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Then at the balance let's be mute, DEDICATION
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INTRODUCTION

The aim of this book is to provide a coherent and digestible
introduction to Machine Code programming — deemed
necessary on the basis that the author wished there had been
one available when he first started to struggle with this
somewhat mysterious topic. It was only later that he realised
that there really is no mystery.

Every effort has been made to avoid falling into the trap of either
assuming “pre-knowledge’”” on the part of the reader, or,
indeed, of presuming him to be an ignorant fool! It has
therefore been necessary to approach the subject from the
point of view of the “learner”, attempting always to anticipate
the problems that he or she might encounter. If you find the
result too easy — this book is probably not for you. If you find it
too difficult — | apologise, but must presume you to be beyond
help (try becoming a Member of Parliament instead).
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Computers Don’t Speak
No English!




Chapter 1
WHY MACHINE CODE?

The answer to this question is, quite simply — ““Machine Code
is the computer's own language”. To that extent therefore, "It
makes better sense to the computer'’. | could offer you a much
more complex and technically correct definition of Machine
Code, and doubtless leave you somewhat less well-informed
than when you started. However, this book represents an
attempt to remove the mystery and confusion that surrounds
the business of communicating with computers and in
particular, with your Spectrum. Therefore, every effort has
been made to present information and explanations in the
simplest way possible. If, by the time you have worked your
way through the whole of the book, you come to have a firm
grasp of the essentials of Machine Code and are confident
enough to be able to use it, then the effort will have been worth
while.

The best that computers can manage is to add ‘one and one’
and reliably arrive at “TWQ'’ as the correct answer. That is
neither particularly clever, norawesome. Nonetheless, they do
seem to have an infinite capacity for intimidating human
beings, so that it is possible to be easily convinced that
computers are too complicated, too quick, too clever, or just
too frightening to get to grips with. Despite any appearances to
the contrary, your Spectrum is nothing more than a
combination of electronic components which, collectively,
produce a capacity to process the information that it's given,
according to the instructions that it’s given. Albeit that the
end-resultis a sophisticated piece of equipment, itisa tool to be
used, but a tool that has no mind or will of its own. It can only
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deal with what itis given, and can only do what it does because
‘vou’ tell it what it is to do. It does carry out its task most
efficiently and reliably and can therefore handle lengthy
complicated calculations in a fraction of the time taken by the
human brain. However, as already said, its real claim to fame is
its ability consistently to get the right answer when asked to
‘add one and one'.

Why go to all the trouble to understand the nature of machine
code and then spend time trying to learn how to use it? Do you
notalready have a perfectly adequate 'language’ with which to
communicate with your Spectrum — BASIC? Certainly,
BASIC is a language with which you will by now have become
familiar, and it is a language which at least appears reasonably
intelligible. In fact, that is precisely what it is — a computer
language that is written for humans. Its purpose is to allow us
all to ‘talk’ to our ZX80/ZX81/Spectrum in a compact and
orderly fashion, wusing a language-form which is
understandable to us, and can also be ‘interpreted’ by the
computer. Yes, ‘interpreted’. Within the computer's memory
there is a complete BASIC to Machine Code dictionary. The
computer therefore relies on this totally to interpret and so
understand anything that is fed into it in BASIC, before it can
carry out the instructions given.

If, therefore, the aim is to achieve easier understanding of and a
quicker response from your Spectrum, being able to ‘speak its
language’ starts to become more important. It is easy to
envisage just how difficult it would be to communicate if, when
travelling abroad in a foreign country, you met up with
someone who spoke only their own ‘foreign’ language, and
you knew nothing of it whatsoever. Without resorting to some
rather clever sign-language it would be virtually impossible to
make much progress, and in fact, the sign-language would
only be a joint attempt to find a common simple language that
each could understand. If the services of an interpreter could
be enlisted then the process would start to become a little
easier. However, everything passing between you would have
to be interpreted and then re-interpreted, and so the
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‘conversation’ would inevitably be rather limited, and very

slow.

i is the situation in the Spectrum — it has an ip-bqnlt
;E\':;sr;r::t?ar'.sWhatever isentered in BASIC‘is interpreted mtto utsl
own language, and vice versa, and there is th_erefore'a na ure‘lj
limit to the extent to which you can cor_nm}mlcate with lt,] an
also the speed at which that communication can tal_ce p ra]t:e.
When programs are written in BASIC, _befure operating t ecr;'\
the Spectrum must first store z.and then lqterpret al] c_omn;ants
and data. The ‘interpretation’ into Machu_ne Code is in or erho
allow the Z80 micro-processor to function — _this belr}g ttal e
ONLY language that it is capable of understyandmg. Inewtql_ .,
this process of searching the computer’s storage fa?]l ity,
bringing out instructions and data. and then execu'tmg t emé
takes times. If, in addition, everything must algo be interprete
from BASIC to Machine Code before any of this can even start,
then the time taken is that much greater. There are times when
this can be an important consilderauon, particularly for

instance, where control of graphics or speed of program
reaction are involved.

As when travelling abroad, if ultimately you wish to be ablle to
communicate speedily, easily and accurately, then thereis no
substitute for learning the language ofthg countryin Whl?h you
are travelling. You have chosen to travel in the computer’s o_v;r_?
territory, and you must therefore learn its language. It might
seem unreasonable, but take it f_rom me that YOLIlI’ Spectrum is
not going to learn yours — not just yet anyhow!

0Of course learning a new ‘foreign’ language is no} necessarily
all that easy. Fortunately, computer language is extrgrn_elv
simple, though how the computer then_goes on fo use itisa
different story, but one which we _wnl!lbe going tf"nroug_h
together. The computer is good at adding one and one’ andin
that this is really all that it can do, it spenc_:is its whole existence
dealing in ‘noughts’ and ‘ones’. It [s possibly useful to me'annor]:
at this stage that, throughout this book, the convention ?d
signifying zero by @ will be adhered to in order to avoi
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confusion with the letter ‘O’. To understand why the computer
should only deal in noughts and ones, and how this simplistic
basis can enable it to perform the most complex of tasks, it is
necessary to have some understanding of the way in which the
computer is put together, and how it then manages to work,
Before doing so, let us just take a look at the speed at which it
can respond to instructions given in Machine Code, rather than
BASIC.

Type in this program:

S an:en—rr 1: PAPER 4: BORDER &
NK CLS

I
ie pn:m‘ AT q -

B " g o

-:.5 PRINT :pF

22 PRINT Q‘;" 13,

. INT AT @, "'Now storing i

3@ FOR x=0@ TO 71
4@ POKE E*EBB+¥J PEEK (IS384 4+

S@ NEXT

EG PRINT AT @,@; “Transrfer comp
D PAUSE Se
8@ CLS

3C?9 PRINT "Now transfering it &

1@ FOR x=@ TO 7i67
11ad POKE (16384+%) ,PEEK (255284

x}

B NEXT x
132 PRINT “END OF PROGRAH"
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Now StO0ring image

Slow isn’tit? Now type in the equivalent Machine Code version
of the program as set out below, and see how it compares.

Delete Lines 30, 40, 50, 70, 100, 110, 120, add these:

%gg ?Egpa-aq5@1 TO 25%524: READ
a2 - i6
P ns=(CODE a%(1) -48) %
Ség &ETBS=$9le THEN LET ans=an
-7 %16
523; LET L-CODE agid)-48: IF L9
ET =1 =

ggg?L%T ans:an£+1; FOKE a-.ans
258 e

260

= S R - - R - N
,302_DATA leJ.éB“,nlcu Nendilga?
;'e9 %

31@ DATA "21","2@". bia 11‘ §
anfu¢au'u@1uanéau)n CH'HED 5@
R -1-10

3@ >RANDOMIZE USR =255@1
1@ RANDOMIZE USBR 2T5173
50 PRUSE 10©

SRu]
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Now add this Line:

le@a CLS : PAUSE 30: RANDOMIZE U
SR 25513: PARAUSE 3@: GO TO i1eeoe

...and execute.

RUN 1900

Now are you convinced?

To return to the manner in which the computer operates.
Essentially, it performs calculations arithmetically, using a
binary system of arithmetic and a memory in which it stores
information. Your Spectrum, as a digital computer, recognises
only TWO states; it is able to recognise either the
presence or the absence of an electrical impulse. It operates
therefore on the basis of being either ‘on’ or ‘off’’, and hence
the term ’binary system’ and the computer’s ‘bi-stable’ nature.
Given this importance piece of information, we can take the
next step of representing these two states by the use of
‘noughts’ and ‘ones’. Itis a logical progression to represent ‘no
electrical signal’ as ‘0, and ‘some electrical signal’ as ‘1’. The
computer’s two stable states can therefore be represented as:

1. Is there a signal? Yes — represent as '1’
2. Is there a signal? No — represent as ‘0’

The easiest comparison to make is that of the ordinary switch,
which can be in either the ‘ON’ or the ‘OFF’ position. When the
switch is on, electrical current is able to flow — when it is off,
no current can flow. It might sound as though we have now
diminished the computer from something that can at least
count up to two, and left it as something more akin to a simple
household light switch. To an extent this might indeed be true,
but clearly would dramatically under-sell the poor old
computer. In fact, your Spectrum — or rather its Z80
micro-processor — has the capacity to string together a series
of such ON/OFF decisions and so produce a large number of
discretely different combinations, each of which has its own
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particular significance. To understand that more fully take, for
instance, just two such simple ON/OFF 'swnche_s‘ and
combine them. This then allows for four discretely different
states:

T, ON-and ONl . <o cx e becomes 11
2. ONand OFF: s .v. ¢z becomes 10
3. OFFandON ......... becomes 01
4. OFFandOFF......... becomes 00

Combining three such ‘switches’, which are still simply
representative of the ON/OFF states recognised by the
computer, allows for eight different specific states:

1. OFFand OFFand OFF......... 000
2. OFFand OFFandON ......... 001
3. OFFandON andON ......... 011
4. OFFandON and OFF......... 010
5. ON andON andON ......... 111
6. ON and ON and OFF......... 110
7. ON and OFFand OFF......... 100
8. ON and OFFand ON ......... 101

What should by now be starting to become apparent is the
simple rule of ‘combinations’. If we take two specific states
they can be combined in amaximum of 2 x 2 (i.e. four) different
ways. Take three as the starting point and a maximum of
2 x 2 %2 (i.e. eight) discretely different combinations become
possible. Now, just as we are able to string letters of the
alphabet together, and so make specific ‘combinations’ which
we recognise as words, each with its own particular meaning,
so can the computer string together combinations of the two
digits ‘0" and ‘1" — and so produce specifically identifiable
‘words’. Your Spectrum can handle ‘words’ made up of eight
digits, and using the rule of combinations it can be seen that
this provides for a ‘vocabulary’ of 256 possible different ‘words’
— 2x2x2x2%x2x%x2x2x%2, or 'two to the power eight’. In
stringing the two digits together in this fashion, ‘words’ are
created which the computer is capable of understanding —
each ‘word’ being known as a ‘binary number’. The name given
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to such a binary number is a BYTE — the digits of which it is
made are referred to as BITS.

[Tore T on [ ore [ orr [ on T orr T on T orr |

. RINE: [N NS T Y N G O Y S N |
B A
Bits
BYTE

In this introductory chapter an attempt has been made to help
you, the reader, to at least start to come to terms with both the
simplicity and sophistication of your computer. Machine Code
is the language that it uses, and therefore understands, and
you have come to see that this can then be reduced to strings of
@'s and 1's. The next chapter will focus on how the various
components are organised in the computer as a basis, at least
in outline, for understanding something of what it uses in order
to function, and so how the ‘binary arithmetic’ is put to such
effective use. The next task will then be to look at how
instructions are ‘packaged’ before being given to the computer
in words that it can understand, and we can handle. Whilst it
will be necessary to deal with the issue of how ‘we’ interpret a
binary number for ourselves, you need not resign yourself to
the dreadful prospect of having to read unending sequences of
@’'s and 1's, or of having to feed your computer with such a
diet.

22

If Manners Maketh Man,
Numbers Make The
Computer......
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Chapter 2
WORDS AS NUMBERS

| MEMORY i LCPU | | Input/Output
LINK

[1]
Keyboard
Screen

Above is a simple diagrammatic representation of how the
Spectrum is organised. Reference has already been made to the
Z80 micro-processor, and its function to SEARCH, LOCATE,
and EXECUTE. This, the Central Processing Unit (CPU), as its
name implies, is the central component of the computer. Itisin
two-way communication with the other two components —
the LINK and the MEMORY.

The Link: allows the CPU to output the results of its labours to
other devices — such as a television/VDU screen — in order to
display visually those results. Alternatively, it can allow them to
be placed in permanent storage on an audio cassette in a tape
recorder, or a more refined storage medium e.g. in disc form.
The Link is also capable of permitting information to be inserted
(INPUT) from outside the computer — from the keyboard for
instance, or from an external store. For example it can use this
to link into and operate circuits containing sensors, and so
allow it to do anything from controlling productionin a factory,
to interrupting your game of Space Invaders in order to let you
know that your dinner has just burned!!! Hence it is known as
the computer’s INPUT/QUTPUT facility.
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The other component is the MEMORY. This does exactly as
you might expect — information and data is stored, and can be
recalled. Because it reliably remembers whatever is putin, itis
to the Memory therefore that the CPU turns when needing to
find out what is expected of it. There are essentially two types
of Memory — RAM and ROM.

RAM is short for Random Access Memaory, which means that
whether you wish to read or write to the first or last part of
memory, it takes precisely the same amount of time. This is in
direct contrast to other storage devices, such as a cassette tape
or record disc where, in order to find the last piece of
information itis necessary first to read through all the preceding
information. Similarly, with an audio tape, itis possible to write
into (put into memory) RAM, as well as to read out.

In contrast, ROM stands for Read Only Memory. As you might
expect, this indicates that it is only possible to read what is
contained in that part of the Memory, without the facility of
changing it in any way. This is similar to the way in which it is
possible to read (play) the information (music) that is stored on
arecord disc, whilst being unable to do anything about adding
fresh information (except by an act of sheer vandalism!!). You
might try of course, but, just as if you were to press the ‘record’
button of a tape recorder without there being a tape inserted,
the cogs would go round, but nothing would happen. For the
purpose of clarification it does need to be said that ROM is also
random access memory in precisely the same way as RAM —
the real difference is that ROM is more accurately described as
Random Access Read Only Memory.

So far | have done my best to avoid the more traditional
‘numbers approach’ to computers and computing, because |
remain hopeful of retaining your interest. Nonetheless,
numbers do have their rightful place in the scheme of things
and so cannot be ignored. Focussing now on how numbers are
stored, and used, will provide the essential basis for
understanding how to use and communicate with your
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Spectrum as an integrated whole not just as an assortment of
separate components. Referring back to the analogy of
ON/OFF switches:

orf 1 on [ orr | orf | on [ off | on [ oFF |
O L B T R S A S T E L Y
\/
Bits
BYTE

It can be seen that hinary number 01001010 is a specific ‘binary
word’ that falls somewhere within the range of Spectrum'’s
vocabulary of 256 words. The extremes of that range are
represented by “All Off"” and “All On".

“ALL ON"
ARRRARAR!
(255)

“ALL OFF"
(Zero)

Range 0 to 255
(256 Binary ‘Words')

Why, though, should a string of eight noughts be “zero"”, and
eight ones be equivalent to the decimal number 2557 The
answer lies in the type of arithmetic used by the computer —
BINARY ARITHMETIC — which is perhaps best understood_by
first exploring the structure of the ‘decimal’ system with which
we are most familiar.

The Decimal System is based on ten digits (@ to 9), and can
therefore equally well be referred to as “Base Ten". It also
employs a system of ‘Positional Notation'. This allows the value
of any digit in a number to be calculated on the basis of its
position in relation to the Decimal Point. As a maﬂgr‘of
accuracy, positional or point notation relies upon a dlgu’s
position in relation to the Unit Point — it is not “the decimal
point” as such. In binary arithmetic for example, it becomes the
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Binary Point. The Unit Paint is that point which separates the
Integral part from the Fractional part of a number, Staying with
the decimal system for the moment, the value of a digit in a
number is the product of itself and the ‘power of 1@,
determined by its position in relation to the decimal point. The
digits in the number are arranged in ‘columns’, each column
having a value ten times that of the column immediately to its
right.

DECIMAL NUMBER

decimal
point

Integral Part ‘ ynat Part
\5354 + 0000

104 103 107 10" 1@°
B 3 .6 4

LD4x10°=4x1

= 4

6x10'=6x10 = 60
3x102=3x100 = 300
5% 132 =5 x 1000 = 5000
Sum. .. =53£

Each digit/column has a ‘power’ ten times greater than that of
the digit/column immediately to its right.

VALUE

Increases Decreases
by
power of ten
for each
‘position’
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The Binary System — is based on only two digits (dand 1), and
is therefore to BASE TWO. As for Decimal, a system of
positional notation is employed, though each digit in a binary
number now has a value which is to a ‘power of two’ greater
than that to its immediate right.

20289524 272 2 2N 0

Binary number...0 1 @Di } ? 1I Ili is equivalent to
il
O 0 S T Y L |
Ll ) =R =% = 0
ol oo e e o PV T 5 v 2
Dbl W2 @x22=px4 = D
1 N R S 1x23=1%8 = 8
: j e e ] Bx2*=0x16 = 0
) BT BT @x25=0x32 =0
b e Tx25=1x64:84.J
Decimal number. ............ .. ocu.n SUM sy e sirnsrarvre T4

It can now be seen that in the example used above 01001010 is
the binary equivalent of Decimal 74. Similarly, 00000000 = Zero
(Decimal), and 11111111 = 255 (Decimal).

Iz’l 2ﬂ| 2 2" 23|2z 2! 2°|
Binary. ... ...... EAER B RS R R EE R s is equivalent to—
\—}1 £ =1
1x2 = 2
1IrKd = 9§
1x8 = 8
1x16 = 16
1x32 = 32
Bl x64 = 64
L pi1x128 =128
PMCHTHL . o e YTk skt s S A AR s s Sum 255 <4




Whilst the computer uses the binary equivalent of the decimal
number on which to work, you were promised in the previous
chapter that it would not be necessary for you to remember and
use strings of @'s and 1's in order to be able to communicate
with your Spectrum. Sadly, neither can you just rely on the
familiar decimal numbers involved. However, whilst “Base 10"
is of little use, and ""base 2" is impractical, "Base 16" happens
to be uniquely convenient. Do not despair — it really is easier
than it sounds. Applying the principles already outlined, Base
16 — or HEXADECIMAL — employs sixteen digits. The first
ten in the sequence correspond to those in the decimal system
(@ to 9), the remaining six being represented by the first six
letters of the alphabet — A, B, C, D, E, F. The table below sets
out the Binary/Decimal/Hexadecimal relationships.

Binary Number Decimal Equivalent  Hexadecimal Equivalent
0000 [} 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 ) 7
1000 8 B
1001 L g
1010 10 A
1011 1 B
1100 12 c
110 13 D
1110 14 E
" 15 F

A full table of the Binary/Decimal/Hexadecimal equivalents
from @ to 255 can be found at Appendix A.

Let us take again the earlier example of 74 (Decimal), and its
equivalent of 01001010 (Binary) and note the convenient wayin
which it converts to Hexadecimal (frequently shortened to Hex
for convenience):
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Decimal......oovuiees 74
BB 41 v ess onmo y 01001010
At i e
4_-_J|||:L-__2
PR | W
Pemimad bamai
Decimal .. ........... ] i 13 vvvia. .. -Decimal
Hek. sosnsimnmliigvirs 4 R el D Hex
Hexadecimal . ............ \4;\/
Check:
1B3l162|16‘ 16°
HeX. oo giaial A .. is equivalent to
l—10><16"=10><1 =
4x18'= 4%xX18 =
0x162 = 0 x 256 =
0 x16°= D x 4096 =
31+ | R Y e e p o Sum. ..
Binary Number Decimal Equivalent  Hexadecimal Equivalent
01001010 74 4A

If we do the same for 255, as the highest number to be handled
by the CPU, the ease with which any8-bit binary number can be
represented by a 2 digit Hex number:
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Decimal. .. .. 255 ...is equivalent to
Binary. ., ... 11111111
1111 1

Decimal. . . . 'I‘S 1‘5 ... Decimal
ol T li: é .. Hex
Hexadecimal. , .. FF"‘/
Binary Number Decimal Equivalent Hexadecimal Equivalent

11111111 255 FF

This ‘grouping’ of binary digits into 4's, and then combining
their Hex equivalents, becomes even more important as the
most convenient method of representing ADDRESSES or
MEMORY LOCATIONS. Great stress has so far been placed on
the fact that 255 is the highest number that can be handled.
However, this restriction cannot be accepted, and shortly | will
demonstrate how your Spectrum’s CPU is able to utilise its
ability to handle 255 binary words IN COMBINATION with its
ability to add 1 and 1, and so arrive at 65536!!!! Dealing with a
range of numbers from @ to 65535 requires 16-bit binary
numbers, the highest of which willbe 1111111111111111 —
the binary equivalent of 656535 (check it out if in doubt). All the
numbers involved — whether in binary or decimal — are now
becoming unmanageably large. The particular value of
Hexadecimal will now become more apparent — not least
because it allows for any binary number to be rearranged into
groups of four digits, each group then to be represented by a
one-digit Hex number, and these then combined to give a four-
digit Hex equivalent of any 16-bit binary number:
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Decimal. .. . 65535 is equivalent to
Binary.... .. nmmmnmmnn
11‘1{ 1\1.11 11 :I\?H
Decimal. . .. 115 115 115 Ils
Hex..... * é l,: é
Hexadecimal. .. . .. \?.FF%

Binary Number Decimal Equivalent Hexadecimal Equivalent

mmmmInmnmnm 65535 FFFF

Every number in the range 0 to 65535 can now be reduced toa
Hex number of four digits in the range 0000 to FFFF.

As with all ‘numbering systems’, arithmetic calculations can be
performed in Binary Arithmetic and, of course, the computer is
reliably adept at doing just that. Everything is handled on the
basis of either Addition or Subtraction — your Spectrum even
manages to do its subtractions by ‘Addition’, but more of that
shortly. The advantage of course is that we at least do not have
to get over-concerned about Multiplication and Division
functions. In general terms, conventions (or rules) that apply in
decimal arithmetic apply equally well in binary arithmetic. Thus,
the highest number that can occur in any column is 1; that is,
one less than the total number of digits allowed for in the
system (two minus one). In decimal the highest digitis 10— 1 =
9. When performing additions between two binary numbers
the familiar rule of “’carry one to the next column’’ applies when
the sum of two digits is greater than 1. Reference to the table
below will clarify the basic “truths’:
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0+@ =10 - 4] 1
0+1 =1 s e
140 =1 (1] ') 1
141 =1@("nought, carry one")

1 1 10

An example of the addition of two binary numbers would
appear as follows:

21001010 (Decimal 74)

00111010 (Decimal 58)*

Ganry:: o ex LARRILES .
Sum...... 10000100 (Decimal 132}

Applying the same principles to Subtraction (except that this
time we borrow two, rather than carry one), is essentially a
reversal of the process of addition:

10000100 |Decimal 132)

- 00111010 {Decimal 58)"

Borrow...... 01111010 =
21001010 (Decimal 74)

This is in fact a rather more complex process than it need be,
and subtractions are best carried out using a method known as
“The Two's Complement” — this is what the computer does in
reality. In the above example the result of the subtraction can
more easily be achieved by ADDING the “two’s complement’’
of 00111010 (the Subtrahend) to 10000100 (the Minuend). To
determine the “two’s complement” of any binary number
simply change all the @'s to 1's, and all the 1's to @'s, then add 1
to the result:
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Subtrahend. . .. .. 00111010 (Decimal 58)

Twao's Complement...... 11000101 + 00000001
=11000110

Minuend... . ... 10000100 (Decimal 132)

Two's Complement. ... .. _J 1000110

Sum / 'IEG'IWIWG
“Sign Bit" -
Decimal 74

The eight least significant bits are the same as before (Decimal
74), though there is now one additional “Carry Bit" —
otherwise known as a Sign Bit. This can be disregarded in
terms of determining the numerical result, but is taken as the
indicator of whether the result of the calculation is positive or
negative. When the Carry Bit is 1 it signifies that the resultant
number is positive in value. Conversely, when the Carry Bitis @,
the result of the calculation has a negative value.
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Computers Do It In
Tower Blocks
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Chapter 3

ADDRESSES AND HOW
TO GET THERE

It is worthwhile summarising the ground covered so far. We
started from the very generalised position of describing
machine code as the computer’'s own language, and
considered the benefits that can come from learning that
language. Similarly, starting with a very generalised view of
how your Spectrum works, we have started to look in more
detail at how its various components link together and make
use of binary arithmetic in order to function. This has
necessitated coming to grips with another numbering system
— Hexadecimal — in order to learn how to be able to reduce
8-bit binary numbers to 2-bit Hex, or 16-bit binary numbers to
4-bit Hex numbers,

Having given particular weight to Spectrum’s limited
vocabularly of 256 ‘words’. | have given notice of its ability to
store information in over 65000 separate locations. This system
of "Addressing” will come in for considerable scrutiny during
the course of this chapter. In addition we will look in much more
detail at how Spectrum’s Memory is structured and organised,
and start the process of learning how to manipulate the
contents of that memory.

Our first task is to explore the structure and organisation of
Spectrum’s Memory by referring to the Memory Map (see over).

