2 Spectrum Graphics and Sound

own right, but are dedicated to the task of providing a specific video
game.

Arcade games can be presented on a home television by using a
dedicated video games console, such as the type made by Atari.
These units also use a microprocessor but unlike the arcade machine
they can generate a wide selection of games. In these machines the
computer program for each different game is supplied in a cartridge
which is plugged into the games console unit.

Computers as games machines

A home computer, such as the Spectrum, can also be turned into an
arcade games machine provided that it has a good graphics display
capability. Here the computer is programmed to display a real time
moving picture of the game situation with perhaps rockets,
spaceships and aliens moving rapidly around the TV screen. Colour
and sound are also important constituents for such games and in fact
the Spectrum can perform quite well on all of these points.

A major advantage of the home computer compared with a video
game unit is that you can invent your own arcade games and
program them into the computer using either BASIC or machine
code. Having written the program it can then be saved on a cassette
tape for future use.

Apart from arcade type games here are many other varieties of
game that can be played on a computer. These range from simple
number guessing games up to complex games such as chess. Of these
games one of the more popular types is the adventure game.
Variations on this theme include maze games and the role playing
games like Dungeons and Dragons. In adventure games the player
explores a mysterious world, moving from location to location
seeking treasures, fighting monsters and solving riddles. The
computer itself acts as your puppet telling you what it can see and
carrying out actions such as picking up objects. The Dungeons and
Dragons versions allow the player to adopt the role of various
characters as he explores.

In most adventure type games the locations are described by
written text on the screen and these are generally referred to as ‘text’
adventures. Adventure games can be greatly enhanced by actually
showing on the TV screen a picture of the current location of the
explorer rather than just having a written description. It is also
possible to show pictures of various objects or treasures that may be

GRAPHICS
AND SOUND

SPECTRUM

E—

Introducing Graphics 3

in the explorer’s current location. In some versions, the explorer
may be allowed to examine a selected object in detail. Here the
image of the object is expanded to fill the screen.

A simpler variant of the adventure game is the maze. Here the
explorer is dropped into the middle of a maze and has to find his way
to the exit. Simple versions describe the possible directions of travel
in words but a more attractive version shows a picture of what the
explorer can see when he looks alongthe path heis on. By drawing a
perspective view looking along the corridor in the maze the side
turnings can be shown in fairly realistic form. As the player moves
the picture on the screen 1s updated to show the view from the new
position. The ultimate in this type of game is a three dimensional
maze where the explorer may be able to move not only forward,
backward, left and right, but also up and down through various
levels of the maze.

Other uses for graphics

Games are, of course, a pleasant pastime but most computer owners
and users eventually use the computer for more serious activities as
well. For many applications a chart or graph can be much more
effective than a list of numbers in showing how a business or any
other activity is progressing. Graphs and charts are also important
in scientific applications where we want to display the results of a
scientific experiment or the information gained from a poll or
survey. The various types of display of results, such as bar charts, pie
charts and conventional graph plots, can all be produced quite
eftectively on the Spectrum.

Drawing on a computer using a high resolution graphics display is
another application. We might perhaps produce technical drawings
such as plans, electronic circuit diagrams, or book illustrations.
Many modern drawing offices use computer aided techniques for
drawing and designing which are provided by a set of programs
called a compuier aided design (CAD) package. We might use
similar techniques to show the apparatus and demonstrate the
results of a physics or chemistry experiment. This could be very
useful where the actual equipment required would be very
expensive. Here the computer simulates the actual experiment and
the display might show the various stages in the progress of the
experiment giving readouts of perhaps temperature, pressure, etc.

4 Spectrum Graphics and Sound

Computer graphics can of course be used purely as an art form.
Here the computer will be producing pretty patterns, handling
colour and perhaps producing perspective views. Using techniques
for displaying solid objects it becomes pessible to draw an object
and then view it from different directions. The shape can then
perhaps be modified and the result viewed until the desired effect is
obtained.

The video display

Modern home computers, including the Spectrum, use a television
screen to provide a display of output from the computer program.
This may use the domestic television receiver oralternatively aspecial
television monitor designed for use as a computer visual display unit
(VDU). The monitor type display is particularly useful for colour
displays and will give clearer and steadier pictures since the
electronic techniques normally used in television broadcasting and
reception do tend to degrade the graphics picture. At this stage it
might be useful to take a look at the way in which the actual display
1s produced on the screen.

Although the image on the television screen looks like a steady
complete picture it is actually traced out by a single moving dot
which sweeps very rapidly across the screen in a series of horizontal
lines. As the dot moves across the screen it also moves rather more
slowly down the screen so that as each successive line is produced it
falls just below the last one traced out on the screen. When the
bottom right corner of the screen is reached the dot moves quickly
back up to the left-hand top corner and the whole scanning process
is repeated again. The scanning operation goes on continuously with
the dot sweeping down the screen every fiftieth of a second. The total
number of scan lines i1s 625,

When we view this display our eyes are unable to see the dot
moving because it travels so fast and the eye does not respond to
things that change faster than about 20 times a second. The screen
material is also designed so that as the dot moves along, the points
which were lit do not switch off immediately but fade out in about i,
of a second. As a result we see the whole picture as if it were present
on the screen continuously. To reduce flickering the scan lines are
interlaced. What happens 1s that on one sweep down the screen the
dot traces out every other line, say the odd numbered lines, then on
the next sweep it fills in the gaps by tracing out the even numbered

Introducing Graphics B

lines. This gives a flicker rate of 50 per second which the eye cannot
see, whereas tracing all of the lines once every 145 second could
produce a noticeable flicker which might be distracting to the
VIEWET.

As the spot sweeps over the screen its brightness can be varied so
that a pattern of light and dark dots appears and these make up the
picture that we see. A colour television display has a special screen
with dots giving red, green or blue light, arranged in tiny triangular
groups. Three separate scanning beams operate inside the tube
which select red, green and blue dots respectively. By using
combinations of red, green and blue light from each set of three dots
any point on the screen can be set to any desired colour.

Text displays

When you switch on your Spectrum computer it will display a white
screen with black text written on it. Before going on to look at
graphics displays it might be useful if we take a look at the way in
which a typical home computer generates the display of printed text
symbols on the TV screen.

For displaying text the screen is effectively divided up into an
array of small rectangular spaces, each of which 1s called a symbol,
or character, space. In each of these symbol spaces on the screen a
single letter, number or other symbol can be displayed. When
presenting text the Spectrum computer divides its screen up into a
total of 24 horizontal rows with 32 symbols across each row. As we
shall see later two rows of the display are reserved for use by the
computer, leaving 22 rows for the normal text display.

If the text symbols on the screen are examined closely it will be
seen that each letteri1s made up from a small array of individual dots.
The Spectrum uses an array consisting of eight rows of eight dots
each within the character space. Now the shape of the text symbol
can be produced by lighting up some of the dots and leaving the
others dark. An example of this isshownin Fig. |.|. By selecting the
required patterns to be displayed in each symbol space the complete
picture can be built up on the screen. The Spectrum prints its text as
black letters and these normally appear against a white background.
In this case, the dots picking out the shape of the letter are turned off,

Since the complete picture is traced out fifty times a second we
need to have some data, representing all of the text to be displayed,
held somewhere in memory so that the display logic can call up the

6 Spectrum Graphics and Sound

Fig. 1.1. The dot pattern matrix used to display text symbols.

dot patterns as it needs them to produce the screen display. The
usual arrangment of the display system is shown in simplified form
in Fig. 1.2. A section of memory, usually called the display memory,
is used to hold data which defines the text symbols that are to be
displayed. Typically an 8 bit data code is allocated to each of the
symbols that can be displayed. Each memory location also contains
8 data bits so that each text symbol takes up one location in the
display memory.

The dot patterns making up the different symbols are held in a
special memory device called a character generator. This is basically
a memory device but unlike the normal computer memory the data
patterns are permanently written into it when it is made and they
cannot be erased or changed. Such a memory is called a Read Only

| |
Character : :
Video Uideo put
Generator - ‘F Ceneratar Y
ROM ;
i
L
{
|
Pisplay . .- Control i
i —)
Memory : iogic ;
|

Fig. 1.2. Basic system arrangement for a computer text display.

Introducing Graphics 7

Memory or ROM, When the character code is applied to the
character generator it selects the appropriate pattern of dots and the
data representing the dots can then be read out to generate the video
signals that will produce the actual dots on the screen.

As the picture is traced out the data for each character space is
read [rom the display memory and this is used to call up the required
dot pattern from the character generator. The dot patterns are then
converted into a video signal similar to that which produces our
familiar television pictures, and when this is fed to a television
receiver or monitor the text display is produced on the screen. The
actual electronic logic required is quite complex and in most
computers a special dedicated integrated circuit or ‘chip’ is used to
control the generation of the screen display.

The Spectrum is rather different from most other computers in
the way it produces its text displays. Like the other machines it does
have a section of memory which permanently contains the dot
patterns for the set of symbols that can be displayed. However,
instead of storing the code for a text symbol in its display memory,
the Spectrum stores the actual dot pattern. Thus when a character is
called up for display its dot pattern is copied from the character
generator into the display memory. Because each symbol pattern
contains eight rows of dots the screen display memory 1s much larger
that one where only the character code is stored. In fact the memory
used in the Spectrum is eight times larger than it would be using
conventional techniques. As we shall see however this technique has
advantages, especially where high resolution graphics pictures and
text symbols are to be mixed on the display screen.

Mosaic graphics

In the early days of computers, graphs and pictures were often
produced by actually using text symbols to make up individual
points in the picture. Some letters will appear brighter than others
because of their shape, so by carcfully choosing the letter placed at a
point, the image may be made light or dark. If the resultant page ot
text is viewed from a sufficient distance then it will show a picture,
since the viewer’s eyes will not be able to resolve the individual
letters. This technique does not work particularly well on the
Spectrum because there are not enough symbols on the screen to
give a usable picture.

Using the normal text symbols to produce pictures 15 not

8 Spectrum Graphics and Sound

particularly effective and many home computers have additional
special symbols in their character set to allow pictures to be drawn
on the screen. These special symbols might contain a segment of a
line running vertically, horizontally or diagonally through the
character space. Other symbols might display corner or T-junction
shapes or even curved lines. By carefully placing these special
symbols on the screen quite detailed drawings and pictures can be
produced. Other special symbols available might include such things
as playing card symbols or even pictures of chess pieces. Some
computers allow the user to create custom symbols by storing the
dot patterns in the main computer memory rather than in a special
character generator ROM.

This technique of using special graphics characters to build a
picture can be rather restricted unless a very wide selection of special
symbols is used. The Spectrum does not provide special graphics
symbols as standard but there is a facility by which the user can
create special symbols to his own design.

There 1s an alternative and more flexible approach to the
production of low to medium resolution graphics displays. The
Spectrum makes use of what are known as mosaic graphics symbols
similar to those used for producing graphics displays on the teletext
and viewdata services. Once again an extra set of special graphics
symbols is used, but in this case the character space is divided up into
a pattern of four small blocks. Each of the block elements may be lit
or dark to form a coarse pattern within the character space. Figure
1.3 shows typical examples of mosaic graphics symbeols. In much the
same way as the special line graphics symbols were used, the block
patterns of the mosaic symbols can be built up to form a picture. this
technique gives a rather coarser looking picture than the use of
special line segment symbols but it is more flexible,

e L
ol

Frg. 1.3. Typical mosaic graphics symbols as used on the Spectrum.

In the Spectrum each symbol space is divided up into four smaller
blocks. If each block can be either black or white there are sixteen

introducing Graphics 9

different patterns of blocks that can be produced within the text
symbol space. By carefully choosing the block patterns within the
text spaces it is possible to produce a picture on the screen. Here we
have a rather crude form of television picture. On the Spectrum
machine this type of graphics display provides a resolution of 64
dots across the screen and 44 down the screen.

Although the Spectrum normally produces black text symbols it
is possible to display the text and mosaic graphics symbols in eight
different colours and it is also possible to set the background colour
of each symbol space to any one of the eight colours. Thus we are
able to produce quite colourful pictures using this form of graphics
display. To get some idea of the resolution and colour capability of
the mosaic graphics display try running the program listed in Fig.
1.4.

189 REM Mo=aic graphics demo
11 LET xu=15

120 LET y=1@

139 FOR j=1 TO 15

146 INK INT (RND+7)

158 LET k=j

160 IF k>1@ THEW LET k=10
17¢ FOR i=1 TO j

18@ PRINT AT wy+k,.x+ijCHRE 1303
19¢ PRINT AT y+k.x—-isCHR$ 1293
200 PRINT AT y—k,x—i3CHR% 132;
21¢ PRINT AT y—k.x+ii;CHR% 134;
226 NEXT 1

236 FOR i=1 TO k

246 PRINT AT y+i,x+jiCHRE 1303
250 PRINT AT y+i,x-jiCHR$ 129;
269 PRINT AT y—i,x—jiCHR$ 132;
276 PRINT AT y—i,x+3CHR$ 1363
280 NEXT 1

290 NEXT ;

28 FOR n=1 TO 5e%

31¢ LET i=INT (RND¥*1i&)

320 LET i=INT (RMD®*1@)

339 INE INT (RND%®7)

348 PRINT AT v+j.x+ii;CHR$ 130;
320 PRINT AT v+j.x—1isCHR% 1279;
6@ PRINT AT y—ij.x—ij;CHR® 132;
378 FRINT AT v—j.x+iiCHR$ 136;
389 HNHEXT n

Fig. 1.4. Program demonstrating the mosaic graphics on the Spectrum.

10 Spectrum Graphics and Sound

Using mosaic symbol graphics to draw lines, or even to place a
point at some specific position, can become quite complex as we shall
see in the next chapter. The Spectrum can be programmed so that
individual mosaic blocks can be selected and either lit or turned off
to produce a pattern or even a picture. There are however some
limitations in the use of colour when this technique is used but
nevertheless some quite attractive displays can be produced.

One advantage of the mosaic symbol graphics is that since they
can be printed on to the screen in the same way as text symbols, it is
easy to mix text and graphics on the display.

Special characters and graphics

A technique used on some computers for producing graphics is to
have a special set of graphics symbols such as horizontal, vertical
and diagonal lines. There might also be curved lines and even special
symbols such as the suit signs for playing cards. By carefully
selecting and placing these special symbols on the screen better
looking graphics than the mosaic type can be produced.

The Spectrum has a facility for producing such custom or do-it-
yourself symbols. For these special symbols the dot patterns can be
set up in a reserved area of the main computer memory and will be
retained there whilst the computer remains switched on. Unlike the
normal text symbols, however, the patterns will be lost when the
computer is turned off. The dot patterns are transferred to the main
screen memory in the same way as those of the normal text and
mosaic graphics symbols.

Sometimes a larger graphics pattern, with perhaps a dot array of
16 X 16 dots may be required and can be built up from a group of
standard size symbols.

High resolution pixel graphics

As we have already seen, the text symbols on the screen are
themselves produced by selectively lighting dots within each symbol
space on the screen. The available dot patterns are, however, fixed
since they are governed by the sets of dot patterns held in the
character generator.

Suppose we had an alternative display mode where we could
control the states of the individual dots in every character space on

Introducing Graphics 11

the screen. In the Spectrum each text symbol is made up from 8 rows
of dots in each row. With 32 character spaces across the screen this
gives 32 X 8 or atotal of 256 dots across the screen for the horizontal
or X resolution. Although there are in fact 24 displayed rows of text
on the screen, the bottom two rows are reserved for use by the
computer when it displays messages so that only 22 rows are
available for use as a display. Since the character space is 8 dots high
and there are 22 rows of text there will be 8 X 22 or a total of 176 dots
down the screen,

1o6¢ REM Hi-—res graphics demo
11 LET x=@

120 LET y=@

1?5 REM Draw vertical lines
1Z6 FOR w=1 TO 27

146 FPLOT x.v

15¢ DRAW 9,175

168 LET x=x+w

i7¢ NEXT w

13e LET x=@

185 REM Draw horizontal lines
i9¢ FOR h=1 TO 1%

20¢ FLOT x,v¥

219 DRAW 255.9

228 LET vy=y+h

23a NMEXT h

2535 REM Draw diagonal lines
24a PLOT 8,8

250 DRAW 255,179

266 PLOT 0,175

270 DRAW 255,-175

275 REM Draw border

280 FLOT 9,9

290 DRAW 255,06

ZHo DRAW @,175

Zle DRAW —-255,9

Z2e DRAW ©,-175

Fig. 1.5 Program demonstrating high resolution graphics on the Spectrum.

The individual dots in each character space are generally referred
to as pixels (picture elements) and this mode of graphics 1s called
pixel graphics or high resolurion graphics. Figure 1.6 gives an
example of the type of display that can be produced using the high
resolution graphics capability of the Spectrum. In fact many of the

12 Spectrum Graphics and Sound

illustrations in this book were actually generated by the Spectrum
and then printed out on a dot matrix printer.

Rwanddl

.
Tw

»

Fig. 1.6. Screen display produced by the program of Fig. 1.5.

In the following chapters of the book we shall explore the facilities
of both low and high resolution graphics and discover the
techniques of drawing shapes, painting in colour, creating new
symbols and producing graphs or charts, We shall also look at the
principles of animatien and the creation of perspective and pseudo
three-dimensional displays.

Chapter Two
Low Resolution Graphics

Let us start on our exploration of Spectrum graphics by looking at
the low resolurion graphics which effectively use the text display
screen.

Using text symbol spaces

In the early days of computers all output from the computer was
printed out as text symbols on a printer and there were usually no
facilities for providing graphics displays, Programmers overcame
this limitation by using text symbols as the individual picture
elements to build up a graphics picture. Symbols such as M or W
would produce a dark grey shade whilst a full stop gives a very light
coloured picture element. By carefully choosing the type and
position of the text symbols a picture could be built up on the paper
which would look quite good, provided that it was viewed from a
sufficient distance to ensure that the text symbols could not be
picked out individually. Using this technique quite respectable
pictures of animals or the faces of well known personalities can be
produced. This technique doesn’t work very well on the Spectrum
display screen but could be used if an 80 column printer were
interfaced to the computer and a printout of perhaps 100 lines of text
were used to build up the picture. This would give some 8000
individual picture elements in an area of about 8 X 10 in. on the
paper and, if viewed from about eight feet, the resultant pictures can
be quite impressive. A similar technique has been used to print
pictures on tee shirts using a computer.

To produce horizontal lines the — sign or an underline symbol
could be used and vertical lines were generally made up by using
capital I letters printed one above the other in the same column on
the printout.

14 Spectrum Graphics and Sound

Mosaic graphics symbols

Let us now explore further the set of symbols that can be produced
by the Spectrum by running the program shown in Fig. 2.1(a). This
produces all of the symbols with character codes from 32to 164. The
codes from 0 to 32 are used for control purposes and do not
normally produce symbols on the screen. Codes above 164 are used
by the Spectrum’s BASIC interpreter to translate the stored
program instructions into printed words when it lists a program. To
save memory space the actual BASIC commands are stored in
memory as single data words known as rokens. The character codes
above 164 will therefore print out as command words such as
PRINT, GOSUB and so on.

1o FEEM FPrint out character set
116 REM with codes +rom 32 to 1464
120 CLS

138 FRINT

140 FOR n=32 T4 1564

13¢ PRINT CHE® ns" "3

166 NEXT &

Fig. 2.7(a) Program to print the standard character set of the Spectrum.

I - O T A R S
b 1l & 2 4 5 &6 Y 889 : ; ¢ = s 7
2 H B C D EFGHTUIWEHELMMD
P O R3S T U UL XY Z [~ 1+ _
f:abc?efghihir%lp.mrru
o = AR O N TN ¥ (R £ FE
I BN B R Y
< BECDEFGHTIELMHMNDILGDPR

i = 5 T UJ

Fig. 2.1{5). Display produced by the program of Fig. 2.1(a).

The first action of the program in Fig. 2.1(a} is to clear the screen by
using the command CLS which sets the working area of the screen to

fow Resotution Graphics 15

white. Next the symbols are printed out by using a simple loop
operation and a PRINT CHR§ n command. The CHR$ n command
causes the symbol with character code n to be printed on the screen,
Note the semicolon at the end of the command line. If this is not
included the Spectrum will still print out all of the symbols but it will
display one per line and after the first 22 symbols the display will
need to be scrolled by pressing the Y key to get the next 22 symbols.
The semicolon allows characters from successive PRINT commands
to be printed one after another on the same line.

After the set of text symbols vou will notice that there 15 a set of
symbols which are made up from small blocks. These are the mosaic
graphics symbols. You will see that in these block graphics symbols
the symbol space is divided into four segments and each segment
may be either black or white giving a total of sixteen different
patterns. Each pattern has a character code number and these run
from 128 to 143. By simply selecting the appropriate character code
using a CHR$ cxpression in a PRINT statement we can produce any
one of the sixteen block patterns as required.

Figure 2.2 shows the complete set of block patterns and their
corresponding character codes.

[128] 138
[V 1z2s W 137
130 1] 138
™ 132 P 139
o 132 m| 140
[i3z] 141
M 134 B 14z
M 133 N 143

Fig. 2.2. The mosaic block patterns and their associated character codes.

An alternative way of printing the graphics symbols is to use the
keyboard in its graphics mode. This mode can be entered from the
normal mode by pressing the CAPS SHIFT and 9 keys together.
When you are in the graphics mode the flashing cursor on the screen
will change from a flashing L to a flashing G. To get back to the
normal mode press the CAPS SHIFT and 9 keys again.

When vou are in the graphics mode, il the keys in the top row
which carry the pictures of the graphics symbols in white, are

16 Spectrum Graphics and Sound

pressed, then the graphics symbols are printed up on the screen as
if they were normal text symbols. There are only eight symbol keys
for graphics so to get the second eight graphics patterns the CAPS
SHIFT key is pressed as well as the symbol key in the same way as
for producing capital letters in text. To print out graphics symbols in
a program they are simply enclosed between quotes signs after the
PRINT command exactly as if they were normal text symbols.

Adding colour to the display

Thenitial black and white display of the Spectrum is quite useful for
displaying text because it is similar to our familiar black printed text
on white paper. However, the Spectrum is capable of much more
colourful displays and these are particularly attractive when used
with graphics.

To change the colour of the dots making up a symbol on the
screen we can use the command INK which is obtained by pressing
the CAPS SHIFT and SYMBOL SHIFT keys together to get the
extended keyboard mode and then pressing the X and CAPS
SHIFT keys together to get the INK command. The command INK
is followed by a number from 0 to 9 which sets the new INK colour.
Any new symbols printed on the screen will now be displayed in the
newly selected colour but those symbols already being displayed
remain unchanged.

The colours produced by the number following the INK
command are as follows;

0 Black 5 Cyan

1 Blue 6 Yellow

2 Red 7 White

3 Magenta 8 Transparent
4 Green 9 Contrast

The colour cyan is a pale blue green colour which is produced
effectively by mixing blue and green on the TV screen. Magenta (red
+ blue) and yellow (red + green) are also produced by mixing red
with blue or green.

Colour numbers 8 and 9 are rather different from the others since
they do not directly specify a new INK colour. You will remember
from Chapter One that the Spectrum allocates colours to each of the
symbol spaces and stores this colour information in a separate part
of the memory from the display dot patterns. At switch on all

Low Resolution Graphics 17

character positions will be allocated INK 0 or black as the ink
colour. When INK 8 1s used the symbol will be printed in whatever
ink colour is already allocated to that particular character space on
the screen. This can be useful where perhaps different areas of the
screen are displayed in different colours. Once the initial display has
been set up any new information could be printed using INK 8 and
the colour produced will depend upon where the new text is printed
on the screen. Thus items can readily be updated without having to
decide which ink colour they should have and then switching to a
new ink colour.

If a light colour such as yellow is displayed on a white background
the text tends to be difficult to read because it is similar to the
background colour. If colour 9 is used the computer will
automatically choose either white or black text according to
whether the background colour is dark or light. Thus the text
symbols will always bein contrast to the background so that they are
easily read.

To see the effect of colour on the display we can now try running a
program which produces simple wallpaper style patterns in a range
of colours using the mosaic graphics and some of the text symbols.
This program is listed in Fig. 2.3 and a typical pattern isas shownin
Fig. 2.4.

i REM Wallpaper patterns
119 DIM ai{7)

1Z2e@ DIM c{7)

130 FOR =s=1 TO 3@

i4e CLS

159 REM Set up pattern

166 FOR p=1 TO 7

170 LET ail(p)=122+INT (RND#22)
1806 LET ci{p)=INT (7%RND)

19@ NEXT p

206 REM Print pattern

21@ LET k=Z+INT {3%RND)

228 FOR n=1 TO &72 STEF k
236 FOR ;=1 TO k

240 PRINT INK c{j})sCHR® a{(j);
208 NEXT j

269 NEXT n

2760 PAUSE 206

280 NEXT s

Fig. 2.3. Program to produce a wallpaper pattern.

18 Spectrum Graphics and Sound

£) : ¥ T c)
il i " OIlL 1
ke Wy K% " "
AL ‘iR ST c’
+lL {1h® <l IE"® & 1K
g " AR k" Ik
Lk {Mih" &1 £
1W< - ©T1 Ihe
ik ks A~ 1k
P T Th® o
{8 R ST 1
{ : G § "G Tk
R TR &1{ 3
<% T T 1
<R € B "
B tHIR® &< (]
‘T 1 ARy |
I Ay R : "
AL <18 < = o
i £ “E BEq 8
T 2 ‘Bt E

Fig. 2.4. Typical display from the wallpaper program.

The basic scheme in this program is that the computer generates a
random set of seven characters and then it takes three to seven of
these as a group and repeatedly prints them in different colours until
the sereen is filled with a pattern. Each pattern is held on the screen
fora few seconds by using a PAUSE command and then the screen is
cleared and a new pattern is drawn. The program generates a set of
20 patterns but would go on producing patterns almost indefinitely
if the size of the loop using the variables were increased.

Changing the background colour

The Spectrum starts up with a white background, black text and a
white border around the display area. If we use the screen clear
command CLS this erases any existing displayed symbols and
restores the plain white background.

As a change from white we can in fact produce a range of other
background colours on the screen by using the PAPER command
followed by a CLS command. The PAPER command is produced in
a similar way to the INK command except that the C key is used in
the extended keyboard mode. The colour numbers after PAPER
have exactly the same meanings as the INK colours,

Setting the background using PAPER and CLS clears the screen,

Low Resofution Graphies 19

s0 it is important to carry out this operation before starting to print
text or draw a picture,

Instead of changing the background colour of the whole screen we
can use PAPER to set the background of individual symbols. Thus
if we use the command PAPER 2 then all symbols printed after this
will have a background colour of red. This red background,
however, will appear only in spaces where a new symbol is printed
and the background colours of other symbols already being
displayed are unaffected.

Colour commands in PRINT statements

Sometimes we may just want to set one or two symbols to a new
colour and then return to the normal INK colour. This can of course
be done by inserting INK commands to change colour before and
after the symbols are printed. A better and more convenient method
is to include the INK command in the PRINT statement as in the
following:

200 PRINT INK2;“Red text”

which will temporarily alter the INK colour to red while the
message, Red text, is printed, but after this has been done the INK
colour will return to whatever INK colour has previously been set up
by the program. The same technique can be used with PAPER to
change the background colour of a few symbols. Note that when
INK or PAPER are used in this way a semicolon must be used to
separate the command from the rest of the PRINT statement.

Figure 2.5 shows a modified version of the wallpaper program
which uses both INK and PAPER colour changes to give an even
more colourful result.

16® REM Super wallpaper patterns
1i¢ REM with paper and ink changes
126 DIM a{(7)

136 DIM c (7}

149 DIM p(7)

15@ FOR s=1 TO 3&

16 CLS

i7e¢ FOR 1=1 TDO 7

189 LET a4{1i)}=122+INT {RNDx2Z2)
19@ LET c{i}=INT (8%RND)

200 LET p{i)=INT (RND¥*8)

20 Spectrum Graphics and Sound

210 IF pi)=c{(i} THEN 6O TO 185
226 NEXT 1

238 REM Print pattern

28¢ LET k=Z+INT {S5*RND)

25¢ FOR n=1 TD &72 STEF &k

268 FOR 3=1 TO k

276 PRINT INK c{3)s PAFPER p(3}5CHR% a(j);
2848 NEXT j

29¢ NEXT

a9 PAUSE 200

31e NEXT s

Fig. 2.5. A better wallpaper display program.

Placing symbols using PRINT AT

So far we have simply printed out rows of symbols on the screen at
the point where the text cursor is located. For serious graphics
drawing, however, it would be useful if we could place a symbol
directly in any of the available spaces on the screen.

In the text mode we can place a text symbol into any one of the
available symbol spaces by using the PRINT AT statement which
has the form:

100 PRINT AT r,c;“text”

where rand care the co-ordinates that specify the point on the screen
where we want the symbol to be displayed. The value of r can range
from 0 to 21 and specifies in which row of the display the text is
printed, starting with row 0 at the top of the screen and working
down to row 21 at the bottom of the display area. Note that PRINT
AT will not allow text to be printed into the bottom two rows (22
and 23) of the screen because these are reserved for use by the
computer itself. The variable ¢ indicates how far across the screen
the text symbol will start, with 0 at the left edge, going acrossto 31 at
the right edge of the screen.

With 22 rows and 32 columns in each row there are a total of 704
symbol spaces on the screen. Starting at the top left corner the r,c co-
ordinates are 0,0. As we move across each row c increases from 0 to
31 and as we move down the screen rincreases from 0 to 21 as shown
in Fig. 2.6.

The program listed in Fig. 2.7 selects character codes at random
and then prints the corresponding symbol at a random position on

Low Resolution Graphics 21

2,e @,31

=1,8 21,31
Fig. 2.6. The screen layout for printing using PRINT AT commands.

the screen. Here the ¢ and r numbers are generated by multiplying
the function RND by 32 and 22 respectively. The RND function
produces a number between 0 and 1 although it will never actually
produce the number 1. The values for ¢ and r should be integers so
we apply the INT operation to the calculated results. The effect of
applying INT is to chop off any fractional part of the number leaving
us with an integer. Since RND never quite reaches | the result for the
c calculation will be a number ranging from 0 to 31 which is just what
we need for the column position number ¢. The value of ris similarly
rounded down to give a number from 0 to 21.

1906 REM Printing symbols at random
1i@ REM positions using PRINT AT
i2eé FOR n=1 TO 1648

125 REM Set row and column position
136 LET r=INT {RNDx323}

135 REM Set ink colour

140 LET c=INT (RND®*32}

152 IMNE INT {(RND=7}

1095 REM Select symbol code

160 LET s=9&+INT {(RND*48)

i£5 REM Print symbol on screen

176 PRINT AT r,csCHR$ =3

18¢ NEXT n

Fig. 2.7. Program to draw symbols at random positions using PRINT AT.

22 Spectrum Graphics and Sound

Setting individual mosaic points

Since the mosaic graphics displays divides each character space into
two rows and two columns we now have a graphics screen which is
64 dots wide and 44 dots high. To use this effectively, however, we
must be able to set or reset the states of individual blocks within each
character space.

If we examine the coding of the mosaic symbols it will be seen that
each of the four blocks in the character space has a numerical value
and these are shown in Fig. 2.8. To find the character code for a
particular pattern of blocks we simply add together the values of the
blocks that are lit (INK colour) and add the result to 128.

! 1

{1

Lif

d.

Fig. 2.8. The numerical values of the block elements in mosaic graphics
symbols.

On our 64 X 44 dot screen we can define the position of a dot by
using X to measure its position across the screen starting from the left
edge and y for its position down the screen starting from the top.
Thus x runs from 0 to 63 and y from 0 to 43.

To find the required row and column position for the mosiac
symbol we simply divide y and x respectively by 2 and take the
integer values. As an example if we chose x=33 and y=25 the row
value r would be:

r= INT(y/2) = INT(12.5) = 12
and the column ¢ would be:
¢ = INT (x/2) = INT (16.5) = 16

It now remains to choose the correct symbol so that the dot is in the
correct place. Starting with the x position if ¢ = x/2 the block needs
to be at the left side of the character space and this gives a symbol
pattern value of 2. If ¢ <> x/2 the block is at the right side and the

Low Resolution Graphics 23

pattern value is 1, In the y direction if r = y/2 the block is in the
upper part of the character space and the pattern value is the one just
calculated from the x position, Otherwise the block is in the lower
part of the space and the pattern value needs to be multiplied by 4 to
give the correct pattern.

To convert from x,y values to a character position and code we
can now use the following short routine:

509 LET c = INT (x/2)

516 LET r = INT (y/2)

520 LET p = 1|

539 IF ¢ = x/2 THEN LET p = p*2
5453 IF r <> y/2 THEN LET p = p*4
550 PRINT AT r,c; CHR} (128+p);

56 RETURN

This works fine when we start with a blank screen but problems
occur when a new dot is to be printed into a character position where
a dot is already being displayed. The new mosaic symbol that we
print will effectively erase any symbol already at that position. So we
need to be able to check which dots are already lit within the symbol
space and then add the new dot if required to produce a new symbol
for printing.

Because the Spectrum stores dot patterns, rather than character
codes, in it5 display memory we cannot simply use PEEK to discover
which symbol is being displayed as might be done with other types of
computer. In fact the Spectrum does have a command called
SCREEN$ which will give the character code for the symbol
displayed at any character position on the screen. The only problem
is that it does not work with the mosaic graphics codes.

All is not lost, however, because we can adopt the same type of
scheme used by other computers and set up an array p(c,r) which will
store all of the symbol codes that we print to the screen. Now by
calling up the appropriate row and column in the array we can find
out the code at any character position.

In the array we actually store the value of the blocks in the
graphics symbol, which is the character code minus 128. The pattern
code for the symbol at our selected character position is checked to
see if the dot we want to plot i1s already lit ornot. If it is lit then 128 is
added to the pattern code p(c,r) to get the character code for
printing. If the dot is not lit the code for that dot is added to p(c,r)
and the new value stored and then this code is used to produce the
character code for printing.

24 Spectrum Graphics and Sound

At this point we can produce a subroutine which will plot a point
at any X,y position on the mosaic graphics screen. Thisis used in the
program of Fig. 2.9 to plot a pattern of random dots on the screen.

REM Handom mosaic dots

DIM p{32,22)

FRINT AT 9.6: "Setting up array™s
FOR v=1 T0O 2Z22: FOR x=1 TO 322

iEd pix,vi=0

NEXT m=2 MEXT v: CLES

REM Plet dots

FOR ni=1 T0 S8

LET x=INT (RNDx*x4&4)

LET w=INT (RND¥44)

2o MK INT (RND*B)

Zig O SUR Soo

220 NEXT n

236 STOP

429 REM Dot plotting subroutins

o208 LET r=IMT (y/2)

19 LET c=INT (=272}

w2 LET pl=l

a3 IF c=x/2 THEM LET pl=plixl

349 IF r<>y/2 THEN LET pl=plx4

oo LET pl=pi{c+i_r+i}

Sae IF pZ<8 AND pil=8 THEN 6O T0 &4
o792 IF pZ>=8 THENM LET pZ=p2-8

g 1IF pZ<4 AMD pi=4 THEN G0 TO 446
S92 IF pZ>=4 THEM LET pZ=p2-4

H£08 IF p2<2 AND pi=2 THEN GO TO &49
HiIe IF pZr=L THEN LET pZ=p2-2

Gra IF pZ<l AND pi=1 THEN BGBO TO &40
&Ee GO TOo &50

549 LET pl{cti,r+l)=pi{c+i,rt+ll)+pt

o0 FRINT AT r,csCHRS {(1Z284p{c+l,r+1}3)3
L6 RETURN

Fuk bk ok ok
NI N B I N

L B I

bk bk ek ek
| O
oy G

1

=

[T

<0 0

Fig. 2.9. Program to display random dots using.mosaic graphics symbols.

Drawing lines

To draw a line on the low resolution screen we could work out the
positions of all the points that need to be lit by first drawing the line
on a piece of squared paper representing the screen grid. Each

Low Resolution Graphics 2%

square that the line passes through is one that needs to be lit and its
x.y co-ordinates can be rcad off from the grid. These co-ordinates
are then used in the point plotting subroutine to ink in the required
points and draw a linc on the screen. This i1s a rather tedious process
and it is much easier to let the computer to do the job automatically.
All we shall need to tell the computer are the x and y co-ordinates of
the two ends of the required line. Drawing horizontal and vertical
lines is relatively straightforward.

Suppose we want to draw a horizontal line between two points,
x| and x2. Now because the line is horizontal, the y co-ordinate
will be the same at each end of the line, Since each point represents
one step in the value of x the number of points we have to plot 1s
determined by the difference between x1 and x2.

Figure 2.10 shows a program which will draw a horizontal line.
The change in the value of x between successive dots along the line
must be 1 so we can set the x step value xs =1. If we assume that x|
and x2 can be anywhere on the screen the result of calculating
x2 — x| could be negative and in that case we make xs = —1. The
number of points along the line is n = ABS(x2 —x1). Since we are
using n in a loop the ABS function is used so that if x2 — x1 is
negative n will still be positive.

The line is actually drawn by a simple loop operation where s steps
from | to ns and on each pass through the loop a point is set on the
screen. The x valuc for each point is calculated by adding s*xs to
the value of x1. S starts at 0 so that the first point plotted is at x1.

Drawing a vertical line on the screen follows a similar procedure,
but this time the y values of the points change as we move along the
line while x stays constant. The program for this is shown in Fig.
2.11. In effect the x and v terms have simply been transposed in the
program.

One point to note is that if two lines, drawn with different ink
colours, cross one another some points on the original line may
change colour. This is because of the restriction that there can be
only one ink colour in any character position on the text screen.
Remember that although we are setting individual points they are in
fact only blocks within the mosaic symbols and a symbol will have
all blocks the same colour. If a new point is set within a space where
some of the other blocks are already set to INK colour then they will
all change colour to the current INK colour.

