)*(Sin x)=2*(Sin x)*(Cos x)

or, if you like,
Cos’x+Sin’x=2 Sin x Cos x

Now the magic bit. We know from our trig identity that the LHS
‘of the above equation is equal to 1, so we can substitute:

1=2 Sinx Cos x

Trig identities are so called because they holq true for all
values of the variable (so they’re identical). Let me introduce you

to another one:
Sin{2*x)=2*Sin x*Cos x
which you are at liberty to check out if you like in the same way

as Program 58. . _ .
It may have struck you that we can employ this new identity to
push our solution one stage further on.
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1=2 Sin x Cos x

becomes
1=8in 2x
or, if you like,
2x=arcsin 1
and the angle whose Sin is 1 is 90°, so that
2x=90°
therefore,
x=45°

which looks like a solution to me. You can check it by
substituting it back in the original equation.

The fact is that you need gallons of practice at playing with trig
equations before you get used to them: it’s like a Rubik cube. 1
can offer you a nice list of trig identities that all hold true and
which you can use for substitution into any trig equations you
COIe across.

1 The three forms of Sin*x+ Cos*=1
Sin’x+ Cos’x=1 You can get any one of these
Sec’x=1+ Tan’x from the first one by careful
Cosec’x =1+ Cot’x rearranging.

2 Addition formulas
Sin (A+B)=8in A Cos B+Cos A Sin B
Sin (A-B)=Sin A Cos B—Cos A Sin B
Cos (A+B)=Cos A Cos B-Sin A Sin B
Cos (A—B)=Cos A Cos B+Sin A Sin B

from which it follows

Tan (A+B)= Tan A+Tan B
14Tan A Tan B
Tan (A-B)= Tan A-Tan B
1+Tan ATan B
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3 Double angle formulas
Let A=B in the above identities and we get double angle
formulas: (A=B=x)

Sin 2x=2 Sin x Cos x

Cos 2x=Cos’x~ Sin’x
=2 Cos’x—1

4 Half Angle Formulas
Let 8=x/2,
Sin 8=2 Sin (6/2) Cos (6/2)
Cos 6= Cos*(8/2)- Sin’(6/2)
=1-2 Sin¥(6/2)
__2 Tan(6/2)
Tan 0=1 " an%012)

5 Sum and difference formulas (factor formulas)
Sin A +Sin B=2 Sin ((A+B)/2) Cos (A-B)/2)
Sin A-Sin B=2 Cos ((A+B)/2) Sin (A~ B)/2)

Cos A+Cos B=2 Cos ((A+B)/2) Cos ((A-B)/2)

Cos A-Cos B=2 Sin ((A+B)/2) Sin (A- B)/2)

6 Product formulas

Sin A Cos B=12(Sin{A + B) + Sin(A - B))

Cos A Sin B=14(Sin{A+B) - Sin(A—B))

Cos A Cos A =1(Cos(A +B)+ Cos(A-B))

Sin A Sin B=12(Cos(A - B)- Cos(A+B))

Quite a bit to remember, but remembering them is not
necessary: you can look them up any time! The main point is that
you’re aware of their existence. It will help you to see how some
trig equations are manipulated if you know these formulas.

So where does the Spectrum come in on all this? Simply this:
look back at how in Program 58 (which is only three lines long
and probably a lot easier to remember than the trig identities
themselves) we used the program to verify an identity, and so
whenever you come up with an alternarive form of any of these
identities you can test whether you've done it properly by
making your computer print out an evaluation of each side of the
‘equation for the whole range from 0 to 2*PI. Program 59 is a
general program for verifications of this kind. You just plug one
side of your identity into line 20 before the comma, and the other
side of the identity after the comma.
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Program 59 IDENTITY VERIFIER

S REM FPROGRAM 5% IDENTITY
VERIFIER
1@ FOR x=08 TO 2#PI STEP FIL/180
28 PRINT COS (2%x), (2#C0O8 x*CO
g8 x)-1
3@ NEXT x

This let’s you check one of the double angle formulas in
section 3 above.

One of the limits of computation is that you cannot get
complete accuracy without an infinite string of decimal places, so
you will find that columns generated by Program 59 are not
absolutely identical. But don’t worry: it’s sufficiently similar for
our purposes.

Another advantage of Program 59 is that you can check that
you have correctly rendered the mathematical forms of the
identities that I have given you into Spectrum BASIC forms and
got your brackets in the right places.

This approach to mathematics would make a pure
mathematician bite off his own head with disapproval. It’s the
sort of thing that engineers and scientists do, actually using
numbers. Seriously though, it’s the logical steps from first
principles to a final result that make the mathematical process
and would constitute what mathematicians would recognise as a
proof. They have a word for this kind of computation approach
(beloved of engineers and other practical people) and that word is
empirical (from the Greek, meaning ‘the way of experience’),
The equivalent English expression is ‘Suck it and see.’

Well, we have sucked the identities, and we have seen them to
be more or less identical.

9

COMPLEX NUMBERS

.1 Complex numbers

We now open a chapter that is going to be easy to understand. I
always thought this was the easiest subject with the most difficult
sounding name. Let me put you right about it

1 A real number is a number found on the Real Line. It can be a
fraction, integer, decimal, negative or irrational. Any usual
number you know about is a real number. o

2 An imaginary number, not found on the Real Line, is any
multiple of the square root of minus 1, and I am going to
explain it fully in a moment. o

3 A complex number is a two-part number consisting of a real
number and an imaginary number.

But what do they look like? What do they mean? How do you

use them? )
Consider this quadratic:

X+x-6=0
we get, using our formula and the fact thata=1,b=1and c= -6,

P ;biy b7—4ac

2a

so that

- 12/ (@* 1* - 6)

2*1

Xx=

which is

y= =1V T2~ 1275
- 2 2
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and therefore

x=% and x=

-1-5
2

so that

x=2 and x=-3

A.n.d we see that we have a couple of roots, one of which is
positive and one of which is negative. Both of them are real, But

try the next quadratic (and in this one the discriminant (b? - 4ac)
is less than zero):

2x*-x+1=0

Here, a=2, b=—1and c¢=1, so that (b’~4ac)=(1 -8)=-7
And when we substitute it into our quadratic solver, we get

gx=—(=DEV(=T)
4
So that,

x=b£':_‘f and x=l_4 =7

And we're stuck, because we can’t take the square root of a
negative number. And stuck it stayed for centuries until someone
decided they were fed up with letting the fox get away and said
why don’t we just factorise the root whenever it’s of a negative
number, so that we get

V=TV

Then we could evaluate /7 in the normal way and just write a
symbol next to it to indicate the square root of minus one. And
the symbol they chose was j (only some of them thought i was a
better choice). So that, going back to our quadratic, we’d write;

x=—-ﬂ—ll+4 % and x=~—ﬂ11_4 i

and since root seven is abour 2.6, we have:
x=Y+j(2.6/4) and x=Y%-j(2.6/4)

Looking at the first root, we recognise % as a real number, and
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we note that j(2.6/4)=(0.65), where j represents \/ —1, is an
imaginary number, and the whole thing, % +j{0.65), is a number
with both real and imaginary parts, a complex number.

As I say, you will often find the letter i used to represent the
square root of minus 1. But many people find i a bad choice,
because when they discovered electricity they started calling the
current in a wire by the letter i, and when you use complex
number analysis of electric circuits (which is a lot of fun!) you

‘certainly don’t need to be lumbered with one i meaning current

and another i meaning root minus 1. So in this book root minus 1
is j.

The first program we can get on with is one that handles all
roots of quadratics, be they real or complex. And how can we do
that?

Well, we must make the Spectrum print up a letter j whenever
it would normally blow its mind by trying to extract the root of a
negative number. Take a look back at Program 42 on page 126
and consider Program 60 as a development of it:

Program 60 QUADRATIC ALL ROOTS

S REM PROGRAM &0
QUADRATIC ALL ROQTS
1@ BORDER S: FOR n=B TO 7: REA
D r: POKE USR "a"+n,r: NEXT n: D
ATA 112,16,112,464,112,0,8,0
2@ PRINT AT 2,7;"R0OOTS OF QUAD
RATICS"
3@ INPUT "ENTER coefficient a:
“sa: PRINT AT &,63a;"#x + "
4@ INPUT “ENTER coefficient bs
“:b: PRINT AT &,14;3b;"#x + "
S0 INPUT "ENTER coefficient ci
vic: PRINT AT &,223c3" = O
&8 IF b*b>=4%a%c THEN LET ri=
{(-b+ (SAR ((b*b)-{(4xaxc))))/(2%#a)
&1 IF b#b>=4%a¥c THEN LET r2=
(-b~(SER ({b¥h)—(4*a%xc))))/(2%a
y: GO TO 7@
65 LET R=-b/ (2%xa)
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46 LET I=S0R ({(4#a%c)-=(b*b))/(
2%a)
67 PRINT AT 15,33R;" + j("3;I;"
) 1]

68 PRINT AT 17,33R3" - J("3I;"
) n

&9 PAUSE @: CLS : GO TO 2@

7@ PRINT AT 14,46;"FIRST ROOT
"iR1

88 PRINT AT 16,43 "SECOND ROOT
"sR2

98 PAUSE @: CLS = GO TO 3@

Line 65 makes the Spectrum work out the real part, and line 66
makes it work out the imaginary part’s coefficient (the bit that
appears in brackets), by first multiplying the discriminant by
minus 1, so that (b’—4ac) becomes (4ac—b?), Lines 67 and 68
then print out the answers, remembering to put in a j symbol to
compensate for that trick with the discriminant.

Try it with a=1, b= -6 and ¢=34 and see what you get.

So, we can write a general form for our complex number:

x+jy
where x is any real number and y is any real number. A few
examples would be:

3+j4

2-j10

-5+j0.5

n—jY%

and so on.

So now you know what real and imaginary numbers are, and
that complex numbers have a real and an imaginary part. In a
while we’ll be seeing how it’s possible to do arithmetic with
complex numbers (that is, add them, subtract them, multiply and
divide them), but, for now, let’s look at our symbol j.

I’s clear from what we’ve said already that

j=v=T
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That means that whenever we find a number that is the square
root of 2 minus number, we can do our factorising ruse, so that

V =64=j\/61=}8
0r)m35=i\/-0'35=j0.5657
But we can do algebra with j itself, since if
=yl
then, squaring both sides,
f=-1
and, multiplying both sides by j,
o=y
and again,
jt= = 14— 1*-1=1

And to summarise that:

2R

£

Wononn
|
—— =

And higher powers repeat this pattern. Program 61 will print out
any power of j for you:

Program 61 POWERS OF j

S5 REM PROGRAM &1 POWERS OF 3

10 PRINT AT @,11; "POWERS OF j"

2@ INPUT "ENTER power (pos int
) Il=n

25 IF n~INT n<>@ THEN GO 7O 2
@

3B IF (n/4)-INT (n/4)>=@ THEN
LET a$="1"

31 IF (n/4)=INT (n/4)>=0.235 TH
EN LET a$="j"




168 Maths Tutor for the Spectrum

32 IF (n/4)~INT (n/4)>=0.5 THE
N LET ag="-1"

I3 IF (n/4)-~INT (n/4)>=B.75 TH
EN LET ag="-j"
4@ PRINT AT 1@,123"j~"3n3" ]
a¥ '

5@ PAUSE @: CLS : GO TD 2@

Lines 40 to 43 sort out the power to see if it’s a multiple of 1, 2,
3 or 4, by taking a look at what’s left over when you subtract an
integer from a decimal. (Divide any integer by 4, and your
number will end in a decimal part which is either .25, .5, .75 or
Zero.)

Line 3@ is there to stop you putting in a power that is not an
integer.

These powers of j might not seem like a big deal in themselves,
but it does get interesting once you realise that, if you get a
power of j appearing in any equation, you can replace it with
what that power is equal to. For example, if you come across any
i’ terms, you can replace them with — 1.

You should be able to spot by now when I'm working round to
something. The fact is that 'm laying the foundations for a spot
of arithmetic of the complex number kind.

First we have addition, Let’s take two complex numbers:

a+jb and c+jd
and then let’s add them together. Easy. All you have to

remember is that you add the real parts and imaginary parts
separately, so that,

(a+jb)+(c+jd)=a+c+jb+d)
And you can probably already see that subtraction is:
(a+jb)—(c+jd)=a~c+j(b~d)

with the reasoning that, again, the real parts and imaginary parts
are treated separately.

Now take a look at this. Suppose you have two binomials
(expressions involving two terms), and you want to multiply
them together. Two linear expressions, for example:

(ax+b)*(cx +d)
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I'hen you would multiply each of the terms of the first binomial
Iy cach of the terms of the other binomial, drawing in curved
lines 1o illustrate it,

(fax + b) * (cx+ d) =(acx’+adx+bex+bd)

"It doesn’t take a genius to see what happens whe.!n you apply
this concept to complex numbers (which are of a binomial form
in that they have two numbers):

(a+jb)*(c+jd)=(ac+jad + jbc+i*bd)
which we can simplify by substituting —1 for j?
(ac+ jad +jbec— bd)

and collecting together the real terms on the left and imaginary
terms on the right,

(ac—bd)+j(ad +bc)

which is the product we were after. And it should not be difficult
to write small programs that allow us to perform these three
complex operations, complex in the sense of operations with so-
called complex numbers.

Program 62 COMPLEX ADDITION ETC.

S REM PROGRAM &2
COMPLEX ADDITION
1@ PRINT "FIRST NUMBER?"
20 INPUT "Real Part? ";Rt
3@ PRINT AT 10,2;R1
48 INPUT "Imaginary Part? "3Ii
5@ PRINT AT 1@,2;R1;" + j(";I1

&8 PRINT AT @,0; "SECOND NUMBER
7@ INPUT "Real Part? ";R2

B@ PRINT AT 1@,2;R1;" + j(";I1
;") PLUS  ";R2
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2@ INPUT "Imaginary Part? ";li2
t CLS

12@ FPRINT AT 1@,23R1i" + §(";11
3") PLUS  “jR2p" + j(“3I125")
11@ PRINT AT 14,13; "EQUALS"

128 PRINT AT 18,12;R1+R2;" + j¢
"!11*123")“

All you have to do is change line 120 into:
120 PRINT AT 18,12;R1-R1;* + j(*;I1-12;%y"

and you have got yourself a subtraction variant. (Of course, it
makes more sense visually if you replace the word PLUS in lines
80 and 109 with the word MINUS.)

Furthermore, following closely the reasoning above regarding
the prescribed method of multiplication, we can do:

120 PRINT AT 18,12;5(R1*R2) - (I1*12);* +j(";
(R1*I2)+(R2*11);)

and with the proviso that you alter the PLUSes into TIMESes
you have a program that multiplies complex numbers. Neat eh?

There remains a little matter of division. First check this out.
If you play abour with Program 62 in multiplication mode you
may find thar an interesting piece of empirical information
dawns upon you.

An occasional answer comes up which has its j coefficient zero,
and when a complex number has a zero imaginary part, all that’s
left is a real number.

The condition for the j coefficient to be zero is:

RI*I2+R2*I1=0

obviously, since the expression on the LHS is the very one we’ve
been using to generate the j coefficient in our program. And if we
rearrange the above equation we get:

RI*12=-R2*I1
and finally
R1/R2=—(I1/12)

So therefore, if we can find numbers where the above expression
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holds true, then we’ve found a pair of complex numbers which
when multiplied together give a simple real number. I have such
an example right here:

(3+j5) and (3-j5)

easier to spot in practice than in theory. One is the same as the
other except its connecting sign is — instead of +, and any pair
like this when multiplied together give a real number. The pair is
important to us, and we say that one complex number is the
complex conjugate of another complex number if the above
relationship holds true.

Now, I don’t have any idea how to divide a complex number
by another complex number, but using this complex conjugate
idea, I can multiply top and bottom of a complex division by the
conjugate of the bottom and reduce it to a real quantity.

In other words,

(2+i8) . (2+i8)*(3~i4)

G+i) * S GaG-i4)
and, as we've just explained, (3+j4)*(3—j4) is a real number.
Using Program 62 I find that (3+j4)*(3— j4)=25.
and (2+jB)*(3-j4)=(38+16), so we have as our answer:

(ﬁ+ jl.é_')
(25 '25)

Which appears to have helped us achieve our end. How about
a division program? No problem! Based entirely on these
principles which we have discussed I have pleasure in
announcing yet another alternative line 120. (I suggest you take a
big breath and alter lines 8¢ and 100 from PLUS to OVER))

120 PRINT AT 18,12;((R1*R2)+ (11 *I12)){((R2*R2) + (12*12));
“Hi((R2* )~ (RI*I2M(R2*R2) + (12*12))5%)

So now we know how to do all the arithmetical things to
complex numbers, I can show you the Argand diagram. This is a
method of showing complex numbers on a graph. Dead simple:
all you have to do is take our old friend the Real Line and make it
into the x-axis of a graph. Then take the imaginary line and turn
it into a y-axis. The resulting graph is an Argand Diagram.
(Imaginary lines are just like real lines except that they’re marked
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off in multiples of j instead of multiples of 1.}
Let me show you:

3j

2j

= 2j-

-3j

And the four quadrants you get here make up what is called the
complex plane. It’s called that because you can represent any
complex number on it just by measuring along as far as the real
coefficient of your number, then measuring up (or down) as far
as the imaginary coefficient. Like this:

31
2jfm = e ——q P(3+2)
- l
: . 2 B
-3 =2 =] 1 2 3
|
| - 2j-
|
T ——
P, ’
(-2-i3)
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I've drawn in two points on the complex plane, P, and P,,
which represent two different complex numbers: P, represents
}+ij2, and P, represents —2—)3.

And, fairly obviously, you can plot any complex number at all
on the complex plane.

Does some of this seem curiously familiar to you? It might well
do, because it’s just what we were doing with graphs of x versus
y way back in Chapter 4. Do you remember what we went on to
do with the Cartesian coordinate system? We brought in the idea
of polar coordinates. Again, you don’t need to be much of a
genius to see that we can represent complex numbers on a polar
diagram, so let’s investigate that.

Below is a representation of just the top right quadrant of the
complex plane, and the number 3 +;2.

i

0
0

-
-

From which you ought to be able to see that,

2 =32+22
or
Re=VO+4=T13=3.606
And,

Tan 6=2/3 or 8=Tan '(2/3)=33.7°

And in fact it is an alternative form for 3+j2 to be represented

3.606 |33.7°

If we have a complex number z, then we can write:
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z=a+jb (standard form)
z=r(Cos 6+ Sin 6) (polar form)
where r=y a’+b?
and 6=Tan 'b/a
Also a=rCos 6 and b=rSinH

Which allows us to interconvert standard to polar and vice versa.
And it would not be beyond our capabilities to comstruct a
program to do it.

However, I thought it would be best to wait until you have
heard of a third way of expressing a complex number. It’s called
the exponential form and is derived from the polar form. Being
the exponential form, you’d expect it to be e to-the-power-
something, and being a representation of a complex number,
you'd expect it to involve j. You’d be right:

r eif

where r is the same as it is in polar form, and theta is the angle
appearing in the polar form except that it must be in radians.
Conversions of polar to exponential and vice versa are easy:

z=re"=r(Cos 0+Sin 6)
If for example we have,

z=3(Cos 45° +jSin 45°)
can be written as,

z=3e%

The reason for having all these different forms is that, when
people had to calculate things by hand (and brain!) it was found
to be easier to add and subtract in standard form, easier to
multiply and divide using the polar form, and easy to take the
logarithm of a complex number if it is expressed exponentially.
Quite a rigmarole, isn’t it? Computer power lets us choose how
we will, though.

For the record, when multiplying complex numbers in polar
form, you add the angles and multiply the r’s together. For
division, we subtract the angles and divide the r’s.
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And taking the log in exponential form,
if

z=re
then

log.z=logr+i8

One of Sir Isaac Newton’s friends, and a refugee from religious
persecution in France (after the Edict of Nantes was revoked in
1685), was Abraham De Moivre (1667-1754). He found a
relationship known as De Moivre’s theorem which can be
written:
if

z=1(Cos 6+iSin )
then

2" =1"Y(Cos(n8)+jSin(nh))

which helps us to raise complex numbers to a power. (De
Moivre’s theorem works for any value of n, positive, negative or
even fractional.)

A useful programming tip which allows you to choose the
number of decimal places in a displayed number is connected to
the INT function.

Suppose you have a number like 45.346578 and you want to
quote it to one decimal place. It would be possible to quote it to
zero decimal places using INT:

INT 45.346578

returns 45 (disposing of the unsightly decimal part).

But to get one decimal place, you must first multiply the
number by ten (which causes one place of decimals to hop over
the decimal point). Then apply INT to the number, which in our
cxample would give 453, and then divide by 10 again to recover
our original number. And it can all be done in one line so that if
x=45,346578,

PRINT INT(x*10)/10 gives 45.3
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Notice how the use of brackets makes sure that first the bracket is
computed, then the INT is taken, and finally the result is divided
by 18. Try this:

10 LET x=45.346578
20 PRINT x, INT(x*10)/10

and you will see what I mean.

And of course, if you are interested to get a number to more
than one decimal place, you have to multiply by 10¢ for two
decimal places, 180 for three decimal places, and so on, always
remembering to divide by the same number that you multiplied
by.

You can see it working by typing

20 PRINT x, INT(x*100)/100
giving 45.34, or
20 PRINT x, INT(x*1000)/1000¢

giving 45.346.
Notice that this doesn’t round the number: it just truncates it.
You must take care using negative numbers, since INT —-4.3

will return -5, and so you’d have to overcome that problem by
adding 1 at a suitable point:

10 LET x=—45.346578
20 PRINT x, INT((x*10)+ 1)/10

Then you get the correct truncation.
I just thought I’d better tell you about that before introducing

you to the next program, because it explains how lines 70 and 80
work.

Program 63 COMPLEX NUMBER CONVERSION

9 REM FROGRAM &3
COMPLEX NUMBER CONVERSION
12 INPUT "Real Coefficient? "j
a
28 INPUT "Imaginary Coefficien
t? ";b
3@ LET r=SGR ((a%*a)+(b¥b))
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40 LET Thr=ATN (b/a)
S@ LET Thd=(Thr*188/FI)
6@ PRINT a;" + j("jb;")"

7@ PRINT AT 5,8; INT (r*10@) /10
@;" (Cos ";INT (Thd*10@)/1@@;" +
3 Sin ";INT (Thd#10@)/1@@;")"

80 PRINT AT 10,0; INT (r+1@@)/1
@0;" exp(j "; INT (Thr*10@)/102;"
,II

The variables Thd and Thr stand for (and hold) Theta in
degrees, and Theta in radians. And the three forms are printed
out on the screen for you to examine.

