- Advanced Graphics
YVighigls

Sinclair ZX Spectrum

Advanced Graphics with the Sinclair ZX Spectrum

Macmillan Computing Books

idvanced Graphics with the BBC Microcomputer lan O. Angell and
Brian J. Jones

Advanced Graphics with the Sinclair ZX Spectrum lan O. Angell and
Brian J. Jones

Assembly Language Prograymming for the BBC Microcomputer lan Birnbaum
idvanced Programming for the 16K ZX81 Mike Costello

seginning BASIC Peter Gosling

Continuing BASIC Teter Gosling

ractical BASIC Programming Peter Gosling

‘rogram Your Microcompiiter in BASIC Peter Gosling

Codes for Computers and Microprocessors P. Gosling and Q. Laarhoven

icroprocessors and Microcomputers their use and programming
‘ric Huggins

wore Real Applicarions for the Spectrum and ZX5{ Randie Hurley
The Sinclair ZX81 — Programming for Real Applications Randle Hurley
280 Assembly Language Programming for Students Roger Hutty
Yigital Technigues Noel Morris
Hicroprocessor and Microcompuier Technology Noel Morris

"he Alien. Numbereater, and Other Programs for Personal Computers — with
10tes on how they were written John Race

Inderstanding Microprocessors B, S. Walker

1ssembly Language Assembled — for the Sinclair £X81 Tony Woods

wdvanced Graphics with the
Sinclair ZX Spectrum

‘an O. Angell and Brian J. Jones

department of Statistics and Computer Science,
wval Holloway College,
Iniversity of London,
sgham, Surrey

L]

iy

|
Y

VIACMILLAN PRESS
LONDON

© Ian O. Angell and Brian J. Jones 1983

All nghts reserved. No part of this publication may be reproduced or
ransmitted, in anv form or by any means, without permission.

‘irst published 1983
Reprinted (with corrections) 1983

Published by

THE MACMILLAN PRESSLTD

~ London and Basingstoke
‘ompanies and representatives

‘hroughout the world

Printed in Great Britain at
“he Camelot Press Ltd,
southampton

SBN 0333 35050 2 (book)
23051 0 {cassette)

Contents

reface ix

‘ntroduction 1
vims of the book. Motivation and format. How to approach the contents,

“hree levels: example programs, a program package or a textbook. A substantial
:xampie to illustrate what can be drawn after reading the contents of this book.

Graphics Operations of the ZX Spectrum 3
The Sinclair Spectrum microcomputer. How the computer makes television
sictures. BASIC commands for drawing with pixels. High-resolution and low-

gsolution graphics. Simple character block graphics and anmimation. Video
Tames.

" From Real Coordinates to Pixels 27
Routines for mapping real two-dimensional space into screen pixels. Scaling
actors. moving origin, drawing lines and polygonal areas given in real coordin-
ites. Windows on space. Patterns as a first step in two-dimensional graphics.

1 Two-dimensional Coordinate Geometry 45
Two-dimensional coordinate systems - origin, axes, points, vectors, lines and
‘urves, and their properties. Clipping. Functional representation and parametric
orms. Polyvgons and convex areas: inside and outside, orientation.

4 Matrix Representation of Transformations on Two-dimensional Space 62
ixplanation of matrices. Translation, rotation and scaling (reflection) trans-
ormations. Three-by-three matrix representation of two-dimensional space,
Jsing matrices to transform points. Inverse transformations. Combining trans-
ormations. Positions. Construction and views of two-dimensional scenes.

: Character Graphics on the ZX Spectrum &3
“haracters on the Spectrum. Graphics characters. Medium-resolution graphics.
Jser-defined characters. Alternate character sets. A program for generating and
'aiting characters. Applications for games, etc. Tessellated patterns.

1 Contents

» Diagrams and Data Graphs 103
construction of diagrams. Cursors, Labelling. Drawing axes. llistograms. Pie-
:narts and hatching. Discrete and continuous graphs.

Three-<dimensional Coordinate Geometry 24
"hree-dimensional coordinate svstems. Vector representation of points, lines
ind vlanes, Properties of these objects - intersection of lines and planes. Repre-
:entation of surfaces. Sides of a surface. Orientation of two-dimensional triangles,

5 Matrix Representation of Transformations on Three-dimensional Space 143
‘our-by-four matrix representation of translation, rotation and scaling {rellection)
ranstormations on three-dimensional space. Inverse transformations, Combining
ransformations. Rotation about an arbitrary axis.

' Orthographic Projections 154
setup (and storage) of simple objects ~ vertices, lines and facets. Introduction

o projections. Orthographic projection. Positions (SETUP, ACTUAL and
IJBSERVED). Maintaining the vertical. Definition of scenes. Bodies of revolution
rotation).

0 Simple Hidden Line and llidden Surface Algorithms By &,
Jrientation of three-dimensional triangles. Discussion of general problem of
tidden line and surface elimination. A simple algorithm for convex solids - an
mplementation where objects are not stored (for example, body of revolution).
s *front to back’ algorithm for special mathematical surlaces.

1 Perspective Projections 182
"heorv of perspective. Drawing simple objects in perspective, Extension of
previous aigorithms to the perspective case.

'2 A General-purpose Hidden Line Algorithm 191
An algorithm to deal with the general case of a perspective view of a stored
three-dimensional scene that has no special properties.

'3 Advanced Programming Techniques 203
string displays. Display-file positions. Simple machine-code for graphics. Real
ime animation. Utilities for program development. BASIC structure. OQptimisa-
10n of BASIC for speed or space. Synchronised patterns.

4 A Worked Example for a Video Game 221
‘roblems likelv to be encountered when constructing a video pame.
'5 Proiects 235

.deas for extended programs in computer graphics.

‘ontents
ippendix A: Implementing Programs on the 16K Spectrum
Appendix B: Basic Program Listings
‘eferences and Further Reading
ndex
Vhere to Find Routines referred to in Text

Jetails of Software Cassette

Vil

239

241

Preface

With the rapid advance of computer technology has come a substantial reduction
n the price of computer hardware. In the coming years the price of peripheral
ievices will also tumble. This means that users with a limited budget, who
sreviously had access only to the most elementary computing devices, will soon
be able to afford the most sophisticated computers. They will also be able to
ascape from the limitation of tabular numerical output and buy microprocessor
ittachments for television monitors or inexpensive special-purpose coleur
rrapnics devices. Sinclair computers have always led the field in this respect.
software. however, does not appear to be getting cheaper.

Because of the enormous capital expenditure required to set up graphical
yutput 1n the past, both in machines and software, the subject of computer
sraphnics has been the preserve of large research groups. This inaccessibility has
led to a mystique growing up around the subject and it has achieved a false
‘eputation for difficulty. This book is an attempt to lay the ghost of com-
olexity; it will also show that complicated (and hence expensive) software
pacKages, which are naturally of great value in research organisations, need not
righten away the average computer user. For most purposes these packages are
innecessary. Lhis book, as well as being an introduction to computer graphics,
mav be considered a (very inexpensive) software package: it is a lot cheaper
han commercially available packages! Naturally, because of this fundamental
ipproach, users have to achieve a reasonable understanding of their graphics
ievice before pictures, other than those provided, may be drawn. This need
10t be a disadvantage; the amount of groundwork required will be seen to be
very limited. As a direct result, the knowledge of the user grows along with the
rackage and he is far less likely to misinterpret any of the graphical routines.
References are given and relevant further reading material is recommended in
yrder to expand the reader’s horizons in the subject.

't is assumed that the reader has an elementary knowledge of Cartesian
coordinate geometry (the authors recommend the books detailed in Cohn
1961), Coxeter (1974), and McCrae (1953) - see References}, and also of the
3ASIC programming language (see the Spectrum BASIC Handbook (Vickers
'1982) and Hurley (1982)). Many interesting programming exercises are proposed,
and these should raise the standard of the reader’s BASIC expertisc. BASIC is a
aniversally popular language, available (in various guises) on all types of micro-
computer, so the programs may be easily adjusted to run on machines other

L

Preface

‘han the Spectrum: it is also a good medium for transmitting the algorithims
1sed in computer graphics, enabling readers to translate these ideas readily
into any other computer language of their choice.

“he concents necessary for the study of computer graphics are organised as
i combination of theorv and worked examples; these are introduced as and
vhen needed in the natural progression of the subject, Some program listings
orm part of the examples and these should not be considered just as algorithms
‘hat describe solutions to fundamental graphical problems, but also asa computer
sraphics software package in BASIC, or simply as programs to draw patterns,
Alongside the examples are a series of exercises that expand these ideas. The
nractical problems implicit in programming the various concepts of computer
sraphics are often more a source of difficuity to the student than the concepts
hemselves. Therefore it is essential that readers implement many of the program
istings given in the book in order to understand the algorithms, as well as
sttempt a large number of exercises. As an extra learning aid, arcompanion audio-
-assette tape is being made available; this contains most of the larger program
istings given in this book. If readers are nervous of the mathematics, they should

run the programs first before studying the theory.

his anproach to the subject has been used with great success in teaching
omputer graphics to undergraduates and postgraduates at Royal Holloway
~ollege. Quickly producing apparently compiex pictures results in the positive
eedback of enthusiastic interest. The ability to construct pictures on line-
irawing and colour interactive graphics screens makes a long-lasting impression
on students: and the step-by-step approach brings them very quickly to the
level of very sophisticated computer graphics. That level is outside the scope
ot this book. but where necessary readers will find relevant references to guide
them into the more advanced topics.

"his book is aimed at those who are competent BASIC programmers but
omplete beginners in graphics. It contains the elementary ideas and basic infos-
nation about pixel and two-dimensional graphics, which must be mastered
efore attempting the more invelved ideas of character and three-dimensional
rraphics. This is followed by a section relating to character graphics and the
iisplay of data (in line drawings and colour) - probably the most important
1on-speciaiised, commercial use of computer graphics. Later chapters introduce
he reader to the geometry of three-dimensional space, and to a variety of
wrojections of this space on to the two-dimensional space of graphics devices.
"'he related problems of hidden lines and hidden surfaces, as well as the con-
itruction of complex three-dimensional objects, are dealt with in detail. Finally,
we return to advanced ideas in BASIC programming and a large worked example
>t 4 video game.

sraphics is one of the most rapidly expanding areas of computer science. It
s being used more and more in the fields of Computer Aided Design (CAD},
‘omputer Assisted Management {CAM) and Computer Assisted Learning (CAL).
it one time it was only the big corporations such as aircraft and automobile

Preface xi

nanuracturers that used these technigues, but now most companies are realising
the potential and financial savings of these ideas. What is more, not only is
:omputer graphics profitable, it’s fun! The Sinclair Spectrum is an ideal machine
n wnich to learn the basics of computer graphics, and an excellen{ springboard
to the most sophisticated (and expensive} graphics devices.

We hope this book will display some of the excitement and enthusiasm for
-oimputer graphics experienced by us, our colleagues and students, To demon-
strate ust how useful computer drawings are for illustrating books and pam-
wnlets, all the pictures here were drawn by computer specifically for this book.

‘ntroduction

T'his book may be read at a number of different levels. Firstly, it can be considered
is a recipe book of graphics programs for those who simply want to draw
complex pictures with their Spectrum. We naturally hope that the reader, having
irawn these ligures, will be inspired to delve deeper into the book in order to
understand how and why the programs were constructed. Secondly, some of the
programs may pe used as a package to produce and label data diagrams (pie-charlts,
1istograms and graphs) for business and laboratory use. Finally, and the main
eason for writing the book, it is an introductory text to computer graphics,
vhich leads the reader from the elementary notions of the subject through to
uch advanced topics as character graphics, construction of three-dimensional
oiects and hidden line (and surface) algorithms,

"he complex programs later in the book are much too involved to be given as
: singie listing. Furthermore we will see a great deal of repetition in the use of
:lementary algorithms. Therefore we use the top down or modular approach in
vriting and explaining programs, The solution to each major graphics problem is
-onceived as a series of solutions to subproblems, These subproblems may be
urther broken down into a set of problems to be solved (modules). These
noaules will be programmed in the form of BASIC subroutines. Each is given an
identifier {in lower case characters) and will solve a particular subtask. Then the
totality of submodules combine to solve the required graphics problem. Because
he program listings are used to represent algorithms for the solution of these
subtasks, we decided in general not to use statements like GO SUB 6000, We
orefer instead to assign the subroutine identifier to the address value at the
seginning of the routine (for example, LET scene3 = 6000} and thus we can
vrite staternents like (O SUB scene 3. We use lower case for subroutine identifiers
and groupings of routines in the text) only: all other program variables will be
n upper case to avoid confusion,

ipectrum BASIC does not have the facility of passing parameters into routines.
falues of input parameters have to be set in assignment statements outside the
outing_ and the names of output parameters must be known if sensihle use is to
e made of the routine. This can be rather inconvenient if vou are using someone
1se’s package of routines. It is essential that users know the names of the input
ind cutput parameters; therefore in our routines we use the REMarks IN: (to
dentifv the INput parameters) and OUT: (for the OUTput parameters). We
wumner our programs so that all program statements are on lines ending in O,

Advanced Graphics with the Sinclagir ZX Spectrum

ana REMarks on lines ending in 1 to 9 (except the naming of routines). The IN:
and OUT: REMarks {ollow directly the naming REMark on lines ending in 1 and
2 respectively. Also the cassette tape listings of programs use character codes (o
righlight and colour various REMarks (see chapter 13). In cases where we think
hat the word REM detracts from readability of a line we use these codes to
nake it invisible. We have minimised the REMarks on the cassette so that we can
sack the maximum amount of program listing on to the tape. It is a good idea to
expand these listings by adding the complete REMarks, and SAVE them on your
awn tapes.

i“or those who want only to run our programs, we give a list of complete
yrograms at the end of each chapter together with suitable data values. In fact
.t i a good idea for all, including the serious readers, to SAVE the routines on
tape before approaching each chapter. They can then LOAD, MERGE and RUN
he programs as they occur in the text. The cassette tape available to accompany
he text contains all the larger listings in the book, as well as BYTE data for
iiagrams and character sets used in later programs {which would otherwise have
o be constructed by readers themselves, a rather time-consuming process), Our
routines were written for the 48K Spectrum: if you have a 16K machine vou
nould read appendix A and note the changes that need to be made,

ys an example of what to expect, we give below the program required to
iraw figure 1.1, a line drawing of a body of revolution in which all the hidden
\ines have been suppressed. This will work on both types of machine,

dgure .1

“he program requires the MERG(E)ing of listings 2.1 {start’), 2.2 (two
‘unctions FN X and FN Y), 2.3 (*setorigin’), 2.4 (‘moveto’) and 3.3 (“clip” and
lineto’). This combination of routines will be called ‘lib1’, and it was designed
or drawing line figures on the television screen.

"0 ‘lib1’ must be added listings 3.4 ("fangle™), 8.1 {*‘mult3’ and ‘idR37), 8.2
“tran3’), 8.3 (‘scale3”), 8.4 (‘rot3”), 9.1 (‘look3’) and 9.2 {(*main program”).

ritroduction 3

Routines, which when combined we call ‘lib3’, are used for transforming and
ybserving objects in three-dimensional space.

Ve need also listing 10.3 (‘revbod’) as well as the ‘scene3’ routine given in
isting 1.1 below.

Jdsting I.1

S8R REM scene3/flying saucer

BB DIM X123 nIM Y123

PeE@ DIM SCEY: DIM TiA)

W30 DIM ACE,A3: DIM BL4,4): DIM RU4,4)

048 DATA B3, 3,2, 5,1, 5.8, &.-1, B,-3
@58 RESTORE scene3

@58 LET revbod = 6580

@65 REM create object.

W@7A LET NUMY = 5

@80 INPUT "NUMBLCR OF HORIZONTAL LINES",NUMH
WS INFUT "ANGLE PHI '';PHI

IBD FOR I = 1 TO NUMY + 1: READ SCID, T(I): NEXT T
189 REM position the observera

118 G0 SUB idR3: GO SUB Look3

129 REM draw ohject,

128 GO SUB revbod

1120 RETURN

‘igure 1.1 requires the data HORIZ =12, VERT =8, EX=1,EY =2, EZ =3,
)X =0.DY =0,DZ =0, NUMH = 16 and PHI = 0, Each value has to be typed in
'ndividually on request by the machine. The picture will take about 5 minutes to
iraw . so be patient, Run the program with different data values, What happens if
1ORIZ = 6 and VERT = 4. and the other values stay the same? Set HORIZ = 135,
TERT=10,EX=1,EY=-2 EZ=3,DX=1,DY=0and DZ=0. Try
NUMH = 20_ PHI = 0.1. You will have to read up to and including chapter 10
o understand the details of what is happening.

“his example illustrates the reasoning behind the layout of this book. Assum-
ng that you are a fast typist, or that you have bought the accompanying tape,
nen a relativelv complex three-dimensional picture can be constructed very
1ickly with a minimum of fuss. Even one-finger typists (like the authors) wiil
1ave little difficulty in implementing this and the other programs, before they
0 On to study the book in detail.

¥e hope that this example will inspire you to implement all the programs in
his book, to try most of the examples, and then to go on to draw your very
YWI COTPULET graphics pictures.

Now vou can read the rest of our book and we wish you many happy hours
with vour Spectrum.

Graphics Operations of the ZX
Spectrum

“hroughout the course of this book we will be assuming that the reader is reason-
iblv familiar with the BASIC programming language on the ZX Spectrum. In

his chapter, however, we shall be looking at some of the BASIC commands —
hose concerned whollv or partly with graphics. With a series of example programs
ina simple exercises we shall examine and explore the Spectrum’s capabilities.

0 the chapters that follow we shall use this knowledge to develop a sound
inaerstanding, both practical and mathematical, of computer graphics.

Initially we shall consider the hardware and software facilities available for
sroducing pictures. All microcomputers that produce television pictures generate
heir graphical display using RASTER SCAN technology. This is also true of
nost of the newer commercial mini and main-frame computers. Anarea of memory
s reserved to hold the display information for the screen and this is examined,
1it by bit, as the electron beam sweeps across the raster screen. The display is
:omposed of points, each of which is represented by a single bit (a binary on/oif
witch) in the memory. in the simplest case the beam is switched on for a short
nertod each time a binary on is found, thus preducing a point of light on the
£Lreen,

’APER and INK

)n the Spectrum we are given two commands; these directly control the way
‘hat the points are displayed. This affects the picture, which is made up of INK
iots (binary ons) on a PAPER background (binary offs). The commands, named
’APER and INK (naturally}), are called by using the name followed by a number
N(ON<9),

'APER N sets the background colour of the picture. After this staternent is
rxecuted, all newly generated binary offs in the memory will be displayed in
oiour N (that is. until another PAPER command is executed).

NK N sets the points of light corresponding to binary ons to colour Nin a
amilar way,

“he number N. when in the range 0 to 7, represents the colour printed above
he corresponding numeric key on the keyboard. [f N is 8, then the colour

) Advanced Graphics with the Sinclair ZX Spectrum

sreviousiy set for an area is used. If N is 9, then the colour of PAPER/INK is

et to either black or white and will contrast with the other INK/PAPER colour
:urrently in use, In general, black INK on white PAPER is clearest, as is obvious
rom any book, and this is the normal setting the for Spectrum.

Jisplay File

This type of picture is referred to as a memory-mapped display since it corres-
onas directly to the contents of an area of memory. On the Spectrum this part
f the memory is known as the display file and starts at location 16384, A simple
:xploration of how the display is affected by changing the contents of the
nemory can be made with a program such as listing 1.1.

Listing 1.1

‘M LET CORMER = 16384
'@ LET VALUE = 137

‘@ POKE CORNER,VALLUF
@ STOP

"his program uses POKE to store a VALUE (entered as a decimal) in the first
ocation of the display file. This location holds the information for the top left-
1and CORNER of the screen. Since each location, or byte, contains eight binary
dits. the first eight points on the display are affected. These change to show a
attern equivalent to the binary representation of the VALUE: in this case
10001001,

Fxercise 1.1
i) Experiment with different VALUEs and change the program either to,
a) use BIN (binary) representation for VALUE, or to
b) use a FOR. . NEXT loop to change VALUE.
ii) Use the PAPER and INK commands to change the background and fore-
rround colours and then re-run the program to see what difference this makes.

B0ORDER
N¥hen the PAPER colour is changed it soon becomes obvious that we cannot
vtite on the whole of the screen. A BORDER is left around the edge of the
PAPER to avoid the distortion at the edge of the screen suffered by all television
aisplays. The colour of this BORDER can be changed, in a similar way to the
?APER and INK colours, by the command

30RDERN

vhere N is in the range O to 7 and indicates the new BORDER colour,

sraphics Operations of the £ZX Spectrum 7

Character Blocks

y complete picture can be built up by storing various VALUEs at locations in
he display memory in a similar way to listing 1.1. For instance, we could store
he eight VALUEs 0, 98, 148, 136, 136, 136, 148, 98 in the display-file loca-
ions that represent the start of eight consecutive lines on the screen (see listing
2). We sge the pattern of INK dots corresponding to the ‘ones’ shown in
igure 1.1.

28 064 32 16 8 4 2 |

YO000000 = = 0
91100010 = 64 + 32 + 2 = 98
0010100 =128 +16 + 4 = 148
0001000 = 128 +8 =136
0001000 =128 + 8 =136
0001000 =128 + 8 =136
10010100 =128 +16 + 4 =148
01100010 = 64 + 32 +2 = 98
deure 1.1

"his is the wav in which characters are defined (and redefined) on the
pectrum, but we shall leave further investigation of this until chapter 5. Never-
heless it does illustrate that a picture, even as small as this, takes time to prepare
ind requires a comparatively complicated program to produce the display.

dsting 1.2

M LFT CORNER = “63E4

'@ LET LINE = 256

® DATA B.58,148,136,136,136,148,98
@ FOR I =0 T0 7

@ LET MEMORY = CORNER + I*LINS

@ READ WALUFE

B FOKE MEMORY,VALUE

@ NEXT 1

P STOP

PLOT and DRAW

Ve have seen how the screen display can be changed by storing different values
n the display file. But there are over six thousand locations in the display file
ind changing each of these individually would be quite tedious. We obviously
need a more effective method of changing the display.

3ASIC provides us with graphics commands to deal with this problem, the
ampiest of which are PLOT and DRAW. All the graphics commands treat the
aisplay as a grid of 256 points horizontally by 176 points vertically (45056 in
total). These points are known as pixels and are individually identified by a pair

et

Advanced Graphics with the Sinclagir ZX Spectrum

T integers. The graphics commands help in constructing pictures by allowing us
o control a graphics pen, which is initially positioned over pixel (0, 0). We can
now explain these commands,

'LOT X. Y moves our pen to pixel (X, Y)and plots an INK point there,
JRAW XY draws a line from our pen’s current position to the point, X
pixels away horizontally and Y pixels away vertically, If X is negative, the point

will be to the left and if X is positive, it will be to the right. Similarly il Y is
iegative, the point will be below our old position, or if Y is positive, above,

After the execution of these commands. the pen remains over the last pixel (o
e visited. awaiting the next command. Before examining the other more advanced
graphics commands, we shall first see what is possible using only lines and/or
potnts.

Ve are now in a position to draw large-scale pictures on the screen. For
nstance, we can draw a box around that area of screen available for graphics
(listing 1 3),

Listing 1.3

@ PLOT @,175

'@ PLOT 255,175

@ PLOT 255,82

@ PLOT Q.8

@ IF INKEYS <>"" THEEW GO TO 59
60 IF INKEY$ = "' THEHN GO TO &
B DRAW @175

30 DRAW 255,08

o bRAW B,-175

‘DD DRAW -255,0

1@ STOP

his program first PLOTSs points at the corners of the PAPER; it then waits

intil a key is pressed before joining them up by DRAWing lines around the
roundary of the PAPER, On comparing the PLOT and DRAW commands we see
hat there is an important difference in the way they work: the PLOT command
1ses the absolute pixel coordinates, whereas the DRAW command uses the
efative positions of the points. This means that, in order to draw a line segment
netween two pixel points on the screen, it is first necessary to use PLOT to
move the graphics pen to the point at one end of a line segment, then work cut
he position of the second end point relative to the first, before finally the line
may be DRAWn. Note that in listing 1.3 all the points are decided before the

program is run. in general, points are more likely to be INPUT, READ or
calculated while the program is running.

“xercise 1.2
Write a program that calculates the position of lines to draw a grid, DRAW them

using two FOR. . NEXT loops (one for harizontal lines, the other for vertical
lines).

wxercise 1.3

eraphics Operations of the ZX Spectrum

¥rite a vrogram that accepts N pairs of pixel coordinates as INPUT from the
<evboard, and then DRAWSs an irregular polygon of N sides by joining the points
n order. { This requires some careful thought since the first point must be joined

0 the last.)

RINT and LIST

;0 far we have not discussed the most obvious method of changing the displayv,
1amely using the PRINT and LIST commands. This is because these commands
use character-size blocks and are designed primarily for use with low-resolution
rraphics, This topic will be dealt with in chapter 5 but, since the Spectrum allows
1igh-resolution and low-resolution graphics to be freely intermixed, we give a
matl examole here. Suppose we add the line

C LIST

0 the start of the program [or exercise 1.2, and then set the program to draw a
rr1d of 32 vertical lines and 22 horizontal lines. We get a display similar to figure

2. which shows the size and position of the character blocks.

=118 J g L \
10 < LITHERS=E2 EELEERER®
al i) T‘ -,,' I 1 :5 = P -1t l
&) u ET] MLVIF=EEE LD 3 7
B A 1A Shd St e b3
4% H Nl Tl LLPE
= EDT DF- - ¢ 5 i
o ©F Il = == =1) :
=i IE=IT] b =
= Q| ik Tl IEEE TE
%] Tl i E.T “’\. A B
= I . =
=1 - -\: l =
S ol]
EEaEn
‘igure 1.2

Ve can use the PLOT command to demonstrate the high-resolution capabili-

ies of the Spectrum by drawing fractals (see Mandelbrot, 1977).

0 draw a simple fractal we follow this routine, Imagine a square with sides
T length 4", This may be divided into 16 smaller squares, each with sides of

{ Advanced Graphics with the Sinclair ZX Spectrum

length 4" 7! which we number 1 to 16 as in figure 1.3. Four of these smaller
squares, numbers 2, 8, 9 and 15, are rearranged to produce figure 1.4,

131141516

9lidjl1i1]12

dgure 1.3

19|11} 1=2 (=]

[

‘dgure 1.4

“ach of the squaresin the pattern is now split up into 16 even smaller squares,
in the same way, and these are similarly rearranged. We repeat this process until
ve have sauares with sides of length 1. The resulting fractal pattern consists
ntirely of unit squares, which we can PLOT as single pixels. The program in
isting 1.4 starts from a square with sides of length 64, which is 4* ; thus in the
program there must be three FOR. . NEXT loops nested inside each other, The
‘inal picture produced is shown in figure 1.5.

sraphics Operations of the ZX Spectrum 11

Listing 1.4
'@ DIM X(16): DIM Y(16)

B FOR I =1 TO &
A FOR J = 1 TO &
@ LET K = 4% + | = &
B LET ¥(¥> = J = 3: LET Y{KI)=I - 3
@ MEXT J: NEXT I
i@ LET %{2) = @: LET ¥(2)} = -3
W@ LET %(8) = 2: LET ¥(8 = @
@ LET X{9) = =3: LET Y(9) = -1
B0 LET X(15) = =1: LET ¥(15) = ¢
118 FCR I = 1 TO 16
2R OFCR . =1 TO 14
3B FOR E =1 TO 14
LB LET X¥ = 16%XC1) + 4*X{J) + X(K}

PS5O LET XY = T6%Y{L) + &»¥({J)} + Y{K}
B@ PLOT 1284XK,88+YY

7@ NEXT Kz WEXT J: MEXT I

‘B@ sTOP

‘dgure 1.5

NVERSE and OVER

Ne shall now consider the options that affect the way in which lines and points
ire placed on the screen. There are two commands, and to use them we must
:nter the command name followed by a number. The number is 1 to turn the
:tfect on. and O to turn it off again,

NVERSE: while this effect is on, all lines or points will be draw in the
rackground (PAPER) colour. That is, the binary switches will be turned off
nstead of on.

JVER: while this effect is on. any pixel affected by a graphics command will
se flipped to its opposite state, Any pixel of INK is changed to the PAPER
:olour, and vice versa. That is, the binary switch for the pixel is flipped over to
he other position.

Jsing these commands we can produce programs that generate seemingly
compiex patterns and rapidly changing displays. Listing 1.5 gives a program that
combines two methods of creating complicated patterns from very simple
nstructions.

2 Advanced Graphics with the Sinclair £ZX Spectrum

Asting 1.5
'® OVER 1
@ LET LINES = 40D
@ LET A = @: LET ANGLE = 2*PI/LINES
@ FOR I = 1 TO LINES
@ LET X = 85%(0S A
@ LET ¥ = 85#SIN A
B PLOT 125,88
@ DRAW X, Y
B LET A= A + ANGLE
@8 NEXT I
18 CVER @
‘28 sToO®

On a display composed of discrete points (pixels), angled lines will be drawn
i1s a series of short, horizontal or vertical steps, When two such lines are drawn
lose together at slightly different angles, many of the steps on the lines will
werlap. Consider figure 1.6, drawn by listing 1.5, The lines that form the central
:rea overlap each other many times and so this area would be a mass of black
vere OVER not used. With OVER on, those pixels that lie on an odd number of
ines are switched on, whereas the others remain off. This produces the striking
nattern at the centre of the figure. On the other hand the outer area of the
naitern is produced by holes, left by the line steps, of pixels not lying on any
ine.

txercise 1.4
Alter listing 1.5 to INPUT the value of LINES and also te INPUT a string variable,
ndicating whether or not the OVER option is to be used. Use this program to

:xpiore the parts played by OVER and by the steps on adjacent lines as LINES
s varied.

(rraphics Operations of the ZX Spectrum 13

The repeated use of random numbers to produce a variety of rapidly changing
zrapnical displays has been a favourite device for attracting attention to com-
puters. Listing 1.6 shows one simple illustration of this method using RND and
WER to place pixels at random about the screen,

Jsting 1.6

‘B OVER 1

B LET X = INT (RND#*Z2543
‘B LET ¥ = IMT (RND*174}
@ PLOT X,Y

@ BEEP B.@5,¢(X - Y)/1D
B 6o TO0 2@

“xercise 1.5
vter listing 1.6 to DRAW lines, either between the random points as they are
senerated, or from the centre of the screen (128, 88) to each point.

n the above exercise we saw that the OVER option ensured that the display
-hanged with each command, even if the same command was repeated, for
:xampie, by DRAWing the same point, or line, The OVER option may be used
n this way to display an object bricfly — by drawing it twice, once to put it on
he screen and again to take it off. Listing 1.7 moves a point around the screen
v PLOTting it at its new position and immediately PLOTting its last position
iwain Lo remove the old point.

dsting 1.7

A GVER ": PAPER B: INK 7: BORDER &: CLS

@ LET SFEED = 2

B LET ¥ = @: LET Y = @

@ LET XADD = SPEED: LZT YADD = SPEED

@ PLOT X,

@ LET GiLbX = X: LET CLGY = ¥

% LET X = X + XALD

W IF X > 255 — SPEED OR 4 < SPEED THEN LET XADD = ~XACLD
@ LET ¥ = Y + YALD

@6 IF ¥ > 174 - SPEED OR ¥ < SPEED THEN LET YABD = —YALD

1@ FLOT X, ¥

20 PLOT OLDX,OLDY

30 GO TO 60

Ve can extend this program to allow keyboard control of the moving point
listing 1.8). The lower case letters about “f enable the point to move in eight
.eparate directions under our control. If a “p™ is typed then the point leaves a
railling line that shows its past movements: if a *“q” is typed then the point
-eases 10 leave a trail.

4 Advanced Graphics with the Sinclair ZX Spectrum

“his type of animation is an important and commonly used technique, We
cnall use it extensively, both in programs like the game in chapter 14, and in
nrograms dike the ‘cursor’ routine in chapter 6,

asting 1.8

B OVER 1

‘B LET X =0: LET V1 =@

B PLOT X,¥

@ LET OLDX = X: LET OLDY = ¥

@ LET XADD = @: LET YADD =

W LET A% = INKEY$: IF A% = """ THEN GO TO 6@

f IF A% = "p" THEN OVER @

@ IF AT = '"g" THEN OVER 1

A IF (A = """ OR A% = “d" OR A% = "c") AND X > @ THEN LET XAcD = =1
@B IF (A% = "c" OR A% = "v" OR A% = “b") AND Y > B THEN LET YADD = -1
10 IF (A%$ = "t" OR A% = "g" OR AS = "b") AND X < 255 THEN LET XADD = 1
120 IF (A% = "e" OR AS = "r" OR A$ = "t") AND Y < 175 THEN LET YADD = 1
{30 IF XADD = @ AND YADD = @ THEN GC TO 60

4G LET X = X + XADD: LET Y = ¥ + YADD
iS@ PLOT X,Y
{60 PLOT OLDX,0LDY
YR GO TO AQ

¥e can achieve large-scale animation by using lines to extend or contract a
notygonal area. Listing 1.9 uses this method together with the INVERSE com-
nand to form a fast zoom effect.

Asting 1.9

9
ET ACROSS = 255
Yy =2

LET I = @: INK
LET UP = 175: L
LET X = @: LET
LET DIF =
INVERSE I
FLOT X,Y
CRAW P,UP: DRAW ACROSS,®

3@ PLOT X, ¥

9@ DRAW ACROSS,B: DRAW B,UP

@D LET X = X + DIF: LET ¥ = ¥ + OIF
11 LET UP = UP - 2 * DIF

2@ LET ACROSS = ACROSS = 2 *® DIF
139 IF UP < 0 OR UP = 175 THEN LET DIF = -DIF:z LET 1 =1 ~ I
140 IF UP = 175 THEN PAPER RND*7: CLS

'S@ 6C TO 5@

1

aoEEEE=

“xercise 1.6

Draw a solid square composed of 40 by 40 pixels. Move this area about the
.creen under keyboard control. Note that you need change only the edges of the
;quare.

sraphics Operations of the ZX Spectrum {5

“LASH and BRIGHT
Javing seen what is possible in black and white, we shall now turn our attention
o colour. The Spectrum can have all the colours on the screen at once, but
nside cach character block there can be only two colours, PAPER and INK.
"hese colours may be BRIGHT and/or FLASHing; also, special effects like
WER and INVERSE can be turned on or off in the same way,

‘LASH: when FLASH is set for a given block, the colours within that block
viil alternate between INK on PAPER and PAPER on INK.

3JRIGHT: blocks with BRIGHT set will show both PAPER and INK at
increased BRIGHTness. This has the effect of making non-BRIGHT blocks look
larker.

"LASH and BRIGHT can also be set to 8. so that the pre-existing setting for
1 block is unchanged by PRINT.

stiributes

'he current combinations of FLASH. BRIGHT, PAPER and INK colours for
rach character block are stored in memory in the az#ribute file. This contains

me iocation for each of the character blocks: it is located in memory immediately
iTter the display file, and starts at location 22528, We can use listing 1.10, a
noaitied version of listing 1.1, to alter these values directly, as we did with the
lisplay file.

Listing 1.10

‘D LET CORMER = 2252B

@ INPUT "WALUE = BIN '"; LIMNE V3
@ LET VALUE = VAL ("BIN " + ¥$)
Y3 PRINT AT @.0;"s"

“} POKE CORNER,VALUE

@ G0 TO 2B

txercise 1.7

Ise the program from listing 1.10 to alter individual bits within the VALUE
;tored in the first location of the attribute file.

"his VALUFE affects the whole of the first character block by indicating for
points in that block whether FLASH and BRIGHT are on or off, and what
APER and INK colours are used. These pieces of information make up a
iINarv number in the following manner

‘LASH — 0O or 1: BRIGHT — 0O or 1; PAPER — 000 to 111;INK — 000 to 111

I hus we can calculate the meaning of a value in the attribute file in the way
:nown in figure 1.7.

6 Advanced Graphics with .the Sinclair ZX Spectrum

‘LASH BRIGHT PAPER INK

Normal settings = 1 0 5 2

BINarv equivalent = 1 0 161 010

BIN 10101010 = 128B+32+8+2 =170
‘dgure 1.7

"he above example is the attribute for FLASHing, non-BRIGHT, cyan
PAPER and red INK. The attribute value for any character block can be found
1sing the function ATTR (ROW, COLUMN), The ROW and COLUMN para-
neters specity the position of the block by counting the number of ROWs
1own from the top line and the number of COLUMNS across from the left edge.
'hese are the same parameters we use to PRINT AT a character block. So it is
'asv to write a program that changes the attributes of blocks at random (see
isting 1.11). This has the same effect as randomly POK(E)ing values into the
ittribute file (see page 117 of the Spectrum BASIC Handbook (Vickers, 1982)).

isting 1.11

FLASH INT (RND*2)

BRIGHT INT (RND*2)

PAPER INT (RND*8)

INK INT (RND*8)

LET ROW = INT (RND*22): LET COL = INT (RND*32)
PRINT AT ROW,COL;"=%"

BEEP @.@2,RND*B

G0 TC 1@

B EE =

:xercise 1.8

vModify the above program so that it changes just one character block to a
andom attribute setting, and then calculates and displays the FLASH, BRIGHT,
"APER and INK settings from the ATTR function.

For convenience we can use table 1.1 to convert between attribute file value
ind the attribute settings,

“able 1.1 Adltribute Conversion

'APER INK MODE

Black Blue Red Magneta Green Yellow Cyan White

Black 0] 2 3 4+ - 6 7 NORMAL
¥ 65 66 67 63 69 70 71 BRIGHT
128 129 130 131 132 133 134 135 FLASH
92 193 194 195 196 197 198 199 BRIGHT
+ FLASH

3lue

2ed

vlagenta

ireen

'yan

“ellow

White

o

8
2
6
0

24

3
]

52

216

32

160
24

40
04
68

’32

49
12
76

40

56

~
Fa

| 84
48

9
73
137
201

17
81
145
209

25
89
153
21

33
97
161
2235

41
105
169
233

49
113
177
241

57
121
185
249

rraphics Operations of the ZX Spectrum

10
74
138
202

18
82
146
210

26
90
154
218

34
98
162
226

42
106
170
234

50
114
178
242

58
122
186
230

11
753
139
203

19
83
147
211

35
99
163
227

43
107
171
235

51
115
179
243

12
76
140
204

20
84
148
212

28
92
156

220

36
100
164
228

44
108
1l
236

52
116
180
244

60
124
188
252

13
T
141
205

21
835
149
213

45
109
173

237

53
117
181
245

61
125
189
233

14
78
142
206

22
86
150
214

30
94
158

22

38
102
166
230

46
110
174
238

54
118
182
246

62
126
190

234

15
79
143
207

23
R7
151
215

47
111
|
239

2
119
183
247

63
127
191
255

7

NORMAL
BRIGHT
FLASH
BRIGHT
FLASH

NORMAL
BRIGHT
FLASH
BRIGHT

- FLASH

NORMAL
BRIGHT
FLASH
BRIGHT
+ FLASII

NORMAL
BRIGHT
FLASH
BRIGHT
+ FLASH

NORMAL
BRIGHT
FLASH

BRIGHT
+ FLASH

NORMAL
BRIGHT
FLASH
BRIGHT
FLASH

NORMAL
BRIGHT
FLASH
BRIGHT

+ FLASH

8 Advanced Graphics with the Sinclair ZX Spectrum

¥e can think of each pixel on a colour television screen as three dots of light

sacked closely together at the vertices of an equilateral triangle. For each pixel
there is one red, one blue and one green dot, and the attribute-file locations are
used to control the illumination of the three different cotours, The display file
#1il indicate that a given pixel is to be plotted in a particular INK colour. The
‘owest three bits {bits 0 to 2) of the attribute value for the block containing that
sxet are used to decide whether the green, red and blue dots of that pixel are
n or otf. Qur eyes contain only three types of colour sensor (green, red and
slue). Our brain takes the signals from the three dots and combines them into a
angie dot of composite colour. So if the last three bits of the attribute are 111,
:guivalent to colour 7, we get green, plus red, plus blue. This corresponds to
“white light or white INK, The other colour codes, when written in binary form,
-an be translated in this way (see figure 1.8).

‘olour Number Binary [lluminated Dots

Hack 0 000

dlue 1 001 Blue

Red 2 010 Red

Magenta 3 011 Red + Blue

Jreen 4 100 Green

_yan 5 101 Green + Blue

"ellow 6 110 Green + Red

White i) 111 Green + Red + Blue
dgure 1.8

Yhen a PAPLER-coloured pixel is to be illuminated, the three bits of the
ittribute corresponding to the PAPER colour (bits 3 to 5) are decoded in
:xactly the same way. Bit 6 in the attribute indicates whether BRIGHT is on or
101. and is used to control the brightness at which all the dots will be illuminated.
¥hen an attribute has the FLASH bit set (bit 7), the colours corresponding to
NK and PAPER will be alternated. The speed of alternation (that is, the FLASH-
ng) depends on an internal value in the computer: on the Spectrum it changes
ipout every one-third of a second.

n general, we may safely use two colours for high-resofution graphics, but
yeware! No more than two colours may occur in one character block at any one
ime . Subiect to this proviso, full-colour high-resolution graphics may be achieved.

‘xercise 1.9

‘xperiment with different colours using the programs in this chapter, Certain
:olour combinations can be just too much for a normal television set to cope
vith. Unless you are using an expensive monitor instead ol a television screen, a
:ombination of clashing colours for the program in listing 1.5 should produce a

rathar interecting affect af waveas waching s eraee tHe enroon

raphics Operations of the ZX Spectrum 19

Simple Animation

¥e can produce more animated effects in low resolution by using colours and
‘LASH. Listing 1.12 shows some interesting techniques of colour animation.
The first part of the program is particularly useful because the display needs no
naintenance once set up. The boundary of the picture is a sequence of blocks
:omposed of alternative blocks of FLASHing red PAPER and cyan INK, and
“LASHing cyan PAPER and red INK. On seeing this our brains are tricked into

oelieving that the red and cyan colours are moving around the boundary
sequence,

Jdsting 1.12

Pe B S B e

i
]
il]
il
20
130

5B
Y
\Té

FOR I =8 T0 1

FOR 4 = @ TO 15

FRINT AT @.2%J + I;" "
PRINT AT 21,2%4 + 1 - I;" "
NEXT

FOR J = @ TO 1€

PRINT AT 2%J + I,@;" "
PRINT AT 2%J + 1 - I,31;" "
NEXT

PAPER 5: INK 2

NEXT I

FLASH @: LET P = @

FOR 1 =1 To 2@

PRINT AT I.1; PAPER P;"

FLASH T: PAPER 2: INK 5

LET P=P+ 1: 1F P =7 THEMN LET P

NEXT I
GO TO 1449

xercise 1,10

=

¥rite low-resolution colour versions of the bouncing point program and the
yther animation programs. In your programs move character blocks instead of

a

nxeis around the screen.

ZIRCLE and DRAW

"he Spectrum has two further built-in high-resolution graphics commands that

ve have not yet examined: the CIRCLE command and the DRAW command for
‘urved lines.

IRCLE X, Y, R draws a CIRCLE of radium R pixels centred on pixel (X,

Y). It is important to remember that after obeying this command our graphics
sen 1s ieft at a pixel on the right-hand side of the CIRCLE, just below the centre.

0 Advanced Graphics with the Sinclair ZX Spectrim

DRAWX. Y, A DRAWs a curved line from the current position to the
elative position X, Y, while turning through an angle A . This curved line will be

an arc of a CTRCLE. The angle through which the line turns is specified in radians
and may be between - Pl and PI.

isting 1.13 demonstrates the use of these commands by producing the
tisplay shown in figure 1.9,

‘igure 1.9

dgure 1. 10

(rraphics Operations of the ZX Spectrum 21

isting 1.13

12

CIRCLE 128,88,8@: LET h =
= 2%F1/N

LET & = @: LET ADIF
FOR 1 =1 TON

FLOT 128,88

LET ¥ = &4@#+L0GS A @ LET ¥ = 4@+SIN A
DRAW X.Y,~PI: DRAW X,Y,PI

LET A =A + ADIF

NEXT I

BmaE Do

sxercise 1.11
Figure 1.10 shows the traditional Celtic pattern known as a triskele. Write a
yrogram to draw this type of pattem,

Colours within a Character Block
The use of different INK colours for high-resolution graphics can cause problems
ind produce results that are calculable but usually unforeseen. Run the program

in listing 1.14. It will show just how easily things can go wrong when more than
wo colours are used without careful planning.

Listing 1.14

P PARER S: IMNK 7: CLS

P FOR I =@ TO 175 STEFR &
B FLOT B.I: DRAW 2558

A MEXT I

B OINK E

@ CIRCLE 125,882,080

& 5ToP

“his problem can be used to our advantage. We can produce rapidly changing,
ina complicated, low-resolution colour displays. Initially we PRINT solid INK
ylocks at specified positions on the screen. Any line drawn subsequently will
:nange the colour of the low-resolution blocks through which it passes. The
mpressive speed of this technique can be seen by running the program given in
isting 1.15.

Listing 1.15

INK 7: CLS

FOR * = 1 T0 7Dh: FRINT "B";: NEXT I

LET DIST = 8@: LET I = B: LET © = &

INK I

FLOT 128,86 + LIST: CRAW DIST,—-DIST: CDRAW —CIET,—DIST

FLOT 127,86 - LIST: DRAW -GIST,DIST: CRAW DIST,DIST

LET DIST = DIST - D: IF DIST = @ OR DIST = B@ THEN LET B = - D
LET I = I+ 1: 1IF 1 =8 THEN LET 1 =0

GO TO 40

S R

72 Advanced Graphics with the Sinclair ZX Spectrum
A Simple Game

¥e now include a small game program (listing 1.16) as a final example of the use
of the technigues discussed in this chapter. A worm can move in character block
iteps about the screen, horizontally or vertically, under control of the keyboard.
"he aim of the game is for the worm to eat the money (or target), The worm gets
onger whenever it cats the target, If at any time the head of the worm runs
1cadiong into the boundary, or into its own body, then the worm dies. After ten
wuccesstul meals the worm returns to its original size, with a fanfare. The game
hen continues.

" his game was developed using modular, structured methods preferred by
yrogrammers. hese methods help to produce quickly a working and understand-
ible program. Put simply, we must approach the program as a series of small
tasks that build up block by block into the completed program. IFor this pame
these tasks were tentatively defined as

. Initialise variables

Set up board

Control game

). Undate and print score

a1 - - B

From this overview of the problems we can set about solving each problem or, if
1ecessary, spiit them into yet smaller, more manageable problems. For example,
ask C above could be split into

. Generate target
1. Use kevhboard to change direction of worm
. Move worm

"ask 3 could be further split

i. Draw worm

1. Worm hits boundary or itself, and dies
Worm eats money and grows

i, Fanfare

No specific order is implied in this breakdown; for example, you may find that
rou want to regenerate the target from inside the fanfare section of program,
“hese headings are simply a list of tasks that reflect the problems thai come to
nind when attempting the solution of a larger problem.

‘xamine the game below and try to identify which tasks are carried out,
vnere, in what order, and which have been further subdivided. (Throughout this
nook the variable names in lower case will refer to line numbers at the start of
subroutines. This helps to make the program more readable, gives a clear picture
of the algorithm, and hence is good general practice.)

rraphics Operations of the ZX Spectrum e

“lote the use of logical expressions (for example, IF DEAD THEN., . .): see
‘napter 13 of the Spectrum BASIC Handbook (Vickers, 1982). Also note the
1se of ATTR and SCREENS to detect collisions, both by the colour of character
slocks and by their contents. Figure 1.11 shows a typical state of the game,

YFTETEREIR

SCORE 29 HI-SCORE 785 1

o

AT Ak

R IR

SHENSE

LEUVEL 5 s HORMS T

deure 1.11

Asting 1.16

1000 DIM R(55): DIM C{55}
T@R9 REM initialise routire pointers and set hiscore to B.
1818 LET fanfare = 2@00: LET worm = 3ED8: LET key = 4280

LET gobble = S@PP: LET status = 6@00: LET target = 7800
1020 BORDER 1: PAPER 7: INK B
1@%@ LET HSC = @
@39 REM start/restart for game.
1048 LET SCORE = @: LET WORMS = 3: LET LEVEL = 1
@48 REM start a rew worm, five segments Long from row R column (.
1849 REM P is pointer to segment which is to be moved.
B5@ LET S = 5: LET P = 1: LET R = @: LET € = INT {RND*3Z)
1M59 REM set movement variables so that worm 1s going down.
1868 LET RMOVE = 1: LET CMOVE = B: LET HE = “"v"
‘P69 REM clear array of segment positions.
B7@ FOR I = 1 TO 55: LET R{I} = —1: NEXT I
P79 REM set truth flags for game (B = false, not B = true).
“RER LET WOM = @: LET DEAD = B
P29 REM set up screen with yellow strips on top and bottom.
1099 CLS: PRINT AT @.@; PAPER 6;,,: PRINT AT 21,@; PAPER 6;,,
1099 REM print out scores and place a £ note target on the screen.
180 GC SUB status: GO SUE target
189 REM main Loop of game: check for controls,move wWworm.

24 Advanced Graphics with the Sinclair ZX Spectrum

"MT1E G0 SUB key: GO SUB worm

119 REM if nothing has happened keep on Looping.

1@ IF NOT DEAD AND NOT WON THEN GO TO 111D

129 REM if ore worm has eaten £18 give fanfare and start a new worm.
7138 IF WON THEN LET LEVEL = LEVEL + 1: GO SUB fanfare: GO TO 1058
1139 REM make crashing noise.

1400 IF DEAD THEN FOR I =1 TO 19: BEEP @.8P5,15: NEXT I

149 REM if you have another worm left start a rew WOrm.

1580 IF DEAD THEN LET WORMS = WORMS -~ 1: IF WORMS <> @ THEN GO TO 1858
1159 REM remove alLl segments by moving pointer along from back of worm.
1768 FOR L = 1 TD S: HEEP 2.81,.8: PRINT AT R{PJ,C(F); PAPER T i

1170 LET P=P + 1: IF ? > 5 THEN LET P = 1

1180 MNEXT 1
‘189 REFM remove taraet from screen and update score Lines,
“19Q PRINT AT ¥.X; PAPER 7;" ": G0 SUB status

199 REM use flashing imput to wait for entry before restarting game.

Z2PP LET I%$ = CHRS 18 + CHRE 1 + "PRESS ENTER TO START GAME"
CHRS 18 + CHRE @

1210 INPUT (I% + " "); LIME AL

1228 GO TO 1040

[

BOP REM fanfare

‘B9 REM this is played whern you go up & Level,

B0 DATA D.BA.18,.0.086,19,@8.86,21,0.15,27,0.06,21,08.2,27
’B19 REM read and play the six notes/duration combimations.

P2@ RESTORE fanfare: FOR I = 1 TO 6: READ L,T: BEEP L,T: NEXT I
@30 RETURM

(000 REM worm
3008 REM worm moves by taking Last segment and moving it to the fromt.
‘BP9 REM if it's not 3 growth segment them erase it at it's old position.
210 IF RCP) <> -1 THEN PRINT AT R{P),C{P); PAPER 7,;" "
019 REM calculate rew position of worms head.
028 LET R = R + RMOVE: LET € = C + CMOVE
‘029 REW check for collision with boundaries,
‘@20 IFR > 20 OR R <1 GR C > 31 OR C <@ THEN LET DEAD = 1: RETURN
I@39 REWM check for collision with another segment of worm.
‘@48 IF ATTR (R,.C) = 16 THEN LET DEAD = 1: RETURN
‘049 REM set row and cclumn of segment to new position,
Z@5@ LET RC(P) = R: LET C(P) = C
B59 REM check whether target has keen eaten,
‘06@ IF SCREEN® (R.Cy = "f£" THEN GO SUB gobble
869 REM put new segment on screer and move painter along Wworms back.
YB7D PRINT AT RCP).C(P}; PAPER 2;H3%
“680 LET P=P + 1: IF P > 5 THEN LET P = 1

‘B3 RETURN

LAPD REM key

BP9 REM check for controls being used.

+@18 LET A% = INKEYS: IF AR = " THEN RETUERN

4819 REW make sure all Lletters are treated as lower case.

@23 IF CODE AE < @5 THEN LET A% = CHRE (CODE A% + Z2)

@28 REM worm can only turn lLeft or right from course not back on itself.

{229 REM contrcl for up s pressed, if you're mot going down them fturn wp.

B30 IF AT = "§" AND CMOVE THEM LET RMOWE = =T1: LET CMOVE = @
LET HS = "§ “: RETURN

4@3% REM turn down (if worm is not going up J.

@43 IF A% = "m" AND CMOWE THEN LET RMOVE = 1: LET {MOVE
LET H$ = “w": RETURN

L@49 REM turn Left (if worm is not going right J.

@50 IF A% = "ji" ANC RMOVE THEN LET RMOVE = @: LET {MOVE
LET H% = "<": RETURN

@59 REM turm right { if Worm is not going Left).

1
=l

L1
|
-

sraphics Operations of the ZX Spectrum 25

D60 IF A% = "k™ ANC RIMOVE THEMN LET RMOVE = B: LET CMDVE = 1
LET HE = ">": RETURN
B7@ RETURN

S@B& REM gobble

S@P9 REM eat target, make gobbling noises.

SB1Q FOR I = 2 TGO & STEP €.5

@20 BEEP B.B1,EXP I - 18: NEAT I

5P29 REM add to vour score and update score-lires.
@30 LET SCORE = SCIORE + 1: GO SUR status

@28 REM make five more segments available for growth.
5839 REM if worm has 55 segments then it has eaten £180 s¢ you win & round.
SB4Q LET S = 5+ 5: IF 5 = 55 THEN LET WON = 1: RETURN
P49 REM place a rew target on the screen.

SB5@ G0 SUB target

B6@ RETURN

GAPER REM status

5P09 REM if vour score beats hiscore then update hiszcore.

5010 IF SCORE > HS{ THEM LET H5L = SCORE

6019 REM print out both score=Lires.

AB28 PRINT AT B,0; PAPER &;" SCORE ";SCORE,™ HI-SCORE ";HSC
503@ FRINT AT 21,0; PAPER &;" LEVEL ";LEVEL," WORMS ';WORMS
OR4Q RETURM

TOED REM target

7P09 REM choose a character block in the playing area at random.
P18 LET X = RND+#31: LET ¥ = RMD#1% + 1

'019 REM check that it's not the same place as< the Last onsa.
7020 IF X = C AND ¥ = R THEN 30 TQ tarcet

(P29 REM check that it's not uwnder the worm,

‘B3R IF ATTR (Y.X} = 18 THEN GO TO target

B39 REM print rew £ note on the screen.

‘B4 PRINT AT Y.X; PAPER &4;"£i"

B5® RETURN

wxercise 1.12

\s a final mini-project for this chapter, write a squash game or ping-pong video

same (or both!) using low-resolution colour graphics, The ball can be a pixel or

:haracter block, and the bat(s) should be controlled from the keyboard like the
vorm in the above vrogram. You will find it useful to turn some of the program
:ections from this chapter into subroutines.

n this chapter we have restricted ourselves to using the screen as a fixed picce
»f PAPER for patterns and games. To step up from pixel graphics to drawing
nictures of real objects, we need commands that will relate the real world to our
’APER. In the following chapters we shall explore and develop the techniques
ieeded to draw these real graphics pictures.

Complete Programs

Listing 1.1: no data required.
II. Listing 1.2: no data required.

L

xl.

Al
LHE.
UV.

"4
kY

AV

Advanced Graphics with the Sinclair ZX Spectrivm

Listing 1.3: no data required.
Listing 1.4: no data required.

. Listing 1,5: no data required.
. Listing 1.6: no data required.

VIL.
VIIL.

Listing 1.7: no data required.

Listing 1 .8: press keys around character [to move point in one of
ght directions, press “P” to start leaving a trail and “Q™ to stop trail,

Listing 1.9: no data required.

Listing 1.10: no data required.

Listing 1.11: no data required.

Listing 1.12: no data required,

Listing 1.13: no data required.

Listing 1.14: no data required.

Listing 1.15: no data required.

I isting 1.16 {main program and routines ‘fanfare’, ‘worm’, ‘key’, ‘zobble’,
itatus’ and “target’): use keys “17, “F7, “K” and “M” to control move-
nent of worrm.

2 From Real Coordinates to Pixels

We have seen that Spectrum imagines its graphics frarme to be a rectangular
natrix of addressable points or pixels. These pixels are stacked in NXPIX

= 256) vertical columns and NYPIX (= 176) horizontal rows. Individuals from
he set of NXPIX by NYPIX pixels can be uniquely identified by a bracketed
rair of integers; these are sometimes called a pixel vector (I, J), where 0 <[<
NXPIX — 1 and 0 < J < NYPIX — 1. the vector specifying the position of the
sixel in the ' column and J™ row: the vector (O, 0) identifies the bottom left-
1and corner pixel of the frame, The Spectrum has its own set of BASIC instruc-
1ons that enable users to operate on the matrix of pixels, treating them as
yoints of light that can be switched off or on. This enables the operator to
ipproximate lines, or polygons and other special types of area, with a series of
coloured dots (the pixels).

T'he chapters that follow can be considered as taking the reader some way
owards generating a two-dimensional and three-dimensional graphics package
‘or the Sinclair Spectrum: the programs are given in BASIC and rely (with a few
:xceptions) on a small number of primitive routines given in this chapter.

Primitives that Map Continuous Space on to the Graphics Frame

in general, computer graphics deals with points, lines, areas and volumes in con-
1nuous two-dimensional and three-dimensional Euclidean space. Pixel graphics

s very limited. The definition of objects that use only discrete pairs of integers

s very rare in most practical applications. We therefore need to consider ways of
slotting views of objects on a graphics screen, where positions are measured in
-eal units: inches, miles or even light-years! Therefore we consider the relation-
nip between two-dimensional real space and screen pixels. Before we can
ittempt this step, however, we must first discuss ways of representing two-
limensional space using Cartesian coordinate geometry.

Ve can imagine two-dimensional space as the plane of this page extending to
‘nfinity in all directions. Qur description of the coordinate geometry starts by
irpitrarily choosing a fixed point in this space, which we call the coordinate
srigin. Through the origin we draw a line that stretches to infinity in both
lirections: this is the x-axis. The normal convention is to place this line left to
ight on the page {the horizontal). Another two-way infinite line, the y-axis, is

8 Advanced Graphics with the Sinclair ZX Spectrum

drawn through the origin perpendicular to the x-axis; conventionally this is
niaced from the top to the bottom of the page {the vertical). We now draw a
scale along each axis: unit distances need not be the same on both axes, but this
's normally the case (sce figure 2.1). We assume that values on the x-axis are
nositive to the right of the origin and negative to the left: values on the v-axis
are positive above the origin and negative below.

p=(X,Y)

Higure 2.1

r'aking any point p in space we can now uniquely fix its position by specify-
‘ng its coordinates (figure 2.1). The x-coordinate, X say, is that distance along the
c-axis {positive to the right of the axis and negative to the left) at which a line
rerpendicular to the x-axis passing through p cuts the x-axis. The y-coordinate,
” say, is correspondingly defined using the y-axis. These two values, called a co-
srainate pair or two-dimensional vector, are normally written in brackets thus:
X, Y). Note that the x-coordinate comes before the y-coordinate, We shall
1suaily refer to the pair as a vector — the dimension (in this case two) will be
understood from the context in which we use the term. A vector, as well as
1efining a point (X, Y) in two-dimensional space, can also be used to specify a
direction, namely the direction that is parallel to the line joining the origin to
the point (X, Y) — but more of this (and other abjects such as lines, curves and
rolygonal areas) in chapter 3,
¥e are now in a position to devise means (the above-mentioned primitive
routines) for mapping such geometrical concepts on to the two-dimensional dis-
rete rectangular matrix of pixels that form the graphics lrame.

rom Real Coordingtes to Pixels 29

“lere we concentrate on two-dimensional space: an exiension into three-
iimensional space is dealt with starting at chapler 7. In both cases we require a
method of mapping a rectangular area of two-dimensicnal Cartesian space on to
he graphics frame. For simplicity we start by insisting that this area has its edges
varailel to the x-axis and y-axis of Cartesian space. Initially, we assume that this
ectangular area of space has its botfom left-hand corner identified with the co-
wdinate origin (0.0, 0.0), while the length of the horizontal edge is HORIZ and
he vertical edge VERT. We first identify the origin with the (0, 0) pixel of the
rame, and then scale the rectangular area so that it fits into the frame; naturally
he area only exactly fits the frame if the ratios HORIZ:VERT and NXPIX:
NYPIX are equal (that is, 256:176). This is rarely the case, so we choose a scaling
ractor, XYSCALE, that maps the point {(HORIZ, VERT) on to a pixel either on
he upper or the right-hand edge of the frame. We can consider this rectangle as a
vindow on to Cartesian space: no longer anchored to the coordinate origin, it
nay wander about space viewing rectangular areas of the same size as the original,
nut still having edges parallel to the original coordinate axes, As a general rule we
nake HORIZ roughly one-and-a-half times VERT.

it any time during the execution of the program we can move the coordinate
yrigin from its original position at the bottom left-hand corner of the frame. [ts
position relative to the first origin will be stored as XORIG and YORIG, the x-
omponent and y-component respectively . Initially, (XORIG, YORIG) is identi-
ied with (0.0, 0.0). Hence any point in Cartesian space with coordinates (XPT,
'PT), a pair of reals, maps into a pixel with horizontal component INT({(XORIG

XPTXYSCALE + 0.5) and vertical component INT((YORIG + YPT)+*
LYSCALE + 0.5). (INT is the BASIC function that truncates the fractional part
i a decimal number and returns an integer.) These two components are stored
is Tunctions FN X and FN Y (see listing 2.2). During the construction of a picture
ve must consider a plof pen _ in value a pair of integers, which moves about the
rraphics frame; initially it is placed at (0, 0), and in general it is the (XPEN,
‘PEN) pixel. The constants NXPIX and NYP1X, and the variables XYSCALL,
PEN. YPEN, XORIG and YORIG, must be available at all times to the plotting
‘outines that follow. so these names must not be used for any other purpose. The
‘outines were written specitically for the Spectrum, but we discuss also the
reneral principles of constructing similar routines for other graphical devices.

T'o start with we would have 1o change the values of NXP1X and NYPIX before
ve couid use a different machine.

Our first routine *start” initialises the required variables and prepares the screen
‘or plotting. Listing 2.1 is an example ‘start’ routine for the Spectrum.

isting 2.1

7@0 REM start

TB1 REM IM HORIZ, VERT

702 REM QUT : NXPIX, NYPIX, XORIG, YQRIG, XYSCALE, XPEN, YPEM
371D LET XORIG = B: LET YORIG = @

0 Advanced Graphics with the Sinclair ZX Spectrum

972@ LET XPEN = @: LET YPEN = @

730 LET NXPIX = 256: LET NYPIX = 176

T4@ LET XYSCALE = NNPIX/HORIZ: LET YSCALE = MYPIX/VERT
775@ IF XYSCALE > YSCALE THEN LET XYSCALE = YSCALE

7o RETURN

This routine may be extended should we need colour; it must have two exira
sarameters COLPAP and COLINK (integers between O and 7) {or the colour of
the paper and ink respectively, The following extra statement should be added

1725 PAPER COLPAP : INK COLINK

f we need to write this routine for a different microcomputer, all that is
necessary is to replace the statements containing the Spectrum BASIC graphics
mnstructions with the equivalent routines for the new machine, Most of the other

outines in this book are independent of the structure of the Spectrum.

n ‘start” and in many other routines that follow, it is necessary to transform
‘he x/y-coordinates of a point into their pixel equivalents, so we introduce the
wo tunctions FN X and FN Y in listing 2.2.

Asting 2.2

‘5@ DEF FN X(I}
‘6@ DEF FN Y(I)

INT CCXORIG + Z)+*XYSCALE + Q.57
INT ((YORIG + Z)*XYSCALE + @.5)

"he next primitive routine {listing 2.3) is ‘setorigin’. This enables us to move
the coordinate origin by an amount XMOVE horizontally and YMOVE vertically
distances in the scale of the coordinate system), consequently adjusting the
XORIG, YORIG) values. After such a move the plot pen moves to the pixel
:quivalent of the new origin.

Listing 2.3

600 REM setcrigin

@1 REM IN : XORIG. YORIG, XMOVE, YMOWE

160 REM QUT : XORIG. YORIG, XPEN, YPEM

9610 LET XORIG = XORIG + XMOVE: LET YORIG = YORIG + YWMOVE
628 LET ¥PEN FN X (@)

%38 LET YPEN FW Y@

‘640 RETURN

It

¥e shall be in a position to draw straight lines after we have produced two
further routines: ‘moveto’. which moves the plot pen to a pixel equivalent of the
point in coordinate space at one end of the line, and ‘lineto’, which draws the
line by moving the plot pen from its present position (set by a previous call to
setorigin’, ‘moveto’ or ‘lineto’) to the pixel equivalent of the point on the other
>nd of the line. Listings 2.4 and 2.5 show ‘moveto’ and ‘lineto’ routines designed
specifically for the Spectrum. The ‘lineto’ routine includes statements that

‘rom Real Coordinates to Pixels 31

nitiate the machine-dependent BASIC pixel instructions for drawing a line {(note
hat PLOT is absolute and DRAW is relative); however, the ‘moveto’ routine is
nachine-independent. Hence if you wish to implement these routines on a differ-
:nt microcomputer you need only alter the lineto’ routine,

sting 2.4

500 REM moveto
581 REM IN 1 XPT, YPT
5@Z2 REM OUT : XPEN, YPENW

9518 LET XPEN = FN X(XPT)
528 LET YPEN = FN Y(YPT)
"SI0 RETURN
Jdsting 2.5

A0 REM Lireto

Q401 REM IN : XPT, YPT, XPENM, YPEN
Si@2 REM QUT : XPEN, YPENM

A1@ LET NXPEW = FN X{XPT)

2@ LET NYPEN = FN Y{YPT)

Y438 PLOT XPEN, YPEN

"G40 DRAW NXPEN-XPEN,NYPEN-YPEN

459 LET XPEN = NXPEN: LET YFEN = NYPEN
'46@ RETURM

n all but the most elementary machines, it is possible to set up these plotting
routines or their equivalents (and many more as our knowledge increases) in a
librarv file or backing store. Then there is no need to retype them explicitly into
=ach new program. On the Spectrum we can store them as files on audio-casseties
and MERGE them if necessarv). On the companion cassette to this book you
viil find these routines as part of the ‘lib1” library,

‘xample 2.1
identify a rectangle in Cartesian space, 30 units by 20 units, with the graphics
rame of the Spectrum. Then draw a square of side 15 units, centred in the
rectangle (figure 2.2a).

Ve centre the square by moving the origin to (15.0, 10.0) and thus define the
:orners of the square to be (7.5, £7.5). See listing 2.6.

JAsting 2.6

100 REM drawirc 2 sguare
129 REM setup identifiers to grachics routires. '
‘10 LET start = 970@: LET setorigin = 96@P: LET movetco = Y500
LET limeto = S4BD

i19 REM define graphics area.

|28 LET ¥ORIZ = 30: LET YERT = 28

30 GO SUB start

4 LET AMCVE = HORIZ=D.5: LET YMOVE = VERT*B.5

‘5@ G0 SWUE setorigin

‘59 REM join cormers of sguare im order.

168 LET XPT = 7.5: LET YPT = 7.5: GO S5UB movetc

12 Advanced Graphics with the Sinclair ZX Spectrum

{78 LET XPT = =7.5: LET ¥PT = 7.5: GO SuUB lireto
P8R LET ¥PT = =7.5: LET ¥PT = =7.5: GO SUB Lineto
{98 LET XPT = 7.5: LET YPT = =7.5: GO SUB lireto
@8 LET XPT = 7.5: LET ¥PT = 7.5: G0 SUB Lireto
1@ STOP

(@) (b)
igure 2.2

't is as well to note, at this juncture, that the order in which the points are
joined is critical. For example, if the coordinates of the second and third corners
i1 the sauare are interchanged then figure 2 2b will be drawn.

Next we write a primitive routine “polygon’ that uses the Spectrum line-
irawing instruction to draw such figures. The routine is given the NPOL vertices
it the polygon as arrays X and Y (the x-coordinate and y-coordinate). We also
21ve an exampie main program calling this routine (listing 2.7},

Adsting 2.7

80 REM mein orocramd calling polygon

‘@ LET start = G70@: LFT cetorigin = 9600: LET moveto = 950
LET Lineto = G4lBA: LET colygon = 300

120 LET ECRIZ = 38: LET VERT = 28

3B GC SUE ztart

i LET MFCWE = HORIZ#@.5: LET YMOVE = VERT#Q.5

SE GO SUE setorigin

{£9 REM declare znd irput vertice: of polygon.

6@ BIM X{S@r: DIM v(S@)

FE OINPUT T¥PE MUMBER OF VERTICES ",NPOL

1808 FOR I =1 TO NEGL

198 INPUT ("X("+ STRS I+") “I:XCI),4"Y("+ STRS I+"3 ");¥(I)

‘@ NEXT I

ME 60 SUB polycoor

20 STOFP

Fom Real Coordinates to Pixels 33

Jf REM oolyocr

A1 REM TR @ NEOL. ¥(), YO

AR OLET XPT = XeMpPOLY: LET YPT = YORPOLY: GD SUS poweto
18 REM icin vertices: of polygon in urder.

2B FOR I = %1 TO MNPCL

30 LET £PT = X{1d: LEV ¥FT = ¥(IX: 60 SUE lireto

L3 MEXT T

SR RETUFRN

xercise 2.1

f we are using the Spectrum then it is possible to draw pictures in a variety of
solours. But before drawing it is necessary to set the colour using the INK opera-
ion. Write a routine ‘seteolour’ with one integer parameter COLINK that
ichieves this.

ixercise 2.2

'n all the plotting routines above, the scale of the mapping (XYSCALL) is fixed
mnce and for all: and the horizontal and vertical scaling factors are identical.
“here is no need to heed this convention: write a routine “factor” that alters the
10rizontal scale by FX and the vertical by FY, Naturally, this implies that we
10w have to define two separate scales (XSCALL and YSCALE, say); and also,
f course, the ‘start’, *setorigin’, ‘moveto’ and lineto’ routines must be altered
see also chapter 6).

“xercise 2.3

"here is no reason for the x-axis and y-axis to be identificd with the herizontal
ind vertical resoectively. In fact they need not even be mutually perpendicular.
uxperiment with these ideas, which necessarily involves changing all the plotiing
“outines ‘start’, ‘moveto’, ¢te,

ixample 2.2

ne af the first nopular graphics packapes was CalComp. This includes a number
 routines to draw axes and scales for the construction of graphs, and many
yther useful subroutines. They are all based on a line-drawing routine named
slot’ (not 1o be confused with the Spectrum PLOT), which is central to the
yackage; ‘plot” has three parameters, two reals XPT and YPT, the coordinates of
1 point in space, and the movement information MOVE, an integer whose value
s sel to £2 or 3. This one routine may be used to replace all three of our
outines ‘setoriein’, ‘moveto’ and ‘lineto’. If MOVE is negative, then a new co-
wdinate origin is fixed at the point (XPT, YPT) of the old coordinate sysiem
*quivalent to ‘setorigin’. When the absolute value of MOVE is 3, then the plot
1ead is moved without drawing a line — equivalent to ‘moveto’: when it is 2,
‘hen aline is drawn — equivalent to ‘lineto’.

Naturally, even if we do not wish to implement the complete CalComp pack-
1ee, we can sull implement the *plot’ routine in place of ‘setorigin’, ‘moveto” and
lineto’: and use it instead, in conjunction with the remaining routines mentioned
n this chapter — see listing 2.8,

4 Advanced Graphics with the Sinclair ZX Spectrum
Asting 2.8

80P REM clot / Callomp

801 REM IN : XPT, YPT, XPEN, YPENM, XORIG, YORIG, MCODE
'8@2 REM OUT ; XPEN, YPEM, XURIG, YORIG
818 LET NXPEN = FN X(XPT)

'828 LET NYPEN = FN Y(YPT)

'BIQ IF ABS (MODE) = £ THzh PLOT XPEN,YPEW: DRAW MNXKPEN-XFEN,NYFEN-YFEN
‘4@ LET XPEM = NXPEM: LET YPEM = NYPEM

‘B5@ IF MODE < @ THEN LET XORIG XORIG + XPT: LET YORIG = YORIG 1+ YPT
‘BER RETURN

- To demonstrate the use of these plotting routines we shall draw some simple
atterns. There are those who think that the construction of patterns is a frivol-
yus waste of time, Nevertheless, we consider it a very useful first stage in under-
:tanding the techniques of computer graphics. Often, patterns of an apparently
.ophisticated design are the result of very simple programs. Quickly producing
ucnh graphical output is an immediate boost to morale, and gives a lot of con-
idence to the beginner. Furthermore, new designs are always in demand.
reometrical art is used for the covers of books and pamphlets and in advertising
iterature. It can do no harm to initiate artistic ideas that will be of great use later
vnen we study the pictorial display of data, Patterns are also an ideal way of
ntroducing some of the basic concepts of computer graphics in a very palatable
vay. Take the next example, which looks at the important role of trigonometric
unctions (sine and cosine), and of angular measurement in radians! Remember
hat 7 radians is the same angular measure as 180 degrees.

e ———
)

S

‘rom Real Coordinares ro Pixels 35

Sxample 2.3
Figure 2.3, a very popular design, is constructed by joining each vertex of a

eguiar N-sided polygon {an N-gon) to every other vertex. N is not greater than
30.