Each location in memory is a place where information can be
stored, and is commonly known as an ADDRESS. This
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terminology has not been arrived at by chance but is the
sensible use of a word and concept familiar to us all. Each
location is allocated a number in the range of @to 65535 — the
number thus becoming that location’s specific address. A
glance at the Memory Map above reveals that the first 16384
(or 16K) addresses are given over to ROM. This, as we now
know, is Read Only Memory, and is essentially a block of 16384
locations where information is stored at the time of the ROM-
Chip's manufacture. Itis therefore NOT amenable to change or
alteration by the user. In the 16K version of the Spectrum there
are, in addition, a further 16384 RAM locations. The 48K
version of this machine uses the maximum number of locations
that can be addresses by the Z80 CPU; therefore, in addition to
the 16K of ROM there is a further 48K of RAM (locations
32767 to 65535 — or, if expressed in Hex, 8000 to FFFF). The
combination of 16K ROM and 48K RAM gives a total of 64K of
memory — or 65536 bytes,

Before going further | had best lay to rest any concern or
confusion that remains in relation to this number “65535". By
now it must be clear that the Spectrum’s CPU can handle 256
different 8-bit bytes. Consider now, hypothetically, its memory
to be rather like an enormous tower-block of flats — 256
storeys high, with each floor consisting of 256 separate
dwellings. Each separate ‘flat’ could be allocated an address
based on the ‘floor' on which it is situated and its position on
that particular floor. Taking the floors as being numbered
sequentially @ to 255, and the dwellings (locations) similarly
numbered @ to 255 on each of the 256 floors, it becomes
possible to locate any particular dwelling by specifying its
‘floor’ and ‘door’ numbers. For example; Floor 10, Door 54.
The location of that address within the total 65536 dwellings
could then readily be determined as follows:

(Floor number x 256) + Door number.
(10 x 256) + b4 = 2614.

Similarly, the highest location would be (255 x 256) + 255 =
65535. This, in effect, is how your Spectrum sets about
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addressing its 65536 memory locations — though, perhaps
predictably for a Sinclair product — though really a function of
the Z80 — it insists on doing it “upside down"". It uses two
bytes of memory to handle an address; the first to store the
‘least significant’ part of the address (54 in the example above‘i,
and the second to store the ‘most significant’ part (10 in the
example given). The 16-bit address codes used by the Z80 CUP
are therefore two 8-bit bytes regarded as one long number; the
first eight bits of which constitute the Least Significant Byte,
and the last eight the Most Significant Byte — generally
referred to as the contractions “LSB" and “MSB".

This can be exemplified (and put to good use) by a simple
formula for determining how many bytes of memory have been
used to store a Basic program. Key in, or load any Basic
program then, find the bytes used as follows:

PRINT (PEEK 23653 + (PEEK 23654) * 256) — (PEEK
23635 + (PEEK 23636) * 256)

This simply identifies the address at which free memory starts
(STKEND) and subtracts the start address of the Basic
program. These addresses are found by PEEKing the System
Variables given above — each address being stored in two
bytes of memory, the LSB first. The first address is found
therefore by ‘looking into’ memory location 23653, extracting
its contents (one 8 bit-byte) and adding it to the contents of the
next memory location multiplied by 256. The second address is
found in a similar fashion.

In exploring addresses | have slipped in the word PEEK, which
is totally descriptive of the function. It allows us to peek (or
peep) into a memory location and see what is in there — rather
like looking in through the window of one of the 65536 flats in
our over-grown tower block. In that part of memory given over
to ROM this is all that we can do — LOOK but not TOUCH!
With the RAM component of memory however we can both
look and touch. The command for ‘touching’, or changing, is
“POKE", and this allows the user to change the contents of a
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memory location by POKEing in a new vz_alue. Try it! Asl} your
Spectrum to PRINT PEEK n, where “n"" is a H{\M location of
your choice. Once the contents of that location hfvg ‘been
identified (printed on the screen) POKE n,x — where_ n"is the
same location and “x" is a different value of your chmce, in the
range 0 to 255. Now PRINT PEEK n again and confirm that you
have successfully changed the contents of Ilhat memory
location. Lots of practice of PEEKing and POKEing will come
your way as we progress through the book!!

Maybe without fully realising it, we have arrived at th.e stage of
being nearly ready to start talking to the Spectrum in its own
language. We know how the ‘words’ are mac_ie up, where they
arestored, and how in principle, we get theminto the computer
— we poke ‘em in! What other basics do we need to knoyu?
Certainly we must be able to prepare the computer to receive
our instructions, and of course it will be necessary to ascertain
precisely which words can be understood and processed.
Strictly the Z80 microprocessor should be able to ur}t?erstanq
just 256 m/c instructions, but again, not _su_r;:_msmgly, it
manages to rather stretch things, and so, by judicious use of
supplementary “prefixes”, in excess of 60@ can bg recognised
and executed by the CPU. All are listed at Appendix B, Now for
a few basic principles.

Machine Code routines can always be called into action via a
BASIC program by use of the command “RAND USR". So, to
gain access to a machine code routine employ th_e U;er Sub-
Routine, specifying where in memory the routine is to _be
found. Forinstance, RAND USR 30000 would call in a machine
routine, the first byte of which was stored at memory IocaFion
30000 — the remainder of the routine being stored sequet}nallv
from “there on up’. How is the start location detmmingd inthe
first place? Well, we just make up our own mind and dictate to
the computer. Entering CLEAR 29999 (or any other
convenient location) has the effect of setting RAMTOP‘at that
address, and thus identifies it as the last location at w.hu:h any
part of a BASIC program can be inserted. The machine code
routine then starts at the next location — 30000. Using the
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NEW command clears out RAM only as far as RAMTOP, and
any machine code stored above RAMTOP is protected from
being either NEWed or over-written by the BASIC. Using the
command RUN will CLEAR the variables, but without
changing RAMTOP in any way. Therefore, using CLEAR witha
specified memory address is a means of moving RAMTOP ‘up’
so as to make more room for BASIC (by over-writing the User-
Defined Graphics), or ‘down’ to increase the area of RAM that
is protected from NEW.

Having decided where the machine code is to be stored, now
how is this achieved? As mentioned earlier, it must be stored
sequentially ‘cos that's how the Spectrum’s CPU goes about
its business. The FIND and EXECUTE process starts at the
address stipulated then works its way through each successive
location in memory — interpreting everything that is found as
an instruction and so sets about executing it. This process
continues until instructed to stop — or until it has a brain-
storm. An enjoyable program that demonstrates this
‘sequential’ manner of working is given below. Please do not
concern yourself about how it works — it relies wholly on the
fact that the Spectrum ROM has become delirious!!!!

S RESTORE
RE

i@

2@ LET a=1z2@
25 PLOT 55,27: DRAW 3,8.,n3PI
32 CLS

33 IF n=98238 THEMN GO TO ©

35 GG TO 1@

4@ STOP

S8 DATA 587,801,318,
%é613'78?'313 . 741,187,

1
=

That diversion over, let us now look at four options of
LOADing-in machine code:

1. POKE one byte at a time.
POKE X,Y

Where X is the start address and Y is the value to be entered.
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The second byte is POKEd at location X+ 1, the third at X+2
etc., etc.

2. FOR/NEXT Loop.

10 FORA=1T0X

20 INPUT Y

30 POKE A + start location, Y
40 NEXT A

3. Data READ.

10 FORA =1TOX

20 READN

30 POKE start location + AN

40 NEXT A

50 DATA N1,N2,N3,N4...
Where N1, N2, N3, N4...are the sequential bytes of the
machine code routine.

4. LOADiIng from tape.

CLEAR chosen location
LOAD “name’” CODE.

Options 2 and 3 offer two different bases for a Machine Code
Loader. Clearly, loading-in binary combinations is definitely
out, and our newly-acquired knowledge of Hexadecimal can be
put to good use. Hey Presto! — one HEX. LOADER:

1@ PRINT ¥**¥Machine Code
Loaderzs%"
Dgaeﬁﬁfﬂ’r g © vames Walsh

’e

39 INPUT °""“5tart Rddress5S7";ad
dr

¢B PRINT - °""Enter code one by
te at a time"

5@ FPRINT “when prompted. In UF
PER _CASE only” 2

&® PRINT address:”™ = "]

7@ INPUT a%

8@ IF as="END" THEN GO TO 10008

85 IF LEN a!t)E THEN GO TO 70

9@ LET hi=COD as(l) -486

128 IF _hi2>9 THEN LET hi=hi-7

11@ LET ans=16#%hi
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Some Registers Aren’t
For Cash
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Chapter 4

WORKING ON THE
REGISTERS

Having read the previous chapters, you should have a
reasonable idea of the range of numbers which the computer
can understand, the way in which we can use these numbers,
and the way in which the computer uses them to make it
possible for us to manipulate the memory of the computer; as
if it were a long row of empty boxes — all of which have
particular numbers so that we can gain access to those boxes
without having to look through each one — and then
add to and subtract from them at a later date. What we
shall be doing in this chapter is looking at the way in which the
computer handles these numbers when they are out of their
boxes, and how we can manipulate them. We shall look at the
way in which the computer holds these numbers, the way in
which the computer holds the commands in machine code,
and we shall also look at some of the simple machine code
instructions for this purpose. We shall then start exploring
how we can use these instructions in our own programs. You
will then be left with a problem to solve using a machine code
program.

REGISTERS

It is all well and good being able to put numbers in boxes and
take them out again, but really it is not much use unless it is
then possible to do rather more than just that. When you are
writing a BASIC program you use a variable. For example, if
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you want a number to be stored as variable A you would
simply LET A= the number. You would then be able to do
whatever you wished with that variable A. You could add it to
another number, double it or subtract it, and when finished
you would be able to clear that variable back to nought simply
by typing LET A=0.

Unfortunately there are no variables in machine code. Instead
we have what are known as REGISTERS. There are seven
single-byte registers which can easily be used and
manipulated. There are others, but these are mainly used by
the computer. We can indeed utilise them, but with a little
more difficulty and for this reason we shall leave these registers
until later. For the vast majority of the time you will spend
machine code programming, the only registers used will be the
“easy”’ seven. Each register has a letter of identification: A, B,
C, D, E, H, L. There is no real reason why these seven letters
were chosen, so thereis no point in worrying yourself by trying
to make particular sense of the convention. As you now know,
the computer, when handling a single byte, can only deal with
a number of @ to 255. Because each of these registers is a
SINGLEBYTE REGISTER, 255 is the maximum number which
can be stored in any one register. You have doubtless already
noted that this is really too low a number to be of practical
value — how often do you yourself actually manage to write a
program in which you have no numbers above 2557 To remedy
this, what the computer does is to group two single-byte
registers together to make what is known as a REGISTER
PAIR. If two registers are combined together in this manner,
into one register pair, the maximum number which together
they can handle is 256 multiplied by 256, minus 1, which
makes a grand total of 65535. In computer terminology this
range of @ to 65535 is represented as 64K. The reason that we
have to minus 1 at the end is purely because the range is in fact
nought to 656535 which means that you have to add an extra 1
byte to record the number zero.

Registers cannot be combined together in any random
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combination. The fixed combinations are: BC, DE, HL, as seen
in the diagram below.

H 1 L

|
=
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W

=
i

o
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If you now have a quick glance at the list of machine code
commands and their hex codes at the back of the book, you
will notice under the heading ‘"MNEMONICS’ that there are a
large number of commands which deal directly with these
registers. You will come to realise that fully understanding the
registers, and their function, will be of more use to you than
anything else in machine code programming. Another facility
of the Z80 CPU that again will prove to be invaluable, is its
ability to use the registers as single-byte registers, i.e., with a
range of @ to 255 alone, or @ to 65535 in cominbination. This is
at the core of the computer’s versatility.

Shortly we shall look at how to load numbers into these
registers, and how to add to and subtract from them. Later we
shall also be looking at the ways in which more complicated
manipulations of these and other registers can be achieved.
Whilst other registers are of less use to us, and some are
essentially reserved for the computer’s own purpose, there will
be times when accessing these registers from our programs
will be of considerable advantage.

Probably the simplest way in which to grapple with the
concept of ‘registers’ is to think of the computer as a person
who is wearing a coat. This coat has seven pockets, each of
which has its own discrete label. The computer can quite easily
take items out of these pockets, and put other items into them.
To do this it is necessary to ‘command’ the computer because
it has no capacity for thinking on its own, and so it must be
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instructed most precisely. The computer can only understand
commands which are given to it in the form of numbers, or
codes. The language, in which commands are solely in
numbers, is known as MACHINE LANGUAGE. This is, in
itself, the basis of machine code. Unfortunately, whilst it is
reasonably easy to put commands into the memory of the
computer in the form of numbers — using the computers
'POKE’ facility — trying to remember the code for a particular
command is not particularly easy for mere mortals, Do not
despair just yet though, because, this having long been a
problem for others also, a solution is readily available. The
answer to our problem comes in the form of 'ASSEMBLY
LANGUAGE'. Assembly Language consists of a set of
instructions which represent exactly what the codes in
machine language mean, but instead they are more easily
understandable to us. For example, an instruction in machine
language may look like this, 01101011, whilst the assembly
language equivalent might be, LD A, 1.

Whilst this may not seem to be of major significance just at this
point, what ought to be immediately apparent is that our
normal facility for making sense of ‘groupings’ of letters and
digits, which we use all the time, allows us to cope rather more
easily with the Assembly Language version than the string of
binary digits. This certainly becomes more apparent when
trying to commit any number of these to memory (yours, not
the computer's!). These ‘humanised’ representations of
binary commands are conveniently referred to as
‘MNEMONICS'.

Unfortunately, we are not able to type the mnemonics straight
into the computer — simply because the computer itself does
not understand our mnemonics — instead we have to convert
them into a form that can be understood by the poor old
computer. This means, one way or another, converting back
into binary. There are two basic methods of doing this. The
time-consuming, but perfectly effective way of doing this is
simply to use the conversion tables at the end of the book. An

52

easier, and therefore speedier method, is to use a ready-made
ASSEMBLER program.

As we proceed through the book | will of course be introduqing
each of the relevant commands, together with its mnemonic. |
will be explaining its meaning and its use, and when yvorklng
through the given examples you will be effectl_ng .the
conversions from ‘mnemonic’ to ‘code’, and then loading into
the computer using the ‘loader’ provided. You would
doubtless find an Assembler of considerable assistance,
though you do not necessarily have to dash right out and buy
one. Should you decide that you want to cut out some of the
[abour, and in any event have an Assembler available when |
deal with them in more detail later in the book, then you can
look up the supplier of the Assembler | will be using at the back
of the book. It might not be a bad idea at least to get your order
placed.

It is important to remember that assembly language is not an
adaptation of machine code — as is Basic. In assem!oly
language there is only one mnemonic for ea_ch machine
language instruction, and, vice versa, there is only one
machine code instruction for each mnemonic in assen:nb-ly
language. We can therefore say that assembly language is, in
effect, equivalent to machine language. Nearly all the
mnemonics are abbreviations for the operations which‘a
particular machine language command controls. [t is,
therefore, nearly always a simple matter to convert this
abbreviation back into an instruction. For example: INC HL is
an abbreviation for increment HL. Similarly, LD A,0 is an
abbreviation for, ‘load A with @'. The equivalent machine
language command for these instructions are 23 and 62,0
respectively.

Different people elect to list their programs in different ways,
i.e. in machine language or in assembly language. It is much
easier to understand a program if it is in assembly language,
but an assembler for your Spectrum is reasonably expensive in
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the region of £5 to £9. However if you compare this
expenditure to the amount of time and energy which you will
save typing in, plus the amount which you will learn by actually
being able to understand what is written, the assembler is
indeed a very useful aid. If you elect not to use an assembler, or
do not have one for any reason, then it is still easy enough to
load in programs into your machine via a ‘hex loader’. To make
this possible, with all the programs which have been used in
this book | have listed them in assembly language and machine
language, so that whichever way you decide to enter the
program, it is still possible for you to lock at the assembly
language version and work out what it is doing.

Remember that, because machine code is based around the
CPU itself, which in this case is the Z80, if you can write
machine code for the Spectrum, it will not take you much
effort to be able to write machine code on the ZX81, the ZX80
or the Lynx — or indeed any other computer which uses the
Z80 CPU. This will be particularly important to bear in mind
when deciding which computer to buy if you progress from the
Spectrum — or if you decide to add to your stable of micros!
For example, should you decide to buy a BBC, or a
Commodore VIC20 machine, then you would have to learn
again quite a lot of the machine code so as to be able to use it
on those computers, but on the ZX81 or the Lynx there would
be little to understand before being able to write equally good
machine code programs on these computers. This is not the
only consideration when deciding whether or not to get
involved with a new computer, but could be a factor usefully
borne in mind.

OK, now for a break. Here is an interesting program that acts
as a simple example of what machine code actually is. Please
take note of the two sections of this program — the assembly
language listing and the machine language listing. This
program scrolls the pixels left.

td hti,22527
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push hi

20 SB Ld de ,23328

20 ©0 Ld bc,32

B8 Lddr
pop hi

DDRESS OF BOT.BLOCK

LOCksS

23 Ld b,3
push bc

o8 ld b,8
push bt
push ht

28 Ld b,8
push bt
push hit
push hi
pop de
dec h

20 oo Ld bt ,32

B8 Lddr
POP hlL
dec h
POpP bc

F1 djnz.,C
inc h

E@ @6 Ld de,l176@
Push hit
add hi,de
pop de

20 o0 Ld bc ,32

B8 Lddr
pPopP ht

20 o Ld de ,32

s52 sbc hl,de
pop bt
djnz ,B

gg [~ g Ld de , 1792

52 sbc hi,de
pusg héa

(r.1%] Ld e,

e add hti,de
pPush hi
pop de
pop hL
Push hi

20 oo Ld bc,32

BS Lddr
pop hi
POopP bc
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380@a79 1@ BE djinz A
I3l 11 20 2@ Ld de ,32
30084 19 add hti,de
S@@85 EB ex de,ht
30886 21 20 SB ld hi,23328
2089 @& 20 ld b,32

D

30091 7E Ld a, (ht)
32292 0o nop

ld a,@ for no wrap

308393 12 Ld (de) ,a
Joas4 1B dec de
209385 2B dec hi
30096 1@ F9S djinz .D
32898 C9 ret

SIMPLE COMMANDS ON THE REGISTERS

You are already familiar with the ways in which the single-byte
registers can combine into Register-Pairs. Now is probably a
good time to remind you that single registers can cope with
numbers between @ and 255, whilst register pairs can handle
numbers in the range 0 to 65535, Let's make a start by laoking
at how to load numbers into single-byte registers.

Consider, for example, that you want to put a number — say
11 — into one of the registers (or ‘pockets’). To do this you
must load that number into the ‘pocket’. This is done by a
simple command known as LD, which simply is an
abbreviation for ‘LoaD’. Given that there are a number of
different ‘pockets’ or registers, there has to be an equal
number of machine language codes for the instructions, i.e.
one for each. The codes for the particular loading mnemonics
are shown below:

OP CODE HEX DECIMAL
LD A,xx 3Exx 62,xx
LD B,xx B6xx 6,xx
LD C,xx QExx 14,xx
LD D,xx 16xx 22,xx
LD E,xx T1Exx 30,xx
LD H,xx 26xx 38,xx
LD L,xx 2Exx 46,xx
56

The first part of the process is to identify which register is to be
LoaDed. The second part is to specify the number to be loaded
1o the register chosen. This means identifying A,_B, C (or other
register) and specifying the number to .be inserted. The
Assembly Language representation of wis_hlng to LoaD the A
register with the value 11 would look like this: LD A,QB.
However, before this could be executed an assembling
program would have to be used in order that the computer
could understand what it was being asked to do. Now, if a hex
|oader was being used — which | recommend that you do‘for
the time being so that you will find it easier to understa_nd just
what is going on — then it would be necessary to enter_flrst the
number 3E. This tells the computer that a number is to be
loaded into Register A. Follow this with the number @B and it
will understand that this number is to be loaded to the A

Register.

Note: It is essential to remember that whenever a code for
command or an assembly language command is given and
there are either two X's, four X's or the letters ‘dis’ after the
command, this means that either one byte or two bytes of your
own choice can be put here. For example, when doing the
command LD A, XX, the two X's are to signify that we should
put a single byte number after the command LD A, to load into
the register A.

We could equally as easily load a number into any of the
registers A, B, C, D, E... using this method, but also
remember the need to use a different code or assembly
language mnemonic for each different register (see above).
Before going further it is worth our while actually seeing how
all this works. There are now two important points which must
be borne in mind (though itis not crucial to understand them at
this point), before we can go on to create and use a machine
code program. The first is that at the end of @ machine code
program it is necessary to put the code for the command
RETurn. RETurn works exactly in the same way when you are
doing a GOSUB routine in Basic. For example, if you GOSUB
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1000 in a BASIC program, and come to the end of the
subroutine at 1000, you will put a command RETURN at the
end of the routine to indicate to the computer that you wish to
go back to the statement just after the GOSUB 1000
instruction. So, if we go into a machine code routine, from
BASIC, by using the BASIC command USR, which stands for
USeR SubRoutine, then it is necessary for us to include a RET
instruction at the end of the machine code routine, so that it
will then return to the program and go to the next available
command in BASIC. We shall shortly be looking at why this is
so, but for the time being it is only important that you realise
this. The machine language code for RETurn is C9. The
second point to remember is that if you go into a machine
language program by the command PRINT USR xxxxxx, then
the number which is printed when the user subroutine is
finished is the contents of register pair BC. This fact we can
use now to great advantage.

The program below, simply loads the registers B and C with 0
and then RETurns to BASIC, printing @ when it returns. To
enter this program, use the machine code loader program, or
hex loader program already provided, and simply type in the
hex numbers given. When the program has been entered into
the memory of the computer, do not attempt to RUN this
program. Simply type STOP and enter the command PRINT
USR 30000 directly from BASIC. In this way the machine code
routine will return back to command mode, in BASIC, but
printing the contents of BC at the same time. Once you have
done this try altering the program by putting different numbers
into registers B and C, and working out how the answer will be
displayed. Remember, that you are using a two byte number,
with a maximum of 255 decimal in each byte.

OP CODE HEX
LD B,0@ 0600
LD C,00 DEQD
RET c9

The natural progression is to proceed from just loading
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numbers into registers to the similar business of loading the
contents of one register into another. We have to have a
different machine language code for each of thgse qperations
{e.g. to load register B into register A}, resulting ina Ia'rge
number of different codes, so we shall, at this point,
concentrate on loading different registers into register A for
ease of explanation and understanding. The principle for all the
other registers is exactly the same, except that the machine
language codes and the mnemonics are different. Therefore,
understanding one is understanding all.

Should you wish to load the contents of register B into register
A then this can be accomplished by the simple command LD
A,B (meaning LoaD A with B). If we now go back to our earlier
analogy of the computer as a person wearing a coat, we can
think of this operation as:

1. Looking in pocket A and taking out the contents and
throwing them away.

2. Looking in pocket B, finding out how many articles
there are in pocket B, but not removing them.

3. Picking up the same number of articles as there were
in B and putting them in pocket A.

Now there are the same number of articles in pocket A as in
pocket B. It is important to note that the initial value of the
contents of A has no bearing on the final outcome of the
operation.

You can load the contents of any of the other registers ir_1to
register A. The mnemonics and the hexadecimal machine
language codes for these instructions are shown below:

OP CODE HEX DECIMAL
LD AA 7F 127
LDAB 78 120
LDAC 79 121
LDAD 7A 122
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LDAE 7B 123
LD AH 7C 124
LDA,L 7D 125

The next thing to do would be to look up the mnemonics and
the machine language codes for instructions which load other
registers into the BC registers, and use these so that the
answer will be displayed on the screen on returning to Basic.

A Cash Register Still
Won't Help!
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Chapter b

DOING YOUR SUMS ON
THE REGISTERS

Now that we know what the registers are and how we get
numbers into those registers, whether by loading them in
directly or by loading one register to another, it is necessary
now to look at how we can manipulate these registers. If you
have ever done any BASIC programming then you will know
how pointless it is simply to be able to assign a nhumber to a
variable but not to be able to change it arithmetically. That is to
say, that to ‘work’ on a number at all itis necessary to be able to
add to or subtract from it. This is what we shall look at in this
chapter. We shall also see what happens when a number is
either too large or too small for the register to handle. This will
lead us on to explore the ‘'CARRY FLAG' and associated items
of information held within the computer.

By now you will have probably started to think about how we
are going to be able to add two registers together, and whether
or not we will be able to do this in precisely the same way as we
do in Basic, where to add the contents of variable XY to
variable AB one simply writes: LET AB = AB + XY. The answer
would then be held in AB. Fortunately it is possible to perform
a simpler operation in machine code, except that the
instruction itself is totally different. If we want to add the
contents of register pair DE to the contents of register pair HL,
instead of writing LET HL = HL + DE (which you would do in
Basic), it is necessary only to use ADD HL, DE. The example
below shows exactly what would happen if we put this
instruction into a program. It is worth noting that the first two
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lines hold the two numbers to be added together; the third line
of that instruction actually does the operation, and lines 4 and
5 load the result into register BC. This has to be done using two
separate commands — adding the two single registers
together — because there is no such instruction as LD BC,HL ,
and the last command, which is RETurn, simply takes the
computer back to BASIC. | recommend that you try this
program right away:

ORG 30000

30000 21 01 00 LD HL,0001
30003 11 00 80 LD DE,32676

30006 19 ADD HL,DE
30007 44 LD B,H
30008 4D LDC,L
30009 C9 RET

To our advantage is the fact that the maximum number that a
register pair can hold is over 65000, so it is usually fairly safe to
presume that two numbers added together will not go over this
limit. However, it is useful to know what would happen if this
were to occur. The short program below should make this
clear. Try it and find out the answer.

1 a1 ae Ld hi ,@2a1
3003 11 FF FF id de ,6S535
50888 19 add ki, ,de
08027 44 id b,k
50008 4D Ld e,L
3@0es ceo ret

Before telling you the answer, let us just quickly go through the
example. The first command loads the register pair HL with 1.
“Yes', | hear you cry, but the number after 21 in the OP CODE is
not 1, it is @1 @0. Now here we come up against an awkward
point which you must get to grips with before going any
further. When we load in a number to a register pair, instead of
putting the high byte before the lower byte, we do the reverse.
Hence, to load the register HL with 1, it is necessary to type
0100. The high byte part (the nought nought) goes in after the
low byte (or one). If you are not quite sure what is meant by
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‘the high byte’ and the ‘low byte',_it may be worthliust going
pack to the section earlier on in IhIS. book where this was fn_rst
explained. Just to reinfarce your views, here are a few quick
examples of short routines which use this mgthod. Fm:tunately
loading the high byte in after the Iow. byte in a machme: code
program is not uncommon, and so it _ought soon to ‘come
naturally’, Now try out these short routines.