2 Hyperbolic functions: Introduction

‘These are not really as frightening as they sound. But this one is

a real con trick, because you can learn all about hyperbolic

lunctions without ever understanding why they call them

hyperbolic functions. In fact, hyperbolic functions have

precious little to do with hyperbolas! Strange, isn’t it.
Remember Sin, Cos and Tan? Now try this:

Hyperbolic Function Symbol Pronunciation
Hyperbolic Sine sinh ‘shine” .
Hyperbolic Cosine cosh ‘cosh’—as in mugging.

Hyperbolic Tangent tanh ‘than’ - as in thin.

Obvious again that the h is there after the symbol to remind us
that we’re dealing with the hyperbolic function and not the
normal (or circular, as they’re called) functions.

You will certainly find Sin, Cos and Tan on the Spectrum
keyboard, but Sinclair didn’t bother with the hyperbolic
functions. However, that is not going to stop us.

First a few definitions:

Sinh x=12(e"—-e7%)
Cosh x=1a(e*+e™)

and just the same as circular functions
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_ Sinh x
Tanh x CiEs

=(cx_c-x1
(+e)
So we can define our own functions in terms of the EXP
function, and in Spectrumese we can write:

LET sinhx=((EXP x)-(EXP - x))/2
and
LET coshx=((EXP x)+(EXP-x))/2
and,
LET tanhx=((EXP x)~(EXP - x)){(EXP x)+(EXP-x))

Using these definitions over a suitable range we can draw a
small graph of Sinh, Cosh and Tanh using Programs 64, 65 and
66 respectively:

Program 64 GRAPH OF SINH X

S REM PROGRAM &4
GRAPH OF SINH X
12 FLOT ©,88: DRAW 255,8: PLOT
128,0: DRAW 0,175
28 FOR x=-3 TO 3 STEFP .1
3@ LET sinhx=((EXP %) - (EXP -x)
Y2
48 PLOT (x#*38)+12B, (sinhx*5)+8
8
5@ NEXT x

And

Program 65 GRAPH OF COSH X

S REM PROGRAM &5
GRAPH OF COSH X
1@ PLOT @,88: DRAW 255,0: PLOT
128,@: DRAW @,175
20 FOR x=-3 TO 3 STEP .1
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3@ LET coshx=((EXP x)+(EXP -x)
)y /2

4@ PLOT (x*30)+128, (coshx+*3)+8
8

58 NEXT x

And

Program 66 GRAPH OF TANH X

5 REM PROGRAM &6
BRAPH OF TANH X
1@ FPLOT @,88: DRAW 255,0: PLOT
128,0: DRAW 0,175
2@ FOR x=-3 TO 3 STEP .1
3@ LET tanhx={((EXF x)=(EXP -x)
Y/ C(EXP %)+ (EXP =x))
4Q PLOT (x#30)+128, (tanhx*52)+
g8
S0 NEXT x

With the last graph you will find that the curve begins quire
Iat and ends quite flat, and the following addition might prove
illuminating:

60 PLOT 0,88+50: DRAW 255,0
70 PLOT 0,88-50: DRAW 255,60

And you can see the limits between which the tanh function
pouvs, the centre-line being at 88 pixels up from the bottom
{middle of the screen) and the limits being plus or minus 50
above and below the line. Remember that line 4@ plots the
lunction with a 5@ times exaggeration, so that the function’s
limits are plus 1 and minus 1.

It is rare to find hyperbolic function tables these days, and so
vou might have a use for this program, which asks you for an x
and supplies Sinh x, Cosh x and Tanh x:

Program 67 HYPERBOLIC FUNCTIONS

S5 REM FROGRAM &7
HYFERBOLIC FUNCTIONS
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1@ INPUT "ENTER % ";x
20 PRINT "If % equals "jx

3@ PRINT "Sinh x 1s "3 ({EXP
w)=(EXFP -x))/2

4@ PRINT "Cosh % is " ((EXP
®I+CEXP ~x)) /2

5@ PRINT "Tanh % is "5 ((EXF

®I=(EXP =x))/ ({EXP %)+ (EXP =-x))
&0 PRINT : PAUSE @: CLS @« GO T
012

You can assign any number to x between —88 and 88 in this
program. Exceed it, and you will find the results generated by
the Sinh and Cosh expressions are too big for the computer.

Unlike the circular functions which recur every two pi radians,
hyperbolic functions do not come round again.

If we continue our parallels with circular functions, we’ll
eventually ask ourselves what the inverse of hyperbolic functions
are. Remember that the symbol Sin™'x does not mean 1/Sin x
{because (Sin x)™' would mean that). Sin~'x means ‘the angle
whose Sine is x’. So, for example, if

Sin x=0.5
then
x=8in"'0.5

And do you remember that because of the confusion that can
arise with this power of minus 1 notation, and in an attempt to
sell the product to a wider audience, it was decided to adopt the
‘arc’ notation, whereby we write

x=arcsin 0.5
instead of
x=8in"'0.5

(It also helps those of us who have not got Chinese typewriters!)
So it will come as no surprise to learn that the hyperbolic
functions have their arc functions too:

arcsinh x or sinh™'x
arccoshx or cosh™'x
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arctanh x  or tanh™'x

In practice, we would have to use these inverse functions to,
for example, find the value whose sinh is 1. Let’s follow that
particular problem through to see how we might solve it.

We want to find sinh™ 1, in other words,

Sinh x=1
Therefore
€ 2e ot
and so
gf—e*=2
Multiplying by ¢* throughout
(") = 1=2%¢"

and rearranging, we get a quadratic in e
(e -2(e)-1=0

to which we can apply our formula for solving quadratics and get
that e* equals

2+ 4+ (a=1,b=-2,c=~1)
2
so that
e*=1+\/872
or
e=1-\/82
so that
e'=2.414
or
e'=—-0.414

And since e” has to be a positive number, then the first root is the
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one we're interested in. So taking logs we get 0.881, Therefore
x=0.881 (approx.)

}Nhu:h 1s our answer. And we can check it by substituting it back
into the original equation or, even simpler, running Program 67
with x=0.881373587 (to quote it at greater length). Then we get
the report back from the Spectrum that sinh 0.88] 373587 is 1. In
other words, we have found the number whose hyperbolic sin;: is
1. And what a very long business it was to do it manually.
_ It wogid be perfectly possible for me to drag your fragile
interest in hyperbolic functions through the similar rigmaroles
thgt get us at the inverse cosh and tanh functions. But I'm not
going to do that, because we have a secret weapon built into
Program 68. And, like all effective secret weapons, it's based on
firm no-nonsense principles.

If in th_e previous argument we had let y=sinh™'x, implying
:}}11::) u:; ; S{l’ll’l s :h(i:n we could have followed the calculation

in general terms, arrivi Yoy +\/x?

Taking natural logs we’d h’ave Al B ey

y=log, (x+VX+1)
and since y=sinh™! x, we have
sinh' x=log, (x+\/ X7+ 1)
And you can do the same with cosh and tanh, getting
cosh™'x=log, (x+x° = 1)
and
tanh™'x=¥; log, ((1+x)/(1 -x))

which we can render into Spectrumese and use in a program.

Program 68 INVERSE HYPERBOLIC

S REM FROGRAM &8
INVERSE HYPERBOLIC
1@ INPUT "ENTER x "gx
2@ PRINT "The number x is "Eu
3@ PRINT "arcsinh x = "ILN (x+
BOR ((x%*x)+1)) :
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4@ STOP

11@ INPUT "ENTER x "3x

120 PRINT "The number x is "jx

130 PRINT "arccosh x = "j;LN (x+
SER ((x*x)-1))

140 STOP

21@ INPUT "ENTER x "jx

228 PRINT "The number x is ";x

230 PRINT "arctanmh x = "38.5#LN

({14} /(1-%))

249 STOP

The reason this program is divided into three by STOP
statements is that, if you enter any old %, you will find that the
program can work out one of the functions, but not another,
because the ranges of the functions are very different. As we’ve
already seen, the tanh function is bounded between +1 and - 1.
So if you ask for tanh™' of a number outside this range, obviously
it cannot be supplied. It will let you get away with 0.999999999
(nine nines), but thinks that 0.9999999999 (ten nines) is one and
won’t have it.

Using Program 68 is a cinch: just RUN for Arcsinh, RUN
100 for Arccosh, and RUN 200 for Arctanh. To do all three,
each time the program stops hit CONT (on the C key) and it will
hop over the STOP lines and do the next section.

Now what about hyperbolic cofunctions? This really is going
where no man has gone before. You’d have to look a long time
before finding one of these on your calculator. But they do crop
up occasionally in calculus, and so let’s have a brief look at them.

You may have heard the term ‘reciprocal’ used from time to
time: just in case it has escaped your notice, it means ‘1 over’
something. So the reciprocal of 4 is 1 over 4, or a quarter.
Similarly, the reciprocal of Tan x is 1/Tan %, or Cot x, and so we
have our hyperbolic cofunctions (otherwise known as reciprocal
hyperbolic functions):

(pronounced ‘coth’)

(pronounced ‘shek’)
(pronounced ‘co-shek’)

coth x=1/tanh x
sech x= l/cosh x
cosech x=1/sinh x

I won’t waste your time any further with these. It’s enough
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that you know what they are and how they relate to the
hyperbolic functions. This will allow you to create Spectrumese
definitions like

LET cothx=((EXP x)+(EXP -x))/((EXP x)—(EXP - x))
LET sechx=2/(EXP x)—(EXP -x))

Of course, if you feel like a bit of exploring sometime , , . But
that’s up to you: I’ve got two more revelations to cover before we
can bring down the curtain on hyperbolic functions.

First there’s the relationship between hyperbolic and ordinary
circular trig functions, and then we’ll go on to have a look at the
hyperbolic equivalents of the identities we listed for circular trig
functions.

Do you remember, way back in the section on complex
numbers, we had two alternative ways of writing the complex
number? Afier the standard form (a+jb) you could have the
exponential form re”, and the polar form r(Cos 8+jSin 6). So we
can say, if

z=r*e”

and
z=1*(Cos 8+jSin 6)

then it must be true to say
r*e=r*(Cos 8+iSin 6)

and, dividing both sides by r, we get
e®=Cos 8+iSin 6
It also works out that
e ®=Cos 8-iSin 8

(Note the way the minus sign appears on both sides: you might
like to spend a few minutes seeing how we get that result from
basics.)

I’'m now going to take the next step (which is going to bring us
closer to the definition of hyperbolic functions) of adding these
expressions involving the exponential, and at the same time
adding their polar equivalents. We get:
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e?+e ®=Cos A+jSin 8+ Cos 8—jSin §
The terms in Sin 8 cancel out, leaving

e+ ¥=Cos 6+Cos 8
=2*Cos 6
Remembering now our definition of Cosh x:
gte’”

2

and substitute j0 for x,

Cosh x=

Cosh j@:ﬂﬂ

But, from our argument above, we have already decided that
e+e ¥=2*Cos 0

5o that, dividing both sides by 2, we get
e - Cos 6

which in turn is equal to Cosh j@. We can therefore write this:

Cos 8=Cosh j6
which is the first of our relationships. We can pr(:rduce the others
in the same way — try it yourself—but I'm just going to quote the
results:

jSin 8=Sinh j#
and

j Tan 6=Tanh j8

Here is a tabulation and alongside the reverse forms have been
tabulated too, allowing you to see Tanh in terms of Tan, etc.,
and the reverse, Tan in terms of Tanh, etc.:

Sinh j# =j*Sin 6 Sin j@ =j*Sioh i@
Cosh j#=Cos 6 Cos j@=Cosh 6
Tanh j#=j*Tan 6 Tan j0=j*Tanh 8
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All this means that we can now set about listing the hyperbolic
trig identities, or at least a few of them:

HYPERBOLIC TRIG IDENTITIES

Cosh’6- Sinh’*8=1

Sinh 26=2*Sinh 8*Cosh 6

Cosh 26=Cosh?6+Sinh%9

Cosh(A + B)= CoshA*CoshB + SinhA*SinhB

And you will see that, if you compare these with the ordinary
circular identities, the differences are only of sign. These arise
when you have a Sinh® involved (either directly or indirectly)
with the calculation, because you get an extra factor of §° in the
working which is, of course, minus 2 and will alter the sign.

But I suppose all this is getting a mite tedious and involved. It
doesn’t matter: you’re not going to be examined on this stuff, but
it does serve to clue you in on maths and what it’s really all
about. And since this is not a maths text book, we can do what we
like. Normally they start simple and get progressively more
complicated, but not in this book. There are still a few simple
ideas left to dig out, and once we've got them sorted out, we’ll be
in 2 much better position.

It hardly needs saying, but since everything in maths s
connected to everything else, you might find this interesting,

10

THE FACTORIAL

1 The factorial

Occasionally you will find that you open a maths book and,
amongst the strange hooked symbols you find ther_e, you
sometimes see a number with an exclamation mark after it. This
is a factorial. Let me explain. You can calculate the factorial of a
number if that number is a positive integer, and the way you do
it is by multiplying together all the other positive integers that
are less than it. And that’s it! For example:

factorial three=31=3*2*1=6
or

factorial six=6!=6%5*4*3*2*| =720
and so on. Easy once you've cracked the code! Let’s have a
program:

Program 63 FACTORIAL

- 9 REM PROGRAM &9
FACTORIAL

1@ LET F=1

28 FOR x=1 TO 33

3@ LET F=F#x

4@ PRINT u,F

S@ NEXT x

And this little routine will calculate the factorial numbers up to
factorial 33. It can’t cope with greater than 33 because 34 give
you a ‘Number too big’ error report. It’s easy to see why when
we look at the speed with which this function takes off. Run
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Program 69 and see that by the time x has reached 12, x! has
been able to outstrip the Spectrum’s ability to render numbers in
ordinary form, and it has had to resort to scientific notation. By
the time it reaches 34 it has outstripped the Spectrum’s ability to
represent numbers at all!

Even my flash calculator can only manage 69! (which is
approximately equal to 1.711224525%10198), because it can only
show exponents as far as two digits, and 70! is greater than
10t100.

This is worth commenting upon if only for the fact thar such
monstrously huge numbers are so big that they outstrip the
number of atoms that exist in the universe. You can’t use them
for counting, so what can you use them for? The answer is that
they crop up in various places in maths, especially in the idea of
probability. Think what the odds are, for instance, against your
rolling a thousand successive double sixes whilst playing
Monopoly! Quite a big number (so big I can’t get it out of my
calculator either!).

Now that you’ve got factorials straight, we can move on to a
subject that I found a bit difficult to swallow when I first came
across it. Not that it’s remotely difficult to understand in any
academic sense. It’s just amazing that there’s yet another (and
quite simple) way of getting all those other functions we’ve spent
so long discussing. All the Sines and Cosines, the exponentials
and logs (and many others) can all be got from a string of
numbers called a series.

2 Series

The number e that we have been using in the exponential
calculations throughout this book is a curious number. We’ve
already noted rhat its value is 2.718281828 . .. etc., but we can
calculate it from a series of numbers. I’ll write out the series for
you:

3 S O O O [P |

TR TAETRETAP TR TR

In other words, keep adding a list of the reciprocals of the
factorials, and you get closer and closer to e.

. etc,
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The first term is 1/0!, and 0! is taken to be 1 (not zero as you
might have thought), so that
after one term we have as our sum 1
after two terms we have 1+1=2
alter three terms we have 2+%=2.5
after four terms we have 2.5+0.16666 etc.

=2.6666660666 etc.
After four terms, we’ve added 1/4! or 1/(4*3*2*1) which is 1/24
or 0.0416666 etc. bringing our total to: 2.708333333 etc.

The fifth term amounts to 8.00833333 etc., and if we add that
10 our total, we get 2.716666666 etc., and so on. Each tfrm adds
on a progressively smaller number, and eventually we d_ get to
our value of 2.718281828 . . . to whatever accuracy we like.

Program 70 does it for you automatica}ly, and so all you have
10 do is this: when the program stops with

3
n;
enter 1 the first time, enter 2 the second time, 3 the third time,

and so on, until you get to 10. The program will do the
spadework and give you back approximations of e to 1 +n terms.

When n= 10, the Spectrum’s calculation of e is put up (using the

expression EXP 1) in line 9. . .
The subroutine 1@ to 50 you might recognise as 2 mod.lﬁed

form of Program 69, which supplies the appropriate factorials.

Program 70 APPROXIMATION TO e

REM PROGRAM 7@
APPROXIMATION TD e
LET tot=1

FOR a=1 TO 10

GO SUB 1@

LET tot=tot+(1/F)
PRINT a,tot

NEXT a
PRINT : PRINT "e",EXP 1i: 8T

(=]
T
B woNpUsd N

LET F=1: INPUT "n?";n

[




190 Maths Tutor for the Spectrum

20 FOR x=1 TO n
30 LET F=F#%x

483 NEXT x

5@ RETURN

And if our Spectrum would let us do it, we’d be able to
approximate ¢ to as many places as we wished with this method.
As a matter of fact, that original series is a series for ¢* (e raised to
the power x) when x has been set equal to one, and for a general
X, We can write

c’=l+.x:+£2+£3+ .. X
1121 31 n!

The symbol at the end of the series, x/n! is called the general
term and shows us how to calculate any term: you just set n to
increasingly great values to get the terms of the series.

It is strange that an expression like ¢ can be approximated by
an infinite string of fractions involving factorials, don’t you
think? I think it’s very hard to believe but it is true.

Furthermore, as I said earlier, there are other series
approximations:

¥ 3 4
log(l+x)=x-X+%_ %4
S
which works when x has a value between —1 and 1, and we also
have
2 3 4
log(l-x)=-x-X-X_X
8(1-x) 7 5"
by substituting —x for x in the first equation.

And there are series for our three trig functions and three
hyperbolic functions too. At this stage, don’t worry about how
these series were discovered. They come from something known
to the mathematical world as Maclaurin’s series, but the
explanation of that will have to wait. Instead, let me pluck them
out of thin air:

I S
Sin x=x-X X _X, x
3t s 7o
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O, o i <
Cos x=1 5*’@ a+—8‘i...
x: 2%}
=x+X+X 4 |
Tan x=x AR

where x is in radians. Also

3 5 7
Sinh x=x+%+§+% 55
2 4 6
Cosh X=l+%+§—]+61 v
and there are others. The important thing is that you are aware
that these series exist, that some functions can be expanded into a
series and evaluated for any given value. This is in fact very
sirnilar to what the Spectrum does inside its own processor when
you tell it to come up with a SIN or an EXP, etc. (Actually, it
uses something called a Chebychev polynomial, but that’s a
different story!)

The business of how mathematicians came up with these series
expansions is also of interest, but you have to know a bit of
calculus before looking at it usefully.

You can replace any occurrence of one of these functions with
its series expansion in any program you are using.

X

3 Progressions

We've had a look at the idea of a factorial, all integers smaller
than a particular integer multiplied together (see section 1 of this
chapter) and we’ve seen that functions of x can be built out of a
series of powers of x. Now we are in a position to play with some
sequences of numbers, There are two which are of main
importance: arithmetic progression and geometric progression.

The names don’t mean much. The word ‘progression’ simply
means a sequence of numbers written one after another (usually
written separated by commas) so that
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1,2,3,4:,56, ...

is a progression of sorts, and so is
2,4,6,8,10,...

and even
w23 =0 = o

But what makes an arithmeric progression is that you can always
get the next number by adding on a constant number, so that

2,4,6,8,10,...

is an arithmetic progression because you add 2 to the first
number to get the second, and you add 2 to the second number to
get the third, and so on. If I were to ask you what the next
number in that arithmetic progression is (after 10) you could tell
me, because you would know that it must be 10 plus 2, which is
12. Arithmetic progressions are known to mathematicians as
APs. Geometric progressions are GPs.

So what is a geometric progression? You get an AP from adding
on a constant number each time to make the next figure in the
sequence. With a GP you mulriply by a constant number each
time to make the next figure. An example is:

2,4,8,16,32,...

Here you are multiplying by 2 each time.

The constant number you add each time in an AP is called the
common difference, and the constant number you multiply by
each time in a GP is called the common factor.

Here’s a GP with common factor 3:

3,9, 27, 81;.....

And it doesn’t just work with integers. Your common difference
or common factor can be fractional, giving something like:

1, 1Ye, 2, 2V, ... (common difference is 2)
which is an AP, or

1, 0.5, 0.25, 0.125, ... (common ratio is 0.5)
which is a GP.
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You can write a program that makes your Spectrum generate
progressions. Program 71 asks you for a ‘G’ for geometric
progression or ‘A’ for arithmetic progression. Depending on
your choice, you are asked to specify the ‘common difference or
common ratio. Then you have to tell the Spectrum where you
want it to start the progression from: in other words you have to
enter the first term.

Then your machine will list the first few terms of the
progression and give you the value of the term you specify as
well as the sum of all the terms as far as that term. Clear? If not,
play with Program 71.