¥e set the origin at the centre of the design, and all the vertices at a unit
tistance from the centre: the sizes of the HORIZ and VERT (3, 2.1), are chosen
:0 that the design fits neatly on the screen. If one of these vertices lies on the
positive x-axis (the horizontal), then the N vertices are all of the form (COS

ALPHA), SIN(ALPHA)), where ALPHA is an angle 2#I/N and 1 is chosen from
.2, ...,or N. Here for the first time we see point coordinates being calculated
1v the program, not explicitly typed in, as in listing 2.6. Furthermore, since the
program uses these values over and over again, it is sensible to store them in
irrays and access them when required by specifying the correct array index.
Note that in listing 2.9, if 1 <1< J <N, then the J*! point is not joined to the

h woint; the line will have already been drawn in the opposite direction.
Listing 2.9

18@ REM jeining vertices of regular N-gon
118 LET start = G708: LET cetorigin = 96B8: LET movete = 5500
LET Lineto = 940D

120 LET HCRIZ = 3: LET VERT = 2.1

Il GO SUB start

4@ LET XMOVE = HORIZ*P.5: LET YMOVE = VERT*B.5

5@ G0 SUB setorigin

G JIM X(ZQ): DIM Y3

‘69 REM setuc wvertices of regular M—gon in arrays X and Y.
170 INPUT “TYPE VALUE OF N ":N

t80 LET ALPHA = @: LET ADIF = Z2%PI/N

¢ FOR I =1 TO N
288 LET %{I) = C0OS ALPHA: LEY ¥{I} = SIN ALPHA

19 LET ALPHA = ALPHA + ALIF

2@ MEXT I
29 REM ioin point I to poirt J 5 1<=I<04=Na
3@ FOR T =1 TO N-d

43 FOR 4 = I+1 TO N

@ LET XPT = X(IJ: LET YPT = Y(L): GO SUB movetlo
6@ LET XPT = X(J): LET ¥PT = ¥Y(J): GO SUB Lireto
"70 NEXT J

BB NEXT I

‘5@ STOP

I'here are two immediate observations to be made from this very simple
:xamoie, The first concerns resolution. Because the graphics frame is a discrete
natrix. then sfraight lines must be approximated by a sequence of pixels. Un-
ortunately, the resolution of the Spectrum, like most microcomputer graphics
.ystems, is low (that is, NXPIX and NYPIX are the order of hundreds) so the
ines appear jagged, even in higher-resolution devices (like microfiim plotters)
he same is true, but the sizes involved are so small that the jaggedness goes
innoticed.

6 Advanced Graphics with the Sinclair ZX Spectrum

The second observation is that as N increases in listing 2.9, the outline of the
igure (the N-gon) approximates closely to a circle. Therefore we can use this
dea to write a routine ‘circlel’ (listing 2.10a), which draws a circle with radius
R about the centre (XCENT, YCENT) to give a picture similar to figure 2.4,
Note that we are using angles measured in radians; that is, we are incrementing
w 3/(R«*XYSCALE) each time through the loop — a value that depends on the
radius and produces a reasonable circle without waste of effort. Note also that
since the vertices of the N-gon are onlv needed once, we do not store their values
but calculate them as required. Again, the limitation in resolution of the screen is
ipparent on the circumference of the circle.

‘Frure 2.4

dsting 2. 10a

ZPE REM circled

‘@1 REM IN : XKCENT, YCENT, R, XYSCALE

T8 LET XMOVE = XCEMT: LET YMOWE = YCENT : GO SUB sctorigin

2@ LET ADIF = R/(R*XYSCALE)

33@ LET MPT = R: LET ¥PT = @: G0 SUB moveto

2% REM takculate and join points (XPT,YPT) arcund the circle.
4 FOR A = ADIF TQ 2#PI STEP ADIF

5@ LET XPT = R*COS A:; LET YPT = R*SIN A: GO 5UB Limeto

68 NEXT A
7@ RETURM

Asting 2.105

@0 REM circle?

@1 REM IN : XCENT. YCENT, R, XYSCALE

1@ CIRCLE FM X(XCENT).FN YIYCENT? ReXYSCALE
2B RETURNM

Ve saw that the Spectrum has a BASIC lunction CIRCLE that enables us to
iraw a circle. So we can incorporate this in a primitive routine “circle2’ (listing
'.10b) for drawing a circle, one that is necessarily more efficient than ‘circlel”.

Yhenever we use such routines, we must be aware of any side-effects pro-
juced; for example, has the origin or plot head been moved by the routine? For

‘rom Real Coordinates to Pixels 37

*Xamnie, listing 2.10a changes the position of both the origin and plot pen,
whereas listing 2.10b does not. It would therefore be sensible to add the follow-
ng iine to the ‘circlel” routine

(70 LET XMOVE=—XCENT: LET YMOVE=—YCENT: GO SUB setorigin : RETURN

ixercise 2.4
Vrite a routine to draw an ellipse of major axis A units (horizontal) and minor
118 B units (vertical). Note that a typical point on this ellipse has coordinates
A cos @, B sin @) where 0 < & < 2. However, it must be remembered that, un-
ike the circle. o is not the angle made by the radius through the point with the
yositive x-axis. It is simply a descriptive parameter,

ncorporate this routine in a program that draws a diagram similar to figure
*.5. Here are two things to note: (1) there is no need for A to be greater than H,
ina (2) observe the optical illusion of the two apparent white diagonal lines.
wnother illusion can be seen in figure 2.3 — dark circles radiating out from the
:entre ot the pattern. The study of oprical illusions is fascinating (see Tolansky,
1964} and it is a never-ending source of ideas for patterns. This exercise was
ntroduced because it leads the wav to the general technique of drawing curves
see chapters 3 and 6).

Lxample 2.4

\n extension of this idea, the natural next step, is the construction of a spiral.
vgain the general form of the curve about the origin is (R cos a, R sin &) but now
¥ varies between angles § to 8 + 2Nn, where § (the parameter BET A} is the initial
ingie that the normal to the spiral makes with the positive x-axis, and N is the

8 Advanced Graphics with the Sinclair ZX Spectrum

number of turns in the spiral. The radius R is no longer a constant value, but
raries with the value of a: if RMAX is the outer radius of the spiral then R is
dven by the formula

R = RMAX{(a — 8)/2Nan

Jote that this routine, which centres the spiral at (XCENT, YCENT), causes no
ide-effects because we reset the origin back to its original position before
eaving the routine.

..fs}ing 2.1la

08 REM spirall

B1 REM IN : XCENT. YCENT, RMAX, N, BETA

19 LET XMCVE = XCENT: LET YMOWE = YCEWNT - GG SUB setorigin
‘2@ LET ADIF PI/S@: LET ALPHA = BETA

230 LET RDIF RMAX/S (N=100)

530 REM calculate ard ioin points {XPT,.¥PT) on the spiral.
548 FOR R = RDIF TC RMAX STEP RDIF

58 LET XPT = R*(0S ALPHA: LET YPT = R*SIN ALPHA: GC SUB Lirmetc
60 LET ALPHA = ALFHA + ADIF

7@ MNEXT R
BB LET XMOVE = -XCENT: LET YMOVE = =YCEWT : GD SUB setorigimn
™ RETURN

Jdsting 2.11b

IN0 REM celticfspiral

@1 REM IN : XCENT, YCENT, RMAX, N, SIGN

1@ LET XMOVE = XCENT: LET YMOVE = YCENT : GO SUB setorigin
=28 PLOT XPEN,YPEN

30 LET R = @: LET RODIF = RMAXF(N*2): LET 5 = 1

i35 REM construct the spiral using DRAW to produce a series of semicircles.
4 FOR I = T TO N*

550 LET R = R + RDIF: LET XFIX = S*R=XKYSCALE

60 DRAW XPIX.@,SIGN*PI

370 LET § = =§

8@ MEXT I

9 RETURN

\xercise 2.5 .

Listing 2.11a produces a diagram similar to figure 2.6a (with XCENT =0,
‘CENT=0,N=4, BETA = 1 and RMAX =3). What happens if you set RMAX
o —37? Use the routine in a program that generates figure 2.6¢. Again note the

optical illusion when the observer’s head is moved in a circle in front of the

diagram, keeping the horizontal (and hence also the vertical) direction parallel
with the original. The spirals appear to rotate about the centre!

rom Real Coordinates to Pixels 39

“xample 2.5

spirals have been used in art and design for thousands of years; however, most of
he ancient spirals were not true spirals but consisted of sequences of semicircles
(s¢e Bain, 1972), Listing 2.11b (a routine with input parameters RMAX, N and
SIGN — the orientation value being *1) enables us to draw such semicircular
‘pirais using the DRAW option, and so it is much more efficient than the accurate
nethod of listing 2.11a (for example, figure 2.6b).

sxercise 2.6

‘ollow the logic of listing 2,11b, and extend it so that the normal to the original
:urve does not go along the x-axis but makes an angle BETA with it. In the Book
i1 Kells there are examples of friskeles, which are composed of a set of third-
ircies ioined in sequence, Experiment in constructing these and any other
sariations on this method. such as quarter-circles, etc.

i) Advanced Graphics with the Sinclair ZX Spectrum

sxample 2.6
Write a routine (listing 2.12) that draws diagrams similar to figure 2.7,

lere we introduce the concent of an envelope, Instead of drawing a curve by
; sequence of small line segments (as in the circle of listing 2.9), we devise a
.eaquence of lines that are tangential to the curve. For example, the figure shows
‘our rectangular hyperbolae placed in the guarters of the plane.

N points are placed on each of the four arms {of unit length) that divide the
sane into the four quarters. The 4N points are therefore (£I/N, 0.0} and (0.0,
[INywherel=1,2, .. N.

Asting 2.2

Ef REM example of ar erwelgpe

M€ LET start = 97€0: LET setorigin
LET moveto = 95%@80: LET Lineto

2B LET FLRIZ = 3: LET WERT = 2.1

‘3P 60 SUB stzret

L@ LET XMOVE = HORIZ=D.5: LET YMOVE = VERT*B.%

‘@ G0 SUB setordigin

159 REM draw unit axes frr uraphics areaa

E@ INPUT “TYPE M "N

DeCP
G40

TR OLET XPT = 1: LET YPT = @: 50 5UB moveto
T80 LET XPT = -1:; LET YPT = @: GO SUB Lireto
OB LET XPT = @: LET ¥YFT ~ 1: GO SUB lineto
BB LET ¥PT = @: LET YPT = =1: GO SLB 17EEtQ

‘88 REM croduce N sets each of four points, cre on each axis,
BS REM ‘cin the points of eack =et in crder.

T FCR I =1 TN

28 LET IP1 = 1/H: LET 12 = {H &1 - TN

3@ LET XPT = ID1: LET YFT = @: G0 SUB moveto
49 LET XPT = @: LET YPT = 1D2: GG SUE lireto
'S@ LET XPT = —ID1: LET YPT - @: GO SUE Llireto
6@ LFT XPT = @: LFT YPT = —ID?: 50 SUE Lireto
7@ LET XPT = ID1z LET YPT = @: GO SUG Lireto
30 MEXT I

S8 sToep

“rom Real Coordinates to Pixels 47

xercise 2.7
seneralise this routine so that there is a variable number of arms. M, streiching
ut from the origin and dividing the plane into equal segments.

wxercise 2.8

Jraw a diagram similar to figure 2.8; the routine will have aninteger parameter N.
't will calculate 4N points {P(I): 1=1,2,..., 4N} around the edges of a square
I unit side. starting at a corner. There is one peint at each corner and the points
ir¢ placed so that the distance between consecutive points is 1/N. Then, pairs of
Joints are joined according to the following rule: P(T) is joined to P{I) for all
1ositive 1 and J less than or equal to 4N, such that I — 1 (subtraction modulo
IN1 beldngs to the sequence 1,1 +2, 1 +2+ 3, ... Forexample, it N is 10, then
(20} is joined to P(21), P(23), P(26), P(30), P(35), P(1), P(8) and P(16). The
wter square should be drawn, and hence it two points lie on the same side of
he square there is no need to join them by a line since it already exists as an

wige of the outer square. For example, P(20) is a corner, so it is on the same

dge as P(16) and also P(21), P(23), P(26) and P(30).

oxample 2.7
'mulate a Spirograph, in order to produce diagrams similar to figure 2.9,

v Spirograph consists of a cogged disc inside a cogged circle, which is placed
in a piece of paper. Let the outer circle have integer radius A and the disc integer
adius B. The disc is always in contact with the circle. There is a small hole in the
lisc at a distance D {alsc an integer) trom the centre of the disc, through which is
rtaced a sharp pencil point. The disc is moved around the circle in an anti-
-iockwise direction, but it must always touch the outer circle; the cogs ensure

42 Advanced Graphics with the Sinclair ZX Spectrum

hat there is no slipping. The pencil point traces out a pattern, which is complete
vhen the pencil returns to its original position.

nitially we assume that the centres of the disc and the circle and also the hole
il lie on the positive x-axis, the centre of the circle being the coordinate origin.
'n order to emulate the Spirograph we need to specify a general point on the
rack of the pencil point. We let « be the angle made with the positive x-axis by
ne line joining the origin to the point where the circle and disc touch. The point
»f contact is therefore (A cos o, A sin) and the centre of the disc is ((A — B) cos
x. (A — B) sin @). If we let § be the angle that the line joining the hole to the
centre of the disc makes with the x-direction, then the coordinates of the hole are

(A—BlcosatDcosB,(A - B)sina+ Dsing)

The point of contact between the disc and circle will have moved through a
distance Aa around the circle. and a distance —Bg around the disc (the minus
sign is because « and § have the opposite orientalion}. Since there is no slipping,
hese distances must be equal, and hence we have the equation 8= —(A/B)a.

“he pencil returns to its original position when both @ and § are integer multiples
o1 27, When a = 2N, then 8 = —N(A/B)2#: hence the pencil point returns to its
original position for the first time when N(A/B) becomes an integer for the first
time: that is, when N is equal to B divided by the highest common factor of B
ind A, The routine ‘Euclid’ {listing 2.13) uses Euclid’s algorithm (see Davenport,
1952) to calculate the highest common factor (integer HCFj of two positive
‘ntegers A and B, :

This function is used in the routine ‘spire” (listing 2.13), which calculates
he value of N and then varies « (ALPHA) between O and 2N in steps of a/100,
or each «. the value of §{BETA) is calculated and then the general track is
irawn, Figure 2.9 was drawn by a call to “spiro” with A= 12, B=7and D= 5.
“he size of HORIZ and VERT must be chosen so that the figure fits on the
.creen; in this case HORIZ = 30 and VERT = 20.

“rom Real Coordinates to Pixels 43

Listing 2,13

an
@1
‘@z
1E
2d
30
&0
5@

PE
21
12
120
3¢
19
42
"
60
78
2@
9@
.09
10

REM Euclid

REM IN : A, B

REM CUT : HCF

LET I = At LET HCF = B

IF A < B THEN LET 1 = B: LET HCF = A
LET J = I = INT (I/HCFI*HLF

IF J = @ THEN RETURN

LET I = HCF: LET HCF = J: GO TO 230
REM spirc
REM IN : A, B, D

LET RFB = A - 8: LET ALPHA = @: LET ADIF = PI/5@: LFT AUB = A/E
G0 SUB Euclid: LET N = BJHCF: LET NC = 1B@*N

LET XPT = RBB + D: LET YPT = @i: GO SUE mewveto

REM talculate ard join points (XPT,YPT) c¢n the path of a Spirograph.
FOR 1 = 1 TO0 WO .

LET ALPHA = ALPHA + ADIF

LET BETA = ALPHAMLLE

LET XPT = RAB*L(S ALPHA + D#[05 BETA

LET ¥PT = RAB*SIN BLPHA — D=SIN HETA

G0 SUB Liretc

MEXT I

RETURN

t is evident from this examople that drawing patterns is not so straightforward

i 11 appears. Even such a simple picture as figure 2.8 requires the mathematical
rackup of Euclid. Progressing through computer graphics, we shall discover more
ind more that it is essential to have at least an elementary knowledge of not only
:00rdinate geometry but also calculus, algebra, Euclidean geometry and number
heory. Be prepared to scour your local library (or pester vour friendly neigh-
hourhood mathematician) for the necessary information.

Complete Programs

it this stage we shall group the listings 2.1 (‘start”), 2.2 (two functions FN X

anda

FN Y1, 2.3 (‘setorigin’), 2.4 (‘moveto’) and 2.5 (‘lineto’) under the heading

'ib1’. Later we shall replace listing 2.5 with listing 3.3 (“clip’ and a new version
of ‘linetc’).

418

1ib1" and listing 2.6 (‘drawing a square’}: no INPUT data,

1lib1’ and listing 2.7 {‘main program’ and ‘*polygon’): requires the number
»f vertices on a polygon, and their X/Y coordinates in pairs (—15 <X <
5and -10<€Y < 10).

libl" and listing 2.9 (‘joining vertices of regular N-gon’): requires an integer

N < 30,

1ib1’ and vour own ‘main program’ (listing 2.7 will be useful as a model)
alling listings 2.10a (‘circlel "y and 2.10b (‘circle2’). Each routine requires

VI.
/11.

Advanced Graphics with the Sinclair ZX Spectrum

he centre (XCENT, YCENT) and radius R. Choose these values so that the
‘igure is consistent with your values of HORIZ, VERT, XMOVE and
“MOVE. Try 30, 20, 15 and 10 respectively, As an example call *circlel’

vith centre (1, —1), radius 8 and ‘circle2” with centre (1, 2), radius 5,

1ib1" and vour own ‘main program’ calling listings 2.11a (‘spirall”) and

:.11b (*celtic’). Each routine requires the centre (XCENT, YCENT),

naximum radius RMAX and number of turns in the spiral N. Listing 2.11a

“spirall’) also requires an angle BETA, whereas 2.1 1b (“celtic”) needs a

value SIGN, which is £1. Choose these values so that the figure is consistent

vith your values of HORIZ, VERT, XMOVE and YMOVE (for example,

'0. 20, 15 and 10). For example, call *spirall’ with centre {1, -1), RMAX

3.N =3 and BETA = 2, and call ‘celtic’ with centre (1, 2}, RMAX =3,

N =5 and SIGN = —1. Also try SIGN = +1,

lib1” and listing 2.12 (‘envelope’): requires a integer N, 2 << N < 30,

‘lib1” and listing 2.13 {*Euclid’ and ‘spiro’}): requires three integers A, B and
), where A > B> D. Choose HORIZ, VERT, ctc., so that the diagram fits
m the screen: set XMOVE = HORIZ+#0.5. YMOVE = 0,5+VERT (for
2torigin’), where both HORIZ and VERT are greater than 2#(A — B + D).

3 Two-dimensional Coordinate
Geometry

n chapter 2 we introduced the concept of the two-dimensional rectangular co-
rrdinate system; we defined points in space as vectors, from which we were able
‘o draw line segments between pairs of points. To be strictly accurate, a straight
irie {or line for short) in two-dimensional space is not a finite segment, but
:tretches off to infinity in both directions, and so we need to introduce ways of
representing a general point on such a line.

Ve are taught that the equation of a straight line is y = mx + c, the relation-
:nip between the x-coordinate and y-coordinate of a general point on the line,
vhere m is the tangent of the angle that the line makes with the positive x-axis,
ind ¢ is the point of intersection of the line with the y-axis; that is, when x =0
hen ¥ = ¢. This formula may be well known, bui it is not very useful. What
nappens if the line is vertical? s is infinite! A far better formula is

v=bx+c¢

“his allows for all possible lines: if the line is vertical, is 0;(b/a) is now the
angent of the angle that the line makes with the positive x-axis, and the line
:uts the v-axis at (c/a), provided that ¢ is not equal to zero, and the x-axis at
—c/b), provided that b is not equal to zero. The line is parallel to the v-axis if «
s zero, and to the x-axis if » is zero.

Ve shall frequently use this formulation of a line in the following pages; how-
wver, we now introduce another, possibly more useful, method for defining a line.
iefore we can describe this new method we must first define two operations on
rectors (namely, scalar multiple and vector addition), as well as describe another
eauired operation — the absolute value of a vector. Suppose we have two
ectors Py =(x,, ¥,) and p» =(x3, ¥1), then
ccatar muldtiple kp, =(k x x, k x ¥,), we multiply the individual coordinates
v some scalar value (that is, real) £.

' Advanced Graphics with the Sinclair ZX Spectrum

ector addition by +p, =(x; +Xx,, v, +¥;), add the x-coordinates together,
ina the y-coordinates together.
wsolute value |p, |=+/(x] +y7)is the distance of the point p, from the origin
this is also called the length, and the amplitude of the vector).

"o define a line we first arbitrarily choose any two points on the line, again
ve call them py = (x,, ¥,) and p; =(x;, ¥,). A general point p(U) = (x,) is
siven by the combination of scalar multiples and vector addition

1 -, +up; for some real value of u

hat is, the vector (1 —) x %, +p x x5, (1 —g) x y; + ¢ x ;). We place the
4 1n brackets after p to show the dependence of the vector on the value of u,
ater when we understand the relationship more fully we shall leave out the {u).
t0<swu<1, then p(u) lies on the line somewhere between p, and p, . For any
‘pecified point p(u), the value of g is given by the ratio

ristance of p(u) from p,

iistance of p, from p,

vhere the measure of distance is positive if p(u) is on the same side of p, as p,,
ind negative otherwise. The positive distance between any two vector points p,
ind p4 is given by (Pythagoras)

Py - Py 1=V((xy — X2 + (3 —33))

.ee figure 2.1, which shows a line segment between points (-3, —1) = p(0) and
3,2)=p(1): the point (1, 1) lies on the line as p(2/3). Note that (3, 2)is a
iistance 3+/5 from (-3, —1), whereas (1, 1) is a distance 24/5. From now on we
omit the (u) from the point vector,

“xample 3.1

Ve can further illustrate this idea by drawing the pattern shown in figure 3.1. At
irst sight it looks complicated, but on closer inspection it is scen to be simply a
.quare, outside a square, outside a square, etc. The squares are getting successively
mmailer and thev are rotating through a constant angle. In order to draw the
liagram we need a technique that, when given a general square, draws a smaller
nternal square rotated through this fixed angle. Suppose the general square has
‘our corners 1(x;, ¥)li=1,2,3,4 ¢ and the i side of the square is the line
oining (x;, ¥;) 10 {Xp, Vi), assuming additions of subscripts are modulo 4

that is, 4 + 1 = 1). A general point on this side of the square, (x}, ¥}), is given by

(I —) X x;+ X Xy, (1 —p) X ¥yt x yu,) where Ospu<l

"wo-dimensional Coordinate Geomeltry 47

n fact u:1 — g is the ratio in which the side is bisected. If u is fixed and the four
yoints { (x5, ¥ Dli=1,2,3,4 } are calculated in the above manner, then the sides
f the new square make an angle o= tan~" [u/(1 — u)] with the corresponding
ide of the outer square, So, by keeping u fixed for each new square, the angle
)etween consecutive squares remains a constant . In listing 3.1, which generat-
'd tigure 3.1, there are 21 squares and 4 = 0.1,

Jsting 3.1

B0 REM square outside square etc.
18 LET start = 97@00: LET setorigin = $600: LET moveto = F5@D
LET Lineto = 9488

120 LET HORIZ = 3: LET VERT = 2.1

130 G0 % start

T4 LET XMOVE = HORIZ#D.5: LET YMOVE = VERT*D.5
158 GO SUB =zetorigin

160 DIM XC4): DIM Y(4): DIM V(&) : DIM W{4)

70 DATA 1.1,1,-1,-1,-1,-1,1

179 REM initialise first square,

80 FOR I =1 TO 4: READ XCI},Y(ID: NEXKT I

189 REM set MU walue and draw 20 squares.

00 LET MU = R.1: LET UM =1 - WU

@0 FOR I =1 10 21

B8 REM jain four vertices af square CXGJY YOUIID
‘B9 REM calculate rext four wvertice: (W{JI , W(J))
1B LET XPT = ¥{4): LET YFT = Y(4): GD SUB moveto
28 FOR J =1 TO 4

38 LET XPT.= X({J): LET YPT = ¥(J): 60 SUB Lineto

L
Hon
i —
“r ra
~

L

43 LET NJ = J + 12 IF NJ =5 THEN LET NJ = 1
5@ LET VIJY = UM#X{J) + MUsX{KLD

68 LET WOJ) = UM*Y(J) + MU*Y(N])D

TR MEXT |

‘T9 REM copy arravs ¥ and W into X and Y.
B@ FOR J =1 70 4

208 LET XCJY = WCJY: LET YOE) = WLJ)

28 NEXT J

18 MNEXT I

20 STOP

1 is useful to note that the vector combination form of a line can be re-
rganised

1 TP, —Py)

‘When given in this new representation the vector p, can be called the base vector,
ind (p, — p;) can be called the directional vector. In fact any point on the line
-an stand as a base vector: it simply acts as a point to anchor a line that is parallel
o the directional vector. This concept of a vector acting as a direction needs
s;ome further explanation. We have already seen that a vector pair, (x, ¥) say,
may represent a point; a line joining the coordinate origin to this point may be
hought of as specifying a direction — any line in space that is parallel to this

ine is defined to have the same directional vector. We insist that the line goes

48 Advanced Graphics with the Sinclair ZX Spectrum

“igure 3.1

rom the origin towards (x,), the so-called positive sense; a line from (x,)
towards the origin has negative sense.

“his dual interpretation of a vector, as a point or a direction, is used in the
ollowing example.

<xample 3.2

yraw a dashed line, with 13 dashes (and hence 12 spaces between dashes) from
oint py =(x;, Y1) to p; =(x,, ¥3). This problem is solved by finding the 26
squi-spaced points on the line;that is p, + /25 (p, — p,) where i varies from
O (at p,) to 25 (at p,). We draw consecutively or move between neighbouring
points using the CailComp ‘plot’ (listing 2.8). There is no need to store the values;
ve already have p, , so, by adding 1/25(p, — p,) each time, we can move through
all the required points (see listing 3.2).

Listing 3.2

TP REM dashed Lines

118 LET start = $7B0: LET plot = 9800

120 LET HORIZ = 3: LET VERT = 2.1

130 60 SUB start

148 LET XPT = HORIZ*P.S: LET YPT = VERT*B.5: LET MODE = -3

15@ 60 SUB plot ;

168 INPUT "TYPE X1 AND Y1 ";X1;" , ";¥1

170 INPUT "TYPE X2 AND Y2 ";X2:" , "i¥Y2

I79 REM move to first point.

BB LET *PT = X1: LET YPT = ¥1: LET MCDE = %: G0 SUB plot

199 LET XD = (X2 = X1)/25: LET ¥D = (Y2 = ¥1)/25

199 REM alternately draw and move to next 25 poirts on the Line.
Z0B FOR I =1 TO 25

1@ LET XPT = XPT + X%D: LET YPT = YPT + ¥bh: LET MOBDE = 5 — MODE: GO SUB plot
2@ MNEXT I

2@ STOP

"wo-dimensional Coordinate Geomefry 49

“xercise 3.1

:xperiment by drawing different types of dashed lines: for example, (a) the size
o the dash could be twice that of the space between; (b} the size of the dash
ould be a fixed numerical value and the number of dashes unknown; {c) the
1ashes could vary in size, alternating between large and short dashes, where the
relationshio between the types of dashes and the spaces could be input variables.

T'his base and direction representation is also very usetul for calculating the
yoint of intersection of twao lines, a problem that frequently crops up in two-
tfimensional graphics. Suppose we have two lines p + ug and r + As, where
1 =X, M LG =02, V), r=(x;, y3)and s ={xy, ya) for —eo < A <oc We
ieea to Yind the unigue values of g and A such that

ptug=r+hs

hat is. a point that is common to both lines. This vector equation can be written
i$ Two separate equations

£y FIX Xa =Xa +AX Xy (3.1}

Yy tHX Y =Y FAX Yy {(3.2)
lewriting these equations we get

UX Xo —AX Xg=X3 — X (3.3)

IX Y3 —AX Vg =Y3 — ¥ (3.4)
Multiplying (3.3) by v, , (3.4} by x4 and subtracting we get
X AXy X Vg — V2 X Xa)=(X3 — X)) X ¥a —(¥3 —V1) XXy

fi{xs % ¥a —¥a2 ¥ xq4) =0 then the lines are parallel and there is no point of
intersection (¢ does not exist), otherwise

u= X3 =Xy)X Ya—(V3a —Y1)X Xa (3.5)

Xy X Ya — Yz X Xa)

and similarly

- X3 —X1)X ¥z —(¥Va —y1) X xq (3.6)

Xy X Ya — Yz X Xa)

"he solution becomes even simpler if one of the lines is parallel to a coordin-
ite axis. Suppose this line is x = &, then we can set r =(d, 0) and s =(0, 1),
vinich when substituted in equation {3.5) gives

S50 Advanced Graphics with the Sinclair £ZX Spectrum
d=1d - X1)x;
and similarly if the line is y =d
4=1d -y,)y2
Naturally if both lines are parallel then the denominator in these equations

becomes zero and we get an infinite result, because the two parallel lines du not
‘niersect.

xample 3.3
‘ind the neint of intersection of the two lines (a) joining (1, 1jto (-1, 3)and
b) joining (1, 2) to (2, —2).
I he lines may be written
(1 —@)(1, -1+p(-1,-3) —w<u<oe (3.7)
(1-2)(1,2)+A(2,-2) —oo LA < oo (3.8)

r when placed in the base/directional vector form

(1,-1) + p(-2, -2) (3.9)
(1,2) + M2, —-4) (3.10)

substituting these values in equation (3.5} gives

1 1)x—4—@2+1)x2
== _—.-_]lfz
“2x—4—(-2)x2)

vnence the point of intersection is (1, —1) — 1/2(-2, -2) =(2, 0).

xercise 3.2

‘xperiment with this concept of vector representation of two-dimensional space.
‘ou can make up your own questions: it is easy to check that your answers are
:orrect. Consider example 3.2. We know that (2, 0) lies on the first line because

ve used the value u = —1/2: our answer is correct if it 4lso lies on the second line;
t does with A = 1/2.

ixercise 3.3
Vrite a program that reads in data about two straight lines (it can be either in the

orm of eguations, or in the base/directional vector form) and then calculates
heir point of intersection {if any).

"wo-dimensional Coordinate Geometry b Y
lipping

Bv now you will have realised that it is impossible to PLOT, or DRAW, to a
rxei (x,) outside the graphics area, and thus we are limited to 0 <x < 255
and 0 <y < 175, It is far too casy to stray inadvertently outside this area. In
act when drawing two-dimensional and three-dimensional scenes it is common-
slace to define scenes that cover an area greater than that allocated to graphics
on the Spectrum. So it is necessary to find an algorithm that will clip off all
exterior line segments without losing any that should be drawn.
¥e assume that the centre of the screen is given by the (non-pixel) point
(255/2,175/2)=(127.5, 87.5) and thus the four corners of the graphics area
e (1275 £127.5,87.5 £87.5). Our problem reduces to calculating which part
(if any) of a line segment joining pixel point (XA, YA) to pixel point (XB, YB)
lies within the area. In order to simplify matters we redefine our pixel coordinate
wvstem to let the centre of the screen be the origin, by subtracting the vector
127.5, 87.5) [rom the coordinates of original points. The graphics rectangle
inow nas corners (£127.5, £87.5). We extend the sides of the rectangle, thus
lividing space into nine sectors; see figure 3.2, which also shows the graphics
irea and the BORDER. In this diagram a number of different line segments have
reen drawn to aid the explanation of the algorithm. Each point in space may
10w te classified by two parameters [X and [Y where

1) IX =—1,0 or +1 depending on whether the x-coordinate value of the point
ies 1o the left, on or to the right of the graphics area;

2) IY = -1, 0 or +] depending on whether the v-coordinate of the point lies
below. on or above the graphics rectangie,

"hese values are calculated, when needed, inside the algorithm program.

f the two points at the end of the line segment — that is, (XA, YA) and

XB, YB) — have parameters IXA and TYA, and IXB and 1YB respectively, then
here are a number of possibilities to consider,

iy IfIXA=IXB#0orIYA=I1YB #0, then the whole line segment is outside
he rectangle and hence may be safely ignored; for example, line AB in figure
(i) HIXA=IYA=IXB=I1YB =0, then the whole iine segment lies in the
sraphics area and so the complete line must be drawn; for example, line CD.

iii} The remaining case must be considered in detail. If IXA # 0 and/or IYA #0
hen the point (XA, YA) lies outside the rectangle and so new values for XA and
’A must be found — to avoid confusion we will call these XA" and YA'_ (XA,
A’} is the point on the line segment nearer to (XA, YA) where the line cuts the
rraphics area. The formula for this calculation was considered above; that is, the
ntersection of a line with another line parallel to a coordinate axis. If the line
nisses the rectangle, then we define (XA", YA') to be that point where the line

P Advanced Graphics with the Sinclair ZX Specirum

IX==-1 } IX=0 | IX=31 =
+

i 5 ®

>

_.,.1

Y e

-
-

“Igtire 3.2

:uts one of the extended vertical edges, IFIXA =IYA =0 then (XA, YA") =
XA, YA). The point (XB', YB') is calculated in a similar manner; see the algor-
thm given by routine ‘clip’ in listing 3.3. The required clipped line is that joining
XA, YA to(XB', YB'). If the original line misses the rectangle then the
ugorithm ensures that (XA', YA") = (XB', YB') and the new line segment
aegenerates to a point and is ignored. For example, EF is clipped to E'F', GH

s ciipped to GH' (G = G') and 1J degenerates to a point I' = J',

'hus ‘clip’ takes the two pixel end points of the line, (XA, YA} and (XB, YB),
ina transforms them into the centred system, It then discovers which of the
ipove three possibilities is relevant and deals with it thus: (i) exit the routine
mmediatelv; (i) join the two points; or (iii) calculate the *‘dashed’ points and
,oin them with a line,

isting 3.3 also includes a new version of ‘lineto’ routine that calls ‘clip’
nstead of PLOT and DRAW. thus enabling it to cope with the problem of join-
ng iines anywhere in space. From now on always use this new version of ‘lineto’,
1 will prove invaluable, especially in the study of three-dimensional objects,

ixercise 3.4
fse this altered routine in the programs of chapter 2. Choose values of HORIZ

and VERT in such a way that some lines in the diagrams go outside the graphics
irea.

"wo-dimensional Coordinate Geometry 23

Jsting 3.3

5400
2401
3409
2418

5419
3420
3430
5440
B45Q
1459
2460
4L78
G479
B4AQ

%9
50D
589
510

515
3521
8529
2531

1548
1550
3559
1560

1570
1579
R580

3590

340D
3401
9401
610
1420
74,30
2G40
2450
1460

REM clip

REM IN : XA,YA,XB,YEB

REM change coordinate system.

LET XA = XA - 127.5: LET YA = YA — 87.5: LET XE = XB = 127.5
: LET YBE = YB - 87.5

REM find the sector wvalues of two points (XA,YA} AND (XB,YE).
LET IXA = @: IF ABS XA > 127.5 THEW LET IXA = SGM XA

LET IYA = @: IF ABS YA > 87.5 THEN LET IYA = SGN YA

LET IXE = @: IF ABS XB > 127.5 THEM LET IXB = 5GN XB

LET IYE = @: IF ABS YB > B7.5 THEN LET IYB = SGN YB

REM points in same cff-screen sector then return.

IF IXR+IXE = 1 OR IYA*IYB = 1 THEN RETURN

IF I¥A = @ THEN GO TO B5QR

REM move 1'st point to nearer x—edge.

LET XX = 127.5%IXA: LET YA = YA + (YB - YA)*(XX - XA)/(XB - XA)

: LET XA = XX

LET IYA = B: IF ABS YA > EB7.> THEN LET IYA = 5GN YA

IF IYA =@ THEN GO TO 8515

REM move 1'st point to nearer y—edge,

LET YY = B7.5«IYA: LET XA = XA + (XB - XA)*(YY - YA)/(YB - YA)

: LET YA = YY

IF 4BS (XA - XB) < D.ppP@@1 AND ABS (YA - YB) < D.@EEEET THEN RETURK

IF IX8 = @ THEN GO TO ES58

REM move 2'nd point to nearer x—edge.

LET XX = 127.5*IXB: LET YH = Y& + (YB = YAI*(XX - XR)/{KB - XA}

+ LET XB = XX

LET I¥YB = @: IF ABS v8 > BF.5 THEM LET IYBE = SGN YB

IF IYE = @ THEN GO TO 2570

REM move 2'nd point to nearer y-edge.

LET ¥Y = B7.5*IYB: LET X8 = XA + (XB — XA)=(¥YY — YA)S(YB — YA)
LET YB = YY

IF ABS (XA - XB) < R.ODBOD1 AND ABS (YA — YB) < RA.008801 THEM RETURN

REM plct nom-coincident peints.

LET XA = INT (XA + 128): LET YA = INT (YA + B3}

: LET XB = INT (XB + 128}: LET YB = INT {(YE + &8)

PLOT XA,YA: DRAW XBE - XA YE - YA: RETURN

REM Lireto/ clipping

REM IN : XPT,.YPT,XPEN,YPEN
REM OUT : XPEM,YPEN

LET XA=XPEN: LET YA=YFEN
LET XPEN=FMN X(XPT)

LET YPEN=FN Y(YPT)

LET XB=XPEMN: LET YB=YPEN
GO SUB clip

RETURN

teturning to the use of a vector (¢ = (x, ¥} # (0, 0), say} representing a
iirection, we note that any positive scalar multiple kq, for k > 0, represents the
-ame airection and sense as g. {1f k is negative then the direction has its sense
nverted). In particular, setting k = 1/1q | produces a vector (x/3/(x* + y?),
yA/(x? + p?)) with unit absolute value,

“hus a general point on a line, p + g, is a distance [ugq| from the base point
2, and if |gl = 1 {(a unit vector) then the point is a distance |u| from p.

Ve now consider the angles made by directional vectors with various lixed
lirections. Suppose that « is the angle between the line joining O (the origin} to
7 = (x, ¥), and the positive x-axis. Then x = Iglx cosaand ¥y = [glx sin o see
igure 3.3 — there are similar fipures for the three other quadrants.

4 Advanced Graphics with the Sinclair ZX Spectriem

Qg = _
PRS2

Wa
(1
-

v 3

e
i
; i
!
i
|
?.

‘dgure 3.3

faisaunit vector (that is, [gl=1) then ¢ = (cos @, sin ®). We note that sin a =
:08 (@ — 7/2) for all values of a. Thus we can rewrite ¢ = (cos a, cos {a — 7/2)),
out @ — /2 is the angle that the vector makes with the positive y-axis. Hence the
roordinates of a unit directional vector are called its direction cosines. since they
ire the cosines of the angle that the vector makes with the corresponding positive
axes.

Jefore continuing, we should take a lock at the trigonometric functions avail-
ible in BASIC: SIN and COS, and the inverse function ATN. SIN and COS are
‘unctions with one parameter (an angle given in radians) and one result {a value
netween —1 and +1). The ATN function takes any value and calculates the angle
in radians (in the so-called principal range between —n/2 and +x/2) whose
‘angent is that value.

“his leads us to the problem of finding the angle that a general direction
2 = (x, ¥) makes with the positive x-axis, which is solved by routine ‘angle’ given
in listing 3.4 ‘angle’ will be of great use in later chapters when we consider three-
iimensional space.

Listing 3.4

AP REN angle

iBET REM IN 1 AX,AY

:BBZ REM QUT : TRETA ;
829 REM THETA is the argle made by Lline to (AN, AY) with +wve x—axis,
5810 IF RES AX > D.0EDDt THEM GO TC B&6E

2819 REM lime is vertical.

iBZ@ LET THETA = PI/¢

583@ IF AY < B THEN LET THETA = THETA + PI

B840 IFf AES AY < D.0PP®1 THEM LET THETA = @

2858 RETURMN

8859 REM Lirme not vertical so it has finite tangent.
3B6@ LET THETA = ATN (AY/AXD

G870 IF AX < B THEN LET THETA = THETA + PI

4BE@ RETURN

“wo-dimensional Coordinate (reometry 35

I
4|
IJ PAR- W
|
1
e
u. ‘:' ___.4-‘--- E 1: I d
& —
“fgure 3.4

Now suppose we have Lwo directional vectors (g, b} and (¢, d); for simplicity
ve can assume that they are both unit vectors and they pass through the origin
see figure 3.4). We wish to calculate the acute angle, o, between these lines.

‘rom the figure we note that OA =+/(¢* +b*) =1 and OB =+/(¢®> +d*) = 1.
10 by the Cosine Rule

\B* =0A%? +OB®> —20A x OB xcosa=2 x(1 — cos o)

jut also by Pythagoras
B =z - +(B-DP =@+ + (P +d)—2@x c+bx d)

=3 -2(@xc+bxd)

‘husg x ¢+ b x d =cosa, Ilispossible that g x ¢ + & ® d is negative, in which
:ase ¢os © (g X ¢ + b x d) is obtuse and the required acute angle is 7 — «. Since
208 (T — @) = —cos «, then the acute angle is given immediately by cos™ (la x ¢

h x d|). For example, given the two lines with direction cosines (+/(3/2), 1/2)
na {—1/2, —(3/2)), we see that 2 x ¢ + b xd = —+/(3/2) and thus & = cos ™!
2/(3/2)) = m/6. This simple example was given in order to introduce the concept
L a sealar product + of two vectors, (g,) * (¢, d)=a x ¢+ b x d, Scalar product
s extendable into higher dimensional space (see chapter 7 for a three-dimensional
xampie) and it always has the property that it gives the cosine of the angle
setween any pair of lines with directions defined by the two vectors.

Curves: Functional Representation versus Parametric Forms

A curve in two-dimensional space can be considered as a relationship between x
ind Vv coordinate values, the so-called functional relationship. Allernatively the

] Advanced Graphics with the Sinclair ZX Spectrum

-oordinates can be individually specified in terms of other variables or para-
neters. the parametric form.

Ve have alreadv seen that a line (a circular arc of infinite radius) may be
'xpressed as gy = bx +c¢. If we rearrange the equation so that one side is zero
that is, @y — bx — ¢ = 0) then the algebraic expression on the left-hand side of
he eaquation is called a functional representation of the line and written

x,y)}=ay —bx —c¢

wll. and only, those points with the property f{x, ¥} = 0 lie on the curve, This
-epresentation divides all the points in two-dimensional space into three sets,
mamely f(x, ¥) = 0 (the zero set), f{x, ¥} > 0 (the positive set) and f(x, ¥) <0
the negative set). If the function divides space intoe the curve and two other
onnecred aregs only (that is, any two points in a connected area can be joined
w a curvilinear line that does not cross the curve), then these areas can be
dentified with the positive and negative sets defined by f. However, be wary,
here are many elementary functions (for example, g(x, ¥) = cos (¥) — sin (x})
hat define not one but a series of curves and hence divide space into possibly an
nfinite number of connected areas (note g(x, ¥) = g(x + 2mn,y + 2nr) for all
ntegers # and n). So it is possible that two unconnected areas ¢an both belong
o the positive set.

“lote that the functional representation need not be unigue. We could have
mur the line in an equivalent form

F(x,y)=bx +c —ay

n which case the positive set of this function is the negative set of our original,
ind vice versa.

'he case where the curve does divide space into two connected areas is very
iseful in computer graphics, as we shall see in a study of two-dimensional and
\especially) three-dimensional graphics algorithms. For example, take the straight
line

flx,)=ay —bx — ¢

viere a point (x,, ¥;) is on the same side of the line as (x,, y,) if and only if
{x;, ¥} has the same non-zero sign as f (x5, v,). The functional representation
ells us more about a point (x,, ¥,) than just which side of a line it lies — it also
‘nables us to calculate the distance of the point from the line.

;uppose we have the above line, then its direction vector is (a,). A line per-
endicular to this will have direction vector (-5, &) (why? the product of the
‘angents of two mutually perpendicular lines is —1: see McCrae, 1953). So the
point g on the line closest to the point p = (x,;, ¥,) is of the form

“wo-dimensional Coordinate Geometry 57
a=(x;,y1)tul b a)

hat is. a new line joining p to g is perpendicular to the original line. Since g lies
m this original line

g)=f((xy,y1) tp(-0,2))=0
na hence
EX Ay, tuxa)-bx{x; —p x b}_czf(xh,}-'l)'!',u(az +f)2_}:[]

fence u= —f(xy, ¥ }(a* +b%). The point ¢ is a distance g x |{—b, a)! from
Xy, Y1), which naturally means that the distance of {x,, ¥4} from the line is
tx v(@ +b8%)= f(xy, ¥\ (@ +b*): the sign denotes on which side of the
ine the point is lying. If 2* + »% =1 then | f(x,, y,)| gives the distance of the
yoint {x, ¥) from the line,

“his idea leads us straight to a way of implementing convex greas; that is, an
irca with the property that a straight line segment joining any two points within
ne area lies totally inside the area, We limit our study to convex polygons, how-
:ver. singe it is obvious that any convex area may be approximated by a polygon,
woviding it has enough sides,

suppose we have a convex polygon with » vertices J p; = (x;.v0li=14. 0
1 _} taken in order around the polygon either clockwise or anti-clockwise; we
:nall call such a descrintion of a convex polveon an vriented convex sel of
rertices. The problem of finding whether such a set is clockwise or anti-clockwise
s considered in chapter 7. The n boundary gdges ol the polygon ase segments of
he lines

G YIS (g — X)) X 0 = yi) — iy — Vi) % X — Xp)

vnere /= 1., .., n, and the addition in the subscripts is modulo » (thatis, n +§ =
for I <j<Un). Try to explain why these formulae do actually describe the line
egments!

T'his systematic definition of the lines enables us to define the inside of the
>onvex ared. Any given line segment, say the ong joining p; to py for some i, is
wen thal the points inside the body must lie on the same side of this line as the
eratning vertices ol the polvgon, in particular pg, . So the inside is given by

(x, v} sign of f;(x, ¥) = sign of fi{{Xpq, Vi) #F0:i=1, .. n}
\ point on the boundary is given by

:'(x. v) | there exists one j, or two if (x, v) is a corner, where

& Advanced Graphics with the Sinclair £ZX Spectrum

7= # such that f;(x, y) =0 and

agn of fi(x, ¥) = sign of f;(xpp, Yi2) #0:i#] and 1 <i<ny
\ point outside the area is defined by

'(x, v} there exists one 7, 1 <7 < n such that
) sign of fi(x, y) #sign of fi(xps, Ypa) # O}

Naturally the additions of subscripts are all modulo a.

xample 3.4

Juppose we are given the convex polygon with vertices (1,0),(5, 2), (4, 4) and
—2, 1) (see figure 3.5). In this order the vertices obviously have an anti-clock-
yise orientation. Are the points (3, 2), (L, 4), (3, 1) inside, outside or on the
roundarv of the polveon? What is the distance of (4, 4) from the first line?

i

I
1
]

dgure 3.5

e EE-Dx -0 -Q2-0)x (x - 1)=4y - 2x+2

ey |

LEVIE@-3)x F-2)-E4-Dx(x -5)=—py —2x+12
ZENEE2-D)x{y-4) -l - 4Ix x—-4)= -6 +3x+12

EMEA+)x -1 -0 —Dx (x+2D=3p+x -1

lence point (3, 2} is inside the body because f,(3,2)=4 and f, (4, 4)=10;
(3. D=4dand 5 (2. 1)=15:5(3,2)=9%and f5 (1,0) = 15; /4 (3,2) =8
ina fy (5, 2)= 10 — all with the same positive signs.

oint {1, 4) is outside the body because f5 (1, 4)= —9and £ (1,0)= 15
yoposile signs.

"'wo-dimensional Coordinate Geometry 39

Point {3, 1) is on the boundary because f; (3,1)=0,f(3,1)=35, 3,1)=13
and fy (3, 1)=5. -

n fact there is no need to work out fi(xz2, ¥4) for every i, they all have the
:ame sign so once we have calculated f; (x5, v5) then we can work with this
ralue throughout,

4,4) is a distance f, (4, 4)/4/(4% +2%) = 10/4/20 =+/5.

.xercise 3.5

magine two convex polygons that intersect one another, The area of inter-
:ection is also a convex polygon. Use the methods mentioned in this chapter to
-aiculate the vertices of the new polygon.

{aving dealt with the functional representation of a line, what about the
parametric form? We noted that this form is one where the x-coordinate and y-
:oordinate of a general point on the curve are given in terms of parametei(s)
which might be the x-value and the y-value themselves), together with a range
or the parameter. So we have already seen a parametric form of a line: it is
amply the base and directional representation

b+ ud =(xy, ¥}t ulxa, ¥2)
Xy P UK Xq, ¥ TR X Yy) where ey <Loe

t1s the parameter, and x; + 4 X x; and y, + u x ¥, are the respective x-value
ind v-value, depending only on variable p.

¥e can also produce functional representations and parametric forms for
most well-behaved curves. For example, a sine curve is given by f{x,)=y —
ian {x) in functional representation, and by (x, sin {x)) with —ee <x <eein its
rarametric form. The general conic section (ellipse, parabola and hyperbola) is
epresented by the general function

xS axxtrbx Y rhxxx yrfrxtgxyte

vhere coefficients a, b, ¢, f, g, i uniquely identify a curve. A circle centred at
he origin of radiusrhasa=b=1,f=g=h=0and c= - r*, whence f(x,y¥)=
> +y? —r* . All the points (x, ¥) on the circle are such that f(x,) =0, the
nside of the circle has f(x, v} <0, and the outside of the circle f(x, ¥) > 0.
"he parametric form of this circle is (r cos q, 7 sin) where 0 < a < 27, (We
1ave alreadv met the parametric form of a circle, ellipse and spiral in chapter 2).
't is verv useful to experiment with these (and other) concepts in two-
iimensional geometry. There will be many occasions when it is necessary to
nciude these ideas in programs, as well as the ever-present need when generating
:oordinate data for diagrams.

1) Advanced Graphics with the Sinclair £X Spectrum

sxample 3.5
uppose we wish to draw a circular ball (radius r) disappearing down an elliptical

10le (major axis ¢, minor axis b), see figure 3.6. Parts of both the ellipse and

ircle are obscured.
et the ellipse be centred on the origin with the major axis horizontal, and

he centre of the circle a distance d vertically above the origin. The ellipse has
unctional representation

e (X,) =x%a® + b — |
and in parametric form

ax cosa, bx sing)with0<sa<2n
“or the circle
R — F 2 2
X VIEXT+(y —d)Y -
ind in parametric form
(rx cosA, d+rxsind) where 0<A< 2y

To generate the picture we must {ind the points (x, ¥) common to the circle and
cllipse {if any). As a useful demonstration we shall mix the representations in
cgarching for a solution, using the functional representation for the circle and the
rarametric form of the ellipse.

50 we are searching for the points (x, ¥) = (2 x cos &, b x sin &) on the

lipse, which also satisfy f. {x, y)= 0. That is

* x cos’ at(bxsina—dP —rt =0

and g xcos® a+h®xsinPa—2xbxdxsina+d® - =0

vnd since cos? a=1 —sin? «
(b* —a*)xsinfa—2xbxdxsinat+ta®+d? -r*=0

"his is a simple quadratic equation in the unknown sin &, which is easily solvad
the quadratic equation Ax* + Bx + C'= 0 has two roots (-8 i\/[B’ — 4 x A x
W2 x A)). For each value of sin & we can find values for a with 0 < << 27
if they exist) and we can then calculate the points of intersection (g x cos &
» X sin).

There is no hard and fast rule regarding which representation to use in any

miven situation - a feel for the method is required and that comes only with

experience.

“wo-dimensional Coordinate Geometry

:xercise 3.6
¥rite a program that will draw figure 3.6,

61

‘omplete Programs

. ‘b1 and listing 3.1: no data required.

I. Listings 2.1, 2.8 and 3.2: data are two coordinate pairs (X1, Y1} and
X2,Y2), where -3 <{X1,X2<3and 2.1 <Y1, Y2<21.
Note: from this point listing 3.3 (“clip” and a new version of ‘lineto”) will

eplace listing 2.5 in Tlib1".

1. The same as I above, but with the new ‘libl": change HORIZ to 1.5 and

VERT to 1,

4 Matrix Representation of
I'ransformations on Two-
Dimensional Space

n chapter 2 we saw the need to translate pictures of objects about the screen.
Rather than perpetually change the screen coordinate system, it is conceptually
nuch easier to define an obiect in the most simple terms possible (as vertices in
he form of pixel or coordinate values, together with line and area information
elated to the vertices), and then transform the object to various parts of the
.creen while keeping the screen coordinate system fixed, We shall restrict our-
elves to linear transformations (see below), It will often be necessary Lo Lrans-
‘orm a large number of vertices, and to do this efficiently we use matrices.
jetore looking at such matrix representations we should explain exactly what is
meant by a matrix, and also by a column vector. In fact we restrict ourselves to
square matrices; to 3 X 3 (said 3 by 3) for the study of two-dimensional space,
ind later we shall use 4 X 4 matrices when considering three-dimensional space.
such a 3 X 3 matrix (A4 say) is simply a group of real numbers placed in a block
f 3 rows by 3 columns: a column vector (D say) is a group of numbers placed
n a coiumn of 3 rows

{ A'I.! Al'z A13 ‘Di
\ Az Ay, Asa]| and | D,
Ay Ay Ass D3

1 general entry in the matrix is usually written A;, the first subscript denotes
he i*™ row, and the second subscript the j™ column (for example, 4, repre-
senits the value in the second row. third column). The entry in the column vector,
):, denotes the value in the /™ row. All these named entries will be explicitly
eplaced by numerical values and it is important to realise that the information
tored in a matrix or column vector is not just the individual values but also the
posifion of these values within the matrix or vector. Naturallv BASIC programs
are written along a line (no subscripts or superscripts), and hence matrices and
vectors are implemented as arrays and the subscript values appear inside round
orackets following the array identifier.

Matrices can be added. Matrix C= 4 + B. the sum of two matrices 4 and 8, is

defined by the general entry Ciy; thus

Watrix Renresentation of Transformations on Two-dimensional Space 63
ff;r' =A-if +BI'}' | {::i,_fﬁ 3
vlatrix 4 can be multiplied by a scalar & to form a matrix #
:',-,-=kx Aﬂ' 1 gjjl"t’;.g

Ne can multinly a matrix 4 by a column vector D te produce ancther column
rcetor £ thus

i=Ap X Dy +Ajp x Dy + Ay x D3~ ZAg XDy where 1 <i<3
%

"he i*" row element of the new column vector is the sum of the products of the
:orresponding elements of the i'™™ row of the matrix with those in the column
rector,

‘urthermore, we can calculate the product (matrix) C= A4 X B of two mat-
Ices A and B

= Ay X ByjtAp x Byjt+ Ajs x BB;'=§A:‘!¢ X By; where 1 <i,j<3

Ve take the sum (in order) of the elements in the i™M row of the first matrix
nuttivlied by the elements in the J column of the second. It should be noted
hat the product of matrices is not necessarily commutative that is, 4 X B nced
101 be the same as B X A. For example

G199 001 01 0 00 I 010
-Uol)x OlD)=lUO)butDlD)>{([}Ul=
100, 1 00, 001, 00 100

£

00
OI)
10

i

‘xperiment with these ideas until you have enough confidence to use them in
he theory that follows, For those who want more details about the theory of
natrices we recommend books by Finkbeiner (1978) and by Stroud (1982).

“here is a special matrix called the identity matrix I (sometimes called the
it matrix }

0'\
0
1

vlso for everv matrix A we can calculate its determingrnt det (4)

o= O

=11
0

det(A)=Ayy x (Aga X A3z —Az3 X Ay}t Ay X (A3 X A3y — Agy X Aas)

Az X (Agy X A3z — Az X A3y)

4 Advanced Graphics with the Sinclair ZX Spectrum

iy matrix whose determinant is non-zero is called non-stmgular, and with zero
ieterminant singular. All non-singular matrices 4 have an inverse A ~' , which has
he property that 4 X 4™' =7and A~ X 4 =/. For methods of calculating an
nverse of a matrix see Finkbeiner (1978): we give a listing in chapter 7 (listing
".5), which uses the Adjoint method.

Ve now consider transforming points in space. Suppose a point (x, ¥) —
hefore’ — is transformed to (x', ¥') — ‘after’. We understand the transformation

.ompietely if we can give equations relating the ‘before” and ‘after’ points. A
inear transformation is one that defines the "after’ point in terms of linear com-
sinations of the coordinates of the *before’ point; that is, the equations contain
miyv multiples of x, ¥ and additional real values - it includes neither non-unit
yowers or muitiples of x and y, nor other variables. Such equations may be

¥IITten

:.:_-‘111 x I+A12 X_:V'i’Ala

}-=A21 XX +_~422 ® ¥ +A23

"he A values are called the coefficients of the equation. As we can see, the result
I the transformation is a combination of multiples of x.values, y-values and

mity. We may add another equation
] =A:g1 ok +A3-3 Xy +A33

For this to be true for all values of x and v, we see that 44, =45, =0 and

113 = 1. This may seem a pointless exercise but we shall see that it is very useful.
‘or it we set each point vector (x, ¥) (also called a row vector for obvious
-easons) in the form of a three-dimensional column vector

‘hen the above three equations can be written in the form of a matrix multiply-

ng a column vector

x' KAII Ay A13\‘
PJ =(A21 Ay Aza) Xy)
Aay Aas Aas, \1/

1
s
Py

;0 if we store the transformation as a matrix, we can transform every required

oint by considering it as a column vector and premultiplying it by the matrix.
vlany writers of books on computer graphics do not like the use of column

rectors. They prefer to extend the row vector (for example, (x, ¥) to (x, ¥, 1)},

Matrix Representation of Transformations on Two-dimensional Space 63

ang postmultiply the row vector by the matrix so that the above equations in
natrix form become

1y Ay Agy
2,2,)=, p,)X | A1 Az; Asy
vy Ay Ass

Hote that this matrix is the transpose of the matrix of coefficients in the equa-
1ons. This causcs a great deal of confusion among those who are not confident
n the use of matrices. 1t is for this reason that in this book we keep to the
:olumn vector notation. As vou get more practice in the use of matrices it is a
r00d idea to rewrite some (or all) of the following transformation routines in
he other notation. It is not important which method you use finally, as long as
sou are consistent. (Note the transpose B of a matrix 4 is given by 8;; = A,
vnere 1 <. 7=<3)

Combination of Transformations

1 very useful property of this matrix representation of transformations is that if
ve wish 1o combine two transformations on (say) transformation {= matrix} 4
‘ollowed by transformation B, then the combined transformation is represenied
by their product C= B X 4. note the order of multiplication - the matrix
epresenung the first transformation is premultipiied by the second. This is
yecause the final matrix will be used to premultiply a column vector represent-
ng a point, and so the first transformation matrix must appear on the right of
he product and the last on the left, (If we had used the row vector method then
he product would appear in the ngturel order from left to right — this is the
rice we pay ior identifying the transformation matrix with the coefficients of
he equation.)

50 we need to introduce a routine ‘mult2’. which forms the product of two
natrices. The BASIC computer language does not allow the transmission of array
arameters into routines, so we must invent an efficient means of coping with
his limitation. We assume that all matrix multiplication operates on matrices A
ind R giving the product matrix 8, and aflter the product is complete B is copied
rack into R. The reason for the choice of identifiers and the final copy will
recome evident as we progress. We also need a routine (*idR27), which sets R to
he identity matrix. Should we need to form the product of a sequence of
natrices we first set R =7 and then for each of the matrices from right to left,
ve name each A and call the routine ‘mult2’ in turn. At the end of the process,
< contains the matrix product of the sequence (see listing 4.1).

16 Advanced Graphics with the Sinclair ZX Spectrum

Jdsting 4.1

1MBB REM mult?

A@1 REM IN @ A(3.3),R(3,3)
@2 REM OUT : R(3,3)

M10 FOR I =1 T0 3

9120 FOR J = 1 TO 3

3@ LET AR = B
M40 FOR K = 1 TO 3
9150 LET AR = AR + ALILK)*R{K,J)
160 MNEXT K

70 LET B(I,Jd) = AR

180 NEXT J
198 NEXT I
120 FOR T = 1
210 FOR J = 1
220 LET R(I.J)
230 NEXT J
1248 NEXT I
5@ RETURN

Ld Ll

BCI,J)

3BA REM idR2
392 REM QUT : R(3,3)
310 FOR 1 =1 TO 3
%20 FOR J =
338 LET RCI,
9343 NEXT |
350 LET R(I,I) = 1
360 NEXT 1
1378 RETURN

vl natural transformations may be reduced to a combination of three basic
orms of linear transformation: translation, scaling and rotation about the co-
rdinate origin. It should also be noted that all valid applications of these
ranstormations return non-singular matrices. The routines that follow generate
1 matrix called 4 for each of the three types of transformation, so that each
ranslormation routine can be used in conjunction with ‘mult2’ to produce
omoinations of transformations.

Transtation

xTm&nfnomtu;yﬁsmowdbyavmﬂmﬁTX,TY}ﬁﬂxlyﬁmw.TMs
yroduces the equations

=1xx+0x y+TX
v=E0xx+1xy+TY

:0 the matrix describing this transformation is

Vatrix Representation of Transformations on Two-dimensional Space 67

I"l B X
;‘ 01 TY
0 0 1

and a routine. ‘tran?’, for generating such a matrix 4, given the values TX and
"Y is given in listing 4.2.

Listing 4.2

WA REM tran’

AP1 REM IN o TX,TY
A2 REM CUT : ACS,3D
P10 FQR I =1 TO
Mep FOR 4 = 1 TO
B30 LET A(l.1)
BLA NEXT J

@S LET ACI, I
Be@ NEXT I
M7@ LET A(1.32
P80 RETURM

51 Lad Le

1

It

TX: LET A¢2,3) = TY

Scaling

"he x<coordinate of a point in space is scaled by a factor 8X, and the y-coordin-
ite by 8Y, thus

¢ =8Xxx+0x y+0

__J'=O><x+SY><y+U

riving the matrix

X 0 0
) SY 0
0 0 1

Jsually 8X and S§Y are both positive, but if one or both are negative this creates
1 reflection as well as a scaling. In particular, if SX = —1 and SY =1 then the
noint is reflected about the y-axis. A program segment, ‘scale2’, to produce such
i scaling matrix A given SX and SY is given in listing 4.3.

dsting 4.3

\OdB REM scale?

19¢1 REM IN : §X,5Y
9@ 2 REM QUT : A{3,3)
910 FOR I =1 TC 2

390 FOR 4 =1 T0 3
8930 LET A(L,J) =12
19LB NEXT J
1950 NEXT 1

sBe0 LET A¢1,10
97E LET AC3,3)

ISR MmN Ti1iMmel

SX: LET A{2,2) = SY
1

In H

8 Advanced Graphics with the Sinclair ZX Spectrum
Rotation about the Origin

f we rotate a point in an anti-clockwise direction (the normal mathematical
yrientation) about the origin by an angle @ then the equations are

LY
]

cosfl x x —sinf x p+0

]

sin@ x x +cosf x p+0
ind the matrix is

cosf -—sing 0O
(ang cosf O
\J 0 1

The routine, ‘rot2’, to produce a rotation matrix, 4, for an angle & is given in
isting 4 4.

Jdsting 4.4

@D REM rot?

1601 REM IN : THETA

36@2 REE OUT : A(3,3)

%610 FOR I =1 T0 3

1628 FOR J = 1 T0 3

1630 LET ACILJ) = @

642 NEXT J

1650 NEXT I

660 LET ACS,3) = 1

A67@ LET CT = COS THETA: LET ST = SIN THETA
IGBR LET A(1.1) CT: LET AL2,2) = C¥
2690 LET A(1.2) = =5T: LET A{2,1) = ST
$700 RETURN

nverse Transformations

‘or every transformation there is an inverse transformation that will restore the
yoints in space to their original position. IF a transformation is represented by a
matrix 4. then the inverse transformation is represented by the inverse matrix
171 There is no need to calculate this inverse using listing 7.5, we can find it
iirectly by using listings 4.2, 4.3 and 4 .4, with parameters derived from the
varameters of the original transformation

1) a translation by (TX, TY) is inverted by a translation by (-TX, —-TY);

2) a scaling by SX and SY is inverted by a scaling by 1/SX and 1/5Y (naturally
yoth SX and SY are non-zero, for otherwise the two-dimensional space would
-ontract into a line or a point);

3) a rotation by an angle § is inverted by a rotation by an angle —@;

Matrix Representation of Transformations on Two-dimensional Space 69

43 if the transformation matrix is a product of 2 number of translation, scaling

ind rotation matrices A X BX CX ... X L X M X N (say), then the inverse
ransformation matrix is

rEMAXL T K. XC X R XA

‘lote the order of multiplication!

T'he Placing of an Object

We are often reauired to draw a given object at various points on the screen, and
it arbitrarv orientations. It would be very inefficient to calculate by hand the
:oordinates of vertices for each positicn of the object and input them to the
program. instead we define first an arbitrary but fixed coordinate system for
wo-dimensional space, which we call the ABSOLUTE system. Then we give the
oordinates of the vertices of the obiect in some simple way, usually about the
rigin, which we call the SETUP position, Lines and areas within the object are
defined in terms of the vertices. We can then use matrices to move the vertices of
the obiect from the SETUP to the ACTUAL position in the ABSOGLUTE system,
"he lines and areas maintain their relationship with the now transformed vertices.
The matrix that relates the SETUP to ACTUAL position will be called P through-
it this book {we sometimes give it a letter subscript to identify it uniguely from
ither such matrices). Because of the restriction of not passing arrays as para-
neters into subprograms, we shall not normally explicitly generate array P,
nstead it will be imoplicitly used to update the array R,

Looking at the Object

“hus objects in a scene can be moved relative to the ABSOLUTE coordinate
ixes. When observing such a scene. the eye is assumed to be looking directly at
»oint (DX, DY) of the ABSOLUTE system and the head tilted through an angle
v. 1l would be convenient to assume that it is looking at the origin and there is
no ult of the head (we call this the OBSERVED position). Therefore we generate
inother matrix that will transform space so that the eye is moved (rom its
WCTUAL position to this OBSERVED position. The ACTUAL to OBSERVED
natrix is named Q throughout this book, and is achieved by first translating all
01Nts in space by a vector (DX, —DY), matrix 4, and then rotating them by

in angle —a, matrix B (note the minus sipns!). Thus @ = B X 4, which is generat-
' in routine Took?2’, listing 4.5. Normally we do not calculate (explicitly, as
1suaily it is used only to update R however, if it is necessary to use the values of
he matrix repeatedly then obviously it is sensible to store Q.

(? Advanced Graphics with the Sinclair ZX Spectrum

Listing 4.5

200 REM Look2/agereral

2@2 REM QUT : R(3,3)

210 INPUT "(DX,DY) ";DX;",";DY
220 INPUT ™ALPHA ":ALPHA

1229 REM Look at (DX,DY).

1230 LET TX = =bpX: LET TY = -DY
{24F GO SUB trang: GO SUB mult2
{249 REM tilt head through ALPHA radians.
1238 |LET THETA = —-ALFHA

ITER GO SUB rotZ2: G0 5UB mult?
270 RETURN

Drawing an Object

‘ombining the SCTUP to ACTUAL matrix P, with the ACTUAL to OBSERVED
natrix 2, we get the SETUP to OBSERVED matrix R = @ X P (we shatl always
1se R to denote this matrix: and remember R is always the resuit of our ‘mult?’
outine). Transforming all the SETUP vertices by R, with the corresponding
novement of line and area information, means that the coordinates of the object
ire given relative to the observer who is looking at the origin of the ABSOLUTE
oordinate systemn with head upright, and who is in fact really looking at a
rraphics screen. So we identify the ABSOLUTE coordinate system with the
wstem of the screen to find the position of the vertices on the screen, and then
iraw the vertices, lines and areas that compose the object. In practice this is
whieved by a construction routine that uses matrix K. [[will set up the vertex,
line and area information, transform the vertices using R, and perhaps finally
iraw the obiect (see example 4.1 below). Laler we shall see that there are
ertain situations where it is more efficient to store the vertex, line and area
nformation. For example, the vertex coordinates can be stored in arrays X and
7. and line information in a two-dimensional array L. Vertices can be stored in
heir SETUP, ACTUAL or OBSERVED position — it really depends on the
ontext of the program. This SETUP to ACTUAL to OBSERVED method will
'nable us to draw a dynamic series of scenes — objects can move relative to the
\BSOLUTE axes. and to themselves, while simultaneously the observer can
nove independently around the scene. To start with, however, we consider the
ampiest case of a fixed scene.

Complicated Pictures — the ‘Building Brick’ Method

We can draw pictures that contain a number of similar objects. There is no need
.0 produce a new routine for each occurrence of the object, all we do each time
s caiculate a new SETUP to OBSERVED matrix and enter this into the same
routine. Naturally we shall require one routine for each new type of object in
he picture, The final picture is achieved by the execution of a routine we name

vatrix Representation of Transformations on Two-dimensional Space 71

seene?’. which will be called from the standard main program (listing 4.6). This
nain program simpiy defines the labels of the various subprograms, declares
irrays, centres the graphics area having INPUT HORIZ and VERT, and finally
-atls ‘scene’.

isting 4.6

‘A0 REM main frodaram

‘09 REM defime identifiers for initialisation ard 2-0 plot routines.

1@ LET start = ST@0: LET setcrigin = 968@: LET movetn = 9506
LET Lirete = Q4@0: LFT clip = B430

"FB OLET rot2 = E6@P: LET angle = Z8B@: LFYT scaled = B9Q@: LFT trand = ¢80P
LET multd = 91BD: LET “cRé = 73@8

30 LET scened = AQ@D: LET icok? = 28R

‘39 REM:initia.ise and centre graghics area.

43 IMPUT "HORIZ "“.HORIZ,"WERT Y ANERT

5@ G0 SUB start

‘AP LET *MOVE = HORIZ*B.5: LET YHMOVE = YERT*D.5

70 GO SUB setorigin

i39 REM set the scene.

A GO SUR srcered

taR STOP

scene’ will first call “look2’ and generate @, and if more than one object is
o be drawn then we store it. For each individual obiect {(or brick) we calculate a
matrix £ and call the required construction routine using R = @ X P. All the
rricks finally build into the finished picture. To distinguish between different
securrences ol these matrices in whalt follows, we sometimes add a subscript to
he names P and R,

I'his modular approach te solve the problem of defining and drawing a
nciure may not be the most efficient, but from our experience it does greatly
darify the situation for beginners, enabling them to ask the right questions about
onstructing a required scene. Also when dealing with animation we shall see
hat this approach will minimise problems in scenes where not only are the
opbiects moving relative to one another, but also the observer himself is moving.
Naturally if the head is upright then matrix @ can be replaced by a call to
ietorigin’, which changes the screen coordinate system. Or if the eye is looking
it the origin, head upright, then @ is the identily matrix f; hence it plays no purt
n transforming the picture and the ‘look2’ routine may be ignored. We shall
nake no such assumotions and work with the most general situation: it is a use-
ul exercise throughout this book for the reader to cannibalise our programs in
raer to make them efficient for specific cases, It is our aim to explain these
roncepts in the most general and straightforward terms, even at the expense of
:tficiencv and speed. The reader can return to these programs when he is ready
ind fully understands these ideas of transforming space. Later we shall give some
1nts on how to make these changes, but at the moment this would only confuse
he issue.

lowever, the most important reason for this modular approach will be seen
vnen we come to draw pictures of three-dimensional objects, We shall define

t3

Advanced Graphics with the Sinclair ZX Spectrum

these three-dimensional constructions as an extension of the ideas above, and full
inderstanding of two-dimensional transformations is essential before we go on
0 higher dimensions.

xample 4.1

~onsider a simple space ship SETUP pointing in the positive x-direction (that is,
making an angle 0 radians with the x-direction). The ship is defined by five line
segments joining, in order, the points (3, 0),(0,0), (-1, 1),(2,0), (-1, —1) and
vack to (0, 0). See figure 4.1; which is a ship drawn on a screen 5 units by 3
units, where the SETUP to ACTUAL matrix is the identity and the ACTUAL to
JBSERVED matrix is such that the observer is looking at the point (1, 0} with
1ead upright. Listing 4.7 gives the necessary routine ‘scene?’ that moves the
)biect into position, and listing 4.8 is the required construction routine ‘ship’.
Vote that ‘ship’, which uses matrix R to transform the vertices (and hence the
wbject) into their OBSERVED position, does not store the vertex values for this
sosition in a permanent data-base. Instead the values are kept in arrays X and Y
for the duration of the routine, and if the routine is re-entered to draw another
space ship then these array locations are used again.