26 Spectrumn Graphics and Sound

iod REM Horizontal mosaic linss
11 DIM p(32,22%

129 FRINT AT 9,05 "Seltting up array™s
13@ FOR w=1 TO 22: FOR x=1 TO0 32
148 LET pilu,yi=0

159 NEXT x: NEXT v: O0LS

i60 REM Draw lines

179 FDR n=1 10 5&

175 REM Sest start and end points
186 LET x1=INT {(RND*&54)

19 LET xZ2=INT {(RND*&54)

Za3 LET w1=INT {(RND=x44)

265 REM 5=t drawming direction

212 LET x#=s=00M {x2-u1}

Zi5 ReEM S

229 LET ns=0BE {x2-xl}

238 FOR ==1 T4 ns

249 LET u=ul+s#xs

208 LET y=vyi

=269 BUO SUE 500

27@ MEXT s

8¢ INK INT (RND®*7)

272 NEXT n

Joa GTOP

420 REM Dot plotting subrocutine

Sea LET r=INT (y/2)

519 LET c=INT (x/2)

028 LET pi=i

o550 IF c=x/2 THEN LET pl=pl+2Z

oS40 IF raxy/2 THEWN LET pl=pl*4

S50 LET pl=plc+l,r+1)

S68 IF p2<8 A8ND pl=8 THEN GO TO0 540
572 IF p2x=8B THEN LET pZ=p2-8

Sge IF p2<4 AND pil=4 THEN GG TO 440
596 IF pZ2i =4 THEN LET pZ=pZ-4

66@ IF p2<2Z AND pi=2 THEN GO TO &40
616 IF plsr=¢ THEN LET pZ=p2-2

L2 IF p2<1 OND pil=1 THEN GO TO 440
&30 68 TG 656

649 LET plc+li,r+i)=spic+l, r+l)+ptl

650 FPRINT AT r,ciCHR$ {1Z2B+p(c+i,r+l));
HES RETURN

Fig. 2.10. Program 1o draw horizontal lines with mosaic symbols.

109
1i¢
124
1356
150
158
169
173
173
i8a
170
230
295
Zie
215
A
239
244

Bl =
alad

2468
276
286
296
300
49¢
S
S16
526
eIG
549
=
P L
560
5760
S5
S26
&a0
610
520
LSO

se
£50

£53

Low Resolution Graphics 27

REM Vertical mosaic lines

DIM p{32,22)

FRINT AT ¢,.6:"Setting up array™:
FOR y=1 TO Z2: FOR ==1 TO 3&

LET pix,y)=a

NEXT x: MEXT vz CLS

REM Draw lines

FOR n=1 70 5o

REM Set start and end points

LET n1=INT (RND*&4)

I.LET v1=INT (RND*44}

LET vw2=INT (RND*44)

REM Set drawing direction

LET yws=8BM (yvZ-y1l)

REM Set number of steps

1 ET ns=ABS (yZ-vyi)}

FOR ==1 7O ns

ILET n=x1l

LET y=vliskys

50 SUR Sod

NEXT s

INE INT {(RND*7}

NEXT n

STOF

REM Dot plotting subroutine

LET r=INT {(v/72}

LET c=INT {(=/2)

LET pi=1

IF ¢=x/2 THEN LET pil=pl=xZ

IF rd>y/2 THEN LET pl=pl*4

LET péd=pi{c+l,r+1}

IF p2<8 AND pi=8B THEM GO TO 544@
IF p2>=8 THEN LET pi=p2i-B

IF pZ<4 &aND pl=4 THEN GO 710 540
IF pZ2>=4 THEN LET pZ=plZ-4

IF p242 AND pl=2 THEM GO TO 440
IF pZ2>=2 THEN LET p2=p2-2

IF p2<1 AND pi=1 THEN 60 TO 440
G0 TO 658

LET plc+l,r+l)=pic+i,r+l)+pl
FRINT AT r.c3CHR® (12B4pic+l,.r+i))3
RETUIRN

Fig. 2.11. Program to draw vertical lines using mosaic graphics.

28 Spectrum Graphics and Sound

A simple sketching program

Producing pictures on the low resolution screen can be quite a
laborious business since it generally involves making the drawing on
a suitable piece of squared paper with 32 spaces across and 22 down
the sheet. Each square is then subdivided into quarters and the
individual blocks within the squares are shaded in to produce the
required picture. The symbols across each row are then converted
into a string of text symbols and finally printed to the screen to
produce the picture.

An alternative technique for producing drawings on the screen is
to use a simple sketching program working on similar lines to an
‘Etch a Sketch’ machine. In such a machine a pen can be moved over
the sheet of paper in either a horizontal or vertical direction by
means of two knobs or levers. The pen itself can be either held down
on the paper to draw a line or lifted up clear as it moves across the
sheet.

It is fairly easy to produce a program in which the pen movement
around the screen is controlled by using the arrow keys at the top of
the Spectrum keyboard. The change of state of the pen between up
and down may be controlled by using the U and D keys.

One of the first requirements here is to be able to detect which key
on the keyboard has been pressed so that the appropriate action can
be taken. This can be donec by using the command INKEYs.The
INKEY$ command will return a number corresponding to the
character code of the key that is being pressed. This command,
however, doesn’t wait until you press a key, it simply checks if a key
is being pressed at the moment it 18 executed. To monitor the
keyboard we need to set up a continuous loop action using the
following statement:

219 LET as=INKEY$:IF ag="" THEN GOTO 21

Here the string a$ 1s set to the code produced by INKEY}. If no key
1s being pressed then af will be a blank string (“ ™) and the instruction
loops back to itsell and repeats continuously. When a key is pressed
a$ is not blank and the test fails so that the program now moves on to
the next instruction.

Having detected the key press we now have to examine the value
of a$ to find out which key was pressed. We can start by checking for
the arrow keys. The actual codes for the cursor shift operation of
these keys Is obtained only when they are operated in conjunction
with the CAPS SHIFT key. On the Spectrum the four arrow keys

Low Resolution Graphics 29

are also the number keys 5, 6, 7and 8. In the normal keyboard mode
these keys will therefore produce the codes for the numbers 5, 6, 7 or
& as follows:

Left arrow 5
Right arrow 8
Down arrow 6
Up arrow 7

If right arrow 1s detected the value for x is increased by | while fora
left arrow x is reduced by 1. The y value is increased if the down
arrow 1s detected and decreased for up arrow, Tests are made to
detect x values less than () or greater than 63 since these would cause
errors in the PRINT AT command. If x is less than 0 it is set to 0 and
il greater than 63 it 1s set at 63. This gives a cutoff effect so that the
line stops at the side of the screen. Similar checks are made on the y
values to give vertical limiting.

If the D key is detected a variable w is set at | to show that the pen
is down and if U is pressed w is set to 0 to indicate that the pen is up.

ige¢ REM Sketching program

1i¢ REM for mosaic graphics

12a PRINT AT @ @;"Settlng Up SCreer array’s
1360 DIM pd{3Z2.2

ida FOR y=1 TG 22: FOR x=1 70O 32

156 LET plx,v}=06

169 NEXT 2 NEXT y: CLO

17@ LET =21=32z LET xZ=32

189 LET w1=22: LET y2=22

1926 LET w=1: LET m=xl: LET y=yi: GO S5UB 72
195 REM SBkeiching loop

266 PRINT AT 2,03 "x="ix13" y="iyls" "

218 LET a$=INKEY$: IF a$="" THEN GO TO 21@
274 IF ab="59" THEN LET =xil=xl1-1: GO TO 3ee

230 IF a$="8" THEN LET ui=xl+1l: GO TO 3ao0

Za: IF as="4&£" THEN LET vi=yi+l: GG TO 399

256 IF as="7" THEM LET vi=yil-1: 60 TO 3Ze0

268 IF ag="d" THEM LET w=i: GO TG 300

27¢ IF as="uy" THEN LET w=@: GG TO Joe

zZ28¢ IF as="g" THEN GTOF

Z29a G0 To Zoe

295 REM Check =.yv limits

Zoo IF xi<o THEN LET xi=¢

316 IF x1>63 THEN LET xl1=463

Z2@ IF w142 THEN LET yl=2

30 Spectrum Graphics and Sound

3%6 IF v1>43 THEN LET y1=43

24 LET lp=pc

So9t LET x=x1: LET vy=vyi1: GO SUB /0@
368 LET x=x2: LET y=v2Z

E79 IF w=9 AND 1lp=1 THEN GO SUE 99¢
380 LET «2=mul1: LET vyZ2=v1

I9¢ GO TO 200

£7a*REM Set dot subroutins

o8 LET r=INT (INT {(v)/2)

716 LET c=INT (INMT {(x)/2)

729 LET pi=1: LET pc=¢

73@ 1IF c=INT {x)/2 THEN LET pil=plx2
740 IF r<>INT (y)/2 THEN LET pl=pl*4
759 LET pZ=plc+i,.r+1)

769 IF p2<8 AND pi1=8 THEN &80 TO 84¢
77 IF pZ>=8 THEN LET pZ=p2-8

783 IF pZ2<4 £ND pi=4 THEN GO TO B40
7?9 IF pZ2>=4 THEN LET pZ=p2-4

gee 1IF pZ<Z AND pl=2 THEN 60 TO B4OG
gio IF pZx=2 THEN LET p2=p2-2

8Z2¢ IF p2<! AND pl=1 THEMN GO TO 8406
838 60 TO 850

849 LET plctl,r+l)=pic+l,r+1)+pl

845 LET pc=i1

859 FRINT AT r,ciCHR% {(128+pic+1,r+1));
848 RETURN

825 REM Erase dot subroutine

Feo LET r=INT (INT (y}/2)

Pi1g LET c=INT (INT {(=)/2)

G260 LET pi=1

730 IF c=INT {(x}/2 THEN LET pil=pl1x2
49 IF r<>INT (y)/Z2 THEN LET pi=plx4
2?59 LET p2=plc+l,r+1)

6@ IF p2>=8 AND pi=B THEN GO TOQ 1640

279 IF p2>=8 THEN LET pZ=p2-8
98¢ IF p2»>=4 AND pl1=4 THEN GO TGO 1040
99@ IF pZ>=4 THEN LET p2=p2-4

1oea IF p2x=2 AND pi=2 THEN GO TO 1940
1219 IF p2-=2 THEN LET pZ=p2-2

1ezZe IF p2>=1 AND pl=1 THEN GO TO 1049
1630 GO TO 1659

l1ed4a LET pic+l,r+l)=plc+i,r+1)—pl

1059 PRINT AT r.,ciCHRE {(12B+p{c+i,.r+1));
1846 KETURN

Fig. 2.12. A simple sketching program for mosaic graphics.

Low Resolution Graphics 31

[T the pen is down, a point is plotted at the new position by the
subroutine at line 5¢¢. If the pen is up the subroutineis skipped or the
dot 1s erased. The x and y position for the pen is printed at the top of
the screen. The program listing is shown in Fig, 2.12,

Producing pictures

So far we have made patterns, set individual points, drawn lines and
sketched on the screen but often you will want to produce simple
pictures. This is best done by laying out the picture on a ruled grid
and then working out which symbols have to be printed to produce
the required result,

Let us suppose we want to produce a drawing of a little matchstick
man. We shall start by deciding to draw the picture on an eight by
eight dot (four by four mosaic symbols) area of the screen and so a
simple grid is drawn up as shown in Fig. 2.13. The shapec of the man
is then built up by simply filling in a pattern of blocks within the
eight by eight array.

Picture Crharacter Ccodes

LEB+133+1d3+125

L2+ l4@+1d24+140

l23+182+142+125

125+1538+1288+135

Fig. 2.13. The mosaic symbols needed to produce a man shaped figure,
Having produced the pattern on the grid we have to turn it into a
series of character codes for printing to the screen. Remember that
each character consists of four block elements arranged asa 2 X 2
array so we can now mark out on our grid the actual character
spaces. Next we can start with the top two rows of the pattern and
convert the block patterns into four symbol codes which are shown
alongside the grid. The same process is repeated for the other rows in
the picture so that we have a total of sixteen character codes in four
groups of four.
The character codes are now stored in a 4 X 4 array variable

32 Spectrum Graphics and Sound

called a. This 1s set up by using a READ loop and a set of DATA
statements. Once the array is set up all we haveto dois decide where
we want the man drawn on the screen. If we want the man to be at
row 10 and column 15 then we simply set variables r and ¢ to 10 and
15 respectively. Note that these co-ordinates indicate where the top
left corner of the pattern will be printed.

Having chosen the position the man can be printed by simply
using two loops which run from 1 to 4 and these call up the elements
of the array a as required. The variables for these loops are 1, which
counts off column positions, and j, which counts off row positions.
To get the row and column positions for the PRINT AT statement
we simply add jtoranditoc, Sincetheiandjvalues startat 1, to get
the correct position on the screen, | should be subtracted from the
r+j and c+1 values. Note the semicolon at the end of the PRINT AT
line which allows the next symbol to be printed in the following
space. The final program to print out little matchstick man becomes

as shown in Fig. 2.14.

i REM Figure of a man

118 REM using mosaic graphics
iZ2e¢ DIM a{4,.4)

125 REM Se=t up mosaic symbols
13@¢ FOR i=1 TO 4

149 FOR i=1 70O 4

159 READ afi,)

1&0 NEXT i

172 MEXT 3

i8a DATA 128,133%,143,128

12¢ DATA 132,.14¢,142,1430

208 DATA 128,132,142,128

219 DATA 128,138,128,138

215 REM Frint man on screen
222 VET r=18

238 LET =135

24a FOR ;=1 TO 4

256 FOR i=1 T0O 4

268 FPRINT AT r+3-1,c+i—13CHR$ a{i, ;)3
279 NEXT i

280 NEXT j

292 STOP

Fig. 2.74. Program to draw man using mosaic graphics.
If we can draw one matchstick man we can equally well draw lots
of them all over the screen. In the program shown in Fig. 2.15 this
has been done, starting with the first man at position 0,0 at the top

Fig. 2.15.

Low Resolution Graphics

199 REM Multiple man figures

119 REM using mosaic graphics

120 DIM adl{d,4}

125 REM Set up mosaic symbols

13a FOR =1 70O 4

149 FOR i=1 TO 4

i5e READ afi.j)

ise MNEXT 1

17¢@ MeXT j

18¢ DATA 128,133,143, 128

192 DATA 132,149,142,140

2a0 DATA 128,132.142,128

Z1¢ DATA 128,138,128,138

715 REM Frint men on screen

22¢ FOR r=0 TO 16 5TEF S

270 FOR =@ TO 28 S5TEF 4

248 FOR ;=1 TO 4

25¢ FOR i=1 70 4

260 PRINT AT r+j—1,c+i—1;CHR% a{i,j}s
279 MEXT 1
286 NEXT
2969 NEXT
S NEXT
31ad STOP

O e

EEEEEEEE
EEEEEEEE
EEEEEEEE
LEEEEEEE

Fig. 2.16. Display produced by the program of Fig. 2.15.

Program to draw multiple men figures all over the screen.

33

34 Spectrum Graphics and Sound

left of the screen. A point to note here is that after each man has been
drawn ¢ is increased by 4 and after each row of men has been drawn
the value of r 1s increased by 5 to leave one blank row on the screen
between each row of men.

Of course the matchstick men can be drawn at random positions
on the screen by using PRINT AT, but if this 1s done the maximum
value of ¢ must be limited to 28 and the maximum valueofrto 16 so
as to prevent the values of ¢ and r for the lower right character of the
set going beyond the screen limits which would cause anerror. Here
c and r are the column and row positions for the top left character in
the group used to draw the figure.

Chapter Three
High Resolution Graphics

For serious picture drawing the low resolution graphics modes of
the Spectrum are just not good enough, so we need to move to a
much higher level of graphics resolution. As explained in Chapter
One, the high resolution mode allows the state of each individual dot
in each character space to be controlled. Each character space on the
Spectrum screen consists of an 8 X § array of dots, so with 32
characters in each row there are 256 dots across the screen. In the
vertical direction the bottom two text rows are reserved for the
display of commands, so the high resolution screen is limited to 22
text rows giving 176 dots in the vertical direction. Thus the screen
layout in high resolution is 256 X 176.

In the computer memory the pattern of states for eight adjacent
dots in a row 1s stored as one eight bit word, so the total memory
used for high resolution is 256 X 176 divided by eight, or 5632 bytes
of memory. In this scheme each dot can be either “on’ or ‘off or, in
other words, it has either the INK (on) colour or the PAPER (off)
colour. Colours are set up by using the INK and PAPER ¢commands
in the same way as for normal text or mosaic graphics displays,

The colour information is stored in a different area of memory
and one pair of colours is allocated to each character space on the
screen. This can present some problems as we shall see later, but it
does allow all of the colours to be used on the screen at the same
time. In many other computers the colour information is stored for
cach individual pixel. Two data bits are needed for each pixel if four
colours are to be used and three bits are needed for eight colours, so
the memory becomes twice, or three times, the size required for a
black and white display. To reduce the amount of memory needed
for the display the number of colours that can be used at a time is
often limited to two or four. Computers using this technique do
permit adjacent dots to be set to different colours, which may not
always be possible on the Spectrum as we shall see.

36 Spectrum Graphics and Sound

Setting and resetting individual points

In the high resolution mode we can easily set an individual point on
the screen to a specified colour. The command for this is PLOT and
the command word is obtained by using the Q key when the flashing
K cursor is being displayed. The complete command takes the form:

100 PLOT x.,y

where x and y are the co-ordinates of the point to be plotted. The
selected point on the screen will then be set to the current INK
colour,

On the high resolution screen there are many more points than we
had on the low resolution screen, so the values of X and v can be
much larger. In fact, for the high resolution mode the x and y co-
ordinates are based upon a 256 < 176 grid. Thus x can range in value
from 0 to 255 and y can be from 0 to 175. The value of X is 0 at the
left-hand side of the screen and increases to 255 at the right-hand
edge. Unlike the text screen, the value for y is 0 at the bottom of the
picture and increases to 175 at the top of the screen. Thus the top left
corner is point 0,175 and the bottom right corner is point 255,0. The
general arrangement is shown in Fig, 3.1,

= K=2E5
=178 Y =LlTE
W =0 =255
=@ Y=

Fig. 3.1. The screen layout for high resolution graphics.
Try running the program listed in Fig. 3.2. This program selects
random values for x and y and then plots points at random
positions all over the screen,

High Resolution Graphics 37

136 REM Random dots
11@ FOR n=1 TO 1600
120 LET x=INT (RND*25&)
136 LET y=INT (RND*176&)
140 PLOT x,y

150 MEXT n

Fig. 3.2. Program to produce random dots in high resclution.

As in the text mode, the Spectrum keeps track of the position on
the screen by means of a cursor. The text cursor is generally
displayed as a flashing space but the graphics cursor is not displayed,
although, the computer does keep the current X,y position of the
cursor stored in memory. Whenever a high resolution drawing
operation is executed the cursor position held in memory will be
updated.

When the Spectrum is switched on, or after the screen has been
cleared by using CLS, the cursor is automatically placed at position
xy = 0,0. Whena PLOT command is executed the cursor position is
set directly to the value of X,y specified in the PLOT command. So
by using a PLOT command we can position the cursor wherever we
want it on the screen. In virtually all high resolution drawings
therefore the first command will be a PLOT to position the cursor.

To reset a point on the screen the command INVERSE 1 is used
before the PLOT command. This INVERSE command causes the
INK and PAPER colours to be swapped so that the dot is now
written in the PAPER colour that is already set at that point. Since
the dot is now in PAPER colour it disappears. Other dots in the
same character space are unaffected. After the PLOT, or perhaps a
series of PLOT commands, the command INVERSE ¢ must be used
to restore normal operation. The INVERSE operation may be
included in the PLOT command as follows:

150 PLOT INVERSEIL x,y:INVERSE$
We shall look more closely at INVERSE in Chapter Six.

Selecting graphics colour

At start up the Spectrum will be set up to produce black text on a
white background. High resolution dots and lines will also be
displayed as black on a white background. The drawing colour for
high resolution is controlled by the INK command in exactly the
same way as for text displays. The PAPER colour is not altered by

38 Spectrum Graphics and Sound

the PLOT command so the dot will appear against whatever
PAPER colour already exists around that point on the screen. Try
running the program listed in Fig. 3.3 which plots dots at random
positions on the screen and with a random INK colour foreach dot.

19¢ REM Random coloured dots
11¢ FOR n=1 T0O 100660

120 LET i=INT (RND%*7)
130 LET »=RND*255
149 LET y=RND#*175
159 INK 1

168 PLOT =x,vy

17& NEXT n

Fig. 3.3 Program to produce random coloured dots.

As the picture builds up you will notice that at first individual dots
appear but later whole groups of dots change colour together.
Eventually you will see that the colours form a pattern corresponding
to the text character spaces on the screen. This is because the
Spectrum stores its colour information separately from the dot
pattern. The colour information is stored in terms of text character
positions and the Spectrum will allow only one pair of colours in any
text character space on the screen. Thus when a new dot is plotted
the INK colour for the character space in which the dot is located is
set to the current INK colour. If there are any other dots already
displayed in that character space then they will change colour to the
colour of the new dot. This can impose some limitations on the
production of colour pictures using the Spectrum since adjacent
dots cannot always be plotted in different colours.

Mixing text and graphics

On some home computers the text and high resolution graphics use
different display modes and it can sometimes be difficult to mix text
and graphics on the same display. Since the Spectrum stores text
symbols as dot patterns in its display memory there is no difficulty in
mixing text and graphics on the screen. The text symbols are
produced by simply using PRINT or PRINT AT and graphics
points may be plotted over the text symbols by using PLOT
commands.

When mixing text and graphics, however, it is important to note
that whereas on the text screen the rows are numbered from top to

High Resolution Graphics 39

bottom with row 0 at the top, when we use graphics the y co-
ordinates are numbered with 0 at the bottom of the screen and y
increases as we move up the screen. Since each symbol is eight dots
wide and eight dots high the row and column values are easily
converted into x and y values by simply multiplying them by 8. Thus
to calculate x we could use the equation:

X=8*¢

To calculate y we need to correct for the difference in layout of ther
an y values which is done by using;

y=175—8*r

to calculate the value for y.

To convert from X,y to r,c values we simply have to divide x and y
by 8 and then round them down by taking the integer value using the
INT command. Note here that the INT command simply chops off
the fractional part of a number. Again a correction must be made for
the different layout of y and r so the calculations are as follows:

=INT((175-y), 8)
¢ = INT (x/8)

A point to note here is that unlike the PRINT AT command the
PLOT command has the horizontal co-ordinate (x) first.

Drawing lines

Setting points is all very well, but for most purposes we shall want to
draw lines on the screen. Whereas in the low resolution mode we had
to do this by calculating the points that had to be set and then setting
them, it is much easier in the high resolution mode because there is a
special line drawing command. This command is DRAW and is
obtained by using the W key when the Spectrum is displaying the
flashing K cursor. The form of this command is:

100 DRAW x.y

Thereisa very important difference between the X,y values used with
DRAW and those used for PLOT. In the case of PLOT the x,y
values specify the actual position on the screen. For the DRAW
command the x and y values are measured relative to the current
position of the graphics cursor. As an example, suppose we used the
command:

40 Spectrum Graphics and Sound

109 PLOT 3p,2¢

This instruction will set the cursor at position x=3@,y=2¢ on the
screen and then place a dot at that position,
If we now use the command:

11 DRAW 3¢,2¢

a line will be drawn from the point we have just plotted to a new
point 30 units to the right and 20 units up from that position. The
cursor now moves to the end of the line that has just been drawn.
This means that the cursor is now at a position where x = 60 (i.e.
30 + 30) and where y = 40 (i.e. 20 + 20).

This method of calculating positions on the screen 1s known as
relative plotting and can often make the drawing of shapes easier
since we no longer have to calculate the absolute x and y co-
ordinates for each point in the shape.

A point to note here is that both x and y in 4 DRAW statement can
be negative. A negative value for x simply means that the line 1s
drawn to the left from the current position while a negative y value
will cause the line to be drawn down from the current position.

As in the case of plotting individual dots using PLOT, the lines
produced by using DRAW are displayed in the current INK colour,

Drawing lines between specified points

In many cases we shall want to be able to draw a line between two
specific points on the screen. Let us assume that these points are
given by the co-ordinates x1,y]l and x2,y2. Since the DRAW
command uses relative co-ordinates some calculations are required
to obtain the X,y parameters for the DRAW command.

The first step in drawing the line is to place the cursor at one end of
the line, say at point x1,y1. This is easily done by using PLOT x1,y1
to place a dot at the chosen point. Next we have to calculate the x,y
values for the DRAW command. To do this we must find the
difference between x1 and x2 and also between yl and y2. Thus
x=x2—x1 and y=y2—v|. There s no need to actually calculate values
of x and y separately since this can easily be done in the actual
DR AW statement by replacing the x and y terms with expressions as
follows:

100DRAW x2—x1,y2-yl

High Resolution Graphics 41

In this statement the value of the X term becomes negative when x2 is
to the left of x1, and the y term becomes negative if y2 is below y1 on
the screen.

Having drawn a line the cursor will have moved to the far end of
the line (x2,y2) in this case). Now if we want to draw a further line
starting from the end of the line just drawn there is no need for a
PLOT command since the cursor is already in position.

Making ribbon patterns

Now that we can draw lines and control the colour of our display it
becomes possible to experiment with producing patterns on the
screen. For a start we might generate a simple moving line pattern
combined with colour changes.

The principle invelved in drawing this type of pattern is that we
start by choosing two random points (x1,y1 and x2,y2) on the screen
and then draw a line between them. Next we alter the two points bya
small amount and then draw another line. The pattern then builds
up as more lines are drawn with a small change to the values of xI,yl
and x2,y2 before each new line is drawn.

If the same change in values x and v is made at both ends of the
line then its length will remain constant and as successive lines are
drawn a ribbon of colour is produced on the screen. If different
amounts of change are made at the opposite ends of the line, the
width of the ribbon changes and it also curls as it moves around the
screen.

When the computer is working out x,y co-ordinates it is possible
that the values of x and y produced may fall outside the permissible
range. Some computers can tolerate this state of affairs and will
carry out a wraparound operation. Thus a point that goes off the
right side of the screen is automatically corrected and reinserted near
the left side of the screen. The Spectrum, however, will merely stop
the program and signal an error if either X or y goes out of range.

To deal with this possible error condition we need to test the
calculated values of x and y before using them to draw a line on the
screen. This is done by simply checking to see if x is greater than 253
or less than 0 and a similar test is carried out on y. In the pattern
drawing program when one of the points reaches an edge of the
screen the apprepriate increment for x or y is reversed in sign and the
co-ordinates recalculated. This has the effect of sending the line back
across the screen as if it had been reflected off the edge of the screen.,

42 Spectrum Graphics and Sound

190 REM Moving line pattern

112 FOR n=1 TO 2

120 LET dxi=2-INT {(S#RND)

138 LET dul22=2-INT (5*RND)

140 LEY dyi1=2-INT {(5*RND)

150 LET dy2=2-INT {(S#*RHND)

16@ LET x1=20+RND¥*Z260

170 LET y1=20+RND*13@

180 LET xZ2=20+RND#*200¢

199 LET y2=20+RND*130

2ea INEK INT (7%*RND)

219 PAFPER 7

220 CLS

238 FOR k=1 TO 500

240 FLOT x1,v1l

259 DRAW x2-x1,yZ2-vyl

260 LET xl1=xi+dxul

270 IF x1<=255 AND xi1>=@ THEN GO TO 310
289 LET dxli=—dx1i

290 LET x1=x1+dul

2889 INK INT (RND#7)

3190 LET x2Z=x2Z+dx?

320 IF x2<=255 AND x2Z2>=0 THEN GO TO 3460
330 LET du2=—dx2

346 LET x2=x2Z2+dx2

309 INK INT (RND#*/7)

36@ LET yl=yl+dyl

370 IF yi<=175 AND vyl1>=@ THEN GO TO 4190
380 LET dyli=—dvyl

2590 LET yi=yl+dyl

460 INK INT (RND*7)

410 LET y2l=y2l+dyZ

420 IF w2<{=175 AND y2>=0 THEN &GO TO 44@
430 LET dy2=—dyZ

440 LET yZ=yZ+dy?

459 INK INT (RND#*7)

4565¢ NEXT k

47% MNEXT n

Fig. 3.4. Program to produce a ribbon type pattern.

A pattern drawing program of this type is listed in Fig. 3.4. To
make the picture more colourful a different colour is selected each
time the line reaches one of the sides of the screen.

This program also demonstrates the limitations imposed by the
Spectrum’s method of storing the INK and PAPER colour

High Resolution Graphics 43

information. Because the colour controls a complete symbol space,
if a different ink colour is used in a space where some dots are
already lit then all of the dots in that space will change colour to the
new ink colour. This produces a stepped effect on the display as the
pattern is drawn over a part of the pattern that was in a different
colour. Despite this slight limitation the program will still produce
some quite attractive abstract patterns.

Producing moiré patterns

Another quite attractive type of pattern that can be produced by
using high resolution graphics is the moiré pattern. It is easy to
produce such patterns by simply choosing a random origin point on
the screen and then drawing a pattern of radial lines from that point
out tothe edges of the screen. By varying the pitch of the linesand the
position of the origin point we can generate a selection of patterns
which resemble those sometimes seen on silk or taffeta materials.
The program listed in Fig. 3.5 uses random functions to generate the
origins of the patterns and their pitch. Figure 3.6 shows a typical
pattern as produced on the screen.

1@ REM Moire patterns
110 INK ©: PAPER 7

12e FOR k=1 TO 106

130 CLS

140 LET cx=20+200xRND
150 LET cy=2Z0+13@#RND
160 LET s=2+INT {(3*RND)
17¢ FOR x=@ TO 253 STEF s
182 PLOT cu,cy

i19¢ DRAW x—cx,9—cCy

200 PLOT cx,cy

219 DRAW »-cx,175——cCy
220 NEXT u

23e FOR y=0 TO 175 STEP s
24@ PLOT cx,cy

25¢ DRAW @—cx,y—cy

266 PLOT cx,cy

27a DRAW 255—-cx,y-cy
280 NEXT vy

299 PAUSE So00

309 NEXT k

Fig. 3.5. Program to produce a simple moiré pattern.

44 Spectrum Graphics and Sound

T

N

l\.

L,
L,

St il
‘_“:%‘:i-;;

i

i
. f} | é // DR

Fig. 3.6. Picture produced by moiré program.

We can produce much more colourful patterns by setting up
random INK and PAPER colours before drawing the pattern as
shown in the program listed in Fig. 3.7. A CLS command after the
PAPER command sets the whole screen to the selected PAPER
colour and then the pattern is drawn on top in the selected INK
colour. In this program a random selection of INK, PAPER and
BORDER colours 1s set up for each new pattern.

10e REM
119 FOR
120 LET
130 LET

Coloured moire patterns
k=1 TO 1a&0
Cx=204+200%RND
Ccy=28+130%RND

149 LET p=INT {(RND*8)

1539 LET i1=INT {(RND#*8)

162 IF p=1i THEN GO TO 15@

17 PAPER p

18e
190
200
216
220
23e
240
250
260

INK
BORD
CLS
LET

PLOT
DRAW
PLOT
DRAW

i
ER INT

s=2+INT (3#RND)
FOR x=@ TO 255 STEF s

CX,CY

H—CH, O—Cy
CH.CY

M=CX, 175—Cy

(RND*=8)

High Resolution Graphics 456

270 NEXT =x

280 FOR y=0 TO 175 STEP
29¢ PLOT cx,cy

300 DRAW @—cx,y-cy

31@ PLOT cx,cy

329 DRAW 255-cx,y—cy

338 NEXT vy

340 PAUSE 500

339 NEXT k

Fig. 3.7. Program for moiré patterns in colour.

Drawing dotted lines

The line drawing command will draw a solid line between points
xLyl and x2,y2, but suppose we wanted to draw a dotted line
between these two points. There is no convenient command on the
Spectrum for this task so we must fall back on a line drawing routine
which calculates and plots individual points to make up the line.

The dotted line is drawn by calc ulating which pixels along the line
must be lit and then lighting them by using the PLOT command.
The basic line drawing routine calculates the differences between x 1
and x2 and between yl and y2 then takes the larger of these
differences as the number of points to be plotted.

The next step is to calculate the increments of x and y between
successive points. If the larger number of points is in the x direction

then the x increment is set at | and the y Increment is a fraction
calculated by dividing the difference between y2and y1 by the total
number of points np, If the y direction has a larger number of points
the y increment is 1 and the x increment becomes less than |

For a dotted line we need to plot alternate points along the line so
the plotting loop steps 2 units at a time. At the end of the plotting
loop a single additional point is plotted at point x2,v2 to ensure that
the line is of the correct length. In the program shown in Fig. 3.8 the
line drawing routine has been made into a subroutine and the main
program draws a series of dotted lines between random points on the
screen. The point to note here is that the values of xl,yl and x2,y2
representing the ends of the line must be set up in the main program
before the subroutine is called.

A dashed line or even a line with alternate dots and dashes could
also be drawn by modifying the drawing subroutine. For a dashed
line the routine would step forward three pixels at a time but in this

46 Spectrum Graphics and Sound

129 REM Dotted lines

1ie FOR n=1 TO 20

12 LET »1=INT {RND*2335)

130 LET =2Z2=INT {(RND¥*Z:55)

149 LET w1=INT (RND*1735)

150 LET y2=INT {(RND*1735)

166 LET xs=1

17@ LET ys=1

180 LET xi=1

196 LET yi=1

202 LET dx=xZ2-x1

216 LET dy=y2Z-¥l

220 IF dx<9 THEN LET us=-1

230 1F dy<® THEN LET ys=-1

24@ LET nx=ABS {(dx)

299 LET ny=ABS (dvy}

26@ IF nxr>=ny THEN LET np=nx: LET
yi=ny/nx

27¢ IF ny>nx THEN LET np=ny: LET
xi=nx/ny

280 PLOT x1,yl1

290 LET s=INT (RND*3)+2

J00 FOR j=@ T0O np 5TEP s

310 LET x=x1+us#INT {(jEzi+.35)

320 LET y=y1+ys*®INT (j*yi+.5)

238 PLOT =,y

340 NEXT j;

352 PLOT =2,vy2

Z68 NEXT n

Fig. 3.8 Program to draw dotted lines.
case two points have to be set on each pass through the drawing
subroutine. [will leave you to experiment with this for yourself.

Drawing triangles

Perhaps the simplest figure or shape that we can draw is the triangle
which has three sides and three corners. To draw the triangle we
need to know the screen position co-ordinates of the three corners
which we shall call x1,y1, x2,y2 and x3,y3 as shown in Fig. 3.9. The
process of drawing the triangle involves drawing a line from x1,y1
to x2,y2 then a second line from x2,y2 to x3,y3. Finally, the
triangle is completed by drawing a line from x3,y3 to x,y1.

When we come to the process of actually drawing the triangle the

High Resolution Graphics 47

x1,d1 Xa,da

A3, W3

Fig. 3.9. The drawing co-ordinates for a triangle.

first step is to position the graphics cursor at one of the corners such
as point x1,y1. To do this a single point is placed at x1,y1 by usinga
PLOT statement which positions the cursor ready for drawing the
first line. The three sides of the triangle are then drawn by using three
DRAW commands. Figure 3.10 shows a simple program which
selects random sets of three points and then draws triangles through
them. Here the triangle drawing operation is written as a subroutine.

ie¢ REM Random triangle drawing program
112 FOR s=1 TO 24

12¢ BORDER INT {(RND*8)

139 LET p=INT (RND*3)

149 PAPER p: CLS

15@ FOR n=1 TO 15

160 REM Set corner points
170 LET x1=INT {(RND*235%35)
180 LET y1=INT {(RND*175)
190 LET x2=INT {RND*2335)
200 LET y2Z2=INT {(RND*173)
219 LET x3=INT {(RND*2353)
220 LET y3=INT (RND*175)
239 REM S5et ink colour

240 LET c=INT (RND%8)

200 IF c=p THEM GO TO 19¢
26@ INK C

279 REM Draw triangle

Z28e FPLOT x1,v1}

48 Spectrum Graphics and Sound

290 DRAW »2Z2-u1,yZ-yl
290 DRAW x3—x2,y3—vy2
310 DRAW x1-x3,yl-vy3
328 NEXT n

330 PAUSE 200

Z40 NEXT s

350 INK o

Fig. 3.70. A random triangle drawing program.
Mirror image patterns

Producing random triangles gives quite interesting patterns but we
can get more attractive results by using the mirror image principle.
In this case four mirror image patterns are drawn around the centre
point of the screen so that each pattern fills a quarter of the screen.
The technique involved is to draw a random shape triangle in the
upper right quarter of the screen by adding the x,y co-ordinates of
the first point of the triangle to the x,y co-ordinates at the centre of
the screen and the triangle 1s drawn using three DRAW commands
as in the last program. The same basic triangle is then drawn again,
but this time the y co-ordinate of its first point is subtracted from the
screen centre co-ordinates so that the triangle is positioned below
the centre line of the screen. To turn the triangle upside-down, the v
co-ordinates in the three DRAW statements are transposed so that
y2—yl becomes yl—y2 and so on. For the other two quarters of the
screen the same two sequences are used but here the starting x value
is subtracted from the centre point X co-ordinate and the x terms are
transposed in the three DRAW commands to place the triangles to
the left of the centre and turn them around from left to right.
Figure 3.11 gives the listing for a program to create this type of
pattern which resembles the patterns produced in a kaleidoscope. In
the program random colours are used in a series of triangles which
build up the pattern, and successive patterns are produced with
randomly selected background and border colours. The result on
the screen is similar to that shown in Fig. 3.12 but very colourful.

9@ REM Kaleidoscope program
119 FOR s=1 TO 26

126 BORDER INT {(RND+8)

136 LET p=INT (RND#*8)

149 PAPER p: CLS

15 FOR n=1 TO 20

High Resolution Graphics 49

16@¢ REM Set corner points
170 LET x1=INT {(RND*127)
i8¢ LET y1=INT {(RND*B7)
190 LET x2=INT (RND*127)
200 LET y2=INT (RND#*87)
210 LET x3=INT (RND*127)
2260 LET y3=INT (RND#*87)
239 REM Set ink colour
248 LET c=INT (RND#*8)
259 IF c=p THEN GO TO 19¢
26@ INK

279 REM Draw triangles
28e PLOT 128+x1,88+y1
299 DRAW ¥2-x1,y2-y1
300 DRAW x3—x2,yI—y2
312 DRAW x1-x3,y1-y3
328 PLOT 128+x1,88-y1
33¢ DRAW x2-x1,yi-y2
342 DRAW x3—x2,y2-y3
359 DRAW x1-x23,y3—y1
269 PLOT 128-x1,88-y1
379 DRAW RI-n2,v1l-y2
<8¢ DRAW H2—u3,y2-y3
399 DRAW M3-m1,yE—vyl
409 PLOT 128-x1,88+v1
41 DRAW ¥1—x2, y2—y1
420 DRAW K2-x3,y3—-y2
43€@ DRAW N3—ui,yl-v3
446 NEXT n

4@ PAUSE zoo

460 NEXT s

479 INE o

Frg. 3.11. Simple kaleidoscope program.

