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INTRODUCTION

FORTH was the brain child of a man called Charles Moore. After trying
out various aspects of the concept for some years, he began to fit them
together towards the end of the nineteen-sixties, though it was some time
before a completely coherent version emerged. Seeing his inventionas a
‘fourth generation’ computer language, butrestricted by his equipment to
five-letter names, he chose to drop the ‘u’ and call his concept ‘FORTH'.

Since then, the language has developed in various directions, the two
mainstream versions being FORTH79 and fig-FORTH. The ‘fig’ prefix
refers to the FORTH Interest Group, of San Carlos, Califomia, who have
endeavoured to make the language accessible to as wide a range of
users as possible. '

That range now extends to users of a number of microcomputers, but
each implementation is slightly different from the others, the original
definition of fig-FORTH allowing ample scope for individual choice of
facilities. This book is specifically based on Spectrum FORTH by
Abersoft, which is perhaps the most complete and user-friendly version
available. Much of what s said will be equally applicable to other versions
of fig-FORTH, and where the other versions omit some of the words
described it will be possible to extend them to match the Abersoft
standard, though some facilities may be more difficult to provide.

FORTH79 is a different matter. It uses different words, and gives some
words different meanings. And while the basic concept is much the same
as that of fig-FORTH the implementation is quite different. However,
flexibility is an inherent characteristic of both types of FORTH, and this
may allow some of the discrepancies to be smoothed out by the provision
of new words and revised definitions.

A major problem facing newcomers to FORTH is the size of the
‘vocabulary’, which is the list of predefined words. This is usually
tabulated in the order of the ASCII code representation of the words, but
when the vocabulary is displayed in response to the command VLIST
(followed by return) the words are in a completely different order. In either
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case, finding the right word to do a particular job is not easy. The
approach adopted here is to group the most frequently used words
according to the kind of action which they call up, so that a given kind of
function can be located quickly. In addition, Appendix A provides a full
definition of the standard words in the form of a compressed summary of
the ‘dictionary’, the area of store in which the words are defined.

Nevertheless, it would be wrong to expect to be able to start writing
FORTH programs immediately. The best approach is to learn the
operative words in groups, experimenting with them while you get the
feel of the system. Then you can start defining new words of your own
with greater confidence, and later begin to define complete programs.

This progressive approach is possible because FORTH can be used
at different levels. It will interpret existing single words or a series of
words in ‘direct’ mode, which may be compared with direct mode in
BASIC. On the other hand, it will compile new words, creating new
dictionary entries for them, and these words can thereafter be used in
compiling further definitions. Ultimately, a single word will call up a
complete program.

The dictionary entries are formed in such a way that the routine
associated with each word can be found very quickly. Whereas a BASIC
interpreter has to scan through link tables to find the required entry point,
FORTH stores the entry point directly, and no scanning is required. This
makes FORTH a good deal faster than BASIC, which is perhaps its
principal asset. Another asset is economy of store usage.

To enjoy these advantages, you must be prepared to heip the
language along, by doing things that would be done for you automatically
if you were using BASIC. You must think a little more, keeping a watchful
eye on what the program is doing. In return, FORTH will give you a
flexibility limited only by the scope of your imagination.

Getting Started

The Abersoft tape takes about 70 seconds to load; and this header
should appear on the screen;

48K SPECTRUM fig-FORTH (version)

© Abersoft: 1983
This tells you that your Spectrum has become a FORTH machine.

The first sign of the change is that the flashing cursor shows a letter ‘C’,
rather than ‘L’. As most of the standard FORTH words are in upper case
lettering, it is more convenient to work in ‘capitals mode’, though you can
always select ‘L’ mode in the usual way, using CAPS SHIFT and 2.

You will notice that the little beep indicating key depression has
disappeared. If it returns, you have dropped out of FORTH into BASIC,
for some reason, but you can return to FORTH by GOTO3. You can get
into BASIC deliberately by typing MON and ENTER, but you will find that
only direct execution is possible, as there is no room to add to the short
BASIC program already established.
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The keys will no longer produce BASIC words, which are not needed
by FORTH. You will have to type everything letter by letter. There is no
Extended Mode, but you will find that some symbols normally obtained in
that mode, plus a few new ones, can be produced by using SYMBOL
SHIFT and certain other keys, e.g:

Key Y’ gives [

Key ‘U’ gives
Key ‘A’ gives
Key ‘S’ gives
Key ‘D’ gives
Key ‘F gives
Key ‘G’ gives

Graphics are accessible in the usual way.

Once you get out of the habit of using key ‘K’ for LIST, which is a
FORTH word, you will find no serious problems.

A number of familiar functions are retained, as detailed in the section
on ‘Spectrum Specials’, but you will find that they are not quite the same
as the BASIC forms. For example, the parameters must come before the
command, not after.

An important difference concerns BREAK. In some circumstances,
pressing CAPS SHIFT and SPACE together will still stop a program, but
an alternative is provided by CAPS SHIFT and 1. This, however, will only
work if you have written your program to respond to this input. If you
make no provision for BREAK, you may find that the program is stuck in
an infinite loop, with no way out. Details of the way to avoid this are given
in the section on branching and looping, but you should have no need to
worry about them for the time being.

If you decide to take a different kind of break, by loading another sort of
program, you will need to reset RAMTOP, otherwise you will get an Out
of Memory report. The easiest procedure is to switch the computer off
and on again, so that the usual parameters are initialised.

If you are interested in such matters, the initial area occupied by the
FORTH program after loading is 5E06 to 8159, with reserved workspace
from CB40 upwards. The intervening space is available for your FORTH
words, which take the form of extensions of the ‘dictionary’ that is the
fundamental definition of FORTH. The dictionary grows upwards, and
the calculation stack grows downwards. If you want to know how much
space is left between them, input:

FREE . ENTER
This will display the number of free bytes.
A ZX Printer will work with FORTH. Switch it on by:
1 LINK ENTER
Switch it off by:
O LINKENTER
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Because FORTH is different in a number of ways from most other
languages, the next section will examine its general characteristics. If
you aiready know what they are, you can skip forward with confidence.

The Essentials of FORTH

Used in direct mode, FORTH works like a calculator operating in
Reverse Polish Notation. The data which you key in is shown on the
screen and stored in an 80-character input buffer, which will hold 2v2
lines of displayed data. When the buffer is full, or if you press ENTER to
indicate that an input is complete, the system begins to scan the buffer,
stopping at the first space character which it finds. The data which has
been scanned is then compared with the list of words in the dictionary,
which can be seen by:
VLIST ENTER

You can stop the listing by pressing BREAK (CAPS SHIFT/1), as the
full list occupies more than the screen area.

If the data matches a defined FORTH word, the action associated with
that word is performed. Otherwise, the data is checked to see if it is a
valid number. If it is, the number is stored on the calculation stack. If it is
neither a FORTH word nor a number, error report 0 is displayed, with the
offending word.

Because Reverse Polish Notation is used, with data stored on a
‘stack’, the FORTH words act on the last numbers to be input. Try this
input:

45%*

Leave a space between each element of the input, remembering that
“space” is the standard “delimiter” marking the start and end of each
word or number. The response will be to display the number 20. The way
this works is that FORTH takes the data up to the first space, in this case
the number 4. Because it is a number and not a FORTH word it is stored
on the stack. The procedure is repeated for the number 5, and this is
stored on the stack on top of 4 . Then FORTH comes across the “*”.
Because it is a FORTH word and we are in direct mode it is executed.
FORTH takes the last number (5) from the stack and the next one down
(4) and multiplies them together, putting the result back on the stack. The
next FORTH word in the buffer is the dot “.” This displays the resuit.

If we expand on the above and input the following:

45*23 4.

Up to the “*” everything is the same as above with the result 20 on the
stack. FORTH continues to read the line and stores 23 on the stack on
top of 20, and goes on to read the next word. This (+) is a FORTH word
and it adds the top two numbers on the stack, 23 and 20, and stores the
result, 43, back on the stack. The ‘dot’ once again displays the result.
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The action of the FORTH words in these inputs has been explained in
a relatively simple manner that should suffice for the moment, but it will
be evident that exact definitions are needed, and these will be supplied
later on.

There is no need to enter a complete set of numbers and words on one
line. Each could go on a separate line, followed by ENTER, since the
input system deals with only one element at a time. If you enter too many
characters, overfilling the buffer, you will probably get an error message,
because the last word entered may not be complete, but the earlier
elements of the line will be processed normally, and as the error report
identifies the word to which it refers you will know where to continue the
entry.

Not all the words displayed by VLIST can be used in direct mode, and
an attempt to use them will produce error 17. These words can only be
used in compiling mode, which sets up new dictionary entries defining
fresh FORTH words.

Here is an example:

DTEST1 * + . ;

The colon instructs the system that all input words and numbers up to
the subsequent semicolon are to be compiled, the result being identified
with the word name TEST1.

Now input the following:

23 4 5 TESTH

The result is 43, as in the earlier example. TEST1 performs the
multiplication, the addition, and the display function which we previously
input as separate words. it would be a good idea to simulate the stack on
paper to ensure you get your values and operators in the correct order. If
you do this for the above you will see why 23 comes first.

You could define another word:

:TEST2 23 4 5 TEST1,

An input of TEST 2 would display 43. That would be rather pointless,
butitillustrates how a FORTH hierarchy is built up. In the end, a complete
program is called by input of a single word. That word defines a list of
other words to be executed in turn, and some or all of the words in the list
may define further lists.

It is interesting to compare this with the action of BASIC, which uses
numbered lines containing statements which specify the action to be
taken. The numbering is used to indicate the required order in which the
Statements are to be executed. A well-structured BASIC program,
however, can be seen as a number of functional blocks, each composed
of a number of lines, though some programs cram so many statements
into a line that a single line may represent a block. This makes the
program difficult to interpret from the listing.
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FORTH, on the other hand, gives each functional block a name, and
that name is linked with a name list defining the functions to be carried out
by the block. Groups of blocks are similarly linked by further names and
lists, until a single name and list brings all the groups together in a single
program called by a single name.

Clearly, this is not a process which can be approached too casually.
Because a BASIC program can be modified by editing, it is sometimes
possible to create a fairly simple routine as you go, correcting errors as
they become obvious. With FORTH, it is advisable to plan ahead,
deciding on the content of each functional block in advance. This can
impose an irksome discipline if you prefer the more casual approach
permitted by BASIC, but the speed of execution of the result makes the
effort worthwhile.

An important problem for anyone approaching FORTH for the first time
is the sheer number of words which are available for use. The only
solution is to learn the vocabulary in sections, gradually expanding your
understanding of the range of actions which you can handle. That is the
basis on which the remainder of this book is planned. If the detailed
explanations of some words seem too complex, leave them and come
back later, accepting that the words act as described. You will find that
you can very soon begin to understand what is happening, even in the
most complex functions.

Another problem for newcomers to computing stems from the fact that
all numeric data is stored in binary form. Not so many years ago, binary
was considered incomprehensible for anyone but a computer expert.
After a lecture on the subject, a man got up, scrawled a series of ones
and noughts on the blackboard, saying that no one could make sense of
that. As he put in the last nought, a small voice from the audience said
‘three hundred and eighty four. The man stared, and laboriously
checked the value of his ‘incomprehensible’ binary number, to find the
translation was correct. The small boy who had made the translation
looked surprised, and explained that all he had done was to take the first
digit, and when another digit was added he doubled what he had and
added the new digit. For example:

OCO0OO0OO0OO0O00O = =
n
»

The number on the blackboard was 110000000, not the most difficult
of numbers to translate, but the principle is useful to remember; and it
applies to any number base.

For example, in base 3, the number 112020 translates thus:

1 1
1 4
2 14
0 42
2 128
0 384

FORTH performs this process for any number base you like to select,
not only for input, but also for output. This can lead to confusion if you fail
to appreciate what is happening, so the study of the vocabulary will begin
by looking at the way numbers are input, stored, and output.




PARTI:
Direct Mode

This part deals with FORTH words which can be input for immediate
execution. Some versions of BASIC can be used in this way, in what is
then called ‘direct’ or ‘caiculator mode. In a later section the use of
compiling to create new words will be examined, and that will prove more
convenient for complex operations, but though it can be slow and tedious
to work in direct mode it gives a better insight into exactly what is
happening.

NUMBER REPRESENTATION

The key to the operation of FORTH is the ‘stack’. For those who are
unfamiliar with the term, a stack is the ‘last-in-first-out’ buffer store which
can be compared with the old-fashioned filing spike. If you put bills on to
the spike as they arrive, the first to come off will be the one which was put
on last. FORTH uses two stacks, one for calculation and the other for
holding link addresses. They will be called the Calculator Stack (or often
just Stack by itself) and the Return Stack, respectively.

In Spectrum FORTH, the Z80 stack is used for the Calculator Stack.
The Z80 stack handles data in the form of 16-bit words, even where
nothing more than a single ASCII code is involved. That suits FORTH
perfectly. Computers using other processors may have stacks that hold
8-bit words, but they have to store two such words for each transfer to the
stack. In general, except for some specialised functions, FORTH is
unaltered by machine characteristics.

Another point is that FORTH recognises no distinction between data
types, which can have disconcerting consequences on occasion. The
meaning of data words depends on the way they are treated. For
example, type 40000 followed by ENTER. Then type a “dot” (full stop),
again followed by ENTER. The dot displays the number from the top of
the stack, which is of course the last number stored there. The number
displayed is —25536 and not 40000. Where did that come from?
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Signed and Unsigned Numbers

A 16-bit binary number can have 65536 different values. In ‘pure binary’,
these values range from 0 to 65535, bit n having the value 2", where the
least significant bit is bit 0. If, on the other hand, we adopt ‘2's
complement’ representation, the value allocated to the most significant
bit is -2'% instead of 23. The rest of the bits can represent values from 0
t0 32767. It bit 15is 0, that is the range of the complete number. If bit 15 is
1, then 32768 (2%) is subtracted, making the range —32768 to — 1. Since
the number is always positive when bit 15 = 0 and negative when bit
15 = 1, the bit is commonly called the ‘sign’ bit.

A mild word of warning is needed here regarding the number —32768.
It behaves a little oddly, being unchanged by negation. In this respect, it
can be compared with zero. it is best avoided, the working range being
taken as + 32767.

FORTH allows you to choose between pure binary and 2’s
complement representation at will. The simple ‘dot’ (as the full stop
character is known in FORTH circles), will display a number on the basis
that it is in 2's complement form, while U. will assume that the number
is in pure binary. Since the number 40000 is outside the 2's complement
range, it was stored as pure binary. Using dot to display it gave the
interpretation of 2's complement. Both 40000 and —25536 are
represented by the binary number 1001110001000000. Note that they
add up to 65536.

Double Numbers

The value range for 16-bit numbers is rather limited, so FORTH provides
for the use of 32-bit numbers, which are held as two successive stack
items, the upper 16 bits being nearest to the top of the stack.
4,294,867,206 different values can be represented, and 2's compiement
representation is usual, giving a range of +2,147,483,647. The
anomalous number in thiscase is —2,147,483,648.

You can enter a double number from the keyboard by including a
decimal point somewhere in the number. The position of the point is not
directly relevant, but the number of digits to the right of it is noted in the
variable DPL for possible future reference.

A point to watch is that a number outside the +32767 range, entered
without a decimal point, can cause problems. The input routine always
interprets a numeric input as a double number, but if there is no decimal
point the upper half of the result is thrown away. This can cause some
mystifying results on occasion.

A double number can be displayed by the word D. , which assumes
that the number is double and in 2's complement form.

Number Base

By default, FORTH accepts input numbers and generates output
numbers on the basis that decimal notation is intended, converting the
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numbers to and from the internal binary representation. If so instructed,
however, it will work in any number base you desire, within reason. The
word HEX will call up hexadecimal notation, the word DECIMAL will
restore decimal working. That, however, is only the beginning.

The word ! instructs FORTH to store a number on the second stack
position in a location defined by the top of stack. The
phrase n BASE ! will therefore store the number n in the variable
BASE, which determines the number base to be used in input and output.
HEX is equivalent to 16 BASE ! , and DECIMAL is equivalent to
10 BASE ! , while binary working is obtained by 2 BASE ! . These
statements assume that decimal working is effective. If binary has been
selected, 10 BASE ! would do nothing, since in binary 10 has the value
two! You need 1010 BASE ! .

For a digit value greater than 9, the letters A-Z provide a means of
extending the digit range, so it would be possible to work in base 35.
Beyond that some odd characters get into the act.

The word @ instructs FORTH to obtain the contents of the location
defined by the top of stack and put the result on the stack, so you might
think that the current base could be determined by BASE@ . , but the
result is always 10. Can you see why? There is a hint above.

When using hexadecimal, the unsigned ‘pure binary’ convention is to
be preferred, as negative hexadecimal numbers are confusing.

Formatted Numbers

One of the virtues of FORTH is an ability to display numbers in a very
precise format. The simplest examples involve the words .R for single
signed numbers, D.R for double numbers, and U.R for unsigned
single numbers.

These words take the number on top of the stack as defining a ‘field’ of
that number of character positions. The next number on the stack is
displayed in the right hand end of the field. Whereas a normal numeric
output adds a space after the number, these functions do not. It is
therefore relatively easy to build up neat tabulations with the numbers
‘right justified’, that is with their right-hand digits in a vertical line. Other
facilities of this kind will emerge in due course.

Meanwhile, we have made a start by defining ten FORTH words and
phrases.

For convenience, they may be summarised as follows:

TOS means ‘top of stack’, 20S means ‘second on stack’ and so on.
Remove TOS and display it as a signed single

number.

u. Remove TOS and display it as an unsigned single
number.

D. Remove TOS,20S and display as a signed double
number.
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n BASE ! Setbase n notation
HEX Set hexadecimal notation
DECIMAL  Setdecimal notation
BASE @ . Read currentbase

.R Remove TOS,20S. Display 208 as a single signed
number at the right hand end of a field of TOS
characters.

U.R Remove TO0S,20S. Display 20S as a single
unsigned number at the right hand end of a field of
TOS characters.

D.R Remove TOS,20S,30S. Display 20S,30S as a
double signed number at the right hand end of a field
of TOS characters.

ARITHMETIC PRIMITIVES

The range of FORTH words is built up on a foundation of a number of
blocks of machine code. Other words are created by combining or
modifying these ‘primitives’, but the action of these other words can only
be understood if the primitives are examined first.

You may be surprised to find that there are only eight arithmetic
primitives. Later, we will see that they form the basis for another
seventeen derivatives.

Itis important to remember that FORTH words act on numbers or other
data which is already on the stack. To add 7 and 8, we need:

7 8 +

Examining what is happening, we begin by typing the characters and
spaces, which are stored in the Terminal Input Buffer. The INTERPRET
routine takes the entries delimited by spaces in turn. It sees 7 as a valid
number, having first considered it as a possible FORTH word, and the
numeral 7 goes on the stack. 8 is treated similarly, and it also goes onto
the stack. The numeral 8 is ‘TOS’ and the numeral 7 ‘20S’. The plus sign,
however, is recognised as a FORTH word, and itis executed. Ittakes the
two top stack items, adds them together, and puts the result back on to
the stack. We could now display the result by using ‘dot’ or ‘Udot'.

Incidentally, there is no need to input all three characters on the same
line. The effect would be the same if we input:

7
8
+

This is because FORTH operates on each word or number in turn.
Pressing ENTER merely invites INTERPRET to examine what has been
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put in the Terminal Input Buffer (TIB for short). If you want to know where
the TIB is held, HEX TIB @ U. will tell you. All part of the FORTH
service!

A minus sign is also a FORTH word. It removes the two top items from
the stack, subtracts TOS from 20S, and puts the result back as TOS.

This kind of calculation is known as Reverse Polish Notation, and as it
has been used in some calculators it may not be completely unfamiliar. It
avoids ambiguity, since the operators act in a clearly defined way on
clearly defined numbers. Where normal arithmetic notation needs
brackets and priority rules to determine its interpretation, Reverse Polish
leaves no room for doubt.

On the other hand, it does require that the right numbers are in a
position to be operated on at the right time, and this can call for some
careful thought and advance planning. A browse through the dictionary
definitions in Appendix A will reveal some interesting examples.

The next ‘primitive’ is U*, which takes away TOS and 20S and puts
their product on the stack as a double number. Then we have U/MOD,
which takes away the three top stack items, treating the second and third
as a double number to be divided by the first item. The remainder is put
on the stack as a single number, and the quotient, again as a single
number, is put on top of it.

Putting the remainder on the stack may seem pointless, but it is there
for a very good reason. Suppose you have a double number on the stack
representing a number of seconds. Adding 60 U/MOD will divide the
number by 60, and the quotient will give the number of minutes, the
remainder the number of remaining seconds. Try:

200. 60 U/MOD . .

The decimal point after 200 is needed to set it up as a double number
for U/MOD to work on. We can use ‘dot’ for the output, because the resuit
will be less than 32767, and there will be no confusion over sign. Now try:

36484. 60 U/MOD 0 60 U/MOD . ..

The zero entry is needed to make the single word result of the first
U/MOD into a double word for the second U/MOD to work on. The three
figures represent hours, minutes and seconds.

This could be regarded as a calculation to base 60, and the routine for
decimal output works on a similar sort of basis to that shown above,
except that 60 is replaced by 10.

There are times when a single number needs to be converted to a
double number form, perhaps to allow U/MOD or a similar operator to be
used. If U/MOD is applied to a single number, it will pick up whatever
happens to be next on the stack and work on that. Once again, there can
be strange results.

If the single number is unsigned, we can extend it by putting a zero on
the stack to form the upper half of the double number. if the single
number is signed, and we want to preserve the sign, we must use
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S§—>D, which puts a zero on the stack if the single number is positive, or
FFFFH if the single number is negative. This is called ‘propagating the
sign bit’.

To add two double numbers together, D+ is required. It removes four
items from the stack, treating them as two double numbers, adds them
together and puts the result on the stack as a double number.

The last two primitives perform negation, MINUS acting for single
numbers and DMINUS for double numbers. The action is to subtract the
number from zero. To all intents and purposes, the number seems to stay
in its place on the stack, though in fact it is removed and then put back.

These eight primitives may seem rather inadequate, but before we
examine the seventeen derivatives we need to consider the stack
manipulation operators, without which FORTH would be very restricted
indeed.

The operators described in this section may be summarised:

Remove TOS,20S. Piace their sum on the stack.

- Remove TOS,20S. Place 20S-TOS on the stack.

u* Remove TOS,208S. Place their product on the stack
as a double number.

U/MOD Remove TOS,20S,30S. Treating 20S,30S as a
double number, divide it by TOS. Place the
remainder on the stack, then the quotient. All
numbers are treated as unsigned.

D+ Remove TOS,208S,30S,40S. Treating them as two
double numbers, put their double number sum on the
stack.

S—>D Sign-extend a single number to form a double
number. The original number becomes 20S, the
extension TOS.

MINUS Negate a single number on TOS.

DMINUS Negate a double number on TOS,20S.

STACK MANIPULATORS

It will be evident that mathematical and other operations will call for a
certain amount of stack shuffling in order to bring the required data to the
right position. This is relatively easy when the number of items on the
stack is small, but a routine whch will be described later on involves upto
72 items on the stack at the same time, and that is a more difficult
proposition.

One of the hardest-worked words in FORTH is DUP, which duplicates
the TOS by adding a copy of the original TOS. This is essential when the
value of TOS is being checked, as the check wouid destroy the number if
it were not duplicated. A variant is —DUP, which only duplicates if TOS is
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non-zero. This is useful where TOS is no longer needed when it reaches
zero. There is also 2DUP, which duplicates TOS and 20S. This is useful
for duplicating double numbers, but it can also be used with single
numbers. Suppose we want to calculate (4 + 3)*3 + 4. We can use:

Stack
43 4 3
2DUP 4 3 43
+ 4 3 7
u* 421 0
DROP 4 21
+ 25

U* generates a double number, so we discard the upper 16-bit entry by
DROP, which discards TOS. 2DROP discards TOS and 20S.

Next we have SWAP, which interchanges TOS and 20S, and 2SWAP
which interchanges TOS/20S with 30S/408. .

OVER s very useful. lt adds a new TOS which is a copy of the previous
20S. 20VER adds a new TOS and 20S which are copies of the
previous 30S and 408S. _ o

Finally, in this group, ROT rotates the top three stack items, bringing
308 to TOS, 20S and TOS to 20S.

When you begin to write full-scale programs, you will find that it is very
useful — if not essential — to write down tables like the one above, so
that you can keep track of the stack movements. _

By so doing, you will soon realise that there is no way to ring the
changes to bring deeply-buried items to the top of the stack, but you will
find that this problem is eased when we come to the process of compiling
new word definitions.

Because of this limitation, it is often convenient to introduce some
numbers in the course of a computation. These may be included in the
input stream, or they may — as will appear in due course — be called up
from constants of variables. Since that uses extra storage space, it is
regarded as uneconomical by FORTH purists, but there is no point in
striving too hard for perfection.

The manipulators which have been mentioned may be defined as
follows:

Stack Before Stack After
DUP a aa
2DUP ab abab
DROP a
2DROP ab
SWAP ab ba
OVER ab aba
20VER abcd abcdab
ROT abc bca
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Remember that the top of the stack is the right-hand entry. Only the
relevant entries are shown. There may be other items ‘behind’ these, i.e.
deeper into the stack and to the left of those shown. These are unaltered
by the manipulators.

OTHER MANIPULATORS

At this point, it is necessary to mention some stack and display
manipulators which do not fall conveniently under other headings.

First there are three which are not permissible in direct mode, but
which are used in producing some of the arithmetic derivatives.
Reference has been made in passing to the Return Stack. It is
sometimes convenient to remove the top of the calculator stack from
immediate action, perhaps to allow access to items further down the
stack. These words facilitate this by allowing the top of the calculator
stack to be transferred to the Return stack on a temporary basis.

>R removes TOS and transfers the data to TORS (Top of

Return Stack).
R> performs the opposite function.
R copies the TORS to TOS, without altering TORS.

These words must be used with care, the Return stack being restored
to its original state before a definition is completed, or reference is made
to the Return stack contents for other purposes, as in control of loops. (A
slip of this sort occurred in the definition of 20VER in early Abersoft
tapes. If you find that HEX 7FAE @ U. gives 6173, you have the bug. It
can be cured by HEX 6188 DUP 7F4E | 7F50! )

The screen manipulators are fairly obvious. CR calls for newline, and
CLS clears screen. SPACE outputs a space, while n SPACES outputs n
spaces.

In direct mode, .“ string” outputs the string of characters between the
quote characters. It corresponds to the BASIC PRINT “XXXXX".

MORE ARITHMETIC

Armed with the stack manipulators, we can now find out how the extra
seventeen operators are created. However, we must first take a brief
look at the logic operators, which are also involved.

AND takes TOS and 20S and compares them bit by bit. Where both
have a given bit in a true state, the corresponding bit in the resut is set
true. Otherwise the bit is set false. The result is put on to the stack.

OR works in a similar way, but puts a true bit in the result where either
TOS or 20S have a true bit in that position.
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XOR also works in a similar way, but puts a true bit into the result if the
corresponding bits in TOS and 20S are different. An interesting use is to
obtain a result with sign bit set if the signs of TOS and 20S are different.