1.

a8
%E%@gegi 22 21 Ld bc,@102@
20003 C2 ret

The answer that we want s 1, butin this first example we have
|oaded it in to register pair BC with the high byte and the low
byte the 'wrong way round’. For this reason fhe answer,
instead, comes out to be 256. When writing in asse!'nbly
language it is customary to write the number in hexadecimal,
and in the right order, i.e. with the high byte before the low
byte. As you can see in this first example,l when it came to
converting this into hexadecimal co_de, t_hq high byte was again
put before the low byte. WRONG in this instance.

2

A 3022a
35339 a1 a1 ae Ld bc,20801
30003 C9 ret

This time the high byte has been put after tlhe low byte _in_the
hexadecimal code listing, hence the answer is correct — itis 1.

3.

3ead
30602 @1 FA 7B Ld bc 64123
3eess CS ret

Again, in this example we see that the high byte and the low
byte have been put the wrong way round. Therefore the
answer is totally incorrect. Now, before you aqtuaily run the
next routine, number 4, try and work out, in decimal, what the
result should be,
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08oa 6y 8
FR td
32003 C9 ld bec.ss1as

wo

Now quickly, just to recap before going back to the example
we were doing earlier; we can say that, when loading a number
into a register pair, then the high byte goes after the low byte
in the hexadecimal machine language coding. This is another
example of how an assembler could help us, in that it is
possible simply to type in the number in its high low byte
configuration.

Now, back to the example we were doing earlier. We have
already established that the first command loads the register
pair HL with 1. The next command loads the register pair DE
with FFFF in hex, which as you might remember, is equivalent
to 65535 in decimal (which in turn is the highest number that
can be used in a register pair). If we now add the highest
number we can use to 1 then we will get an ‘overflow
condition’. In BASIC, if an overflow occurs, an error message
is shown and the program stops. In machine code this does not
occur, because there are no error codes, it simply goes wrong!
In this particular case all that happens is that instead of it going
to 65536, which is out of range, it simply goes back to zero.
Also, if an overflow does occur, then the computer remembers
this fact by setting the ‘carry flag’ to 1. Do not worry about
what the carry flag actually is at the moment, we shall be
coming to that very shortly.

There are two important points to remember about adding
together the two register pairs. Firstly, you can only add
another register pair to HL. Also only register pairs may be
added to register pairs. A single byte register may not be added
to a register pair, and vice-versa. Below is a list of the
hexadecimal codes for the operations of adding a register pair
to aregister pair. You may wonder why it is necessary to have a
command to add HL to itself, but this is in fact a very simple
way of doubling the value of HL. It is also worth noting that
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each of these commands takes only one sin_gle b\(te. Compare
this to the BASIC equivalent and you will quickly see the
difference as the BASIC equivalent takes over ten times as
much memory!!!

oa a9 td hi,bc
ggg@l 19 id ht,g?
agee2 29 td hi.

Now let us look at adding single registers togethgr.
Remembering that single registers can only hotq nL'u]'nbers in
the range 0 to 255, the possibility of ‘overflowing’ is much
more likely than with register-pairs. What happens whlen they
overflow? Well, they simply ZERO, as do ‘reg|ster pairs. The
question is, can we do anything about this? In f.act we cap!
Whenever we add two numbers together the_re either is oris
not an ‘overflow’ or carry). The computer itself sets aside
a very special register to handle such things as overflows.
This is known as the F register. It is unusual for us to
be using the F register, simply becausel the computer itself
monopolises it in order to handle various sn_-lall uerps of
information. The way in which this is achieved, is by
separating each single bit off, then allowing for them to be
used separately. In your reading you will come across
reference to the ‘flag’ having been ‘set’ or ‘reset’. ThIS. is
referring to one single bit which might be ‘set’ — meaning
‘turned to 1, or ‘reset’ — meaning ‘turned to @'. This then is
the CARRY FLAG. The extremely useful thing about the carry
flag is that whenever two single byte registers are added
together, and the answer is greater than 255, then the carry
flag will be set (to 1). If of course the answer is not greater than
255 then the carry flag is reset (set to 0). We cannot access the
F register directly hence it is not possible to change the flags
directly, though it is relatively simple to access the contents of
these bits.

It is possible to add any other register to register A'. including
itself, (though you cannot add any register to a register other
than A). You will find throughout your learning about machine
code that the A register, which is often called the
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Accumulator, is featured very extensively. There is no
particular reason for this, except that it is the first letter of the
alphabet — and the first letter of Accumulator — and so is an
easy one to remember. Many of the important commands use
this register, just as, with register pairs, the HL register is
_mostly used. As well as adding another register to register A it
is also possible to add a number to register A, but remember
that this number must be in the range of nought to 255. Below
area a list of all the different ADD commands and their
equivalent machine language codes. These numbers are in
f:ccession, hence it ought to be reasonably easy to remember
em.

OP CODE HEX DECIMAL
ADD A, (HL) 86 134

ADD AA 87 135

ADD A,B 80 128
ADDA,C 81 129
ADDA,D 82 130

ADD AE 83 131

ADD A H 84 132
ADDA,L 85 133

ADD A, xx CBxx 198, XX

Adding .single-bvte registers together is very similar to adding
two register-pairs together, as the examples show:

Example 1:

org =@
Jaggaz @s 985
3IPAVS 4F
320006 @6 OO
32008 C9
Example 2:

org S00pa
38800 3E QE
30802 C6 a5
30805 @8 @e

In example 1 the first two instructions simply load 5 and 6 into
registers A and B respectively. Command 3 adds the contents
of register B into the contents of register A and the result
remains in register A, The next two lines simply make it
possible for us to display the answer using the simple PRINT
USR command in Basic.

In the second example we are simply adding € to the contents
of the accumulator or register A before we load the contents of
A into register C and load B with @ and RETurn so that the
number displayed after the command PRINT USR will be the
contents of BC — or in other words, the answer to A+6. An
ADD instruction will always reassign the carry flag. As
mentioned before, if there is no “carry’ the FLAG will be set to
0. If there is a ‘carry’ it will be set to 1.

So far we have not been able to use this result in any way. The
simplest way in which to use it is via the ADC command. This
command means “ADD with CARRY" and this is how it
works. Suppose the machine comes across an instruction
ADC A,B. It will take the contents of register B, add the
contents of register A, and leave the answer in register A as in
the previous instruction ADD A, B. It will also add the carry flag
to this new number. Because the carry flag has not yet been set
for this instruction, the number which is added to the answer is
the status of the flag previously. Having done this it will store
the result in register A, reassigning the carry flag. Hence, if the
carry flag has been set by an addition earlier on in the program,
and has not been changed since then, the result of the ADC
command will be affected by this. At first sight this might
appear to be rather more of a hindrance than a help to your
programming. However, if you cast your mind back to early
school-days when you first learned how to ‘add up’, it will
quickly become evident that this is both a logical and most
useful facility. It simply represents the ‘carry one’ principle in
simple addition. What we remember is that first we add up the
right hand column and if there was an overflow then a 1 must
be added to the next column to the left. For example if we were
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adding up the numbers 14 and 7, then first we would add up 4
and 7, the result will be 11, so put one underneath the right
hand column and ‘carry one’. We then add up the left hand
column which equals one and zero and add on to that any
number which has been carried, in this example 1, hence the
answer is 2 and this is put in the left hand column. We can now
read the result from left to right reading 21 or twenty one.

The example below shows how we can use this function in a
machine code program. Because the program is reasonably
long, and quite complicated, do not worry about the
explanation until you have typed it in and seen that it works — |
shall explain it in the next paragraph. For now just make sure
that what you type in is precisely that which you see on the
page.

org 3002
3e@ea 1
30882 1E 85

30024 26 7B
226 gE c7
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Command 1 assigns the value of 51 to register D. Command 2
assigns the value of 133 to register E. Command 3 assigns the
value of 123 to register H and Command 4 assigns L with 199,
The objective of this program is to add the contents of register
pair DE to register pair HL. This is done not by using a single
command but by adding the two halves of each pair together.
In other words all we want to do is first add E to L and then add
register D to register H. Now the first problem which we
encounter is the fact that we can only add one register to
register A, hence it is necessary to substitute the register L for
register A. This is quite easily done by command 5, which is to
load A with the contents of register L. When this has been
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done we can add E to A, Hence the value of A now equals the
contents of register L plus the contents of regmter E, but we
want to get this answer notin A, butin L. Wg simply overcome
this problem by loading the value of A back into L.

Because we have already added the two low bytes together,
by instruction 6, the carry would have already been set if there
was an overflow — which there was. We now go through
almost the same procedure to add the high bytes together i.e.
to add byte D to byte H. This time however we use the
command ADC — and add with carry. What happens is t-hat
we add D to A, as we would have done earlier, but by thus time
we have also added the contents of the carry flag. So, if when
we added L and E together the result was greater tha]n 255 we
would now be adding an extra 1 to the value of the high bytes.
This way we can obtain an accurate result. Com_mands 11 and
12 are simply our favourite little commands which 'allow us to
load the contents of HL into BC so that it can be d|splayn_ed on
the screen after the PRINT USR in BASIC. Another pglnt to
notice about this program is that the two commands which are
after the ADD A, E but before the ADC A,D command d_c not
actually affect the contents of the carry flag. If you are going to
use this type of instruction it is useful to know which
commands alter the contents of the carry flag, so that you
know what result to expect. For this reason, at thg back of the
book, you will find a list of all the commands showing whether
ar not they affect the carry flag.

By now you ought to be able to understand the differenc_e
between ADD and ADC. Here are the codes and their
mnemonics for the different combinations.

OP CODE HEX DECIMAL
ADC A, (HL) 8E 142
ADC A A 8F 143
ADC A,B B8 136
ADCA,C 89 137
ADCA,D 8A 138
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ADC AE 8B 139
ADC A H 8C 140
ADC A,L 8D 141
ADC A, xx CExx 206, XX
ADC HL,BC ED4A 237,74
ADC HL,DE EDSA 237,90
ADC HL,HL ED6A 237,106

though by the end of the book you may wish to look back and
discover how it actually works. The idea of putting in this
program is for you to be able to use it, see the effect of this
piece of machine code, and have a break from learning.

CHANGE B & HL FOR
BELOCKS OF SCREEN

Itis not directly possible to add a constant to aregister pair, but
it can easily be accomplished by loading a register pair with the
number which you wish to add to HL and then adding the other
register pair to HL. The result in HL would equal HL plus the
number. For example:

ar sooe8
30ves i1 39 6 id de,57
30003 19 add hi,de

This method has the disadvantage that it requires the use of
the register pair DE, which you may want to use for other
operations. Another way of achieving the same objective is
shown below, but this time the only register which is altered,
apart from HL, is register A. Take note that in this example |
have again used the ‘add with carry’ command in the same way
as we used it in the first example — so that if the low byte
overflows it will carry into the high byte, hence making the
result accurate.

org Sooaa
>

2eee 7D id a,t
30@@1 C& 3= add a,57
322832 6F id L,a
32@@a4d 7C id a,h
202825 CE aa@ adec a,@
3eee? S7 td h,a

| imagine that you might well have done enough machine code
instruction work for now, so here is a machine code program
to type in and use. Although it has some of the commands that
we have already looked at, it is not essential that you should be
able to understand the program at this stage — so do not be
upset or worried if there still remains something of a mystery —
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As a prelude to the next section in the book, look through this
listing and notice all the commands which have brackets
around some part of them.

LOADING THE CONTENTS OF AN ADDRESS LOCATION
INTO A REGISTER

Earlier, as you may remember, we looked at how numbers can
be stored in boxes — or locations in the memory. As you will
recall, each of these boxes had a number which constituted
the specific and discrete address of the box. The reason for
having this address is so that we can access the contents of
this box relatively easily. | pointed out how useful it would be to
be able to manipulate the number in the boxes, but so far we
have yet to talk about how actually to get numbers out of the
boxes, or location in memory, and into a register. Obviously,
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when it is in the register we will be able to manipulate the
number properly. Then it should also be possible to load the
contents of the accumulator or any other register into a
location or address in memory. In this way it becomes possible
to save a particular number for future use. Also, using this
method, it is possible to have an enormously large quantity of
numbers all being accessible at once.

Let us consider what we actually want to do. Our task is to load
into say the accumulator, or register A, the contents of a
particular location. This location will have an address. If we
simply wrote Load A with the address, then the computer
would mistake the address for a direct number. For example, if
we typed LD A,12, then it would be reasonable to expect that
the computer would consider that we wanted to load the
accumulator with the value 12, But what we want is to load the
accumulator with the contents of a particular location. In factit
is quite simple to do this as all we have to do is instead of typing
the number after the instruction, we place the number in
brackets after the ‘comma’. For example: LD A,(2465). The
computer will now load the accumulator with the value at
location 2465. Because each location can only hold a number
between @ and 255 there is no problem in loading a single byte
register with the contents of a location. If we said that at
location 2465 there was the number 64, then after executing
this command the accumulator would also contain 64. As with
all these commands the content of the address is still
maintained. In other words, the contents of address 2465 is
still 64. This is a very useful command, in that we are now able
to take the contents of any location in memory, put it in a
register, and manipulate it. For example:

or Joece

3J08aa 3IR 3a 7S

Ld a, (32aad)
30003 Cs 29 add

a,41

The only problem now is how to put the manipulated number
back into that address, or into another address. This can quite
easily be effected by using a variation of the above command.
If you think about what we actually want to do at this stage,
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you will realise hat instead of loading the accumulator with the
contents of our adress, we actually want to load Fhe address
with the contents of the accumulator. What we dois to use the
command in reverse: LD (ADDR),A taking that the address is

ADDR.

Below is a simple example of how this concept works.

Sodea a0 32 7S Ld 2. (30880
30083 C6 @ add a,15
SpeeE 52 30 75 Ld (200007 ,a
3005 C9 ret

Going back to the first concept which we u§ed, -i.e. that of
taking a number from a location, manipulating it and then
putting it back in the same location, we can change the cplm_lr
of the screen for instance — by getting the co[our V\{mch is
there already and manipulating this so that it is @ different
colour. Because the screen, as far as the colpur is concefned,
is 704 bytes long, it is necessary to carry this out 704‘ times.
Fortunately it is possible to bring into use a different
instruction in order not to have to write out the program 704
times! This we shall come onto a little later on. Now before we
go on to the example of a change co!our_prcgrat:n below, here
is a quick task for you: Write a routine which takes_the
character code of any character out of memory, changes it to
the inverse of that character and then puts it back. Here is a
quick tip, the inverse of each character is 128 larger than the
normal (in decimal). In other words, if you took the code for
the character ‘a’ and added 128 to it, you would now have the
code for ‘inverse a'.

L,22528
c
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30117 23 inc hi
30018 GE dec bc
3@@19 7o \d a,c
S@@2@ FE @@ cp @

30022 =0 F@ i o T
30024 78 i B
30@25 FE @@ e @

32827 22 EB ir nz,loop
30029 C9 oey

Nate: Id e, “new INK colour'

SUBTRACTION

In machine code, the instructions for su btracting numbers and
registers from another register are exactly the same as their
counterparts for addition. For this reason subtraction is a very
simple concept to understand. There are differences of
course. With addition you can overflow, but with subtraction
you can ‘underflow’ — in other words, the number from which
you are ‘taking” is smaller than the number you are attempting
to subtract. Try subtracting 11 from 5 there will be an
underflow of 6. If an underflow does occur in subtraction then
the carry flag is set to one, but if there is no underflow then the
carry flag is reset to 0. The next factor to bear in mind is that
there is no positive or negative flag. When an overflow occurs
in addition the numbers start adding again from zero. For
instance, if you add 5 to 255 then instead of going to 256 and

then adding 4, the computer will go back to nought and add 4.

In subtraction, it will go back to 256 and then subtract.

Subtraction works in the same way as addition, meaning that
the instruction SUB A,B (SUB for SUBtraction) will take the
value of register B away from the value of register A, and the
result will be stored in register A. The carry flag is then set or
reset accordingly.

Because the command SUB only applies to single byte
registers, and only the accumulator at that, it is comman
(instead of writing SUB A,B) for the instruction “subtract B
from A" to be written as “SUB B". This may be slightly
confusing at first, but you will get used to it quite quickly. As
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subtraction is not the simplest of sub!ects whe_n degl;nt% \;\;;:
an unfamiliar format it may be a good_ldea at t'ms'po"r]\ e
back at the work done on subtraction garher 1;‘1 tj‘fferen't
simply to reinforce your .under.standmg. T eI nl i
assembly commands, and their equivalent machine language,

codes are shown below:

OP CODE HEX DECIMAL
SUB (HL) 96 12&1)

SUB A 97 ;144

SUB B 90 P
susC 91 :46
SUBD 92 oo
SUBE 93 143

SUB gg 149

SUB L

SUB xx D6 xx 214 XX

Below is a quick example of how the subtraction statement
can be used:

Sedao Ld a.,l1
SE @B Bod
QB2 @8 @7 Ld »
33934 a7 ?gbcaéb
30005 4F -
202896 @65 00 - N
30008 C9 r

It is possible to subtract numerical constants frpm Ll':e l-‘;
register. For example, the instruction SUiAi_LOO wﬂlltst_;is tﬁ:n
. i ister A. The resu
0 from the number stored in regis
;toored in register A. You should note that though there are
ADD instructions for register pairs thgre are no subtra(l:tuz)r;
commands for register pairs. Below is a short example

subtraction in use.

ORG 30000
30000 0600 LD B,0d
30002 3E58 LD A,88

30004 D633 SUB 51
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30006 4F LDC.A
30007 C9 RET

SuBtract with Carry (SBC) on the other hand, will work for
register-pairs; but as with ADD and ADC, only the value of
register pair HL may be altered, or the contents of single
register A altered. SBC A, C will subtract the value of register C
from the value of register A, and will then subtract the value of
the carry flag from this result and store it in register A. Again
the command “Subtract with Carry” may be used when

subtracting two numbers from each other where there might
be an overflow.

Thinking back to the way in which we originally learned how to
subtract numbers from each other we can see how this works.
If we were to have the number 21 and wished to take 19 away
fromit, this is how we would proceed. First take 9 from 1. This
is not exactly possible — and still keeping the number positive
— so the answer is to ‘borrow’ 1 (value 10) from the column to
the left. We are now ‘taking 9 from 11 ", giving “2” as the
answer. It now has to be taken into account that the next
column has been reduced by 1, resulting in what is termed “an
underflow". It is necessary therefore to take ‘1 from 2’, the
result being 1 — but because we have to take the carry flag
from this result the answer is @ and the final answer is 2,

You will be able to gather from the list below, that using
""Subtract with Carry” on a register pair requires two bytes,
and a single operation on a single register requires one byte —
which makes both of these commands very compact indeed.

The assembly language codes and the machine language
codes are shown below:

OP CODE HEX DECIMAL
SBC A, (HL) 9E 158
SBC A A 9F 159
SBC A,B 98 152
SBC A,C 99 153
SBC AD 9A 154
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SBC AE aB 155
SBC AH 9C 156
SBC AL ap 157 ot
SBC A,xx DEws s
SBC HL,BC ED42 237,22
SBC HL,DE ED52 23;-98
SBC HL,HL ED62 237,

OPERATIONS ON THE CARRY FLAG W
ing i i s Subtr
i n useful, when using instructions such as ot
gviltshogaerry and Add with Carry to be e]ab':e to dite;rzé?; etr:g
itis not p
nts of the carry flag. Unfortunatey_ i _
fgsr:atte i.e. set the carry flag to noufr:,tv dllzectx,t:;t v:hzern‘r;\:)eer
by asi i i e kno!
done by a simple machine code trick. pree
i lator, the carry flag 1
a number is added to the accumu A N
ding to whether or not there is an ove 5 :
fr?:oz;cclzu?nutator then it is not possible that there w;‘l:s'm_?i_ :E
erflow — THEREFORE BY DOING PRE_CI‘SE.LY T
(C)IYARRY FLAG CAN BE SET TO ZEROQ. This is SImprI% bec?;lr"s.;
i verflow.
flag is always set to @ when there isno 0
Tg :rcc?k;raily ?he most useful little command \glthtth: r;:aarlg rﬂfr?é
i ioned commands it C
When using the aforemention ! pr b
i i flag is set to 1 and is no
result quite tremendously if the carry j i
i flag to 1 is a much easier :
meant to be so. Setting the carry flz i it
ing an instruction to do this. The instructio
w:ifc?hb?r::gns “Set Carry Flag”. The machine language code
for this is 37 in hexadecimal.

This concludes the chapter. We have loolfed ar:‘t\;\:o ;n:gc:lr:z]r:;
ways of manipulating .registe.zrr‘s,r:r;?nv;re:,ys;:;v ;L:‘t V\t’hem i
numbers from locations i .
i have also looked at more complica

::?Jgr::;.dswesucs as ADd with Carry — apd ways in thllc.:—;\h tol
overcome problems by setting and resetting tge ciatr:/a ‘ hgc;rt
hope by now you will be_able to go away a: Wi

machine code program using these commands.

i3




The Art Is In Getting It In!!

81




Chapter 6

ASSEMBLERS,
DISASSEMBLERS, and
DEBUGGING
PROGRAMS

In this chapter we shall take a break, from actually learning
machine code. Instead we shall be looking at the three main
types of program which have been written specifically to help
the machine code programmer. Having now gone quite some
way towards learning how to write simple machine code
programs, you will doubtless soon be ready to embark on rather
more adventurous programming. This will lead you into writing
longer machine code routines and for this reason it is useful to
have some special aids to make life easier. Most of these aids, or
utilities, are themselves written in machine code. Clearly
therefore, the programmer who wrote it will likely be someone
with considerable knowledge of his subject, and not necessarily
given to setting out the operating instructions in the simplest of
language. In consequence, when it comes to deciphering the
instruction manuals for the assembler debugger or
dissassembler programs, the beginner could be very much at a
disadvantage. For this reason, at the end of this chapter, | have
included a short section carefully explaining exactly how to use
a particular example of each of these types of program. It is also
useful to note that these examples are all commercially
available. Many will be obtainable at retail outlets, but none-the-
less you will find that | have included mail order addresses for
your convenience at the end of this book.
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Choosing utility programs is very much a matter of personal
preference and experience. For your clarification all the
programs in this book were assembled/disassembled with the
aid of the ACS Software programs.

ASSEMBLERS

At this point, it is important that we know exactly what we
mean by machine and assembly languages, and are therefore
comfortable with most of what has been dealt with so far — so
here goes for a quick recap. (If you feel confident that you
know exactly what these mean and the differences between
machine language and assembly language, then you can miss
this section out).

“Machine Language” is made up of numbers and numbers
alone. The computer itself understands these numbers and
can execute them as commands. Unfortunately, having to
remember a large quantity of numbers, and then being able to
know exactly what they do, is not a task which is particularly
easy for us humans. For this reason ““Assembly Language”
was formulated. Each command in assembly language
corresponds directly to a command in machine language,
except that in assembly language these instructions are
written in mnemonics which are abbreviations for the actual
commands. For example: if we wanted to execute the
command “‘Load register A with the contents of register B,
this can be accomplished in machine language simply by
entering the code 78, and executing it. But to remember the
number 78 and that it corresponds with the above instruction
is not an easy task. One way of obviating this is to have a list of
all the instructions and all the codes written down for you so
that you can look up the particular command and its
corresponding machine language code.

The first problem with this is that if we had completed
explanations of each particular command they would take up
too much room. So instead of doing this we have a
MNEMONIC. A mnemonic is simply an abbreviation of its
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command. Instead of having “Load register A with the
contents of register B" we have the simple abbreviation LD
A,B. You will already have found that this abbreviation is far
easier to remember than the machine language code, and
takes up a lot less space than the complete explanation. Now,
if we want to use the method of reference, this can quite easily
he done by listing the mnemonic next to the machine language
code — (this has been done at the back of this book). Should
we learn all the mnemonics for the machine language
instructions we would have what is known as assembly
language. In other words, assembly language is simply made
up of the mnemonics of machine language. For this reason it
can be seen that assembly language is not an adaptation of
machine language such as BASIC, but there is one and only
one mnemonic for each particular machine language
instruction and vice-versa.

What we have therefore is a language that we can quite easily
understand, and can use it on the basis of conveniently
formulated listings. However, whilst what we now have is a
mare convenient language, it still requires the expenditure of
some time and effort to “convert”’. Why not then look to the
clever old computer to do all the hard work for us in converting
the mnemonic into machine language code? This is what an
ASSEMBLER is able to do for us: a program which assembles
mnemaonics inta machine language code.

Another way of thinking of this action, is looking at the way in
which a fast food cafe works. When you goin you will order via
a menu, and on this menu there are various dishes, i.e. ham-
burgers, whatever, When you give the order to the attendant
then he or she will not write down the actual order, but rather
they will write down a number which corresponds to a pre-
defined product. Hence, what they are doing is assembling
your order into a form which the people back in the kitchens
will understand, and use more quickly.

All the common assemblers for the Sinclair Spectrum work on
the principle that, first you type in your program in assembly
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language, and then when it is complete you instruct the
program to assemble it into machine language. This machine
language code is then placed in a particular part of the memory
depending on where you desire it to be. Of course, it also
depends on how much memory your computer has available.
An assembler program is a fairly complicated type of program
and some of the assemblers on the market are only suitable for
the 48K Sinclair Spectrum. This influenced my choice of
Assembler in writing this book as ACS programs will work on
either the 16K or 48K version.

If you look in any Sinclair or personal computer magazine, you
will notice various advertisements for assemblers. The price of
an assembler is usually a couple of pounds more than a game
program. This is for two reasons; firstly they are, for the most
part, more complicated than games; secondly they are also
less of a “mass market” product and cannot necessarily be
counted on to sell in particularly large quantities. Believe me
though, they are well worth paying for. They are an incredibly
useful utility for the serious machine code programmer.

DISASSEMBLERS

A disassembler does exactly the opposite of an assembler in
that it converts the machine code into assembly language
code.

There are two main ways in which you can use a disassembler:

:l — simply as an aid to checking that what you have written
into the memory of the ocmputer is exactly what you intended
it to be.

2 — tolook at what other people have written in machine code,
and how they have tackled certain problems.

For example, you may wish to disassemble certain parts of the
Sinclair ROM in order better to understand what goes on in
there and, if possible, to utilise the routines within it. Also, in
many magazines, when a machine code program is listed they
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will only list the hex code, or the machine code. | would advise
you at a later date to load in some other people’s programs and
disassemble them, and so you get some idea of how other
people write programs. There is much to be gained from
looking at how others make use of the various instructions.