Drawing rectangles and squares

Let us now move on to draw a figure with four sides and corners,
which is a rectangle. The simplest approach is to work out the x,y
co-ordinates for the four corners of the rectangle and then to draw
four lines which link the points together to form the sides of the
rectangle. Asanexample, we might wish to drawa rectangle which is
100 units wide and 50 units high and we can choose a position
(x1,y1} of say 40,50 for the position of the bottom left corner, The

Fig 3.72. Typical kaleidoscope picture.

xd =40 x3=ldQ
44 =100 W3=100
X1l=40Q x2=ldP
41=50 H2=50

Fig. 3.13. Drawing co-ordinates for a rectangle.

values for the other corners are shown in Fig. 3.13. Now all we need
to do is use a PLOT command to place the cursor at the bottom left
corner and then four DRAW commands to actually draw the four
lines that make up the rectangle. This is shown in Fig. 3.14.

100
110
12@
130
140
150
1460
179
18
190
206
219
220
239
246

REM
REM
LET
LET
LET
LET
LET
LET
LET
LET
FLOT

High Resolution Graphics 51

Rectangle drawing using
corner X,y coordinates
»1=40
y1=56
x2=140
Y2=50
x3=140
y3I=100
X4=40
va=104
#1l,yl1

DRAW x2Z2-x1,y2—yi
DRAW x3—-x2,y3—vy2

DRAW
DRAW

®¥4-x3,y4—vy3
¥i-u4,yl—vy4

Fig. 3.74. Program to draw a rectangle using corner co-ordinates.

Using width and height

Drawing a rectangle by using the corner co-ordinates is not the best
way of making use of the Spectrum’s DRAW command. Rectangles
have a width, w, and a height, h, as shown in Fig. 3.15 and by using
these we can take advantage of the relative plotting scheme used by
the DRAW command. In this case we need only supply the co-
ordinates of one cornerand the values for wand h of the rectangle. A

X, 4+h

A

AW, el

L

X+W, 4

Fig. 3.15. Rectangle related to its height and width.

B2 Spectrum Graphics and Sound

PLOT command is used to place a dot and the cursor at the bottom
left corner of the rectangle. The first line is along the bottom side of
the rectangle and is horizontal, so the y value for the DRAW
command 1s (. The length of the line is w units so the x value in the
DRAW command must be equal to w. The first DRAW statement
therefore becomes:

1) DRAW w.§

The next line 1s the right-hand side which is vertical and h units long.
Here the x term of the DRAW command is 0 since the line is vertical
and the y term will be equal to the value h, so the command becomes:

120 DRAW §,h

The top side of the rectangle is again w units long, but this time the
line is drawn from right to left so the x term must be negative and in
fact has a value of —w, whilst the y term is 0. The final line 15 vertical,
so the x termis 0 and the y term 1s —h since the line isdrawn down the
screen. This is shown in the program listed in Fig. 3.16.

129 REM Rectangle drawing

1io REM using width and height
1206 LET »x=5&

136 LET y=56a

140 LET w=1&6

159 LET h=5%

16©¢ REM Flot lower right corner
1780 FLOT =,¥y

180 REM Draw bottom side

1790 DRARN w,?

200 REM Draw right side

219 DRAW o,h

220 REM Draw top side

23@ DRAW —w,9

249 REM Draw left side

25¢ DRAW ©,-h

Fig. 3.16. Rectangle drawing program using height and width.

A square s just a special version of a rectangle where the height h
and the width w are equal. To draw a square we could use either the
basic rectangle drawing routine by setting h=w or a different
routine using only one variable w. In this case the h terms in the
rectangle drawing routine are simply replaced by w terms.

High Resolution Graphics 53

Dealing with screen limits

[f we try to draw a rectangle 100 units wide with its lower corner at
an x position of say 200, the program will fail and a message
indicating an out of range integer will appear on the screen. This is
because the value of the x co-ordinate has gone beyond its maximum
permissible value which is 255. In some home computers this

condition

is automatically dealt with by the line drawing command

so that the line is either drawn just to the screen limit or is wrapped
around so that the part of the line that would have been off the
screen is drawn at the other side. Animportant point to remember is
that the line drawing command of the Spectrum has no built-in
correction for this situation.

106
11a
126
130
149
159
160
170
189
190
260
210
229
234
240
250
2469
27a
280
299
390
210
320
330
346
359
260
379
8¢

Fig 3.17.

REM Random rectangles
REM with screen edge clipping

FOR =s=1 TO 2@

BORDER INT (B%RND)

LET p=INT (8%*RND)

FAFER p

CLS

FOR n=1 TO 1@

REM Set rectangle position and size
LET x=INT {(246%RND)

LET y=INT {1&5%*RND)

LET w=10+INT (1060%RND)

LET h=10+INT {126*RND)

LET c=INT (8#RND)

IF c=p THEN &G0 TO 23©

INK ©

REM Clip rectangle at screen sdge
IF x+w>2535 THEN LET w=235-x
IF y+h>175 THEN LET h=1735-y
REM Draw rectangle

PLOT =,y

DRAW w,9

DRAW @, h

DRAW —w,©

DRAW @, —h

NEXT n

FPAUSE 2Zee@

MEXT s

INK @: FPAPER 7

Program to draw random rectangles with cut off correction.

b4 Spectrum Graphics and Sound

[f we write a rectangle drawing subroutine it is fairly easy to build
in the required tests to avoid out of range errors. Before drawing the
first side of the rectangle we simply check to see if x1+w is greater
than 255 and if it is, then the value of wis altered to w=255—x1. This
reduces the width of the rectangle so thatits right-hand edge is at the
right-hand screen limit. Before drawing the second side of the
rectangle a similar test is carried out on y I+ h but here the limit value
is 175 and if the rectangle goes off the screen a new value for h is
calculated from h=175—y. The top and left sides of the rectangle are
simply drawn using the corrected values for w and h. The result on
the screen 1s a rectangle which has been cut off at the screen limit on
either its right or top side or perhaps both. To see this working try
running the program of Fig. 3.17 which will produce results similar
to those shown in Fig, 3.18,

Fig. 3.18. Picture produced by random rectangle program.

Chapter Four
Drawing Techniques

So far we have looked at drawing lines and rectangles but for many
purposes we will need to draw more complex figures such as
polygons, circles and ellipses. We may also want to draw our figures
at an angle to the horizontal. In this chapter we shall explore the
techniques involved in doing these things and we’ll start by looking
at the process of drawing circles. There are in fact several methods
which can be used to draw a circle.

Using the CIRCLE command

The easiest way of drawing a circle on the screen is to use the special
circle drawing command provided on the Spectrum. This command
is called appropriately enough CIRCLE and the command word is
obtained by first pressing both SYMBOL SHIFT and CAPS
SHIFT keys to get a flashing E cursor and then pressing both the H
and SYMBOL SHIFT keys.

The CIRCLE command has the following form:

10 CIRCLE x.y,r

where X,y are the co-ordinates of the centre of the circle and r1s the
radius measured in screen units. If we wanted to drawacircle witha
radius of 50 units positioned roughly in the centre of the screen then
x and y will be 128 and 88 whilst r is 50. Try typing in the direct
command:

CIRCLE 128,88,50

and you should get a black circle roughly central on the screen.
To see how the CIRCLE command may be used in a program you

might like to try the program listed in Fig. 4.1. Here a series of

concentric circles of increasing size is drawn to produce the display

56 Spectrum Graphics and Sound

16 REM Drawing circles

119 REM using CIRCLE command
126 LET x=128

130 LET yv=88

149 FOR r=19¢ TO B0 STEFP 10
150 EIRCLE »,v,r

160 NEXT r

Fig. 4.1. Drawing concentric circles using the CIRCLE command.

shown in Fig. 4.2. The values for x and y are the same for all of the
circles but r is increased in steps to give successively larger circles.

One important limitation of the CIRCLE command on the
Spectrum is that it does not work if any part of the circle goes outside
the screen limits. When a part of the circle falls outside the screen

limits the computer will simply stop and indicate an integer out of
range error,

11 LL M L L 0 3 a1 % s e 4 4 L4 LA 114 | M i 7§ S B P AL TR I B R LR A H

. wy,
_J_H"'r e LT ™ “h“m
{.rJ _l..'-"du ""-..L_ L
.|'lr ' ¥ ! ‘_-' L B b‘-‘-'- -IIH ;
l'l-I I'rI |I'.-"- ------- "Tm" l“u
.) 5 2 e, - .
f. '-. J'lr f"-. i i * bl \l k. I..
A Y T,y My e
,I'. l|H i e e e | O
|. 3
1

il F] || L I'|,l. L / I| /
| lll I'| II"1 oo & & ¥, i r'F
! Illl I‘|I“!\ll||'nf dul
',i '-|'II "'I._ ""h‘ " o f'llr ff‘ ';ﬂ /!
T S S
I I"-._ \\1." Saiz L _F.rr S
i P
e
Y, e I'_‘_..e"" ¥
Im‘“w.hk‘-l e . E— ™ I'J‘u.l'lJ“
e el S

Fig. 4.2. Picture produced by program in Fig. 4 1.

Suppose that we wanted to draw a series of random sized circles
all over the screen using the CIRCLE command. To avoid problems
we must limit the values of x,y and r for each circle so that the circle
does not overlap the screen edges. If we consider x, its minimum
value must be r to prevent overlap at the left side and the maximum
must be 255—t to prevent overlap at the right side. In the random
function we use 255—2r to compensate for the minimum value that
we assigned to x, so the final calculation for x is:

X =r+ RND*(255 2*r)

A similar technique is used to calculate the value for y and the

1oo
110
126
130
146
150
1560
i7a
18
190
=200
210
220
239
240
250
260
278
2806

Drawing Techniques 57

REM Random circle drawing
REM using CIRCLE command
FOR s=1 TO 1¢

CLS

REM Draw screen border
PLOT 9,9

DRAW 255,00

DRAW ©,175

DRAW —255,9

DRAW @,—-175

REM Draw circles

FOR n=1 YO 15

LETYT r=5+RND*50

LET »x=r+RND¥* {(255—2%r)
LET y=r+RND®(175-2%#r}
CIRCLE x,vy,r

NEXT n

FPAUSE 200

NEXT <

Fig. 4.3. Program to draw random circles.

complete program is shown in fig, 4.3, The result produced on the
display will be similar to that shown in Fig. 4.4.

If circles are being drawn and it seems likely that they will overlap
the edge of the screen then it is best to use one of the other circle

Fig. 4 4. Random circles - typical display

58 Spectrum Graphics and Sound

drawing techniques combined with routines which will handle off-
screen points ¢ither by placing them at the edge of the screen or by
providing wraparound so that part of the circle 1s drawn at the other
side of the screen. Let us now look at some other approaches to the
drawing of circles using a computer and see how they can be applied
on the Spectrum.

The quadratic equation method

The first technique for drawing circles builds up the circle by
plotting a large number of dots whose positions are calculated by
using one of the mathematical formulae for a circle.

Let us start by taking a small segment of the circle as shown in Fig.
4.5. Here point A is at the centre of the circle whilst points B and C
are on the circle itself. The lines AB and AC will each have a length

o .

R3R = X#xX + Y#&Y
¥ o= SORIRER - XX

Fig. 4 5. Diagram showing derivation of quadratic method for circles.

equal to the radius, R, of the circle. In this diagram line AB is
horizontal. Let us now drop a vertical line down from point C to
meet side ABat point D. This produces a right angled triangle ACD.,

To place adot ateach of the points Band C we need to knowthe X
and Y co-ordinates for each of those points and it is convenient to
calculate these relative to the centre point of the circle which is point
A. The X value for point B is given by the length of side AB, which
equals the radius R, and the Y value is 0 since point B is at the same

Drawing Techniques 59

vertical positioh as point A. When we look at point C the X value is
the length of side AD and the Y value is equal to the length of side
CD of the triangle ACD.

For a right angled triangle the square of the length of the longest
side 1s the sum of the squares of the lengths of the other two sides.
This is our friend Pythagoras’s famous theorem.

Let us now use this to calculate the X and Y values for point C,
Applying the rule to triangle ACD we get:

(ACY*(AC) = (AD)*(AD) + (CD*(CD)

or, alternatively, putting in the variables we used for those sides we
get:

R*R=(X*X)+ (Y*Y)
and this can be rearranged to give us:
Y*Y=(R*R)— (X*X)

from which we can get Y by simply taking the square root. So our
calculation for Y now becomes:

Y = SQR((R*R) — (X * X))

The values of X and Y in this equation are measured with reference
to the centre point of the circle. Note that for point B the equation
for Y 1s still true since in this case X=R so the term on the right
becomes zero and therefore Y=0,

To place the circle at some particular point on the screen we shall
have toadd inthe X and Y co-ordinates for the point where the circle
istobe drawn. To avoid confusion we shall call these co-ordinates ¢x
and cy.

In order to plot all of the points around the circle we need to
calculate values of y for a series of values of x ranging from—rto-+r
and the more points we calculate the better the circle will look.,

When we take the square root of a number there are in fact two
possible answers with the same numerical value, one being positive
and the other negative. Thus for each value of X we shall plot a pair
of points. To plot the first point of the pair the result of the square
root calculation 1s added to the Y value for the centre of the circle to
give a point above the centre line of the circle. The second point has
the square root subtracted from the Y value for the centre and the
point will lie below the centre line of the circle. Since we are plotting
single points and the circumference of the circle is just over 3 times
radius R, it 1s convenient to have a total number of pointsequal to 4

60 Spectrum Graphics and Sound

times R to make up the circle. Remember that we plot two points for
each calculation, so a good value for the number of calculation is
twice the value of radius R, This is easily achieved by taking all of the
X values from X= —Rto X = +R. Thus a circle with a radius of 50
screen units would calculate 100 steps and plot a total of 200 points
around the circle.

The program shown in Fig. 4.6 draws random sized circles at
random centre points on the screen. In this program tests are made
for off-screen points and these are corrected to lie at a screen edge to
avoid program failure on an out of range error.

100 REM Circle by quadratic methed
1ia LET cx=128
iZ2e LET cy=%é&
13@ LET r=5@
149 FOR x=—r T0 r
15@¢ LET y=58R (r¥r—x*x)
16 IF cx+x>255 THEN LET x=255-cx
170 IF cx+x<@ THEN LET x=0-—cx
189 1IF cy+y>175 THEN LET y=173-cCy
12@ IF cy+y<@ THEN LET y=9—cCy
200 FLCOT cx+x,cyty
210 PLOT cx+x,cy—y
22¢ NEXT =

Fig. 4.6. Program to draw circles by quadratic method.

With this routine the number of calculations depends upon the
size of the circle and it will be seen that the larger circles take a
noticeable time to draw. This is because the computer has quite a lot
of calculations to carry out. The square root function itself 1s rather
slow in BASIC. If we want to draw circles faster we will need to look
at other ways of calculating the points around the circle.

You will note that at the right and left sides of the circle the first
few points tend to be rather spread out, especially on the larger
radius circles. This can be overcome by plotting more points by
increasing X by steps of say 0.5 instead of 1.

The trigonometric method

Instead of plotting a series of dots we can draw a series of short lines
which when joined together will form the outline of the circle. For
the second method of drawing circles we need to get involved in
some simple trigonometry.

Drawing Techniques 61

Figure 4.7 shows a segment of the circle with two points Band C
on the circle itself and point A at the centre of the circle. To draw the
segment of the circle we shall draw the line BC.

o
..""F‘.
e /\
il |
- A
i /-fd iL\I\
e a4 \\
Fal
.-"’.J.‘
- \
f/a:; !
Ttk dx
A< -
L
A% = r&COSIth)
dd = r#5INILE)

Fig. 4.7. Derivation of trigonometric method for circles.

To draw the side BC we need to know the co-ordinates of point C.
Let us drop a vertical line from C to point D. The x value for point C
is given by the length of line AD and the y value is equal to the length
of line CD. This is where the trigonometry comes in.

We will call the angle at point A of the triangle theta (8) which is
the name of the Greek letter normally used for labelling angles. In
our program we weshall use the variable name ‘th’ torepresent the angle
theta.

To find the length of side CD the function we need to use is
SIN(theta). The definition of SIN(theta) is that it is the ratio of the
length of the side of the triangle opposite angle theta to the length of
the hypotenuse (the side opposite the right angle) which is side AC.
So in our triangle:

SIN(th) + CD/AC

We already know that AC = radius r. The length of side CD is the
change we need to make to y to give the new y value for point C. We
shall call this dy. Substituting these new terms in the equation we
get:

SIN(th) = dy/r

and if we multiply both sides by r the result becomes:

62 Spectrum Graphics and Sound

dy = r * SIN(th)

Having found dy we need to find a value for side AD which is the
required change in x and which we shall call dx. Now it just happens
that COS(th) is the ratio of the length of the adjacent side (AD) of
the triangle to the length of the hypotenuse (AC) so we get:

COS(th) = AD/AC
and substituting the values dx and r gives:
dx = r * COS5(th)

To find the co-ordinates for the next point on the circle we apply the
same equations but now angle th has a different value.

To draw the circle we must first of all place the cursor at point B
for which dx=r and dy=0. This step is carried out by first setting
variables x| = cx+r and yl=cy then using:

PLOT x1,yl

to plot the first point. The variables cx and cy are the co-ordinates
for the centre of the circle,

The next step is to calculate the co-ordinates of point C which are
given by the equations:

x2=cx + dx = cx + r * SIN(th)
y2 = cy + dy = cy + r ¥ COS(th)

and using x2,y2 we can draw the line BC by using:
DRAW x2—x1,y2—yl

For the next line segment of the circle the values of x1 and y1 are set
equal to the values of x2 and y2. The angle th is then increased and
new values are calculated for x2,y2 using the new value for the angle
th. This process continues until the angle th reaches 360 degrees
when a complete circle will have been drawn.

How do we decide on a value for th? Well there are 360 degreesina
complete rotation of the angle th around the circle. To draw a
smooth circle the more steps we use the better. A practical value for
the number of steps is the number of units of radius r. Suppose we
want a circle of radius 60. In this case, each segment of the circle adds
360/ 60 or 6 degrees to the value of th.

Whilst angles in degrees are familiar to us, the computer doesn’t
work in degrees but uses radians instead. All we need to know here is
that 360 degrees is equal to 2*PI radians so therefore the angle

166
11
i2e
13e
14¢
150
1566
176
186
19e
200
2109
220

~m=r
a—

a9
S1e
o260
ST
340
=talt
lal?)
370
a8e
270
HO6
H10
26
L3
LH46
658

i
(=YY%
L7
&80
&3¢
789
7iea
28
736
744

Drawing Technigues 63

REM Circle drawing using the
REM trigonometric methaod
BORDER &

FOR s=1 TO 1@

CLS

FOR n=1 TO 1@

LET r=10+INT (RND*30)

LET x=INT {(RND*235)

LET y=INT (RND*®1735)

50 SUBR SO0

NEXT n

FAUSE 1900

NEXT s

STOF

REM Circle subroutine

LET dt=2%F1/r

REM Set starting point

LET th=0o

LET x1=x+INT (r*C05 th)
LET yl=y+INT (r+5IN th)
REM Correct off screen points
IF x13>2535 THEN LET x1=255
IF %x1<0 THEN LET x1=@

IF y1>173 THEN LET y1=175
IF v1<{&6 THEN LET vyi1=0
PLOT x1,vyl

FOR i=6 T0O r

LET th=th+dt

LET x2=x+INT (r#*C0OS5 th)
LET y2=y+INT (r#SIN th)
REM Correct off screen points
IF x2>255 THEN LET x2=255
IF x2<6 THEN LET u22=0

IF y2x175 THEN LET y2=175
IF yv2<6 THEN LET y2=2
DRAW xZ2-xl,y2-vy1

LET x1=x2

LET wi=y2

HEXT i

RETURN

Fig. 4.8. Random circles using the trigonometric method.

64 Spectrum Graphics and Sound

increases by 2*P1/60 radians for each segment of the circle,

The number PI is a constant whose value is approximately 3.14
and it is the ratio of the circumference of a circle to its diameter. We
do not need to remember the value for P1 because the Spectrum has
a special key which allows us to insert Pl into a program statement
as a constant. To get the term Plinto a statement, the CAPS SHIFT
and SYMBOL SHIFT keys are pressed together to get extended
keyboard mode and then the M key is pressed.

Drawing the circle involves using a simple loop to repeat the
calculations and draw a short line segment r times. After each
segment of the circle has been drawn the value of thisincreased and
the values of x[and y1 are updated to point to the end of the line
that has just been drawn ready for the next drawing step.

To draw our circle we merely calculate a series of values of x and
y for values of theta from 0 to 360 degrees (0 to 2*PI radians). The
number of points we need depends upon the size of the circle and
how accurately we went to draw it, A good figure to us is the number
of units of the radius, so for a circle of radius 50 we might use 50
points. The angle theta for each step can be found by simply dividing
2 * PI by the required number of points so the step size would be
2*PI/R. A program for drawing circles using this technique is
shown in Fig. 4.8. This program draws a series of random size circles
all over the screen to give a result similar to that shown in Fig. 4.9.

n""“—h‘ .,
I""-m.__h.-\ ‘?‘ F,-'"— 'JTI"‘ "
: Y ||I }.-' l ‘n,ll
| L
| | N —
:.‘ |"l || . J ; Iu_u’ "'\-\.__-.
I h \ | ! T |
M ", i1 .i',l'. o b Y
arn e e ’ : 1 !
T A)
" fug v b
II"I I_I e IIII
!
h, .-"‘
‘-\._w‘_“m -
-"-l'q'-_
o ! T
= K / [; ¢ H"*.
b o , | N
M, 3 -’_u‘ l___-'- o |
\"TF- |I d‘_*‘h-"'lﬂ1
/ ;
|...-"""’ H."‘-q. 'r:"'j
-, __{J-"
\

Fig 4.8. Typical picture from program of Fig. 4.8.

Drawing Techniques 65

The actual circle drawing section is written as a subroutine
starting at line 5¢@. If a number of circles is required it is convenient
to use a subroutine for drawing the circle and calling it from the
main program whenever a circle is required to be drawn. Sometimes
the calculated values for x and y co-ordinates may fall outside the
limits of the screen and if used in a DRAW command would
produce an error message and stop the program. To avoid this x2
and y2 are tested and if outside the screen limits they are set to the
corresponding screen limit value. So if x2<0 then x2 is set to 0. This
produces a line at the edge of the screen where part of the circle is
outside the screen limit.

The rotation method

A different approach to the calculation of the x,y values for a circle
is to base them upon the angle through which the radial line is
rotated at each step. In this case the new values for x2 and y2 are
calculated from the values for the previous point (x1,y1) rather than
from the radius and the total angle. B

If we look at Fig. 4.10 the value of y1 is zero so that only the x 1
value, which also happens to be equal to r, affects the results. Here
we get:

x2 = x| * COS(th)
y2 = x1 * SIN(th)

KEJHE
ﬂf
o~
-
’__,.-"" by
o L \
.-"".ff
_.__,.-"';.ﬂ =
- l,41
8,0
2 = X1x%CO0S(th)
W = ®13SINItR)

Fig. 4.70. Rotation from the x axis.

66 Spectrum Graphics and Sound

Now consider the situation where the radial line is vertical and is
moved through angle theta. This is shown in Fig. 4.11. Here the
value of x1 is 0 and only the vyl value affects the results. In this case

xl,91
]
o
Xe,de2 ,-""’-
F\‘ b
\\H
['*'1I
\“x\ ua
\
wE = -41ESINI{LR) \
W2 = YLlxCOS(th) e
th
h
\
@,

Fig. 4 11 Rotation from the y axis.

the value of x2 1s negative since the point has been shifted to the left
of the line where x1=0. Here we get results:

x2 = —y1 * SIN(th)
y2 =yl * COS(th)

If we combine these two results we can produce a general expression
for calculating x2 and y2 for any initial values of X1 and y1. The two
new equations are:

x2 = x1 * COS(th) — y1 * SIN(th)
y2 = x1 * SIN(th) + yl * COS(th)

The big advantage of this approach is that the value of this constant
so we can work out the values of SIN(th) and COS(th) before
entering the co-ordinate calculation and line drawing loop, thus
eliminating virtually all of the trigonometric calculations which tend
to be slow. The program for drawing a circle now becomes as shown
in the listing of Fig. 4.12.

Drawing Techniques 67

102 REM Random circles by the
1i¢ REM rotation method

120 FOR n=1 TO 15

1380 LET r=19+]INT {(RMD*44)

146 LET »x=r+INT (RND®*(255-2%r})
150 LET y=r+INT {(RND*{175-2%r))
156 GO SUB SO0

179 NEXT n

189 STOF

S REM Circle subroutine

Z21e LET th=2+Fl/r

o2¢ LET xi=r

o LET w1=0

o4¢ PLOT x+xl,y+vyl

So2 FOR i=1 70 r

Sh@ LET x2=x1#C0O5 th-—vyv1#5IN th
579 LET y2=x1%5IN th+y1#C0O5 th
a8® DRAW x2—xl,y2-vyl

590 LET x1=x2

H00 LET yl=vy2

H1i0 MNEXT i

6260 RETURN

Fig. 4.12. Circle drawing by the rotation method.

Drawing polygons

If we reduce the number of steps and hence the number of line
segments used in the circle drawing routine the result will be a figure
with a number of equal straight sides. Such a figure is called a
regular polygon. If we use the trigonometric method the steps in the
angle th become quite large. Suppose we drew an eight-sided
polygon, which is called an octagon, then the angle the will change
by 2*PI/8 at each drawing step. The program listed in Fig. 4.13 will
draw a single octagon at the centre of the screen. If we wanted a six
sided figure, known as a hexagon, then the number of steps in the
drawing loop is reduced to 6. Thus the total angle of 2* PI is divided
by 6 to give a change in th of 2*PI/6 for each step.

To make a general polygon drawing routine we could introduce a
new parameter ns (number of sides) and then modify the program to
make the required number of drawing steps. Thus the changeinthat
each step (dt) will be given by:

dt = 2*PI/ns

68 Spectrum Graphics and Sound

1ea
11a
126
130
14@
150
1466
170
189
19¢
290
21a
229
230
246
250
256

REM Octagon drawing program
LET =c=128B

LET yc=88

LET r=5@

LET dt=2%FI/8

LET th=e

LET xil=uc+r

LET vil=vcC

PLOT x1.y1

FOR n=1 T0 8

LET th=dt*n

LET x2Z2=uc+r+C05 th
LET vy2=yc+r*5IN th
DRAW »Z-u1,y2—-yl
LET si=x2

LET yl=vy2

NEXT n

Fig. 4.13. Program to draw an octagon.

To see how this works try running the program shown in Fig. 4. 14.
This program will draw a series of figures of increasing size
centred on a point near the middle of the screen as shown in Fig.

1466
i1@
120
13e
i4o
145
150
1460
176
180
17a
195
20
Z21a
220
239
240
256
269
27@a
Z28@
290

REM Nected polygons
LET r=12

LET xc=128

LET yc=88

FOR k=3 TO ¢

REM Set number of sides
LET ns=k

LET dt=2#Pl/ns

LET x1=xc+r

LET yl=yc

PLOT x1,v1

REM Draw polvygon
FOR n=1 TO ns

LET th=n#*dt

LET u2Z=xc+r#*C05 th
LET y2=yc+r#3IN th
DRAW »n2—wl1,y2d-yl
LET =x1=x2

LET yl=y2

NEXT n

LET r=r+12

NEXT k

Fig. 4.14. Concentric polygons program.

Drawing Techniques 69

4.15. The figures have an increasing number of sides starting with a
triangle.

The program can easily be modified to produce a series of random
polygons with different numbers of sides and different sizes. A point
to note here is that the values of X, y and r should be chosen so that
no point of a polygon falls outside the screen limits. This can be done
by using the same technique as in Fig, 4.3,

Fig. 4.15. Screen display produced by Fig. 4.14.

Drawing polygons by rotation

Now if we can draw circles using the line rotation technique then it
should be possible to draw octagons and polygons as well. For an
octagon the angle th will be 2*P1/8 so a subroutine for drawing an
octagon would be as shown in Fig. 4.16.

As before we can develop this little routine into a general polygon
drawing routine by adding the variable k (number of sides) and we
can produce a program which draws polygons with from 3 to 12
sides in various sizes all over the screen. This is shown in Fig. 4.17.

This procedure for drawing polygons can be used as a general
method in any program. Note that it will draw squares and triangles
but the triangles will always be equal sided ones,

70 Spectrum Graphics and Sound

16 REM Octagon by rotation method
119 LET xc=128
129 LET yc=88
132 LET r=20
1490 GO SUB 500
156 STOFR
@ REM Octagon drawing subroutine
ole LET xi=r
526 LET y1=0
o390 LET th=2*F1/B
o248 LET sn=58IN th
oo LET on=C05 th
260 PLOT xc+xl,vyc+vyl
o7¢ FOR n=1 TO 8B
o989 LET x2=ul*cn-yil*sn
a7e LET vlZ=ui¥sn+yl#cn
L4908 DRAW x2-x1,y2—-yl
610 LET x1=x2
bZa LET yi=y2
&30 NEXT n
4@ RETURN
Fig 4.16. Drawing an octagon by rotation method.

1%¢ REM Random polygons
110 FOR j=1 TO 2@

120 LET r=10+INT (RND¥*48)
132 LET xc=r+INT (RND* (255-2%r)}
146 LET yo=r+INT (RND*{(175-2%r))
196 LET k=3+INT {(RND#5)
146 GO S5UB Soe

1768 NEXT j

18 STOF

494 REM Folygon subroutine
o089 LET th=2+P1/k

919 LET =n=5IN th

229 LET cn=C05 th

9 LET du=r

S48 LET dy=0

Do PLOT xoc+dx,.vo+dy

o668 FOR =1 TO k

=/ LET xr=du¥*xcn—dy¥*=n

280 LET yr=du¥*spn+dyv*cn

999 DRAW xr—dx.yr—dy

&9 LET du=ur

H1¥ LET dy=vyr

629 NEXT n

&53¢ RETURN

N T ™ e T R T T

Drawing Techniques 71
Star shaped figures and wheels

The polygon drawing routine can easily be modified to draw star
shaped figures. In this case a line is drawn from the centre to each
calculated point of the polygon by changing the drawing procedure.
The program listing in Fig. 4.18 will draw a pattern of random star
shaped figures on the screen.

In this case the line is drawn from each corner of the polygon back
to the centre so that the lines radiate from the centre like the spokes
of a wheel.

Wheel shapes can be drawn by firstly drawing the star and then
drawing a circle of the same radius around the same centre point.

iae REM Star shaped figures
119 FOR j=1 TO 20
120 LET r=19+INT {(RND#*4@)
138 LET xc=r+INT {(RND*(Z235-2%r))
140 LET yc=r+INT (RND#*{175-2%r})
156 LET E=3%+INT (RND#*3)
160 GO SUB 500
176 NEXT ;
ige S5TOGP
499 REM S5tar shape subroutine
5060 LET th=2*FI/k
51¢ LET sn=5IN th
520 LET cn=COS th
539 LET du=r
=40 LET dy=©
55a FOR n=1 TO kK
=48 LET xr=dx*cn—dy¥sn
=79 LET yr=dx*sntdy¥cn
S8 FLOY xc,vyc
S50 DRAW xr . yr
609 LET de=xr
&£10 LET dy=yr
&£26 NEXT 0
9 RETURN

Fig. 4.18. Program to draw star shape figures.

Scaling and stretching

In drawing squares, polygons and circles the size of the displayed
figure depends upon the value of W or R that we use in the drawing

72 Spectrum Graphics and Sound

routine. Thus by altering W or R we can alter the size or scale of the
figure,

In the case of the rectangle there are two scaling figures, one for
width (W) and one for height (H). In effect we have a square which
has been stretched or compressed in one direction. Assuming that
we apply stretching only horizontally or vertically this just means
that the x and y scale values are different.

We could apply the stretching idea to other figures by putting in
two extra variables which would be the x and y scale factors. To
achieve the correct results the reference point around which the
figure is drawn should be at the centre of the figure. For polygons
and circles this is always true in the drawing methods we have used.
In this case the scale factors are used as multipliers for the dx and
dy terms in the drawing calculations. Note that the scale factors are
not applied to the screen co-ordinates cx,cy around which the figure
1s drawn.

Let us consider a circle and we will use the trigonometric drawing
method as shown in Fig. 4.19. Two new terms sx and sy are now
used and the values of dx and dy are multiplied by sx and sy
respectively before the figureis drawn. First the circle is drawn at the
left of the screen with sy being increased in steps from 0 to 1 and sx
constant at 1. Next the circle is drawn at the right of the screen with
sx increasing from 0 to 1 and sy set at 1. Finally both sx and sy are
varied from 0 to 1.

If sx and sy are both 1 then the figure drawn will be a circle. If
sx<"1 and sx<{=1 the figure becomes an ellipse with the longer axis
horizontal. If sx>1 and sy>=1 the ellipse will have its long axis
vertical. If sx or sy is negative this will simply have the effect that
the figure is drawn backwards. If we had a figure that was not
symmetrical then the left side would be displayed at the right or the
top would move to the bottom giving a mirror image effect.

190
1ia
12a
138
146
145
1560
166G
17¢
180
1960
200
265
210

20
230
24a
209
26a
265
27
280
290
S03
310
320
330
Z40
399
340
J7a
496
SO0
=R
=20
%)
540
b
2b0
o7e
380
S99
Laa
LH1G

Drawing Techniques

REM Scaling and stretching
REM applied to a circle
LET xc=46

LET yc=88

LET rFr=40

REM Scaling applied to vy
FOR a=1 TO © STEP —-.2
LET sx=1

LET sy=a

B0 SUR 500

NEXT a

1ET uc=210

REM Scaling applied to x
FOR a=1 TO @ STEF —-.2
LET sx=a

LET sy=1

GO SURBR 560

NEXT a

LET uc=128

REM Scaling of y then x
FOR a=1 TO0 @ STEFP ~.2
LET sx=1

LET sy=a

Gi) SUB 5060

NEXT a

FOR a=1 TO @ STEFP -.2
LET sx=a

LET sy=1

60 SUE Soo

NEXT a

STOP

REM Circle subroutine
LET dt=2*PI/r

LET xl=xctsx*r

LET yi=yc

FPLOT xi,vyl

FOR n=1 70 r

LET x2Z=xct+sx¥*r*C0O5 {(n*dt)
LET y2=yc+sy*r#5IN {(n¥dt)
DRAW »x2—x1,y2-vyl

LET x1=x2

LET yl=y2

NEXT n

RETURN

Fig. 4.18. Demonstration of ellipse drawing.

73

74 Spectrum Graphics and Sound

Rotation of figures

The figures we have produced so far have all been drawn with their x
axis horizontal. Suppose, however, we want to draw a rectangle but
have it displayed tilted at an angle as shown in Fig. 4.20. We have
already seen that a point can readily be rotated relative to another

Frg. 4.20. Diagram showing a shape rotated by angle TH.

point on the screen and this technique was used for drawing

polygons and circles. If we can rotate one point then we can just as

casily rotate all of the points in a figure. In this case the rotation

equations are applied to each point on the figure in turn to calculate

a new point position for the rotated figure. When the figure is drawn

using the new set of points it will be tilted relative to the horizontal.
To find the rotated values for DX and DY we use:

XR=DX*COS(TH) - DY*SIN(TH)
and

YR = DX*SIN(TH) + DY*COS(TH)

where DX and DY are the co-ordinates of each point measured
relative to the point about which we want to rotate the figure. The
angle of rotation is TH radians relative to the positive x axis.

Let us start with a rectangle and assume that we are using the
bottom left-hand corner as a reference point about which the
rectangle will be rotated. We shallassume that the rectangle has width
W and height H and that theanglethrough whichit is to be rotated is TH.

We can start by setting X1,Y1 to the co-ordinates of the reference
point at the bottom left corner which has actual screen co-ordinates
XC,YC. The first line to be drawn is the bottom side so the first point
to be rotated is at the right bottom corner. For this point the X and Y
offsets DX and DY, measured from the bottom left corner which has
actual screen co-ordinates XC,YC are DX = W and DY = 0. At this

Drawing Techniques 75

point we can calculate the rotated position of this point (XR, YR) by
substituting the values for DX and DY in the rotation equations.

To draw the first line we start by setting X1and Y1toXCand YC
respectively and then plotting a point. Next we calculate the co-
ordinates of the other end of the line X2,Y2 by adding the values for
XR and YR to the reference co-ordinates XC,YC as follows:

X2=XC=YR
Y2=YC+YR

The first line can be drawn by using the X1,Y] and X2,Y2 co-
ordinates for each end of the line in a DRAW statement as follows:

DRAW X2-X1,Y2-YI

To draw the second side of the rectangle we now set X1,Y1 equal to
the values X2,Y2 so that the new line starts from the end of the first,
The DX value for the second point is still equal to W, but the DY
value is now equal to height H. With these new values we can again
apply the rotation equations to obtain new values for XR and YR
and for X2 and Y2. Now the second side can be drawn. This process
18 then repeated for the remaining two sides, Since the rotation and
drawing steps are repeated it is convenient to make these into a
subroutine and the program for drawing a simple rotated rectangle
would be as shown in Fig. 4.21.

The rotation effect when combined with scale changes can
produce interesting spiral patterns as shown by the program listed in
Fig. 4.22,

We can apply this technique of rotation to any of the figures that
can be generated by a series of mathematical steps. When we have an
irregular figure however things are a little more difficult. For such
figures it is best to make up a table of data points for each of the
corners of the figure. These X,Y points are all measured relative
to some point on the figure about which it is to be rotated. This may
be the centre of the figure or it may be point on the outside of the
figure. To draw the figure we simply take the points in turn and draw
lines linking them. One further problem arises however., Sometimes
we may just want to move to the next point without drawing a line.
This can be catered for by producing a third data array which we
shall call L. If L is set at I a line is drawn and if L is set at 0 no
line is drawn.