Some of the derived arithmetic operators are quite simp[e. 1+ is
equivalentto 1 + , and it adds 1 to TOS. Simlarly, 2+ is equivalent to
2 + ,anditadds2to TOS. _

Next, we have +—, which removes TOS and negates thg new TOS !f
the original TOS was negative. This is implemented by qalhng MINUS if
TOS was less than zero. The double number version is D+—, which
removes TOS and negates the double number in 20S,30S if TOS was

tive.
ne&aIN and MAX come next. They remove TOS and 20S and.discard one
or the other, restoring the survivor to TOS. MIN restores whichever was
less, MAX restores whichever was greater. In both cases 2DUP creates
copies of TOS and 20S to use as a basis for comparison, and then drops
one of the original entries. '

Finally, at the first derivation level, we have M/MOD, which resembles
U/MOD , except that it leaves a double number result instead of a single
number result. This is convenient when working with large numbers. The
word is constructed as follows:

Stack
abc
>R ab cto TORS
0 abo make b a double number
R abOc recover ¢
U/MOD ade divide b by ¢ quotient e.
remainder d
R< adec recover ¢, clear TORS
SWAP adce
>R adc eto TORS
u/MOD fg a/d divided by c. quotient g.
remainder f
R> fge Recover e. TORS clear

Two divisions are performed. The first is ‘scaled’ by a factor of 65536,
because b is really the upper half of a double number. The quotient and
remainder are similarly scaled, so it is possible to ‘concatenate’ aand d to
form a valid double number, which is again divided by c. The two
quotients g and e can then be ‘concatenated’ as a double number. _

At the second level of derivation, we have ABS and DABS. ABS is
implemented by DUP +— . TOS is duplicated, and the copy is
removed. If it is negative, the original TOS is negated. Whatever
happens, TOS emerges as positive, the absolute value being preserved.
DABS similarly uses 2DUP D+~ to perform the same process on a
double number.
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We now come toM/and M* . M* generates a double number product
of two signed single numbers. It is based on U* , with the additions
needed to preserve signs.

Stack
ab
2DupP abab
XOR abc cis positive if a and b are of
the same sign
>R ab cto TORS
ABS ab b made absolute
SWAP ba
A?S ba amade absolute
U de product
R> dec ¢ from TORS. TORS clear.
D+-— de negate d/e if c negative.

The XOR functipnAis used to set up a flag indicating the required sign of
the result, and this is held on the return stack while the calculation is
performed.

M/ is a little more complicated:

Stack
abc
OVER abchb
>R abc b to TORS
>R ab cto TORS
DABS ab double number a b made
positive
R abc ¢ copied from TORS
ABS abc and made positive.
U/MOD de a/b divided by c. quotient
e, remainder d.

R> dec cfrom TORS. TORS = b
R decb b copied from TORS
XOR def f positive if b and ¢ have
N 4 same sign.

- e negate e if f negative
SWAP ed o o
R> edb b from TORS. TORS clear
+— ed negate d if b negative.
SWAP de remainder d, quotient e.

The numbers a/b and c, though not the copies of them on the retumn
stack., are made positive, and U/MOD calculates the absolute values of
remainder and quotient. The quotient is negated if the signs of b and ¢
differ. The remainder is given the sign of b.

18

At the next level we have simpler derivatives. */MOD combines
multiplication and division. It removes three items from the stack, all as
single numbers. 20S and 30S are multiplied together, and the double
number product is divided by TOS. Signed numbers are assumed
throughout.

Stack

abc
>R ab cto TORS
M* de double number product
R> dec ¢ from TORS. TORS clear
M/ fg f remainder, g quotient.

/MOD removes TOS and 20S. Treating them as single numbers, it
divides 20S by TOS and puts the remainder, then the quotient, on the
stack. In essence, it is M/ adapted to operate on a single number:

Stack
ab
>R a bto TORS
S—>D ac sign extend a to double
number form
R> acb b recovered from TORS.
TORS clear
M/ de a/c divided by b, remainder d,
quotient e.

Now, at last, we come to the simple muitiplying operator * . It is
implemented by M* DROP, the upper half of the double number resuit
being discarded. Similarly, the simple division operator / is implemented
by /MODE SWAP DROP, which discards the remainder.

Finally, we come to */ and MOD . The first is implemented by */MOD
SWAP DROP , the remainder being discarded. The second is
implemented by /MOD DROP , which removes the quotient.

These operators have been examined in detail because the simple
definitions can sometimes seem ambiguous, and also because the
detailed definitions show how FORTH words can be built up, pyramid
fashion, to perform complex actions.

Because the compiled definitions give explicit link addresses for each
function which they call, the required functions can be found very quickly,
and even a complex pyramid structure of many layers can be executed
rapidly, though only the ‘primitives’ actually perform the necessary work.

In this section, we have examined:

AND Remove TOS,20S. Put on the stack a 16-bit AND of
the two words.

OR As AND, but an OR function

XOR As AND, but an exclusive OR function

1+ Add 1to TOS
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2+
+_
D+—

MIN
MAX
M/MOD

ABS
DABS

M/

M*

*/MOD

/MOD

MOD

Add 2to TOS

Remove TOS. If it is negative, negate new TOS
Remove TOS,20S. If original TOS is negative,
negate new TOS/208S.

Drop TOS or 20S, whichever is larger

Drop TOS or 20S, whichever is smaller

Herpove TOS,208,30S. Divide 20S/30S (as
unsigned) by TOS. Put the remainder, then the
quotient, on the stack as single signed numbers.
Give TOS a positive sign if necessary, by negation
Give TOS/20S a positive sign if necessary, by
negation.

Bemove TOS,208,30S. Divide 20S/30S (as
s!gned) by TOS. Put the remainder on the stack as a
single number with the sign of the dividend, then the
quotient with the sign appropriate to the signs of
dividend and divisor.

Remove TOS,20S. Put their product on the stack as
a signed double number.

Remove TOS,208,30S. Multiply 20S by 30S to
form a double number product. Divide this by TOS.
All numbers are signed. Put the remainder, then the
quotient, on the stack as signed numbers.

Remove TOS,20S. Divide 20S by TOS and put the
remainder on the stack with the sign of the dividend,
then the quotient as a single signed number.
Remove TOS,20S. Treating them as single signed
numbers, put their signed single number product on
the stack.

Remove TOS,20S. Divide 20S by TOS and put the
quotient on the stack as a signed number.

Remove TOS,208,30S. Multiply 20S by 30S and
divide the double number result by TOS. Put the
quotient on the stack.

Remove TOS,20S. Divide 20S by TOS and put the
remainder on the stack.

MEMORY ACCESS

Access to memory depends on seven primitives allowing access to
bytes, words and double words. If these are used normally, their detailed
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action is not important, but if they are used in special ways their
implementation can become significant. The primitives are:

C!

2!

C@

2@

+1

Remove TOS,20S. TOS defines the address of a byte
location. The lower byte of 208 is set in that location.
Remove TOS,20S. TOS defines the address of the first of
two consecutive byte locations. The lower byte of 208 is
stored in the first location, the upper byte in the second.
These locations are not machine dependent.

Remove TOS,208S,30S. TOS defines the address of the
first of four consecutive byte locations. The lower byte of
20S is stored in the first location, the upper byte in the
second. The lower byte of 30S is stored in the third
location, the upper byte in the fourth. These locations are
not machine dependent.

Remove TOS. TOS defines the address of a byte location,
the contents of which are put on the stack. (Upper byte 0)
Remove TOS. TOS defines the address of the first of two
consecutive byte locations. A word is formed from the
contents of the first location as the lower byte and the
contents of the second location as the upper byte, and the
word is put on the stack.

Remove TOS. TOS defines the address of the first of four
consecutive byte locations. Two words are put on the
stack. The lower byte of the second word comes from the
first location, the upper byte from the second. The iower
byte of the first word (which becomes 20S) comes from the
third location, the upper byte from the fourth. These
locations are not machine dependent.

Remove TOS,20S. TOS defines the address of the first of
two byte locations. Preserving the conventions set up by !
and @ , the contents of 20S are added to the contents of
the two locations.

? is not a primitive ( = @ . ) but it fits conveniently here. it prints the
contents of a location defined by TOS.

These words may be used with explicit addresses, but it is usually
more convenient to use a variable name. Some variables, such as
BASE, are defined from the start. Others will be mentioned as they arise.

Calling a variable name puts the asociated address on the stack, so
n BASE ! will put the value n into the BASE variable, while BASE @ will
put the contents of BASE on the stack. New variables are set up by:

Y VARIABLE name

This sets up a 16-bit location pair, the address of which will be put on
the stack in response to name . The variable is given the initial value Y.
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For example:
10 VARIABLE PILE

will set up a variable with an initial value of 10 (interpreted according to
the current value of BASE) and the variable can be read by PILE @ or
resetby PILE !.
For double number variables, the format is:
YY 2VARIABLE name

Four bytes locations are reserved and set to the double number YY.
There is no standard provision for setting up byte variables, but
extended store areas can be set up by using ALLOT. When anew word is
set up in the ‘dictionary’, the necessary entries are made by reference to
a pointer DP . ALLOT moves the pointer forward, extending the space
available. For example:
X VARIABLE name 6 ALLOT
will set up a two-byte variable, with the necessary arrangement for
creating access to it. The dictionary pointer will then move forward six
locations, which are thereby reserved for extensions of the variable data.
The locations are not cleared. The eight bytes so reserved could be used
for a four-word array which could be accessed by:
n name SWAP DUP + +

SWAP brings n to TOS , where it is doubled, the result being added to
the address set up by name . The final result will be the address of the
lower byte of the nth element of the array. Adding @ would read the
contents of the element. It would be equally possible to use the reserved
space to hold eight bytes, when the address of the nth byte would be
obtained by:

nname +

The correct read and write words for the chosen memory size must
always be used, this being an example of the way the flexibility of FORTH
places demands on the user.

Constants can also be established. These behave rather differently
from variables, in that calling the constant name puts the value of the
constant on the stack, not the address of the constant. Since there is no
question of writing to constants, who needs to know where they are? The
defining formats for single and double number constants are:

X CONSTANT name
XX 2CONSTANT name

One use for a constant is to define an address outside FORTH. The
Spectrum operating system defines three bytes called FRAMES, which
count in fiftieths of a second to indicate time elapsed since switch-on,
with provision for setting the overall contents of the locations to any
desired value. The three bytes can be read in combination by:

23672 @ 23674 C@
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This sets up a double number. .
Rather than relying on memory of the right addresses, it is possible to
define the first address as a constant:

23672 CONSTANT FRAMES

The locations can then be read by:
FRAMES DUP @ SWAP 2+ C@
The stack action is:

FRAMES 23672

DUP 23672 23672
@ 23672 (23672) Contents of location 23672
SWAP (23672) 23672
2+ (23672) 23674
CcC@ (23672) (23674) Contents of location 23674

This leaves the double number on the stack which is the current value
of the Spectrum system variable FRAMES. It can be displayed by using
‘Ddot’.

Note how the addresses disappear as they are used, leaving the
required result unencumbered.

Access to operating systems outside FORTH can provide useful
extensions, but caution is necessary. In the case of the Spectrum
FRAMES variable, for example, incorrect values can be read. The
variable is updated every 20 mS, and after every 20 minutes 50.72
seconds the lower two bytes reach 65535. At the next update, they revert
to zero, and the third byte is incremented. If this happens to occur
between the time the lower bytes are read and the time the upper byte is
read, a major error will result.

This can be checked by calling FRAMES2 again immediately, when
the result should not differ from the previous result by more than one.

However, while bearing this in mind, you may care to work out how to
use M/MOD and U/MOD to display elapsed time in hours, minutes and
seconds.

In addition to the words used to access particular locations or groups of
locations, there are words that deal with wider areas.

FILL removes TOS, 20S and 30S. Starting at a location defined by
308, 208 bytes are filled with the code defined in the lower byte of TOS.
For example, if a block of store has been defined by:

0 VARIABLE ARRAY n ALLOT
the locations in the block can be set to zero by:
ARRAY n 2+ OFILL

ARRAY sets up the start address in 30S, 20S is set to n+2, the
number of bytes (including the two set up by VARIABLE), and 0 defines
the code to be set in each location.
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ERASE is effectively O FILL , allowing the above to become:

ARRAY n 2+ERASE

Similarly, BLANKS is effectively 32 FILL and fills the area with ‘space’
codes.

CMOVE takes away TOS as a count, 20S as a destination address,
and 308 as a source address. It copies the number of bytes defined by
TOS from an area running upwards from the source address into an area
running up from the destination areas. It should not be used if the source
and destination areas overlap, with source below destination, since the
source would be corrupted before it was copied.

TOGGLE may be included in this group of words. It removes TOS and
208, using 20§ to define a byte location. The contents of the location are
XORed with the lower byte of TOS, changing the state of any bit which is
true in TOS. Originally created to serve a specific purpose, TOGGLE can
be useful in other contexts.

In the Spectrum, for example:

23697 2 TOGGLE

will reverse bit 1 of PFLAG and switch OVER on and off.

Summing up the words which have been discussed:

C! Remove TOS,208S. Store low byte of 20S
atTOS

! Remove TOS,20S. Store 20S at TOS

2! Remove TOS,20S,30S. Store 20S/30S
at TOS.

C@ Remove TOS. Replace by contents of
byte location TOS.

@ Remove TOS. Replace by contents of
word location TOS.

2@ Remove TOS. Replace by contents of
double word location TOS.

? Remove TOS. Output the contents of
word location TOS as a single signed
number.

X VARIABLE name. Set up a two-byte variable with contents
X, with location address linked to name.

XX 2VARIABLE name Set up a four-byte variable with contents
XX, with location address linked to name.

ALLOT Remove TOS. Reserve next TOS bytes in
dictionary.

X CONSTANT name  Set up a constant with value X, linked to
name.

XX 2CONSTANT name Set up a double word constant with value
value XX, linked to name.
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FiLL Remove TOS,20S,308S. Set the code in
the lower byte of TOS in 20S locations

starting at 30S.

ERASE Remove TOS,20S. Set zero in TOS
locations starting at 20S.

BLANKS Remove TOS,20S. Set space codes in
TOS locations starting at 20S.

CMOVE Remove TOS,20S8,30S. Copy TOS

bytes from an area running upwards from
30S to an area running upwards from

208S.

TOGGLE Remove TOS,20S. Modify the contents
of byte location 20S by XORing with the
lower byte of TOS.

SPECTRUM SPECIALS

In general, FORTH is independent of the machine in which it runs, apart
from variations in the fundamental vocabulary, but there are usually
some special features that are machine dependent. The functions
described here are particular to the Abersoft FORTH, which also has a
larger general vocabulary than some other implementations.

First, there are the screen control and graphics facilities, which are
very similar to those of Spectrum BASIC, except that the parameters
precede the command instead of following it. For functions relating to
character position, for example, the line is defined by 20S, the column by
TOS.

Y X AT sets print position at line Y column X
Y X ATTR puts on the stack the attribute byte for line Y
column X.

Y X SCREEN puts on the stack the ASCIl code for the
character at line Y column X, except where the
character is user-defined.

Colour setting is straightforward:

X INK , whereX=0-9

X PAPER , whereX=0-9

X BORDER , wherex=0-7

The numbers have the same significance as in BASIC.

BRIGHT , FLASH , INVERSE and GOVER are enabled by a non-zero
TOS and disabled by a zero TOS. Thus 0 BRIGHT inhibits BRIGHT,
while 1 BRIGHT enables it. GOVER is the BASIC OVER, renamed for
obvious reasons, OVER having a dedicated meaning in FORTH.
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For dot graphics, 20S specifies the X coordinate and TOS the Y
coordinate. For example, 20 100 PLOT is equivalent to the BASIC form
PLOT 20,100.

DRAW , however, works on an absolute basis, rather than relatively, a
line being drawn to a specified position, whatever has gone before.

POINT returns 1 or 0 on TOS according to the state of the specified
point on the screen.

A particular feature of the dot graphics commands is that no error
report appears if they stray off the screen, but the plotting process
continues with limited co-ordinate values, and if you allow an excessive
excursion you may have to wait a long time for the trace to reappear.

UDG puts the start address of the user-defined graphics area on the
stack.

Finally, there is BLEEP , which is significantly different from BEEP.
TOS defines pitch, and 20S defines duration, but while there is greater
flexibility than is directly available in BASIC the system is more difficult to
use. Precalculation is necessary to obtain musical scales, on the
following basis:

To generate a frequency of F Hz, TOS must be set to:

TOS = (437500/F) — 30

Looking in the opposite direction:

F = 437500/(TOS + 30)

The duration of the note is determined as a number of cycles, so 20S
must be setto F x T, where T is the duration in seconds.

A point to note is that if a very low frequency is selected, with a high
duration, the system may appear to hang up, because the ‘BEEPER’
routine in BASIC goes on and on and on . . .; without the user being able
to use BREAK.

BREAK (caps shift and space) will work in some circumstances but an
alternative is provided by CAPS SHIFT and 1. This, however, will only
work if you have written your program to respond to it. If you make no
provision for BREAK you may find your program stuck in an infinite loop.

One other point worth mentioning is that the ZX printer can be used
with FORTH. it is switched on by 1 LINK and 0 LINK switches it off.

SUMMARY OF PART |

More than eighty FORTH words have now been defined, but another two
hundred odd remain to be mentioned. However, many of these are
‘system’ words, which you will not need to use directly. Before going
further, it is as well to become tamiliar with the words already defined, by
trying out various combinations and observing the results.
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Now and then, you may see an error report. If you try to read from the
stack when itis empty, you will see error 1. if you use a word which is not
in the dictionary, error 0 will appear. After any error the system clears
down ready for a fresh start. Other errors are unlikely to arise at this
stage, unless you do something rather improbable.

You will find that there is no need to enter all your commands at once.
Your input data goes to the Terminal Input Buffer. When you press
ENTER, or if you overfill the buffer, the INTERPRET function is called to
work out what you have said. It will first try to match a group of characters
delimited by spaces with the name of a dictionary entry, and if that fails it
will try to interpret the group as a number which is valid in respect of the
current value of BASE. If that also fails, it will put up error 0.

INTERPRET works on one word at a time, so if you press ENTER after
each word or number the action will be the same. Now and then a
complete sequence is desirable.

If you want to clear the screen before a particular action, you need to
put CLS in the string of words and numbers which will call the action.
Don't forget that the system insists on tacking ‘ok’ on to the end of an
output which completes a string of actions. You may want to put 0 0 AT
near the end of the string to put the ‘ok’ away in the top left corner of the
screen.

If you want to find out what is happening to the stack without losing any
data, a useful trick is to use:

ROT DUP . ROTDUP . ROTDUP.

This will display 30S,20S and TOS, in that order, but will leave the
stack unaltered. You should be able to work out why.

What can we do with the words we have examined? Not a great deal,
you may say. We can carry out some complex arithmetic, but it is all in
integer form, and that may seem limiting. With a littie patience, you will
find that the limitation need not be serious. A scan through the DRAW
routine listed in Appendix A will give you a hint of the possibilities in that
direction. The changes in X and Y values are calculated in units of
0.0000152, by using the scaling principle. That will be examined in detail
later.

In terms of exploring the possibilities of FORTH, we have as yet barely
begun. As a prelude to further progress, we need to look at the way the
dictionary works, and the way we can begin to create words of our own.
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PART II:
The Dictionary

This part describes the structure of the dictionary, and the way FORTH
uses the dictionary to respond to commands. Those who are impatient to
go further ahead may skip this section for the moment, but it will help to
explain mechanisms involved in the functions to be described.

THE DICTIONARY

Loading the FORTH tape sets up an area of store as the FORTH
Dictionary, which contains all the essentials uf the system. During
initialisation a number of variables are set up outside the dictionary area
and stacks and buffers are established, but the dictionary remains the
heart of the system.

The name ‘dictionary’ is precisely appropriate, since it refers to a list of
words and their definitions. When you input a FORTH word, the system
searches the dictionary for it and executes the defined action. With at
least 260 words to check, this takes time, which is only acceptable
because the process of entering the word will have taken longer. A more
rapid process is needed for executing a program.

The definitions for some words are so complex that they amount to
small programs in themselves. The word M/ calls up fifteen other
words, and some of these call up yet more words. To allow this to be done
quickly, the definitions are set up in the form of link addresses to the
definitions for the other words, so that a simple machine code routine can
jump directly to the required area. As there is no need to search for any
word other than the first, FORTH wastes no time in moving from one
process to another. That is why it is so fast.

To make such a system work efficiently, the dictionary entries must be
laid out with care. Each entry is built up from four ‘fields’.

First, there is the Name field. This begins with a byte called the length
byte, which — among other duties — gives the number of letters in the
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name being defined. Since the maximum permitted length is 31 letters, it
can be defined by bits 0 — 4 of the length byte.

Bit 5 of the length byte is the ‘smudge’ bit. When this is true, the word
will not be recognised as valid, though it will be listed as present if VLIST
is called to display the dictionary contents. The bit is set while a new
dictionary entry is being created, and cleared when creation is complete,
so that incomplete definitions are marked as invalid.

Bit 6 of the length byte is set to indicate ‘precedence’. This means that
the word will aiways execute, even during the creation of a new dictionary
entry, when the system is said to be in ‘compiling’ mode and is taking all
the other words it finds as being part of the new definition.

Bit 7 of the length byte is always set true.

The word itself, in ASCII code, completes the Name Field, the code for
the last letter having bit 7 set to mark the end of the word.

While the dictionary is being searched, each definition has to be
examined in turn. To simplify this, the Name Field is immediately
followed by the Link Field, which contains the address of the next
definition to be examined. The search begins with the most recent entry,
which is at the top of the dictionary, and works back down the store,
checking a name field, and picking up the link if no match is found. This
uses a variable called HERE, which is set from the main dictionary
pointer.

The linking process is illustrated in Fig 1, from which it can be seen that
the number of locations that have to be scanned is kept to an absolute
minimum.

When the required entry is found, the third field comes into play. This is
the Code Field, and it contains a link to machine code which must be
executed to implement the function. The code itself can be anywhere in
the dictionary, but where it covers the complete execution of the function
it usually follows immediately after the Code Field. In some circles, words
which are entirely executed in machine code are called ‘primitives’, as
they are the basic elements which perform the actual work, being called
up in the required sequence by higher level words.

Many words, however, are defined solely by reference to other words,
and for these the Code Field links to a routine which interprets the fourth
field, the Parameter Field.

The Parameter Field contains a series of links to the Code Fields of
other words, some of the links being followed by data necessary to the
action of the other words. For example, there is aword LIT , which is an
abbreviation of LITERAL. Its function is to put the data which comes next
in the Parameter Field on to the stack. Similarly, the word .” is followed
in the Parameter Field by text to be output. In this way, the Parameter
Field constitutes a complete program definition for the word which it
serves.

Some of the more mysterious FORTH words exist mainly to help the
interpretation of the dictionary. TRAVERSE , for example, moves the
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DEFINITION ¢
n+1

DEFINITION <
n

NAME FIELD n+1

LINK FIELD n+1

CODE FIELD n+1

PARAMETER FIELD n+1
(or machine code)

NAME FIELD n

LINKFIELD n

CODE FIELD n

PARAMETER FIELD n
(or machine code)

FIG. 1: DICTIONARY FORMAT, SHOWING SCAN PATH
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scanning pointer (temporarily held on 20S) from one end of the name
field to the other. Taking TOS and 20S from the stack, it adds TOS to
20S repeatedly untii a byte with bit 7 true is found. If TOS is 1,
TRAVERSE scans forwards. If TOS is — 1, the scan is downwards. The
resuiting pointer value is left on TOS.

TRAVERSE is usually called as part of a process. The word NFA | for
example, converts TOS from the address of a Parameter Field to the
address of the associated Name Field, and has the form:

5 — —1 TRAVERSE

Subtracting five from the Parameter Field Address takes TOS back
past the Code Field and the Link Field, which contain two bytes each, to
the end of the Name Field. The combination —1 TRAVERSE then scans
back to the start of the Name Field.

PFA performs the reverse conversion, its form being:
1 TRAVERSE 5 +

The Name Field is scanned to the end, and the addition of 5 taking
TOS to the Parameter Field Address.

Adding a new dictionary entry is simple. If you input:

23672 CONSTANT FRAMES

: FRAME FRAMES DUP @ SWAP 2+ C@ :
you will find that you have created a new constant called FRAMES and a
new word FRAME that can be used to put the contents of the Spectrum
FRAMES variables on to the stack as a double word.

The colon calls up compiling mode, so instead of executing the words
which follow it the system sets up a new dictionary entry with the new
FRAME, setting the Parameter Field to call up DUP @ SWAP 2+ C@in
sequence. (See Part Il for more detail on colon definitions.)

It is now possible to read the variable by calling the single word
FRAME , instead of calling up each of the constituent functions in turn. If
you wish, you can use the'word FRAME in afurther definition, since ithas
exactly the same standing of the rest of the words in the dictionary.

The semicolon terminates the process, returning the system to
execution mode.

To find the correct links for the parameter field entries, it is necessary
to search through the dictionary for the relevant words, so compilation is
relatively slow, but execution of the compiled word will be fast. Once you
have defined a word, you can use it in defining others, and you will find
that there are a number of standard words which can only be used in
‘colon definitions’.

An important point concerns the ‘smudge’ bit of the length byte in the
name field. When the creation of the new entry begins, the bit is set to
indicate an invalid definition, and it is not reset until definition is
completed. If anything goes wrong, such as the discovery of a non-
existent word in the definition, the bit is left set. The word can then be
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found by VLIST , which lists the words in the dictionary, but it will not
otherwise be recognised. o

Incidentally, the smudge bit is manipulated by SMUDGE, which is
defined as LATEST 32 TOGGLE. LATEST leaves the address of the
most recently created name field, and 32 (= 20H) selects bit 5 as the one
to be ‘toggled’. o

Having defined FRAME, you may like to use it in further definitions:

: MINSEC 50 M/MOD ROT DROP 60 U/MOD 060 U/MOD . . . ;
: CLOCK FRAME MINSEC ;

Taking the second definition first, it calls FRAME , then MINSEC .
FRAME puts the contents of the FRAMES variable on the stack as a
double number, and MINSEC first divides the number by 50 to give the
number of seconds since switch-on. The unwanted remainder is
discarded by ROT DROP , and 60 U/MOD then separates the minutes
and seconds. As this produces a single number result, 0 is added to the
stack to form a double number, and a further 60 U/MOD will generate the
hours and minutes as separate numbers. The three figures obtained are
output in turn. .

Calling the single word CLOCK will therefore output the elapsed time
since switch-on in hours, minutes and seconds. If you feel ambitious, you
may like to try to define a word that will set the contents of the FRAMES
variable in the BASIC area to give real time. _

If this examination of the dictionary format has whetted your curiosity,
you may like to browse through the summary of the standard dictionary in
Appendix A, which gives the definitions of all the standard words. You \_mII
find that a variable is entered in much the same way as an executive
word, with a special routine to interpret the parameter field., while a
constant is again similar in format but again uses a special routine.

Because a single variable takes up at least eight bytes of dictionary
space, it is understandable that the ideal approach is to minimise the use
of variables. However, with ample space available it is permissible to be
a little extravagant. )

This excursion into the mechanism of FORTH was not an essential
factor in using the language, but it should have given a useful insight into
what goes on inside the system. When all the available words are
understood, it will be seen that the foregoing description has been very
much simplified. Instead of relying on existing words to form a new
definition, itis possible to enter machine code routines to execute special
tasks. The process of compiling can be halted to allow the system to
Calculate data for further compilation, then compiling can be resumed.

To make the most of the system, it is best to limit the size of each
Created definition, rather than attempt to cram everything into a single
definition. That way, the validity of each new word can be tested before
going further, and overall confusion can be avoided.

Mention of testing naturally leads on to the question of how errors can
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be corrected. This will be dealt with in detail at a later stage, but it will
suffice for the moment to say that it is always possible to FORGET a
defined word. If it is the word most recently defined, that word alone will
be erased from the dictionary by the simple process of setting the search
start pointers to the name field of the previous definition. if other words
have been defined since, all of them will be lost. In either case, however,
the relevant data remains unaltered. It is merely ignored by the search
processes. This may be compared with the use of OLD after NEW, in
some versions of BASIC, to restore a program unintentionally destroyed.