With the assembler and disassembler used for this book, it is
possible, if you have a 48K machine, to load both of them at
the same time. Again, when choosing your own utilities, bear
in mind the usefulness of this kind of “‘compatability”. Itis not
possible to load the assembler and disassembler into a 16K
machine both at once, simply because there would not be
enough memory. However, in such circumstances it is
possible to load just one of them at a time. Because it is
possible to load and save our own machine code programs
independently of programs already in the computer they can
be assembled using the assembler, saved, and then loaded
back in with the disassembler for disassembling.

DEBUGGING PROGRAMS

The third and final type of program now to be considered, is
not one which can be used when you are first writing a
machine code program, but rather it is useful to debug, and to
make alterations to the program after it has been assembled.
When you buy a “debug” program you are not generally
buying one single program. A reasonably good machine code
debug program may offer some of the following facilities:

1. The option of being able to run your machine code routine
one instruction at a time, and being able to display the
contents of all the registers after each step. This is an
exceptionally useful facility when it is necessary to locate a bug
in a program, or when you wish to see exactly how someone
else’s routine works.

2. Being able to insert a ““break point” somewhere within your
program, i.e. to make the program run up to that point and
then stop. This command can be used in various ways. You
may wish not to know the contents of the registers after each
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step in the program, especially if it is a long one, but do wish to
know t_he status of all the registers and the flags after a certain
operation, or block of operations have been completed. To
continue the program running should be an easy matter

simply by pressing a given key. '

3. To be able to change the contents of a particular register
whilst the program has stopped at a break point, which can
usu?lly be done quite easily. This may be useful in two
parncular_cases. Firstly, if you wish to know what the outcome
would be if you loaded particular registers with given numbers
Secop_dly, it may be useful to be able to simulate a certair;
condition when values are inputted into the program which are
mt? large for the program itself to handle, but you wish to know
;o:tehr?;‘ or not your error handling routines are working

4. _The capability to execute your program from the monitor,
This may seem an obvious one, but whilst you are in a monitor

program it is not always easy to go back i
oAy kie hoval ytog into BASIC and use

5. '_rhe fac_*ili'fy to convert numbers from hexadecimal to
decimal, within a debug program.

6. Three useful commands which, when used together, make
the dgbug program capable of altering your already assémbied
machine code program. These allow for the inspection of the
contents of any particular address, and to alter it if required

Additionally, with many assemblers, if you keep your finger or;
the entgr key, the contents of subsequent addresses are
automatically displayed on the screen, but no new value is
entered unless of course you type a number before you press
Enter: If you find that you wish to insert a command within a
machine F:ode program this is often extremely difficult to do
after having assembled the program because, of course, it
would be necessary to move up or down one half of {he
program. With many debug programs inserting a new
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instruction is easy to do simply by telling the computer exactly
where you wish to insert, and then how many bytes you wish
to insert so that space can be created, and finally, the code to
be inserted. The complimentary instruction to this is of course
“delete’’, which can be found in most debug programs. This
works in exactly the opposite way to the "insert” command.

The above is simply a quick guide to some of what you may
find in a debug program, though usually you will find various
extra commands from those listed above. The way in which
debug programs operate varies according to the program you
are using.

Often an assembler or disassembler may be merged into a
debug program, or vice-versa. For example, often you will find
within a debug program that it has a disassemble function.
Another example of this practice is the assembler available
from Picturesque. As well as simply being able to assemble
code, you are also able to edit it using various sophisticated
commands. The monitor program, which is basically a debug
program and an assembler, can be used at the same time as the
assembler/editor program, and so makes for a very high-
powered combination. For simplicity’s sake, and so as to make
things a little bit cheaper, the assembler/ disassembler/debug
programs, used for this book were separate programs, and
available on separate cassettes.

A simple debug program does not necessarily have to be
written in machine code. You may decide that you do not wish
to buy a propriety program at this stage. The best compromise
is to use the monitor program listed on the next few pages.
This will allow you to enter the machine code into the
computer and edit it satisfactorily, although you will have to
enter it in its machine language code. Conversion from
Assembly Language Mnemonics can be accomplished by
using a reference section at the back of this book.

When you have typed in this basic program remember to save
it onto cassette before testing it, and as soon as you are sure
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tt)f;atk the program is working correctly then make a separate
CK-Up copy on anaother cassette, just in case one of the
cassettes is damaged in any way.

S CLEAR 315c9
u_ﬂ.‘}ggi;?;:lg‘[“" #*FASpecirum MO
A5 by JEBNEE WEiEH
,o2 REM EEPENITEN
120 INPUT “What start address ia

[ ;loc
11®@ PRINT BT :
iz8 PRIny tac?‘?i.“;
122 LRI p=PEER 14t:"eo sue 1400
14S PRINT “....":z%
" OR z&="END" THE

I
N GO TO 3o
1,4 B0 18,48y 95 20D THEN. oG
R O R e
SUB 1ses. g vo 228" T TTRN P2
Telgc;#oégiinso T071§?‘“ THEN LE
TO 1@@ ZE="N" THEN GO

QE@_IF ZF="2" OR zZ$="Z" THEN LE

23@ LET ans=(CODE =z =
2401éF ans >S9 #16 THE]ﬁ‘&ET‘Lg%:iEn

"ot tinefEs

=1 - c: = 4
1410 LET x-=1I (h/21e -
1428 LET y={in- 15} -INT (ns316)F 21
145308 IF x» 9 THEN LET =X
144@ IF 43S THEM LET §;§I3

145@ LET X=x+45. LET oot
1450 FRINT CHRS x;CHRE o 0
: TNUB B 10
1607 LET a=n

1610 LET X=INT t(nris>

EC SUE.EES
be copvert
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2@ LET yYy=((ns 161 -INT (n-16)1 %1

3@ IF %3>9 THEN LET X=X+7
4@ IF y>9 THEN LET Y=4+7

165@ LET x=xX+48: LET 4=4Y+485

is6@ PRINT &;" = ",CHRS$ X,CHRE 4
167 RETURN

Now we come to look at how the monitor program above is
used. It is shorter than the commercial programs that we have
looked at so far, and is certainly the most straight-forward to
operate. The first thing to notice is that line5 is used to specify
RAMTOP by way of the CLEAR instruction. It is therefore
necessary to reassign this value, depending upon which part of
memory to be used for the machine code routine. Now RUN
the program. You will be prompted for the start location to be
entered — do so. This start address will be shown on the
screen, followed by its contents in Hex. A new value may now
be entered (in Hex), remembering only to use CAPITALS.
Alternatively, one of the following commands can be used:

P — copy the screen to the printer.

S — |eave contents value unchanged and jump to next
location.

V — convert a decimal number to Hex.

J — jump back one location.

N — re-start from new location.

Z — let contents value be zero.

Once the value has been entered, or commands P, V, or Z
executed, the next location and its contents will be displayed.
To bring this process to an end, type “end” when asked for a
value. Though this program is short, and relatively simple, it
will prove invaluable in the absence of an Assembler or

commercial debugging program.

USING AN ASSEMBLER

The assembler can be loaded into your computer in the normal
way. If you have both 16K and 48K versions do be sure to load
the correct copy for your particular machine. It is important
that you do not load the wrong copy. The assembler used in
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in a REM statement, which probably is not advisable at this
moment, and is unnecessarily complicated on Spectrum, then
you must put sufficient ‘spaces’ or ‘characters’ after the first
REM statement to hold the machine code. Remembering that
if you wish to hold a 25 byte machine code routine in a REM
statement, then this REM statement must contain at least 25
characters after the REM statement itself.

This assembler recognises all the standard Z80 machine code
mnemonics in lower case, exactly as they appear in the back of
the Sinclair ZX Spectrum Basic programming manual, which
was supplied with your computer. There are only a couple of
exceptions to this rule, which are not particularly important,
and we will look at them later. An important point to note, is
that all numbers should be entered in decimal, though they will
be listed in hexadecimal after having been assembled.

PUTTING YOUR PROGRAM INTO THE ASSEMBLER

The first instruction of any machine code program to be
assembled is the GO command. Thisis not aZ80 machine code
mnemonic, it is purely to tell the assembler that this is where
the program to be assembled is going to reside. The next line
must contain the actual address at which the machine code
must be assembled. This is done simply by the command ORG
followed by the address. ORG is not a Z80 mnemonic either, it
is only to tell the program where to put the assembled code.
ORG stands for “ORiGin". If either of the above two
commands have been omitted from a program then an error
code will ensue if you try to assemble it. Now you are ready to
put in the mnemonics for your machine code program. You
may put more than one mnemonic on each line, provided they
are separated by semicolons, though it is probably easier and
clearer if you have just one instruction per line. So now we
have put space at the beginning of the program for the
machine code (if of course we want to put it in a REM
statement). The computer has been told by the GO instruction
where the code to be assembled is to be held, and we have also
told it, via the ORG command, where in memory we wish to
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put the assembled code. Now we are ready to enter the
assembly language program. Often, during a program, you
may wish to put some sort of remark or explanation of what
you are doing. This can be done whilst using an assembler, by
putting an exclamation mark after the REM and then typing in
the comment. The exclamation mark is used to tell the
assembler that the codes or the word after it are not for
assembling, but are simply there for the purpose of the
programmer. Should you accidentally omit the exclamation
mark the assembler will try to convert whatever you have
written into machine code, and probably cause the assembler
to stop and show an error code.

You can now type in the program to be assembled. This should
be done in lower case, which is the ‘case’ it will be in when first
turned on, so that the computer can understand what you are
doing.

Note: You may use upper or lower case letters within a
REMARK statement, though you may only use lower case in
an instruction to be assembled.

When you have typed in all the assembly language mnemonics
for assembling you must put the word Finish after your REM
statement. This tells the assembler that you have come to the
end of the routine which you wish it to convert. Finish is not
a Z80 mnemonic.

You should now have a full machine code program in assembly
language form, which is now ready for assembly into machine
language. Before doing this it is useful just to check that there
have been no mistakes made in entering the program.
Obviously, if there are, it is a simple matter to edit out the
particular line and change the error statement, just as you
would in BASIC. To tell the assembler program that you wish it
to assemble the mnemonics already typed in, type either
RANDOMIZE SPACE USR 60000, if you have a 48K
Spectrum, or, RANDOMIZE SPACE USR 27500, if you have a
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16K Spectrum. Now the mnemonics will appear on the screen
alongside their machine language codes. If there are any
errors, i.e. statements which the assembler cannot under-
stand, then an error code will be shown and you will be asked
to rectify this problem. Please note that an assemb_ler will not
check the actual program for you. An interesting point to note,
is that when the program is assembling, the listing of _the
machine code program is printed twice. This is because it is a
two-pass assembler. This simply means thaF it goes through
the program twice before putting a final version into memory.
The reasons for this will become apparent later.

Now we know exactly what we can do in theory, let us see
whether we can put it into practice. The first thing to
remember is that we wish to put the machine code, not in a
REM statement at the beginning of the program, but say at
location 30000. The program we shall now assemble is shown
below, this is a pixel scroll right routine.

ld ht,22527
L

push h
Ld de , 23328
Ld bec ,32
tddr
pop hi
HL=BOT. RADDRESS OF BOT.BLOCK
E=NO.Of blocCcks
""" - ld b,3
L push bc
Ld b,8
= = push bc
push hl
Ld b,8
€ - - push bc
push hli
push hl
pop de
dec h
Ld bc,32
Lddr
POP hli
dec h
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The above program is shown in assembly language, the job of
the assembler being to convert this into machine language
codes and the first operation is to put all of this into the
assembler. The first thing we have to do is load the assembler
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in. This is done by typing LOAD " making sure that we load
the right side (48K or 16K) for the size of the computer,
Depending on the size of the machine, the assembler should
take less than a minute to load. If you are using the Ultra Violet
assembler, then a large opening screen will be shown, but this
will disappear as soon as you press a key, leaving the narmal
power up message on the screen, i.e, (c) 1982 Sinclair
Research Ltd. You are now ready to type in the assembly
language instructions via a Basic program. You can now treat
the operation as though you were writing a simple Basic
program. It is very important to remember that all the assembly
language instructions, and the instructions used to tell the
assembler itself what to do, have to be entered in a line, but
after a REM statement. This is simply so that the machine itself
cannot execute these instructions as they are only
recognisable to the assembler and not to the BASIC.

The assembler must now be told that there is a program in
assembly language ready to be assembled. This is done by
inserting the instruction "GO"’ as the first line of the program.
For example: 5 REM go. Next we must specify whereabouts in
memory we wish to put the assembled machine code routine.
This is done by the “ORG" instruction, followed by the
address at which we want the first byte of assembled code; the
rest of the code will then be put sequentially after this address.
So, for example, if our routine is 10 bytes long, and we ask the
computer to start to assemble at the location 28000, then it will
be put into addresses 28000 to address 28009, (ten bytes in
all). Because we wish to have the above program assembled
into locations 30000 onwards, the next line of BASIC program
which we enter is: 8 REM org 30000.

We are now, in fact, almost ready to type in the assembly
language instructions, but before doing so it is quite useful to
insert a comment at the beginning of the program so that,
recognition is possible when we come to look at it at a later
date. The way in which we enter a comment into a program, is
by putting an exclamation mark after the line number and the
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REM statement, and then entering the comment. For the
above program it would be sufficient to state that it is a scroll-
down program and we would do this by: 12 REM ! Pixel Scroll
— down.

The stage is now set, as you might say, for the actual assembly
language instructions to be entered. Remember, as you would
in a BASIC program, to give line numbers throughout the
routine, and do not forget to put the REM statement before
each instruction. The final command which we must give the
assembler itself, is to tell it that we have finished the code to
assemble. This is done by use of the command "“Finish”. This
can be putinto aline just as we have done above: Line number
REM finish. Having entered this into the computer, assembly
can now begin.

If for any reason you have had problems typing this in, and in
case you wish to check what you have typed, below is what
your final Basic program should look like. Do not worry about
whether the line numbers are exactly the same as in mine, just
ensure that the actual instructions are in the same order.

1l REM go
2 REM org G@eo@
1@ REM id hl, 22527
2@ REM push A1
38 RED |9 geosa0es
€,32; iddr;pop hl;iH
L=BOT.ADDRESS OF BOT.ELDCK i
5@ REM !B=NO.of blocks;\ld b,3;
S,push bec;ld b,.8.B;push bC,push
hl;ld b,B,C,push bcipush hi;push
hl;pop de;dec hj; \d bc,32; Lddr; P
op hl;dec h;pnﬁ bec,dJjnz,C;inc h;
Ld qe,i?saépus hl;add hl,de;pop
qegld bc .32 \ddr,pop hi;ld de, =2
2isbc hi,de;pop be;dinz,B;td dé,
1792, s8bc hl,de;push hl; ld de,32;
ggghhﬁiq%épgshqgl;pop de;pop hi;
r e : X
bgédggﬁfﬁ 2 ;s lddr,pop hi;pop
d de,.32;add hti,de;
e hl;ld hi,23358; 1a b,82/b;ia a5
;gé;,ngéétgeaéa rgr no wrap; lLd
;dec sdJd ;
iee@ REM finish HEESDEIDTTEY
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Assembly is achieved by accessing a machine code routine
which has already been loaded into the computer. As there are
two versions of this program, there are two different addresses
at which this assembling routine is kept. If you have a 16K
Spectrum then you must type the following command:

RANDOMIZE USR 27504.

If you have a 48K Spectrum then you must execute the
command:

RANDOMIZE USR 60000.

Important: Please remember that the above instructions for
assembly, and also the way in which we enter our assembly
language routine into the assembler, is only applicable if you
are using the ACS Assembler. There are various assemblers on
the market at the moment, and there are likely to be even more
by the time that this book is available and itis impossible for me
to outline the ways in which they all work as there are often
vast differences in their operation. | have elected to
concentrate on the use of one particular assembler as | believe
that this is one of the easiest to use. If you already have an
assembler, or you decide to purchase one ather than the ACS
that | am using, then it will be necessary for you to carefully
waork through its instruction manual. This also means that the
last listing shown is probably not usable with another
assembler. Of course the routine which was listed a little earlier
will run exactly the same regardless of whose assembler you
use.

Now back to the task in hand. We have the BASIC program
ready, and we know how to instruct the assembler program to
assemble the instructions which we have typed in — so how
about getting on with it? Having executed the command for
assembly, shown above, a multi coloured display will be
shown on your screen (it will be only multi-grey if you are using
a black and white television!). The assembly is not yet
complete. If you press key “P”, then a listing of your machine
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code routine will be put onto the printer. Press the space key
should you wish to abort the assembly — pressing any other
key will cause the assembly to continue. It is essential to
remember that you can only use the “P" command for printing
at the printer if the machine code routine is being displayed for
the second time, oris in its second “pass”’. Having pressed the
ENTER key down, and a “No Error” message shows at the
bottom of the screen, you are ready to execute the machine
code routine from address 30000 onwards in the normal
fashion (RANDOMIZE USR 30000 or PRINT USR 30000 etc.).

An error in your program will occasion the following to oceur:

If Go, Finish or Org are faulty, then an errar will be given before
assembly starts.

If an error is detected during the assembly, then the assembler
will stop with one of two error messages. The first is a flashing
error message which shows you the line number, statement
number and type of instruction where the error was detected.
This makes it nice and easy for you to go back in your BASIC
program, and so find where the error occurred. The second
error message is one of the Sinclair messages. There are three
possibilities. If you enter a wrong number, i.e. you try to storea
number greater than 255 in a single-byte register, or greater
than 65535 in a register pair, the assembler will repeatedly
subtract either 2566 or 65536 from it until it gets a sensible
number that can be used. Unfortunately, this will not happen if
you'have made the displacement for a relative jump too great.
Whilst we have not yet dealt with relative jumps, though we
shall be doing so shortly, this is an important fact to remember
later on. In the event of it not being able to find a sensible
result, i.e. with a relative jump, then error “B Integer out of
Range” will be given.

There are also.other cases in which errors will be detected, but
these are not important at the moment.

Now that we have a machine code routine in memory, which
should be saved so that if any fault occurs during execution we
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can simply reload the program. Saving of a machine code
routineis well documented in the Spectrum manual itself, but |
shall quickly go over it.

All that is necessary is to type SAVE “Name" CODE
30000,100. This simply tells the computer to SAVE the
machine code program (it knows that it is machine code
because you typed the instruction CODE followed by two extra
numbers), at addresses 30000 on to addresses 30000+ 100,
under the name inserted between the quotes. For example, if
we wish to save the above machine code routine, under the
name pixel-d, then we would type the following: SAVE “pixel-
d" CODE 30000, 100. Do not forget that we are only saving the
machine code program, and not the assembler or the BASIC
program used for entering the assembly language instructions
into the assembler program itself. Loading back in again is
even simpler than saving, just type: LOAD “pixel-d” CODE.
This will load the machine code program which has the name
“pixel-d”* into the addresses from which it was saved. When
the loading is complete a “0"" error message will show at the
bottom of the screen.

DISASSEMBLERS

Often it is useful to be able to do the exact opposite to what we
have just done. In other words, instead of assembling a list of
assembly language mnemonics into machine language code,
we may want to convert the machine language code to
assembly language mnemonics. This is often true when we
have a routine in memory which we have not written
ourselves, or maybe we have written but wish to check that
everything is correct. Another advantage of most dis-
assemblers is that they will display not only the assembly
language mnemonics but also the machine language hex
codes for these instructions. There are various uses for this
facility, some of which will not be clear until later. | have
already used the disassembler quite extensively to produce
final dumps of the programs which are in the book. Using a
disassembler is much easier than using an assembler and for
this reason | intend to spend very little time on the subject.
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Loading of the “ACS Software" disassembler, is the same as
with the assembler — also remembering to load the 16K or
48K versions depending on your computer. [t is also important
to remember that it is possible to have the assembler and the
disassembler in memory at the same time with both versions.
This makes for a very powerful pragramming tool even though
you may only have a 16K Spectrum. This only works providing
that you load the assembler BEFORE the disassembler. Once
the disassembler is loaded into the computer it is possible to
execute this routine by one of the following commands;

48K Spectrum; RANDOMIZE USR 54000,
16K Spectrum; RANDOMIZE USR 26600.

As soon as one or other of these commands has been executed
then the words STARTING ADDRESS? are shown at the top
of the screen. Now it is a simple matter to enter the address in
decimal from which you wish the program to disassemble. If
you make a mistake whilst typing in this address, do not use
“Delete”, instead, press key “E”. As soon as you have
successfully entered the starting address the first page of
disassembled machine language code is displayed on the
screen. If you wish to continue disassembly then simply type
“C"; if you wish to go back to the “Starting Address?”
statement, then type “R". If you wish to make a copy of the
present screen onto the printer then type “P"”, and if you wish
to exit the disassembler and go back into Basic, then type “E”.

One of the most useful features of both the assembler and the
disassembler is that they can remain in memory whilst you are
operating your own BASIC or machine code program, as long
as the machine code program is not located at the same
addresses as the assembler or disassembler, and would not be
affected by a NEW statement. Surely, the NEW statement
clears the memory totally? Fortunately this is not true and, as
you may remember from earlier, the NEW command only sets
back to nought all the memory from the beginning of RAM to
RAMTOP. This is specifically so that such things as user
defined graphics, and/or machine code, can be put safely
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where they cannot be corrupted by a BASIC program, or by
the NEW instruction.

How do we set this RAMTOP to a specific address? Simply
type CLEAR xxxxx (where xxxxx stands for RAMTOP). This
means that all memory after RAMTOP is protected. For
example, to protect all the memory from 28000 upwards, so
that our renumbering program, plus the assembler and dis-
assembler are in memory and incorruptible, then we would
type: CLEAR 27999. Remembering that the upper limit of
RAMTOP is always used, it is necessary to set RAMTOP to 1
less than the address from which we want protection.

You will find that many programs have the CLEAR instruction
in the BASIC listing, so that protection is there. It is also
interesting to note that if you exit from the disassembler, you
will see that in the short BASIC program already in memory
there is a CLEAR statement. Also remember that although
CLEAR does blank the screen, it does not clear any of the
memory above RAMTOP.

BREAKING INTO MACHINE CODE

The way in which the BREAK key works in BASIC is very
simple, the computer simply scans the keyboard, and if the
BREAK key has been pressed then it simply jumps out of
whatever it is doing at the time and prints up an error message,
then jumps back to BASIC. Unfortunately we cannot do that
directly in machine code, because the facility just does not
exist in hardware. We can get around this problem by using
your own short BREAK routine, which can be stored with the
other machine code routines, and which can be accessed
every so often in order to check for the BREAK key. The short
machine code routine below does this. Not all instructions
used in this program have been covered so far and in fact some
of them, particularly the RRA instruction, will not be
mentioned. Suffice to know that if the BREAK key has been
pressed then this program will cause an immediate return to
BASIC:
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Id 8,127
ina,(254)
rra

ret nc

At the moment it is only possible to put the above as part of our
mz?chine code routine, but later on we will learn how to have
this as a simple sub-routine of our main routine. This provides a
very useful and powerful tool. Later on | shall also talk about
how to use this facility not only to detect whether the BREAK
key has been pressed, but also whether any other specific key
has been pressed. Let's carry on then.

MONITORS

The question you have doubtless already asked yourself is
what do.I do if | haven't got an assembler, do not wish to get
one, or simply cannot afford one? Thereis no simple way to get
all the advantages of an assembler without purchasing such a
program, but it is still possible to enter machine code into
memory, though only in its machine language code form, with
some of the advantages offered by an assembler — we use a
MONITOR. There are also some advantages which are not
inherent in assemblers that make up a little for the fact that it is
necessary to convert the assembly language mnemonics into
mach!ne language codes ready for entry in the “assembly to
machine language codes” conversion tables at the back of this
book. Such conversion tables are also available from other
sources.

DEBUGGING PROGRAMS

You vx_rill find that even though you have meticulously checked
a pams:uiar machine code routine, there are bound to be bugs
occurring every so often. They creep in everywhere, whatever
you 510! To recover from a crash in machine code is not
possible ar3d it is therefore particularly important that you find
the errors in a program before you actually execute. For this
reason, and other reasons which will become apparent, a very
great asset is to have a debugging program. These are
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available in packages, just as the assembler and disassembler.
Again, for your information, the debugging program that |
have used throughout this book, and shall use as a specific
example now and later, is not produced by the same software
house as the disassembler and assembler, although they
should have one available by the time this book is published.
The one used here is available from ARTIC Computing.

Loading in this Spectrum debugging program is as simple as
ever, being only necessary to type LOAD “", but do remember
to load the correct version for the machine you are using. Once
the debugging program has loaded, you have various options
open to you, but because this program is designed for use on
your own machine code routines it would seem sensible to first
load in the machine code Pixel Scroll routine which was saved
earlier in this chapter. Although there are no bugs in this
program (they have already been removed!), it will still actas a
very useful example. Additionally, because it is not possible to
load your own machine code routines which have not been
saved via this debugging program, it is necessary first to exit
from the debugging program back into BASIC before you
load. This is done simply by pressing the X" key followed by
ENTER. Once you have done this you can load in the machine
code routine normally. Then, to re-enter the machine code
debugging program, type PRINT USR 30884 for a 16K
Spectrum, or PRINT USR 63652 if you have a 48K machine. It
is very important that you do get these numbers correct, (they
are written on the instructions which come with the debugging
program). Note that all the functions are listed in the
instructions for this program, but they are only written out for
reference purposes rather than for explanation. | do not intend
to run through all the commands and options available on this
debugging program, but let us have a quick look at those
which are more important:

7" enables the disassembling of a short area of RAM — as
does the disassembler that we looked at earlier, although the
disassembler within the debugging program is not quite so
sophisticated. To disassemble the area in which our Pixel
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Scroll routine resides, simply type: Z 7530. If for any reason
you wish to stop the disassembly, hit the BREAK key. Always
remember to type ENTER after having typed the instructions
for the debugging program. It is so easy to forget.

Nate: All the values used in this debugging program are in
hexadecimal, which means that there are a maximum of four
figures, and decimal numbers are not allowed. For this reason
it may be useful just quickly to look back to earlier chapters and
quickly revise how conversions are made between decimal and
hexadecimal. For your assistance however, a list of all the
binary, decimal, and hexadecimal values from 0 to 255 are
included at Appendix A which may be of use to you when
converting. It is also possible to execute a machine code
routine from the debugging program by the command G
followed by the address, in hexadecimal, at which the machine
code routine starts, followed by ENTER. It is then possible
actually to display the contents of the main registers by
pressing ‘D" followed by ENTER. This will show, at the top o1
the screen the values for all the major registers.