Having produced the table of X,Y and L values we can now
proceed to draw the figure using much the same technique as we did
for drawing the rectangle, except that now the X and Y values

76 Spectrum Graphics and Sound

1e® REM Rotated rectangle
116 LET xc=128

120 LET yc=40

130 LET w=100

14 LET h=30

15¢ LET dt=F1/4

16@¢ LET th=¢

i70¢ FOR n=1 TO &6

i8e@ LET xi=xc

1720 LET yi=vycC

20¢ PLOT x1,.v1

210 LET n2Z2=uc+w*C05 th
22¢ LET yZ2=yc+w*5IN th
230 DRAW x»2—ul1,vy2-vy1
240 LET xi=x2

250 LET yi=y2

260 LET x2=uc+wrxLDS th-h#5IN th
279 LET y2=vyvc+w*5IN th+h*COS5 th
282 DRAW »2-x1,y2-vy1
290 LET xi=x2

Z02 LET yi=vy2

319 LET x2Z2=xc—h*51IN th
320 LET y2=yc+h*C0S5 th
233 DRAW x2—xl,v2—vy1
346 LET x1=x2

30@ LET yi=y2

6@ LET xZ=xc

370 LET yw2=yc

380 DRAW =2—x1,v2-vl
392 LET th=th+dt

400 NEXT n

Fig. 4.21. Program to draw a series of rotated rectangles.

are taken successively from the arrays. The value for X1,Y1 is
initially set at the screen co-ordinates about which we want to draw
the shape and then X2,Y2 are calculated using the rotation
equations and adding the rotated values to XC and YC
respectively. Before the line is drawn L is checked and if it is 0 the
DRAW command is skipped. If no line is drawn the PLOT
command for the start point of the next line will move the graphics
cursor into position ready to draw the new line. After each line has
been processed the values of X1,Y1 are updated to the values of

Drawing Techniques 77

100 REM Patterns using rotation
110 REM and scaling
120 LET th=0
139 LET dt=FI/1Z2
149 LET xc=128B
158 LET yc=88
160 FOR w=Z TO 7¢ STEF 2
176 LET xli=xcC
18a LET yl=vyC
i85 PLOT x1,vl
19¢ LET dx=w
200 LET dy=0
215 GO0 SUBR SOV
220 LET xl1=x2
238 LET vyl=y2
290 LET dx=w
250 LET dy=w
260 60O SUR S00
276 LET xni=x2d
ZBO LET vyl=vy2
299 LET du=0
Z0e LET dy=w
Z1e GO0 SuUR S0
F20 LET xi=x2
336 LET yil=y2Z
34¢ LET du=9©
o9 LET dy=9
I60 60 SUR 500
278 LET th=th+dt
Z8e NEXT w
99 STOP
49¢ REM Rotation subroutine
=a0 LET =2=xc+dx+#C0S5 th-dy*5IN th
510 LET yZ=yc+dx#5IN th+dy*COS th
520 DRAW x2Z2-x1,yZ-vyl
53@ RETURN
Fig. 4.22. Patterns using rotation and scaling.

X2,Y2 ready for the next line to be dealt with. This process continues
until the figure is complete.

If there are several points in the figure this rotation routine can be
speeded up somewhat. Since the angle TH is constant for all points
in the figure, the values of SIN(TH) and COS(TH) could be
calculated before starting the drawing loop. Now the results of these
calculations SN and CN can be used inside the leop thus saving

78 Spectrum Graphics and Sound

many trigonometric calculations which tend to slow down program
execution. The program would then become as shown in Fig. 4.23.

Here, since we have used X and Y arrays to define the points in the
figure, the variables XC and YC have been used to define the origin
point around which the figure will be drawn on the screen.

109 REM Rotating an irregular shape
116 BIM = (5}

120 DIM y (352

139 DIM 1 (3}

135 REM Set up data for figure
14 FOR n=1 TO S

1539 READ sx{n).y{n),.1 (M

160 NEXT n

170 DATA 20,0,0

180 DATA LB,0,1

199 DATA &v,-15,@

290 DATAH 40,0,1

212 DATA 68,15,1

220 LET xc=128

239 LET yc=88

249 LET dt=2+FPl1/10

2390 LET th=06

260 FOR =1 TO 1@

27e LE7T sn=5IKR th

28¢ LEY ocn=C05 th

29¢ LET xl=xcC

300 LET yi=ycC

31e 60 SUB S9o

329 LET th=th+dt

339 NEXT |

349 STOR

49¢ REM Figure drawing subroutine
S99 PLOT xi,vyl

212 FOR n=1 TO 5

520 LEY x2=xctxi{n)*cn—-y{n)*sn
a3 LET yZ2=yc+xin)¥sn+yin)*cn
240 IF 1in)=1 THEN DRAW =x2-—xl,vy2-v1
o999 PLOT =2,v2

569 LET ul1=nl

S7¢ LET yi=y2

980 NEXT n

379 RETURN

Fig. 4.23. Rotation of an irregular shape.

Chapter Five

New Characters and
Shapes

So far when printing pictures on to the screen we have used the
normal text character set and the mosaic graphics symbol set to
produce displays. For most applications this will be perfectly
adequate but sometimes there will be situations where we may want
to print a symbol that is not provided in the standard symbol set. For
example, we might want to produce the symbols representing the
suits of playing cards or, perhaps, for a program dealing with
mathematics we might want to use symbols from the Greek
alphabet,

One possible solution to the problem might be to actually draw
the required symbol using the high resolution PLOT and DRAW
commands. This would involve drawing the symbol on a piece of
paper and then working out the required sequence of drawing steps
needed to produce the shape on the screen. If only one symbol or
pattern is required and the shape is easy to draw then this approach
is reasonably practical although rather tedious. When several
different symbols are needed and particularly where the symbols are
to be mixed with normal printed text, as in the case of Greek or
Russian letters, the drawing method becomes impractical. What we
really need is a method for producing special symbols that can be
printed in the same way as other text symbols,

The Spectrum does in fact have a facility by which we can produce
a set of custom designed symbols and use them in the same way as
the standard character set. We shall now take a look at how this
works.

The user defined characters
If we print out all of the available characters on the Spectrum using

the program shown at the beginning of Chapter Two, it will be found
that after the mosaic graphics symbols there are the letters A to U. It

80 Spectrum Graphics and Sound

may seem rather odd that the patterns for these twenty symbols are
duplicated. In fact these are the user defined symbols in which the
pattern of dots can be set up by the user to give any desired symbol.
By reprogramming the dot patterns for these symbols we can
generate Greek or Russian letters or perhaps even the Japanese
Katakana symbols and Chinese characters. Apart from text symbols
we can also program the dot patterns of these symbols to display
space invaders, rockets, playing card suit symbols and so on.
Unlike the normal text and mosaic graphics symbols which have
their dot patterns stored in a Read Only Memory (ROM), the user
defined symbols have their dot patterns held in part of the normal
read write memory. When the Spectrum is switched on it
automatically copies the dot patterns for the letters A to U into the
memory locations reserved for the user defined symbol dot
patterns. If this were not done the symbols would just be random
patterns of dots. The memory area used for storing the custom
symbol patterns is at the top of the main memory. The actual
memory addresses used will depend upon whether the Spectrum

has a 16K or 48K memory.
Like the other text characters, each of the user defined
symbols has 8 rows with 8§ dots in each row and each

dot may be either on or off. In the computer each memory word has
8 bits, each of which may be set as a | (on) or a 0 (off) so it is
convenient to store one row of dots from the character pattern into
one memory word. The 8 rows of dots making up the character are
then stored in 8 successive memory words. If we want to create a new
symbol then the new dot pattern must be written into a set of eight
memory locations in the user defined graphics area of memory.

Programming a new symbol

The first step in creating a new symbol is to work out the dot pattern
that is needed to build up the symbol. This can be done by simply
drawing a grid with eight rows of squares and eight squares in each
row as shown in Fig. 5.1. Squares are then shaded in to pick out the
shape of the desired symbol.

Once the dot pattern has been worked out the next step is to
calculate the numbers that have to be stored in the memory. Figure
5.1 shows the layout of a typical user defined graphics character. In
fact this is the same basic pattern of a little man that we set up earlier
using the mosaic graphics symbols. Inthe diagram the black dots are

New Characters and Shapes 81

=
0]
0
L3
o
L1 1]

' & Lata
g4 1B d 1 word

B Pd
;o

I_‘l
n
o -1

o5
Sd
Sd

Fig. 5.1. Conversion of dot patterns to numbers.

in the INK colour and will be represented by ‘I’s in the computer
word. Each data bit in the word has a numerical value starting with 1
for the right-hand end bit and working up in the sequence 2, 4, 8, 16
and so on for successive bits as we move to the left through the data
word. The actual value of each bit is shown at the top of the diagram.

When a dot is in INK colour the corresponding data bit in the
word is set at 1 but if the dot is in PAPER colour the bit is set at 0.
Tofind the actual decimal numberthat hastobefedintothe computer
we can simply add together the numerical values for all of the bitsin
the word that are set at ‘I’. This gives a number in the range 0 to 255.

To set up the dot pattern in memory we now have to write the
sequence of eight numbers into eight successive memory locations
and this can be done by using the POKE command which takes
the form:

POKE address, value

where address is the actual address in the computer memory and
value is the number that we want to write into that address.

All we have to do now is put the data words into the right place in
memory. Fortunately we donot need to know the actualaddressasa
number because the computer can find that itself. Suppose we want
to put our dot pattern into the first available user defined symbol
space. You will remember that this initially displayed an A symbol
and to put in the data for the first row we can use:

POKE USR"a”,data

82 Spectrum Graphics and Sound

where data 1s the value for the top row of dots. To set up the next row
of dots we can use:

POKE USR*"a”+1,data

where data is now the number for the second row of dots. We can
continue in the same way for the remaining rows of dots.

Having set up the symbol pattern, how can it be displayed on the
screen? We can use a PRINT statement with a CHR$ term as we did
earlier for mosaic graphics symbols. The character codes for the user
defined symbols actually run from 144 to 164. If we chose USR*"a”
to set the POKE address then the character code will be 144, In Fig.
5.2 the USR address codes and the associated character code for the
dot patterns they select, are listed.

Custom symbol Custom symbol
USR letter Character code USR letter Character code

A 144 L 155
B 145 M 156
C 146 N 157
D 147 0 158
E 148 P 159
F 149 Q 160
G 150 R 161
H 151 S 162
I 152 T 163
J 153 U 164
K 154

Fig. 5.2. The USR address codes and corresponding user defined character
symbol codes.

Another way of printing the special symbols is to use the graphics
shift mode of the keyboard. This is entered by pressing the CAPS
SHIFT and 9 keys together which changes the cursor to a flashing G.
For mosaic symbols the keys with those symbols on would be used
but for the user defined symbols we simply have to press one of the
letter keys A to U according to which special symbol we want to
print,

There 15 another way in which we can define the dot patterns for
the symbol. This actually makes use of the binary word consisting of
a string of ‘I’s and ‘0’s. To let the computer know that the data is in
binary form, we put the instruction BIN in front of the string of

New Characters and Shapes 83

binary data bits. Thus the top row of our little man figure could be
written as:

BIN 00011106

Note that BIN is an instruction word and is obtained by pressing the
B key when the keyboard is operating in the extended mode
(flashing E cursor).

The program listed in Fig. 5.3 makes use of this method of
specifying the dot pattern.

198 REM Setting up special

1i¢ REM graphics symbol using BIN
120 FOKE USR "a",BIN ©o2l11100
13¢ POKE USR "a"+1,BIN 00911100
149 POKE USR "a"+2,BIN oogal10ao
152 POKE USSR "a"+3,HBIN ©1111111
166 FPOKE USR "a"+4,BIN 20021000
174 POKE USSR "a"+53,BIN 99011109
184 POEE USSR "a"+&,BIN @dlogoic
12&¢ POKE USR "a"+7,BIN 9alagolo
209 FOR n=1 TO 2@

219 LET r=INT (REND*2a)}

220 LET c=INT (RND*3a)

232 FRINT AT r,c:CHRE 14435

246 NEXT n

Fig. 5.3. Using the BIN command to set up dot patterns.

More complex patterns

Sometimes we may find that the shape we want to produce for our
symbol is too complex to be displayed onan 8 X § array of dots. This
can be easily overcome by making up the desired pattern from a
group of special symbols and printing the groups alongside one
another. This follows the same principle that we used in Chapter
Two when we built up the little man figure from a pattern of 4 X 4
mosaic graphics symbols,

An alternative approach is shown in the program listed in Fig, 5.4,
Here a two-dimensional array d has been set up with 8 rows and 8
columns. Each numberin the array is set toeither 1 or@ according to
whether a dot i1s required at that position in the character dot
pattern.

84 Spectrum Graphics and Sound

1 REM Setting up dot array for
119 REM symbol or sprite
129 DIM d{(8,8)

125 REM Set up dot array
13 FOR b=1 TO 8

142 FOR a=1 TO 8

15 READ d{a.b)

162 NEXT a

i7e NEXT b

ig2 DATA ©,9,6,1,1,1,6,08
170 DATA @,6,0,1,1,1 0,9
200 DATA 0,0,9,06,1,8,6,0
21@ DATA @,1,1,1,1,31,.1,1
22¢ DATA 9,0,0,0,1,0,0,0
232 DATA @,0,86,1,1,1,0,@
24 DATA @,9,1,¢,0,9,.1,0
206 DATA 6,0,1,0,0,6,1,0
266 FOR n=1 TO 20

270 LET ==INT (RND*2Z200)
Z89 LET yv=10+INT (RND%150)
285 BREM Plot symbol

294 FOR b=2 TO 7

Fog FOR a=8 TO 7

Z1a IF dia+l,b+1)}=0 THEN GO TO I3
329 PLOT x2+a,v-b

F30 NEXT a

346G NEXT b

350 NEXT n

Fig. 5.4. Using an array to store a dot pattern for a sprite.

To display the symbol two counting loops are used to scan
through all of the values of d. At the same time the graphics cursor
position is moved over the screen to scan out the dot pattern. At each
step the value of d is tested tosee ifitisa‘l’ora ‘9. Wheredisa‘l’a
dot is plotted on the screen but where d is a ‘@’ the plot instruction is
skipped and the program moves on to process the next dot location.

This technique of producing shapes uses rather a lot of memory,
but is possibly easier to set up and more flexible than usinganarray
of special symbols to build up the shape.

The POINT command

Sometimes we may want to know the state of a particular point on

New Characters and Shapes 85

the screen and this can be done quite easily by using the POINT
command. The POINT command word is obtained by selecting the
extended keyboard mode where the flashing E cursor appears and
then using the 8 key with SYMBOL SHIFT.

The complete POINT command may take the form:

160 LET p = POINT (x,y)

where x and vy are the position co-ordinates for the point we wish to
check. If the point on the screen is set to the INK colour then the
resultant value for p will be 1, whereas if the point is in PAPER
colour then p will be @.

Although POINT will tell us whether a selected point on the
screen is ‘on’ or ‘off”, it will not tell us the actual colour of the point
and to find this out we would need to find the colour attributes of
the character space that contains the point we are looking at. This
can be done by using the ATTR command which we shall examine
in Chapter Six.

The POINT command can also be used in an IF statement as
follows:

160 IF POINT (x,y)=1 THEN GOTO 2¢

Here if the point is turned on the result of the IF testis‘true’and the
program will jump to line 2. If the point is turned off then the
program continues with the next statement since the result of the IF
operation will be false. If you want the program to jump when the
dot is turned off then the IF statement should be changed to:

109 IF POINT (x,y) = § THEN GOTO 209

We will now use the POINT command to produce some rather
interesting manipulation of the dot patterns of displayed symbols,

Positioning symbols on the high resolution screen

The easiest way of inserting text into a high resolution display is to
make use of the PRINT AT statement by which the symbol is
printed directly on to the screen at a specified point. This technique
is quite adequate for many purposes but it is limited to placing
symbols into the normal symbol positions on the screen. There will,
however, be some occasions when we want to place a symbol at a
specific point on the screen which may lie between the normal print
positions. This can be achieved fairly easily and we shall now

B6 Spectrum Graphics and Sound

examine the way in which this is done.

Remember that a symbol simply consists of an array of dots and if
we use the PLOT command dots can readily be set up at any point
on the screen. Let us suppose we want to take the symbol A and
place it at some random point on the screen. The first thing we need
to know is the pattern of dots that make up the A symbol. The easiest
way to get the dot pattern is to print the A at position 8,0 on the
screen. We now know the exact position of this pattern of dots and
we can use the POINT command to discover which dots are in INK
colour and which are PAPER colour. By using a simple loop
operation we can examine each dot of the printed symbol at a time
and then we can print a copy of it at any desired point on the screen. -
The program listed in Fig. 5.5. shows how the A symbol can be
printed at a point near the centre of the screen using this technique.

iee REM Flacing & symbol at the
11 REM screen centre by dot copy
120 PRINT AT o,&35"A"3

1532 LET »=128

ide LET y=BE

15¢ REM Copy dot pattern

140 FOR b=e TGO 7

i7e FOR a=@ TO 7

189 IF FOINT {(a,175-b)=& THEN &0 TO Z0@
199 FLOT u+a,y-b

209 NEXT a

219 NEXT b

Fig. 5.5. Transfer of a symbol by dot copying.

The required symbol is first printed at the top left corner of the
screen to give the dot pattern that we are going to copy. The upper
row of dots 1n this pattern have x locations running from @ to 7 and
their y position is 175. The next row of dots also have the same x
positions but y is now 174 and successive rows are the same except
that y isreduced by | foreach row. To scan the dots we can set uptwo
count loops with variables a and b which both run from ¢ to 7.

For the POINT command the x and y parameters will be a and
I75—b and we simply have to check if the result is 1 or not to see if the
dot is in INK colour. Having examined the dot pattern we now have
to plot a copy of the dot pattern at some other desired point on the
screen. First we must define the point at which we want to plot the
symbol and here it is convenient to select the X,y co-ordinates as the
point where the top left corner of the displayed symbolis to be. Now
to plot the points we simply use PLOT x+a,y—b where a and b are

100
ile
120
139
140
150
166
170
18¢
390
400
414
420
43
440
450
458

New Characters and Shapes 87

REM Flacing a symbol at random
REM positions by dot copying
PRINT AT ©,6:"A";

FCR n=1 T0 56

LET x=8+INT (RND%24@)

LET v=8+INT (RND*150)

GO SUB 40

NEXT n

STOF

REM Copy symbol to point x,vy
FOR b=8& TO 7

FOR a=@ TO 7

IF POINY {a,i75-bi=0 THEN GO 7O 440
FLOT x+a,y-b

NEXT a

MEXT b

RETURN

Fig. 5.6. Transferring symbols to random screen positions.

the same count values as we used inthe POINT command, Ifthe POINT
testshowsalitdet thenadotis plotted in the newsymbol position, but

if the dot is off, the PLOT instruction is skipped.
As the two loops progress the dot pattern will be copied from the top

left corner to the new position. Using this routine it is possible to plot
two symbols overlapping quite easily. This is demonstrated in the
program listed in Fig. 5.6 where the symbol is copied to random

-
= £
R P & %':'
& = H R
=
5
A & A
= P H
e HA H - =
8 =] =
A = Moo ’
p=i A 2
(=1 A =) &
=
_ = i M
F A H o =

Fig. 5.7. Typical random position symbol display.

88 Spectrum Graphics and Sound

positions around the screen. This produces a screen display similar
to that shown in Fig. 5.7. Note here that we can now have symbols
actually overlapping one another. This method of setting up text
symbols on the screen is particularly useful when text has to be
inserted into a high resolution graphics drawing.

Rotating the symbols

By slightly changing the copying loop we can now produce some
more interesting effects. Suppose we want to write the symbol
upside down on the screen. If we change the y term of the PLOT
command to y+b this effectively inverts the symbol, since the top
row of dots that was read from the master pattern now becomes the
bottom row of dots in the plotted symbol and the sequence of all
other rows also changes. An important point to note here isthat the
plotted symbol will now have its lower left corner at the specified x,y
position. The position x,y must be chosen so that the y co-ordinate
of the top row of the plotted symbol does not go beyond 175,
otherwise the program will stop on an error.

If you want the symbol upside down but with its top left corner
still at x,y then the PLOT command must be changed to:

PLOT x+a,y—8+b

This would allow the symbol to be inserted easily into a row of
printed text symbols.

To turn asymbol back to front so that it lookslikea mirror image,
we can apply a similar process to the X term of the PLOT command
so that it becomes:

PLOT x+8—a,y—b

Now let us get a little more adventurous and see what happens if we
swap the offset terms a and b in the PLOT command to give:

PLOT x+b,yt+a

This produces a symbol which has been turned on its side since the
horizontal rows of the original pattern have now been plotted
vertically, To turn the symbol over on to its other side we simply
have to change the command to:

PLOT x—b.,y+a

100
11e
1206
130
146
150
1560
17e
ige
194
200
219
220
238
249
250
2608
298
409
416
42¢
/G
440
454
A 50
450
wle e
o210
929
.30
s 1
D59
SH?
79
L2
&L1e
&2e
£330
640
H50
6560
LT

New Characters and Shapes 89

REM Rotation of text symbols
REM using dot copying '
FRINT AT &,03"A";:

LET x=124

LET y=%6&

GO SUB 490

LET =x=124

LET y=64

GO SUB S50¢

LET =112

LET y=76&6

GO SUB &08

LET x=144

LET y=84

GO SUB 700

FRINT AT @,e5" "3

STOF

REM Normal symbol

FOR b=@ TO 7

FOR a=9© TO0 7

IF POINT {(a,175-b)=@ THEM GO TO 44¢
PLOT x+=x,y—b

NEXT =

NEXT b

RETURN

REM Inverted symbol

FOR b= TO 7

FOR a=® 70 7

IF POINTY {(a,175-b)=0 THEN GO TO 540
FLOT =+a,vytbh

NEXT a

NEXT b

RETURN

REM Symbol rotated to left
FOR b=¢ TQ 7

FOR a=© TO 7

IF POINT {a,1i75-b)=¢ THEN GO TO 5440
PLOT x+h,y+a

NEXT a

NEXT b

RETURN

REM Symbol rotated to right

90 Spectrum Graphics and Sound

P %
710
72e

36
748
7oe
760

FOR b=0 TO 7

FOR a=& 1O 7

IF POINT {(a.,175-b)=&¢ THEN &GO TO 749
FLOT «x—-b,vy—=a

NEXT a

NEXT b

RETURN

Fig. 5.8. Rotation of symbols by dot copying.

Once again in these commands a correction may be made to the
basic x,y values so that the top left corner of the new symbol will still
be positioned at point x,y on the screen.

The program listed in Fig. 5.8 draws symbols in all four
orientations and will produce a display similar to that shown in Fig,

5.9,

Fig. 5.9. Display of rotated symbols.

Bigger and better characters

Suppose we want to produce a double width symbol on the screen.
To get double width we can simply use a second PLOT command to
place a dot alongside the first. Of course we must also have two
blank spaces for each blank dot as well. This can readily be achieved
by using an offset of twice a so that the plot action moves two points

New Characters and Shapes 91

16 REM Producing large symbols
1ig LET cv=1&5

115 REM v=symbol height

iZ¢ FOR v=1 TO S

1539 LET cx=le

140 LET cy=cy—B¥*v

145 REM h=symbol width

156 FOR h=1 TO0 3

1660 PRINT AT 0.835"4";3

178 LET cx=cxt+tlaxh

18¢ GO SUB D06

17¢ NEXT h

20¢ NEXT v

270 PRINT AT o,e5" "3

236 570P

499 REM Symbol copying subroutine
Sep FOR v=a TO 7

=19 FOR =x=@ 7O 7

sz IF POINT {(x,175—y}=@ THEM GO TO 5Beé
53e FOR k=@ TO v-1

54a FOR j=2 70 h—-1

550 PLOT cx+h#x+j,cy—viy+k

S6e MEXT j

578 MNEXT k

SBe MEXT H

590 NEXT ¥y

498 RETURN

Fig. 5.70. Program to produce bigger symbols.

for each point in the original pattern.

It is equally easy to generate double height symbols. In this case
the doubling up process is applied to the b offset instead of to the a
offset. Now each row of dots in the onginal pattern 1s scanned twice
and produces two rows of dots one above the other in the plotted
copy character.

By combining the two actions we can produce double size
symbols. Further development along these lines will allow treble or
quadruple size symbols to be produced from the original dot
pattern. An important point to watch when using any of the dot
pattern copying routines is to make sure that none of the dots are
allowed to go beyond the screen limits.

The program listed in Fig. 5.10 gives some idea of the possibilities
of this technique and shows a range of symbols in sizes up to five
times as large as the original character. The display produced on the

92 Spectrum Graphics and Sound

H i # &

H 17 1 # 1
H HF H #8

Fig. 5.11. Big symbol display.

screen by this program is shown in Fig. 5.11. This technique can be
very useful for providing bold titles on the screen display.

Sloping Symbols

Sometimes we may want to produce italic style symbols where the
displayed symbol is inclined at an angle instead of being vertical.
This result can be obtained by subtracting the b offset from the
combined a and x term. Now each successive row of dots in the
symbol is displaced one position to the left so that the symbol is
drawn at an angle and looks very much like a rather exaggerated
italic symbol. A more realistic looking italic symbol is produced by
using INT (b/2) instead of b, since this reduces the slope of the
symbol.

If instead of subtracting the b term it is added to the x term then
the symbols will slope in the opposite direction. The results of this
type of operation can be seen by running the program listed in Fig.
5.12. The results produced on the screen are shown in Fig. 5.13
which demonstrates the effect produced on a variety of symbol sizes
and shapes.

Other possibilities with which you might experiment are to add
the a offset to the y term, which will give a character with sloping

New Characters and Shapes 93

199 REM Large italic symbols
11e LET cy=145

115 REM Set symbol height (v)
i2a¢ FOR v=1 TO =

13¢ LET cx=19

140 LET cy=cy—8%v

145 REM Set symbol width (h)
15@¢ FOR h=1 TO =

160 PRINT AT @,9;7%";

170 LET cx=cx+16xh

186 GO SUR 560

12a NEXT h

Zowe NEXT v

218 PRINT AT @a,03" ";

22« STOF

498 REM Symbol copy subroutine
S0g FOR y=0 TO 7

51¢ FOR == 70 7

520 IF POINT (x,17S5—y)=@ THEN GO TGO S8e
530 FOR k=0 T0 v—1

544 FOR j=0 1O h-1

550 PLOT cx+h¥u+j—y*h/2,cy—v¥y+k
069 NEXT j

579 NEXT k

580 NEXT x

994 MNEXT vy

59 RETURN

Fig. 5.12. Creating italic style symbols.

horizontal lines, or to combine both operations, which will draw the
character rotated through 45 degrees. Since this rotation technique
does not follow the normal rotation equations, the shape of the
symbol will be distorted when it is rotated in this way. I will leave
you to experiment with the various possible combinations that can
be applied to the plotting of the copied character.

Chapter Six
More About Colour

So far in this book we have used the INK and PAPER commands to
set up the drawing or foreground colour (INK) and the background
colour (PAPER). There are several other commands which are
concerned with the colour on the screen and we shall now explore
these to sec how we can obtain many more than the eight standard
colours of the INK and PAPER commands.

Bright and flashing colours

Sometimes we may wish to emphasise parts of a text display to
attract the viewer’s attention. Examples of this might be to warn of
some potentially dangerous situation or to indicate that some action
is required. An example of this is the flashing cursor on the
Spectrum text display which shows the position of the text cursor
and indicates where the next symbol printed to the display will be
located,

One way of making part of the text stand out is to use the
command BRIGHT. This command can have either a | or a 0
following it. The command BRIGHT 1 causes any new symbols
printed on the screen to be brighter than normal and it will also
cause the background colour for those symbols to be brighter. The
BRIGHT command has no effect on black symbols or backgrounds.
To restore the display to normal use the BRIGHT 0 command. Note
that like the INK command, BRIGHT only affects symbols which
are printed after the BRIGHT | command has been used.

Sometimes, depending upon the particular television receiver
used for the display, the use of BRIGHT | will cause the overall
brightness of the picture to fall.

Another way of drawing attention to a particular part of the
screen is to use the FLASH command. When FLASH 1 is used any

96 Spectrum Graphics and Sound

new characters printed will flash on and off. In fact what happens is
that the foreground and background colours in the character space
alternate so that at one moment there might be a black symbol on a
white background and this alternates with a white symbol on a black
background. As with the BRIGHT command if we inserta FLASH
() command the following symbols will be displayed 1n the normal

190
11a
1Z2a
130
149
156
169
170
ida
194
260
219
226
236
249
250
260
279
289
27a
3O
310
J2a
330
Z49
300
SHD
37e
ZBe
3970
400
5190
420
430
449
450

REM Bright and flashing symbols
FOR k=1 70 4

FRINT AT k.93 "3

FOR j=@6 TO 7

INK 3

PRINT CHR% {(13&+j);
PRINT CHR® (136+j});
PRIMT CHR$% (134+3);
NEXT 3

NEXT k

FOR k=5 TO 8

BRIGHT 1

PRINT AT k,03"% ";

FOR j=o T4 7

INK

FRINT CHR$ (13&6+j}3
PRINT CHR$ (13&6+j);
FRINT CHR$ (13&4+35)3
MEXT 3

NEXT k

BRIGHT @

FOR k=% TDO 12

FLASH 1

FRINT AT k,@3" "3

FOR j=o TO 7

INK 3

FRINT CHR$ {(13&6+3)5
FRINT CHR$% (136+3)3
PRINT CHR® (1346+3)35
NEXT j

NEXT k

FLASH o

INK @

PRINT AT 2,265 "MNormal®;
PRINT AT &6,263"Bright”s
PRINT AT 19,245 "Flash"s

Fig. 6.1. Demonstration of BRIGHT and FLASH,

More About Colour 97

steady colours. After FLASH 0 any symbols that are already
flashing will continue to do so unless they are printed again.

The program listed in Fig. 6.1 demonstrates the effects of using
BRIGHT and FLASH.

Filling shapes with colour

One way of obtaining more boldly coloured pictures is to display
patches or blocks of colour rather than single lines or dots. This can
be done by filling in the area on the screen so that all of its dots are set
at the INK colour.

Let us take a simple shape such as a rectangle. To fill the rectangle
we can start by drawing the bottom side and then we can successively
draw horizontal lines one above the other, equal to the width of the
rectangle, until the top side of the rectangle is drawn.

1¢e REM Colour filled rectangle
ile FOR n=1 TO Z&

12¢ CLS

132 INK INMT (RKND%7)

149 LET w=15+INT (RND¥*100)

150 LET #=INT {(RND®(235-w)}

160 LET h=190+INT {(RND¥*&5)

170 LET y=INT (RND%(175-h})

180 PLOT x,v¥y

19¢ DRAW w,o

2006 DRAW ©,h

2190 DRAW —w,®

228 DRAW @,—h

Ze IF h>»w THEN GO TO 290

235 REM Fill with horizontal lines
24¢ FOR j=1 TO h

250 PLOT x,.vytj

26@ DROW w,®

276 NEXT j

289 GO TO 330

285 REM Fill with vertical lines
290 FOR i=1 TO w

Zod PLOT x+j,.vy

310 DRAW @,h

3268 NEXT j

338 PAUSE 59

409 NEXT n

Fig. 6.2. Rectangle filling program.

98 Spectrum Graphics and Sound

In the program listed in Fig. 6.2 the successive lines are drawn by
first plotting the start point and then drawing a horizontal line equal
to the width of the rectangle. For the next line the y co-ordinate is
increased by 1 and the action is repeated. The process of filling is
carried out in a loop which is executed h times, where h is the height
of the rectangle.

There are two ways of filling a circle. In the first method a series of
concentric circles is drawn with the radius of the circles being
incremented one unit at a time until the desired radius is reached.
This is shown in the program listed in Fig. 6.3.

130 REM Colour filled circles
119 REM using varving radius
1Ze¢ FOR n=1 TO 25

136 LET r=INT (RMD*59)

14@ LET x=r+INT (REND%{Z2535-2%r)?}
150 LET w=r+INT (RND*{175-2%))
16@ INK INT (RND*7): CLS

165 REM Draw circle ocutline
176 CIRCLE s,y.r

175 REM Fill circle

i8¢ FCR j=9 TO r

12a¢ CIRCLE 2.y, 13

290 NEXT j

216 FAUSE S50

220 NEXT n

Fig. 6.3. Filling a circle by varing radius.
1062 REM Colour +illed circles
112 REM using radial lines
12 FOR =1 TO 25
130 LET r=INT (RND#*53%)
149 LET x=r+INT {(RND*{(255-2¥%r))}
156 LET y=r+INT (RND%(175-2%r})
166 INK INT (RND#7): CLS
165 REM Draw circle outline
170 CIRCLE x,vy,r
175 REM Fill circle
186 LET dt=FI/{(r*4)
i9e FOR i=9 TO r+B
200 FLOT x,vy
210 DRAW r*C0S (jxdt),r*5IN (jxdt)
229 NEXT 3
230 PAUSE S5O
240 NEXT n

Fig. 6.4. Filling a circle using radial lines.

More About Colour 99

The alternative approach to filling a circle is to draw radial lines
from the centre and stepping the angle around the circle in small
increments so that all of the dots in the circle are filled. This is shown
in the program of Figure 6.4.

Filling a regular polygon, such as a hexagon, is best carried out by
drawing a series of concentric polygons with the radius increasing
one step at a time until the desired size is reached.

Different shades of colour

Using the INK and PAPER commands we can normally obtain
eight different colours. The range can however be extended by using
the BRIGHT command which in effect adds white to the selected
colour thus producing a brighter symbol or dot on the screen and a
paler shade of the basic colour. Thus BRIGHT applied to a red
coloured symbol will produce a pink coloured symbol.

We can in fact produce a lot of new colours by mixing the basic

198 REM Colour mixing using
i1 REM horizontal linecs

12¢ FOR p=7 TO @& STEF -1
130 FOR i=@ T 7
142 PAFER 7
158 ELS
169 INK @
17a FAPER p
ige PLOT 87,47
ig9o DRAW 82,0
2e6 DRAW 9,82
219 DRAW —B2,0
Z@ DRAW o,—-82
230 INK i
249 FOR i=@ TO 77 STEP 2
250 FLOT 88,.50+;
2460 DRAW 79,9
270 FLOT 88,49+;
28¢ DRAW PAPER p3 INVERSE 1;79,0
299 NEXT j
I PAUSE S5
Fi¢ NEXT 1
328 NEXT p

fig. 6.5. Colour mixing using horizontal lines.

100 Spectrum Graphics and Sound

colours on the screen. If we draw a red line alongside a yellow line
the result appears to be orange because at the normal viewing
distance adjacent lines tend to merge together,

If we take a square and fill 1t with colour but draw alternate fill
lines in a second colour we can achieve a simple form of colour
mixing. The program hsted in Fig. 6.5 shows the sort of results and
the different shades of colour that can be produced.

108 REM Colour mixing using
118 REM alternate vertical 1lines
120 FOR p=7 TO @ STEF -1
13¢ FOR 1i=9 TO 7

i4e FPAPER 7

15e CLS

162 INK @

174 FAFER p

iga FPLOT 87,47

199 DRAW 82,0

200 DRAW @,.82

Z2ie DRARW -B82,0

22e DRAW o,—-B82

Z23a INK 1

249 FOR j=@ TO 77 LHTEF 2
25¢ PLOT 96+3,48

768 DRAW 2,7

270 PLOT 89+5,48

8¢ DRAW PAPER p: INVERSE 130,77
298 NEXT 3

Soe PAUSE o9

319 NEXT i

320 NEXT p

Fig. 6.6. Colour mixing using vertical stripes.

Colour mixing can equally well be carried out by using vertical
stripes of alternate colour te fill the square. This is demonstrated by
the program listed in Fig. 6.6. Here, however, you will probably find
that with many combinations a series of patterning lines appear in
the square and the colours produced may continually change giving
a sort of flickering effect. A better result is achieved by using both
horizontal and vertical lines as shown in the program listed in
Fig. 6.7.

With alternate line colour mixing the results are fairly crude. A
better technique is to produce an alternate dot pattern. The user
defined graphics symbol facility can be used to create a special

More About Colour 101

ie¢ REM Colour mixing using
11® REM crosshatch lines
iZeé FOR p=7 TO © STEF -1
13& FOR i=@ 1O 7
149 PAPEE 7
15a CLS
160 INK &
176 FAFER p
i8¢ FLOT B7,47
i?¢ DRAW BZ.©
206 DRAW @,82
21 DRAW 82,0
226 DRAW 6,82
2532 INK 1
235 REM Draw horizontal lines
244 FOR =9 TO 79 STEFRF Z
250 PLOT B88.49+;
269 DRAW 78,0
278 MEXT j
275 REM Draw vertical lines
28 FOR j=@ TO 77 STEF 2
296 PLOT PAPER ps INVERSE 1:89+3,49
I DRAKW PAPER p: INVERSE 130,77
Zile NEXT j
320 FPAUSE 5@
ZE0 MEXT 1
340 NEXT p
Fig. 6.7. Colour mixing by a crosshatch pattern.

graphics symbol facility can be used to create a special character
which contains a checkerboard pattern of dots as shown in Fig. 6.8,

Fig. 6.8. Checkerboard symbol pattern for celour mixing.

102 Spectrum Graphics and Sound

Here the alternate dots both vertically and horizontally are in INK
and PAPER colours so the two colours should be very effectively
mixed within the symbol space. This technique is used in the
program shown in Fig. 6.9 to produce a wide range of shades of
colour.

190 REM Colour mixing by printing
11 REM crosshatch symbols
iZ2&é REM Create symbol

i3¢ FOR n=0& TO 7 STEF 2
148 FOKE USR "a"+n, 179
158 PEKE USH "a'"+n+1,85
168 NEXT n

179 FOR p=7 T0O & STEF -1
ige FPAPER p

i%e FDOR i=@ T0O 7

200 IMK 1

218 FOR b= T0O 1

226 BRIGHT b

220 FOR r=5 T0O 15

243 FOR c=10 T0 26

259 PRINT AT r,c3EHRE: 1443
260 MEXT C

270 NEXT r

289 FAUSE 5@

296 NEXT b

309 BRIGHT &

319 NEXT i

329 NEXT p

Fig. 6.9. Colour mixing using special symbals.