There are many ways to use FORTH. At a simple level, you can rely on
the construction of a pyramid of dictionary definitions, with no fancy tricks
involved. Growing confidence may lead you to explore more complex
techniques, and eventually you may begin to see how the dictionary
entries can be modified to make them do what you want. If your ambitions
lead you along this path, progress with caution rather than speed, for
there are traps for the unwary, but an attempt will be made to provide you
with the information you will require.

In this section, we have encountered:

1 TRAVERSE Convert TOS from name field start address to

name field end address.

—1TRAVERSE Convert TOS from name field end address to
name field start address.

CFA Convert TOS from parameter field address to
code field address.

LFA Convert TOS from parameter field address to
link field address.

PFA Convert TOS from name address to parameter
field address.

NFA Convert TOS from parameter field address to
name field address.

LATEST Put contents of CURRENT on the stack. (Identifying
the name field address of the latest entry in the
dictionary.)

SMUDGE Change the state of the location defined by LATEST

by XORing TOS (LOWER BYTE) with the contents of
that location.

TOGGLE Change the contents of the location defined by the
address in 20S by XORing the contents with TOS
(lower byte).

FORGET Change the contents of CURRENT to point to the
name field of the dictionary entry identified by the link
field of the word which follows FORGET.
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PART I
Colon Definitions

This part explains how new words can be created by use of ‘colon
definitions’, and introduces words related to the branching and looping
processes. If the use of FORTH were limited to the execution of words
input from the keyboard, it would be a very limited language indeed, but
the whole concept rests on the ability to create new entries in the main
dictionary, or in a subsidiary dictionary created for a particular purpose.
Once a new entry has been made, it can be used to help to define further
entries, until a complete program can be defined in terms of a single
word.

In compiling new definitions, there are a number of words which are
unacceptable for direct execution, and these will be examined in due
course. First, however, some examples of the use of created definitions
will help to show the possibilities.

EXTENDING THE DICTIONARY

In the section on memory access, we saw that a variable entry could be
extended by ALLOT to reserve an area which could hold an array.
Access to a given element of the array required a short routine which
would work out the address of the element:

n name SWAP DUP + +

Since n, the number of the required element, and name, the name of

the array, are variable factors, we can usefully define:
:ACALC SWAP DUP + +;

We can now obtain the required address by the shorter entry:

nname ACALC

This will have the same affect as the sequence previously defined. We
can now go a step further and define:

35



:Al ACALC ! ;
:A@ ACALC @ ;

Having defined ACALC , we can now use it to define two words which
will write to and read from the array element address. This further
compresses the code required. it would have been possible to define A!
and A@ directly, without defining ACALC first, but we are dealing with
principles here, rather than with practice, and the route adopted
demonstrates the point more clearly.

In a program examined later on, we will require a three-element array
called PILE which will be set up by:

0 VARIABLE PILE 4 ALLOT
We can then access element n of the array by:
n PILE A@
or write to it by:
n PILE A!

We must be careful not to make n greater than 2, or we will step outside
the reserved area. The subscript range, it should be noted, is 0to 2, not 1
to 3 as in Spectrum BASIC. If we called 3 PILE A! we would overwrite the
name field of the subsequent dictionary entry.

Multidimensional arrays are more difficult to handle. The usual rule for
calculating an element number n from given subscripts and dimensions
is based on the iterative application of:

n, = n,_, *dimension, + subscript,

Initially, n, = 0, so n, = subscript,

Then n, = subscript, *dimension, + subscript,

This process is repeated for each subscript in turn.

For a three-element array, the FORTH sequence would be:
S382S1D2*+D3* +

This would put the element number on the stack. We can therefore
define:

:ELEMENTD2*+ D3* +;

We could now read from the elements defined by subscripts A1, S2,
S3 by calling:

S§3 52 S1 ELEMENT ARRAY A@
where ARRAY is the name given to the ARRAY.

In these fairly simple examples, you will note that each definition
begins with a colon, to instruct the system to create a new dictionary
entry in compiling mode, and ends with a semicolon to instruct a return to
direct execution mode. The word following the colon is taken as the name
of the new entry, and the words that follow are set up in the Parameter
Field in terms of their Code Field addresses. Note that the colon and
semicolon are not needed when setting up variables and constants.
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You need have little fear that you will overfill the available space by
creating too many definitions. You can always use FREE . to check
how much space is left, and you will find that it shrinks quite slowly. If you
want to calculate how many bytes a new definition needs, add up:

® The number of letters in the new word name, plus 1.

® Two bytes for the Link Field.

e Two bytes for the Code Field.

® Two bytes for each word used, including the semicolon but not
the colon.

® Four bytes for each numeric value.

o Four bytes for a branch or loop. (See next section)

The word ELEMENT , defined above, takes up 32 bytes.

You should now be in a position to experiment with the construction of
some simple sets of words. As you create each new definition, make a
note of the way it changes the stack. ACALC removes n and an address,
leaving a modified address in exchange. A! removes n, the address, and
a single number, while A@ removes n and the address and leaves a new
single number. ELEMENT removes three subscripts and leaves n.

if you note these changes, you will find that it is easier to keep track of
the overall stack changes, since there is no need to go through each
definition word by word to see what is happening.

For the mom.ent, you will be hampered by the fact that your definitions
soon scrolt off the screen and are lost, but a remedy for this will be
demonstratedin Part IV, when the RAM-Disc system is described. This is
a storage system in which you can save your definitions and bring them
back whenever a query arises or you want to amend them.

BRANCHING AND LOOPING

Exponents of structured programming regard it as meritorious that the
FORTH language does not offer a function comparable with the BASIC
word GOTO, which they regard as unsanitary. In fact, it would be very
difficult to introduce such a word directly, since there would be no way of
defining the destination. Inside the dictionary, however, most of the
branching and looping functions are implemented by relative jumps,
which are at least near relatives to GOTO.
The jump functions are:
BRANCH XXXX , which transfers action to a link address by adding
XXXX to the interpretive pointer.
OBRANCH XXXX, which acts in the same way, but only if TOS is
zero. Otherwise, it has no effect.
Since XXXX is a 16-bit word, it would theoretically be possible to jump
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to any other point in the dictionary, but the actual jump spans used are
relatively small.

BRANCH , in isolation, is of little value, and is usually employed to
define an alternative action in association with 0BRANCH. In order to
appreciate the action of 0BRANCH , we must consider some of the
special ways in which TOS can be set to determine whether 0BRANCH
acts or not.

First, there are simple arithmetic calculations. If they make TOS zero
at the time when 0BRANCH is called, it will act. Otherwise, it will do
nothing. In either case, TOS will be removed.

Next come the logic operators, which are not very different:

= Put a non-zero state on TOS if TOS = 20S,
otherwise a zero state.

< Put a non-zero state on TOS if 20S is less than TOS,
else zero.

> Put a non-zero state on TOS if 20S exceeds TOS,
else zero.

U< As <, but treating the numbers as unsigned.

Each of these operators removes TOS and 20S, and is itself lost when
OBRANCH acts. Itis usual to refer to the item put on TOS by the operator
as a true flag (non-zero) or a false flag (zero).

Next there are operators which act on a single value, rather than on the
comparison of TOS and 20S:

0< Put a non-zero state on TOS if TOS is negative, else
zero.
0= Put a non-zero state on TOS if TOS is zero, else zero.

Both these operators remove the original TOS.

The operator 0= effectively reverses the state of a flag on TOS, and is
also called NOT . It may be used after other operators to invert their
sense.

A number of other functions leave flags. For example, ?TERMINAL
puts a non-zero state on the stack if the BREAK combination (CAPS
SHIFT and SPACE or CAPS SHIFT and 1) is called from the keyboard.
Other examples will arise from time to time.

CONDITIONED BRANCHING

A deceptively familiar branching formatis IF . . . ELSE . . . ENDIF, but
its action may seem less familiar. It ocurs in the form:
condition IF actiont ELSE action2 ENDIF action3.
If condition (on TOS) is true, actions 1 and 3 are performed. If condition
is false, actions 2 and 3 are performed. The condition flag is removed
from the stack, and it is sometimes convenient to create it by using
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—DUP , which only duplicates TOS if it is non-zero. The original TOS
would then be available for use in action1, but would be discarded if
action2 was performed.

The implementation in the dictionary should be straightforward. IF is
replaced by 0BRANCH , which performs an onward jump to action? if
condition is zero. Otherwise, a BRANCH at the end of action 1 performs
an onward jump to action 3.

Compilation of IF ... ELSE ... ENDIF is checked by a reference
number which is checked by ?PAIRS . IF sets up 2, and ELSE requires 2
to be set. ELSE also sets up 2, and ENDIF requires 2 to be set. It is
therefore permissible to omit ELSE and action 2 if only one conditional
action is requied.

If you feel it is more expressive, you can replace ENDIF by THEN .
They mean exactly the same.

The FORTH * DO loop ' is similar to the BASIC * FOR loop ’, the
equivalent forms being:

FORN=ATOB...NEXT =B+1ADO...LOOP
FORN =ATOBSTEPC...NEXT =B+1ADO...C+LOOP

Note that the limit parameter is B+ 1, not B. While the iteration index is
less than the limit, LOOP returns action to a point immediately after DO ,
but when the index is equal to the limit the words following LOOP are
executed. The Return Stack holds the necessary data.

DO is compiled as (DO) . When (DO) is executed, it transfers TOS to
TORS (the initial index value A) and 20S to 20RS (the limit value B+1).

LOOP is compiled as (LOOP) . When (LOOP) is executed, TORS is
incremented, and the result is compared with 20RS to see if the limit
value has been reached. If it has not, the routine jumps back to a point
immediately after (DO) , the jump span being calculated at the time the
sequence is compiled, and set in the word following (LOOP) in the
Parameter Field.

+LOOP is compiled as (+LOOP) , which acts in much the same way
as (LOOP) , except that C (stored in the Parameter Field as a ‘literal’, a
number to be put on TOS) is added to the index instead of unity.

Within a DO loop, the iteration index is normally on TOS , unless it has
been covered by >R, in which case the covering item must be removed
by R> before (LOOP) is reached. The word R will therefore put TORS on
TOS, without disturbing the count. For some unexplained reason, a
synonym of R is commonly used: | . The two words execute in precisely
the same way, even using the same machine code. By using | , the
current index value can be used in calculations within the loop.

The value of 20RS can be copied to TOS by I, giving the limit value of
the index. They can be useful where the required value is (limit— index).

There is sometimes a need to use the iteration count of an outer DO
loop, where two loops are nested. For this, 30RS is required, and it can
be copied to TOS by the word J .
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There is a slight catch about this. If a Return Stack value is read within
the definition of a word called within a DO loop, a return link has been
added to the Return Stack during execution of the definition, and it is
necessary to dig a little deeper, using I’ instead of |, J instead of I'. For
example:

: CALC2 I . ;

: CALC1 10 0 DO CALC2 LOOP ;
Now CALC1 will print out the numbers 0 to 9.
So will the listing of CALC1 after defining it as:

: CALC1 10 0 DO | . LOOP ;

The return link shows where execution should be resumed in the
calling sequence Parameter Table.

In BASIC jumping out of a FOR NEXT loop is sometimes permissible,
sometimes unwise. To get out of a DO loop prematurely, the word
LEAVE is used. This sets the index to be equal to the limit value,
terminating the loop at the next LOOP . LEAVE commonly occurs in the
format:

condition IF LEAVE ENDIF

Less familiar to users of older forms of BASIC, but implemented in

some recent versions, are the remaining loop formats:

BEGIN action UNTIL
repeats action until action puts a true state on the stack. A common
format to allow manual exit from a loop is:

BEGIN action ?TERMINAL UNTIL

Pressing CAPS SHIFT and 1 will cause ?TERMINAL to return a true
value on TOS, so that the loop drops out.

If no conditonal is set up before UNTIL , the loop may continue for ever.
Note that UNTIL removes TOS, being implemented by OBRANCH
which returns action to just after BEGIN if it finds TOS zero.

You may use END instead of UNTIL if you wish. They mean the same.
This is another example of FORTH synonyms, different words which
mean the same thing, and are executed by the same code.

A more complex loop structure is provided by:

BEGIN action1 WHILE action2 REPEAT action3

WHILE removes TOS. If TOS = 0, action1 is followed by action3.
Otherwise, action1 and action2 alternate.

The format BEGIN action AGAIN should be used with caution, as there
is no way out of the loop other than a call of QUIT , ABORT , or EXIT ,
executed conditionally within action. You have been using QUIT from the
stan, as it is the routine which accepts user inputs. It clears the Return
Stack, whereas ABORT clears both stacks, and is more drastic. EXIT
removes TORS , destroying the link which would otherwise be used to
direct further action. What happens then depends on what emerges as
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the new TORS. Within a DO loop, it might be the index count, and that
would cause mayhem. Experiment with EXIT cautiously, though the
worst that can happen is that you have to re-load the FORTH tape and
start again . . .
Finally, there is the CASE structure, a special addition to fig-FORTH
that is omitted in some implementations. The format is:
condition CASE
A OF action1 ENDOF
B OF action2 ENDOF
C OF action3 ENDOF
etc.
ENDCASE
If A matches the stated condition, action1 is executed. If B matches the
condition, action2 is executed, and so on. The condition must be in the
form of a single number (or the equivalent, e.g. an ASCII code). A, B and
C can be words or sequences of words producing a similar result. An
example will be found near the end of the program given in the last
section of this book.

STRINGS AND THINGS

So far, we have only talked about numbers, saying little or nothing about
text. It is time to remedy that deficiency.

The word .” compiles a dictionary entry containing the text which
follows. For example:

. ABC .” Program Number1 ”;

will set up a dictionary entry which will print the text when the word ABC is
called. Note that there must be a space between .” and the start of the
text, and that the text is completed by a further ‘quotes’ character.

The same definition can include numerics and other words, allowing
such definitions as:

BCD 10 6 AT .” ProgramNo2 ”;

This will position the text on the screen at line 10 column 6.

Note that in the compiled entry .” is replaced by the link to the
compiled form (.”) and a character count follows. The actual output is
performed by TYPE , which outputs TOS characters, taken from an area
of store starting at 20S. (TOS and 20S are removed.) The character
count is set up by WORD which establishes the number of characters
and enters the number, with the actual text, in the dictionary. There is
usually no need to worry about these inner functions.

FORTH does not have, as a basic provision, any facilities for string
slicing. If you want anything like that, you must construct it for yourself.
The procedure would be to locate the string on which you wish to
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operate, identify the part of the string you require, and extract that part
either for immediate use or to form a new entry. An illustration will show
the method best.

Define a basic string:

. DATE .” JanFebMarAprMayJunJulAugSepOctNovDec” ,

The sequence —FIND DATE will set TOS to 1, indicating that the word
DATE has been found, 20S will contain the length byte for the word, and
30S will contain the parameter field address of the entry. All we need is
the address:

—FIND DATE DROP DROP 3 + CONSTANT POINTER

This will define a constant pointing to the address plus 3, which is the
start of the stored text. We have skipped over the two bytes defining .”
and the length byte. Note that this sequence is for immediate execution.
Itis not a colon definition.

To pick out the nth month, we must calculate 3*(n—1) and add it to the
constant POINTER. That will give us the address of the first character of
the month name. The address is set in the variable OUT :

: DATEADD 1 - 3 * POINTER + OUT ! ;

To get the address of the nth month, we need n DATEADD , so we
can construct:

: OUTDATE DATEADD 30 DO OUT @ @ EMIT LOOP ;

The contents of OUT are incremented by EMIT , which outputs the
character put on TOS by OUT @ @ . The whole month name can now
be output by n OUTDATE .

The procedure described above may seem rather complicated at first,
but it has the advantage of extreme flexibility.

FORTH also provides facilities for printing formatted numerics. The
words involved are:

<# Set up HLD to the address of the text output buffer, as
held in PAD. This buffer has no fixed address. It floats
68 bytes above the top of the dictionary.

# Operates on a double number on TOS/20S,
generating the least significant digit of its
representation in the current number base, and
leaving the residue on TOS/20S as a double
number. The digit is stored in PAD, using HLD as a
decrementing pointer.

#S Repeat # until the double number is reduced to zero.

SIGN Used between <# and #> , inserts a minus sign
before a converted numeric string if 30S is negative.
30S is discarded, but TOS/20S are undisturbed.
They will normally contain the double number being
operated on.
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#> Complete formation of a numeric string by dropping
the double number and leaving the address of its
location and a length byte. TYPE normally follows.

TYPE Outputs TOS characters taken from store, starting at
20S.

These words allow a rigid format to be set up. Whereas #S will
terminate output when the double number reaches zero, a pattern can be
set up using # which will insert trailing zeroes. There is one more
provision:

HOLD Decrement HLD and store TOS in the numeric string
as an ASCI| character code. For example, 46 HOLD
will insert a decimal point.

The full capabilities of these words can best be found by experiment.
Note that a decrementing pointer is used to set up the string in the buffer,
whereas TYPE uses anincrementing pointer. The least significant digit is
generated first, but is output last.

The process can use a DO loop to call # DPL times before the decimal
point is inserted, DPL holding the decimal point position. SIGN comes
last, so that its result is displayed or printed first.

It is convenient to mention here some of the other words that relate to
strings and text output.

COUNT, used with TOS pointing to the length byte of a text entry, puts
the actual length byte on TOS and the address of the start of the
subsequent text on 20S. TYPE can then be used to output the text.

- CPU outputs the name of the computer, in case you have forgotten
which machine you are using . . .

—TRAILING modifies the length byte of a numeric text string to remove
trailing spaces. It requires the original length byte on TOS and the
address of the start of the text on 20S. It leaves the same situation, with
the length byte adjusted. It can therefore be interposed between COUNT
and TYPE, or may precede TYPE when it is used to output a formatted
string.

. ID takes TOS as a name field address and ouputs the name of the
relevant definition.

The pure string functions in FORTH are not too extensive, as it is
mainly seen as a calculating language, but quite a lot can be done with
the facilities provided, given a little thought.

INPUT/OUTPUT

The input of keyboard data for immediate execution or for setting up
colon definitions is so simple that it tends to be taken for granted, but
quite a lot is done immediately to achieve that simplicity.

The QUIT routine is used for such input, because it is entered
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whenever other actions are complete and control is to be returned to the
user. It invokes QUERY, which puts the address of the Terminal input
Buffer on the stack, and then the number 80H, which is the size of the
buffer in bytes. EXPECT is then called to transfer characters from the
keyboard to the Terminal Input Buffer until either Return is pressed or
eighty characters have been input. QUERY then zeroes the input pointer
IN , so that the data which has been input can be scanned.

This data is in ASCII code form, and needs to be interpreted. Any
group of codes beginning and ending in a space may be a FORTH word,
and the dictionary is searched to check this. If no match is found, the
group may be numeric, and NUMBER is called to check this. NUMBER
requires a pointer address on TOS, and it checks for a valid numeric in
terms of the current value of BASE, also looking for a decimal point. If the
latter is found, DPL is set to the number of digits which follow, otherwise it
is set to —1. If the number is not valid, an error is reported.

If DPL is positive, INTERRUPT sets up a double number on the stack,
otherwise setting a single number. If the code group is not identified as
either a word or a number, INTERPRET reports error.

An interesting point is that the potential word is entered in the
dictionary whether it is valid or not, but the dictionary pointer is not
advanced until the word has been checked, so the word meanwhile has
no real existence, and may later be over-written.

If the word is recognised in direct mode, it is executed, while numbers
are put on the stack, so a continuity of action is maintained, even if the
input text is supplied in small sections. In compiling mode, compilation
proceeds in a similar manner.

While compiled definitions are running, a rather different situation
applies. The keyboard is ignored uniess an input is specifically invited.
This can be done by:

KEY Put the ASCII code for a key depressed on TOS.
INKEY As KEY, but if no key pressed put FFH on TOS.

The difference is that KEY waits for a key depression, whereas INKEY
does not.

These words are convenient for simple control, for responding Y or N,
or for halting action until you are ready to go on. It is possible to translate
the ASCII code to a numeric value by using DIGIT, which requires BASE
on TOS and the character on 20S:

KEY BASE @ DIGIT

This will put the numeric value on the stack, then a true flag if the code
is a valid number, or will put a false flag on the stack if the code is invalid.
However, the number will not be displayed unless you expand the
sequence to:

KEY DUP EMIT BASE @ DIGIT

It would be possible to extend the sequence further, to accept and

combine a number of digits as a complete number, but the combination
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QUERY INTERPRET is more convenient.

The output of data to the display has been adequately covered
elsewhere, and the use of 1 LINK to switch the printer on and 0 LINK to
disable it have also been mentioned. The remaining input/output
functions are those relating to the ports:

INP Removes TOS as a port number, and sets TOS as
the byte read from the port.
OUTP Removes TOS as a port number and 20S as data.

The data is output to the specified port.

A. certain amount of care is needed in selecting ports, as some have
dedicated uses in the Spectrum system. Bits 0 to 4 of the port address
should be high, and bit 7 should be low, which leaves just four usable
addresses: 1FH, 3FH, 5FH and 7FH. The limitation applies more
particularly to output ports.

ODDMENTS

A number of quite important words have yet to be mentioned. Those
associated with the compiling process will be dealt with later, in PART IV,
but an attempt will be made here to collect together the other stragglers.

Fu_'st, there is the word FORTH itself. It calls up the FORTH vocabulary,
as distinct from any other set of words which may have been defined,
such as the EDITOR vocabulary. Calling the name of a vocabulary
switches links within the dictionary so that the required set of words
bepomes available. To be precise, CONTEXT is reset, this being the
pointer to the start point for searches. An attempt to FORGET a word
which _is not in the currently-selected vocabulary gives error 24, because
you might destroy a lot more words than you intend to. In any case, you
will not be allowed to FORGET any word which lies beyond the point
defined by FENCE, which acts as a protective barrier.

When you do FORGET a word, you discard not only that word, but also
every word that comes before it in the dictionary, that is every word that is
of more recent origin. This is sometimes used to advantage by compiling
th_e dummy word TASK as the first word in a program. FORGET TASK
will then discard the complete program, including any invalid words it
contains. Such words cannot be forgotten directly.

The variable STATE determines current working mode, direct
execution or compiling, and will generate an error if a word inappropriate
to that state is used. The error checking system employs a number of
words, a good starting point being ?ERROR, which occurs in the form
fn ?ERROR, where n defines the error number and f is a flag which is
true if the error is present. If the flag is false, f and n are cleared from the
stack and action continues.
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If the flag is true, ERROR is called with n on TOS. What happens then
depends on the contents of WARNING. If WARNING is negative,
(ABORT) is called, ABORT being called in turn. Otherwise, the offending
word is displayed, followed by a query, and then MESSAGE is called, still
with TOS = n, after which the stack pointer is re-initialised and QUIT
follows.

WARNING also controls the action of MESSAGE. If WARNING = 0,
the format ‘MSG # n’ is displayed. If WARNING is greater than zero, the
system will display an explicit text message, the text being held in the
RAM-disc storage system described in Part IV. Since such text would
pre-empt one fifth of the available storage space, it is not normally used
in Abersoft FORTH, and it would be completely impractical for other
implementations which provide less storage space.

?STACK checks the value of the main stack pointer, reading its
contents by SP@ and comparing the result with SO, the initialised value,
and with HERE + 80H. If the pointer is below HERE + 80H, there is a
risk of conflict with the stored program, and ?ERROR is called withn = 7
and a true flag. If the pointer is above SO , the stack has been over-
emptied, and ERROR s called with n = 1 and a true flag. If neither state
exists, a false flag is set, and though n = 7 ERROR is ineffective. The
approach of an error 7 condition can be anticipated by using FREE . to
display the amount of free space.

Other error checks are:

?COMP calls error 17 if the system is not in compiling mode.
?EXEC calls error 18 if the system is not in direct execution mode.
?PAIRS calls error 19 if the branching and looping words are not
correctly paired in sequence.

?CSP calls error 20 if the stack pointer fails to match the contents of
the variable CSP, indicating an incomplete dictionary entry.
?LOADING calls error 22 if the terminal input buffer is in use.

Subsidiary functions and variables associated with the error system
are:

ICSP Sets CSP to current stack pointer contents.

RO The initialising source for the return stack pointer.
RP@ Reads the return stack pointer to TOS.

RP! Sets the return stack pointer from RO.

SP! Sets the calculation stack pointer from 20.

Finally, in this group, WHERE can be called after an error during
compiling, whereupon it will pinpoint the source of the error by putting the
relevant line on display with an accusing arrow pointing to the offending
word. The verdict is not always accurate. If, for example, a colon is
missing from the front of a colon definition, the error may only become
apparent when the semicolon is reached. Provided this is borne in mind,
WHERE provides a useful aid for debugging source code.
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Few of the words just described would normally be called by the user.
Like many others, they are provided for use inside the FORTH system.

COLD and WARM are a different matter. They allow the system to be
re-initialised with and without the loss of dictionary extensions. They can
be called as words, but they are also accessible from BASIC, by GOTO 2
;\(4)2) (’Z\JOLD and GOTO 3 for WARM. The BASIC system can be entered by

Itis sometimes useful to know how big the dictionary is, since it can be
saved on tape in extended form, and SIZE serves this purpose, by
putting the number of bytes between ORIGIN and HERE on TOS.
ORIGIN is a nominal start point for the program, and n+ORIGIN puts on
TOS the address of the nth byte from that start point.

EXECUTE and COMPILE induce entry to the working mode named,
by setting STATE to the appropriate value.

NOOP does nothing, except perhaps fill a gap.

That leaves only the factthat0, 1,2 , 3 are FORTH words in the form
of constants, saving any need to work out their value, and n USER
provides the address of a location within the User Variable area, whichis
defined in Appendix A.

The Appendix will also answer most questions about any word which
has not been covered as yet, including the EDITOR vocabulary, which
contains 28 words. However, the examples which will be found in Part V
should clear up a number of possible obscurities.
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PARTIV:
The RAM Disc

This part discusses the provisions for storing source code, for saving and
loading tape copies, and describes the EDITOR vocabulary.

SCREENS

One further major facility is needed to make FORTH fully viable. The
input of colon definitions for immediate compilation can be very tedious,
especially if frequent alterations are needed. The answer lies in the
Screens, which store source code for compilation in a way that allows
changes to be made quickly and fairly easily.

Spectrum FORTH provides eleven screens, each containing sixteen
lines of 64 characters. This is the standard FORTH screen format, and it
is not entirely compatible with the smaller Spectrum display. It leads to
the user having to put up with some scrolling and using CAPS and 1 to
BREAK, but this is easily manageable.

The input n LIST will display and select screen n, but the inital display
will show lines full of queries, because the store area is full of zero bytes.
INIT-DISC will fill all the screen areas with space codes. Source code can
then be entered, using the EDITOR vocabulary, and can thereafter be
compiled by n LOAD, where n is the number of the screen concerned. If
--> is entered at the end of the screen, compilation will continue to the
next screen. In that way, all ten screens 1 — 10 can be compiled if
required.

SAVET will save the entire contents of the RAM disc on tape, and it can
be reloaded by LOADT or checked by VERIFY, all these words being
variations of (TAPE), the common tape system command. All the tape
files have the name DISC, so you must make your own arrangements for
identifying one from another.

What may not be immediately obvious is that a number of sets of
Screens can be loaded in turn, each being compiled while itis present, so
that relatively large programs can be set up.
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FORTH conventions, some enforced by the characteristics of the
language, impose some limitations on the way the screens are used.

Screen 0 is reserved for comments and explanation, and cannot be
used for loading. Similarly, line 0 of each screen is used for a heading,
and x y INDEX will output the headings of screens x to y. As with all
comments, the headings should be enclosed between round brackets,
with a space after the open bracket, as it is a FORTH word meaning
‘ignore all that follows until a close bracket is found'. The brackets can be
used as temporary entries to force the system to start compiling in
mid-screen, the open bracket being set at the start of line 0 and the close
bracket immediately before the point where compiling is to start. The
word ;S will cause compiling to stop, as will a null entry anywhere on the
screen.