Thisiis a useful facility at the end of a program, but would it not
also be useful if you could discover the contents of the main
registers part-way through the program? This can quite easily
be done by the use of what is known as a break paint which is
sometimes referred to as a “quit point”. All it means is that
when the program arrives at a certain address then it will return
straight back into the debugging program. From there you can
display the registers, and, as you will find out a little later on,
dlso display the contents of the flags. To set a quit or break
point simply type: “Q", followed by the address (in hexa-
decimal) at which the break point is required. Then execute
your machine code routine by the command shown above
{'G’). As soon as the routine jumps back into the debugging
program, the break point is exterminated.

Now try disassembling the program, deciding where to put
break points, inserting them, running the program, and
displaying the main registers’ values at each break point, Also,
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by use of the “F" command followed by ENTER, display t?e
contents of the flags. There are also other lesg spectacular
commands within ARTIC's Spectrum debugging program
which | shall quickly mention. It is possible:

1. To enter a message into a certain part of the m!amoryl,l
simply by typing in the message via the keybo_ard, which wi
then convert this into the appropriate hexadecimal value.

2. To search a block of memory for a particular value, the
address of which is then displayed.

3. To copy one block of memory into to another.

4. To display the exchange registers, which we have yet to
look into.

5. To command the debugging program 1o replace all the
occurrences of one specific value with another value.

6. To make the debugging program load and save programs
written with it.

7. To modify the contents of various bytes of memory, ang
also enter the machine language codes, into addresses, an

then run them.

8. To set specific registers with sgeqific values, so that you
can simulate certain occurrences within a program.

9. To print up the basic character codes of your routine, so
that it is possible to enter them into a REM statement.

WHICH ONE? f
If it comes to the crunch and you can only afford to bugonteﬂ.]oe
these programs, it will probably serve you bes_t to : uy i
debugging program first. Not .un1_y because it helps \{) )
tremendously when it comes to f|ndmg_errors in program, Pd
also because it is a very good aid to writing programs, is an ?1 :
to understanding how a program works and h_ow the (;ompudz

works in general. If you decide to go fur_ther in machine c?h r'1
and wish to write longer and more complicated prc}gran;\si L gl

it is very likely that an assembler would be the most useful tool,
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aslong as it is coupled with a disassermbler. Next would come a
debugging program.

AND FINALLY. . ..

Before going on to writing our own programs, which we shall
be doing in the next chapter, | shall quickly run through four
very useful instructions which have either been used already,
but you may not yet fully understand, or have been alluded to
rather than fully explained. As with everything that we have
learned so far, it will become far clearer when actually put into
practice. For this reason, the next chapter is solely taken up
with the writing of machine code programs. A great deal of
attention is also given over to careful description of each
instruction and procedure necessary to produce a good
program. The'instructions that we shall be looking at now are:
INC, DEC, NOP, RET.

INC:

INC is another of those instructions which comes in two forms.
It can either be used on a single register or a register pair. One
of the major advantages of this command is that it can be used
on any of the registers. INC X will cause the contents of
register “X"" to be increased by one. Therefore, for example, if
the A register holds the value of 5, and the INC A command is
executed, then the value of register A will become 6. The
effect will be exactly the same whether it is done on the A
register, or the B, C, D, E, H, or L registers. With addition, if
the value of A or any other register for that matter is 255, and it
is “INCremented"”, then the value of the register will go back to
zero. But now for the catch. If the value of a register is changed
from 255 to @ by the increment instruction, then the carry flag
will not be set as it would have been with the ADD instruction.
This is a crucial fact to remember when, later on in this book,
you will want to check the value of a register to decide on the
subseqguent course of your program.

The diagram below is a simple representation of the action of
this instruction.
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inc

If you wished to increment the contents of a register in BA‘_S ltC,
you would use the instruction let B=B + 1, when 'ghe regis Ier
1o be incremented is B. It is quite app_arent frpm this example,
that the machine code equivalent is cor_ls!derably shor}t;r.
hence saving memory, and is quite _defm!tely faster. e e
assembly language mnemonics and their equivalent hex codes

are shown below:

INC A 3C
INC B 04
INC C oc
INC D 14
INCE 1C
INCH 24
INC L 2C

It is also possible to Increment the valge of a regis_ter-pair itrjft
as with a single register — The only difference benng.thatt_ is
instruction will not in any way affect any of the flags including

the carry flag.

The assembly mnemonics and the hexadecimal codes for
these instructions are shown below:
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INC BC 03
INC DE 13
INC HL 23

The operation of such an instruction is not very difficult to
cornp.rehelend, 'though you may have some difficulty in under-
§tandmg itat f|r§t. Justin case you do have any problems, here
isa shgrt maghsne code program to illustrate its functio‘n B
executing this program from BASIC (using the PR'IN'F
_stgtemeng), the final value of register pair BC will be shown. It
Is Interesting to play around with the contents of BC in the fi;st
statement, noting how various changes affect the answer.

ar Ioaaa

30002 81 02 o Ld bc,000@
30003 @3 inc be
30004 C35 e o

There is still one function of the INCrement statement at which
we have not yet looked. It is actually possible to increment the
contents of a particular location. For example, if you first load
into the register pair HL the address of the'Jocation whose
pontentg are to be incremented, and then execute th

Instruction “INC (HL)", the contents of the address HL will be
increased by one — THE VALUE OF HL ITSELF WILL NOT Bg

CHANGED. T i ' -
kb 0n he diagram below shows this a little more

28009

inc (h)

28009
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The hexadecimal machine language code for this instruction is
34. Do remember that this instruction can only be used in
conjunction with the HL regiseter.

Now enter the program listed below, executeit, then check the
value of location 28012. Re-run the routine and check again
the contents of location 28012. You will find that it has
increased by 1. Note that the operation of incrementing the
value of a location works only on that particular location,
hence the maximum value which can be incremented is 255 —
that being the maximum content of any location, as by now
you well know.

Here is the program:

org 30000

3@0Q@ 231 6C &b td ht,28012
38aa3 23 incthl?
30084 C9 ret

DEC:

This instruction is exactly similar to INC, except that the value
of the register or location is decremented rather than
incremented — it goes down by one rather than up! For
example, if we decide to do the DEC A command when A
already equals 7, then the result will be that 1 is subtracted
from the value of register A, the result therefore being 6. The
diagram overleaf shows clearly this process.

Below is a list of the assembly language mnemonics and
hexadecimal machine language codes for these instructions:

DEC A 3D
DEC B 05
DECC oD
DEC D 15
DECE 1D
DECH 25
DEC L 2D
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You should by now be able to co

. nvert the example program
used earlier :Iofdemonstrate both INC and DEC commgndgs In
case you still find this confusing, here is the routi :
e outine altered
org 3@8e
30000 !

30003 o Ld
30004 Co e e

Agaln, .the'carry flag is not altered when the decrement
instruction is executed on either a single-byte register, or a
register-pair. The assembly language mnemonics anf,:i the
hex.adecumal codes for the decement instructions, using the
register-pairs, are shown below: ; X

DEC BC 0B
DEC DE 1B
DEC HL 28

cAsdyou can see from the above mnemonics and hexadecimal
ac. es,blthe hex codes do bear some relationship to the
ssembly language mnemonics. For example, all the
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decrementing instructions on the register-pairs have a B as the
second digit. It is useful to remember small tips like this — it
makes life easier if you do not have an assembler. Take a few
minutes off to look through the book to see if you can find any
other similar relationships.

As with the increment instruction, it is possible to decrement
the contents of a particular location when the address of this
location is held in register pair HL. Below is an example of this
in use.

qgrg _ J32aad
302000 21 &C SD
Jeaa3d 28

30024 C9

Ltd hti,28012
decth )

ret
After executing this routine, check the value of location 28012
by PEEKing it from basic, then re-execute this routine and re-
examine the contents of location 28012. In all cases, except if
the previous value of that location was 0, the contents will
have decreased by 1. If, on the other hand, the content of that
location is already @, then it will become 255 when 1 is
subtracted.

RET:

By this time you will almost certainly have grasped that this
instruction causes the routine to finish, and the control of the
computer to go back to BASIC. The RET instruction at the end
of a program is always necessary, unless you use one of the
minor variations which will be dealt with later. They do not
affect what we are dealing with at the moment. The hex code
for the assembly language mnemonic “RET"" is an easy one to
remember and you will probably find that within the next few
pages it will become second-nature to you — it is C9. The
reason for this eventual familiarity will be your continued use of
the code.

NOP:
This is a very easy command to understand — it does
absolutely NOTHING. When the computer comes across this
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instruction, whose code is 0, it will do absolutely nothing,
carrying on to the next instruction and leaving the contents of
all registers, all addresses and all the flags exactly as they were,
It may seem strange that anyone would want to include an
instruction which apparently does absolutely nothing,
whereas in fact it is very useful. This results from it often being
important to be able to leave areas within a routine where
nothing is held. This means that later on you are able to insert
extra commands. This practice is similar to the way in which
you might leave a few spare lines between each program linein
BASIC. In other words, you would never number your
program lines 1, 2, 3, 4, and so leave yourself no room to
manoeuvre. Similarly, it can be most useful to have a
command available that ensures, when required, that the
computer cannot operate.

Until now we have concentrated very much on the theoretical
side of machine code although | have used examples and have
included some programs for your use. However, actually using
machine code is its main attraction. The following chapter will
therefore concentrate on the process of constructing the ‘idea’
of a program, coding it, and then finally debugging, running
and saving it. Before we leave this chapter here is a
complementary program to that used eatlier. This is “Pixel
Scroll Up". Use either an assembler, or the basic monitor, or
the debugging program.

Have Fun!

org 390@2QQ

22200 21 20 4@ Ld hiL,163384
2@283 ES PUsSh RL
22004 11 @0 SB Ld de ,23298
32087 @l 20 02 Ld bc,32
32210 ED B@ Ldir

39012 E1 POF h1l
HL=TOP ADDRESS OF TOPFP BLOCK
E=NO OF BLOCKS

23013 s 83 Ld b,3
30015 CS PuUsh beC
3@@16 ES PUSh hi
geei7 @58 s td b,8

—
=k
Fes

22019 CS push bc
30020 ES push hi
Z9@a21 6 @7 Ld b,7
C
38223 CS push bc
30024 ES push hli
sagas ES push ht
3ev26 D1 pop de
3027 24 ing B .
20028 21 22 2?2 id oL, IE
@231 ED B@ Ldir
30233 E1 poP hi
0034 24 inc h
3@@35 C1 pop bc
20036 1g Fi 352ﬁ'§¢
o 8 E
sgggg 11 E@ @6 Ld de ,1760
3@@42 ED S2 sbc hli,de
30044 D1 pop de
20245 21 20 @@ ld_bc,Be
530048 ED BO Ldir
32050 E1 PCP hl
2051 11 2@ @0 Ild de ,32
30054 19 add hi,de
36055 C1 pap bc

[=3=] djnz,B
ggggg %? E@ @8 Ld de , 1760
22061 18 add hi,de
Z@@62 ES push h1L
20963 11 20 0O Ld de 32
Joess 19 add hli,de
380067 D1 pop de
30968 @1 20 Q@ Ld bc,32
38073 £1 O pap hi
33374 11 2@ @8 Ld de ,2048
Seev7 19 add hi,de
P78 C1l pop ba
32079 1@ BE 44Nz,
30081 11 20 00 Ld de, 32
20084 ED 52 sbc hi,de
22086 EB ex de, hi
Z0@87 21 0@ SB Ld hL,23296
ZDP9Bd 26 20 Ld b,32
(a3
2@e92 7E Ld a, thl)
aaagaee?or no wrapnop
Spead 12 Ld tde) ,a
@95 13 inc de
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Chapter 7

THE WRITING OF A
PROGRAM

We have now progressed a long way in learning how to use
machine code and the instructions involved. It is a good time
now to start looking at how we can put together our own
machine code programs. By virtue of only a very few
commands the following are within our competence, and so
can be put to good use:

1. Add registers together

. Add to registers

. Subtract one register from another
. Subtract numbers from registers

. Increment a register

Increment the value of a location

. Decrement a register

0 N oo s W N

Decrement the value of a location
9. Load a register with a value
10. Load aregister with a value of another register

11. Load a register with the contents of a particular
location

12. Load a particular location with the value of a register
13. Return to BASIC and do absolutely nothing.
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With this grounding, we can put together quite a
comprehensive machine code routine. However, now is also
the time when you find that it is not quite as easy as writing in
BASIQ — but just persevere and you will reap considerable
bepeflt — you cannot simply sit down at the keyboard and
write. Instead you must go about it logically and systematically;
you must decide stage by stage what you wish to do and how
you wish to doit. Always make sure that you have not mde any
m:sta!ces since it is not possible to recover from a crash in
machine |_:ode. Another important factor to remember is that
the machine code program is not as easy to go back into (to
chapge) asisaBASIC program. Therefore an almost invaluable
and_ is to have flow charts and notes on exactly how you have
written your program. What follows immediately is an outline
of the process of “mapping out’ and then the construction of
my programs. You will come to have your own personal way of
tackling this process, but for the moment benefit from studying
mine:

1. THE IDEA OF BRIEF:

Decide precisely what you wish the program or routine to
accomplish when completed. This will invalve looking very
carefuillv at the problem which you wish to solve or the ideas
you wish to put into effect, and deciding then exactly what you
actually want the computer to do. Write it down and use it to
refer to as you go along.

2. THE OUTLINE FLOW CHART:

_This ensures that you have broken down your over-all concept
Into its compenent parts. Life is a lot easier when it comes to
worklr_\g on each separate stage. At this time it is not necessary
1o go into any great detail of what you want each part to do,
only the orderin which you want the separate parts of your idea
to be executed.

3. WORKING OUT THE STRUCTURE:

This el:ltails yoing through the whole program, stage by stage,
analysing what movement or operation you wish the computer
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to undertake at each particular paint. Bear in mind the range of
commands which are at your disposal. From this it is a natural
progression to the next step.

4. THE FINAL FLOW CHART:

This basically is an amalgamation of each of the particular
stages in the workings of this routine, put sequentially and
logically into an easily understood form.

5. CONVERSION:

This does not mean changing assembly language into machine
code, but rather the Basic operation of transforming what you
have written in the form of short statements into assembly
language instructions. These can then be put into the
“assembler understood” version i.e. the mnemonics. Now put
the instructions into a logical order, just as you will require the
computer to execute them.

6. THE DRY RUN:

Now waork through the program step by step, not using the
computer, but with pen and paper — recording the contents of
the registers used, the contents of any particular addresses
which might be altered, and the state of the flags themselves. If
all this goes well you are ready for entry into the assembler, but
if not, then at least you have not spent time converting to
machine code, typing in and running before discovering the
problem.

7. ENTERING IT:

To be familiar with the procedure for using your own particular
assembler is very important and is why | have elected to stay
with one particular program throughout the book.

8. CHECKING:

Before going any further it is worth just checking, either by
disassembling or thorough examination, that you have not
made any minor mistakes whilst entering itinto the assembler.
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Often mistakes are detected by the assembler, but equally as
often they are not and then cause a completely different
instruction to be assembled. This can mean the whole program
crashes without it being evident whas has gone wrong.

9. DEBUGGING:

This can be helped by a debugging program, the use of which |
have already outlined. Debugging a program whilst it is in
memory is not only invaluable for checking for errors within
your program, but also helps to give you a much better
understanding of what is going on within the computer.

10. SAVING:

As | have already pointed out, the saving of machine codeis not
the same operation as saving a Basic program. It is therefore
important to be able to do both, so as to be able to make a
permanent store of your routines.

11. RUNNING IT:

You are now at the stage when everything is “A OK" and ready
to execute your routine. Even this is not the easiest and most
straightfarward operation.

Now let us start this process with our own idea, so that we can
follow it through to a final program by the end of this chapter.

THE IDEA:

What we are going to do is to write a machine code routine
which is:

1. accessible via BASIC

2. is able to communicate with BASIC

3. can add two 16 bit numbers together

4. can subtract one 16 bit number from another, leaving
the results available for use from the BASIC program
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THE OUTLINE FLOW CHART:

GET NOS
182

GET NOS
3a4

SUBTRACT

RETURN
TO BASE

(HIHEH M
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WORKING QUT THE STRUCTURE:

The first problem that we come up against is how to assign
values from BASIC into the machine code program, so that the
16 bit numbers to be added or subtracted are controlled via
BASIC. Remember, we cannot simply assign a variable in
BASIC and expect recognition by the machine code. It is a
complicated procedure to transfer the contents of a BASIC
variable into a machine code register. For this reason | feel that
it would not be a particularly viable solution. Remember also
that itis not possible to load a register from BASIC, as there are
no register manipulating instructions within BASIC,
Fortunately, there is one operation which can be done via
BASIC or viamachine code. This is transferring a number into a
particular location, and then transferring that value out of the
location into either a register or a variable as in BASIC. If we
want to load a particular number into a location in BASIC, then
we use the POKE command. To transfer it from that location
into a register we use the LOAD location instruction. All we are
really doing is to put a value into a box, go into machine code,
and then take it out again.

The next problem is transferring the answers from machine
code back into a form accessible via BASIC. In this case there
are two different methods of solving the problem. Because of
what was said above, it would seem totally fruitless to
investigate the possibility of accessing a machine code register
in BASIC.

The first solution that may be used is very similar to the way in
which weare transferring into the machine code programin the
firstinstance. In other words, load a particular location with the
answer whilst still in machine code, and then take the answer
out again when back into BASIC.

On the other hand, if the PRINT USR xxxxx, instruction is used,
where xxxxx is the location of the machine code program, then
the contents of the register-pair BC will be printed when the
machine code routine has finished. This means that if we make

124

sure that the answer is in register-pair BC then all we have to do
is use the PRINT statement. It would work equally as well if we
used the “LET A = USR xxoxx' instruction, again where xxxxx
equals the address of the machine code program, because the
contents of the register-pair BC will be transferred to :.he
variable A. This solution is very useful indeed, but its major
drawback is that you can only store one answer in the register-
pair BC. Rather than return to BASIC and then have to re-enter
the machine code, it is advisable to use a combination of the
two solutions. In other words, we would store the first answer
in addresses which can then be assessed via BASIC, and have
the second result loaded into BC, so it can be printed or
transferred to a variable.

Having now decided exactly how we are going to trar)sfer t‘he
constants from BASIC to machine code, and the way in which
we are going to transfer the answers from machine code back
into to BASIC, we must now work out the sequence of
occurrences between these two operations. What we are do'!ng
now is to decide whether to do the addition or the subtraction
routines first. It is a matter of no consequence, just as long as
we remember to put the result of the firstroutineintoa memory
location and the result of the second routine in the register-pair.
As a matter of course | have decided to do the addition before
the subtraction within our program. This decision was not
arrived at after excessive analytic processes, | just tossed acoin.

Flow Chart — Version 2: Below is the second version of the
original flow chart; look at it carefully in the light of the above:

Get the first two values out of their particular memory
addresses.

Add these two numbers.
Store the result in a box, or location.

Get the second two values out of their respective memory
locations.

Subtract one from the other.
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Store the result in register-pair BC.
Return to BASIC.

NOW FOR THE BASIC
Store the four values

Run the machine code routine
Print the result of the second routine

Retrieve and display the result of the first routines which
were loaded into the memory locations earlier on within
the machine code routine

Stop

HOW DO WE ADD TWO 16-BIT NUMBERS?

Let us presume that the numbers which have been accessed
from the computer memory have been loaded into the registers
HL and DE. The result of the addition is then to be stored in
register pair HL. It is important to remember that H is the high
byte part of register pair HL, and L is the low byte part of HL.
Similarly, D is the high byte part of register pair DE, and E the
low byte part. As in ordinary addition, we add first the “low
bytes” — to do otherwise would prove more than problematic,
a fact which will become more obvious as you proceed.

We need therefore to add register E to register L.
Unfortunately, as you may remember, it is only possible to add
other registers to register A. So how do we get out of this?
Simple. All we have to do is transfer the value of L into register
A, then add register E to register A. Theresult of adding Eand L
together is now held in register A, so that the answer in A can
be transferred back into L.

We have now decided on our first two instructions for our
machine code program. First we must “transfer L to A", thisis
shown in the diagram below:
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We must then add register E to register A; again this is shown
diagrammatically below:

ADD AE

We now have the result in register A, but that is not where we
want it!! We want the whole result to be in register-pair HL, so
we must put the result of the addition of the low bytes into
register L. This can be done by a simple transfer of the contents
of Ato L.
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We should now take a quick look at what happens if adding the
two bytes together results in a number greater than 2565 — as
255 is the largest number which can be held in any single
register. One good thing about microprocessors is that the
response to this occurrence is wholly consistent and
predictable. Everything goes back to zero! Adding 1 to 255
starts it back at 0; adding 20 to 255 sends it back through zero
to 19. Additionally, the carry flag is set to 1. The carry flag is a
single bit within the F register to which the CPU itself refers in
order to ascertain whether or not a number has overflowed. If a
number has gone over the 255 barrier then there has definitely
been an overflow, and the carry flag is set to 1. If, of course,
there is no overflow, then the carry flag will re-set to 0. To refer
to this from time to time is absolutely essential — its importance
being hard to overstate.

The carry flag itself is a strange beast: it cannot be accessed
directly, and soitis not possible to load A, for example, with the
status of the carry flag. On the other hand there are instructions
which take the carry flag into account. The status of the carry
flag can be controlled however, and so it can be set and re-set at
will. It is one of those commands which take the carry flag into
account which we shall use when adding the high bytes
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tagether. We shall use an instruction which does the following:
adds E to H plus the status of carry flag. The status of the carry
flag being set by the addition of the low bytes, and not changed
by any transfer of registers, this will effect the correct addition.

Back to the task in hand. We were at the stage when the low
bytes had been added together and we were ready to add the
high bytes. Given that we cannot add D to H, but only D to A,
we transfer H to A. E.g.

Now we add register D to register A and take into account the
status of the carry flag. E.g.

2

d
a + +O

ADC A,D
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The next instruction therefore is to “add D and carry to A"

We now have the result of D plus H plus the carry flag in the A
register, and we want to have it backin the H register so that the
final result is held in HL. The trar sfer is effected thus:

"THE RESULT IS NOW HELD IN HL (At long last!)”

The “addition” is complete, but it does now have to be made
accessible via BASIC. We can either put the value of HL into
BC, so that it can be printed on the screen, or be transferred
into a BASIC variable, or we can store the result in memory
locations, all of which can be accessed via BASIC. Of these
options — using BC to hold the result — would seem to suit our
purposes best. However, as we are likely to want to make use of
the BC register during the subtraction part of the program so
we will have to use memory locations for storage. Two memory
locations are needed for this two byte sum (16 bit). The
locations at which the answer may be loaded can be anywhere
in RAM, but first make sure that you are not overwriting some
other program. If you are in any doubt whatsoever, then refer
back to the section on the memory map. For our purposes
addresses 27004 and 27005 will be fine. Itis possible to splitthe
answer up into two addresses which are not adjacent to one
other, but it is rather pointless and makes the programming
rather difficult. We can now instruct the computer to store HL
in locations 27004 and 27005.
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NOTE:

The computer stores the low byte before the high byte, so do
remember to multiply the second address contents by 256,
rather than the first.

Now to deal with subtracting one 16-bit register from another,
using a register-pair subtraction command. HOW? Take as a
starting point that the two required values have been entered
into the register-pairs DE and HL, the object being to subtract
the value of DE from the value of HL — the result to be left in
HL. Only one command is needed to accomplish this, but
remember that this command also brings in the carry flag. If the
last instruction executed has caused the status of the carry flag
to become 1, then our result may be wrong, so we do have to
make sure that the carry flag status is 0. This is indirectly
possible. For now, make do with the instruction, 'Reset carry

flag to 0", e.g.
O = "8 £

O (5
U i
2 )
G

With the carry flag at @it will not affect the result of subtraction.
We can go ahead and subtract (with carry) DE from HL —
shown diagrammatically as below:

You have effectively subtracted the value of DE from HL,
leaving the result in HL. All there is to do now is to decide on
how to transfer this result back into a form which can be
accessed via the BASIC. Earlier we avoided using the BC
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register-pair in case it was needed during the construction of
the program — perhaps a laborious way of making a point, but
one worth making nonetheless. Now that it is evident that
“BC" is free to be used it can come into its own. Transfer H to
B, transfer L to C. The result which was originally held in HL is
now also held in BC. See below:

e et
ot ) e

The way in which our program is to work is now firmly under
control, and so the next stage is to transfer the original values
from Basic into memory, and then have the machine code

program handle the transfer of the contents of each location
into the correct register pairs.

Transferring Initial Values Whilst In BASIC For Use In Machine
Code.

The first requirement is to convert the four 16-bit numbers into
pairs of 8-bit numbers; these can be placed in memory and then
recalled by the machine code. Working in hexadecimal this
process is relatively easy. Take the first two digits and find their
equivalentin “base 256", then take the final two digits and find
their equivalent in “base 256". The result provides the two
halves of the 16-bit number. At the back of this book you will
find a table of all the binary, hexadecimal, and decimal numbers
from @ to 255. Do not hesitate to refer to the tables — they will
take some of the labour out of the exercise. Remember that the
computer itself will save the low byte value first and then the
high byte. Do the same. Whilst it will not alter the result, just as
long as the relevant changes are made in the program, it will
help towards ‘getting in the habit at this stage’.

The eight 8-bit numbers can be stored in any part of RAM, as

132

long as they do not interfere with anything else. | have already
chosen to use 27000 as my starting point. For the addition:

L = 27000
H = 27001
E = 27002
D = 27003
and for the subtraction:
L = 27006
H = 27007
E = 27008
D = 27009

The result of the addition will be held in addresses 27084 and
27005.

Having converted the 16-bit numbers into two 8-bit numbers it
is an easy job to put the numbers into the addresses in
preparation for running the machine code routine.

HOW DO WE GET INTO MACHINE CODE?