Inverse Video

Normally symbols will be drawn in the INK colour on a background
of the PAPER colour. By using INVERSE | symbols are
displayed inthe PAPER colour on a background INK colour. Thiscan
be useful for emphasising certain words in a message. It is possible to
arrange that words are flashed on and off by alternately using
INVERSE] and INVERSE ¢ display, but there is, in fact, asimpler
method for getting flashing symbols by using the FLASH
command.

More About Colour 103

Using the OVER command

An extremely useful colour command on the Spectrum is OVER.
Like the FLASH and INVERSE commands it has two possible
modes which are OVER 0 and OVER 1.

When OVER 1 is selected the new dot or symbol 1s added to
anything that already exists on the screen at that particular
character space.

The action of the OVER command is effectively an exclusive
OR operation between the new data being written to the screen and
that already being displayed. Inan exclusive OR operationifadotin
the new pattern 1s set on or the equivalent dot in the screen picture is
on then the dot displayed after the operation will be set on. Thus if
the dot in the new symbol is in INK colour and the dot already on the
screen 18 PAPER colour the result will be a dot set to INK colour.

If bothdotsare of thesame colour, i.e. both PAPER or both INK,
then the resultant dot on the screen is set at the PAPER colour. Thus
we get the following four possible results:

Old dot New dot Result
PAPER PAPER PAPER
INK PAPER INK
PAPER INK INK
INK INK PAPER

The effect when two symbols are written to the same position
using OVER is that where the two symbols overlap the dots are set to
the PAPER colour, but all other dots in both symbols are
displayed in INK colour. A point to note here is that if the earlier
symbol had been written in a different colour its dots will now
change to the current INK colour.

An interesting and very useful effect occurs if we write the same
symbol on top of itself using the OVER function. The first time the
symbol is written on to a blank space it will be displayed perfectly
normally in the current INK colour. When the symbol i1s written
again all of the dots in the new symbol coincide with those in the one
already on screen so all of these dots are displayed in PAPER
colour. Since all of the dots in PAPER colour also match up the
whole character space will be in PAPER colour. In other words we

104 Spectrum Graphics and Sound

have effectively erased the symbol.

Now this discovery may not seem particularly clever since we
could have achieved exactly the same result by writing a blank
character into the space. Suppose, however, that instead of starting
with a blank we already had a character displayed there and that the
new symbol that we are writing is a different one. On writing the new
symbol for the first time with OVER we would get a combination of
the two symbols in the space. Where the two symbols overlapped
those dots would be set at the PAPER colour. Now if we write the
second symbol again it will be erased wherever it does not overlap
the earlier symbol. Where the symbols overlapped however the dots
were at PAPER colour and these will now be set to INK colour thus
restoring the original symbol on the screen. So we now have a way of
writing and erasing a new character which has been written over an
exiting one without erasing the original symbol.

Making a sketching program

So far in drawing our lines, triangles and rectangles we have had to
calculate the positions of the points between which the lines are to be
drawn, The corresponding x and y parameters are then used with the
PLOT and DRAW commands to actually produce the line on the
screen. In real life we would simply take a pencil or penand just draw
the line where we wanted it. It is not too difficult to achieve this on
the Spectrum and we can produce a useful little sketching program.

In a simple sketching program the arrow keys can be used to move
the graphics cursor position around the screen. Let us now assume
that the graphics cursor position represents the position of the tip of
a pen and that we can have the pen either on the paper (down) or
lifted off the paper (up). When the penis down it willdraw a point on
the screen and if it 18 moved when 1n the ‘down’ state a line will be
drawn along the path of the pen tip. When the pen is up it does not
draw on the screen but merely moves to a new position. The U (up)
and D (down) keys are used to control whether the pen is up or
down. At the start of the program the pen is set in the ‘up’ position
and 1s located at the bottom left-hand corner of the screen where
X=@ and Y=0.

One problem which arises when we have the pen ‘up’ is that
nothing is drawn so we have no means of knowing where the pen is.
In the program this is overcome by placing a dot on the screen at the
point where the penis. Each time the pen moves the dot 1s erased and

109
119
i2a
139
14€
15e
160
17a
180
185
19a
200
21@
215
220
23a
35
286
245
254
260
276
275
286
29
el is)
31ia
315
320
350
34
359
355
36D
37
38
390
395
40
q1e
426
425
430
446
450
455
4466
465
47
475
48¢a
485
490
D00
519

More About Colour 105

REM Sketching program

PRINT "Arrow keys move pen up/down left/right”
PRIMT "D key puts pen down for drawing®
PRINT "U key lifts pen for moving"

FRINT "E key erases line”

FREINT "Number keys ® to & set colour™

FRINT "kKeys C,V,B and N give diagonal lines"
INPUT "Ready? (Y/N}"ia$

IF as<>"y" THEN GO TO 17a

REM Initialise

LET x=@: LET y=@: LET x1=0: LET yl=0

LET s=90: LET p=09: INK ©: PAPER 7/

LET e=9: CLS : PLOT x,vy

REM Test for key pressed

IF INKEY$="" THEN GO TO 220

LET a$=INKEY%$

REM Check for quit

IF as$="q" OR a$="0G" THEN STOF

REM Check required pen state

IF a$="u" OR a$="U" THEN LET p=@: GO TO 2Z/@
IF as$="d" OR a%$="D" THEN LET p=1: LET e=¢
IF at="e" OR a%="E" THEM LET e=1

REM Check for arrow keys and set new X,y

IF a$=CHR$ B8 THEM LET x=x—1: GO TO 36©

IF a$=CHR$ 9 THEN LET x=x+1: GO TD 3&©

IF as=CHR% 1@ THEN LET y=y—1: GO TO 340

IF a$=CHR% 11 THEN LET y=y+1l: GO TO 340
REM Check for and set diagonal moves

IF a$="c" OR a%$="C" THEN LET x=x-1: LET y=y+1
IF a$="v" OR a$="V" THEN LET x=x—1: LET y=y-1
IF a$="b" DR a$="B" THEN LET x=x+1: LET y=y-1
IF a$="n" OR a%$="N" THEN LET x=x+l: LET y=y+i
REM Check s,y limits and execute wraparound
IF »»255 THEN LET x=x-25&4

IF =<® THEN LET x=x+255&

IF v>163 THEN LET y=y-164

IF v<& THEN LET y=y+15&4

REM Set up colour

LET c=(CODE a%)-4B

IF c»&4 OR c<@ THEN B0 T0O 43@

INK c

REM Replace previous state if pen is up

IF p=1 OR s=1 THEN GO TO 450

PLOT OVER 1ix1,yl: OVER @

LET s=FOINT {(x,v)}

REM Carry out erasure

IF e=1 THEN INVERSE 1

REM Plot new point

PLOT x,¥

REM Update last point marker

LET x1=x: LET yl=y

REM Frint current x,y position

PRINT AT @,83"x = "sx3" y = "syi" "
INVERSE @

G0 TO 226

Fig. 6.10. High resolution sketching program.

106 Spectrum Graphics and Sound

then redrawn in a new position so that it continually shows where
the pen is at any time. If there is already a lit dot at the position
before the pen moves to it this 1s noted by using the POINT
command and the state of the pixel point is saved. When the pen
move to a new position the original state of the pixel is restored. If
this were not done then passing the pen overa linealready drawn on
the screen could cause part of that line to be erased.

Figure 6.10 gives a listing of this simple sketching program using
keyboard control.

The arrow keys and the U and D keys are continuously monitored
by using a loop and the INKEYS$ command. When no key is pressed
INKEYS returns a blank string (“”)and the testis repeated again. Whena
key is pressed a$ is set to INKEYS$ and then is tested to see which key
has been pressed and the appropriatc action is taken. For the arrow
keys to work correctly the CAPS SHIFT key must be held down
whilst the arrow key is pressed. The program detects the actual code
for the shifted arrow key. If desired. the approachusedinthesketching
program given in Chapter Two might be used. In that program the
number keys corresponding to the four arrows were detected so that
there was no need to use the CAPS SHIFTkey. Ifanarrowkey is held
down the auto-repeat action of the Sinclair keyboard will come into
play and a series of steps is drawn in succession to produce 4 line.

The program contains some further refinements. If the E key is
pressed the pen will act as an erasor and will blank out any points
that it passes over. This will allow the user to correct mistakes. Using
the arrow keys will allow only horizontal or vertical lines to be
drawn. Four extra keys are also recognised by the program. These
are the C, V, B and N keys which are programmed to give diagonal
movement to the pen. The N key moves up and to the right whilst the
B key moves down to the right. The C and V keys move to the left
and up and down respectively.

Colour attributes

In the Spectrum the text symbols are stored as dot patterns in the
main video memory along with the dot patterns for the high
resolution graphics pictures. Unlike other computers, however, the
Spectrum stores its celour information in a separate area of
memory. Thus the high resolution 1mage is effectively stored as a
pattern of black and white dots.

More About Colour 107

Colour information is not related to individual dots on the high
resolution screen but to the character spaces, each of which
consistds of an array of 8 x 8 or 64 dots. The colours for all of the
dotsin this 8 X 8 array are determined by a single data word stored in
a separate area of memory. This word provides what are known as
the artributes for that symbol space on the screen.

The attribute word contains 8 data bits which are allocated as
shown in Fig. 6.11. The lowest three bits 6f the attribute word give
the INK colour for the symbol space. You will remember from
Chapter One that colours are produced by combining the three
primary colours, red, green and blue. The colour is set up by
allocating the three bits to red, green and blue respectively. When
only the red bit is on the symbol will be red but if red and green bits
are both on then the displayed colour will be yellow (red + green)
and so on.

Daty Plasese foal a3 oy
it o E L L gt bt i bt
4 1 Bl TRk
i i B LN
= £ Gy TN
5 ‘ Blus FAEFER
4 1 P AR
o o esesry ORI
& ¢yl PR LM T
7 1 Y AR S

Fig. 6.11. Bit assignment in the attribute word.

The next three bits in the word are also allocated tored, green and
blue but they indicate the PAPER colourinformationandisnot related
to individual dots on the high resolution screen but to the character

108 Spectrum Graphics and Sound

spaces, each of which consists of an array of 8 + 8 or 64 dots. The
colours for all of the dots in this 8 X 8 array are determined by a
single data word stored in a separate area of memory. This word
provides the attributes for that symbol space on the screen.

Reading the attributes

If we want to find out what the INK or PAPER colour is in a
particular character space then we can do this by using the
command:

LETa= ATTR(r,c)

where r and ¢ are the row and column numbers for the chosen
character space. The result 1s that a will now have the value of the
attributes for that position on the screen.

In a 48K Spectrum the words indicating the attributes of the
character spaces on the screen are stored in memory between
locations 22528 and 23295. The attributes are stored in order
starting with the attribute for location 0,0 at memory adress 22628,
The following memory words are the attributes of the columns in
row 0 working across the screen from left to right. The other rows
then follow on in sequence. To locate a particular attribute we could
use the calculation:

Memory address = 22528 + (32 X r) + ¢

If we wanted to know the colour of a particular space we could
PEEK the corresponding location in the attribute area of memory
and then decode the individual bits of the word to find out the INK
and PAPER colours and whether the BRIGHT or FLASH
conditions were selected. We could also set up a new attribute word
or alter the existing one and POKE it back into the memory to
change the colour in that space.

Often we may want to check the colour of an individual dot on the
high resolution screen. This can be done by using the ATTR
command in the form:

109 a= ATTR (21—y/8,x/8)

Here, to find the column position, we have simply divided the x
co-ordinate by 8 since there are 8 dots ineach character space. The y
calculation is a little more complicated because in the graphics mode
y increases from bottom to top of the screen whereas in text mode

rows are numbered starting from the top and working down. In this
case we subtract y/8 from the available number of text rows to get

More About Colfour

the row number.

The attribute word may now be decoded by checking the state of
eachdata bitinturnand s'etting avariable or “flag” to 1 or 0. Thus we
start by checking to see if a is less than 128 in which case the FLASH
bit must be 0and wecansetavariable FL=0.Ifa>=128then FLisset
at 1, and 128 is subtracted from a ready for the next test. Variable a is
now checked against 64 and a BRIGHT flag BR is set at 1 or () as
appropriate. The other bits are then checked in sequence as shown in

the listing of Fig. 6.12.

A
=19
S15
b DL

S39

Tl T e

==
R

546
55¢

| ol s =y
wlo S d

o606
S7a
o8¢
=90
L£00
&1i9
&13
26
H30
£3E
&S8
L&
&78

REM Decode colour atiributes
LET a=&47TTR (r,.c)

REM T=xt FLASH bit

IF a<128 THEN LET fl=6: GO TO S4o©
LET f1=i: LET a=a-—-1i2E

REM Test BRIGHT bit

IF a<&4 THEN L ET br=0: 60O TO 540
LET br=1: LET a=a—-&4

REM Test PAFPER bits

IF a<32 THEN LET pg=¢: GO TO 58¢
LET pg=1: LET a=a-3Z¢

IF a<l1&s THEN LET pr=6: GO TO 400
LET pr=1: LET a=a-8

IF a<8 THEH LET pb=$: 60 TO &2

{ET pb=1i: LET a=a-8

REM Test IME bLits

iF a{4 THEN LET ig=¢: GO TO &40

{ET ig=l: LET a=a—4

IF a2 THEN LET ir=6: GO TO &b68

LET ir=1: LET a=a—-2

LET ib=a

RETURN

Fig. 6.12. Subroutine to decode colour attributes.

Chapter Seven

Graphs and Charts

By using a computer we can readily carry out lots of measurements
or calculations and end up with enormous arrays of numbers.
Having produced all of these numbers one method of presenting
them is to produce a list or perhaps a table of figures, Unfortunately
such a table or list of numbers is not particularly helpful when we
come to interpret the results.

When examining a list of results we are usually more interested in
the way the results are changing rather than the precise numbers. A
much better method of displaying results 1s to show them visually
using a graphics display or perhaps a chart. Such a graph or chart
usually shows each result as either a varying length line or perhaps as
a dot whose height above some reference line is proportional to the
quantity being displayed. One of the simplest types of display is the
variable length strip display and an example of this in real life is the
everyday mercury thermometer.

Thermometer display

Let us start by looking at the production of a thermometer type
display using the low resolution mosaic graphics symbols provided
on the Spectrum,

In a conventional mercury thermometer the length of the column
of mercury indicates the temperature. We can represent the mercury
column by drawing a simple vertical bar whose length is
proportional to the measurement it respresents, in this case
temperature. The thermometer tube can be shown by drawing a box
in a different colour around the measuring column. The height of
this box must be sufficient to allow the measuring column to reach
the maximum value that we want to display.

In order to make sense of the reading of a thermometer we need a

Graphs and Charts 111

scale. On a real thermometer this is normally drawn on, oralongside,
the thermometer tube. On our display we shall draw the scale
alongside the measurement column. Minus signs are used as
graduation marks to show the calibration of the length of the
column and some of these also have a number alongside which
shows the corresponding temperature in degrees C. In this case only
the lowest and highest temperature points are marked in this way.
As the temperature changes the length of the vertical column
changes in sympathy and the top of the column indicates the
measured temperature.

Suppose we want to measure from 0°C to 100°C. The mosaic
symbols allow us to draw in steps of half a text character space at a
time so the maximum possible number of steps from the top to the
bottom of the screen is only 44. A convenient length for the column
might be 20 units. Each block in the column therefore represents
5°C. At this point we can draw the thermometer tube. The bottom of
the tube is produced by printing mosaic symbols with codes 129,131
and 130 roughly at the middle of text row 20. A loop is then used to
draw the tubeitself and the graduation marks by printing symbols in
successive lines moving up from line 2. Finally the top of the tube is
produced by printing three mosaic symbols on line 8 and the scale
calibrations are printed at appropriate positions alongside the
thermometer tube.

To draw the mercury column the temperature reading is first
scaled into 5° steps by dividing t by 5. Note here that 5 1s first added
to t before it is scaled. This takes account of the fact that the — sign
indicating 0° C is actually halfway up the lowest symbol position in
the mercury column, After scaling the temperature value is rounded
off and converted toaninteger numbery. Nextaloop is set up witha
limit of y/2 since there are two steps per symbol position. This loop
prints completely filled character spaces working up from the
bottom of the tube giving a length rounded down to the nearest 10°,
Finally y/2 is compared with INT(y/2) to see if a further 3° step 1s
needed and if so the next higher character space is filled with a half
block symbol.

A program to produce the thermometer display on the low
resolution screen is shown in Fig. 7.1. Random temperature
readings are displayed as text at the top of the screen and also on the
thermometer display. In this program before each new temperature
is displayed the previous reading of the mercury column is erased by
printing solid blocks in all of the column positions using INVERSE
which effectively resets the column to the background or PAPER

112 Spectrum Graphics and Sound

120
l1io
12
13a
14@
150
1560
i7@
i8a
190
pracls]
Z1e
22e
239
24
250
269
278
2849
298
300
310
320
330
340
500
51@&
326
S350
540
550
946
ar7e
oga
a%e
6500
610
629
&30
H4Q
639

REM Thermometer by mosaic graphics
CLS

INK &: PAFPER 7

LET xo=118: LET yo=16

REM Draw thermometer tube

PRINT AT 20,15;CHR% 1295CHR% 131;CHR$ 13@;
FOR n=1 TO 11

PRINT AT 20-n,14;:"-";CHR$ 133;CHRE 128;CHR®
NEXT n

PRINT AT B,15;CHR% 1325CHR$ 14a5CHR$® 136j
REM Draw Scale

FRINT AT 19.13:%e";

FRINT AT f,11:"1e0";

PRINT AT 13,11;3"C";3

PRINT AT 14,19i"deg";

REM Display loop

FOR k=1 TO 1ee¢

LET £=INT {1@o*RND)

INK 1

PRINT AT 1,15 "Temperature = "jts
FRINT " degrees C. L

GO SUB SO0

PAUSE 209

NEXT k

STOF

INVERSE 1

REM Erase previous reading

FOR n=1 TO 11

PRINT AT 20—-n, 1&6i:CHR$ 1433

NEXT n

INVERSE @

REM Draw new reading

INE. 2

LET y=INT ((t+35)/0+6.3)

FOR n=1 TO INT (y/2)

PRINT AT 20-n, 14;CHRE$ 143

NEXT n

IF INT (y/2)=y/2 THEN &0 TO &35%2
LET y=INT (y/2)

FRINT AT 19-y, l4iCHR% 14@s
RETURN

Fig. 7.1. Thermometer display using mosaic graphics.

138;

colour. The mercury column itself is drawn in red INK c¢olour, The
result on the screen is as shown in Fig. 7.2,

Of course the vertical column may be used to represent any
quantity you like so this display could be used as a fuel gauge, speed
indicator or even toindicate relative scores ina game. Analternative
form of presentation would be to have the moving indicator strip
horizontal so that it acts like the speedometer displays sometimes
fitted to cars. In choosing the layout and screen position of these
strip displays it is important to avoid having two different ink
colours in any symbol space.

Graphs and Charts 113

Temperatureg = V3 4 (.

m
il
-
(11
i
mn

t_:'.

=)

i
I

i
L]

L

i
LI T T B O A A

Fig. 7.2. Typical display from the program in Fig. 7.1.

A better thermometer

A major problem with the thermometer display using the low
resolution graphics mode is that it can only resolve quite large steps
in the quantity being measured. By changing to the high resolution
mode we can produce a rather more accurate readout. It is perhaps
slightly easier to draw the tube and column using high resolution
graphics but in order to add text to the display the graphics drawing
needs to be carefully placed relative to the text symbol positions.
This is also important to avoid colour problems since graphics
colours are tied to symbol spaces.

The tube is easily drawn as a rectangle using PLOT and DRAW
commands. Producing the scale marks is quite straightforward and
uses DRAW commands in a loop. For convenience the scale mark
for @ is drawn separately before the start of the scale mark loop. The
scale calibration values and the legend ‘deg C are simply printed at
the appropriate positions by using PRINT AT commands.

Drawing the mercuy column involves producing a filled rectangle
of height t units. The temperature scaling in this case is 1:1 and the
maximum height of the mercury column is set at 100 screen units,
With the high resolution thermometer there is no need for the 5°
offset that we used for mosiac graphics since the scale graduation

114 Spectrum Graphics and Sound

marks can be drawn at any required point on the screen. However
the position of the tube does need to be chosen so that the text
symbols line up with their calibration marks. The actual column is
filled in by drawing six vertical lines alongside one another with each
line of length t units. To take advantage of the DRAW command
alternate lines are drawn up and down respectively relative to the
cursor position and x is increased by one unit after each line is
drawn.

A program to draw a thermometer style display using high
resolution graphics is shown in Fig. 7.3 and the results on the screen
are shown in Fig. 7.4. Of course the gauge can also be drawn with the
moving measurement bar horizontal. This means rearranging the
drawing sequence to produce horizontal lines instead of vertical

HEM Hi—res thermomster

L8 S

Ik &= POoFER 7/

LET xpo=1i18: LET vo=154

REM Draw thermometer tube
T OT

DRAGW 13,
DREAK 2,1
DROK —i0,0
DRAW &, -108
280 REM Draw bBoale
219 PLOT xgo,vo+d
226 DRAW —-Z,¢

230 DRAW 35,0
240 FOR m=1 TO 14

259 DRAW @,10

2660 DRAW —3Z,.&

27¢ DRAW 3,0

286 NEXT n

298 PRINT AT 12,13:"a";
T PRINT AT b,113"1ie0";
310 PRINT AT 13,12;37"C"3
32¢ PRINT AT 14,115 "degs
339 REM Display loop

e FOR k=1 TO 1e6

356 LET +=TNT {100¥RND)

l':l

e & R B e B

bad Bk ke ek

I T R A I O

b pd e il ek

fd |
<
a

Z6@ INK 1
376 PRINT AT 1,15"Temperature = "3t}
Z8e FRINT " degress C. *

¢ G0 SUB See
499 PAUSE 290

Graphs and Charts 115

4
& previous reading

R B o | N L i

DRAW @,y
INVERGE &

&ea REM Draw new reading

Al ITNE 2

520 PLOT xo+2,vo+d

AZG FOR n=1 T3 &

&4 DRAW ©,t: DRAW 1.0

£S0 LET +=-%

48 NEXT n

670 DRAW &,t

ARG RETURRN

Fig. 7.3. High resolution thermometer display.

ones and again the calibration numbers and text for labelling needs
to be placed in appropriate positions relative to the actual measuring

strip.

P J 20 2 L T G T <

[

o

BHEHESH SO
m
€3
=}

Temperatiure = 48 4d€grgez O,
IO
By 5
b L
B3 1=

Fig. 7.4. Typical thermometer display.

116 Spectrum Graphics and Sound

In this program the temperature values are generated randomly
by the computer and then displayed together with a printed readout
of temperature at the top of the screen. By using a suitable input-
output interface the Spectrum might be connected to an electronic
thermometer. In this case the reading of temperature may be fed into
the Spectrum and then displayed so that the screen display acts as if
it were a real thermometer.

Bar charts

Whilst the thermometer style display 1s useful to show the current
state of some measurement, a more useful arrangement would be to
show how the situation varied over a period of time. We could
perhaps measure the temperature at noon on each day of the week.
A display showing this information can easily be arranged by
drawing the thermometer displays for the days of the week alongside
one another. For this display only the variable length bar is drawn
for each day and a single scale is included at the left-hand side. To
improve visibility the bars may be drawn with a gap between
adjacent bars. This type of display is referred to as a histogram but is
more commonly called a bar chart.

Bar charts are not normally intended to provide particularly
accurate displays since their main application is to show the general
trend of the variable being displayed. They are frequently used in
business applications to show the trend in sales over a year, or
perhaps the stock level, number of orders, or income over a period.
It 1s very easy to see the trend of the results on such a chart.

A useful enhancement of the bar chart is to arrange that the colour
of the bar is changed if its level goes above, or perhaps below, some
predetermined limit. This can provide an easily recognised warning
that a situation is becoming dangerous or needs attention. In such
cases either the whole bar changes colour or the part above the limit
line might change colour.

The low resolution mosaic graphics can be used to draw a bar
chart since, although the vertical resolution is relatively coarse, the
resultant display can be quite effective for this type of chart.

Figure 7.5 gives a listing for a program to draw a bar chart using
mosaic graphics. In this program a separate bar 1s drawn for each
day of the week and each bar is drawn using the same technique as
for the mercury column in the thermometer program. The data in
this program is read into an array so that the drawing of the bars can

199
1ie

1 A
iz
144
156
140
178
186
194
208
218
el
ZEG
24
208
2h
AL
28
276
IR 1%
Si6
328
ZEE

249

I &

o e P

RSt
ET7G
8¢
T
435
i35
216

| el W
o

R
o4
=59
ShHe
oG

|~ s T
i

Graphs and Charts 117

REM Simple bar chart

REM us=ing mosaic graphics
BORDER 3

IMNK @: F&FPER 7

DIM g&i7,2}: DIM {7}

REM Set up data

FOR n=1 TO 7

READ d% i}, Ein)

MEXT

Data "Mo",88, " Tu", 65, "HWe” .88
DATA “"Th",Soo."Fr". &5

DATA "S5a”,7a,"Su", &5

EEM Draw scales

FOR n=1 TO 22

PRINT AT 19,.7+n;CHRE 131
MEXT

FOR n=1 TO 11

PRINT AT 12-n,73"—":CHR$ 138

MEXT —

FOR n=1 10O 7

FRINT AT 26,7+3#nidsind;" "3
NEXT

FRINT 47 18.65%a";
FRINT &T B.45"i100%;
FRINMT &4T 12,55 "F"3
FRINT AT 1E%,4:"deg”:
FOR 4=1 TG 7

G0 SUBR S0

NEXT 3
FRINT AT 2,ie:31"Daily Temperatures.
STOF

IMK 2

REM Draw bar

LET v=INT ((£{;}+5}/5+0.3)

FOR =1 TO INT (y/72)

PRINT AT 19-n.7+3%iCHES 143:CHRS 1433
NMEXT

IF INT {v/2)=y/2 THEN G0 7O H%a

EET yw=INT (w72}

STe Ri

Fig. 7.6, Bar chart using mosaic graphics.

118 Spectrum Graphics and Sound

use a commeon drawing loop. 1t could easily be arranged that the
temperature data is typed in from the keyboard by using an INPUT
statement instead of READ to set up the temperature values.

The display produced on the screen 1s as shown in Fig. 7.6. By
altering the scales and legends this program can readily be adapted
to display any desired variable on the chart.

Caily TEmMREratlures,

180«

m)
o

i ¢ 1P o 11

i

Ly

Mo Tu e Th Fr Sa Su

Fig. 7.6. Display produced by the program in Fig. 7.5

High resolution bar charts

Figure 7.7 shows a program to draw a bar chart using high
resolution graphics and the result on screen is shown in Fig. 7.8. In
this program the bars have been drawn in a different way from those
of the thermometer. Here the loop limit is set to the desired reading
in screen units and a series of short horizontal lines is drawn with one
line above the other to produce the filled bar. This technique
involves more passes around the loop than the vertical line version
but 1s equally effective in producing bars. As in the case of the
thermometer the position of the bars relative to the text symbol
positions must be carefully chosen to avoid problems with display
colour.

189
116
12¢
13
1335
148
i5

166
17¢a
189

i
L (X
s

DR A R VI

b

i U IR N I O B N I

s (A B) s o5

fad B3 Bad
0~ o
S S

290
Zag
316
320
I30
346
350
TLO
365
376
tals)
I7a
450
416
423
436
44
455
446
470
456
190

Graphs and Charts 118

REM High res bar chart

s

BORGER 3

DIM d&{7,23:z DIM t{7)

REM Set up data

FOR =1 TO 7

READ dein}. . t{n?

NEXT n

DATA "Mo",15,"Tu", 18, "We" 25

paTa "Th", 12, "Frv,17,"83",20,"8u", 18
; REM Draw axes and scales

INE @

LET xo=48: LET yo=22
FLT x0.v0o
DRAW 148,
PLOT mo.vOo
FOR n=1 TO
DR&AW o, 28
DRAaW 3,8
DRaW 35,9
NEXT n
PRINT AT 20,753
FOR j=1 T4 7
FRIMT d&{i}s" "%
MNEXT ;3

FRIMT AT 12,25%"0%":
FRINT 47 4,25 938"

iy

FRINT AT 11, 25"C"3
FRIMT AT 12,135 "deg”
REM Draw bars

I 2

FLO7T xo.v¥D
DRAW 4,9

FOR k=1 T 7
DR&aW 2,9

LET w=tik)=4
FOR n=1 70 4

ODRAW &,V
DRAR 1,48
DRAKW &,—-y
DRaw 1.6
MEXT 0

DRaKW 8,4

L

120 Spectrum Graphics and Sound

Sae NEXT kK

Si@¢ REM Frint legend

S2¢ INE i

S5E@ FRINT AT 2,465 "Daily Temperatures"s
=40 STOF

Fig. 7.7. High resolution bar chart program.

Caild Temperatures

il

Mo Tu We Th Fr Sa_ Su

Fig. 7.8. High resolution bar chart picture.

Multiple bar charts

When two different variables are to be displayed on the same chart
the bars are drawn in pairs so that they become interleaved. To
provide clearer distinction between the sets of bars a different colour
may be used foreach set of bars. Three or perhaps four graphs could
be interleaved in this way if desired. Some bars could be drawn as
open boxes but with different coloured outlines. A typical
application for a multiple bar chart might show the income and
expenditure on a single chart. It might also be useful to show
perhaps the predicted trends,

An example of a multiple bar chart is shown in the program listed
in Fig. 7.9 which produces a plot of the maximum and minimum
temperatures for the days of a week using high resolution graphics.
In this case one set of bars is drawn in red whilst the others are in the

190
119
120
13@
140
15e
i6@
179
13@
170
200
210
22a
230
246
250
260
270
28a
296
300
Fla
329
338
348
359
3460
370
>80
39
400
416

Graphs and Charts

REM Multiple bar chart
CLS

BORDER 3

DIM d$(7,2}

DIiM 1{7)

DIM h{7)

REM Set up data

FOR n=1 TO 7

READ d&(n),1(n),hin)
NEXT n

DATA "Mo",7,15,"Tu",10,18, "We”
DATA 15,25,"Th",S5,12,"Fr",2,17
DATA "Sa",7.2@,"Su",15,18
REM Draw axes and scales
INK &

LET xo=48: LET vo=20
PLOT xo,vOo

DRAW 158,09

PLOT xo0,vO

FOR n=1 TO &

DRAW @,20

DRAW -3,0

DRAW 3,0

NEXT n

PRINT AT 20,733

FOR j;j=1 TO 7

PRINT d&{j)s" "3

NEXT j

PRINT AT 19,4:%"0"3§

PRINT AT 4,33 "3a"

PRINT AT 11,253"C"s§

PRINT AT 12,13 "deg"

42a>REM Draw bars

4356
440
450
456G
476
484
470
=505

PLOT xo+8,vyo
FOR k=1 TO 7
INK S

LET y=1{k)*4
FOR n=1 70 4
DRAW O,y
DRAW 1,@
DRAW ©,—y

121

122 Spectrum Graphics and Sound

=190 DRAW 1.4
=28 NEXT n
o3 DRAW 4,60
=49 INK 2
S50 LET y=h(k)*4
o6 FOR n=1 TO 4
o790 DRAW @,v
=8¢ DRAW 1,0
o979 DRAW @, —v
&0¢ DRAW 1,0
ale NEXT n
620 DRAW 4,0
£330 NEXT k
640 REM Frint legend
6539 INK 1
b60 FPRINT AT 1,63"Daily Temperatures”s
&70 INK o
H88 PRINT AT 3,65 "Low ";sCHRE 1433
6520 PRINT CHR$ 143;CHR% 143;
7oo INE 2
710 PRINT AT 3,173 High "3;CHR$ 143§
720 PRINT CHR% 143;CHR% 143;
736 STOFR
Fig. 7.9. Multiple bar chart program.
Laily Temperatures
Law [Hiak iR
S8
3
cC_ . I I ~
dE A|
il ﬂlm |
Mo Tuw Lle Th Fr Sa 3u

Fig. 7.10. Typical multiple bar chart display.

Graphs and Charts 123

cyan colour. On such a chart a legend should always be included to
show what each set of bars represents. Figure 7.10 shows the type of
display produced by this program,.

Bar graphs are often used infinancialand production charts since
they provide a bolder and easier to follow presentation than a list of
figures.

Scientific graphs

Although the bar chart is well suited for business use, when we come
to scientific or mathematical graph plotting a slightly different
arrangement is used since the graph is required to give a more
accurate display of results.

The layout is similar to that of a bar chart with the results of the
calculation or experiment plotted vertically on the screen and the
measurement steps horizontally. In this case however the value of Y
is simply shown as a dotata point equivalent to the top of the bar on
a bar chart. Sometimes to make the point casier to see a small + sign,
triangle or circle may be used as a marker instead.

In a bar chart the variables are normally positive butina scientific
graph the variables X and Y may be either positive or negative. To
cater for this the X and Y axes are drawn as shown 1n Fig. 7.11.

+1
i) 1 ™ V.
"":l.(al..lll'lli'lll_IIT'_lllITTI:1'+'l|'3
v ﬁ"\.a‘:l i VoA
-1
Wor B51IH (M)

Fig. 7.11. A sine graph plot.

124 Spectrum Graphics and Sound

Positive values of X are drawn to the right of the vertical Y axisand
negative values of X to the left. Similarly positive values of Y are
drawn above the X axis and negative values below. When there are
no negative values for X the left-hand half of the graph isnot drawn
so that the Y axis appears at the left side of the diagram. Similarly if
there are no negatve values of X only the upper part of the graph,
above the X axis, would be drawn. Sometimes only a quarter of the
complete graph need be drawn to display all of the points required.
The advantage of drawing only part of the complete, X,Y axis
system i1s that the required part of the chart can be expanded to fill
the screen thus giving better resolution.

To see how this type of graph display is produced let us draw the
graph for the equation Y = SIN(X) with values of X ranging from
—1f to +19. The value of SIN(X) will always liec between the limits
—1 and +1 so this determines the scale of the Y axis. To produce a
reasonable size graph we shall obviously have to multiply Y by a
scaling value. A convenient scale is to arrange that | unit of Y gives
60 screen divisions, so we simply multiply the value of Y by a scaling
factor ys before calculating the plotting co-ordinates. The value of ys
is set at 60 at the start of the program. Similarly a multiplier xs is
used to scale the X values. In this case xs 15 set at 10 at the start of the
program to give a graph which is a total of 200 units wide on the
screen, The values for xs and ys can be chosen to give the largest
graph that will fit on the screen according to the range of values of x
and y to be plotted.

The first step in constructing the graph is to produce the X and Y
axis lines and scales. This can easily be done by using DRAW
commands and two simple drawing loops. First we place the
graphics cursor at the centre of the graph axes by using PLOT
128,88 which puts a dot at the centre of the screen. The next stepisto
draw the right-hand X axis which is built up by drawing a series of
short horizontal lines each followed by a short vertical line going
below the axis line and a second vertical line to take the cursor back
on to the axis. The length of each step is the x increment multiplied
by xs. After drawing the right-hand side the loop 1s repeated and the
lines aredrawntotheleft. The Y axisand itsscalemarksaredrawnina
similar fashion. The completeaxisdrawingstageisdealt withasa sub-
routine although it could equally well be done in line in the main
program if desired. The last part of subroutine prints in the scale
calibrations at each end of the axes.

Having drawn the axes, the next step is to plot the graph itself.
Here the calculations are carried out in a loop with the angle (x)

Graphs and Charts 125

being stepped in small increments from —19 to +1¢. The x co-
ordinate (xp) for each point is calculated from:

Xp = xo + (x5 * x)

where xo is the x value for the centre of the graph which in this case
1s equal to 128.

Using a scaling factor xs allows the size of the graph plot on the
screen to be easily altered and the value of xo may also be adjusted to
place the graph in any desired position on the screen.

To plot the points on the graph the y value for the PLOT
command 1s calculated from:

yp = vo + ys ¥ SIN(X)
and the point is then plotted using:
PLOT xp,yp

The program listing is given in Fig. 7.12 and the result produced on
the screen is similar to Fig. 7.11. In this program the INK and
PAPER colours are simply black and white but coloured graphs can

be produced by changing the INK and PAPER colours to another
combination.

~EHM Sine graph
BORDER o

ELs
LET v
PET M
LET yD=7

REM Draw axes

R T S
- SO LS = I i
28 i B S G

o

DY
mn
......t
m
"
%
it

[
uh 1,":: IE:I |$l I'S:l E:l L]
pen
[
Ry
T
o)
[
*
i
k!
i
J
ok T

SERE OV I I VIR O Y

SRR AN

= .

7 m

< 0 - -

) < M

o4 =1
ol
e A T
A I R
+ 4
Fred
=
< %
o
"
.,::.‘

126 Spectrum Graphics and Sound

269 REM Print legend

278 FHINT AT 28, 11:3"Y = SIN{XI":
Zge S5TOF

458 #EM

450 REM Swis drawing subroutine
e LET x=us

=18 RES Dirad K aHis

S=2g FOR k=1 70 Z

o588 FLOT =D, vo

S4e FOR =1 T0O i@

=5S6: DRAW x, 0

Shr BEHAlE o, -3

%7€ DRAW 9,3

SBa NEXT

H805 MEXT b

Hio LET w=ys/ /16
70 REM DFaw ¥ axis
&Z@G FOR k=1 740 2
&40 PLOT xo,vo

o FOR =1 TG 106
H68 DREAK &,y

&7@ DRAM —-X @

&80 DRAW 3,0

L7960 NMEXT 3
Jae LT w=—vy

Fie MEXT &

L.

F2R2a PRINT AT 1o, 65 "—-1a7;
730 FPRINT AT 16,29:"+1073
7@ FRIMT AT 1,15i"+1%:
75909 FRINT AT 15,153 "-1%%

2

A HETURNM
Fig. 7.712. Program to draw sine graphics.

It would also be possible to draw two or more graphs on the same
axes by using a different INK colour when plotting the dots for the
second graph. One problem here is that where the dots of the first
graph occupy the same character space as a dot from the second
graph their colour will change to that of the second graph. In most
cases this will present no real difficulty unless the lines of the two
curves lie close to one another,

Graphs and Charts 127
Joining the points

In order to obtain a good picture of the curve produced by the sine
function a large number of values must be plotted so that the points
are closely spaced. If there were less values for x and v the points
would tend to be spread apart giving a less clear impression of the
function shape.