*-"‘-_
N '“--.______“
-___-‘—----
— “"‘“-E,E , @)
(9,01, e
P P (3,0)
-If'_a' --‘-‘--__“---
=1 . =13
Slgure 4.]
e
-
>
= : e
A
#c

“igure 4.2

Watrix Representation of Transformations on Two-dimensional Space 73

isting 4.7

@O0 REM scene?/ loak? ; shiplnot stored)
B0 DIM XC6): DIM Y{&D

@20 0IM A(3.3);: DIV BC3,3): DIM R(3,3)
GO3@ LET skip = 6500

@35 REM place the observer.

HR4@d CC SUB fdrZ2: GO SUB Lookd

&@49 REM defime and draw ckject.

G@50 GO SUB ship

GPER RETURNM

Asting 4.8

1580 REM shin/ not stored

589 REM IN : R(3,3)

3510 DATA 3,0, 0, 02,-1,1,.2,0,-1,-1,08,0

5¢@ RESTORE ship

2538 FOR I =1 TO 6

»539 REM read coordirnates of SETUP object.

040 READ MM, YY

1549 REM move obiect into CBSERVED position,

G550 LET X{I) = XX*R(1,1) + ¥Y¥V+R({1,2) + R{1,3)

156@ LET Y{I) = XK*R{Z.1} + YY¥+#R{Z2,2} + R(Z,3)
6578 NEXT 1

1579 REM join vertices in order.

580 LET XPT = ¥(13: LET YPT = ¥{1): GO SUB moveto
2590 FOR I =2 TO &

600 LET XPT = %(i): LET YPT = ¥{I1): 60 SUB Limeto
610 NEXT I

1620 RETURN

xampie 4.2

suppose we wish to draw figure 4.2, which includes four space ships labelled (a),
b), (¢) and (d) on a screen 60 units by 40 units. For simplicity in this picture we
issume O is the identity matrix, so the head is upright and the eye looks at the
.ETUP origin. Ship (a) is placed identically to its SETUP position; that is,

R, =1, whereas ship (b) is moved from its SETUP to ACTUAL position by the
ollowing transformations

1} scale the figure with SX =4 and SY = 2, producing matrix 4 ;
2) rotate the figure through #/6 radians, matrix 8,
3) translate figure by TX =6and TY =4, matrix C

4 0 O V32 -1/2 o 1 0 6
4=({0 2 0] B=[1/2 312 0) C={l0 1 4
0 01 0 0 i 0 0 1

"he complete transformation is given by Ry, = Q X Py, =i X Py =P, =CX B X A
Note the order of matrix multiplication, and that the subscript distinguishes the
viacing of ship (b) from the others).

finstead we used the order A X B X C({giving matrix Py), then

/4 Advanced Graphics with the Sinclair ZX Spectrum

23 -1 6 23 =2 124/3-8>
=2 3 4] Py=|1 3 4V’3+6)
‘0 0 1 0 0 1)

which are two obviously different transformations. Matrix Rg=Q X Py =1 X Py
wroduces ship (d). Note how this ship is assymetrical. Be very careful with the
1se of the scaling transformation — remember scaling is defined about the origin
and this will cause distortions in the shape of an object that is moved away from
the origin!

To illustrate this example further we show how to calculate the ACTUAL
nosition of ship (b) on the screen by setting the coordinates in the form of a
column vector and premultiplying them by matrix R, = f X £,,; for example

23 -1 6y (/3 603+ 6
,_ V3 4)x(a)= 10 ete.

2
0 0 1 1 1

When returned to normal vector form we see that the five vertices have been
‘ransformed to (6+/3 + 6, 10), (6, 4), (5 — 24/3,4/3 + 2),(4/3 + 6. 8) and

7 — 24/3,2 - 4/3) respectively.

ship (¢) is ship (b) reflected in the line 3y = 4x —9. This line cuts the -

ixis at (0, —3) and makes an angle & = cos™* (—3/5) =sin~! (4/5)=tan*
--3/4) with the positive x-axis. [f we move space by a vector (0, 3), matrix [
:ay, this line will go through the origin. Furthermore, if we rotate space by —ea,
natrix £ say, the line now is identical with the x-axis. Matrix F can reflect the
ship in the x-axis, E~' puts the line back at an angle & with the x-axis, and
finally D™ returns the line to its original position. Matrix G = D! X £~ X

“ X E X D will therefore reflect ali the ACTUAL vertices of ship (a) about the
inc 3y =-4x — 9, and R =1 X P.= G X Py can therefore be used to draw ship
¢). That is, we use matrix Py, to move the ship to position (b} and then G to
place it in position (c).

1 0 O 3/5 4/5 0 170 0
)=[0 1 3) E=|~4/5 -3/5 0 F=(0 ~1 0
00 1, 0 0 i 00 1

48 - 144/3 7 — 243 210"
’\’~_=—_§(14 — 48\/3 24 +7\/3 -170)

N

and

0 0 a0

Figure 4.2 is drawn using the new ‘scene2’ routine of listing 4.9: note that
his ‘scene2’ does not call ‘look?2’, since it is assumed that the eye is looking at
the origin with the head erect. The main program and the ‘ship’ routine, as well
is all the other graphics package routines, stay unchanged.

sting 4.9

B0 REM sceneZ/ ro Look? 2 & ships (nct storec]
1B CIM {6 : LIM Y(&)

028 pIM AC3,3): DIX B(3,3): DIM R(3,3}
BER LET ship = 4529

7% REM OBSERVED=ACTUAL, ro meed to call 'lLook2'.
034 REM ship al.

D40 GC SUBR idR2: GO SUB ship
049 REM ship bl.

058 LET SX .= &: LET &Y = &

BE@ GO SUB scaleZd: GO SUB mule2
JBTE LET THETA = FIfE

@BED GO SUB rot?: GO SUB mult?
WQOC: LET Tx = &2 LET TY = 4

PR GO SUB treem?: GO SUR mulb*Z
T8 GO SUE ship

116 REM zship cd).

120 LET AX = =3: LET RY = 4
136 GO SUEB angle

140 LET TX = @: LET Ty = 3

15@ G0 SUB trand: GO SUE multd
AR LET TFETH = -THETA

1176 GC SUB rot2: GO SUB multe
y1BE LET EX = 1+ LET 8Y = =1
A% G0 SUB sceled: BO SUE rulte
B0 LET THETA = -THETA

218 GO SUB ret2: GO SUE nult?

1 Z2@ LET TX = @: LET TY = =3
230 060 SLE trard: &0 SUB malté
JZLO GO SUB ship

2859 REF ship o).

250 G0 SUB isR2

ZEQ LET TX = A: LET TY = &

w8 GO SUBR tranZ2: GO SUB mubt?
h280 LET THESE = PBI/E

JCSD GR SUB rotZ: GO OSUB multd
IR0 LT Ex = 4 LET EY =2

310 G0 SUB scaled: GO SUB multe
A0h G SUB shir

1230 EETUZEN

Matrix Representation of Transformations on Two-dimensional Space

cxercise 4.1

n order to convince yourself that this program may be used to deal with the

i

reneral situation, you should run this program using non-zero values of DX, DY

or & 80 that the ACTUAL to OBSERVED matrix {J is not the identity matrix.
‘our ‘scene?’ routine should call ‘look?2’ to calculate @, which must be stored.
“hen for each object in the scene, in turn, calculate the SETUP to ACTUAL
natrix P (which ‘mult2’ places in R), premultiply it by @ (which has to be
‘opied into matrix 4 for use with ‘mult2’) and finally enter the construction
outine with the product matrix R = @ X P, Make sure that the ‘lineto’ routine
‘ontains the ‘clip’ option or you will find your program fails when it tries to

iraw outside the rectangle of the graphics area,

6 Advanced Graphics with the Sinclair ZX Spectrum

xercise 4.2

Jse the above routines to draw diagrams that are similar to figure 4.2, but where
he number, position and directions of the ships are read in [rom the keyboard.
‘ou can produce routines to draw more complicated objects; we chose a very
imple example so that the algorithms would not be obscured by the complexity
)T obiects. The above method can deal with as many vertices and lines as the
spectrum can handle within time and storage limitations. The objects need not
e line drawings only, you can draw coloured areas {(polygons bounded by
ranstormed vertices).

Txercise 4.3
Jsing loops in the program we can draw ordered sequences of the objects; for
exampie, they can all have the same orientation but with points of reference
(the origin in the SETUP position) equally spaced along any line p + ug. We can
et up a loop with index parameter 4 and draw one ship for each pass through
he loop. For each value of 4 we can alter the parameters of translation in a
eguiar way within the loop (using 4. p and g}). The new values of these para-
neters are used 1o calculate a different SETUP to ACTUAL mairix for each
weurrence, ana this moves the object into a new ACTUAL position, R =@ X
*=J X Pisused to cbserve and draw each obiect on the screen, With these ideas,
:onstruct a set of battle formations of the above type of ship on the screen.,

“fficient Use of Matrices

1 is obvious that whatever combination of transformations we use, the third row
)T every matrix will always be (0 G 1), If we work with the top two rows of
he matrix only, it will make our routine much more efficient. We still keep

} X 3 matrices rather than 2 X 3 (which is really all we need), because we may
ave previously written other routines that assume 3 X 3 matrices. ReDIMension-
ng the arrays could lead to array bound errors in the earlier routines — the cost
)T an extra three real numbers ner matrix is a small price to pay to avoid errors.
vso note that when we DIMension an array it is immediately set to zero (see
vage 202 of the Spectrum BASIC Handbook (Vickers (1982)). We rewrite list-
ngs4.1,4.2 43 and 4.4 as listings 4 1a, 4 2a 4 3a and 4 4a respectively, to
naking use of these facts.

JAsting 4. la

M@0 REM mult?

MMOT REM IN @ A(3.3),R(3,%)

M@z2 REM QUT : R{3,3)

M18 FOR I = %1 70 2

M8 FOR J =1 TD 3

9130 LET BC1.J) = A(I,1)*R(T,38) + ACI_ 2)+R(2,J)
M4l NEXT J

Watrix Representation of Transformations on Two-dimensional Space 77

#158 LET B(I,3) = B(I,3) + A(I,3)

60 NEXT I

M78 FOR J =1 T0 3

1188 LET RC1,J) = B{1,J): LET R(2,J) = B(Z,1D
M3 NEXT J

1200 RETURN

@D REM idR2

302 REM QUT = R(3,3)

318 DIM R(3,3)

320 LET RC1,13) = 1: LET RLZ2,2) = 1
'338 RETURN

Jsting 4.2a

W00 REM tran2

@01 REM IN : TX,TY
02 REM OUT : A(3,3)
B DIM ACE,3)
V2@ LET AQ1,1)
V3ID LET AC1.3)
@42 RETURN

1: LET AC2,2) =1
TX: LET AC2,3) = TY

Ul

Jisting 4.3a

108D REM scale?

931 REM IN ; SX,8Y

W9@2 REM OUT = A¢3,3)

2910 DIM AC3, 3D

1920 LET AC1,1) = SX: LET A(2,2) = SY
193@ RETURK

Listing 4.4a

16D0 REM rot?

61 REM IN : THETA

1682 REM OUT : A(3,3)

618 DIM A(3,3)

3620 LET CT = COS THETA: LET ST = SIN THETA
1630 LET AC1,1) = CT: LET A€2,2) = CT

3648 LET AC1,2) = -ST: LET A(2,1) = ST

165@ RETURN

“he construction of figure 4.2 may seem rather contrived since the position
>t the obiccts was chosen in an arbitrary way. However, in most diagrams the
yositioning of objects will be well defined, the values being implicit in the
liagram required. See the example below.

“xample 4.3

Vrite a program that draws an ellipse with major axis A, minor axis B and
-entred at the point (CX, CY). The major axis makes an angle ¢ with the positive
c-direction. Note that the order of transformations is important: first rotate and
hen translate. If we wish to draw ellinses with major axis horizontal then we need
101 use matrices. we can stay with the routine sct in exercise 2.5 using ideas

8 Advanced Graphics with the Sinclair ZX Spectrum

simiiar to those in listing 2. 11a. Listing 4,10 gives a ‘scene 2’ routine that reads in
iata about the ellipse, calculates the SETUP to OBSERVED matrix and then
cails the construction routine ‘ellipse’ that draws the ellipse.

Jisting 4.10

W02 REM scerezfellipse

810 DIM ACI,3d: DIM B(3,2): DIM RO3,.3)

20 LET ellipse = ASOP

@30 INPUT "CCK,CY) “;CX;",";CY,,"A “;A;",B ";B;",THETA “;THETA
D48 LET THETA = -THETA

“B4% REM ellipse centred at (CX,.CY¥) and tilted through angle THETA.
PSR 60 SUB idR2

088 60 SUB rotZ: GO SUB multd

7@ LET T = CX: LET TY = (¥

WBE G0 SUB trang: G0 SUB multd

WO G0 SUB el lipse

>100 RETURN

ZEAR REM et L';F-'EEF

:5@1 REM IN : A,B,R(3,3)

15@9 REM eliicse, major axis A, minor axis B.
510 LET XPT = A=R(1,1) + R(1,.3}

1520 LET YPT = A*R(2,1) + R{Z,.3)

SER GO OSUB moveto

2540 LET ALPHA = @: LET ADIF = PL/10D

1549 REM calculate poirmts (XPT,YPT) or ellipse, in CBSERVED position.
A5SA FOR I = 1 TO 208

156@ LET ALPHA = ALPHA + ALIF

157 LET AR = A*C0S ALPHA: LET BB = B*SIN ALPHA
588 LET XFT = AL#R(1.1) + BB*R{1,2) + R(1,3}
SO0 LET YFT = AA*E(2,1) + BRE*RCZ2,2) + R{Z, 3]
H00 GO SUB Lireto

10 NEXT 1

G620 RETURKM

xercise 4.4

Nrite a routine for drawing an individual matrix-transformable object (in this
case an astroid. shown in figure 4.3a) and then use the matrix techniques to
iraw combinations of these obicets (as in figure 4.3b). An astroid is a closed
curve with parametric form (R cos® 8/sin®) where 0 <8 < 2, R being the
radius (the maximum distance from the centre of the object), The parameters
1eeded by this routine are the radius of the astroid and the transforming matrix.
‘igure 4 .3b is the combination of a large number of two different forms of the
astroid. One has radius 1 and is not rotated. the other has radius +/2 and is
otated through /4 radians.

.xercise 4.5

xperiment with these matrix techniques. Write a subroutine that generates the
matrix necessary to rotate points in space by an angle § about an arbitrary point
X, Y) in space (not necessarily the origin}. Also produce another routine that
renerates the matrix that will reflect points about the general line ay = bx + ¢.
Use the ideas given in example 4.2 for the production of ship (c).)

Hatrix Repvresentation of Transformations on Two-dimernsional Space 79

storing Information about Scenes

¥e mentioned earlier that certain situations arise where we need to store all the
nformation about a scene in a large data-base rather than lose the information

m leaving the construction routine. Qur data-base will consist of arrays X and Y,
o length greater than or equal to NOV, the final number of vertices to be stored.
These vertices can be stored in the SETUP, ACTUAL or OBSERVED position:;

1 depends on the context of the problem,) We also need to store information on
lines. in a two-dimensional array L whose first index is 1 or 2, and whose second
ndex is a number between 1 and a value greater than or equal to NOL, the final
wmber of lines in the scene. The I' line joins the two vertices with indices

{11} to L(2.1): hence this information is independent of position, it simply

:ays which two vertices are joined by the I'" line. NOV and NOL are initialised
n the ‘scene2’ routine and incremented in the construction routines,

‘We now no longer require construction routines to draw lines, we use them
mnly to create the data-base of lines, vertices, etc. (transformed by the matrix R).
vfter “scene2’ has constructed the final scene in memory it calls another routine
Irawit’, which draws the final picture. The ‘scene2’ routine will be very similar
o those mentioned earlier: for example, the routine for drawing fipure 4.2 in
his new way will be that given in listing 4.9 with the three minor changes
isted below

Y010 DIM X(20): DIM Y(20): DIM 1.(2,20)
5030 LET NOV=0 : LET NOL=0: LET ship= 6500 : LET drawit=7000

3330 GO SUB drawit: RETURN

30

Advanced Graphics with the Sinclair ZX Spectrum

This is used in coniunction with listing 4.11, which gives the ‘ship” construction
outine (which only sets up the data), and *drawit’ routine.

Listing 4.11

500
2501
582
510
|52E’
1530
3551
v 5440
2558
+h 60
570
S8R
1531
itelhl
GHTE
W 2P
G630
2 L
Jé‘EE

il
01
L)

ol

/B2
B3@
B4

‘058
(a1

REM ship/ stored

REM IM 1 WOV,NOL,RCZ,3) XONOWDY Y INIVY

REM QUT : NOV,NOL,X{NOVI YONDVY L 02, N0

DATA 3.0,8,0,.-1,1,2,8,.-1,-1,1,2,2,3,3,4,4,5,5,2
RESTORE ship

LET NV = NOV

REM read vertices, and move into position using matrix R,
FOR I =1 TO 5

READ XX,¥Y

LET WNOW = NOW + 1

LET ®{MOW) = XX*R{T,1) + ¥Y*R(1,2) + R{1,3)

LET YONOWY = XX*R(Z.1) + YY=R(Z2,2) + R{Z,3}
NEXT I

REM read and store Lire information

FOR. I =1 T0 5

READ L1,L2

LET NOL = NOL + 1

LET LCT,NOLY = L1 + My: LET L{2,NOL) = L2 + W
NEXT I

RETURN

KEM drawit

REM IN 2 NOL,X{NOV),Y(NOVY),L(2,NOL}

REM draw Line by joining pairs ot vertices.
FOR I = 1 TO ML
LET LT = L{71,.1): LET L2 = L(Z,1)

LET XPT = X{L1): LET ¥YPT = Y(L1): GO SUB moveto
LET XPT = X(L2): LET YPT = Y(LZ): GO SUB Lineto
MEXT 1
RETURM

Juppose we wish to produce different views of the same scene (again we use
figure 4.2 as an example); that is, the same SETUP to ACTUAL matrices #, but
different ACTUAL to OBSERVED matrices . The obvious solution is to create
a1 data-base for the scenc with the vertices in the ACTUAL position, Now for each
new OBSERVED position we calculate O and enter it into another *drawit’
-outine (see listing 4.12 - different from listing 4.11), which transfers cach
vertex from its ACTUAL to OBSERVED position using (2, stores them in arrays
V and W, and recalls them when they are required for drawing. When using this
method to construct different views of figure 4.2, only the ‘scene’ and ‘drawit’
outines differ from their earlier manifestations, and then only slighily. We give
them in listing 4.12.

vatrix Representation of Transformations on Two-dimensional Space

Asting 4.12

Sl
vl
1818
3l
JEEE‘
ek
Rl
4G
A50
BTy
:ETE
BER

SR
V100

5116
119
128

&130
514
1‘1 Sm
V16F
7D

E1EE
5198

L2208

G218

L2201

£230

2247
-24%
1250
:26‘@
12TE
1280

G290
2508
318

s

6329

L3I0
=360
2350
2360

i]
e
i
P1E
ezp
pae
‘Bal
B4s
sl
‘06a
ove
‘ban
D0
08

REM
REM
DIm
DIm
LET
REM
LET
REM
LET

scene?f varisble Looke ; & ships {stcreal

construct &4 ships storee in ACTUAL position.

X(20) = CIM Y(ZEY: DIM V(202: DIM W(ZB): DIM LC2,280
A(Z.3): DIMB(3,5): DIM R(3,3)

wpip = A500: LET crawit = 7000

chip &3)-

NOV = @: LET NOL = @: GO SUB idR?: GO SUB ship

ship bl.

SX = &3 LET ¥ = &£

G0 SUB =caled: GO SUB nultl

LET

THFLTAH = PLfS

GO SUB rot?: GO SUB mult?d

LET

TX = &6: LET TY = &

G0 SUB trar: &0 SUE Tublte
G SUB ship

REM
LET

ship cl.
iy = =32 LET AY = 4

GO SUB anagle

LET

T = B: LET T¥ = 3

GO SUB trang: GO SUB mu.t?

LET

THETA = =THETA

GO SUB rotés: G0 SUB mubt?

LET

5% = 1: LET 8Y = -1

GO SUR scaled: GO SUB rulte

LET

THETA = =THETA

GO SUE rcte: GO SUB multe

LET

TX = B: LET 1Y = -3

GO SUB tram2: GO SUB multZ
G0 SLB =hip

REM

ship d}«

GD SUB idRrRZ

LET

TX = 6z LET 1Y = &

GG SUB tran2: GO SUB multé

LET

TFETA = PL/E

G0 SUB rotf: GO SUB multd

LET

SX = 41 LET SY = 2

GO SUB scaled: €0 SUE rulty
GO SUB ship

REM

Loos through cbkservatior poirts,

GO SUB igRZ2: GO SUB Look?Z

CLS: GO SUB drawit

GO TO 4339

FETUEN

REM drawit

REM IN @ NOVLNOL,R{3,32,X(NOV) LC2,NOL

REM transform wver=‘ces from ACTUAL to OBSERVED position.
FOR I =1 TO NOY

LET W{(1) = X(I)*R{1 1) + Y{IJ*R{1,2} + R(1,3)
LET W{I) = X{IX*R(Z,1} + Y(I}+R{2,2) + R{Z,3)}
MEXT I

REF éruw Llines by joining pairs of vertices.
FOR I = 1 TO NOL

LET L1 = L{1,1): LET L2 = L({2,1]

LET XPT = Wi{L12: LET ¥PT = W(L1J: GO BUB mavetc
LET XPT = W{L2): LET YPT = W(L2): GC SUEB Llipeto

NEXT I
RETURMN

81

52 Advanced Graphics with the Sinclair ZX Spectrum

sxercise 4.6

‘onstruct a dvnamic scene. With each new view the ships will move relative to
me another in some well-defined manner. The observer also should move in
ome simple way; for example, the eye starts looking at the origin, five views
ater it is looking at the point (10, 10), and with each view the head is tilted a
urther 0.1 radian. You no longer need to INPUT the values of { DX, DY) and
y\LPHA into “look3’. instead they should be calculated by the program, After
vou have read chaptler 13 you can place these five pictures in store and recall
hem as a ‘movie’ {if you have the 48K machine).

ixercise 4.7
‘onstruct a scene that is a diagrammatic view of a room in your house — with
:cnematic two-dimensional drawings of tables, chairs, ete. placed in the room,
iach different type of object has its own construction routine, and the ‘scene2’
outing should read in data to olace these objects around the room. Once the
.cene is set vroduce a variety of views, looking from various points and
meniations,
)T you can set up a line-drawing picture of a map, and again view it from
artous orientations. The number of possible choices of scene is enormous!
fccause we are using the ‘clip’ option in ‘lineto’ we can choose small values
ot HORIZ and VERT . which has the effect of the observer zooming up close to
Jar(s of a scene, and all external lines will be conveniently clipped off,

Complete Programs

¥e group the listings 3.4 (‘angle”), 4 1a (‘mult2’ and idR2%), 4.2a (“tran2”),
t.3a (scale’), 4.4a (‘ro12’), 4.5 ("look2”) and 4.6 (‘main program’) under the
1eading ‘lib2",

. ib17 b2, listings 4.7 (‘scene2’) and 4.8 (‘ship’). Data required: HORIZ,
ERT. DX, DY and ALPHA. Try 8,5, 1, 1,0.5. Keep any four of these
ralues fixed and svstematically make small changes in the other data value.

. ‘lib1°. lib2’, listings 4.9 (“scene2’) and 4.8 (*ship’}. Data required: HORIZ,
/ERT. Try 30, 20; 200, 200; 200, 150.

H. Tibl’. 1ib2’ and listings 4.10 (“scene2’ and ‘*ellipse’). Data required: HORIZ,
TERT.CX.CY,A,B, THETA. Try 30,20.0,0, 12,9, 0, Again fix all but
me of the values and change the remaining value systematically.

V. bl %lib2’, listings 4.9 (“scene2’ adjusicd as per text) and 4.11 (*ship’ and
drawit’). Data required: as for I above.

/. ib17. 1ib27, listings 4.11 (“ship® but not *drawit™) and 4.12 (*scene2” and
irawit™). Data required: HORIZ, VERT. DX, DY, ALPHA. Try 60, 40, 0, 0.
). Systematically change each of the data values in turn.

5 Character Graphics on the ZX
Spectrum

n the first chapter (listing 1.2) we saw how a small block or character may be
renerated by eight binary numbers, Such a block of B by 8 pixels is known as a
haracter block . The Spectrum has three types of characters built in: the 96
“haracter standard set. the 16 character block graphics set and the 21 character
user-defined graphics sel. The latter two sets are accessed from the keyboard in
graphics mode . These characters are placed on the display when PRINT is used,
:0 we must take a closer look at this operation.

The PRINT command allows us to place characters on any of the 22 lines of
he upper screen, from top (0) to bottom (21}, and at any of 32 positions along
:ach line. from left (0) to right (31}, These are the character blocks and each
-ontans eight lines of eight pixels, Each line of cight pixels corresponds to a
ratue stored in one memorv location; each pixel corresponds to a binary digit in
in eight-digit binary number. This can be represented by a decimal number
yetween 0 and 255 In the store there is a table of characters. For any given
-naracter the PRINT command either finds the eight VALUEs from the table or
:alculates them . and copies them into the appropriate display-file memory loca-
ions. This has the elffect of drawing the character on the screen,

The Standard Character Set

“he table of data for the standard character set is stored in ROM, the permanent
{ead Only Memory of the computer, There are eight pieces of data for each of
he 96 characters, thus the table consists of 768 (96+8) consecutive jocations
tarting at 15616, Each character has a unique CODE number, see page 183 of
he Spectrum BASIC Handbook (Vickers, 1982). The table contains the data for
:acn of the characters in turn. starting with space (CODE 32) and ending with the
:opyright symbol (CODE 127). When the PRINT command requires the eight
neces of data for a given character, it looks at the system variable CHARS (see
age 173 of the Spectrum BASIC Handbook (Vickers, 1982)), which contains
he address of a location 256 (eight times the CODE for space) less than the start
)T the character table. In order to find the address of the first of the eight pieces
T data it multiplies the CODE number of the character by eight and adds it to

4

Advanced Graphics with the Sinclair ZX Spectrum

'HARS. Finallv PRINT copies the data (o the display file and the character
;ppears on the screen.

tun the following program, which is based on listing 1.2. [t demonstrates how

his process works by showing what calculations are performed. A detailed ex-
Manation of how to work out the display-file locations for any character block is
riven in chapter 13, but for the moment we shall continue to use block {0, 0)
iy, Figure 5.1 1s an example run of this program using *?" as INPLIT data,

JAsting 5.1
B CLS: INPUT "Which character":;A%: IF A% = "" THEN GO T0O 182
‘@ LET A% = A${1): PRINT AT 2,8;"""";AS$;""" SELECTED. CODE (“;AS;") = ":;CODE A%
@ PRINT AT &.@;"CALCULATION OF DATA LOCATION"
43 LET CHARS = PEEK 34@4 + 256%PEEK 234@7
“B PRINT AT &.2:"CHARS POINTS TO ":CHARS
@ LET TABELE = CODE A%*S
7@ PRINT AT 7.3:;"CODE A% = 8 = ":TAELE
i@ LET START = CHARS + TEBLE
@ PRINT AT B 17 ;"-———=-- ": PRINT AT 9,2;" DATA STARTS AT ";START
i@ LET CORNER = *6384: PRINT AT 11.Q0:"TABLE L0OL. VALUE SCREEW LOC."
1B FOR I =@ TO 7
120 LET VALUE = PEEK (START + I): LET MEMORY = C[ORNER + 25f%I
132 PRINT AT I + 13.2;START + I: PRIMT AT I + 13,22;MEMORY
‘4@ PRINT AT I + 13,13;VALUE
5@ POKE MEMORY,VALUE
168 NEXT I
ITR INPUT “ANGTHER GO 7 ":Y$: IF Y% = "n" THEN STOP
BB GO TO 14
-»~ SF] ECTED. CODE (7)) = 83
~“ALCULATION OF DATH LOCATIOWN
~HARS POINTS TO 15360
CODE A% £+ &8 = Sa4
CATA STARTS AT 15864
TABLE LOC. VAL uE S5CEREFM . OC o
1.5 A04 k3 163834
5865 5 1664
53566 [16836
5867 r- 17152
S8658 s 17403
LS369 %} 1766864
S58576 = 1792
isas/71 % 18176
‘igure 5.1
‘xercise 5.1

Rewrite listing 5.1 so that it will allow you to decide whether or not to accept
rach data VALUE before it is POKEd into the disolay file. If one of the eight

Character Graphics on the ZX Spectrum a5

"ALUEs is reiected, INPUT a replacement for this VALUE. Experiment by
:hanging one or two VALULEs in a character.

The Graphics Mode

"he address stored in CHARS is where vou might expect to find data for the
-haracter with CODE 0; however, characters with CODEs between 0 and 31 are
ither control characters or unused. Since control characters are not displayed,
hen no data are stored for them. Althoush CHARS points to this address, the
56 (32+8) bytes following it are not used and so are available for other purposes.
‘urthermore. if a graphics mode character is selected for listing 5.1, then either
slank or totallv spurious data are gathered. This is because the standard table
1as data for CODEs 32 to 127 only and the graphics mode characters have
"ODEs greater than 127; so the program is looking in the wrong place, beyond
he end of the table of data! The table in ROM immediately precedes the start
)i RAM. the Random Access Memory used for temporary storage, so the pro-
ram wiil be looking at the display file that occupies the first 6K of RAM.

lock Graphics

“he data for the block graphic set are not stored in ROM but instead are
caiculated from the CODE of the character. Cach block graphics character has
‘our aquarters that are each represented, as on or ofl’, by one of the last four
sinary digits of the CODE number. [n a block graphics character the first four
ines of cight pixels are identical, and the same is true of the bottom four lines.

Y I B I B — O E l:”"']
QL@ =« v xx = EBLOCK SRAFHICS
"HRARARCTER .

1101 = FOUR CORMWERS OF
T T~ CHARACTER.

= .

111 1111 ©@Q@9 1111
S0001111 UALUE FOR TOP 4 LIMES

1111111 = WALIUE BOTTOM 4 LINES
Q001111
102801111
SO001111
o0i1112
SR
1113171
LA EETra
1131141

" Tigure 5.2

36 Advanced Graphics with the Sinclair ZX Spectrum

rovided we know that a character is a block graphic, we can generate two pieces
of data and use each four times to create the block. An example of how this is
ienieved is shown in figure 5.2.

"he block graphics sel can be used to give medium-resolution graphics of 64
by 44 quarter blocks. Using this idea we can build up quite complicated two-
-olour pictures very rapidly. The picture below (figure 5.3) was produced by the
yrogram given in listing 5.2. The program draws a small set of concentric circles
n the top corner of the screen, then calls the *big pixels’ routine. This routine
asks us to specity a character block that will be the top-left corner for our start
yosition. From this position, tor five character blocks down and for eight across,
1 stores the data from the display file in the array S. For each pair of lines down,
t takes the eight pieces of data across and converts them to BINary strings {see
ine 1130 onwards}. These strings are used to build up the BINary representation
of the CODE for a graphics character by taking a two-bit section from each string
n turn and prefacing it by the CODE for graphics character (line 1230},

Listing 5.2

‘U0 REM mair orogram

110 LET kbia pixels = 10D

120 FOR I =1 T0 18 STEP 3: CIRCLE 32,156,T: MEXT I
3@ GC SUB bio pixels

4B STOP

'BOE REM big pixels

@18 DIM F{BI: DIM 504D ,8)

1028 FOR I =1 TO 8: READ P{I): MEXT I: DATA 128,64,32,16,8,4,2,"

‘B30 DEF FN S(R,CY = 16384 + INT (R/B)#2048 + (R — INT (R/BI*B)*32 +
P4@ INPUT "“TOP LEFT CORNER BLOZK IS AT RO, COL ";ROW;"™ . M:COL

‘@49 REM store display file data in array 5 for 5%8 blocks fram ROW, COL.

‘@53 FOR I =0 70 4

'@6Q FOR J =@ TO 7

'@¥0 LET P = FN S(ROW + I,COL)

‘BER® FOR K =0 TO 7

1898 LET S(I%*B + J + 1,K + 1) = PEEK(P + 256%J) + KI

1100 NEXT K: MEXT J: NEXT I

1189 REM set scresn to 2B+#32 which is four times area to be expanced.

1110 BORDER 1: PAPER 7: INK @: CLS

11280 PRINT AT 21,08:; PAPER 1;,,: PRINT AT B,B: PAPER 1:..

129 REM take two lires of pixels at a time for transiation tc quarter 2locks.

138 FOR I =1 TO 39 STEP ¢
14@ LET 4 = I: LETE = I + 1
158 FOR J =1 TO 8

160 LET AS = "DDROODER': LET BE = AS

1170 LET T = SCA,J): LET U = S(B,J}

1179 REM calculate binary forms of oixels for J'th block acress.
"1E8@ FOR K =1 TO 8

1199 IF T »>= P(K) THEN LET T
i2@0 IF U »= PCK) THENW LET U
18 NEXT K

1£19 REM take two pixels from each of the pair of bytes fo make four auarters.
12280 FOR K =1 TO 4: LET b = 2*K: LET C =0 - 1

1230 LET C% = "BIN 108D + BE(C TC DY + AB{L TO D)

1939 REM convert birary form of quarter blocks to character.

7O LET € = VAL C5: PRINT CHRS (;

1250 MEXT K: NEXT J: NEXT I

1268 RETURNM

T = P{K): LET AS({K]
U= P(K): LET BE(KD

||-|r|
II"III

haracter Graphics on the ZX Spectrim 87

.

)

T ii‘:,’i:l:':ll'l e -
H- s h .--.-__ (]
= . iy

-_'.'

b

|
J

-

m—
l Il Il .--
T

(=]

Lol
]
=
e
=
=1

K
e
i I|
I. i
g -
E _J

r-ﬁJ
L4
i
r |
II
L

‘dgure 5.3

"he graphics characters generated by the above program are printed on the
.creen and form an exact image of whatever was in the 5 by 8 rectangle of blocks
:pecified, This image has been scaled in each direction by a factor of 4, so that it
10w covers 20 by 32 blocks and each original pixel is represented by a square of
t by 4 pixels.

Vith the COPY facility and the ZX printer listings, four times the normal
vidth and deoth can be produced by using the ‘big pixels’ routine 16 times and
hen joining together the separate pieces of listing.

xercise 5.2
Vrite a routine that produces a listing of itself by COPYing each 5 by 8 section
:s ‘big pixels’ to the printer,

User-defined Graphics

"he third set of characters is the User-defined Graphics set (CODEs 144 to 164).
wnother table of data for this set is held in the last 168 locations at the end of
nemory. When the machine is turned on, the 21 characters from “A” to “U"” are
>opied into this table. These characters are accessed from the keyboard in graphics
node by typing the letters *“A” to “U”. The data in the table for these characters
‘an be changed by the user, so that any required character ¢an be displayed
tirectly from the kevboard. There is a built-in function USR, which when given

: string argument (A’ to “U”), will give us the address of the first piece of data
or the equivalent graphics character. The address of the start of this table is
iored in the svstem variable UDG (see page 175 of the Spectrum BASIC Hand-
ook (Vickers, 1982)). The CODE of the graphics character minus 144 and
nuitiplied by 8 gives the relative position of the first of the eight pieces of data
‘or that character in the table, The USR function calculates this position and

tads it to UDG to eet the absolute start address of the character in the store

El

ol Advanced Graphics with the Sinclair ZX Spectrum

IDG can be altered so that fewer characters are available, say only those from A
.0 H. leaving mare room for programs, although this is usually unnecessary unless
rou have only 16K of RAM available. To illustrate the use of this function 1o
iter a graphics character, type in the tollowing command

*OKE USR “A” BIN 00100100

{ow it we enter graphics mode and type "A”, we see that two extra pixel
10ts have appeared above the character “A”. The program in listing 5.3 allows
rou to redefine all eight BINary VALUEs that represent a graphics character.
“he program then simulates graphics mode, allowing you to type user-defined
rraphics characters on the screen.

JAsting 5.3

INPUT "CHARACTER TO BE REDEFIMELR',U$: IF U%="" THEM GC TO 1&

IF Us < "A"™ OR US > "U" THEN G0 TO 18

LET MEMCRY = USH U%: CLS

FOR I = A T0Q 7

INPUT ("WALUE " + STRE I +" = BIN ")};LINE B%

LET VALUE = VAL ("BIN " + BS)

POKE MEMODRY + I WALUE

IF LEN B% < B THEN LET B% = "0" + B3; G0 TC 3@

FRINT B%: MEXT I

@D PRINT AT 1@,8;"TYPE CHARACTERS OR EWTER"

18 REM simukate graphics mode for Letters A to U.

110 LET R = 12: LET C = @

120 PRINT AT R,C; FLASH 1;"G"

‘30 IF IMKEYS <> “'" THEN GO TO 138

A LET AR = INKEY$: IF A% = "' THEN G0 TO 1408

149 REM if 'enter' is oressed restart program.

‘S IF RE = CHRE® 13 THEN GO TQ P

160 IF R < “a" DR A% > "u" THEM G0Q TO 138

69 REM convert character to equivalent user—defined graphic and print.

Y@ LET AL = CHR%® {CODE AZ + 477

180 PRINT AT R.C;A%

189 REM move fake cursor pointers.

199 LET C = C+ 1 IFC =32 THEN LET C = @: LET R = R + 1
IFR =22 THEM LET R = 12

20D PRINT AT R,C; FLASH 1;"G"

10 G0 7O 139

T T R L

ixercise 5.3

Jse listing 5.3 to generate a graphics character consisting of a chequer-board
rattern of pixels instead of completely filled areas. Experiment with this using
rartous PAPER and INK colours in order to make new colours, for example, red
ind vellow give orange,

Jser-defined graphics characters can be directly incorporated in your programs
o enhance the speed of display construction. The equivalent character could be
:onstructed by a series of DRAW and PLOT commands but this would take
onger in most cases. For instance, with characters we can build up pattemns on

‘haracter Graphics on the ZX Specirum 89

he screen verv quickly compared to the length of time it would take to PLOT
r DRAW the same pattern, Listing 5.4 shows how this can be done using user-
iefined characters ““A” to “ID” (the darker characters on the listing denote
‘naracters in graphics mode). When these graphics characters have been defined
hen thev, rather than the corresponding alphabetic graphics character, will
ippear In program listings.

Jisting 5.4

‘@0 REM main program

@0 REM fillL screen with a diagonal pattern of first four graphics charzacters,
10 (WER @

220 INPUT " INK ";I: INK I

3@ INPUT " PAPER ":I: PAPER I

‘4@ LET A% = "ABCD'': LET B% = "@CDA"
S8 LET C% = "CDAB™: LET D% = "DABLC"
t@ FOR J = B TO 7
THFOR I =0 10 &

'80 PRINT AT I+4,J%4;ps

‘OB PRINT AT I#4 + 1,)%i;B3%
‘@B PRINT AT I + 2,J%4;CS
1B PRINT AT I*& + 3,J%4;0%
70 NEXT I

30 PRINT AT D4,)*4;AS

140 PRINT AT I*4 + 1,.%4;BS
'SB NEXT J

6@ STOP

wlternate Character Sets

Jo far we have used up to 37 graphics characters to create pictures, but by using
:iternate standard sets we can add a further 96 with every new set we define. To
1s¢ an alternate set we simply change the value stored in CHARS so that it points
o our new set in RAM instead of the normal table. We have seen that the amount
i work that goesinto constructing even one character is enough to imply that the
onstruction of a complete new character set will be a very arduous task. 5S¢ we
1eed a program that will simplify this task, and also allow characters to be

iitered once created. Listing 5.5 is such a character-generation and editing pro-
rram, and. was designed for use in the development of graphical display programs.

Jisting 5.5

| CLEAR 62294: INK @: PAPER 7: BORDER 7: OVER 1: LET N =@
HEM for 16K machires use (LEAR 255 + the wvalue of S(I), where I is the inde:x
iT thelowest character set which will Tit in the available store.
' DIM Z$(8,8): DIM TH(8,8): DIM S(&): DIM P(8): DIN B{E): DIM G(T7)
AEM Lire rumbers to GO TO for menu options.
FOR I = 1 TO 7: READ G(I): NEXT I
DATA &1.67,71,100,186,112,119
REM powers of 2 ready for use in bimary conversions.
- FOR I =1 TO B: READ P(I1}: NEXT I
DATA 128,64,32,16,8,4,2,1

0 Advanced Graphics with the Sinclair ZX Spectrum

HEM values wnich must be placed in CHARS to use each alternative set.
“or 16Kk machines these numbers should be,
15360,29271,30039,30807 ,31575,320828 (see Appendix).
5 FOR T =1 TO 6: READ S{I): NEXT I
: DATA 15368 .62039 62807 6357564343 64848
5 LET S =1 : GO sSuB 17
REM check set 1 is being used and print meru.
/! CLS : PRINT AT 2,2;"*** CHARACTER GENERATOR **="
B PRINT AT 5,6; PAPER 5;"1"; PAPER 7;" ... PRINT ALL SETS"
9 PRINT AT 7,6; PAPER 5;%2"; PAPER 7;" ... PRINT ONE SET"
8@ PRINT AT 9,6&; PAPER S;"3"; PAPER ;" aaa EDRIT CHARACTER"
11 PRINT AT 11,6; PAPER 5:"4"; PAPER 7V:" ... COPY SET TD SET™
12 PRINT AT 13.6; PAPER 5;"5"; PAPER 7:" ... SAVE SET"
13 PRINT AT 15,6; PAPER 5;"6"; PAPER 7;" ... LOAD SET™
t4 PRINT AT 17 .6; PAPER 5;"7"; PAPER 7;" ... RUN YOUR PROGRAM"
REM wait for valid option.
15 INPUT "WHICH OPTION ";O0P: IF QP < 1 OR OP > 7 THEN GO TQ 15
HEM iump to appropriate routire.
16 GO TG G(OP)
. HEM most subroutines are Located at start of program for efficiency.
: HEM routime to change to set § by altering chars to point to new table of data.
17 LET HI = INT (S{(5)/256): LET LO = 5(5) - HI*»254
18 POKE 23606 ,L0: POKE 236@7,HI: RETURN
HEM gereral routine to wait before clearing screen anc returning to menl.
19 LET § = 1: 60 SUB 17: INFUT "PRESS ENTER TO RETURN TO MENU"; LINE AF : RE
: REM clear binary characters arriya
‘@ FOR I =1 TO 8: LET Z%(1I) = "0DDRDROD™: NEXT I: RETURN
HEM input a wvalid set number and give upper and lower bounds for characters.
21 INPUT "WHICH SET ";S5: IF S <1 QR S > & THEN G0 TO 21
22 LET A = 32: LETE = 127: If § = & THEN LET & = 65: LET B = 85
23 RETURN
: REM input a valid character for chosen set.
24 INPUT "WHICH CHARACTER ";C%: LET € = CODE C3%
IFC < AOR C > B THEN GO TO 24
"5 RETURN
: HEM draw eight by eight block grid at horizoental position altered by M.
26 LET NN = 64 + N: FOR I =@ TD &
27 PLOT I%*3 + NNM.64: DRAW @,64
Z8B PLOT NN, I%E + &4: DRAW &40
29 MEXT I: RETURN
* WEM produce graphical eguivalent of binary string array inside grid.
3@ FOR I =1 T0D 8: FORJ =1 TD &
1 LET P = 7: IF N = @ AND Z3{I,J) = "1" OR N = 946 AND TH(I, J} = ™"
THEN LET P = 4
2 GO SUB 48: NEXT J: NEXT I: RETURN
#HEM overprint cursor on a square in the grid.
33 PLOT X.Y-2: DRAW @.,4
T4 PLOT X-2.Y: DRAW 4,08
!5 RETURN
HEM double & corrmer of a character into a temporary array 7% and save if.
& INPUT '"WHICH CORMER ":;C: IF C < 1 CR C > 4 THEN GO TO 36
7 OFOR 1 T TO B: LET T$(I) = "APEEBOAD": NEXT 1: GO TO 36 + {2
8 FOR 1 1 T0O 4: FOR J =1 TO &: IF Z8{I,4) = "1"
HEW LET TI = 2%I: LET TJ = 2%J: GO SUB 46
NEXT J: MEXYT I: RETURMN
FOR I =1 70 4: FOR J = 5 T0 B: 1F 28(I,J} = "1"
HEN LET TI = 2%I: LET TJ = 2%{J = 4} : G0 S5UB &b
MEXT J: MNEXT I: RETURM
42 FOR 1 = 5 TO 8: FOR J = 1T TO &: IF IS{I,J} = ™"1"
KEN LET T1 = 2%(I - &4): LET TJ = 2%J: GO SUB 45
NEXT J: NEXT 1: RETURN

Mo

= .0

-

b

Uharacter Graphics on the ZX Spectrum g1

s FOR I =S TO B: FOR J =5 TO 8: IF 23(I,.J) ="1"
"HEM LET TI = 2%(I = 43: LET TJ = 2%{J = &3: GO SUE 4&
5 MENT J: MEXT 1: RETURN
“EM subroutine to convert one pixe. into four pixels in deubled array.
& LET TS(TI,TJ} = "1": LET T$(TI-1,Td4) = "1": LET TSI(TI, TJ-1) = "1™
LET TSCTI=1,Td=1) = "1": RETURN
REM averprint the idertifying lLabels at the corners of the grid.
47 PRINT AT 5,7;"1": PRINT AT 5,16;"2": PRINT AT 14,7;"3"
PRINT AT 14,.16;"4": RETURN
HEM subroutine to print a coloured block in a square of the grid.
8 PRINT AT I+5.J+7+N/8; PAPER P;"™ ": RETURN
HFM cisplay doubled character in a grid on the right and save character.
:2 LET N = 96: GO SUB 26: GO SUB 3@
A G0 SUB 21: GO SUB 24: LET D = S5(5) + CxB - 1
T FOR I =1 TO B: POKE D + I,WAL ("BIN " + TELI}): NEXT I
2 LET M = @: CLES: RETURN
HEM copy reflection of 2% array about x-axis into TE array.
3FORI1I=1T08: fFCRJ =1 TO B
& LET T®(%-I,J) = Z3(1,J): NEXT J: MEXT I: GO SUB 5%9: RETURN
HEM cooy rotation of 2% array inte T% arrar.
5 FOR I.=1 T0O B: FOR J =1 TG 8
A LET T$(9-J,I3 = I$(I,J): NEXT J: NEXT I: GO SUB 59: RETURN
HEM cooy reflection of I$ array about y-axis into T$ array.
Y FOR I =71 TC 8: FQR J =1 70 8
B LET THLI.9-1) = ZH{I,JY: WEXT J: MEXT I: GO SUB 5%: RETURN
HEM routire to copy T% array back into I% array.
9 FOR I =1 TO 8: FOR J =1 TO B
) LET Z$(1,d) = TH(I,J):z NEXT J: NEXT I: RETURN
“EM start of opticn handiimng routines.
HEM orint out all five complete character sets and user—defired graphics set.
31 CLS: FOR & =1 TO 5: a0 sug 17
2 PRINT AT S%4 = 4.8;
53 FOR € = 32 TO 127: PRINT CHRSE C;: MEXT C
h MEXT S: GO SUB 17: PRINT AT 2@, B;
3 FOR € = &5 TO BS: PRINT CHRS C;: NEXT C
SEM use standard routire to wait then back to menu.
H 50 SUB 1%: 60 TG 7
REM prirt cut one set and give the charcters with which they coerrespond.
i¢ CLS: GO SUB 21: LET 85 = §
8 FOR C = A TO B: PRINT PRPER &;CHR® C;"=";: LET 5 = 55: GO 5UB 17
9 PRINT CHRE C;: LET 5 = 1: 60 SUB 17: PRINT ™ ";: NEXT C
AEM return tc menu.
& G0 SUB 19;: GO0 T 7

“EM oction three, editting 3 character, clezsr screen and I% binary arrav.
T ILs: GO SUB 2@
4EM which set and character. calculate datz position for character.
r2 60 SUB 21: 60 SHB 24: LET D= 5{85) + C#&B - 1
“EM aget eight mimary numbers from table of data.
3 FOR- T =1 T0 B: LET B{I1Y = PEEK (b + I)= MEXT I
HEM convert each number into a Timary string of eight digits.
4 FOR I =1 TC B: LET T = B({IL}
'S FGR J =171 T0 B
rh IF J »>= PCJY THEM LET Z3{I,J} = "1": LET T =T = BLJ2
7 OMEXT J: MEXT I
HEM craw a grid and put green bBlocks irn sguares te represent binary ornes.
TEOGD SUB fé: GO SUR EP
HEM ipmjtialise cursor position in pixels and grid reference values.
9 LET X = &8z LET ¥ = 1242 LET I = 7z LET 4 =1
4EM overprint cursar or sguare,
i G0 SUE =3

12 Advanced Graphics with the Sinclair ZX Spectrum

REM wa't for mext kevpress.
31 1F INKEYS <> """ THEN G0 TQ 81
ic IF INKEY$ = "' THEW GQ TO &2
REM get command and remocyve cursor.
'3 LET A% = INKEY®: BEEF DB.P5,3D0: G0 SuUB 33
EEM check for cursor movement cortrols with or without the shift key.

84 IF (A% = "5" DR A% = CHRS 8) AND J > 1 THEN LET X = X - 8: LET J = J - 1%
i5 IF (AT = "6" OR A% = ChRE 1@) ANMD I < B8 THEN LET ¥ = ¥ - B: LET I =1 +
B& IF (AS = "7" QR AR = CHRS 11) AND I > 1 THEN LET Y = Y + 8: LET I =1 -
37 IF (A% = "B" QR A% = CHRE %) AND J < B THEN LET X = X + 8: LET J = ¢ + 1

“EM check for special commands, in upper or lower case.
FEM Plot, fill ir a scuare.
B IF A% = "P" CR A% = "p" THEM LET F
REM 0ff. blark cut 2 sguare.
39 IF A% = "0" OR A% = "o" THEMN LET P = T7: LET I3(1,JJ
HEM Reotate character by 99 degrees anti=cloackwisze,
W OIF A% = "R" QR A% = "r" THEW GO SULB 55: GO SUB 3f: GO TC 79
REM reflect in the X or horizontal axis.
¥ LF &% = "X OR A% = "x" THEN GO SUB 53: GO SUB 3B: GO TC 79
HEM reflect in the Y or vertica. axis.
12 IF A% = "¥" Op AT = "yM THEM GO SUB S7: GO SUB 3B: G0 TC 79
“EM Merge arothker character with current patterr.
I3 IF A% = "M" OR A% = "m'" THEW GO SUB 2&: GO TO 72
HEM mzke Coub.e—-size copy of ome cormer of character.
% IF A% = "R QR A% = “a" THEN GO SUB 47: GO SUB 36: O SUB 49: G0 70 78
HEM unless you want to Save the character go back and wait for meore commands.
5 IF A% <> S AND A% < "s' THEN GO TO 3@
HFEM replace character in gata tzble by usirg the BIN functicn toc convert.
16 G2 SUB 21: GO SUB 24
T LET D = 5(S} + [+8 —]
'8 FCR I =1 T) 8: POKE C + I,UAL("B:N 3 Z8(I)) = MEXT I
REM return to menu.
"9 GO SUB 19 GO TO Y7
REM option four copy set to set.
(90 INPUT "FROM SET "“:A:" TO SET “;B
HEM make sure sets are wval id.
@ IFA<TOCRE<TCRAZ>50RB > 5 THEN GO TO 124
REM don't bother if sets are same.
@2 IF A = B THEN GO TOQ 1@5
%EM make copy of data from cne table to another.
B3 PRINT AT 21.10;"PLEASE WAIT': FOR K = 256 TQ 1024
184 POXE (S(B) + K), PEEK (S({A} + K}: MNEXT K
HEM return to menu.
@5 GO sSuB 19: GD TO 7
HEM cption five save data table for a et of characters as bytes on tape.
@6 CLS: PRINT AT 2,6;"SAVING CHARACTERS": INPUT "WHAT FILE NAME ";N%
IF N3 = "" THEN GO TO 7
107 PRINT AT 4,.1@;N%: INPUT “SAVE WHICH SET ";5
IF (S5 <2 0R S > 6) AND § <> 11 THEN G0 TO 1@7
“EM if vou type 5+6 then spectrum sets § = 11 so save sets 5 and & together,
B& IF & = 11 THEN SAVE NE CODE (S5(5) + 258,188 + T&48: GO TO 111
REM set & is smaller than normal sets.
18% IF & = & THEN SAVE N% CODE (5(&) + 5123,168: G0 70 111
110 SAVE NF CODE (S(%) + 256) 768
REM return to menu.
"1 60 SUB 19: 60 TO 7
HEM option six relcad data table for a set of characters as bytes from tape.
112 CLS: PRINT AT 2,6;"LCADING CHARALTERS': INPUT "“WHAT FILE MAME "rNE
IF NE = " THEN GO TOQ 7
13 PRINT AT & .1@0:N%: INPUT "LOAD WHICH SET ":5
IF (S <2 0R S > 63 AND § <> 11 THEN GO TO 113
14 PRINT AT 21 10;"S5tart tape."

“1": G0 SUB 4B

41 LET Z%¢1,J)

“@%: GD SUB 48

1
1

haracter Graphics on the ZX Spectrum Q3

: HEM 3if vou type 5+6 then spectrum sets § = 11 so0 load sets 5 and & together.
15 IF 5 = 17 THEN LCAD N% CODE (5(5) + 256),168 + 748: GO 70 118
REM Load user defined set.

16 IF € = & THEN LOAD NS CODE (S(&) + 512),168: G0 TO 118
117 LOAD NS CODE (5(%5) + 256,748

HEM return tc menu.
118 GO 5UB 19: GO TO 7

"he CHARACTER GENERATOR routines are intended to take all the hard
vork out of preparing and using defined characters: they allow you to edit and
manipuiate characters, use alternate character sets and graphics characters, save
ind reload defined chracters and immediately test your own programs. The
‘outines are designed for the 48K Spectrum to sit in the bottom part ot the
nemory {lines 1 to 118), followed by your own program starting after line 11§%,
ollowed by the renumber and delete programs {from chapter 13) starting at line
2900. If vou have the 16K version, then this program should be run independ-
mtly ef other routines — see Appendix A.

"he program first offers a choice of seven options, which we will look at in
turn.

1) The first option is PRINT ALL SETS. This will print the nermal character
et {set 1), followed by the four alternate character sets (2 to 3), followed by the
1ser-gefined graphics set (set 6). The last few characters of set 5 will contain
spurious data, a remnant of the GO SUB stack, which has been moved out of
harm’s way,

2) The second option is PRINT ONE SET. These are identified with the num-
sers 1 to 6 as follows: 1 standard set — cannot be changed; 2 to 5 alternate sets

may temporarily replace standard set; 6 user-defined graphics set — always
ivailable. On selecting one of these numbers the screen will display each character
of the standard set with = after it, both on a yvellow background, followed by the
:quivalent character of the alternate set. For set 6 this will be produced only for
he characters “A” to “U”, and it will show the characters available when using
hese keys in graphics mode.

3) Option three is the editor. This is the most complicated option and has a
arge set of commands accessed by typing their initial letter. First, though, you
viil be asked with which set and which character you wish to start. If you want
o start with a blank grid of eight by eight pixels, use set 1 and the space charac-
ter. { To use the quote marks character it will be necessary to type it twice — see
sage 47 of the Spectrum BASIC Handbook (Vickers, 1982)).

“ou will now be in edit mode and the character you have chosen will be
iisplayed as green blocks in an 8 by 8 grid. The cross in the top-left corner is the
:ait cursor. The cursor is controlled by the standard cursor keys (37, 6™, 7",
") either with or without the shift key.

“he first two commands are PLOT or OFF, which change a square in the
:naracter grid. Simply move the cursor over the square and press either “P" or

l{]!,

4 Advanced Graphics with the Sinclair ZX Spectrum

‘™" makes the square green, equivalent to a binary on or one INKed-in pixel,
ing "0’ erases the square to white,

The next three commands all specify transformations similar to those per-
‘ormed on two-dimensional objects in chapter 4, ROTATE turns the character
hrough 90 degrees anti-clockwise about its centre. X-AXIS reflects the character
ipout the horizontal axis and Y-AXIS reflects the character about the vertical.
These commands can be used to create text sets for any orientation.

‘inally we have MERGE, SAVE and DOUBLE. MERGE allows any character
0 be merged, into the grid, on top of what is already being edited. This is very
1setul for creating foreign language sets; for example, by placing a slash through
in U for Scandinavian languages, or by adding accents for French, etc. to letters.
the SAVE command asks in which set we wish to save the newly created charac-
er, and to which standard character is it equivalent. If set 1 is specified the
:naracter will be lost. since set 1 is held in the Read Only Memory of the
spectrum: this can be useful to dispose of any unwanted grids created by mis-
ake. DOUBLE is a vowerful feature that allows you to take any quarter of the
:haracter vou are editing, create a double-size copy of the quarter and SAVEL it
mmediately as a single character. This option does not atfect the character you
ire editing, so all four corners may be copied in succession into tour difterent
:haracters within the same editing stage. This feature can be used to create
‘naracters of double. quadruple or larger size with ease.

4) COPY SET TO SET is the fourth option available and can be used to make
:oples of a complete set for subsequent manipulation, or simply to move one of
he alternate sets around in memoryv. Sets 2 to 3 are stored at the end of memory,
n the locations preceding the user-defined graphics, with set 5 ending at the
‘ocation immediately before the user-defined set. The area of store used for sets
- to 5 is reserved and protected from BASIC use by the command CLEAR 62294
n the 48K version (see page 168 of the Spectrum BASIC Handbook (Vickers,
982)). 62294 is one less than the first location in the table for set 2. In order to
srotect only the areas for sets [onwards, we need to evaluate S(I) + 255 and
slace this number in the CLEAR command at the start of the program. S(I} is the
ralue assigned to the system variable CHARS that enables PRINT to use set I.
I'hese values are READ from the DATA statement at line 3. Note the changes
‘or the 16K machine given in Appendix A.
5)and (6) Option five allows character sets to be saved on tape and option six
‘or them to be reloaded. If, in reply to the question ‘WHICH SET’, we type a
wmber between 1 and 6. then that set is SAVEd or relL.OADed. Should we type
» + 6 then both sets 5 and 6 will be saved or loaded as a single unit.
"o allow other programs to load and use alternate sets of characters, lines 112
o 117 should be copied from the ‘CHARACTER GENERATOR’ along with the
subroutine (at 17 and 18), which allows switching between sets. The array § and
ts DATA from line 5 must also be included.
7) The final option is RUN YOUR PROGRAM, which will transfer control to
he first line following the character generator or, if nothing is there, stop.

Character Graphics on the ZX Spectrum 95

n order to familiarise yourself with the ‘*CHARACTER GENERATOR®
ollow the instructions laid out below,

VERGE listings 5.4 and 5.5 on the 48K Spectrum; run them separately on
he 16K machine. Create a character like an ink-blot pattern and SAVE it as
‘haracter “A” in set 6. Edit the character: rotate it and SAVE it as character
‘B in set 6. Edit “A” in set 6: use X-AXIS reflection on it and SAVE it as “C”
n set 6, Edit “B” in set 6: use Y-AXIS reflection on it and SAVE it as “D” in
et 6. Now use option 7 to RUN YOUR PROGRAM and see what pattern
‘merges.

:xercise 5.4

‘xperiment with various possible symmetries of characters and patterns for
rlacement of characters on the screen. Alter the program so that it tries all the
possible combinations of INK and PAPER colours within two nested FOR. . .
NEXT loops.

’)
48 a 4 -

X
* 2l #)n »
* e

L

“gure 5.4

‘xercise 5.5
Now create characters for dominoes using the ‘CHARACTER GENERATOR’
rom listing 5.5. This enables construction of a display similar to figure 5.4.

sxercise 5.6

Nrite a routine that copies one set to another but uses some of the editor
outines from the ‘CHARACTER GENERATOR’ to perform transformations on
:acn character as it is copied. Figure 3.5 shows a listing produced with a set that
nas been ROTATED.

£t us now consider a complete program that has been developed using the
CHARACTER GENERATOR’ and subsequently separated from the develop-
nent system to stand alone. The ‘MASTER MIND’ program (listing 5.6) is shown
n mid-game in figure 5.6 and we can see immediately that an alternate character

] Advanced Graphics with the Sinclair ZX Spectrum

oI oooad=t .. HZyY 8. ogowd -
oo aae M~ oO2>wr A _dWE Z N
] OHIT N#-=D -~ AHIL ==~ -0~ O
{T M= 1p-. gHI oL-0~--- aOHEL 0=~ -- agHI
T} e’ I‘H_ Ty
MT Lo HiIlA O M- WIS O=-H-~ .. Zul
- H .. QIFT O G e 80 00 Al -

‘N

fLog HUA 0 0 ZWEo 4-He- ZW
e He QIFT S0 -0+ -0 ~Ad 0 3 ~{ ~d

N LoD Hid O 0 CWCO ==~ ZWL
= M QT SWNO0e ~PNeOTR ~BUOEN DO
R TV S B S IR Te R Jui ks Jer

0 JdW= il 00 IO d-

- Qdm - QEHZE TR O A0 kR OTd
IR GWZWETEOM ke k:

N ACHZE T 0 0. ATARME -~ S s
R VRTT v S s+ QOHZTE TAJ WU

M QEMIZE TR M a0 AZAWD W3 -c Q-
DT W Fro e w2 P []_IIH:!- (o Bl [lﬂwl-':

‘0 QEHZIF I Mo, oo - 0 -
pTawa T-.es v WAOHE ODLFCIORFWO:

Tgure 3.5

1 was used. This character set was created by DOUBL(E)ing the reguired
etters and numerals of set 1 and storing the top-left and top-right comers in the
-apital letters of set 5 and the bottom comers in the lower case letters of set

. The two sizes of peg were stored in the user-defined graphics set, which is
ndependent of the main set; hence they are always available whether we are
ising set 1 or set 5. The DOUBLE lelters were edited to smooth out their edpes
ind the combined sets 5 + 6 were stored on cassette tape as ‘masterset’,

Asting 5.0

T CLEAR &2294: INK P: PAPER 7: SORDER 7

REM routines to alleow use of alterrate scts

REM remember to make zlterations for 1£K mackimes as in Listing 5.5.
T DIM S{&D

5 FOR I =1 TD &: READ 5{IJ)z WEXT I

CATA 15260 62039, 62807 63575 ,04343 44848

LET 8 =1 : 60 5u8 17

GO To 2pD

LET HI = INT (5(8)/25%6): LET LO = 5{(8) = HI*Z%4

FOKE 226046 ,L0: POKE Z34B7,HI: RETURK

CLS; PRINT AT 2.6;"LOADING CHARACUTERS": LET NE = "masterset"

PRINT AT &£.10;N%: LET 5 = 5 + &

PRINT AT 21.1E;"Start tape.™: PRINT AT 5,8;

LO3AD NE CODE (S5C5) + 2563 ,.188 + 748

RETURN

e e el
oo W e el B oma

- Lk

‘38 REM |load characters and initialise scores

99 REM arrays to hold Guess, Target and a copy of target for checking.

B0 GO SUB 112: LET MYSCCORE = D: LET SCORE = @: DIM G(S): DIM Ti{4): DIM X{4)
P9 REM use routirme tc draw dizplay.

1B RANDOGMIZE: GO 3UB 4&&d

19 REM set up target colours ard g¢ into guess Loop.

2B FOR I =1 TO 4: LET TC(I) = INT (RND*&} + 1; NEXT I: LET GO = @

29 REM rext guess, if vyou have had six then ycu lose.

3P
39

49
5@
&8

&5
e
279
8@

299
Bl

e
19
2D
£9

30

3G
5 42
S50
359
6@
369
g
SE.1i
389

“am
sa9
418

WY
AE

haracter Graphics on the ZX Spectnumn

LET G0 = GO + 1: IF GO = 7 THEM GO TO 399
REM ipgut routime for guess.

GO SUB TRA

REM print guess on boara (A is araphics Al).

FAFER 7

PRINT AT 1 + GO%*2,11; IMK G{1):;"A"; INK G{2);" A";

INK GL3):" A"; INK G(4);" A"

REM check quess against temporary copy of target.

LET NBE = B: LET MM = B: FOR 1 = 1 TO 4: LET X{I? = T{I): NEXT I

REM Look for exact matches first, if found then cross off both pegs.

FOR I =1 TO 4: IE G(I} = X(I) THEW LET X(I) = B: LET NB = NB + 1

: LET GCI) =7

NEXT I

REM check for right celour wrong position.

FOR I =1 TO 4: FOR J = 1 70 &: IF 6(I) = X(J) THEW LEY NW = N + 7
LET X{J) = B: LET G(I} =7

HEXT J: NEXT I

REM set up array x witk appropriate numbers of black and white pegs.

FOR I =1 TO MB; LET X(I1} = @: NEXT I: FOR I = MB + 1 TO NB + MM

REM pad cut array with norn-visible zreen pegs.

LET (I} = 7: NEXT I: IF NGO + MW < & THEN FOR I = NEB + NW + T TO &
LET X(I) = 4: NEXT 1

REM display marker pegs on board,

PAPER 4: PRINT AT GOx3 + 1.2; INK X(12;"B'; INK Xi2k:"|v;

PRINT INK X(3):'"B"; INK X(4);"B";

REM if you got it all right then you win.

IF NB = & THEN GC TO 400

REM add ome to computers score and Locp kack for next guess.

LET MYSCORE = MYSCORE + 1: PRINT AT 1@,24; PAPER &; INK B;MYSCORE

GO TO 23P

REM if vou lose computer gets 18 more points.

LET MYSCORE = MYSCORE + 10: GO TO 41@

REM 3if vou win vou get 1@ points.

LET SCORE = SCORE + 1@

REM build up string for display at bottom.

LET I$ = CHRE® 17 + CHRS 7 + "TARGET WAS " + CHRS 146 + CHRE T(1) + "A

LET 1% = I% + CHR® 16 + CHRS T¢(2) + "A "

_ET I% = I% + CHE%® 14 + CHRSE T(3} + "A "

LET 1% = 1% + CHR® 14 + CHES T{4) + "A" + CHR$ 1& + CHRE @
LET 1% = 1% + CHRS & + " PRESS ENTER TO CONTINUE]
REM show taroet and wait for 'enter' before restartirg game.
INPUT (I%); LIME B%

GO To 218

REM draw board,

CVER @: EQRDER &: FAPER 7: CLS: IME A

REM use alterrate set tc print MASTER MIND in double size,

y LET 5 = 5: GO SUB 17

PRINT AT B.B;" ABCDEFSHIJKL ABMWOPQR"

FRINT AT 1.0;" abcdefghijkl abmropgr”

REM print out double size numbers.

PRINT AT 4,7:"ST": FRINT AT 5,7;"st"

PRINT AT 7,.7;"UV'": PRINT AT 8,7 :"uv"

SRINT AT 19,.7;"WX": PRINT AT 11,7;"wx"

PRINT AT 13.7:"YZ": PRINT AT 14,7;"y2"

SRINT AT 16,7;"[\": PRINT AT 17,7;"C|"

PRINT AT 19,7:;"38": PRINT AT 2@.,.7;:"2°"

REM wipe of sides of board in vellow.

FAPER 4: FOR I 3 TO 20 PRINT. AT 1,.%;" "I NEXT I
FAPER 6: FOR I =@ TO 21: PRINT AT I,.24;" s MEXT I
FAFER 7: FOR I = & TO 16 STEP 2

FEM orint hcles for pegs.

FRIKT AT I, 11:"A A A A": NEXT I

97

8

11a
2R
36
14
1 S@

et
Y
TR
Sl

Er

-
~og

o6

B9

o

9%
‘BE
AT
H
i
29
i@
4
5@
LD

Advanced Graphics with the Sinclair £X Spectrum

REF print creaits on side.

LET § = 1: G0 SUB 17: PEPER 2

LET G5 = " £ BY BRIAN JCMES AMD IAN ANGCLL 1798& 2o
FOR I =@ TO &

PRINT AT 12 + 1,24; PAPER &; INK 2; CHRS 12%;

‘APER 2; INK 7;G3{I+*5 + 1 TD I+6 + &);

FRINT INK 2; PAPER 6;CHRS 135: NEXT I

EEM =zet up scecre displays.

FAFER &: FRINT AT 2,25;:"YOUR"™: PRINT AT 3,25;"SCORE"
FRIMT AT 5.26&:5CCRE

FRINT AT 7,26;"MY": PRINT AT &,25;"SLORE"

FEINT AT 8.6 ;MYSCORE

REM craw horizontal Lires across beard.

FOR 2 = 2 T0 22 STEP 3: LET ¥ = 1£8 - B8*[

PLOT 7,Y: DREW 176,8: PLOT 7,Y — 1: DRAW 176,8: NEXT I
FEM craw wertical Lires on bo2rd.

FLOT 7,7: DRAW B,745: SLOT 8,7: DRAW B,145

FLOT 183.7: LRAW B,145: FLOT 184,7: DRAW B,145

FLOT 55.7: GRAW @,145: FLOT 56,7 DREW @,145

PLOT 71,7: GRAW B,145: FLOT FZ,7: DRAW 8,145

RETL RN
REM get four pegs for & guess,
LET NG = 1

REM uze subroctire to builz dizolay string for input prompt.

GO SUB BIF: INPUT {I%3;G{NG): IF GING} < 1 GR GCNG) > 7 THEN GO TO 790
REM bgckzpace to remove last peg.

IF GCMEY = 7 THEM LET NG = MG - 1: GO TC 752

REM keeo agoing till all Your pegs are in ard have hbeen cenf Prmed.

LET WG = MG + 1: IF NG < & THEK GO0 TO 79¢

RETL RN

REM make up string with colour codes and characters instead of rumbers.
LET I% = CHRES 1Y + CHRE 7 + "Y{OuR GLESES "

IF WG <= 1 THEM LET NG = 1: RETLRN

FOR J =1 7O NG - 1: LET 1% = I% + CHRS 16 + CHRS G(JY} + "A ™: NEXT J

RETURM

i

B
e

@

r

R
O
=
T

4
1

BMZOMD

PODIZ
nr

“haracter Graphics on the ZX Spectrum 9g

"he routines taken from the ‘CHARACTER GENERATOR’ program have
been left with their original numbering so that they can be easily identified and
:ompared with the original. The display for the top part of the screen is built up
n easy stages from characters, colours and lines so that the role of each stage of
-onstruction is straightforward and easily adjusted. The program uses also the
echnigues of dynamic INPUT strings (which will be discussed in chapter 13} to
create the display for the lower part of the screen.

ixercise 5.7

"idv up the ‘"MASTER MIND’ program, giving it a structured appearance.
ncrease its legibility with suitable variable names especially for routines. Adapt
ne ‘MASTER MIND’ program to play against you. (Programs that do this have
»ccasionaily been published in the past in computing magazines. Some are still
ivailable; see Ahl, 1980 and Liffick, 1979).

‘inally in this chapter, we give a simple illustration of how effective character
sraphics can be in producing a high-quality display. The following short program
uses the ‘chesspiece’ characters from the cassette tape to display a chess board
for example, figure 5.7 — also sec cover) and to move pieces in response to
NPUTSs. You can of course produce your own new chess set.

Asting 5.7

* REM set up to use just setz 1 and 5 for 16K use CLEAR 31830: 5 = 3157S.
1@ CLEAR 6459B: LET 55 = 64343: LET S1 = 15340
@ INPUT " LOAD CHARS 7 ":¥%: IF Y3 = "y

HEN LOAD "chesspoiece CODE 55 + 256,768

@0 REM Lay cut board
10 INK #: PAPER B: BORDER B: CLS

2@ FAFER 6

29 REM orint velluw strip arocund board,

13@ FOR I =1 T 28: FOR J = 1 TO 2

43 PRINT AT 21 = I,J + S5;" “: PRINT AT I.J) + 23;" "

190 PRINT AT J, I+ S2'" ": PRINT AT . + 18,26 — ;"
‘6@ NEXT J: NEXT 1
‘65 REM print sguares of board.

8 LET € = 4

180 FOR I = 2 TO 8 STEP 2: FOR J = 2 TO 8 SYEP 2

1986 PAPER C: PRINT AT J + 1.1 + &;" ": PRINT AT J + 2,1 + &;" "
280 PRINT AT 19 = J, 24 = I:" ": FRINT AT 28 - J,24 = I:" "

TR LET £ =7 = C: PAPER €

20 PRINT AT J + 1,24 = I;" "z PRINT AT J + 2,24 = s

IR PRINT AT 19 = J,I + A;" ": PRINT AT 28 - J, I ¢ ;" "

8 MEXT J: LET C =% - €2 NEXT 1

LO REM print lLetters and numbers around board.