Other conventions arise from the fact that the screens were originally
intended to work as part of a disk system. This meant that the total screen
area was effectively as large as a disk, and it was reasonable to allocate
two screens to the task of supplying textual error messages. Errors 1 to
15 were supplied by screen 4, and the remainder by screen 5. This facility
still exists, and can be brought into action by making WARNING equal to
1 (1 WARNING !). You will have to enter the messages in the screens
concerned, but this may be a useful facility while you are getting used to
the error numbers. You will lose two screens, but that may not be too
catastrophic in the early stages.

For printed record purposes, TRIAD is useful. It will display or print the
content of three successive screens, starting at 0, 3, 6 or 9. Thus 5
TRIAD would print the group including screen 5, i.e. screens 3, 4 and 5.

There are a number of words which are provided for use in screen
handling, but before examining these it will be best to look at the EDITOR
vocabulary, which is essential for setting up screen data.

THE EDITOR

Immediately after loading the FORTH tape, VLIST will display a string of
words beginning with UDG, the last entry in the basic FORTH
vocabulary. If you define any new words in that vocabulary, they will
appear before UDG , being more recent creations. Input EDITOR |, and
VLIST will now show an additional group of words at the start of the
display. These are the words in the special EDITOR vocabulary. The
word EDITOR has switched links in the dictionary to bring them into
action. The word FORTH will switch links again so that the EDITOR
words are no longer accessible.

There are almost too many words in the EDITOR vocabulary, and it is
best to get used to them by degrees. First, you will need to select a
‘screen’ and bring it into action in a cleared state. If you want to select it
without clearance, you need n LIST. Atany time thereafter, as long as the

50

EDITOR is enabled, L will also display the screen for line 0.

The simplest method for entering data into an empty screen is the
format m P text . This puts the text in line m of the current screen.

If you could guarantee 100% accuracy in typing and total infallibility in
the framing of colon definitions, this one command would suffice for
setting up source code, but there will inevitably be changes to be made.
The first step is to pinpoint the position at which the change is needed,
and for that there are useful search facilities, hinging round the cursor
position, which is stored in the variable R#.

TOP zeroes the variable, and should be used before a search unless
you are sure the cursor is above or to the left of the change point.
Suppose you want to change FIRTH into FORTH . If the offending word
occurs only once in the screen, TOP X FIRTH will erase it, leaving the
cursor at the position the word occupied. C FORTH will then insert the
word FORTH in the same place. Remember that C and X , being FORTH
words, require a following space before the start of associated text. If you
input C without text, you will enter a null code, and that must be removed,
since it acts as a terminator. Fortunately, TOP X will not only locate the
null, it will replace it with a space.

If the word you want to erase occurs more than once, you can find the
first occurrence, without erasure, by using TOP F text, and then N will
step forward to the next occurrence. When you have found the right
position, the cursor will be at the end of the text, but B will move it back to
the start of the text, so that X or C can be used.

TILL will delete all text from the cursor position to the end of the cursor
line.

The cursor can be positioned precisely by n M, which moves the
cursor n places and displays the resulting position. The value of n can be
positive or negative. »

In all these moves and changes, the operative text is held in a buffer
called PAD, and this can be used to hold lines temporarily in order to
shuffle the order of lines on the screen. To move line n of the current
screen to PAD you need n H , while n D will move the text and delete the
source. On the other hand, n E will delete the line without saving it.

Once a line is in PAD , and you want to insert it betwen two existing
lines which are adjacent, n S will move line n and all the lines below it
down one line, line 15 being lost, and n R will transfer the text from PAD
into the gap. More simply, n | will perform both operations.

In cases where the screen is very full, it is sometimes useful to employ
n T, which types a single line and holds it in PAD. The line can then be
checked in isolation.

The remaining EDITOR words are mostly sub-functions of those which
have been described, and are not normally needed for direct use, but an
exception is COPY .

The form a b COPY will copy the contents of screen a to screen b. An
extension of this uses a negative screen number, which will copy a
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screen to or from the free space between the dictionary and the stack. If
free space is limited, it is as well to do a trial run to make sure the area
used is not occupied, making a dummy transfer from it.

This facility has the advantage that a screen can be moved from one
tape record to another. The record originally containing the screen is
loaded, and the screen is transferred to free space and erased from the
source screen. The result is saved and verified. The second record is
then Yoaded, and the screen is transferred back to a free screen. Being
outside the normal screen area, it will not have been affected by the
saving and loading. It can now be saved as part of the second record.

This little trick can be very useful, but is best performed when there are
no dictionary extensions and the free space is at its largest extent.

Perhaps n DELETE should be mentioned. It deletes n characters to
the left of the cursor position, and is really provided to serve X . The
remaining words are MATCH , #LOCATE , #LEAD , #LAG , —MOVE ,
—TEXT , 1LINE and FIND . All these are primarily internal words, rather
than user words.

If the editing system has a fault, it lies in the large number of words
provided. With a little practice, you will find that a small subset will serve
most purposes.

It will be noted that two words in the EDITOR vocabulary, Rand |, are
identical with words in the FORTH vocabulary. For direct execution,
however, the EDITOR forms are found first when the EDITOR
vocabulary is enabled, so these are used.

The user words in the EDITOR vocabulary may be summarised:

B Move the cursor back by the length of the text held in
PAD.

Cc Insert the following text at the cursor position,
spreading the original text to make room.

D Remove TOS as a line number of the current screen

and delete that line after copying it to PAD.

DELETE Remove TOS as a number of characters, and delete
that number of characters to the left of the cursor.

E Remove TOS as a line number and erase that line
with space codes.

F Search for match with following text from cursor to
end of screen.

FIND As F, but using text already in PAD, and end with
TOP.

H Remove TOS as line number, and copy that line to
PAD.

| Perform S and R, inserting line from PAD at line
TOS.

L List the currently-selected screen.
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M Add TOS to cursor position and display line.

N Find next occurrence of match to text in PAD.

P Put the following text in the line defined by TOS.

R Replace line identified by TOS with textin PAD.

S Move line identified by TOS and following lines down
one line.

T Display line and copy to PAD.

TILL Delete from cursor to end of line.

X Delete next occurrence of following text.

TOP Set cursor to zero.

CLEAR Clear screen identified by TOS.

BEHIND THE SCREENS

To preserve at least nominal compatibility with standard fig-FORTH,
Spectrum FORTH includes in its vocabulary a number of words which
relate to true disk operation, but are not directly relevant to the RAM disc
system.

A buffer area is established between CBEO and CFFF, and this
contains eight buffer areas of nominally 128 byte capacity, four extra
bytes being provided for control purposes. In a true disk system, these
would be in direct communication with disk, holding records read in and
providing data to be read out.

In general, words which relate to these buffers can be ignored, except
perhaps for the purpose of adventurous experiment. The words, all
defined in detail in Appendix A, are:

Constants:

#BUFF Number of buffers allocated (8)

B/BUF Number of bytes per buffer (128)

B/SCR Number of blocks per screen (8)

C/L Number of characters per line (64)

FIRST Address of lowest buffer start (CBEO)

Hi Address of end of screens area (FBFF)
LIMIT Address of end of buffer area plus 1 (DO0Q)
LO Address of start of screens are (D0O0O)
Variables:

BLK Block number being interpreted. I BLK = 0, the

TIBis in use as a source.
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OFFSET

PREV
USE

SCR

Functions:

+BUF

.LINE

BLOCK

BUFFER

DRO

Can be used to displace the screens area, this
being equivalent to moving to a different disc
area. Best left at zero.

Holds the address of the most recently used
buffer.

Holds the address of the least recently used
buffer.

Holds the number of the screen in use.

Removes TOS as the address of the current
buffer, and selects the next buffer in sequence,
putting the address of the latter on 20S and a
flag on TOS. If the new buffer is that identified
by PREV, the flag is false.

Removes TOS as a screen number. If that
block is held in a buffer, the address of the
buffer is returned on TOS. Otherwise the
contents of the buffer identified by USE are
read to disc (in this case RAM disc) and the
block is copied into that buffer, the address of
which is returned to TOS.

Removes TOS as a block number. If that block
is held in a buffer, the address of the buffer is
returned on TOS. Otherwise the contents of the
buffer identified by USE are read to disc (in this
case RAM disc) and the block is copied into that
buffer, the address of which is returned on TOS.

Removes TOS as a block number, and assigns
the next buffer to that block, first saving the
buffer contents on disk if they have been
updated. The address of the buffer is put on
TOS. (BLOCK uses BUFFER)

Set OFFSET =0

EMPTY-BUFFERS Set up the control fields of all buffers to the initial

FLUSH
LINE

state, i.e. as empty.
Write all updated buffers to disk.

Removes TOS as a line number, and returns
the address of the start of the line in the current
screen.
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R/W

TEXT

UPDATE

Removed TOS as a flag, 20S as a block
number, and 30S as an address. If the flag is
false, data is written from the buffer to disk
(RAM disc). If the flag is true, a read operation is
performed.

TOS is removed as a delimiter, and the
following text is copied to PAD.

The buffer identified by PREV is marked as
updated, i.e. its contents have been aitered.
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PARTV:
Simple Programs

In this part, some simple programs will be discussed as examples.

SIMPLE PROGRAMS

Armed now with ali the facts needed, we can begin to look at some simple
programs. As a start, how about a program to dump store data and
display it?
SCR  #1
0 (DUMP PROGRAM)
: TASK ;
: PLINE CR DUP 5 U.R 8 0 DO
DUP C@ 3 .R 1+
LOOP ;
: PBLOCK CR 16 0 DO PLINE LOOP ;
: GETN QUERY INTERPRET ;
: DUMP HEX CLS .” Start Address ?”
GETN BEGIN PBLOCK CR KEY DROP
?TERMINAL UNTIL ;

©ONOOUAEWN-=

Set the program up in screen number 1 , check and if necessary correct
any errors. Then call FORTH 1 LOAD, and thereafter the word DUMP will
call the program. In most BASICs, it would be much longer, to obtain the
required format and to perform the hexadecimal conversions.

This is not laid out in formal FORTH style, but it will still load perfectly
well. Note the use of TASK at the start, so that the program can be
forgotten by FORGET TASK.
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PLINE performs a newline, then duplicates TOS, which holds the
current dump address. The copy is used to display the address in a
five-position field (5 U.R) and then an eight-iteration loop is entered
which again duplicates the address, reads the contents of the location
defined, and displays the result in a three-position field. The address, on
TOS again, is incremented, and the loop iterates. The overall result is a
single line dump. It is in hexadecimal, because DUMP sets that
condition.

PBLOCK repeats PLINE sixteen times, putting in an extra newline first.

GETN puts the required start address on TOS.

DUMP , the overall word for the program, sets HEX working, clears the
screen, and puts up the invitation to input a start address. That might
equally well have been included in GETN , to show the purpose of that
word more clearly. The BEGIN-UNTIL loop then repeats until BREAK
(CAPS SHIFT and 1) is pressed, but the action pauses after each block
until a key is pressed. Note that the result of KEY is dropped, being
unwanted.

Set the program up in screen number 1, check it and if necessary
correct any errors. Then call 1 LOAD, and thereafter the word DUMP will
call the program. In most BASICs, it would be much longer, to obtain the
required format and to perform the hexadecimal conversions.

You may want to see text, rather than hex codes. Very well, we need to
change PLINE as follows:

: TPLINE CR DUP 5 U.R SPACE 16 0 DO

DUP C@ 32 MAX DUP 160 > IF 128 — ENDIF
EMIT 1+ LOOP ;

As there is only one character per location dumped, we can put sixteen
locations in a line. We don’'t want codes below 32 to be displayed, which
would create mayhem, so we put 32 MAX, so that 32 is taken if the
previous TOS was less. Codes above 160 are in the token area, so for
these we subtract 128. We use EMIT, to output the ASCII code
character instead of the hexadecimal value.

These two simple routines raise a number of important points. As we
have changed the name of the definition from PLINE to TPLINE , it will
not be called by PBLOCK, and we have to make a new version of
PBLOCK called TPBLOCK and a new version of DUMP called TDUMP .
GETN need not be duplicated if it had already been loaded.

If we had called the definition PLINE it would have made no difference,
because PBLOCK would still refer to the original PLINE , the one which
was defined before PBLOCK .

Using the editor, it is fairly simple to copy page 1 to page 2 and alter
names as necessary, with the TPLINE definition at the top.

The next point concerns numbers. The loading was done with the
system in the DECIMAL state, so the numbers are given in decimal form.
HEX is not executed at line 7 of screen 1 , because it is being compiled. It
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is vyorth noting that LIST sets the DECIMAL mode for its own purposes,
so it is usually best to use decimal values in source code. If hex values
are more convenient, you only need to insert HEX , outside a definition
s0 that it will be executed, not compiled.

What next? Well, a notable absence from the dictionary is any kind of
random generator, and most programs need one sooner or later. Here is
one possibility:

0 VARIABLE SEED
: MODSEED SEED @ 75 U* 75 0 D+
OVER OVER U<~ -1 - DUP SEED ! :
: BRND MODSEED U* SWAP DROP ;
: RAND —DUP 0= IF 23672 @ THEN SEED ! :

RAND is a randomizer. 0 RAND will set SEED from the low byte of
FRAMES . If TOS is non-zero, its value will be set in SEED.

RND is the actual random generator from the user point of view. It is
used in the form n RND , which generates a number between 0 and n .
MODSEED changes the value of SEED and creates the basic random
number between 0 and 1 by which n is muitiplied.

) The actual working of the words is less important than the resuit they

give. Here are some definitions that allow you to check the randomness:
0 VARIABLE ARRAY 62 ALLOT
: AGEN ARRAY SWAP 2 * +
: Al AGEN ! ;

: A@ AGEN @ ;

: ZERO 32 0 DO 0 | A! LOOP :

: SETUP 0 RAND 1000 0 DO 32 RND DUP A@ 1+

SWAP A! LOOP ;

: DISP CR 32 0 DO | A@ 8 -R LOOP :

: GRAPH CLS 32 0 DO 18 * 0 PLOT 1 8 * | A@

DRAW LOOP ;

: CHECK ZERO SETUP GRAPH ;

: DISCHECK ZERO SETUP DISP ;
An array of 64 bytes is set up. ZERO clears the array to zero. SETUP
then generates a thousand random numbers in the range 0 to 32 (never
actually reaching 32) and adds one to the nth array element every time
the number n results. Two options are available for checking the
randomness. DISCHECK calls ZERO SETUP DISPLAY , which displays
the 32 numbers in the array in four columns. CHECK SHOWS THE
_FIESUL_T AS A HISTOGRAM. A more stringent check can be made by
increasing the size of the DO loop in SETUP.
~ These simple programs are worth analysing in some detail. You may
flnq that you can improve on them. There are often alternative ways of
doing the same thing in FORTH. You may find that the stack
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manipulations are worth following through. Try combining the GRAPH
and DISP routines to give you a graph with numbers.

Above all, experiment with some routines of your own. If you feel short
of ideas, pick out a fairly simple BASIC program and set about converting
it to FORTH . If the original is untidy, you will need to sort it out first,
because FORTH programs have to be structured. That means they have
to be laid out in a coherent way. In particular, the definitions must be in
the right order.

In the next section, we will examine the approach to writing a
somewhat larger program than those already given.

PLANNING A PROGRAM

The classic ‘Towers of Hanoi' problem will be used as a basis for
illustrating the way a program is planned. The problem involves a
number of discs of different sizes arranged in three piles. Starting with all
the discs on pile 0, they must be moved, one disc at a time, to pile 2, no
disc ever being placed on top of one smaller than itself.

The overall structure of the program will be roughly:

Display the title

Set up initial conditions

Move the discs

Ask if a repeat is wanted

If so, repeat from initialisation.

The first step is to decide the display format. It will be convenient to put
the pile centres in the 6th, 17th and 28th columns. For graphic plotting,
the horizontal coordinates will be approximately 43, 131, and 219.
Approximately, because to get them in the centre of the pile numbers it
would be necessary to create special characters for the numbers, since
the normal numbers have no centre dot position.

If we make the nth disc 6*n dots wide, we will be able to handie up to
twelve discs.

The working method must then be decided. The flow chart given here
shows an approach which uses neither recursion nor empirical fiddles,
and is defensible on the grounds of simple logic. Each move is specified
by three stack items. TOS gives a disc number, and will be shown as n;
20S holds the number of the pile from which the disc is to be taken, and
will be shown as s; 30S holds the number of the pile to which the discis to
be moved, and will be shown as d.

If n discs are to be moved, the initial top-of-stack items mustbe20n,
asking for amove of disc n from source 0 to destination 2. Thatmove can
only be made if all the other discs are on pile 1, and the GEN?1 function
calculates 2 1 n-1 as a prior move. That, however, requires20n—2asa
prior move, and so on. GEN1 takes the original three top stackitemsds
and n and creates three more which are related to them as follows:
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The new 30S is the same as d, the original 30S.

The new 208 is calculated as 3 — d — s . Since the total of all the
pile numbers is 3, this will identify the pile not involved in the original
move.

The new TOS is one less than the original TOS.

When repetition of this process reduces TOS to 1, the actual moving
process can begin. If there are five discs, the stack contains:

205104203102201

The 2 0 1 and 1 0 2 moves can be made, putting disc 1 on pile 2 and
disc 2 on pile 1 . Before the third move, 20 3, can be made, an extramove
is needed to clear pile 2. It is calculated by GEN2, which modifies an
existing move, rather than adding a new one. The change is:

The new 30S is calculatedby 3 — d —s.
The 208 is unaltered
TOS is decremented.

This, in the above context, gives 12 1, moving disc 1 from pile 2 to pile
1.

If a move sequence is worked through on this basis, it will be found that
the moves generated are those required to make the specified move.
Note, however, that n can have two meanings. It may mean disc n, or it
may mean n discs. The distinction is unimportant in practice.

GEN1 will obviously be a FORTH word. It will first have to copy 308S,
and a special sub-word will help in that respect:

: 30OVER >R OVER R> SWAP ;

TOS is passed to TORS while OVER copies 30S as a new TOS. After
the original TOS is restored, SWAP brings the copy of 30S to 20S. The
original stack d s nbecomesdsnd.

GEN1 can then be defined:

: GEN1 30VER 3 SWAP — 30VER — 30VER 30VER 1 — ;

Like all new words of any complexity, this should be checked by
tabulating the stack changes:

Stack
dsn
30VER dsnd
3SWAP— dsn3-d
30VER— dsn3-d-s
30VER dsn3-d-ss
30VER dsn3-d-ssn
1— dsn3-d-ssn-1
The three new items have been added without affecting the rest of the
stack.
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GEN2 may similarly be defined:

: GEN2 ROT DUP >R 3 SWAP — ROT —
R> SWAP ROT 1 — ;

Checking stack changes:
Stack
dsn
ROT snd
DUP >R snd TORS =d
3SWAP— sn3-d
ROT n3-ds
—_ n3-d-s
R> n3-d-sd
SWAP nd3-d-s
ROT d3-d-sn
1— d3—-d-sn-1

We now need to consider the TRANSFER function. It must erase disc
ninits present position, and display it in its new position. In the process,
the stack must not be altered, since GEN2 may need the data. If GEN2 is
not involved, the three move-defining items will be dropped. It would no
doubt be possible to achieve this by use of the stack alone, but it will be
simpler to make use of some variables and an array. The variables are
DSIZE (half width of the disc in dots), XPOS (vertical centre line of disc as
a dot coordinate), and YPOS (vertical coordinate of bottom of disc).

The array is PILE , and it holds the number of discs on each pile. As
there is only one array, we will set it up as follows:

0 VARIABLE ARRAY PILE 4 ALLOT
: AGET PILE SWAP 2 * + ;

: Al AGET ! ;

: A@ AGET @ ;

The address of element P will be put on TOS by P AGET, and the
contents of the element can be accessed by P A@ . We can write to the
element by X P A!, where X is the data to be written.

Since the numbers involved are small, we could have used a three
byte array instead of a three word array, but the point s not too important.

By invoking the BASIC function OVER, we can use the same routine to
both draw and erase discs:

: DDRAW 1 GOVER 6 0 DO (Draw six horizontal lines)

XPOS @ DSIZE @ — (x iInPLOT = XPOS—DSIZE)
YPOS @ | + PLOT (y in PLOT = YPOS+I)
XPOS @ DSIZE @ + (x in DRAW = XPOS+DSIZE)
YPOS @ | + DRAW (y in DRAW = YPOS+I)

LOOP 0 GOVER ;

63



We now need a routine to translate the three top of stack items to the
required variable values:

: SETUP OVER OVER (Stack d s n to d s n s n)

3 * DSIZE ! (DSIZE = 3*n)

DUP A@ (Stack d s n s PILE(s)
1+ 8*YPOS! (YPOS = 8*PILE(s) + 1)
88 * 43 + XPOS ! (XPOS = s*88 + 43)

DDRAW;

This would erase the top disc on pile s. To insert the same disc on pile
d, e must firstadjust the contents of the PILE array to take the move into
account, and then call SETUP again with the stack temporarily changed

fromdsntodsdn;

: ADJUST OVER AGET —1 SWAP +!(Decrement PILE(s))
30VER AGET 1 SWAP +! ; (Increment PILE(d))
: TRANSFER SETUP ADJUST 30VER
SWAP SETUP SWAP DROP ;
Finally, to complete the flow chart, we need:
: CHECK 0 A@ 1 A@ + ; (Returns 0 when move
complete)
The word MOVE , covering the flowchart, can now be defined:
: MOVE BEGIN CHECK WHILE
BEGIN DUP 1 > WHILE
GEN1
REPEAT
BEGIN
CHECK IF TRANSFER ENDIF
DUP 1 > NOT WHILE
DROP DROP DROP
REPEAT GEN2
REPEAT
Compare this with the flowchart.
We now require INIT, which will have the form:

: INIT ENQUIRE (Ask how many discs)
LINEDRAW (Draw the base line)
PILEDRAW (Draw the initial pile)

WAIT (Pause before beginning MOVE)
: ENQUIRE 2 0 (Initial destination and source)

CLS 10 5 AT (Clear screen, position text)
.“ How many discs ?”

QUERY INTERPRET (Get response)
2 MAX 12 MIN ; (Limit range)
: LINEDRAW 1 INK (Blue line)
CLS 20 0 AT (Clear screen, position line)

(5 RVSP) 1 (10 RVSP) 2 (10 RVSP) 3 (4 RVSP)”

2 INK ; (Red discs)
In the above, 10 RVSP means ten reverse video spaces, Graphic 8.
: PILEDRAW 3 0 DO 0 | Al LOOP(Zero array elements)
OVER OVER DUP 0 DO (Stack d s n to d s n s n)
0 AGET 1 SWAP +! (Increment PILE(0))
| — SETUP DROP OVER (Draw disc n—|. Restore n)
LOOP DROP DROP ; (Discard unwanted items)
We need a function to respond to a request to run again:
: ASK 0 0 AT . “ Again ?” KEY 89 — ;
This will return zero if key Y is pressed.
We also need a title function:

: TITLE CLS 10 6 AT . “THE TOWERS OF HANOI ” WAIT ;
All that remains is to define the top level function:

: HANOI TITLE BEGIN INIT MOVE 0 INK ASK UNTIL ;
We can now construct a hierarchy of functions, showing how each

stands in relation to the others, and this will serve as a basis for deciding
the order in which they should be compiled:

Definitions in the right hand column must be set up first, then column
by column to the left. The order is not completely rigid, providing the
necessary priorities are observed. A possible layout on four screens is
shown in the attached listing.

This is a moderately complex program, mainly because of the
commitment of the stack to the move data. It was chosen as illustrating a
wide range of techniques, without becoming too abstruse.

It is always wise to save the screens on tape before actually running
such a program. A slight error in entry can cause lockup or some other
malfunction, and all stored data may then be lost.
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SCR # 1

HANOI—- TITLE ——WAIT @ ( THE TOWERS OF HANDI: 1)
L T ENQUIRE 1z TASK g
2 @ VARIABLE DSIZE
LINEDRAW I @ VARIABLE XFOS
PILEDRAW 30VER 4 @ VARIABLE YFOS
5 0 VARIABLE PILE 4 ALLOT
WAIT PILE 6 : 3ZBVER *R OVER R> SWAF j
Al AGET— PILE 7 1 ABET FILE SWAF 2 * + ;
8 : A!' ABGET !
AGET—PILE 9 : A@ AGET @ ;
A AGET—PILE 1@ : DDRAW 1 BOVER &6 @ DO
[ MOVE ~—T—GHECK e 11 XFOS @ DSIZE @ -
-~ GENT SOVER 12 YFOS @ I + PLOT
1z XFOS @ DSIZE @ +
GEN2 14 YEOS @ I + DRAW
TRANSFER-- SETUP ————— DSIZE 15 LOOF @ BOVER ; ——3
—A@ AGET——pILE
SCR # 2
XPOS B ( THE TOWERS OF HANOI: 2)
YPOS 1 : SETUF OVER OVER
2 I % DSIZE !
——DDRAW ——xPOS 3 DUF A@
YPOS 4 1 + 8 % YFOQS !
5 88 % 43 + XFOS !
DSIzE & DDRAW 3
L aowst 30VER 7 : ADJUST OVER AGET —1 SWAF + !
— 8 IOVER ABGET 1 SWAP + ! g
AGET —PILE 9 : WAIT 20000 O DO LOOF ;
30VER 10 @ ENQUIRE 2 © CLS 1@ %5 AT
11 ." How many discs?"
12 QUERY INTERFRET
L— AsK 13 2 MAX 12 MIN ;
14 : CHECK @ AG 1 A@ + ;
15—
SCR # 3

2 ( THE TOWERS OF HANOI: =)
1 ¢+ LINEDRAW 1 INKE CLS 20 @ AT

2. e I
Z : FPILEDRAW 2 @ DO I A! LDOF
4 OVER OVER DUF @ DO
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5 @ AGET 1 SWAF +!

& I - SETUF DROF OVER

7 LOOF DROF DROF ;

8 : BGEN1 30VER I SWAF - 3Z0OVER
? - 30VER Z0OVER 1 - ;
1@ : GENZ ROT DUFP >R I SWAF -

11 ROT - R> SWAF ROT 1 -

12 : TRANSFER SETUF ADJUST 30VER
132 SWAF SETUF SWAF DROF
14 : INIT ENQUIRE LINEDRAW

15 FILEDRAW WAIT ;3 ——>
SCR # 4

@ ( THE TOWERS OF HANOI: 4)

1 = TITLE CLS 1@ @ AT

. THE TOWERS OF HANOI" WAIT ;
: MOVE BEGIN CHECE WHILE
BEGIN DUF 1 > WHILE
GEN1
REFEAT
BEGIN

NON>AOPDEN

DUF 1 > NOT WHILE
1@ DROF DROF DROF

11 REFEAT BEN2

12 REFEAT 3

= ASE 8 @ AT ." Again ?" KEY B9 -

14 : HANOI TITLE BEGIN INIT
15 MOVE @ INE ASE UNTIL j
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CHECE. IF TRANSFER ENDIF

PART VI:
Compiling

This part covers the words which are used in compiling, and explains
some of the less obvious ways in which such words can be used.

COMPILING

When the system is in compiling mode, most of the words that it finds in
the input stream are incorporated in a new dictionary entry. Each word is
located by searching through the dictionary, and the address of its Code
Field is added to the new Parameter Field. Some words, however, are
treated differently.

Words which have the ‘precedence bit’ in their length byte set true are
not compiled, they are executed. For example, the definition of the word
DOis:

COMPILE (DO)
HERE
3

The first line enters the Code Field address for (DO) in the Parameter
Field, and HERE then saves the contents of the dictionary pointer for use
later, the contents being held on the stack. Then 3 is put on the stack, this
being the check number for a DO — LOOP combination.