Program 71 PROGRESSIONS

3 REM PROGRAM 71 PROGRESSIONS
1@ BORDER S: INFPUT "Do you wan
t Arithmetic or Geometric?
n : ﬂ.$
20 IF a#(1)="g" OR a$(l)="G" T
HEN GO TO 15@
38 PRINT "ARITHMETIC PROGRESSI
UNII
40 INPUT "ENTER first term "ja
5@ PRINT "First Term is ";a
68 INPUT "ENTER common differe
nce "jd
78 PRINT "Common Difference is
"y d
L]
8@ PRINT : PRINT "Progression
is:"
7@ PRINT : PRINT "Term No."3"T =
erm"
188 FOR x=1 TO 1@: PRINT x,a+((
x—1)#d): NEXT x
11@ INPUT "ENTER Any Term No. "
H
120 LET nth=a+(n=-1)%d: PRINT :
FRINT "Term No. "jn3" is ":nth
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130 LET Sn=(n/2)%((2#a)+((n—-1)%
d)): PRINT : PRINT "Sum to “"jn3"
terms 1s "jSn

14@ STOP

158 FPRINT "GEOMETRIC PROGRESSIO
Nl!

168 INPUT "ENTER first term "“ja
17@ PRINT "First Term is ";a
18@ INPUT "ENTER common ratio "
P

19@ PRINT "Common Ratio is "jr
200 PRINT : PRINT "Progression
iss"

212 PRINT : PRINT "Term No.";"T
erm "

220 FOR x=1 TD 1@: PRINT x,a#*(r
~ix=1))z NEXT %

23@ INPUT "ENTER Any Term No. "
;]

240 LET nth=a*(r~(n-1)): PRINT
: PRINT "Term No. "in3" is ";nth
250 LET Sn=a*(l=(r"n))/{i-r): P
RINT : PRINT "Sum to "in;" terms
is ";8n

Which is, you must admit, a lengthy program so far as we’re
concerned in this book, but it is in fact two programs in one.
Lines 10 and 20 are concerned with giving you either the first
half of the program or the second half. If you choose an AP you
get line 100 running round its FOR . . . NEXT loop to give you
the first ten terms of the AP you have specified. Then line 120
will work out the value of any term you like (try asking for the
hundredth term!), and line 130 will tell you the sum of all the
terms up to the one you’ve chosen. How these two facilities work
is explained shortly.

Had you gone for a GP, you would get the terms written out
by the FOR .. . NEXT loop in line 220 and the other facilities
provided by lines 240 and 250 respectively.

There are, of course, formulas that control these things, and
which appear in their Spectrum BASIC form in the program,
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For an AP, the nth term is given by this equation:
nth term=a+(n-1)*d

(If you’ve never come across this nth business before, it’s just a
way of saying first, second, third, fourth, etc. in general terms, so
that, if n equals 6, then nth is sixth.)

Also, for an AP, we have that the sum to n terms (usually
denoted by S) is given by:

S,= !21(2a +(n—1)d)

By the same token, for a GP the nth term is given by:
nth term=a*r*""
and the sum to n terms by:
g =8%1=17
¥ i)

So no big secret. If you want to find out how these equations
were derived in the first place, it’s not a mind-bendingly difficult
process to follow: next time you’re down at the public library see
if you can find it in a book.

I’d like to take a look at an AP where the first term is one and
the common difference is also one.

Why?

Because it’s interesting. If you try it on Program 71 you’ll get

1, 2, 35 55

They are the positive integers. And you can rewrite the sum to n
terms for this particular case by putting a=1 and d=1 in our
general AP sum to n terms formula:

Sn=%(2a+(n— 1)d)

becomes
sﬂ=—;~(2*1+(n— 1)*1)

which simplifies to,
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Sn=—g—(n+ 1)

which could be useful in a program sometime. It’s a bit like the
factorial except that the numbers are added together instead of
multiplied together.

What we've been calling S, or in words ‘the sum to n terms’ is
one of those things that the mathematicians have got hold of and
sneaked a bit of Greek into. The mathematical notation is that,
instead of using the letter S to stand for sum, you use the Greek
letter S to stand for sum. And to save you flipping through the
appendix in search of the Greek letter S, let me tell you it’s called
‘sigma’; and the capital sigma looks like this:

z

And if you think it looks like being Chinese typewriter time
again, then you’re dead right. Luckily, the appendix tells you the
user-defined graphic data for our letter sigma (upper case) is:

126, 34, 16, 8, 16, 23, 126, ¢ -

And if you deck the sigma about with a garland of numbers
you get the mathematicians’ form of sum to n terms. The
number above it shows the maximum number you are summing
to, and the number below the sigma shows where you’re starring
from. For example, if we were to write ‘the sum of integers from
1 to n’, we’d have,

r“=%{n+1)

—Max

which is a result we established above, remember?
If we wanted to write the ‘sum of r squareds as r takes the
values from 1 to n’, we would write:

£r=ngn+l)g2n+l)
6

]

which is a result that you could derive with the help of a maths
book. All T want you to see is the way the notation is used,
though, and perhaps remember the useful result which you
might have occasion to put in a program if you get into more
advanced programming.
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Whilst we’re at it, and to add a drop more practice, you would
write

%1_1: [ngn+ 1}:|2
1 2

which is the sum to n terms of the integers cubed:
P’,2,3,4,5,...

which is
1, 8, 27, 64, 125, . ..

And to test it out, let n=5 in our formula so that

5
it [5(291] ‘= 15°=225

1

which checks out OK, and of course it works for any value of n.

This notation of ‘the sum from (bottom number) to (top
number)” will reappear in a slightly different guise when we get
on to something the mathematicians call integration. I know it’s
a bit difficult to see at the moment, but it’s worth remembering.
It happens to be that way right through maths. It’s generally a
case of learning things which don’t seem to have any kind of
application whatsoever, but you find eventually they’re of huge
importance.

4 Sum to infinity

The progressions we have looked at are sequences of numbers,
and they can be as long as we choose to make them. We could get
the Spectrum to keep printing out terms until it burst a chip or
the terms got too big to handle, because there are an infinite
number of possible terms. We saw that the positive integers were
nothing more than an AP with a=1 and d=1, and we already
know from our work with the Real Line that there are an infinite
number of positive integers. And whatever AP we choose we
could never find the sum of all of them, because the sum gets
bigger by a bigger amount as we go on. But this is not true of a

GP,
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Consider the following:
1, 1/2, 1/4, 1/8, 1/16, . . .

You can recognise that as a GP with a=1 and r= Y. You can also
see that the terms are getting smaller as we go on, so that as the
number of the term tends to infinity, the term itself tends to zero.
(Do you remember this ‘tends to’ terminology?)

Mathematicians write a little arrow to mean ‘tends to’ and they
show infinity by this symbol:

L= -]

which looks to me like a figure 8 taking a rest.
We already know that our sum to n terms of a GP is given by,

g =al-r)
* -1

so for our particular series, with a=1 and r=1%,

=107y e

S, (1=%) (1-1/2%
and, as n=, (1/2°)=0. (As n tends to infinity, (1/2") tends to
Zero.)

We can write the sum to infinity as S., and know that it means
the sum of all the terms in the series.

And by substituting infinity for n and zero for (1/2"), we have

S.=2(1-0)=2

Which is quite remarkable really, because it means that
without being able to use infinity in maths, we've been able to
see what the sum of an infinite GP is! And you can check it out
on the Spectrum, adding your terms on each time until you reach
the limit of its calculating power. Use Program 71 to do this.

You will see that 2 is indeed the limit that the sum of the series
approaches:

S,:=1.9980469
and
S,:=1.9999999

and
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S,=2

and any number bigger than 26 will yield 2 also.

There’s an old riddle based on this, about a frog in a well. The
frog is able to jump one metre up on its first jump and,
presumably because it gets tired, can manage to jump only half
as far on its second jump, half as far again on its third jump and
so on. The well is two metres deep. How long will it take the frog
to jump out?

Well, since it has to jump an infinite number of times to reach
two, we find that the poor old frog is stuck for all eternity!

Does this mean that we can always find the sum to infinity of a
GP?

No, it doesn’t. There are clearly some GPs which get bigger
and bigger, depending on the value of r. If it is bigger than 1,
then you’re out of luck, but if it’s less than 1, you're OK.

Now note that (if you haven’t already found it out) Program 71
gets itself in a twist if you try to enter an r with a negative value.
This is a real shame, because you can easily think of a GP with a
negative 1. It goes into a spin because you are trying to raise a
negative number to a power (which the Spectrum doesn’t want to
do).

In fact the condition that must be observed if our sum to
infinity is going to be a finite number (and not infinity) is that r
must lie between 1 and minus 1. In other words the range of r is:

- 1<r<1
So far as Program 71 is concerned we must have
0<r<1
If you think your programming is up to it, why not figure out a

program which does deal with negative r (I’m sure it’s possible.)

5 Convergence

We can think of series that are neither arithmetic nor geometric
progressions without too much trouble. For example, we could
have a series which is got from the general term 1/n, by letting n
equal successive positive integers:

12,3546 55504
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so that our series becomes:
1, 172, /3, 1/4, 1/5, . ..

And if this was a GP (which it is not) you would think to yourself
that since each term is getting smaller there would be no trouble
finding a sum to infinity:

_—

This is what we mean by convergence. If we look at a real GP,
we find that it converges:

1, 1/2, 1/4, 1/8, 1/18, . . .
And clearly the GP
1,2,4,8, 16, ...

must be divergent.

But what about our example above generated by 1/n? There
can be no doubt that each term gets smaller, but that does not
mean it is going to be convergent.

If I were to say, ‘All dogs have four legs’, I could not go on to
say, “This animal has four legs, and therefore it must be a dogl’ It
would only be true to say something like, “This animal is a dog,
and therefore it must have four legs.’

Similarly, simply because a series has terms that tend to zero as
the number of the term tends to infinity does not mean that the
series necessarily converges. (It certainly won’t converge if the
numbers don’t get smaller, but there are some series which,
although the terms get smaller, they don’t get smaller fast
enough.) Our series generated by 1/n is an example, and this
series is actually divergent.

Now that we have disposed of that common misapprehension,
let’s see if we can’t find a rule that will tell us if a series is
convergent or not.

A test which shows a series that will not converge is called the
comparison test. You just get a series that you know is
convergent and compare it with the one you want to test. If the
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ierms of your test series are each less than the corresponding
terms of your known series, then your test series will be
convergent too.

And to put it the other way round, the test series will be
divergent if the corresponding terms are greater than the terms
of the known series.

But which known series can we use for comparison? Well, our
mathematician friends often use this one (which is known to
converge):

%+%+%+%+

This series converges if x is greater than 1. It diverges if x is
less than or equal to 1.

So that’s the comparison test. There is also d’Alembert’s test,
named after Jean le Rond d’Alembert (17177-1783), the French
mathematician. (Some people prefer to call it the generalised
ratio test.)

It is usual to write the terms of a series in general as the letter u
with a subscript number, so that u, is the first term, u, is the
second term, u, is the third term, etc. And these tests only apply
to positive terms. It is perfectly possible to have a series with
negative terms, or even alternate terms which are positive and
negative, but we’re confining ourselves to series with only
positive terms. _

D’Alembert’s ratio test is useful because we don’t have to bring
in any other series apart from the one we have under test. There
are no comparisons to be made, except for comparing the terms
in the series with their neighbouring terms.

So that, if our series is

Uy, Uz, Uy Ugy Uy 0 u s

we can call our general term u,. And the next one will be u,.,.
D’Alembert asks us to make the ratio

Uneg
Uy

and then to find the limiting value as n tends to infinity.
If the limiting value as n tends to infinity is less than 1, then
the series converges.
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If the limiting value as n tends to infinity is greater than 1, then
the series diverges.

If the limiting value as n tends to infinity is exactly 1, then the
series might converge and it might diverge.

What do I mean by ‘the limiting value’? A small example will
make everything clear. Suppose you have this series, and you
want to know if it converges:

142,282,200,

2 3 4 5 6
I’ve been at pains to point out that, if u, is the first term, and u, is
the second term, then we can call the nth term u,. The nth term
is a general term and can be represented by a formula so that
when you substitute a value for n, you get any term you like, If
you think about the series we have above, you can see that the
nth term is given by the equation

2D“|
1 +n

n

(Try putting n equal to 5, say, to give the fifth term.) And it
stands to reason that the term after the nth term is the n+1th
term, and to get that you just substitute n+1 in the equation for
the nth term, like this:

2+n

W, =

And we can therefore get the ratio d’Alembert is remembered
for:

Upey _ 20 |, 20!

which we can write:
Ues 2" 41+4n
u, 2+n 2!

=2!l+n1
(2+n)

Now we can divide top and bottom by n to get
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Now comes the idea of the limit, because we know that as n tends
to infinity 1/n tends to zero, and 2/n also tends to zero. The
shorthand version of the phrase ‘the limit of d’Alembert’s ratio as
n tends to infinity’ is written:

Lim Uee1 _20+1)_,

n=>® yu, (@+1)

So this limit has been shown to be greater than one. Therefore
the series diverges.

I know you've had to bear with me for the last few pages, and
you must have asked yourself where it’s all leading, bur it is
important to understand why we’re doing what we're doing.
Using a simple FOR . . . NEXT loop we can get the computer to
simulate the above process. In Program 72, we call the
numerator (top part of the fraction) of d’Alembert’s ratio uN,
and we call the denominator (bottom part of the fraction) of
d’Alembert’s ratio uD. Then we get the computer to print out
successive values of the ratio uN/uD as we make n bigger. That
way it indicates the limit to which it is tending. It’s important to
remember that the limit we’re looking at is d’Alembert’s ratio,
not the limit of the series itself.

Program 72 D’ALEMBERT’S RATIO

5 REM FPROGRAM 72

D 'ALEMBERT 'S RATIO
1@ FOR n=@ TO 1@ STEF .5
20 LET uD=(2"(n-1))/(1+n)
I0 LET uN=(2™n)/ (2+n)
40 PRINT n,uN/ubd
S50 NEXT n

Program 72 uses the example we’ve discussed, and by plugging
in your general term u, as uD in line 20, and your next term u,,,
as uN in line 3@, it is possible to get your d’Alembert’s ratio for
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any series you meet. Try running Program 72 with line 10
taking the limit closer by substituting:

10 FOR n=10 TO 100 STEP 10

and your results will show you clearly that the limit is indeed 2.
Extend the range again and you'll find that eventually the
computer can’t cope with 2fn, and you get a ‘Number too big’
Error.

6 The binomial expansion

There’s a famous (and important) expansion we've yet to
mention. It pops up again later and forms the basis of a dozen
and one different higher applications. As usual, I won’t bore you
with how we get there: I'll just quote it and show you how you
can use it. If you’re that bothered about it, you can find a public
library and look up the derivation in a text book. The binomial
expansion is its name, and it is just the expansion of a binomial
expression—that’s one with just two numbers—which has been
raised to a power.

The simplest version is (1+x) raised to the power n, and it
turns out that (1+x)" has an expansion that goes like this:

nn=1) > n(n—1}n-2)
1+nx+ 2 X2+ 3 X+ ...

It's worth thinking about that a second, just to get it straight.

The first term is 1, the second term is n times x, the third term is -

n times l-less-than n times x to the power 2 over 2 factorial . . .
So can we see the pattern? Each successive term is composed of
three elements: the string of n’s getting smaller each time all
multiplied together, the x raised to a power that gets bigger by 1
each time, and the denominator which is that power made
factorial,

Now come a few observations. When n is positive, there are
n+1 terms in all. When n is fractional or negative, there are an
infinite number of terms. The expansion only works when x is
greater than —1 and less than plus 1 (i.e. the range of x is
- 1<x<1),

That in itself would allow us to evaluate something like
(1+%2), for example (try it and see!). But it has much more
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weighty implications. If you don’t believe me, just try a binomial
cxpansion with x set equal to 1/n, so that you have (1 +%)“: if

you play about with that long enough, you’ll find out how we get
the expansion of e* that was quoted earlier in this chapter!
A more general binomial expansion is (a+x)" which you can

see is equal to (a(l +~:—))". And the expansion of that is:

14X 401 (&), nn 10 -2) (x
RLESSTTE G 3 W

As before, when n is positive, there are n+1 terms. When n is
fractional or negative, there are an infinite number of terms. And
in this case, the expansion is only valid if (x/a) is in the range
from —1to 1.

Let’s look now at a particular expansion of (1+x)", setting n
cqual to zero and increasing it by one each time:

(1+x)°=1

(1+x)'=1+ x
(1+xy=1+2x+ x°
(1+x)P=14+3x+3x*+ x
(1+x)'=1+4x+6x’+4x’+ x*

and so on.

Do you see what’s happening? I'm just multiplying out the
brackets on the LHS to get the sequence of powers of x on the
RHS. Alternatively, you can think of it in terms of the binomial
expansion giving the RHS in each case. Now look carefully at the
coefficients of the terms x°, x', ¥, . . . and you can write them out
in the form of a pyramid:

I B 3 1
1 4 6 41

and so on.

Can you see how it’s building up? And can you tell what the
next layer of the pyramid would be? Clearly it would be the
expansion of (1+x)’, and you could work it out from first
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principles that way. But it’s easier to look at the pyramid directly
and generate the next row by adding together the two elements
directly above to left and right, so that we would get this:

1 4641
VVYV
151010 5 1

Once you get this pattern fixed in your mind, it’s passible to
generate any expansion of (1 +x)". This fact was first remarked
on by the Frenchman Blaise Pascal (1623-1662). In fact the
pyramid structure is called Pascal’s triangle.

Program 73 will generate these values for you, labelling them
in powers of x down to (1+x)'°, and there’s no reason why you
shouldn’t modify the program so that you get it to calculate the
coefficients of any expansion you want (screen size limitations
notwithstanding!).

Program 73 PASCAL’S TRIANGLE

2 REM FROGRAM 73
PASCAL 'S TRIANGLE
S PRINT "x@ x1 %2 %3 X4 x5 x&
x7 %8 x9 "
12 FOR n=0 TO 1@
20 FOR r=0 TO n
320 GO SUB 10@: GO SUEB 20@: GO
SUB 300 N
4@ PRINT AT n+l,r*33Fn/ (Fnr*Fr
)
S8 NEXT r
&@ NEXT n
78 FOR x=0 TO 255 STEP 24: PLO
T x,175: DRAW @,-10@: NEXT x: ST
oP
108 LET Fn=1: FOR x=1 TO n: LET
Fn=Fn#*#x: NEXT x: RETURN
208 LET Fnr=1: FOR %=1 TO n-r:
LET Fnr=Fnr#x: NEXT x: RETURN
300 LET Fr=1: FOR x=1 TO r:z LET
Fr=Fr#*x: NEXT x: RETURN
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It’s interesting to note that the structure of Program 73 is that
of a main program (lines 10 to 80) with subroutines at 100, 200
and 300 allowing the necessary calculation. Those subroutines
each calculate a factorial, and you should compare their structure
with Program 69. It rests on the fact that the general term for the
coefficients in our expansion is given by the expression

n! (n—=1)! r!
7 Fibonacci Series

Because you’ve been so patient and stuck with me throughout all
this stodgy stuff about expansions, I thought I’d get back to
insanity and give us all a rest.

Leonardo da Pisa, who was around in Italy at the end of the
12th century (1170-1230), picked up his mathematics from the
Arabs and introduced the idea of our present day numbers to
Europe (previously Roman numerals and an assortment of Greek
letters were used). But he’s best remembered for a little device
that links together such diverse things as the arrangement of
seeds in the centre of a sunflower, the curve of a nautilus shell,
Greek architecture and art, Mahler’s symphonies, foolscap paper
and Alice in Wonderland.

Leonardo da Pisa was known by his pseudonym ‘Fibonacci’,
and his sequence of numbers goes like this:

1, 1,2, 3, 5, 8 13, 2L

If you think you’ve cracked it try to figure out the next term. If
you got 34, then you have correctly seen that each term is the
sum of the two previous terms, so that 5 is 3 plus 2, and so on.

Program 74 does it for you:

Program 74 FIBONACCI SERIES

3 REM PROGRAM 74
FIBONACCI SERIES
1@ PRINT "Term No.";"Term": PR
INT 1,1: PRINT 2,1
28 LET a=1: LET b=1
3@ FOR n=3 TO 21
4@ LET f=a+b
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5@ PRINT n,f
6@ LET a=b: LET b=f
7@ NEXT n

Alter line 3@ to generate as many terms as you like, so that
30 FOR n=3 TO 100

will give you 100 terms.
If we call the terms of the Fibonacci series u,, 1, u,, . . . 1,
then it happens that &

Upe) =1, U+ (— 1)°
which you can check for n=6:
u,=8,u,,,=13, u,,,=21 and (~1)’=1
So

137 =8*21+1
169=168+1

which is obviously true!

This was first discovered by a mathematician called Charles
Dodgson (1832-1898) who is rather better known for his books
(Alice in Wonderland, etc.) published under the name Lewis
Carroll.

Before the days of metric sizes, paper in England used to be
measured in Imperial sizes, and one size was called foolscap. An
interesting thing about foolscap is that if you bent down one
corner of the sheet as if you were making a paper aeroplane:

U
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and then bend it back, you would get the crease across the paper
making a square, and there would be an oblong left at the bottom
shown on the third diagram as shaded. The property of the
foolscap size is that the shaded bit left over is the same shape as
the original foolscap (only smaller!).

We can look at this mathematically. If we call the width of the
foolscap sheet 1 unit of length, and the length of it ¢ (Greek letter
phi) units of length, then we said that the ratios of the bit left
over are the same as the whole thing. In other words, 1 is to ¢ as
(¢=1)is to 1.

»
—
v

& [ 3
1
$
v
$-1
v l
<+ 1 i

In mathematical terms, we can represent these ratios as
fractions,

L =1
$ 1
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And we can rearrange that and solve for ¢, using the quadratic
technique:

1=4(¢-1)
0=4¢*-¢~1

so that

¢=li5[ 5
2

Root 5 has the value 2.236067977, and so ¢ equals
~0.618033988 or ¢ equals 1.618033989. Since ¢ is a length, it is
meaningless if it’s negative, and so we choose the positive value.

This ratio, 1 to 1.618033989, was known to the Greeks and
was called the Golden Section. It was a proportion much used by
them in art and architecture.

But it’s not obvious what all this has to do with the Fibonacci
series. Well, it does have a connection, and it’s this: the ratios of
consecutive terms of the Fibonacci series tend to ¢ as the
number of the term tends to infinity! So

Lim Lori=g (Remember d’Alembert?)
n—>% yu,

The third term is 2, the fourth 3, and our ratio equals 3/2=1.5.
The thirteenth term is 233, the fourteenth 377, and our ratio is
now 377/233=1.618025751, which is much closer. The thirty-
first term over the thirtieth is 1346269/832040=1.618033989,
which is correct to 9 decimal places.

Mabhler’s symphonies and the spirals of the nautilus shell and
sunflower seeds are up to you to discover about yourself: I'll just
say that, if you look up the word phyllotaxis in a good
encyclopaedia, you'll get to it.

Now, didn’t I warn you that everything in mathematics is
connected to everything else?

11

VECTORS

1 Vectors

This is good fun and easy to get at on a computer. (I told you this
book was going to break with tradition and get easier by degrees.)