@ PAPER &

G0 FOR I =1 TO B: PRINT AT 29,6 + ZxI:CHRE (64 + I)
BRINT AT 2+I & 2.25:(9 — I): NEXT 1

00 REM set out pieces

1@ DIM B(E,8)

19 REM white pieces have ten zdded t¢ the number identifying tvpe of piece.
128 FOR I 1 TO B: LET B8(2,1) H: LET B(7,1I) = 16: MEXT 1

330 FOR I 1 T0 5: LEY B(1.,.I) & = I: B{1,.I+5) = 1

00 Advanced Graphics with the Sinclair ZX Spectrum

340 LET B(B,I) =14 — I: LET B(8,I+5) = 1 + 1B: NEXT 1
358 FOR I = & TO 5: LET B(1,1) = 9 — 1I: LET B(B,I) =19 - I: NEXT 1
5% REM set pointers to routines.
60 LET move = 1000: LET input = 11B@: LET piece = 128@: LET flash = 1320
LET charset = 14@P: LET List = 1568
£9 REM draw headings for move display.
7@ PAPER @: INK T7: PRINT AT 1,B;"WHITE": PRINT 1,27;"BLACK"
8@ PLOT B,159: DRAW 39,0: DRAW @,-1: DRAM -39,0
198 PLOT 216.159: DRAW 3G,.8: DRAW @,-1: DRAW -390
99 REM use transparent paper and then call routine to craw each piece.
.@P PAPER B: FOR K =1 TO 2: FOR J =1 TO B: LET I = K: GO 58 piece
LET I = 9 — K: G0 SUB prece : NEXT J: MEXT K

@0 REM main program

589 REM array to hold moves and set no of moves to one.

Si@ DIM N$<¢2,1P@,5): BORDER @: LET S = S1: 60 SUB charset: LET N =1

19 REM get whites move, flash sguares specified.

e® LET If = "WHITE": GO SUB input: LET F = 1: GO 3U8 flash

29 REM allow move to be carcelled and re—enterec.

I@ INPUT “ACCEPT 7 ";¥8: IF YE <> "Y' THEN LET F = f: GO SUB flash: GO TO 52@
39 REM move piece and display move an side.

S4@ GO SUB move: LET NEC1,.N) = ME: GO SUB 1list

549 REM repeat above process fer black side.

“SP LET 1% = "BLACK™: GO SUB input: LET F = 1: &0 SUB flash

A0 IMPUT "ACCEPT 2 ";¥%: IF ¥$ <> "¥*" THEN LET F = @: &0 3UB flash: G0 TO 558
570 GO SUB move: LET NE(2,MN) = ME: GO SUB List

579 REM next move.

SBA LET N =N+ 1: G0 TO 528

TABPE REM move

‘BP9 REM move specified pieces and copy the pieces omto the screen.
1018 LET B(IZ2.42) B{I1.413: LET I = I2: LET J =J2: G0 SUB piece
1020 LET B{I1.41) @: LET I = I1: LET J =J1: GD SUB piece

“RZ0 RETURM

W n

100 REM input
189 REM input coordimates of move sguare and destination scuare.
1118 INPUT (1% + "'S MOVE No. ™ + STRS N + " "); LINE M35;"-"; LINE TS
IF M3 = "STOP" OR ME = " STOP " THEN STOP
1120 IF LEN M% <> 2 OR LEN T% <> 2 THEN GO T0 input
130 LET J1 = CODE ME(1) = B4z LET I1 = 9 = (VAL MEC(ED)
IFIT<1T0OR I1T>80RJT <1 ORJ1T > & TEEN &0 TO input
1148 LET J2 = CODE T3(1) - 643 LET I2 = 9 = (VAL TH{Z)})
IFIZ <1 0R 12 > 8 OR J2 < 1 QR J2 > & THEN GO TO input
15@ LET M$ = M$ + =" + T$: RETURN

2P0 REM piece

1281 REM IN: I,J

1?09 REM redraw the square at I,J from the value stored in the board array.
7219 LET § = 55: GO SUB charset: LET B = B{I,J): INK D

IFB > 10 THEN INK 7: LETB =B - 1P
220 LET B = 2+B: LET A% = CHRS (63 + B)Y + CHR%® (64 + B)
: LET B% = CHRE (95 + B) + CHRE (56 + B)

230 IF B = @ THEM LET A$ =" ™: LET BS = A%

240 PRINT AT I*2 + 1.4%2 + &3A%: PRINT AT I*2 + 2,J%2 + &6;8%

1258 LET § = 81: GO SUB charset: RETURN

130 REM flash
‘381 REM IN: F,I1,J1.12,42
1309 REM change the flash attribute of two sguares I7,J1 and I2,J2.
310 FLASH F: OVER 1: INK B: PRINT AT I2%2 + 1,022 + ;" "

PRINT AT I2%2 + 2,J2%2 + ;"
1320 PRINT AT IM#*2 + 1.J1%2 + &2 " : PRINT AT I142 + 2,J)7+2 + &;" "
1230 FLASH P: OVER @: RETURN

‘haracter Graphics on the ZX Spectrum 101

4BR REM charset

1401 REM IN: §

T4S REM change CHARS to § to use alternate sets.
1418 LET HI = INT (5/256): LET LO = § = 256%HI
'420 POKE 236B6.L0: POKF 236@7,HI: RETURN

580 REM 1ist
539 REM List Last 16 moves of each side on screen.
15910 LET T = N: IF T = 16 THEN LET T = 15

"SZ@ FOR I = T - 15 TO T: PRINT AT I - T + 18,@8; INK 7;N3(71,1)
530 PRINT AT I - T + 18,27; INK 7;N$(2,1}: NEXT 1]
"548 RETURN

Figure 5.7

“xercise 5.8

adapt the program in listing 3.7 to check for illegal moves and add lacilities for
:astling and en passant captures. I you have a lof of time!! (o spare then add
outines to make the computer play against you (see Liffick, 1979},

n the next chaptler we shall consider how character graphics and our know-
edge of two-dimensional geometry may be combined to form data displays.

‘omplete Programs

Listing 5.1. Data required: A$. A should be any non-graphics mode

aracster fry XY o e ™

(2

1.

VI

/1.

Advanced Graphics with the Sinclair ZX Spectriom

Listing 5.2 ("main program’ and ‘big pixels’). Data required: ROW and
‘OL where 0 S ROW< 16 and 0 < COL <24 Try (0, Q) and {1, 1}.
Listing 5.3. Data required: U$ and eight BINary numbers, each at most
sight bits long to redefine the graphics character specified by US. Try *A”
:nd 111, 111000, 1010101, 101, 11111001, 1001, 1111, 10110; and “B”,
“C™ and “D7. each with permutations of these eight numbers. Then press
kevs “A” to “U” to display the equivalent graphics characters or press
:NTER to restart program.

Listing 5.4: no data required. Program Il must be used to create graphics
:naracters “A”, “B”, *C” and “D",

Listing 5.5: the CHARACTER GENERATOR. Read text for description
ind example of use,

Listing 5.6: requires *masterset’ from tape, or the generation of your own
:haracter sets, To play MASTER MIND, type the number (*1” to “6’")
-orresponding to the colour of peg you wish to enter. Pressing “7" removes
last peg. When four pegs are in position, type “1" to enter guess.

Listing 5.7: requires ‘chesspiece’ from tape. Type coordinates of start and
destination squares of move. The coordinates of a square are given by a
:apital letter (“A” to “H") followed by a number {(*1" to *8"). Try *“'E2”
followed by “E4’". To ACCEPT MOVE type Y™, to reject the move
tvpe “N”°.

9 Diagrams and Data Graphs

vlore information is available to more people than ever before. Businessmen are
seing overwhelmed by massive documents containing reams of statistics on every
upiect from capital expenditure to market research. Sociologists bombard us
with figures on child development and the increasing percentage of octogenarians
n Bournemouth. Worst of alt. computers are piling up printouts of dreary data
-overing every topic from astrology to zoology. Obviously something must be
one! Computers have helped to create the problem and they can also help to
wotve it. The data must be presented in a more digestible manner: as piecharts,
listograms, scientific graphs or just plain diagrams, With the advent of desktop
:omputers the increasing sales of programs that produce these displays has made
his one of the major growth areas in computer graphics. In this chapter we shall
.e¢ how such diagrams can be constructed with ease, given just a few tools to

id our draughtsmanship,

Cursors

Jefore us is a sheet of PAPER on which we shall place objects. We require some
nethod for accurately controlling the position of these objects. This is usually
ichieved with a cursor, which may be externally controlled by a joystick or
ither analogue input devices. We, however, will use the keyboard to control
novements. This may not be as convenient to use as a joystick, but it requires
10 extra expenditure on peripherals, which would achieve only the same effect
inyway. I'he ‘cursor’ routine, listing 6.1, produces a pair of crosswires that are
JWERlayed on the display using transparent INK (INK 8). These crosswires can
specify the pixel at their intersection or the character block in which they cross.
"he cursor is moved in anv one of eight directions by the keys around the “F”
1see figure 6.1). If you have a joystick or similar peripheral attached to your
computer, then alter the ‘cursor’ routine so that it receives information from
hat rather than the kevboard.
ressing “F™ itself centres the cursor on the screen, When a key is held down

he speed of movement gradually increases: a cursor that always moves just one
1xel per key depression is tedious to use! To aid in positioning the cursor there
s a Lattice that is switched on and off by pressing *'L”. This is automatically
emoved, if it is on, when you press ENTER to enter a point.

04

Advanced Graphics with the Sinclair ZX Spectrum

LEYBOARRD CONTROLS

TR T Ccuyrsof T MOQUEMEMNMT

. Y
N =
> F G—
W E3E
/| -
Figure 6.1
dsting 6.1
5700 REM cursor
2T01 REW IN: PX,PY
702 REWM QUT: PX.PY,.ROW,COL

709 REM the rext Lire is only executed or the first call te cursor.

710 LET PX = 128: LET PY = 88: LET cursor = 5720: LET grid = 5998

712 REM start of main cursor routine.

5720 INK B: LET A= 1: LET FLAG = 1: OVER 1

729 REM wait for kevboard to be clear before leoking for commands.

730 IF INKEYE < "™ THEM GOQ TQ 5730

740 PLOT PX.Q: DRAW @,175: PLOT B,PY : DRAW 255,0 ;

TS58 LET A% = INKEY$: IF A$ = "' THEN LET A = 1: G0 TO 5¥30

7A@ IF CODE A% > 64 AND CODE AS < 9 THEM LET A% = CHRE {CODE A% + 323

77d PLOT PX,@: DRAW B,175: PLOT @,PY : DRAW 255,92

7BB IF (A% = "e" QR AS = "g" QR A% = "¢") AND PX >= A THEM LET PX = PXi - A
S7T98 1IF (A% = "c" OR A% = "v" COR AT = "b") AND PY >= A THEN LET PY = PY - A
58@P IF (A% = "e" QR AT = "r" CR AT = "£"} AND PX <= 175-A THEN LET PY = PY + A
5812 IF (AS = "t" OR A% = "g" OR A% = "b") AND PX <= 255—-A THEN LET PX = PX + A
B2@ IF A% = "{f" THEN LET PX = 128: LET PY = 8B

830 IF A% = "L" THEN G{ SUB grid

2848 IF A% <> (HR$ 13 THEMN LET A = A + 1: GO TO 5740

850 LET COL = INT (PX/B): LET ROW = INT {({175-PY)/B)

B6@ IF FLAG = -1 THEW GO SUB grid

B70 INK B: OVER @

£B@ RETURN

980 REM arid

599 REM routine changes flag to remember whether grid ¢ shewing on screen.
91@ FOR J = @ TO 255 STEP B: PLOT J.@: DRAW @,175: IF J < 176

HEN PLOT B.J: DRAW 255,08

5928 MNEXT J: LET FLAG = —FLAG: PLOT 255.0: DRM @,17S: DRAW -255,0

930 RETURN

“xercise 6.1

Write a ‘main program’ that calls ‘cursor’ and then prints a coloured square on
he screen at the specified block. It should also print out the ROW/COLumn
position of the block. Change the ‘cursor’ routine so that the standard cursor
cevs (57, 6", “7" and “'8”") can be used to move our cursor in character block
:teps about the graphics area.

Yagratnis and Data Graphs i35
attributes

Ve can extend the idea from exercise 6.1 to produce routines that change the
itributes of a given block or group of blocks without affecting their contents in
he display file. Listing 6.2 shows two routines that do this for the PAPER and
NK colours of a specified set of blocks.

Asting 6.2

B00 REM paper

18 GO SUB cursor: INPUT "WHAT COLOUR “:P: INFUT "hNo. OF BLOCKS C(ROW=COLY "
:1::”*";{:

@20 FOR I = ROW TO ROW + R - 1: FOR J = COL TO COL + € - 1%

4@3@ PRINT AT 1,J; PAPER P; INK B; OVER 1;" ": NEXT J: NEXT I

B4@ RETURN

100 REM ink

1P GO SUB cursor: INPUT "WHAT COLOUR ":P: INPUT *No. OF BLOCKS (ROW*COL) “
:::ll*ll;{:

178 FOR I = ROW TO ROW + R - 1: FOR J = €OL TO coL + € - 1

130 PRINT AT I,J; PAPER B: INK P; OVER 1:" ": NEXT J: NEXT I

148 RETURN

xercise 6.2

¥rite a ‘main program’ that LISTs part of itself and then allows you to highlight
yarts of the listing using different INK or PAPER colours, Write routines to be
siaced at lines 4050 and 4150, which alter the FLASH or BRIGHT attributes of
locks. (Why will this mean adding FLASH 8 and BRIGHT 8 to the ‘paper” and
nk’ routines?). Combine all four routines into one named ‘attribute’.

Points and Lines

iaving achieved simple interactive control over the appearance of our diagram,
ve must now fill in the details of the picture. This requires routines for PLOT-
ing pixel points on the screen and for DRAWing lines, We could use program

.isting 6.3

L2860 REM point

218 INPUT "PRESS ENTER FOR CURSOR": LINE A%

228 G0 SUB cursor: INPUT ™OVWER (1 QR @) ";0: INPUT "COLOUR ";C
238 PLOT INK C: OVER Q;PX,PY

24@ RETURN

IPB REM Linme

310 INPUT "PRESS ENTER FOR CURSOR'; LINE A%

v320 GO SUB cursor: LET SX = PYX: LET SY = PY

“3IQ INPUT "PRESS EMTER FOR CURSOR"; LINE A%

J48 GO SUB curscr: INPUT "OWER C 1 QR @) ";0: INPUT "COLOUR *;C
+35@ PLOT PAPER B; INK C; OVER 0;5X,5Y

260 DRAW PRPER 8; INK C; OVER Q;FPX - SX,PY = 5Y

37@ RETURN

‘06 Advanced Graphics with the Sinclair ZX Spectrum

listing 1.8, but it would be boring to go over every pixel in a line. Insiead we use
wo routines ‘point’, which PLOTs individual pixels, and ‘line’, in which we
impiy specify the two end points of a line before joining them up. These two
routines are shown in listing 6.3.

“xercise 6.3
Vrite a “‘main program’ that allows you to use ‘point’ and ine’ to sketch a
dicture of your Spectrum. Incorporate “circlel”’ or ‘circle2’ from listing 2,10 in a
‘vircle’ routine; where necessarv, parameters, the centre and radius, are added
1sing the ‘cursor’. Adapt your program from exercise 1.3 for use as a routine to
draw an n-sided polygon using the ‘cursor’ to enter the points. Add an extra
option to the ‘line’ routine to allow DRAWing of curved lines and then construct
a diagram similar to figure 1.10a (it will be easier to use eight points around the
adge rather than twelve).

'f you have a graphics pad then you can copy rough sketches from the pad
into the machine using an adjusted version of ‘lin¢’ and “point”, You should then

write programs to tidy up these pictures; that is, straighten lines and smooth out
“urves.

save and Load

laving spent some time and effort drawing and colouring a pretty picture, we
night wish to SAVE it for future reference. Another essential requirement is to
o¢ able to LOAD a picture drawn by another program, and then alter it. The
wo routines ‘save’ and ‘load’ that make this possible are shown in listing 6.4.

Listing 6.4

500 REM save

25318 INPLT "MAME OF PICTURE 7 “:N%: IF HNE = "" THEM RETURN
SED SAVE (NS) SCREENS

53D RETURN

LGP0 REM Load

6T0 INPUT "NWAME OF PICTURE 7 ";N%: IF N%
+620 LOAD (NSYSCREENS

430 RETURN

It

™" THEN RETURN

iixercise 6.4

Run the program in listing 3.1 {or LOAD figure 3.1 if you have it stored} and
hen change the display to green INK on black PAPER. Furthermore, there are
dmilar statements in both routines ‘save’ and ‘load’. To save space, combine
save” and ‘load’ into a single routine,

hagrams and Data Graphs 107
_abels

istings 6.1 to 6.4 form the basis of our diagram construction package, but as
vet we have not put any labels on the diagrams. This is achieved with the ‘label’
-outine, listing 6.5. Note that in this routine we make references to routines not
gt written. This is a typical situation given the structured modular approach
waopted throughout this book. In practice this means that whenever we come up
igainst a problem that is too large to tackle immediately, we simply give it a
1ame and deal with it later. In ‘label’ we decide that character strings drawn
using symbools from set 5 will be printed vertically. For reasons explained later,
ve also defline a special prefix (7:) that indicales that the string of characters for
+ label is to be printed in narrow characters using a special routine “thin’, We also
issume that there is a routine named ‘set” that enables us to switch between
‘haracter sets.

JAsting 6.5

S4BPD REM Label

410 GO SUB cursor: INPUT "SET:STRING ";A%: IF A% = "" THEN GO TC 5410
42 INPUT "COLOUR ";C%: INX VAL{UBR" + CEJ

30 IF ASC TD 23 = "1:" THEN PRINT AT ROW,CCOL:AS(3 TO J: GO TC 351D

439 REM check for special set rumbers, set % is prirted vertically.
E440 IF ASC TO 2) <> "5:" THEMN GO TO 5470

450 LET S S: GO SUB set: LET A% = AE(3 TD

46@ FOR I 1 TO LEN AS: PRINT AT ROW-I+1,COL;AS(I): NEXT I: GO T{ 5518
469 REM set 7 specifies that the thin routine should be used for printing.
5470 IF ASC TO 2) <> "7:" THEN GO TO 5498

488 LET A3 = AS(3 TO): GO SUB thin: GO TO 5518

489 REM check valid number is givena ,

499 LET S = VAL ASC1): IF § > & OR S < 1 OR AS(2) <> ":" THEN GO TC 5510
1499 REM print out string in appropriate set,

5@0 GO SUB set: PRINT AT ROW,COL;AS(3 TO O

510 LET § = 1: GO SUB set

520 INK B: RETURN

Data Graphs

n an attempt to tidy up some of the loose ends, we introduce a general purpose
main program’ and a ‘query’ routine in listing 6.6. Inevitably this creates as
nany new ioose ends as it ties up, but it should help to give us an overall view of
he tasks left unsolved. We introduce identifiers (lower case} for routines, to be
vritten later that, among other things, will allow us to draw special types of
iiagrams; for example, ‘histo’grams, ‘pie’-charts and ‘graph’s.

'he section of listing 6.6 before the *main program’ is a cleaned-up version of
hose parts of the CHARACTER GENERATOR from chapter 5 necessary for
using aiternate character sets.

\ program containing all the routines from listings 6.1 to 6.7 was used to draw
nost of the diagrams in this book that were not directly produced by exampie
arograms. 1t was used also for adding labels to many of the figures that were
sroduced by programs: for example, figure 4.1.

(18 Advanced Graphics with the Sinclair ZX Spectrum

listing 6.6

REM for 16K machines make changes as gwen in Listing 5.5.

REM set up to use alternate character sets,
CLEAR 62294
INK B: PAPER 7: CLS: DIM S{&)
FOR I =1 TD 6: READ S({I): NEXT I: DATA 15360 ,62039 62887 63575
ah243 ALBLE
@ LET set = S@: LET 5 = 1: GO SUB set: GO TO 20D
@ REM set/change to set 5
@ LET HI = INT (S(S)/256): LET LD = S5(53 — HI*Z56
P POKE 23404 ,L0: POKE 236@7,HI: RETURN
3 REM charlcad
A INPUT "WHAT FILE MAME ? “;M&: IF NS = "" THEN RETURN
IR0 INPUT "LOAD WHICH SET % ":6: IF (5<2 OR 5>46) AND 5<>11 THEN GO TO B2
10 INPUT "Start tape, then press enter.™; LINE X%
128 IF 5 11 THEN LOAD M% CODE (5{5) + 256),748 + 168: RETURMN
IB IF § 6 THEN LOAD NE CODE (5{5) + 512),168: RETURN
141 LOAD N% CODE (SC5) + 25A),768: RETURN

== o w

‘@0 REM main program
10 LET restart = 28@: LET query = 58D
20 LET histo = 18B0: LET pie = 280D: LET graph = 3000
3B LET paper = 4BP®: LET ink = 410@: LET paint = 42B0: LET Lire = 4389
: LET save = 45@B: LET Lload = 450P: LET number = 4700
‘4 LET charload = BB: LET create = S@@P: LET thin = 5200
25@ LET Label = S54@@: LET cursor = 5700
260 LET I% = "DEFIME CHARACTERS ? ": GO SUB query: IF YES THEN GD SUB create
TR CLS: LET 1% = "LDAD CHARACTERS 7 ": GO SUB query: IF YES THEN &0 SUB charlecad
: S0 TO 270
R LET 1% "LOAD PICTURE ? “: GO SUB aquery: IF YES THEN GO SUB Lcad
‘OB LET 13 “"bDRAW DIAGRAM 7 ": GO SUB query: IF NOT YEE THEN €0 TO 360
BB LET 1% = "HISTOGRAM, PIE-{HART OR GRAPH 7 ": GJ SUB guery
1@ LET diagram = B: IF A% = "h" THEN LET dizgram = histo
2@ IF A% = "p" THEN LET diagram pie
3@ IF AS = “g" THEN LET diagram graph
4@ IF giagram = @ THEN GO TC 288
58 GC SUB giagram
&0 LET I$ = “LABEL PICTURE % ": GO SUB guery: IF YES THEN GO SUB Label

: G0 TC 380
I7@ LET I% = “COLOUR PAPER 7 ": GO SUB guery: IF YES THEM &GO SUEB paper
© G0 TO 3TR
I8@ LET I% = "COLOUR INK ? ": GO0 SUB guery: I1F YES THEN GO SUB ink
: 50 TO 383
199 LET I$ = "DRAW POINT 7 ": GO SUB guery: IF YES THEN 60 SUB poirt
« GO TO 390
M0 LET I%$ = "ORAW LINE 7 ™: GO SUB gquery: IF YES THEN G0 SUS line
: G0 TO 480
B LET 1% = “END PICTURE 7 ": GO SUB guery: IF WOT YES THEN GO TO restart
2@ LET 1% = “SAVE PICTURE ? ": G0 SUB guery: IF YES THEWN G0 SUB save
3@ STOP

S@¢ REM guery
SB1 REM IN = 1%

B2 REM QUT : A3, YES
510 LET YES = O
52@ INPUT (IS); LINE AS: IF AS = """ THEN RETURN

3@ LET AS = AS(1): IF CODE AS < 96 THEN LET AS$ = CHRS (CODE AS + 32)
548 LET YES = (A$ = "y
158 RETURN

Diagrams and Data Graphs 109
Special Characters

To complete our preparations for the ‘label’ routine, we need to create a set of
ROTATED characters, which is placed in set 5 for use in writing vertical labels.
This is done in the routine ‘create’ (listing 6.7), which uses some of the techni-
iues irom the CHARACTER GENERATOR to copy a rotated version of set |
nto set 5,

Listing 6.7

BA& REM createfcharacters

@09 REM c¢reste characters for histogram routine.

@13 DIM PCRY: OIM DC3): LET DC1) = 15: LET D{2) = 255: LET B{3) = 24B
@@ FOR I = B TO 6: FCR J =@ TQ 7

@30 LET P(13 = USR "A" + I=B + J: LET P(2) = USR "H™ + 1%8 +

@40 LET P{32} = USR "D" + I%B + J

@50 FOR K =1 TO 3: POKE F(KI,B: NEXT K

@60 IF J > I THEN FOR K =1 TO 3: POKE P{K),D{K): NEXY ¥

B70 MEXT J: NEXT I

SB78 REM copy set 7 to set 5 with a2 rotation to get sideways ctharacters.
5879 REM for 16K machines @ = 31831,

SO80 DIM BF(B,B): LET T =256: FOR I =1 TO 8: LET T = Ti#2; LET P{1)

MEWT I: LET P = 15674: LET @2 = £4599

6@ FOR I = 32 TO 127: FOR J =1 TCO &: LET 831} = "DEOPOOEL": NEXTY J
100 FOR J = 1 TO B: LET T = PEEK P: FOR K =1 TO 8

S11@ IF T »= P(K} THEN LET T = T - F{K): LET BE(%K,J3 = ""

128 NEXT K: LET P = P + 1: NEXT J

120 FOR J =1 TO B: POKE G VALC"BIN " + BBC(JY): LET &
S1400 PRINT AT 1@,10;"ROTATING ";CHRS I

158 MEXT 1: €LS

160 RETURN

T

&+ 3z NEXT J

200 REM thin

281 REM IN : ROW.COL,A%

209 REM rrirt every cther character ir Left half of E.ocks.

218 LET S = 4: GO SUB set: OVER 1: LET TC = COL

220 FOR I = 1 TC LEN A% STEP 2: PRINT AT ROW.TL;AR{I}: LET TC = FL + 1: NEXT I
22% REM prirt other characters in betweern ir richt half of blocks.

230 LET 5 = 3: GO SUB set: LET TC = COL

24@ FOR I = 2 TO LEN A% STEP Z: PRINT AT ROM,TC;A%(I): LET TC = TL + 12 NEXT I
250 LET 5§ = 1: GO SUB set: CVER O
Z6@ RETURN

3efore generating the rotated characters, the ‘create’ routine initially redefines
he user-defined graphics set as three sets of seven characters, see figure 6.2, that
ilow cither the left or right halves, or all of a character block, to be INKed in
rom the bottom up. These characters may be used, by OVERprinting, to obtain
wrizontal bars of varying thicknesses on the screen; but they are primarily for
ase in the *histo’gram routines that follow,

‘or the remainder of this chapter we shall discuss some common types of
1ata display. The vast number of varations on each of the major themes of
rraphical display make it impractical to discuss all possibilities. We shall, there-
ore, consider in detail just a few examples {rom each of the three main types of
lisplay: histograms, pie-charts and graphs. From these simple examples it should

it Advanced Graphics with the Sinclair ZX Spectrum
ISER-DEF INED GRAPHICS CHARACTERS
OR USE WITH HISTOGRAMS

- 1. . . L N
= a (S R S L™ U_

“igure 6.2

»e possible to construct variations on these routines to display data in any man-
1er required. Again note the changes for the 16K machine given in appendix A,

listograms

listograms (or bar-charts) can be constructed by our programs to any height in
sxels and in any colour, provided both the width of the bars and the separation
between them are at least half a character block. Since this is quite normal for
lstograms anyway ., we can formulate a method for calculating the spacing and
vidth of bars once we know how many there are. The first part of the ‘histo’
outine {listing 6.8) draws the axes, labels the vertical and then asks how many
rars are reauired. The width of the bars (X), and the size of the GAPs between
he bars, are both calculated (in multiples of half blocks) by a method that
ensures that 1/2 < GAP < X, On receiving each data item, the routine uses the
ull and half-width characters together with the user-defined characters (from
reate’) to build up strings representing the scale height of the bar, These strings
are used to fill in any full or half-width character blocks assigned to that bar by
prefixing them with “5:” and using ‘bar’ 10 print them vertically. Note that the
ixes lie in the character block iust outside the area containing the bar-chart to
nsure their independence from any colour changes made inside this area.
Figure 6.3, a diagram presenting the annual rainfall in Egham, was construct-
:d using ‘histo’ (/typel) from listing 6.8 and then ‘label’ed.

.xercise 6.5

As variations on the standard ‘histo’ routine we can write replacement routines
hat can be MERGEAQ as required. Write a routine that calculates the position for
»aurs of bars, where the bars within a pair are separated by half a block. but pairs
ire separated from neighbouring pairs by at least one block. Use this to construct
diagrams similar to figure 6.4.

\h example of a replacement ‘histo’ routine is given in listing 6.9. In this
rersion of ‘histo’ (/type2) the calculation of the width of the bars is altered to
provide whole character block values for X and GAP. Two data values are
requested for each bar, specifying the MAXimum and MINimum height range of

Jiagrams and Data Graphs 111

Asting 6.8

ANR
TRy
1210
1019
ol el
030
1040
1psa
iBs9
Y
AYe
1aa
e

a0
1110
11é0
138
|1 4@
1149
1150
116@
1178
1179
118D
1199

1159
1200
206
1210
122l
1229

1230

1239
1248
1249
258

1259
1268
27e

1279
288

289
1290
1299
13pR
1318

x|

321
1329
1330
RETAT

FEM histc/typel
REM et pointer to subroutine which prirts bars.
LET bar = 1328
REM find scale and draw azes,
INPUT "RAMGE OF VERTICAL “:;¥B;" TO ";¥T
IF YB >= YT THEN GC TO 1020
LET YSCALE = 128/ (YT = YB)
PLOT 47 ,152: DRAW B,=-129: DRAW 201,08
REM Label vertical axis.
LET YDIF = (¥T = ¥YB)/&: LET TICK = YB
FOR L'="1 TO 5: LET TK = INT (TICK + @.5)
LET ¥ = 32+ - B: PLOT 47,Y: DRAW ~3,0: LET ROW = INT (€176 — YI/B3-1
LET A% = STR$ TK: IF LEM A% > 3 THEN LET A% = ASC TO 32
IF TE > 99% OR TK < =59 THEN LET A% = "wxx"
LET COL =1 : IF TK >= @ THEN LET COL = COL + 1
IF ABS TK < 10 THEN LET COL = COL + 1
IF AES T¥ < 188 THEN LET COL = COL + 1
PRINT AT ROW.COL;A%: LET TILx = TICK + YDIF
NEXT 1
REM find numker of bars required and caleculate how they can fit in.
INPUT “No. OF BARS ";NB
LET ¥ = INT (25/MB + B.5)}/2: LET GAP = INT (5@/NB - Z2®X}f2
LET GP = {25 - MNB*Y = {(NB - 1)*GAF)®2: LET GP = INT ({GP + 13/2)/%
REM position column pointer at first bBar then repeat Loop for eack bar,
LET COL = A + GP: FOR I =1 TO NB
LET I% = "DATA FOR BAR ™ + STRS I + " '"'; INPUT (I1%);Db;" COLOUR ";C
INK C: LET W = X
REM values below the norizeontal awxis are treated as single pixel height.
IF D <= YB THEN LET D = #: LETH = 1: GO TO 1220
REM caiculate the number of whole blocks of height for kar.
LET b = D = YB: LET H = INT {D*YSCALE + B.5}
LET IH = INT (H/8): LET LS = "": LET M$ = "": LET RS = ""
REM censtruct strings to height for Left, middle and right of bars.
FOR J = 1 TO IH: LET LS = L% + CHR$ 133: LET M3 = M$ + C(HRS 143
LET RE = RS + CHRE 138
REM find rumber of pixels of height fer special character at top.
MEXT Jz LET RH = H - IH*5: IF RH = @ THEN 50 TO 126@
REM add special characters to tops of bars.
LET LS = L% + CHRE (151 = RH): LET M§ = M3 + CHRS (158 - RH)
~ET RS = R$ + CHRE (165 —RH)
REM 3§f column pointer is on a half-block print right biasec part of bar.
IF Ol = INT (COL) THEN GO TO 128@
LET 4% = L%: GO SUB bar: LET W =W - @.5: LET COL = COL + @.5
REM print as many whole block bars as needed.
IF W >= 1 THEN LET A% = M$: GO SUB bar: LET W = W - 1
LET COL = COL + 1: GO TO 1280
REM see if Left biased half-width kar is needed. :
IFW > B.1 THEMN LET A% = RE: GO SUB bkar: LEYT COL = (OL + ®.5
REM move column pointer to next bar ard re—do Loop.
LET COL = COL + GAP: NEXT I
INK B: RETURN

REM bar
REM IN : COL,A3
REM orint A% vertically from row 19 upwards in COLumn.

FOR K =1 TO LEN A%: PRINT AT 1% = K, INT COL;ARIK): NEXT K
RETURN

12

Advanced Graphics with the Sinclair ZX Spectrum

SUERAGE MONTHLY
) RAINFALL in EGHAM

4 ==

Sl

Lo B = !""' a_i =
r"i‘l’_h"

‘igure 6.3

WOYAL HOLLOVUAY COoLLEGE
INDERGRADUATE TOTALS 1981

LAY b 5a
B male Bl remale

A

i
|

LR T

A |

1s t 2 d 3 d
"EAR AT COLLEGE

‘dgoure 0.4

Yagrams and Data Graphs 113

he bar. By simply OVERprimting the bars, charts like figure 6.5, of the monthly
emperature variation in Egham, can be produced. In order to understand this
ullv, as well as other programs in the book, it is a good idea to scatter PRINT
tatements throughout the listings, so vou can follow the logic of the algorithms
is they are executed. A very nice feature in BASIC is that you can add extra

JA5ting 6.9

'ERE
‘RES
21a
1919
e
iR
FA4LR
05a
‘Bsg
Ly
‘B7R
‘nag

a9

e

118
120
3P
140
149

150
160
178
179

TED

(189
158

4
2E%
Al
‘rep
1229
1230
V235
P24

250
‘Ehg
et
ETE
e
1230

290
gell

13l
i3]
A2y
A0
342

FEM histo/typed
REM set poirter to scbrovtine which prirts bars,
LET bar = 132@: DIM OQ5¢2,3); LET D8(1y = "MAX"; LET 0%(2) = "MIn'"
REM find scale ard draw axes.
INPUT "RANGE OF VERTICAL “:YB;" TO ":¥T
IF ¥B 2= ¥T THEN GO 10 1220
LET ¥YSCALE = 128/0(YT - ¥YB2
FLOT 47.152: DRAW @,-129: DRAW 201,80
REM Labkel wertical axis.
LET YBRIF = (YT - YB)/F4: LET Tilk = YO
FOR I 170 5: LET TK = INT (TICK + B.5)
LET ¥ 32%I - 8: PLOT &7 .Y: DRAW -Z,.B: LET ROW = IMT ({776 - ¥1/8)-1
LET A% = STRE TK: IF LEM A% > 3 THEN LET A% = AZ(F0 3
LF TK > 995 QR TK < =89 THEN LET A% = "M#xx!
LET COL =1 = IF TK >= 0 THEN LET COL = COL + 1
IF ABS TK < 18 THEN LET COL = COL + 1
IF ABS T < 1BF THEWK LET COL = COL + 1
FRINT AT ROW,COL;AS: LET TI(K = TILE + YDIF
MEXT I
REM find number of bars required ard calculate an integer width for them.
INPUT "No. OF BARS ";NB: OVER 1
LET GAF = INT C13/MNB): LET X = INT ({26 — GAP*NH/NED
LET GP = {25 = NB*X = {(WNB = 1)*GAP): LET GF = INT ({GP + 1}/2}
REM positicn column poirter at first par then receat Locp for each bar.
LET COL =& +# GP: FOR I =1 TO MNB
JNPUT (MCOLOUR FOR BAR ™ + STRE 1 + ': "¥:C: INK E
REM Loop to irput maximum ard minimum wvalues for bar.
FOR G =1 TO 2: LET 1% = "DATA " + O0%{Q) +* FOR BAR " + STRE L + "
INPUT (I%):D: LET W = X
IF B <= Y6 THEM LET O = @z LET H = 1 &0 10 1220
REF calculate the rumber of whole Blocks of heignt for bar.
LET [r = b=~ ¥YE: LET H = INT {(b®¥SCALE + 2.5
LET IH = IKT ¢Hf8): LET M3 = "%
REM construct strirg to height for bar.
FOR J =1 70 IH: LET M$ = ME + CHRE 143
REFM add special character for remainirg heighta
NEXT J: LET RH = K - IH*=&: IF RH = @ THEN GO TO 12560
LET M$ = R + CH=XE (158 - W)
REM =tart at same cclumn for both bars in pair.
ILE- D 1 THEMN LET QCOL = £0OL
IF O =7 THEN LET COL = (COL
REM cutput required rumber of whole blobkk width bars.
IF W »= 1 THER LET A% = F=: G0 SUB bar: LET W = W — 1T
LET COL = COL + 1+ GO TG 1280
LET COL = COL + GAF: NEXT O3 KEXT I
INK fi: OVER @: RETURN

EEM cCar

REM IN : COL,AS

REM crirt A% vertically from row 19 upwards irn COLumn.

FGR K. = 1 TO LEMN A%: PRINT AT 19 — K. INT COL;AB(KI: NEXT K
FEETURN

114 Advanced Graphics with the Sinclair ZX Spectrum

:TOPs to a program, interrogate the variable values, and then CONTinue, with-
wt affecting the status of the program, This is a very useful tool for debugging
i program, as well as an aid to understanding a listing.

fTONTHLY TEHMPERATIUURE
B

RANGE 1n EGHAM

=B

w |
8
I

=

L

.
i

i

] F | &} o H o . [s I3 L {
10N th s

‘igure 6.5

sxercise 6.6

"rv using a different colour PAPER when OVERprinting the bars to produce
wo-coloured bars. Be careful when using data values giving scale heights with
ess than eight pixels difference!

Problems will occur when using two ditterent colours for one bar {exercise
v 6). If the MAXimum and MINimum values both fall in the same character
Slock. then three colours, these two plus the background, will be required with-
n one block. We may check whether problems will occur by comparing the
wmber of character blocks in the string produced tor the MINimum data with
hat for the MAXimuni data. If they are of equal length then the simplest way
T aveiding trouble is to truncate the MENimum string by removing the last
:naracter. This will remove any problems with the colours on the display but
v1il be slightly inaccurate. This whole problem will be avoided if we make the
:olour of the lower part of the bar the same as the background colour, thus
'nsuring that the bar is accurately drawn with only two different colours in each
Nock.

“here are many, many more variations possible; for example, drawing bars
ipove and below a central line in order to disolay fluctuations in currency
:xchange rates. The fundamental ideas we have introduced should enable you to
yroduce any histogram to your own specification.

[agrams and Data Graphs 115

Pie-Charts

The pie-chart is a favourite with economists and biologists who delight in telling
1s how big each slice of our capital expenditure cake is, or alternatively which
sacteria are eating it. The usual requirements of a pie-chart program are that it
snould draw vies of variable radii, it must be possible to pull out slices of the pie
trom the centre. and provision for filling in or cross-hatching these slices must he
nade available. The ‘pie’-chart routine given in listing 6.10 achieves the first two

Asting 6.10
QFR REM pis/chart
'BEY REM set poirters fo routines.
€10 LET hatch = 23@@: LET in = 2880
@1% REM all secments are ‘nput and totalled to calculate argular scale.
0@ INPUT "No. OF SEGMENTS “:NB: INPUT "COLOUR “:C%: LET C = VAL ("B" + (3J
LET TOT = @
Q20 0IM DCNB): FOR I =1 TO NB: INPUT ("BATA * + STRE I + ": "3:D(I}
LET TOT = TOT + D(I)}: NEXT 1
‘@29 REM ise cursor to specify centre of pies
B4 INPUT "PRESS EWNTER FOR CENTERING PIE":;LINE Y3
2050 GO SUB cursor; LET XL = PXd; LET YC = PY
‘BO@ INPUT "RADIUS {(IN PIXELSY '";RAD
@7 LET ASCALE = 2*PI/TOT: LET M = PI/2
‘@79 REM any wedge may be pulled out by meving the curser away from the centre.
ZOB@ FOR I =1 TC NB
‘890 INFUT "PRESS ENTER FOR CENTERING WEDGE";LIME Y%
100 LET FX = XC: LET PY = YC: G0 SUB cursor: LET ANG = ASCALE*D{I)
LET A2 = A1 - ANG
185 REM if wedse 75 to move cut calculate displacement along it's bisectaor.
118 IF PX = XC AND PY =YC THEN GO0 TO 2140
120 LET AZ = Al — ANG/2: LET DIST = SQR ({PX — XCI®{(PX - X() +
PY = YO)*{PY = YC})
130 LET PX = INT (XC + DIST#COS AT + Q.5): LET PY = INT {¥YC + DIST#SIN A3
A5
137 REM enguire whether hatching is required and what type.
4@ INPUT "HATCH (x.v,b,n} ":HE: IF CODE HE < 96
HEN LET H$ = CHERE® (CODE HE + 323
14% REM if natching is wanted irput gap size between Lines and offset.
150 IF HE <> "n" THEN INPUT “JULMP ”;JUMP,”REM YeREM
“15% REM draw seament of pie.
160 INK C: PLOT PX,PY: LET ¥1 = INT (RAD®COS Al + @.5)
LET Y1 = INT (RAD®SIN A1 + @.5): DRAW I1,T1
TR LET A2S = AZ2: LET ASTD = ANG: LET XA = PX + X1: LEY Y& = PY + Y1
182 LET XB = INT (RAD*COS A2 + @.5): LET YB = INT (RAD#SIN &2 + B.5)
198 FOR T = A1 TC AZ STEP -3/RAD
J2@D LET X2 = INT (RAD*COS T + @.5):2 LET ¥ = INT (RAC#SIN T + B.5}
ORAW X2 = X1,.Y2 = ¥Y1: LET X1 = X2: LET Y1 = Y2
210 NEXT T: DRAW X8 = X2, YB - Y2: LET X2 = ¥B: LET ¥2 = YB
220 DRAW -XB,-YB: IF H$ = "n" THEN GO TO 225D
?¢8 REM call hatching routire if needed.
22% REM if angle is greater than half circle then do hatching in two parts.
230 IF ASTC > PI THEN LET A2 = a1 - Pl: LET XB = 2*PX - XA: LET YB = 2*PY -YA
GO 5UB hatch: LET XA = ¥B: LFT YA = YB: LET A1 = AZ2: LET AZ = AZS
2260 LET XB = PX + X2: LET YB = PY + ¥2: GO 5UB hatch
249 REM Loop back for next segment.
250 LET A1 = AZ: NEXT I: RETURN

16 Advanced Graphics with the Sinclair ZX Spectrum

-equirements by using the ‘cursor’ to centre the chart and INPUTting the
LADIUS in pixels, The individual data items are then INPUT and TQTalled,

ind this total is used to establish an angular scale for the “pie’-chart. Each slice is
-entred with the ‘cursor’, with any displacement of the ‘cursor’ from the centre
of the ‘pie’ being treated as a distance along the bisector of the slice and not as
an absolute position. With each new section the ‘cursor’ reappears at the original
-entre ot the *pie’. Figure 6.6 was generated using this routine.

38.5% !
L e _—
ﬂ'L_\ m /
™
155 0 RN S
T W, Dwnership oOfF
I r dwe L lings
]' n the U.K.
| R % '; 3 Qune ¢~
| .] CCcCupiraed
“, _.‘IF ‘- La c a ‘- 2
o auvthority
1= R W i e
‘igtire 6.6

latching

latching the area of a pie-slice involves the intersection of a line with the
soundaries of the slice. To make the calculations simpler we shall hatch using
ines only in the horizontal direction or only in the verical direction, or both.
‘urthermore we hatch only ‘pie’s that subtend angles less than or equal to #
-adians (180 degrees) at the centre. For obtuse angles the “pi¢’ is treated as two
neces, the first subtending = radians at the centre. The ‘pie’ routine enquires
vhether the hatching is to be horizontal (answer “x”’), vertical {(answer “y™'),
hoth ways (answer “b™") or neither {answer “n”).

"he pie sections we are considering are each bounded by two line segments
and a circular arc. We must find which part of a hatching line (if any) lies inside
his segment. Because the “pie’ does not subtend an angle greater than = radians
at 1ts centre there are only four possibilities

1) aline may miss the pie altogether
2} it may intersect the arc at two points

Thagrams and Data Graphs 117

3) it may intersect the arc and one of the line segments
4) it may intersect both line segments

he special cases where the line coincidently cuts the arc and a line segment
it the same point may be included in one of the above four possibilities, The
:xplanation of the hatching algorithm is given with reference to horizontal
1atching: the vertical follows in an equivalent manner. We first find the MAXi-
num and MINimum v-values of points within the *pie’ section. Then we consider
iil horizontal hatching lines with equations of the form Y = kxJUMP + REM
hetween these limits (0 << REM < JUMP — 1). For each hatching line we calcu-
ate the two points of intersection with the extended line segments and then
neck whether their MU values lie between O and 1: that is, whether the inter-
section is between the centre of the circle and the arc. Next we find the two
points of intersection of the hatching line with the complete circle containing
he arc, and then check whether they lie on the arc. From these we can find the
wo points of intersection of the pie section and the hatching line, and these are
nhen joined. This whole process is programmed in listing 6.11 and an example of

1s use is given in figure 6.7. Note that to fill in a slice completely we simply set
/UMP equal to 1,

Listing 6.1 1

306 REM hatch

Z@% REM 37 cross hatching is reguired then run hatch routine twice.
I1@ IF H% ="b" THEN LET HE = "x": GO SUB 232@: LET HS = "y"

GO SUB 2328: LET H$ ="b" : RETURN
319 REM set hatching variables to control direction of Limes.

228 IF HY = " THEN LET PZ = PX: LET PT = PY: LET ZA = XA: LET TA = YA
LET ZB = ¥B: LET TB = ¥YB

‘330 IF H% = "x" THEN LET P7Z = PY: LET PT = P¥: LET ZA = Y&: LET TA = KA
LET ZB = YB: LET TB = XB

348 DIM Z(3)

“349 REM find max. and min. coordinates for Lines which pass through segment.
‘258 LET T = PIJZ2: LET MAX = B: LET MIN = B

368 LET WAL = SIM Al: IF H3 = "x" THEN LET VAL = C0S A1

37@ IF MAX < WAL THEN LET MAX = VAL

IBD IF MIN > WAL THEN LET MIN = VAL

’300 IF T > A1 THEN LET T=T = P1/2: GO TO 2399

40P IF T < A2 THEN GO TO 2450

410 LET WAL = SIN T: IF H$ = "x" THEM LET VAL = COS T

429 IF MAX < WAL THEN LET MAX = VAL

430 IF MIN > WAL THEN LET MIN = WAL

“L4 LET T = T - PI/2: GO TO 2480

430 LET VAL = SIN AZ2: IF Hf = "x" THEN LET VAL = (05 AZ

460 IF MAX < VAL THEWN LET MAX VAL

470 IF MIN > WAL THEN LET MIN VAL

J4BD LET MEWMIN = INT (INT (RAD*MIN + 1)/ JUMP)%JUMP + REM

*LB9 REM for Lines which crosses segment find intersecticns with radii and arc.
490 FOR E = MNEWMIN TO MAX*RAD STEP JUWP

499 REM store irtersecticr coordinate information ir array I071:4).
5@ LET Ic = @

1@ LET DENCM = TA - PT: IF TENOM = @ THEN GO TO 2549

-2@ LET MU = E/DENOM: IF MU < B OR M) > 1 THEN GO TO 2540

230 LET IC = IC + 1; LEY E(IC) = PL + MU=(ZA - PL)

540 LET DEWNOM = TB = PT: IF DENOM = @ THEN GO TO 2588

S50 LET MU = E/DENCM: IF MU < P GR MU > 1 THEN GO TO 253B

n

18 Advanced Graphics with the Sinclair ZX Spectrum

5680 LET IC = IC + 1: LET I({IC) = PL + MU*(IB = PFZ)

569 REM if more than two points of intersection found, delete duplicates.
570 IF IC = 2 AND Z(1) = Z(2)} THEN LET IL =1

SB@ IF IC <> 2 THEN GO TO 2810

‘589 draw hatch Lires,

590 IF H$ = "y" THEN PLOT I(1),E + PT: DRAMW ZI(2) - I¢1),@: GO 70 271D
680 IF HS = "x" THEN PLOT E + PT,Z{(1): DRAW B,2(2) - Z(1): G0 TO 2712
‘610 LET BISC = RAD#RAD — ExE: TF DISC < € THEN GO TO 2714

620 LET DISC = INT (S@R DISC + B.5)

630 LET IZ = PZ + DISC: LET AZ BISC: GO SUB in: IF OGUT THEW GO TCO 26580

i

2640 LET IC = IC + 1: LET Z(IC) 27
&58 LFT 17 = PZ - DISC: LET AZ = -DISC: G0 SUB in: IF QUT THEN GO TO 2670
668 LET IC = IC + 1: LET ICIC) = 21

67@ IF IC < 2 THEN GC TG 2710

'aB8 IF IC = 2 THEN 6C TO 2593

690 IF ZC1) = Z{2) THEN LET Z(2) = Z(3)

TEh GO TO 2590

710 KEXT E

728 RETURNM

'BBE REM in

208 REM calculate angie from certre to poirt of irntersection.

209 REM *f arole Lies ketweer argles of ends of segment then point
7 intersection is on the arc of the segment.

B10 LET BZ = Al: LET EZ = E

22@ IF H% “x" THEM LEY BZ = E: LET EL = AL

‘830 IF BZ = @ THEN LET PHI = -PI/2: IF EZ > @ THEN LET PHI = -PHI

TBLQ IF BZ = B THEN GO TC 2840

850 LEY PHI = ATN (EZ/BZ): IF BZ < B THEN LET PHI = PHI - PI

‘85% REM set flag to ‘rafcate whether or not peint i€ wvalid

(860 LET OUT = (PHI >= A1) OR (PHI <= A2)

1870 RETURN

1"

ANnNne Lids

e T ® L atuorms
= Tt
insects &

F“II ‘.. "‘-1

+ = Tsnails

- i

1

! ..%f“. If
FREQUENCY "Crustaceans
QF
INVERTEBRATES IN A BRITISH FOND
Figure 6.7

Graphs

1s our final example of graphical data presentation we must consider scientific
rraphs of functions and graphs of discrete points. Such diagrams require co-

Magrams and Data Graphs 119

rdinate axes thatl need not be Mxed. and can cover a bewildering variety of
anges (o1 their scales. The method we use Lo decide on the placing of a particu-
ar axis is lairly standard; il zero should lie in the range of the graph then the axis
rasses through that peint, otherwise it lies on the edge of the graphics area,
:losest to zero. Five TICKs are then placed along each axis and the scale value

il that point is written ¢lose to each TICK. The need for accuracy in scientific
Taphs makes us wish to include as many characters as possible. As things stand
v¢ can have only 32 characters across the screen and 22 up it, so this is where
“hin’ comes in. We used the CITARACTER GENERATOR to create two sets of
hin characters that are half the width of normal characters: one set having
-naracters in the left half of the character block and the other set being in the
1eht half. When a string is to be printed as thin characters, the ‘thin” routine
rints every other character of the string in the left-biased set and then OVER-
srints this, with the remaining characters in the right-biased set. This places two
hin characters in each block. giving us 64 print positions across the screen. The
wmoers to be printed as ‘thin’ label’s still need to be converted into strings and
nade consistent in length and/or decimal accuracy. This is achieved by the
ounne ‘number’, which follows in listing 6.12. Note that the routine ‘thin’ has
iready been used in the *label’ling of figure 6.6.

Asting 6.12

ZEE REM araph

PES REM svmbol routire 15 used to mark data poirts on discrete grapns.
P18 LET symbcl = 35@P

P19 REM calculate scales and draw axecs.

BEA INPLT "X GOES FROM ":xB;" TO ";XT: IF XT <= XB THEN 50 TQ 3028

230 INPLT "Y GOES FROM ":YB:" TO ":¥T: IF ¥T <= YBE THEN G0 TO IR3ID

Pid LET XSCALE = 152/(XT = ¥B): LET ¥SCALE = 128/(YT - YB)

OS50 LET X0 = IKT {(-XBxXSCALE + 32.5): LET Y0 = INT (=YB*YSCALE + 24.5)
B59 REM if zero 1% not in ranoge of grach move axis to appropriate edge.

‘BOB IF YT < @ THEN LET Y0 = 153
f78 IF YB > @ THEN LET Yo = 23
PEA IF XT < @ THEN LET X0 = 224
0% IF WB > @ THEN LET X0 = 31

TER PLOT %.23: DRAW B, 128: PLOT 37,.Y0: CRAW 162,02

101 REM use thir routire to print Labels on axes with four figure acguracy.

1168 LET XDIF = (XT - XB)/f4: LET YRIF = (¥T — Y8B)/4

28 LET X = X8: LET Y = ¥YB: FOR J =1 T0 5

T1E0 LET PX = INT ((X = XB)®YSCALE + 32,50 LET FY

143 PLOT PX.PY-2: DRAW @,4

15@ LET C£OL = INT (PXA/8) = 1: LET ROW = INT ({75 = PY3}/8} + 1

168 LET A = X: GO SUB rwnmber: GO SUB tain

17@ LET PY = INT ((¥ = YB)#YSCALE % 24.5): LET PX

6@ FLOT PX=Z2.PY: DRAW 4,2

=198 LET COL = INT (PX/8) + 1: LET ROW = INT ((*75 - PY1)/8)

<20 LET A = Y: GO SUB rumber: GO SUB thin

218 LET X = % + XPIF: LET ¥ = ¥ + YBIF: MEXT J

220 INPUT "COHTINUCUS CR DISCRETEC GRAPH ";DS: IF 0% <> "c" AND DS < "g"
hEN GO 710 3228

(730 IF D% = “=" THEM 60 TC 33:Q

239 REM irput the function tou be plotted.

ZE INPUT "F{x3: y=": LTNE FS

250 LET ¥ = XB: LET ¥ = WAL (FE): LET OY = INT {{¥-YBI*¥YSCALE + 24.5)

Yo

X0

20 Advanced Graphics with the Sinclair ZX Spectrum

260 PLOT 32,0

IZTR OFOR T = 33 TO 274
280 LET X = (I = 32)/XSCALE + XB
99 LET ¥ = VAL (F$): LET I¥ = INT ({Y-YB)*YSCALE + Z4.5)

3P0 DRAM 1,1IY - OY: LET QY = IY: NEXT 1
1310 RETURN
319 REM discrete graph reguired so input set of points.
320 INPUT "No. OF POINTS “;NP: DIM X(NP}: DIM Y(NP)
3Z0 FOR I =1 TO NPz INPUT ("X{(" + STRE I + "} ");X(I);
"™ + STRE I + ") M);Y(I): NEXT 1
339 REM sort points into ascending order of X coordinate.
34 FOR I =1 TO NP = 1: FOR J = I +# 1 TO NP
350 IF X{J) < X(I) THEN LET T = X(I): LET X{I) = X(J): LET X{J) =T
LET T = ¥Y(ID: LET YCI) = Y(Jd)s LET Y{1) = 7T
360 NEXT J: MNEXT 1
370 LET X = INT ((XC1) = XB)#XSCALE + 3Z2.5)
LET Y = INT (CY(1) = YBY*YSCALE + 24.3)
53880 PLOT X.Y: LET OX = X: LET OY = Y: GO SUB symbol : PLOT OX,0¥
1389 REM ioin up points and place a "symbol' at each point.
390 FOR 1 = 2 TO NP
L0 LET X = INT {{X{I}) = XB)*YSCALE + 32.5)
LET ¥ = INT £CY{I) — YBIXYSCALE + 24.3)
418 PLOT X =~ OX,Y = QY: LET 0X = X: LET O0Y = ¥Y: GO SUB symbol: PLOT OX,0V
4Z2B MEXT I: RETURM

S0 REM symbol
‘519 DRAW @.1: DRAW 1,0: DRAW @,-2: DRAW -2,B: DRAM B,2
52@ RETURM

700 REM number

710 LET A% = STRS A : IF LEM A% <= & THEN RETURN
L7720 LET AS = ARC TO 4)

730 RETURN

ixercise 6.7

Vrite an extended ‘number’ routine that allows vou to specify the format of
the string to be returned. One way of doing this is to enier a string containing a
emplate for the number format; for example, the string ‘# £ ### could
:peciiy a number with two digits before the decimal point and three decimal
nlaces after it,

ixercise 6.8

‘onstruct the thin *sets’ required for numerical labelling (these appear on the
-assetie tape as ‘thin3’ and ‘thin4’). Use them for ‘label’ling diagrams. Figure 6.8,
¥nich was drawn using listing 5,2, will help you with your construction,

1259

Diagrams and Data Graphs 12171

"he choice is now offered between entering a functional representation of
oInts on a continuous curve, and entering a set of discrete data points to be
pined in a saw-tooth type pattern by straight lines. In the functional section of
he routine the height of the line above each pixel peint on the X-axis is calcu-
ated and these points are joined by lines. In the discrete section the X-co-
wrainate and Y -coordinate of available data points are INPUT and sorted into
iscending order of the X-coordinate, These points are then joined by a line, One

ue

Figure 6.9

CHANGES IN pH VALUE oF
RIVER UWATER QUER 24 Hr- .

I
dark daylight dark

$.25

L

-y o 1204 1500 e
T IME IiHODwWr s}

Figure 6.10

22 Advanced Graphics with the Sinclair ZX Spectrum

:xample of each type of diagram is given, Figure 6.9 shows a typical continuous
:0sine curve and figure 6,10 shows discrete scientific data about the pH levels of
1 river,

“xercise 6.9

't can be seen that the only requirement for a graph of this type is a set of co-
ordinates in ascending order of X, which are then joined up. This set can be
created in any manner: by a series of READ statements or by a multi-line
-alculation in a subroutine. Instead of eV ALuating the function string F§ we
:ould write a routine that is used every time we need to calculate a point on the
urve. Produce a routine that allows the graph of SIN X/X to be drawn, avoiding
he calculation SIN 0/0,

“omplete Programs

Ve group listings 6.6 (*main program’, ‘charload’, *set” and ‘query’). 6.1 {*cursor’
ind “grid’), 6.4 (“save’ and ‘load’) under the name ‘libdiag’, and use it with 6.2
‘paper’ and ‘ink’), 6.3 ("point’ and Tline’), 6.5 (label’) and 6.7 (‘create’ and
thin’): all found on the tape. Note the changes for the 16K machine mentioned
‘n appendix A.

. ‘libdiag’, 6.2,6.3, 6.5, 6.7. Data required:

DEFINE CHARACTERS?' (type) Yes to create special rotated characters
:nd blocks for histograms; otherwise No

T OAD CHARACTERS?' Y if special character sets (including ones above)
ire to be LOADed from tape; otherwise No

".OAD PICTURE? Y LOAD previously stored picture; otherwise N
DRAW DIAGRAM?’ Y to draw a histogram, pie-chart or graph; N if
ncture is to be edited only

"ABEL PICTURE?" Y to use ‘label’; otherwise N

COLOUR PAPER?" Y or N.1f Y then specify *"WHICH COLOUR’ {for
:xample, | : move cursor into position, using ‘grid” il necessary) and type
nze ot area in blocks ROW+COL {for example, 24)

COLOUR INK?" If'Y then specily "WHICH COLOUR” (for example 5:
nove cursor into position, using ‘grid’ il necessary) and type size of area in
docks ROW*COL (for example, 3#1)

DRAW POINT? If Y then use cursor to specify poini: "WHICH COLOUR’
for example, 6) and OVER (1 or 0)

DRAW LINE?" II'Y then use cursor to specify end points: “WHICH
‘'OLOUR’ (for example, 6) and OVER (1 or Q)

ENDPICTURE?" If N then go through sequence again

SAVE PICTURE?" If'Y then inpul name of picture

Diagrams and Data Graphs 123

xperiment with the data graphs.
I. ‘libdiag’ and listing 6.8 (*histo’f/typel). Data required: for example

RANGE OF VERTICAL’ 0 ‘TO’ 100
No. OF BARS’ 6

DATA FOR BAR 1’ 56 ‘COLOUR’ 2
DATA FOR BAR 2’ 95'COLOUR’ 6
DATA FOR BAR 3’ 20°‘COLOUR’ 4
DATA FOR BAR 4’ 77 ‘COLOUR’ 5
JATA FOR BAR 5’ 54*COLOUR’ |

DATA FOR BAR 6’ 33‘COLOUR’ 3

II. ‘libdiag” and listing 6.9 (“histo’/type2). Data required: for example

RANGE OF VERTICAL’ 0 ‘TQ’" 50
No. OF BARS' 4

COLOUR FORBAR 1" 2
DATA MAX FOR BAR 1’ 44
JATA MIN FOR BAR 1722
“0LOUR FOR BAR 2’ 6
DATA MAX FOR BAR 2" 36
DATA MIN FOR BAR 2’ 5
“OLOUR FOR BAR 3’4
DATA MAX FOR BAR 3’ 42
DATA MIN FOR BAR 3’ 29
“OLOUR FOR BAR 4’ 1
NATA MAX FOR BAR 4’ 31
DATA MIN FOR BAR 4’ 12

V. “libdiag” and listings 6.10 and 6.11 (*pie’, “hatch’, erc.). Data required: for
:Xample

Mo, OF SEGMENTS’ 3

“OLOUR’ 0

DATA 1 1

DATA 22

DATA 3 3

‘entre pie with cursor then ‘RADIUS (IN PIXELS)' 75

Ise cursor to centre wedge ‘HATCH' (x,y¥.b,n) b: ‘JUMP’ 8: "REM’ 5
Ise cursor to centre wedge ‘HATCH’ (x,y,b,n)y: ‘TUMP’ 1: ‘REM" 0
UJse cursor to centre wedge ‘HATCH' (x,v. b, n) ﬁ

. ‘libdiag’ and listing 6.12 (*graph’, ¢tc.}). The questions posed by the program
ire selfexplanatory: like those above.

7/ Three-dimensional Coordinate
Geometry

Sefore we lead on to a study of the graphical display of objects in three-dimen-
ional space, we first have to come to terms with three-dimensional Cartesian
-oorginate geometry. As in two-dimensional space, we arbitrarily fix a point in
he space, named the coordinate origin (origin for short). We then imagine three
mutually perpendicular lines through this point; each line goes off to infinity in
yoth directions. These are the x-axis, v-axis and z-axis. Each axis is thought to
1ave a positive and a negative half, both starting at the origin: that is, distances
neasured from the origin along the axis are positive on one side and negative on
he other. We can think of the x-axis and v-axis in a similar way to two-dimen-
stonai space, both lying on the page of this book say, the positive x-axis
horizontal” and to the right of the origin, and the positive y-axis “vertical’ and
inove the origin, This just leaves the position of the z-axis: it has to be perpen-
icular to the pape (since it is perpendicular to both the x-axis and the y-axis).
"he positive z-axis can be into the page (the so-called left-handed triad of axes)
r out of the nage (the righr-handed triad). In this book we always use the left-
wnded trigd notation. What we say in the remainder of the book about left-
1anded axes has its equivalent in the right-handed system - it is not important
which notation vou decide finally to use, as long as you are consistent.

We specify a general point p in space by a coordinate triple or vector (X, Y, Z),
vnere the individual coordinate values are the perpendicular projections of the
noint on to the respective x-axis, ¥-axis and z-axis. By projection we mean the
unigue point on the specified axis such that a line from that point to p is perpen-
ficular to that axis.

There are two operations we need to consider for three-dimensional vectors,
‘uppose we have two vectors py, =(x, ¥y, 2,)and p; =(x,, ¥1, 25) then

wcalar multivle kp, = (k xx,, k xy,, k xz,;)} multiply the three individual
:oordinate values by a scalar number &

ector gdaition p, v+p; =(x, +x3, ¥, +¥;, 2, +2,) add the x-coordinates
ogether, then the y-coordinates and finally the z-coordinates to form a new
vector

26 Advanced Graphics with the Sinclair ZX Spectrum

a=(x,y, z)and -d=(—x, —y, —z)represent the same lin¢ in space but their
lirections are of opposite senses. We define the length of a vectord =(x, p, 2)

sometimes called its modulus, or absolute value) as 1 d|, the distance of the
roint vector from the origin

dl=~/(x* +y* +2%)

.0 any point on the line p + ud is found by moving to the point p and then
ravelling along a line that is parallel to the direction d, a distance u Idlin the
sositive sense of d if p is positive, and in the negative sense otherwise. Note any
point on the line can act as a base vector, and the directional vector may be
eplaced by any non-zero scalar multiple of itself.
f the directional vector d = (x, y, z) makes angles ., 8, and 8, with the
‘espective positive x-direction, y-direction and z-direction, then the ratios

¢:v:z =cos fyicos fy:cos @,

vnich means that d = (A x cos 0, A x cos 8, A % cos §,) for some A.
Ne know from the properties of three-dimensional geometry that

05" 8 +cos® 8, +cos® 6, =1

ience A = | d|, and if the directional vector has unit modulus (that is, modulus
- 4 = 1), then the coordinates of this vector must be (cos 8, cos 8, cos 8,);
hat is. A = 1, The coordinates of a directional vector given in this way are called
he direction cosines of the set of lines generated by the vector. In general, if

he direction vector is d =(x, y, z) then the direction cosines are

X R 3
dl 1dl Idl)

Fxample 7.1

Describe the line joining (1, 2, 3) to (—1, 0, 2}, using the three methods shown
0 far,

The general point (x, ¥, z) on the line satisfies the equations

x—1Dx(O0-2)=0—2)x (-1 ~1) thatis, -2x + 2y =2 (7.1)
y—2)x 2~3)=(@z-3)x (0—2) _y+2z=4 (7.2)
md (z-3)x(=1-1)=@—1)x 2 -3) 2z +x=-5 (7.3)

Notice that equation 7.1 is —2 times the sum of equations 7.2 and 7.3. Thus we
need consider only these latter two equations, to get

Three-dimensional Coordinate Geometry

v=2z -4 and x=22-35

:0 that the general point on the line depends only on one variable, in this case z,
ind is given by (2z — 5, 22 ~ 4, z), We easily check this result by noting that

vnenz =3 we get (1,2, 3)and when z = 2 we get (—1, 0, 2), the two original
seints defining the line.

n vector form the general point on the line (depending on) is

sgain the coordinates depend on just one variable (u), and to check the validity
I this representation of a line we note that p(0)y=(1, 2, 3Yand p{1)={-1,0, 2).
f we put the line into basc/dircctional vector form we see that

vith (1,2, 3) as the base vector and (2, -2, ~1) as the direction (which
ncidently has modulus +/(4 + 4 + 1) =+/9 = 3). We noted also that any point on

he line can act as a base vector, and so we can give another form for the general
»oint on this line, p’
() =(-1,0,2) +u(-2,-2, -1)

We can change the directional vector into its direction cosine form (-2/3, -2/3,
./3) and represent the line in another version of the base/direction form

() =(1,2,3) +u(-2/3,-2/3, -1{3)
Vaturally the same u value will give different points for different representations
I the line; for example, p(3) = (-5, —4.0), p'(3)=(—7, -6, —1)and p"'(3) =
—1,0,2). The direction of this line makes angles of 131.81 degrees = cos ™"

~2/3), 131.81 degrees and 109.47 degrees = cos ™' (—1/3) with the positive
:-airection. y-direction and z-direction respectively.

The Angle Between Two Directional Vectors

'n order to calculate such an angle, first we introduce the operator + the dat

sroduct or scalar product. This operates on iwo vectors and returns a scalar
real) result. Thus

7@ EX Y1, Z1) (X2, Y2, Za) SXy X X TV X Vg HIy X 2,

f p and g are both unit vectors (that is, in direction cosine farm}, and @ is the

“hree-dimensional Coordinate Geometry 129
n b tud)=k

thatis,u=(k —n * b)/(n « d) providedn - d # 0,
i + @ =0 if the line and plane are parallel and so either there is no point of
intersection or the line is in the plane.

The Distance of a Point from a Plane

The distance of a point p, from a plane n « x = & is the distance of p, from the
icarest point p, on the plane. Hence the normal from the plane at p, must pass
hrough p,. This line can be written p, + un, and the u value that defines p, is

such that

u=tk —n-*p;)(n-n)
rom the equation above, and the distance of the point p, =py + un from p, is
1 lnl=tk—-n-p,|/inl

n particular, if p, is the origin @ then the distance of the plane from the origin
s ikl /lnl Furthermore, if n is a direction cosine vector, we see that the distance
f the origin from the plane is | k1, the absolute value of the real number k.

Fxample 7.2
‘ind the point of intersection of the line joining (1,2, 3) to (- 1, 0, 2) with the
lane (0, -2, 1) » x =5, and also find the distance of the plane from the origin.

Y] 5(1,2,3)

i=i0, -2,1)

1=(-1,0,2)—(1,2,3)=(-2,-2,-1)
neb=(0x1+-2x2+1x3)=-1
i+d=(0x —2+-2x-2+1x -1}=3

1ence the u value of the point of intersection is (5 — (—1})/3 = 2, and the point
/ector is

1,2, 3)#2(-2.-2. - 1)=(-3,-2,1)

?

ind the distance from the origin is 5/1rl= 5/4/5 =+/5.

The program given in listing 7.1 enables us to calculate the point of intersec-
ion (array P) of a line and a plane. The line has base vector B and direction D,
ind the plane has normal N and plane constant K. Note, since we are working
vith decimal numbers. and thus are subject to rounding errors, we cannot check

30 Advanced Graphics with the Sinclair ZX Spectrum

i a dot product is zero, We ¢an find only if it is sufficiently small to be consider-
:d zero. and what is meant by sufficiently small is left to the programmer (on the
‘pectrum about six places after the decimal point is reasonable).

isting 7.1

@0 REM irterzection of Line and plane

1@ PIM B(3): DIM DC3): DIM N(3): DIM P(3)}: DIM A%(3)

2@ INPUT "BASE VECTOR OF LINE","(";B(1);",":B(2);",":B(3);")}"

130 PRINT AT 1,0;"BASE VECTOR OF LINE”,"(";B{1);",";B(2);",";B(3);")"

148 INPUT "DIRECTION VECTOR OF LINE", " (";DC1);",";:D(2);", ":D(3) ")"

‘58 PRINT AT 4,@;"DIRECTION VECTOR CF LINE","(";D(1);",";D(2);",";D(3);")"
AR INPUT "NORMAL TO FLAME™,, " (" N{1):","iNC2) 2", ":K{Z);™"

178 PRINT AT 7,0;"NORMAL TO PLANE®,,"(";NC1);",":N(2);", ";N(3) ;")

'B@ INPUT "PLANE COMSTANT ";X

'BE REM calculate point of intersestion (P(1),P(2),P(2IN)

189 REM of Lire and plare, data input above.

19 PRINT AT 10.@;"PLANE CONSTANT ";K

@2 LET DOT = NC1I*D(1) + N(2)*0(2) + N{3)*D(3)

@% REM zero dot product so no intersection.

1@ IF ABS DOT < A.800BD1 THEN PRINT AT 15.@;"NO POINT OF INTERSECTION": STOF
E0OLET MU = (K = K(1D#B(1) - MN(2I*B(22 - N(3)+B(3))/DOT

‘3P FOR I = 1 TO 3: LET PCI) = BCI) + MU+R(ID

LF ABS F{(I) < f.Q@00001 THEN LET P{I} = @
4F MNEXT I: PRIMT AT 15.0;"POINT OF INTERSECTION ", "({":
‘49 REM tidy up output.
5@ FOR I =1 TO 3: LET A% = STRE P{I); FOR J =1 TO &
68 IF ASCJY <> " " THEN PRINT A%(J);
7O NEXT J: IF I <> 3 THEN PRINT ",";
80 NEXT I:; PRINT ")"
93 STOP

The Point of Intersection of Two Lines

suppose we have two lines b, + ud, and b, + Ad,. Their point of intersection,
i it exists (if the lines are not coplanar or are parallel then they will not inter-
.ect), is identitied by finding unique values for g and A that satisfy the vector
:quation (three separate coordinate equations)

yo tud, =b; +Ad,

“hree equations in two unknowns means that for the equations to be meaningtul
here must be at least one pair of equations that are independent, and the
emaining equation must be a combination of these two. Two lines are parallel if
me directional vector is a scalar multiple of the other. So we take two independ-
ent equations, find the values of ¢ and A (we have two equations in two un-
<nowns}, and put them in the third equation to see if they are consistent.
ixample 7.3, below, demonstrates this method, and listing 7.2 is a way of
mpiementing it on a computer. The first line has base and direction stored in
irravs B and D, and the second line in C and E: the calculated point of inter-
ection goes into array P.

vote that if the two independent equations are

Three-dimensional Coordinate Geometry 131

Iy % pTayy X A=D,

tap X Mty X AT Dy

hen the determinant of this pair of equations A=ay, x @39 —a;3 X a3, will be
1on-zero (because the equations are not related), and we have the solutions

=gy X by —ayy X By)/A and A=(ay) X by —ay X Dy)/A

Asting 7.2

'@f REM irtersection of two Lines

P10 DIM BE(3): DIM D{3): DIM C(EZ): DIM E(3)z DIM PL3): DIM ABCE]

b2@ INPUT "BASE MECTOR OF FIRST LINEY, M(":B{1) ", ":;BC2):", "B ")"

120 PRINT AT 1,0:"BASE VECTOR OF FIRST LINE™, M{"™:B(1):", ":B{2):", ":B{3):"}"
‘4@ INPUT "DIRECTION VECTOR OF FIRST LINE",™C";D(13;",":D{2);",":D(3);™)"
150 PRINT AT 4,0:;"0IRECTION VECTOR OF FIPST LINE",™(™:p{1);", Y:0(2) ", "0 {32 ")
60 INFUT “BASE VECTOR OF SECOND LINE"_ "(“;CCV)z",.":C{2);",":C(3);")"

I7@ PRINT AT 7,8;"BASE VECTOR OF SECOND LINE","(";C(1};",";C(23;",";C(3);")"
{80 INPUT "DIRECTION VECTOR OF SECOND LINE"."™(":EC1):","3E(2);",";EC3);")"
{99 PRINT AT 10.@;"DIRECTION VECTOR GF SECOND LINE",™C";E{13;",";EC21;",";E(3);"»"
98 ReM calculate poirt of dintersection (P{T),P(2) . P(3)]

1899 REM of two Lines. data input above.

45 REM find ary twu ‘ndeperndent Line eguations from the three (kiy/fzd.

20 FOR I 1 T3

10 LET J I #1= IFJ =4 THEN LET J =1

20 LET DELTA = E(IV#*D{J) = E(JI*D(I)

2@ IF ABS DELTA » D.P00ODT THEW &0 TC 24P

JLR NEXT 1

&9 REM carnot find tweo incesendent egquaticns: Limes do not intersect.