The definition of LOOP is:

3 ?PAIRS
COMPILE (LOOP)
BACK

Another 3 is put on the stack, and ?PAIRS compares this with 20S,
which should contain the 3 left by DO . if it does not, then some error has
been made, such as a failure to balance another type of loop format.

If the comparison shows a match, the Code Field address for (LOOP)
is added to the new Parameter Field, and then BACK is called. This again
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calls HERE to put the contents of the dictionary pointer on the stack, and
performs a subtraction. The result is written to the new Parameter Field,
being the jump span needed to reach a point immediately after the (DO)
entry.

Similar procedures apply with other branching and looping
combinations.

Colon and semicolon also have the precedence bit set. Colon first
checks that the system is in direct execution mode, since it is not
permissible in compiling mode. Then the current stack pointer is saved in
CSP as a reference, and CONTEXT is set equal to CURRENT to ensure
that the right value of dictionary pointer is used, putting the new word into
the selected vocabulary. CREATE then sets up the first two fields of the
new entry. The Code Field is set to point to a short machine code routine
which establishes conditions for interpretation of the Parameter Field by
saving the current Instruction Pointer value on the Return Stack and
setting the pointer to a new value, the start of the parameter field. The
Instruction Pointer is used to read the link addresses and other data
required for execution.

Semicolon reverses the process. It expects to find that the stack
pointer has returned to the value saved in CSP by colon, and issues an
error report if this is not the case. Then ;S is compiled into the last
position in the Parameter Field, the ‘smudge’ bit is set to the valid state,
and direct execution is resumed. When executed, ;S removes the return
link address from the Return Stack and sets it in the Instruction Pointer.

Such processes can be forgotten for most purposes, but they can be
important if you want to play tricks in setting up new words. Some of the
definitions given in Appendix A look simple enough, but if you try to
compile them directly you may find that the system objects.

Take, for example, the words formed by square brackets. The colon
process uses ] to switch to compiling mode, and semicolon uses [ to
return to direct execution. All these words do is to change the contents of
the STATE variable, but they are still very useful, allowing an interlude of
direct execution in the middle of a compiling process. This might be used
to calculate a critical value that depends on a word compiled earlier.

Colon also uses ;CODE , which compiles (;CODE) . When executed,
(;CODE) sets the Code Field of the most recently compiled word to point
to a machine code routine which follows ;CODE . In the case of colon, the
actual machine code is called by all definitions that have a real
Parameter Field. If an assembler were available, it would be entered
automatically to set up the code in question. In its absence, the words ,
and C, can be used. Comma stores TOS in the next dictionary location,
while C, stores only the low byte of TOS. By using these two words, it
would be possible to set up a new definition directly, but that would be
rather a waste of time and effort. However, it is sometimes useful to use
the words to set up specific links or data within a Parameter field, or data
within an array. In the latter case there is no need to use ALLOT to make
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room for the array, as comma and C, both advance the dictionary pointer
to the first empty location.

Per_haps the oddest word in FORTH is the one with a Name Field that
contains C1 80 . A length of 1 letter, in other words, and that letter is
conveyed by 80H — 80H = 0. A nult code is used to terminate screens
and buffers, and it will stop interpretation. If a null is accidentally inserted
in the middle of a screen, it will be found impossible to interpret the
screen beyond that point.

L'ATEST puts on the stack the Name Field address of the most recently
defined dictionary entry. This is used by IMMEDIATE , which sets the
precedence bit for that entry, allowing words to be defined that will
execute in compiling mode.

On ) the other hand, [COMPILE] will cause the following word to
compile, even if it has a true precedence bit. The possibilities which this
opens up are slightly mind-boggling at first. It is possible to visualise
words that will set up DO loops or other looping or branching functions.
However, the classic example is:

1 XXXX [COMPILE] FORTH;

Without [COMPILE], the word FORTH would execute when XXXX was
compiled, leaving the definition of XXXX as ‘no action’. As it stands, the
colon definition will be equivalent to FORTH , and executing XXXX will
select the FORTH vocabulary. in a sense, [COMPILE] defers the action
of the word on which it acts, making it effective at execution time, rather
than at compile time.

Next we have two important words which are rarely seen: LITERAL
and DLITERAL. They are called when INTERPRET finds a numeral in
the input stream. In direct mode, they do nothing, since the numeral is put
on the stack and remains there. In compiling mode, LITERAL compiles
LIT and then uses comma to transfer the numeral from the stack to the
Parameter Field. When the field is interpreted, LIT transfers the numeral
back to the stack. DLITERAL acts in a similar way, but compiles LIT , then
TOS, LIT again, then 20S. As the D suggests, it is intended to deal with
double numbers.

CREATE sets up the first two fields of a dictionary entry, using WIDTH
to check that the length of the name is within valid limits. WIDTH is a
variable, normally set to 31.

Thg word ‘tick’ is sometimes useful. In the form:

XXXX

in direct execution it puts the Parameter Field address of XXXX on the

stack. In compiling, it transfers the address as a LIT entry in the new

Parameter Field.

_ At this point, it is necessary to call a halt. The words which are more

I|k_e|y to be of direct use in the compiling process have been described,

;vlth one exception, which is complex enough to merit a section of its
wn.

71



A fascination and a frustration of FORTH is that there are many slightly
esoteric tricks that you can play with it, so many that it would be pointless
to try to explain them all. The programs given in this book provide some
illustrations, but by no means cover the full range of possibilities. You
have to invent your own solutions, since they are probably aimed at
solving problems that are not common enough to have generated ready-
made answers.

<BUILDS. . .DOES>

It has been said that the <BUILDS . . . DOES> combination is both one
of the most powerful facilities in fig-FORTH and also one of the most
difficult to explain. It is a tool used to perform complex processes which
create other tools. Here is an example:

: ARRAY <BUILDS 2 * ALLOT DOES> SWAP 1 —

2" +
This creates a new word ARRAY, which can be used as follows:

8 ARRAY HEAP

This will create a one-dimensioned array called HEAP with space for
nine two-byte words, the 8 specified plus one from the basic variable, as
in the simpler methods of array creation already discussed. All this is
done by the 2 * ALLOT following <BUILDS , but there is more. If we call 5
HEAP , the words following DOES> will decrement 5 to 4 , double the
result, and add the array base address. Thus n HEAP @ will read the nth
element of the array, n HEAP ? will display that element, and m n HEAP !
will set the element tom.

The word ARRAY remains available as a tool to establish further
arrays of a similar kind. It will be seen that it saves a lot of trouble in
relation to the methods described earlier.

The point to grasp is that the words following <BUILDS are used to
determine the basic form of the new word, while the words following
DOES > determine the process which will be associated with it.

Here is a more complex example which handles two-dimensional
arrays and checks the subscripts to ensure that they are within the
bounds defined by the given dimensions. Three new words are involved,
and compilation is carried out with hexadecimal notation selected for the
sake of convenience and clarity.

HEX
: OFB . “ Outofarray bounds. ” SP! QUIT ;
: OFBCK >R ROT ROT DUP R> DUP FF AND ROT < IF
OFB ENDIF 100 /
>R OVER R> DUP ROT < IF OFB ENDIF ;
: ARRAY2 <BUILDS FF AND DUP C, SWAP FF AND
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I1I)UP C, * 2 * ALLOT DOES> DUP @ OFBCK SWAP

-+ o+

b With these words defined, an array is created, with dimensions x and Y,

y:
x y ARRAY2 MATRIX

The dimensions are stored at the start of the array, and the number of

bytes reserved is 2*x*y . This is all determined by the words following

" <BUILDS . The words following DOES> take effect when MATRIX is

executed. Note that x and y are stored by C, and they therefore occupy a
byte each. DUP @ puts them both on TOS, while preserving the
sqbscripts behind them, OFBCK is then called to compare the subscripts
withx andy, and to report if the subscripts are out of range. Work through
the stack changes, but remember that hexadecimal notation is used, so
that a division by 100 is really a division by 256, which will bring the upper
byte of TOS into the lower byte position.

These examples illustrate the use of <BUILDS ... DOES> in a
particular context, but the general concept should be clear enough.
Broadly speaking, <BUILDS establishes a constant, and the
subsequent code extends the compilation. DOES> uses a standard
segment of machine code to perform a little sleight of hand so that the
words which follow it are appended to the entry created by <BUILDS .

There are other ways of creating compiling tools, but the best way to
tearn about these is to try various combinations and check on the
definitions that result.

READING THE DICTIONARY

It is sometimes useful to be able to see how the code you have defined
has been set up in the dictionary. For this, a simple program is:
: SCAN BEGIN CR
DUP @ 2+ NFA ID.
KEY CASE
68 OF 2+ DUP @ U. 2+ 0 ENDOF
69 OF 1 ENDOF
70 OF 2+ 0 ENDOF
ENDCASE UNTIL ;
: $ -FIND QUERY INTERPRET
IF DROP CLS SCAN
ELSE . “ NOT FOUND ” ENDIF ;

Input $ followed, after a space, by the name of the definition you want
to examine, and press return twice. The first name will appear at the top
of the screen. Press F to get the next name, unless the firstis BRANCH,
OBRANCH , LIT , (LOOP) or (+LOOP) . All these have data words
following, and these and the next word can be obtained by pressing D .
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To end, press E . The end of the definition is usually marked by ;S . If you
continue after that, all sorts of strange things may happen.

It would be nice, of course, to make the special names call up the
appropriate action, so that it was all automatic, but there would still be a
problem with (.”) , which is followed by text. To continue, it would be
necesary to scan past the text, which would not be too difficult. If you
want to use this routine a lot, you should be able to work out how to make
it more automatic.

In considering jump spans, remember that they represent a number of
bytes, and each word or data link occupies two bytes. A branch span of
ten will thus go ahead five entries.

One small oddity. It is necessary to load the above programs in
DECIMAL, as the three ASCII codes 68, 69 and 70 are in that form. The
program, on the other hand, is best run in HEX . How would you ensure
that these requirements were met?

MORE COMPILING

The normal compiling system automatically keeps watch on the progress
of compilation, and when you try less direct methods you must be
prepared to do the same. You need to examine the detailed structure of
the words you use, and that is one of the reasons why APPENDIX A has
been provided.

In the section of the Appendix covering the EDITOR vocabulary, you
will find a slight oddity. The words R and | have been redefined, but
subsequent definitions use the earlier meanings. To achieve this sort of
trick, it is only necessary to insert the word FORTH at a suitable point,
whereupon the FORTH versions of the words will be compiled. The word
EDITOR will later ensure that the definition is continued on the basis of
EDITOR words already defined.

To set up a special vocabulary, you must first establish the word
SPECIAL (or whatever you want to call it) by the entry:

VOCABULARY SPECIAL

This puts an entry in the FORTH vocabulary. To select the SPECIAL

vocabulary, you need:
SPECIAL DEFINITIONS

Words compiled thereafter will be put into the SPECIAL vocabulary.

Why have a special vocabulary ? One good reason is that too large a
vocabulary slows down compiling, and access to a specialised
vocabulary can be much faster. You may also want to use the same word
for different purposes, as in the EDITOR.

Having compiled a program, you may feel that it is annoying to have to
recompile it whenever you want to run it. There is no need for that. You
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can save the whole of the extended dictionary, including the original
vocabulary, in one operation.

To do this, you first need to know how much to save, and SIZE will
provide that information. You then need to atter the locations which hold
the initialising data, so that the extension of the dictionary will be taken
into account.

The first step is to make sure you are not in a special vocabulary, by
putting in:

FORTH DEFINITIONS

Then, as a matter of personal taste, it seems easiest to set HEX , since
we are dealing with addresses and displacements, which are usually
more familiar in hexadecimal.

LATEST holds the name field address of the latest dictionary entry,
and all searches start from that address, which must be set in 5E4C:

LATESTOC +ORIGIN!

Next, the dictionary pointer must be copied into 5E5C and 5E5E:
HERE 1C +ORIGIN !
HERE 1E +ORIGIN !

If we want to have our program protected, we must move FENCE to
the same place:

HERE FENCE !

Finally, we need:

‘FORTH 8 + 20 +ORIGIN !

This sets up the PFA of the FORTH word, plus 8, in 5E60.

The amended program can then be saved, using line 9 of the vestigial
BASIC program, suitably altered to take account of SIZE. After
verification, the program is ready to be loaded in place of the original
FORTH tape, when it should perform as it did before saving.

This technique is particularly useful if you have created your own pet
extensions to FORTH for general use.
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PART Vii:
Programming Techniques

This part deals with some of the less obvious techniques which can be
used in writing programs.

NON-INTEGER ARITHMETIC

If you find integer arithmetic too limiting, look at the definition of DRAW in
Appendix A (Dictionary Word No. 447). It works in increments of
0.0000152.

The method used is to treat a double number as being scaled by a
factor of 1/65536. For example, the word LASTY is read from the BASIC
wordspace, and is then converted into a double number by adding a zero
lower word — no, not an upper word, a lower word. In integer terms, the
resultis LASTY * 65536, and this is stored in the double variable Y1. The
scaled version of LASTX is similarly stored in X1.

The required position coordinates are then compared with LASTX and
LASTY — in their unmodified form — to determine how many steps will
be required to draw the line. It will be either ABS(X — LASTX) or ABS(Y
— LASTY), whichever is greater. The nominal increments in the X and Y
values are then calculated by dividing 65536 times the overall changes
by the number of steps. M/MOD is used, with alternative routes for
positive and negative differences, and the results are stored in INCX and
INCY as double numbers.

Since both the current x and y values and the related increments have
been multiplied by 65536, it is valid to add the increments to the original
values repeatedly, to define the new x and y values, but only the upper
bytes of x and y need be read, these being the integer parts of the
numbers.

This simple but effective approach can be used where the final result is
required in integer form. If decimal places are wanted, rather more
complex processes are needed.
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Fixed point working is fairly straightforward in concept, but involves
some complications in the details. The scheme is that a fixed number of
decimal places is adopted, say two. In this case, all numbers will be
multiplied by 100, as a scaling factor. When a number is input, a decimal
point will normally be included, and the resulting value of DPL will be
noted and used to perform any necessary correction. For example, if
23.02is input, DPL = 2, and there is no correction. With an input of 23.0,
on the other hand, a multiplication by ten would be required.

The modified numbers can be added or subtracted without difficulty,
since they have the same scaling, but muitiply and divide routines must
be modified. After two numbers have been multiplied together, the result
must be divided by 100, otherwise that multiplier will be applied twice.
Before a division, the dividend must be multiplied by 100, or the scaling
factor will be lost.

Output of the final result requires only that the decimal point be placed
in the correct position.

A wary eye must be kept on possible overflow. A simple multiplication
of 10 by 20 becomes a muittiplication of 1000 by 2000, and the result
before correction is 2,000,000, corrected to 20,000. Double numbers will
clearly be the rule, and even these will run out of steam with an
uncorrected result of about 2,000,000,000, giving a corrected value of
200,000.00. I a scaling factor greater than 100 were used, the limitation
on maximum value would be increased.

The answer lies in triple words, which in turn call for a whole new family
of manipulators and operators.

Alternatively, a form of floating point can be considered. This will
inevitably be much slower than integer working, but opens up many
possibilities.

A single-precision system can be based on double numbers, with the
top eight bits reserved as the exponent and the remaining 24 bits serving
as the mantissa. This corresponds to a typical BASIC single precision
system. The mantissa is always ‘normalised’ so that its most significant
bit is true, the exponent being decremented when the mantissa is shifted
left, and incremented when the mantissa is shifted right. There must be
two sign bits, one for the exponent and one for the mantissa. Since the
most significant bit of the mantissa is always 1 in truth, it is sometimes
used to hold the mantissa sign bit.

For addition and subtraction, it is necessary to match the exponents of
the two numbers concerned, by increasing the smaller exponent and
decreasing the associated exponent. For multiplication, the exponents
are added and the mantissas multiplied together. In one way and
another, floating point is complex, and not to be approached light
heartedly.

Those who have studied the inner workings of Spectrum BASIC may
be able to make use of the floating point routines which it contains, but
the approach to that is much too complex to be studied here. It is worth
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bearing in mind, however, that the BASIC ROM contains many routines
that might be incorporated in FORTH if the right technique can be found.

In particular, access to the exponential and trigonometric functions
would be appreciated. It is possible to perform such functions in FORTH,
but only in a relatively crude manner. Square roots may be calculated by
iterations of:

Sniq=2(X/S,+S,)
where S is an arbitrary value and S, is an approximation to the square
root of X. Where S, is too large, it is roughly halved for each iteration.
Where itis too small, it becomes much larger. As a rough approximation,
k + 2 iterations will usually produce a reasonably accurate result for
numbers up to 2k, if S, is made equal to 2/4.

An interesting point arising from this is that trigonometric calculations
can sometimes be replaced by a technique based on vectors. The idea is
that x and y coordinates can be combined as a single vector R by the
expression:

R~/ + b

The effective angle can then be expressed by a/b , and this, with R ,
specifies the resuitant vector completely. Vectors can be added or
subtracted by adding or subtracting the a and b values, and it is possible
by such means to perform such operations as defining a circle — but
non-integer calculations are essential for that.

A FINAL PROGRAM

As a final illustration of some assorted FORTH techniques, here is a final
fairly large program. It plays three-dimensional noughts and crosses with
considerable success, though it can be beaten if you know how, and
have enough concentration to keep a wary eye on what the computer is
doing.

andidly, it is a personal favourite, having been written and rewritten
for a whole host of computers, including some that were intended for
rather more serious duties. In machine code, the necessary decisions
are usually made in a fraction of a second, but in BASIC they may take
well over a minute. The FORTH version takes about fifteen seconds,
which is just about acceptable, and is at least five times faster than
BASIC.

The reason why so much time is needed is the sheer magnitude of the
calculations invoived. Firstly, the program size is cut down by dispensing
with the usual table of possible lines within the cubic matrix, and the
computer is asked to calculate these lines from set rules. For any given
position, either four or seven lines are involved, and there are sixty-four
positions. Four entries have to be checked to assess the state of each
line.
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Once the content of a line has been worked out and expressed by a
code number, the priority level for the line must be looked up and added
to the total for the position being studied, this being repeated for each line
passing through that position. Finally, the highest priority must be found.

The diagram of the display will help to explain some of the variables.
The numbers 0 to 3 are used for the coordinates, and some players may
prefer to use 1 to 4, in which case a simple change to the INPROC
routine will be needed. The numbers are entered in the order VD , VF,
and V_R . The position indicated will be marked on the display, and you
aredglven a chance to change your mind before the entry is actually
made.

VR=0 1 2 3
v e s e
0 o1 2 3 VF=0 VD=0
o4 5 6 o7 1
8 9 10 11 2
12 *13 14 e15 3
16 17 18 *19 0 1
20 021 022 023 1
024 25 26 027 2
28 29 30 X31 3
.32 33 34 35 0 2
36 37 38 39 1
40 41 042 043 2
044 045 046 047 3
48 049 50 51 0 3
52 53 54 55 1
56 57 58 59 2
*60 *61 62 *63 3

OX 3 Display Format and Coordinates
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CH is the position number, used mainly for array reference and for
marking the latest entry. itisequalto 16*VD + 4* VF + VR .

Next come four status flags, a temporary hold for priority values, and a
variable OL which is used in finding the highest priority.

There are four arrays. AE is a byte array holding the 0 and X entries,
AP is a word array holding the priorities, AX is a hold for the positions in a
line, and AW is the priority index, holding the weightings for each line
configuration, showing the relevant priority. Note how AW is set up,
rather in the way a BASIC DATA statement is input, but with spaces on
either side of the commas.

INIT clears flags and arrays, and DISP puts up the display. POSCAL
works out the values of VD, VF , and VR corresponding to the value of
CH, and is used by CURSOR , which marks the latest entry as defined
by CH, by putting up a reverse video space in OVER mode. As
CURSOR always follows DISP they are combined as PLAY .

Two display positions are established by P1 and P2 , and DROP 2 is
defined to discard 20S.

The input routines begin with GETN , which waits for akey depression,
displays the relevant character, and attempts to convert it as a number,
base ten. Success puts a true flag on TOS, the number on 20S, and the
input code on 308S. If the input is not numeric, TOS holds a false flag and
208 holds the code.

INPOS sets display position P1and calls GETN . If the flag returned on
TOS is false, the code then revealed on TOS is checked to see if it is 82
(‘R’), which calls for a restart. In this case, BE is set, and TOS = 1 to
make the routine drop out at UNTIL . If the input is numeric, the code is
dropped by DROP2 . and INPROC is called to obtain the rest of the input,
checking its validity and offering a chance for a change of mind before
actually making an O entry. If the 1-4 input range is wanted, instead of
0-3, the position calculation in INPROC should be changed to:

ROT1-16*+1—-SWAP1-4*+DUPAE + C@

INPOS repeats until TOS holds 1 when UNTIL is reached.

Next come the routines which calculate priorities. CALC3 is called with
array AX set to the positions in a given line. It checks the contents of each
position in turn, adding 1 for an ‘O’ entry, 5 for an ‘X’ entry. This produces
a number characteristic of the line format. For example, a line containing
OOX. would be given the number 7 . Looking up the seventh entry in AW
gives a priority of zero, because the line is ‘dead’, containing both O and
X entries. A line containing OOOO, on the other hand, would have a
number 4 to represent it, and the fourth entry in AW is again 0, because it
is too late to worry about priorities. The game is won. If the line contains
XXX. its number is 15, and that gives a priority of 896, urging an X entry to
win.

In fact, this priority is pre-empted, to save time. If the line numberis 15 ,
the empty position is located and filled, and the BX flag is set, so that the
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X win is declared immediately on return. Similarly, a line with a number 4
sets BO to declare an O win.

In general, the priority for the line is added to VP , which accumulates
the priorities for all lines passing through a particular point.

CALC2 works out the positions in a line, using data provided by
CALC1 . Each time CALC2 is called, there are five numbers on the stack
which express the formula for a given line. For example, a vertical line
has the formula:

4*VF + VR + 16*n
wheren =0to 3.

Since the calculating routines are complex and prone to error in setting

up the source code, it is useful to define a temporary form of CALC3 as
follows:

: CALC3CR40DOI2*AX + ?LOOP;

This should be defined after the real CALC3 but before CALCH. It will
display a list of four or seven sets of positions forming lines for each value
of CH . This allows a check to be made on the correctness of the line
selection system.

An important point about these routines is the use of I’ in CALC2 .
When this routine is called by CALC, an extra entry is put on the Return
Stack, and it is necessary to dig down to 20RS to find the loop count.

The calculating routines are called by CALCP , which scans through
all the CH values from 0 to 63, checking the priority against each value
and entering it in array AP. The routine also checks for true states of BO
and BX, and if either is found the routine drops out, aiso dropping
through the subsequent SELECT routine.

Since CALCS sets a zero priority for any occupied location, it might
seem that time could be saved by skipping the call to CALCP for such
locations. That seems a good idea, but it isn't, because it would mean
that an OOOO line would never be scanned, and an O win would never
be found . . .

The SELECT routine scans array AP , setting OL to the value read if it
is the highest yet found, and setting CH to match. Ideally, the scan should
start at a random point, and this is simulated by putting 56*VR on the
stack, but a true random number would be better. When the scan is
complete, the entry identified by CH is set up. If OL has remained at zero,
all lines are ‘dead’; and BD = 1 to mark the game as drawn.

Finally, the overall OX3 routine has to link all these routines together.
There are two main loops, one taken for each game, to include INIT, and
an inner loop for each game turn. After PLAY INPOS , & check is made
for the end flag BE , and if it is true CALCP and SELECT are skipped. The
CASE structure is used to check the four flags, issue reports, and alter

the stack values to determine whether the inner or outer loop should be
taken.
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No FORTH program is ever perfect, and this one is no exception. It has
been used to make a number of special points, anq you may enjoy
attempting to improve it. In that case, spread it out well in the screens, to
make changes easy, but don't be too generous. You have 150 linesin ten
screens, and as laid out here you would need about. 190 lines. You could
use two sets of screens, but that could be inconvenient.

A Three-Dimensional Noughts and Crosses Program

( OX3 )
bT\?ASF'!(lA,BLE VR (Leftto right coordinate)
0 VARIABLE VF (Back to front coordlr!ate)
0 VARIABLE VD (Top to bottom coordinate)
0 VARIABLE CH (Position number)
0 VARIABLE BO (O WIN flag)
0 VARIABLE BD (DRAW flag)
0 VARIABLE BE (End flag)
0 VARIABLE BX (X WIN flag)
0 VARIABLE VP (Priority hold)
0 VARIABLE OL (Highest priority found)
0 VARIABLE AE 62 ALLOT (Play state array)
0 VARIABLE AP 126 ALLOT (Priorityar@y)
0 VARIABLE AX 6 ALLOT (Line definition array)
1 VARIABLE
AW 2,16 ,25% ,0,4,0,0,0,0,32,0,0,0,0,
896 ,0,0,0,0,0,0,0, (Priority basis)
: INIT AE 64 ERASE AP 128 ERASE
0BO!0BD!0BE!0BX!; (Clear arrays, flags)
: DISPCLS040DO (Display state of play)
4 0 DO
CR 4 1 — 2 * SPACES
4 0 DO
DUP AE + C@ DUP
IF EMIT
ELSE .” .” DROP
ENDIF
SPACE SPACE
LOOP
LOOP CR
LOOP ;

: POSCAL CH @ 16 /MOD VD { 4 /MOD VF ! VR ! ;

:CURSOR POSCALVD @5*VF@ + 1+ (Vertical position)
VR@3*"VF@2"* -8 -
(Horizontal position)
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AT 1 GOVER 2 INK
(Position cursor)
"W 0 GOVER 0 INK ;

AE CH @ + C@ 0=
IFDUP2*AW + @ VP +!

(Is position CH free?)
(If so, add priority to VP)

: PLAY DISP CURSOR ;

: P19 18 AT ; (Text position 1)
P2 21 0 AT ; (Text position 2)
: DROP2 SWAP DROP : (Drop 20S)
: GETN KEY DUP EMIT DUP 10 DIGIT ;
(Get a digit)

: INPROC GETN

IF DROP 2 GETN (If numeric discard code)

IF DROP2 (if numeric discard code)

ROT 16 * + SWAP
4 * + DUP AE + C@
IF P2 .” Position Taken

ELSE CH ! PLAY P2

(Calculate position, check)

(If free, set CH, display)

." Is that right?
KEY 89 — O= (Leave 0 if entry not good)
ENDIF DuP (Duplicate flag)
IF 79AECH@ + C! (If 1 make 0 entry)
P220SPACES  (and clear message)
ENDIF
ELSE 0 (Not numeric. Leave 0)
ENDIF
ELSEO (Not numeric. Leave 0)
ENDIF ;
. INPOS BEGIN
P1 GETN
IF DROP2 INPROC  (If numeric discard code)
ELSE 82 - 0= (Else check for ‘R")
IF1BE! 1 (If ‘R’ set BE. TOS = 1)
ENDIF 1 (If other letter TOS = 1)
ENDIF
UNTIL ; (Repeat if TOS = 0)
: CALC3 0 4 0 DO
12*AX + @ (Read position number)
AE + C@ (Read contents)
79 — 0= (Check for ‘O’)
IF SWAP 1+ SWAP (if'O’ increment TOS)
ENDIF
88 — 0= (Check for *X’)
IF 5+ (If X’ add 5)
ENDIF
LOOP (Line key number on TOS)
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ENDIF
DUP 4 — 0= (Check for OOOO line)
IF 1 BO ! (If OO0O0 setBO)
ENDIF ]
15 - 0= (Check for XXX. line)
IF80DO (If XXX. identify free position)
IAX + @ AE + C@ 0=
IFAXI+ @CH! (if free set CH)
99 CH @ AE + C! (and enter 'X’)
ENDIF
2+LOOP
1BX! (Set BX)
ENDIF ;
: CALC2VD @ * SWAP (Calculate position)
VF @ * + SWAP
VR@* + SWAP
'+ +
AXI+2*+1;

: CALC1POSCAL

40D0O 010416 CALC2 LOOP CALC3

40D0O04 10 16 CALC2 LOOP CALC3

40D0O 016 140 CALC2 LOOP CALC3

VF @ VR @ - 0=

IF40D0O 0500 16 CALC2 LOOP CALC3
VD @ VF @ - 0=
IF40D0O 021000 CALC2 LOOP CALC3
ENDIF

ENDIF

VD@VR@ — 0=

IF40DO 17040 CALC2 LOOP CALC3
VD@VF@ + 3 - 0—
IF40DO 1213000 CALC2 LOOP CALC3
ENDIF

ENDIF

VD@ VF@ - 0=

IF40DO 020100 CALC2LOOP CALC3
VD@VR@ +3-0=
IF40DO 3 19000 CALC2 LOOP CALC3
ENDIF

ENDIF

VD@VR@ +3-0=

IF40D0O 31504 0CALC2 LOOP CALC3
VF@VR@ - 0=
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IF40DO 1511000 CALC2 LOOP CALC3

ENDIF
ENDIF
VF@VR@ +3-0=

IF40D0O3300 16 CALC2 LOOP CALC3

ENDIF
VD@RVF@ +3-0=

IF40DO 1212100 CALC2 LOOP CALC3

ENDIF ;
: CALCP10CH!OVP!
BEGIN
CALC1BO@0=

(TOS=1,CH=0,VP =0)

(Calculate priority)

IFVP@APCH@2 * + I(IfBO = 0 set priority in AP)

OVP!
BX@
IF DROP 0 64

(Zero VP)
(If BX = 1 change flag to)
(1 and set endcount.)