Almost anything you can measure in numbers is either a scalar
or a vector. A scalar quantity is one that has only size, whereas a
vector quantity has both size and direction.

An example of a vector quantity is velocity. You can have 30
miles per hour due north, or 130 km/h north-west, or 1 metre per
second along the x-axis, etc. Size and direction.

An example of a scalar is mass: if you have a brick of one
kilogram, the mass of that brick is not associated with any
direction. One kilogram is 2 magnitude, a size.

All this means that you can represent scalars by numbers, but
for vectors you have to have a way of conveying both the
magnitude and the direction.

To represent a vector quantity, we draw a line. The length of
the line represents the magnitude part of the vector and the
direction of the line represents the direction of the vector. Two
vectors are only equal if both their magnitudes and directions are
equal. Below is a collection of different vectors:

b

v
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You'll notice that they’re not just lines, but arrows, and this is
necessary if you think about it, because a line can point in two
opposite directions at once, whereas the arrow is definitely
pointing in only one direction. Program 75 draws some random
vectors for you, putting a blob on the end of each vector to
represent the arrow head.

Program 75 RANDOM VECTORS

S REM PROGRAM 75
RANDOM VECTORS
183 BORDER 6: PRINT “Various Ra
ndom vectars"”
20 FOR n=0 TO 20: LET A=INT (R
ND%2)
38 LET x1=3@0+RND#195: LET y1=3
B+RND*115:
. 40 LET x2=RND#3@: LET y2=RND#*3
S@ IF A=8 THEN FPLOT #l,y1l: DR
AW x2,y2: CIRCLE XK1+x2,y1l+y2,1
4@ IF A=1 THEN CIRCLE x1-x2,y
1-y2,1: PLOT %x1,yi: DRAW “X2,-y2
7@ NEXT n

Fairly trivial 1 suppose, but it gets the idea across. Now
suppose you’ve got a ball on the end of a string, and you hold it
above your head and make the ball travel round in a circle. Then
you can think of the string running from your fist to the ball as
being a vector. Assuming you keep a tight hold on the string you
have a constant magnitude (so the length of the string remains
constant) but the direction moves continuously.

Program 76 shows ‘snapshots’ of the string as it makes its way
around the full 360°. The snapshots are at intervals of 9°, as you
can see from line 20 (everything is in radians, so if 2*PI is 360°
then PI/20 is 360/40=9°). You can use line 10 to choose your
string length between @ and 87.

Program 76 RADIUS VECTORS

S REM PROGRAM 76
RADIUS VECTORS

.
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1@ LET MAG=5@

20 FOR A=0 TO 2#PI STEP P1/20
3@ LET x=MAG*COS A

4@ LET y=MAG*SIN A

50 PLOT x+128,y+88

&8 DRAW —x ,-y

7@ PAUSE 2@: CLS

B@ NEXT A

You have to remember that a line is not a vector until you
specify its direction, so we can think of the set of radius vectors
swept out in Program 76 as all being directed from the centre
outwards, or if you like, from the circle inwards to the centre. If
you delete line 70 and run Program 76 again, the vectors will
accumulate on the screen.

You can imagine what would happen if, instead of string, you
used elastic. Then you could get the magnitude of the radius
vector to vary as well as its direction and, depending upon the
way you did it, you could get a set of shapes other than circles.
The sun is a fist swinging the ball of the earth around on a string
made of gravity, and such is the property of gravity thar the
shape the earth moves in is an ellipse.

Program 76a RADIUS VECTORS OF AN ELLIPSE

S REM PROGRAM 7é&a
RADIUS VECTOR OF AN ELLIPSE

1@ LET M1=3@: LET M2=60
2@ FOR A=0 TO 2*FP1 STEF PI/20
2@ LET x=M1+C0OS A

4@ LET y=M2%SIN A

S@ PLOT x+128,y+88

6@ DRAW X ,y~v¥

78 PAUSE 20@: CLS

8@ NEXT A

Of course, returning to Program 76 for a moment, if you alter
line 40 to LET y=0, you will see a vector which starts at its full
length, decreases to zero, continues to decrease beyond zero until
it is of a similar magnitude to the one it started with except
pointing the other way, increases to zero again and then back to
its original size. This is a vector going through the range of its
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magnitude changes with no direction changes. It is an example of
what is known to scientists as SHM (which stands for Simple
Harmonic Motion), and serves to show that if we have a vector
A, then the vector —A has the same length and direction, but
points in the opposite direction:

So can you do arithmetic with vectors? You certainly can. Let’s
begin with addition. If you have a vector A, and want to add to it
a vector B, you end up with a vector C. If you represent the
vectors A and B as lines with the right lengths and angles, the
sum vector C will be represented by a line that starts at the
beginning of the first vector and ends at the end of the second
vector. The triangle that is formed by this process is half of
what’s called the parallelogram of vectors. Program 77 will make
everything very clear by adding two randomly selected vectors A
and B ad nauseam. If you sit through five minutes of it, you'll
never forget how vectors add.

Program 77 ADDITION OF VECTORS

5 REM PROGRAM 77
ADDITION OF VECTORS 2

1@ PRINT "VECTOR A"

20 LET X1=RND%127: LET Y1=RND#%
87

3B LET X2=RND#127: LET Y2=RND#*
87

40 PLOT 1,1: DRAW X1,Y1

41 PLOT 1,1: DRAW X2,Y2

S50 PAUSE 100

4@ PRINT AT @,9; "PLUS VECTOR B
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7@ PLOT X1,Yi: DRAW X2,Y2

71 PLOT X2,Y2: DRAW X1,Y1

80 PAUSE 100

9@ PRINT AT 1,@;"EGUALS VECTOR
cll

102 DRAW 1-(X1+X2),1-(Y1+Y2)
11@ PAUSE 200: CLS : GO TO 1@

Relentless, isn’t it?

Other aspects of vector arithmetic are:

Subtraction We can think of A-B as being A+(-B), and we
already know that —B represents B with the same magnitude,
but exactly opposite direction.

The product of a vector and a scalar If you multiply a vector A by,
say, 10, the effect is to make it 10 times as long and to leave the
direction unchanged. Multiply by a negative scalar, and you get
the direction turned opposite. (This stands to reason since we
know about — A, and that’s just A*(~ 1), after all.)

The nuil vector This is just the vector version of zero. If A=B,
then the null vector is defined as A—B. It has zero magnitude
and no definite direction.

One useful application of vector maths is three-dimensional
mapping. If you think of a fishtank with water in it, and one fish,
and you decide to call the back left-hand corner of the tank the
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origin, then you can construct a 3-D coordinate system like the
one below:

If we make the width of the tank the x direction, the length of
it the y direction and the height the z direction, s shown, then
wherever ‘Jaws’ swims, we can imagine a vecror {maybe a thin
beam of light!), which we can call A, from the origin to the fish.
As he swims about, A changes. It gets longer and shorter, so the
magnitude alters. Also the direction of the vector alters.

We can break the position of the fish, and hence the vector,
into three components along the x, y and z directions, and this
process is known as resolving the vector into components. This
program demonstrates the idea.

Program 78 RESOLVING A VECTOR

5 REM FPROGRAM 78
RESOLVING A VECTOR

1@ INK @: BORDER &: PLOT B8,0:
DRAW 71,71: DRAW 10@,0: PLOT 71,
71: DRAW ©,100

28 PRINT AT 1B,2;"x": PRINT AT

12,20;"y": PRINT AT 3,7;"z": PR
INT AT @,1@; "3D COORDINATES": FA
USE 100
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38 INK 2: FLOT 71,71: DRAW SO0,
32

4@ PRINT AT 1@,11;"A": PRINT A
T 1,10; "VECTOR A“: PAUSE SO

S@ INK 4: PLOT 71,71: DRAW -30
»—3@: PRINT AT 15,4;"Ax": PRINT
AT 2,10;"X COMPONENT"

&0 PAUSE S@: DRAW 8@,@: PRINT
AT 17,93"Ay": PRINT AT 3,18;"Y C
OMPONENT "

70 PAUSE 5@: DRAW @,68: PRINT
AT 13,163"Az": PRINT AT 4,10;"Z
COMFPONENT"

The important notion here is that, if you have a vector in three-
dimensional space, you can represent it as three numbers
standing for ‘so much along’, ‘so much up’, ‘so much in’. It
works in situations where you are considering only two
dimensions too: in this case you have two directions in which to
resolve the vector. If we set up a 2-D coordinate system and draw
in a general vector A, we can see that the components of A in the
x direction and y direction are A*Cosf and A*Sin8 respectively.

—————

Asin @ A

s e — — ——

v

A Cos @

This idea crops up in considering the behaviour of projectiles,
which means anything thrown and moving under gravity. If we
examine the basis for projectiles, we can easily make a computer
simulation of, for example, the way a cannonball would move.

Suppose we have an artillery piece firing a shell into the air so
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that the barrel of the gun is making an angle of degrees with the
horizontal. Then the only factor we can vary is the amount of
powder charge we use to fire the ball: the more gunpowder, the
farther the ball will be projected. Because of the way gravity
operates, the shape of the curve the ball traces out is a parabola
(if we ignore the minor factor of air resistance).

We need to specify what’s known as muzzle velocity (which
means the speed at which the ball leaves the cannon) and realise
that, once the ball is actually flying through the air and free of
the explosive charge that sent it on its way, there is only one
force, gravity, acting on the ball.

Since gravity only acts downwards, then when we resolve our
vectors into directions parallel to and perpendicular to the
horizontal, only the vertical component is affected by gravity.
We therefore have a horizontal component that is a constant
velocity, and a vertical component that is a constant acceleration
in the downward direction.

(x5

sin @

Suppose your muzzle velocity is v m/s (that’s metres per
second), and suppose t represents the time elapsed after firing the
gun. Then, since in the horizontal direction the velocity is
constant, the distance of the ball is given by the equation,

x=v*Cosf*t

The vertical motion is more involved and is governed (or at
least described) by an equation discovered by Newton. If we
consider the downward acceleration to be called g, then the
vertical position y is given by an equation similar to the one that
yields x, but with an extra bit to represent the effect of gravity.
Newton figured it out to be:

x——

‘

Vectors 219

y=v*Sinf*t—gt’

These equations form the basis of Program 79,_ and the
equation for y gives us the time taken for the ball to arrive. When
it does arrive y=0, and we can solve the quadratic in t to get

Fok Q1
time of flighr:gz--YaES—'—”‘—8
By substituting this back into the equation for x, we can get the
horizontal distance covered, known as the range.
2k Q:
Range=Y Sin 20
g

To prove that all this works I’ve included Program 79 which
shows it happening graphically, and Program 8@ gives you the
numbers.

Program 79 PROJECTILES

S REM FROGRAM 79 FROJECTILES

1@ BORDER S: INPUT "ENTER Muzz
le Velocity "3v

2@ INPUT "ENTER Angle of Eleva
tion "ja

308 LET g=10: LET a=a*P1/180

4@ FOR t=0 TO v*SIN a/g STEF .

58 LET x=v#t*C0S a
6@ LET y=(v*t#SIN a)-g#t~2
78 PLOT x,y

BO NEXT t

Try this program, and, when it asks for the i_nuzzle velocity,
give it a number between @ and 100. Try a variety of angles of
elevation, and prove to yourself that a given charge gets the
greatest range if the angle is 45°. o

You could certainly incorporate this routine in a game,
perhaps one that simulated an artillery duel between two armies.

But for those who prefer exact numbers:
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Program 8¢ PROJECTILE PARAMETERS

5 REM PROGRAM 80
PROJECTILE PARAMETERS
18 INPUT "Muzzle Velocity? (m/

s) Y“;v
20 INPUT "Angle of Elevation?
(Degs) "ja

3@ LET g=9.81: LET a=axP1l/{80
4@ LET TF=2%v#SIN a/g
50 LET R=2#v#v#(SIN a)#(C0OS a)

/9

68 LET H=v#v*(SIN a)#(SIN a) /¢
2%g)

7@ PRINT "Muzzle Velocity",vg"
m/s”

B@ PRINT "Elevation Angle",a*l
8@/PI;" degs"

7@ PRINT "Time of Flight",TFy"
secs"

18@ FPRINT "Range”,R;" metres®
11@ PRINT "Max Height" ,H3: " metr
EB"

You will notice (if I point it out) that Program 79 has the value
10 for g, whereas Program 8@ uses the considerably more
accurate value of 9.81 m/s”. This is known as the acceleration duc
to gravity and may be regarded as a constant for anywhere on the
surface of the Earth. (Go to Mars, and the acceleration due to
Martian gravity is different: there it’s 3.6 m/s’.) It’s a function of
the mass of the planet you happen to be standing on and how far
you are from the planet’s centre, and, like all accelerations, is
measured in the metric system in metres per second squared
(m/s?), also written (ms ).

I just thought it would be a good idea for you to see that all this
theory has a big box of applications attached to it, and so if you
want to follow this subject up more closely, get a book on the A
level applied maths syllabus.

But in vector arithmetic our next conguest will be
multiplication. There are two types of multiplication that can
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happen to vectors. If A and B are our two vectors, then we can

lhave the scalar product or the vector product_. _
Let’s deal with the scalar product first. This is often called the

‘dot’ product, because in maths books they show the product
with a dot. The definition is,

A.B=A*B*Cosf

where 0 is the angle between the vectors. It's called the scalar
product because the result is a scalar quantity.
An example is this:

0 30°
60°

If A has a magnitude of 10, B has magnitude 5, A is 30° up
from the horizontal, and B is 60° up. The angle betwee:n them is
therefore 30°, so from our definition, the dot product is,

A.B=10*5*Cos 30°
=50%0.866
=43.3

Norice that Cos 90° is zero, so that the dot product of two
vectors which are at right angles is zero.

What of the vector product?

This is defined as a vector and is often called the cross product
because it is written with a cross instead of a dot. We define

AxB=A*B*Sinf

This cross product is not at all as simple as it might seem,
because although the two vectors form a plane, the cross prodl_xct
is at right angles to that plane. Neither does AxB=BxA, which
is strange enough. In fact, AxB=—(BxA), as we can see from
the diagram
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AxB

B

8
A

If you imagine vectors A and B drawn on a sheet of paper, and
to get from A to B you have to rotate anticlockwise, then the
vector AX B points upwards out of the paper. If you’d had to
rotate clockwise to get from A to B, as below,

A
6

B

AxB

then your product vector would point downwards into the paper.

The rule is one that crops up in elementary electricity, when
you talk about the magnetic fields that occur when current is put
through a solenoid. It’s known as the corkscrew rule and helps
you to remember the sense of the cross product. If you take your
right hand and curl your fingers round and stick your thumb out,
then if your fingers are rotating A to B the cross product points
in the direction of your thumb. Compare it with the diagrams
above and play about until it sinks in. (Don’t do it on a bus or in
any public place, or else people will think you’re a loony.)

What about a program that take the sting out of ir? All you
have to remember is that a minus sign in the answer to a cross
product means a downward pointing vector instead of an upward
pointing one.

Program 81 VECTOR PRODUCTS

% REM PRDBRAM B1
VECTOR PRODUCTS
10 INFUT "VECTOR A7 “ja
2@ INPUT “VECTOR B? "jb
3@ INPUT "ANGLE BETWEEN? "3;Th
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4@ FRINT "Magnitude of A = "j;a

3@ PRINT "Magnitude of B = ";b

68 PRINT "Angle Between A4 & B
- "iTh; " DEQS"

7@ FRINT "DOT PRODUCT A.B = *“;
AxB*COS (Th+*PI1/18Q)

8@ PRINT "CROSS PRODUCT AxB =
"; A%XB#SIN (Th#P1/180@)

9@ PRINT "CROSS FPRODUCT BxA =
";-AXBE*SIN (Th*P1/180)

5 REM FPROGRAM 82

1@ DIM A{(3,3)

20 FOR r=1 TO 3

3@ FOR c=1 TO 3

4@ READ A(r,c)

5@ PRINT AT r%4,c%4;A(r,c)

6@ NEXT c

780 NEXT r

8@ DATA 4,5,1,2,0,9,8,4,3

It’s important to remember that the dot product gives a scalar,
so that when in our program it says:

DOT PRODUCT A.B=70.710678

the number is a magnitude only. In the cross products, the
numbers show the magnitudes of the product vectors, But the
direction is at right angles to the plane of the vectors A and B, up
if it’s a positive number and down if it’s negative.

2 Matrix algebra

This might seem strange at first, but it all ties in with what we’ve
already learned. It's really just the mathematics of the
computer’s own array system.

You use the command DIM to dimension an array, and what
you're doing is just the same as what you do in a LET statement.
Suppose you've got a variable called x, and you want x to hold
the value 10, then you would command,

LET x=10
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Inside the computer a location called x is created and the value
1@ is stored in it.

There are numbers which are not just one number at a time,
but many at a time. You know this already from our previous
work, but we’re now going to consider it in detail.

A vector can be thought of as a list of numbers, so that, if I say
a four vector, I mean a vector composed of four numbers. If I say
a twelve vector, I mean one with twelve separate elements,
Happily the Spectrum allows us to work with such vectors.

Suppose I had a vector to hold numbers of four different types
of fruit: apples, oranges, pears, bananas. Then if I wrote four
vector like this:

A=(10, 8, 14, 20)

you would know that it meant 10 apples, 8 oranges, 14 pears and
20 bananas.

The way to get the Spectrum to accept this four vector is to have
the line

10 DIM A(4)

at the beginning of your program, then the Spectrum will know
to set aside a region of its memory to hold the data for a four
vector called A,

Then we can use a FOR . . . NEXT loop to read the data into
A like this:

20 FOR n=1 TO 4
30 READ A(n)

40 NEXT n

50 DATA 10,8,14,20

If we had another four vector B, so that,
B=(12,16,9,5)

you would know what that meant, and you could do the sum
A+B '

because you'd know that (

A+B=(10+12,8+16,14+9,20+5)
=(22,24,23,25)
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All the elements of A combine with the corresponding elements
o’ B, and you get a sum which is a four vector.

Now let’s suppose a small-time greengrocer wanted to
computerise his business, and that one of his shop’s stock
inventories was four vector A, the other shop’s inventory was
vector B (I did say small time!). Both of these are quantity
vectors, and we've chosen to write them out as rows.

Now suppose he has a price list like this:

apples 10p each
oranges 12p ,,
pears 14p
bananas 8p ,,

then he could make a column vector {call it P for price), so that

10
12
14

8

Here comes the important bit: if our greengrocer wanted to
work out the value of his stock in shop A he would have to
multiply the corresponding row vector elements from A with the
column vector elements from P, then add them all together, so
that

P=

A*P=(10, 8, 14,20)* | =

8
=(10*1Q)+(8*12)+(14*14)+(20*8)
=100+96+196+ 160
=552 pence

Definitely small-time—and I think he’s undercharging for that
fruit too! Notice how the multiplying together of two four
vectors has given a single number 5527

We could also model a scalar multiplication of a vector, by
supposing that the greengrocer wanted to carry three times his
present stock levels in store B. We would have

3 B=13%12,16,9,5)
=(36,48,27,15)
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That was a quick run down on one-dimensional number groups,
but you know it’s possible on your Spectrum to have arrays of
more than just one dimension.

If you said

10 DIM A(2,3)
you would have reserved yourself a block of memory in two
dimensions like this:
2 %
and if you’d said
10 DIM A(2,3,4)

you would have made yourself a three-dimensional array:

3

It would be possible to have a four-dimensional array (though I
would not be able to draw you one!) or even a ten-dimensional
one if you liked, but let’s confine ourselves to the two-
dimensional variety,

If a vector is a list of numbers, then a matrix is a bunch of
vectors such that you could have, a thrée-by-three matrix, A:

4 5 1
A={ 2 0 9
8 4 3

Vectors 227

And the way to get that inside your computer is like this:
Program 82 THE MATRIX

S5 REM PROGRAM B2
18 DIM A(3,3)
20 FOR r=1 TO 3
30 FOR c=1 TO 3
4@ READ A(r,c)
5@ PRINT AT r#4,c*4;A(r,c)
60 NEXT c
7@ NEXT r
80 DATA 4,5,1,2,0,9,8,4,3

The program prints you out a copy of your chosen matrix just
s0 you can see it has done it properly. You might have already
guessed that I have used r to represent row and ¢ to represent
column and that, because we’re dealing with a two-dimensional
array, we have to nest two FOR ... NEXT loops to fill it up.
And when it is up on the screen, convince yourself that it can be
pictured as three column vectors:

4 5 1
2 1] 9
8 4 3
or as three row vectors:
4,5,1 2,0,9 8,4,3

or as nine independent elements.

If we wanted to add two three-by-three matrices (that’s the
plural of matrix), we would just add corresponding elements, so
that,

251 4 0 8 6 59
1 6 8}4( 5 5 1}=|6 11 9
93 5 @ 4 6 9 3 5

and subtraction is the same—you just subtract corresponding
elements.
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To achieve a scalar multiplication you would multiply each
element of the matrix by a number, so that

4 5 1 12 15 3
3*2 0 9)={ 6 0 27
8 4 3 24 12 9

which is not hard either. So we could write a small routine to
stick on the end of Program 82 that would allow us to multiply
our chosen matrix by any scalar:

% REM PROGRAM 82a
SCALAR MULTIPLIER

1@ DIM A(3,3)

20 FOR r=1 TO 3

30 FOR c=1 TO 3

4@ READ A(r,c)

S@ PRINT AT r*4,c*43A(r,c)

&0 NEXT ¢

78 NEXT r

88 DATA 4,5,1,2,0,9,8,4,3

9@ STOF

18@ INPUT "Scalar Multiplier? "
1 X

118 FOR r=1 TD 3: FOR c=1 TOD 3:
LET Alr,c)=A(r,c)*X: PRINT AT r
*4,c#4;A(r,c) s NEXT c: NEXT r

Just run the whole program, and when it stops you enter
CONTINUE and it will methodically go through the matrix and
multiply each element out for you faultlessly by whatever scalar
you like.

It shouldn’t be too difficult for you to take these ideas and
adapt Program 82 to allow you to handle matrices bigger than 3
by 3. If you don’t insist on displaying the matrix you can handle
very big arrays on the Spectrum. You would have to get it to
print out the elements in sequence rather than all at once,
though. i

How about multiplying a couple of matrices together? It can be
done. Bur it’s a bit involved. Firstly we have to make sure that
our two matrices are conformable. This just means that if you
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want to multiply matrix A by matrix B you must make sure that
A has the same number of columns as B has rows. If that’s not
the case, then you can’t multiply them!