5@ PRIMT AT 15,8;"LINES DO WNOT INTERSELT": STOP

5% BREM calculate MU and LAMEDA values of poirt of irtersection.

60 LET MU = (E(I3*{C{J) = BL{I)) = E{JI*=(LCL) = BLL))D/DELTA

70 LET LAMBDA = (D{I)*{C(J) = B{4I) = DCJI={C{L) ~ BCL}J)/DELTA

79 REM mny solution 3f MU and LAMEDA do rot satisfy third eguaticn.

8 LET K = J + 1: IF K = & THEN LET K = 1

9@ IF ABS (B{®] # WMU+*D{K) - C(K} - LAMBDA*E{K)] > @.20DPAT THEN GO TO 230
‘99 REM calceulate (P{1),PI2),P(3)) using MU walue.
300 FOR I =1 TO 3: LET P{I) = BL1) + MU=DB(I)

iF ABS P{I) < Q.BRRDOT THEM LET P(I2 = B

1@ NEXT I: PRINT AT 15,@;"POINT OF INTERSECTION ","(Y;

19 REM tidy up output.

eB FOR I =1 TO 3: LET A% = STRE P{I): FOR J =1 TC B

3@ OLF A% <> " " THEN PRINT AB(J};

L3 MEXT J: IF 1 <» 3 THEN PRINT ".™;

550 NEXT I: PRINT "™

6@ STOP

|

sxample 7.3
“ind the point of intersection (if any) of

a) (1,1,1) +(2,1,3) with (0,0, 1)+ a(1,1,1),
b} (2,3,4) +u(1,1,1) with (-2, 3, -4)+21(1,2,3).

32 Advanced Graphics with the Sinclair ZX Spectrum

n (a) the three equations are

+2p=0 — A (7.4)
+ u=0+2A (7.3)
t3u=1+A (7.6)

rom equations 7.4 and 7.5 we get ¢ = —2/3 and A = 1/3, which when substituted
n equation 7.6 gives 1 +3 x (—2/3)= 1 on the left-hand side and 1 + 1 x{1/3)
- 4/3 on the right-hand side, which are obvicusly unequal, so the lines do not
‘ntersect. From (b} we get the cquations

) +u=—2+ A (1.7)
} 4= —3 + 2\ (7.8)
4+u=—4+3) (7.9)

ind from eaquations 7.7 and 7.8 we get u = —2 and A = 2, and these values also

austv equation 7.9 (left-hand side = right-hand side = 2). So the point of
intersection is

(2,3,4)+-2(1,1,1)=(-2,-3,-49+2(1,2,3)=(0,1, 2)

The Plane Through Three Non-collinear Points

n order to solve this problem we must introduct a new vector operator, X the

rector product, which operates on two vectors p and g (say) giving the vector
resuit

» Xq={p,, P2, P3) X(fhrfh-f?a)
=Py X Q3 —P3 X g2.P3 X gy —P1X 43, P X G2 —=P2 X)

fp and g are non-paralle]l directional vectors then p X q is the directional vector
serpendicular to both p and g, It should be noted also that this operation is
ton-commutative. That is, in general for given values of p and ¢, we note that
2 X ¢ Fq Xp. These two vector products will represent directions on the same
ine but with opposite senses, For example, (1,0, 0) X(0,1,0)=(0,0, 1) but
0,1,0) X(1,0,0)=(0,0, —1);(0,0, 1Yand (0, 0, —1) are both parallel ta the
--axis {and so perpendicular to the directions (1, 0,0} and (0, 1, 0)), but they are
1T opposite senses. Listing 7.3 gives a main program that calls the routines
vecprod’ (for the vector product of two vectors L and M returning vector N)

ind ‘dotprod’ (which calculates the dot product DOT of the vectors L and M),
1oth given in listing 7 4.

Three-dimensional Coordinate Geometry 133

Asting 7.3

80 REM dot oproduct and vector product

110 LET vecprod = 300: LET dotprod = 40D

2@ DIM L(3): DIM M{Z): DIM N{3)

130 INPUT "WECTOR LU, Mz Cf) e, Mol c2)pM, o £3) 203"

140 PRINT AT 1,8:"VECTOR LY, (L0 M, (22", 03"
158 INPUT '"VECTOR M"."E”;M('J;",";HfE];”,”;H{E);"}”

168 PRINT AT 4,B:"WECTOR M","C":M{1D ", "M (22", "2M (30 20"
‘TR GO SUB wecprod

180 PRINT AT 8.2;"VECTOR PRODUCT™, " (™;NC1);","sN(2);", "sN(3) ;"
190 G0 SUB dotprod

B0 PRINT AT 11.,0;"pOT PRCDUCT",DOT

1@ STOP

isting 7.4

A0 REM wvecprod

M1 REM IN oz L{3) M(3)

B2 REM QUT : N(3)

@9 REM N is the vector product of L and M.

1@ LET NI = 2: LET HNNMT = 2

20 FOR 1 =1 TO 5

AP OLET NCIY = LONIJ*#MONMIZ=-LCNNTII®MONTY

4B LET NI = HNI: LET NNI = MI + 73 IF NNI = & THEM LET HNI = 1
5@ MEXT I

&0 RETUFN

430 REM dotprod

41 REM IN : L{33 M(3)

B2 REM QUT : DOT

@0 REM DOT is the dot product of L ang M.

;1@ LET DOT = @

2@ FOR I =1 TO 3: LET bOT = BOT + LLIX*MIId: NEXT 1
30 RETURN

Suppose we are given three non-collinear points p,, p, and p5. Then the two
ectors Py — Py and py — p, represent the directions of two lines coincident at
1, both of which lie in the plane containing the three points, We know that the
rormai to the plane is perpendicular to every line in the plane, in particular the
wo lines mentioned above. Also, because the points are not collinear p, — py
74 — Py, the normal to the plane is (p, — p;) X(p; ~ 2, }, and since p, lies in

he plane the equation is

@, —p)X(Py—p1 N (x—p;)=0

fxample 7.4

iive the coordinate equation of the plane through the peints (0,1, 1), (1, 2, 3)
and (-2, 3, —-1).
This is given by the general point x =(x, y, z) where

((1,2,3)-(0,1,1)) X((-2,3,-1) - (0,1, 1})) * ((x, . 2) - (0, 1, 1)) =0

J4 Advanced Graphics with the Sinclair ZX Spectrum
that is

(1,1,2) X(-2.2,-D~(x,y—-1,z—-1)=0
0§

—6,—2,4)*(x,y-1,2-1)=0

vnich in coordinate form is —6x — 2y + 4z — 2 = 0 or in the equivalent form
Xty —2z=-—1,

The Point of Intersection of Three Planes

¥e assume that the three planes are defined by equations 7,10 to 7,12 below,
“he point of intersection of these three planes, x = (x, y, z). must lie in all
‘hree planes and satisfy

1, *x =k, (7.10)

Ma * X =K, 7.11)
, (

ny " x =k (7.12)

where ny = (Mg, Ry, Hy3), Ay =(Rgq, g, Haz) and iy = (M3, Haq, a3). We
:an rewrite these three equations as one matrix equation

(Miy M2 Ay -""\ [k
(Tyy M2z Haz | X\ ¥ t=| k2
M3y Maz 33 z/ ks

and so the solution for x is given by the column vector

—1
/ Nyy Nya Ay ky
¥ = | na1 npp Has X | k&,
|
< Ray N3z Hajs ks

So any calculation requiring the intersection of three planes necessarily involves
the inversion of a 3 X 3 matrix. Listing 7.5 gives the Adjoint method of finding
M, the inverse of matrix N,

Three-dimensional Coordinate Geometry i35

Asting 7.5

P00 REE irvferse of 3x3 matrix
BT IN @ K(3,3)

Bz OUT ¢ SINGULAR, M(3,3)

1@ LET SINGULAR = 1

2@ LET DET = @: LET NI = 2: LET NNI = 3
30 FOR I =1 T0 3
48 LET DET = DET + HCT,I)*(NC2, NII*N{S, NNIY-N(Z, NNI)Y#N(3 NI

S@ LET NI = NNI: LET NNI = NI + 1: IF NNI = & THEN LET WNI = 1
&0 MEXT I

6% REM DETerminant of sinaqular matrix is zero, there iz ro inverse.
S5TR IF ABS DET < D.RAOPAA®T THEW RETURM

79 REM calculate M, the irwverse of N, by the Adjoint method.

86 LET NI = 2:; LET NNI = 3

9@ FOR 1 =1 T0 3

580 LET NJ = 23 LET NNJ = 3

10 FOR 4 = 1 TO 3

2B LET MCJLTI) = (NONI,NJI*NCNNIL NNSD - NCNI, MKJ}*NCNNI,NJD D /DET
530 LET NJ = NMJ: LET NhJ = BJ + 1: IF NNJ = & THEN LET NNJ = 1
14@ MEXT J

5@ LET NI = NNI: LET NNI = NI + 1: IF NNI = & THEN LET NNI = 1
W60 NEXT I

7@ LET SINGULAR = @

188 RETURN

v\eain in this routine, vectors are represented as one-dimensional arrays, thus
3(3) contains the solution of the equations, x, while K(3} contains the plane
:onstants. We are given the normals 7, 7, and a3 in the form of a 3 X 3 array
v, so the values in B are found by the following code. Obviously if any two of

Listing 7.6

‘B0 REM intersecticn of three planes

10 BIM N(3.33: DIM M{3,30: DIM K(3): DIM B(3)
2@ LET irw = S08

2% REM irnput data on three plares.
20 PRINT AT 2.10;"COEFFICIENTS CONSTANTY
L3 FOR 1 =1 TC 3

158 PRINT AT 2 + 2+I,08;"PLANE(";1;"™ ={(,
60 FOR J =1 TD 3

7O LET I%$ = "INPUT N{" + STRE L + "," + STRE J + "} "

180 INPUT (IS);N(I,J2: PRINT AT 2 + 2%1,7 + bwJ :NCT,)

198 NEXT J

200 LET I% = "INPUT K{" + STRE I + "} "

210 INPUT (I$);K(I): PRINT AT 2 + 2%[,28;K(I)

228 MEXT 1

229 REM if matrix of normals is singular then no intersecticn,
230 GO 3UB inv

240 PRINT AT 12,3;"POINT GF INTERSECTION'

25@ IF SINGULAR THEN PRINT AT 12,0;"NO": STOP

259 REM poirt of intersection is {(B{1),B{2),B{(3)).

6@ FOR I =1 TG 3

27D LET B{1) =@

2B@ FOR J =1 TO 3

298 LET B(1) = BLLIY + MCI, J)=k(J)

108 NEXT J

318 IF ABS B(I) < £.200P01 THEM LET B(I) = @

320 PRINT AT 12 + 2#I1,7;"B(";I;") = ":B(I)

33 MEXT I
SE@ STOP

.)II

36 Advanced Graphics with the Sinclair ZX Spectrum

he planes are parallel or the three meet in a line, then there is no unique point
f intersection: in these cases DET, the deferminant of the matrix N is zero and
rariable SINGULAR = 1. (See listing 7.6.)

xample 7.5

‘ind the point of intersection of the three planes (0, 1,1} x=2,(1,2,3)* x=
dand(1,1,1)*x=0.
n the matrix form we have

L

et = {2
—) -
—)
>
.

It

= b

b4
=

b

Theinverseof /0 1 1%\ is /-1 0 L°
a I 2 3 2 -1 1)
1 1 1 -] 1 =1
and so
b~ == 0 1 &, —2
y = 2 -1 1]X (4 |= 0
2 11— o/ \ 2

This solution is easily checked: (0,1, 1)+ (-2,0,2)=2,(1,2,3)+ (-2,0, 2)
=dand(1,1,1)* (- 2,0, 2) =0, which means the point {--2, 0, 2) lies on all
three planes and so is their point of intersection.

i'he Line of Intersection of Two Planes

£t the two planes be

pex=(p;, P2, pP3)"Xx=k; and
q*x={q1,42, 43) " X =k,

Ve assume that the planes are not parallel, and so p # Agq for all A. The line
common to the two planes naturally lies in gach plane, and so it must be per-
pendicular to the normals of both planes (p and q). Thus the direction of this
ine must be d =p X ¢ and the line can be written in the form & + ud, where b
can be any point on the line. In order to classify completely the line, we have to
‘ind one such b. We find a point that is the intersection of the two planes,
ogether with a third that is neither parallel to them nor cuts them in a common
line. Choosine a olane with normal p X g will satisfv these conditions (and

Three-dimensional Coordinate Geometry $37

emembper that we have already calculated this vector product). We still need a
-alue for ks, but any will do, so we take k3 = 0 in order that this third plane
roes through the origin. Thus b is given by the column vector

£1 25! Ps s /klh
"zl a) g2 43 x| kg
Py X G3 —P3X g2 P3Xqy—P1Xqds Py Xqr—Prxq,) \O

‘xgmple 7.6

“ind the line common to the planes (G, 1, 1}+ x =2 and (1,2, 3) » x = 2. Since
»=10,1,Dandg=(1,2,3). thenp Xg=(1x3 - 1%2,1x1-0x3,0x
T—1x1¥=(1, 1, -1). We require the inverse of

1\ /-5 2 1
3 l==] 41 1
At S8 o fira)

o

ind hence the point of intersection of the three planes is

L2 pdaitd R] —6 A
;| 4 1) x{2]==156)= (:z)
1 1 1) o/ 2 \o 0,

%

ind the line is (—-2,2,0) +u(1,1, -1).
t is easy to check this result, because all the points on the line should lie in
yoth planes

0,1,1)~(—2,2,+u(l, 1, —-1))=(0,1.1)-(-2,2,0)+1(0,1,1)

1,1,-1)=2 for all i and
112:3) : {('_'2!2:0}+“(11 11_1))={.0? 15 1}‘ (_2&250){_“’(152&3)‘
1,1,-1)=2 for all

"he program to solve this problem (listing 7.7) is given below; note it is very
simiiar to the previous program. Also note that arrays are not explicitly used for
» and g, these values are stored in the first two rows of array N. Array B holds
.he base vector of the line of intersection, but we do not place d in an array
»ecause the values are already in the third row of N,

‘unctional Representation of a Surface

‘n our study of two-dimensional space in chapter 3 we noted that curves can be
epresented in a functional notation. This idea can be extended into three

I8 Advanced Graphics with the Sinclair ZX Spectrum

Listing 7.7

0 REM Lime of irtersecticn of two plares

11¢ DIM N(3,3): DIM M(3,3): DI® K(3): DIM B(3): DIM ASC(Z)
120 LET irw = S@D: LET A% = "PQ"

‘% RER irput data on two plares.

130 PRINT AT 2.1D0;"COEFFICIENTS CONSTANT"

140 FOR I =1 TC 2

TER PRINT AT 2 + 2#I,8;"PLANE{";I;")= (, o b i

60 FOR J =1 TO 3

170 LET 1% = “INPUT " + AS(1) + "(" + STRE J + ") "

T80 INPUT (IB):N(I,J): PRINT AT 2 + 2#1,7 + &4*xJ;N(I,J)

198 NEXT J

20D LET If = "INPUT K(" + STRS I + ")

18 INPUT (I3);K(1): FRINT AT 2 + 2%]1,28;K(I)
720 MEXT I

29 REM form itkird plane.

3@ LET NC3.1) = K{1,23%N(2,.3) — N(1,3)=N(2,2}

240 LET N(3.2) = N{1B3D+N(2,13 = NOT,ThN{2, 5}

250 LET NC3,3) = NO113=N{(2,2) - N(1,.2)*N(Z,1)

‘6B LET K{3) = @

‘69 REF if matrix of normals is singular then no irtersection.
70 GO SUB fnv

‘80 PRIMT AT 18,3;"LINE OF INTERSECTION™

@ IF SIMELLAR THEN PRINT AT 10.@;"NG": STOP

20 PRINT AT 12.,2;"BASE VECTOR DIRECTION"

P8 FEM Line of intersecticn :-

‘B9 REM base (B{1).B{2),B(3)) and direction (N(3,1) ,N(3,2),N(3,3)].
18 FOR 1 =1 TG 3

2B LET B(1) =@

IZ0 FOR J =1 TC 3

340 LET B(I) = B(1) + M{I,J)*K(J)

E@ MEXT J

‘48 IF ABS B(I) < 0.00DPEP1 THEM LET BCI) = @
78 FRINT AT 12 + 2=I B;"B(";1;:") = ";B(I)
(B2 PRINT AT 12 + 2#I1.20;"Dp{";1;") = ";N(3,.1}
9@ NEXT I

B STGP

dimensions when we study surfaces. The simplest form of surface is an infinite
plane with normal n = (rnty, ¥4, #ri3), which we have seen can be given as a co-
rrdinate equation

n*x——fc=n1xx+nz><y+;;3;<z.._k=g

"his can be rewritten in functional form for a general point x = (x, y, 2)on the
curve

fR=f(x,y,2)En xxtny x ytn; xz—-k=n+*x-k%k

I'his is a simple expression in variables x, ¥ and z (x) that enables us to divide all
he points in space into three sets, those with f{x) = 0 (the zero set), with
S(x) <0 (the negative set) and f(x) > O (the positive set), A point x lies on the
surtace if and only if it belongs to the zero set. If the surface divides space into
two halves (each half being connected, that is, any two poinis in a given half can

Three-dimensional Coordinate Geomefry 139

s¢ ioined by a curve that does not cross the surface), then these two halves may
re identified with the positive and negative sets. Again beware, there are many
:urves that divide space into more than two connected areas and then it is
mpossible to relate functional representation with connected sets; for example,
(x, ¥, z) = cos (¥) - sin (x* + %), There are, however, many useful well-behaved
:urves with this property, the sphere of radius » for example

flx)y=r®— |x|?

hat is,
I(“x!‘ y} Z} =?‘E' _ xi o _]'}1 - 2.-2
f f(x) = 0 then x lies on the sphere, if (x) <O then x lies outside the sphere,

na if f(x) > 0 then x lies inside the sphere.
“he functional representation of a surface is a very useful concept. It can be

1sed to define sets of equations necessary in calculating the intersections of
rartous objects, The major use, however, is to determine whether or not two
soints p and g (say) lie on the same side of a surface that divides space in two,

ill we need do is compare the signs of f{p) and f(g). If they are of opposite
1¢ns then a line joining p and ¢ must cut the surface. An example is given below.

s a Point on the Same Side of a Plane as the Origin?

suppose the plane is defined (as earlicr) by three non-collincar points p4, p, and
73. Then the equation of the plane is

P2 ~P1) X3 —p1)) (x-p)=0
Ve may rewritc this in functional form
Jx)E(P, =p1) X(P3 ~p1))* (x—py)
0 all we need do for a point e (say) is to compare f(e) with f{0), where O is

he origin. We assume here that neither @ nor € lie in the plane.
¥e shall see that this idea is of great use in the study of hidden line algorithms,

sxample 7.7
wre the origin and point (1, 1, 3) on the same side of the plane defined by points

0,1,1).(1,2,3)and (-2, 3, -1)?
‘rom example 7.4 we see that the functional representation of the plane is

[(x)=((—6,-2,4) - (x - (0,1,1))

140 Advanced Graphics with the Sinclair ZX Spectrum

Thus
(0,0,0)=—(-6,-2,4)"(0,1,1)=-2

and
(1,1,3)=—(-6,-2,4)-((1,1,3)—(0,1,1)) =2

tfence (1, 1, 3) lies on the opposite side of the plane to the origin and so a line
segment joining the two points will cut the plane at a point (1 x)(0,0,0) +
2(1,1,3)where 0 < <1,

's an Oriented Convex Polygon of Vertices in Two-dimensional Space Clockwise
or Anti-clockwise?

We start by assuming that the polygon is a triangle defined by the three vertices
P11 =(xy, ¥1),P2 =(x4,¥y2) and p3 = (x5, ¥3). Although these points are in
two-dimensional space we can assume they lie in the x/y plane through the
origin of three-dimensional space by giving them all a z.coordinate value of zero.
We systematically define the directions of the edges of the polygon to be

P2 —P1),(p3s —p2)and (p; — p;). Since these lines all lie in the x/y plane
through the origin we know that for all = 1, 2 or 3 and for some real numbers
7 that depend on

Pi1 —P) XPiz —Pi1)=(0,0,1)

"his is because this vector product is perpendicular to the x/y plane and so only
z-coordinate values can be non-zero. The addition of subscripts is modulo 3,
Jecause the vertices were taken systematically, note that the signs of these #
rajues are always the same - but what is more important, if the p; are clockwise
then the r; are all negative, and if the p; are anti-clockwise the r; are all positive.
(siven an oriented convex polygon, we need consider only the first three

vertices to find if it is clockwise or anti-clockwise. This technique will prove to
be invaluable when we deal with hidden line and surface algorithms later in this

book. Listing 7.8 allows us to find whether or not three ordered two-dimensicnal
vertices form an anti-clockwise triangle.

wxample 7.8
Why is the polygon given in example 3.4 anti-clockwise?

"he vertices {considered in three dimensicns) are (1,0, 0), (5, 2, 0), (4,4, 0)
and (-2, 1, 0). The directions of the edges are (4, 2, 0),(-1, 2,0), (-6, —3,0)
and (3, —1, 0). Then, since

Three-dimensional Coordinate Geometry 141

Asting 7.8

'ZF REM crientation of 2-0 triargle
11@ CIM X(32: DINM ¥(35)

‘2@ LET J% = "TYPE IN COORDINATES OF TRIAMGLE
130 FOR 1 =1 703
‘48 LET I% = "WERTEX('" + STRE I + 3= ("

158 INPUT KJ$ + IS);XCI)2",":¥(1):")"

‘OF PPINT AT 2 + 2*%1,@;18;X(1);",";Y(1);"™)"

TR OMEXT I
TBE PRINT AT 12.0;"THE TRIAWGLE It “;

88 REM (DXT1,.0Y1) is 2-D direction vecter jcining poirt T to point Z.
1B9 REM (D¥2,D¥2) it - directiun vector Jeoiring poirt 2 to point 3.
POR LFT DXY = ¥(2) - X(T2: LET DY1 = ¥(2) = ¥{1)

‘BB LET bX2 = X3 - X(2): LET bYZ = ¥(3) - ¥(Z)

‘B9 REM use 3-D vector product to check on orientation of triangle.
10 IF DX1*%DYZ - DXZ*DY1 > B THEM PRINT “ANTI-";

8 PEINT “CLICKWISE": STOP

,z, 0) X(~1,2,0) =(0,0,10)
1,2,0) X(—6,-3,0)=(0,0, 15)
6,3 0) X(3,-1,0) =(0,0,15)
3,-1,0) X(4,2,0) =(0,0, 10)

wre all positive, so the orieniation of the polygon is anti-clockwise, But be care-
ul. if you lose this consistent order for calculating the vector product you can
et the wrong answer, For example

-6,-3,0) X(4,2,0) =(0,0,0) - the lines are parallel!
ar 1-1,2,0)0 X(3,-1,0)=(0,0, -5) ~ we have taken the edges out of
.equence

Complete Programs

. Listing 7.1 (intersection of line and plane). Data required: a base vector
B(1}, B(2), B(3)) and direction vector (D(1}, D(2), D(3}} for the line_ a
1ormal (N(1), N(2), N(3)) and constant K for the plane. Try (1, 2, 3),

1,—1),(1,0, 1) and 2 respectively.

[. Listing 7.2 (intersection of two lines). Data required: a base and direction
rectors for the two lines. (B{1), B(2), B(3)}) and (D(1), D(2), D(3)), and
C{1),C(2).C(3))and (E(1), E(2), E3)). Try (1, 2,3),(1,1, —1),and
—1,1,3),(1,0,1).

II. Listings 7.3 and 7.4 (main program, ‘vecprod’ and ‘dotprod’). Data required:
two vectors (L(1), L{2), L(3))and (M(1}, M{2)}, M(3)). Try (1, 2, 3),
1,1, —1).

42 Advanced Graphics with the Sinclair ZX Spectriom

V. Listings 7.5 (“inv") and 7.6 (intersection of three planes). Data required:
wrmal (N(T, 1), N(I, 2), N(I, 3)) and constant K(I) for the three planes,
SIS3. Try(l,2.3.0.01,1. 13, 1.41.0,1). 2.

/. Listings 7.5 (‘inv"} and 7.7 {intersection of two planes). Data required:
wrmal (NI, 1), N(1I, 2), N(I, 3)) and constant K(I) for the two planes,
L1882, Try (1,2,3),0,(1.1,-1), 1.

V. Listing 7.8 (orientation of 2-D triangle). Data required: the vertices
XY, 1 <T<3. Try(1,2).(2.3)and (-1, 1).

3 Matrix Representation of
Transformations on Three-
dimensional Space

n chanter 4 we saw the need for transforming objects in two-dimensional space.
¥hen we draw three-dimensional pictures there will be many times when we need
0 make the equivalent linear transformations on three-dimensional space. As in
ne lower dimension. there are three basic types of transformation: translation,
:caling and rotation. We shall represent transformations as square matrices (now
hev will be 4 X 4). A gencral point in space relative to a fixed coordinate triad,
he row vector {x, ¥, z), must be considered as a four-rowed column vector

X

B

vl the operations on matrices (addition, scalar muitiple, transpose, premulti-
aication of a column vector and matrix product) that we saw in chapter 4 are
-asiiy extended to cope with 4 X 4 matrices and column vectors by simply
:nanging the upper bound of the index ranges from 3 to 4. In this way we can
renerate a routine ‘mult3’ for multiplying two 4 X 4 matrices together. It is
'xactly equivalent to routine ‘mult2’ in the two-dimensional case, and for the
rery same reasons. Lhe routine multiplies matrix 4 by matrix R giving matrix 8,
vhich is then copied into R. We also need the routine “9dR3’, which sets R to
he identity matrix (see listing 8.1).

‘onsider the case of a general linear transformation on points in three-
iimensional space. A point (x, ¥, z} — ‘before’ - is transformed into (x', ¥, 2°)
- after’ — according to three linear equations

:r=zﬁiilxx+A-12Ky+A13XZ+AL4
V=A% Xt Ay x Yyt Ass x 2+ Ay
.-12-4‘151 X +A32 K_y +A33 ® Z+A34

ind as usual we add the extra equation

44 Advanced Graphics with the Sinclair ZX Spectrum

Jsting 8.1

@D REM mult3

121 REM IN : AC4.4) ,RC4,4)
B2 REM OUT : R(4,4)

M1@ FOR I =1 TO 4

28 FOR J = 1 TO &

M3p LET AR = @

914@ FOR K = 1 TO &

915@ LET AR = AR + ACI,K)*R(K,)
"ME&ED NEXT K

279 LET BCI,)) = AR

F1E@ MNEXT J
519@ NEXT I
S2@0 FOR I
210 FOR J
9220 LET R(I
230 NEXT J
268 NEXT 1
1250 RETURN

1™
1T
pd}

nu

Lo B]

4
b
B

(1,d)

Y300 REM dR3

3B2 REM OUT @ RO4,4D
310 FOR 1 =1 T0 &
9320 FOR J =1 TO 4
123B LET R{I,J}) = B
S4B NEXT J

350 LET R(1,ID =1
Y360 NEXT I

9370 RETURN

L =Aa; X XtAy, R y+Asy X2 +Aaq

vhich if it is to be true forall x, v and z means A4y =A49 =Ag3 =0and A4,
= 1.

"hen the equations may be written as a matrix equation where a column
rector representing the ‘after’ point is the product of a matrix and the ‘before’
-olumn vector

XN Ay Ay Az Aga X
(_,, _[Az1 A2z Az Aas x| 7
'-) Ay Aaz; Az A z
N Ay Aaz Aaz Asa 1

so if we store the transformation as a matrix, we can transform every required
aoint by considering it as a column vector and premudtiplying it by a transforma-
ion matrix. As before, transformations may be combined simply by obeying the
:eauence of transformations in order. If their equivalent matrices are A, 8, C.. . ..
.. M, N, then the matrix equivalent to the combinationis VA M X L X ... X
!X B X A. Remember the order. Since we are premultiplying a column vector,

hen the first transformation appears on the right of the matrix product and the
‘ast on the left.

Watrix Representation of Transformations on Three-dimensional Space 145
“ranslation

“yery point to be transformed is moved by a vector (TX, TY, TZ) say. This
yroduces the following equations relating the ‘before’ and “after’ coordinates

¢'=1xXxx+0xy+0x z+TX
y=0xx+1xy+0xz+TY

' =0xx+0x y+1xz+TZ

.0 that the matrix describing the translation is

1 0 0 TX
) 1 © TY
0 0 1 TZ
0 0 0 1

“he routine ‘tran3’ for producing such a matrix A, given the parameters TX, TY
ind TZ is given in listing 8 2.

Listing 8.2

Q00 REM tran3

9981 REM IN : TX,TY,TZ
9002 REM QUT : ACh,4)
818 FOR I =1 TO 4
9RZB FOR J = 1 TD 4
@3ID LET ACIL)) =0
MALE NEXT J
9@5@ LET ALI, DD
MWER MNEXT 1
9878 LET AC1.4)
WEM RETURN

1

1l

TX: LET A(Z,4) = TY: LET a(3,4) = TLZ

Scaling

“he x-coordinate of every point to be transformed is scaled by a factor 8X, the
-coordinate by SY and the z-coordinate by SZ, thus

c=8Xxx+ Oxy+ 0Oxz+0
= 0xx+SYxy+ Oxz+0
Oxx+ Oxpy+SZx z+0

1l

riving the matrix

§8X 0 0 0
2 8Y 0 O
O 0 SZ2 0
0 0 0 1

46 Advanced Graphics with the Sinclair ZX Spectrum

Jsually the scaling values are positive, but if any of the values are negative then
his leads to a reflection as well as (possibly) scaling. For example,if SX = 1
ind SY =8Z = 1 then points are reflected in the y/z plane through the origin. A
routine ‘scale3’ to produce such a scaling matrix A given SX, SY and SZ is given
n listing 8.3,

Listing 8.3

2O@@ REM scaled

8981 REM IN : S5X,5Y,52
5002 REM QUT : A{4,.4)
3918 FCGR I =1 TC 4
G928 FOR J =1 TD &
B93@ LET A(I,JY = @
940 NEXT J
4958 NMEXT I
G960 LET A{1.12
A978 LET Al4,.4)
1080 RETURN

SX: LET A(2,2) = 8Y: LET A(3,3) = 51
1

Rotation about a Coordinate Axis

i order to consider the rotation aboul a general axis p + pg by a given angle, it
s iirst necessary to simplify the problem by considering rotation about one of
he coordinate axes,

-

H z

..

‘-ax1s into page Y-axis into page x-axis into page

a) (h) (c)
‘fgure 8.1
a} Rotation by an angle § about the x-axis

deferring to tigure 8.1¢, the axis of rotation is perpendicular to the page (the
yositive x-axis being into the page), and since we are using lett-handed axes the
igure shows the point (x’, ', z) resulting from the transformation of an arbitrar
yoint (x, v, 7). We see that the rotation actually reduces to a two-dimensional
otation in the v/z plane passing through the point; that is, after the rotation the
c-coorainate remains unchanged. Using the ideas explained in chapter 4 we have
he tollowing equations

Hatrix Representation of Transformations on Three-dimensional Space 147

F

X
=cos@ x y—sin@ x z
"=sinf xy+cos@ xz

e
v

ind thus the matrix is

1 0 0 0O~

0 cosf@ —sinf O
, 0 singd cos® O

0 0 0 1

b} Rotation by an angle # about the y-axis

Referring to figure 8.1b, we now have the positive y-axis into the page and,
necause of the left-handedness of the axes. the positive z-axis is horizontal and
o the right of the origin while the positive x-axis is above the origin. This leads
18 10 the equations

d=sin@xz+coslxx
]
A

=y
S =cos@ Xz —sin@ xx

which gives the matrix

cosgd O sing 0O
0 1 0 0
—sind 0 cosfd 0
0 0 0 |

¢) Rotation by an angle 8 about the z-axis
eferring to figure 8. 1c we get the equations

¢'=cosf x x —sinf x y
V'=sin @ x x +cosf x y

=2

ind the matrix

cosfd —sinf
sin cos @
i1 0 0
0 0

L L R e B |
- O O O

48 Advanced Graphics with the Sinclair ZX Spectrum

1 subprogram ‘rot3’ to produce such a matrix A, given the angle THETA and
he axis number AXIS (AXIS = | for the x-axis, AXIS = 2 for the y-axis and
1 XIS = 3 for the z-axis} is given in listing 8.4,

Jisting 8.4

2600 REM rot3

8681 REM IN : THETA,AXIS

H6B2 REM QUT : Ad4,.4)

2610 FOR I =1 TD 4

5620 FOR J = 1 TO 4

BE3Q LET A(IJY =@

SBO40 NEXT J

865@ NEXT I

S66@ LET A(&.4) = 1: LET A(AXIS,AXIS) =1

S6TE LET AX1 = AXIS + 1: IF AX1 = 4 THEM LET AX1 =1
W68@ LET AX2 = AX1 + 1: IF AX2 = 4 THEN LET AX2 =1
5690 LET CT = (05 THETA :LET ST = SIN THETA

B700 LET ACAXT,AX1) = CT: LET A{AXNZ,AXZ) = (T

8710 LET A(AX1,AX2) = =ST: LET A(AXZ,AX1) = 57

8720 RETURN

Tnverse Transformations

Before we can consider the general rotation transformation, it is necessary to
ook at inverse transformations. An inverse transformation returns the points
ranstormed by a given transformation back to their original position, If a trans-
ormation is represented by a matrix A, then the inverse transformation is given
ny matrix 4 7', the inverse of A. There is no need to explicitly calculate the
nverse of a matrix using such techniques as the Adjoint Method (listing 7.5): we
-an use listings 8.2, 8.3 and 8.4 with parameters derived from the parameters of
he original transformation

1) A translation by (TX, TY, TZ) is inverted with a translation by (-TX, -TY,
AR

2) ascaling by SX, 8Y and SZ is inverted with a scaling by 1/SX, 1/SY and

j'ISZ:.

3) a rotation by an angle # about a given axis is inverted with a rotation by an

ingle —f# about the same axis:

4) if the transformation matrix is the product of a number of translation,

scaling and rotation matrices A X BX CX .. . X L X M X N, then the inverse
ransformation is

Vi s T et S At O, S e B e

Hatrix Representation of Transformations on Three-dimensional Space 149
Rotation of Points by an Angle y about a General Axis p + g

wssume p ={PX, PY, PZ) and ¢ = (QX, QY, QZ). We break down the task into a
wmpber of subtasks

(a) We translate all of space so that the axis of rotation goes through the origin.
"his is achieved by adding a vector —p to every point in space with a matrix F
:ay, which is generated by a call to ‘tran3’ with parameters TX = —PX, TY = —PY
ma TZ = —PZ. The inverse matrix £~ ! will be needed later and is found by a call
o “tran3” with parameters PX, PY and PZ. After this transformation the axis of
otation is the line O + ug passing through the origin.

10 B =X /1 0 0 PX
o1 0 -PY ., _ {01 0 PY
0 0 1 =PZ F__{}DIPZ
000 | 00 0 1

b) We then rotate space about the z-axis by an angle —a, where (ALPHA =) a =
an"* {QY/QX), given by the matrix . The matrix is generated by a call to
ot3’. setting THETA = —ALPHA and AXIS = 3, and the inverse matrix G~! by
1 call to ‘rot3” with THETA = ALPHA and AXIS = 3. At this stage the axis of
otation is a line lving in the x/z plane passing through the point (v, 0, QZ).

X Y O 05 X QY 00

<o Lf -Qy 0X 0 0 -1 = IfQy QX 0 0
Y) 0 v O pl O 0 v 0

0 | 0% | P) 0 0 w»

where v is the positive number given by »* = QX? + QY?.

¢) We now rotate space about the y-axis by an angle —3, where (BETA =)} =
an™* (v{QZ), given by the matrix &. This matrix is generated by a call to

0t3” with parameters AXIS = 2 and THETA = —BETA, and the inverse matrix
7! by a call to ‘rot3’ with parameters AXIS = 2 and THLETA = BETA,

QZ 0 —v 0 QL 0 v (O

; e (0 w 0 0) Hr—l = l 0 w 0 0
v v U QZ 0 w v 0 QZ U

0 0 0 w 0 0 O w

vnere w is the positive number given by w* =v? + QZ? =QX* + QY? + QZ2.
w0 the point (v, 0, QZ) is transformed to (0, 0, w), hence the axis of rotation is
itong the z-axis,

d) We can now rotate space by an angle ¥ (GAMMA) about the axis of rotation
1sing matrix ¥ generated by ‘rot3’ (with AXIS =3 and THETA = GAMMA).

50

Advanced Graphics with the Sincigir ZX Spectrum

cosy —siny O

V= siny cosy 0
0 0 1
0 0 0

e —

1
1
0
1

e) We need to return the axis of rotation to its original position so we multiply
H74.G Y and finally £ 1,

“hus the final matrix P that rotates space by the angle y about the axis
pruqisP=F"'XG P XH' X WX HX G X F.Naturally some of these
natrices may reduce to the identity matrix in some special cases, and can be
‘gnored, For example, if the axis of rotation goes through the origin then ¥ and

5

are identical to the identity matrix [, and can be ignored,

.0 it is possible tc write a special routine ‘genrot’ (listing 8.5) that achieves

his rotation and returns the required matrix P given GAMMA | (PX, PY, PZ) and
0X, QY, QZ).

Asting 8.5

Ban
E@1
~EBd
289
21@
5819
B20
B30

BIY
L840
85a

859
Ll
850

5870
880

S8o3
gl

REM genrot

REM IN : PX,PY,PZ,0X,QY,QZ,GAMMA,RCL,4)

REM QUT : R(4,4)

REM place origin on axic of rotaticon.

LET TX = -PX: LET TY = -PY: LET TZ = =P1: 60 S5UB tran3: GO S5UB mult3

REM rotate axis of rotation into xfz plane.

LET AX = @X: LET AY = QY: G0 3UB angle

LET ALPHA = THETA:; LET THETA = -THETA: LET AXIS = 3: 40 SUB rct3

: G0 SUB mult3

REM rotate axis of rotation onto z-axis.

LET A¥ = QZ: LET AY = SQR {(@X*QX + AY*QYl: GO SUZ angle

LET BETA = THETA: LET THETA = ~THETA: LET AXIS = 2: 30 SUE rot3
GO SUB mult3

REM rotate by GAMMA about axis of rotation.

LET AXIS = 3: LET THETA = GAMMA: GO SUB rotd: GO SUB mult3

FEM replage axis back to origimal positicn.

LET AXIS = Z: LET THETA = BETA: GO SUB rotd: G0 SUB mult3

LET AXIS = 3; LET THETA = ALPHA: 60 SUB rot3: GO 3UB mult3

LET TX = PX: LET TY = PY: LET TZ = PZ: GO SUB tranZ: GO SUB muitd

RETURN

Example 8.1
What happens to the points (0,0, 0),(1,0,0),(0,1,0), (0,0, lyand (1, 1, 1)if
:pace 1s rotated by /4 radians about an axis (1,0, 1} + u(3, 4, 5).

Jsing the above theory we note that

L 0 0 -1\ /1 00 1
p=(0 10 0) ﬂ_lz‘OIUG
001 -1 ' 0011
600 1/ \O 0 O 1

Vatrix Representation of Transformations on Three-dimensional Space 51

34 0 0 3 400
,=;[4300 (_,-1=1 4 300
: 00350 s{lo 050

0900 5§ 0 005

1 0 =1 D 1 01 ©
o2 0 0} ., 1 [0+20 O
< ;3\1 o 1 Q0 00 LU B

0 0 0 2 0 0 0 +/2

0 O
) 0 /2

41 + N2 —12 —134/2 15+ 35/2 26+ &/2

—12 4372 34 +16J2 20+ 52 32422

SO/ (_1 5— 3/2 20 +35/2 25+ 25/2 10+ 3042
0 0 0 S04/2/

vhere P=F ' X G X H ! X WX HX G X Fis the matrix representation of
he required transformation. Premultiplying the column vectors equivalent to
0,0,0),(1,0,0),{(0,1,0),{0,0, 1)and (1, 1, 1) by £ and changing the resulting
column vectors back into row form and taking out a factor 1/504/2 gives the co-
rdinates (—26 + 64/2,32 — 424/2, 10+ 304/2), (15 + 1542, 20 - 52,
5 +250/2),(—38 — T2,66 — 260/2, 30 +65¢/2),(—41 +414/2, 12 — 37/2,
S+ 55/2)and (12 + 37/2, 34 + 16+/2, —20 + 85+/2) respectively. Naturally
ranslating and rotating space should leave relative positions unchanged; in
narticular the angles between direction vectors should be unchanged (the same
cannot be said about the scaling transformation, which in general does alter
elative positions). In the original system the three relative positions from
0,0,0)to(1,0,0),(0,1,0)and (0, O, 1) respectively, are mutually perpen-
ricular (that is, the dot product of pairs of these directions should be zero).
“he dot product of the directions in the transformed system should also be zero:
he three directional vectors (with 1/504/2 factored out) are (41 + %/2,
12 4374/2, =15 — 5+4/2), (=12 — 134/2,34 + 16+/2, —20 + 35+/2) and
~15 4+ 354/2, 20 + 54/2, 25 + 254/2), and the dot product of any pair is zero.
;imilarly the dot product of the direction vector from the originto (1,1, 1)
n the original system, taken with any of the original directions above, give the
:ame value (= 1). This is also true in the transformed system: the fourth direction
s (14 + 314/2, 2 + 58/2, —10 + 55/2), and when we take the dot product with
:acn of the three direction vectors above we get the value 5000, which, when we
ake into account the factor (1/50v/2) . gives the value 1.
A program that reads in the axis of rotation (PX, PY, PZ) + u{QX, QY, QZ)

52 Advanced Graphics with the Sinclair ZX Spectrum

ind the angle GAMMA, and rotates any point (XX, YY, ZZ) about this axis by
ingle GAMMA is given in listing 8.6.

Jdsting 8.6

‘PP REM rotation of a point about a giver axis
110 DIM A(4,4): BIM B(4,4): DIM R(&,4)
120 DIM P(3): DIK AS(E)
3@ INPUT "BASE VECTOR OF AXIS ","(";PX;",";PY;",";P1;')"
148 PRINT AT 1,0;"BASE VECTOR OF AXIS ","C';PX;",";PY;",";P1;")"
1S@ INPUT "DIRECTION VECTOR OF AXIS ", "(™;QX;",";a¥;",";az;"}"
160 PRINT AT 4,.@;"DIRECTION VECTOR OF AXIS ", "(UpaX;", “s@y:" ":az;")"
TR INPUT “ANGLE COF ROTATION ";GAMMA
180 PRINT AT 7.2;"ANGLE OF ROTATICHN "';GAMMA
198 LET mult3 = 910B: LET idR3 = 93€B: LET rct3 = BEEE
LET tran3 = 9800: LET ancle = B8@@: LET genrct = B0
198 REM calculate R{4,4) for rotating point by angle GAMMA about an axts
99 REM with base vector (PX,PY,PZ) and direction vector (@%,QY,QZ).
‘@B GO SUB gR3I: GO SUB genrct
10 PRINT AT 14,.@;"BECOMES"
"9 REM input and transform point (XX,Y¥Y,Z21).
20 INPUT "POINT VECTOR",™(";XK;",";¥Y;",*;22;")"
EQ PRINT AT 12.0;"POINT f_";}'{}{;",”;'f‘l";",";21;”3",,
4B ILET P12 XX*R(1,1) + YY*R(1,2) + ZZI*R(1,3) + R{1,4)
5@ LET PL(Z) EX#R(2.1) + YY#R(2,2) + ZI*®R{Z2,3) + RIZ,4)
“60 LET P2} KERR{3,1) + YY*R(3,2) + ZI+R(3,3) + R(I,4)
‘6% RERM tidy up output.
78 PRINT AT 16.0;:"(";
280 FOR I =1 TO 3: LET A% = STRS P{I}): FOR 4 =1 TD 3
0@ IF AS(J) <> " " THEN PRINT AB(J};
380 NEXT J: IF I <> 3 THEN PRINT ",";
1@ NEXT I: PRINT "3}".,
20 GO TO 22B

[1

:xercise 8.1

“xperiment with these ideas. You can always make a check on your final trans-
formation matrix by considering simple values as above, and you can use the
orevious listings to check your answer. It is essential that you are confident in

he use of matrices. and the best way to get this confidence is to experiment. You
viil make lots of arithmetic errors initially, but you will soon come to think of
ransformations in terms of their matrix representation, and this will greatly ease
he study of drawing three-dimensional objects.

xercise 8.2

1s with the two-dimensional case, we note that the ‘bottom row” of all trans-
formation matrices is always (0,0, 0, 1), and is of no real use in calculations. It
s added onlv to form square matrices, which are necessary for the formal
aefinition of matrix multiolication. We can adjust this definition, and that of the
muitivlication of a matrix and a column vector, so that instead we use only the
top three rows of the 4 X 4 matrices (in chapter 4 we used the top two rows of

1 X 3 matrices in listings 4.2a, 4 3a, 4 4a and 4.524). Change listings 8.1, 8.2, 8.3
and 8 4 accordingly,

Hatrix Representation of Transformations on Three-dimensional Space 153

ixercise 8.3

““ou will have noticed that the routine ‘rot3” is usually called with THETA
renerated by ‘angle’, which uses values AX and AY as input parameters. ‘rot3’
-aiculates the cosine and sine of angle THETA, but we know that these are
WX/A(AX? + AY?) and AY/V/(AX? + AY?) respectively, Write another
otation routine ‘rotxv’ that calculates the rotation matrix directly from AX
ind AY without reserting to "angle’.

\Iso we note that the first stage of the ‘rot’, “tran’, ‘scale’ and *idR’ routines
ronsists of clearing an array. This can be achieved more efficiently on the
spectrum by reDIMensioning the array. Furthermore it is often faster to ex-
nicitly assign values rather than calculate them inside FOR. . NEXT loops.

xercise 8.4

1gain in chapter 4 we noted that some writers use row rather than column
rectors, and postmultiply rather than premultiply. We decided against this inter-
retation, so that the matrix of a transformation corresponds directly with the
-oelficients of the transformation equations. In this other interpretation it is the
ranspose ot the matrix that is identical to the coefficients. Tt is useful to be
iware ol this other method. so use it to rewrite all the programs given in this
-navoter (and the remainder of this book). Remember though, it is not important
vnich method vou finally decide to use, as long as you are consistent. We use

he column vector notation because we have found that it causes less confusion
n the early stages of learning the subject!

‘omple Programs

. All the listings in this chapter, 8.1 (*mult3” and ‘idR3"), 8.2 (*tran3”), 8.3
‘scale3’), 8.4 (‘rot3"), 8.5 (‘genrot’), 8.6 {(main program) and listing 3 4
‘angle’). Required data: base vector (PX, PY, PZ), direction vector (QX, QY,
12} of the axis of rotation and the angle GAMMA, together with any number
w three-dimensional coordinates (XX, YY, ZZ). Try (0,0, 0),(1,1, 1) and
14, and points (1,0, 1), (1, 1, 1),(1, 2, 3).

9 Orthographic Projections

We mav now address the problem of drawing views of three-dimensional objects
n our {necessarily) two-dimensional graphics screen, The simple method we
describe here is a direct generalisation of the method introduced in chapter 4 for
wo-dimensional obiects. Again it involves the use of (up to) three positions. To
Itustrate these ideas we first give a brief outline, and then expand on this using
wmerous pictorial and numerical examples. We start by defining an arbitrary but
ixed triad of axes in space that we call the ABSOLUTE system. Then, as in the
wo-dimensional case. we consider three positions: {1) the SETUP, (2) the
WCTUAL and (3) the OBSERVED position.

1) The SETUP Position

vlost scenes will be composed of simple objects (for example, cube(s), see ex-
imple 9.1) that are set at a peculiar position and orientation in space. It is very
neificient to calculate by hand the complicated coordinates of every vertex of
hese obiects and input them into the program. Instead we look at each object in
urn and initially define it in an elementary way relative to the ABSOLUTE triad,
isually setting it about the origin. The information required will be that of
rertices (x-¢coordinate, y<oordinate and z-coordinate}, and perhaps lines (that
oin.pairs of vertices) or (later when we consider hidden line and hidden surface
sigorithms) facets, which are polygonal planar areas bounded by the above-
mentioned lines. This elementary definition of the object is called its SETUP
yosition. We could have other information also, such as the colour of the object.

2) The ACTUAL position

¥e use the matrix technigues of the last chapter to generate a matrix that will
nove the obiect from its SLTUP position to its required ACTUAL position
relative to the ABSOLUTE axes. We shall call this SETUP to ACTUAL matrix P.

Orthographic Projections 135
3) The OBSERVED Position

flewing an object in three-dimensional space naturally involves an observer (the
'v¢ — and note only one eye!) placed at a position (EX, EY, EZ) relative to the
\BSOLUTE axes looking in a fixed direction: this direction of view can be
iniquely determined by any other point on the line of sight, (DX, DY, DZ) say.
The head can also be tilted, but more of that later. What the eve sees when look-
ng at a three-dimensional object is a projection of the vertices, lines (and facets)
T the obiect on to a (two-dimensicnal) view plane that is normal to the line of
iaght. In order to calculate such projections we must standardise our approach.
¥e use matrix methods to transform all the points in space so that the eye is
raced at the origin, and the line of sight is along the positive z-axis. This is the
IBSERVED position, and the matrix that transforms the ACTUAL to OBSERYV-
iD position is called ¢ throughout this book, The method for calculating @ will
ve dealt with in detail later. but for the time being we assume that the eye is
iready al the origin looking along the z-axis: so in this simple case @ is the
dentity matrix.

Vhen all the points in space have been moved into this OBSERVED position,
ve note that the view plane is now parallel to the x/y plane through the origin.
laving moved the eye into the correct position, we are now ready to project the
oiect on to the view plane. But note, as yet we have neither defined the position
if the view plane (we have only its normal), nor have we described the type of
srojection of three-dimensional space on to the plane. These two requirements
ire closelv related. [n this book we shall consider two possible projections: in a
ater chapter we shall deal with the perspective projection, bul [irst we introduce
he simplest projection, the orthographic,

“he Orthographic Projection

vothing could be simpler, In the orthographic projection we can set the view
ane to be any plane with normal vector along the line of sight, When trans-
ormed into the OBSERVED position, the view plane will be any plane parallel
o the x/y plane given by the equation z = 0. For simplicity we take the x/y
siane through the origin. The vertices of the object are projected on to the view
sane by the simple expedient of setting their z-coordinates to zero. Thus any
wo different points in the OBSERVED position, (x, ¥, 2} and (x, y, z') say
where z #2z'), are projected on to the same point (x, v, 0) on the view plane.
"hen we identifv the x/v values on the plane with points in the graphics screen
:pordinate svstem (usually centred on the screen) using the methods of chapter
~. Once the vertices have been projected on to the view plane and then on to the
icreen, we can construct the projection of lines and facets. These are related to
he projected vertices in exactly the same way as the original lines and facets are
-elated to the original vertices.

56 Advanced Graphics with the Sinclair ZX Spectrum

jefore considering in detail the general case where the eye and direction of
new are arbitrarily positioned, we take an elementary example to demonstrate
the orthographic projection.

wxample 9.1
Ise the above ideas to draw an orthographic projection of a cube. Figures such
is those in figure 9.1 are called wire diagrams or skeletons (for obvious reasons).

n the SETUP vposition the cube may be thought to consist of eight vertices
(1,1,1),(1,1,-1),(1, -1, -1),(, -1, 1),(-1,1, D), (-1,1, —-1),(-1, -1, —1)
and {—1, —1, 1): vertices labelled numerically 1 to 8. The twelve lines that form
he wire cube join vertices 1 to 2,2t0 3,3 t04,4t01;5t06,6t0 7,7 to 8,
stol:1toS5,2to6,3t07,4t08,

Cigure 9.1a shows the simplest possible example of an orthographic projec-
ion of the cube. where even the SETUP to ACTUAL matrix is the identity
matrix. that is, the cube stays in its SETUP position. We get a square: pairs of
»arallel lines from the front and back of the cube project into the same line on
he screen. We put a *+” in these diagrams to show the position of the z-axis in
he OBSERVED position {(into the screen),

‘igure 9.1b shows the same cube drawn after the following three transforma-
ions place it in its ACTUAL position.

a) Rotate the cube by an angle @ = —0.927295218 radian about the z-axis —
natrix A. This example is contrived so that cos &= 3/5 and sin « = —4/5,
ensuring that the rotation matrices consist of uncomplicated elements,

b} Translate by the vector (—1, 0, 0) — matrix 8.

¢) Rotate by an angle —« about the y-axis — matrix C,

The SETUP to ACTUAL matrix is thus F=C X 8 X 4, where

3/S 4/5 0 O 100 -1 3/5 0 4/5 0N

A= [-4/5 3500\ B=fo10 0\ c=(0 1 0 ©
{0 0 10 001 0 _4/5 0 3/5 0
6 0 0 ! 000 1 0 0 1

ind P is given by

9 2 20 -15
~20 15 0 0
.2 —16 15 20
0 0 O 25

P =

I
25

0 the above eight vertex coordinate triples in the SETUP position are trans-
ormed into the following eight ACTUAL coordinate triples: (26/25, —5/25,
125),(—14/25, —5/25, —23/25),(—38/25, —35/25, 9/25), (2/25, —35/25,

Orthographic Projections J 5 7

19/25), (8/25, 35/25,31/25), (—32/25, 35/25, 1/25),(—56/25, 5125, 33/25),
—16/25,5/25, 63;25).
Hor example (1, 1, 1) is transformed to (26/25, 5/25, 7/25) because

9 12 20 =15 1
= (0 15 0 0\ x [1
5 \12 —16 15 20 1
0O 0 0 25 1

26N

-3

7

25
iince the ACTUAL (o OBSERVED matrix O is the identity matrix, the pro-

‘ected coordinates on the view plane are thus (26/25, —5/25), (—14/25, —5/25),

-38/25, —35/25),(2/25, —35/25),(8/25, 35/25),(-32/25, 35/25), (—56/25,

1{25),(~16/25, 5/25). We can place these points on the screen and join them
w1th lines in the same order as they were defined in the SETUP cube.

1.
25

\ y
i I";_.
a) (b)
PN A\
- \\\ | \
S \
N . H
R / S o
c) (d)

‘igure 9.1

5& Advanced Graphics with the Sinclair ZX Spectrum

‘'onstruction of the ACTUAL to OBSERVED Matrix @

We assume that the eye is at (EX, EY, EZ) relative to the ABSCLUTE axes, look-
ing towards the point (DX, DY, DZ). The OBSERVED position is achieved in the
‘ollowing sequence of steps,

1) A matrix D translates all the points in space by a vector (-DX, -DY, —DZ}
:0 that now the eve is at (EX - DX, EY - DY, EZ - DZ)=(FX, FY, FZ) say,
'ooking towards the origin.

0 0 -DX
[0 1 0 -DY
b= 0 01 -DZ
\0 0 O 1

2) A matrix £ changes (FX, FY, FZ) into (r, 0, FZ) by rotating space by an
ingie -« where a = tan~' (FY/FX) about the z-axis. Here #* = FX* + FY? and
- G

EX FY 0 O©
T ‘—FY FEX 0 0O
’ \ 0 0 r 0

0 0 0 r

3) A matrix £ transforms (r, 0, FZ) into (0, 0, 5) by rotating space by an angle
i — t about the y-axis, where 8 = tan™* (#/FZ). Here s> =r* + FZ? =FX* +
'Y? +FZ? ands > 0.

~FZ 0O r 0O

o 0 s 0 0
s\ -» 0 -FZ 0

3 0 0 s

4) The transformation thus far places the eye at (0, 0, —s) on the negative z-
iXis iooking towards the origin and at the same distance from it (s) as (EX, EY,
“ZYwas from (DX, DY, DZ). We now generate a matrix G, which moves the
:ve to the origin.

™,
!

0 0 0
1 00
I G P
0 0 1

5) If in example 9.1, we now premultiply P = C X B X A by our first approxi-
mation to the ACTUAL to OBSERVED matrix O (=G X FX £ X D) to find

Orthographic Projections 159

the SETUP to OBSERVED matrix R=O X P=GX FXEXDXCXBXA,
ve draw figure 9.1¢ by orthographic projection. This view is not really satisfac-
tory because the matrix (places the cube at an arbitrary orientation within the
view plane. It is much better to standardise our view, and one of the most
popular ways is to maintain the vertical , that is a line that was vertical (or paral-
el to the v-axis) in its ACTUAL position remains vertical after transformation
av (J into its OBSERVED position. Take the vertical line from (DX, DY, DZ) to
DX, DY + 1, DZ). Because of this peculiar construction, we note that inter-
neadiate matrix K (F X £ X D) transforms this line into one jeining (0, 0, 0) to
K(1,2),K(2,2),K(3,2)) = (p, q, r), say. So if we further rotate about the z-axis
by an angle §=tan"' (K(1,2)/K(2,2))=tan" ! (p/g) = tan~! (—FY x FZ{

s x FX)) using a matrix #, before multiplying by &, then the vertical is
naintained

q 2 0 0N
l .
P A £ g 00 : - SO 2
! t\ O b ¢+ 0) RAEIE B e g
0O 0 0 ¢t/
ind thus
D g —-op 0 O |2 4%
qgl_1{fp g 00 g _[¢
Ix - X —
! lar 0 O r r
| .0 0 0 ¢ 1/ |

“hus the complete transformation (figure 9.1d) is achieved by the matrix
R=QXP=GXHAHXFXEXDXCXBXA,and the projection of the line
joining points (DX, DY, DZ) to (DX, DY + 1, DZ) is the line joining (0, 0) to

0, #) on the screen; that is, the vertical. Matrix does not affect the x/v values.
Note that this technigue works in all cases except where (EX,EY, EZ) is vertically
ioove (DX, DY, DZ) to start with, and naturally maintaining the vertical makes
no sense. ihe routine ‘look3’ (listing 9.1}, given (EX, EY, EZ} and (DX, DY,

)L}, generates the ACTUAL to OBSERVED matrix in the steps shown above,
ind at each step premultiplies the matrix R: so at the end of the process, R will
10ld its original matrix value premultiplied by Q. If we wish to store { explicitly,
hen we need first to set R to the identity matrix (using ‘idR3’), then call

‘ook3’, and finally copy array R into array Q. Routine look3’ can be radically
reduced if we assume that the eye always looks at the origin (that is, DX = DY =
Z = 0). Furthermore with the orthographic projection the OBSERVED position
f the eve need not be at the origin, it merely needs to be on the z-axis: again

‘he routine can be cut down. We give the most general case, which will be
agsential for later perspective projections.

160 Advanced Graphics with the Sinclair ZX Spectrum

.isting 9.1

A200 REM Look3

821@ INPUT "{EX.EY,EZ) ";EX;",";EY;",";EL

B220 INPUT "(DX.DY,DZ) “;DX;",";D¥:",":DZ

1229 REM move origin to (DX, DY, DI).

8230 LET TX = =DX: LET TY = =D¥: LET TZ = -DZ

1240 GO SUB trand: GO SUB mult3

h249 REM move eve onto negative z—axis, looking at the arigin.

250 LET FX = EX = DX: LET FY = EY - 0Y: LET FL = EZ - Bl

826@ LET AX = FX: LET AY = FY: GO SUB angle

B27B LET AXIS = 3: LET THETA = =~THETA: G0 SUB rot3: GO SUB mult2
3280 LET AX = FZ: LET AY = SRR (FX*FX + FY=FY): GO SUB angle

1200 LET AXIS = 2: LET THETA = PI — THETA: GO SUB rot3: GO SUB mult3
3299 REM maintain vertical.

3@A LET TX = @: LET TY = @: LET TZ = SGR (FXwFX + FY*FY + FZ®FZ)
310 LET AX = TZ*FX: LET AY= —~FY*FI: GO SUB angle

U320 LET AXIS = 3:; GO SUB rot3: GO0 SUB mult3

1329 REM move eye te the origin: space i: now in the OBSERVED poszition.
3330 G0 SUB trand: GO SUB mul t3

B340 RETURN

f required, we can extend this program to deal with the situation where the
1ead is tilted through an angle +y from the vertical. This is achicved by further
otating space by —y about the z-axis. Thus matrix & should then rotate about
he z-axis by an angle § - .

“he construction of the ACTUAL to OBSERVED matrix is obviously inde-
penaent of everything other than the position of the eye, line of sight and the
1ilt of the head. So if we wish to view a series of obiects from the same position,

we can store (J and use it repeatedly for placing each object.

riow to Define an Object

t is now time to deal with the problem of representing objects to the computer.
"here is no definite solution. it really depends on what is being drawn and how
t is projected. In this section we describe various ways of setting up a data-base
0 hold the information necessary for drawing any given scene, but make no
-omment on their usefulness. This is considered in the remainder of the book
vhere we give examples to illustrate the value of particular methods in different
1tuations. We shall be using arrays to hold large sets of data, and so naturally
‘he amount of space given to arrays will depend on the amount of information
cquired for a scene: be sure that when you declare these arrays there is enough
:mace Tor all the information: if in doubt, overestimate your store requirements.
Jertices. We will always need to define vertices and other special reference
J01nts in a scene, and these we store as x, ¥ and z-coordinates in arrays X, Y and
7. respectively, assuming that if the total number is not known explicitly, then
this value is calculated as NOV. So there must be space for not less than NOV
values in each of the three arrays. These vertices may be in the SETUP, ACTUAL
or UBSERVED position, it depends on the context ol the problem. There will

Orthographic Projecrions 161

1150 be situations (perspective in particular) when we need to store the x/y-co-
rdinates of the projections of these NOV vertices — in arrays V and W. Naturally
his is unnecessarv in the case of an orthographic projection of points in the
OBSERVED position since we can use the values already stored in the X and Y
irrays. The choice of data-base really depends on the scene and type of projection.
Anes. We can store information en NOL {say) line segments in the two dimen-
slonal integer array L. The I*® line is defined by the integer indices {between |
ind NOV) of the two points at each end of the line — we store the indices in
(1,1)and [£2,1). The true coordinate values ol the two points at each end of
he line segment can be found from the X, Y and Z arrays.

wcets. A facet is a convex polygonal area on the surface of a three-dimensional
wiect, and can be defined in a number of ways. Most facets will be triangular or
juadrilateral, so we usually assume that no facet has greater than six sides to
ninimise waste of store. The NOF facets can be defined in terms of the indices
)i the vertices at their corners in arrav F; F(I, I} is the index of the I vertex on
he J'M facet. Naturally if the facet is not hexagonal then some of the values are
aarbage so we need to store array H, the number of vertices/edges on each facet.
We can also store C. the integer colour code (if any) for each facet; but be care-
ul, the Spectrum allows only two colours in any one character block. Another
nethod is to store the facet in terms of the indices of the lines in the object in
irray £, which would thus refer to array L; F(1, J) would now be the index of
he I'" line on the edge of the J™ facet. There are many other methods for
epresenting these, and other elements of a three-dimensional object: choose the
me most suitable to vour particular situation,

Construction Routines and the ‘Building Block’ Method

‘or any required object we define a construction routine that needs, as para-
neters, a matrix R to move vertices into position and any other information
ibout the size of the obiject (if the object is to be stored in the SETUP position
then naturallv no matrix is needed). The routine can then define the vertices,
lines, facets or any other elements of the object, and use the matrix R to move
he vertices of the obiect into the required position. Depending on the context
I the program, the routine can then either draw the object, or extend a data-
rase containing this information. We shall give examples of both methods.

Ve can construct a scene containing a number of similar objects (so the data
viil be in either the ACTUAL or the OBSERVED position). There is no need to
produce a new construction routine for each occurrence of the object, all we do
:ach time is calculate a new SETUP to ACTUAL matrix P. and enter it (for the
\CTUAL vposition) or Q X P {for the OBSERVED position) into the same
routine. Naturally we require one new routine for each different type of object.

'he complete scene is achieved by the execution of a main program (listing
1.2), which declares all the subroutine labels, then prepares the graphics screen

62 Advanced Graphics with the Sinclair ZX Spectrum

1sing input values of HORIZ and VERT and finally calls a routine ‘scene3’ that
organises the objects in space and then draws them. The main program below
wv1il be used in all the three-dimensional graphics programs that follow, so do
not alter it without very good reason.

Jsting 9.2

180 REM main program

11@ LET start = 9700: LET setorigin = 960D0: LET moveto = 9506
LET Lineto = %4@8: LET clip = 8488

'2@ LET rot3 = B6@D0: LET angle = 88B0M: LET scaled = B90E: LET tran3d = 9248
LET mult3 = 9180: LET idRT = 9300

13B LET scene3 = 600D: LET look3 = 8200

139 REM dimension and centre the graphics area.

‘4@ INPUT “HORIZ ",HORIZ,"WERT ",VERT

1%@ G0 SUB start

i6@ LET XMOVE = HORIZ#D.5: LET YMOVE = VERT*D.5

17T G0 SUB setorigin

179 REM set the scerne.

1BB G0 SUB scened

9@ STOP

wcene3” declares all the arrays that are required for storing information about
1 scene, together with matrices 4, B, R and (perhaps) Q for moving objects into
position. Any other subroutine labels unique to this scene are also declared. If
eauired the values of NOV and NOL (or NOF) are initialised, and these will be
ipaated in later construction routines. For each individual object (a *block]),
scene3’ must calculate a matrix # that moves this block into the ACTUAL
yosition, and then call the construction routine using the correct matrix K (per-
1aps SETUP to ACTUAL or SETUP to OBSERVED). All the blocks finally
-onstruct the finished scene. Sometimes the drawing of the projection is done
nside the construction routine, or it can be elsewhere in other routines specifi-
-ally designed for special forms of drawing (as in hidden line and hidden surface
nctures): it depends on what is being drawn and what is required of the view. As
isual, because of the restriction of not passing array parameters into subroutines,
we ao not normally explicitly generate P and @, but rely instead on updating
natrix K. If we require the ACTUAL to OBSERVED matrix then this routine
calls ‘look3’. Should we need to store O then we must first call *idR3’, which
:e1s matrix R to the identity; remember all matrix operations are done via
natrices A and R, using matrix B to hold intenmediate values.

ylwavs use the clipping version of ‘lineto’ in vour programs. 1t is so easy to
cnoose values of HORIZ and VERT that are too small. with the result that part
f the object goes outside the graphics area. Without the ‘clip’ routine the pro-
aram wiil fail. There is a positive reason, however, for making these values small:
t enables us to zoom in on a small area of a scene, drawing it very large, and all
he exterior lines will be clipped away.

Our first example of this method is listing 9.3, which is the ‘scene?” routine
weeded to construct a picture ol a single cube as shown in fisure 9.1d. The scene

Orthographic Projections 163

:an be viewed from any position with the vertical maintained, We have also a
.onstruction routine ‘cube’ (listing 9.4) that generates the data for a cube with
1des of length 2. It places the vertices, eight sets of coordinate triples, in arrays
1. Y and Z. There is no need to store the lines of the cube explicitly, we get the
niormation from a DATA statement and draw the lines straight away, The data
or figure 9.1d are HORIZ =6, VERT = 4,(EX, EY, EZ)Y=(-2, 2, 2) and
DX.DY,DZ)=(--1,0,0).

Jsting 9.3

00 REF scened/example 9.7

W10 BIM X(AY: BIM ¥Y(Bl: [IM Z{E)

2@ DIM AC4.42: DIM BU4,4): DIM R{4L,4}

#OE LET cube = A28

(B39 REM caleulate the SETUF to ACTUAL matrix R.

BAR GO SUB TaRZ

HSE LET THETAR = =@ 92729522 LET AXIS = 3: GO SUFE rocdc GO SUB mul 3
68 LET T = =%+ LET TY = 3: LET TZ = @: G0 SUB trand: 50 SUB multd
W78 LET THETA = =THETA: LET AXIS = 2: G0 SUB rot3: GO SUB mult3
1879 REM change R: premu.tiply it by the ACTUAL to OBSERVED matrix,
DEE GG SUB Look3

MBS REM call cemstructiocn routine draw the cube.

M9 G0 SUE cube

1RO RETURMN

Jisting 9.4

S REM cubed Lires (rnot stored)

:5@1 REM IN : R(3,3)

e TR W e O s TPy R AP Bt Vi P P
52l DATA)2 2R aF 4, 4. Bk 6.7,
1530 RESTORE cube

:52% REM drput SETUP vertices of cube ard mcove ther irto OBSERVED POSITION.
540 FOR T =1 TQ 8

'S5 READ KXYy, 2%

1SA@ LET ¥II) = XX*RO,1D + YY*R(1,2) + ZI#R(1,3) + R(1,4)

Sel e LEY ¥{I3 AARRCZLTD + YY%RRCZ,2) + II*R(2,3) + RIZ,42

LSER LET 241D YARROA T + YY%RR(F, 20 + IZ*R(3,3) + RI3,4)

SO0 MNEXT I

599 REM irput Line ieformation @odrew Lires oy joining pairs of wvertices.
L@A FOR T =1 TD 12

H10 FEAD L1,L7

G20 LET XPT= XCELY: EETYPT
Ae30 LET MPT = M{LZ): LEYT YPT
1640 NEXT 1

AEE BETLEAMN

e 10,1, =1,1,-1, =117, =170,
Tl BaS8: 2.6 3,72 4.8

It 11 Ik

L) GO SUB moveto
FEE20 G0 SUB Lineto

Ne can have more than one cube in the scene. For examuple, if we rewrite
scene3’ as in listing 9.5, keeping all the other routines the same, we would get
‘igure 9.2. Note that the X, Y and Z values of the previous cube are overwritten
n the second call to ‘cube’. Also, because we have the same ACTUAL to
JBSERVED matrix for both cubes (they have different SETUP to ACTUAL
natrices) we need to store @ so it can also be used for the second cube. Remem-
er (7 must premultiply the array P, which moves the second cube into the
LWCTUAL position. The data for figure 9.2 are HORIZ =9, VERT = 6, (EX, EY,
Zy=(3.2. DNand (DX. DY . DZ)= (0.0, 0).

64 Advanced Graphics with the Sinclair ZX Spectrum

Listing 9.5

HBPD REM scered/fiaure 9.2

GB1@ DIM X(8): DIM Y(8): DIM I(8)

H020 DIM ACL,4): DIM B{4,4): DIM RU&,43: DIM QU4 4)
@38 LET cube = &508

O@39 REM draw 1'st cube in OBSERVED position.