ELSE CH @ DUP 1 + CH!(Increment CH, leave copy)

ENDIF
64 — 0=
ELSE DROPO0 1
ENDIF
UNTIL ;
: SELECT BEGIN WHILE
ooL!
VR@ 56 *
640 DO
2+ 128 MOD
DUPAP + @ OL @ >
IFDUPAP + @OL!
DUP2/CH!
ENDIF
LOOP
88 CH @ AE + C!
DROP 0
REPEAT
OL@ 0=
IF1BD!
ENDIF ;
: OX3 BEGIN INIT
BEGIN PLAY INPOS
BE@0=
IF CALCP SELECT
ENDIF
ooP2
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(If CH = 64 leave 1)

(If BO = 1 change stack)

(If TOS = Orepeat, else exit)
(with flag for SELECT)

(Drop through if TOS = 0)
(Zero ‘highest priority’)
(Quasi random number)

(Advance pointer on stack)
(Compare AP(n) with OL)

(If AP(n) greater, OL = AP(n))
(and set CH from TOS)

(Set chosen ‘X’ entry)
(Ensure no repeat)

(If OL =0 set BD)

(Game loop point)
(Make plav)

(Check e. d flag)

(If BE = 0, find X move)

(CASE condition = 0)

CASE BE @ 0= OF
DROP 1 ENDOF
BD @ 0= OF
." Drawn Game
DROP 1 ENDOF
BO @ 0= OF
. 0 Wins
DROP 1 ENDOF
BX @ 0= OF
PLAY .” X Wins
DROP 1 ENDOF
ENDCASE
UNTIL
P1.” Another run ? ” KEY 89 —
UNTIL ;

(fBE=1TOS = 1)

" (i BD = 1 report draw)
(and TOS = 1)

" (IfBO = 1 report 0 Win)
(and TOS = 1)

” (If BX = 1 report)
(with display. TOS = 1)
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APPENDIX A:
The Dictionary

The contents of the Abersoft FORTH dictionary are defined in
condensed form. Machine code sections are expressed in pseudo-code
related to Z80 processor functions. Parameter Fields are translated from
Code Field addresses to word names. A particular entry can be located
through reference to the link list in the main index.

The Z80 registers are used as follows:

BC holds the Instruction Pointer (IP), which gives the address of the
next link to be implemented.

DE is used to hold data to be put on the stack where more than one
word is to be pushed. (The FORTH W register) It also holds
incremental values and jump spans.

HL is used to hold data to be put on the stack, its contents being
pushed after the contents of DE where two words are stacked.

IX holds the user area pointer.

SP is the stack pointer.

These are the special uses of the registers. All registers may be called
into service for other purposes as necessary.

The dictionary definition is not easy to follow, because there are so
many cross-references, but this is unavoidable. Examination of some of
the more complex functions will often suggest useful formats for new
words.

It is useful to remember that a word must be defined before it can be
used in a further definition, so the constituents of a definition will always
occur before the definition itself.

The FORTH program begins with a number of variables and
constants. While these are not strictly part of the dictionary, they are
needed to understand how some dictionary functions operate.
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5E06
5E08
S5EOA
5E0C
5EOE
5E10
5E12
5E14
5E16
5E18
5E1A
S5E1C
5E1E
5E20
5E22
5E24
5E26
5E28
5E2A
5E2C
S5E2E
5E30
5E32
5E34
S5E36
5E38
5E3A
5E3C
5E3E
5E40
S5E41
5E44
5E45
5E48
S5E4A
5E4C
SE4E
5E50
5E52
5E54
5E56
5E58
5E5A
5E5C
5ESE
5E60

SO

RO

TiB
WIDTH
WARNING
FENCE
DP
VOC-LINK
BLK

IN

ouTt

SCR
OFFSET
CONTEXT
CURRENT
STATE
BASE
DPL

FLD

CSP

R#

HLD

00
C3B06D

C3936D
0101
00 OE
49 81
0C 00
66 5E
CB40
CBEO
CB40
001F
0000
8159
8159
77AC

Initial Stack Pointer Contents
Initial Return Stack Pointer Contents
Address of Terminal Input Buffer
Maximum word length

Message control flag

Dictionary protection limit
Dictionary Pointer

Vocabulary search start address
Block number

Text buffer pointer

Output pointer

Last used screen

Block offset

Dictionary start address
Dictionary start address

System mode

Number representation base
Decimal point location

Unused

Stack pointer hold

Editing cursor, etc.

Address of last character in output

Entry jump to COLD at 6DBO

Entry jump to WARM at 6D93

Initial value for 5SE06
5E08
5E0A
5E0C
5EOE
5E10
5E12
5E14
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5E62
5E64
5E66
5E68

5E00 Source for IX
Return stack pointer

The dictionary proper now begins. To cover possible modifications,
the entry points are defined by link numbers rather than by addresses,
but the actual addresses can be determined quite simply with the aid of
—FIND . Entries marked * execute even in compile mode.

AWN =

PUSHDE Push the contents of DE on to the stack
PUSHHL Push the contents of HL on to the stack
NEXT 1 HL=BC.BC=BC +2

NEXT2 HL = (HL). Goto (HL).

Where, as above, the entries are closely spaced, they run on to the
subsequent entry. PUSHDE and PUSHHL are used on return from
other modules to set data on to the calculation stack, and then the
interpretive pointer IP (held in BC) is used to look up the next link, to
which the routine jumps. IP is incremented to point to the link for the
next action. This is the central control of the whole FORTH system.
LIT HL = (BC). BC = BC + 2. Go to PUSHHL.

The word stored in the location pair following the LIT link is read into
HL and pushed on to the calculation stack. LIT, in effect, identifies
the word as data, not a link.

EXECUTE POP HL. Go to NEXT2

TOS is popped into HL as a link to a routine to be executed.

BRANCH HL = BC. DE = (HL). HL = HL+DE. BC = HL.

Goto NEXT 1.
The word stored in the location pair following BRANCH is added to
the IP, interpretation being resumed at the resulting address.
OBRANCH POP HL. If HL = 0 go to BRANCH.

Else BC = BC + 2. Go to NEXT1.
This is the conditional branch, performed only if TOS = 0.
Otherwise, the branch span word is skipped by advancing the IP.
(LOOP) DE =1

HL = (RSP). (HL) = (HL) + DE. DE = (HL)

HL = HL + 2. If D was negative, go to 11.

Else set sign flag on DE — (HL). Goto 12

Set sign flag on (HL) — DE.

If negative go to BRANCH.

Else HL = HL + 2. (RSP) = HL

BC = BC + 2. Goto NEXT1.
This is the compiled form of LOOP. HL reads the Return Stack
Pointer, and DE is added to TORS. 20RS is then compared with
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13

14

15

16

17

18

19
20

21

22
23

TOBS, taking the sign of DE into account. (See (+LOOP) below.) If
the index in TORS has neither reached nor passed the limit value in
20RS, BRANCH_ is entered to loop back to immedately after (DO),
the necessary jump span being calculated at compile time.
Otherwise the RSP is set back two words, effectively discarding the
two relevant entries. The IP skips the branch span data, and
NEXT1 continues the action. ’
(+LOOP) POP DE. Go to 10.

Instead of being set to 1, as for (LOOP), i
(LOOF) follows!.; (LOOP), DE is set from TOS, and
(DO) (RSP) = (RSP) — 4. POP DE. HL = (RSP)

(HL) = DE. POPDE.HL=HL + 2

(HL) = DE. Go to NEXT 1.
This is the compiled form of DO. Two new entries are added to the
Return Stack. The new TORS is set from TOS (initial index value)
and the new 20RS is set from 20S (limit index value).
1 HL = (RSP). DE = (HL). PUSH DE. Go to NEXT1.
The contents of TORS are copied to TOS. Within a DO loop, this
transfers to the current index value.
DIGIT POPHL.POPDE.A=E —48

If Ais negative go to 18.

Eiseif Ais less than 10 goto 17.

A=A-7.

If Ais less than 10 go to 18.

If Ais greater than L go to 18.

E = A HL = 1. Go to PUSHDE.

L =H. GOTO PUSHHL.
The r]umber base from TOS is popped into HL. The ASCIi code in
20S is popped into DE. The code is converted to a numeric value. If
'that value is negative, greater than number base or otherwise
invalid, 18 is reached. A zero is pushed as TOS. (Itis assumed that
the number base does not exceed 255, so H = 0). Otherwise, the
number_is pushed as 20S, with TOS = 1 to indicate successful
conversion.
(FIND) POP DE.
POP HL. PUSHHL.
If (DE) XOR (HL) AND 3FH +#0 go to 26.
INC HL. INC DE.
If (DE) XOR (HL) # 0 go to 25.
If bit 7 of (DE) XOR (HL) = 0 go to 21.
HL=DE+5
Exchange (SP) and HL
DEC DE.
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24

25
26
27

28

29

30

31

A = (DE). If bit 7 of A = 0 goto 23.

E=A.D=0.HL = 1. Goto PUSHDE.

If (DE) XOR (HL) = 1goto 27.

INC DE. A = (DE). If bit 7 of A = 0 go to 26.

INC DE. Exchange DE and HL. DE = (HL)

If DE + 0 goto 20.

Else POP HL. HL = 0. Go to PUSHHL.
This is a search routine looking for a match to text pointed to by
208, the search starting at TOS. The reference text is a word
name, and the routine searches through the dictionary name fields.
The search pointer is popped into DE, and the reference text
pointer is popped into HL and then restored. If the codes (length
bytes) pointed to are unequal in respect of bits 0-5 , the routine
jumps on to 26. (Note that the SMUDGE bit is not taken into
account.)
Otherwise, the pointers are advanced. The routine loops through
21 until either a mismatch is found or bit 7 of (DE) is found, marking
the end of the dictionary name. In the latter case HL = DE + 5, so
that HL points to the Parameter Field Address, and this is put on to
the stack in exchange for the reference text pointer. DE is then
repeatedly decremented until the length byte of the dictionary entry
is found, and the length byte is then pushed on to the calculation
stack, followed by a true fiag.
If a character mismatch is found, 25 is reached. If bit 7 of the
dictionary name had bit 7 set, the routine skips on to 27. Otherwise,
and if a length byte mismatch brings the routine to 26, DE is
repeatedly incremented until (DE) has bit 7 set. One more
increment sets DE pointing to the Link Field Address. The link is
read, and if it is not zero the routine loops back to 20. If the link is
zero, the end of the dictionary has been reached, and TOS is
replaced by a zero (false) flag to show that no match was found.
ENCLOSE POP DE. POP HL. PUSH HL.

A=E.D=A E=FFH.DECHL.

INCHL. INCE. If (HL) = Agoto 29

D=0.PUSHDE.D =A.A=(HL)

IfA+#0goto30.

Else D = 0. INC E. PUSH DE.DEC E. PUSH DE.
Go to NEXT1.

A =D.INCHL. INCE. IfA = (HL) goto 31.

If (HL) #0goto 30.

D = 0. PUSH DE. PUSH DE. Go to NEXT1.
D =0.PUSHDE. INCE. PUSHDE. Goto NEXT1.

This routine scans text to locate delimiters. The delimiter is popped
from TOS into DE, the start address for the scan is popped from
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32

33

34
35
36

37

38

39
40

41

42

20S into HL, and restored. The delimiter code is copied into A and
D.Eis setto — 1 and HL is set back. A loop through 29 then seeks
the first non-delimiter character, advancing HL and E. When the
loop drops out, D = 0 and DE is pushed. (Offset to first non-
delimiter character in 30S) lf (HL) = 0,E + 1is pushed (offset to
next delimiter in 20S) and then E is pushed (offset to first character
not included in TOS).

If(HL) #0, aloop through 30 scans the text until a delimiter is found
(goto 31) or (HL) = 0. In the first case the values pushed are E and
E-+1. In the second case E is pushed twice.

EMIT Machine code at 274 is called
OUT +!OUT is incremented.
KEY Machine code at 266 is called.

For details, see the machine code routines.

?TERMINAL  HL =0. Machine code at 263 is called.

CR Machine code at 276 is called.

CMOVE HL = BC. POP BC. POP DE. Exchange (SP),HL
IfBC=0goto37
Else LDIR. POP BC.
Go to NEXT1.

LDIR performs the copy action, but BG is needed to hold the length
parameter, so the IP passes to HL, then to the stack, and back to
BC when LDIR has been executed.
u* POP DE. POP HL. PUSH BC.
B=H. A=L.CALL39
PUSHHL.H=A.A=B.B=H. CALL 39.
POPDE.C =D.HL = HL + BC.A = A + carry.
D=L.L=H H=A POPBC. PUSHDE.
Go to PUSHHL.
HL=0.C=8
HL = 2*HL. RLA. If no carry goto 41.
HL = HL + DE. A=A + carry.
DECC. IFC #0goto 40.
RETURN.
The subroutine at 39 multiplies A by DE, with the result in HL. It is
first used to multiply the lower byte of 20S by TOS, then to multiply
the upper byte of 20S by TOS. The two results are combined asa
double number, the lower half pushed from DE, the upper half from
HL. Note that here, again, the IP is saved on the stack to make BC
available for other use.
U/MOD HL=4+SP.E=(HL).(HL)=C
INCHL. D = (HL). (HL) = B. POP BC. POP HL.
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43
44

45

46

47
48

49

50
51

52
53

54
55

56

57

if BC is greater than HL go to 43.
Else HLg= FFFFH. DE = FFFFH. Go to 48.

A=16
HL = 2*HL RL A. Exchange DE and HL.
HL = 2*HL. If no carry go to 45.

INC DE. AND A.

Exchange DE and HL. RR A. PUSH AF.
If no carry go to 46.

A=AANDL. HL =HL — BC - carry
Goto 47.

HL = HL — BC. lf no carry go to 47.

HL = HL + BC. DEC DE

INC DE. POP AF. DECA. If A #0go to 44.

POP BC. PUSH HL. PUSH DE. Go to NEXT1
When data is pushed on to the Z80 st‘ack, the stack pointer is left
pointing to the last-entered byte. Adding foqr to the SP therefore
points to the high byte of 30S. This is taken into DE, and replaced
by the IP from BC. TOS is taken into BC, and 20S into HL. The
routine divides 20S/30S by TOS. If TOS is not greater thgn 2QS,
FFFFH is pushed on to the stack twice. Othemlse,_an iterative
division routine is performed on a restoring basis, which leaves a
true remainder. This is pushed from HL, the result from DE.

AND POP DE. POP HL. HL = HL AND DE.
Go to PUSHHL.

OR POP DE. POP HL. HL = HLOR DE.

XOR ggg)lggsF%}LHL. HL = HL XOR DE.
Go to PUSHHL.

SP@ HL = SP. Go to PUSHHL

SP! DE = (IX + 6). Exchange DE,HL. SP = HL.
Go to NEXT1

IX points to SE40 (See COLD) and is used to access the variabie
area.

RP@ HL = (RSP). Go to PUSHHL.

RP! DE = (IX + 8). Exchange DE,HL. (RSP) = HL.
Go to NEXT1.

;S HL = (RSP). BC = (HL). HL = HL + 2.

(RSP) = HL. Go to NEXT1.

This key function terminates interpretation of a colon definition or a
screen. The IP is recovered from the Return Stack.

LEAVE HL = (RSP). DE = (HL). HL = HL + 2.
(HL) = DE. Go to NEXT1.
Used within a DO LOOP, LEAVE copies the current index value to
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58

59

60

61

62

63
64

65
66

67
68
69
70
71

72
73
74
75
76

77

the limit entry so that the loop will drop out at the next LOOP.

>R POP DE.HL = (RSP). (HL) = DE.HL = HL — 2
(RSP) = HL. Go to NEXT1

R> HL = (RSP). DE = (HL). HL = HL + 2

™ (RSP) = HL. PUSHDE. Go to NEXT1.
ese two transfer data between TOS and TORS adjusting the
stacks. The next function copies TOR it i
oo p S to TOS without changing
R Goto 15
Ris identical in action to I.
0= POPHL. IfHL = Othen HL = 1, else HL = 0.
Go to PUSHHL.

o< POP HL. HL = 2*HL. lf no carry HL = 0,
else HL = 1. Go to PUSHHL.

+ POP DE. POP HL. HL = HL + DE.
Go to PUSHHL.

D+ HL = SP + 6. DE = (HL). (HL) = BC.
POP BC. POP HL. HL = HL + DE.
Exchange DE,HL. POP HL.
HL = HL + BC + carry.

" POP BC. PUSH DE. Go to PUSHHL.

e IP is saved on the stack in place of 40S. Two s
additions are used to add two double numbers together. eparate
MINUS POP DE. HL = 0 — DE. Go to PUSHHL.
DMINUS POP HL. POP DE. DE = 0 — DE.

HL =0 - HL — carry. PUSH DE. Go to PUSHHL.
OVER POP DE. POP HL. PUSH HL. Go to PUSHDE.
DROP POP HL. Go to NEXT1.
SWAP POP HL. Exchange (SP) and HL. Go to PUSHHL.
DUP POP HL. PUSH HL. Go to PUSHHL.
2DUP POP HL. POP DE. PUSH DE. PUSH HL.
Go to PUSHDE.
+! POP HL. POP DE. (HL) = (HL) + E. INC HL.
(HL) = (HL) + D + carry. Go to NEXTH.
TOGGLE POP DE. POP HL. (HL) = (HL) XOR E
Go to NEXT1.
@ POP HL. DE = (HL). PUSH DE. Go to NEXT1.
C@ POPHL. L = (HL). H = 0. Go to PUSHHL.
2@ POP HL. HL = HL + 2. DE = (HL). PUSH DE.
HL = HL — 2. DE = (HL). PUSH DE.Go to NEXT1.
! POP HL. POP DE. (HL) = DE. Go to NEXT1.
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78 C! POP HL. POP DE. (HL) = E. Go to NEXT1.
79 2 POP HL. POP DE. (HL) = DE. POP DE.
HL = HL + 2. (HL) = DE. Go to NEXT1.
*80 ?EXEC Error if not executing
ICSP Save stack pointer in CSP
CURRENT @
CONTEXT!  CONTEXT = CURRENT
CREATE Create a dictionary heading.
1 Resume compilation
(;CODE) Point to following code. (81)
81 HL = (RSP). (HL) = BC.

*82

83
84

85

86
87
88

89

HL = HL — 2. (RSP) = HL.

INC DE. BC = DE.
This is another key routine. Execution of colon performs the checks
shown above, then sets up a link to 81. The IP then interprets the
words which follow, setting up links or data words to represent
them. This forms the parameter field of the new dictionary entry.
The process is terminated by semicolon, below:

; 2CSP Error if SP # CSP.
COMPILE Compile link into dictionary.
S
SMUDGE Restore the SMUDGE bit.
[ Suspend compilation.

Note that colon and semi-colon arise only in an execution context,
colon switching to compilaton and semi-colon restoring
execution.

NOOP NOOP does nothing, exceptto go
to NEXT1.
CONSTANT CREATE Create a dictionary entry.
SMUDGE Toggle the SMUDGE bit.
s (Comma) Store TOSindictionary.
(;CODE) Point to following code.

INC DE. Exchange DE,HL.

DE = (HL) PUSH DE.

Go to NEXT1.
CONSTANT creates a dictionary entry which refers to the code at
85. This picks up the following word and puts it on TOS.
VARIABLE CONSTANT  Create a constant entry.

(;CODE) Point to following code.
INC DE. PUSH DE. GotoNEXTH1.

The code at 87 puts the address of a variable on the stack.

USER CONSTANT  Create a constant entry.
(;CODE) Point to following code.
HL = IX + DE. Go to PUSHHL.
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90
91
92
93
94

95
96
97
98

99

100
101
102
103
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

A variable in the general workspace is referenced, using IX and a
single byte displacement picked up in E. The address of the

variable goes on TOS.
0

1

2

3

BL

C/L
FIRST
LIMIT
B/BUF
B/SCR

The above use the code at 85,
+ORIGIN LIT5E40 +
SO

RO

TIB
WIDTH
WARNING
FENCE
DP
VOC-LINK
BLK

IN

ouT

SCR
OFFSET
CONTEXT
CURRENT
STATE
BASE
DPL
FLD
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Constant 0 to TOS
Constant 1to TOS
Constant 2 to TOS
Constant 3to TOS

Constant 20H (Space code)
to TOS

Constant 40H (Characters per
line) to TOS

Constant CBEOH (1st buffer
start) to TOS

Constant DOOOH (Last buffer
end) to TOS

Constant 80OH (Bytes per buffer)
to TOS

Constant 8 (Blocks per screen)
to TOS

Add 5E40 (nominal origin) to TOS
Address 5E06 to TOS
Address 5E08 to TOS
Address 5E0A to TOS
Address 5E0C to TOS
Address 5E0E to TOS
Address 5E10 to TOS
Address 5E12 to TOS
Address 5E14 to TOS
Address 5E16 to TOS
Address 5E18 to TOS
Address 5E1A to TOS
Address 5E1C to TOS
Address 5E1E to TOS
Address 5E20 to TOS
Address 5E22 to TOS
Address 5E24 to TOS
Address 5E26 to TOS
Address 5E28 to TOS
Address 5E2A to TOS

121
122
123

124
125
126
127
128

129

130

131
132

133

134
135

136

137
138

139
140

CSP Address 5E2C to TOS
R# Address 5E2E to TOS
HLD Address 5E30 to TOS
The above use the code at 89.
1+ 1+ Add 1to TOS
2+ 2+ Add 2to TOS
HERE DP @ Read dictionary pointer tq TOS.
ALLOT DP +! Add TOS to dictionary pointer.
HERE!2ALLOT Store TOS at HERE, add 2to DP.
’ (Comma)
C, HERE C! Store byte of TOS at HERE,
1ALLOT DP =DP + 2.
- POP DE. POP HL.
HL = HL — DE. Go to PUSHHL.
= - 0= f TOS = 20S, TOS = 1 else 0.
< POP DE. POP HL. If bit 7 of
DXORH =0thenHL = HL — DE
(signs differ) If H is positive then
HL = O else 1. Go to PUSHHL.
U< 2DUP XOR 0< If signs of TOS,20S differ set
true flag.
OBRANCH
000C If false flag go to 134.
DROP Discard TOS 3
0<0= Set true flag if new TOS positive.
BRANCH 0006 End.
- 0< Settrue flag if TOS exceeds 208S.
> SWAP < Exchange TOS,20S and perform
reverse function.
POP DE. POP HL.
ROT Exchange (SP), HL.
SPACE BLEMIT Output a space.
-DUP DuP Duplicate TOS
OBRANCH
0004 Endif TOS =0
DUP Duplicate TOS
TRAVERSE  SWAP Stack: n address. (n = ¥ 1)
OVER + Stack: n address+n
LIT 007F
OVER Stack: n address+n 7FH
addresstn
CcC@< Compare (address*n) with 7FH.
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141
142
143
144

145
146

147

148

149

150

151

152

153

154

0BRANCH
FFFO

SWAP DROP

If (address*n) not greater than
7FH go to 140.

Else discard n, leaving
address+n.

This scans through a dictionary name field in a direction
determined by the sign of n, until a byte with bit 7 true is found.

LATEST CURRENT @ @ TOS = (CURRENT)
LFA LIT 0004 — Subtract 4 from TOS.
CFA 2- Subtract 2 from TOS.
NFA LIT 0005 — Subtract 5 from TOS.

LIT FFFF TOS = - 1.

TRAVERSE Scan back through name field.
PFA 1TRAVERSE  Scanforward through name field.

LIT 0005 + Add5to TOS.
ICSP SP@ Read stack pointer

CSP! Write to CSP.
?ERROR SWAP Stack: n flag

OBRANCH

0008 Ifflag zero go to 148.

ERROR Report error

BRANCH0004 End

DROP Discard error number.
?COMP STATE@ 0= True flagon TOS if STATE = 0

LIT 0011 Error number 17

?ERROR Report error if flag true.
?EXEC STATE @ False flag if STATE = 0

LIT 0012 Error number 18

?ERROR Report error it flag true.
?PAIRS - False flag if TOS = 208

LIT 0013 Error number 19

?ERROR Report error if flag true.
?CSP SP@ CSP @ — Compare SP with CSP.

False flag if equal.

LIT0014 Error number 20

?ERROR Report error if flag true.
?LOADING BLK@o0= True flagon TOS if TIB in use.

LIT 0016 Error number 22

?ERROR Report error if flag true.
COMPILE ?COMP Error if not compiling.

R> TORS to TOS

DUP 2+ Stack: TORS TORS +2

>R TOS to TORS
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@, Store (TORS) at HERE

*155 [ 0 STATE! Set STATE = 0
156 ] LIT 00CO
STATE! Set state = 192
157 SMUDGE LATEST
LIT 0020
TOGGLE Toggle bit 5 of LATEST.
X LIT 0010
156 HE BASE! SetBASE = 16
IMAL LIT 000A
199 DEC BASE ! Set BASE = 10
160 (;CODE) R> TORS to TOS
LATEST
PFACFA! Write TORS to LATEST
code fieid.
*161 ;CODE ?2CSP Check that SP = CSP
' COMPILE
(;CODE) Compile (;CODE)
[ SetSTATE=0
SMUDGE Toggle bit 5 of LATEST
162 <BUILDS 0 CONSTANT Constant entry established.
R> TORS to TOS
163 DOES> LATEST PFA ! Copy to parameter field of
LATEST
(;CODE) Link to following code.
164 HL = (RSP) — 2. (HL) = BC.

(RSP) = HL INC DE.
Exchange DE,HL. BC = (HL)
Go to PUSHHL.
The IP is put on the return stack and re-initialised from (DE+ 1),
while DE + 1 goes onto TOS. s 1
COUNT DUP 1+ Stack: addr addr+
199 SWAP C@ Stack: addr+ 1 (addr)
— xt
The stack initially holds the address of thg length byte of ate
string. The address of the start of the text is put on 20S with the

length byte on TOS. .
166 TYPE —DUP Duplicate TOS if non-zero
OBRANCH ]
0018 Branch to 168if TOS = 0
OVER + Stack: addr addr+ 1length
SWAP Stack: addr+length addr
(DO)
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167

168

169 —TRAILING

170

171
172

Ic@ Read (I) to TOS
EMIT Print TOS
(LOOP) FFFB Loopto 167
BRANCH 0004 End

DROP Discard address
DUP O Stack: addr length length 0
(DO)

OVERQVER  Stack: addr length addr length
+1- Stack: addr length
addr+length—1

C@BL - Compare (addr-+length—1)
with space code

OBRANCH

0008 Go to 171 if match found.

LEAVE Set loop exit condition.