Then you take the first row and multiply each elements of it by
each element of the first column of the other. (I told you it was
involved!) Then you take the next row of the first matrix and
multiply each element by each element of the next column of the
other. You add these multiplications up to get the elements of the
product. And you keep it up until you’ve got to the end.

It’s a damnable rigmarole and just the sort of thing
mathematicians congratulate themselves on being able to do.
Let me give you an example:

abc\fad (a*a+b*b+c*c) (a*d+b*e+c*f)
d e f/lb e |=\(d*ate*b+f*c) (d*d+e*e+f*f)
e f

Let me give you a numerical example:

12 3\/1 4 (1X1+2%2+43%3) (1*4+2%5 + 3%6)
4 5 612 5)=\(4*1+5%2+6*3) (4%4+5%5+6%6)
36

=f{( 1+ 4+ 9)( 4+ 10+ 18)
( 4+ 10+ 18) ( 16+ 25+ 36)

={14 32
32 77

The result is a 2x2 matrix.
Note that the product element formed by the first row and first
column goes in the position 1,1 of the final matrix, and so on.
This is just the sort of gobbledegook that computers glory in,
so here goes for a program that multiplies two 2x 3 matrices like
those above:

Program 83 PRODUCT OF 2x3 MATRICES

S REM FROGRAM 83

PRODUCT OF 2X3I MATRIX
1@ DIM A(Z,3): FOR r=1 TO 2: F
OR €=1 TO 3: INPUT "?";A(r,c):
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PRINT AT r#*4,c#43A(r,c): NEXT c:
NEXT rs:

20 INK 2: DIM B(Z,2): FOR r=1
TO 3: FOR c=1 TO 2Z: INPUT uensB(
ryc): PRINT AT r*4,1é6+c*4;B(r,c)
: NEXT c: NEXT r:

3@ LET Cl=(A(1,1) =Bl 1) )+(AL]
s2)%B(2,1))+(A(1,3)*B(3,1))

40 LET C2=(A(1,1}*B(1,2))+(A(1
2)%B(2,2))+(A1,3)%B(3,2))

S@ LET C3=(A{(2,1)%B(1,1))+(A(2
y2)¥B(2, 1))+ (A(2,3)%B(3,1))

&0 LET CaA=(A(2,1)*B(1,2)3+(A(2
1 2)%¥B(2,2))+(A(2,3)*B(3,2))

7@ PRINT AT 15,2;Cil;AT 15,7;C2

8@ PRINT AT 17,2;C3;AT 17,7:C4

0 INK @

It stands to reason that if you have two square matrices, then
they are conformable, and you can therefore multiply them
together. The result is a matrix of the same order. By this I mean
that if you multiply two 3 X 3 matrices you get a 3x 3 matrix as
the result.

Does there exist 2 matrix that you can multiply another matrix
by so that you get a result identical with the one you started
with?

Let me put it another way. If you consider ordinary numbers,
any number multiplied by 1 is itself. Is there a matrix version of
1 such that any matrix multiplied by it is itself?

In fact there is. It’s known as the identity matrix and, for a
33 matrix, looks like this:

1 0 @
010
001

Notice how the elements are all zero exceépt the ones located on
the top-left-to-bottom-right diagonal which are all 1%,

For any nXn matrix, there exists an identity matrix such thar
AI=TA=A, where A is an nxn matrix and I is the identity
matrix.
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Whilst we're at it, we might as well look at inverse matrices.
With ordinary numbers you know that

a'*a=1
So with matrices:
AT*A=]

Which is all very well, but how do we find it?

You think you’ve seen some complicated stuff? Well, let me
tell you, the process of finding an inverse of a matrix is
mind-blowingly confusing.

This is the point where a textbook would say, ‘Considerations
of this nature are beyond the scope of the present work.” So let’s
move on to the final section of this chapter.

3 Determinants

First we have to refresh ourselves concerning simultaneous
cquations. These are equations that you solve not one at a time
but several at a time (hence the term simultaneous). You use
simultancous equations only when you can’t avoid it. If you’ve
an equation in a variable x, let’s say, for example:

3x-9=0
we can solve it quite simply (the solution is x=3),
But if you have an equation in two unknowns, say x and y,

then you can’t solve it unless you have two equations:
Suppose we have,

3x-5y=6
and
4x+3y=37

The first thing to do is try to eliminate the y term from the pair,
and we do this by making the coefficients of y the same. This can
be achieved in this particular case by multiplying the top
equation by 3 on both sides and the bottom equation by 5 on
both sides, giving:

9x—15y=18
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and
20x+15y=185

If we then add the two equations together, we have got rid of the
y terms, and our result reduces to an equation in x alone (which
we know we can solve):

29x=203

therefore
x=203/29=7

Armed with this snippet of information we can go back to one of
our original equations (choose the simplest one unless you enjoy
hard sums) and substitute the value of x we have just found:

3*7-5y=6
therefore
5y=21-6=15
s0
y=3

So using two equations in two unknowns and a bit of natty
technique, we've achieved a solution. You can check that it
figures out OK by substituting y=3 and x=7 back into the two
equations we started with.

Just beware that the two equations are independent. That
means that they are distinct equations, and that you haven’t
made one out of the other by some method. To show you exactly
what I mean, consider this:

4x+6y+2=0
2x+3y+1=0

These two equations are not independent, because the bottom
one has been concocted by just halving all the coefficients. (Or
maybe it was the top one that was ‘made by doubling the
coefficients of the bottom equation!) Whatever it was, they’re not
independent and so are no use to us.

In general, we can solve n independent simultaneous equations
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in o unknowns, so that if we had equations in %, y and z we'd
need three independent equations, and so on.

We can do two at a time by computer without much sweat at
all:

Program 84 SIMULTANEOUS EQUATIONS

5 REM PROGRAM 84
SIMULTANEOUS EQUATIONS
1@ PRINT "SBolving Bimultaneous
Equations”
20 PRINT INK 23 "FIRST EQUATIO
NII

30 PRINT INK 2;" y = ax + b

"
4@ INFUT "ENTER a"s a
5@ INPUT "ENTER b"; b
60 PRINT INK 43AT 1,03 "SECOND
EQUAT LON"
70 FRINT INK 43" Yy = cx + d
80 INPUT "ENTER c"; c
20 INFUT "ENTER d"; d
100 LET x=(d-b)/ (a~c)
11@ LEY y=(a*{d-b)/{(a~c)i+hb
120 PRINT AT 15,10;"x = "3x
130 PRINT AT 17,1@;"y = "3y

It only requires you to get the equations into the correct form
to enter the coefficients into Program 84. So the example above
becomes

3x-5y=6 therefore y= LSX_ __g_
and
4x+ 3y =37 therefore y= _%75_,_‘3?7

you would consequently enter the following:
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when asked for coefficient a, enter 3/5

when asked for coefficient b, enter —6/5

when asked for coefficient c, enter —4/3
and when asked for coefficient d, enter 37/3

You can enter these fractions, and the computer will work out
the answers for you. For example, in the above case, you don’t
have to convert coefficient a into 0.6 before entering it. Also, it
doesn’t matter which equation you choose to be first or second:
the program handles either equation first or second.

Of course, it would, as I have said, be possible to extend this to
as many equations as you want, but it would also be incredibly
tedious to work through say five or six simultaneous equations.

Mathematicians are known for being lazy, and it wasn’t long
before they figured out a way to automate the process. It involves
what is known as a determinant. It looks like a matrix but is
much better fun. Whereas a matrix is usually written enclosed in
ordinary curved brackets, you find determinants enclosed in
straight lines, like this:

3 5
4 2

But for the moment, it has been troubling me that Program 84
. requires so much algebra before you can use it. Can’t we design a
version that will deal with the coefficient as they are presented
without the need to convert them?
Let’s see: the usual form of simultaneous equations is:
ax+by+d, =0
a,x+b,y+d,=0
So
x_bldz_bzd:
ab,—a;b,
and
_ _ady,—a,d,
a,b;—a,b,
Notice that the denominator in these two equations is now the
same, being a/b,—a,b,, and so long as this does not equal zero
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we're in business. Look out for our ‘warhead’ in equation form
in lines 130 and 140, and see how line 120 intercepts a zero
denominator.

Program 85 SIMULTANEQUS EQUATIONS AGAIN

S REM PROBRAM 835
SIMULTANEQUS EQUATIONS AGAIN
18 PRINT "Solving Simultaneous
Equations”
20 PRINT INK 23 "FIRST EQUATIO
Nlt
3@ PRINT INK 23" aix + bl
y + di1 = @
4@ INPUT "ENTER al "3 ail
5@ INFUT "ENTER bl "3 b1
6@ INPUT "ENTER di "; di
7@ PRINT INK 43AT 1,@; "SECOND
EQUATION"
8@ PRINT INK 43" az2x  + b2
y + d2 = @*
20 INPUT "ENTER a2 "j; a2
19@ INPUT "ELTER b2 "; b2
11@ INPUT "ENTER d2 "; d2
128 LET D=(ai#b2-a2#bil): IF D=0@
THEN PRINT INK 2; FLASH 1i;AT
15,8; "DENOMINATOR ZERO": STOP
138 LET x=(bl#d2-b2#d1)/D
140 LET y=—(al#d2-a2#d1)/D
158 PRINT AT 15,10;"x = ";x
160 PRINT AT 17,18;"y = "jvy

Try it with our original pair of equations, so that,

al= 3 and a2= 4
bl=-5 b2= 3
dl=-6 d2=-37

Now that you’re familiar with the form of the expressions we
have to deal with in this subject, I’ll tell you how we deﬁn? a
determinant. As you can see, we have had to deal with
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‘something times something minus something times something’,
and a simple determinant is shorthand for it. So

a b
c d

is equivalent to writing,
a*d~c*b

_So it’s possible to give the solution to our simultaneous equations
in determinant form like this:

bl di
_ b2 d2
‘ al bl
a2 b2
and
| al dl
_la2 d2
’ al bl
a2 b2

And because the word determinant begins with the letter D,
and the Greek letter D is delta, and we use it to show a
determinant, it looks like this:

A
You will find details of how to get it into your Spectrum user-

defined graphics in Appendix I (page 287).
So we can write

bl dl
Al =

b where Al b2 d2

A= 'al d1l

a2 d2

y:Q al bl

A0 AQ= |a2 b2

So to solve this: ¢
6x+3y-33=0 al=6 bl= 3 dl=-33
13x—4y—19=0 a2=13 b2=-4 d2=-19

we can use determinants. Program 85 or even regular school
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methods will show that x=3 and y=5, and using determinants
we can show the same thing:

Al A2 AO
and since

[k

al dl| |6 =33
ﬁ21'32 d2|_ 113 35

~19[
lal bl |6 3|_ _
40,2 szla =g "8
therefore
189 315
;2 %3 and vy 63

which, if you care to check them, is dead right.

But isn’t this using a sledgchammer to crack a nut? Isn't it
making more work for ourselves instead of less? The answer
must be Yes, when we consider only two simultaneous
equations. But what if we want to deal with large numbers of
equations at once? Then determinants come into their own.
They’re important items in maths, and you ought to be aware of
them. Apart from being a powerful tool in the solution of linear
equations, you can employ determinants in the manipulation of
matrices, and take the determinant of any square matrix. It has
the same elements and is the same size, and the value of it tells us
things about the matrix. For example, if the determinant of a
matrix turns out to be zero, then we say that the matrix is
singular.

Anyhow, what about a program that evaluates determinants of
order 2?

Program 86 DETERMINANT EVALUATION
5 REM PROGRAM 8é

DETERMINATION EVALUATION
18 DIM A(2,2)
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28 FOR r=1 TO 2

30 FOR c=1 TO 2

4@ INFUT "ENTER next element "
sA(r,c)

S8 PRINT AT r#*3,11+c#3;A(r,c)

&@ NEXT ¢

7@ NEXT r

8@ LET D=(A(1,1)*A(2,2))-(A(2,
1)#A(1,2))

98 PRINT AT 15,43 "VALUE OF DET
ERMINANT IS" '

100 PRINT AT 17,14;D

You just plug in your values row by row, element by element,
and it gives you back the numerical equivalent.

Of course, if we are dealing with three simultaneous equations,
like these:

ax+byt+cz+d =0
ax+thy+cz+d,=0
ax+by+cz+d,=0

we have to use determinants of order three. And, just as before,
our solution boils down to this:

b W Y |
AI AI A! "0
where,
b, ¢ d, a ¢ d, a b, d, a, b, ¢
A=1|b, ¢, dy|A,={a, ¢, dy| Ay=|a, b, dyj A= |a, b, ¢,
b, ¢ d, a; ¢, dy a, b, d; a; b; ¢,

It’s easier to remember how to arrive at these results than it
seems, because for example A,, which is associated with the
variable x, has elements of all the coefficients except those of the
X terms in our original equations. In other words, A, consists of
b’s ¢’s and d’s, but not a’s. {

To solve a 3x 3 matrix you have to use a special method which
goes like this:
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If our determinant is

A B C
D EF
G HI

then the value of it is:

A times the dererminant left after removing the terms in the row
and column occupied by A

minus

B times the determinant left after removing the terms in the row
and column occupied by B

plus

C times the determinant left after removing the terms in the row
and column occupied by C

which is:
E F D F D E
A 1|7 Be Il+C*G H

This is solvable since we can evaluate these order two type
determinants.

Now have a go at Program 87 which does it all for you. Notice
that it incorporates a subroutine that does the work of Program
86.

Program 87 ORDER 3 DETERMINANT

5 REM PROGRAM 67
ORDER 3 DETERMINANT

12 DIM A(3,3): FOR r=1 TD 3: F
OR £=1 TO 3: INPUT "ENTER next e
lement "jA(r,c): PRINT AT r«3,10
+c*33A(r,c): NEXT c: NEXT r

20 LET D1=(A(2,2)%A(I,3))~(A(3
y2)%A(2,3))

I8 LET D2=(A(2,1)#A(3,3))—-(A(3
1) HA(2,3))

48 LET D3={(A(2,1)*A(3,2})-(A(3
y 1) %A(2,2))
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5@ LET D=(A(1,1)*D1)-(A(1,2)*D
2)+(A11,3)%D3)

&8 PRINT AT 15,43 "VALUE OF DET
ERMINANT IS™"

7@ PRINT AT 17,14:D

If you want to test it out on some real order three determinants to
test that your program works, try these:

22 2 4[1 5 4 35
31 I=4; (8 2 6=0; {1 6 1}=-23
4 2 1 12 3 7 7 -2 8

And if you're really adventurous, you might like to devise a
program that evaluates a determinant of order four! (You just
have to extend with rigid logic the ideas we have already
discussed.)

If not, don’t worry about it. We’re already way beyond most
Advanced Level syllabuses and into the sort of things a person
reading sciences or engineering at university mighrt encounter in
the maths lectures (and exams!).

12

RATES OF CHANGE

1 Rates of change

Calculus is a major branch of mathematics, and I believe the
name derives from the fact that before calculators were invented
people did their sums by counting out small stones (‘calculus’
means pebble in Latin), a bit like the abacus, but no frame, I
guess. It was invented by the inevitable Sir Isaac Newton, and
though the Germans reckon their man, G. W. Leibnitz
(1646-1716), invented it in 1673, it was in fact Newton who got
there first. Not that it matters much. )

Calculus is generally regarded as being of two kinds: integral
calculus (which deals with a process called integration) and
differential calculus (which deals with the process known as
differentiation).

In this chapter we’ll have a look at what differentiation is all
about, and in the next chapter we’ll investigate integration.

This section is entitled ‘Rates of Change’, and that’s really
what differentiation is about. And there’s no better way of
looking at it than by considering the familiar ideas of distance,
velocity and acceleration.

For the moment I would ask you to consider most carefully
this notion which is at the very root of calculus. Do you
remember when we were dealing with series we used the idea of
quantities that got smaller and smaller, tending to zero, so that
some function of that quantity tended to a given value?

The idea is called finding the limit.

Now suppose that we have one of our simplest functions, with
its attendant graph, y=x’
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1 n/

I want you to think of two points on the curve, P and Q, and
connect them together by a line. Suppose that the horizontal
separation of P and Q is called dx (read as ‘delta x’; we use delta
in mathematics to mean a little bit, so delta x means a little bit of
%, though mathematicians will call it a small increment in x.

Suppose also that the vertical separation is called dy. Then it
follows that the slope of the line from P to Q is dy/dx. If we want
to find the slope of the curve at any one point (which is the same
as the slope of the tangent to the curve at that point), we can
consider P and Q sliding along the curve until they ger so close
together that they merge. Then the slope of the curve at the
point occupied by both P and Q will be what we’re after.

We can do this mathematically by sliding Q towards P so that
dy and dx both get smaller, until in the limit P and Q coincide.
Instead of dy/dx, we write this limiting slope as dy/dx (with
English instead of Greek letters). So the slope at the point P is
called dy/dx and we say this ‘dee-why-by-dee-eks’ as though it
was one word. In fact, if you think about it, it is no longer a ratio
like dy/dx, but the limit of a ratio, which is a single thing with the
meaning of ‘the slope of the curve at that point’.

In our particular example we can work out what that slope is.
It stands to reason that if y is a finction of x, then dy/dx will be a
function of x too: R

At D, y=x’
At Q, y+dy=(x+dx) =x"+2xdx +(dx)’

D
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If we take y off the LHS and y off the RHS (remembering that
y=x°), then we get

dy=2xdx +(dx)’
and to get our slope ratio, we divide both sides by dx:
dy/dx=2x+dx

Now, if we start sliding P and Q so that they coincide, we have
to take the limit as dx tends to zero, and as dx tends to zero,
2x+dx tends to 2x, we can therefore write:

dy/dx=2x

And there we have it, and of huge importance it is too. We can
find the slope of y=x at any point by just substituting into the
equation

slope=dy/dy=2x

There is a way of extending this to other functions too. For
example, if we have any polynomial in x, or any power of x, we
can get the slope, dy/dx, by the following process.

Take each term of the polynomial separately. Multiply the
term by the power of %, and reduce the power by one. You can
see y =x’ obeys this.

We call dy/dx the differential or the derivative of y, and we call
the process of finding the derivative differentiation. The branch
of maths dealing with differentials is called differential calculus,
and equations containing terms that are derivatives are called
differential equations.

Let’s look at that formula for finding the differential of any
function:

If

y=a*x"

then
dy/dx=n*a*x®""

If we try it with y=x% n=2 and a=1. Therefore
dy/dx=2%x'=2x
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And if we try it with y=5x’, n=3 and a=5. Therefore
dy/dx =3*5*xC"=]5x2

Let’s have a program that does it for you:

Program 88 DIFFERENTIATION OF
POLYNOMIAL TERMS

5. REM PROGRAM 88
POLYNOMIAL DIFFERENTITATION
1@ BORDER &: PRINT " DIFFERENT
IATION OF POLYNOMIALS"
28 PRINT : PRINT * n
n-1"
3@ PRINT "1f Y= a*x then dy/d
X = n*aky "
4@ PRINT AT 7,3;"For Example:"
30 PRINT : PRINT ¢ Y
6@ INFUT "Choose constant a:z "
Sl
7@ PRINT AT 9,143a;3;" x"
8@ INFUT "Choose power n: "3in
0 IF n<>1 THEN FRINT AT 8,17
H!
188 PRINT : FRINT " So,"
11@ IF n<>2 THEN PRINT AT 13,2
23n-1
128 PRINT AT 14,10;"dy/dx = ";
n*a_:“ w"
138 IF n=1 THEN FRINT AT 14,16
"= ";n*a
148 1IF n<@ THEN PRINT AT 17,03
. Or, dy/dx = ";a%n3" / x":
PRINT AT 16,25;A4BS (n-1)
158 PRINT AT 20,@;" (dy/dx show
% slope of curve.)""

You've got to get the right number of spaces in the PRINT
statements so that it reads well on the screen. But once you’ve
got that sorted out it'll do your polynomial terms for you.

D
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Suppose you have
y=3+8x"+4x+3

Just take each term separately, do Program 88 on it and you get
dy/dx=9x*+ 16x+4+0

Remember that x' is x, x° is 1 and zero times anything is zero,
which is why the final term, + 3, when multiplied by @, its power
of x, is itself 0.

When it comes down to physical meaning, remember that
dy/dx is the slope, but it is also the rate of change of y with respect
o X,

This is important when we consider sports cars and motor
bikes, because the rate of change of distance is velocity, and the
rate of change of velocity is acceleration. So if the letter s
represents distance, then ds/dt represents velocity, which we can
call v. And it follows that the differential of v is acceleration, so
that a=dv/dt:

v=ds/dt
a=dv/dt

Note that we have equations of s in terms of t, and that we are
differentiating with respect to time t. Note also that what we
have achieved is to get acceleration from distance by
differentiating twice. It follows that,

= =d _d’s

a=dv/dt a(ds!dt) e
This symbol is read ‘dee-toc-ess-by-dee-tee-squared’ and, like
dy/dx or ds/dt, is usually regarded as a single symbol
representing the second differential of a quantity. If you
differentiate it again, you would get the rate of change of
acceleration (which doesn’t seem to have a name in our
language), and we would write it:

d’s/de’

That would be the third differential.
Similarly, looking at our original example,

y=3x"+8x"+4x+3
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and
dy/dx=9x*+ 16x+4

and

Y18y +
o 8x+16
. '_Terriﬁc, so long as our function is a polynomial in x. But what
if it has other functions in it like Sin x, or &* or log.x?

Just as we “‘rori_(ed out the y=x* case, it is possible to calculate
from first principles the differentials of y=Sin x, y=e*, or
v =log.x.