B48 GO SUB idR3: GO SUB Look3

B5@ GO SUE cube

1039 REM draw £'nd cube in O3S5ERVED position.

P60 FOR I = 1 TO &: FOR J =1 TO &

607E LET €CI,J4) = R(I, 1)

BED NEXT J: NEXT 1

SOGB GO Sup idR3

108 LET TX = 3: LET TY = 1.5: LET 7 = 2: G0 SUB trand: 50 58 mult3
118 FOR I = 1 TO 4: FOR J =1 TO 4

2128 LET A{I.J) = Q{I,J}

7130 NEXT J: MEXT I

V148 GO0 SUB mult3

158 GO SUB cube

4@ RETURN

qgure 9.2

ixercise 9.1

‘xtend the routine ‘cube’ so that information about the size of a rectangular
rlock is input, enabling the routine to construct a bleck of length LH, breadth
iH and height HT: multiply the x-values of the SETUP cube by LH/2, the y-
ralues by HT/2 and the z-values by BH/2.

vgain it shouid be noted that the modular approach we have adopted may not
e the most efficient method of drawing three-dimensional pictures. We chose
his descriptive method in order to break down the complex situation into
manageable pieces. Once the reader has mastered these concepts, he should can-
1balise our programs for the sake of efficiency. However, to show the value of
this modular approach we give another example, which illustrates just how
1nckly programs can be altered to draw new scenes and situations.

sxample 9,2
Ve wish to view a fixed scene (for example, the one shown in figure 9.2) from a
raniety of observation points.

n this case it is better to store the vertex coordinates of the scene in the

Orthographic Projections 165

A\CTUAL position, rather than the OBSERVED position, and store the line
niormation in array L. The *scene3’ routine (listing 9.6) must first set NOV and
NOL to zero and then place the objects in their ACTUAL position using matrix
¢ = P. The construction routine ‘cube’ (listing 9.7) must therefore be altered to
ipdate the data-base (but note the same routine could be used to store vertices
in their OBSERVED position, which needs only a different R = 0 X P). Then
or each different view point and direction the ‘scene3’ routine must clear the
screen, set £ to the identity matrix and call look3’, and then call a special new
irawit’ routine (listing 9.8), which uses the matrix R (holding the values of @,
he ACTUAL to OBSERVED matrix) to put the points in the OBSERVED
position and orthographically project them into arrays V and W (we cannot use
{ and Y because this would corrupt our ACTUAL data-base). Routine ‘drawit’,
vnich was labelled in ‘scene3’, can then use the information in array L to draw
he picture on the screen,

LIsting 9.6

BED REM scered/figure 9.2 (variety of views)

BTR DIM XCt&): DIM Y{(1&): DIM Z(163

GBEB CIM VO18): DIM W(TAEY: DIM L({2,243

B30 DIM ACAL 43 DIM BO4,4): DIM RO4,4)

048 LET cube = ASBB: LET drawit = 7000

W5@ LET MOV = B: LET NOL = @

@59 REM store ?'st cuke in ACTUAL = SETUP) position.
068 GO SUB idR3

B70 G0 SUB cube

079 REM =store Z2'nd cube in ACTUAL position.

@80 LET TX = 3: LET TY = 1.5: LET T2 = 2: G0 S5UB trand: GO SUB mult3
090 G0 SUB cube

099 REM Looo through different viewing positions.

100 GO SUB ‘oR3: G0 SUBR Lcok3

189 REM cdraw the two cubes in OBSERVEDR positicn.

110 CLS: GO 5UB drawit

128 GO T 1008

120 RETURK

Jdsting 9.7

1580 REM cube/ wvertices and Lines (stored)

5581 REM IN @ NOW.NOL, XCNOVD Y CNOVD EENOVD L LIZ2,.NOLD ,R{A,4)

JSQE2 REM QUT @ MOV NOL, X CHNOVY Y CNOW) ,ZONOYE L2, HOLD

310 DATA 10,0, 1070, 171 =12 1700, 0.0 =0 Ve =1 =15
1528 DATA 1-21 2.-3;' Ef‘r'r f".r1.r Sré'r 'f}r"’.r ?rar ErEr 1’Sf 2;'6‘: 3r?r "'I‘rE'
1530 RESTORE cube

548 LET NV = WOV

549 REM irput and store vertices ir position § ACTUAL or OBSERVED 3 uwsing R.
550 FOR I =1 TO B

1560 READ XXL.YY,2Z: LET NOV

=T =11

WOV + 1

G578 LET XINOVY = XX+R{1,13 + YY¥Y*R(1,2) + ZI%R{1,3) + R{1,4)
15B@ LET Y{NOV) = XX*R(2.1) + YY#*R{Z,2) + ZZI*#R(2,2) + R{Z,4]
557@ LET ZONOY) = XX*R(3.1) +

YY#R(3,2) + ZZ*R(3,3) + R(3,4)
600 MEXT I

639 REM irput and store Lire dinformaticn.

610 FOR I =1 TO 12

620 READ L1,LZ2: LET KCL = NOL + 1

638 LET L(T,NOL) = L1 + WV: LET LC2,MIL) = L2 + MY

SH40 MNEXT I

#5080 RETURN

66 Advanced Graphics with the Sinclair ZX Specirum

Listing 9.8

"DDE REM drawit

FODT1 REM IN : MOV, MOL,XOCWOW) ,YONOVY ,ZCNDVY ,LC2, NOL) (RO& 42

P02 REM move vertices irto OBSERVED positior and draw object.
218 FOR I = 1 TO NOV

P28 LET V(I} = XCIX*R{1.1D + YLID*R{1,2) + Z(ID=R{1,3Y + ER(7,4)
B30 LET W(I) = XCIY#*R(2,1) + Y{IX#*R(Z2,2) + Z(I)*R{(Z2,3) + R{Z,4
‘B4l NEXT 1

BS@ FOR I = 1 TO NOL

P6® LET L1 = L{1,I3: LET L2 = LC2,7)

E70 LET XPT = W{L1Y: LET ¥YPT = W(L1): G0 SUB roweio
A5¢ LET XPT = W{LZ2¥: LEY YPT = W(LZ23: G0 SUB Lirneto
f9@ MNEXT 1
18€ RETURNM

f the observer is travelling in a straight line and always looking in the same
rirection, we need not even calculate O each time, but simply initially manipulate
space so that the observer is looking along the z-axis, and then use the ‘setorigin’
‘outine to move the observer instead! After vou have gained expertise in drawing
hree-dimensional projections, you should cheose your construction and viewing
nethod with care. You will rarely need to go through the complete method given
n this chapter, there will always be short-cuts.

:xercise 9.2

roduce construction routines for a tetrahedron, pyramid, etc, For example,

a) tetrahedron: vertices (1,1, 1), (1, -1, -1), (-1, !, -1 and (-1, -1, 1);
lineslto2,1to3,1t04,.2t03,2to4and 3 to 4.

b} pyramid with square of side | and height HT: vertices (O, HT, 0}, (1,0, 1},
1,0, -13,(—1,0,—1}and (—1,0,);lines [to 2, 1to3, 1 to4,1to5, 2103,
Jto4.4to5and Sto 1.

“xercise 9.3

Set up a line drawing of any planar object in the x/y plane; for example, the out-
line of an alphabetic character or string of characters, and view them in various
orientations in three-dimensional space. You can place such planar objects on the
iade of a cube. All you need do is extend the “cube’ routine above to include extra
rertices and lines that define the symbols,

“hus far we have restricted our pictures to those of the simple cube. This is so
hat the methods we give are not obscured by the complexity in defining objects.
Our programs will work for any object provided it fits within the limitations of
our store {and time). For complex objects we merely extend the size of our
arravs, aithough some objects will have properties that enable us to minimise
store reauirements. Consider the jet shown in figure 9.3 — it possesses two-fold
symmetry, which can be used to our advantage. We assume that the plane of
symmeiry is the y/z plane, and so for every point (x, y, z) on the jet there is also
i corresponding point (—x, ¥, z). To draw figure 9.3 we use listings 9.1, 9.2 and

Jrthographic Profections 167

) 3, together with a construction routine ‘jet” that generates all the vertices of
he aeroplane with positive x-coordinates; thus information about only one-half
¥ the jet is stored. To construct the complete aeroplane we need also a ‘drawit’

routine {listing 9.9), which draws one side of the jet, and then, by reversing the
igns of all the x-values, draws the other.

‘Tgure 9.3

't is simple to construct these figures. Just plan your object in various sections
n a piece of graph paper, number the important vertices and note which pairs
' vertices are joined by lines. The coordinates values can be read directly from
the erid on the paper. The data for figure 9.3 are HORIZ = 160, VERT = 120,
EX,EY,EZ)=(1,2, 3)and (DX, DY, DZ) = (0, 0, 0).

jodies of Revolution

U'his far in our construction of objects we have relied on DATA to input all the

68 Advanced Graphics with the Sinclair ZX Spectrim

Asting 9.9

ARR REM ccenel/jet

HP1@ DIM X{37): DIM Y{(3Z7)}: DIV Z(37)
SRER DIM L(Z2,460: DIW V(37): DIM W{37)
AP30 DIM ACL,L): DIM B4, 40 DIM RO4,4)
A4@ LET jet = £50B: LET drawit =700
W@ GO SUB idR3: GO SUB Look3

060 GO SUB jet

SO7R GO SUB drawit

‘D&M RETURN

450D REM jet

5502 REM QUT = NOV.NOL, X CNOV) Y (NOVY Z{NOV) L{2,NOL)

510 DATH €,0,80, @,0,64, 9,8,32, 4,8,32

,52@ DATA £,4,32, 8,8,32, 4,~4,32

253@ DATA @,8,-32, 4,8,-32, B8,i,-32, 8,8,-32

54 DATA 4.-4,-32, 0,-4,-32, 8,0,24, 48,8 ,-32

\550 DATA 8,2,-32, ©,8,0, 2,8,-32, 0,32,-32

S68 DATA 28.-4,-24, 3D,-2,~24, 32,-2,~24, 34,~4,~24

1STE DATA 32.-6,-24, 3D,-6,-24, 28,-4,8 p,-2.8

\S8@ DATA 32.-2,8, 34,-4,8, 32,-6,3, 3D,-6,8

5590 DATA 31.8,-24, 31,-2,-24, 31,-2,~-12, 31,0,-12

SO0 DATA @.6,40, 2,6,40

510 DATA 1,2, 2,3, 24, 2.5, 2:6, 2;1; 3,4

628 DATA 4.9, 5.0, 691, T;12- B9, 9.,.1a, 18,11, 11,12
630 DATA 12.13, 14,15, 15,18, 15,6, 14,6, 17,18, 17,19, 18,19
648 DATA 20,21, 21,22, 22,23, 23,24, 24,25, 25,28, 26,27, 27,28
4650 DATA 28,29, 29,38, 30,31, 31,26, 20,26, 21,27, 22,28, 23,29
&666@ DATA 24,30, 25,31, 32,33, 33,34, 34,35, 35,32, 36,37

663 REM SETUP wvertex and Line information for half the jet.

SPEB LET WOV = I7: LET NOL = 486

5718 FOR I = 1 TO NOV: READ X<CI),Y(IJ,ZCId: NEXT 1

G728 FOR I =1 TO NOL: READ LC1,13,L(2,1): KEXT I

730 RETURHN

0PB REM drawit/ twe halves of the jet
P01 REM IN : MOV NOL,X{NOWY Y (NOVY ,Z(NOV: ,LCZ, NOL) ,RU4, 4%
7810 LET I5 = 1
7019 REM Locp through two halves of the jet.
@ FOR J =1 TD 2
‘A3Q FOR I 1 TO WOV
04Q LET XX = IS*X(IJ: LET ¥Y = ¥Y(I): LET ZZ = Z(i’
'E49 REF put vertices in OBSERVED position.
'BS@ LET VI{I) = X¥#*R{1.,1) + ¥YY®R{1,2) + ZZ+R{1,3) + R{1,4]
‘BE6@ LET W(I) = XX#*R(2,1) + YY*R(Z2,2) + ZI*R(Z2,3) + R{Z,4
070 MNEXT I
OB0 FOR I =1 TO NOL
09 LET L1 = L{1,1): LET L2 = L{Z,D)
71BD LET XPT = W(L1): LET YPT = W(L1): G{ SUB movetc
= T = wi{L2): GO 5UB Llineto

7118 LET XPT VCL2)Y: LET YP
128 NEXT I

130 LET IS = ~1

148 MEXT J

158 RETURN

information about lines and vertices. We consider now a type of object where
oniy a small amount of information is required for a quite complex object —this
is a body of revolution, an example of which is shown in figure 9 4.

(Orrhographic Projections f69

“he method is simply to create a defining sequence of NUMV lines in the x/v
piane through the origin; we call this the definition set. Then we revolve this set
ibout the vertical (y-axis) NUMH--1 further times to create new vertical sets.
Ihe NUMYV lines in the definition set are formed by joining the NUMV + 1
rertices (S{I), T(I), 0) (where 1 <1< NUMV + 1) in order. From this we generate
NJUMH different vertical sets, the 3B yertical set is the definition set rotated
hrough an angle PHI + 27 (J — 1)/NUMH about the vertical v-axis, for some in-
yut value PHI (¢). As well as the set of NUMH x NUMY vertical lines we intro-
duce horizontal lines also. We consider a single point (S{I), T(I), Q) at the end of
i 1ine segment in the definition set: as we rotate about the vertical axis it moves
nto NUMH positions (provided that the point is not on the axis of rotation)

S(1) x cos (@ +¢), T}, S(I) x sin (@ +¢))

vhere 8 = 2m(J — 1) with 1 £ T < NUMH.

“hese NUMH points are joined in order and the NUMH™ position is joined
vack to the first, to give the I'® horizontal set. So there are (NUMH — n) x
NUMV horizontal lines, where # is the number of vertices on the axis of rotation.

isting 9.10 is a construction routine ‘rotbod’, which draws the body of revolu-
tion when given NUMV , NUMH, PHI, the oripinal set of vertices in T and S, and
he positional matrix R. Listing 9.11 is the ‘scene3’ routine, which creates the
.cene oI a spheroid in figure 9.4 by placing eight points from a semicircle into
he definition set: HORIZ =32, VERT =22, PHI = #/25, NUMH = 10,

NUMV = 8_ viewed from (1, 2, 3) looking at (0, 0, 0). NUMYV is assumed to be
ess than or equal to fifteen in listing 9.11.

Jisting 9.10

WOBE REM scene3/spheroid

1B DIM X(32): DIM Y(32)

N2 DIM ACL,LY: DIMBI4,4Y: DIM RO4,.4LD

@20 DIM SCY: DIM TS

W43 LET revbod = &5@D

5@ INPUT "NUMBER OF HORIZOMTAL L IMES®, HLUMH
WER ENPUT "NUMBER CF VERTICAL LINES™, NJMY
SOTE INPUT "AMGLE PHI ";PMI

80 LET THETA = PI/J2: LET 1D = PI/JNUMY

159 REM gererate definition zet.

98 FOR I = 1 TO NUMY + 1

188 LET S{1) = 0% THETA: LET T(IL) = SIN THETA
118 LET THETA = THETAR + TD

120 MEXT I

130 GO SUB cR3: GO SUB Look3

1148 GO SUB revbod

»190 RETURN

sxercise 9.4
“xperiment with this technique, any line sequence will do. Try an ellipsoid: this
's essentially the same as the spheroid except that the definition set is produced

170 Advanced Graphics with the Sinclair ZX Spectrum

Listing 9.11

500 REM revboz/ body of revolution

SS@1 REM IN @ PHILMUMH, NUMY , SONUMY+T D TONUMYET D R4 4]

5589 REM create first vertical set.

5578 LET THETA = PHMI: LET TD = PL*Z/HUMH

578 LET N1 = NUMY + 1: LET € = COS PHI: LET § =SIN PHI

653@ FOQR I =1 TC N1

6548 LET XX = S(IXY*=C: LET YY = T(I): LET ZZ = S{I}*5

5508 LET X(I) XX=R(1,1) + ¥YY#*R({1,2) + Z1*RC1,3) + R{T 4D

6560 LET Y(I) XX*R(2,10 + YY#*R(2,2} + IZ+R(2,3) + R{Z2,4

1570 NEXT 1

1579 REM Locp through second vertical set.

5580 FOR J = 1 TO NUMH

2599 LET THETA = THETA + TD: LET € = COS THETA: LET 5 = SIN THETA
AP FOR I = 1 TO W1

6610 LET XX = S(I)Y*C: LET YY = T(I): LET 2Z = 5(1)45%

6628 LET X(I + N1) KX+RC1,1) + YY#R(1,2) + ZZ#R{1,3) + R{Y,4)
630 LET YOI + N1) = KX#*R{2,1) + YY*R(2,2) + ZZ*R{2,3) + R{Z2,.4)
SR NEXT I

5649 REM draw Lires in first vertical set.

S50 LET ¥PT = X{13: LET YPT = ¥{13: GO SUB moveto

608 FOR I = 2 TO W1

678 LET XPT = X(I): LET YPT
688 NEXT 1

6689 REM join correspanding horizontal vertices on the ftwo vertical sets.
0598 FOR I =1 T0 N1

THE LET xPT XCI3: LET ¥YPT = ¥Y(I): GO SUB movetg

471€ LET XPT = X(I + N1): LET YPT = ¥(I + N1): 0 SUR Lineto

171% REM copy second vertical set imto first arg repeat process,

57 el LET X{1) = XPT: LET ¥Y{I) = YPT

1 T30 MEXT I

a7 NEXT J

STSB RETURN

¥{I1J: GO SUB Llineto

Hon

Tom a semi-ellipse rather than a semicircle, There is no need to preduce only
convex bodies: lines can cut one another, cross to and fro over the y-axis and
1ave x-values that move up and down.

T'his idea can be extended into a body of rotation, Now as the set of lines
moves around the central axis, the y-values of the points do not stay fixed. They

S e o e =2
f}; . s SeSi] IS o)
i’_"' --I=1

T el g OO ot iy,

Jrthographic Projections 171

*an move in a regular manner; that is, drop by the same amount with each
‘otation through 2a/NUMH. Now, of course, the lines can make more than one
:omplete rotation about the axis, see figure 9.5, Write a program to implement
1 pody of rotation.

Complete Programs

‘rom now on we shall refer to listings 3 4 (*angle™), 8.1 {("mult3’ and ‘idR3"),
$.2 ("tran37), 8 3 (‘scale3’), 8.4 (‘rot37), 9.1 (*look3”) and 9.2 (*main program’) as
1ib3’.

1i.

1ib1°, “1ib3’ and listings 9.3 (*scene3’) and 9.4 (“cube’). Data required:
IORIZ, VERT, (EX, EY EZ)and (DX, DY, DZ). Try 6,4,(1, 2, 3),
-1,0,1).

. ‘1ib1”’, *lib3" and listings 9.5 (‘scene3’) and 9.4 (‘cube’). Data required:

iORIZ, VERT, (EX, EY, EZ)and (DX, DY, DZ}. Tty 9,6, (1, 2, 3),
—1,0, 1}. Make systematic changes to one of these input values and keep
:iil the other parameters fixed,
1ib1’. *1ib3” and listings 9.6 (‘scene3’), 9.7 (‘cube’} and 9.8 (*drawit’). Data
equired: HORIZ, VERT, and then repeated input of (EX, EY, EZ)} and
DX, DY, DZ). Try 9,6,then (1, 2,3),(-1,0,1):(3, 2, 1),(0,0, 1). Again
nake systematic changes to one of the input parameters.

. 1ib1°.*lib3” and listing 9.9 (‘scene3’, jet” and ‘drawit’). Data required:

HORIZ. VERT, and then repeated input of (EX, EY, EZ) and (DX, DY,
DZy. Try 160, 120, then (1, 2,31),(- 1,0, 30);(3, 2, 20),(0,0, 21).

1gain make systematic changes to one of the input parameters.

. flib17.*1ib3” and listings 9.10 (‘scene3’} and 9.11 (‘revbod’). Data required:

JORIZ. VERT, NUMH, NUMV (< 15), PHI, (EX, EY, EZ) and (DX, DY,
)2). Try 3.2,2.2, 10,10, 1, (1, 2, 3), (0, 0, 0); (3, 2, 1), (0, 0, 0).

10 Simple Hidden Line and Surface
Algorithms

iaving drawn a cube and other wire objects we soon become irritated by the lack
ot solidity in the figures. We would like to consider solid objects, in which case
the facets at the front of the object will obviously restrict the view of the facets
and boundary lines) at the back. In order to draw pictures of such objects we
1ave to introduce a hidden surface algorithm; or a hidden line algorithm if we
wish to draw all, but only, the visible lines on the object. There are many, many
such algorithms — some elementary for specially restricted situations, others

rery sopnisticated for viewing general complicated scenes. The time limitations
i microcomputers bar us from implementing the very complex algorithms. In
he case of the Spectrum we have also the limitation that we cannot draw more
than two colours in a character block, which therefore restricts us to line draw-
ings. Nevertheless, by limiting the types and number of objects in the scenes, it

s possible to get most acceptable pictures. In chapter 12 we discuss a relatively
-omplex algorithm, but here we consider two special types of scene — we use
the properties implicit in these special configurations to minimise the work
needed to discover which surfaces and lines are hidden. Later in this chapter we
shall give a simple method for drawing mathematically defined three-dimensional
;urfaces, but to start we consider an algorithm for drawing a single solid convex
»ody in three-dimensional space,

‘or our work on hidden line and surface algorithins we choose to define a
.cene by storing the NOV vertices of objects in the scene (in the OBSERVED
wosition) in arrays X, Y and Z as usual, However we shall now use facet informa-
ion rather than line. The NOF facets are stored in an array F {we need also the
irray H for the number of edges on each polygonal facet), and to save space
nsist that no polygonal facet has more than six edpes. Should we need more
rdges, then the facet must be broken down into a set of smaller polygons. In
yrder to make the hidden surface algorithm easier we impose a restriction on the
wrder of vertices within the array F. The vertices must be stored in the order in
which they occur around the edge of the facet, and when viewed from the out-
;1de of an obiect they must be in an anti-clockwise orientation. Naturally from
he inside the vertices taken in this same order would appear clockwise. We shall
issume aiso that all lines are the junction of two facets. Individual lines not
‘elated to facets must be added as trivial two-sided facets.

simple Hidden Line and Surface Algorithuns

"he Orientation of a Three-dimensional Triangle

Jnce we have planned our object in terms of vertices and facets, how do we

173

-neck that the facets are actually anticlockwise? Simply write a program! The
yrientation of any convex polygon can be calculated from any three of its ver-
ices taken in order. and so we need consider only an ordered triangle of vertices
rom the facet. We have already seen, in chapter 7, a method for calculating the
rientation of a two-dimensional triangle. Our problem is solved if we can reduce
he three-dimensional situation to two dimensions.
‘or simplicity we assume that all objects are SETUP about and containing the
rigin, We insist also that the infinite planes containing the facets on the surface
of an obiect do not pass through the origin. Then we rotate space so that one of
he vertices of the triangle in question lies on the negative z-axis (comparc with
outine Jook3’, listing 9.1). Since we assume the origin is inside the object and
he eve is outside, all we need do is project the transformed triangle back on to

he x/v plane (that is, ignore the z-coordinates) and treat it like a two-dimen-

domal triangle (in fact one of the three vertices will be (0,0)). Listing 10,1 is our
.olution of the problem.

Jsting 10.1

‘D
1@
20
1]
Fad
5@
'
TE
| BB
ton
i99
i
gl
2@
3R
4
449
5@
60
e
3@
0
gL
il
8
s
E11
s
5@
6@
Ta

REM orientation of a 3-D trizngle

BIM X(T3: DIM Y(33: DIM 2(3)

DIM A{4,.43: DIM BL4,4%: DIM R{&,4D

LET rot3 = B&@D: LET arole = ESE@: LET multd = YIABD: LET idR3 = Y3EP
LET J% = "TYPE IN COQRDIMATES OF TRIAMWGLE "

FCR I =1 T0 3

LET T% = "WERTEX{" + STRE I + '"1=("

INPUT (J% + I$):XCI);",";¥CI);",";2C1);")"

ERINT AT 2H23T BT830ttty By et LR 2

NEXT I

REM ingd masrix B that will put [X{T3,YC13,2070) on negative 2-aaivy,
30 SUB 4R3I

LET AX = X(1): LET AY = ¥{1); GO SUB angle

LET AXIS = 3: LET THETA = =THETA: GO SUB rotd: 60 SUB muLz3

LET A¥ = Z013): LET AY = 8GR ({1007 + ¥{1)x¥(13}: ¢ SUE argle
LET AXIS = &: LET THETE = FI - THETA: G0 SUE rot3: G0 SUE mult3

REM <ransfocrm trianghke sc that a.l wvertices Lie in ar x/y plare,

FOR I =1 T0 3

LET XX = XC¢I)s LET Y5 = Y{I): LET 1Z = (L)

LET K(I) = XX*R(1.1) + YY*R(1,2)+ ZI=R(1,3) + R{1,4&)
LET YCI) = XX*RC2.1) + YY*R(2,2)+ ZI*R(2,3) + R(Z,4)
NEXT 1

REM check if the rnow 2-B triangle is clockwise or arti-clockwise.
PRINT AT 11.@;"IF THE EYE AND THT OQRIGIN ARE ON"

PRINT AT 13 _@;"0OPPOSITE SICES OF THE FACET THEW"

FRINT AT 153,.@;"THE TRIANGLE I35 "';
LET BX1 = ¥{2) — X(1)= LET pY1 = ¥Y{(2) - ¥(1)
LET DX2 = X(3) = K(2): LET BYZ = ¥Y{(3) = Y(2&)
IF DX1*DY2 = DXZ*DYT > @ THEN FRINT “ANTI-";
PRINT "CLOCKWISE."

STOP

74 Advanced Graphies with the Sinclair ZX Spectrum

sxercise 10,1

ewrite the wire-figure routines of the last chapter using the assumption that the
1ata are given as vertices and anti-clockwise polygonal facets, and not as lines.,
‘heck your facet data with the above program. The line information is still there
st course, implicit in the facet data — they are the edges of the facet considered
s pairs of vertices. Within this information each line occurs twice, once on

:ach of two neighbouring facets. We do not want to waste time drawing lincs
wice! Because of the anticlockwise manner of constructing the figures we note
hat if a line joins vertex 1 to vertex J on one facet then the equivalent line on
he neighbourng facet joins vertex J to [, So for wire figures stored as facets we
shall draw lines from vertex I to vertex J if and only if [<J.

1 Hidden Surface Algorithm for a Single Closed Convex Body

\ finite convex body is one in which any line segment joining two points inside
he body lies totally within the body: a direct extension of the definition in
wo-dimensional space. It is automatically closed, and thus it is impossible to get
nside the body without crossing through its surface, We orthographically project
il the vertices of the obiect on to the view plane, noting that a projection of a
:onvex polygon with » sides in three-dimensional space is an #-sided convex
polygon {or degenerates to a line) in the view planc. Taking the projected ver-
ices of any facet in the same order as the original, we find that cither the new
wo-dimensional polygon is in anticlockwise orientation, in which case we are
ooking at the outside of the facet, or the new vertices are clockwise and we are
ooking at the underside. Since the object is closed we are able to see only the
utside of facets: the view of their underside is blocked by the bulk of the object.
"hercfore we need draw only the anti-clockwisce polygonal facets — a very simple
igorithm, which can be implemented in either construction or ‘drawit’ routines.
‘'or example, an adjusted construction routine ‘cube’ for climinating the

ridden lines from an orthographic picture of a cube is given as listing 10.2, Here
ve do not store the facets, but instead READ the information from DATA and
iraw the visible facets immediately. This program was used to produce figure

0.1. a hidden line version of figure 9.1d. We use all the routines fTom the lasi
‘hapter that were used to draw figure 9.1d, except of course for the construction
‘outine that sets up the data as vertices and facets, and draws the object (1his
‘eplaces listing 9.4 in the program for drawing figure 9.1d). Naturally we use the
;ame data that were used for figure 9.1d.

:xercise 10.2
‘hange listing 10.2, so that it can draw a rectangular block of length LH, breadth

H and height HT, where LH, BH and HT are input parameters to the routine,
Then draw a hidden line picture of it. Draw hidden line pictures of tetrahedra,
yramids, octahedra, elc. Add exira parameters to distort these figures so that
hev are no longer regular, but are still convex.

simple Hidden Line and Surface Algorithms 175

isting 10.2

1580 REM cube/fecets {not stored! hidden Line elimiration
1581 REM IN @ ROL4,4D

3518 DATA 1,11, 1. 0=1-1.=1,~-1,1,~1,1.,
sl DATA 1,284, 5,806, 1.,5.6;2, 2.6,
2530 RESTORE cukbe

1239 REM clace vertices in OBSERVED position.

S48 FOR I = 1 TO B

2550 READ XX, YY,2Z2

260 LET XCLY = XXsRL1.1) -+ ¥YRR() .23 + ZIR{T.3) % RLY .43

576 LET YCID) = MA=R(2.1) + YYR(Z,2) + 2ZxR(Z,3)} + R{Z,4)

“SE@ MEXT 1

590 FOR I =1 70 &

:5092 REM REALD facet *rformation and draw it if oriented anti=-¢clockwise.
Wof READ F1.FE,F3,Fé4

36T LET DXl = X(F2)=X(F1):= LET D¥1 = Y(F2)=Y{(F1)

628 LET DXZ = N(F3)=-X{F2): LET DYZ2 = Y{F3)-Y{F2)

HEZF OIF DAI#LYZ = De2*=0Y1 < A THEMN GO TO &69Q

1,11, =1,1,-1, =1,-1,-1, =1,-1,1
?."3}' EJT’EI{"’ 4-’3)5’1

648 LET XPT = X(F7): LET YPT = Y{F13: G0 SUB movetq
658 LET XPT = XCFZ2}: LET YPT = ¥Y{F£): GG SUB Lireto
1660 LET ¥PT = JXLF3): LET YPT = Y(F3}: 60 SUB Linzto
wi7@ LET ¥PT = XCF&4): LET YPT = Y{(F&42: G0 SUB Liretc
&80 LET XPT = X{F12: LET YFT = ¥{F1): GC SUB lireto
650 NEXT I

:TEE RETUFN

dgure 10.1

Bodies of Revolution

We can use this anti-clockwise versus clockwise method to produce hidden
wurface pictures of the bodies of revolution that were defined in chapter 9. As

ve go through the NUMH revolutions we generate NUMV facets with each move.
rovided these quadrilateral (or perhaps degenerate triangular) facets are care-
ully constructed in an anticlockwise orientation, then we can use the same
igorithm. Listing 10.3 is just such a routine; it produces figure 10.2, a hidden

76 Advanced Graphics with the Sinclair ZX Spectrum

urtace version of figure 9.4 (and uses the same input data), Again, because of
he modular design of our programs, all the routines needed to draw figure 10.2,
xcept ‘revbod’, are the same as those given in chapter 9. Now, however, we
nust deal solely with convex bodies of revolution.

R
I
iy g .-"'--I. :H-#;H-;K ﬁlﬂ‘ﬁ*\h_&
' p LY
i S "‘ N,
i . J- -~
LS \\ \
VST
I| - 1" "ll7 a
' 8
] ?——______ e __r_i—i
[o

‘igure 10.2

15 the routine rotates the definition set of lines about the vertical axis, it
:tores the vertices of two consecutive vertical sets of lines, These form the
rertical edges of one sfice of facets. The vertices on these facets are immediately
ransformed by R (the SETUP to OBSERVED matrix) and stored in arrays X
ind Y. In such a configuration of pairs of vertical lines the first set of vertices
1ave indices from 1 to NUMV + 1 (= N1), and the second from N1 + 1 1o 2#NL.
The I'" facet is bounded by four lines, two vertical joining vertex I'to [+ 1, and
+Nltol+NI1 + 1. and two horizontal joining [to 1+ N1, and 1+ 1 to 1 + NI

‘1. Adjustments must be made if one of the original vertices is on the axis of
rotation. in which case the quadrilateral degenerates to a triangle, The order of
vertices in each facet is carefully chosen so that they are in anti-clockwise
rientation when viewed from outside the object. This allows us to use our
simpie algorithm to draw the object with the hidden lines suppressed. This

echnique was used also to draw figure I.1 in the introduction.

Exercise 10.3

Experiment with this technique. Any initial set of lines will do, provided that it

itarts and ends on the vertical axis and the polygon thus formed in the x/y plane
is convex.

simple Hidden Line and Surface Algorithms 177

Jsting 10.3

JS@M REM revbod/ convex body of revolution (hidden Line elimination)
15@1 REM IN @ PHI.NUMH, MNUMY, SCHUMYET) TONUYMIYHT) RO4L 4D

318 LET THETA = PHI: LET Tb = PI+2/WMUMH

520 LET M1 = MUMY + 1: LET € = €05 PHI: LET 5 = SIN PHI

1528 REM create first vertical set.

1530 FOR 1 =1 TC WY

y54@ LET XX = SCIX=C: LET ¥Y = T{I)}: LET 22 = S5L1)=*5%

ySEA LET A(I)} = ¥X*RC1.1) + ¥vy#+R{1,2) + 1Z+R(1,3} + R(1,4)
SER LET ¥(I) = AX*R(Z.1) + YY*R(Z,2) + I1Z*R(Z,3} + R(2,4)
1570 NEXT I

1579 REM loop tarough secono vertical set.

258@ FOR b = 1 TO MUMH

59@ LET THETA = THETA + TD: LET € = (0S THETA: LET § = SIN THETA

SR FOR I = 1 T N

3618 LET XX = SCID%C: LET YY = T{I): LET 2Z = S{I)*S5

628 LET ¥A{I + N1} AX*R{T1,1) + YY®R(T,2) + ZI*R(1,3) = RO7,4]

3630 LET Y{(I + N1J NX%R{Z,1) + YY*R{Z,2) + I2#R(2,3} + RLZ,4)

HAE NEXT I

1549 REM take anticlockwise triangle from each facet befweer the two sets.
t it keeps its orientation on srojection then it is visible.

b5 FOR I = 1 TO MUMY

660 LET F1 = I: LET F2 = I +:1: LET F3 = F2 + Ml

6570 IF I = WUMV THEN LET f3 = F3 - 1

68@ LET DX1 = X(F2) — XCF1): LET DY YLFZ) — Y(F1)

3600 LET DMZ2 = X(F3) - X(F2): LET BY2 = Y(F3) - Y(F2)

wBE IF DX1%DYZ = DX2*DY1 < B THEN GO TO 4770

Sr 1B LET F3 = F2-+ Nt: LET E4 = F3 =1

H

720 LET XPT = X{F1): LET ¥PT = YC(F1>: GO SUB moveto
3738 LET XPT = X(F2): LET YPT = Y(F2): GO SUB Limeto
748 LET XPT = X(F3): LET YPT = Y{(F3): 60 S5UB lireto
17758 LET WPT = X(F4): LET YPT = Y{F4): GO 5UB linetc
2768 LET XPT = X(F1): LET YPT = Y(F1): GO SUB linetec
A TTH MEXT I

W79 REM cepy second set into first and repeat process.
TR FOR I =1 TO MY

Y790 LET X{I) = X{I + M1J): LET Y(IY = ¥Y{I + MN1)

B0 MEXT I

E10 MEXT J

878 RETURN

Jrawing a Special Three-dimensional Surface

"he call for pictures of convex solids is limited, so we now lock at one type of
1on-convex figure that can be drawn using information about its special form.
¥e consider the construction of a restricted type of three-dimensional surface in
vnich the y-coordinate of each point on the surface is given by a single-valued
‘unction ‘f’ of the x-coordinate and z-coordinate of that point; ‘f” will be includ-
:a as a routine in the program — one such example is given in listing 10.4, the
unction v = 4 x SIN (XZ)/XZ where XZ =+/(x* +2?) shown in figure 10.3.

“he data required were HORIZ = 32, VERT = 22, (EX,.EY,EZ)=(3, 2, 1),
DX,DY,DZ)=(0,0,0),NX=NZ=16,XD=2ZD= -10and XT=2ZT = 10.

178 Advanced Graphics with the Sinclair ZX Spectrum
Listing 10.4

AR REM scerel

WB1@ DIM ACA.4): DIM BU4,4): DIM RO&,4L)D

S028 LET surface = ASQM: LET drawlirn = 7ER0: LET £ = 7700
SE3R G0 SLUB ioR3: GO SUE Look3

GRL@ G0 SUB surface

S@5@ RETLIEM

S0 REM surface

7SB1 REM IN : R{4,4)

S18 LINM D(2567

1520 INPUT UMK, XMIKN, XMAX "aNx:","sdMIN:", " XMAX
:53@ INPUT “NZ,ZIMIN,ZMAX ";NZ;",";IMIN;",";IMAX
S4R LET XLIF = {XMAX — XMIN}/NX

;550 LET IRIF = (ZMAY — ZIMIND/NZ

1559 REM draw zerc'th set of fixed-x [ires.

56@ LET XX = XMAX: LEY ZZ = ZIMIN: GC sUz f

5570 LET XA = XX*R(1,1) + Y¥*R{1,2) + ZI%*R(1,3) + F(7,4)
:D8Q LET YR = MY*R(2,1) 4 ¥YY#R{Z2,2} + ZI#R(2,3} + R{Z4}
5590 FOR 4 = 1 TO NZ

608 LET 127 = Z7 + ZDIF: GO SUB T

]

3618 LET XB XEAR{T,.1) + YVYHRR(T,2) & ZZ*R(1,3) + R(1,4)
628 LET YB = XX*R(2,1) + YY#R(Z,2) + ZI*R(£,3) + R(Z,4)
630 GO SUB drawlin

S48 LET XA = XB: LET YA = 1B

B 58 NEXT J

3656 PEM draw zero'th set of fined-z Lires.

A8 FOR J = 1 TO WX

7B LET XX = XX-WDIF: GO SUB f

>6EQ LET XB KE*R(1,10 + YT*RE1,Z} + ZZ#R(T,3T + RO A
6098 LET YH XXARCZ 1) + YY#R(Z,2) + 1Z*R(2,2) + R{Z,4D
O G0 SUB drawlin

6718 LET X2 = ¥B: LET YA = YB

wwe@ MEXT J

729 REM mowe » values back “r NX steps.

730 LET X8 = ¥MAX

M FOR I =1 TO KX

748 REM draw visible parts of ore from each ot the fixed-z Lines:
A the x values vary from (I-1)st x—Lire to the 1'th.
AR LET S = IMAK

TEE FOR J = 1 TO NZ

2r70 LET Z5 = IS - ZDIF

7wl LET XX = XS: LET IZ = 25: GO 3B f

5798 LET XA = XX*RC1,1) + ¥Y+R(1,2) + IZ+*R(1,3) + R(1,4)
1BE0 LET YA = XKE*R(2.1) + YY*R(2,2) + II=R(2,3) + R(Z,4)
10 LET X¥ = ¥S=XDIF: GO sUg f

B2B LET XB = XKAR(1.1) + YY¥=R(1,2) + IZ#*R{1,3) + RO1,40
1830 LET YB = KX*R{2,1) + ¥Y=*R(Z2,2) + LI*R{Z,3) + R{Z,4)
SBA0 G2 SUB crawlir

GEEQ NEXT J

1E59 REM draw visible parts of the fixed=x Lines.

B6@ LET ZZ = IMIN: G0 suB f

yE7B LET XA = XX*R{1.1) + YY*R(1,2) + ZI=R{1,3} + R{1,4)
2BBE LET YA = XX#R(Z,1) + Y¥*R(2,2) + ZI*R(Z,3} + R{Z,4)
B9@ FOR J = 1 TO NZ

00D LET 2Z = IZ + IDIF: GO SUB f

6910 LET XB = XX*R(1,1) + YY*R(1,2) + ZZ*R(1,3) + R(1,4)
1920 LET YB = X¥+R{2.1) + Y¥#R(2,2) + II#RIZ,3} + R(Z,4)

1930 G0 SUE drawlin

948 LET XA = XB: LET YA = YB
G50 NEXT J

260 LET XS = XS-XDIF

S7D MEXT Z

CREE RETURM

simple Hidden Line and Surface Algorithms 179

'‘Off REM drawlin/ draw Lire betweer points

P01 REM IN @ XA.YA,XB, YR, D(258)

G088 REM visible parts of Lire between (XA,YA) and (XB,YB).
TBDY PEM IA and IB are the x-pirel positions aof the two points.
010 LET IA = FM X(XA): LET IB = FN XI{XB)

G2@ LET ¥ = YA: LET YD = @

O%F IF IA <> IB THEM GO TO 7050

039 REM if IA=IB then only draw Lire if second point is above first.
B4@ PLOT IA,DCIAD

BS@ LET IY = FN YLYED

Ta@ IF IY > DCIAY THEN DRAW @,IY - D{IA): LET DCLAY = IY
B7E RETURN

@79 REM move in pixel colunrs from Left to right,

PBB LET Y0 = (YE = YFRI/C(IB - IAD

A% FOR K = IA TO IB

180 LET IY = FN Y(YJ

199 REM if y-pixel ¥s greater than D, then reset D-value.
118 IF D{K) < IY THEN LET B(K) = IV

D LET Y = ¥ + YD

120 NEXT K

139 REM join all the points ¢I,D{1)} where IA<=I<=IBH.

148 PLGT IA,DCIAD

120 FOR K = IA + 1 TQ 1B

160 DRAMW 1,.D(k) = L{K = 13

170 MEXT K

188 RETUEN

2aP REM f/ function to be drawn

201 REM IN : XX,2Z

@2 REM QUT : ¥Y

210 LET YY = & LET XZ = SR (Xx=XX + I7#71)
Fed IF X2 > D.00DPBT THEN LET YY = &4%5IM (XZ)/X2Z
230 RETURN

‘.-
e - T--'_
- i A R, o
—-__— . . e _':?;_::.____
il o _]‘_‘4..."_""—?:_
U . S S e A, ¥ s
g e A 2 S Sy S - A
g S e e e, i ‘l.':'i__ } i sy :
S S TR
Py £ B N O ey
v N o
Tr-"—J_‘“‘_L'E:'_\T" F-J_-F._‘i ‘I.Ll‘ r\ -"‘.—.,I--T.'_" _':":: -
sl e, i S -r i *‘., i '.H T, T -Y-’.‘-'})
L —d—-—-—f_.:__‘:f-:_ i | i II -,‘l_. --__._"-i...—-""_rl‘- _'I
B e A i gy o R T
iy S — — i
-'“_"—n—i-__'_I i _.'__‘—— —_— '-1._“‘ s i
L. |.=] '_I?'N-:._.“J'-- I.'L-:'i'n_';i-‘-?‘lll_-_ "L—r‘".
B Y _:"-...I_'_. - .'ﬁ. :
rigure 10.3

since it is impossible to draw every point on the surface, we have to approxi-
nate by considering a subset of these surface points. We choose those points with
zjz coordinate on a grid; in other words when orthographically viewed directly
rom above (thus ignoring the y-values), the points form a rectangular grid, This
mid is composed of NX by NZ rectangles in the x/z plane. The x-coordinates of
he vertices are equi-spaced and vary between XB and XT (XB < XT) and the
:qui-spaced z-values vary between ZB and ZT (ZB < ZT). There are thus

80 Advanced Graphics with the Sinclair ZX Spectrum

NX + 1) x (NZ + 1} vertices (X, Z) in the grid that can be identified by the pair
i1 integers (7,)

{=XT +i(XB — XT)/NX 0<i<NX
T=ZT +j(ZB —ZT)/NZ 0<j<NZ

“he equivalent point on the surface is (X, Y, Z) where Y = f(X, Z). Every one of
he {INX + 1) x (NZ + 1) points generated in this way is joined to its four
mmediate neighbours along the grid (that is, those with an equal x-value or z-
ratue), unless it lies on the edge, in which case it is joined to three, or in the case
T corners to two, neighbours. The grid lines can be considered as NX + 1 sets of
tifferent fixed-x line segments and NZ + 1 sets of fixed-z line segments. For
xampie the I'" fixed-x set of lines (0 <1< NX) consists of NZ lines joining pairs
I points equivalent to the grid points (I, J) to (I, J+ 1), where 0 ST <NZ - |.

“he surface can undulate. so not all the lines need be visible from a given view
yoini. We devise a very simple method to eliminate the hidden lines by working
tom the front of the picture to the back,

Vo simplify the algorithm we assume that the eye is always in the positive
juadrant (that is, EX > 0 and EZ > 0), and that the eye is always looking at the
imigin (DX = DY = DZ = 0). If the function is non-symmetrical and we wish to
rew it from another quadrant, then we simply change the sign of x and/or z in

he function. We can then transform the surface into the OBSERVED position.

n this position we first orthographically project the front edge, the (wo grid
ine with x = XT and z = ZT. on to the view plane. That is, the zero™ set of

ixed-x lines and the zero™ set of fixed z-lines. We now work from the front to
he back in NX steps, In the I'® step (1 <1 < NX), we draw first the visible parts
1 one line segment from each of the NZ fixed-z sets;the J™ such line (1< J<NZ)
0ins the points equivalent to the grid points (I — 1, 1) to (I, J). That is, we join
he corresponding points on the (I — 1) fixed-x line to the I'™", starting at the
rero'® fixed-z line and working backwards. Then we draw the visible parts of the
h set of fixed-x line segments. This is all programmed in routine “surface’.

s vet we have not explained how to draw the visible parts of the lines;
routine ‘drawlin’. We define an array D of 256 values, one lor each column ol

pixels across the screen. When we first draw the zero™ sets of fixed-x and
ixed-z lines. we put the pixel values of the points on these lines in the array D.
Ve calculate the row/column values for every pixel on a given line segment and
iraw it if and only if the row value for a column is greater than the value stored
in D. Whenever a pixel is added to the diagram then the value of array D is
iutered accordingly. This method furnishes us with a hidden line elimination
igorithm for mathematical surfaces because of the order in which we consider
he lines. If we move out of the positive quadrant, or let the scale of the figure
exceed the size of the graphics area, then we shall incur errors.

sirtple Hidden Line and Surface Algorithms 181

~xercise 10.4

“hange the functions ‘{” used by this program. For example, use /= 4 x SIN(¢)
vhere t =+/(x? +z%).

xercise 10.5

The above program does not draw the underside of the surface if it shows below
he zero™ fixed-x/z lines. Alter listing 10.4 to correct this shortcoming. Define
inother array E(256) that initially holds information on the nearest edges, and
vhenever pixels on the line segments go below the values stored in E then the

sixel is drawn and the value of E altered. Can we use the same order for drawing
he lines?

Complete Programs

1. “1ib3” and listing 10.1. Data required: the vertex coordinates of a triangle
X(1), Y(I), Z(1)), where 1 <1< 3, Try (1,0, 1},(1,1,0)and (0, 1, 1):
:1so the same vertices in a different order (1, 1,0),(1,0, 1} and (0, 1, 1}.
[. 1ibl’. "lib3’ and listings 9.3 (“scene3’) and 10.2 (‘cube’). Data required:
I0ORIZ, VERT. (EX, EY, EZ), (DX, DY, DZ). Try 9, 6,(1, 2. 3),(0, 0, —1).
II. 1ibl’, 1ib3" and listings 9.10 (*scene3’} and 10.3 (‘revbod’). Data required:
I0RIZ, VERT, NUMH, NUMV (< 15), PHI, (EX, EY, EZ), (DX, DY, DZ).
Iry 3.2,2.2,10,10,1,(1, 2, 3),(0,0, -1).
V. 1ib1’, “lib3” and listing 10.4 (‘scene3’, ‘surface’, “‘drawlin” and “f”). Data
equired: HORIZ, VERT, (EX, EY, EZ), (DX, DY, DZ), NX, XB, XT, NZ,
"B, ZT. Try 30,20,(1, 2, 3),(0,0,0), 16, - 8, 8, 16, -8, 8.

I1 Perspective Projections

We have seen that the orthographic projection has the property that paraliel
ines in three-dimensional space are projected into parallel lines on the view
piane. Although very useful, such views do look odd! Our brains are used to the
rerspective phenomenon of three-dimensional space, and so they attempt to
nterpret orthographic figures as if they are perspective views. For example, the
:ubes of figures 9.1 and 10.1 lock distorted.

So it is essential to produce a projection that displays perspective phenomena
that is, parallel lines should meet on the horizon); an object should appear
:mailer as it moves away from the observer. The drawing-board methods devised
by artists over the centuries are of no value to us. Three-dimensional coordinate
peometry and the concept of ACTUAL to OBSERVED positions, however
urnish us with a relatively straightforward technique.

r—
| = '
|/
ﬂ”.\
N—
I
""-l L-‘__— 1
o =——
=\
- \[3#
/

Tgure 11.1

‘erspective Projections 183

¥hat is Perspective Vision?

"o produce a perspective view we introduce a very simple definition of what we
nean by vision. We imagine every visible point in space sending out a ray that
nters the eve. Naturally the eye cannot see all of space, it is limited to a cone of
avs that fall on the retina, the so-called cone of vision, which is outlined by the
1ashed lines of figure 11.1. The axis of this cone is called the straight-ahead ray.
Ve imagine that space has been translormed into the OBSERVED pasition with
he eve at the origin and the straight-ahead ray identified with the positive z-axis.
¥e place the view plane (which we call the perspective plane in this special
ase) perpendicular to the axis of the cone of vision at a distance d from the eye,
n order to torm the perspective projection we mark the points of intersection of
:ach ray with this plane. Since there are an infinity of such rays this appears to
ye an impossible task. Actually the problem is not that great because we need
consider only those rays that emanate from the important points in the scene;
hat is. the vertices at the ends of line segments or the comers of polygonal
acets, The tinal view is formed by relating the projected points on the perspec-
ve plane in exactly the same way as ithey are related in three-dimensional
:pace, and then identifying the view plane with the graphics screen,

‘igure 11.1 shows a cube observed by an eye and projected on to two planes,
ina the whole scene is drawn in nerspective! two example rays are shown: the
irst from the eve to A, one of the near corners of the cube (relative to the eye),
ina the second to B, one of the far corners of the cube. The perspective pro-
ections of these points on to the near plane are A" and B', and on to the far
riane A" and B"”. Note that the projections will have the same shape and
wnentation. but they will be of different sizes,

Calculation of the Perspective Projection of a Point

Ve let the perspective plane be a distance from the eye (variable PPD in

ater programs). Consider a point P= (x, v, z) in space that sends a ray into the
rve. We must calculate the point where this line cuts the view plane (the z = d
slane); suppose it is the point P = (x', ',). Let us first consider the value of
s by referring to figure 11.2. By similar triangles we see that y'/d = y/z, that is
7=y xd/z. Similarly x’ = x x d/z. Hence P'=(x x d/z, y x d/z, d). Since the
new piane is identified with the x/y coordinate system of the graphics screen,
ve can ignore the z = d coordinate.

xample 11,1
‘alculate the perspective projection of a cube with eight vertices (0, 0, 4) +
+1, %1, 1) on the perspective plane z = 4, where the eye is origin and the
straight-ahead ray is the positive z-axis.

“he soace is defined so that the scene is in the OBSERVED position. We can

&4 Advanced Gravhics with the Sinclair ZX Spectrum

ar .

_ B
camt T o | R ey

Yigure 11.2

caiculate the projections of the eight vertices using the above method. For
:xample, (1,1, 3) is projected to (1 x 4/3,1 x 4/3,4}=(4/3,4/3,4) —+(4/3, 4/3)
m the screen. So we get the eight projections

1,1,3) —=(4/3,4/3) (1,-1,3) —(4/3,-4/3)
—1,1,3)—>(-4/3,4/3) (-1,—1,3)~>(—4/3, —4/3)
(1,1,5) —=(4/5,4/5) (1,-1,5) —({4/5, 4/5)
—1,1,5)=>(—4/5,4/5) (-1,—1,5)~>(—4/5, —4/5)

ind the resulting diagram is shown in figure 11.3a.

axls5
__yiaxis

i-dX15

rs

T o < T e

u'a} ”_))

ietre 11.3

"roperties of the Perspective Transformation

1) The perspective transformation of a straight line (I'; say) is a straight line
I'; say). This is obvious because the origin (the eye) and the line I'; form a
stane (£2 say) in three-dimensional space and all the rays emanating from points
n 1" lie in this plane, (If the line enters the eye, £ degenerates into a line).
Naturally £ cuts the perspective plane in a line ['; {or degenerates to a point)

‘erspective Projections 185

ind 50 the perspective projection of a point on the original line [I'y now lies on
he new line I'» . It is important to realise that a line does not become curved on
Yerspective projection.

2) The perspective transformation of a facet (a closed sequence of coplanar line
.egments) is a facet in the perspective plane. If the facet is an area beunded by #
oplanar line segments, then the transform of this facet is naturally an area in the
' = ¢ plane bounded by the transforms of the # line segments. Again note that no
:urves are introduced in this projection: if they were, then the task of preducing
perspective pictures would be far more complicated.

3) 'The projection of a convex facet is also convex. Suppose facet F, is project-
:a on to facet F, . Since the projection of a closed facet is also closed and lines
;0 Into lines, then points inside F; are projected into points inside F,. Suppose
‘4 1s not convex: then there exist two points p, and p, inside F; such that the
ine 1oining them goes outside this facet. Hence there is at least one point p on
he line outside ¥.. [f p; and p, are projections of points ¢, and g, from F, .
hen p is the projection of some point g on the line joining ¢, and g, . Since the
'y 18 convex then g must be inside F, and thus p must be inside F; : a contra-
iiction. and our proposition is proved,

4) All infinitely long parallel lines appear to meet at one point, their so-called
arishing point . If we take a general line (with base vector p) from a set of
narailel lines with direction vector &

P+ uR=(Xp, Yp. Zp) + W(Xp, Vi, 2n)

where z,, > 0; then the perspective transform of a general point on this line is

AR T —_——— —=

(Xp tuxp)x d Up +uyn)x d)
(zp + Hzp) (zp + Hzy)

vhich can be rewritten as

(xp +xp/pu)yx d (vg +yp/u) X ﬂ‘)

(zp +zp/u) (zn *zp/H)

As we move along the line towards large z-coordinates (that is, as g = =), then
he line moves towards its vanishing point, which is therefore given by

d x xp/zy, d x yu/zy). This vanishing point is independent of p, the base point
T the line. and hence all lines parallel to the direction & have the same vanish-
ng point. Of course the case z;, <0 is ignored because the line would disappear
sutside the cone of vision as p = oo,

5) The vanishing points of all lines in parallel planes are collinear. Suppose that
he set of parallel planes has a common normal direction # = (x,,V,.2,). If a
seneral line in one of these planes has direction i =(xy,, ¥z, 23}, then & is per-

186 Advanced Graphics with the Sinclair ZX Specirum

pendicular to a (all lines in these planes are perpendicular to the normal to the
plane n). Thus a2 - & = 0, which in coordinate form is

b XX TV X Ytz Xz =1

lividing by zj, gives
in X XpfZp T Vn X J}h;"'fzh tz, =0

and so the vanishing point (d X x/zp, d X yu/zj } lies on the straight line
Ky X X+ VX pHdX 2,20

and the statement is proved,

‘xample 11.2
‘ind the vanishing points of the edges of the cube in example 11.1, and of the
iiagonals of its top and bottom planes.

¥e divide the twelve edges of the cube into three sets of four edges, each set
aeing parallel to the x-axis, v-axis and z-axis respectively and so with directional
rectors (1,0,0),(0, 1,0)and (0,0, 1). The first two sets have zero z-values, and
:0 their extended edges disappear cutside the cone of vision and are ignored,
vhereas the third direction has vanishing point {4 x 0/1,4 x 0/1)=(0, 0) on the
new plane. On the top and bottom faces the diagonals have directions (1,0, 1),
he major diagonal, and (—1, 0. 1), the minor diagonal. The major diagonal on
he top plane is (—1, 1, 3)+ u(1, 0, 1), and so the vanishing point is (4 x 1/1,
Ax (/1) = (4, 0). The minor diagonal on the top plane is {1, 1. 3)+u(- 1.0, 1)
and the vanishing point is (4 x —1/1.4 x 0/1) = (—4, 0). By similiar calculations we
ind that the vanishing points of the major and minor diagonals on the lower [ace
ire also (4, 0) and (-4, 0) respectively. The relevant edges are extended to their
ranishing points in figure 11 3b, Note that all the lines mentioned lie in the two
rarailel planes (the top and bottom faces of the cube) and so the vanishing points
should be collinear: since (4.0}, (0, 0) and (- 4, 0) ali lie on the x-axis, this is
obviously true. It can be shown similarly that the vanishing points of the diagon-
ats of the side faces lie on a vertical line through the origin.

ixercise 11.1

Jraw a perspective view of a tetrahedron with vertices (1,1, 53), (1, -1, 3).
~1,1,3)and (-1, -1, 5). Find the vanishing points (inside the cone of vision)
if lines that ioin pairs of mid-points of edges of the tetrahedron.

erspective Projections 187
*rogramming the Perspective Transformation

The main program for drawing a perspective view of any scene is the same as
hat for the orthographic view, namely listing 9.2. Again the overall scene is
:reated by a call to a routine ‘scene3’ similar to those discussed in chapter 9, We
snall often need to calculate explicitly the ACTUAL to OBSERVED matrix, so
hat the eve is in the OBSERVED position at the origin looking along the positive
2-ax1s. This is achieved by routine ‘look3’, given in chapter 9 (listing 9.1). Calls
ire made to construction routines, each having a matrix R as parameter, Finally
he figure must be drawn, inside the construction routines or in a ‘drawit’
outine,

"he only difference between the program that draws a perspective view and
he program of chapter 9 (orthographic view}) is in the calculation of the co-
rdinates of the projected image on the view plane. Unlike the orthographic, in
he verspective projection the coordinates on the view plane cannot be identified
vith the x-value and y-value of the point in the OBSERVED position. We need
Lo store the perspective transformation of the vertices in the arrays V and W: the
IPvertex (X (1), Y(I), Z(1)) in the OBSERVED position is projected to (V(I),
N(I)). The values in arrays V and W are given by

/(I)= X(1)*PPD/Z(1) and W(I)=Y()*PPD/Z(I) forf=1,2,... NOV

vnere the value of PPD is set to 3*VERT: the reason for this equation is given in
the next section. The calculation of V and W can be made in the construction
‘outine in the ‘scene3’ or ‘drawit’ routines: this simply depends on the scene
heing considered.

sxample 11.3
We draw a fixed scene (the two cubes described in example 9.2) in perspective
tom a variety of observation points, setting HORIZ = 9 and VERT = 6. The
1ecessary ‘scenel’ routine is given in listing 11.1 below; note that this calculates
PD (compare with listing 9.6). This listing places the group of cubes in their
\CTUAL nosition using the ‘cube’ routine of listing 9.7, and then loops through
i numoper of different OBSERVER vpositions, For each time through the loop we
all ‘look3’. which requires (EX, EY, EZ) and (DX, DY, DZ) to calculate the
ACTUAL to OBSERVER matrix. Then the perspective ‘drawit’ routine (listing

1.2} is called. This uses the matrix to transform the vertices from their (stored)
\CTUAL position to the OBSERVER position, and places the projected vertex
:oordinates in arrays ¥V and W, according to the above equations. The routine
:an then finally draw the edges of the cubes in perspective.

‘igure 11.4 was drawn using (EX, EY, EZ) = (15, 10, 5) and (DX, DY, DZ) =

0, 0, 0). Compare this with the orthographic view of the same scene given in
figure 9.2,

88

Advanced Graphics with the Sinclair £X Spectrum

Asting 11.1

7]
SB1E
H028
45020
640
052
&1t
L0489
H@TE
RE@
LR98
GB%S

REM scened/figure 9.2 (variety of views?

DIM X{16): DIM YC(16): DIM Z{16)

DIM V(1&83: DIM W(163: DIM L(2,24)
DIM AC4,4): DIM Blh,4): BIM R{&,4
LET cube = A5BE: LET crawit = TOE

}
i)

LET PPL = I+VERT: LET M0¥W = @: LET NOL = &
REM place tweo cures in ACTUAL position.

GO SUB idr3

GO SUF cule

LET TX = Z: LET TY = 1.5: LET T%
GO SUB cube

REF Loop through variety of views

5108 GG SUB oR3: G B LookZ
6118 CLS 1 GO SUB drawit
6120 G0 TO &1ED
6130 RETURN
dsting 11.2
7DE@ REM drawit/ cerspective

A
apy
‘018
‘B
'BIR
‘D4R
JB49

5@
TRed
g7 e
0rG
pep
B9@
108
148
120
138

2 G0 Sup irend: GO SUB mult3

REF. IN . FPL.NOV,NOL,X{NCW) ,YCNOW) ,ZONOV) ,LCZ,NOLS R4, 42
REM cut vertices in QOBBERVED positiona

FOR I =1 70 WOV
LET ¥X
LET YY
LET 22
REM nerspective projection.

LET W(I} = XX*PPD/1Z

LET W{L) = YY&*PPD/SZZ

NEXT 1

REM™ Jraw lires.

FOR I =1 TCO NOL

LET L1 = L£1, D3z LET L2 = L(Z,D)

LET XPT = W(L1:: LET YPT = W(L13:
LET XPT = W(L2): LI YET = W(LZ):
MEXT I
RETL'FN

X{Z0#R09,1) ¢ YCIIRR(T,2) + ZCLI#R(1,3) + R(1,4)
XCII*RC2,1) = ¥{1I*R(2,2) + L{I)*R(Z,3) + R{Z,4)
XCID*R(3,1) + Y{IV#R(Z,2) + ZUI)*R(I,3) + R(3,4)

G0 SUB moveto
GO S5UB Limeto

‘Teure 11.4

“erspective Projections 189

“xercise 11.2
Jraw various perspective views of a wire tetrahedron and a pyramid,

“he Choice of Perspective Plane

"he only value required for the perspective transformation that has not yet been
liscussed is PPD, the distance of the perspective plane from the eye, We can see
rom figure 11.1 that different values of PPD produce pictures of different sizes.
¥Vhich one do we choose? s there a correct value?

I'f we consider the practical situation, we note that the observer is sitting in
'ront of a television and the perspective view plane is identified with the plane of
he television screen. Normally the observer is sitting at a distance that is about
hree times the height of the screen from the terminal, In the scale of our map-
ying from the real-world to the graphics area of pixels, this is a distance 3*VERT
the value we used above). If we choose PPD greater than this value it is as
hough we are creating a close up, and if PPD is less than 3=VERT we get the
:maller image of a long shot.

Clipping

"heoreticallv, objects may be positioned throughout space, even behind the eye,
uthough we consider only points with positive z-coordinates in the QBSERVED
rosition. [iven so some of these points go outside the cone of vision and become
nvisible. In fact. part of the cone of vision is outside the screen area (we can,
uter all, see the outside of the graphics area). We are left with a subset of the
:one ol vision, the pyramid of vision. Thus all points outside this pyramid (that
5. those whose perspective transforms take them off the screen) must be ignored.
‘Ne noted that the Spectrum displays an error message whenever we try to DRAW
i line to a peint off the graphics area. It is essential that we use the clipped
lineto’ routine (listing 3.4) in order to avoid any problems. In fact we further
imit scenes so that all vertices in the OBSERVED position will have positive z-
-atues; that is, all objects must lie in front of the eye (although not necessarily
nside the cone of vision). This will avoid peculiar perspective projections of
yoints that lie behind the eye appearing to be on the screen.

xercise 11.3

xperiment with perspective views of all tvpes of wire figures; for example,
yodies of revolution. regular solids. Consider cases where an object is drawn in-
side the construction routine: that is, the values of V and W must now be calcu-
lated here and not in the ‘drawit’ routine. Change the program that drew the jet
of fipure 9.3 so that you get a perspective view; note that the farther the eye gets

90 Advanced Graphics with the Sinclair ZX Spectrum

Tom the plane the smaller it appears, a phenomenon that does not occur with
the orthographic projcction.

Lxercise 11.4
¥rite a hidden line algorithm for a single convex body, similar to that given in
hapter 10,

Yote that since a convex facet is projected into a convex polygonal area in the
new plane, all we need do is calculate the coordinates of the vertices of the
srojected facet, and hence find whether the facet is in anti-clockwise (in which
-ase we draw it) or clockwise order (in which case it is ignored).

ixercise 11.5
Nrite a program that draws a perspective view of a mathematical surface, similar
to that given in chapter 10. The method will be exactly equivalent to listing 10 4,

with the exception that you must work with the V/W values rather than the
LY arrays.

These hidden surface and line algorithms are perfectly adequate for specially
iefined single objects, but we must now consider the more general case where a
wmber of objects are scattered about space.

Complete Programs

. 1ibl’, *lib3’ and listings 9.4 (“cube’), 11.1 ("scene3™) and 11.2 (“drawit’). Data
required: HORIZ, VERT, and repeated values for (EX, EY, EZ) and
DX, DY, DZ). Try 9, 6,(5, 15, 10)and (0,0, 0); (1, 2, 20) and (0, G, 1).

12 A General-purpose Hidden Line
Algorithm

As in previous chapters, we assume that objects are set up by the ‘scene3’

outine. but now insist that the NOV vertices in the scene are stored in the X,

V. and Z arrays. Their perspective projections on to the view plane are stored in
irravs V oand W, The NOF facets are stored as a list of vertex indices (a maximum
f six) in array F, and the number of edges on any facet is placed in array H.

¥e assume that all objects are closed. Each object need not be convex but its
wurface must be composed of convex facets that are stored in anti-clockwise
rientation. Thus it is impaossible to see the underside of any facet; that is, when
srajected on to the view plane we see only facets that maintain their anti-clock-
vise orientation. Strictly speaking, this means that we cannot draw planar objects.
If these are required for a particular scene then we avoid the problem by storing
-ach facet of a planar object twice - once clockwise and once anti-clockwise —

;0 whatever the position of the eye, on perspective projection we see one and

mnly one occurrence of the facet, We assume also that all lines in the scene are

he edges of two contiguous facets: if a single line is required it is stored as a
iegenerate planar facet with two edges. These restrictions were imposed to speed
1p the hidden line algorithm. This is very necessary because we are now approach-

ing the limits of the processing power of the Spectrum. Even simple pictures like
he two cubes in figure 12.1 take over 5 minutes to draw, the two stars of figure
2.2 take over 30 minutes. The Spectrum was never intended to run such com-

plex algorithms, and so it is great credit to the Sinclair design team that the

spectrum does achieve such very good resulis.

Nevertheless, we think it is important to study general hidden line algorithms
or educational reasons. It is essential for anyone with more than a passing
nterest in computer graphics to understand the problems implicit in drawing
news of three-dimensional obiects with the hidden lines suppressed. The routine
gven in listing 12.1 is such a hidden line algorithm, which can be transferred to
‘arger machines where it will run with ease. If you get the opportunity to use
nore poweriul computers it will be very instructive to run our programs on them.

'n order to produce a hidden line picture of a scene stored in the OBSERVED
position, every line on the objects in the scene must be compared with every
‘acet. Because of the above restrictions we need comoare the lines oaly with the

92 Advanced Graphics with the Sinclair ZX Spectrum

nsible facets: that is, those that, when projected, keep their anti-clockwise
rlentation.

et us assume that a typical line ['; in the OBSERVED position joins the two
ooints (x,’, ¥, z,’) and {x,’, ¥,, z,'), and so a general point on this line is

1-9)(xy)' p1 2y)+ (%2, ¥a', 23)

We suppose that these two end points are projected on to the two points (x,, ¥, }

ind {x,, ¥,) in the perspective view plane. Thus I'y is projected on to this plane
18 a line I'; with general point

1 —p) ey, ¥1) + plxa, y2)

Jote that the point (1 — @) (x;", ¥1, 2,) + &(x3', ¥2, Z3') does not necessarily
transform into the point (1 — ¢) (x,, ¥1) + ¢(x3, ¥,): that is, ¢ need not equal u,
Ve let a typical facet £1; be projected on to an area £2, in the view plane and
issume that the H vertices on this projected facet are (X, ¥;), where 1 <i<H .
et the i'M edge of €2, intersect I'; at (1 — Ay} (x5, 7)) + A Xie 1, Vieg)- If
A < Dord; > 1 then I'; intersects the extended i™ cdge at a point outside the
area 81, : if 0 < X; <1 then I'; crosses the area {1, at a point on the i edge.
Since the projected projection of a convex facet is convex, then the number of
srossing points is either zero (and there is no point of intersection) or two
(perhaps coincident). We need consider only the case of two non-coincident
points: suppose their u values on Ty are gy, and gmax where gnin < tmax. 50
the points of intersection on I'; are (1 — wmin) (X1, ¥ 1} + Bmin(X2, ¥z) and
I — Mmax) (X1, ¥1) + Bmax(X2, y2).
't is now necessary to discover whether the subsegment of T"; between these
wo points is visible or not. This is checked by finding the mid-point of the
segment (Xmid, Ymid) = {1 — #mia) (€1, V1) + #mia(x2, ¥2), where gigig =
'-.Iul'ﬂid + ,umﬂ)fZ We then find the Pl]illt (i, _]j;, E) an F3 that has {xmid, .}Jmid)
i§ 1ts perspective projection. The segment of line between the points with g
ralues lyin and W,y is hidden if and only if (X, ¥, Z) and the eye are on opposite
ades of the infinite plane containing §£2;. The equation of the plane is found
ising the methods described in chapter 7, and the functional representation of
he plane is used to check the above requirement.
Note that X*PPD/Z = x5;4, V*PPD/Z = yiq, and (X, ¥, 2) lies on [';. So for
some value of ¢

Tl — gy tox,, P=(1 —@)y, +¢y,’, and Z=(1 - ¢)z;," + ¢z,

lence

_ (xy" +(xy — x,"))*PPD

‘mid = - "
a4 +¢{22 —Zl)

1 (reneral-purpose Hidden Line Algorithm 193

ind
¥i o+ ¢U’z’ _y.l‘))*FPJ-}
Imld = _.__._..... ’ R r___
‘1 '1'(;1’)(32 — I]‘
hat is
.:mid*zl —IIF*FPD
J:-}= T e o e e Bl e

X3 —x,)*PPD - f‘imid"‘(fzr = 51'}

“mid*21 _.}’it*PPD

Yo' — 31 #PPD — ypia*(zs’ — z;)

This enables us to calculate ¢, and hence (X, 3, Z), which in turn is used to find
vnether the subsegment I', is visible or not.

"he algorithm given in routine ‘hidden’, listing 2.1, compares each line on
.he objects with all the visible {anti-clockwise) facets. Note that all objects are
-onstdered solid: that is, no individual planar facet occurs in such a way that it is
osstble to see its underside (clockwise orientation). The lines are implicitly
itored in the facet data, and each line occurs twice, once from vertex IVI1 to
rertex IV2 (say) and once from vertex IV2 to IV 1. Rather than duplicate effort
ve consider onty the case when IV1 < IV2. Furthermore we compare the lines
vith visible facets only, for if a line is partially obscured by a hidden facet (one
vith clockwise crientation} then the invisible part of that line must also be
yoscured by anti-clockwise facets.

-et us assume that at the time of comparing the line I';, which joins vertices
V1 to IV2 with the K™ facet, we have calculated NRL visible subsegments of
he line: NRL is assumed to be less than 50. The u values for the end points of
he M'" visible segment are stored in array L at L{1 M) and L{2,M). [nitially
~RL=1.0L(1,1)=0and [{2, 1) = 1; that is, the complete line is assumed to be
nsible. If at this stage a new hidden segment is discovered, specified by the values
drpin ANd Koay (the variables MIN and MAX), then the values in the L array and
“RL have to be adiusted accordingly.

¥Vhen the line has been compared with all visible facets we are left with the
NRL visible segments that can then be drawn on the screen. If at any time NRL

recomes zero then the line is totally obscured and there is no need to continue
vith comparisons with other facets.

ixample 12.1

¥e can now draw a hidden line. perspective view of the scene we first saw in
igure 9.2: one of the two cubes shown in figure 12,1, The scene has I1QRIZ =9,
’ERT = 6 and is viewed from (15, 10, 5) to (0,0, Q).

94

Advanced Graphics with the Sinclair ZX Spectrum

Jsting 12.1

7EOD
‘07

01
TA1E
g19
‘p2d
B3
n4i@
gaa
‘BaR
n7d
‘CR@
el
gD
189
1B
128
138
i 4@
1508
ME@
178
179
189
198
ad
a9
2t
ccd
TAp
240
c4 g

25l
26l
27l
280
el
7]
3B
3P
PS5
340
350
368
36T
37e
380
398
408
a'*']ﬂ
r42@
438
L4
&b
L5@
46@
THTR
4T

REM
REN

DIM
FEM
REM
FOR
LET
LET
LET
LET
LET
LET

Fiddernfgeneral hidden Lire alaorithm

IR 0 MOVLNOL,XCHOV YONOV) ,ZONOVY VINOVY L WINCY),
CEHLNOF) HINOF) ,PPD, R{4 43

LCZ,5@): pIM GONOF): LET EPS = 2.QQDEDT

check on I'th projected facet : armticlockwise set G(I)=t
clockwise or decererate set GUI)=0.

I =1 70 NOF

11 = E{1,1): LET X1
I2 = F(2,1): LET X2
13 = F(3,I): LET %3
pX1 N = XI= LET:D
bX2 X3 = X22 LET D
(I = @

WCITD
WiIe)
WCIZ)

YIIT3: LET YA
VEIZ2¥: LET Y2
WEI3): LET Y3
Y2 = X1
¥3 = ¥2

I n 1
mo

1

z

- o= P M

o

IF DX1%DY2 = DX2%DY1 > @ AMD H(I) > 2 THEN LET G(I} =1
NEXT I

REN
FOR
LET
BT
FOR
LET
LET

find J'th line on the edoe of I'th facet.
I =1 70 NOF

HH = H{I): LET I¥1 = F(HH,I)

X1 = VY(IVYy: LET Y1 = WLIV1L)

J =1 TO HH

Ve = F(J, I

¥2 = WLIV2): LET Y2 = W(IVZ)

IF I¥1 > IvZ THEM GO TG 816D

REM
LET
LET
LET
REM
FOR

inttial ise variables.