BRANCH 0006 Goto 172
1- Decrement length
(LOOP) FFEO Loopto 170.

A text string is scanned backwards, the length byte being
decremented for each space code found, until a non-space code

appears.
173 (")

R TORS copied to TOS
COUNT Adjust address and length

DUP 1+ Stack: addr length length+ 1
R>+ >R TORS = TORS + length + 1
TYPE Output string.

TORS is updated and the string defined is output.

*174

175

LIT 0022 Code for " (delimiter)

STATE @ TOS = STATE
0BRANCH

0014 If executing go to 175.
COMPILE (.”)

WORD Store text at HERE
HERE C@ Read length byte

1+ ALLOT Reserve length + 1 bytes.
BRANCH 000A End

WORD Store text at HERE

HERE

COUNT TYPE Output text

This word acts quite differently in execute mode and compile mode.
In compile it sets up (.”) with the text. In execute it outputs the text.

176 EXPECT

OVER + OVER Stack: addr addr+limit addr
(DO)
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177

178

179

180
181

182
183

184 QUERY

*185 (See note)

KEY DUP
LIT 000E
+ORIGIN @

OBRANCH
002A
DROPDUPI =
DUP

R>2 - +>R
OBRANCH
000A

NOOP NOOP
BRANCH 0008
BRANCH 0028
DUP

LIT 000D

OBRANCH
000E

LEAVE
DROPBLO
BRANCH 0004
DUP

IC!

Ol1+!

EMIT

(LOOP) FF9C
DROP

TIB@

LIT 0050
EXPECT
OIN !
BLK@
0BRANCH

_ 002A

1BLK +!
OIN!

BLK @
B/SCR1—
AND 0=
OBRANCH
0008
2EXEC
R> DROP
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Stack: addr input input

TOS = (5E4E)
Zero flag if TOS # input

If zero flag go to 179.

Zero flag if | # addr.
Duplicate flag

TORS = TORS - 2 + flag

If flag zero go to 178

Delay ?

Code for cursor left.

Goto 182

Stack: addr input input
Newline code

Zero flag if input # newline.

If zero flag go to 180
Terminate loop

Stack: addr space-code, zero.
Goto 181

Stack: addr input input

Store inputin (1)

Zero next location.

Output TOS

Loopto 177

Clear stack, end.

Terminal input buffer address
on TOS.

Limit length (80 bytes)

See above

Zero IN.

Block number to TOS

Goto 187 if TIB in use
Increment block number

Zero IN

Block number to TOS

Blocks per screen — 1to TOS
Zero flag if (TOS AND 208) = 0

If zero flag go to 186
Error if not executing
Discard TORS



186
187

188

189

190

191
192
193

194

195

196
197

BRANCH 0006 End
R>DROP Discard TORS

The name field for this entry contains only CIH, 80H, indicating zero
code. It switches blocks on a null code.

FILL

HL = BC. POP DE. POP BC.
Exchange (SP),HL
Exchange DE,HL

IfBC = 0goto 190

(DE) = L. INC DE. DEC BC.
Goto 189

POP BC. Go to NEXT1

PE, thep HL, hold the character to be used. The number of entries
is held in BC, while HL, then DE, holds the start address, which is
incremented after each entry.

ERASE
BLANKS
HOLD

PAD

OFILL See above.
BLFILL See above.
LIT —1HLD +! Decrement HLD

HLD @ C! Store TOS in (HLD)
HERE
LIT 0044 + TOS = HERE + 68

The PAD buffer floats above the dictionary at a distance of 68

bytes.
WORD

BLK @ TOS = block number
OBRANCH

000C If TIBin use go to 196

BLK @ TOS = block number

BLOCK TOS = block address

BRANCH 0006 Goto 197

TB@ TOS = TiB ADDRESS

IN@ + Add IN

SWAP Stack: addr delimiter

ENCLOSE Stack:addr offset1 offset? offset3
HERE LIT 0022

BLANKS Set up 34 space code entries.

IN +! Add offset3 to IN

OVE;! Stack: addr offset1 offset2 offset1
->

RHERE C! TORS = offset2 — offset1

(HERE) = TORS
+ HERE 1+ R>Stack: addr+offset1
HERE+1 TORS
Copy TORS bytes from
address+offset1 to HERE + 1

CMOVE
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198 (NUMBER)

199

200

1+ DUP Stack: X/Y addr+1 addr+1
>R TORS = addr+1
c@ TOS = (addr+1)
(ASCII numeric code)
BASE @ TOS = BASE
DIGIT Convert ASCI! code to number.
OBRANCH
002C If invalid go to 200
SWAP BASE @ Stack: X number Y BASE
u* Stack: X number Y*BASE
DROP Discard upper word of double
number product.
ROT BASE
@u* Stack: number Y*BASE X*BASE
D+ Stack: X*BASE + (Y*BASE +
number)
DPL @ 1+ TOS=DPL+1
OBRANCH
0008 IfDPL = —1thengoto 199
1DPL +! Increment DPL (To count
characters after point)
R> Recover address from TORS.
BRANCH FFC6Go to 198
R> Clear TORS

This routine is normally called by NUMBER, which sets X/Y as
zero. The process merits close scrutiny.

201 NUMBER

202

00ROTDUP Stack: 00 addr addr

1+ C@ Stack: 0 0 addr (addr+1)

LIT 002D Code for minus sign

= Zero flag if (addr+1) # minus
sign code

DUP Duplicate flag

>R Flag to TORS

+ Stack: 0 0 addr-+flag (Step past
sign code)

LT -1

DPL! Set DPL

(NUMBER) See above

DUPC@ Stack: number/number
addr (addr)

BL — Compare with space code

OBRANCH

0016 If space code go to 203

DUPC@ Stack: number/number
addr (addr)
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LIT 002E - Compare with decimal point code
0 ?ERROR Error if not decimal point
0 Set DPL = 0if decimal point.
BRANCH FFDCGo to 202
203 DROP R> Recover sign flag from TORS
OBRANCH
0004 If flag = 0 then end.
DMINUS Negate resuit.
NUMBER always produces a double number result. The upper
byte is only discarded by INTERPRET if there is no decimal point.
204 —FIND BL Space code to TOS
WORD Copy name to HERE
HERE

Set up reference pointer

CONTEXT @ @Set up search pointer

(FIND) Search for word

DUP Stack: PFA length flag flag.
0= Reverse flag

OBRANCH

000A End if match found

DROP Discard flag

HERE Set up reference pointer
LATEST Set search pointer to LATEST
(FIND) Search again.

If (FIND) fails, only the flag is left on the stack, so there is no need to
discard the length byte and PFA. A search is then made starting at

LATEST instead of (CONTEXT )
205 (ABORT)

ABORT

This word allows for special user versions of (ABORT)

206 ERROR WARNING
@0< True flag if WARNING negative
OBRANCH
0004 If WARNING not negative
goto 207
(ABORT)
207 HERE
COUNT TYPE Output offending word.
(2 Output query, space.
MESSAGE Output error number or text
SP! Reset SP
BLK@ —DUP Block number, duplicated if
non-zero.
OBRANCH
0008 If TIB in use go to 208
IN@ SWAP  Stack: IN block
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» b St

208
209 ID.

210 CREATE

211

*212 [COMPILE]

QUIT Return to user control.
PAD LIT 0020 '
LIT 005F FILL  Fill the PAD buffer with
32 5F codes.
DUP PFALFA Stack: NFALFA
OVER — Stack: NFA LFA—NFA
PAD SWAP  Stack: NFA PAD LFA—-NFA
CMOVE Copy LFA—NFA bytes from
NFA to PAD
PAD COUNT  Check copy length
LIT001F AND Limit to 31 bytes.
2DUP Stack: addr length addr length
+1—-DUP Stack: addr length
addr+length—1
@ TOS = last letter codes
LIT FF7F AND Remove bit 7
SWAP | Restore modified bytes
TYPE SPACE Output word, add space.
—FIND Search for word name
and enter at HERE
0BRANCH _
0010 Go to 211 if unique
DROP Discard length
NFAID. Output word name
LIT 0004 Message 4
MESSAGE Output number or message
SPACE Add a space

HERE DUP C@ Stack: HERE (HERE)
WIDTH @ MIN Limit length to 31 characters

1+ ALLOT
bupP

LIT 00AQ
TOGGLE
HERE 1 —

LIT 0080
TOGGLE
LATEST,
CURRENT@'!

HERE 2+,
—FIND

0=

0 ?ERROR
DROP
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Allot one more
Stack: HERE HERE

Toggle bits 5 and 7 of length byte
HERE now modified by ALLOT

Toggle bit 7 of last letter

Set up link field

CURRENT s read as an address.
(CURRENT) = HERE

Set up code field

Search for word name and enter
at HERE

TOS = 0if found.

Error 0 if not found.

Discard length byte



*213 LITERAL

*214 DLITERAL

215 7STACK

216 INTERPRET

217
218

219

220

CFA, Set up code field
STATE @
gg(?ANCH
8 If executing then end.
COMPILELIT, Setup Lngentry.
STATE @
8(8)(!;!8ANCH
If executin:
aWap ting then end.
LITERAL
LITERAL
SP@ SO @ Stack: SP SO
3WAP Stack: SO SP
< True flag if SP exceeds
1 ?ERROR  Error1 igf;true flag S0
SP@ HERE
LIT 0080 + Stack: SP HERE + 128
U< True flag if HERE+128 is
the greater
LIT 0007
?ERROR Error 7 if true flag.
—FIND Search for word name and
enter it at HERE
OBRANCH
001E If not found go to 219.
STATE@ <  Trueflagiflengthis
less than state.
OBRANCH
000A If false goto 217
CFA, Enter CFA at here

BRANCH 0006 Goto218
CFA EXECUTE Execute indicated function.

?STACK Check stack bounds

BRANCH 001C Goto 222

HERE

NUMBER Interpret word as number

DPL@ 1+ TOS =DPL + 1

OBRANCH

0008 IfDPL = —1 goto 220

DLITERAL Set up a double number

BRANCH 0006 Go to 221

DROP Discard upper byte of
double number.

LITERAL Set up a single number.
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221
222

?STACK
BRANCH FFC2 Goto 216

Check stack bounds

The comparison of the length byte with state implements the
special characteristics of some words. Note that if a word name
happens also to be a valid number in the current BASE, it will notbe
possible to input that number, as it will always be interpreted as a

word first.
223 IMMEDIATE

224 VOCABULARY <BUILDS

225
*226 FORTH

227 (space)
228 DEFINITIONS

*229 (
230 QUIT

231

232
233 ABORT

LATEST

LIT 0040

TOGGLE Toggle bit 6 of LATEST
Set up a constant entry.

LIT AO81, Store A081 at HERE

CURRENT @

CFA, Store CFA of CURRENT
atHERE

HERE

VOC-LINK @ , Store VOC—LINK at HERE

VOC—LINK!  Store previous HERE at
VOC—LINK

DOES>

24+ CONTEXT ! Set CONTEXT to CURRENT + 2
Execute code at 164

Execute 225

Zero code field.
CONTEXT @
CURRENT! CURRENT = CONTEXT
LIT 0029 Delimiter is close bracket.
WORD Set up comment but ignore.
0BLK! Set block = 0 (TIB in use)
[ STATE=0
RP! Initialise RSP
CRQUERY  Newline. Get input text
INTERPRET Interpret text

STATE @ 0= True flag if executing.
0BRANCH

0007 If false flag go to 232
. ok” Output “ok”
BRANCH FFE7 Go to 231
SP! Initialise SP
DECIMAL Select decimal representation.
7STACK Check stack bounds
CLSCR Clear screen, newline
.CPU Output “48K Spectrum”
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(.”) text Output “fig-FORTH 1.1A”
CR

Newi MINUS Negate TOS
ewline — True flag if TOS negative
(") text Output "(C) Abersoft: 1983 242 D+ O SRANCH ruefiag 9
CR Newiine 0004 if false flag then end.
FORTH Select FORTH vocabulary e Goublo word.
DMINUS Negate double wol
DEFINITIONS CURRENT = CONTEXT tive then negate
Quit Return control to user. 243 ABS DUP +-— It Tg: negat!ve then :egate
234 Entry from WARMstart  BC = address of link to 236 244 DABS DUPD+— g(‘)rumenega ive eg:
IX = (5E66) = 5E00 word.
HL = (5E52) = CB40 245 MIN 2DUP > :uzc(a)ﬂsa grealer than TOS then
SP =HL .
Go to NEXT1 (Thence to 236) | O0BRANCH i false f 10246
235 Link to CFA for WARM §°v32p alse flag go
236 WARM SMIE;—I:'.(I;!S Mark buffers as empty ‘ 246 DROP Discard the greater.
TOS then
ABORT See above. 247 MAX 2DUP < If 20ﬂ$ less than
237 Entry from COLD start (FLAGS?2) = 8 (BASIC variable) OBRANCH frue fiag.
(hold) = 0 (See 266)
BC = address of link to 267 gOVSZP Iffalse flag to to 248
:-)I(Li((ssEEesez))::sgggO 248 DROP Discard the lesser.
SP = HL 249 M* 2DUPXOR>R  TORS = TOS XOR 20S
Go to NEXT1 p (Stack preserved)
238 Link to CFA for COLD ABS SWA B
239 COLD EMPTY- ABS Make TOS,20S positive
B U Product of TOS*20S
UFFERS Mark buffers as empty R>D+— Negate result if signs of
LIT CBEO USE ! Set next buffer = CBEO ngsa 208 differed
LIT CBEO 4 : _
PREV! Set last buffer = CBEO 250 M/ OVER >R >R Stack: X YTSIeRS = %eerRS =Y
DRO OFFSET =0 DABS f())onve:r.n;ou num
Il:g gggg @ RABS Convert Z to positive
LIT 0006 + U/MOD Stack:'rer.n q_uot.
LIT 0010 Stack: 5E52 (5E66)+6 16 R>RXOR me if signs of XY and
CMOVE Copy 16 bytes, starting with " .
SESg to 5Ey(t)6 9 ;VTIAP If negative then negate quotient.
LIT 5E4C @ TOS = 8149 . . .
LIT6CF8! (6CF8) = 8149 (Link field of 227) gv>v :P— Negate remainder if Z negative
ABORT
240 S->D POPDE.HL =0.A = D AND 80H 251 * M* DROP Dlscard upper half of product
If A #0then DEC HL. 252 /MOD >R S—->D R> Signextend 20S
Go to PUSHDE M/ As above.
241 +-— 0< If TOS negative true flag 253 / /MOD SWAP .
OBRANCH DROP Discard remainder
0004 If false flag then end
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254
255

256

257

258

259

260

261
262

263

264

MOD
*/MOD

*/

M/MOD

(LINE)

.LINE

MESSAGE

The following code is used b

/MOD DROP
>R

M*

R>

M/

*/MOD SWAP
DROP
>ROR
U/MOD

R> SWAP >R

U/MOD R>
>R

LIT 0040
B/BUF
*/MOD

R> B/SCR*
+

BLOCK +
LIT 0040
(LINE)
—TRAILING
TYPE

WARNING @

Discard quotient
TOS to TORS
Product

Restore original TOS
Remainder Quotient

Discard remainder

Make 20S double

Remainder quotient1
Remainder divisor

TORS hold quotient1
Remainder quotient2 quotient1
Stack: Line TORS: Screen

Bytes per buffer
Line*64/bytes per buffer.
(Rem and quot)

Rem quot Screen*B/SCR
Rem quot+Screen*B/SCR
Add block address

See above
Discard trailing spaces
QOutput

OBRANCH 001E If WARNING = 0 go to 262

~DUP

Duplicate if non-zero

OBRANCH 0014 If message 0 then go to 261

LIT 0004
OFFSET @
B/SCR/

.LINE
SPACE

Screen 4

Block offset

Divide by blocks per screen
Subtract from screen number
Output message

Add a space

BRANCH 000D End

(M text

routines are involved.

112

Output “MSG #
Output number.

y ?TERMINAL (see 34) BASIC

PUSH BC. PUSH DE. CALL
1F54. HL=0

If carry go to 264.

Else INC L. Go to 265

If (6C08) = 7 then INC HL.

265 POP DE. POP BC. Go to
PUSHHL.
The following code is used by KEY. (See 33) BASIC routines are
involved.
266 PUSH BC, A=2. CALL 1601.
A=12.RST10A = 1. RST10.
267 (5C08) =0
268 A = (hold). RST10. A=8.RST10 -
If (5C08) = 0 then go to 268
If (5C08) + 6 then go to 271
HL = 5C6A. (HL) = (HL) XOR 8
269 HL = hold. If bit3of A = 1thengo
t0 270
(HL) = 4CH. Go to 267
270 (HL) = 43H. Go to 267
271 If A #0FH then go to 273
A =2.HL=5C41.
(HL) = (HL) XOR A
If (HL) = 0 then go to 272
A = (5C6A). Go to 269
272 A = 47H. (hold) = A. Go to 267

In BASIC, 5C08 is LASTK 5C41 is MODE. 5C6A is FLAGS2
The routine from 273 onwards is mainly concerned with recoding
certain keys.
273 C6 (AND) becomes 5B [
C5 (OR) becomes 5D ]
E2 (STOP) becomes 7E  ~
C3 (NOT) becomes 7C |
CD (STEP) becomes 5C /
CC (TO) becomes 7B {
CB (THEN) becomes 7D}
If A is greater than A5H (after the
above conversions) go to 267
(i.e. ignore input) Else L = A.
H=0. A=12.RST1I0.A=0
RST10. A = 20. RST10. A = 8.
RST10. POP BC Go to PUSHHL.
The following code is used by EMIT (See 32). Once again, BASIC
routines are involved.
274 PUSH BC. PUSH HL. A = 2.
CALL 1601 POP HL. PUSH HL.
A = 1.RST10. A = (hold2).
If A=0goto275
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275

276

277

278
279
280
281

282

283

284

285

286
287
288

CALL 1601. POP HL. PUSH HL.
A=L.RST10

POP HL. A = FFH. (5C8C) = A.
POP BC. Go to NEXT1

5C8C in BASIC is SCRCT (Scroll count). Setting it to FFH ensures
permanent scrolling. The contents of hold2 control the printer (see

337).

The following code is used by CR (See 35).

USE
PREV
#BUFF
+BUF

UPDATE

PUSHBC. A=2. CALL 1601.A =
2DH. RST 10
A = (hold2). fA=0
then go to 277.
CALL 1601. A = 0D. RST10.
POP BC. (5C8C) = FFH.
Goto NEXT1.
TOS = (Oldest block buffer)
TOS = (Last block buffer)
TOS = (Number of disc buffers)
Stack: Addr+132
Stack: Addr+ 132 true flag if
Addr+132 = LIMIT
0BRANCH 0006 If false flag go to 282
DROP FIRST  Substitute FIRST
DUP PREV @ —Compare with PREV.

(Leave addr flag)

LIT0084 +
DUP LIMIT =

EMPTY-BUFFERS

DRO
BUFFER

PREV@ @ TOS = contents of PREV
LIT 8000 OR

PREV@'! Set bit 15 of contents of PREV.
FIRST LIMIT

OVER - Stack: FIRST LIMIT-FIRST
ERASE Clear buffer area to zero.
LIMIT FIRST

(DO) From First to LIMIT — 1;
LIT7FFF 1! Set 7FFF at (i)

LIT 0084 Step 132

(+LOOP) FFF2 Loop to 285

OOFFSET ! SetOFFSETto0

USE @ DUP >RStack: (USE) TORS: (USE)
+BUF Advance to next buffer.
OBRANCH FFFCIf PREV go to 288

USE! Mark as in use
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289

290 BLOCK

291

292

293

294 LO
295 Hi
296 R/W

R@0< If last buffer updated (negative)
set true flag.

0BRANCH 0014 If false flag go to 289.

R2+R@ (USE) = (USE) + 2. ((USE))
LIT 7FFF AND Zero msb

0R/W Wiriter buffer to disc.

R! Set (USE) as written
RPREV! Set PREV = USE

R>2+ Leave (USE) + 2

OFFSET @ + Stack: blockno + offset

>R Transfer to TORS

PREV @ DUP  Stack: PREV PREV

@ Stack: PREV (PREV)

R - DUP STACK: PREV (PREV)—-TORS

+ Stack: PREV+(PREV)—-TORS

OBRANCH 0034If zero go to 293

+BUF 0= Move to nextbuffer. True if PREV

O0BRANCH 0014 Go to 292 if false.

DROP Discard buffer address

R BUFFER See above (Blockno+offset
provides data)

DUP Duplicate address

R1R/W Read into last buffer

2-— Modify address

DUP@R-  Compare buffer data with TORS

DUP + Double TOS

0= Reverse flag state

OBRANCH FFD6If false flag go to 291

DUPPREV! SetPREV

R> DROP Discard TORS

2+ Advance address

TOS = DO0O (Start of RAM-disc)
TOS = FBFF (End of RAM-disc)

>R TORS = direction flag
(0=write,1=read)

B/BUF * Stack: addr block*128

LO + Stack: addr block*128 + D000

DUP H! > True flag if limit exceeded

LIT 0006 Error 6

?ERROR Report error if true flag

R> Clear TORS. Direction flag
onTOS

0BRANCH 0004 Go to 297 if false

SWAP

115



297

298 FLUSH

299

300 LOAD

*301 -->

*302 (tick)

303 BACK
*304 BEGIN

*305 ENDIF

*306 THEN
*307 DO

308 LOOP

B/BUF

CMOVE
#BUFF

1+

0 (DO)
BUFFER DROP
(LOOP) FFF8) Loop to 299

DUPO = True flag if match
LIT 0009 Error number 9
?ERROR Report error if true
(load from screen 0)
BLK @ Read block number
>R Block no to TORS
IN@ >R INto TORS
OIN! IN=0
B/SCR* Screen*B/SCR
BLK! Write to BLK
INTERPRET
R>IN! Restore IN
R>BLK! Restore BLK
?LOADING Error if not loading
OIN! IN=0
B/SCRBLK @ B/SCRBLK
OVER B/SCR BLK B/SCR
MOD BLK rem of BLK/B/SCR
— BLK +! BLK = BLK + BLK — rem
~FIND 0— Search for name. Reverse flag
0 ?ERROR Error 0 if not found.
DROP Discard length byte
LITERAL
HERE —, Store addr - HERE
?COMP Error if not compiling
HERE 1 Identifies loop point.
Sets PAIRS ref = 1
?COMP Error if not compiling
2 ?PAIRS Error if PAIRS ref not 2
HERE OVER - Stack: a HERE-a
SWAP! Write link span.
ENDIF The words mean the same.
COMPILE (DO)
HERE 3 Identify loop point.
PAIRS ref = 3
3 ?PAIRS Error if PAIRS ref not 3

COMPILE (LOOP)
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Copy a buffer-full as instructed.

*309 +LOOP

*310 UNTIL

*311 END
*312 AGAIN

*313 REPEAT

*314 IF

*315 ELSE

*316 WHILE

317 SPACES

318

319 <#
320 #>

321 SIGN

BACK Calculate backward link span.
3 ?PAIRS Error if PAIRS ref not 3
COMPILE (+LOOP)
BACK Calculate backward link span.
1 ?PAIRS Error if PAIRS ref not 1
COMPILE OBRANCH
BACK Calculate backward link span
UNTIL The words mean the same
1 ?PAIRS Error if PAIRS ref not 1
COMPILE BRANCH
BACK Calculate backward link span.
>R >R TOS, 20S to return stack
AGAIN
R> R> TOS,20S restored
2 - Convert PAIRS ref from 4 to 2.
(See WHILE)
ENDIF
COMPILE OBRANCH
HERE
o, Reserve space
2 PAIRS ref = 2
2 ?PAIRS Error if PAIRS ref not 2.
COMPILE BRANCH
HERE
0,
SWAP
2 ENDIF 2 PAIRS ref = 2
IF2+ Execute IF, then increase PAIRS
refby 2.
0 MAX Ensure positive value
-DUP Duplicate if non-zero
0BRANCH 000C End if TOS = 0
0 (DO)
SPACE Output space.
(LOOP) FFFC Loopto 318
PADHLD! SetHLD = PAD
DROP DROP  Discard balance of number
HLD @ Read HLD
PAD OVER — Stack: HLD PAD-HLD
ROT Bring sign to TOS
0< True if TOS less than 0
OBRANCH 0008 if TOS = 0 then end.
LIT 002D Minus sign code
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HOLD Store at HLD
322 # BASE @ Stack: XY BASE
M/MOD Stack: rem double-quotient
ROT Stack: double-quotient rem.
LITO009 OVER Stack: double-quotient rem
9rem.
< TOS true if rem exceeds 9
OBRANCH 0008 Go to 323 if false.
LIT 0007 + Add 7 to rem
323 LIT 0030 + Add 48 to form ASCII code
HOLD Store at HLD
324 #S # See above
OVEROVER  Stack: double-number
double-number
ORO= True flag if number = 0
O0BRANCH FFF4 If false go to 324
325 D.R >R SWAP OVERStack: Y XY (XY double number)
TORS =n
DABS Make XY positive
<##S Set up number in PAD
SIGN #> Add sign
R>OVER —  Stack: addr count n-count
SPACES Output n-count spaces
TYPE Output number
Note that the number is reduced to zero by #S, so the sign has to be
determined from the copy of V.
326 R >R nto TORS
S——>D Sign extend to double number.
R> Restore n
D.R Above
327 D. 0 Call for a zero-length field.
D.R See above
SPACE Add a space
328 . S-->D Sign extend to double number
D. See above
329 ? @. Print contents of address
specified on TOS
330 U. 0 Form double number, unsigned
D. See above
331 VLIST LIT 0080
ouT! OUT =128
CONTEXT @ @Contents of CONTEXT on TOS
332 ouT @
LIT 001F

118

333

334 LIST

335

336
337 LINK

338 CLS

339 .CPU

LIT 0008 Stack: (CONTEXT) OUT 318
- > True flag if OUT exceeds 23
OBRANCH 000A If false flag go to 333
CROOUT! Newline. OUT =0

DupP Duplicate pointer

ID. Output name
PFALFA@  Read linkfield
DUPO= True flag if zero
?TERMINAL  True flag if BREAK

OR Either true flag effective
O0BRANCH FFDOIf false flag loop to 332
DROP Drop last address
DECIMAL

CR Newline

DUP SCR! Set chosen screen

(") text Output'SCR # '

. Output screen number
LIT 0010

0 (DO)

CR Newline

| Line number

LIT 0003 .R Print in a three-space field
SPACE Add a space

ISCR@

.LINE Output stored line

?TERMINAL  True if BREAK

0BRANCH 0004 If false go to 336

LEAVE

(LOOP) FFE2 Goto335

CR Newline
POPHL.A=L.IfA+0thenA=3
(hold2) = A. Go to NEXT1
PUSH BC. A=2. CALL 1601.
CALL 0D6B A=2. CALL 1601.
POP BC. Go to NEXT1

(.”) text Output “48K SPECTRUM "

At this point, an area is reserved for tape headers of the form:
03 44 49 53 43 20 20 20 20 20 20 FF 2B 00 D0 20 20

DI

sC

03 44 49 53 43 20 20 20 20 20 20 FF 2B 00 D0 20 20

DI
340 (TAPE)

S C

POP HL. PUSH BC. PUSH IX.
A = L. HL = D00O. IX = (start of
header area). A = (5C72).