If you’}-e inquisitive and intelligent, you might like to look
these up in a textbook, just to satisfy yourself that it can be donc.
But as usuaif I’l‘l save myself for the results, and if you run
Program 89, it will give you a page full of derivatives:

Program 89 STANDARD DERIVATIVES

9 REM FROGRAM 89
STANDARD DERIVATIVES

12 BORDER é&: GO SUB 1000: PRIN
T " SOME STANDARD DIFFERENTIALS"

28 FRINT : PRINT "y","dy/dx®"

3@ PRINT : PRINT “"Sin ®","Cos
¥","Cos x","~8in x","Tan ®","Sec

X"y"Cot x","-Cosec x","Sec x"
+"8in x/Cos x","Cosec ®","~Cos
®/8in  x"

40 PRINT : PRINT Ry W WA
erakx", "aketaRx" , "a™x ", " (a~x ) *LN
all‘"LN K",ll’./x"

5@ PRINT : PRINT "Arecsin S |
/ S@R(1-x )","Arccos x","-1/ §
GR{I-x }","Arctan EEARS DA S EXVER R
999 STOP '
1000 FOR n=@ TO 7: READ r: POKE
USR "a'"+n,r: NEXT n: DATA 112,16
y112,64,112.0,0,0
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121@ FOR n=@ TO 7: READ r: POKE
USR "b"+n,r: NEXT n: DATA 0,16,1
6,124,16,16,124,0: RETURN

Lines 1000 and 1010 define a little ‘2’ for showing ‘squared’
and ‘+’ respectively, so that key a in graphics mode gives the ‘2’
index and key b in graphics mode gives ‘+’. When typing in the
program, before you run it for the first time, you will find that
when you want to put in the little 2, you should obtain graphics
mode (G cursor) by pressing the CAPS SHIFT and ‘9 keys
together, then put an a where you want the ‘2°, or a b if you want
a ‘+’ sign.

After running it once, the Spectrum remembers the symbols
and will list your program correctly.

You can now look up that if

y: e?x
then
dy/dx=2e*

ete.
The next area of differentiation to conquer is differentiating a
product. So if you have

y=x*Sin x

you can find dy/dx. There is a rule, called the product rule,
which says that if,

y=u*vy
and you have a product of two functions of x multiplied together,
then
dv du
=Y 4 g du
dy/dx=u il g

In words, the derivative of a product is equal to the first function
times the differential of the second function plus the second
function times the differential of the first function.

So in our example, if we let u=x” and v=_8in x,

dy/dx=x"*Cos x+2x*Sin x
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Obviously, it doesn’t matter which function you choose to be
the u and which you choose to be the v. Using Programs 88 and
89 you can find the elements you want and just plug them into
the product rule. Simple.

Also, you can do the same with quotients (by that I mean a
couple of functions where one is divided by the other), using the
quotient rule:

If
y=ulv
then
du__ dv
dy/dx= Vdx  “dx
V2

Look at it carefully, and see that this time the expression for the
derivative is no longer symmetrical, so it does matter which
function you choose for u and which for v in practice. This is
true because if you choose the right way it makes simplifying the
function much simpler, whereas choosing the wrong way can
make the answer hard to simplify.

As an example of this in operation, consider how we get the
derivative of y=Tan x.

We know that

N _Sinx

=R Cos x
Let u=Sin x and v=Cos x, so that by using the quotient rule we
can get

Cos X"_t:l(Sin x)—Sin x__ri(Cus X)
= dx dx
Cos’x

— Cos x(Cos x)—Sin x(—Sin x)
Cos’x

dy/dx

_Cos’x - Sin’x
Cos’x

i
]
3
\,
\,

We know from our trig identities that Cos’ - Sin’x equals 1, so
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dy/dx =1/Cos’x =Sec’x

which we know is right.

Of course, we had to know the derivatives of Sin x and Cos x to
work it through, so where do we find these from first principles?
T’ll give you a clue.

Remember this?

—g-X X X X
Sinx=x-Sr+sr ol
and this?
e o S o
Cosx=1 ET+Z!— et

You can take this to as many terms as you like and do a Program
88 on it, giving you a fairly clear indication of what’s going on.

2 Motion

I shouldn’t like you to get the idea that mathematics was found
under a rock one day by Sir Isaac Newton, but I have to admit
that much of it comes from his unique intellect, and one of his
great triumphs was the laws of motion.

Try this: Let s represent the distance travelled by a large rock
dropped over a vertical cliff. And let a be the acceleration due to
gravity. Then this equation relates the variables to time elapsed,
1

s=urt+ Yara*t?

Here, u (which represents the initial speed of the rock) is zero.
We can use this equation in a varicty of different ways: for

example, we can plug in our value for the acceleration due to

gravity on the Earth, choose a number of seconds after dropping

the rock, and it will give us the distance the rock has fallen.
We’ll use a=10 m/s%, choose 10 seconds, and then do

PRINT 0*10+ 10*10t2/2

The answer that comes back is 5@¢ which is in metres since we
specified the acceleration due to gravity in metres/second’. If you
want it in feet, you have to use the value for a of]




250 Maths Tuior for the Spectrum
a=32 fi/s?
By differentiating the original equation we get

at’
s=ut+=—
2

becoming

ds

—=y=u+

dt a
so that aftcr 10 seconds, not only has our rock fallen 500 metres,
but also its velocity has increased to:

PRINT @+10*10

which is 100 metres/second.
If we differentiate again,

d’s_dv_

ae & "0

wh}ch just lets us know that the acceleration is the acceleration,
which is known in the trade as an identity (or truism) and, if
nothing else, encourages us that we’re doing it right!

This a}l holds true under any conditions so long as a constant
acceleration is applied to the object, which is reasonably true of a
rock dropped over a cliff. It’s also true of the projectiles we
talked about earlier.

We can make a small program to use this result:

Program 99 FALLING OBJECTS

9 REM FRUGRAM 90
FALLING OBJECTS
1@ PRINT "Falling Dbjects”
20 INFUT "ENTER Initial fallin
9 velocity"j;u
3@ INPUT “ENTER Time elapsed";

48 LET s=ust+9.81xt#t/2

S@ PRINT AT B,0;"Distance fall
en is ";s31" metres"

60 LET v=u+9.81%t
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70 PRINT AT 12,0;"Velocity aft
ar ":t," seconds is "3js;" m/s"

And it’s probably not beyond you to construct a program that
can be used in other situations where the acceleration is constant,
but not necessarily the acceleration due to gravity (like with a
drag-racer, for example, or a rocketship).

With falling objects, this equation is strictly true for all
velocities not close to the speed of light, if the body is falling in a
vacuum. If it is not falling in a vacuum, but through air, then
obviously there comes a point where the air-brake counteracts
the pull of gravity, and you reach a ‘terminal velocity’. This is
true if you leap our of a plane. Before you open your parachute,
vou will accelerate until the rush of air against your body takes
effect, and your terminal velocity will be about 120 miles per
hour. The big surface area of your parachute brings down your
terminal velocity to a reasonable figure, unless, of course, you go
parachuting on the moon, which has no air. Although the
acceleration due to gravity is only 1/6 that of the Earth, you
would quickly reach a velocity that would mash you on impact.

Alter Program 9@ for lunar conditions, by changing 9.81 to 1.6
and run it. You will see that after only 10 seconds you are
travelling at 80 m/s which is about 180 miles per hour—and on
the moon your parachute doesn’t work!

3 Taylor’s & Maclaurin’s theorems

Now that we’ve got to grips with the idea of differentiating, it’s
possible to go back to series and see the basis for them.
Maclaurin’s theorem is a particular case of Taylor’s theorem,
so it might be best to start by looking at that. But first I'll just
mention the alternative notation which you will find used for
derivatives, and which is very useful in our particular

application.
If
y=f{x) (read ‘eff of eks’)
then
%-mg (read ‘efF dash of eks’)
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and

—I ={"(x) (read ‘eff double dash of eks’)

and so on.
Maclaurin says that if we assume we can represent the function
by a series of powers of f, so that

fx)=A+Ax+AX +AX+Ax + .,

then we can find the values of the A coefficients by successive
differentiations of the polynomial:

f(x)=A,+20,x+3A,x* +4A X+ 5Ax'+ . ..

and
f"(x)=24A,+2*3A,x +3*4A x*+ . ..

and |
fr(x)=2*3A,+2*3*4A x+ . ..

etc.
which must all hold true when x=0. So when we substitute x=0
into the successive derivatives, we get

Au = f(O)
(0)
—“P'(O)
A,=%i’“ ©
etc.

And then we just substitute the A coefficients back into the
expansion we assumed, to get

)= 0) +xP(0)+ 3:(0)+ 2-£7(0)+ .

This is known as Maclaurin’s theorem, and we can use it to get
any of the jolly good expansions we quoted in the chapter on
series. {

Let’s have a go with ¢* i

Assume that e*=A + A x+Ax*+A >+ . ..

S
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Happily for us if you differentiate ¢* with respect to x, then you
get e, so that f{x)=f(x)=1"(x)=etc. for this happy case, and we
have
=A+2Ax+3A X +4ACH+ L.

and

e'=2A,+2%3Ax +3%4A X+ . ..
and

e =2%3A,+s*3*4Ax+ . ..
etc.
Putting x=0 in each of the above expansions, we get

A,=1, A=1, A=1/2), A,=1/3!etc.
so that

e =1+x+x21+x' 31+ . ..

And there we are!

Taylor’s theorem is concerned with the identical process
except that it starts with fla+x) instead of f{x), so you can see that
Maclaurin’s theorem is a particular case of Taylor’s theorem
where a=0.

The result for Taylor’s theorem is:

flat+x)= ﬁa)+xf’(a)+ P’(a)+ :f’“(a)+

One application which might already have struck you is that
expanding (a+x)" results in the binomial theorem.

4 Differentials and differential equations

Remember that the symbol dy/dx has a meaning (the limit of
dy/dx as dx tends to zero) as a whole, but that does not imply that
you can split it in two and have a meaning for dy and dx
separately any more than you can cut a number 8 in half and
have a meaning for the two separate hoops!

However, you will often find what amounts to %2= 2x, written
X

as




254 Maths Tutor for the Spectrum
dy=2x.dx

How can this be? Well, just that we define things called
differentials so that the ratio of them equals dy/dx. And we write
them dy and dx, making sure that we have

¥ dy/dx

I Gﬁly mention this because you’ll come across it in the next
chapter which concerns integration, and it might be of some use
to you on that score. And whilst we’re discussing notation, you
might get occasion to open a maths book some time in the future
and run across a funny-looking dy/dx symbol in which the d’s are
not quite d’s and neither are they Greek deltas, but something
peculiar and halfway between.

This is called a partial derivative, and looks like this:

%E (read as ‘partial-dee-why-by-dee eks’)

It turns up when you have a quantity that varies with two
quantities. For example, if you have a surface defined in a three-
dimensional coordinate system, like this:

Z4a

L35

then you can see that z is a function of both x and y, because as
any point P roams about on the surface, z takes on a variety of
different values as x and y change. The two lines drawn on the
surface are parallel to the x and y axes, though. If the point
moves along one of them x will change, but y will remain
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constant. But if the point moves along the other line, then y
changes as x remains constant. So we can consider the partial
differential with respect to x and the partial differential with
respect to y.

In practice, suppose we have a surface with an equation

z=3x*+4y’

then to find 3z/3x we differentiate with respecr to x, treating y
as a constant:

ﬂﬁﬁx

and to find 3z/3y we differentiate with respect to y, treating x as
a constant:

It’s as simple as that.

Finally, a word concerning differential equations is in order. In
the Horizons starter software pack that comes free with the
Spectrum is a nice example of the use of differential equations.
After building it up on the cover of the cassette as ‘complex’, the
program shows a population model concerning foxes and rabbits,
and it’s good fun (and instructive) to watch. It revolves around
the classic example always used to illustrate how differential
cquations can be applied, and at its heart are two differential
cquations.

But what are differential equations? Nothing too complicated
in fact, just an ordinary equation with ordinary terms except thar
one of the terms (at least) is a derivative of some kind. As with
determinants, you can say a differential equation has an order, so
that if its highest derivative is a first derivative it will be of order
one, if there’s a second derivative, but none higher, it will be of
order two, and so on.

An example of a differential equation of the second order is:

dy_ady, 5o
dx? de Sy=3

In general, you can’t solve a differential equation without
using integration, which we haven’t yet looked at. So we can’t
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lﬁ?k at that, but we can have a little look at the rabbits and foxes
thing.

The idea is that you have an island, and to keep it simple it’s
inbabited only by rabbits and foxes. The foxes eat the rabbits,
and the rabbits eat grass. But since it’s a limited island, if you
suppose there’s plenty of rabbits around, then the number of
foxes will increase (because of plentiful food supply). Soon there
will be so many foxes that the rabbits begin to have a rough time
of it, and their numbers begin to decrease. Soon, the rabbits
decline so much that they are difficult to find, and scarce rabbit
means hungry fox, so the island can’t support so many foxes and
they decline too. Pretty soon, the fox population is so low that
hardly any rabbit eating is being done, so the rabbit population
beg.ins to pick up again, and so we are back to the beginning
again.

It’s worth working through this because it really is a classic
example of a model being made of reality by a scientist (in this
case a very simple ecological model). In mathematical terms, you
have this:

Let the rabbit population be r. Let the fox population be f.
That means that the rate of change of the rabbit population is the
derivarive of r with respect to time, which we write as

dr
dt
And similarly the rate of change of the fox population is
df
de
Now for the clever bit. We suppose that the rate of change of
the rabbit population depends on two factors:

I The number of rabbits (since the more rabbits there are, the
more baby bunnies will be born!).
2 The number of rabbits times the number of foxes.

Also, we suppose the fox population depends upon two factors:

1 The number of foxes (making more baby foxes).
2 The number of foxes per rabbit, fr.

-~ Now if something is proportional to something else, then we
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can write that it equals a constant times that factor. So we can
write two differential equations, like this:

dr/dt=a*r—b*r*f
and
dffdt=c*f—g*fir

where the letters a, b, ¢ and g are constants. So if you look at the
situation after an increment of time (small period) called dt, the
rabbit population will be incremented by dr and the fox
population by df. And by using a FOR ... NEXT loop to
increment the time by a small amount and by resorting to a
number of different graphical display techniques, the whole
operation can be followed through.

Clearly, the solution of a pair of differential equations like this
depends on the initial conditions: in our case, on how many
rabbits and foxes you start with. Take a look at the program and
see what I mean.

As with ordinary equations, differential equations come in a
variety of different forms, and there are standard methods you
can use to solve them. But this really is getting into the realms of
higher maths, so we’ll have to leave it for another book.
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ANTI-DIFFERENTIATION

1 Anti-differentiation

You know that the raising of e to a power can be reversed by
taking logs (to base ). And you’ve just read about the process of
differentiation. So it’s no great leap into the unknown to start
considering the reverse process of differentiation.

It does exist. It is important in maths and is called integration.

The first thing to remember is that the notation is a little off-
putting: it looks difficult, and so many people assume it is. But in
reality it is only the reverse of differentiation, and that can’t be
too hard. )

If you have

y=x'
then
dy/dx=2x

So it seems reasonable to suppose that, if you have y=2x and
then integrate it, you will get something equal to x°. That
something is called the rnregral of v with respect to x, and we
represent the word integral with a long kind of drawn out letter §
that looks like this:

J

We represent the ‘with respect to x’ by the symbol:
dx

So that we write that if
y=2x

then-
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Jy dx=x’

Pretty straightforward, isn’t it. It looks like the issue of the
Chinese typewriter is raising its ugly head again, but we’ll get to
that in a moment. We’ve managed to overlook one small point: if
you differentiate a constant you get zero.

This means that, when you integrate, there is no way of
knowing what it was in the first place. For example, if

y=x’+C (where C is a constant)}
then
dy/dx=2x

So really, to take account of this, we should have added that
possible constant in when we integrated it back. It could be zero,
or any numerical value, and without further information we have
no way of telling, but we have to add it in like this: if

y=2x
then

Jy dx=x’+C

Of course, if you are supplied with more information, you can
find the value of C. So if, for example, we know that the LHS of
the equation is 10 when x is 3, then

10=3’+C
50
C=10-9=1

In the same way that there is a general method of going from y
to dy/dx, there is also a reverse method to go from dy/dx to y and
from y to [y dx. Compare the two methods:

y differentiation  dy/dx
xn — n*xn-l
dy/dx integration y
n —_— n+l
X X & C
n+l

Notice that to differentiate we multiplied by the index and
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then subtracted one from the index. Now when integrating we
add one to the index and divide by the new index. And we do not
forget to add in C (which is called the constant of integration).
Before looking at a program, I just want to discuss the meaning
of an integral. You remember that if y equals some function of x,

y=1x)
then you can draw a graph of it, and the derivative (differentiated
form), dy/dx, gives you the slope of the curve. By substituting in
a value of %, you can find the slope of the curve at any given
point.

Now, the integral, [y dx, also has a meaning, and it in fact
represents the area under the curve.

Y“

dy _

ax =slope at x=k

.
\ x
Sy dx= Area between curve and x-axis

If you know the world of calculus well, you’ll be aware that the
integration sign often gets written with a couple of small
numbers against it, one at the top and one at the bottom, like
this:

_r:y dx

They’re called limits and are values of x between which you are
considering the integral. Not all functions obligingly curve over
below the x axis again like in our diagram, so that the area under
the curve would be infinite. Take the x* function for example:
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-
-
-X

The shaded area is bounded by the curve, the x-axis and the
lines x=L and x="U. Here L is the lower limit and U the upper
limit, so that we could write it out as an equation:

Shaded Area= [y dx

-J e8],

If you like, you can regard these limits as meaning the area from
x=0 to U minus the area from x=0 to L. So if you substitute the
limit values into the equation you can subtract them to get a
value for the area. Suppose we'd said that U=5 and L.=3, then
we’d have

35
[£] =2 -2 oa1m-9=32%
34

This integrating between definite limits is called, not
unreasonably, definite integration. You will have noticed that the
constant of integration has not made its appearance here, and
that’s because the limits make up for it.

It’s an interesting business because it allows us to find areas of
quite sophisticated shapes, as we’ve already seen. The curve
y=x*is by no means a simple shape (it’s a parabola).

Now for some computing. First we need to define an
integration sign, and because we're keen to avoid the character
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spillingA out of one character square, we’ll take the liberty of
shortepmg it somewhat. 1 think you’ll agree that it’s just about
recognisable!

10 FOR r=0 TO 7: READ r: POKE USR “a” +n,r:
NEXT r: DATA 8,20,16,16,16,16,80,32

If you run that on its own it will set up the [ sign on the A key
(graphics mode), or you can tuck it into a program if you prefer.

This program sorts out your polynomials for you and is in
effect just the reverse of Program 88.

Program 91 POLYNOMIAL INTEGRATION

S REM FROGRAM 91
POLYNOMIAL INTEGRATION

12 BORDER &: PRINT " INTEGRATI
ON OF POLYNOMIALS"

2@ PRINT s PRINT " n

n+1l!

3@ PRINT “If y= a#x then Y
dx= a%x +C": PRINT OVER 1;AT 3
1243"____": PRINT AT 4,243 "n+1"

4@ PRINT AT 7,3;"For Example:"

5@ PRINT : PRINT ™ V%

6@ INPUT "Choose constant a:

7@ PRINT AT 9,14;5a;" x"
8@ INPUT “Choose power n: T
?@ PRINT AT 8,18;n

18@ PRINT : PRINT " So, "

11@ IF n=-1 THEN FPRINT AT 14,1
@;" ydx = a LN x"

120 IF n<>-1 THEN PRINT AT 14,
183" ydx = ";az" ®*"3AT 13,21;n+1
iAT 16,183n+1;AT 14,24;"+ C": PL
0T 136,52: DRAW 24,0

130 PRINT AT 20,0;" ¢ ydx shows

area under curve.)": STOP

L
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100@ FOR n=@ TO 7: READ r: POKE
USR "a"+n,r: NEXT n: DATA 8,20,1
6,16,16,146,80,32

Remember to do
RUN 1040

to get the UDG fixed up first, and where you see [ in the listing,
you must type ‘‘a” in Graphics mode.

For those of you who are keen to get on with more integration,
there are UDGs in the appendix that squeeze ‘dx’ into one
character space, and a rather more professional integration sign
that stretches from the character square above the line and into
the one below it.

But down to business: if you run Program 91, when a=1 and
n= -1, then you are integrating this:

v=1/x
and, although it’s hard to see why,, it’s true that
[ydx=logx+C

so line 110 is there to take care of it.

It is tempting to reproduce a version of Program 89 which
shows how you get standard derivatives of the common
functions, but this time showing standard integrals. In fact, it’s a
bit of a waste of time, because once you’ve got a list of derivative
conversions, you can easily see what ‘going in the other
direction’ will give you (always remembering the constant C, of
coursel).

Most maths texts have a list of standard integrals for lots of
different functions, and the more comprehensive the book the
longer the list. (I've included some later on, but not many.)
Definite integrals are something we can get at a bit easier on the
computer, because here we are dealing with numbers rather than
manipulation of formulas. The principles of this aspect of
integration need an explanatory word, so let’s take a look at
Simpson’s rule and the trapezoidal rule.

Taking the trapezoidal rule first, what we’re doing is just the
same as if you drew an irregular shape on some graph paper and
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trlicd to ﬁqd thi_area by counting up all the tiny squares. The
difference is that the trapezoidal rule uses strips.
A trapezium, incidentally, is a shape like this:

T b Trapezium
i l Area=1a(a+b)*h

——ph—

with one pair of opposite sides parallel. And if you take a
function and the area under it, you can make strips of the area, so
that each of the strips is a trapezium. (This, of course, means that
you’re considering the curve to be a series of straight lines, but
that unfortunately is where the approximation comes in.)

Clearly, if you make the strips exceedingly small and narrow,
you will get more accurate results, but the price you pay is
having to deal with more strips. Happily, we can take advantage
of the accuracy, and the computer will foot the bill!