MRL =:1: LET L¢1,13 = B: LET L(2,1} =1
CA X2 - X1 LET (B = Y1 — Y2

i o =K1#%CB = Y1#*(CA

compare this Linge with the K'th facet.
K =1 TQ NGF

IF C{KY = @ THEM GO 70 8040

IF K

LET
REM

LET
LET
LET
LET
FCR
LET
LET
LET

= I THEM GO TO ER4LB
IN = HIK)
loce to find twe points of intersecticn of projecied line with
sroected facet. These points specified by MU values WMIN and MAX.
MAX = =1: LET MIN = 2
J¥1 FOIN,KD
WX = WEIW1): LET WY1 = WOJWT)
51 = SGEN (CA*EYT1 + CB=VX1 + ()
M=1T0 IN
JV2 = FIM,K)
¥xZ = WOJVED: LET kY2 = W{JUZD
S2 =SGN (CA®WYZ + (B®YXZ + ()

IF 31 = 52 THEN GO TO 7500

LET
LET

LET
REM

XE VX1 — ¥¥Z2: LET YE = WY1 - WYZ

“F VX1 = ¥1: LET YF = WY1 — Y1

PISC = CA*YE + CB*XE

if iire is parallel to a Line on the facet then exit faret Loop.

IF ABS DISC > EPS THEN GO TO 744
IF ABS CA > EPS THEN GG TO Te1@
IF BES ¥F < EFS THEN GO TO BRaB

G
LET

[0 7500

LAMBDA XFSCA

IF ABS (XF + LAMBDA*CE} < EPS THEM GO 7O B34@
GO To 7500

LET
REW

i}

LAMDDA CCAXYT + (B*XF)/DISC
if Lire misses K'th facet then go to next facet.

IF LAMBDA < -EPS THEN GO TO 7508
IF LAMBDA > 1 + EPS THEN GC TO 750D

LET
REM

MJ = (YE*XF — XE*YF)/DISC
a true intersection so update MAX and MIN.

i General-purpose Hidden Line Algorithm 195

T4B@ IF MAX < MU THEN LET MAX
(498 IF MIN > MU THEN LET MIN
/5@0 LET 51 = &£

f310 LET VX1 = VX2: LET WY1 = WYZ

520 NEXT M

529 REM check if intersections Lie between specified endpoints of Line.
TS0 IF MIN > T THEN GO TO BR4d

548 IF MAX < B THEN GO TO 8240

550 IF MAX > 1 THEN LET MAX =1

560 IF MIN < B THEN LET MIN = 0@

57@ IF MAX — MIN < EPS THEN GO TO 3940

{579 REM calculate XMID and YMID.
7580 LET MID = (MAX + MINJ*D.5: LET MUD = 1 - MID

S9@ LET XMID = MUD*XT + MID*=X2

R0 LET YMID MUE*Y1 + MID+YZ

'610 LET DENOM = PPD*(X(IV2) - K{IW1)) = XMID®(Z(I¥Z2) - Z(IV1))

H2@ IF ABS DENOM < EPS THEN GO TO 7658

H29 REM calculate PHI and hence XHAT, YHAT and IHAT.

€30 LET PHI = (XMID*Z(IV1) — PPD*X{IV1))/DENDM

764 GO TO 7&7D

FESB LET DENCM = PPO&(Y(IVZ) =~ Y(IV1)) = YMID*(ZI{(IV2} - Z({IV1))

‘66@ LET PHI = (YMID*Z(I¥1) - PPD#Y(IV11)/DENOM

(ATD LET ZHAT (1 = PHIY*Z(IV1) + PRIXZ(IVE]

ABD LET FALT = ZHAT/PPD

A93 LET XHAT XMID*FACT: LET YHAT = YMID=*FACT

7699 REM calculate coefficients of plare containing facet: A,B,C and D.
'TAD LET J¥1 = FC1.K): LET JM2 =F{2,K): LEY J¥3 = F(3,K)

7710 LET Dx1 = X{JW1) = X{Jv2)

MU
ML

il u

723 LET DX3 = X(JW3) - X{JV2)

730 LET DY1 = YOIV1) = YOW2)

T4l LET BY3 = YWV3) - YUIVZ)

758 LET DZ1 = Z{JVv1) - Z(JV2)

76@ LET DZ3 = Z0J¥W3) - Z0Jv2)

'7T7T® LET A = DY1%DI3 - DY3*DI1

8@ LET 8 = DZ1+DX3 - DEL3*DX1

YT LET C = DAT*LY3 — DX3IxDY]
VEQD LET D = ANCIVIY 4+ BHY{JVE) + C+Z00WT)

218 LET S1 = A+XHAT + BxYHAT + C*IHAT - C

‘B1% REM it facet hides part of Line then change the L array.
820 IF ABS 51 < EPS THEMN GO TO 3504Q

LT€ IF ABS (SGN $1 + SGN D) < 2 THEN GO TC s@4@
E4H@ LET MOGRE = NRL

25@ FOR M = 1 TO HRL

"B&@ LET R1 = L{1,.M): LET R2 = L{Z M)

BYE IF (R1 > MAX) QR (R2 « MIM) THEN GO TO 7948
7880 IF (R1 >= MIN) AND (RZ <= MAX) THEN GO TO 7550
B9Q 1IF (R1 < MIN) AND (RZ > MAX) THEN GO TQ 7920
908 IF (R1 < MIN} THEN GL 1D 7940

‘M@ LET LO1,M) = MAX: GO TO 796@

2@ LET MORE = MORE + 1

Y30 LET LCT1.MOREY = MAX: LET L{Z2,MORE} = RZ

4@ LET L({2.M) MIN: GO 70 7963

YS5& LET LC1,M) = =1

D60 NEXT M

969 REM tidy up the L array.

F78 LET NRL = @

98@ FOR M = 1 TC MCGRE

998 IF L(1,MY < — EPS THEN GD TO 2@:2@

WAR LET MFL = MNRL + 1

BR1@ LET LC1,NRL) = L{1,M): LET L(2,NRL) = L{Z,M}
BB2@ NEXT M

BE3@ IF NRL = @ THEM GO TO B1&D

196 Advanced Graphics with the Sincigir £X Spectrum

BA@ NEXT K

@49 EEF cdraw visible parts of Line ¢ if any).

@58 FOR k = 1 TO NRL

3060 LET RT = L{1,K): LET R =1 = Rl

W78 LET XP1 = X1+RZ + XZ24R1

WEQ LET ¥P1 = YI=xRed + YZ*R1

3093 LET R1 = LCZ,K}: LET R2 = 1 = Rl

MEE LET XP2 = X1#R2 + KZ*R"

10 LET YP2 = Y1#R2 + YZ*R!

120 1F (ABS (XP1-XPZ) < EF5) AND (ABS (YP1-YP2) < EPS) THEN GO TO 8150

138 LET XPT = XP1: LET YPT = ¥P1: G0 SUB moveto
B14@ LET YPT = XPZ: LET YPT = YP2: GO SUB lineto
2150 NEXT K

8160 LET IV1 = IV2: LET X1 = ¥X2: LET Y1 = ¥2
179 NEXT J

3180 NEXT I

1190 RETURN

“igure 12.1

¥e use ‘libl’. 1ib3” and ‘hidden’ (listing 12,1) together with the ‘scene3’ and
-ube” routines given in listing 12.2. This last version of ‘cube’ means that we
1ave considered all the array methods of constructing an object; that is, stored/
10t stored. lines/facets. We deliberately used the cube over and over again in our
aiagrams because it is such a simple object and it is easy to understand its various
-onstructions, and therefore it does not complicate our discussion of the general
srincipies of three-dimensional graphics. Now is the time to introduce complexity
nto our obiects: provided that you understand the limitations of the algorithms
then the ideas we have discussed will be cqually valid. Users with the 16K
s;pectrum will find that programs of this complexity will not fit into their
nachines. Such programs must be broken into independent sections and object
tata and arrays must be stored temporarily on tape.

i General-purpose Hidden Line Algorithm

Listing 12.2

co0p
cRe
&1 il
030
A48
HASA
oAs9
1ol
BTE
1 i
HBER
HR50
10D
&9
110
.1111;
120
1130
3144
0149
6158
6159
e
11?E
G188

G568
5@

REM =cere3/figure 12.1

DIM X(162: DIM Y{18): DIM Z(162

DIM W{T62: DIM W{TEY: DIM FC4,12): DIM HC122

DIM AC&,4): DIM BC4,4%: DIM RC4,4): DIM G(4,4)

LET cube = &5BB: LET hidden = 7800

LET FPD = T#WERT: LET NOV = @: LET NOF = @

REM gut first cube in OBSERVED position : (ACTUAL=SETUF).
GO SUB idR3: GO SUB Look3

GO SUB cube

REM copy ACTUAL to OBSERVED matrix into Q.

FOR I =1 T0 4z FOR J =1 TO &

LET G¢I,J) = R(I, 1)

NEXT J: MEXT I: GO SuB idR3

REM calculate SCTUP to ACTUAL matrix.

LET TX = 3: LET TY = 1.5: LET TZ = 2: GO SUB tran3: GO SUB mult3
REM recover ACTUAL to OBSERVED matrix.

FOR I =1 T0 4: FOR J =1 TD &

LET AL, J} = a{l,J2

MEXT J: MEXT I

REM

calculate SETUP to OBSERVED matrix.

GO SUB mult3

REM plece second cube and draw hidden Line view of scene.
GO SUB cube
GO SUBE hidden
RETURN
REM cube/ vertices and facets (stored)
REM IN : PPD.NOV,NOF,X(NOV) Y (NOY) ,Z(NOV) ,W{NOV) W NOY)
(4, NOF) ,BONOF) ,R(& 4]
REM QUT : NOV.NOF, XONOV) , Y{MOV) ,ZCNOV) ,VONOY) ,WONDY)
FU4, NOF) HCNQF)
DATA 1,1,1, 1,1,-1 =1

s 1,71 e 1710,
DATA 1,2,3,4, 5,8,7,6, 1,5,6,2, 2,6,T

P ” Fa
3, 3,7,8,4, 4,8,5,
RESTORE cube
REM extend data base of vertices in OBSERVED position.
LET NV = NOV
FoOrR I =1 T0O 8
READ XX,¥Y,ZZ: LET NOV = NOV + 1
LET XCNOV) = XX*R(1.1) + YY*R(1,2) + ZI*R{1,3} + R{1,4)
LET Y{NOV) = XX*R(2,1) + YY*R{2,2) + ZI*Ri(Z,3) + R(Z,4)
LET ZENOV)Y = XX*R(3,1) + YY*R(3,2)} + II+R(3,3) + R(3,4)
REM perspective transform.
LET V{HOW) = PPD=X{NOV)I/ZONOY)
LET W{HOW) = PPD=Y(NOV)/Z(NOV)
MEXT 1
REM read and extend data base of facets.
FORE 1 =1 TO &
READ F1,F2,F3,F4: LET KOQF = NOF + 1
LET H{NOF} = &4
LET F(T1.NOF) = F1 + MV: LET F{2,NOF) = F2 + NV
LET F(3.NOF) = F3 + MNV: LET F(4 NOF) = Fé + My
NEXT I
RETUERN

-1,1,1, -1,1,-1
2
= F

197

-1,~1,1

98

Advanced Graphics with the Sinclair ZX Spectrum

Jdsting 12.4

670
81
SF1R

57 20
6730
67 48
a7 5@
STEB
6770
o7 8@
LT ol
1EDE
o818
6828
SBER
[SHTAY
HESHE
:1e1
B7 D

(BED
1550
OBR
6918
Ll
193
2940

REM cuboct/ah
REM IN and QU
DATA @, 1 g Fraty
1,81, 1,~1
DATA 1,2 b ,8

RESTORE cubo
LET Ny = NOW
FOR I =1 TO

READ XX, YY,Z1:

LET XCNCW)
LET Y(MNOV)
LET Z{NCW)
LET W{NOW2
LET WONOW)
NEXT 1

FOR I =1 TC

o n

READ F1.F2,F3,F4: LET NOF

LET H{NOF) =
LET F(1.NOF)

NEXT 1
FOR I =1 TQ

0

L
&

DATA 1,3,2, 1,8
Ct

edron

T 1 same as cube above,

.1,

0,1,
6,7,3;
B 2.0

12

LET NCV
XX*R(1.1)
X¥*R(2,1)
XX*R(3,1)

L

= + P

+

1,1 E B-1:1; 1,@,-1

=1 8,1,

i o
3.7.5, 412,

NOV + 1
YYAR(1,2) +
YY*R(Z2,2) +
YY*R(3,2) +

KCMOV D «PPDS ZIMOYY
¥ {NOV) *PPD/ ZINOV)

6

b

= F1 + My:
: LET FU4_NOF) = F4 +

8

READ F1.F2,.F3: LET NOF

LET H(NOF) =
LET F{1.NOF3
MEXT I
RETURN

3

L

= F1 + NV:

= NOF + 1

LET F(2,NOF)

NOF + 1

LET F(Z,NOF}

Listing 12.3

6588 REM jcasa/hedron

4581 REM IN and QUT : same as cube above.

G510 DATA ﬂ,1,T, T.8.1., 1,T,H, e.-1,.T7, T.8,~1, -1,7.8, @,1,-T
8,1, 1,-T,8, 8,-1,-T, "rﬂr'1r =1 ,~T,8

1520 DHTH T .3 2, 1,2,6, 1,4,8, 1,8,6, 1,6,3, 2,3,5, 2,9,4, 4,12,8
B 11,58, 3.6,7, 2,5,9: 4,9, 12 B 1211, 61,7, 3,75, 5,10,%
“.1@ 1:, iy H 11, 11,90,7, 7.0D0.5

h53@ RESTORE icosza: LET T = (1 + SEH <

65400 LET NV = NOV

3550 FOR 1 =1 TG 1

6560 READ xXM.¥YY,ZZ: LET NOV = NOV + 1

1570 LET XONOV) = XX*R(1,1) + Y¥*R{1,2} + ZI*R{1,3) + R(1,4)

G580 LET YCMOV) = XX*R(Z2.1) + Y¥Y#R(Z2,2} + ZI#R{Z,3) + R{Z,4)

590 LET ZCMOV) = XX*R(3,1) + YY*R{3,2) + ZI+R(3,3) + R(3,4)

GOP0 LET VINOV)Y = XONOVI*PPR/ZONOYVY)

G610 LET WONOVY = YO{NOV)*PPD/ ZCNOYD

G620 NEXT I

L3I0 FOR I =1 TO 20

5648 READ F1,F2,F3: LET KOF = NOF + 1

665@ LET H(MOF) = 3

6660 LET FC1.NOF) = F1 + NV: LET FC(Z,NOF) = Fd + MW: LET F{3,NCF]

S6TH NEXT I

688 RETURM

s =110, 8,1,
-1,8

f
2,3 5.9 & 9 1@ 12, 5,72,10.90; 6,812
&,

F3 + N

8, 5 A8.9, 6,117, 18.11,12

ZZ*R(1,3) + R(1,4)
TZ4R(2,3) + R(2,4)
ZZ*R(3,3) + R(3,4)

F2 + Nv: LET F{3,NOF)

F2 + NV: LET F{3,NOF)

F3 + NV

F3 + N¥

¢ General-purpose Hidden Line Algorithm 199

“xercise 12.1

Construct hidden line scenes composed of cubes, tetrahedra, pyramids, octa-
hedra. cuboctahedra, icosahedra. To help you, listings 12.3 and 12.4 give con-
iruction routines for a cuboctahedron and icosahedron. Write your own routines
for an octahedron, and perhaps even more complicated objects like the thombic
iodecahedron (see Coxeter, 1974).

Jisting 12.5

'BB0 REM scened/two stars hidden lires removed

@10 BIM X(22): DIM Y(22): DIM Z2(22)

Q2R DIM VIZ2): DIM W(Z222: DIM F{Z,363: DIM H{3AD
BED DIM ACL A2z DIM BC4,4): BIM R{4,43: DIM Q{4 4)
4@ LET star! = a588: LET star? = 47@0: LET hiddern = 70080
HE5@ LET PPD = 34YERT: LET NOV = @: LET NCF = B
“@5% REM place first star.

WA6A G0 SUB SgR3: G0 SLE Look3

BT LET A = &: GO SUB star

Q86 FOR I =1 TO 42 FOR J = 1 TO &4

@590 LET Q(I,J) = RCI,J)

VTR0 NEXT J: NEXT 1: GO SUB 1GR3

B9 EEM place second star.

110 LET TX = S: LET TY = 5: LET TZ = &+ g0 5UB trand: 60 SUB mult3
120 FCR I =1 TD 4: FOR J =1 TO &

130 LET A(I,JY = @(I, 0}

5148 MEXT J: NEXT I

2150 GO SUB mult3

160 LET A = 4: BC SUB star?

0178 G0 5UB kRidden

188 RETURNM

dsting 12.6

SO0 REM star
581 REM IN ang OUT : same as cube above.
1509 REM star based on a cube.

518 DATA 1,1,1, 1,1,=1, 1,=1,=1, 1,~1,1,; =111, =1,1,-1, =1,-1,-1, =1 .~1,%,
E‘BJEI -'E".'E!mr E)"b'fmf Flr_ﬁfmr m/mf'ﬁ'f mam.ﬂ--'!"

528 DATA 1,2,9, 2,3,%, 3,4,9, 4,1,9, 5,5,1¢, 5,8,19, g,7,1@, 7,686,180,
2 AT, 15,11, 5841 6211, 4302, 3.7,12, 1AN2, 8,62,
4,13, 4,513, B8543, S.4,45, 32406, 2604 6706, 1,5,14

»23@ RESTORE stard

54 LET MY = HOY

2550 FOR I =1 TO 14

568 READ XX,YY,Z2: LET MOV = KOV + 1

570 LET X{MOVY = ¥X®R{T.1) + YY=R(1,2) = ZZ%R{1,2% + R{1,40

SBD LET YONOW) = XX#*R(Z2,1) + YY#*R(Z,2) = ZI#R{Z,3) + R(Z,4)

SG@ LET Z(NOW) KR (3,1) + YY*R{3,2) = ZI+R{T, 3 + RE3F,4)

BBO LET VINOW)
B8 LET WONOWY
620 NEXKT I
B3 FOR I = 1 TO 24

64E READ F1.F2,F3: LET NOF = NCF + 1
5658 LET H{NOF) = 3

»66@ LET FC1,NOFY = F1 + NV: LET F(2,NQF}
WB78 WEXT I

HE@ RETURN

PRO*X(MOY D S ZONOV D
PRO#Y (NOVY S ZONOV

il

F2 + WV: LET F{3,NOF} = F3 + WV

200

Advanced Graphics with the Sinclair ZX Spectrum

Listing 12.7

TR
T8
T O
710
Ted

7D
i7 4
750
J?EHEI
724
e
200
818
820
838
240
85
860
ATR
Phic

REM stare
REM IM zrg CUT : same 3s cube above,
REM star based cn a tetrahedron.

DATA 1,1,1, 1,=-1,-1, =1,1,=1, =1,~1,.1, =8,-8,-4, =R, A A, A,~B, A, B R, ~A

DATA 2,1,8, 3,2,8, 1,3,8, 1,2.7» 4.1 ,T, 2.45,7,
Crda0s daf B 34,5, 31,6, &,53.6, 14,6

RESTIRE star?

LET NV = HNOY

FOR I =19 T0 B

READ XX,YY,ZZ: LET NOV = NOV + 1

LET X(NOV) = XX=R(1.1) = YVY=R(1,2) + ZZ%R{1,3} + R(1,4)

LET YINOYY = XX*R(2.1} + YY*R(2,2) + LZ*R(Z,3} + R{2,4)

LET Z(NOV) = XX*R(3,1) + YY*R{(Z,2} + ZZ#R(3,3} + R(3.4}

LET WENCYY = FPR=XCHCW I/ ZONOND

LET WONGYY = FPR#=YCHOW /20N

MEXT I

FOR I =1 T0 12

RIAD F1.F2,F3: LET NOF = NOF + 1
LET K(HOF) =
LET F(1.NOF)
MNEXET T
RETURN

nois

F1 + MW: LET F(2,NOF) = FZ + MV: LET F(3,NOF) = F3 + NV

sxample 12.2
3y now you will have realised that hidden line algorithms are very slow programs
we have to make a large number of comparisons. It takes at least 5 minutes to
araw the two cubes of figure 12,1, This means that we are rather limited in the
scope of objects we can draw. Nevertheless it is very good practice, and if you
1ave the opportunity to use larger machines you will see that the above algor-
thm will work on these also, but much faster. We give a ‘scene3’ routine in
listing 12.5 and examples of two three-dimensional star-shaped objects in list-
ngs 12,6 and 12.7 (both require a parameter A that changes the elongation of
the spikes). These two ‘star’ routines are based on the tetrahedron and cube.
‘igure 12.2 was drawn with HORIZ = 48 VERT = 32, viewed from (35, 20, 25)
owards (0, 0, 0).

i General-purpose Hidden Line Algorithm 201

xercise 12,2

he program in listing 10.1 checks that the order of the vertices of a triangular
acet are anti<lockwise. The program was devised for use with convex bodies
containing the origin. Extend it so that it can cope with the most general case;
hat is, specify the position of the observer and the coordinates of a point inside
he obiect (not necessarily the origin) so that this point and the observer lie on
pposite sides of the infinite plane containing the facet. Use this program to
cneck the above star-shaped objects (in fact for these figures the origin could act
8 the inside point).

"hen produce your own star-shaped objects based on an octahedron, cubocta-
1edron., icosahedron or dodecahedron. Always check the order of the vertices in
rour facets. You can produce stars based on very simple bodies of revelution,
nd we need not limit ourselves to svmmetrical objccts! For non-symmetrical
hapes you really need the extended version of program 10.1. Provided that you
tav within the restrictions mentioned, then listing 12.1 will draw any shape.

uxercise 12.3

vdd extra information about the obiects you are setting up. As well as the ver-
ex and facet information. introduce another array L such that 1(1,]) and

{2.]) hold the indices of the two facets that have the 1™ line as their intersec-
ion, 1 <1 << NOL. Then change the hidden line algorithm so that it ignores any
ine that borders two invisible (clockwise) facets, and does not compare a facet
vith lines that lie in that facet.

Now vou have read (and understood) chapters 7 to 12 you will have found
hat we have reached the limits of three-dimensional graphics on the Spectrum,
“ou must have access to larger computers if vou wish to go further in your study
ot this type of computer graphics. Moreover, you must study the techniques of
1sing data structures, as opposed to arrays, for setting up scenes. For example, a
compicte scene can be regarded as a linked list of pointers, each of which refers
o a linked list of information about the facets on a varticular type of object. The
‘acets themselves can be stored as lists of vertices! A seemingly complex idea, but
ne that makes the context checking of such programs as hidden line algor-
thms very much simpler. The relationships between objects and facets are
muoiicitly stored in the lists. When you have grasped these ideas vou can go on
o the complicated graphics algorithms including methods for animating, colour-
ng and shading. We recommend books by Horowitz and Sahni (1976), and
{nuth (1972, 1973, 1981) for the study data structures, and by Newman and
sproull (1973) for the really complex graphics methods. In the next chapter we
ake a look at more advanced character graphics and introduce one method of
yroducing animated three-dimensional drawings.

202 Advanced Graphics with the Sinclair ZX Spectrum

Complete Programs

. ‘libl’, ‘lib3’, listings 12.1 (*hidden’) and 12.2 (*scene3’ and ‘cube’). Data
required: HORIZ, VERT,{(EX, EY, EZ), (DX, DY, DZ). Try (a) 9, 6,
15,10, 5),(0,0,0),(b)9,6,(-10, 10, -10),(0, 1, 0).
I. 1ib1’, 1ib3’, listings 12.1 (*hidden’} and 12.2 (‘scene3”). MERGE listing 12.3
‘icosa’) and 12 .4 (‘cuboct’} and change the ‘scene3’ routine as follows

5010 DIM X(24): DIM Y(24): DIM Z(24)
5020 DIM V{(24): DIM W(24): DIM F(4, 34): DIM H(34)

1040 LET cuboct=6700: LET icosa=6500: LET hidden=7000
6070 GO SUB icosa
6160 GO SUB cuboct
Data required: HORIZ, VERT, (EX. EY, EZ), (DX, DY, DZ). Try {(a) 9, 6,
15,10,5),(0,0,0);(b)9,6,(10,190,10),(0,1,0).
II. “lib1’. 1ib3’, listings 12.1 (‘*hidden”), 12.5 (‘scene3’), 12.6 ("*stari’} and 12.7

“star2’}. Data required: HORIZ, VERT {EX. LY, EZ), (DX, DY, DZ). Try
a) 60,40, (10, 20, 30),(0,0.0);(b) 90, 60,(—10,20, —10),(0, 1, 0}.

13 Advanced Programming Techniques

"o give your programs that really professional quality it is essential to make

hem user friendly . This is one of the few pieces of advertising jargon that
ictually bears any relation to reality: it is essential to make programs easy to

1se. not just for yourself but for other people, We have all returned to programs
v1itten in a hurry three months previously, only to find that they are so badly
tructured/commented that we cannot understand them. [t is good programming
ractice to comment on your programs as well as making their output seif-
:xplanatory. Ensure that the prompts displaved while you are actually RUNning
he program are clear and concise. Another simple way of providing help is to
nciude an introductory instruction routine as found on most video games.

n programs where a set of routines can be used in any sequence or combina-
ion. the usual method of providing for selection between options is the meru
see the CHARACTER GENERATOR program in chapter 5). Provided that the
prompis are appropriate to the actions they initiate, this method is especially
aselul for people who do not understand the details of the program and are
using it only as a drawing tool, Common sense plays its part in deciding what
yrompts should be issued. Avoid such classic misprompts as PRESS 1| FOR
JUPLICATE DATA OR 2 FOR SINGLE DATA. If possible use cursor keys for
novements about the screen (see option 3 of the CHARACTER GENERATOR
yrogram in chapter 5): this will seem natural to any regular user of the Spectrum.

isting 13.1 shows a program that might be used to draw polygons {as in exer-
;1se 1.3 The “input’ routine uses the "EDIT™ and cursor keys and is designed for
yeaple familiar with programming on the Spectrum,

‘ontrol Codes

“he INPUT command can bhe used to issue a prompt immediately prior to any
equest tor a data item. In most cases we just place the prompt, enclosed in
inotes, in the exact form we wish to be displaved, before the item in the INPUT
:tatement. Un the Spectrum we can force the evaluation of any string expression,
nciuding function calls, by placing brackets around the expression. In this way it
viil be treated as though it were a prompt in quotes. This method is used simply
n the abowe listing but we can produce far more complex prompts. By building

204 Advanced Graphics with the Sinclair ZX Spectrum
Listing 13.1

B pIMm xC1@Y: DYIM Y18
‘@ LET dinput = 20P: LET Llist = 300
B GO SUB input
@ PLOT X180 ,v(1B): LET OX = X(1@): LET oY = Y{18)
A FOR I =1 T0 1P: DRAW X{1) - OX,¥(1) - DY
LET OX = X{I): LET @Y = ¥Y(1): NEXT I
60 PAUSE 25@: GO TO 39

200 REM input coords

10 LET I =1

B GO SUB List

3@ LET I% = INKEYS: IF 1% = "" THEN GO TO 230

1 IF 1% CHRT 10 AND I < 11 THEN LET I = I + 1: GO TO 2202

‘S@ IF 1% = CHRE 11 AND I > 1 THEN LET I = I - 1: GO T0 220

6@ IF 1% <> CHRE 7 THEN GD TO 239

7B IF I = 11 THEN INPUT "End, 7?7 "; LINE I[%: IF I% = "y'" THEMN CLS5S : RETURN
89 IF I = 11 THEN GO 7O 228

200 INPUT "X Coord. ":X(I),"Y Coord. ";Y{I): GO TO 220

Aff REM Llist data

18 CLS : FOR J =1 T0 110

20 PRINT AT J,.1;"X Coord. ";XCJ),."Y Coord. ";YC(42
3@ NEXT J: PRINT AT 11,1;"End.": PRINT AT 1,@;">"
43 RETURN

1p a string containing control codes we can display complicated coloured
graphics anywhere on the screen. A named variable string can even be built up
in severai stages and the variable name placed in the INPUT command inside
brackets, Control CODEs may be included in the strings using the CHRS$ func-
ion, and numeric variables can be included by using STRS. This technique is
:hown to good etfect in the MASTER MIND program (listing 5.6) and also in
he WORM GAME (listing 1.16). Strings with built-in colour CODEs or even
'RINT AT CODEs can be used in games or other programs to provide rapidly
:hanging displays on all parts of the screen. For example, a sample menu of a
nythical file-handiing system is given in listing 13.2. Note the obvious use of
:olours to warn of potentially dangerous options.

Control codes may be entered from the keyboard (see page 115 of the
spectrum BASIC Handbook (Vickers, 1982)) for direct inclusion in strings.
These direct CODEs, which are ignored in execution, can be included also in
yrogram statements to emphasise or hide parts of listings. On our accompanying
tape we give program listings in which the REM statements at the start of each
routine begin with the CODEs for BRIGHT 1 (extended *'9°") and end with
BRIGHT O (extended *“8"’). To pad out REM statements so that they end
exactly at the edge of the screen we need to insert a CODE 6 in the line, which
s equivalent to a comma in PRINT statements. Although not obviously awvail-
ible from the Keyboard, we can achieve the desired effect by inserting the
'ODEs for PAPER 6 (extended *'6"") and then immediately press DELETE.

" his removes the CODE for PAPER but leaves the CODE 6, which has the
'ifect of making the cursor leap ahead to the next half or full line position.

idvanced Programming Technigues 205
Jdsting 13.2

00 DI GlEI: DIM ASIG,24)

10 FOR I = 1 TG &: READ G{I): NEXT I

20 DATA 10E&D,10D00,100C,1080,1000,1000

3B LET AR(1) " EDIT FILE": LET AS(Z2) " PRINT FILE"

4@ LET AEC(3 " SAVE FILE": LET AS(4D " LOAD FILE"

150 LET AZ(5) CHRE 17 + C(HR$ 2 + CHRS 146 + CHR$ 7 + " DELETE FILE “

o+ 5NN

CHRE 17 CHRE 7
63 LET A%{&) CHRE 17 + CHRE 2 + CHRS 16 + CHRS 7 + " ERASE ALL FILES "
LHRE 17 CHRE 7

A% REM menu/ select options

M LS : PRINT AT 2.8;"N.O.N. FILE HAMDLER"
2d FOR =1 TO0 6

3B PRINT AT I*2 + 4,8;I;" ;A8

43 MEXT I

50 INPUT "SELECT CPTION 7";0P

A IF OF < 11 OR OF > & THEN GO TO 558

TR IF QP < 5 THEN G& TO 9@

B@ INPUT ("DO YOU REALLY WANT TO ";+CHRE & + AB(DP) + " "};Y§
9 OIF YE <> "y'" THEN GO TQ 55@

00 GO SUB G{OP): GO TO 580

‘080 REM remainder of routines
018 RETURN

fere CODE 0 is interpreted in its own right and not as a parameter Tollowing the
'‘ODE for PAPER, A CODE 6 at the end of each line preceding a new section of
program can be used to force the display of a blank line in the listing, The word
{EM can be hidden by placing CODEs for INK 0 (extended shift “0") after
{EM and INK 7 (extended shift “7”) before it.
ys a rule it is best to write programs in modules. Highlighting the names of

he modules ailows us to read. correct and adapt the programs with ease. To
iemanstrate the improved legibility provided by these highlighting techniques
ee rigure 13.1, which shows part of listing 13.4 as it appears on the screen.

structure of the Display File

Ve know that the display file can be directly altered or examined by BASIC
yrograms, but to make use of this facility we must understand how the display
ile is organised. Each horizontal line on the display is made up of 32 bytes,
rach of eight bits. These 32 bytes are stored in consecutive locations in the
nemory. However the bytes for the next line down are held in the equivalent
yosition on the next page of memory. For an eight-bit processor, like the Z80
-ontained in the ZX Spectrum, one page of memory is 2% or 256 bytes: we shall
1se the identifier PAGE to refer to this quantity. This arrangement is designed
o help the video circuitry cope efiiciently with the display. Thus each page has
oom Ior eight lines of 32 bytes. The first page of the display file contains the
op line for each of the first eight rows of character blocks. To complete the

06 Advanced Graphics with the Sinclair ZX Spectrum

Bl 7 - e FCor
na2Chine -CSde CTouULTaine

i CLERRE S3459S5c

S FOR I=2 T 3ii REARD &

42 POKE &48288+1 .8 NEXT I

SCroiLi—=

“igure 13.1

emaining seven lines for these rows there are seven more pages of memory,

:ach page containing the data for subsequent lines. After these eight pages there
ire another two sets of eight pages holding the line information for the rest of
he screen. From this we can calculate which bvtes holds the data for the top

ine of a character block, and know that each of the other lines down the block
s stored 256 bytes (one page) farther on. To work out the display-file position
of the top line of a character block we need to know in which third of the screen
eight pages) the block lies. We need also to identify which of the 256 blocks in
his third we are considering, We calculate the position of the first line of a
:naracter block in row R. column C by the following FuNction

JEF FN A(R.C) = 16384 + INT (R/8)%2048 HR — INT(R/8)#8)%32 + C
This function is made up of four parts

6384 (1o the start of the display file)

INT {R/8)#2048 (add relevant third of screen (0, 1, 2) multiplied by the
ength of one-third of the screen (2048 = 8*PAGE})

{R — INT(R/8)}*B)*32 (plus the position of the row within that third of
he screen (0-7) multiplied by 32 (columns per row))
t C {plus the column (0-31) within that row)

1dvanced Programming Technigues 207

The first two items determine the location of the start of the page that holds
the first lines of that particular third of the screen. The last two items establish
vnich of the 256 bvtes along the page corresponds to the top line of the
‘haracter block.

Jsing another function with a character as the input parameter, we can find
he start of the data that define this character and then transfer these data to the
iisplay-file locations

JEF FN T(AS$)= PEEK 23606 + PEEK 23607256 + 8*CODE A}

“he above function uses the system variable CHARS {(stored in locations
'3606 and 23607, see chapter 5) to find the start of the table of character set
1ata. It then adds eight times the CODE for the required character and thus
inds the address of the first piece of data. Note that these two functions can be
1sed to write on the bottom two lines of the display, which are not normally
iccessible. as is demonstrated by the program in listing 13.3.

Jdsting 13.3

‘B0 REM main program

1@ LET print = 508

128 LET P$ = "9 FAKE statement, 128:1": LET ROW = 23: LET COL = @

138 GO SUE print

‘4@ LET P$ = "grint this arvwhere on the screen’: LET ROW = 7: 1ET {0OL = 1é&
S8 GO SUB print

"6B PAUSE Z2SP: STOP

BP0 REM print routine
18 DEF FM ACR,C) = 1£384 + INT (R/8I=2B48 + (R — INT (R/BI®BIXTZ +
2P DEF FN D(A3) = PEEK 236R6 + 255 * PEEK Z36B7 + B8+CODE A%
IB FOR T =1 TO LEN PE
48 LET ADDRESS = FN ACRCW,COWL)
5@ LET DATAl = FM DIPSCIXS
GO FOR J =@ TO 7
7@ POKE ADDRESS + J*256, PEEK (CATAT + [}
8B MNEXT J
OB LET COL = COL + %: IF COL = 32 THEM LET COL = @
LET ROW = ROW + 1 @ IF ROW = 24 THEW LET ROW = E
B0 MEXT I
10 RETURN

apid Transfer of Screen Data

f we try to move the display file of the Spectrum about rapidly. we soon find
hat BASIC is not fast enough to transfer the required quantity of data adequate-
v. The Spectrum is controlled by a Z80 microprocessor that is ideally suited to
he task of moving data about quickly. To program this directly (instead of
using BASIC as an intermediate language) involves an excursion into machine-
‘ode. The Z80 machine-code has instructions, like the PEEK and POKE of
JASIC. which can be used to examine or replace numbers in various locations.

08 Advanced Graphics with the Sinclair ZX Spectrum

“he Z80 also has internal registers, in which numbers can be placed, and used in
much the same way as variables in BASIC. So we can write a set of machine-code
nstructions {that is, a program}) to load one of these registers with a number from
! memory location, and then load the number from the register into another
nemory iocation. This may not sound very interesting until you realise that the
-80 chip can carry out this program about a million times in one second!
Infortunately machine-code appears rather incomprehensible to a beginner,
ooking like a stream of apparently unrelated numbers, 1t is more convenient to
use gssemply language, which contains short words, muremonic codes, that are a
areat help in understanding the function of each machine-code instruction. The
Spectrum requires machine-code instructions to be stored in DATA statements
ind then POKEd into the memory. It is helpful to include the assembly language
nstructions as a REMark in the DATA line. Assemblers are programs that trans-
ate assembly language into machine-code, but if an assembler is unavailable we
can use the table given in appendix A, page 183, of the Spectrum BASIC Hand-
book (Vickers, 1982). One of the most powerful instructions available on the
80 chip is 237, 176 or, more comprehensibly, LDIR in assembly language, This
;tands for LoaD and Increment Repeated, and is an instruction used to transfer
blocks of data from one place to another in the store. Before issuing this instruc-
ion. however, we must load some of the registers with various information, We
nust load

JE with the address of the destination for the data
L with the current address of the data
3C with the number of bytes to be transferred

‘or clarity we look at figure 13.2, an example machine-code routine, with the
'quivalent Assembly language, and also a BASIC program, which performs
'xactly the same function. Remember the Assembly language is just a way of
naking machine-code more understandable. The complete program, listing 13 .4
POKESs the machine-code into the memory and then calls the routine. This

example copies the bottom third of the display file into the top third of the
SCTeen.

E

J00 REM BASIC data transfer

17.0,64 LD DE, 16384 310 LET DE = 16384

13.0.80 LD HL,20480 320 LET HL = 20480

08 LD BC,2048 330 LET BC = 2048

37176 LDIR 340 LET A = PEEK HL: POKE DE A
ISOLETDE=DE+ 1: LETHL=HL +1
360 LETBC=BC —1
370 1F BC 0 THEN GO TO 340

01 RET 380 RETURN

qeure 13.2

idvanced Programming Technigques 209

iaving POKEd the machine-code instructions into the memory we run the
-outine by using the USR function with the start address of our routine, USR
vith a numerical address simply calls the subroutine, in machine-code, starting
it that address. This call is executed in a BASIC program by a command like
LT A = USR 32000 {32000 is the address holding 17, the first byte of code).

Lsting 13.4

{® REM Loader for machine-code routine
"7 REM for 16% machimes use clear 31999,
@ CLEAR A3999

B FOR I =0 T0 11: READ A

9 REM fcor 16K use POKE 3:29000.

@ POKE 64000 + I,A: NEXT I

iRE REM data for machire-code transfer routire

10 DATA 17.0,64 : REM LD DE, 16384
128 DATA 33.8,20 + REM LD HL,20482
3@ DATA 1.0,8 : REM LD BC,2048
4@ DATA 237,176 : REM LDIF
5@ DATA 2B : REM RET

@0 REM main program
1@ CLS : FOR I = @ TO 21
20 FOR J = @ TO 31: PRINT AT I,J;CHRS (I + 64): NEXT J

‘30 MEXT 1
‘4@ PRINT AT 19.1; INVERSE 1;"PRESS ANY KEY TO START ROUTINE"
5@ IF INKEYS = "' THEN G0 TO 250

‘59 REM for 16K charge to USR 329D0.
68 LET A = USR A4000: STOP

.xercise 13.1

'vpe in the BASIC routine from figure 13.2 and time how long it takes to run.
Compare this with the time taken for the machine-code routine in listing 13 .4.
‘ou will find the machine-code is thousands of times faster,

Animation (48K machines only)

We use a simple routine to transfer all the data necessary to display a picture
both display file and attribute file) from somewhere else in the memory to the
wreen memory locations, This provides a quick method of changing between
pictures, There is enough memory on the 48K Spectrum to hold five alternative
rictures or frames, We can use the program from listing 13,5 to construct five
nachine-code routines at 30100, 30200, 30300, 30400 and 30500 that will
iransfer these pictures to the screen. Suppose five diagrams have been SAVEd on
ape. We LOAD them into the alternative frames in memory, from where they
:an be copied on to the screen by calling the appropriate routine. This method
:ould be used to illustrate a lecture or a sales talk with a short slide show, switch-
ng aimost instantaneously between slides. Naturally after five slides have been
nown then five more must be LOADed. This takes approximately 5 minutes
rom tape but less than 10 seconds from disk.

210 Advanced Graphics with the Sinclair ZX Spectruimn

'ressing one of the keys “1” to “*5” when using the routine ‘slideshow’
listing 13.5) brings the required picture to the screen.

Jdsting 13.5

A0 REM Loader for mazchime-code routines
1@ CLEAR 29999: DIM F(5)

70 FOR I = 1 TO 5: RESTORE

30 LET F(I) = 120 + 27*(1 - 1)

t4@ FOR J =8 TO 11

iS50 READ A: POKE Z90R2 - I+1@R + J,A

AR NEXT J

irl MEXT I

A REM data transfer from 1'th frame to screen

10 DATA 17.0,64 : REM LD DE, 16384
20 DATA 33,8,F(I) : REM LD HL , FRAME (I)
30 DATA 1.9,27 : REM LD BC, 27 %256
40 DATA 237,176 : REM LDIR

5@ DATA 2@ + REM RET

‘@f REM Load frames

18 FOR J = 1 TO 10: BEEP P.1,30: PAUSE 5: NEXT J
2B CLS : FOR 1 =D TO &

38 LOAD "M CODE 120 + Ix27)#25%6,27%256

L3 MEXT I

50 FOR J = 1 TO 19: BEEP B.1.,30: PAUSE 5: NEXT J

@0 REM sl ide show

210 IF INKEY$ <> """ THEN GO TO 410

2@ LET A% = INKEY$: IF A% = '"" THEN GO0 TO 428

3P IF A% = CHRE 13 THEN 60 TO 318

L@ IF A% = "m' THEN GO TO SE@R

SPOIF A% »= M1 AND A% <= "S" THEN LET A = USR (3BBDE + VAL AS<10D)
A0 GO T A1P

B¢ REM movie show

@ FOR I = 30180 TO 38500 STEP 180
2B LET A= USR I

Z0 IF IMXEYE = "s'" THEM GO TO 4Q@0
L8 MEXT I: GO TO 518

. his idea can be extended to produce ‘movie’s, For example, consider figure
3.3. which shows five frames produced by the three-dimensional routines of
:tapter 11. These give views of the same spheroid are created using HORIZ =
:.2, VERT = 2.2, NUMH = 10, NUMV = & and PHI = 0.4 =PI «[/NUMH, where
)< [< 4. The ‘movie’ of this obicct, viewed from (1, 2, 3) to (0, 0,0), can be
:nown apparently rotating by repeatedly bringing the five frames on to the screen
in quick succession. This set of pictures is included on the tape and is shown
relow.

wfter vou have finished with the ‘movie’ or “slideshow’ program you should
vpe CLEAR 65367, for otherwise the next time you LOAD a program the
spectrum will reply “Out of Memory’.

1dvanced Programming Techniques 211

a) (b)

d) (e)

Teure 13.3

112 Advanced Graphics with the Sinclair ZX Spectrum

.xercise 13.2

Draw a perspective view of a wire cube in frame 1, and the same view, but with
the hidden lines suppressed, in frame 2. Produce a movie consisting of these two
rames only. You will see the visible lines of the cube stay fixed but the hidden
lines will flash on and off. Construct a movie in which one of the ‘star’s from
‘hapter 12 appears to rotate.

Scrolling (16K and 48K machines)

Ising machine-code for more complicated tasks requires a great deal more
hought and study. A good book on the subject and preferably one specifically
vritten for the Spectrum should be consulted (see Zaks, 1978; Hutty, 1981,
NVoods, 1983). For those who wish to pursue more complex manipulations of
he screen in machine-code we give one more example. (Listing 13.6 scrolls the
sraphics display area downwards. The fact that the display-file data are split into
ines of 32 bytes causes problems, To effectively move these data around we need
he start addresses of these lines. To calculate the addresses in a machine-code
outine requires a lot of programming effort and slows down the execution,
[nstead we use a look-up table. For machine-code purposes an address is made

10 of sixteen bits that are stored in two eight-bit locations, the fo-bvte and the
i-bvte. Whenever we need to know the address of a line we simply look up its
‘wo halves from the tables. We use BASIC to calculate the tables and to POKE
‘hem into memory, These tables and the machinecode itself could be saved on
ave and reloaded if required. Listing 13.6 gives the machine-code program,
3JASIC loader and table constructer. Listing 13.7 shows an equivalent BASIC

outine for the program. Note that the BASIC routine assumes the existence of
the same table used by the machine-code.

xercise 13.3

Nrite a machine-code routine that moves the attribute file around the memory,
mne row at a time, Then write a BASIC program that calls your routine each
ime the graphics area has been scrolled down by eight lines,

BASIC Structure (Renumber and Delete)

"he develooment of modular programs often leads to situations where routines
ire cramped and there is no room for extra lines or alterations. At times like these
ve would like to renumber the lines automatically or perhaps delete whole
:ections. These two utility commands are also useful when MERG(E)ing pro-
srams 1n order to create new routines. To perform these tasks we must take a
‘1oser look at the way our BASIC programs are stored in the computer memory.
3IASIC programs are stored line by line in memory starting at address 23755.

Advanced Programming Techniques 213

Listing 13.6

'? REM Loader for machine-cocde routine

2@ CLEAR 31999

@ FOR 1 =@ T0 74

“@ READ A: POKE IZ20PE+I,4A

5@ NEXT I

'BP REM downwards wrap-arcund scroll for graphics area
1@ DATA 1.175.0 : REM LB BL,175
128 DATA 221,33,75,125 : REM Lb IX,L0BYTE
130 DATA 221.9 : REM ADD IX,BC

140 DATA 221.11P,0 : REM LD L,CIx+@]
15@ DATA 221.33,251,125 : REM LD IX,HIBYTE
60 DATA 221.9 : REM ADD IX,BC

1780 DATA 221.102,08 : REM LD H,CIxX+a]
18@ DATA 17 171,126 : REM LD bE, TEMP
198 DATA 285,567,125 : REM CALL MOVE
200 DATA 221.33,75,125 ! REM LD IX,LOBYTE
210 DATA 221.9 : REM ADD I¥,BC
220 DATA 221.94,0 : REM LD E,[IX+@]
230 DATA 221,119, : REM LD L,CIX-1]
24@ DATA 221,33,251,125 : REM LD 1X,HIBYTE
250 DATA 221.9 T REM ADD IXx,BC

6@ DATA 221.86,0 : REM LD D, [IX+8]
7O DATA 221,182, : REM LD H,LIX-1]
280 DATA 285,867,125 : REM CALL MOVE
J9@ DATA 13 :+ REM DEC C

00 DATA 322.226 : REM JR MZ,LINE
310 DATA 17,0 .64 :+ REM L&D DE, 15384
128 DATA 33,171,126 : REM LD HL, TEMP
330 DATA Z2B5.67,125 : REM CALL MOVE
543 DATA 201 : REM RET
5@ DATA 197 : REM PUSH B8BC

6@ DATA 1.32,8 : REM LD BC,32
37@ DATA 237,176 : REM LDIR
380 DATA 193 t REM POP BC
9@ DATA 221 i REM RET

40P REM construct tables of display—-file lime addresses
418 FOR I =B 70 21: FOR J =R TO 7

42@ LET A = 16384 + INT (I/8)+2@48 + (I - INT (I/B)*B)#+32
L3@ LET H INT CAJ256): LET L = A = H®x2556

248 POKE 32075 + I*B + J,L: POKE 32231 + I*8 + J,H + J
5@ NEXT J: NEXT I

@P REM main program

10 LIST 389
28 IF INKEYS << "" THEN LET A = USR 2Z2RPE€
530 60 To 520

“he first item stored for each line is the line number (16 bits), which takes up
wo locations and is stored as the hi-byte followed by the lo-byte. In all other
oslaces values are stored in the standard lo-hi format. To illustrate suppose we
nter the line 10 REM. If we type

'RINT PEEK 23755, PEEK 23756

14 Advanced Graphics with the Sinclair ZX Spectrum
dsting 13.7

1M REM basic version of scrockl for graphics ares
@ CLEAR 31599
B GO TO 420

190 REM dowrwards wrar—arounc scroll for graphics area

18 LET € = 175: LET B = @: LET BL = £+ B*256

120 LET IXLO = 75: LET INHI = 125: LET IX = IXLD + IXHI®Z%%
138 LET IX = IX + BC

i4d LET L = PEEK (IX + @1}

50 LET IXLO = 251: LET IXHI = 125: LET IX = IXLO + IXHI#Z256
6@ LET IX = IX + EC

70 LET H = PEEK (IX + B): LET HL = L + Hw23&

80 LET E = 171: LET & = 126: LET DE = E + D*236

199 GO SUB 350
@D LET IXLO = 75: LET IXHI = 125: LET IX = IXLO + IXHI®Z256
M8 LET IX = IX + BC

220 LET E = PEER (IX + @)

38 LET L = PEEK (1X = 13

4@ LET IMNLO = 251: LET IXHI = 125: LET IX = INLO + IXMI=256
258 LET IX = IX + BC

260 LET D = PEEK (IX + @): LET DE = E + D256

7O LET H = PEEK (IX — 1): LET HL = L + H%*256

JE@ G0 SUB 3509

298 LET C = C - 1: LET BC = [+ B*256

BB IF ¢ <> B THEN GO TO 280

18 LET € = @: LET D = 64: LET DE = E + 256%*D

5280 LET L = 171: LET H = 126: LET HL = L + E=256L
230 G0 SUB 35B

48 RETIIRN
35@ LET 5§ = BC

568 LET BC = 32

7@ LET A = PEEK HL: POKE DE,A: LET OE = DE + 1: LET HL = HL + 1

LET BC = BC - 1: IF BC < @ THEN GO TG 378

280 LET BL = §

5@ RETURN

@8 REM construct tables of display—-file Line addresses

10 FOR I =@ TO 21: FORJ =B 7O ¥
42@ LET A = 16384 + INT (1/8)#2048 + (I ~ INT (I/BI*B) 37
438 LET H = INT (A/256): LET L = A — H*xZ5%4

440 POKE 32875 + I*3 + J,L: POKE 32251 + I*§ + J,H + |
3@ NEXT J: NEXT I

508 REM mair program

1@ LIST 338

20 IF INKEY$® <> "' THEN GO SUB 188
538 GO TO 570

ve shall see that 0, 10 is stored in these locations. If we remove line 10 and enter
mnother numbered line at the start of the program, we see that the representation
of this new number is now stored in 23755 and 23756. The next two bytes give
‘he length of the present line (this can be used to find the start of the next pro-
sram line without traversing the whole of the present line). Now comes the
:ctual text of the BASIC line. each character or keyword taking up one memory
ocation. The end of the line is marked by a CODE 13 {or ENTER). After any
number given in decimal notation and stored as characters there is a CODE 14

idvanced Programiming Techniques 215

‘or NUMBER : see page 183 of the Spectrum BASIC Handbook (Vickers, 1982))
ollowed by a binary translation of the number, taking five bytes. Integers are
itored in a simple way, as explained on page 163 of the Spectrum BASIC Hand-
ook (Vickers, 1982). Using this information about the contents of the memory
ve can write a program that lists programs, including itself, by examining the
nemory. This type of listing program (listing 13.8) can be of great assistance when
ormatting listings in which statements all start on a new line, or when control
CODES need to be displayed.

JAsting 13.8

0P REM self-listing program

118 LET I = 23755 (LS

120 LET LIME = 2SA*PEEK I + PEEE (I + 1): IF LIME > 99%9.5 THEN STOP
1380 PRINT ™ ";LINE;

42 LET I =1 + 2: PRINT PAPFR S:PFEK T;",";FFEK CE+ 1):=" %
150 LET LEMGTH = PEEK I + 2SA6%PEEK (I + 13

160 LET NUM = @: LET I =1 + 1

7@ FOR J 1 TO LENGTH: LET I = I + 1

T80 LET P PEEK I: IF P < 32 AND NUM <= @ THEN LET NUM = 1
190 IF P = 13 THEN PRINT PAPER 4;P: PRINT: GO TO 230

‘B0 IF P = 14 THEN LET NUM = &

12 IF HUM > B THEN PRIMT PAPER &:P;",.";: GO TO 230

28 PRINT CHRS P;

"T@ LET NUM = NUM - 1

&8 MEXT J

S8 LET I =1 + 1: GO 1O 128

o

In order to renumber lines we need to change the line numbers stored in the
nemory. Fhis is true as long as the lines do not get out of numerical sequence.
Infortunately this does not take into account GO TO or GO SUB, etc., com-
nandas. We must search out all GO SUB, GO TO, RESTORE and RUN keywords
n the program and, if they are followed by a simple integer, check whether the
ine number has been changed. If it has, then both the numeric characters of the
number and the integer representation of the number must be altered. To delete
i range of lines all we have to do is extend the length of the line before the un-
vanted range, so that it completely covers the unwanted area. The correct length
it the line is re-established on editing and re-entering this line. The remainder of
he program is moved down through the store to continue from where the line
10w ends. Listing 13.9 gives two routines that perform these tasks; the renumber
-outine is entered by RUN 9900 and the delete routine by RUN 9970,

sxercise 13.4

Write a routine that can search through the BASIC memory and find any specified
sequence of CODEs. Use the method shown in the above delete program to sct

‘he system variable E PPC (which controls the edit cursor: see page 174 of the
spectrum BASIC Handbook (Vickers, 1982)) to the number of the line where

the sequence is found.

=16

Advanced Graphiics with the Sinclair ZX Spectrum

dsting 13.9

G9d@ INPUT “Renumber Lines ";LOW;" To "“;UP,"Starting at "“;NEW;
' in steps of ";STEP

O9@1 LET X = 99@@: IF LOW > X OR UP > X OR LOW > UP THEN GO TO Y928

"MF2 IF NEW > X OR MEW < 1 OR STEP > X OR STEP < 1 THEN GO TQ F9@D

7983 PRINT AT 19,.8;"Rernumber Lires ";LOW;" to ";UP,"Startirg at ";NEW;
"in steps of ";STEP,"PLease wait"

794 LET START = 23755: LET SCREEN = 16384; LET HI = 256

9905 LET A = START: LET B = SCREEN

1986 LET H = PEEK A: LET L = PEEK (A + 13

1907 POKE B,H: POKE B + 1,L

OGOE LET A= A+ 2: LEY B = B + 2

9985 LET LEN = PEEK A + PEEK (A + 1}#HI: LET A = A + LEN + £

9918 IF H*HI + L < X THEN GO0 TO 996

9911 LET A = START: LET B = SCREEN: LET W = MNEW

912 LET H = PEEK A: LET L = PEEK (A + 1)

913 LET N = HI%«H + Lz IF N < LOW OR N > UP THEN GO TQ 9918

9914 IF W > X THEN GO TO 9955

9015 LET H = INT (W/HI): LET L = W = HxHI

1916 POKE A,H: POKE A + 1,L

917 LET W = W + STEP

7918 LET A = A + ¢

9919 LET LEN = PEEK A& + PEEK (A + 1)}%HI: LET A= A + LEN + 2

PR IF N < ¥ THEN GO T0 9912

7921 LET A = START: LET B = SCREEN

3922 LET H = PEEK A= LET L = PEEK (A + 1): LET NN = PEEK B*HI + PEEK (B + 1}

02T LET N = H*HI + L: IF N = ¥ THEN STOP

1924 PRINT AT 21.@8;"Checking ";NN;" = new Line ;N

9925 LET A= A+ 2: LETW = A + 2

0926 LET LEN = PEEK A + PEEK (A + 1)}*HI: LET A = A + LEN + 2

1927 LET T = PEEK W

928 IF T = CODE ¢" GO TO ") OR T = CODE ¢" G0 SUB ") OR T = CORE "™ RUN ™3
IR T = CODE (" RESTORE ") THEN GO SUB 9932

9929 IF T = 14 THEN LET W = W + 5

0938 LET W = M + 1z IF W < A THEN G0 TO 9927

G931 LETE = B + 2: GO TO 9922

9932 LET V = M + 1z LET A = ""

9933 LET S = PEEK V: IF S <> 32 AND 5 <> 14 AND NOT (5>=48 AND 5<=57)
IHEM RETURM !

934 IF S <> 14 THEN LET V = V + 1: LET AS = AS + CHRS S: GO TC 9933

935 LET V = V + 5: LET AT = PEEK V + PEEK (V + 1)#HI

1074 IF AT < LOW DR AT > UP THEM RETLRN

J937 G0 SUB 9943: LET H = INT (MAT/HI): LET L = MAT = H=HI

i9%2 LET B% = STRS NAT: IF LEN A% <> LEN BF THEN GOSUB 9931

/929 POKE V,.L: POKE W+1,H

1948 FOR I =1 TO LEN BS

041 POKE W + I,CODE BE(I}: MEXT I

1942 BETURN

1943 LET C = START: LET D = SCREEN

944 LET H = PEEK Dz LET L = PEEK (D + 13

'G45 LET E = PEEK L *HI + PEEK <C + 1)

1546 IF E »= X THEN LET NAT = B: RETURN

Q47 IF H*HI + L = AT THEM LET NAT = E: RETURN

948 LET C = C + 2: LET L =D + 2

649 LET LEM = PEEK € + PEEK (C + 1J)%HI: LET ¢ = C + LEN + 2

950 G0 TO 9944

Q81 LET DIFF = LEM A% - LEM ES

)952 IF DIFF > @ THEN FOR I = 1 TO DIFF: LET B = BS + ™ ": MEXT I1: RETURN

1G53 PRINT AT 16.8:"No room at ";CHRE T;AT;"™ in Line ";NN,
'“ype edit and add “;-DIFF;" space(s)",'"toc Label then re—run program.”

9954 LET H = INT {NN/HI): POKE 23626 ,H: POKE 23625 NN-H*HI

idvanced Programming Techrigues 217

255 LET A = START: LET B = SCREEN

956 LET H = PEEK A: LET L = PEEK CA+1)

@57 IF H*KHI + L = ¥ THEM PRINT AT @.0;"Renumber aborted": STOP

958 POKE A, PEEK BE: POKE A+1, PEEK (B + 1)

959 LET A= A + 2: LET B =B + ¢

/960 LET LEM = PEEK A + PEEK (& + 1)*HI: LET A = A+ LEN + 2

e GO TO 9954

‘GFR INPUT "Delete Lires ":LOW;" to ";UP: IF LOW < 2 OR LOW >= UP
HEM GG TO 7978

WP PRINT AT ZB.0;'"Delete Lires ";LO0W;" to ";UP,"Please wait"

7972 LET START = 23755: LET SCREEN = 163B4: LET HI = 256

T3 LET A = START: LET B = SCREEM

W74 OLET H = BEERK A: LET L = PEEK (A + 12

'GTS LF R*EI ¥ L »= _LOW THEMN PRINT AT @,8;'"PLease enter Line b
QW=1:" REM ","ard re=run program': STOP

975 LET H = PEEK A: LET L = PEEK (& + 1)

RTT IF HM=F1 + L »= LOW THEN GO TCO 9981

STE LET NN = H*HEI +L: LET LAST = A: LET & =

'97S LET LEM = FEEK A + PEEK {f + 1)*xHI: LET

R GO TO GOTE

778t LET LAST = LAST + .2

‘GEZ LET LONG = FEEX LAST + PEEK (LAST + 1)i*HI

‘G IF H*HI + L > UP THEN PRINT AT @,@;"N¢ L nes irn rarge': STOP

OFL LET H = PFEK f: LET L = PEEK {A + 1}: IF H*HI + L = UP THEN GO TD 999@

OBS LET A = R + Z: LET LOME = LONG + 2

‘986 LET LEM = PEEK A + PEEK (A + 13#%HI: LET A = A + LEN + £
LET LONG = LONG + LEM + 2

GEY IF eI + L <> UP THEW GO TO DOR4

9@ LET M = INT [LONG/RI): FOKE LAST + 1,H: POKE LAST,LONG - H*HI

995 LET H = INT [NM/RI}: POKE 23426 ,H: POKE 236H25 NN-HH I

OGS FRINT AT @.8;'"type edit ana enter': STOP

ho+2
£ = A+ LEN + 2

JASIC Structure (Efficient Programs)

¥hen programming in BASIC we can use our knowledge of the way lines are
stored to help make our programs more efficient, both in terms of space used
and speed of execution, Every occurrence of an explicit number is followed by
1x bytes of number codes so that the conversion from a string of digits to its
vinary form need not be performed each time the line is entered. If instead we
1ssign the required number to a variable, and use the variable name for each
xecurrence of the value, then the space required would be only the number of
avtes in the variable name. To assign the value we must use three extra codes “:”,
‘" ET" and “*=", as well as the variable name, and to access the value we must use
he variable name. If the value is used often then this method will save consider-
:ble space. As an example consider the [irst two statements in the following
program

0PRINT AT 1.1
OLETA=1:PRINTATAA
SO0PRINT AT 1,1

40 PRINT AT A A

*18 Advanced Graphics with the Sinclair ZX Spectrum

"he BASIC text of line 10 requires 17 bytes of store: “PRINT™, “AT™, “17,
4,0,0,1,0,0,“",“1",14,0,0,1,0,0.

ine 20 requires 16 bytes of store: “LET™”, “A™, “="_%1",14,0.0,1,0,0,
A CPRINTY AT VAT Y PAY

The second line above has fewer codes than the first line. However, the
second line uses the variable A, which, unless it is used elsewhere, will take up
s1x bvtes of memory. If we need to repeat the statements, as shown above in lines
;0 and 40. we find that line 3Q is 17 bytes long but line 40 is only 5 bytes long,
So if we use a numeric value more than a couple of times in a program, we can
make large savings by using a variable to represent the value.

We can also save space and improve speed by packing as many statements as
nossible on to one line, although this reduces legibility. Each new line requires
ive bytes of memory: one for the CODL 13 at the end of the previous line, two
ar the new line number and two for the length of the line. A colon between
;tatements needs only one byte. The space saved can be quite large, For example,
.onsider a program with 90 statements {quite small on average): if the state-
nents are initially all on separate lines and we rewrite with 3 statements per line,
ve can save 60*(5 — 1) = 240 bytes. In a large program it is quite feasible to save
wer 1K of memory in this way. Using fewer lines also makes it easier for the
nachine to obey GO TO or GO SUB commands, as it will take less time to search
or the destination line. To be most efficient all SUBroutines and FuNctions
:hould be near the start of a program and arranged so that the most frequently
1scd come first. Unless very many calls are made to the same routine, it is usually
nore convenient to store the routines in a logical order.

“xercise 13.5
Rewrite and reposition the graphics routines and/or the games programs Lo use
less space and if possible run faster.

;ynchronous Display

¥hen displaying pictures on the Spectrum we can use the PAUSE command to
rovide an interesting BORDER display. The television display is completely re-
irawn every 1/50th of a second (1/60th in the U.S.A.) and PAUSE uses multiples
o1 this same lime interval. When PAUSE 1 is used the delay is not always a com-
ete 30th of a second. In lact the PAUSE will last only until the start of the

1ext frame. This gives us a method of starting instructions at a fixed time relative
o each refresh of the display. 1f we change the BORDER colour partway

hrough the drawing of the display, then for that frame the top part only of the
JORDER will be one colour and the remainder will be another colour. Obviously
ve could use PAUSE to wait for the start of the next frame and repeat the pro-
:ess. This results in the display of a steady picture provided we keep repeating

he same actions. The SAVE and LOAD statements use a machine-code routine

1dvanced Programming Techniques 219

o do an equivalent process, which is how the red/cyvan and yellow/blue pattems
ire produced on the BORDER.
‘onsider the following start of a large program

GO TO 10
' PAUSE 1: BORDER 7: BORDER 2: BORDER 6: BORDER 4:
BORDER 5: BORDER 1: BORDER 3: BORDER 7: GO TO 2

“he program terminates with a GO TO 2 command that produces a rainbow
:1fect on the BORDER after the construction of a diagram. Note that, unless the
ine is placed near the top of the program, the GO TO statement will take so

ong to execute that we shall miss the start of the next frame,

ixercise 13.6

Nrite a one-line program that alternates between red and cyan BORDLER colours
vithout using PAUSE, [nsert extra colons (no other statements — just colons)
setween the statements until the execution time for the line is exactly 1/50th

or 1/60th) of a second; that is, the two colours are stationary. (Hinz. count a
30RDER command as 10,2 GO TO as 13 and a colon as 1; try to make the total
aiue of the line, counted in this way, about 160.)

“omplete Programs

. Listing 13.1. Data required: 10 sets of X/Y coordinate pairs. The screen
:hows a zeroed table of these values, followed by “End.”. A cursor, which
points to the first row, can be moved down by Capital 6™ and up by

‘apital “7”". When you arc at the required row, type “EDIT ™ (Capital
*""y and the machine requests the pixel X/Y coordinates for that entry in
he table. When vou have finished move the cursor to “End.”, then EDIT
ind type “y'(es). The program will then draw a polygon by joining the

.0 coordinate points.

I. Listing 132 Data required: numeric key input for mythical file system,
“ype “17 to %6, For **5" or *“6” the machine checks if you really mean it:
vpe “y7(es) or *n”’(0). BREAK terminates program.

1I. Listing 13.3. No data required: BREAK terminates program.

V. Listing 13 4. Type any key on request. No data required: BREAK termin-
iles program,

V. Listing 13.5. After the BEEP, program requires five pictures to be loaded
rom tape. Type 177, %27, 37, “4” or **5" for instant display of required
rame, ‘m’ for ‘movie’ and ‘s’ to stop movie,

/1. Listing 13.6. When screen is full, hold down any key for scroll to continue.
3REAK to stop.

120 Advanced Graphics with the Sinclair ZX Spectrum

/11, Listing 13.7. BASIC version of V1. Very slow!
VIII. Listing 13.8. No data required,
X. Listings 13.7 and 13.9. Type RUN 9900 for Renumber and RUN 9970 for
Delete. Example data: editing listing 13.7

RUN 9900
Lenumber lines 10 to 30
Starting at 60 in steps of 5

vow LIST program to see changes

RUN 9970
Delete lines 60 to 99

t{alt: there must be at least one line in front of section to be deleted

RUN 9970

Delete lines 65 to 99
“DIT (Capital “17)
IST

'4 A Worked Example of a Video
Game

n this chapter we examine the limits of BASIC programming for animated video
-ames. We have found that games written in BASIC are expensive, and in general
the players’ interest short-lived. If users can achieve a reasonable result them-
seives then they far prefer to write their own simple video games, and spend

their money only on sophisticated games written in machine-code. Listing 14.1

‘s an exampie of the sort of game that most competent BASIC programmers can
easonably expect to write, without resorting to machine-code routines. The
;ame, ISLAND DEFENCE (48K machines only), is a typical ‘shoot-em up’ game,
ut the techniques we discuss could just as easily be applied to *bat and ball’

for example, TENNIS) or ‘tactical’ games (for example, PAC MAN).

Jutline of the Game

In the screen we draw a scene of a green island with a small hill, dark blue sea,
and a light blue sky containing a yellow sun and white cloud. There are three
trees. and a light blue concrete area on which a tent is drawn. A man comes out
ot the tent and walks to a sandbagged gun emplacement, where he gives 20
wullets to the gunner and returns to the tent, Enemy aeroplanes appear out of
the sun, fly over the hill and bomb the camp; the gunner defends the camp by
firing at the aeroplanes. At every attack, the aeroplane is either disabled or makes
2 successtul hit on the camp. With each successful hit the size of the tent dimin-
'shes, After 14 hits the tent disappears, and the next plane bombs the gun. On
iestruction of the gun the BORDER of the screen goes haywire and the scene is
gset. Alter each bombing run, the plane flies through the cloud, over the gun
nd exits stage left. The stock of ammunition is replenished after 20 planes have
-ompieted their runs. After the gun has been bombed for the third time the
screen goes blood red and the whole game starts again.

'he gun has seven firing positions specified by keys “1” to 7", and a missile
s fired by pressing ““x’". Because of speed restrictions only one plane and one
nissiie can appear on the screen at any given time.

For vou to make the most of the explanations in this chapter we advise you
to get the companion cassette tape, and LOAD and RUN listing 14.1, The pro-

22 Advanced Graphies with the Sinclair ZX Spectrum

Listing 14.1

REM iritialise routines toc allow use of alternate character set.

1R CLEAR AZ2G4: INK P: PAPER 7: BORDER 7: FLASH @
@ pIM S(6)Y: FOR I =1 TO0 6: READ SCI): NEXT I

1@ DATA 15360 ,62039,62807 ,63575, 64343 64848

@ LET set = 5@: LET & = 1: GO SUB set: GO TO 208
@ REM set/change to szet &

1 REM IN : 5

@ LET KI = INT (S{53/256): LET LO = §(5) - HI*Z25%
0 POKE £236@6,L0: POKE 23687 ,HLI; RETURNM

Q% REM Load ir game characters for set 2.
i@ REM charloac
'@ LET N$ = "gameset"
‘AfF LET 5 = 2
M@ INPUT (" LOADING " + N3 + CHR% & + "Start tape, then press enter.™)
; LINE X%
120 LOAD N% CODE (S{S) + 256),768: RETURN

‘20 REM main program

!B REM initialise varfables poirting to routines.

1@ LET charload = 8@: LET load = 46@8: LET create
LET credit = 55@@: LET char = 5680

2@ LET kevbcard = S5@@: LET camp = 780: LET status = BBB: LET plane = Y3@

%@ LET reload = 15@P: LET ammo = 1900: LET missile = 2200
LET explode = 2500

4@ LET bombcamp = 350@: LET bombgun = 3@8BE: LET hiscore = 57@D: LET HSC = 0

49 REM if rcharacter set is not in place Leoac it.

5@ IF PEEK A2383 <> 110 THENW GO SUB charload

58 REM load background, create characters for fuel dump,

59 REM prinmt rames on bottom two Lines.

6@ GO SUB Load: GO SUB create: GO SUB credit

49 REM make a copy of colour attributes for screen.

TR DIM ACTD4): FOR I =1 TO 7@4: LET A{I) = PEEK (22527 + I1): NEXT I

79 REM prepare strings for use by display routines.

BB LET 5% = " SCORE "+ LET B$ = " BASE iy

299 FOR I =1 TOD 4; LET 5% = S% + (HRS 8: LET B$ = BS + CHRS B: NEXT I

‘BE DIM NE(T): LET NE=" ABCDEFGH"

5800

B% REM start/restart for game.

1% BERIGHT 1: PAFER &: INK B: OVER @

19 REM reset SCore and no. of BaSes, print out score Line

2@ LET SC = @: LET BS = 3: G0 S5UB status

29 REM remove remaining ammunition and remove Tlash from gunners square.
3@ PRINT AT 17.,5;" ": PRINT AT 18,5;" '": PRINT AT 16,3;" "

39 REM restore colour attributes from copy.

4@ FOR I =1 TO 7D4: POKE 22527+1,A(10: NEXT 1

49 REM print rew tent and cunner, update score line, reload ammunition.
5@ GO SUB camp: GO SUB status: GO 5UB reload

458 REM prepare for main Loop of program set ‘p' to top of 'plare' cascade.
259 REM set 'm' to 'missile' ready state, set 'k' to keyboard routine.
6@ LET p = plane: LET m = missile: LET k = keyboard

69 REM start a red wave of 28 AiRplanes.

3@ LET AR = 20

579 REM start of main Loop

58@ GO SUB p: OVER 1: GO SUB m: OVER B: GO SUB k

389 REM jump out of lLoop.

20@ IF DEAD THEN GO TO 420

199 REM 3f more airplares to come keep Looping.

{ Worked Example of a Video Game 223

3@ IF AR > B THEM GO T0 388
@9 REM if erd of planes then reioad and start new wave, continue Looping.
@ GO SUE reload: GO TO 374

1% REM make sure plane is gone, if you have any bases Left use the rext cre.
2@ INK B: PRINT AT 12.8;" ". IF @5 » 1 THEMN LET BS = BS - 1: GO TO 35@

2% REM gamez owver so flash boreer and turn screen bleood red.

3@ OVER 1: FOR I =1 TQ 22: BEEF @.085,RND*ZP-15: BORDER RNO*7

4@ FOR J = 1 TO 2@ BLOT @,{22-I)+8: DRAW BRIGHT 1; PAPER 2; INK 2; 255,08
5@ NEXT J: NEXT I: BORDER 7

A8 VER @

+6% REM check whether vou beat the HiS{ore then restar:t game.
7B IF 8C > HSC THEN GO SUB hiscore
(BB PAUSE 2@P: G0 TO 1€

@0 REM kevboard

@9 REM if ne key pressed wher routine checks then you missed your chance.
1@ LET A% = INKEY®: IF A% = "' THEN RETURN

18 REF the fire key is pressed:-

19 REM if you're not out of missiles and a missile iz ready then fire.

2B IF AZ="%" DR A$="x" THEN IF m = missile AND NOT QUT THEM LET m = f

LET M% = F$: GO SUB ammo: OVER 1: GO SUR m: OVER B: GO TC S5@

29 REM if the «ey is not '1' to '7" then wrong key press, 1gnore it.
530 IF AS > "¥" OR AT < """ THEN RETURN
28 REM calculate whicn routime is used if missile is fired in this direction.
539 REM set string which is used for missile and change gun direction.