119



341

342

343

344
345
346
347
348

349

350
351

MON

TEXT

LINE

LOADT
SAVET
VERIFY
2DROP
2SWAP

SIZE

FREE
FORGET

CALL 075A. POP IX. POP BC.
Go to NEXT1

A = (5CBO0). If A = 0 then RST08

Else go to NEXT1

HERE

C/L1+ Stack: HERE C/L+1

BLANKS Set up a line of spaces at HERE

WORD Set string at HERE

HERE PAD C/L

1+ CMOVE Copy complete line to PAD

DUP Stack: Line Line

LIT FFFO AND Limitto 15

LIT 0017 Error number 23

?ERROR Error if non-zero

SCR@ Read current screen

(LINE) Set up line address and account

DROP Drop length count.

1(TAPE)

FLUSH 0 (TAPE)

2 (TAPE)

DROP DROP

ROT >R Stack fromabcdtoacd
bon TORS

ROT R> Stack:cdab

HERE

0 +ORIGIN — TOS = HERE — ORIGIN

SP@ HERE — TOS = SP — HERE

CURRENT @

CONTEXT @ — TOS = CURRENT — CONTEXT

LIT0018 Error number 24

7ERROR Report error if non-zero

! TOS = PFA of word to be
forgotten.

DUP Duplicate

FENCE @ U< True flag if PFA below FENCE

LIT 0015 Error number 21

?ERROR Error if TOS true.

DUP NFA Duplicate PFA and substitute
NFA for copy.

DUP! DP = NFA

LFA @ Convert PFA to LFA and read link.

CURRENT @! Setlink at location defined
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by CURRENT.

Note that no actual erasure occurs. Because the pointers have
been reset, new entries will over-write the debris.

352 INDEX

353

354
355 TRIAD

356

357
*358 EDITOR

359 (space)

360 WHERE

CLS
1+ SWAP

(DO)
CR
13 R

SPACE
0l.LINE
?TERMINAL

Clear screen
Reverse parameters,
incrementing end.

Newline

Output screen number in a
three-space field.

Add a space

Output line 0 of screen |
Set true if BREAK

OBRANCH 0004 Go to 354 if no BREAK.

LEAVE
(LOOP) FFEG
CLS

3/

3+

30VER +
SWAP

(DO)

CR

ILIST
?TERMINAL

Terminate loop

Loop to 353

Clear screen

Divide screen number by 3.
Multiply by 3. (Result x)
Stack: X X+3

Stack: X+3 X

Newline
List screen |
TOS = 1if BREAK

OBRANCH 0004 If no BREAK go to 357

LEAVE
(LOOP) FFFO

Dupr
B/SCR/
DUP SCR!

(") text
DECIMAL .
SWAP C/L
/MOD
c/L*

ROT
BLOCK +
CR
C/LTYPE
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Terminate loop

Loop to 356.

Execute code at 164
Execute 225

Links to last item in EDITOR
vocabulary. Calls 227
Stack: IN BLK BLK

Stack: IN BLK BLK+B/SCR
Set SCR from TOS.

Stack unchanged.

Output “SCR # ”

Output screen number.
Stack: BLK INC/L

Stack: BLK rem quotient
Stack: BLK rem line

Stack: rem line BLK

Stack: rem line-+addr
Newline

Type line.



361

362

363

364

365

366

367

368

CR

HEREC@ -~

SPACES
LIT 005E
EMIT
EDITOR
QuIiT

Newline (Stack: rem)
Stack: rem — (HERE)
Output TOS spaces

Code for upward arrow
Output character

Select EDITOR vocabulary
Return control to user.

This very useful routine may be called following an error to find the
location of the error. It sets EDITOR mode and clears the stacks.
This is the start of the EDITOR vocabulary. This item links on to
the start of the FORTH vocabulary via entry 227. In VLIST, with the
EDITOR selected, the EDITOR vocabulary appears first, followed
by the FORTH vocabuiary.

#LOCATE

#LEAD

#LAG

-MOVE

R# @
C/L /MOD
#LOCATE
LINE
SWAP
#LEAD
DUP

>R

+
C/LR>

LINE

C/L
CMOVE
UPDATE
LINE PAD
C/LDUP
PAD C!
CMOVE

LINEC/L
BLANKS
UPDATE
DUP 1 —
LIT O0OE
(DO)
ILINE
11+
—MOVE

1+
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Read cursor location

Stack: column line

See above

Stack: column addr

Stack: addr column

See above

Stack: addr column column

TOS to TORS

Stack: addr+column

Stack: addr+column C/L column
Stack: addr+column
C/L—column

Stack: addr1 addr2

(TOS = address of line)

Stack: addr1 addr2 C/L

Copy one line from addr1 to addr2

Stack: Line-addr PAD+1

Stack: Line-addr PAD+1 C/L C/L
Stack: 1st PAD location set to C/L
Copy one line from Line-addr

to PAD.

Stack: addr C/L

Fill line with spaces

Stack: Line Line—1
Address of line |

I+1
Copy line | to line I+1

369

370

371

372

373

374

375

376

LIT -1
(+LOOP) FFFO
E

D DUP
H
LIT 000F
DUP ROT
(DO)
11+ LINE
[
—MOVE
(LOOP) FFF4
E

M R# +!
CR SPACE
#LEAD TYPE
LIT 005F
EMIT
#LAG TYPE

#LOCATE .
DROP
T DUP
c/L*
R# !
DUP
H
oM
L SCR@
LIST
oM

R PAD 1+ SWAP
-MOVE

P 1 TEXT
R

I DUP
S
R

Go to 368

Erase line
Stack: Line Line
Copy line to PAD

Stack: 15 15 Line
Address of line |+1

Copy line |+1toline |

Go to 370

Erase line 15.

Add TOS to cursor position.
Newline, space

Output text to cursor

Code for underline

output code

Output text from cursor to
end of line.

Output line number

Discard column.

Stack: Line Line

Stack: Line Line*C/L

Set cursor position to line start.
Stack = Line Line

Copy line to PAD -
Output line. (cursor at left end)
Read current screen number
List that screen

Display cursor line.

Stack: PAD+ Line
Copy line from PAD to
specified line.

Set text in PAD. (Delimiter is 1)
Copy text to specified line.

Stack: Line Line
Spread at Line
Copy line from PAD

Note that R and | are not unique. While the EDITOR is effective, the

FORTH meanings are replaced.
several EDITOR definitions.
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377 TOP
378 CLEAR

379

380 COPY

381

382 —-TEXT

383

384
385

386
387 MATCH

OR#! Set cursor position to zero.

SCR! Set screen from TOS

LIT00100 Sixteen iterations

(DO)

IE Eraseline |

(LOOP) FFFA Goto 379

B/SCR* Stack: SCR1 SCR1*B/SCR

OFFSET @ + Add OFFSET

SWAP Stack: SCR2*B/SCR+OFFSET
SCR1

B/SCR* Stack: SCR2*B/SCR+OFFSET

SCR1*B/SCR (= AB)
B/SCR OVER + Stack: A B B+B/SCR

SWAP Stack: AB+B/SCRB

(DO)

DUP Stack: AA

1 BLOCK Address of block |

2-! Wirite A to address—2

1+ Stack: A+1

UPDATE

(LOOP) FFEE Loop to 381

DROP Discard A

FLUSH Copy updated buffers to
RAM-disc.

SWAP Stack: Addr1 Addr2 Count

—-DUP Duplicate TOS if non-zero

OBRANCH 002A If zero go to 386

OVER + Stack: Addr1 Addr2
Addr2+Count

SWAP Stack: Addr1 Addr2+Count
Addr2

(DO)

DUP Stack: Addr Addr

CeliC@ - Stack: Addr (Addr)—(l)
OBRANCH 000A If zero go to 384

0= True flag if zero
LEAVE

BRANCH 0004 Go to 385

1+ Increment address

(LOOP) FFE6  Loop to 383
BRANCH 0006 End

DROP 0= Discard address. Set false flag.
>R >R Stack: Addr1 Count1.
(Addr2 Count2 on RS)
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388

389

390 1LINE

391 FIND

392

394 DELETE

2DUP

R> R> Stack: Addr1 Count1 Addr1
Count1 Addr2 Count2

2SWAP Stack: Addr1 Count1 Addr2
Count2 Addr1 Count1

OVER + Stack: Ad1 Ct1 Ad2 Ct2 Ad1
Ad1+Ct1

SWAP Stack: Ad1 Ct1 Ad2 Ct2
Ad1+Ct1 Ad1

(3]0))

2DUP Stack: Ad1 Ct1 Ad2 Ct2 Ad2 Ct2

| =TEXT Stack: Ad1 Ct1 Ad2 Ct2 flag

0BRANCH 001A If false go to 389
>R 2DROP R> Discard 20S,30S

— | SWAP —

0SWAPOO

LEAVE Terminate loop

(LOOP) FFDC Loop to 388

2 DROP SWAP

0= Reverse flag

SWAP

#LAG PAD Stack: cursor toEOL PAD

COUNT Stack: cursor toEOL PAD count

MATCH

R# +! Update cursor position.

LIT 03FF

R#@ < True if cursor position less than
03FF

OBRANCH 0012 If zero go to 392

TOP Zero cursor position.

PAD HERE

Cc/L1+

CMOVE Copy from PAD to HERE,
C/L+1 bytes

0 ERROR Report error 0

1LINE See above

0BRANCH FFDEIf zero go to 391

>R #LAG Stack: Cursor toEOL nto TORS.

+R- Stack: Cursor toEOL—n

#LAG Stack: Cursor toEOL—n
Cursor toEOL

R MINUS Add to stack —n

R# +! Add —n to cursor position

#LEAD +

SWAP
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395 N
396 F

398 B

399 X

400 TILL

401 C

402

CMOVE

R> BLANKS

UPDATE

FIND Search

oM Display

1TEXT Textto PAD

N Find next

PAD C@ Read length from PAD
MINUS Negate

M Add to cursor position.
1 TEXT Text to PAD

FIND Locate

PAD C@ Read length from PAD
DELETE Delete last n characters
oM Display line

#LEAD + Line-+column

1 TEXT Text to PAD

1LINE

0= Reverse flag

0 7ERROR Error if true

#LEAD + Line+column

SWAP —

DELETE

oM Display line

1 TEXT Textto PAD

PAD COUNT  Modify references
#LAG

ROT OVER Stackabctobcac
MIN >R

RR# +! Add TORS to cursor position.
R->R

DUP HERER

CMOVE

HERE #LEAD

+ R>

CMOVE

R>

CMOVE

UPDATE

oM Display line

| This completes the EDITOR vocabulary. When the vocabulary is
enabled, dictionary searches start with the C entry. The NEXT entry
below links on to WHERE (360)

NEXT Constant returning address of
link 3
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403
404

405 INP

406 OUTP

407 SCREEN

408 AT

409

410

411 BORDER

412 BLEEP

413 PAPER

414

PUSHHL Constant returning address of

link 2
PUSHDE Constant returning address of
link 1
POP HL. PUSHBC. BC=HL IN
A, (C).POPBCH=0.L=A.
PUSH HL. Go to NEXT1
POP HL. POP DE. PUSH BC.
BC = HLA = E. OUT (C).A.
POP BC. Go to NEXT1
POP HL. POP DE. PUSH BC.
PUSHIX.C=E.B=L.
CALL 2538. CALL2BF1.A =
(DE).H=0.L=A.POPIX.
POP BC. PUSH HL. Go to NEXT1.
ABS DUP Stack: line col col

LIT 001F >
OBRANCH 0008 If col not greater than 31 go to 409
2DROP Clear stack

BRANCH 0022 End.
SWAP ABS DUPStack: col line line

LIT 0015 >

OBRANCH 0008 If line not greater than 21
goto 410

2DROP Clear stack

BRANCH 000C End

LIT 0016

EMIT Output 22

EMIT Output line

EMIT Output col
POPHL.PUSHBC.A=L.
CALL 2297. POP BC.
Go to NEXT1
POP HL. POP DE. PUSH BC.
PUSH IX. CALL 03B5. POP IX.
POP BC. Go to NEXT1.

ABS DUP

LIT 0009 >

OBRANCH 0008 If parameter not greater than 9
goto414

DROP Clear stack

BRANCH 0088 End

DUP

LIT 0009 =
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415

416

417 ATTR

418 POINT

419 INK

OBRANCH 001A If parameter not 9 then go to 415
LIT 5C91 Address of PFLAG

C@ Read PFLAG

LITOOBOOR  Setbit3

LIT5C91C!  Writeto PFLAG

DROP Discard parameter.
BRANCH 0064 End

DuP

LIT 0008 =

OBRANCH 001A If parameter not 8 then go to 416
LIT 5C8E Address of MASKP
C@ Read MASKP
LITOO38OR  Setbits 3,4,5

LIT 5C8E Address of MASKP
DROP Discard parameter.
BRANCH 0040 End

LIT 0008 * Multiply parameter by 8

LIT5C8DC@ Read ATTRP
LITO0C7 AND Zerobits 3,4, 5
OR OR parameter
LIT5C8DC!  Writeto ATTRP
LIT5C91 C@ Read PFLAG
LIT 007F AND Zerobit7
LIT5C91 ! Write to PFLAG
LITSCBEC@ Read MASKP
LITO0C7 AND Zerobits 3,4,5
LIT 5C8E ! Write to MASKP
POP HL. POP DE. PUSH BC.
PUSHIX.C=E.B=L.
CALL 2583. CALL 1E94.H = 0.
L= A.POPIX. POP BC.
PUSH HL. Go to NEXT1
POP HL. POP DE. PUSH BC.
PUSHIX.C=E.B=L. A=L.
If A is not less than HOH then
A =AFH, B = A. CALL 22CE.
CALL1ES4. H=0.L=A.
POP IX. POP BC. PUSH HL.
Go to NEXT1.
ABS DUP
LIT 0009 >
OBRANCH 0008 If parameter not greater than 9
go to 420
DROP Discard parameter.
BRANCH 0082 End
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420

421

422

423

424

425

426

FLASH

BRIGHT

DUP

LIT 0009 =

0BRANCH 001A If parameter not 9 then
goto421.

LIT5C91C@ Read PFLAG

LITO0200R  Setbit5

LIT5C91C!  Write to PFLAG

DROP Discard parameter

BRANCH 005E End

DUP

LIT 0008 =

0BRANCH 001A If parameter not 8 then
goto422

LITSCBEC@ Read MASKP

LIT00070OR  Setbits0, 1, 2.

LITSCBEC!  Write to MASKP

DROP Discard parameter

BRANCH 003A End

LITSC8DC@ Read ATTRP

LIT OOF8 AND Zerobits 0, 1, 2.

OR OR parameter.

LIT5C8DC!  Write to ATTRP

LIT5C81C@ Read PFLAG

LIT OODF AND Zerobit5

LIT5C91! Write to PFLAG (Word write)

LITSCBEC@ Read MASKP

LIT OOF8 AND Zerobits0, 1, 2.

LIT 5C8E ! Write to MASKP (Word write)

0BRANCH 0018 If parameter 0 then go to 424

LITSC8DC@ Read ATTRP

LITOOBOOR  Setbit7

LIT5C8D ! Write to ATTRP (Word write)

BRANCH 0014 End

LIT5C8DC@ ReadATTRP

LIT Q07F AND Zero bit7 |

LIT5C8D!  Write to ATTRP (Word write) -

OBRANCH 0018 If parameter O then go to 426 |

LIT5C8DC@ Read ATTRP

LITOO40OR  Setbit6

LIT5C8D! Write to ATTRP (Word write)

BRANCH 0014 End

LITSC8DC@ Read ATTRP

LIT OOBF AND Zero bit6

LIT5C8D! Write to ATTRP (Word write)
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427 GOVER

428

429 INVERSE

430

431 NOT
432 I
433 J

434 2CONSTANT

435

436 2VARIABLE

437
438 U.R

OBRANCH 0016 If parameter 0 go to 428
LIT5C91C@ Read PFLAG

20R Set bit 1

LIT5C91! Wirite to PFLAG
BRANCH 9914 End

LIT5C91C@ Read PFLAG

LIT OOFD AND Zero bit 1

LIT5C91! Write to PFLAG (Word write)
OBRANCH 0018 If parameter 0 go to 430
LIT5C91C@ Read PFLAG
LITOO0O8B8OR  Setbit3
LIT5C91 ! Write to PFLAG
BRANCH 0014 End
LIT5C91C@ Read PFLAG
LIT 00F7 AND Zero bit3
LIT5C91! Write to PFLAG (Word write)
0= Synonyms.
HL = (RSP) + 2. DE = (HL).
PUSH DE. Go to NEXT1.
HL = (RSP) + 4. DE = (HL).
PUSH DE. Go to NEXT1.
CREATE
SMUDGE
HERE 2! Write double number.
LIT 0004
ALLOT Reserve four more bytes.
(;CODE) Link to following code.
INC DE. Exchange DE,HL.
HL = HL + 2 DE = (HL).
PUSHDE.HL = HL — 2.
DE = (HL). PUSH DE.
Goto NEXT1.
2CONSTANT
(,CODE) Link to following code.
INC DE. PUSH DE. Goto NEXT1.
>ROR> Make 20S double number
(unsigned)
D.R
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2SWAP
2DUP

>R >R
2SWAP
R> R>

439 20VER

Stack:abcdbecomescdab
Stack:cdabab

abtoreturn stack. Stackcdab
Stack:abcd

Restoreab

In early issues, this contained an error, inthat the last two words were >R
instead of R>. To correct the error, locations 7F4E and 7D50 need to be

changed from 6173 to 6188.
440 EXIT >R DROP

Discard TORS.

This word needs to be used with extreme care.

441 PLOT

442

443 X1

444 Y1

445 INCX

446 INCY

447 DRAW LITS5C7EC@
DUP 0 SWAP
Yt2!
— DUP ABS
ROT
LIT5C7D C@
DUP 0 SWAP
X121
— DUP ABS
ROT MAX

POP HL. POP DE. PUSH BC.
PUSHIX.C=E.B=L.lfHorD
is non-zero go to 442.

If L exceeds AFH go to 442.
CALL 22DF

POP IX. POP BC. Go to NEXT1.
Adouble variable used by DRAW
Adouble variable used by DRAW
Adouble variable used by DRAW
Adouble variable used by DRAW
Read LASTY

Stack: xy LASTY O LASTY
Store 65536*LASTY in Y1.
Stack: x y—LASTY
y—LASTY(abs) x

Stack: y—LASTY
y—LASTY(abs) x

Read LASTX

Stack: y—LASTY y—LASTY(abs)
x LASTX 0 LASTX

Store 65536*LASTX in X1
Stack:y—LASTY y—LASTY(abs)
x—LASTX x—LASTX(abs)
Stack: y—LASTY x—L ASTX
(greater of absolutes’

131



448

449

450

451

452

*453 CASE

*454 OF

>RDUPO<  Stack:y—LASTY x—LASTX flag
O0BRANCH 0012 If x—LASTX positive go to 448
ABS 0 SWAP  Stack: y—LASTY 0

x—LASTX(abs)
R M/MOD Divide 65536*(x—LASTX) by
greater of absolutes.
DMINUS Negate quotient
BRANCH 000A Go to 449. Stack: y—LASTY
rem double-quotient.
0SWAPR Stack: y—LASTY 0 x—LASTX
M/MOD Divide 65536*x—LASTX by
greater of absolutes.
INCX 2! Store quotient in INCX
DROP Discard remainder
DUP 0< Stack: y—LASTY flag

OBRANCH 0012 If y—LASTY positive go to 450

ABS 0 SWAP  Stack: 0 y—LASTY(abs)

R M/MOD Divide 65536*(y—LASTY(abs))
by greater of absolutes.

DMINUS Negate quotient

BRANCH 000A Go to 451.

0SWAPR Stack: 0 y—LASTY

M/MOD Divide 65536*(y—LASTY) by
greater of absolutes.

INCY 2! Store quotientin INCY

DROP Discard remainder

R>1+0

(DO)

X1@ Read upper half of X1

Yi@ Read upper haif of Y1

PLOT

X12@ Read X1

INCX 2@ Read INCX

D+ X12! Store double sum in X1

Y12@ Read Y1

INCY 2@ Read INCY

D+ Y12! Store double sumin Y1

(LOOP) FFD8 Loop to 452

?COMP Error if not compiling

CSP @ Read SP hold

ICSP Set SP hold from SP

LIT 0004 PAIRS reference

LIT 0004

?PAIRS Check pairing
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*455 ENDOF

*456 ENDCASE

457

458
459 INKEY

460

461 INIT-DISC

462 UDG

COMPILE OVER

COMPILE =

COMPILE OBRANCH

HEREO,

COMPILE DROP

LIT 0005 PAIRS reference
LIT 0005

?PAIRS Check pairing
COMPILE BRANCH

HEREO,

SWAP 2

ENDIF

LIT 0004 PAIRS reference
LIT 0004

?PAIRS Check pairing
COMPILE DROP

SP@ Read SP

CSP @ Read SP hold

= 0=

OBRANCH 000A if SP = SP hold go to 458
2 ENDIF

BRANCH FFEC Go to 457

CSP! Set SP hold from TOS
PUSHBC. CALL028E.C = 0.
If A # 0 go to 460.

Else call 031E. If no carry go
to 460. DEC D. E = A. CALL 0333.

L=A.H=0.POPBC.

Go to NEXT1.

LIT DOOO

LIT FF2B

BLANKS Clear D000 — FF2B to
space codes

LITSC7B@  Read UDG
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INDEX

The first number against each word is a link in Appendix A.

FORTH Vocabulary

! 77 21,24 .R 326
ICSP 146 46 / 253
# 322 42 /MOD 252
#> 320 43 0 90
#BUFF 280 53 1 91
#S 324 42 2 92
: 302 71 3 93
( 229 50 o< 62
(.") 173 41 0= 61
(;CODE) 160 70 OBRANCH 8
(+LOOP) 13 73 1+ 124
(ABORT) 205 46 2+ 125
(DO) 14 69 21 79
(FIND) 19 — 2@ 76
(LINE) 258 — 2CONSTANT 434
(LOOP) 9 69 2DRCP 347
(NUMBER) 198 — 2DUP 71
(TAPE) 340 49 20VER 439
* 251 19,20 2SWAP 348
*/ 256 19,20 2VARIABLE 438
*/MOD 255 19,20 . 80
+ 63 4,5 ; 82
+1 72 21 ,CODE 161
+- 241 17,20 S 56
+BUF 281 54 < 132
+LOOP 309 39 <# 319
+ORIGIN 100 47 <BUILDS 162
, 128 — = 131
— 130 13,14 > 135
—_ 301 49 >R 58
—DUP 138 39 ? 329
—FIND 204 42 2COMP 149
—TRAILING 169 43 ?CSP 152
. 328 9,11 ?ERROR 147
174 41 7EXEC 150
.CPU 339 43 ?LOADING 153

.LINE 259 54 ?PAIRS 151

11,12
19,20
19,20
47
a7
a7
47

37
17,19
17,20
21,24
21,24
22
15
15,18
15,16
15
22,24
32,35
32,36
70
70

42
72

16
21,24




HEX

HI

HLD
HOLD

|

r

ID.

IF
IMMEDIATE
IN

INDEX
INIT—DISC
INK
INKEY
INP
INTERPRET
INVERSE
J

KEY
LATEST
LEAVE
LFA
LIMIT
LINE
LINK
LIST

LIT
LITERAL
LO

LOAD
LOADT
LOOP

M*

M/
M/MOD
MAX
MESSAGE
MIN
MINUS
MOD
MON
NEXT

158
295
123
193

15
432
209
314
223
1
352
461
419
459
405
216
429
433

33
141

57
142

97
343
337
334

213
294
300
344
308
249
250
257
247
260
245

65
254
341
402

11,12
53
43
43
39
39
43
38
7
43
50
49

25

44

45

12

25

39

44
84,34
40
32,34
53

54

3
59,49,50
30,71

53

49

49

39
18,19,20
18,19,20
17,20
17,20
46

17,20

14

19,20
2

NEXT1
NEXT2
NFA
NOOP
NOT
NUMBER
OF
OFFSET
OR
ouT
OUTP
OVER
PAD
PAPER
PFA
PLOT
POINT
PREV
PUSHDE
PUSHHL
QUERY
QuIT

R

R#
R/W
R>

RO
REPEAT
ROT
RP@
RP!
S—>D
SO
SAVET
SCR
SCREEN
SIGN
SIZE
SMUDGE
SP!
SP@
SPACE

144
83
431
201
454
114
50
112
406
67
194
413
145
441
418
279
1404
2403
184
230
60
122
296
59
102
313
136

55
240
101
345
112

321
349
157
53
52
137

32,34
47

4

16,19
42
45
15,16

25
32,34
26

RIIER

50,53,40
16
51
55
16
46
40
15
46

14
46
49

25
42
47
33,34

16

?STACK
?TERMINAL
@
ABORT
ABS
AGAIN
ALLOT
AND
AT
ATTR
B/BUF
B/SCR
BACK
BASE
BEGIN
BL
BLANKS
BLEEP
BLK
BLOCK
BRANCH
BRIGHT
BORDER
BUFFER
C!
C/L
C,
ce
CASE
CFA
CLS
CMOVE
COLD
COMPILE
CONSTANT
CONTEXT
COUNT
CR
CREATE
csp
CURRENT
D+

215
34
74

233

243

312

127
49

408

417
98
99

303

118

304

94
129
412
110
290

425
409
287
78
95
129
78
453
143
338
36
239
154
84
115
165

210
121
116

64

21,24
40
17,20

22,24
16,19
25

AR

11,12
39

24,25

LEEY

25
25

21,24

70
21,24
4“1
32,34

24,25
47
47
22,24

16
70
46
70
14

D+-

D.

D.R

DABS
DECIMAL
DEFINITIONS
DIGIT
DLITERAL
DMINUS

DUP
EDITOR
ELSE
EMIT
EMPTY BUFFERS
ENCLOSE
END
ENDCASE
ENDIF
ENDOF
ERASE
ERROR
EXECUTE
EXIT
EXPECT
FENCE
FILL
FIRST
FLASH
FLD
FLUSH
FORGET
FORTH
FREE
GOVER
HERE

242
327
325

159
228

16
214

307
163
108
119
447
286

70
358
315

32
284

28
311
456
305
455

191
206

440
176
107
188

96
423
120
298
351
226
350
427
126

17,20
10,11
11,12
17,20
11,12

7
14
39
72

10,43,44
26

15

45,49




SPACES 317 16 USE 278 54

STATE 117 45 USER 88 47

SWAP 69 15,17 VARIABLE 86 21,24
TEXT 342 55 VERIFY 346 49

THEN 306 39 vLIST 331 3350
TIB 103 13 VOC-LINK 109 —

TOGGLE 73 242534  VOCABULARY 224 74

TRAVERSE 139 32,34 WARM 236 47

TRIAD 355 50 WARNING 106 46,50
TYPE 166 43 WHERE 360 46

U< 133 38 WHILE 316 40

U 38 13,14 WIDTH 105 71

u. 330 10,11 WORD 195 41

U.R 438 11,12 X 185 71

U/MOD 42 13,14 XOR 51 20,18
uDG 462 26 [ 155 70

UNTIL 310 -40 [COMPILE) 212 7

UPDATE 283 55 ] 156 7@

EDITOR Vocabulary

#LAG 363 52 FIND 391 52

#LEAD 362 52 H 365 51

#LOCATE 361 52 | 376 51

—MOVE 364 52 L 373 519

—TEXT 382 52 M 371 51

1LINE 390 52 MATCH 387 52

B 398 51 N 395 51

C 401 51 P 375 51

CLEAR 378 51 R 374 51

COPY 380 51 S 367 51

D 369 51 T 372 51

DELETE 394 52 TILL 372 51

E 366 51 TOP 377 5t

F 396 51 X 399 51
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