Sometimes we may wish to find the probable value for v at a value
of x that was not included in the points used for the graph. By using
a technique known as interpolation we can obtain an approximate
value for such an intermediate point on the curve.

The simplest technique for interpolation 1s to join successive
points on the curve by straight lines. This is generally known as
linear interpolation, We can in fact join the points with a straight
line as the graph is plotted, This gives an easier to follow curve when
the number of points available is limited. Some care is needed,
however, because if too few points are used the straight line
interpolation technique can be wildly inaccurate.

To join the points, the graph plotting routine is simply altered so
that instead of usinga PLOT command to plot each pointa DRAW
command is used to draw a short line from the last point plotted to
the new point. A new pair of variables, x1 and y1, are now needed to
specify the last point plotted. Variables x2 and y2 are used for each
new point. After each line is drawn x1 and yI are updated to equal
the co-ordinates (x2,y2} of the latest point on the graph. The x.y
values for the DRAW command are simply calculated by taking the
diffecrence between x2.y2 and xl1,yl. The Spectrum will auto-
matically move its graphics cursor to the new point as the line is
drawn. The first point must be plotted using a PLOT command in
order to place the graphics cursorinits required starting position on
the graph. This is done by calculating an initial value for x1,y1 for
the first point to be plotted. A variation of the simple graph plot
program which uses interpolation to join the dots is shown in Fig.
7.13. In this program a cosine curve is plotted, which has the same
shape as a sine curve but is shifted in position on the x axis as shown

in Fig. 7.14.

REM Cosmine graph with linked points
BORDER 2

BES

LET xs=10

LET ya=o0

0] B e
R B RN

bk kal bed el ek

128 Spectrum Graphics and Sound

LET woa=178

LET ywo=22

REM Drawm axes

50 SUR oo

REM FPlot graph

PET qi=mxotusE—106

PET wi=yo+INT (yexU0h5 —1&:

FLOT xi,vl

FOR w=—16 TO 16 STEF 9.3

LET xZ2=xo+INT {xs®u}l

LET w2=yo+INT (ve*L0S5 x])

DBRAM xZ—xi,vZ-vl

L ET =1=x2

288 LET vi=vy?

299 NEXT ¥

Zeg REM Print legend

Sio PRINT AT 261239y = 054X "s

26 BTOF

4982 REM

4729 REM Axis drawing sub, cutins

o9g LET x=xus

=i REM Draw X

¢ FOR k=1 TO
0,

A R BN BN R

&y A

e 0 | T S B P O B i R R 0 BTV R R

T % T S T e 6 0 B S

R R

3 =

.
- & =

b
i
i

o2k

S3a FLOT x v
S49 FUOR —3 782 18
S5 ﬂﬂf—‘::ﬁi ¥ g 1)

268 EAAk O, —

57 DRAW @,3

88 NEXT +

=Fe LET x=—x

H£06 NEXT I

L1 LET y=ys/16

626 REM Draw Y axics

&3¢ FOR k=1 7O 2

H4¢ PLOT xo,vyo

456 FOR §j=1 TO 1@

666 DRAW o, v

&7 DRAW -3, 0

&8 DRAW 3,0

&LF6 MNEXT |

788 LET y=-

716 NEXT k

726 PRINT AT 19,6:;"—10";
73a PRINT AT 16,20937+16%;
74s FRINT AT 1,1353"+1":
759 PRINT AT 12.153"-1"3%
7&8 RETURN

i T I Demrrmrservy e rdemrmras Fr0 o e b oo " b 1l o 0 . = e

Graphs and Charts 129

,
g +
I
—__-‘

]

i 5 3 a1 &t I I
_,_p—l-""_r
T ——
e

VT
fs

§ 1 r : 3 FE_F 31 2.1
R —
R

Fig. 7.14. Display produced by COS program.

Dial and clock type displays

For some applications a dial and pointer or clock type of display
may be required. Typical uses might be in the instrument panel fora
flight simulator program or perhaps to provide an instrument
readout for an experiment where the computer is monitoring the
results. In some cases, of course, the display may show time elapsed
or time remaining in a games program.

The basic display consists of a circular, or possibly polygon
shaped, dial with either one or two pointers. The pointers may
simply be radially from the centre of the dial. The dial itself may also
be filled with colour to make it stand out from the background. A
scale of some sort is usually drawn around the outside of the dial.

This analogue type of display is often much more convenient
where precise readings are not required but where the general trend
can be taken in at a glance. An example of this is in digital and
analogue watches and clocks. Although the digital display is precise
it is much easier to tell the time by just glancing at a conventional
clock face.

130 Spectrum Graphics and Sound

Drawing the dial is quite straightforward since it just involves
drawing a circle which may be achieved by using the CIRCLE
command. The scale is simply a larger circle. However to
draw the scale gradations a further radius value is chosen.
Thus sl is the radius to the inner end of the scale marks
whilst s2 is the radius to the outer ends of the marks. The position of
each mark is calculated using rotation equations and then a short
line 1s drawn radially out from the scale circle. A further radius is
used to locate the position of the text symbols.

An important point about the hand or pointer is that it normally
rotates clockwise for increasing readings. In fact the oppaosite will
happen if we use the normal rotation equations. The position of the hand
itself is readily calculated by using modified rotation equations, The
angle of rotation required is simply the ratio of the scale reading to full
scale multiplied by the total angle represented by full scale. If all 360
degrees are used, as in a compass display, then the angle TH is given
by:

TH = 2*PI*X; FS

where X 1s the measured value, FS 1s the full scale reading and TH is
the angle of rotation. To reverse the normal direction of motion
the sign of the y term is reversed.

Sometimes the dial may cover only 90, 180 or 270 degrees. In this
case the 2*PI term in the above equation should be reduced to the
desired full scale angle measured in radians. The angle in radians is
easily found by using the following equation:

RAD = DEG * PI / 18¢

Normally the rotation equation assumes that the zero point is
horizontal and to the right. If you want zero to be at the top asin a
compass (i.e. true north = 0) then 90 degrees or PI/2 must be added
to values of TH before the values of x and y are calculated. Note
that in this program this is achieved by using SIN in the x
calculation and COS in the y calculation which produces the same
effect as shifting through 90 degrees and changing the sign of y.
Drawing the scale marks is really similar to drawing the pointer
except that the start of the mark line is at some radius a bit larger
than the dial circle. The inner and outer ends of the mark are
calculated using the rotation equation with two different values for
r. The centre point of any text used for scale calibration can be
calculated in the same way using a radius larger than the outer radius
of the scale marks. Remember that having found the centre point for

Graphs and Charts 131

the text we have to write each symbol using DRAW and the
appropriate shape string,

Usually the pointer will have to be redrawn for each new reading
and the old pointer mark must be erased by redrawing it in the same
colour as the dial fill or the background if the dial is not filled with
colour, A procedure can be used to erase and redraw the pointer
each time a new reading is calculated.

The program listed in Fig. 7.15 produces a simple dial display with
a single pointer and gives a display similar to that shown in Fig, 7.16.
In this program the dial starts with the pointer pointingupand hasa
270 degree scale.

1i9¢ REM Moving pointer display
11¢ LET xc=1428

1iZ2e LET vyoc=a88

138 LET r=4a

ide LET si=r+5

1536 LET sZ=r+10

168 LET st=r+20

176 REM Draw dial
18 CIRCLE xc.vCa.r
i REM Draw scale
700 LET dt=1.5%¥FP1/sl
210 LET th=G

276 1 ET x1=0

233 LET vl==i

24¢ FLOT =c+xl,yc+yl
256 FOR n=1 T0O sl
Z6@ LET th=th+dt

278 LET xZ2=s1%5IN th
286 LET yvZ2=ci1= 05 th
299 DRAW #2-ui,.yv2-vyl
a8 LET xi1=x2

Sl LET yl=vy2

70 HNEXT n

3Z6 LFT dit=1.5»FI/&6
46 LET th=0

40 FOR n= 10 &

416 LET th=n*dt

424 LET x1i=s1*5IN th
438 LET «Z2=sZ¥51INM th
444 LET vi==si1#C05 th

132 Spectrum Graphics and Sound

455
468
470
4806
490
D90
i

o268
058
=4a
5530
60
=7

>80
oo
&HOO
616G
620
& 56
H46

LET viE=s2#C05 th

PLOT nc+xul,yc+vyl

DRAW #Z2-x1,v2-v1

LET xt=xc+st*¥5IMN th
LET yt=vyc+st*C0S5 th
G0 SUB 1¢eo

MEXT m

REM Display pointer
LET pl1=0

LET +==6

LET rp=r-3

FOR k=1 TO 26

FOR p=0 TO & S5TEF .2
G0 SUB 700

MEXT p

FOR p=& 7O @ STEP -8.2
60 5UE 7oo

NEXT p

NEXT k

STOF

690 *REM FPointer subroutine

70
719
72
739
740
750
7460
770
789
794
fag
Bio
gZa
FIG
1000
1ela
1026
1839
1640
16059
1060
la7e
1086
1070

LET th=1.5%FlI*xpl/fs
REM Erase last reading
INVERSE 1
FLOT xc,vc
DRAW rp¥*5IMN th.rp*C0S th
INVERSE O
LET th=1.S%FlIxp/fc
REM Draw new pointer
LET th=1.5*PI*p/fs
FLOT xc.vycC
DRAW rp*SIN th_ rp*C05 th
LET pi=p
RETURN
REM Text symbol subroutine
FRINT AT 9,055TR$ {n})s3
REM Copy symbol
FOR ;=0 T0O 7
FOR i=& TO 7
IF POINT (i,175—3)=0 THEN GO TO 10&0
FLOT =t+i—4,yt—j+4
MNEXT 1
NEXT j
PRINT AT 9,85" ";
RETURN
Fig. 7.16. Dial display program.

Graphs and Charts 133

Fig. 7.16. Typical screen display for COS curve.

If two hands are required as in a conventional clock display then
the same basic drawing routine may be used but with a different
radius for each hand. Equally well a third pointer or hand might be
added. If the pointers are to have different shapes it may be
convenient to have a separate drawing procedure for each pointer,

Pie charts

A rather attractive form of display chart frequently used in business
is the pie chart. This 1s used to show the proportions into which
something divides up. An example might for instance be the
percentage votes for political parties derived from a poll of a sample
of electors, We have all seen these charts displayed on television.
Another application might be to show how the resources of a
company are used or how its money has been spent.

As its name implies the pie chart is effectively like a plan view of
pie which has been sliced up into segments of various sizes. Each
slice of the pie represents one item and shows the percentage of the
total made up by that item. A typical pie chart is shownin Fig. 7.17.

To draw a pie chart we are effectively drawing a series of segments
of a circle. The angle for each segment can be calculated as a
percentage of 2 x PI (360 degrees). On the Spectrum the basic

134 Spectrum Graphics and Sound

Simple pig Chart

1 = Meat
- ' - __—_‘1"«-.__
E - F 1 E- h Ir_‘\':\l E Illl .h'n.l
: N
3 = Cereals A ,."'ll 1 H‘ﬁ
- b
d = Fruit { = Y |
5 = Uegstables b 7 T
*-.l‘i-" .&I?’I.
.. 4 ;
SR

Fig. 7.17. Typical pie chart display.

technique 1s to start with drawing the outer circle by simply using the
CIRCLE command. With the circle drawn the next stepistodrawa
series of radial lines which separate the slices of the pie. The XY
offset values of the ends of these lines can be calculated using
trigonometry as follows:

XR = DX*COS(TH)-DY*SIN(TH)
YR = DX*SIN(TH)+DY*COS(TH)
TH = P*2*P1/100

where P is the percentage of the complete pie represented by the
segment being drawn. DX and DY are the offset co-ordinates for the
last radial line drawn. A new set of rotated offset values XR and YR
are calculated to allow the segment separation line to be drawn.
After the segment has been drawn the values of DX and DY are
updated to make them equal to XR and YR respectively ready for
drawing the next sector.

A simple pie chart drawing program, allowing up to 5 segments, is
shown in Fig. 7.18. The segment number or any other desired
identification cannot readily be inserted by using a PRINT
command because it is likely that the required position of the text
symbol will not be one of the normal text symbol positions. To
overcome this problem the identification number for the sector is
placed in position by copying it dot by dot using the technique

190
11a
120
13@
14a
136
1456
17¢
18
179
200
21

A
[=i)

230
24
200
246
270
Z80
290
I00
i
S26
35L

E4G

g —

360
376
%86
396
360
410
326
4=a
44
456
348
470
48e
459G
S8

REM
DIM
REM
FOR

Graphs and Charts

Simple pie chart
s{5}

Set up data

n=1 10 5

READ s{n}
NEXT n
DATA 26,15,25,30,1

REM
LET
LET
LET

Draw circle
®o=186
yeo=88

=00

CIRCLE xec,vyc.r

REM Mark off sectors

LET dy=r

LET dy=0

FLET th=6

FOR n=1 TO 5

FET x»r=dx*C0O5 th—-dy*5SIN th
LET yr=dx*5IN th+dyxC05 th
REM Draw sector line

FLOT xc.wvcC

DRAW =r,.vyr

LET du=ur

tET dy=yr

REM Write in sector number
LET th=FIx=(11) /100

LET xr=dx#C0S th-dy*S5IN th
LET yr=dxz#5IN th+dy+C05 th
LET xt=wc+INT {(.7#%x1}

LET yi=yoc+INT {.7%yr}

LET a%=5THKH# in)

80 SUB 690

LET du=ur

fET dy=yr

NEXT

REM Print legend

FRINT AT i.1:"0cimple pie charts

FRINT 4T 4,13"1 = Meat®s
FRINT AT &£,13"2 = Fish"s
FRIMT AT 8.13"3 = Lereals";
FRINT AT 1&,13"4 = Fruit®;

136

136 Spectrum Graphics and Sound

219 PRINT AT 12,13"5 = VYegetables™;
o929 STOFR

&8 PRINT AT 0,05 3%;

&1e FOR j=@ TO 7

520 FOR i=a TO 7

&30 IF POINT (i,175—5)=6 THEN GO TO &S50
649 FPLOT xt+i-4,vt—j+4

4580 MEXT i

668 NEXT

&79 PRINT AT @,0;" “;

L8898 RETURN

Fig. 7.18. Program to draw pie chart.

described in Chapter Five. The symbol required is actually printed
at position §,0 to provide a dot pattern for copying. The co-
ordinates for the character are calculated for its top left corner by
adding a small offset to the co-ordinates of the point at the centre of
the segment where the symbel is to be placed. The position of this
number is calculated by making the rotation for the sector in two
parts. First a rotation of half the sector angle is made then the text
symbol i1s drawn and then the remainder of the rotation is carried
out. This places the test symbol roughly in the middle of the sector.

When numbers or letters are used to identify the sectors some sort
of key showing what the sectors represent should be included on teh
chart. This can of course be printed normally by using PRINT or
perhaps PRINT AT.

Chapter Eight
The Worid in Motion

For many computer games and particularly those of the arcade type
we shall want to produce moving objects on the display screen, As
we saw 1n Chapter One the television display presents twenty-five
complete pictures in rapid succession every second and because of
the lag in response of our eyes we do not see the flicker as the pictures
are traced out. If we arrange that an object moves to a slightly
different position on each successive scan of the television screen,
then to the viewer it will appear to move around the screen. This is
the basic principle used in producing cartoon films. To achieve
reasonably smooth movement we should make the changes between
pictures at least once every tenth of a second. If the movement steps
are small the movement will appear to be smooth but with larger
steps between successive pictures the motion will tend to become
jerky.

In the simplest form of animation an object such as a ball, alien
invader or spaceship is moved from one position to another on the
screen. For more realistic results the object on the screen may need
to change shape as it moves. An example of this would be a man
walking across the screen, If the image of the man remained constant
he would appear to glide across the screen rather like an ice skater.
To give the impression of walking or running the position of the legs,
and perhaps the arms too, of the man must be changed as the image
moves from one position to another on the screen, In effect we will
present a series of slightly different images in rapid succession. Most
actions, such as walking are repetitive so we could perhaps have
three or four different images and just repeat the sequence as the
man moves across the screen. For a bird flying on the screen the
wings will need to flap but in real hife this is not just the simple up and
down motion that we might imagine. In fact the whole shape of the
bird’s wing changes as it makes a beat in the air and for realistic
results we would have to produce similar shape changes.

138 Spectrum Graphics and Sound

A simple moving hall

For many games-type programs a simple object such as a ball moves
around the screen. One possibility here 1s to use a text symbol such
as an asterisk for the ball and then print it in a new character position
alongside its present position. In order to avoid leaving a trail of
symbols across the screen we then need to erase the symbol at the
previous position. This is easily done by printing a space symbol
aver 1t.

Let us start off by looking at the process involved in displaying a
simple moving ball which we shall represent by using the solid
graphics block symbol. This symbol has the character code 143. The
position of the ball can be set up by using two variables x and y to
give the screen position co-ordinates for the ball. We might start by
placing the ball at the centre of the screen with x=15and y=10 by
using:

1990 PRINT AT y,x;CHR4$ 143;

Making the ball move horizontally across the screen is quite
straightforward since all we have to do is add one to the x value to
move the ball to the right or subtract one from x to move the ball left.
Thus we get a new x value, which we shall call xn, and this is now
uscd in a PRINT AT statement to print the ball symbol in its new
position. You may wonder why we didn't alter the value of x. One
reason for thisis that we still need x to allow us to print a blank space
over the previous svmbol in order to erase it. Before the next move is
made the value of x 1s set equal to xn and then we are ready to carry
out the whole process again for the next ball movement.

For vertical motion we nced to change the y co-ordinate. Adding
one to y will move the ball down the screen and subtracting one from
y moves it up the screen. Once again we can use a second variable yn
for the new y position. As for the horizontal motion we can print the
ball in its new position and then erase the symbol at the previous
position by overprinting it with a space. After the erasure step the y
variable 1s set equal to yn ready for the next step.

Diagonal motion is a slightly more complicated process since we
have to alter both x and v values at each step. If we want to move the
dot up and to the right the new values for xn and yn will be x+ 1 and
y-1 respectively. Up to the left is x—1, y—1 and for the downward
motions we will need y+1 with either x- 1, for moving left or x+1 for
moving right. Figure 8.1 shows the values required for xn and yn for
all eight directions assuming that the ball is currently positioned at

The World in Motion 139

A I R | Wo,W =1 wdl,g=-1
- IIF|“J
'I'r.ll ..||-'
I‘-.r' 'I. 4
", I'.-"
-"\1. ll‘],"
'-._.‘ .
; - I_..""I
.._“. K
M '#’.
“, ,-‘JI I
‘m | n'
KoLt ¥ 4+l
o' I“-,_‘
o~ .""-\
e %
o l-"-,
i-. Ly .
i I ."“.
- I'n_.
o T
_l"'. .,
t*'ll “1..
|‘J ll
a -,

go=l, W+l Koo+l x+Ll,4+1

Fig. 8 1. Change in X,Y for movement in various directions.

X, y. In these horizontal, vertical or diagonal moves the values of x
and/or y are altered one at a time.

For higher speed movement we could change the values of x and y
by more than one unit at a time. To allow for this possibility it is
convenient to use two more variables dx and dy to represent the
difference in x and y position for each step. There is another
advantage in using the dx and dy terms. It becomes very easy to
reverse the direction of motion by simply setting dx= —dx or dy=
—dy.

Bouncing off the walls

If you tried moving the ball using the simple program sequence we
have just discussed problems would soon arise. Suppose we started
with the ball at the centre of the screen and then moved it step by step
to the right. All will be well until the ball passes the edge of the screen
and the value of x becomes 32. At this point the program will stop

140 Specirum Graphics and Sound

and an error message will appear. The reason is that x value has gone
beyond its permissible limit value which is 31. A similar situation
will occur if we were moving in the opposite direction and x became
negative. When the ball is moving vertically errors will occur if y
goes negative or 1s greater than 21. To avoid this state of affairs we
must arrange that when the ball reaches one of the edges this is
detected and the direction of motion is reversed. The effect of this is
that when the ball reaches an edge of the screen it 1s reflected back
towards the middle as if it has bounced off a wall.

This bouncing action is quite easy to achieve. Having calculated
the values xn and yn [or the next position of the ball these values are
compared with the limit values for x and y. Let us start with the x
value. Here a simple IF statement checks the value of xn to see ifit is
equal to @ or 31, If the test result is true the sign of the dx is changed
by setting dx=—dy. This prevents the ball from going off the
screen since, when a new value of xn 1s calculated by adding the new
version of dx to xn, toset up the next move the ball position will move
in the opposite x direction going towards the middle of the screen.
This basic technique will work even if dx is greater than | provided that
the IF test checks for xn<<=@ or xn>=31 and the new dx is added to
xn before printing the symbol,

The same basic process may be applied to the yn value and in this

100 REM Simple moving ball
ile BORDER 1

iZ2e PAFER 4

13@ CLS

14e LET x=15

15¢ LET y=1e@

160 LET dx=1

17 LET dy=1

18¢ INK 7

199 PRINT AT vy.x:CHR$® 1435

200 REM Movement loop

219 LET xn=x+dyx

22¢ LET vn=yv+dy

232 IF wun=@ OR xn=31 THEM LET dx=-—dx
240 IF yn=0 0Ok yn=21 THEN LET dy=—dy
2536 FRINMT AT yxi"™ ";

266 PRINT AT vyn,uxniCHE$ 1435

Z/7a¢ LET x=xn: LET y=yn

280 GO TG Zl1e

Frg. 8.2, Simple moving ball symbol.

The World in Motion 141

case dy is changed in sign if yn<<{=0 or yn<{=21. Once again if dy
changes sign it is added to yn before printing the symbol. After these
checks have made the symbol at the old position is erased and ballis
printed at its new position. Finally x and vy are updated ready for the
next step. This action 15 shown in the program listed in Fig. 8.2.
When run this will show a block which starts off at the screen centre
and then travels diagonally bouncing off the sides of the screen when
it reaches them.

Reflection off a bat

In games such as SQUASH or BREAKOQUT the ball bounces off a
movable bat and depending upon where it hits the bat will travel
straight or diagonally after reflection. Here we need to keep track of
the bat position by using two new variables bx and by.

Now in addition to the tests for reflection off a wall routine we
need to include a check to see if the new position of the ball (xn, yn) is
equal to that of the bat (bx,by). If the two positions are equal then
the reversal of direction 1s arranged by reversing dy if the bat is at the
top or bottom of the screen or dx if the bat 1s at the side of the screen.
At the same time a score might be updated.

Bats arc usually made wider than one character space and a
typical scheme might be to have the bat three symbols wide. In this
case we also need to check the ball position against bx+1,by and
bx+2. by. This assumes that the left symbol of the bat is at
position bx. Often the motion of the ball after it hits the bat is
determined by where 1t hits the bat. So 1if the centre of the bat is hit
(i.e. xn, yn=bx+1) by then dx would be set at § and dy at—1 so that
the ball travels straight up the screen. This assumes that the batis in
the lower side of the sereen. If one of the other segments of the bat is
hit then diagenal motions are produced by setting dx to +1 or —1
and dy to —1. In most games of this type, such as BREAKQUT, the
bottom wall, containing the bat, may be checked for coincidences
with the ball and if there is a match the ballis lost and the game ends
or a new ball is used up. In this case the check is simply made for
coincidence between yn and 21 and il this 1s true a further check is
made against bx to see if the ball has hit the bat.

Moving the bat

‘The most convenicnt method of determining bat position on the
Spectrum 1s to use two adjacent keys on the keyboard one giving

142 Spectrum Graphics and Sound

1ee REM Simple sQuash game

11¢ BORDER 1

126 LET hs=0

136 LET bx=15: LET by=26é

140 LET bxil=bx: LET byi=by

145 REM Set up new game

150 CLS

166 LET nb=a

176 LET #=15: LET y=%

18 LET =sc=a

19¢ LET b%=CHR% 143+CHR% 143+CHR% 143

200 PRINT AT 21,95 "Press space to serve

216 LET at=IMKEY$: IF a%<>" " THEN GO TO 214
215 REM Serve new ball

226 LET x=15z LET =Y

270 PRINT AT y,.x3sCHR%® 1433

244 LET du=INT (RMD¥3)—-1: LET dy=-1

24% REM Main play loop

256 FRINT AT 21,63 "Score= "iscs

246G PRINT ¢ Hi score= "ihsi™ "3

265 REM Move bat

278 LET ms=1INKEY%®

286 IF m$="z" THEN LET bxl=bx—-1

7276 IF m%="»" THEN LET bxl=bx+1

a9 IF bxl<e THEN LET bxl=0

319 IF bx1+42:31 THEN LET bxl1=279

320 PRINT AT by.b=xs™ "3

339 PRINMT AT byl.bxilibss

F4@ LET bx=b%l: LET by=byl

345 REM Move ball

350 LET sn=x+dx: LET yn=y+dy

25 REM Test for walls

F&G IF xn=¢ OR uxn=31 THEN LET du=—dx

I7a IF yn=08 THEN LET dy=—dy

375 REM Test +or hottom of screen

aBe IF yn=by THEN GO TO 45

IZ%@ FPRINT AT y,.us5™ "&
A3 PRINT AT vn.xniCHR$ 1433
465 REM Update ball position
418 LET x=xn: LET wy=wvn

429 G0 TO 25«

446 KEM Test for hit by bat
456 IF xn=bx THEN GO 70 550
44668 IF xn=bx+i THEM GO TO 559
47a IF xn=bx+2 THEN GO 70O 550
48% LET nb=nb+1

485 REM Test for gmme end
496 IF nb=% THEN GO TO 169

o PRINT AT v.x3" "3

51e GO TO Zo0

S48 REM Set new direction

558 LET dx=-dx: LET dy=-1

96@ IF un=bx AND bx<>3 THEN LET dx=—1
978 IF xn=bx+2 AND bx<:>29 THEM LET du=1
575 REM Update score

588 |LEFT sc=csc+1

The World in Motion 143

s9e 60O TO 250

720 REM End of game

1008 BEEFP 1,12

1819 PRINT AT @,0;5 "GAME OVER"
1015 REM Check for high score
1020 IF hs:sc THEN GO TO 1959
1630 PRINT FLASH 1:AT 2,035 "s*NEW HIGH SCORE+"
1040 LET he=sc

195@ INFUT "Another game™igs
186¢ IF gs="yv" THEN GO TO 13e
1a87e STOR

Fig. 8.3. Simple squash style game.

movement to the right and the other to the left. We could in fact use
the arrow keys for this but for the moment let us use the Z key to
move left and the X key to move right. The technique for using these
keys 1s similar to that used for the sketching programs in Chapters
Two and Six.

At this point we can devise a simple game where the score is
increased by one each time the ball is hit by the bat, and the game
ends after five balls have been played. Each new ball starts off from
the centre of the screen travelling upwards. The program listing is
shown in Fig. 8.3. Note here that the upper limit of the screen has
been set at y=2 to allow the score to be printed on the top line.

Animation using high resolution

One disadvantage of using the text or low resolution display is that
because the steps of movement of the object are quite large the
resultant motion tends to look rather jerky. If we move to the high
resolution screen the situation becomes better,

On the high resolution screens the basic principles for moving an
object are still the same. There 1s an important difference between
printing a symbol and plotting a high resolution dot. The Y value on
a text screen starts at EJ at top of the screen and increases as we maove
down the screen whereas a dot will move up the screen for increasing
values of y. Changing the values of x and y for the object will now
produce different directions of motion and these are shown in Fig,
8.4, On the high resolution screen a single step in any direction
moves the object a shorter distance and the resultant motion looks
smoother. The program listed in Fig. 8.5 demonstrates a simple
moving dot on the high resolution screen.

144 Spectrum Graphics and Sound

w -1 ,9+1 w o, g4+ ¥4+1,9+1

T,

‘w..\

M

-1 ,4 ®X4+d,d

™.

‘_f..r""
) \

// ‘EH

K‘l_lg—i }{_l.ﬂ_:l. x+1_p._:l_1

Fig. 8.4. Change in x,y required for high resolution.

1986 REM Moving hi-res dot
11¢ BORDER &

120 LET x=128

13© LET y=88

140 LET du=2

150 LET dy=2

17¢ FLOT »,v

18 LET xn=u+dx

19@ LET yn=y+dy

195 REM Check screen limits
206 IF xn>® AND xn<25% THEN GO TO 220
2160 LET de=—dx: LET xn=xn+dx
226 IF yn>»¢ AND yn<l73 THEN GO TO 240
236 LET dy=~dy: LET yn=yn+dy
235 REM Erace last dot

244 PLOT OVER 13x.v

245 REM FPlot new dot

250 PLOT OVER lixn.yn

260 LET x=xn

270 LET v=yn

28 GO TO 1809

Fig. 8.5. Simple moving high resolution dot.

Moving more complex objects

So far we have just tried moving a dot around the screen but of
course we shall usually want to move something rather more
complex such as perhaps a flying saucer. This is demonstrated in the

The World in Motion 145

168 REM High res flying saucer

iie PLOT 9,0

126 DRAW 255,00

13% DRAW 0,175

146 DRAW —255,0

15¢ DRAW ©,—-1705

160 LET x=128: LET y=8B8

17@ LET xwi=x: LET yl=y

186 LET dx=2: LET dy=dx

19¢ OVER 1

290 G0 SUB 509

21@ FOR n=1 TO 35960

220 LET xli=u+dx: LET yl=y+dy

230 IF x1+du<é& OR xi+dx>248 THEN LET dx=—dx
249 IF yl+dy<s OR yl+dy>168 THEN LET dy=—dy
269 60O S5UB S50¢

279 LET »=x1l: LET y=yl

289 GG SUR Soo: NEXT n

Se9 PLOT x,y—2: DRAW 3,@: DRAW 2,2
519 DRAW —2,2: DRAW —1,0: DRAW -2,2
5726 DRAW —-2,-2: DRAW —1,0: DRAW —2,-2
53¢ DRAW 2,-2: DRAW 3,0: RETURN

Fig. 8.6. Flying saucer program.

program listed in Fig. 8.6.

The flying saucer itself 1s produced by a single PLOT command
and a seriecs of DRAW commands in a subroutine. The main
program calculates an x,y position for the saucer and then calls the
subroutine to draw the saucer. The OVERI command is set up
before drawing starts. To erase the saucer it simply has to be drawn
again in the same position. In this program the saucer is always
drawn at position x,y. When the new position x1, yl has been
calculated the saucer is redrawn to erase the image at x,y and then x
and y are updated to xI, vl and the saucer drawn again .

As 1n the case of the moving ball and moving dot the movement
step 15 set up using the two terms dx and dy. When a new position has
been calculated it 1s compared with the screen limits, thendx and dy
are altered if required to make the saucer bounce off the screen
boundary. Note in this case the screen limits are set in from the edge
of the screen to allow for the width and height of the saucer.
Remember that the saucer position 1s measured at the middle of the
saucer figure.

One problem you will notice 1s that the drawing process is
relatively slow in BASIC and this makes this type of animation

146 Spectrum Graphics and Sound

rather limited since it must inevitably be slow unless you start
writing the program in machine code. This is why most of the fast
action games for the Spectrum are written in machine code or at
least the movement routines are in machine code.

Animation using special graphics symbols

There is another approach to animation which uses normal PRINT
techniques but gives smoother motion. This involves the use of
special custom designed graphics symbols,

Suppose we want to move a diamond shaped object across the
screen. We could start by creating a symbol for the required shape as
decribed in Chapter Five. Now suppose we want to move the shape
two dot positions at a time across the screen, At the second position
part of the object will have moved into the following character
space. We can handle this quite easily by simply creating two new
symbols which when printed one after the other will show the
diamond in its new position. For the next step a further pair of
symbols is created where the diamond 1s halfway between the two
symbol positions. The fourth position has the diamond mostly in the
following character space. At the fifth step the symbol will actually
be in the next character space and we can start the whole process
again but this time one character position further across the screen.

Sumbol Codes
Step 1 ':::'(144 +128
Step 2 {E: 1454148
Step 5| W 1464148
Step 4 % 147 +150
Step © i 1444128

fig. 8.7. Sequence of steps for moving a diamond shape figure.

The World in Motion 147

This sequence of events 1s shown in Fig. 8.7 and a program for
moving a diamond shape across the screen 1s shown in Fig. 8.8,

This technique can readily be applied to more complex objects.
Suppose we had a flying saucer which took up two adjacent spaces
on the screen. We should now need a pattern group of three
successive symbols. Here again when the object has moved out of the
tirst symbol position of the group then the whole pattern is moved
by one symbol space and the animation action 1s repeated.

196
11a
120
125
13@
140

139

1&6¢

REM Moving diamond shape
REM Set up symbols
&0 SUR Sao

EEM Movement lcop

FOR m=1 TO

20

FOR c=1 TO 26

FRINT
FRINT
FPRINT
PRINT
FPRINT
MEXT
MEXT
STOP

AT
AT

AT

AT
AT
c
im

1@, ci CHR$
i8,csCHRES
19, ci CHR$
19, c s CHRS
19, i CHRE$

144; CHR%
1455 CHR®
1463 CHR$
1473 CHRS
1283 CHR%

REM Set up characters
"a",BIN 90001600

FOKE
FOKE
POKE
FOEE
FOKE
POEE
FPOKE
FOVE
POKE
FOkE
FOKE
FOEE
FOKE
POKE
FOKE
~OKE
POKE
rOEE
FOEE
FOKE
FOKE

USK
USKE
USH
UsRk
HISR
USK
USH
USSRk
USK
us=H
HESR
USR
USK
R 1
USH
USK
USR
HSH
USSR
Usk
HER

"a"+1,BIN
"a"+2 BIN
na"+3 BIN
" +4, RIN
" +5, BIN
natag, BIN
“a"+7,0

Boolalon
galeoaleo
31Qea0al
Goiaeald
Q010100
BeBola00

"b",BIN Q0000010

llbll_._igHIN
Mht 2, BIN
"h'+3, BIN
“br+4, HIN
"h*+5, BIN
"h"+&, BIN
ilb l!+?!@

10 . A
L =

“ev+t BIN
neM+Z, BIN
vev+3, BIN
"cH+4, BIN

aoaaalal
QOG0 I 3O0
QoG 10000
QRGO 1600
QEOea1al
VIDGOC10

RIN 0000ac00

AAA00a 1
zioleloleloB Rt
QeaaG 160
GRS 1o

1283
1483
1493
1503
144;

148 Spectrum Graphics and Sound

7160 FOKE USR "c"+5,BIN Q00000001
720 POKE USR "c"+4,BIN 00000000
73@ POKE USR “"c"+7,0
746 POKE USR "d",o
75¢ POKE USR "d"+1,@

7660 FOKE USR “"d"+2,0
776 POKE USR "d"+3,1
786 POKE USR "d"+4,0
79@ POKE USR “d"+5,0
806 >POKE USR "d"+56,0
B10 POKE USR "e",®
829 POKE USR "e"+1,90
30 FOKE USR "e"+2,BIN 10000000
840 POKE USR "e"+3,BIN 01000000
B52 POKE USR "e"+4,BIN 10000000
8B40 POKE USR "e"+5,9
870 POKE USR “"e"+&,0
886 POKE USR "e"+7,0
B9@ POKE USR "f",BIN 10000000

700 POKE USR "f+1,BIN 91000000
916 POKE USR "$"+2,BIN 00100006
92¢ POKE USR "f£"+3,BIN 00010006
930 FOKE USR "4"+4,BIN 00100000
243 POKE USR "f"+5_,BIN 01000060
556 POKE USR "f"+6.BIN 10090000
9460 POKE USR "§"+7,0
970 POKE USR "g".BIN 920100000
98¢ POKE USR "g"+1,BIN ©1610006
996 POKE USR "g"+2,BIN 10001000

16063 FOKE USR "g"+3,RBIN 00000100

1810 POKE USRE "g"+4,BIN 10001009

1020 POKE USR "g"+5,BIN 91010600
1030 POKE USR "g"+&6,BIN 02100000

1640 POKE USR "g"+7,0
{850 RETURN

Fig. 8 8 Program to draw moving diamond.

Collisions with other objects

In many games types programs, such as space invaders the object is
to fire missiles or drop bombs on other objects to destroy them. This
means that we must detect when the missile reaches the same

The World in Motion 149

position as a target object. One technique for this is to maintain a
table of the x,y positions of the objects on the screen. Before moving
the missile to its new position a check is made by comparing this
position with that of each of the other objects in turn. If a match
occurs the program will branch to a subroutine or procedure which
produces the required explosion effect and erases both the missile
and the target object. If there are a lot of objects on the screen this
can become quite a complex process.

A simpler technique that can be used for detecting when a missile
hits an object is to use POINT to check if the next position to which
the missile 1s to be moved is already in INK colour. If not, then the
missile move is made as normal. If the POINT command detects a
dot in INK colour then the missile is about to hit an object and the
program can be made to branch off to a hit routine. This might
blank out the target object and missile and then replace the target
object with an explosion effect, suitably accompanied by sound of
course. Finally the explosion image 1s blanked and a new game
sequence starts,

Animation involving shape changes

So far in our experiments with animation the object being moved
stays the same shape as it moves across the screen. This s, of course,
perfectly all right for things such as balls, flying saucers and the like.
When we come to displaying things such as aliens, or men, however,
the situation is a little different.

If we drew a figure of a matchstick man and just moved it across
the screen in the same way as we move the saucer it would look as if
the man were gliding across the screen because his legs and arms do
not change position as he moves. Even the aliens of a typical
invaders type game have their legs moving as they march across the
SCreet,

The technique for producing changes in the shape of an object rely
on the use of two or more different versions of the object being
animated. Let usstart by taking a relatively simple alien invader, We
want the legs to move and a fairly simple motion would have the legs
pointing inward on one step and outward on the next step. The first
stage therefore 1s to create special symbols for two separate pictures
of our alien one with the legs together and the other with them apart.

Now to produce the required animation we draw the first of the
two shapes. For the next step we calculate the next position of the

150 Spectrum Graphics and Sound

alien then erase the first shape and draw the second shape at the new
position, For the next step we draw the first shape again and so on,
alternating the shapes as the alien moves across the screen. This is
shown in the program listed in Fig. 8.9.