Itis not possible to GOTO the machine code routine or GOSUB
the routine as both these instructions are for BASIC programs
use only. BASIC does have a very special command totally for
the machine code user — USR — which stands for User Sub
Routine. Within the context of BASIC, USR is not a complete
command, and so it is necessary to prefix it by one of the
following:

PRINT, hence you print to the screen the value return in
the register pair BC,

LET, which means that you can assign a variable the value
of the contents of register pair BC on a return, and

RANDOMISE, which simply sets the random seed to the
result in register pair BC.

Both PRINT and LET are wasteful of memory, and for this
reason RANDOMISE is generally used as the accessing
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command for a USR routine. A USR routine is very much like a
GO SUB routine, in that itis a sub routine; to get out of it again
include the instruction RETURN, which in the context of
machine code has been shortened to RET.

Next we have to look at how to access the constants which
have been stored via BASIC. The best way of representing the
numbers stored in their locations is by way of a diagram:

On the face of it, the next move should perhaps be to use a
command to load the contents of address 27000, for instance,
into register C. Be assured, this would involve using four
lengthy routines, and is therefore definitely to be discouraged.
Instead we make use of the facility for loading a register with the
contents of a location whose address is held in HL. Using this
method, and increasing or decreasing the value of HL, in order
to select which bytes to load into the registers, is referred to as
“using the HL register as a pointer”’. The operation of a pointer
is clarified in the diagram below:

28000
Al
28001
FF
T
(HL=28002) ne—p cs
78003
41
Z800a T |
40
2800
11
28006
20
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Now to put this into effect.
First set the pointer to 27000; “load HL with 27000"

Get first half of first 16 bit number into C; transfer
contents of location HL to C

Move pointer on one location; “increase value of HLby 1"

Get second half of first 16 bit number into B; “transfer
contents of HL to B
Move pointer on one location; “increase value of HL by

o

one

Transfer first half of second 16 bit number to E; ““transfer
contents of HL to E”'

Move pointer on one location; “increase value of HL by 1"

Transfer second half of second 16 bit number to D;
“transfer contents of location HL to D"

The transfer is now complete, but the only problem is that we
have to load one of the values into BC because HL was used as
the pointer. HL is the only register pair which can be used as a
pointer, as itis the only register which may hold a location to be
accessed. Do the following two instructions: ““transfer Bto H",
“transfer C to L". The constants which were stored from
BASIC are now in their correct machine code register-pairs.

Next is the transfer of the constant from BASIC to machine
code for the subtraction section. Notice the great advantages
of the pointer system. One of the nicest things about this
system is the ease of having the computer access different
addresses simply by changing the initial contents of the HL
register — which is acting as the pointer. Another aspect of the
pointer system is that it is possible not only to access one
location after the other — going forwards, but also to access
one location after another going backwards (by decreasing the
value of the pointer). This is accomplished by the decrement
instruction. This will become clearer in a step by step plan of
how to put the values from memory into their register locations.
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Load pointer with top value: “Load HL with 27009"

Transfer second half of second 16 bit to D: “‘Transfer contents
of location HL to D"’

Move pointer back one location: “Decrease value of HL by 1"

Transfer first half of second 16 bit number to E “transfer
contents of location HL to E”

Move pointer back 1 location: “Decrease value of HL by 1"

Transfer second half of first 16 bit number to B: “transfer
contents of location HL to B”

Move pointer back 1 location: “decrease value of HL by 1"

Transfer first half of first 16 bit number to C: “transfer contents
of location HL to C”

We now have the same problem as before: we have to transfer
register pair BC into HL — BC was used to store the values on a
temporary basis as HL was being used as the pointer. So:

“transfer B to HL"
“transfer C to L

The diagram below shows exactly what is happening.

The process of transferring the data from BASIC to machine
code is now complete. They have been processed and re-stored
in a way which is accessible via BASIC. Therefore the actual
writing of the program is almost completed. All that remains is
to transfer control from machine code back into BASIC.

The USR command which we use to transfer control from
BASIC to machine code has already been referred to and
likened to the GOSUB command in BASIC. The line pointer
must now be moved from its present line to the assigned
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subroutine. When the subroutine is at an end a RETURN
command is included to tell the computer to go back to one line
after the initial GOSUB location instruction. For example, if all
the lines are numbered in increments of 10, and the GOSUB
instruction is on line 10, then the RETURN instruction will
cause the program to continue operation from line 20. In
machine code, the same instruction “Return’ is used to
transfer control from the present machine code instruction,
back to the line after the original USR location instruction in
BASIC. With a USR instruction at line 1@, and the next line
being line 20, when the machine code routine has finished and
encountered a RET instruction, the Basic program will
continue to run from line 20.

Therefore, the final instruction of a machine code program will
be to “RETURN to Basic".

Putting This All Together

Good practice dictates that, before going further, a clear and
logical listing should be made of the instructions that make up
the program.

The first section shows the BASIC required to transfer the
original values; the secand section shows the actual workings
of the machine code program, including transfer in and out,
and the addition and subtraction routines. The final section
shows how to access the answers from BASIC.

BASIC:

Transfer first addition value into locations 27000 and
27001 (L H)

Transfer second addition value into locations 27002 and
27003 (E D)

Transfer first subtraction value into locations 27005 and
27006 (LH)

Transfer second subtraction value into locations 27007
and 27008 (E D)
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Jump into machine code subroutine

MACHINE CODE:
Load register pair HL, with 27000
Transfer contents of location HL to C
Increase value of HL by 1
Transfer contents of location HL to B
Increase value of HL by 1
Transfer contents of location HL to E
Increase value of HL by 1
Transfer contents of location HL to D
Transfer B to H
Transfer C to L
Transfer L to A
Add E to A
Transfer A to L
Transfer H to A
Add D and carry to A
Transfer A to H
Transfer HL to locations 27004 and 27005
No operation
No operation
Load register pair HL with 27009
Transfer contents of location HL to D
Decrease value of HL by 1
Transfer contents of location HL to E
Decrease value of HL by 1
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Transfer contents of location HL to B

Decrease value of HL by 1

Transfer contents of location HL to C

Transfer B to H

Transfer Cto L

Reset carry flag to 0

Subtract with carry register pair DE from register pair HL
Transfer Hto B

Transfer Lto C

Return to BASIC

BASIC:
Print final value of register pair BC (subtraction result).

Get the result of the addition by PEEKing and PRINT.

CONVERSION TO ASSEMBLY LANGUAGE

Our expectations of the computer are now clear, and we areina
perfect position to convert our instructions into assembly
language mnemonics, which can then be entered into an
assembler. It is also a good idea at this point to find out the
hexadecimal code for the instructions, which can then also be
entered via the BASIC monitor or a debugging program. This
also serves as a worthwhile check. Below is a full table showing
the instruction, the assembly language mnemonic and the
hexadecimal code:

Worded Assembly Hex
Instructions Language Codes
Load HL with 27000 LD HL,27000 217869
Contents of location HL to C LD C,(HL} 4E
Increase value of HL by 1 INC HL 23
Contents of location HL to B LD B,(HL) 46
Increase value of HL by 1 INC HL 23
Contents of location HL to E LD E,(HL) 5E
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Increase value of HL by 1 INC HL 23
Contents of HL ta D LD D,{HL) 56
Transfer B to H LD H,B 60
Transfer Cto L LD L,C 69
Transfer L to A LDAL 7D
Add E to A ADD AE 83
Transfer A to L LD LA 6F
Transfer H to A LD A H 7F
Add D and carry to A ADC A.D 8A
Transfer Ato H LD H,A 67
HL to locations 27004 and 27005 LD(27004),HL  227C69
No operation NOP o0
No operation NOP 00
Load HL with 27009 LD HL,27009 218169
Contents of location HL to D LD D,(HL) 56
Decrease value of HL by 1 DEC HL 2B
Contents of location HL to E LD E,(HL) 5E
Decrease value of HL by 1 DEC HL 2B
Contents of HLto B LD B,(HL} 46
Decrease value of HL by 1 DEC HL 2B
Contents of location HL to C LD C,(HL) 4E
Transfer B to H LDH,B 60
Transfer C to L LDL,C 69
Reset carry flag to @ AND @ E6 00
Subtract with carry DE from HL SBC HL,DE ED 52
Transfer Hto B LDB,H 44
Transfer L to C LDC,L 4D
Return to Basic RET c9

DRY RUNNING IT

Now is the time to check the program carefully for any errors
that might have crept in along the way. If there is a major error
then it is likely that the computer will “crash” without giving
you any basis on which to determine just what has gone wrong.
Having gone to all the trouble of typing in the program after is
not the best of times to discover a ‘bug’. This is the stage of the
game when it is good general practice to do a “‘dry-run”.

Whatis meant by ““dry running” a programis, in effect, running
the program on paper! You might, for example, use a ‘table’ of
all the registers, inserting their values after each instruction —
keeping note of the status of the Carry Flag etc. Errors usually
show up quickly using this method. Another useful feature of
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this method of checking, is that it creates a document which
shows what the program is actually doing, and so _allovgs f?r
subsequent verification or alteratior). Included here is a simple
table that will assist in dry-running your own programs.
Consider each assembly language mnemonic, decide wh?t it
does, and then insert into the table the result of theinstruction.

For example if the command LD A,40 is encountered, then

enter 40 in the A column. Used in this way it will provide a

“ready reckoner” that will allow for immedia_te verification of
register contents. Expanding the table to take in all the memory
locations so far used in your program may help to familiarise

you with its use.

H L D E B C A (Carry) if known

ENTERING IT INTO THE ASSEMBLER |
i i iti t usua
Whilst the hexadecimal codes have been‘ |lEteF|, itis no G
even to work them out if an assembler is being used as this
would be doing the job of the assembler. W_e now have the
assembler ready, and also the program which we want to

assemble.

i i ting instructions
Once the assembler is LOADed |t§ opera )
should be given. In this case a “GO command, to es“tablgn
that there is a program waiting to be assembled. The “OR
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instruction is then used, together with a location address, to
identify where the assembled program is to be held. Thoﬁgh
ready now to enter the assembly language mnemonics after the
REM s_tatement, it is worth while putting a comment at the
beginning of this program for identification at a later stage if
necessary. This is done by putting an exclamation mark after
the REM statement followed by the comment. In this case it
wmt{ld Pe appropriate to write “‘addition and subtraction
routine”.

Each mnemonic must be carefully entered to make sure that no
errors occur. Check the final list of mnemonics against the
qugmal list. It is possible to have more than one instruction per
line, by separating them with a semicolon, but it is much easier
to rea_ad off the routine if only one instruction per line is used.
This is what the list of instructions should look like when they
have been entered into the assembler:

FINAL VERSION

\d hi, 27000

Id ¢, (hl) 211269
inc hi 23
Id b, (hi) 46
inc hl 23
Id e, (hi) SE
inc hl 23
Id d, (hl) 56
Id h,b 60
dl,c 69
Ida,l 7D
add a,e 83
Idl,a 6F
Ida,h 7L
adca,d BA
Idh,a 67

Id (27004),hl 227C69
nop ()
nop 0]

Id hi, 27009

Id d,(hl) 212;69
dec hl 2B
Id e,(hl) SE
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dec hi 28

Id b, (hl) 46
dec hl 2B
Id ¢, (hi) 4E
Id h,b 60
Idl,c 69
and @ EGD0
sbe hl, de ED52
Idb,h 44
Idc,| 4D
c9

ret
We are now almost ready to assemble the routine, but there are
still things to do and point out.

Put a comment on the next-to-last line to indicate that this is the
end of the routine. The “Go”, “Finish” and “ORG" instructions
are very important to the assembler itself, and so it will refuse to
operate if any of these are absent. The assembly will cease and
an error code will be displayed. If too many spaces, or
insufficient spaces areinput, then it may well misinterpret. This
can cause a major problem as it is a difficult error to detect.

Once the program has been assembled it is advisable to make a
copy on cassette or microdrive so that if the program should
crash then all would not be lost. To save the assembled
program type:

SAVE “name’ CODE xxxxx, yyyyy

where xxxxx stands for the location from which you wish the
routine to be saved and yyyyy being the number of bytes in this
routine. The instruction CODE is the vital part, teling the
computer to save machine code. To verify simply type VERIFY
#t CODE. To save the BASIC program which holds the
mnemonics, which is easier to change and then recompile,
treat as though it was a normal program. l.e.: SAVE “name".

To load in the machine code program in its hexadecimal form,
type LOAD “‘name” CODE. This will load in a machine code
program called “name"”, and will locate it at the address from
which it was saved. To reload a normal BASIC programi.e. the
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program which holds the assembly language mnemonics, type
LOAD “name”.

The BASIC program used to hold the mnemonics before
assembly commenced has now outlived its usefulness, and
may be erased. Do not try to do this via the NEW command —
not unless you want to lose everything — use CLEAR xxxxx
(where xxxxx is the location from which you wish to ‘protect’,
minus one). In this way RAM TOP is reset and the BASIC
program can now be NEWed. You can be assured that your
machine code is safe and sound, as is the assembler which still
resides in memory.

Now for the control program which will organise the
transferring of variables into memory, out again and print the
results on the screen.

10 POKE 27000,4:POKE 27001,1:
POKE 27002,3:POKE 27003,2

20 POKE 27006,7:POKE 27007 ,1:
POKE 27008,8:POKE 270@9,9

30 PRINT “SUB =";USR 28000

40 PRINT “ADDITION =";PEEK 27004 +
(PEEK 27005)*256

50 STOP

To have the control program, in BASIC, loading in ataimost the
same time as the machine code program is more convenient.
This is done by making the BASIC program auto-RUN with the
first line of this program responsible for loading in the machine
code program. They can then be saved next to each other on
cassette.

After verifying a copy of the program, only running remains.
Except to runit. This is effected by a GOTO or RUN instruction
tothe BASIC program at the right line, because the PRINT USR
28000 instruction is embedded within the BASIC program.
Then maybe experiment with different values in the registers
and observe (predict?) the results.
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Chapter 8
JUMPING ABOUT

Developing the “right technique’” has been central to
everything so far covered. Now is the time to extend the
repertoire of commands available for use in programming —
certainly this is necessary if your creative instincts are ever to be
given full rein. The more that is known, the more can be used. It
will become increasingly apparent that many permutations can
be derived from only a very few commands, thus making for
great versatility. This chapter will focus on Simple Jumps,
Conditional Jumps, Relative Jumps, Caonditional Relative
Jumps, Calls and Conditional Calls. Additionally, account will
be taken of the PC Register, the RET instruction, and other
associated aspects of the computer's inner workings.

THE PC REGISTER

The organisation of the CPU'’s registers has already been
covered in general terms, and some particular attention given
to those which are more easily manipulated (HL, BC, etc.,).
There are other Register-Pairs which either cannot be directly
accessed, or can only be accessed for relatively basic
operations. This results from the CPU’s need to reserve space
for storing its own variables where they are accessible as well as
being protected from outside interference. The PC register isa
suitable example. This register-pair holds the address of the
location in memory of the current command being executed
and therefore acts as a pointer to the CPU giving it the location
for the start of the next instruction.

When the computer is first turned on the value of the PC
register is 0000, so the first command the computer
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immediately executes is that which is situated at the first
location in memory. This is why the Sinclair ROM is mapped on
to the first 16K of memory. In other words, via the use of a ROM
chip, the values of locations @ to 16383 are predetermined and
for this reason whenever the computer is turned on it
immediately goes into what is known as the “start up” routine.
Once in amachine code routine the PC register always contains
the location of the current instruction, so that when the
instruction is completed, PC changes according to the length
of the instruction. The location of the next instruction is
therefore known. It can be presumed then that, by externally
altering the value within the PC register, it is possible to change
the location from which the CPU will get its next instruction can
be determined.

The first problem to overcome is that there are no commands
which will directly alter the contents of the PC register as there
are for the HL or BC registers for example. Fortunately there is
an instruction which changes the value within the PC register,
namely the JUMP or JP instruction. It acts very much like the
GOTO instruction within BASIC, simply by loading the PC
register with the required value — the location from which the
next instruction will be taken. In BASIC, if at line 100, and
requiring the next instruction to be taken from line 1050, then
the instruction GOTO 1050 would be used at line 100. In
machine code the operation is exactly the same. It follows that
when we have a short routine from locations 30000 to 30012,
and when this routine has been completely executed and we
wish to start executing a routine at locations 32000 onwards,
the process will look like this:

30000 — 30012 : first routine
30013 JP 32000 : jump to locations 32000
32000 — : second routine

An example of this instruction is shown below:

org

Ld
32002 @6 a7 Ld
32024 C3 @B 7D JP

Qo

,a
2 7
2000
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32007 Ge Ld h.b
320035 6F Ld L,a
320e3 C9 ret

Whilst it is undoubtedly useful to be able to jump from one part
of memory to another, and execute instructions from that part
of memory, in how many cases is it necessary to write a routine
in two different parts of memory? Would it not be far more
useful to be able to execute the command from another part of
memory only if a certain situation is true or false? For example,
in a BASIC program with a long and complicated calculation,
the computeris required to indicate where the result is higher or
lower than expected and a routine similar to the following
would be employed:

500  IF answer is greater than predicted THEN GOTO 1000
510  IF answeris less than or equal to predicted THEN GOTO

1500
1000 PRINT “‘greater than”
1010 STOP
1500 PRINT “less than or equal to”
1510 STOP

Notice that in this BASIC program the statement STOP has
been used to end the routine and there is no parallel instruction
in machine code — not least because a total cessation is never
required. When concluding a machine code routine return to
BASIC is always required. In normal use the RET instruction
returns the control of the computer back to BASIC.

A list of the six most commonly used conditional jump
instructions are shown below:

JPz ;jump if zero

JP nz :jump if not zero

JPc :jump if carry flag set
JPnc :jump if carry flag not set
JPm ;jump if minus

JPp :jump if positive
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JP z means that the next instruction will only be taken from the
prescribed location when the zero flag is set, hence the result of
the last calculation was zero. If the result was not zero, and this
condition is false, then the instruction from the next location in
memory will be taken.

For example:
Qrg 28280
28@02@ 3E o0 Ltd a,®
282e2 CE o@ add @
28@@4 CR 6B &0 JP z,28011
25822 8 ¢ =i

2 60 i 2880
28611 C9 #gt e

In this program the test is to determine whether or not adding
zero to the accumulator results in zero. If it does, then the
control of the program will go back to BASIC. If not, then the
yalue of the accumulator will be decremented; i.e. it will equal
itself minus 1, and then will test again whether adding zero to it
results in @, and carry on like this until the accumulator equals
zero. Ensure that the instruction used before a conditional
jump does in fact alter the state of that particular flag. When in
doubt, check the table at the back of the book.

Jp nz, means that the next instruction will only be taken from
the assigned address if the zero flag is not set, hence the result
of the last calculation was not zero. If, as in the previous
example, the preceding instruction was “add zero”, followed
by jp nz, 32000 then the machine code would like like this:

29999 3D dec a
30000 FD 69 add 0
30002 CA "end”  jp nz,29999
30005 C3 32000 jp 32000

The BASIC equivalent would be:
IF A plus @ equals @ THEN GOTOQ 32000

JP ¢, means “jump only if the carry flag is set””. In other words,
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should the last calculation have caused an overflow then the
carry flag will be set and the condition will be met. A simple
example would be to instruct that where registers A and B, in
combination, are greater than 255 then jump to new address,
but if not, then continue. A program to do this is shown below:

or o000
320000 8@ add a.,b
3e@al DA 38 7S Jp c,30080

The BASIC equivalent woulds be: IF A plus B is greater than
255 THEN GOTO 30000. This provides an easy check for the
possibility of errors occurring when the sum of two variables is
a number too great for the CPU register to handle.

The JP nc instruction is very similar except that you will only
jump if the carry flag is not set. This tests whether or not the
result of the last calculation has an overflow; if not — the values
added together being less than 256 — then it will jump to the
assigned location. An example is shown below:

org 32009
30000 &@ add a.b
30@@1 D2 3@ 7S ip nc,3e8aa

The BASIC equivalent would be:
IFA + B< 256 THEN GOTO 30000.

The final two conditions that we have available to us for a
simple jump instruction are minus or positive. They are
concerned with whether the sign flag reflects a positive or
negative value. As we have yet to look closely at this flag,
suffice it to say that JP P means, “jump if sign flag reflects a
positive number”. The JP M command means, “jump if sign
flag reflects a negative number”.

Throughout these examples, actual addresses have been used
in order to demonstrate precisely what is happening, but using
an assembler, or writing a program which can be put anywhere
in memory, it is much easier to use “labels”. To go to aroutine
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once, and then back to the beginning again, label the beginning
of the program START, at the end execute the instruction JP
START. Using an assembler there is no need to use direct
addresses as the assembler will do this for you, working out the
addressgs _for each part of the program. Labelling particular
bytes within the program which may be used as storage space
for.answers or calculations during the routine is also possible
This function has to be one of the most useful, apart of coursé
from converting the mnemonics themselves. A short example
of how labels can be used within programs is shown below. Do
not be concerned if the way in which the program works seems
rather obscure, just take note of the labels and how they are
used and assigned.

1. Basic listing for ACS Assembler.

3 gEp g
org 2000
1@ REM 1d hi,28527
38 RET 12.EdE0
NGE B
ERENT ELOCKS OF SCRéEnl'T Lo
4@ REM R; Ld ¢,32
5@ REM B; Ld &, (hi)
€@ REM rl (hl}
7@ REM dec hl;dec ¢
@ REM Jjr nz,B
9@ RE bit 7.e
198 £EN fr.z0¢
push hlL; :
1Z@ REM add e it
igg ﬁE” set @, (hi)
?ESUNEM RES @, (HL) FOR NO WRAP
REM po hL
i6@ REM ngnd a
179 REM dJjnz.RA
18@ REM ret
13@ REM fi
2. Assembled listing.
Sedoa o
i FF 87 F
R R
L OoR
BELOCKS OF SCREEM UETT AT
Z000S PE 2@ ld ¢,32
154

=

3p0@7 SE Ld €, (hl)
s@g@®8 CB 185 FL thi)
201@ 28 dec ht
32@1i ©D det ¢
Se812 29 F9 ir nz,B
Zp@14 CB 7B Bit 7€
3@E1E 28 05 JE X B
@218 ES push hL
22219 11 20 @0 Ld de,32
Zg@22 19 add hi,de
3p@23 CB CB set @, (hi}
RES @, (HL)FOR NO WRAP AROUND
T_S@@ES El pop hi
Z@@28 A7 and a
3@@27 1@ ES dinz,A
3@@29 C9 rét

To jump to a location earlier in the program is of course
possible. Say at location 30000, and needing to execute the
routine at 28000, the instruction JP 28000 at location 30000 is
totally legitimate. There is one very important factor that has to
be guarded against when including jumps which loop back on
themselves and that is the use of unconditional jumps that do
not have RETurn instructions between them. This is the
quickest way of getting the computer to go into an eternal loop
— with no hope of escape! Breaking out of such a loop in
BASIC requires only the pressing of the Break key, but in
machine code there is no such facility. Some computers have
the facility for self resetting so that you can start all over again
without losing the routines within memory, but this is not
possible with the ZX80, ZX81, or ZX Spectrum. The only way
to get out of an eternal loop within machine code is to ‘pull the
plug out’. Whilst in machine code the Spectrum will not
register the pressing of the Break key, or any other key for that
matter, unless of course a key-scan routine is written into the
program.

We have now looked at direct jumps which allow us to load the
PC register, or the Program Counter, with a new address in
order externally to alter the location from which the next
instruction will be taken. There is another type of jump
instruction — useful when writing short routines which are not
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dependent upon the actual area within memory that they are

located.

This new type of jump is known as the RELATIVE JUMP. The
reason for this title is that it allows you to jump to a location
“plus or minus a number relative to the current location.
Instead of jumping to, say, location 28000 when at location
28005, a Relative Jump of minus 5 can be used. This may seem
a rather complicated way of jumping from one location to
another, but it does have the advantage that the routine may be
relocated anywhere within memory. In using relative jumps,
because there are no actual addresses used for the JUMP
instruction, the routine can be moved from 28000 to 24000 or

any other location within memory, without the need for
conversion.

This facility is particularly useful when the routine may be used
more than once within a larger program, or when converting a
program for use on a larger computer. Similarly, it can come
into its own when there is insufficient room within memory for
a routine, and so is necessary to move the routine down to
make room for the remainder. The Jump Relative command
can save a great deal of work later on. There is one major
limitation to this command, it is only possible to jump to a
location a maximum of ‘plus 129 bytes’ or ‘minus 126 bytes’
relative to the current address. This may seem rather too
limiting, but in practice ‘plus 129 bytes and minus 126 bytes’
usually provides more than ample space within a standard
routine. Calculating displacements greater than this is tricky.
Suffice to say therefore that the Jump Relative instruction (JR)
is best regarded as a local instruction.

Calculating the displacement for a relative jump is reasonably
easy, though it does require some care. To use negative
numbers within a machine code program is not directly
possible. For a Jump Relative displacement which is positive,
i.e. between @ and 129, the actual number which must be
inputted to the computer is that of the displacement. Where
the displacement is negative, i.e. between @ and minus 126,
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then the number which must be put into Lhe computer wul‘l):)e
256 plus the negative displacemeqt. Us_mg the asseml t:r
employed for this book it is. possm_ie sulmply to t)Iflpe 1b:
displacement, positive or negative and in this way it will no .
necessary to worry about working outthe actual displacement.

When executing a jump relative to the ins?ructlon_, the
computer is being instructed to go to an instruction 13
designated number of bytes greater than that which it »gouh
normally. In other words if the computer elxecute ht e
instruction JR @ (jump relative zero bytes), ther} this would a;e
no effect, because the computer would in any caseTh_e
intending to execute the command at the next address. This
would simply be increasing the valug of PC bv_ 0. ‘However,
because the length of the Jump Flelatwle |n§truct|oq is 2 bytes,
by executing the instruction J_Fé -2 it will eﬁethe!y_ bfe; fte—
executing the JR — 2 instruction, which results in an infinite
loop. The only way out of it would be to pull the plug.