Suppose we illustrate it with ten strips:

v 4 L —

H Heights of LHS of strips

Vil¥apyalvalysen 31'6.3’:; Yo ¥u - -5 ¥
Width of each strip is h

&

> X

0 Ahhhhhhhh
u

Then our area will be the sum of the trapeziums:

+ + +
Area=t1 Y2 Y21V Yietyu
= A h = h+ ... -!'———2 h

S0

+
AI’(E-':l—h(yl 2Y“+Y2+Y3+Y4+ s +Y1n)

which in words amounts to
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Area=width of strip*((first edge+last edge)/2+sum of others)

Program 92 TRAPEZOIDAL RULE

3 REM PROGRAM 92
TRAPEZOIDAL RULE
12 INPUT "Upper Limit? "3;U
2@ INPUT "Lower Limit? ";L
3@ DIM A(101): LET RANGE=U-L:
LET h=RANGE/188: LET n=1: LET s=
@
4@ FOR x=L TO U STEP h
5@ LET y=S8IN x
&0 LET A(n)=y
7@ LET n=n+i: NEXT x
8@ FOR n=2 TO 10©
90 LET S=58+A(n)

180 NEXT n
110 LET AREA=h*(({(A(1)+A(1A1))/
2)+8)

120 FRINT AREA

In this particular incarnation, we’re looking at y=Sin x. The
function can be put in at line 50 to your own taste. The
integration of the Sin x function is interesting. Remember we’re
in radians on the computer, so you could set upper limit to PI
and lower limit to zero. The answer is approximately 2 units.
The area over a full revolution, however, (from 2*PI to zero), is
approximately zero, because the area below the x axis between PI
and 2*PI is counted as negative. So you should beware of that
when using this rule with the repetitive functions.

\‘e_-Q 3
\i\\i

R
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Simpson’s rule is a refinement that tries to lay pieces of
parabola against the curve instead of straight lines. The
derivation is not particularly hard to follow if you care to look it
up some time. The rule amounts to this:

Al‘ea= %(}“ + 2{Yma) & 4(Yeven) + y”)

or in words:
Area=h/3*((first edge+last edge)+2(odd edges)+4(even
edges))

It is a refinement that is generally more accurate, and you can
run the two programs on a given integration problem to see how
they both compare with the real answer!

Program 93 SIMPSON’S RULE

5 REM PROGRAM 93
SIMPSON’'S RULE
1@ INPUT "Upper Limit? "3;U
2@ INPUT "Lower Limit? "L
30 DIM A(1@1): LET RANGE=U-L:
LET h=RANGE/100
4@ LET n=1: FOR x=L TO U STEP
h
S8 LET y=SIN x
4@ LET Aln)=y
7@ LET n=n+1: NEXT x
84 LET EVEN=@: LET ODD=2
9@ FOR n=2 TO 100 STEP 2
100 LET EVEN=EVEN+A(R)
11@ LET ODD=0DD+A(n+1)
128 NEXT n
130 LET AREA=(h/3)*{A(1)+A(101)
+ (4#EVEN) + (2#0DD))
14@ PRINT AREA

Notice that in both Program 92 and 93 we are using 100 strips
which takes a little time to calculate (so please excuse the blank
screen!)

In the same way that differentiating successively will give you
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dy/dx, d’y/dx?, d’y/dx’, etc.

you can get successive integrals, too, like this:

y=J [ [fx)dx dx dx

And as you might imagine, you just integrate one at a time, like
stripping off coars of paint. It’s really like a ladder, where you
differentiate to go down a rung and integrate to go up a rung. In
fact, now you know about it, it really makes you wonder why you
thought there was anything very complicated about it. Like I’'ve
been saying all along, it’s simple stuff dressed up in jargon to
make it appear difficult.

But to return to the mainstream of our discussion, not every
time you see integration signs ganging up together will they be
straightforward successive integrations. Sometimes they're
multiple integrals, so that the first integration is with respect to
X, the second might be with respect to y and the third with
respect to z:

JJJfix,y,z)dx dy dz
For example,
ST [(x*+y’ +27)dx dy dz

And it might interest you to know that the result is the same
whichever order you integrate in.

Standard integrals worth listing here are few, because they are in
every book on integration you care to look in, but to save you the
effort:

y Jy dx

1/x log.x+C

at a*loge+C

e G

Sin x -Cos x+C
Cos x Sin x+C

Tan x ~log Cos x+C
Sinh x Cosh x+C
Cosh x Sinh x+C

Tanh x log Cosh x+C
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And now you know that the integral of Sin x is —Cos x, you can
check that example used with the trapezoidal and Simpsen’s
rules: if

y=Sinx /

then

_J:Eiﬁﬁ[-(]os x]o
=(—Cos n)—(—Cos 0)
And we can show that Cos ntis —1 and Cos 0 is 1, so our area is:
-(=D)=(-D=1+1=2

How does Simpson do?

Now, I’'m not suggesting that you’re going to be able to find a
standard integral identical to any given expression you want to
integrate. So how do you proceed when faced with a complicated
expression? I'd love to be able to say ‘Simple’ and to give you a
short program to deal with it, but I can’t.

It takes quite a bit of ingenuity to figure out how to integrate
some expressions, and all I can say is that you have to practise
hard if you want to get to be good at it. There are a few standard
methods for products and so on, but it is mostly a question of
experience. Generally speaking, the expression must be prepared
so that it fits one of the standard forms, and that can be done in a
variety of different ways such as ‘trigonometric substitution’ or
using ‘partial fractions’,

So far we’ve looked at integration as ‘anti-differentiation’ and
seen that the process is essentially the finding of areas under
curves, but perhaps we should look closer at the numbers aspect
of it,

Suppose you have y=1f{x) (v is a function of x), then you can
draw up a table of corresponding values just as you would if you
were going to draw a graph. You choose a suitable interval for x,
which amounts to choosing to cut the area into small strips, and
then you sum the strips together to get the whole area. The
important point to note is that in integration the strips are made
vanishingly small. The width of those strips goes from being a
small width, dx, to being vanishingly small, dx.
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It is possible to imagine that, if you had a plane area made up
of strips, you could also make up a solid figure from slices, and
there’s a good chance of being able to use a method involving
integration to find volumes. And so you can.

It’s also possible to find the lengths of curves by using an
equation that uses both differentiation and integration.

Before leaving the subject, I would like to demonstrate the
method for areas, using as our example a figure we already know
about, the circle.

First we have to decide how to carve up the circle into strips,
and the most convenient way to do it is like this:

typical strip

We know that the equation of that circle is x’+ y*=r? where r is
the radius of the circle. The area we’re going to look at is the
quadrant that I’ve shaded, and you can see that our
representative slice goes from limits of 0 to r. So

Area of quadrant=J‘0ry dx
and we know that

X +y'=r?
and so

yeT—%

Therefore

Area= _I; VIE—x2 dx




270 Maths Tutor for the Spectrum

Without worrying about how to integrate that expression,
suppose you’d looked it up as a standard integral and found it to
be

-;*Sin' (x/r)+Yox*/ 1T = x? <
So our area is that expression with limits of 0 and r, and we
substitute values of r and 0 wherever we find x.

When x=r, Sin"'(x/r)=S8in"'(1) (the angle whose sine is 1)
which, in radians is PI/2.

And by similar reasoning, Sin™' (0/r)=Sin"'0=0
So we have

Area=(Yor\V TP =+ Y2r’*P1/2) - 0
which reduces to,

2
Area= _P_{*_I'

But remember that this is the area of our quadrant which is only
a quarter of the full circle, and so the area of the full circle is four
times this:

Area of circle=PI*r*

which we know is correct.

It might seem a sledgehammer cracking a nut, but in fact the
method can be used for other shapes, any shape you know the
equation of, and so it is 2 powerful idea. Qur circle example is
interesting, though, and it might be a test of our powers to do it
in polar coordinates. Actually, that makes the problem much
simpler to handle, but that, as they say, is another srory . . .

14

THE RANDOM FACTOR

1 The random factor

The final chapter, sorry to say, but it deals with one of the most
interesting aspects of the Spectrum microcomputer. In fact the
contents of this chapter really serve as an introduction to one of
the most fascinating branches of mathematics, the mathematics
of chance,

It’s a funny old world, nothing is certain, nothing is absolute.
Right from tiny electrons to vast galactic groupings, our universe
is one where matter and energy move and interact with apparent
randomness or unpredictability. Yet there are rules, for all is not
chaos, and the forms which mathematicians and scientists
observe in the universe arise out of those rules.

In Tom Stoppard’s play Rosenkrantz and Guildenstern are
Dead, the two principal characters open by tossing a coin which,
no matter how many times they toss it, always comes up heads.
This leads them to deduce that something has happened to their
world (they are in fact dead!) and serves to remind us that out of
unpredictability comes some clue to the world we live in and the
rules which govern it. Why don’t we take a look at it?

Let’s start with the function RND which is found on your
Spectrum in green above the T key. RND stands for random,
and the idea is that if you say

PRINT RND

the computer will give you back a number between @ and 1, and
that number will seem completely random.

Try it a few times or, better still, get a page full of these
random numbers by running this:

10 FOR n=1 TO 21: PRINT RND : NEXT n
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You will see that the numbers are indeed between @ and 1, and
don’t look obviously like the numbers of any well defined
sequence or series, such as those we’ve been used to seeing. It
would be easy to convince yourself that the numbers were really
independent of one another and completely random, but
unfortunately it isn’t true.

The RND function is derived from a function. If you think
about it, it’s going to be very difficult to get a thing so intensely
ordered and predictable as a microchip to be really random:
they’re just not built that way. So we have to simulate it. And the
funcrion the Spectrum uses is in effect a jumbled sequence of
numbers that depends upon the length of time after the
computer was switched on.

You can look into the memory location that stores this
number, just to see that it exists, by running this:

10 PRINT AT 0,0; PEEK 23672; AT 0,0;
20 GO TO 18

Not very satisfactory because it flashes due to the blanking out
you must do between each printing, but you can just about make
out that this number is running from @ to 255. It gets bigger by
one every fiftieth of a second (which means it runs through the
range of numbers in 256/50 secs, or a little over 5 seconds), and
then it starts again.

The RND function picks out this number and uses it to
calculate the random number you get back, and although it’s not
truly random, it’s good enough for most games and for some
statistical modelling.

So we have a random number between @ and 1. What if we
want a random number between @ and 10?

Easy: try this:

10 FOR n=1 TO 21: PRINT (RND*1@):NEXT n
And if you want integers between @ and 10, slip in an INT
function:

1¢ FOR n=1 TO 21: PRINT INT(RND*10): NEXT n

And if you want a random integer between 5 and — 5, you have to
subtract five:

1¢ FOR n=1 TO 21: PRINT INT(RND*10)-5: NEXT n
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I'm sure you get the idea, The point to note is that you can
choose the range of your random number. But beware: the
number you multiply RND by is an absolute upper limit of that
range. So if you have (RND*10), you can never get 1@, only
9.999999

Now many games programs incorporate the random factor so
that your ‘opposition’ behaves rather unpredictably. But when
you're designing a game, it’s a real nuisance to have your
variables jumping about when you’re trying to test a program.
Far better if you could select the RND sequence from a given
point each time instead of it depending on the contents of
memory location 23672. The instruction RAND (white legent
on the T key) allows you to do this. You can start anywhere in
the sequence of 65535 random numbers by typing

RANDOMIZE n

where n is in the range 1<n<65535.
To see what I mean, try the following:

16 RANDOMIZE 1: FOR n=1 TO 21: PRINT RND :
NEXT n

Run this several times, and each time you get the same sequence
of rwenty-one numbers. But take out the randomize function,
and you will get a different sequence each time. And if you alter
the number associated with RAND you get a different sequence
from the one you started with, but the new sequence will be the
same each time you run it. Try it.

What we need to do is examine probabilities, look at something
called permutations and combinations, and then perhaps show
how we can model some physical situations on the computer
using what we have learned in theory.

2 Permutations and combinations

A permutation is just the name we give to a way of ordering
things. I don’t mean as in ordering eggs and bacon for breakfast,
but ordering as in putting into a given order. For example, if we
have three letters, A, B, and C, how many permutations are
there?
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There are six:
ABC

OORE I
OO0
PO

And that’s it: there are no other ways to do it.
If you have two objects, then you have only two permutations:

AB
B A

And if you have four? Well, let’s see:

ABCD BACD CABD DABC
ABDC BADC CADB DACEB
ACBD BCAD CBAD DBAC
ACDB BCDA CBDA DBCA
ADBC BDAC CDAB DCAB
ADCB BDCA CDBA DCBA

And there we are: 24 permutations. But this is tedious, and
maybe we can think of a way to automare it. Let’s look at the
facts so far:

No. of objects: 1 23 &y
No. of permutations: 1 2 6 24
Do you recognise this?

Try Program 69, and then come back.

So that’s it! The factorial function. That was the physical
meaning of it.

Suppose now we have a bag containing letters. Suppose we
have the letters A, B, C and D. How many ways are there of
taking just two of those letters out?

We could have:

l Aand B
2 Aand C
3 Aand D
4 Band A
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5 Band C
6 Band D
7 Cand A
8 Cand B
9 Cand D
10 Dand A
11 Dand B
12 Dand C

Twelve options. There’s a way of representing this. We use a
letter P (for permutation), and if we’re choosing 2 from 4 as
above, we’d write

2

The top number is the tortal you're picking from, and the bottom
number is the number you’re selecting. In our case

4y _
P2 =12
and there is a general formula for choosing so many items from a

total number:

“Pr= nl(n—r)!

So in our case we’'d have

P, =aia-2)1=242=12

which all checks out nicely.

But look again at our example. So long as you take notice of the
order that you drew the letters out of the bag, there would indeed
be twelve permutations, but if the order doesn’t matter to you,
and drawing a pair, say, A and B, is the same as drawing the pair
B and A (options 1 and 4 in our list), then you have fewer
outcomes.

A careful examination of the list will show you that there are
now only six outcomes. We call these outcomes combinations,
and we represent this mathematically as

ic =6
T
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It so happens that
nCr=nPrhh=MKn—rﬂ*ﬂ

This is so because each permutation of I:J'I’l_ consists of r objects

which can be arranged amongst themselves in r! ways.

And now that’s out of the way, how about a program or two? If
you can’t recall how we generated factorials, you might like to
refresh yourself by raking a look back over Program 69. Then try
Program 94.

Program 94 PERMUTATIONS

5 REM FROGRAM 24
PERMUTATIDNS
1@ PRINT " PERMUTATION 1S THE
NUMBER OF WAYS OF CHOOSING R

OBJECTS FROM A TOTAL OF N.
20 INPUT “TOTAL NUMBER OF OBJE
cT8? 37
3@ INPUT " NUMBER OF CHOSEN OB
JECTS? ";R

40 LET N=T: GO SUB 10@

5@ LET FT=f: LET N=T-R: GO SUB

10@

&0 LET P=FT/f: PRINT AT 14,13"
PERMUTATIONS ";P: STOP

1@@ LET f=N: FOR x=N 7O 2 STEF
-1: LET f=f%{x—-1): NEXT x: RETUR
N

The subroutine in line 100 is the bit of code that works out the
factorial. (This has the same restriction on it as the original
factorial program so far as maximum number is concerned. That
is, it will work with numbers up to 33, but go bigger and you will
get back a ‘Number too big’ error report.)

Now how about a combinations routine?

I

The Random Factor 277

Program 95 COMBINATIONS

5 REM PROGRAM 95
COMBINATIONS
18 PRINT " COMBINATION IS THE
NUMBER OF WAYS OF CHOOSING R

OBJECTS FROM A TOTAL OF N,
WHEN THE ORDER OF SELECTION
DOES NOT COUNT."

20 INPUT "TOTAL NUMBER OF OBJE
CTs? ";7

3@ INPUT " NUMBER OF CHOSEN OB
JECTS? "R

48 LET N=T: GO SUB 120

S@ LET FT=f: LET N=T-R: GO SUB

100

68 LET RT=f: LET N=R: GO SUB 1
aa

78 PRINT AT 14,6; "COMBINATIONS

"sFT/(RT*$): STOP

108 LET f=N: FOR x=N TO 2 STEF
-1 LET f=f#(x—1)2 NEXT x: RETUR
N

Before moving on, just take a look at this for a bit of
mathematical connectedness. You can use the combinations
program to get a line of Pascal’s triangle! Say you want the sixth
line, you start by writing down 1. Then the next term is ¢C, =6,
the next is ¢C,= 15, then *C,=2@, then ¢C,=15, then *C.=6, and
lastly a 1. You can write out the line in full:

1 6 15 20 15 6 1

It works for any line you like. And notice that it’s symmetrical,
50 that it follows that

"C, = “cn- e
It also follows that in the binomial expansion,

(a+x)
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is a series of terms like
* An~=
nCr q r*l-r

which leads on to something called recurrence or recursion
formulas, but we’re not going to look at those here.

What we really ought to do is have a look at the wonderful
world of randomness again, this time with permutations and
combinations under our belt and looking through the window on
probability.

3 Probability

This is important if you are going to take up pambling or engage
in any prediction-making, and the way we approach it is via those
classic tools of chance, the coin and the die. (‘Die’ is just the
singular of ‘dice’, in case you didn’t know: you have one die or
several dice.) '

Take a coin and ignore the remote possibility that it can come
down on its edge (or not come down at all}. Then you can say
that it has two possible states: it can be ‘heads’ or it can be ‘tails’,
* and there is obviously an equal chance of it being either.

Then we say that the probability of heads is 0.5, and the
probability of tails is @.5, which we write like this:

p(heads)=0.5
p(rails)=0.5

Note that p(tails) OR p(heads)=0.5+0.5=1, and that a
probability of @ means ‘impossible’ and a probability of 1 means
‘certain’.

It is important to realise that this does not predict tha, if you
10ss a coin ten times, then you will get five heads and five tails.
What it does mean is that, if you toss the coin a vast number of
times, you get half heads and half rails (more or less), and that, if
you could toss it an infinite number of times, you would get half
heads and half tails. It is related to the number of times you try it,
and as the number of trials tends to infinity, the results tend to
their predicted probability. Let’s simulate this with a program:
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Program 96 PROBABILITY TRIALS
S5 REM PROGRAM 9&
FROBABILITY TRIALS
1@ INPUT "Number of trials? ";
N: LET H=@: LET T=0
28 FOR x=1 TO N
3@ IF RND>=,5 THEN LET H=H+1:
PRINT AT 1@,243H: NEXT x
4@ LET T=T+1: PRINT AT 10,8;T
5@ PRINT AT 4,15;x
6@ IF T<>@ THEN PRINT AT 18,1
23H/T
7@ NEXT x

Whilst we must bear in mind that we’re not dealing with a
random phenomenon here, just with the computer’s pseudo-
random generator, it is sufficiently good to demonstrate the
notion. The program prints the number of the trial at the top of
the screen, the number of tails on the left, the number of heads
on the right and finally the ratio of heads to tails at the bottom. If
you run the program again and again with larger and 1arg.er
numbers of trials, you will find that the bottom number will
generally get closer to one.

Now for a dice program. I could take ages explaining about
this program and how it works, but it would be better if you just
loaded it on to your computer and played it a while. The Smly
thing to remember is that it simulates the throwing of a pair of
dice 500 times and builds up what is known as a frequency
histogram of the results. The results can be any integer from 2 to
12 (got by adding the scores of the two dice, like when you pgay
Monopoly), and if waiting four seconds between throws begins
to bore you, just hold a key down to speed things up. The
program freezes after 500 goes, and you have to break it in the
usual way by pressing CAPS SHIFT and the BREAK keys
simultaneously.

Program 97 DICE

2 REM FPROGRAM 97 DICE
o FOR x=2 TO 12: PRINT PAPER
4:AT B, (x#3)—b3x: NEXT x
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1@ DIM x(12): PRINT AT 4,14;"T
gRgl:l";ﬂT 7,63 "DIE 1";AT 7,223 "DI1

2@ FOR n=1 TO S50@

3@ LET D1=INT {(RND#*&)+1

4@ LET D2=INT (RND*&)+1

5@ LET S=D1+D2

48 LET x(s)=x(s)+1: PRINT AT 1
y(SH3)~b3x(s): PLOT (s%#24)-48,x(
s): DRAW INK (s/2)-1;15,@

7@ PRINT AT 5,163n;AT 8,8;D1;A
T 8,24;D2

8@ FPAUSE 200

9@ NEXT n

160 GO TO 100

_Sapner or later you will find that, although the throwing of
dice is random, the histogram you get at the bottom of the screen
builds up in a characteristic way. There are generally taller strips
in the middle and shorter strips at the edges. Why should this
hump shape occur?

Fortunately throwing a couple of dice is a nice simple system
to look into, and that’s just what I propose we do.

lFirst let’s examine how we arrive at any given score. We have
die number 1 with possible scores of 1, 2, 3, 4, 5 and 6, and the
same for die number 2. So for a total score of 2, we must have a 1
ondie 1, and a 1 on die 2, and this is the only way you can score 2.

To get a score of 3, you can have either a 2 on die 1 and a 1 on
die 2, or vice versa, i.e. there are two separate ways.

To get a score of 4, you can have a 2 on both dice, a 3 on die 1
and a 1 on die 2, or vice versa, which is three ways. And so it goes
on. To summarise:

Score (n)  Number of ways to get it p(n)
2 I 1/36
3 2 2/36
4 3 3/36
5 4 4/36
6 5 5/36
7 6 6/36
8 5 5/36
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9 4 4/36
10 3 3/36
11 2 2126
12 1 1/36

This shows that there are six ways to get a score of 7 and makes 7
the most popular result. Obviously, if the dics are not loaded,
each of the 36 different score combinations are equally likely,
and so we would expect the probability of a 7 score to be six
times as likely as a 2 score or a 12 score. We also know the
absolute probabilities will be, for example, 6/36 for a score of 7,
which is 1/6, or 0.1666667, and for a score of; say, 3 probability
is 3/36=1/12, which is 0.0833333. You will find that, if you
convert all the p(n)s into decimals and add them together, you
will get 1. This must be so, since it is certain that if you throw a
couple of dice, the score must be between 2 and 12 inclusive!

Try running the dice program a few rounds, and compare the
frequency with which the combinations turn up with the
predicted probabilities. Just divide the occurrence numbers for
each score (at the top of the screen) by 500, and compare them
with the p(n) predictions.

4 Probability distributions

Around the seventeenth and eighteenth centuries there
flourished a family called Bernoulli that turned out a whole
bunch of excellent mathematicians and scientists. One of them,
probably Jacques Bernoulli (1654-1705), came up with a thing
called the Bernoulli distribution, otherwise known as the
binomial distribution. It’s quite interesting, and it goes like this.
If the probability of something happening is p, and the
probability of it not happening is q (where q=1-p, since p+q
must equal 1), then what is the probability of it happening x
times out of n trials?
The formula that tells you is:

p(x) = nC“*px*q(n-a)
So, for example, the probability of getting 2 heads in 6 tosses of a
coin is
6! ,

p(2)=4C,*(0.5)*(0.5) 2= 7

2121 (0.5)=0.234375
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Program 98 extends this idea, asking you how many trials you
want, how many successes you want, and the probability of one
success. Try it with the above example, putting in 6, 2 and 0.5
respectively. Or you could see the chance of getting 2 ‘sixes” with
3 rolls of a die, where the number of trials will be 3, the number
of successes ‘getting a six’ is 2 and the chance of throwing 1 six is
1/6. You ought to get 0.0694.