Now for a walking man we have to move to a new level of
complexity. [n this case four separate shapes are created and set up
as a strings. Once again as the man moves across the screen the four
pictures of the man are drawn and erased in sequence to produce the
effect of a walking man. Better results could be obtained by using
more intermediate pictures to [orm each step that the man makes.
Here we have to make a trade off between using a lot of different
images to give smooth action and the speed of movement and
amount of memory used. The more steps therc are the longer it takes
for the man to make one step forward. A compromise can usually be
reached where the action is reasonably realistic but not too complex
or too slow. Remember that a fast moving object does not need to
have its action so accurately portrayed because its speed covers up
many inadequacics in the shape changes used.

Animation of objects where the shape changes, and particularly il
they are familiar natural objects, usually involves some study of the
way that things move in real life and then a simplified version is used
to animate the computer drawn object. In fact the process of
amimation is an art form in itself and much fun can be had by
experimenting with different ideas. Here we have outlined the
principles involved and showed some of the techniques used in
animating objects on the computer graphics screen,

19¢ REM Moving alien
11é REM with shape change

128 REM Set up symbols

i3¢ 50 5Up 5o9d

135 REM Animation seguence

14¢ FOR p=29 T0 @ S5TEF -2

156 LET r=10

169 FOR c=2¢ TO 28 STEF 2

i7¢9 PRIMT AT r,csCHR$® 1443;CHR$% 145;
186 FAUSE p

19& FPRINT AT r,c3" "3

280 PRINT AT rFr,c+1;CHRS 1445CHR$ 1473
21e PAUSE p

226 PRINT AT r,c+l1;% “3

239 NEXT c

249 NEXT p

229 5TOP

0
o
S16
D20
S50
49
550
w1
=
S8
ik %
1515
&1@
&82¢
53¢
b4
=t
L46G
L7 6
&80
a7
708
Fla
729
73e
740
754G
f-1o
776
789
790
8a0
819
8520

The Woarld in Motion

REM Set symbols subroutine
*a",BIN 060111116

FOKE
FOKE
FOKE
FOEE
FOKE
F0xE
POKE
PO

PO E
FOKE
FOXE
FOKE
FORE
PUKE
POKE
POFE
FOKE
FOrE
—OKE
PUEE
FOFE
FOKE
FOKE
FUOKE
FOKE
POKE
FOKE
FOEE
FOFE
FOKE
FOKE
FOKE

USSR
USK
USSR
hEH
UskE
UsSH
USKR
SR
USSR
USK
Uush
USSR
uSH
USK
USSR
USSR
UskH
USK
U5k
USSR
USSR
USH
USH
USR
USSR
LISk
Usk
LSH
USSRk
USR
USK
USR

RETURN

Fig. 8.9. Program to draw alien invader figure.

"at+1, BIN
Hgt+2, BIN
"a'+EZ,.RBRIN
"z, RIN
"a+5,BIN
navig, BIN
Ya"+7,BIN

D100A 1
a1eilieo
1300000
Deitiill
Q01 oa 100
21201006
106100646

" BEIN 901111106

"huii, BIN
“he+z, BIN
"h+3,BIN
"hr+d, BIN
"he+5, RIN
"he+s, BIN
“pue7 RIN

19000016
9al1lioia
QaBoadio
11111106
eaianion
glaaiogd
19610000

"Cc".BIN 92111116

“C I1+1!EIN
"cU42,BIN
IICII+3!BIN
"ct+4,BIN
e 45, BIN
FIE“'I'&,BIN
"CU+7, BIN

21230301
£iol1100
21000000
20111111
23160100
Qeal laaid
POioaloe

"d".BIN 21111166

"d"+1,EIN
"dv 42, BIN
"d"+3, BIN
"du+4, BIN
"d"+5, RIN
"dr+h, BIN
"d"+7,BIN

1o0eaelo
Gol11ioeio
ageouele
111111099
o161 0
20e1 1000
Gal1aaloo

Chapter Nine
Adding Depth and
Perspective

The graphs and charts which we have drawn so far have had just two
variables, X and Y, which were plotted horizontally and vertically
on the screen. In the real world, however, there will be many
situations where three variables are involved. The third variable is
usually given the name Z. An example of this would be where we
want to show the height of various points in a small area of land. In
this case our X and Y co-ordinates would represent, say, length and
width and would locate a particular point on the surface of the land.
The third term Z will now be the height of the land surface at that
pont. Here the value of Z will depend upon both X and Y since a
change in either X or Y will take us to another point on the land
surface with a different value for Z.

Drawing a three axis graph requires some slightly different
techniques since we have to find a way of fitting in the Z axis. If X
and Y are plotted as usual on the screen the Z ordinates should
theoretically be plotted out from the surface of the screen. This is
obviously impractical so we need to look at other possible schemes.
One possibility is to plot Z against X on the screen for different
values of Y to give a series of graphs, one for each value of Y. If these
are plotted on top of one another the result would be rather
confusing. A different colour could be used to draw each graph but
this 1s not very satisfactory.

Suppose we were building a cardboard model of the three axis
plot. The first step would be to plot a series of graphs of Zagainst X,
Once the graphs had been plotted the next step might be to stand
the graphs one behind the other. How can this be done in our display
screen?

One solution to displaying such a series of graphs might be to
draw them so that the graph for each new value of Y is displaced to
the left and up on the screen. This helps to separate the individual
graphs for the different values of Y. In effect we are now drawing the

Adding Depth and Perspective 153

Y axis along a sloping line which runs upwards and to the left of the
X,Y,Z origin point where X, Y and Z are all zero. This is an
improvement on superimposed graphs but still not quite right,

The usual solution to displaying a three axis plot is to draw both
the X and Y axes at about 30 degrees to the horizontal axis of the
screen 7 axis vertical as shown in Fig. 9.1. Now as X increases the
plotted point moves upwards and to the right whilst as Y increases
the plotted point moves upwards and to the left. Finally Z just
displaces the point vertically on the screen,

Z

Fig. 9.7. Layout of the X, Y and Z axes.

Three axis bar charts

One type of display that looks impressive in a three axis versionis a
bar chart. The first step in constructing such a chart is to choose an
origin point where the values of X, Y and Z are all at zero. This point
determines where the bar chart will be displaved and also acts a
reference point around which the plot will be constructed. The next
step might be to drawa grid showing the X and Y co-ordinates in the
plane where Z = 0.

To draw the X axis at an angle we need a Y movement which ig

half the X movement so our screen co-ordinates for points along the
X axis (Y and Z both = 0} will be:

X2 gX=Ex
¥lo= £Y = X2

When X and Z are both at 0 the line representing the Y axis must go
up and to the left. Since the movement is to the left of the origin
point (CX,CY) this means that the screen X co-ordinate for points

154 Spectrum Graphics and Sound

along the Y axis must be less than CX. To get the 30 degree angle to
the left, the X movement is made the same as the Y movement, but
negative and the Y movement is halved. The screen co-ordinates
here become:

X1 =CX+X
YI=CY+ X2

When X and Z are both at 0 the line representing the Y axis must go
up and to the left. Since the movement is to the left of the origin

iase REM = a2xis graph for Z=&
1iag 0L

115 REM Set origin point

126 LET cx=11&4: LET L,=EE

125 REM et X and ¥V omax valuss
124 LET xm=R4: LET ym=8¢

133 REM Set ¥ and ¥ steps

I8 LET x=s=1Z: LET y==B

i45 REM Drasw ¥ axis axis

158 FOR =8 TO vm STEF vs

1588 LET uls=—vy

1795 LB xZ2=um—y

1860 1 ET ywi=yw/>3

190 LET vEisdumey} s 2

Zend PLOT INT (cx+xi1:, INT {cyt+yi)d
218 DROw INT {(MZ2-x1),IMT {(y2-v1)
Z29 MEXT w

225 ReM Draw Y axis lines

23538 FOR #=& TO == aTEP uS

284 {FT wl=y

2o LET xZ=x-—vm

260 LET wi=u/2

279 LET wl=ix+ym) /7

288 FLOT INT {ca+xl1),INT {cy+vi?
2?@ DRaW INT (xZ-x1)_ INT {yZ-vI1)

3le FLOT cx,cv

332 FLbT cx,cy
Z4e DRAW —INT {(ymivys).INT ({ym+ysi/2)

I5s PRINT a7 1?;35 AV
269 FRINT AT 12,7831 X";
37¢ PRINT AT 2@,14;"6%:

Fig. 9.2. The XY plane for Z=0.

Adding Depth and Perspective 155

point (CX,CY) this means that the screen X co-ordinate for points
along the Y axis must be less than CX. To get the 30 degree angle to
the left, the X movement is made the same as the Y movement, but
negative and the Y movement is halved. The screen co-ordinates
here become:

XI=CX-Y
YI=CY+Y/2

For any other point on the Z = 0 plane then the position of X1,Y1
will be produced by combining the two results we obtained above to
give:

XI=CXT+X-Y
Y=yt X/ 2 Y2

At this point we can turn this into a piece of program, listed in Fig.
9.2, which produces a picture of the X,Y plane of the graph when Z
=@ as shown in Fig. 9.3,

The Z term is plotted vertically so it will only affect the Y value of
a point on the chart. Since we are going to draw a vertical line to
represent the Z ordinate we need to know the co-ordinates for the
top of the line. Now the X value is the same as X1 and for the new Y
value Z is simply added to Y so the values for co-ordinates X2.Y?2
become:

X2=X1=CX+X Y
Y2 =XYT4+Z—CNE X221 Z

The Z ordinates can now be produced by drawing lines starting at
X1,Y1 and running to point X2,Y2 by using a PLOT command to
getto X1,Yland a DRAW to produce the line. As anexample, let us
assume that we wish to draw a graph for Z = (X2)/3+(v2)/2. To
plot each Z point we place a vertical line whose length represents Z
with its basc at the required point in the XY plane. A program to
draw such a graph 1s shown in Fig. 9.4,

The result i1s now a pattern of vertical lines looking like a bed of
nails where the height of each line indicates the value of Z. To avoid
the Z co-ordinates being merged together the steps on the X and Y
axes must be different. The result on the screen is as shown in
Fig. 9.5,

186 Spectrum Graphics and Sound

.
..-"LI- .-"':h"'u
‘J '1" Flie]
I#""“h. .__.d _:L'ff“'. ',Ln"l""-h
i e
e e T T
.'". H:I{_ _#"-"‘.. ."‘ ",. : |"':h|'"-| n'"- 1; L
Sl ".;*'.‘R.h.-“'m':_':. u,_-:l'::va-"'ﬂ",_"" o
7 Tt ~ A
-,‘E IIhl__.-" e .“"_-'l g ';.J“‘_“?.?"..al,.u '?J‘—I:F. ."-:{".""' a
A W iy e Ll]
S e =, P L P o
LI ':"':..- N_'I.?'l:.' u{" \":'-,_:_ “*,H_-:r :'.._,:Iy_ d_'."._r‘ -
IR " - Ll SN KT -
g Pt A
{-.‘." T g Y T
™ .,"'"\-}k.'-'" o
N
S _’aﬂ.“_.}d:g
W,
“x, il
el
@

s ke

(0N W) AP

5
>

&

i

i
i1
e H
12
1%
1=E5
155
i4e
159
4 ETTI
A gt
160
175
176
189
i9e
R
Z2ia
PRE
e e "
239
=
2

J A
(W)

J
]|

SLo
i i

270

REM Simple 3 axis graph

e

REM Set origin point

LET cu=1lib6: LET cy=X0

REM Set X oand ¥ max wvalues
EET um=26: LET ym=Ba

FEM S=t § oand Y =isins

LET us=1s: LET vw==132

IM = (7,9

REM Calculate and plot Z valiues
FOR y=1 TGO %

F0R x=1 T3 7

FET zi=u—1: LET vi=y-1

PET z(x,yvi=xl#xi/3+ylsyis2
PET #2=INMT ({xc¥xl-ysEyl)

LET ¢2=IM (xewxi+ysHyl)/ 2}

REM
FLOT

Iinsert scale marks

CH,CY

R INT {(zm+txsd, INT ({smtxs) 72D
PLOT cx.cvy

DRAK INT —{ymtys), INT {({ymt+tys}/ 2}
REM Insert scale markings

PRINT AT 1Z3.25"Y"s

FRINT 4T 12,293 "X"3:
PRINT &7 2@, 143"2%;
FiL a7 cx,.cvy

STOF

PRIMT AT 13,35:3"Y"s
FRINT AT 1z, Z2B;"¥";

Adding Depth and Perspective 157

Frg. 3.5. Display of simple three axis chart.

Producing wide bars

The three axis bar chart we have produced so far has a simple line for
each Z ordinate. It can be made to look more attractive by turning
the simple vertical line into a bar aligned along say the X axis. The
changes to the program are quite simple since they involve drawing
another Z ordinate of the same height but at a slightly different
position and then linking the top and bottom of these two ordinates
with a short line. The area within the box so produced is then filled
with INK colour. Taking the same set of Z wvalues as before
the revised program becomes as shown in Fig. 9.6.

The bars are spaced equally apart with the space between them
equal to the bar width. The top and bottom of the bars are drawn
parallel to the X axis. Note that both X and Y are decremented from
maximum to zero so that bars at the rear of the graph are drawn
first, After it has been filled with colour each bar is outlined in the
background colour by using the INVERSE | command before
drawing the outline of the bar. After the bar has been outlined in
PAPER colour INVERSE § is used to restore the normal plotting
and drawing mode. This makes the bars in front stand out where
they overlap another bar as shown in Fig. 9.7,

158 Spectrum Graphics and Sound

190
119

126
i3e
1355
149
145
150
169
170
180
190
200
214
e
400
410
420
4350
449
456
460
470
486
il
ale
2@
o3¢0
340
345
=t
a5
S76
oBe
570
L0
616
L20

REM 3 axis chart with wide bars
REM z={4+2¥5IN (x/Z20))®(y/10+1)
LET cx=128: LET cvy=16

LET dx=1@: LET dy=o

REM Draw 2,y grid

G0 SUR 400

FEM Draw chart

FOR x=1e® TO © STEP —2Ze
FOR v=%@ T0 & STEP -15

LET z=INT ({442%SIN (x/20}))%{y/10+1))
GO SUB Soo

NEXT vy

NEXT =

STOR

REM x,y grid subroutine
FOR ¥»=0 TO 186 STEF 20
FPLOT cx+x.cy+x/2

DRAW —1006, 50

NEXT

FOR y=© 7O 99 STEF 15

FLOT cx—-vy.cy+y/2

DRAW 116,55

NEXT v

RETURN

REM Bar drawing subroutine
FOR n=2 10 =-1

PLOT cxtx—vy,cytx/2+y/2+n
DRAW dx,dy

NEXT n

REM Erase bar ocutline
INVERSE 1

PLOT cxt+x—vy,cytu/2+y/2
DRAW dx,dy

DRAW @,z

DRAW —odx , ~dy

DRAW @,—=

INVERSE @

RETURN

Fig. 8.6. Three axis chart with wide bars.

Adding Depth and Perspective 159

Fig. 8.7. Wide bar chart screen display.

Producing solid bars

A further development is to draw the bars so that they appear to be
solid. In effect we draw one bar aligned along the X axis and another
aligned with the Y axis for each Z ordinate. Finally a diamond
shaped top is drawn to complete the bar. One side of the bar may
then be filled with colour as desired.

160
1ia
12¢
130
149
150
164
155
170
189
196
175
200
21a

REM 3 axis chart with solid bars
REM z=(4+2xC05 (x/20))%(y/10+1)
LET cx=128: LET cy=16

LET dx1=19: LET dyl=5

LET dx2=8: LET dyz2=4

REM Draw x,y grid

GO SUBR 400

REM Braw chart

FOR w=196 TO @ STEP -2

FOR yv=%@ TO @ STEFP —-15

LET z=INT ({4+2%C0S {(M/20))%{y/10+1))
REM Draw bar

G0 SUB See

MEXT

160 Spectrum Graphics and Sound

220
2350
390
400
410
426
430
440
459
4460
{476
48
it 1t
L b
9510
D29
530
o240
o450
S99
ab6e
a7ea
89
G700
HOD
605
&1@
&20
638
649
&5
L&
b7e
680
a7e
700
71io
729
725
T3e
74
750
760
779
786

NEXT x

STOF

REM %,y grid subroutine
FOR =0 T0O 100 S5TEF 20
PLOT cxtx,cy+x/2

DRAW —109,50

NEXT x

FOR y=0 TO 9@ STEF 15
PLOT cx—y.cyty/2

DRAW 11@,55

MEXT vy

RETURN

REM BRar drawing subroutine
REM Draw face of bar

FOR n=@& T0O =—1

PLOT cr4x—y,cytn/2+y/24n
DRAW dx1.dvyl

NEXT n

REM Erase side of bar
INVERSE 1

FOR n=¢© TO z-—-1

PLOT cx+x—-y,Cy+x/2+y/2+n
DRAW —dx2Z.dy2

RNEXT n

INVERSE @

REM Draw side of bar
PLOT cx+x—y.,.cy+u/2+y/2
DRAW —dx2,dy2

DRAW ©,2

DRAW dx2, —dy2

DRAW @,z

REM Erase top of bar
INVERSE 1

FOR n=0 TO dx2-1

FLOT cx+su—~y—n,cy+z+{ctytn) /2
DRAKW dx1,dyl

MEXT n

INVERSE ©

REM Draw top of bar

PLOT cx+x—y.Cytx/2+y/2+z
DRAW d=1,dyl

DRAW —dx2,dy2

DRAW —dxl,—dyl

DRAW dx2,-dy2

RETURN

Fig. 9.8 Three axis bar chart with solid bars.

Adding Depth and Perspective 161

The program listing shown in Fig. 9.8 produces an example of this
type of display and the result on the screen is shown in Fig. 9.9. In the
program the front face of the bar is drawn first and completely filled
with INK colour. Next the side of the bar along the Y axis is drawn
using INVERSE-1 which effectively erases any other bars that lie
behind the one being drawn. INVERSE § is then used to restore
normal drawing and the outline of the side of the bar is drawn.
Finally the diamond shaped top of the bar is erased using INVERSE
and then its outline is drawn.

Fig. 9.9. Display of 3 axis chart with solid bars.
X—Y bar chart with solid bars

A simple X,Y two-dimensional chart could also be drawn with
pseudo solid bars. In this case the X axis is tilted to 30 degrees and
the background to the bars is drawn in first. The barsare thendrawn
on top using say half the X step for bar thickness and width. The
technique for drawing the bars here is exactly the same as that used
for the three axis chart with solid bars.

A program to produce this type of display is shown in Fig. 9.10.
The result produced on the screen is shown in Fig. 9.11.

162 Spectrum Graphics and Sound

lé& REM Bar chart with solid bars
116 REM for y=u#*xu/100

120 LET cx=64: LET cy=16&

139 LET au=64: LET ay=3

149 LET bx=B: LET by=4

159 LET 1x=104: LET ly=180
162 REM Draw background plane
17¢ GO SUBR 406 :

180 REM Draw chart

199 FOR »=16@ TO 9 STEP —~15
200 LET y=x*x/100

285 REM Draw har

219 GO SUR S0

220 NEXT x

236 STOF

37@¢ REM Background subroutine
499 PLOT cx—bx,cy+by

419 DRAW 1x,1x/2

42¢ DRAW 9,1y

4530 DRAW —-1x,-1u/2

44e DRAW ©,-1y

45¢ RETURN

o@2 REM Bar drawing subroutine
300 REM Draw face of bar

219 FOR n=9 TO y-1

220 PLOT cx+x,cyt+x/2+n

338 DRAW ax,ay

54@ NEXT n

45 REM Erase side of bar
S0@ INVERSE 1

o669 FOR n=¢ TO y-—-1

9780 PLOT cx+u,cy+x/24n

589 DRAW —-bx,.by

=70 NEXT n

&L£00 INVERSE 6

605 REM Draw side of bar

610 PLOT cx+x,cy+x/2

620 DRAW —bx,by

630 DRAW 6,y

&49 DRAW bx, by

659 DRAW @, —y

&60 REM Erase top of bar

&7e INVERSE 1

68 FOR n=0 TO bx-—-1

699 PLOT cx+x—n,cy+ty+x/2+n/2

700 DRAW
71@ NEXT

Adding Depth and Perspective

ax,ay
n

720 INVERSE ©
725 REM Draw top of bar

732 PLOT
749 DRAW
759 DRAW
769 DRAW
77@ DRAW

cx+H, cytn /2ty
ay , ay

—bx,by
—axM , =ay
bx,—by

78@ RETURN

Fig. 9.10. Two axis chart with solid bars.

Fig 9.71. Display of 2 axis chart with solid bars.

Surface Maps

163

Instead of drawing vertical lines for the Z ordinates we could draw a
picture showing the contours of the surface made up by the tips of
the Z ordinates. Here we would take all Z ordinates with Y=0 and
draw lines linking them together. Then we repeat the process for
each value of Y to give a series of lines running diagonally up to the
left. Next we take all Z ordinates for X=0and again link them with
lines. This is repeated for all X co-ordinates and finally we have a
patchwork pattern which will give an impression of the way that Z
varies over the X,Y plane. Again, we might use colour to pick out the

164 Spectrum Graphics and Sound

different strips across the plane.

The results obtained using either the vertical Z ordinates or the
linked points on the surface will be best if there are a large number of
points since this gives a smoother contour to the figure. However if
too many points are used the solid image effect will tend to be lost as
some points will overwrite others and produce some confusion. The
best results will generally be obtained by arranging the drawing
sequence so that it starts at the points toward the back of the XY
plane, that is with both X and Y at their highest values. Any lines

that do overlap will now be overwritten by the line that should
appear in front.

Circular three axis plots

A rather interesting variation of three axis plotting is the circular
three axis plot which can produce some rather attractive patterns.

In this version of the three axis graph the XY plane of the chart is
made elliptical so that the resultant plot is displayed on the screen as
a sort of disc viewed from an angle with elliptical ridges produced by
the Z ordinates.

The technique of plotting this type of graph makes use of the
quadratic method for drawing a circle to produce the X,Y axes. The
X scale is set at perhaps two or three times the Y scale to produce an

189 REM Circular 3 D graph

118 REM Set up function

120 LET k=PI/2000

13 LET m=1/S0R (2)

149 DEF FN a{z)=10+C05 (k® (3% +y¥ky))
153¢ REM Plot graph

160 FOR x=-1909 TO 106

17@ LET y1=5#INT (SGR {10000—x*xx)/5)
188 FOR y=y1! TO -yi STEF -5

190 LET z=FN a(SER (XWX +y#y)) —m¥Ey
195 REM Hidden line removal

20@ IF y=yi1 THEN GO TO 229

210 IF z<z1 THEN GO TO 240

226 PLOT 128+x,B0+INT (z/2)

230 LET zl==z

240 NEXT vy

200 NEXT x

Fig. 8.12. Circular 3-D type plot.

Adding Depth and Perspective 165

Fig. 9.13. Display of circular three axis chart.

elliptical figure on the screen. Z values are simply added to the
calculated Y co-ordinates and points are plotted at the tops of the Z
ordinates.

The program of Fig. 9.12 givesan example of this type of plot. The
function used will determine the contour shape of the display and
you could try a variety of functions here. A typical display appears
like Fig. 9.13. Note that this type of display takes quite a long time to
generate because of the large number of points and the relatively
complex calculations for each point.

Perspective drawings

The three axis charts or graphs which we have produced so far do
give some impression of depth but to an artist they will look all
wrong. These are, infact, what areknown asisometricdrawings,. This
basically means that a vertical line always has the same scale factor
wherever it is on the X Y plane. This type of drawing is often
produced by draughtsmen because it allows correct measurements
to be made of the object along all three axes.

To create the illusion of depth an artist uses what i1s known as
perspective in his drawings. Artists had discovered many centuries
ago the effect that as an object is moved further away Irom the

166 Spectrum Graphics and Sound

viewer it appears to get smaller and vice versa. They also found that
by applying this idea to drawings and paintings they could produce a
much more realistic picture, This technique is known as perspective
drawing and over the years mathematicians have evolved formulae
to allow the shape and size of objects to be calculated to give a
correct perspective view. This technique can also be applied in
computer graphics to produce more realistic displays.

To see how perspective works, imagine that you are standing ona
flat plain and that in front of you is a road that stretches away tothe
horizon. Although the sides of the road are actually parallel it will
appear that the road gets narrower as it approaches the horizon. The
cars and trucks travelling along the road also appear to get smaller
as they move away from your position toward the horizon. In fact
the optical image they produce does get smaller as they move away,
If we apply this basic rule to our pictures on the screen we can also
produce an illusion of depth despite the fact that our display is really
a flat screen.

Firstly we need to decide on some system of co-ordinates by which
we can measure the positions of points on the objects being viewed
and the corresponding points needed to produce the screen image.
We shall assume that the X axis runs across from left to right as
usual. The Z axisis normally the vertical direction as we had it in our
three axis graphs. This leaves the Y axis and the best arrangement is
to have the Y axis along the direction of view.

If you viewed the road across the desert from actual road level
(that is, with your eye actually at the road surface) the view would be
rather uninspiring because every point on the road and the desert
would lie along a single line through the X axis. In order to see the
road properly we need to be located above it.

s P e
. t
o
T ’
- NN |
\\x z
ﬂ-‘"‘“x
"__‘_ 1\1.._ ;
“x_\ x\x_“\ i
T '- !
™ H'“‘x‘%
] Y2
Sereen Paints on road

Fig. 8.74. Diagram showing relationship of road and screen.

Adding Depth and Perspective 167

Figure 9.14 shows a side view of the situation where we are
viewing the road from an altitude Z. In order to project theimage on
our flat screen we shall assume that we are looking through a
window at distance D.

Suppose we take a point on the road at distance Y 1. This will
appear to be below the horizon line on the screen by anamount SY.
We have assumed here that the horizon is effectively at eye level
which it will be if we are looking along a line parallel to the Y axis.
Now the small triangle between the screen and eye is of the same
shape as the large triangle passing through point Y1. This means
that all of the sides of the two triangles have the same proportions so
we can say that:

SY/D=Z/Y1

and rearranging this we get:
SY = 7Z*D/YI

Now you will note that the size of the image on the screen is inversely
proportional to the distance Y1. If we took another point on the
road at a different distance Y2 then it would produce a different line
length on the screen giving a new value for SY of:

SY = Z*D/Y2

Now suppose there were a series of equal length lines drawn along
the centre line of the road. Each line will produce a short vertical line
on the screen and as the point on the road gets farther away the
image produced on the screen by each line gets shorter,

If we drew a similar view of the road looking down on it we would
find that the same basic formula applies for the SX image size on the
screen which represents the road width. As Y1 becomes greater the
width of the image on the screen decreases according to the formula:

SX = W*D/ Y|

where W is the width of the road.

Vertical objects alongside the road will also produce images that
follow this general rule of being inversely proportional to distance
Y.

Let us start with the road. Firstly we need to draw a horizon line
horizontally across the screen since this acts as a visual reference.
Now if we draw lines from the bottom two corners of the screento a
point halfway across the horizon line we have a road.

Suppose the road 1s 25 feet wide and we are viewinga 14inch TV
screen {rom, say, a distance of 4 feet. The TV screen will be 1 foot

168 Spectrum Graphics and Sound

wide and this is equal to SX. D will be 4 and X will be 25. Now-
SX=D*Y/Y = 4%¥25/Y =|

therefore:
Y = 4*25 or 109 fect

The scaling factor for the X direction in our screen drawing can now
be worked out. There are 256 units of X across the screen on the
Spectrum and when Y=100 the road fills the screen width, so SX
must be 256. If we rewrite out equation with a multiplier SCX we

get:
SX=S8SCX X X/Y
and inserting our calculated values we get the following:

256 = SCX X 25/ 100

now extracting the SCX term we get:

SCX = 256X 100/25= 1024
To calculate values of SX we would use the equation:
SX=1024% X;Y

If we applya similar process to calculate the Y scale factor, assuming
that our viewpoint is at a height of 10 feet and that for a distance of
100 feet the point plotted is at the bottom of the screen. We shall
assume that the horizon line is at Y = 96 on the screen. From this:

SY = SCY X 10/100 = 96

and
SCY = 960

s0 to calculate the Y points on the screen we would use:
SY = 960*Z/Y

To plot a point on the road itself Z=1¢ and the actual Y value for use
in the drawing instruction will be 96—SY since as we get closer the
point moves down the screen. If there is a vertical pole then to plot
the top of the pole we subtract the height of the pole from 10 to
obtain the value for Z. Thus a 10 foot high pole will always produce a
Y value of 96 and would line up with the horizon since we are
actually looking along a line 10 feet above the road. If the pole is

Adding Depth and Perspective 169

higher than 10 feet the value of SY is negative and the top of the pole
goes above the centre line of the screen.

To draw a perspective view of a road with, say, trees alongside you
will need to set up values of height for the tree trunk an the top of the
tree and also the width of the tree. Knowing the distance of each tree
from the viewer, its X,Y co-ordinates for the base, top and side
points can be calculated using:

SX=128+1024* X/ ¥
SY=96-960*(10-2)/Y

where SX and SY are the screen drawing co-ordinates, X is the
distance measured from the centre of the road with positive values to
the right and Z is the height of the object. Once the co-ordinates are
known the tree can be drawn using a series of PLOT and DRAW
commands, The road markings are dealt with in a similar fashion
except that here Z will be §.

Figure 9.15 shows a program listing to draw a perspective view of
a road and Fig, 9.16 shows the result on the screen.

106 REM Perspective view of road
165 ReM Draw shy

110 PAFER S: CLES

115 REM Draw desert

1Z6 FAFER &

149 FOR v=1g TO 21

158 FOR x=6 T0O 321

168 PRINT AT v.x3" "3

176 MEXT x: NMNEXT v

175 REM Draw road

188 FOR x=—128 74 127

1906 FLOT Ihk 63:128,%5

Zee DRAW INK @sx, P4

218 NEXT =

T2¢ LET sx=1924: LET sv=940

225 REM Draw road markings

2239 FOR v=180 T0O 200¢ S5TEF 16

246 LET vi=INT (sy*1@/{y+56)7}

250 LET yw2=INT (sy*18/v)

260 LET x=INT {sx*1/{(y+50}}

278 FOR k=128-x TG 128+x

286 FLOT PA&PER 73 INVERSBE 1:1k,75-vl
278 DRAW PAPER 73 INVERSE 13@,yl-vyZ2
F08 NEXT k

170 Spectrum Graphics and Sound

338 LET x1I=IMT {(sx*i/v)

32¢ FOR k=G TO xi-u

338 FLOT PAFER 735 INVERGSE 131728
24¢ DRAW PAPER 73 INVERSE 1:
250 FLOT FAPER 73 INVERSE i3
242 DRAW PAPER 75 INVERSE lik,yi—yz
278 NEXT k: MEXT v: INVYERSE @
375 REM Draw horizon

Z8a PLOT INK ©318,94

ZP8 DRAR INE @'ZEE,S

225 REM Draw trees

et LET tr=8: LET tt=20: LET tw=3
41¢ FOR v=150 TO 1200 STEP 1S
428 LET y1=INT {(sv#18/v}

438 LET v2Z=INT (sy®(1&—tr) /v}
449 LET y3=IMT (sv*{16-tt}/v)
5% LET x=INT {(sx*12.5/vy)

468 LET 21=INT {sx*tw/v)

476 LET x2=1Z28B-u: 50 SUEBR 1006
480 LET x2=128+x: GO SUR 1000
494 NEXT vy

o808 STOP

?9a REM Tres drawing subroutine
igea PLOT INK 9:1x2, 94—yl

1919 Dal INK @368, v7

iode FOR k=—xi TO x1

ia5e PLOT INK Byx2, FH—y3

13469 DRAW IME 93k, y3—2

178 NEXT k: DVER o

1980 RETURN

Fig. 9.75. Program to draw a road.

Wire frame models of solid objects

When we come to drawing perspective images of three-dimensional
objects we use an array of X, Y, Z co-ordinates to define points on
the object. When the image is drawn these points are linked together
by lines to produce an outline of the edges of the object. If we were
drawing a rectangular block then the reference points would be the
eight corners of the block and the linking lines represent the edges of
the block. This form of drawing is called a wire frame image because
it is as if we made up the object by building a wire frame marking out

its edges.

Adding Depth and Perspective 171

Fig. 8.76. Picture of road.

For viewing the object along its Y axis we can use the same basic
proportional technique that was used for the perspective view of a
road. If we want to be able to move all around our object so that we
can view it from all directions then the equations become more
complex. We shall now go on to look at this situation,

All round viewing of objects

To produce a perspective view of a wire frame object from any point
around the object becomes fairly complex. Firstly we need to define
the object as a set of X,Y,Z co-ordinates relative to its own centre.
We shall also need a set of information which shows where the edges
are relative to the X, Y, Z points. In addition we will need some
information to tell the computer whether 1t has to draw a line or not
when tracing out the image from point to point on the screen. This
can be arranged by creating three arrays of data describing the
abject. The X, Y and Z co-ordinates of the object in its descriptive
array are all measured relative to a point at the centre of the object
itself. Next we have a viewer at some point XV, YV, ZV relative to
the object.

The first stage in the process is to translate the X, Y, Z co-

172 Spectrum Graphics and Sound

ordinates of the object so that the viewer is placed at the origin of the
X, Y, Z axes, This is the point where X, Y and Z are all 0. This
translation process is quite straightforward since it simply involves
subtracting XV, YV.ZX from X,Y and Z respectively to give a new
set of values for the X,Y and Z co-ordinates of the points on the
object.

At this point we have assumed that the viewer is absolutely level.
For all round viewing we can assume that the line of sight of the
viewer has three angular components which we shall call heading,
pitch and roll. To understand these it is useful to imagine that you
are flying in an aeroplane. The Y axis of the aeroplane is assumed to
be along the fuselage and the X axis along the wings.

Heading is the direction of view of the viewer measured relative to
the Y axis. A change in heading is equivalent to turning to the left or
right. This 1s effectively a rotation of the aircraft around its Z or
vertical axis. Next there is pitch which shows whether you are
looking above or below the horizontal. This shows whether the
aircraft has a nose down or nose up attitude and is equivalent to
rotating the plane around the line along its wings. This is effectively
a rotation about the X axis of the aircraft. Finally there is roll which
indicates if your view is inclined to the right or left. This is like
rotating the plane around a line along its fuselage which is what
happens when an actual aircraft rolls. Here the rotation is around
the Y axis of the aircraft.

After shifting the origin of the X, Y, Z map we will have the
poition where the viewer and the object being viewed are on the Y
axis, but the viewer is in fact looking at a point away from the Y axis
by his heading angle. This could place the object off the screen. In
order to place the object in the centre of the field of view and at its
correct orientation we will need to rotate its points about the three
axes to correct for the heading, pitch and roll of the viewer. This is
done in three stages.

First the points are rotated around the Z axis until the viewer is
looking directly through the centre of the object. This is done by
rotating all of the points on the object through the heading angle of
the viewer. The rotation equations are the same as those used in
Chapter Four but now they are applied to X,Y and Z. In this first
rotation, Z1 will be equal to the original Z value since we are rotating
around the Z axis itself. The new X and Y values become:

X1=X*COS(H)-Y*SIN(H)
Y I=X*SIN(H)+Y*COS(H)

Adding Depth and Perspective 173

In the second stage of calculations these X1,Y1,Z1 values are rotated
by the pitch angle to produce a new set of values X2,Y2,72. In this
rotation the X values are unchanged since the points are being
rotated around the X axis. The second set of values X2, Y2, 72 are
finally given a further rotation by the roll angle to produce the co-
ordinates X3,Y3,Z3. In this last rotation which is around the Y axis
the Y2 values will be unchanged.

Having produced these rotated co-ordinates we have reached
roughly the position we were in with the road view. In remains to
project the points on to the screen and this basically involves
dividing X3 and Z3 respetively by Y3 to obtain the screen co-
ordinates XS and YS.

This whole process of rotation and projection is carried out for
each co-ordinate point on the object and then the appropriate lines
are plotted between the points to form the picture on the screen.

The program listing given in Fig. 9.17 carries out this process on
an object which is a wire frame model of a simple block. The front

ie® REM All round perspective
11 REM view of a block

120 DIM v{(50,3): DIM e(106): DIM 1 {100}
13@¢ LET sx=10: LET sy=l1e

135 REM Set up data on figure
14@ READ nv

15¢ FOR p=1 TO nv

16@¢ READ vip,1),v(p,2),v(p,3)
170 NEXT p

180 READ ne

1@ FOR j=1 TO ne

200 READ e{(j),1(j)

216 NEXT j

7220 REM Set viewer position
23@ LET d=8B@&: LET p=22

249 LET r=0@: LET h=40

245 REM Main program loop

250 CLS : PRINT "Heading= "ih
260 PRINT "Pitch= "5p

27¢ FRINT "Roll= ";ir

289 LET h=h*PI/180

299 LET p=p*PI/18@

300 LET r=r*FP1/189

@S REM Calculate multipliers
312 60 SUBR 1000

320 LET xv=—d#*cp#sh

174 Spectrum Graphics and Sound

336 LET yv=—d¥*cp#*ch

34¢ LET zv=—d¥sp

>0 REM Froject image on screen
3860 LET x1=0®: LET y1=0

370 FOR j=1 TO ne

380 LET n=e(j}

370 LET x=vin,1): LET y=vi(n,2)
400 LET z=vin,3)

419 GO SUB 1200

415 REM Check if line to be drawn
426 IF 1(j)=0 THEN &0 TO 450
47253 REM Draw line

430 PLOT x1,vy1

44¢ DRAW xs—x1l,ys—vyi

445 REM Update cursor position
4560 LET xi=xs: LET vi=ys

4468 NEXT

489 INPUT "Another view {(y/n)";ia%
4%@ IF as$<>"v" THEN STOF

So9 INFUT "Heading (degl)="sih
519 INFUT "Fitch (deg)="ip

S2e INPUT "Roll {degi="3ir

o3¢ 60 TO 256

sS40 STOF

100 REM Multiplier factors
1910 LET ch=C0S h: LET sh=5IN h
le2e LET cp=C0S5 p: LET sp=5IN p
1038 LET cr=CO0S r=: LET sr=5IN r
184@ LET mi=ch¥*cr—sh*sp#sr

1850 LET mZ2=-ch¥*cr—ch¥*sp¥*sr
19060 LET m3=cp¥*sr

1979 LET mi4=sh¥*cp

1080 LET mS=ch#*cp

1090 LET mb&=sp

1103 LET m7=ch®sr—sh#*sp*cr

1119 LET mB=—sh¥sr—ch#sp¥*cr
112& LET mP=cp¥*cr

1130 RETURMN

1199 REM

1200 REM Move viewer position
1219 LET x=x—xv: LET y=y—yv: LET z=z-zv
1229 REM Rotate view

1230 LET %3=ml¥x+m2%y+m3*z

1240 LET y3=mi#u+mS*y+mb*z

1258
1260
1276
1289
1296
1990
2000
£al1e
220
2030
2A40
2050
260
2070
2080
2090
216
2116
2120
2136
214¢
2199
2200
2219
2220
2230
22480
2250
2260
2270

Adding Depth and Perspective 1786

LET z3=m7%x+mB*y+mIP*z

REM Calculate x,y position on screen
LET xs=128+INT (sx*d¥x3/y3)

LET ys=B80+INT {(syx*d#*#z3/y3)

RETURN

REM

REM Number of points
DATA 12

REM x,y,z coordinates

DATA 5,-3,4
DATA -5,-3.4
DATA —-S5,—3.-4
DATA 5,-3,~4
DATA S5.3,4
DATA -5.3,4
DATA —5,3.-4
DATA 5,3,-4
DATA 4,-3,3
DATA —4,—-3,-3
DATA 4,-3,-3
paATA —-4,-3,3
REM

REM Number of edges
DATA 26

Fig. 8.77. Program to view a 3-D block.

face of the block has a cross drawn on it to make it a
little easier to interpret the picture. By inputting the direc-
tion of view in terms of heading, pitch and roll, as seen from
the viewer's position, the corresponding view of the object is
displayed. In effect we are rotating the object itself to present the
correct view. Fig. 9.18 shows a typical view on the screen.