A0 LET £ = 2000 + 1P+yAL A%: LFT F% = CHRE (B3 + VAL AR}

5@ FRINT AT 16.3;FS

50 RETURNM

B0 REM camp

N9 REM erint mew gunrer and tent, reset border To white.

18 PRINT AT 17.3;"z": BRIGHT @: BORDER 7: PRINT AT 16,23;"vu"
PRINT AT 17,23;"xy": BRIGHT 1

18 REM set height of tent to 14, reset truth—flags,

19 REM use xevboard rotuine to initialise gun position.

720 LET ¥T = 14: LEY HIT = @: LET DEAD = @: LET A% = "3": G0 TO 548

@B REM status

@5 REM use set 1 to prirt out score and no. of bases Left then back to set 2.
10 LET 5 = 1: G0 SUB set

128 PRINT AT 21.0;5%;SC,B%;BS

20 LET & = 2: G0 SUE set

1 RETURN

YB@ REM plare
'8G REM ensure that 'bombgun' peinter always starts at top ot cascade.
9@ PRINT AT 13.5;" ™: PRINT AT 15,4;" “: PRINT AT 17,3;"z"
LET bombaun = 3000
©32 REM change pointer, if result is over 1@8@ then plare will be Launched.
@00 LET p = 997 + INT (RND*11J:RETURN
P09 REM Launch aircraft, start pointer going down cascade, load bomb.
@18 LET AR = AR - 1: LET p = 18Z@: LET BOMB = 1: RETURN
‘19 REM move plare one place to right.
‘@20 PRINT AT R.C;" IJ"s LET € =€ +1: IF C < 18 THEN RETURN
1829 REM if plLare is over 1@ columns onto screen move pointer down.
‘?32 LET p =1D40
239 REM diagonal dive.
@40 PRINT AT R=1,C;" ": PRINT AT R,C;" N": LETR =R + 1: LETC =C + 1
PRINT AT R.C;'"n": IF C < 2@ THEN RETURN

124

1049
50
1959
PeQ
R
‘070
280

')
100

11D
A?m

1130
113¢
1143

158
1159
ER

‘15

(185
11509
a1

1p
1219
220
2%
ekl
1239
i 240
1250

THAE
S@e
e
YR
520
529

1530

54
1558
559
560

1570

579
aER
1589

55@
'ARE
629
‘611

628

Advanced Graphics with the Sinclair ZX Spectrum

REM i+ over 2@ columns across then move pointer, remove left over plane.

LET o =t1@&@: FRINT AT R=1,C;" "

REM call the 'bombcarp' cascade each of the five times this section is used.
G0 SUB bombcame: PRINT AT R,C;" IJ": LET C =€ + 1: IF ¢ < 25 THEN RETURN

REM move pointer down and start curve up tocwards cloud.

LET p =12&0@

PRINT AT R,C;"™ ": LETR =R - 1: LET C =C + 1: PRINT AT R,C;"KL"
IF C < 2B THEN RETURN

LET p =1180: PRINT AT R, C;" ": LET € = [+ 1

PRINT AT R+#1,C;" ": PRINT AT R,C;"0": LETR = R = 1
PRINT AT R,C;"0": IF R > 7 THEN RETURM
LET o =112@: PRINT AT R+1,C;" "

PRINT AT R,C;" "z LETR =R - 1: LET € = € = 1z PRINT AT R,C;"kl"
LF R » 3 THEN RETURN

LET p =1140

REM fly into cloud, plane still moves normally but vou can't see it,

PRINT AT R,.C;"™ij ": LET C =C - 12 IF C > 11 THEN RETURN

LET o =116@: PRINT AT R,C;" -

REM start cive towards gunner,

PRINT AT R,C;" ": LETR =R+ 1: LET C = C = T: PRINT AT R,C;"M"
PRINT AT R+1,C;"m": IF R < & THEN RETURN

LET p =118@

PRINT AT R,C;" ": LET R =R + 1: PRINT AT R,C;"P": PRINT AT R+Y ,.C;"p"
iFR <8 THEN RETURN

REM third secticn of dive check and erase pessible Left over missile.

LET p =120D0: IF X <> 9 AND Y <> 7 THEN PRINT AT 7,9;" "

PRINT AT R,C;" ": LET R =R + 1: LET C = C - 1: PRINT AT R,C;"W"
SRINT AT R+1.C:"m": IF R < 11 THEN RETURN

LET o =1220: PRINT AT R,C;" ": LETR = R + 1

REM Last secticn of flight, call bombkgun cascade each time.

GO SUB bombgun: LET € = € = 1: PRINT AT R,C;"i] ": IF C > @ THEN RETURN

REM Last two parts of cascade deal with plare going of screen.

LET o =1248: PRINT AT R,C;"j ": RETURN

REM reset plane's Row to 2 and set pointer back to top of cascade,

PRINT AT R,C;" ": LET R = 2: LET p = plane

RETURNM

REM reload

REM if the camp is destroyed ther dont reload ammuniticn

IF HIT THEM RETURN

REM explicit instructions for animation of figure.

BRIGHT @: LET R = 18

REM wa.k from tent to trees.

FOR € = 24 T0 19 STEP =1: PRINT AT R,C;"S$": PRINT AT R+1,C;%s"
BEEF @.07,-15: PAUSE 5

PRINT AT R,C;"R": PRINT AT R+1,C;"r": PRUSE 3

PRINT AT R,C:" ": PRINT AT R=+1,C;" ": NEXT ¢

REM use over-printing so that trees aren't damaged as figure gets close,

OVER 1: PRINT AT R.1B:"S": PRINT AT R+1,18;"s": BEEP B.81,-15: PAUSE 5
PRINT AT R,15;"5": PRINT AT R+1,18;"s"

FRINT AT R.T3:"R": PRINT AT R+1,18;"r": PAUSE 3
PRINT AT RL18;"R": PRINT AT R+1,18;"r"

REM make noises as though figure goes behind tree.

FOR J =1 TD 2: BEEP B.@1,-15: PAUSE 11: NEXT J

REM show feet emerging from behind tree.

PRINT AT R+1,15;"s'": BEEP D.01,-15: PAUSE 5: PRINT AT R+1,15;"s"

FRINT AT R+1,15:"r": PAUSE 3: PRINT AT R+1.,15;"r"

REM show whole fioure coming out of tree,

FRINT AT R.14:"58": PRINT AT R+1,14;"c": BEEP P.01,-15: PAUSE &5

: PRINT AT R,14;"5": PRINT AT R+1,14;"s"™

PRINT AT R,T4;"R": PRINT AT R+1,14;"r": PAUSE 3

: PRINT AT R.14;"R": PRINT AT R+1,14;"r"

i Worked Example of a Video Game 429

‘629 REM walk from tree to end of strip, onto grass at column 8 with bright on.
1630 OVER @: FOR € = 13 TO 8 STEP -1: BRIGHT (C = B)
1648 PRINT AT R.C;"S": PRINT AT R+1,C;"s": BEEP B.81,-15: PAUSE 5
165@ PRINT AT R,C;"R": PRINT AT R+1,C;"r": PAUSE 3
‘660 PRINT AT R.C;™ ": PRINT AT R+1,.C;" ": NEXT (
i66% REM print figure at column 7 ready to refill ammo dump.
1670 PRINT AT R,.C;"R"™: PRINT AT R+1,C;"r"
672 REM refill ammo dump, with sound effects.
680 FOR G =6 TO 5 STEP - 1: FCR H = 18 TO 17 STEP - 1: FOR N = 2 TO 9
69 PRINT AT H.G; INK 3:N3(N): BEEP B.BZ,H+G-N
1708 NEXT N: NEXT H; NEXKT G
1709 REM remove figure from column 7.
718 PRINT AT R.C;™ ": PRINT AT R#1,.C;" "
‘719 REM recset amrunition print ard truth flags.
720 LET N = B: LET OUT = @: LETH =17: LETG = &
‘T29 REM walk from end of strip to tree, bright oif after column B.
TI® FOR C = 8 TO 13: BRIGHT (C = 8
‘T4 PRINT AT R.C;")": PRINT AT R+1,C;"+": BEEP 0.81,-15: PAUSE S
TS@ PRINT AT RLC;"(": PRINT AT R+1,{;"+": PAUSE 3
iT68 PRINT AT R,C;" ™: PRINT AT R#1,.C;" ": MEXT C
THY REM over-print as figure reachez tree.
P70 OVER 1: PRINT AT R.14;")}": PRINT AT R+1,14;"+": BEEP B.01,-15: PAUSE 5
PRINT AT R,14;"™)": PRINT AT R+1,14;"+"
780 PRINT AT R.14;"(": PRINT AT R#1,14;"#": PAUSE 3
SRINT AT R.T4;"(": PRINT AT R+1,.14;"*"
‘TBY REM cverprint Legs as they go into tree.
1790 PRINT AT R+1,15;"+": BEEP 0.D1,-15: PAUSE 5: PRINT AT R+1,15;"+"
TERE PRINT AT R+1,15;"+": PAUSE 3: PRINT AT R+1,15;""
‘809 REM make noises as though figure s behind tree.
1818 FOR 4 =1 TO 2: BEEP @.21,-15: PAUSE 11: NEXT J
1819 REM overprint as figure emerges from tree.
1820 PRINT AT R,18;'")": FRINT AT R#1,18;"+": BEEP D.81,-15: PAUSE 5
: PRINT AT R,18;")": PRINT AT R+1,18;"+"
B30 PRINT AT R,18;"(": PRINT AT R+1,18;"«": PALSE 3
PRINT AT R,18:"(": PRINT AT R+1,18;""
1839 REM walk from tree to tent.
B840 OVER @: FOR € = 19 TO 24: PRINT AT R,C;")": PRINT AT R#1,L;"+"
SBEEP 0.81,-15: PAUSE S
'85@ PRINT AT R.C;"(": PRINT AT R+1,C;"+": PAUSE 3
186B PRINT AT R,.C;" ": PRINT AT R+1,C;"™ ": NEXT C
‘B6T9 REM reset Row and Column for use by plane routine.
‘BFff LET € = @: LET R = 2; BRIGHT 1
i BB RETURN

1900 REM ammod prirt missile dump

I9P2 REM QUT = QUT

‘909 REM take one of ammunition dump and check whether out of ammo.

918 PRINT AT H,G:NE(N}: LET N = N -1

928 IF N =@ THEN LET N = 8: LETH =H + 1: IF H = 19 THEN LET H = 17
LETG =G =1: IF G = & THEN LET OUT =1

1938 RETURN

B0D REM missile directions

‘@09 REM remove old missile bv overprinting and calculate rew position.
2010 PRINT AT Y,.X:M3%: LET =3 LET X =X - 2: 60 TC 2180

‘B20 PRINT AT Y.X;M3%: LET - 3: LET X =X - 1: G0 TC 210D

Y= ¥
¥m ¥
2030 PRINT AT Y,X;M$: LET Y = ¥ - 3: 6O TO 2100
2048 PRINT AT Y.X:M$: LET Y = Y - 3: LET X = X + 1: GO T0 2100
2050 PRINT AT Y,X;M$: LET Y = Y — 3: LET X = X + 2: GO To 210D
2060 PRINT AT Y.X:M$: LET Y = Y - 2: LET X = X + 2: 60 T0 2180
207@ PRINT AT Y.X;M$: LET Y = ¥ = 2: LET X = X + 3: GO TO 212D

2an
218
220

‘SOP
s@8
SR9
1B

2519
52D
530
535
2548

2549

558
2559
560

569
570
580
550

0Tl
BT [l
SD1@
‘Mg
inze
“BE@
sh&R
LR
Qs
. LY
BT
inyp
BT R
o ra
SRER
IR89
pse

BT
59
518
3519
2520
1530

Advanced Graphics with the Sinclair ZX Spectrium

REM if missile is on same columr as plare check for being near row of
REM if missile is close enough explode and reset missile to reacy.

IF X = C THEN IF ABS (Y = R) < 2 THEN GO SUB explode: LET m = missile
: 60 TO m

REM if missile is off screenm then reset poirter 'm' to ready.
IF X < B OR Y < B THEN LET m = missile: GO T0 m

REM print missile at rew position.
PRINT AT Y.X;M5;: RETURNM

REM missilefready to fire

LET X = 3: LET ¥ = 1&
RETLU RN
REM explade

REM missile has hit plare so bl.ow up plare and adc to store.
REM check whether explosion has taken place in cloud or in sky.
OVER @: LET SKY = {R <> 3 QR £ < 16)
EF NOT SKY THEN PRINT AT R.C-1;" "
REM cerntral flash arnd Low buzz, add to score for hitting plare.
INK 2: IF SKY THEN PRINT AT R,C;"t"
FOR I = 1 TO 5: BEEP B.B1,I - 10: BEEP D.01,-I - 1Bz NEXT I: LET §C =
REM if explosicn is seen ther orinmt cloud of debris.
IF SKY THEN PRINT AT R=1,0-1;">@<": PRINT AT R,C-1;"518"
PRINT AT R+1,C-1;":%;"
REM hign pitched whizz.
FOR I = =4 TO &: BEEP 9.802,(50 + ABS5 I): NEXT I
REM remove all trace of explosticon.
INK B: IF SKY THEN PRINT AT R-1,0-1;" "« PRINT AT R,C-1;" &
PRINT AT R+1,.C-1;" £
REM print out rew score line, reset plare and missile poirters.

INK B: G0 SUB status: LET m = missile: LET p = plane
LET R = 2 LEYT C =0

RETURM

REM bomb gun

plane.

SC + 7

REM if camp isn't destroyed or plane hasn't got a bomb Left ther don't drop.

IF NOT HIT QR NOT BOME THEN RETURM
REM place bomb on screen and start pointer down cascade.

PRINT AT 13.5;".": LET bombgun = 3@30: RETURN

PRINT AT 13.5;" ": PRINT AT 15,4;".": LET bombgun = 3@4@: RETURN
PRINT AT 15.4;" ": PRINT AT 17,3;".": LET bombgun = 3@53: RETURN
PRINT AT 17.3; FLASH 1;" ": LET bombgun = 30&60: RETURN

REM clear plare away, make sure any missiles shoot off the screen,
PRINT AT 12.8;" “: DVER 1: FOR I =1 TO 7: GO SUB m : NEXT !
REM flash border and make exploding naises.

FOR I =1 T0 S€: BORDER RND+7: BEEP B.B1,RND*ZB - 15: NE¥T I

REM set flag for end of gunrer.

REM =gt ink to sky-blue subsequent movemert of plame i3 irvisible.
LET DEAD = 1: CVER 1z INK S

REM reset cascade.

LET bombgun = 3880: RETURN

REM bomb camg

REM if the camp has gone save bomb for the gunner,

IF HIT THEN RETLRN

REM mark bomb as dropped and start cascade.

LET BOMB = B: PRINT AT 14.21;".": LET bombcamp = 3530: RETURN

PRINT AT 14,21;" ": PRINT AT 15,22; BRIGHT @;".": LET bombcamp = 3548
: RETURN

1540
349
-558
268
1570
3579
2580
1500
50D
6AY
261
519
520
630

600
4609
610
o220

1634
640

-@pg
S5@p9
Q1B
aze
K
@ag
@ve
&8

SS8D
5589
518
520
530
548
550
568
2570

680
&9

61p
f20
630
& 4l

7R
B9
718
7 2
729
5730
739
74
T8
76D
7R

A Worked Example of a Video Game
BRIGHT @: PRINT AT 15.22;" "
REM explode tent.
PRINT AT 16.23; OVER T; INE 2;"#3"
PRINT AT 17.,23; OVER 1; INK &;"%&"
LET bombcamp = 358@: BRIGHT 1: RETLRN
REM remove explosion from tent.
BRIGHT B: PRINT AT 16,25; OVER 1; INK 8;"#3"
PRINT AT 17,23; OVER 1; INK B;"%E"
LET bombcamp = 3618: BRIGHT 1: RETURN
REM remove top remaining Lire of tent.
PLOT IWVERSE 1;184,33 + ¥T: DRAW INVERSE 1;14,8
REM check whether tent 15 gone and reset bombcamp cascade.
LET bombcamp = 3S@B: LET ¥T = YT ~1: LET HIT = (¥T = @}
RETURN
REM locad
REM load picture from tape.
LET N$ = "background"
INPUT (" LOADING " + N$ + CHRE® & + "Start tape, then press enter,
; LINE X3
LOAD {(N3)SCREENE
RETURN

REM createfcharacters .
REM make characters for ammo dump in user defiped graphics set.

LET D = 255

FOR 1 =0 TO 6: FORJ =0 TO 7
LET P = USR "G" = I*B + J

IF J > I POKE P,D

NEXT J: NEXT I
RETURN

REM credit
REM print cn bottom two Lines.
DEF FN S(R,C) = 163B4 + INT (R/B)*2B48 + (R - INT{R/BI*BI#32 + (

DEF FN C{A%) = 15368 + CODE AS*E

LET R = 22: LET A% = "J/ISLAND DEFEWNCE/L BY BJJ & IOA™
FOR J =1 TO LEMN A%: LET € = J = 1: GOSUB char: MEXT J
LET R = 23: LET A% =" HI-SCORE SCORED BY BJJY ¢
FOR J = 1 TO LEM A%: LET C = J = 1: GOSUB char: MEXT J
RETURN

REM char

REM print j'th character of a% at r,c,

hange attribute to red paper and white ink, beep.

LET AT = FN 5{R,C): LET FROM = FN CLASCLN)

FOR I =2 TO 7: POKE AT + I*256, PEEK (FRUM + 13}: NEXT I

POKE 22528 + C + R*3%2_,87: BEEP @.@3, CODE ASCJ)-5@
RETURN

REM hiscore

REM change hi-score and print it on bottom of screen.
LET HSC = 5C: LET A% = 5TR$ HSC

LET R = 231 FOR J = 1 TO LEN A$: LET C =18 + J: GOSUB char: MEXT J
REM change name to flashing Letters.

FOR I = 23291 TO 23293: POKE I,.PEEK I + 128: NEXT 1

REM get three initials for hiscore from key board.

LET J = 11 FOR-C = 27 TO 29

IF INKEYS <> ™' THEW GO TO 5750

TF INKEY$S = "' THEM GO TO 5740

LET 4% = IMNKEYS: GO SUB char: NEXT ¢

RETURN

227

=)

28 Advanced Graphics with the Sinclair ZX Spectrum

rram wiil ask you to LOAD first the special character set, ‘gameset’ (for drawing
he olane, tent, man, etc.), and then the “background’ (which sets the scene),
refore starting the action. The listing is well documented, so there is no need

or us to go into too much detail here. We shall simply outline a general approach
or constructing these games, and describe methods of solving typical problems
that arise,

“he Foreground

t is essential to carefully plan your game before you start writing the program.
You must first draw a rough plan of the proposed game scene on graph paper.
“hen sketch in the positions of fixed objects (for example, the sun and clouds)
and also the areas to be traversed by moving objects (for example, the path of
:naracter blocks that at some time will contain characters to make up the planes).
“his should fix the scale of the obiects to be used, and will give a general impres-
1on of the final game. Time spent in careful planning at this stage will be a
raction of that necded to adjust a nearly completed program. You must e¢nsure
that the proposed display can actually fit into the graphics area, and that you
1ever get a situation where a moving object introduces a third colour within a
:naracter block. Once you have decided on a screen layout, you must then
create the obiccts for the foreground (for example, explosions, the plane, the
nan) -- that is, the moving parts. The fastest BASIC command for putting a
‘arge object on the screen is the PRINT statement. So we build our objects out
f defined character blocks, and use the CHARACTER GENERATOR program
f chapter 5 to produce the required shapes. To get exactly the shape you want
‘or a disvlay, you should repeatedly examine the characters at their normal size
ind re-edit them if you are not satisfied. It may be helpful to add parts of your
rame-program at the end of the CHARACTER GENERATOR program (option
7. see chapter 5). This will allow you to observe these objects in action while
their final form is still under consideration.

‘xercise 14.1

vdd an extra ootion to the CHARACTER GENERATOR program so that you
-an edit a single character from within a group. This option should POKE the
ight BINary values of the character grid being edited, together with the other
‘haracters in the group, into the display-file locations for specified positions on
he screen: for example, the two blocks that make up the plane in horizontal
light to the right (see figure 14.1). This quickly allows you to evaluate the
nerits of altering one pixel within a character.

r Worked Example of a Video Game 220

dgure 14.1

he Background

"he background is now created using a combination of the CHARACTER
GENERATOR and the diagram-construction routines from chapier 6. You first
iad large character blocks of colour using *paper’ for rectangular areas that
ipproximate to large parts of the scene (for example, grass, sky, sun, etc.). Then
uperimpose the initial detail by PRINTing special characters (for example, the
rees, sandbags, and the edges of the sun, grass and clouds cte.). This can be given
inal touches with the *point’ and ‘line’ options of the diagram routines. For
:xample, the trees arc made by adding lines and dots to the foreground explosion
:haracters. We can expand the range of colours by aliowing BRIGHT as well as
1wrmal colours. Special care must be taken when constructing blocks through
vnich moving objects will pass. They must contain only one background colour
vith no. detail. Remember that onlv two colours are allowed in any one block,
ind there is alwavs a danger that a moving object could introduce a third colour.
n our background (see figure 14.2) there are two particular places where care is
1eeded,

1) The planes pass over and behind a cloud on their return run, so the cloud
:ontains a path of white blocks through its middle. Note that blue sky and white
loud cannot occur within the same character block on the path of the plane, so
he boundary between sky and cloud on this path must be a straight edge, The
siane actually disappears behind the cloud during its flight, so some of the
locks in this path contain white INK and white PAPER. Thus when the plane

30 Advanced Graphics with the Sinclair ZX Spectrumi

nters this block the INK pixels take on the same white colour as the PAPER
ind the plane is indistinguishable from the cloud.

2) The sun, which appears to be a smooth circle, has flat edges on each side.
"he planes pass through one of these edges without encountering a combination
i sun and sky within one block. This is shown in close-up in figure 14.1, which
vas created with the aid of the ‘big pixels’ routine of listing 5.2. This diagram
gnores the true attributes of the blocks; it colours INK in black and PAPER in
vnite. The true colours can be ascertained from the 1/16th scale picture drawn
n the top left-hand corner. Naturally those character blocks in the scene that
emain constant throughout the game can contain two colours.

“igure 14.2

(Cascade Animation

Once we have stored this first approximation of the background on tape, we
1eed to write the routines that will position and move the foreground objects
ibout the screen. Since we are aiming at speed of execution we must make
hese routines as explicit as possible. We need to minimise the amount of calcu-
ation reauired while the game is being played. Any extra programming or
-aiculation, however long, which, if done prior to the play would save precious
niiliseconds during the play, should be implemented. We describe one such
echnique in our example program, the popular cascade, or variable entry point
nethod. The timewise-important routines in the program are referred to by a
rariable pointer (an identifier given in lower case). These routines are made up
f a chain (or cascade) of explicitly programmed subtasks, only one of which

v Worked Example of a Video Game 231

viil be undertaken on each separate entry to the routine. The solution to each
:ubtask is laid out as a set of lines. after which the pointer to that routine is
itered and we return to the calling program. On re-entry, the program natuzally
ypeys a ditferent section of code within that routine, usually the pointer changes
o the next subtask down the cascade. With each call, this process continues with
he pointer moving down through the sections of the cascade until it eventually
eaches the bottom (where it will usually be reset to the top). The complete game
wiil consist of an initialisation phase followed by a loop of calls to routines, each
»f which is a cascade that solves a specific problem within the game (for example,
o move the aeroplane or to bomb the base). Cascade routines may even call

ither cascades! This gives an impression of a parallel process, which is essential

i users are to believe that thev are playing a game in which a number of different
wvents are haopening simultaneously. In our game we try to give the impression
hat the plane, gun and missiles can all move independently.

Jur game is a little toe complicated to be an clementary illustration of this
echinique, so we introduce another, very much simpler, game (available on 16K
nacnines as wellk. Consider the following two programs that perform indepen-
ient functions. Listing 14.2 waits until a key is pressed then shoots a dot across
he screen: listing 14.3 continuously moves a plus sign up the screen in a zig-zag
sattern. Both programs use the tast animation techniques found in the [ISLAND
JEFENCE program; however, because cach is so small, it is necessary to slow
hem down with a PAUSE command (note that excess speed is only a problem
vhen programs ar¢ very simple). From these listings we create two cascade
-outines (listing 14.4) so that the dot and cross appear to move simultancously.

[he dot cascade is in three parts: (a) place a dot at row 11, column O; (b} if
he user hits the keyboard then start the dot moving; and (¢) move the dot one
:olumn farther across the screen until it hits the right-hand edge. Whenever one
w these processes is finished the identifier of the routine ‘dot’ is moved down to
he next section. After the dot has moved right across the screen, ‘dot’ is resct
o the start position,

"he cross cascade is also in three parts: (a) place the cross at row 22, column
32 (b) move the cross one row up and diagonally to the right on the bottom half
o1 the screen: and (¢} move one row up and diagonally to the left in the top
1alf, and if the dot and cross lie in the same block, then SPLAT.

The two routines are turned into a game by a main routine that loops repeat-
:dly through calls to ‘dot” and ‘cross’, where, of course, these identifiers arc
yerpetually changing so that they each refer to the correct part of their cascade.

Listing 14.2

‘AR REM dot

1@ PRINT AT 11.@;"."

‘2@ IF INKEY$® = "' THEN GO 7O 224
%0 LET b = @8

48 PRINT AT 11.D;" ":LET D = D + 1
S5 IF 0 = 32 THEN GO T¢ 218

6@ FRINT AT 11,.D2"."

TR PRUSE 1: 60 TG 249

’32 Advanced Graphics with the Sinclair ZX Spectrum

Jdsting 14.3

‘BB REM cross

310 LET R = 21: LET C = 8

2@ PRINT AT R.C;'+"

538 PRINT AT R,C;" ":LETR =R -1
@ IFR < @ THEN GO TO 31B

SS@ IF R > 11 THEN LET C = C + 1
6@ IF R <= 11 THEMN LET € = € =~ 1
37@ PRINT AT R,C;''+"

BB PAUSE 1: 60O TO 330

Jdsting 14.4

T80 REM main loop

18 LET dot = 200: LET cross = 300
28 G0 SUB dot: GO SUB cross

i30 GO TO 128

@@ REM dot cascade
1@ PRINT AT 11,0;".": LET cot = £2@: RETURN

2B IF INKEYS = """ THEW RETURN
3@ LET b = B: LET dot = Z24d: RETURN

Z4@ PRINT AT 11,D;" “:LET > = D + 1

250 IF D = 32 THEN LET dot = 21D: RETURN
260 PRINT AT 11.0;"."

'70 RETURN

A0 REM crocss cascade
310 LET R = 212 LET C = B8
I20 PRINT AT R.C;"+": LET cross = 33f: RETURN

33D PRINT AT R,C;" ":LET R =R - 1
340 LET C=C + 1

358 PRINT AT R,C;"+"

368 IF R > 11 THEN RETURN

TR LET cross = 38@: RETURN

BB IF R =11 AND C = D THEN PRINT AT R,.C;"SPLATY: S5TOP
299 PRINT AT R,C;" ":LETR =R -1

430 IF R < B THEN LET cross = 3189: RETURN

418 LET C = C - 1

20 PRINT AT R.C"+"

430 RETURN

ixercise 4.2
Add a line to the calling loop of the above program so that after a SPLAT the
pointers to the top of the cascades are reset and the score (number of hits)
arnted.

Write a ‘duck shoot’ game where a hunter, under keyboard control, moves
left and right at the bottom of the screen. He shoots at ducks that fly left to right,
up ana down, across the screen.

\ Worked Example of a Video Garme 233
‘urther Animation Techniques

¥ith such a simple game we find that the saving, in time and programming
tfort. from using the cascade technique is very small. However in larger pro-
rrams, which can have complicated cascade programs (for example, the move-
nent of the plane in ISLAND DEFENCE), the time savings can make the
lifference between a good fast game and a boring slow one. Note that there are
1ght different sets of character blocks that describe the plane; see figure 14.2,
vhich shows the complete scene and one example of each plane, as well as other
oreground objects. The cascade for drawing the plane is divided into sections,
:ach of which places one type of plane in a particular area of the screen.

in this game we show a variety of different ways of solving the problems of
inimation. The planes are moved by printing them in transparent INK, and then
obliterated from their previous positions with blanks. The missile characters are
OVERprinted {(again with transparent INK) on the existing detail and then
'rased at their last position by OVERprinting with the same character. These
nethods have both advantages and disadvantages. Where removal of the old
osition can be combined with the printing at the new (see the sections where
he plane flies horizontally} you will find that normal PRINTing often takes less
time, but it does mean you lose any detail in the background. OVERprinting
‘akes longer, but leaves detail undamaged. Using a combination of these tech-
1uques in a program can cause problems if two moving objects pass simultanecusly
hrough the same block: for example, what happens if a square containing a
missile is blanked out by a passing plane? This can occur in the game at character
Nock row 7. column 9. The effect is that the OVERprinted missile, which is
upposed to cancel out the old one, is left hanging in mid-air. Discretion is the
vetter part of valour and it is far better (timewise) to check for these problems
ind explicitly program a cover-up, rather than add complexity into your algor-
thm and perhaps even introduce another fault. The plane cascade contains an
'xtra statement (at line 1190), which ensures that any such mishap is swiftly
overed. When trying to remove faults, remember that a brute-force cover-up
viil probably be far quicker (in your time, and running time) than a tancy fault-
iwvoidance routine. Although you should have foreseen most problems in the
rlanning stage, and adjusted the background and the paths of moving objects,
ome peculiarities are certain to occur.

"here are two places where we have shown an object apparently passing
rehind a background object. In order that a plane can vanish behind the cloud,
ve simoly made the INK white in those blocks where the plane was to disappear.
Since a white plane in a white cloud is about as easy to spot as a black cat in a
:oal-cellar at midnight, we are tricked into thinking that the plane is hidden by
he cloud. For the man marching behind the tree, the whole problem becomes
more compiicated. We still wish to see the tree in two colours when he is behind
't. The trick this time is to make the man walk up to the tree normally; OVER-
print him when he is in the same block as outer foliage, and then simply make

‘34 Advanced Graphics with the Sinclair ZX Spectrum

narching noises, without printing, for the appropriate length of time, before
rarting him off again from the other side of the tree. His legs must also reappear
rom behind the tree one block before his head when he is moving right, and
:quivaiently when moving left. All these details must be carefully calculated
hefore even writing the first line of BASIC code.

A\ combination of these techniques for moving objects. making an allowance
‘or them to pass each other, will enable you to produce displays of very high
juality. Of course you must use machine-code routines if you require really fast
and comblex games, Even so, many of the routines can still be in BASIC. There
s no need to produce programs written completely in machine<code unless you
want to sell your games,

‘inally, as your games programs become more and more interwoven and
ross-connected. you must keep a simple overview of the program. Note what
asks need to be done at the top level, use sensible variable names, put in plenty
f comments during development, and above all, don’t panic!

Ve leave vou now with yvour Spectrum. It has proved reliable and sturdy,
traightforward and easy to use, We are certain that you will have many, many
1ours (vears!) of pleasure out of this machine. To start you off we give a numbes
i ideas for projects in the next section. Good luck and good programming,

_omplete Programs

. Listing 14.1; the ISLAND DEFENCE game. We do recommend that you
yptain the tape because you will find il time-censuming setting up the
pecial character set and background. However, you should at some time
Teale such character sets and backgrounds yoursell.

I. Listing 14.2 (‘dot’). Type any key.
II. Listing 14.3 (‘cross’): no data required,
V. Listing 14 4 (‘main program’, ‘dot cascade’ and “cross cascade’), Type any
key.

'S5 Projects

.. Use vour Spectrum to draw a digital clock. Use the special large characters for
‘he digits and a colon to separate them. Your clock can be made to keep correct

mme by using the internal clock of the Spectrum (see page 130 of the Spectrum
JASIC Handbook (Vickers, 1982})).

I. Make a program that tests the Morse Code proficiency of the user. The con-
ent for the program should be a paragraph of text; after translating into Morse,
he Spectrum should print out the dots and dashes using the medium-resolution
‘haracter blocks. It should also use BEEP to simulate the sound of Morse. Your
srogram should have a variable rate of production of the Morse Code, so that the
speed of the test can increase as the user becomes more proficient.

1. Draw a set of international road signs. Your program should draw the back-
ground of the figures (for example, red triangles); then use your own special
outines or the programs of chapters 5 and 6 to finish off the foreground.

V. Construct crossword puzzles on your television set, Each square of the puzzle
ould be 2 by 2 character blocks. The four blocks can be either black (in which
:ase nothing goes in the square), or white, with the bottom left-hand corner hold-
ng the letter of a solution and the top two characters the clue number (if any).
“his allows space fora 16 by 11 puzzle.

vs vou have also to place the clues on the screen, there will obviously be a
nortage of space. This problem can be solved by using the ideas of the ‘slide
now’ of chapter 13; put the puzzle in one frame, and the clues on the remaining
our [rames. Solutions to the puzzle can be added by a ‘cursor’ method or by
having & special input code; for example, letter “A” (across) or “D” (down)
ollowed by the number of the clue, followed by vour solution. If you make the
uzzie smaller you could even have the option of using this code to bring clues
in 1o the screen one at a time {or perhaps place them in rows 23 and 24), in
vhich case the crossword need not be moved ofl the screen,

7. The Spectrum BASIC Handbocok (Vickers, 1982) gives a program (o draw the
Inion flag. Write programs or use the character generator and the diagram
outines (chapters 5 and 6) to produce other flags. You can draw company logos,
»r even design new ones. Use the techniques in chapter 13 for accessing display-

36 Advanced Graphics with the Sinclair ZX Spectrum

ile locations to add an extra option to the diagram routines. This option allows
/ou 10 copy a set of character blocks (already on the screen and specified by
:ursor’) on to another set of blocks of the same size elsewhere on the screen
also specified by ‘cursor”), You could even rotate or reflect them!

/1. The Spectrum BASIC Handbook (Vickers, 1982) shows how to use BEEP
1o create music(?). While BEEP is making the sounds, you can draw the musical
101ation on the screen. Construct the staves and then use special characters to
diace quavers, minims, et¢. on the screen. The old music hall method of the
houncing ball’ could be used to beat the time of the tune.

V1I. Use the character block method to draw mazes. Naturally your program
must generate mazes with real solutions. Give yourself time limits for getting
hrough the maze. You can make the mazes dynamic, so that they change as the
rame progresses. Add extra problems: man-eating monsters that roam the maze;
10les that suddenly appear and can swallow you up: ‘space warps’ that can
ransfer vou anywhere in the maze if you do not move fast enough,

/I1I. Extend the ideas of chaoter 6. Draw your own special histograms, pie-
harts and graphs. Make them dynamic (either by the ‘movie’ method of chapter
3. or the ‘worm game’ method of chapter 1, and its extended form in chapter

4). Generate whole sets of special characters. Create (apparent) three-dimen-
sionai histograms by drawing every bar in three different-coloured sections. The
1eight of the front section of each bar must be a whole number of character
slocks and two character blocks wide. A side scction is one block wide, the
:ame height as the first section, with a triangular hat filling the bottom-right half
ot a block. The third section lics above the first section and is in the shape of a
‘nombus that touches the first two sections. This ensures that there are never
nore than two colours in any character block, and makes the bar look like an
srthographic view of a rectangular block,

X. Create patterns. Use OVER with large numbers of random lines about the
:creen, Or draw lines in a dense but regular way to get Moiré patterns. For
:xampie, draw lines joining the points (0, I) to (255,175 D for0 << 175,
ina points (I, 0) to (235 1, 175) for 0 <1 < 255, Extend the ideas of the pat-
‘ern program of chapter 5 to produce complex symmetrical patterns — any
ntroductory book on crystallography (for example, see Phillips, 1956) will

fve you iots of ideas,

{. The crystallography books (for example, Phillips, 1956) will give you many
deas for three-dimensional objects. Extend into four dimensions — vertices are
umoly a vector of four numbers and they require 5 X 5 matrices for transforma-
tions. For an orthographic projection of a four-dimensional point, we simply
gnore iwo of the coordinates (as opposed to one, z, in three dimnensions). What
ire translation, scale and rotation in four dimensions?

Profects 237

«I. We have already presented two board games, Chess and Master Mind. There
ire many more possibilities: draughts (er checkers}), Scrabble, Hangman, ludo.
‘ou can create a compendium of games. The Spectrum can simply act as the
roard., or it can also be a referee. If you feel really adventurous it can even act
is an opponent.

UI. Use special characters to construct a deck of playing cards. These can be
ncorporated into a program to play blackjack (or pontoon) with the Spectrum
wting as the bank and opponent.

AL You can draw certain types of brain-teasers on vour television. For ex-
impie, suppose you have nine squares and each is divided into quarters down
he diagonals. Each quarter has a colour (blue “17, red “2", magenta “3" and
een ‘47) and a sign (*+7 or “—""). We represent each square as a sequence of
‘our numbers that denote the areas taken clockwise around the centre. For
:xampie, we could have (-1, -2,1,4),(—1,3.4, -2).(1, -4, -2,3),(1. 2,
1. -4),(1,3,-2,-4),(1,4, -3,-2),(2, -3, —4, 3) and two occurrences of
—1,—4, 3, 2). The problem is to place the nine squares in a three-by-three
irrangement, so that if two quarters on neighbouring squares touch, then they
nust be of the same colour but of opposite sign. You can use the Spectrum to
iraw the squares initially on the left side of the screen and a three-by-three grid
i the same sizes on the right. Then you take squares from the left and place
hem in the grid, or replace them back to the left.

Vrite a program to find a solution of the above problem — it takes about 10
ninuies to run. and finds two independent solutions.

IV, Produce a medium-resolution graphics package for manipulating 2 X 2
warter blocks. This package should be similar to the one we gave for character
locks in chapter 5. The screen thus consists of 64 by 44 quarter blocks. Take a
wnotopgraph of yourself and superimpose a grid of 64 by 44 on it. For each
«wauare, aecide whether it is mainly light or dark, and colour the corresponding
marter block accordingly. This seems like a lot of work; but note that most of
he picture will be a light background, so if we use white PAPER and black INK
nost of the squares need not be considered. Since a head measures more in height
han it does in breadth. you can get greater resolution if you draw the head side-
vavs on the screen. You could draw two heads side by side on the screen.

V. Write a PAC MAN tvpe of video game. This involves drawing five moving
ibiects on the screen at a time, In order to make the game move faster, allow
nty two of the ghosts to move with each move of PAC MAN. The ghosts should
‘ind the shortest path towards the player when they are in hunting mode, and the
Dest escape route in running mode. Because of the complex layout of the screen,
rou wiil have to compromise. Simply move towards (or away from) the player if
here is no wall in the wav, Find a quick way of coding their movements as this
w1l be the most time-consuming part of the game. Speed is the essence of a

38 Advanced Graphics with the Sinclair ZX Spectrum

00d video game. Perhaps a simple machine-code routine could be used to print
A1 five figures on the screen after altering their ‘PRINT AT" positions.

LVI. Write a program that first (OVER jprints a graphics menu of special symbols
on the left-hand side of the screen, for example, the stylised components for
lectronic circuits (resistors, capacitors, etc.). These symbois should consist of
sroups of character blocks, Use a cursor te point at any menu-symbol and then
using OVER) drag a copy of it to a required position on the screen. Also add a
acility for drawing connecting lines and labelling with thin numeric and special
haracters {for example, £2 for ohms), You should also allow deletion of symbols
inadvertently placed in the wrong position, Extra options could include saving
and loading, as well as deleting the menu from the final diagram.

KVIL In all our perspective diagrams it is assumed that the objects lie totally
n iront of the eve. Change our programs so that they deal with the general
case where vertices may be behind the eye. See Newman and Sproull (1973}
:oncerning this three-dimensional clipping.

Appendix A Implementing Programs
on the 16K Spectrum

Over 7K of this machine is used for the display and attribute files and for
wvstem variables. This automatically limits the size of programs and data to
ipout 8 8K, Many of the programs given in this book far exceed this value,
uthough most will run if the reader obeys the following proposals.

1) Delete all REMarks from the tape listings and any unused routines from
ibrary files (for example, “plot’ and possibly ‘scale’} before MERG(E)ing the
‘outines. Also follow the hints given in chapter 13 for optimising the program
-ode. For example, the program for drawing the jet (listings ‘lib1’, 1ib3’ and
297y will just fit into the store if the REMs, ‘scale” and *plot’ are deletled.

2} It is possible that there will not be enough store for the four aliernative
naracter sets (sets 2 to 5) and the User-Defined Graphics set (set 6). If there is
'noughn store the address table for the six sets (set | is the standard set) should
10ld the values 15360, 29271, 30039, 30807, 31575 and 32080 respectively. It
s possible that the use of sets with the lower addresses could corrupt your pro-
wam and data, or even crash the computer, Use only the sets that do not
nterfere with the store! The CLEAR statement found at the beginning ol pro-
rrams that use alternate characters must be changed from CLEAR 62294 to
'LEAR 255 + the address of the lowest set available {greater than 1). You will
ind that the CHARACTER GENERATOR program does not have enough space
ror set 2, and in this case we must CLEAR 255 + 30039, If you have a program
hat requires set 2 then create these characters as set 5 (say), store it on tape, and
oad it into vour program, which must, of course, have space for set 2.

3} You can break down programs into non-interdependent parts and store the
nctures and/or data produced by them on tape. These files may be reloaded in
:omunction with the other programs for further manipulation; for example, the
liagram constructions of chapter 6. You should 1.OAD ‘libdiag” and MERGE one
)f the histogram, pie-chart, graph or picture-editing programs. When you run the
TOgram you must remember not to attempt to use routines that are not cur-
ently in memory. You can SAVE and LOAD the intermediate pictures using the
.CREENS option, and arrays using the DATA option, You can then LOAD the
seture-editing routines to finish off your diagrams.

4) Unfortunately, some programs will not fit into 8 8K of memory whatever is

40 Advanced Graphics with the Sinclgir ZX Spectrum

1one; these are the general hidden line algorithm for non-trivial objects, the
novie program and the ISLAND DEFENCE game. If you are serious about
studyving compuler graphics on the Spectrum we would strongly advise you to
buy the 32K expansion for your machine,

ippendix B BASIC Program Listings

Ve now give a list of the BASIC program listings stored on the companion audio-
-asserte tape. These routines are in the form necessary for running on the 48K
rersion of the Spectrum. Most of them need no changes in order to run on a
6K machine. However. if you have this type of machine you should check the
{EMarks in listings given in the book for any changes, and read appendix A.
novie’, the five frames ‘spherel’ to ‘sphere3’ and ISLAND DEFENCE are the
»nly Toutines that are 48K specitic. You will find that with chapter 6 you have
o LOAD ‘libdiag’ and MERGE just one of '6.8’, '6.9°, '6.10&11" and '6.12" in
srder for it to fit in the store. Should vou need more than one type ot data
sraph on the screen at any one time, you must intermediately SAVE picture on
rape and reLOAD the screen after a new program has been created.

SIDE 1
‘tle Name
lirectory 1

ibl

29
212
2:13

ib2

ib3

Contents

Listings 2.1,2.2,2.3, 24,2 8 and 3.3;
‘outines for mapping two-dimensional Euclidean space on to
rraphics area,
Listing 2.9; joining peoints of regular N-gon,
Example of envelope.
Spirograph,
Sauare inside square inside square etc,
Listings 3.4, 4.1a, 4.2a,4.3a,4.4a,4.5, 4.6,
outines for matrix manipulation of two-dimensional space.
Construction of a general ellipse.

Construction and view of four ‘space ships’.

Point of intersection of line and plane in three-dimensional

‘pace,

Point of intersection of two lines in three-dimensional space.
Example of dot and vector product,

[nverse of a 3 X 3 matrix.

Point of intersection of three planes in three-dimensional space.
Line of intersection of two planes in three-dimensional space.
Listings 3.4, 9.1, 9.2 and efficient rewrites of 8.1, 8.2, 8.3 and
3.4 routines for matrix manipulation of three-dimensional space.

42

1.5&6
'Oo&T&B

19
Y10& 11
0.1
134102
10.3

0.1
04
1.1&2
2.1
2.2
2.3&4
2.5&6&7
novie
spherel
sphere?
sphere3
‘phered
:phereS

ADE 2

‘ile Name
lirectory 2
ielete]
‘enumber J
>3

2.4

ibdiag

3

Y.L

3
0.5&7
.8
1.9
0. 10&11
.12
hin3
hind
.16
2 .6
nasterset
5.7

Advanced Graphics with the ZX Spectrum

Rotation of point about a general axis of rotation.
scened, construction and drawit routines;

1ecessary ror drawing an orthographic view ot two cubes.
Additional routines for drawing the jet (orthographic).
Routines for constructing an orthographic body of revolution.
Orientation of a three-dimensional triangle.

scene3 and hidden surface routine for drawing a cube.
Hidden surface routine for drawing a convex body of revolu-
ion.

Construction routine for a flving saucer{!).

Hidden surface routine for drawing a mathematical surface.
Perspective view of two cubes.

General hidden line algorithm.

Hidden line perspective view of two cubes.

Construction routines for cuboctahedron and icosahedron.
Construction routines for two stars, and a scene3 routine,
Program for displaying five frames in quick succession.

Five frames needed to make a movie of a rotating sphere.

Contents

Utilities from listing 13 .9,

The CHARACTER GENERATOR.

Main program for simple tesseliated patterns.

Listings 6.1, 6.4, 6.6 support routines for diagram construc-
‘ion.

‘paper’ and ‘ink’.

‘point” and ‘line’.

‘label’, *thin’ and ‘create’

Histogram routine/type 1

Histogram routine/type 2

Pie-chart and hatching routines.

Scientific graph routine.

Characters stored in set 3 and used to make thin characters.
Characters stored in set 4 and used to make thin characters.
The WORM GAME.

MASTER MIND program.

Characters needed by MASTER MIND program.

The Chess board program,

:hesspiece
4.1
sameset
rackground
4

D
3.1
T
.3
3.1
36
37

13.8
44

ippendix B BASIC Program Listings 243

Character sct holding the chess pieces.

ISLAND DEFENCE game.

Character set needed for [SLAND DEFENCE,

Scenery for the game,

Fractal program.

OVER patterns,

Displaying the binary construction of a given chracter.
The big pixels program.

Constructing a graphics character from eight binary numbers.
Menu input for 10 vertices of a polyzon.

Scrolling of screen with wrap around: in machine-code.
Same as 13.6, but written in BASIC.

Program that lists itself, giving all numeric codes.
Simple cascade program: SPLAT.

References and Further Reading

References

shl, D. 1, (Ed.) (1980). Basic Computer Garmes. Workman Publishing Co., New
Vork
dain, G.(1972), Celtic Art: The Methods of Construction, 2nd edition.
vlaclellan. Glasgow
Cohn, P. M. (1961). Solid (reometry. Routledge and Kegan Paul, London
Coxeter, H. 8. M. (1974). Regular Folytopes. Dover Publications, New York
Yavenport, H.(1952), The Higher Arithmetic, Hutchinson, London
inkbeiner, D, T. (1978). Introduction to Matrices and Linear Transformations,
Ard edition. W, H. Freeman, San Francisco
{orowitz, E. and Sahni, S. (1976}, Fundamentals of Data Structures, Pitman,
_ondon
lurley, R, (1982). More Real Applications for the ZX81 and the ZX Spectrum.
vlacmillan, London
luttv, R, (1981). Z80 Assembly Language Programming for Students, 2nd
agition. Macmillan, London
<nuth, D. (1972, 1973, 1981). The Art of Computer Programming. Volume 1:
‘undamental Aleorithms, 2nd edition, 1973. Volume 2. Semi-numerical
tleorithms, 2nd edition, 1981. Volume 3: Sorting and Searching, 1972,
1ddison-Wesley, London
iffick. B. W. (1979). The BYTFE Book of Pascal. Byte Publications, New
lampshire
Mandelbrot. B. B. (1977). Fractals. W. H. Freeman, San Francisco
vicCrae, W. H. (1953). Analvtical Geometry of Three Dimensions. Oliver and
Jovd, London
Newman. W. M. and Sproull, R. F. (1973). Principles of Interactive Computer
rraphics. McGraw-Hill, London
Phillips, F. C. (1956). An Introduction to Crvstallography , 2nd edition.
ongmans, Londen
droud. K, A, (1982). Engineering Mathematics, 2nd edition. Macmillan, London
“olansky, 8.(1964). Oprical fllusions, Pergamon, New York
fickers, S, (1982). Sinclair ZX Spectrum: Bgsic Programming. Sinclair Research,
-ambridge

References and Further Reading 245

Voods. T. (1983), Assembly Language Assembled — For the Sinclair ZX81.
vlacmillan, London

‘aks, R. (1978). Programming the Z80. Sybex, Berkeley, California

urther Reading

{ead anv periodical, magazine or journal relevant to computer graphics, such as
SIGGRAPH. CADCAM, CAD journal {and there are many, many more), and the
nore advanced graphics textbooks (for example, Newman and Sproull, 1973},
is well as the general computer newspapers and monthly magazines, such as
Yersonal Computer World, Practical Computing, Interface, etc. [t does not
matter if vou do not immediately understand the more advanced articles: it is
muoortant to appreciate the flavour, excitement and achievement of the subject.
Jbtain the promotional and advertising literature of the major graphics com-
panies (Tektronix, Imlac, A.E.D., Sigma, Hewlett-Packard, D.E.C., etc.}, and

ret as much information as possible about graphics software packages. Keep an
:ve on the television usage of computer graphics, whether it be in science pro-
rrams, science-fiction melodramas or advertisements, Study video games and

1v to understand from the display how the characters are drawn and
nanipulated.

‘ndex

i 65,143,162

WBSOLUTE 69, 70, 154, 155, 158
ipsolute 8

absolute value 46,53, 126

sceents 94

WCTUAL 69,70, 72-6, 79, 80, 154-63,

165,182, 187
icute angle S5
addressable points 27
Adioint method 64, 134, 148
wropiane 167, 221, 229
ugebra 43
algebraic expression 56
ALPHA 69
alphabetic character 89, 166
alternative characters E9-102
implitude 46
analogue input 103

ingle 20, 53-5, 74,146, 149,153, 159,

160

angle between lines 127, 128

animation 14, 19,71, 201, 209, 233

anti-clockwise 41,57,58,68, 94, 140,
172-6, 190-93 201

are 20.56,116,117

areas 27,69,70

arrays 32,35,62,69,71,72,79,80,
29,130,135, 160-62, 172, 180,
81.187, 196,201

irray bound error 76

iarav index see index

issembler 208

issembly language 208

Sstroid 78

I 16,204, 218

vTN 54

WTTR 16, 23

itribute 15, 16, 18, 1035, 230

ittribute conversion 16, 17

attribute file 15, 16, 18, 209, 239

iXes, axis 29,33,49,51,69,110,119,
24,146, 149

ix15 of rotation 149-51, 153, 169

B 65,143,162
background 5.6,114, 228-30, 233

backing store 31

ball 25,60

bar-chart 110

bars 109,110,114

base vector 47,49, 50,53,59,125-7,
129 137,141,153, 185

BASIC 1,5,7,16,23,27,29,30,31, 36,
54,62,65,76, 113, 205, 207-209, 212

214-18, 221, 228
battle formation 76
BEEP 13,219, 235,236
BIN 6, 15,806,858, 228
binary 18
binary bits 6
binary switch (onjolT) 5,11
binary representation 6
bits 6,18
black 6,12, 15-i8, L06, 230
block graphics 83, 85, 86
blue 16-18,219, 221, 229
body of revelution 2,167-9,176, 189
body of rotation 170,171
BORDER 6,51, 218, 219, 221
bottom left-hand corner 27, 29
bottom row 152
bouncing point 19
boundary 8,19
boundary polygon 57-9
brackets 28,486,125, 203
brain teaser 237
BREAK 219
BRIGHT 15-18, 105, 204, 229
building brick 70, ¥1
BYTE 2.6

T 16]

Calomp 33,48

caleulus 43

capitals 96

Cartesian 27,29,31,124
cascade 230-34

cassette 2, 31, 96, 241, 235
castling 101

“eltic 21,38

centre 36,42,54,77,106
CHARS R3-5,89, 94 207

3

ndex

haracter 7.83

:naracter block 7.9,15,16,18,19, 21-3,
5.33,83,84, 86,103,109, 110, 119,
61,205, 206, 228,229,236

:naracter code 2. 85

:Naracter editing 89

‘naracter generation 89

'HARACTER GENERATOR #9-95.99,
02, 107, 109, 119, 203, 228,229 233

‘naracter graphics 1, 83

‘naracter set B3_ 87, B9, 93,95 107, 207

snaracter table see table

neguer board 88

dess 99102, 237

nesspiece 99

‘HRE 204

IRCLE 19,20, 36

arcie 19.36,37,41,42,59%9 60,106,117

cumierence 36

'LEAR 54,210, 238
dipping 51,82,162, 189, 238
dock 235

dockwise 57, 140, 172-5,190-93, 201

d0se up 1HY

dond 221,228,229

"ODE B3, B5-7T, 204, 208, 207, 214, 215,
18

:perficients 64,65

0gs 41

ollisions 23

wion 218,219

:olour 5,6,15, 18, 21,23, 33

woiour code 18

wolour sensar 18

wolwmn 16,062, 104, 206

olumn vector 62-5, 74,134, 137, 143,
44,151,152

:ombination of transformations 65, 66

ommand 5-9,11,19, 93

ommutative 63

composite colour 18

concentric circles 86

cone of vision 183, 1B5, 189

onie section 59

:onnected 56, 13§

:onstruction routine 70, 72, 75, 79, 80,
bl. 169, 187

"ONTINUE 114

oniinuous curve 121

ontrol eodes 204, 205

onvex A7-9.174-7_ 185, 190-92, 201

'0orainate axes See axes

oordinate geometry 27,43, 124

'oordinate origin see origin

:norainate pair 28

:o0rdinate system 33 45 62 69-71

‘ourdinate representation 128

:ordinate triple 124, 156, 163

coordinates 29,32, 35,37,54,62, 236
coplanar 130

{COPY R7,94

copyright 83

COS 33,54

cosine 34 122

Cosine Rule 355

crosswires 103

crossword puzzle 235
crystallography 236

cube 156,157,159, 162-6,172,174,

181,183,186, 187,193,196, 199, 200,

212

cuboctahedron 198, 199, 201

cursor 14,93 103, 104, 106,116, 203,
204,236

curves 28,37,39,40,55,56, 108,139,
185

curved lines 117

van [6-19, 219

D 18D

dashed line 48,49, 52

DATA 94,163, 168, 208, 238

data base 72,79, 80, 160,161, 1635

data graph 1, 102, 103, 107

data structure 201

debugging 114

decimal 6,120,214

definition set 169

degrees 34,127

delete 93,212, 220

DELETE 204

determinant 63,64, 131, 136

diggonal lines 37

DIM 76, 153

dimension 28

dira¢tion 28,533, 54, 126

direction cosine 54,55, 126,127,129

directional vector 47,49, 50, 53-6, 59,
125-30,132, 141,151, 153,185

disc 41,42

discrete curve 121

discrete points 12

display 5,9,11, 12, 20,88, 207,218

display file 6,7, 15, 18, 84-6, 105,
205-209, 212, 228, 239

distance 46.51,57,124,126, 129, 183,
189

dominaes 95

dot product 127-30G,132,151

DOURBLE 94,96

DRAW 7-9 13,19, 20,31,39,51,52,
R&, 89, 105, 106

drawing board 182

dual interpretation 48, 125

DX 69,155

DY 69,155

247

48

Ivnamic scene 82
3L 155

e, PPC 215

:ages of square 14

DIT 203, 219, 220

«{ditor 93

:thiciency 76, 217

‘gham 110, 113

slectron beam 5§

lipse 37,59 60,77,78
ellipsoid 169

n passant 101

ENTER 102, 103,214
cnvelope 410

‘uclid 43

‘uclidean geometry, space 27, 43
wuclid’s algorithm 42

<X 155

xtended kKevs 204

Y 155

ve 69, 82,155-60, 184, 187
L 185

161

acet 154, 155, 161, 172-5. 183, 185,
90-96, 201

‘anfare 22

ile handling 204

lag 235

‘LASH 15-19, 105

‘N 2,218

‘OR loop 6,8,10,95,153

oreground 6_ 228

format 120

fourth dimension 236

ractal 9

Tame 27, 29, 209

“rench 94

unctional representation 55,56, 59, 60,
121,137-9,192

came 14, 22,23, 25,95, 218, 237

rameset 223

zarpage 161

seneral form 37

‘eneral point 45,46, 53, 125-7, 133,
138, 185,192

:gometrical art 34

£ 5UB 1,93, 215, 218

GOTO 215,218,219

rfapn paper 167

graphics characters 85-9, 93

sraphics frame, area, rectangle 27-9, 35,
:1,52,75,104, 180, 189,228

rraphics mode 83, 85, 88, 89, 93

sraphics package 1,27, 33

graphics pen 8,19

rraphs 1, 107,109, 118-20, 236, 238

Index

ereen 16-18.93,94 106, 221
prid 8.9,93,94,167, 179, 180
run 221

H 161

hatching 115-17

head tilt 69, 155, 160

hexagon 161

hi-byte 212, 213

hidden lines, surface 1,2, 110, 114, 139,
140, 154, chap, 10, 190, chap. 12

high resolution 9,18,19, 21, 35

highest common factor 42

highlight 2, 205

histogram 1, 102, 107,109,110, 236,
238

HORIZ 29

horizon 182

horizontal lines 8, 9

horizontal rows 27

“orizontal set 169

hyperbola 40, 59

icosahedron 198, 199, 201

wentifier 1

identity matrix 63,65,71,73, 75, 150,
157

JF 23

iilurrinated dots 1%

IN 1,2

index 35,79

information 62,79

INK 5-H,11,15,16,18, 1%, 21, 33, 88,
04, 95 103, 105, 106, 109, 205, 229,
230, 233

ink blot 95

INKEYS 8§

input parameter 1, 39

INPUT §.9,12,43,71, 82, 84, 85, 99,
116, 121, 203, 204

inside polvgon 537, 58

NT 20

integer pair 7

intersection 45.49,50,51,59.60, 116,
117, 128-31,134,136, 137, 141, 183,
201

INVERSE 11, 14,15

inverse matrix 64,68, 134,136, 148,149

inverse rransformation 68, 148

invertebrates 118

ISLAND DEFENCE 221-34, 240

jaggedness 35
jet 166,167
joystick 103

Kells 39
kev 8,93, 203,210

‘ndex

tevbourd, controd 5,9, 13, 14, 22, 25,76,
43,87,103, 204, 232

L 70,79, 161

labels 107,109,110,126

lattice 103

DIR 208

eft-biased 119

left-hand corner (bottom} 6,93

eft-hand corner (top) 27, 29, 230

eft-handed triad 124, 148

‘ength 126

ET 1,209, 217

ibl 2,31

ib2 82

ib3 3,171

ibrary file 31

imitations 166, 191, 196

ine of sight 135, 160

inearly dependent 125

inear equations 143

linear transtormation 62, 64, 66, 143

ines &, 11-13, 27, 28, 30, 35,49, 50, 69,
0, 76, 105, 129, 130, 139, 141, 1354,

55.156, 161, 167, 174, 176, 181, 184,

86, 196

inked list 201

LIST 9,105, 220

LOAD 2,94 103, 106, 209, 210, 218,
121, 228, 238, 241

lo-bvie 212, 213

ogical expression 23

ogo 235

lone shot 189

cok-up table 212

ow resolution 9,19, 21, 25, 35

owercase 1.3, 22 98

nachine-code 207-9 212, 218,221, 234

nagenta 16-18

namn-frame computer 5

naintain the vertical 159

naior axis 37,60, 77

napping 29, 189

AASTER MIND 95-9, 102, 204

masterset Y6

natrix chap. 4, chaps. 8-12

natrix addition, sum 62,63, 143

natrix multiolication, product 63-35,
143, 144 152

natrix of ceefficients 65

natrix of pixels 27, 28

natrix representation 62,65, 143

nawix transformable 78

maze 236

imedium resolution 86, 237

memory-mapped 6

nenu 203, 204

AERGE 2, 31,94,95,110, 212, 2318, 241

249

microfilm 35

mid-point 192

ninicomputer 3

minor axis 37,60, 77

missile 221, 233

mnemonic 208

modular programming 1, 22, 71, 107,
164,176

modules |

modulo 41,46, 5§57, 58, 140

modolus 126, 127

Moire patterns 236

monitor 18

Morse Code 235

movie 82, 210, 212

music 236

mutually perpendicular 33, 56, 151

negative sense 125, 126

negalive sel 56, 138, 139

NEXT zee FOR

NOTI' 161

NOL 79,161

non-collinear 132, 133, 139

non-commutative 132

non-singular 64

normal 37,128, 129 133,135,136, 141,
155, 185,186

NOV 79,161

number theory 43

NUMH 169

NUMY 169

NXPIX 27,29 315

NYPIX 27,129,35

obiect 6%9-71, 154
OBSERVED 869,70, 72, 75, 78-80, 155-63,
65,172, 187, 191

observer 70,82, 182

obtuse angle 55

octahedron 174, 199, 201

OFF 93

optical illusion

orange 88

orientation 57, 58,68, 76, 82, 94, 140,
141, 172-6, 1913

origin 27-33, 35-8, 41, 46-8, 53-5, 66-9,
71, 73,74, 76, 124,129,139, 140, 146,
149, 155, 184-7, 201

orthographic chap. 9, 187

QuUT 1,2

OUTput parameter |1

outside polygon 57, 58

OVER 11-13,103,109, 113,114, 233,
236

37, 38

P 69,154
PAC MAN 221, 237
pad 106

50 Index

rage Z0S, 206
PAPER 5,6,11,15,16,18,19, 25, 88,
15,103, 105, 114, 204, 205, 229, 230
parabola 59
narailel 28, 29, 38,47,49-51, 126, 129,
30,132,136, 141, 155
sarameter 37, 41
rarametric forms
passing arrays 69
patterns 11, 12, 21, 25,34, 37,42,43, 46,
88, 95, 236
PALISE 218, 219, 231
penci 41,42
‘EEK 207,213
serpendicular projection 56, 124
nerspective 158§, chap. 11
perspective plane 183, 184, 189
oH 122
PHI 169
M 20, 34
pie-charts 1, 102, 103, 107, 109, 115-17,
736, 238
ping-pong 25
pixels 7,8, 10-12, 14, 18,19, 25, 27-30,
35.51,52,67,83-8, 93,103, 105, 110,
R0, 181, 189, 228
nxei coordinates 9
axel vector 27
nianar object 166, 191
plane 27, 128,129, 132-4, 136-42, 192,
201
"LOT 7-10,13,31,33,51,52, 88, 89,
'3, 105, 106
plane constant 129, 135, 141
plot pen, head 29, 30, 33, 36, 37
wint 8,11-13, 28, 29,47, 105, 129, 140,
183, 185
rwoint of contact 42
point of reference 76
point vector 46, 126
pointer 201
'OKE 6,16, 84, B8, 207-209, 212, 228
oolygon 9, 14, 27, 28, 32, 34, 57, 59, 76,
06, 140, 141, 154, 161,174,176,
183, 190, 203
positions 154
positive sense 125, 126
positive set 56, 138, 139
postmultiplication 65, 153
PPy 183
prefix. 107
premuitiplication 64,65, 74, 143, 144,
53,158, 163
arimitives 27, 28, 30, 32
principai range 54
PRINT 9,15,16,21,83,84,94, 113,
204, 213, 217, 218, 228, 229, 233
program variables 1
projection 154

35, 36, 59,60, 78, 125

prompt 203

pyramid 166,174, 183,199
pyvramid of vision 189
Pvthagoras 46, 55

Q 69, 155

quadrants 53
quadratic equation 60
guadrilateral 175,176
quarter blocks 86
guarter-circle 39
quote marks 93

R 65,70, 143,159,161, 162

radians 20, 34,36, 54,72, 73,82, 116

radius 19,36, 37, 78,116, 139

rainfall 110

RAM 85, 88 89

random 13. 16, 236

rapid transfer 207

raster scan 5

ray 183

READ 8, 94,122

rectangle 31

rectangular block 164, 174, 236

rectangular matrix 27, 28

red 16-19, 88, 104, 219, 221

refllection 67,69, 74, 78, 95, 116, 146

registers 208

regular polygon 35

relative §, 20

REM 1, 2,204, 205,213, 238, 241

renumber 93, 212, 220

resolution 35, 36

RESTORE 215

retina 183

rhombic dodecahedron

right-biased 119

right-handed triad 124

BRND 13

road sign 235

ROM 83, 85, 94

roots 60

ROTATE 94,95, 109

rotation 66, 68,69, 73, 77, 78, 94, 109,
143, 146, 148-51, 153, 156, 158, 159,
170, 171,176, 236

rotation matrix 68, 73

rounding errors 129

row 16,62, 104, 206

row vector 64,65, 143

RUN 2,94, 215,220, 221

199, 201

5 169

saw-tooth pattern 121

SAVE 2,94, 95 106, 209, 218, 238, 241

scalar 45,063

scalar multiple 45,46, 53,63, 124-6, 1340,
143

«calar product 55,127

wale 28,29, 33,110,119, 236

wcaling 66-9, 73, 143, 145, 146, 148, 151

:ealing factor 29, 33

wcating matrix 67

:candinavian 94

wcene 69, 79, 161, 183

«clentific graphs see graphs

icreen 5-8,11, 13, 18, 25§, 27, 35, 4251,
12, 69, 73, 76, 83, B4, 88, 155-7, 180,
84, 189, 206, 207, 210, 221, 228

icreen centre 51

wreen coordinate syvstem 71

CREENS 23, 238

wcroll 212

egment 8,40,41,45,51,116, 140, 169,
20, 193

:emicircie 39, 169, 170

sense 48, 53,125,132

ETUP 69.70,72,73, 75, 76, 78-80,
154-613

nading 201

hift 93

ade effect 36, 38

amilar trianeles 183

SIN 35,544,122

sing 34,153

ane curve 59

angie-valued function 177

amgeular 64

Keleton 156

lice 116,176

pace 83, 93

pace ship 72-6, 7%, B0, 82

ipecial characters 109

sPECTRUM 2,35,9, 18,19, 27, 34, 35,
3.53-5,110, 198

iphere 139

ipheroid 169, 210

ipiral 37-9, 59

irograph 41,42

:auare 2, 10, 14, 31, 32, 41,46,47, 156

«quash game 25

tandard set 83

aar-shaped 199-201, 212

TOP 114

toring information 79

iraight-ahead ray 183

straight line 335, 45,56, 125, 166

JTRE 204 5

subroutines 1,22, 25,33, 161, 162, 218

ubscrint 57, 58,62, 71, 73
superscript 62

mrface 137-9.174,177,179-81, 190
s 67,145

1Y 67, 145

iymmetry 95
wystem variable 83
S7 1458

ndex 251

T 169

table fof characters)

table and chairs 82

tangent 45

tangential 40

target 22

television 18, 139

temperature 113

wemplate 120

ienms 221

ient 221

tetrahedron

+HETA 68

ihin characters 107, 119,120

ithree-dimensional clipping 238

inree-dimensional space chaps. 7-i2

iilt of head see head tilt

top down 1

wrail 13

ransformation 64-6, 70, 74, 76, 94, 158

transformation matrix 69, 144, 152

ransiation 66, 68,69, 73, 76, 77, 143,
145, 148, 151, 156, 158, 236

ranspose 65, 143

trigonometric function 34, 54

triskele 21, 39

iriangle 140, 142, 173, 175, 176, 181, 201

wwo-colour pictures 86, 114, 161,172, 229

‘wo-dimensional space chaps. 2-4

rwo-dimensional vector 28

two-fold symmeiry 166

TX 66,145

TY 66, 145

TZ 145

83, 87,89, 207

166,174, 186, 189, 199, 200

UpG 87, 88

unit distance 28

unit matrix 63

unit vector 53-5,126, 127

user-actined 83, 87-9, 93, 96, 109, 1140,
239

user fricndly 203
USR 87, 88, 209

vV 80, 161, 163, 187

vanishing point 183, 186

variable entry point 23(

vector 27, 28,45-50,53,62, 124, 125,
132-5, 141, 142

vector addition 45,46, 124

vector combination 47

vector pair 47

vector product 132, 137, 141

vector sum 125

VERT 29

vertex, vertices 32, 35, 62, 69-76, 1440,
154-6, 160, 161, 167, 172-4, 184, 186,
201

vertical column 27

292 Index

rertical labels 109

vertical line 8,9

rertical set 169, 176

ideo game 25, 203, 221

new B0, 82, 164-7, 180

new plane 155,157, 159, 180, 182, 183,
1 89-92

asion 183

ralumes 27

¥ R0.161, 165, 187

vell-behaved curves 39

vhite 6, 15-18,94, 221,229,230
vindow 29

vire diagram 156, 172,174, 212
vorim 22, 204

v 70,79, 160

.axis 27,28, 33,37.42,45, 53, 54, 14,
M, 95 121,124, 146, 147, 159

¢-coordinate 28,30,32,45,46,51,59,
07,121,124, 145, 154, 160, 177, 179,
183

x-direction 42, 75
XMOVE 30

XORIG 29

XPEN 29

XYSCALE 29.33, 36

Y 70,79, 160

v-axis 27, 28,33,45, 54,67, 94,95, 124,
147, 149, 156, 158, 159, 169

~coordinate 28, 30, 32, 45, 46, 51, 39,
67.121, 124, 145, 154, 160,177, 183

vellow 16-18, BB, 93,219, 221

¥YMOVE 30

YORIG 29

YPEN 29

160
Z-axis 124, 147, 149, 155-60, 173
z-goordinate 124, 140, 154, 155, 160,
177,179, 183, 189
zero st 56, 138
zoom 14, 82, 162
ZX Spectrum 5, 87, 205, 207

YVhere to Find Routines referred to in

HTITI O
e
rar 1

225
54
11, 113

Jie pixels &6
wimb camp 226
womb gun 226

Amp
seitic

223
38

nar 227

"HARACTLER GENERATOR 89

mmiarset 101
'HESS GAME 99

arcicl

36

arcie? 26
lip 53
nnstruct tables 213

FeALS
Teait
XORS

109, 227
227

232

TOSS cascade 232

upe

165, 175, 197

wboctahedron 198

SUTSOT

104

1ashed lines 48

ieiete

216

HAGRAM PROGRAM 108
ot 231

1ol cascade 232

wiprod 133

irawit

80, 81, 166, 168, 188

irawlin 179

inse

18

nvelapc 4}
xplode 226

‘uclid
L7%

43

antare 24

lash
™A
‘N T
NOX
™Y
renrot
opble
Tapi

100
206
207
30
30

150
25
119

id 104

1atch

117

hidden 194
hiscore 227
histo/tvpel 111
histof/type2 113
icosghedron 198
iWdR2 66,77
WR3 144

in il§

mk 105

mput 100, 204

intersection (line and plane) 130

mtersection (three planes) 1335
intersection (two lines) 131
intersection {two planes) 138
iny 135

ISLAND DEFENCE 2212
jet 168

key 24

keyboard 223

label 107

line 105

lineto 31. 53

list 101, 204

load 106, 210, 222, 227
loader 209

look2 70

look3 160

tngin program (2-p) 71
main program (3-D) 162
main program {chess) 100
main program (diagrams) 108
MASTLER MINE 96

menu 205

missile routines 225, 226
move 100

moveto 31

movie 210

muit? 66, 76

mult3d 144

number 120

aricntation 141, 173
paper 1015

pie-chart 115

piece 100

plane 223

plot 34

Text

154 Index of Routines

nomnt 105 slide 210
polygon 33 spirall 38

rint rottting 207 spirep 43

mery 108 sauare {outside square) 47
eoad 224 starl 199
renumber 21464 star 2 2000

evood 170, 177 start 29

ot2 68.77 start/restart 222
ot3 148 status 25,223
caic2 67.77 mrrace 178

: * symbal 120
icaie3 145 larget 25

wenel T3, 75, ?8, 81 thin 109

wcened 3, 164, 165, 168, 178, 188,197, 199

+ 2 67,77
wroll (wrap around) 213, 214 +£i2§ ?1:-3{} '
eif-listing program 215 "-run;.:prc-d 133
et 222 warm 25

welorein 30

WORM GAME
ki JRM GAME 23

software Cassette

‘he BASIC program listings described in full in Appendix B
ire avaiiable on a software cassette. priced at £9.00 {including
VAT) in the United Kingdom.
he cassette is obtainable throuch major bookshops, but in case of
fifficulty it can be ordered direct from
ilobe Book Services
—anada Road
3yfleet
surrey KT14 7JL

ISBN 0 333 35051 0

“his book is intended for Spectrum owners who are competent
JASIC programmers, but who are complete beginnersin -
omputer graphics. It contains the elementary ideas and basic
nformation about pixel and 2-D graphics that need to be
inaerstood before the more involved concepts of character and
- graphics can be mastered,

1 software cassette containing the programs in the book is
watiable. See inside the back of the book for details.

an Q. Angell and Brian J. Jones are both in the Department of
.omputer Science, Roval Holloway College, University of
ondon.