Program 98 BINOMIAL DISTRIBUTION

5 REM PROGRAM 98
BINOMIAL DISTRIBUTION

1@ INPUT "NUMBER OF TRIALS? "j
N

20 INPUT "NUMBER OF SUCCESSES?
ll.x

H

3B INPUT "PROBABILITY OF ONE S

UCCESS? ";F

4@ LET M=N: GO SUB 1@@

3@ LET FT=f: LET M=N-X: GO SUB
1@

6@ LET RT=f: LET M=X: GD SUB 1
1%

70 PRINT AT 14,1;"PROBABILITY
OF "3;X3" SUCCESSES"," IN “;N;" T
RIALS I8 "; (FT/(RT*£))#(P~X)*((1
=P} (N-X)): STOF

10@ LET f=M: FOR ¥Y=M TO 2 STEP
=1: LET f=f%(¥Y-1): NEXT Y: RETUR
N

The next idea concerns the business of collecting data. If you
think of a collection of people, for example, and you take out a
tape measure and start writing down a list of how tall they are,
you will get what is known in the trade as ‘raw data’ on heights.
Then supposing you want to draw some conclusions about that
data, you need to process it and condense it into two numbers.
The first is called the mean, and the second is called the standard
deviation.

The first, the mean, is just the average, so you get it by adding
all the values together and dividing by the number of values. So
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if you've got values 2, 3, 4, 5 and 6, you add them together to get
20 and divide by the number of values (five) giving a mean of 4.

The mean, then, is the value about which the values cluster. It
is quite useful in drawing conclusions about the data as you must
already be well aware!

The standard deviation (SD) is what is known as ‘a measure of
central tendency’ and really just shows you how closely the
values are clustering about the mean. If the SD is large, then the
clustering is loose, and your values are all over the place. If the
SD is small, then the cluster is tight, and all the values are close
to the mean.

Get hold of some raw data (how you do that is up to you: you
might like to count the number of seconds between successive
cars on a road or something else liable to be reasonably random).
Then plug the values into Program 99. It will give you back the
mean and the standard deviation. The way it works out the
standard deviation, incidentally, is by taking each of your values
away from the mean (to see how far away from the central value
each value is), squaring it, adding all those squared differences
together and dividing the result by the number of values, and
finally (phew!) taking the square root.

Program 99 MEAN & STANDARD DEVIATION

5 REM PROGRAM 99
MEAN % STANDARD DEVIATION
1@ INPUT "NUMBER OF VALUES? "3
N: DIM A(N): LET S=@
20 FOR X=1 TO N: INPUT "NEXT V
ALUE? ";A(X): PRINT A(X): NEXT X
@ FOR X=1 TO N: LET S=8+A(X):
NEXT X: PRINT AT @,1@;"SUM OF V
ALUES IS ";8
40 PRINT AT 1,1@;"MEAN IS ";8/
N
5@ LET SD=@: FOR X=1 TO N: LET
D=( (§/M)=A (X)) % ((8/N)~A(X)): LE
T SD=5D+D: NEXT X: PRINT AT 2,1@
;"ST.DEV. I8 "jSER (SD/N)

Notice that if all of your values are the same, there is no
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deviation from the central value so the SD=0.

The thing about heights of people, or weights of people, or
lengths of manufactured components or anything else of a
randomly decided nature is that there are usually few of your
sample that are much bigger than the mean, and similarly few
that are much smaller than the mean. Most of the sample will
have characteristics close to the mean value. So if you were to
take the heights of a class full of children, measuring to the
nearest inch, you might have a sample mean of 4ft 5in. Then if
you plotted out the number of people of a given height against
the height on a graph, then you’d ger a graph that was a hump,
with the centre of the hump coinciding with the mean, like this:

No. of ‘E
kids of 44— 15
a given

height
10—

5 —

T T T TTY

311" 411 -"1'3" 4's" 4 4's" 4'10" 'Hﬂght

The standard deviation is the measure of the sharpness of the
hump in an inverse sort of way, so that if your standard deviation
is small you have a sharp curve, and if the standard deviation is
large then you have a flatter curve, Once you know the mean and
the standard deviation of a sample, you can prepare an idealised
curve that you can expect the real results more or less to follow
(given a big enough sample). This curve has an equation first
developed by the German genius Karl Friedrich Gauss
(1777-1855), and the distribution is called either the normal or
Gaussian distribution.

The equation, in case you’re interested, is:

EXP(—(X-MEAN)¥/2*SD?/SD*\/ 2*PI

One interesting little utility is to be able to draw a graph of data
points you have collected. Suppose you learn that the profits of a
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small business over 18 months goes like this:

JAN  £320 JUL  £530 JAN  £1106
FEB £310 AUG £300 FEB £ 995
MAR  £405 SEP  £495 MAR  £1047
APR  £312 OCT £615 APR {1272
MAY £378 NOV  £700 MAY £1320
JUN  £440 DEC  £950 JUN £1471

Now those figures would be much easier to visualise if they
were put on a graph, and Program 100 lets you do just that.

Program 180 GRAPH

S5 REM PROGRAM 102 GRAPH
1@ BORDER @: PAPER 1: INK 7: C
LS : PLOT @,175: DRAW @,~-175: DR
AW 255,0
20 INPUT "HOW MANY DATA POINTS
?";N
3@ LET s=INT (255/N): DIM x(N)
4@ FOR i=1 TO N: PRINT AT 0,0;
"Value no "jig"? "z INPUT x(i):
NEXT i
5@ PRINT AT @,0;"
"3 LET imax=x
(1): FOR i=1 TO N: IF x{i)>imax
THEN LET imax=x (i)
6@ NEXT i: LET sc=imax/178
7@ DIM y(N): FOR i=1 TO N: LET
y(id=x (i) /sc: NEXT i
8@ FOR i=1 TO N: CIRCLE (i%#s)-
(8-3) ,y{i)+3,1: PLOT (i%*s)-(s5-3)
2 ¥(i)+3: IF i<N THEN DRAW s,y (i
+1)=y (i)
9@ NEXT i: PRINT AT @,0;"MAX V
ALUE = "j3imax
12@ LET t=@: FOR i=1 TO N: LET
t=t+x (i): NEXT i: LET M=t/N: PRI
NT AT 21,146;"MEAN = "; INT (M*100
) /1020
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There are times, however, when you want to order your data not
according to time (as with the business profits), but in order of
magnitude (like with the heights). If you have a lot of data, it
really is a pain to put it into ascending order (so that the values
get bigger). So let me present Program 101 which does it for you.
Just tell the computer how many values you have, than enter
then one at a time, and the computer will print out its attempts to
sort them into ascending order. It will eventually get there and
stop.

Program 101 ORDERED DATA

5 REM FROGRAM 101
ORDERED DATA
1@ INPUT "Number of values? ";
n: DIM D(n): FOR x=1 TO n: INPUT
"Next Value? "jD(x): PRINT D(x}
‘1 NEXT x
20 PRINT : FOR %=1 TO n-1: LET
f=0: FOR y=1 TO n-1: IF D(y)<=D
(y+1) THEN GO TO 4@
3@ LET g=D(y}: LET D{y)=D{y+1)
: LET D{y+1l)=qg: LET f=1
4@ NEXT y: IF $=0 THEN GO TO
6B :
5@ FOR z=1 TO n: PRINT D(z)s"
“35 NEXT z: PRINT : PRINT : NEXT
®
6@ STOP

And that just about wraps it up. I hope you've enjoyed our
rather abandoned romp through the field of maths. I hope, too,
that some of it may be of help to you sometime.

And in case you’re put off by the thought of tapping out 100 or
so programs, ['ve put them on to a cassette and made them
available, price £5 post and package included, from:

Century Communications Lid
Portland House

12-13 Greek Street

London W 1.

APPENDIX 1

User-defined graphics

There follow some lists of data that can be used to define sets of
useful characters that do not already exist on the Spectrum. The
symbols can be obtained by running a short program that loads
the data into a special section of memory, and once loaded they
may be got on to the screen by pressing any of the keys Ato T
when the cursor is flashing G. To get the cursor into graphics
mode, press CAPS SHIFT and 9.
The character loading program is below:

Appendix Program 1 CHARACTER LOADER

S REM PROGRAM APPENDIX 1
LOWER CASE GREEK
1@ FOR n=0 TO 7: READ r: POKE
USR "a"+n,r: NEXT n
20 PRINT " ": GO TO 10
32 DATA 0,0,18,44,68,74,50,0
4@ DATA 56,36,546,36,36,60,32,0
5@ DATA 0,49,74,12,20,20,8,0
6@ DATA 28,32,16,24,36,34,24,0
7@ DATA 0,0,28,32,56,32,28,0
80 DATA 2B,8,8,146,56,4,24,0
9@ DATA 0,88,34,36,36,4,4,0
1@@ DATA 54,68,68,124,48,48,56,

11@ DATA 8,8,16,16,16,20,8,0
120 DATA 0,0,72,80,96,80,72,0
130 DATA @,32,16,8,8,20,34,0
140 DATA @,36,100,36,60,34,32,0
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150 DATA 0,4,2,54,20,8,8,0

168 DATA 14,28,16,28,32,24,4,56
17@ DATA 0,0,56,48,48,68,56,0
180 DATA @,8,62,84,20,36,34,0
190 DATA ©,12,18,18,44,32,44,0
200 DATA ©,0,0,42,72,72,48,0
220 DATA 0,0,462,72,8,16,16,0
230 DATA @,2,100,346,34,24,0,0
242 DATA 8,8,28,42,28,8,8,0
250 DATA @,34,84,8,20,37,66,0
26@ DATA 8,8,106,42,28,8,8,0
27@ DATA ©,0,32,46,82,44,0,0

The key your character will appear on is specified in line 20
inside the quotes, and the eight numbers separated by commas in
the DATA command of line 30 define the character. This
example loads the Greek letter alpha. Other useful symbols are
specified in the tables that follow:

LOWER CASE GREEK LETTERS

alpha 9, o, 18, 44, 68, 74, 50, 0
beta 56, 36, 56, 36, 36, 60, 32, 0
gamma 0, 49, 74, 12, 20, 20, 8 ¢
delta 28, 32, 16, 24, 36, 36, 24, 0
epsilon 0, o, 28 32, 56, 32, 28, O
zeta 22, 8 8 16, 56, 4, 24, 0
cta @, 88, 36, 36, 36, 4, 4, 0
theta 56, 68, 68, 124, 68, 68, 56, 0
iota 8 0, 16, 16, 16, 20, 8, @
kappa e, o 72, 80, 96, 8@, 72, 0
lambda 0, 32, 16, 8, 8, 20, 34, 0
mu 0, 36, 100, 36, 60, 34, 32, ¢
nu 0, 4, 2, 54, 20, 8, 8 @
xi 16, 28, 16, 28, 32, 24, 4, 56
omicron 0, @ 56, 68, 68 68, 56, @
pi 0, 0, 62, 84, 20, 36, 34, 0
rho 0, 12, 18, 18, 44, 32, 64, 0
sigma e, @ 0, 62, 72, 72, 48, 0
tau @, o, 62, 72, 8 16, 16, 0
upsilon @, o, 100, 36, 36, 24, e, @

phi
chi
psi
omega
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8, 28, 42, 28, 8,
, 34, 84, 8, 20, 37,
8, 106, 42, 28, 8,
, 0, 32, 66, 82, 44,

= 00 2 0

5 REM PROGRAM APPENDIX 2
UPFPER CASE GREEK

1@ FOR n=@ TO 7: READ r: POKE
USR "a"+n,r: NEXT n
PRINT " "3 PAUSE @: CLS : B

20
0 TO
3e
40

10
102
ii1@
120

,@
130
142
150

,@
160

a
172
180

s
170

+@
z20e

1@

DATA
DATA
DATA

DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA

DATA

@,24,36,36,608,356,110,0
128,38,36,54,36,36, 124

126,34,32,32,32,32,112

8,8,20,20,34,34,127,0
126,34,40,54,40,34,126

126,70,12,24,48,98,126
119,34,34,62,34,34,119
62,65,85,93,85,65,62,0
S6,16,16,16,146,16,54,0
11@,36,40,48,40,36,118

8,8,20,20,34,34,119,0
99,54,42,42,42,34,119,

103,34,50,42,38,34,115
b6,126,0,126,0,126,46,

56,68,68,68,48,68,56,0
119,34,34,34,34,34,119

128,36,36,56,32,32,112

126,34,16,8,16,34,126,

8,
66,
8,

2

[=J= T~ ]
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@

22@ DATA 127,73,8,8,8,8,28,0
23@ DATA 99,34,20,8,8,8,28,0
24@ DATA 28,8,v2,42,62,8,28,0
250 DATA 119,34,20,65,20,34,119,
2

260 DATA 28,73,107,42,62,8,28,0
27@ DATA 28,34,65,85,54,85,119,
)

UPPER CASE GREEK LETTERS

ALPHA 0, 24, 36, 36, 60, 36,
BETA 120, 36, 36, 56, 36, 36,
GAMMA 126, 34, 32, 32, 32, 32,
DELTA 8, 8, 20, 20, 34, 34,
EPSILON 126, 34, 40, 56, 40, 34,

ZETA 126, 70, 12, 24, 48, 96,
ETA 119, 34, 34, 62, 34, 34,
THETA 62, 65, 85, 93, 85 65
IOTA 56, 16, 16, 16, 16, 16,

KAPPA 110, 36, 40, 48, 40, 36,

LAMBDA 8, 8 20, 20, 34, 34,
MU 99, 54, 62, 42, 42, 34,
NU 103, 34, 50, 42, 38, 34,
XI 66, 126, 0, 126, 0, 126,
OMICRON 56, 68, 68, 68, 68, 68,
PI 119, 34, 34, 34, 34, 34,
RHO 120, 36, 36, 56, 32, 32,
SIGMA 126, 34, 16, 8, 16, 34,
TAU 127, 73, 8, 8 8, 8,

UPSILON 99, 34, 20, 8, 8, 8,

PHI 28, 8, 62, 42, 62, 8,
CHI 119, 34, 20, 8, 20, 34,
PSI 28, 73, 107, 42, 62, 8,

OMEGA 28, 34, 65, 65, 54, 85,

110,
124,
112
127,

126,
119,

119,
115,

LSS esSsSeSSesaesSSsSSSSSacsSSe S
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MISCELLANEQOUS MATHEMATICAL SYMBOLS

Powers and Superscripts

squared 112, 16, 112, 64, 112, 0, 0, 0
cubed 112, 16, 112, 16, 112, @, 0, ©
4 64, 80, 120, 16, 16, 0, 0, 0
5 112, 64, 112, 16, 112, @0, @, 0
-1 24, 8, 104, 8, 8 0, 0, 0
-2 14, 2, 116, 8 14, 0, @ 0
-3 14, 2, 110, 2, 14, 0, 0 0

One character square will take two of these small numbers
across, and small subscripts can be defined by moving the
symbol to the bottom of the square instead of the top.

Other symbols useful in maths programs

Y 66, 68, 72, 87, 33, 71, 132, 7
dx o, 0, 16, 16, 117, 82, 117, @
3 96, 16, 8, 60, 68, 68, 56, @
v 0, 127, 34, 34, 20, 20, 8, 8

o, o, o, 0 0 0 12 18
S 16, 16, 16, 16, 8 8 8 8

72, 48, @, ©, @, 0, 0, O
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78 INPUT "ENTER HEX NO. (4 DIG
ITY ";A%

8@ LET DEC=@: FDR X=1 TO 4

9@ LET DEC=DEC#1&+CCDE A$(X)-4
B-7# (AS(X) >"9")Y: NEXT X

APPENDIX 2 \ 10@ PRINT AT 1@,5; "DECIMAL NUME

ER I8 ";DEC: G0 TO &0

The POKE in line 1@ is a harmless device that sets a flag inside
the machine so that it goes automatically into capital letter mode.

Hexadecimal converter Otherwise the program will screw up.

- N

Earlier I was explaining about numbers to different bases, and

how, if you want to understand machine code, numbers to the i
base 16 are important. I'm including a smail program here that

takes all the sting out of those conversions. You just select the
direction you want, HEX to DEC, or else DEC to HEX, and 2o
ahead.

Appendix Program 3 HEXDEC

S REM FROBRAM APPENDIX =
HEXDEC 1

1@ POKE 2345B,8: CLS : BORDER

S: INPUT "ENTER 1 for DEC ta HEX
2 for HEX to DEC
: "za: IF a=2 THEN GO TO 7@

20 LET A$="0000": LET X=4: INP
UT "ENTER DECIMAL NO. ({=45535)
s DEC

3@ LET N=INT (DEC/1&): LET Q=D
EC-16%N: LET A% (X)=CHR$ (G+48+7%
(Q>2))

4@ LET DEC=N: LET X=X-1i: IF DE
C@ THEN GO TO 3B

5@ PRINT AT 10,5;"HEX NUMBER [
8 ";A$

&@ PRINT AT 21,3; "PRESS ANY KE
Y TO RUN ABAIN": PAUSE ©@: GO TO
10
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A series for P1

There exists an infinite series whose sum is PI, and which, once
we know about it, will allow us to calculate PI to as many places
as we please. It goes like this:

PI=41/1-1/3+1/5- U7+ 1/9-1/11+ /13~ .. )

Notice that it’s basically the series of odd fractions, alternating
positive and negative, and the whole show multiplied by 4.
Try this:

Appendix Program 4 PI SERIES

S5 REM FROGRAM AFPPENDIX 4
PI SERIES

1@ PRINT AT 1,0;PI: LET s=0: F
OR n=0 TO 10800Q: LET k=1

2@ IF n/2<2INT (n/2) THEN LET
k=—1

30 LET g=k/((2%n)+1)

4@ LET s=s+q: PRINT AT 0@,0;s#*4

S@ NEXT n
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Don’t be alarmed if the number oscillates for several minutes. yt
is trying to converge to P, but even with ten thousand terms this
series is so slow to converge that it takes an age for the
oscillations to die out in the fourth decimal place! There are
much faster converging series in existence, but I thought you
might like to see this one in action.
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Oblique cylinder: Volume=area of base* perpendicular height.

I Surface area=perimeter of perpendicular
slice*length of side.

4 Right cone: Volume=area of base*¥s(perpendicular height).

area= perimeter of base*2 sloping

APPENDIX 4 S e

5 Oblique cone: Volume=area of base*!s(perpendicular height).

[§%)

Geometric shapes

Plane figures

1 Square: Area=a’ (where a is the length of a side).

2 Rectangle: Area=a*b (where a and b are sides).

3 Parallelogram: Area=b*h (where b is the side and h is the
vertical heighr).

4 Triangle: Area="*b*h (where b=base and h=height).

5 Trapezium: Area='2*(a+b)*h (where a and b are the lengths
of the parallel sides and h is the height).

a8
T
=2
-
.._.._.:\
1
-~ .
DI
— T

1. 2. 3; 4, 5,

6 Circle: Area=PI*r’=PI*d%4

Circumference = 2*PI*r=PI*d (where r is the radius
and d is the diameter).
7 Annulus (ring): Area=(PI/4)%D*D-d*d) (where D is the
diameter of the larger circle and d that of the smaller).
8 Ellipse: Area=PI*D*d/4 (where D is the major axis length
and d is the minor axis).

Solids
1 Sphere: v°1ume=(Plid73)16=-§-*191*ﬂ3.

Surface area=PI*d$2=4*PI*rt12,
2 Right cylinder: Volume=area of base*vertical height.
Surface area=perimeter of base*height+
2*Area of base.




APPENDIX 5

Defined functions

There’s a useful facility on the Spectrum that I don’t suppose
you’ve used yet, and I’ve hardly mentioned it either. The reason
is that it wasn’t necessary to any of our programs, and I was
trying to keep things as straightforward as possible.
Nevertheless, the facility is there, and you ought to be aware of
how to use it. It concerns keys 1 and 2; the red legends
underneath them read DEF FN and FN respectively.
Maybe we have a good long equation like

y=LN({(1+x)/1+(3*x)))+ SIN (x/2)
We could write that generally as
y=1x)

which means ‘y equals a function of x’, and we can call that
function up on our computer so long as it knows it. We tell it
what f{x) is by using DEF FN. And we do it like this:

10 DEF FN A(x)=LN((1+x)/(1+(3*x)))+ SIN (x/2)

Notice that it is just like a LET statement except that you can
define the function in terms of its variable (or variables) with a
letter and another letter enclosed in brackets. In the above
example, we have defined the function A(x), read as ‘A of x’.

The next step is to use FN to call up the function you have
defined, whenever you need it in a program, like this:

100 FN A(2)

It then takes the so-called ‘dummy variable’ x, and pops
whichever value you’ve specified in your FN function into the
expression where the x appears. Easy!

'1
1
f

Appendices 299

But it doesn’t stop there, because if it did, you might as well
use a regular LET statement. The good thing about the DEF FN
statement is that you can define a function of pot just one, but
many independent variables. To keep it simple, let’s look at the
three variables x, y and z and a function of them called A(x,y,z).
Then you have

10 DEF FN A(x,y,z)=x+y+z
and

10 LET Y=FN A(1,2,3)
which will return the function you have defined with the
variables x getting I, v getting 2, and z getting 3. In other words,
you get 1+2+3=6.

So just make it do that for you by making line 100 into

100 PRINT FN A(1,2,3)
or

110 PRINT Y

and you’ll get 6.
Or why not try:

10 DEF FN A(x,y,z)=SQR(x12 + y12 +z12)
20 PRINT FN A(3,4,5)

and you will get 7.0710678.

Impressive? Yes. But that’s not all. You can actually use it with
string variables, too. String variables handle strings of characters
such as words, and you can define functions which act like the
commands LEFT$ and RIGHTS$ and MID$ which are standard
in the BASICs used by other machines like the BBC B, etc. If
you'd like to know more abour this, look atr your orange Users’
Manual - the one that came with your Spectrum,
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