176 Spectrum Graphics and Sound

45

nJ

22

pilynim s
(m B LRY]
o o+ K
= L
M -

<
@

/N_/

Fig. 8.18. Typical display of the black.

You can produce a different shape by setting up new data arrays.
The x,y,z co-ordinates define the corners of the object. The edge data
shows the sequence of coordinates through which lines are to be
drawn. They are in pairs the first item being the coordinate number
and thesecondisa lifalineistobedrawn ora Oif no lineisrequired.
Remember to change the data values specifying the number of points
and edges.

Chapter Ten
Making Sounds and
Music

Ome aspect of home computers that seems to have become more
important in recent years is the production of sounds and music.
This is particularly important where the computeris used asa games
machine, as a visit to any video game arcade will show.

Some modern home computers have very advanced sound
producing systems with perhaps three or four independent sound
channels and full control over the volume, frequency and duration
of the sounds produced. Such machines are capable of producing an
almost infinite variety of sounds. The Spectrum has a much more
modest sound capability with only one channel and only one BASIC
command for the control of sound generation.

Like many other small home computers, the Spectrum has a
loudspeaker built into the computer case for producing sound.
Inevitably this has to be a small loudspeaker in order to fit it into the
Spectrum and such small loudspeakers cannot give particularly
good sound reproduction. A further limitation is that the volume of
sound produced tends to be rather low. Itis possible however to take
a sound output signal from the MIC socket which is normally used
to drive the cassette recorder when storing programs. If the signal
from the MIC socket is fed to a hi-fi ampifier much better sound
outputs can be produced from the Spectrum. There are several small
add on amplifier units available for the Spectrum and these also use
the MIC signal to provide a louder sound output.

What is sound?

All of the sounds that we normally hear are produced by pressure
waves in the air around us. To see how this works imagine a stone
thrown into a pond. When the stone hits the water it produces a
series of ripples in the water surface which spread outwards from the

178 Spectrum Graphics and Seund

point where the stone entered. Sound waves are similar to those
ripples on the water except that in the case of sound waves the
ripples consist of changes in the air pressure which radiate from the
source of the sound. As the sound wave passes us the air in contact
with our ears is alternately compressed and expanded in sympathy
with the sound wave. Inside the ear the vibrations produced by the
sound wave are converted into nerve impulses and we sense the
sound.

A pure sound tone will have a pressure wave with a sinusoidal
waveform as shownin Fig. 10.1. The height or amplitude of the wave
determines how loud the sound is. This is often referred to as the
volume of the sound. In the Spectrum there is no direct means of
controlling the sound volume so all sounds produced have roughly
the same loudness.

Ao £ L S
s - .
¢ " k' r
H\-ﬁ’rll |\"JH kh"ﬂ"j lq*h.r")

l Sdcle

Fig. T0.7. Sinusoidal wave of sound.

The rate at which the sine wave changes determines the pitch or
frequency of the sound. Thus the faster the wave changes, the higher
will be the pitch. The frequency or pitch of a sound is measured as
the number of complete cycles of the sine wave that occur in one
second and is generally quoted 1n units called hertz (Hz). For one
cycle the sound signal starts at zero, rises to its maximum positive
value, passes through zero to its maximum negative value and
finally returns to zero again as shown in Fig. 10.1. Thus a sound
wave which passes through 50 cycles every second would be said to
have a frequency of 50 Hz. This sound would be a low pitched hum
and is the sound that will often be heard coming from electrical
equipment since it is the frequency of the mains electricity supply.

The typical range of sounds that can be detected by the human ear
is from about 40 Hz up to around 15000 Hz (15 kHz). In the
Spectrum the frequency of the sounds that can be produced ranges
fromabout [0 Hz at thelow frequencyendup toabout 15000 Hz at the
high end.

Making Sounds and Music 179

Apart from frequency and volume, all sounds will also have a
duration, which is the length of time for which the sound is
generated. The Spectrum allows the duration of the sound produced
to be controlled by the program,

A sound signal with a sinusoidal waveform produces a pure note
similar to that produced by a flute. Changing the shape of the wave
to a square wave as shown in Fig. 10.2 produces a richer sound.
Most computers tend to produce these square wave sound signals
since they are much easier to generate clectronically.

]

Fig. 10.2. A typical square wave signal.

l CJycCle

So far we have considered the sound wave as being of constant
frequency and volume throughout its duration. In real life the
characteristics of a sound are also greatly influenced by the way in
which the amplitude and frequency vary as the sound is being
produced. This is known as the sound envelope. With the Spectrum
we cannot vary the amplitude of sounds so this restricts the types of
sound that can be produced. We can, however, vary the frequency
with time to produce various kinds of siren effect.

Sound generation in the Spectrum

In the more sophisticated computers special sound generator chips
are generally used to produce the sound outputs under the control of
the CPU chip inside the computer. Sucha scheme usually allows the
computer CPU to perform other tasks as the sound is being
produced. In the Spectrum the sound is generated directly by the
CPU itself. The basic technique is to switch a single output line on
and off at regular intervals and to use the signal on this line to drive
the loudspeaker. Each time the output signal is turned on and off it
produces a ‘click’ in the loudspeaker. By producing a stream of
successive clicks a rather rough audio tone is produced and the pitch

180 Spectrum Graphics and Sound

or frequency of the tone willdepend upon the rate at which the chicks
are produced.

The duration of the tone produced from the Spectrum depends
upon the length of the stream of clicks and this can readily be
controlled by the program as can the pitch or frequency of the tone,
One major disadvantage of this technique for producing sound is
that whilst the Spectrum is generating a sound output the CPU is
completely taken up by that task and all other computing activity
ceases. This can of course present problems if you are trying to
produce an animated graphics display at the same time as a sound
effect. The problem can be overcome to some extent, however, by
breaking up the sound signal into sections and interleaving the
updating of the display with the sound commands.

The BEEP command

In the Spectrum the BASIC command used for producing sounds is
called BEEP and takes the following form:

169 BEEP duration,pitch

The duration of the tone is measured in units of seconds so that if
duration 1s set to | the tone will last for a period of 1 second. To see
how this works try running the short program listed in Fig. 10.3. For
most purposes the duration value will be in the range from @ to 1.

i¢® REM Demonstration of the

119 REM duration of BEEF

126 LET d=0.e1

13 FOR n=1 T0 1@

148 FOR n=1 TO 1@

15@¢ PRINT AT 1,15"Duration = "idi" seconds
i15¢ BEEF d,eo

17¢ PRAUSE 2S5

180 LET d=d=*2

179 NEXT n

=
L 1]

Fig. 10.3. Demonstration of changes of duration of sound.

The pitch parameteris aninteger number and must lie in the range
from —359 to +69. A value of —59 gives a very low frequency buzzing
or clicking sound and as the pitch numbers increase the pitch rises
through the audible range and eventually becomes too high to be
heard. At the low end the frequency is about 10 pulses per second

Making Sounds and Music 181

and at the highest end rises to about 15000 cycles per second or 15
kilohertz (kHz). The note Middle C on a piano scale, which has a
frequency of about 261 cycles per second, is produced by a pitch
number P = §.

To see the range of tones available from the Spectrum BEEP
command try running the program shown in Fig. 10.4. In this
program the pitch is stepped through itsentire range of values(—59to 69)
to give a sequence of tones rising in frequency. The duration is set at
0.5 to give half second long tones and a PAUSE 12 command
after each note is used to separate the individual notes so that they
can easily be picked out.

126 REM Range of sound pitch
119 FOR p=-&@& TO &9

12¢ FRINT AT 1,13"Pitch = “jps" 3
138 BEEP @.5,p

149 FAUSE 12

154 NEXT p

Fig. 10.4. Demanstration of range of tones available.

The sounds which you can produce add considerable interest to
most games programs played on your Spectrum,

Making sound effects

We can produce some simple sound effects by using the BEEP
command. If the pitch is made to rise and fall regularly a siren type
sound can be produced as shown by the little program listed in Fig.
10.5.

199 REM Siren type sound
11¢ FOR p=5 TO 15

1260 BEEF .95,p: NEXT p
13@ FOR p=15 TO S STEP -1
140 BEEF .95,p: NEXT p
1506 GO TO 11@

Fig. 10.8. Producing siren type sounds.

182 Spectrum Graphics and Sound

Other possibilities with the BEEP command include playing two
sounds in rapid succession by interleaving two BEEP commands in
a FOR ... NEXT loop and having a small difference in pitch
between them as shown in Fig. 10.6.

192 REM Interleaved notes
i@ FOR p=1 TO 4

12¢ FOR n=1 70 S@

13@ BEEFP .05.5

149 BEEFP .95,5+p

15@ NEXT n

168 PAUSE 225

176 NEXT p

Fig. 10.6. Beat frequency generation.

This program produces a sort of warbling sound due to the beat
between the two tones. Try different values for the pitch of the
second sound to see the effects produced.

Making music

Since the Spectrum can produce a wide range of sound frequencies it
can be used to play music. Of course the limitations of the sound
generating system will not allow us to produce high quality sound
but nevertheless tunes can be played on the Spectrum. These could
be useful in games programs where different jingles’ can be played
when the player wins or loses.

When we consider the playing of a piece of music the sounds
which make up the tune are generally called notes. Each note has a
specific pitch or frequency which is related precisely to the pitch of
the other notes in the musical scale. The complete pitch range used in
music is divided up into groups of notes which are called octaves.

If we examine an octave of notes on say a piano keyboard as
illustrated in Fig. 10.7, it consists of seven so called naerural notes
which are produced by the white piano keys. The natural notes are
labelled A, B, C, D, E, F and G in order of ascending pitch. This
sequence of notes from A to G is repeated up the scale so that the
next note after G will be the A at the start of the next octave. This A
is the eighth natural note above the next lower A in the set and it is
from this that the name octave (eighth) is derived.

Making Sounds and Music 183

cg 038 Fig GE Rg ch
P = 1 3 g2 & la 13

c o E F G R B C D
F =2 2 4 T T 9 11 12 14

Fig. 70.7. The piano keyboard and note pitch numbers required.

Between the natural notes there are some extra notes which are
called sharp notes. The sharp notes are a semitone higher in pitch
than the adjacent natural note. The sharp notes use the same letters
as natural notes but the letter is followed bya crosshatch or hash (#)
symbol. Thus the note C# is a semitone higher than C.

In music you will also find references to flar notes which are a
semitone below a natural note. Sharps and flats are really just
different ways of labelling the same note. If we consider the note A #
which 1s a semitone above A, this will have the same pitch as the B
flat note which is a semitone below B. In written music the flat is
denoted by a symbol like a small b placed after the note,

You will see that there are only five sharp notes compared with
seven natural notes in an octave. Most of the natural notes are
separated from the next natural note by a sharp note, sothat the pitch
difference between adjacent natural notes is two semitones or a
whole tone. The exceptions are B and E which have no
corresponding sharp note so the pitch difference between Band C or
between E and F is only a semitone. This rather odd arrangement
seems to work quite well in practice and if the natural notes are
played in succession we get the familiar musical scale.

Playing musical notes

Because of the twelfth root of two ratio between successive notes the
actual frequencies of musical notes are all rather odd numbers. For

184 Spectrum Graphics and Sound

instance the note called Middle C has a frequency of 261.7 Hz. The
Middle C note is often used as a reference in computer sound
systems and the Spectrum is no exception in this respect. In the
Spectrum the BEEP frequency is actually specified as a number of
semitones relative to Middle C so that if we use the command:

BEEP 1.4

the machine will produce a Middle C note for a period of one second.
A positive pitch number will indicate the number of semitones
above Middle C and a negative number indicates that the note is
below Middle C.

To produce our familiar ‘do ray me’ type musical scale we can play
the natural notes from Middle C up to and including the C in the
next higher octave. Here we cannot use a simple counting loop, as
we did to demonstrate the range of sounds, because the pitch
numbers required are not all equally spaced. The correct scale can be
played by setting up the required sequence of notes as an array and
then repeating the BEEP command 1n a loop with varying pitch
terms as shown in the program listed in Fig. 10.8.

199 REM Musical scale program
11e FOR k=1 TO 26

120 RESTUORE

138 FUR n=1 TO B

14 READ p

15 BEEF .25,p

16¢& NEXT n

176 PAUSE 25

189 NEXT Ek

i9a DATA @,2,4,5,7,9,11,12

Fig. 10.8. Playing a musical scale.
Scales can also be played starting from a different note but to get

the correct sequence of sounds this will involve using some of the
sharp notes to form the scale.

Translating music
So far we have produced a musical scale and we could goontoplaya

tune by merely writing down the sequence of notes as letters and
then converting them into pitch numbers for the BEEP command.

Making Sounds and Music 1856

In practice, however, music is not normally written as a sequence of
note names so we need to look at how to translate actual written
music,

When music is written on paper the notes are shown as large dots
with vertical tails. These note symbols are drawn on, or between, a
series of horizontal lines called a stave and will appear as shown in
Fig. 10.9. The position of the note on the stave indicates its pitch so
that the higher the note symbol is drawn the higher will be its pitch.
Successive natural notes in the scale are drawn on and between the
stave lines.

Kote |8 D E F 6 fi B C e E
Pitch No. 8 Z 4 3 7 $ 11 12 14 16

Fig. 10.9. The treble music stave and note pitch values.

There arein fact two musical staves and the one shown in Fig. 10.9
is known as the treble stave, The symbol at the left end of the stave is
called the treble clefand simply identifies this set of lines as the treble
stave. The treble stave shows notes above Middle C which is the note
that sits on i1ts own short line just below the treble stave.

For the notes below Middle C there is a second stave which is
called the bhass stave and is shown in Fig. 10.10, Once again a special
symbol at the left side called the bass clef identifies this stave. In the
bass stave the Middle C note appears on a short line of its own above
the bass stave,

._'LJJ,!J

=) -

Haote C B A G F E D C
FPitch -1 -3 -5 —-7F —8 —18 —12

Fig. 10.10. The bass stave of music.

186 Spectrum Graphics and Sound

Figures 10.9 and 10.10 also show the relationship between the
notes as drawn on music staves to the pitch numbers that we need to
use in the BEEP command on the Spectrum.

So far, however, we have only used the natural notes which
correspond to the white keys on a piano. Most pieces of music will
also use the black or sharp notes as well so we need to be able to
recognise them in written music and tell the Spectrum to play them.

Sharp notes are shown in music by placing a crosshatch sign
alongside the note as shown in Fig. 10.11. Sometimes a particular
note is required to be sharp throughout the tune and this may be
shown by placing a crosshatch sign at the start of each line of music
at the position normally occupied by the note. This is also shown in
Fig. 10.11. When the sharp symbol is placed at the start of the music
stave then all notes on that line of the stave are made sharpinstead of
natural.

» &5

F F+ CH

Fig. 70.771. The sharp notes.

Telling the computer to play a sharp note is easy because we just
add one to the pitch number for the basic note. The sharp note
(C#) for Middle C will have the pitch value 1 since Middle C has the
value 0. For a flat note we would simply subtract one from the basic
note pitch number.

Now we can produce a simple tune by running the program listed
in Fig. 10.12 which you may recognise. Although the notes have the

1@e REM Tune playing program
11e¢ FBR n=1 TO 2b&

120 READ p

i3e BEEF .25.p

149 NEXT n

1560 DATA 11,14,131,11,14,11,12
160 DATA 14,12, 9,.11,12,11,7
170 DATA 11,14,11,11,14,11
182 DATA 12,14,12,9,11,7

Fig. 70.12. A simple tune playing program.

Making Sounds and Music 187

right pitch values, the tune doesn’t sound quite right. This is because
all of the notes have the same length whereas in actual music the
notes have varying duration to provide a rhythm to the tune.

Musical timing

Apart from the pitch, music also makes usc of variable duration of
the notes and this 1s organised on a binary system. The basic note
length is called a crotcher and corresponds to a duration of about
i/, a secand. The crotchet 1s shown as a black filled circle with a tail.
Shorter notes are the quaver (1/2), semiquaver (1/4) and
demisemiquaver (1/8) which are drawn like crotchets but have one,
two or three ticks on the tail respectively. A longer note is the minim
which is twice the length of a crotchet and is shown like a crotchet
but with the circle not filled in. Finally there is the semibreve which is
four times as long as a crotchet and is shown with no tail. These note
symbols are shown in Fig. 10.13.

In the Spectrum we have to control note length by altering the
duration of the BEEP command. A crotchet corresponds to a d
value of 0.25 and the other note lengths are in proportion as shown
in Fig. 10.13. This would normally involve the use of a whole series

Note ratio name Length
j: Ls8 Demisemiquaver 1
i Lsd Semiquaver =4
J ls2 QUaver d

J X Cratchet =

J = Mirdm 16
C 4 Semibreve 1=

Fig. 10.13. The various note lengths.

188 Spectrum Graphics and Sound

of fractional numbers for d. One solution for this might be to setupa
basic value for duration of 132 second by using the variable c¢. This
gives the note length for a demisemiquaver which is the shortest
note. Now we can set up a note length number | which is
proportional to note length so that a quaver has a | value of 4 and a
minim has 1 value of 16, In the BEEP statement the duration is
obtained by multiplying ¢ by the required note length 1.

Now we can apply these new duration values to our tune
generating program as shown in the program listing of Fig. 10.14. In
this program two data arrays are used, one giving the pitch pand the
other the length 1. The values of p and 1 are then used in turn in
the BEEP statement to play the tune which now begins to sound
much better,

199 REM Tune plaving program
119 REM with varving note length
128 LET c=1/32

132¢ FOR n=1 TO Z6

14 READ 1,p

159 BEEF c#*1l.,p

1&6¢ NEXT n

i7e DATA B,11.4,14,8,11,8,11
18¢ DbAaTA 4,14,8,11,4,.12,4,14
17¢ DATA 4,12,8,9,4,11,4,12
220 DATA 4,11,8,7,.8,11,4,14
219 DATA B,11,8,11,4,14,8,11
22¢ DRATA 4,12,4,14,4,12,8,9
238 DATA 4,11.8.7

Frg. 10.74. Improved version of the tune program.

The binary series of notes do not however satisfy all of the needs of
musicians, so sometimes in written music you may also come across
notes with a dot alongside the note symbol as shown in Fig. 10.15,
These notes have the duration increased by half. Thus a dotted
crotchet would have an effective duration multiplier value of 12
instead of the normal 8 and a dotted quaver would have a 1 value of 6
instead of the normal 4.

Another feature of music, apart from the duration of the notes
themselves, are the pauses between notes which are known as rests.
Special symbols are used to indicate these on the music stave and
they are as shown in Fig, 10.16. These pauses can be introduced into

Making Sounds and Music 189

Mote ratic lengath
;

'.f," L8 1.5

|

‘r,' 1,4 -
P L2 &

L X i la
e = =2d
Qe 4 45

Fig. 10.15. The dotted notes and their duration.

the Spectrum music by using the PAUSE command of the Spectrum
but some method will be needed to tell the Spectrum that a PAUSE
1s required rather than a note. One possibility might be to make the
note length negative when a pause is required, then a simple check
on the duration number will indicate which type of instruction is
required. The alternative is to have a third data array for rests. This
would have the value 0 when a note 1s to be played and a duration
number when a pause is required. Note that since the PAUSE
command works in [/50 second units the lengths may not be exactly
correct but should be near enough to produce acceptable music.

Sumbol Ratio FRUSE walue

¥ Lr16 1
o lLre 2
E‘ 1.4 4
- 1. a S
- 1, 16

Fig. 10.76. The pause or rest symbols in music.

190 Spectrum Graphics and Sound

Changing the tempo

Nomally music would be played with the length of a crotchet set at
about 0.25 second. If this duration is made less then the tune will be
played faster whilst if the crotchet length is increased the tune is
played slower.

Try running the program listed in Fig, 10.17. Here the basic scale
from middle C up through one octave is played at increasing tempo
until eventually all of the notes run into one another to produce a
sound that might be usefulinanarcade game. You might also try the
same 1dea but with the notes running down the scale.

199 REM Scale with tempo change
11 FOR t=6.25 TO @ STEP —.02
126 RESTORE

1394 FOR n=1 TO 8

149 READ p

15¢ BEEF t.p

166 NEXT n

176 PAUSE 25

18¢ NEXT t

i9¢ DATA 2,2,.4,5,7,.9,11,12

Fig. 10.17. Applying tempo change to a scale to get sound effects.

A point to note here is that as the time gets shorter some notes get
quieter and eventually disappear. This is because there just isn’t
enough time to generate one cycle of the required note.

Play the Spectrum

So far we have produced music by setting up the stream of notes and
then playing them one after another with BEEP commands. There is
a rather more attractive possibility with the Spectrum and that is to
turn the computer into a playable instrument.

We can use the Spectrum keyboard to act in the same way as the
keyboard of a piano by allocating notes to a selection of keys. When
one of these keys is pressed the corresponding note will be played by
the spectrum.

Thefirst stepis to choose the keys to be used for producing musical
notes. The obvious choice is to try to get a key layout that is similar

Making Sounds and Music 191

to that of say a piano. With this in mind the top two rows of letter
keys were chosen. The middle row of letter keys running from Ato L
is used for the natural, or white, notes starting with key A which
produces the Middle C note. Some of the keys in the row above,
which runs from Q to P, are used for the sharp or black notes.
To detect a key press we can use INKE Y§ which produces a string
variable as. If no key is pressed the string as$ will be blank and this is
checked in line 18@. A blank string simply makes the computer
repeat the INKEY}$ operation. When a key 1s detected the next step
1s to choose and set up the note data for the BEEP command.
The simplest technique for setting up the notes is to produce an
array p with a value for each of the letter keys. In fact since we know
that Z will not be used there are only 25 slots in the p data array.
Into each slot is placed a pitch number. For those keys whichareto be
used for notes the pitch of the note corresponding to the key is used.

199 REM Flay the Spectrum

11¢ DIM pi2S)

115 REM Set up pitch table

126 FOR n=1 TO 25

1384 READ pin}

144 NEXT n

108 DATA 6,44,64,4,3,5,7,%,564,11,12,14,464
156 DATA 44,13, 464,64, 64,2,6,10,464,1,54,8
178 60 SUB 500

173 EEM Note plaving loop

18 LET a%=IMKEY%: IF a%="" THEN GO TO (8o
199® BEEF .25,p(CODE a%-%&): GO 70O 180

200 STOR

499 REM

493 REM Display drawing subroutine

J6e LET b%=" "“"+CHR$ 133+CHR% 138

319 FOR r=1 TO 4

2@ PRINT AT 3+r,3;b%;

o3 FOR k=1 TO 7

549 IF k=2 OR k=6 THEN FRINT * "3z NEXT K
550 FPRINT b#:i: NEXT k

566 NEXT r

S70 PRINT AT 2.45"w e t v u D"s
58@ PRINT AT 13,31"a s d ¥ g h i k 1"
=299 FOR k=& T0O B

4992 PLOT 146+kx%24,306

619 DRAW 24,6

620 DRAW ©, 454

478 DRAW -24,0@

649 DRAW 6, -44

658 NEXT K

b6@ PRINT AT 17,1i"Flay now";

6479 RETURN

Fig. 10.18. The Spectrum as an instrument program.

192 Spectrum Graphics and Sound

For all other keys a value of 64 is used which produces a note too
high to be heard.

The simplest technique for setting up the notes is to produce an
array p with a value for each of the letter keys. In fact since we know
that Z will not be used there are only 25slots in the pdataarray, Into
cach slot is placed a pitch number. For those keys which are to be
used for notes the pitch of the note corresponding to the key is used.
For all other keys a value of 64 is used which produces a note too
high to be heard.

The key codes for the lower-case letters A to Y start with a value of
97 for A and increase as we work through the alphabet, In the BEEP
command the code for the key that has been pressed is found by
using CODE and then 96 is subtracted to give a number from 1 to 25
according to which letter key was pressed. This number selects the
item from the p array and therefore selects the required pitch value
for the BEEP command. A basic note length of 0.25 was chosen for
the BEEP command but this could be changed if desired to give a
different feel to the keyboard.

Figure 10.18 lists a program which turns the Spectrum into a
keyboard instrument. Before the program goes into the play mode a
diagram showing the key layout is drawn on the screen to help you
find your way around the keyboard. The screen display is as shown
in Fig. 10.19.

kLl

FlLad now

o

Frg. 10.19. Screen display for instrument program.

Making Sounds and Music 193

Other keys might also be used to provide functions such as
shifting the octave that is being played. To do this you would simply

add 12 to the pitch number to go up an octave or subtract 12to go
down an octave.

Index

all rcund view of abject, 171
animation of a ball, 138
animation of hires dot, 143
animation using symbols, 146

animation with shape changes, 149

ATTR function, 108
attribute decoding, 109

background colour, 18

bar charts, 116

bar chart three axis, 153

bar chart with solid bars, 157
bass stave, 185

bat control in games, 141
BEEP command, 180

BIN function, 82

BRIGHT command, 95
bouncing a ball of walls, 140

character code, 6, 16
character generator, 6
character set, 14

charts bar, 116, 120

CIRCLE command, 55

circle drawing, 55

circle by quadratic method, 58
circle by rotation method, 63
circle trigonometric method, 60
circular three axis plots, 164
CLS, 14

colour attributes, 106

colour data storage, 38

colour set, 16

computer aided design, 2
contrast INK colour, 16
crotchet, 187

custom design symbols, 10, 80

demisemiquaver, 187
dial type displays, 129

display memory, 7

dot copying, 86

dot matrix, 6

dotted notes, 189

dotted lines, 44

double height symbols, 91
double width symbols, 90
DRAW command, 39
drawing lines, 40
duration of sounds, 179

erasing using OVER1, 103
extended keyboard mode, 16
extra colours by mixing, 99

filling with colour, 97
FLASH command, 95

flat notes, 183

flying saucer animation, 145
frequency of sounds, 178

graph axes, 124

graphs, 123

graph plotting, 125
graphics cursor, 37

graphics keyboard mode, 15

high res. colour, 38

high resolution graphics, 10
high res. screen layout, 36
hit detection, 149

INK, 16

INT, 21

INVERSE command, 37, 102
inverse video, 102

italic symbols, 92

joining points on a graph, 127

kaleidoscope pattern, 49
keyboard graphics mode, 15
keyboard piano, 183

large text symbols, 91
legends on graphs and charts, 123
low resolution lines, 24

making new symbols, 80
middle C, 185

minim, 187

mirror image patterns, 48
mixing colours using lines, 99
mixing colours using dots, 100
mixing text and graphics, 38
moiré patterns, 43

mosaic block values, 22
mosaic graphics, 7

mosaic symbol patterns, 16
moving & ball, 138

moving alien, 149

moving pointer display, 131
multiple bar charts, 120
music, 182

musical scale, 183

notes dotted, 189
notes in music, 183
notes sharp, 183, 186
note length, 187

OVER command, 103

PAPER colour, 18
PAUSE, 189

perspective views, 165

PI, 63

piano keyboard, 183

pie charts, 133

pitch of sounds, 178

pitch range for BEEP, 181
pixel, 11

playing the Spectrum, 190
PLOT command, 36
plotting mosaic dots, 22
POINT command, 84, 149
polygon drawing, 67
PRINT AT, 20

quaver, 187
read only memory, 6

rectangle drawing, 49
reflection from a bat, 141

Index

relative co-ordinates, 30
rests musical, 188

ribbon patterns, 41

RND, 21

rotation equations, 74
rotation method, 65
rotation of figures, 74
rotation of text symbols, 87

scale drawing, 111
scaling, 71

scicntific graphs, 123
screen edge clipping, 53
SCREENS, 23
semihreve, 187
semiquaver, 187

siren sounds, 181
sketching program, 28, 104
smoother animation, 146
sound waves, 177

squash game, 142
stretching, 70

temperature charts, 116, 120
tempo, 190

text display, 5

text on hi res screen, 835

texi screen format, 21

text symbol set, 14
thermometer type display, 110
three axis bar chart, 153
transparent INK colour, 16
treble stave, 185

triangle drawing, 46

tune playing, 186

user defined characters, 79

video display, 4, 6
viewing in perspective, 163
volume of sounds, 178

wallpaper pattern, 17, 19
wire frame models, 170

X axis, 123
X scale markings, 124
X - Y plane, 155

Y axis, 123
Y scale markings, 124

Zaxis, 152

195

LIGHT UP YOUR SPECTRUM!

This book shows you how to make the most of the
Spectrum’s graphics and sound capabilities, and you will
be amazed by what you can achieve.

This book guides you through the basic principles of
graphics on computers, and then covers the techniques of
drawing, producing graphs and using colour. Later
chapters deal with animation, including the techniques
required for writing games programs and also three-
dimensional displays. You are shown how to produce
sound effects and music, and exploit the Spectrum's
creative potential.

Many short, easily handled program listings are provided
as well as several complete listings for you to try out and
enjoy.

The Author
Steve Money is a well-known author of several books
including Microprocessor Data Book published by Granada.

Other books on the Spectrum from Granada

THE ZX SPECTRUM Learning is Fun!
and how to get the most from it 40 EDUCATIONAL GAMES
lan Sinclair FOR THE SPECTRUM
0246120185 Vince Apps
THE SPECTRUM PROGRAMMER 02412
SM Gee AN EXPERT GUIDE TO
0246120258 THE SPECTRUM
THE SPECTRUM BOOK OF GAMES Mike James
Mike James, S M Gee and L
Kay Ewbank
0246 12047 9 ?
INTRODUCING SPECTRUM
- MACHINE CODE

lan Sinclair
0246120827

SPECTRUM
GRAPHICS
AND SOUND

|
_t
| :

y

LIGHT UP YOUR SPECTRUM!

This book shows you how to make the most of the
Spectrum’s graphics and sound capabilities, and you will
be amazed by what you can achieve.

SPEC
GRAPHICS

This book guides you through the basic principles of
graphics on computers, and then covers the techniques of
drawing, producing graphs and using colour. Later
chapters deal with animation, including the techniques
required for writing games programs and also three-
dimensional displays. You are shown how to produce
sound effects and music, and exploit the Spectrum’s
creative potential.

Many short, easily handled program listings are provided
as well as several complete listings for you to try out and
enjoy.

The Author
Steve Money is a well-known author of several books
including Microprocessor Data Book published by Granada.

Other books on the Spectrum from Granada

ANNOS ANV SOIHAVIO WNALDAdS A O

THE ZX SPECTRUM Learning is Fun!
and how to get the most from it 40 EDUCATIONAL GAMES
lan Sinclair FOR THE SPECTRUM
0246120185 vjnce Apps
THE SPECTRUM PROGRAMMER Q2e1ZR]
SM Gee AN EXPERT GUIDE TO \
2401 20258 THE SPECTRUM
THE SPECTRUM BOOK OF GAMES Mike James
Mike James, S M Gee and L
Kay Ewbank
024612047 9
INTRODUCING SPECTRUM -
MACHINE CODE ‘ - - ; ‘
lan Sinclair i WA S s
e | —---
g \ ‘ !
2 (
RANAD A STEVE MONEY
GRANADA PUBLISHING G :)
| ‘

Spectrum Graphics and Sound

Other Granada hooks for ZX Spectrum users

THE ZX SPECTRUM

And How To Get The Most From It
Ian Sinclair

0246 12018 5

THE SPECTRUM PROGRAMMER
S. M. Gee
0246 12025 8

THE SPECTRUM BOOK OF GAMES
M. James, S. M. Gee and K. Ewbank
0 246 12047 9

INTRODUCING SPECTRUM MACHINE CODE
lan Sinclair
0 246 12082 7

Spectrum Graphics
and Sound

Steve Money

GRANADA
Londen Toronto Sydney New York

Granada Technical Books
Granada Publishing Lid
8 Grafton Street, London WIX 3LA

First published in Great Britain by
Granada Publishing 1984

Copyright © 1984 Steve Money

British Library Cataloguing in Publication Data
Money, Steve A,
Spectrum graphics and sound.
I. Computer graphics 2. Sinclair ZX
Spectrum (Computer)
LTitle
001.64'43 T385

ISBN(-246 12192 0

Typeset by V & M Graphics Lid, Avlesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or
transmitted, in any lorm, or by any means, clectronic,
mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

Contents

Preface

(o S v+ B N o S O - E I

10

Introducing Graphics

Low Resolution Graphics
High Resolution Graphics
Drawing Techniques

New Characters and Shapes
More About Colour

(Graphs and Charts

The World in Motion

Adding Depth and Perspective
Making Sounds and Music

Index

Vil

13
35
55
79
96
110
137
152
177
194

Preface

One of the most popular home computers with a colour display
capability is the Spectrum. With its high resolution graphics
capability the Spectrum allows quite good drawings to be produced
on the display screen. This can be very useful for displaying graphs
and charts and of course is an essential ingredient of the many games
programs that have been written for the Spectrum. In this book we
shall explore the techniques of producing drawings and charts on
the screen.

The first chapter explains in simple terms how the display on the
screen is created and looks at some of the novel features used in the
Spectrum.

In Chapter Two we move on to explore the possibilities for using
the mosaic graphics symbols which are included in the standard
symbol set of the Spectrum. The symbols are printed on to the screen
in the same way as text characters. The Spectrum, unlike some other
computers, does not provide plotting or drawing commands for use
with the mosaic graphics but in Chapter Two we shall explore ways
of handling the mosaic symbols to draw lines and even to provide a
simple sketchpad program.

Perhaps the most attractive feature of the Spectrum is its high
resolution colour graphics capability, In Chapters Three and Four
we explore the techniques involved in drawing various Kinds of
figure such as the polygon and circle. Unfortunately the method
used by the Spectrum for storing its colour information imposes
some limitations on the use of colour in the high resolution mode but
nevertheless very good results can be obtained with a little care.

The Spectrum does provide facilities for producing custom
designed symbols and some of the possibilities of this feature are
examined in Chapter Five. Tt 1s quite easy to produce very large
versions of the symbols on the screen if desired and programs are
given which permit this to be done.

vili Preface

It is possible to produce rather more shades of colour than the
eight basic colours provided by the INK and PAPER commands of
the Spectrum and in Chapter Six the techniques for doing this are
explored.

One of the more practical applications of the Spectrum is to
display graphs and charts of various kinds and some of the
techniques involved in drawing graphs, bar charts and pie charts are
shown in Chapter Seven.

For games, of course, movement is an important ingredient and in
Chapter Eight we explore the basic principles and techniques that
can be used to animate objects on the display screen, Unfortunately
the BASIC language of the Spectrum is relatively slow and for really
high speed action it is generally necessary to resort to writing
programs directly in machine code which is a topic beyond the scope
of this book.

It is possible to produce pseudo three-dimensional images on the
Spectrum display. This can be done by drawing three axis charts and
graphs or by using perspective techniques to provide more realistic
views of scenes or objects. A program is included which permits an
object to be viewed from any angle.

Finally we come to the generation of sound and music. In this
respect the Spectrum is rather limited since it has only one simple
BEEP command for producing sound. Nevertheless the Spectrum
can be made to play tunes and can also be converted into a simple
musical instrument as we shll see in Chapter Ten.

The aim of this book has been to explain some of the techniques
for using the graphics and sound facilities of the Spectrum. Much of
the fun of playing with computers however comes from exploring
new ldeas and 1t 1s hoped that this book will at least provide a guide
to allow you to explore the possibilities of the Spectrum computer,

Steve Money

Chapter One
Introducing Graphics

An attractive feature of almost all of the modern personal or home
computers is their ability to produce colourful graphics displays.
This facility permits the computer to be programmed so that it will
present drawings, pictures, graphs, charts and animated displays on
the TV screen.

All of the popular home computer systems can produce graphics
of some sort and most of them have the added attraction of colour.
The quality of the displays that are produced depends upon what is
known as the graphics resolution, which is a measure of how fine the
details can be in a displayed picture. Resolution is measured as the
number of points across and down the screen which can be
individually controlled. Thus a resolution of 256 X 176 means there
are 256 points across the screen and 176 points down the screen, each
of which can be set or reset. In general the higher the resolution, the
better the displayed picture on the screen.

One problem with high resolution graphics displays is that they
tend to require large amounts of memory. When the display is in
colour even more memory is needed to store information about the
colour of the individual dots on the screen. To save memory some
computers limit the number of colours that can be displayed at a
time. In the Spectrum a display technique is used which does, with
some limitations, allow the use of eight different colours
simultancously without tying up too much of the available memory.

One of the more popular uses for home computers is to emulate
the video games normally found in an amusement arcade. Typical of
these games are Invaders, Asteroids, Defender and Pacman. The
popular arcade games rely heavily on graphics displays with brilliant
colours and fast moving action on the screen. Actual arcade games
use microprocessors similar to those used in home computers. In
fact the games machines are often quite powerful computers in their