Below is an example of the use of the Jump Belative commanc:,
and also how useful it is when combined with the use of labels
within an assembler.

org SQeae
Stact

@@ 3E 29 e A
386as oe =5 A A
3p@24 18 06 Jr
30006 0@ nog
007 @ nog
5208 0@ nap
30009 @@ nop
3pRle °e Rop
30011 02 norR

rt
Bebiz o oE px: PR s
sp@14 B1 g
30016 18 @2 L start
5p@18 18 EC 2L
3@a@a2@ C9 r

It is interesting to note that at no time du(ing this program ars
actual addresses used; the actual routine may be Ilocate
anywhere within the computer’s RAM without alteration.
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Itis also possible to have Conditional Relative Jumps in exactly
the same way as Conditional Jumps. The only difference being
that there are fewer Conditional Relative types available for use
and only the fallowing are possible.

JRZ : jump relative if zero flag set
JRNZ :jump relative if zero flag not set
JRC : jump relative if carry flag is set

JR NC  :jump relative if carry flag not set

These can be used in exactly the same manner as the relative
versions of the jump instruction, simply by remembering to use
a displacement rather than a direct address.

Within BASIC, as well as having the GOTO instruction, wealso
have the GOSUB instruction. This allows us to execute a
routine other than the main program, and then return back to
the main program without the need for another GOTO
instruction. The implementing of short sub-routines is
therefore made easy. One advantage is that it is possible to re-
use a particular routine many times within a program. For
example, to carry out a specific operation requiring a number of
commands, three or four times within a program would not
necessitate building into the main program more than once, but
to have the operation as a subroutine. The sub-routine could be
either before or after the main program, and could be accessed
by a GOSUB command in BASIC. When completely executed,
the RETURN instruction at the end of the routine would cause
the control of the computer to return to the statement after the
GOSUB in the main program. To call a machine code sub-
routine from a machine code program requires the instruction
“CALL", followed by the address (or label if you are using an
assembler), of the sub-routine.

An example of how this can be used within a program is shown
below:

1@ RANDOMIZE USR 30022
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org 3@eeaad

Start

30029 CD BE BD call,28@l4
30003 C9 ret

org 25014

Subrt

258@14 3E @@ ld a.,@
2801656 @6 000 Ld b.@
28218 C9 ret

20 PRINT "ROUTINE COMPLETE"

Another use of the CALL instruction is to execute sub-routines
already situated within the ROM chip. Though many of the
routines within the ROM are very well interwoven with the
execution of BASIC, and other facilities best left to the ROM,
there are still very many which can be very useful. Some of
these routines are short when the only reason to use the CALL
instruction is to save time copying them out into the RAM and
our programs. Many however are long and complicated, which
makes copying them time-consuming and rather wasteful in
terms of memory space. The use of the CALL instruction does
in addition eradicate the chances of error.

Once a sub-routine has been executed it is necessary to return
to the main program. In BASIC this is done using the RETURN
instruction, in machine code by using the RET instruction. This
may seem rather confusing, as so far the RET instruction has
been used to return control of the computer back into BASIC at
the end of a machine code routine. The fact is that the RET
instruction does a very simple job by always returning control to
the position where the GOSUB or CALL instruction has been
used. Hence, where a machine code routine was executed via
the BASIC USR instruction, and a RET instruction was
encountered, then the control would return to BASIC.
Alternatively had a CALL instruction been executed in machine
code, and at the end of the sub-routine you wished to revert to
the main program, the RET instruction would cause this to
happen.
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Oncea CALL has been made, the location from whichitcame is
stored by the computer so that when the RETurn instruction is
encountered then the computer is able to go back to the correct
place in the memory. When the RETurn instruction has been
encountered and control returned to the main program, the
value of the location stored by the computer is replaced
by the previous value. In other words, when going into a
machine code program via the BASIC USR instruction, the
address held by the computer is that of the next BASIC
instruction. When going into a machine code sub-routine from
machine code, via a CALL instruction, the address of the CALL
will also be held by the CPU. Whilst in this sub-routine if the RET
instruction is encountered it will go back to the address held by
the computer. In that case it would be the main machine code
program. Because this sub-routine has now been completed,
the value held by the computer is that which was held before
the sub-routine was called. This would be the address of the
subseqguent BASIC instruction. The diagram shows rather
more clearly what is actually happening.

PC [ 420 |
12345

W/

PC
#20

NAE D)
e

It is also possible to have Conditional Call instructions, just as
with jumps and relative jumps. They do in fact work in exactly
the same way as those already explained above, and | do not
intend to stress the point further. With CALL instructions the
use of labels again dramatically increases the ease with which
they can be used in a program, and assist in the creation of a
structured program. To divide a program into a series of sub-
routines becomes possible and then they can be accessed via a
short master-program. Working this way makes for a more
understandable listing when finished, and also makes it very
easy to adjust and expand the program. Regrettably there are
no such things as Relative Calls, and so it is necessary to use
direct addressing — making the result not relocatable. Even so,
relocating a program is not particularly difficult because, as you
will remember, it is not necessary to remember an address to
return to after a sub-routine is completed. The sub-routine can
be located within the memory, and then the master-program
itself relocated. The mnemonics and hexadecimal and decimal
codes for these instructions are listed at Appendix B.
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Chapter 9

USING THE SCREEN
AND KEYBOARD

This chapter will primarily be about how the computer and its
operator interrelate or “communicate’”. The main focus
therefore will be the 'keyboard’ and the ‘screen’. We will start
off by quickly locking at the arrangement of the keyboard and at
the way in which we can use the system variables as an easy
method to read the keyboard. You will then be left with some
practical examples and routines which can be included in your
programs. We will look at the way in which the screen is
arranged and how it is mapped in the memory. As the screen is
mapped into a large proportion of the Random Access Memory
within the computer we are able easily to alter the contents of
the screen, though Clive Sinclair has not made life any too easy
for programmers by arranging the screen in a somewhat
peculiar fashion.

Attention will be given to how the Spectrum’'s inherent
difficulties might be overcome, how to perform such tasks as
printing Sinclair characters onto the screen and how to define
new characters and subsequently display these an the screen.
Finally there will be a machine code routine which allows
plotting of any point onto the screen and because of its
amazing speed this routine should prove to be far more useful
than might at first appear. The keyboard is effectively split into
rows and columns, which enables the computer to identify the
pressing of any key with the minimum of instruction. This also
allows the computer to register when two keys have been
pressed together, provided they arein separate rows. Examples
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of this are the Caps Shift and Symbol Shift keys. Were they
next to each other and in the same row, then this would
confuse the computer which would be unable to differentiate
between these and certain other keys pressed at the same time.

The way in which the computer actually reads the keyboard is
rather involved, though it is useful and interesting to
understand the basic concept of how the keyboard is arranged.
Fortunately for us, we do not need to understand or even use
the routine within ROM which scans the keyboard, because of
two very useful variables which the computer keeps constantly
within the system variables area. This ranges from locations
23552 to 23665. Various variables are held including current
colours, length of beep, and most importantly for us, the last
key pressed. By peeking location 23557 itis possible to find out
whether or not a key has been pressed. To prove this, type in
the short BASIC program shown below:

i@ IF PEEK 29557-5 THEN PRINT
AT 2.8, "Keg P se

20 Ia PE K 235=?<>s THEN PRINT
et TO 1e

This program ascertains whether or not there is a5 at location
23557 and if so it prints to screen “Key Pressed’’. Take your
finger off the key, so the contents of location 23557 no longer
equal 5 and it will blank out the words “Key Pressed” with
spaces. The GOTO 10 statement at line 30 simply means that
the routine carries on endlessly.
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This information is very useful, but it does not identify which
key has been pressed which is done by peeking location 23560.
This location is often labelled “’Last K", because it holds the
value of the last key pressed and it does, in fact, carry on
holding the number, even when the key is not pressed. Use this
in conjunction with the contents of location 23557 to first find
out if a key has been pressed, and then which key has been
pressed — always finding out first whether a key has been
pressed. Below is ashort example program written in BASIC to
show what happens if only the contents of location 23560 are
used; i.e., the value of the last key pressed:

i@ PRINT PEEK 2358@,: GO TO i@

Try this and you will find that it is of little use on its own, but
now try the program below, which uses both values in
conjunction with each other.

12 IF PEEK 23557=5 THEN PRINT

AT _@,0;CHR% (PEEK 2356&)
20 GO TO 1@

Note that to print the actual character pressed, itis necessary to
use the CHR$ instruction on the contents of the location. The
computer only stores the actual CODE value of the key in
location 2356@. The computer uses only a single byte to hold
the code of the particular character, and this therefore allows
for a maximum of 256 different characters to be available.

This information can now be used to write a machine code
routine which works in a very similar way to the BASIC one
above, but which returns the value of the last key pressed in
register C — the only difference being that it will only returnif a
key has been pressed. We now come to a very effective use of
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the Conditional Jump Relative instruction. Caution though —
as we are in machine code, and because we are reading each
key separately, the computer will not register the BREAK key.
With no key pressed then we will forever stay in machine code.
This situation might be quite alright if we know that a key is to
be pressed, and that we are going to go straight back into
BASIC anyway after that key is pressed — in which case the
BASIC BREAK key will be operable. However should we use
this within a totally machine code program it would be
advisable to build-in a function whereby, when the break key is
pressed, then an "L’ message and a return to BASIC would
ensue.

Consider now how to force an error message. The Spectrum is
quite capable of delivering understandable error messages, and
itis in fact not too difficult to utilise these and generate them via
our own program, even though they are not directly applicable
to machine code. Forcing an error message in this way is not
particularly difficult, especially when you know how, but might
be rather confusing at this stage. Instead, use a method which
relates to the BASIC rather than to the machine code,
Remember that should you try to print the code for the first 32
characters, an error results. The reason for this is that these
characters are used by the computer for instructions specific to
itself and they may be concerned with colour, or the end of a
line. As you know, colour is embedded into a program simply
by pressing caps shift, symbol shift and then one of the
numbers. All you are doing is embedding one of these codes
into the program and then an error message ensues. Why not
try it; type PRINT CHR$ (13). This operation will result in an
error message. It is easy to use this fact within our machine
code program by loading the register C with a value less than 32
and then returning to BASIC.

The short machine code program below uses this property to
work — and to stay short:

KEY-P EQU 23557
LASTK EQU 23560
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START LDA, (KEY-P)
SUB5
JR NZ, START
BREAK? LD A, (LASTK)
SuB 127
JRZ, EXIT
LD C, (LASTK)
LDB,0
RET
EXIT LDC, 13
LDB,0
RET

The program starts by labelling the twa locations 23557 and
23560, with their system variables names, KEY-P and LAST K.
In tr_mis way, when referring to them during the rest of the
routine, names can be used rather than the actual numbers.
This makes life easier for typing and for reading back later. The
actual routine starts by loading the register A with the value
held by the system variable KEY-P, it then subtracts 5 from this
value (because if the answer then is 0 then a key has been
pressed). This is because, as you will remember, a value of 5
held by this variable indicates that a key has been pressed.

Assuming the result of register A minus the value 5 equals 0,
then a key has been pressed, and if it is not @ then the Jump
Relative Non-Zero instruction will cause the operation to go
bac!( to START and read the value of KEY-P into register A
again.

In this way it goes into an eternal loop until a key is pressed and
because the system variable KEY-P does not tell us which key
has been pressed, we now test for the BREAK key. Thisis done
in almost the same way as we tested for a key being pressed: by
loading register A with the value of system variable LAST K,
and subtracting the code of the BREAK key. If the BREAK key
has been pressed then the result will be @, and the program will
jump to the short exit routine. By now it can be seen that a key
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has been pressed, but it is not the BREAK key, so now to load
the value of whichever key was pressed into the C register so
that it can be printed onto the screen when back in BASIC. Itis
important that we do make the value of register B zero because,
when in BASIC we cannot differentiate between the two
registers B and C, and a number other than @in register B would
obviously cause the result to be wildly wrong.

This completed, we return to BASIC. The final part of the
program is the short routine labelled EXIT, which is accessed
only if the BREAK key has been pressed, and which simple
loads the C register with anillegal value — loading the B register
with 0. The computer will then return itself to BASIC. Ascanbe
seen, this whole routine is completely relocatable and it would
be well worth saving onto cassette for future use with either a
BASIC or machine code pragram.

Having looked at this process, we can now see why it is not
usually possible to break out of a machine code program,
especially those commercially available, as authors are rarely
keen on you actually being able to see what they have written.
By using this method you can get yourself out of a lot of
difficulties which might occur.

Now to move on to look at the computer's main outputting
device — The Screen — known as an output device because it
relays information ‘out’ to us. The screen itself is arranged in a
weird and wonderful manner. 6K of memory is used to hold the
actual dot-pattern on the screen, i.e., whether an actual dot is
on or off the screen. A further 1K of memory is used to store
the particular colours of each character and whether each
character is flashing, is bright etc. In this book we shall not be
dealing directly with the actual colour part of the display, but
simply with hi-res graphics and character generation.

There are 256 points or pixels arranged horizontally across the
screen. As they can only be either “on" or “off", the state of
each group of 8 pixels can be recorded within one byte. The 8
pixels are dealt with as though they were a binary number and if
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the pixel is on, thenitcountsasa1in binary notation, butifitis
off thenit counts as a@in binary notation. The resultis an 8 digit
binary number: 10101010

Prove this by poking the first byte of the screen memory with
the binary value shown above. This is done via the instruction
POKE 16384, BIN 10101010 (ENTER). Now try entering
different arrangements of binary digits, but always be sure to
use no more than 8 digits as this adds up to a maximum of 255
in decimal (the maximum value which the computer can
handle). This arrangement applies to the whole of the screen —
6144 times. This can beillustrated by the short program below:

1@ FOR a3=16384 TO 16384+6143
2@ POKE 2,BIN 11111111
3@ NEXT a

Try changing the value of the binary number as some quite
interesting effects can be produced. You will notice that when
filling the screen memory area with a particular digit, it does not
cause the screen to befilled line by line sequentially — from top
to bottom of the screen. Rather, the screen is split up into three
distinct sections. Each of these 3 sections is split up into 8
character blocks, running from top to bottom. First the top row
of each character block is filled, then the second row,
continuing to the 8th and bottom row. This process then
restarts for the middle block and then for the bottom row of the
3 blocks. This may seem rather strange and it certainly is!!

Another way of illustrating this is to draw a design or picture
onto the screen, and then save the screen memory area, which
ranges from address 16384 to address 22527, clearing the
screen and then reloading. The screen memory areais fixed ina
certain part of the memory, and as this is always separate from
the BASIC or machine code program area, the idea of loading
the screen with a design or picture at the beginning of a
program is often used as an attractive introduction as it
effectively uses no memory which would otherwise be used by
the program. Type in the short BASIC program shown below,
and then save via the command SAVE ““CODE 16384, 6144.
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Clear the screen by the command CLS, and then reload the
screen via the command LOAD ““CODE. The result should be
quite interesting.

i@ LET n =E-31

T a=1
Eg IﬁEDT 55, 27 DPRAW a,a.n¥PI

Now for another example. Load in the 2 machine code routines
for scrolling each pixel either left or right, writing ashortroutine
which loads in the screen design just saved, and then
repeatedly scrolls it left; after 1 complete rotation of the whqle
screen then repeatedly scrolls right. There is no need to write
this in machine code. The result should demonstrate quite
clearly the use of machine code routines within a BASIC
program.

As you will doubtless have gathered, due to the unusual
arrangement of the screen, performing such a simple task as
printing a character to the screen requires quite an involved
program. However, we can conclude that because the
computer itself is capable of doing this, then the necessary
routine must be embedded in the ROM area somewhere and we
shall take advantage of this fact. The importance of this routine
has ensured that it has been put very close to the beginning of
the memory, starting at location 16 (decimal) — but how do we
access this routine? To our benefit it has been put in a sub-
routine and so can be CALLed. A design feature of the Z80 is
the in-built facility for accessing some of the more important
and oft-used routines quickly and economically and for this
purpose a set of instructions have been incorporated which
apply solely to eight of the first addresses in memory. Perhaps
most important of all, they are only one byte long! One. SL_tch
routine, the one to be used for accessing the screen printing
routine, is ‘RST 16'. This has the same effect as “CALL 16",
and a RET instruction is therefore needed at the end of the
routine — after which the control will go back to the command
‘one after’ RST 16.

There remain two matters to attend to before the command is
executed. First the PRINT position must be set in BASIC and
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although this is possible in machine code, matters would be
unnecessarily complicated. Second, the A register must be
loaded with the code of the character to be printed. This is
useful not only because of the relative ease of translation of a
character to its code, using the table given earlier, but also use
of User Define Graphics in machine code is allowed.

Here s a simple routine for printing the character A’ to the top
left of the screen. Remember to access the machine code in the
way shown {in BASIC):

10 PRINT AT 0,0;
20 RANDOMIZE USR 30000

org 30000
30000 3E61 1d a,97
30002 D7 rst 16
30003 C9 ret

Now try changing the print position and the contents of
register A (the character to be printed). Apparent from this is
the ease of printing a UDG (User Defined Graphics) character
by loading the A register with the appropriate code. A method
is now needed whereby a UDG character can be represented in
machine code. Unfortunately the routines used by the
computer to do this in BASIC are not easily accessible from
machine code. Additionally, because this is in any event a
complicated process, | am giving you a short routine which
allows UDG characters to be formed. It is not strictly necessary
for you to understand how it works at this stage — just use it.
Enter it and then access it by a CALL command, followed by 9
bytes of data. The first is the number of the graphics character,
i.e., key Aor Chr$ 144 = 0, key B or Chr$ 145 = 1, and so on.
This makes it possible to specify which character is to be
defined. The other eight bytes are the ‘bit arrays’ which are

used in the normal fashion, and so make up the defined
character.

The first routine below actually defines the graphics character,
The second is an example in which characters 144 and 145 (A
and B keys) are defined.
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There is no necessity for you to understand all the commands
needed to write a machine code plotting program, but as it can
prove to be a very handy program the routine which does this is
set out below:
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Getting On and Off
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Chapter 10
THE STACK

This chapter will be devoted to exploring the use of further
machine code commands, some new concepts and a
particularly useful area used by the CPU itself. It will be
necessary to look back at the INC and DEC instructions, which
will lead us onto the LDIR and LDDR instructions — a full
understanding of these relies heavily on complete familiarity
with the INC and DEC instructions.

For perhaps the first time we can now deal with a term which
means precisely what it says — the function of The Stack is to
be a Stack and nothing but a Stack. The Stack is for stacking
numbers. A number can be put on top of the Stack or taken off
— always off the top, never from anywhere else.

Think of it as if it were a tall tower of boxes. It is possible to take
off the top-most box, or indeed to put another on top of the
existing pile, but attempt anything else at your own risk! This is
exactly what happens in machine code — the only difference
being that each box is numbered with an address, though one
of the advantages of the stack is that it is not necessary to
concern ourselves with the address.

Thereis never any actual restraint on the size of a stack, though
the bigger it gets the less room there is for anything else, plus
the fact that other code may even be overwritten. Setting up of
a stack is a simple matter, deciding at which location within the
memory the stack should start, then assigning the system
variable STK-P to that value. This in effect creates a Stack

181




182

Pointer. The Stack Pointer points to the location within
memory at which the next value is to be placed.

arg 3I002@
equ 28008 STK-P

30000 3E 1@ Ld a,186

30002 FD 22 6@ 6D Ld (STK-P) , 16
30095 21 60 &D td ht,STK-P
3@@e9 35 dec (hL}

Without an assembler the process is a little more difficult. First
decide on a location which can be used to store the Stack
Pointer, then make sure that the value within it is @, load the
register pair HL with its location, and then load the location
with the value of the Stack Pointer.

3021@d 3IE 1@ id &,16
S@eaiz 21 6@ &0 Lld hi,2c8ae
315 77 Ld (hi},a
30019 2B dec hi

When any value is placed on top of the stack the value of the
Stack Pointer must be decreased by 1, so that the next time a
number is added to the stack not only will it not overwrite the
first, but it will be putin a location “1 less". To puta value onto
the stack first put it into the register A. This is then loaded into
the location held by the Stack Pointer, and the value of the
Stack Pointer is decreased by 1.

16
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All that remains now is ta work out a routine for taking a
number off the stack. In this case, load the register A with the
value held at the top of the stack, and then increase the value
held by the Stack Pointer by 1.

This program allows us to generate and use a simple stack. The
principle of having a stack of numbers, from which numbers
can be taken, or to which they can be added may seem rather
space-consuming, but the use of a stack in a program, using
theroutines above, can in practice be exceedingly useful and be
an excellent way in which to simplify a program. Probably the
simplest method of using a Stack, and one in which it would be
easiest to read off again, is to label the two sub-routines for
putting a number onto the stack, and the one which takes the
number off again, with PUSH and POP, and then access them
using the CALL instructions. In this the actual machine code
instructions, which would otherwise do the job, but which are
more complicated to use, are emulated.

org 300
%g%agsgganggsp L

d a, iSTK-P)
39203 21 3@ 75 L STK-
30006 34 Y ke

3007 21 50 6D Ld hi,280@2@2
32@1@ 7E Ld a, (hiL)
30811 23 inc hit

Now for an interlude. The BASIC program below is for a game
which operates on the same principle as the stack itself. Whilst
not written in machine code, the idea of the game is directly
related to this chapter, and more directly to the use of the stack.
The principle of the gameis very old, and may already have been
encountered elsewhere. Called The Towers of Hanoi, the idea
is to transfer a stack of 5 rings of ascending height from one pin
or tower to the final pin or tower. One problem being that they
must be in the same ascending order as when they started.
Additionally only one ring may be moved each time and must
come off the top and no ““larger” ring can be placed on top of a
“smaller’”” one. This will give you some idea of the problems
which can be encountered with stacks, especially if you lose
track of what is on the top!

2 @0 SUS 2000
S EORDER 6: PRPER 6: INK B: C

7 DATA "1 - IRY -1 e

S s e T S
=== ——=_ T = B h

1 RESTORE 7: LET C©=18: LET M=
%] BpIM A%(16.113: DIM C$EIS,11)
-1 U=e: oIM E®(2,1): FOR D=i TO

'S

2@ IF <7 THEN READ A$(D): GO

o !

SO LET AgiD) =A% (&}

4@ NEXT D

+0@ FOR X=1 TC S: LET C$(X)=A$(

XT
Dl:-'fr"r AT 8,58;"
PRINT AT _2@,22:M: Moves'
48@ FOR D=0 TC 51. FRINT_AT 16
p Ee s NEXT D: gR;NT ar 1754- I

MHEXT

2

5y

@ IF C=1% THEN LET C=10@
%] B8

@ IF W=1 THEMN GO TO 1600
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NPUT “FROM PIN7"; LINE B%
N7 LINE*gsgéJ *PRIN¥

IF BS(

OR B%{1) 35TRS 3 DR D& (
OR B%(2) >5TR$ 3 THEN G

N0 Ul s -
ns mmn
pw-u

ns?tun; BSi1] -1) x5

1 "THEN GO TO &40 e s
515 IF Z=5 AND A&( (VAL B$ (1) -1
*S32) =A$(18) THEN GO 10 15@d

4@ FOR ¥=5 TO 1 STEP -1

S60 IF REIIVAL B$I(23-11 x5+Y) =5%
(i) THEN GO TO 1000

280 NEXT Y

10@@ IF ¥Y=S5 THENW GO TO

19@3 IF A% (VAL BILE]—13*5+Y+13(
%$%égRL B (1) -1) #*S+Z) THEN GO TO

191@ LET R ;(g?LSE ;2)—13*5+Y1=ﬁ
L - ¥
i?%g)LET AS{ (VAL B%$(1) -1 *5+Z) =R

1230 LET M=M+1

194@ FOR D=1 TGO S: IF A%I(D+1@) <>

CH(D)Y THEN GO TO 470

1250 NEXT D: LET W=l: GO TO 470

l“@@ BEE 1, PRINT AT 21,15,
LASH 1 'I'LEGqL MOVE™

1L93 o 7o 586

1500 PRINT AT S5.11; FLPSH i:"WEL

L DONE"™ FLASH @,‘ AB 5; "You di

d it in’ e V Hoves, : IF M=3A T

HEM PRINT 7B 5, FLSSH 1;“"UWhich

cannol be beaten!!!"™: FLASH @: F

OR X=@ TO 255: OUT 254 ,x: NEXT X

=
}@al PRINI TRAB 5; "But it can be

1@ INPUT "ANOTHER GRMEZ?-Y-/n'"; @
IF @%<>"Y" AND ®FE{>"y" THEN F
INT AT 21,0;"bye...": STDP

122@ RUN

2@e@ RESTORE 3000

209S FCR Y=V TO S

2@10 FOR x-0 TO 7

2020 READ chr: POKE G5S3EE+4y%8+Xx,

2@3@ NEXT x
224@ NEXT 4
2250 RETURN
32@Q DATA ©.0
1111111,8IN @i
1.8.@a

3910 DATA ©,0,25S,255,255,255,0,
3@2@ CATA 0.0,BIN 11111100,BIN 1
ii11ide. Brn 1111111@,BIN 1i1111@
gézé CATA 50,E60,60,60,60,.6@,60,6
3042 DATA 9,24 ,60,60,.50,68,.6@.60
A8S\®d DARTA @,@,EIN 31111110 255,2
55.BIMN ©1111116.0,0
[EounECe s OF Hanos
-
CRELE
e T
A TN R e — A
i ===
1 =

BASIC, indirectly and directly, uses 3 separate stacks for its
operations: The GO SUB stack which holds the return
destinations of all the BASIC sub-routines. The Calculator
stack which is used for all BASIC numerical operations. Finally
the machine stack, which is used by the CPU itself, and is
accessible viamachine code. To locate or use the machine stack
from BASIC is not easy and to go into machine code before use
is always advisable.
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Earlier we looked at the INC and DEC instructions and how they
cause the contents of a register or location to be INCremented
or DECremented by one. There are some obvious uses to which
they are ideally suited. One such example is the transfer of the
contents of one block of memory to another. In this case we use
two pointers to indicate these two areas which, for
convenience, can be regarded as the Source Block and the
Destination Block. The INC and DEC commands are then used
to increase or decrease the values held by the pointers, and so
avoid them having to be reloaded before each re-execution of
the transfer. For example:

Id hl,source
Id de, destination
Id a,(hl)

Id (de),a

inc hl

inc de
Id a,(hl)
Id (de),a

inc hl

inc de

"

This might well be satisfactory for moving one or two bytes, but
for anything more ambitious far too laborious. Fortunately the
LOOP comes to our rescue, but before using this command we
must specify, within aregister, the number of ‘times’ we require
the loop to be executed. This is done as follow:
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Id hl,source
Id de, destination
Id be,no. of times

loop Id a,(hl}

Id (del,a
inc de
inchl
dec bc
Ida,b
adda,c
jr nz,loop

ret

By adding the contents of the High Byte (B) to those of the Low
Byte (C) itis possible to check whether or not the content value
of the Register Pair is Zero. This therefore does provide us with
a relatively simple means whereby we can transfer a block of

memory.

The routine above can be further simplified using two
commands that require only two bytes each (INC and DEC
require only one byte each), tosuch an extent that all butfour of
the commands in the routine can be eliminated. These two new
commands are “LDIR” and “LDDR", and their definitions are:

LDIR = “Conditional memory-to-memory transfer with
auto-increment of memory pointer registers, and
auto-decrement of a byte-count register”

LDDR = “Conditional memory-to-memory transfer with
auto-decrement of memory pointer registers, and
auto-decrement of a byte-count register”’.
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All this means that, with the LDIR command we can load the HL
register-pair with the start of the source code; the DE register-
pair with the start of the destination area of memory, and the
BC register-pair with the number of bytes to be transferred.
Then by use of the LDIR command the number of bytes
specified (asin BC) are moved from location HL to location DE,
with the values of HL and DE increasing by one each time. The
value in BC will be decremented by one each time until it
reaches zero, whereby the command is concluded and the
computer moves on to the next command. The LDDR
command operates in precisely the same fashion, except of
course that the contents of the two pointers are decreased
rather than increased. A routine using these commands would
look like this:

LD HL,source

LD DE,destination
LD BC,bytes
LDIR

RET

For example, a routine that moves the whole contents of the
screen would appear like this:

org 25581
Eﬁgﬁl 21 88 40

Ld hl,16384
25504 11 @@ 64 Ld de ,25600
=255a7 @1 ae 1icCc Lld bCc,7168
25512 ED B@ Ldir
25512 C98 ret
25513 21 900 64 Ld hiL ,256@0
25516 11 22 4@ Ld de:iﬁﬁ&&
25519 21 ee ic Ld bc,7168
25522 ED B@ Ldir
25524 C9 ret

Now type LOAD in the BASIC ‘draw’ program given earlier,
store a screen using the first of the two above-routines, clear
the screen (CLS), and transfer it back again with the second
routine. Note the incredible speed of this command.

This brings us to the end of this journey through the essentials
of machine code programming — a journey which | trust has
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been both enjoyable and informative. If indeed it has left you
with a desire to delve deeper into the subject itself, then it has
been worthwhile. If it has left you equipped to utilise the
information that is to be found in more advanced texts, then
truly | have succeeded.

GOOD PROGRAMMING
J.H.C.W. April 1983.
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Adddddrd-=-+G00080EAEEEEEEGAAAAArdAAAdddAddr-A88008AGAREEE
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Arddrddddddd darddardrdrdrddrdddrdrdddddddddrdedrd g doddad oo UUNIN

MUOCROSWULE N0

FOOINOQULESANN<IONOITOUSILL O~ NUr-udTny
JOMOO@OIOOTC TCTTTEEaa a T @ o o) o o 0 @l 0 T o o000 0UO00U0
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@ ror_s=a 1o | APPENDIX B

2s5s
GO sUB 408. LPRINT #
'- 26 SUB Boe: LPRINT ,

1
2
i
3@ NEXT a |
2@ LET n=a

i@ FOR x=7 TQ @ STER

o 2 BéF INT tnsf22n)) =1 THEN co

25@ RETURN 280 OP CODES sorted by MNEMONIC

@ LET
328 GO_TO 240 Op code Hex Decimal

A,(HL)  BE 142
A, (Ix+d) DDBEAd  221,142,XX

43@ IF x X=xe7 A, (IY+d) FDBEAd  253,142,XX
44@ IF y»3 THEN L y=y+7 A,A BF 143
450 LET x=x+48: LET a=9+48 A'B 88 136
46@ LPRINT CHRS% x;CHRS y. '
47® RETUR A,C 89 137
AD BA 138
AE BB 139
AH 8C 140
AL 8D 141
A, xx CExx 206, %X

BC ED4A 237,74

DE ED5A 237,90

HL ED6A 237,106

P ED7A 237,122

L) B6 134
A,(IX+d) DDB6Ad  221,134,XX
A, (I¥Y+d) FDB6Ad  253,134,XX

A,A 87 135
A,B 80 128
A,C 81 129
A,D B2 130
AE 83 131
AH 84 132
AL 85 133
A,xx C6xx 198, XX
HL,BC 0s 9

| HL,DE 19 25
HL,HL 29 41
HL, 39 57

BEEEEEEEEEREEEERERRRRARRRRRRRERRA

-
>
W
B89

Doo9 221,9

198 199




BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

(HL)

o
_—
-
Ed
&
—

0, (I¥+d)

-~ =~

~ -

CImonm>

B

-

o (IX4d)
, (1Y+d)

HeMFOOOODODOOD
- e -
CEMONEP~~

- o=

P

HL)

B R b b b

™
£
é

2, (I¥+d)

g
>

Hex

DD19

DD29

DD39

FDO9

FD19

FD29

FD39

A6

DOA6Ad

FDAGA
a7

AD

Al

A2

A3

A4

AS

E6xx
CB46
DDCBAd46
FDCBAd46
cB47
CB40
cB4l
CB42
CB43
CB44
CB45
CB4E
DDCBAd4E
FDCBAd4E
CB4F
CB4B
cB49
CB4A
CB4B
CB4C
CB4D
CBS6
DDCBAA56
FDCBAd56
CB57

Decimal

221,25
221,41
221,57

253,9

253,25
253,41
253,57

166
221,166,XX
253,166,%X
167

160

161

162

163

164

165

230, X%
203,70
221,203, %X, 70
253,203,X%,70
203,71
203,64
203,65
203,66
203,67
203,68

203,69

203,78
221,203,XX,78
253,203,XX,78
203,79

203,72

203,73

203,74

203,75
203,76
203,77
203,86
221,203, XX, B6
253,203, %%, 86
203,87

200

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

5,B

hoP itk mon

E

IX+d)
1Y+d)

oo oot
~

.~ e e e

Hex Decimal

CB50 203,80

cBsl 203,81

cas2 203,82

cBs3 203,83

cB54 203,84

cBss 203,85

CBSE 203,94
DDCBAASE 221,203, XX, 94
FDCBAdSE 253,203,XX, 94
CBSF 203,95

cB58 203,88

cBs9 203,89

cBSA 203,90

cBSB 203,91

CBSC 203,92

CB5D 203,93

CB66 203,102
DDCBAd66 221,203,XX,102
FDCBAd66 253,203,%X,102
CB67 203,103

CB60 203,96

cB61 203,97

cB62 203,98

CB63 203,99

cB64 203,100

CB65 203,101

CBEE 203,110
DDCBAd6E 221,203,XX,110
FDCBAA6E 253,203,XX,110
CBEF 203,111

CB68 203,104

CB69 203,105

CBEA 203,106

coen 203,107

CBEC 203,108

CB6D 203,109

CB76 203,118
DOCB3376 221,203,XX,118
FDCB3d76 253,203,XX,118
CB77 203,119

cB70 203,112

cB71 203,113

201




Op code

BIT 6,D

BIT 6,E
BIT 6,H

BIT 6,L

BIT 7, (HL)
BIT 7, (IX+d)
BIT 7,(IY+d)
BIT 7,A

BIT 7,B

BITr 7,C

BIT 7,D

BIT 7,E

BIT 7,H

BIT 7,L
CALL C,xxxx
CALL M, xxxx
CALL NC, xxxx
CALL NZ,xxxx
CALL P, xxxx
CALL PE,joxx
CALL PO,xxxx
CALL xxxx
CALL Z,xxxx
CCF

Cp  (HL)

CP (IX+d)
Cp (IY+d)
CP A

Ccp B

CP C

Cp D

CP E

CP H

CP L

CP xx

Cm

CPDR

CP1

CPIR

CPL

DAA

DEC (HL)

Hex

cB72
CB73
CcB74
CB75
CBJ7E
DDCBA47E
FDCBAAT7E
CBIF
CB78
CB79
CB7A
CB7B
CB7C
CB7D
DCxxxx
PCxxx
D4xxxx
Cdoexx
Féxxxx
EC00ux
Edxxxx
CDxexxx
COxxxx
3F

BE
DDBEAd
FDBEdd
BFP

BB

B9

BA

BB

BC

BD
FExx
EDAS
EDBY
EDAl
EDB1
2F

27

35

Decimal

203,114
203,115
203,116
203,117
203,126
221,203, %%,126
253,203, XX,126
203,127
203,120
203,121
203,122
203,123
203,124
203,125
220, %X, XX
252, %K, XX
212,%%, XX
196, 30K, XX
244, XX, XX
236, 3%, XX
228, XX, XX
205, XX, XX
204, XX, XX
63

190
221,190, XX
253,190,X%
191

184

185

186

187

188

189

254, XX
237,169
237,185
237,161
237,177
47

39

53

202

Op code

DEC
DEC

RRERE

Z

RRREREEERREREER

ggggggEEEEEEEEEEEEEﬁ

(IX+d)
(I¥+d)

gr:;gxmgunﬁmb

xx

(SP) AL
(SP) , IX
(Sp) 1Y
AF,AF
DE,HL

Hex

D035dd
FD354d
30
05
o8
0D
15

25

DDZB
FD2B

3B
F3
10xx

E3
DDE3
FDE3
08
EB

76

ED46
ED56
EDSE
ED78

ED4D
ED48
ED50
ED58
EDE0
EDEB
34
DD344ad
FD34dd

04
03

Decimal

221,53,XX
253,53, XX
61

5

11

13

21

27

29

37

43
221,43
253,43
45

59

243

16, XX
251

227
221,227
253,227
8

235

217

118
237,70
237,86
237,94
237,120
219,35
237,64
237,72
237,80
237,88
237,96
237,104
52
221,52,X¢
253,52, X%
60

4

3

203




Op code

JNEREERRRRARRARE

EEEEEEEEEEES 83898 SRSNEYNENEN

%rzgﬁmmgon

(HL)
(IX)
(IY)

C 200
M, xxxx
RC, xxxx
NZ , xxxx
Pxxxx
PE, xxxx
PO, xxxx
XXX
Z,X%XXX
C,xx
NC, xx
NZ , xx
XX

Z,xx
(BC) ,A
(DE) , A
HL, (00x)
(HL) ,A
(HL) ,B
(HL) ,C
(HL) ,D
(HL) ,E
(HL) ,H
(HL) , L
(HL) ,xx

14
13
1c
24

DD23
FD23

33

EDB2
E9

DDES
FDE9

FRxooxx

Decimal

12

20

19

28

36

35

221,35
253,35

44

51
237,170
237,186
237,162
237,178
233
221,233
253,233
218, XX, XX
250, XX, XX
210, %X, XX
194, XX, XX
242, %%, XX
234, XX, XX
226,30, X%
195, XX, XX
202, X%, X%
56,XX

48, X%
32,XX

24, %%

40, XX

2

18

42, 5%, XX
119

112

113

114

115

116

117

54, XX

204

Op code Hex

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEREEER

(IX+d),A DD77dd
(IX+),B DD704d
(IX+d),C DD71dd
(IXx+d),D DD72ad
(IX+d) ,E DD73dd
(IX+d) ,H DD74434
(IX+d),L DD7544
(IX+4d) ,xx DD36ddxx
(I¥+d),A FD77dd
(IY+d),B FD70dd
(I¥+d),C FD71dd
(I¥+d) ,D FD724d4
(I¥Y+d),E FD73dd
(I¥Y+d),H FD74ad
(IY+d),L FD75dd
(IY+d),xx FD36ddxx
(ooex) A I2xxxx
{xoxxx) ,BC ED43xxxx
(xxxx) ,DE EDS3xxxx
{dxxx)  HL 22x¢xx
(x0exx) , IX DD22xxxx
(sotxx) , TY FD22xxxx

(xxxx) ,SP ED73xxxx
A, (BC) DA
A, (DE) 1A
A, (HL) 7E

A, (IX+d) DD7EAd
A, (I¥Y4d) FD7Edd
A, (o) 3Axxxx

AA IF
A,B 78
a,C 79
A,D A
AE B
AH 7c
A1 ED57
A,L D
AR EDSF
A, xx 3Exx
B, (HL) 46

B, (IXx+d) DD46dd
B, (IY+d) FD463d

Decimal

221,119,XX
221,112, XX
221,113, XX
221,114, XX
221,115,XX
221,116, XX
221,117, %X
221,54, XX, X%
253,119, XX
253,112, %X
253,113, X
253,114, %X
253,115, XX
253,116,XX
253,117,%X
253,54, 3%, XX
50,%X, %X
237,67, XX, XX
237,83, XX, XX
34, X%, XX
221,34, X%, X%
253,34, %%, XX
237,115, XX, XX
10

26

126
221,126,%X
253,126, XX
58, XX, XX

127

120

121

122

123

124

237,87

125

237,95

62,1

70

221,70, %%
253,70, %X

205




EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 8

code

Fzmoo

IX+d)
I¥+d)

.
SoEE
E

-

Frmoom >

-

DoooDo Uupcnnnnnn

-~ -

Hex

47

40

41

42

43

44

45
06xx
ED4Bxxxx
01xxxx
4E
DD4EAd
FD4Edd
4F

48

49

4D
OExx

DD56dd
FD564d
57

50

51

52

53

54

55
16xx
EDSBaxxxx
1 owx
5E
DDSEAd
FDSEAd
5F

58

59

Decimal

71

64

65

66

67

68

69

6, XX
237,75, XX, XX
1,200, XX
78

221,78, XX
253,78,XX
79

72

73

74

75

76

v

14, xx

86
221,86,XX
253,86, X
87

22, XX
237,91, XX, X%
17,3, X%
94
221,94, xx
253,94,xXx
95

88

89

90

91

206

8
:

§E§§§ESBEEBGEEESSEGSEEBSSEEEEESESESSEEEBSB

- =

.
L% pmx

.

EEX
ga”

- -

grkhbnmy

X mrzmxITTTMmMMMm

- =

IX, (xxxx)
IX,xxxx
1Y, (xxxx)
IY, xxxx
L, (HL)

L, (IX+d)
L, (IY4d)
LA

L,B

L,C

L,D

L,E

L,H

L,L

L,xx

R.A

SP, (wx)
SP,HL
5P, IX
SP,1Y

SP, xxxx

Hex

2Exx
ED4F
ED7Bxxxx
F9
DDF9
FDF9
3exxx
EDAB
EDBS
EDAQ
EDBO
ED44

Decimal

92

93

30, %X

102
221,102,X%
253,102,xX
103

96

97

109
46,%XX
237,79
237,123, XX, X%
249
221,249
253,249
49, XX, XX
237,168
237,184
237,160
237,176
237,68

207




5

OR

(C).A
(€ ,B
(€),C
(€),D
(C),E
(C),8
(C),L
(xx) oA

ERBRXKERRR

Hex Decimal
00 0
B6 182

DDB6Ad  221,182,XX
FDBBAd  253,182,%X

B7 183
BO 176
Bl 177
B2 178
B3 178
B4 180
BS 181
Féxx 246, XX

EDBB 237,187
EDB3 237,179
ED79 237,121
ED41 237,65
ED49 237,73
ED51 237,81
ED59 237,89

ED61 237,97
ED69 237,105
D3xx 211, %%

EDAB 237,171
EDA3 237,163

F1 241
Cl 183
D1 209
El 225

DOE1 221,225
FDE1 253,225

F5 245
C5 197
D5 213
E5 229

DDE5S 221,229
FDES 253,229
CB86 203,134
DDCBAdB6 221,203,XX,134
FDCBJdB6 253,203,XX,134
CB87 203,135
CB8O 203,128
CB81 203,129

208

Op code

- o w w
CcEmo

T
7
—

-

IX+d)
IY+d)

-0 000
-y W -
B o VEMO O P~

NN
B

IX+d)
1¥+d)

-~ mowm

rEmoow

g

IX+d)
IY+d)

r

- -

WWWWWwwNRMNRNRNN

- = -

E

IX4d)
Iv+d)

~
—_———~pZmoOm>

MR

-

B SDSsE R W WWW
monNn Wy

Hex Decimal

CcB82 203,130
CBB3 203,131
CEBA 203,132
CBBS 203,133
CBBE 203,142
DDCBA348E 221,203,XX,142
FDCBAdBE 253,203,XX,142

CBEF 203,143
Cess 203,136
CB89 203,137

[oi:1:1:9 203,138
CB8B 203,139
CBBC 203,140
CBBD 203,141
CBY96 203,150
DDCBAd96 221,203,XX,150
FDCBAd96 253,203,XX,150
CB97 203,151
CB3S0 203,144
CB91 203,145
B92 203,146
CB33 203,147
CBY94 203,148
CB95 203,149
CBYE 203,158
DDCBAA9E 221,203, XX, 158
FDCB3d9E 253,203,XX,158
CB9F 203,158
Cceo98 203,152
cB99 203,153
CB9A 203,154
CB9B 203,155
CBSC 203,156
CBID 203,157
CBAG 203,166
DDCBAdA6 221,203,XX, 166
FDCBAdA6 253,203,XX, 166
CBA7 203,167
CBAQ 203,160
cBAl 203,161
CBA2 203,162
CBA3 203,163

208




L]

- =
e x

# (HL)

g
3

- -

I¥+d)

- m e owow
rEmonND>

tuniununnnunnnn & & g.

’
RES 6, (HL)
RES 6, (IX+d)
RES 6, (IY+d)
RES 6,A
RES 6,B

-~ =

-~
~IEmon

E

-

IX+d)
IY+d)

[

e
CEMmMOOD>» —

B B N N N e P - W N -

B
BYVEREO

g

RETI

FDCBAAAE

Decimal

203,164
203,165
203,174
22'1'203'“'17‘
253,203,XX,174
203,175
203,168
203,169
203,170
203,171
203,172
203,173
203,182
221,203,xx,182
253,203,XX,182
203,183
203,176
203,177
203,178
203,179
203,180
203,181
203,190
221,203,%X,190
253,203,Xx,190
203,191
203,184
203,185
203,186
203,187
203,188
203,189
201
216
248
208
192
240
232
224
200
237,77

210

8
§

(HL)
(Ix+d)
(IY+d)

rEmonmy>

(HL)
(1X+d)
(I¥+d)

3552528288585 ERRRRARRRRREFERRRERRERE

Hex

ED45
CB16

FDCBAd16
CB17
CBl10
cell
cel2
CBl3
CBl4
CBl15

17

CcB06
DDCBAd06
FDCBAd06
CBO7
CB00
CcB0l
cB02
CcB03
CB04
CBOS

ED6F
CBlE
DOCBAd1E
FDCBAA1E
CB1F
CB18
c819
CB1A
CB1B
CBlC
CB1D

CBOE
DOCBAAOE
FDCBAA0E
CBOF
ceo8
CcB09%
CBOA

Decimal

237,69
203,22
221,203,Xx,22
253,203,XX,22
203,23
203,16
203,17
203,18
203,19
203,20
203,21
23
203,6
221,203,X%,6
253,203,%X,6
203,7
203,0
203,1
203,2
203,3
203,4
203,5
7
237,111
203,30
221,203,%%,30
253,203,xx,30
203,31
203,24
203,25
203,26
203,27
203,28
203,29
31
203,14
221,203,XX,14
253,203,%X%,14
203,15
203,8
203,9
203,10

21




EEEES>X>>PP>>>
Tt s s ApTImOND»
RERRX

- w o=

FHODODODOODDOO
~

~ =
I~
E:
g

1, (I¥+d)

Hex

CB0B
CBOC
CBOD
oF
ED67
c7
D7
DF
E7

F7
FF

SE
DD9EAd
FDSEAd

Decimal

203,11
203,12
203,13
15
237,103
199
215
223
231
239
247
255
207
158
221,158, XX
253,158, %X
159
152
153
154
155
156
157
222, %x
237,66

237,82

237,98

237,114

55

203,198

221,203,XX,198

253,203,XX,198

203,199

203,192

203,193

203,194

203,195

203,196

203,197

203,206

221,203,XX, 206

253,203,XX, 206

212

8
¢

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

- m =

L rEmODNO>

2

IX+d)
1¥+d)

BRI R R R R R R = b bt b

rzmoow >

E

| (1x+d)
. (IY+4d)

[RR WA WY X XY

-

E

IX+d)
I¥+d)

~——rTmmonNo>

- momomomomowow

FXmoOD>»

E

IX+d)
1Y+4d)

. mwomowow o=

nrunpurasassabsbabblUUWwW
~ -
m >~

Hex

CBCF
CBCB
CBCY
CBCA
CBCB
cBCC
CBCD
CBD6

Decimal

203,207
203,200
203,201
203,202
203,203
203,204
203,205
203,214

DOCBAADE 221,203,XX,214
FDCBAADE 253,203 ,XX, 214

CBD7
CBDO
caDnl
cep2
CBD3
CBD4
CBDS
CBDE

203,215
203,208
203,209
203,210
203,211
203,212
203,213
203,222

DDCBAADE 221,203,XX,222
FDCBAADE 253,203,XX, 222

CBDF
CBD8
CcBDS
CBDA
CBD8
CBpC
CBDD
CBE6

203,223
203,216
203,217
203,218
203,219
203,220
203,221
203,230

DDCB3JE6 221,203,XX,230
FDCBAJE6 253,203,XX,230

CBE?7
CBEO
CBE1l
CBE2
CBE3
CBE4
CBES
CBEE

203,231
203,224,
203,225
203,226
203,227
203,228
203,229
203,238

DDCB34EE 221,203,%X,238
FDCBAAEE 253,203,XX,238

CBEF
CBES

203,239
203,232

213




Op code

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SRA
SRA
SRA

SRA
SRA
SRA

-~ =

Ltz mon

E

1X4d)
1Y+d)

I3

- = s~

-

E

1%+d)
1¥+d)

SNNNSNNdNNoR RN
~——ITmoONDY>

Fxmono>

E

(IX+d)
(IY+d)

rImonNmy>

(HL)
(IX+d)
(1¥+d)

onmy

Hex

CBE9
CBEA
CBEB
CBEC
CBED
CBF6
DDCBAdF6
FDCBAdF6
CBF7
CBFO
CBF1
CBF2
CBF3
CBF4
CBF5
CBFE
DOCBEEFE
FDCBAAFE
CBFF
CBF8
CBF9
CBFA
CBFB
CBFC
CBFD
CB26
DDCBAA26
FDCBAd26
cB27
CB20
ce2l
cB22
cB23
CB24
CB25
CB2E
DDCBAA2E
FDCBAJ2E
CB2F
CcB28
CB29
CB2A

Decimal

203,233
203,234
203,235
203,236
203,237
203,246
221,203,XX, 246
253,203,XX, 246
203,247
203,240
203,241
203,242
203,243
203,244
203,245
203,254
221,203,XX,254
253,203, XX, 254
203,255
203,248
203,249
203,250
203,251
203,252
203,253
203,38
221,203,%X,38
253,203,%%,38
203,39

203,32

203,33

203,34

203,35

203,36

203,37

203,46
221,203,XX,46
253,203,%x,46
203,47

203,40

203,41

203,42

214

Op code

(HL)
(1X+d)
(1¥+d)

I monQe>

(HL)
(IX+d)
(IY+d)

—— Tcm Ow>
HEERTTTC
-%-

EFEHUGU?’

EERE;&%%EEE

Decimal

203,43
203,44
203,45
203,62
221,203,XX, 62
253,203, XX, 62
203,63
203,56
203,57
203,58
203,59

203,60
203,61

150
221,150,XX
253,150,XX
151

144

145

146

147

148

149

214, %X

174
221,174, Xx
253,174, XX
175

168

169

170

171

172

173

238, X%

215




APPENDIX C
LIST OF SUPPLIERS

ACS Software, Dept., MC,
7 Lidgett Crescent,
Roundhay,

Leeds LS8 THN.

Artic Computing,
396 James Reckitt Avenue,
Hull,
HUB 0JA.

Crystal Computing,
2 Ashton Way,
East Herrington,

Sunderland SR3 3RX.

Picturesque,
6 Corkscrew Hill,
West Wickham,
Kent.
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APPENDIX D

Machloe Code Instructions

-
o
»

INSTRUCTIONS
Op code

ADC At

ADC HLs

ADD A r

ADD HL.s

ADD IX.s

ADD Y3

AND 1

R 1ADB

BIT b.r

CALL pa
CALL c.pg
CCF

C
ithe H tiag becomes the previnus

fe)
)
o
g 1!

iZ becomes 1 il BC becomes zero, PIV bec
CPL

DAA
DEC ¢
DEC s

Y-

Dt
DINZ e

El
EX AF, AF’
EX DE HL
EX ISP),HL
EX ISPLIX
EX ISP)LIY
EXX

HALT

M0
™M1
M 2
INC ¢
INC s
IN A, (n)

[N -TRN

€

GS
Z - H
@ @
e -@
e -e
= @
--@
. 4
@ - 1
@ - 1
e 7
e of the C
e - @
= - @
x - @
= - @
= - @
omes
- =1
e - @
@ - @
@

IO I L O O R |

- |-;!u:lu©el e ® Bl 1299 v

=
I O [
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VIR
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o ocR@Pea9® o

ol |
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(N )]

1oL
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INSTRUCTIONS
Op-code
INr1C)

INI

IND

1Z bacomes 1 B becomes 2eral
INIR

INDA

~ B

JPpq
JPcpa
JP ML
AP {1X)
eyl
JRe
JRc.e

P

I

LDIBC)LA
LD A (BC)
LD (DELA
LD A (DE)
LD LA -
LDRA -

LD A @
LD AR @
IPiV 15 set to interrupt storage flag)
LD SP.HL

LD SPaX -

LD SP.IY -

LD v -

LD smn

LD A ipal
LD s.lpal
LD ipg &
LD ipal s
LDI -
LDD -
PV becomes O+ BC becomes O
LDIR -
LDDR -

NEG

NOP

OR

OuUT in.A

QuT (Cly

ouTi

ouTD

(Z becomes 14! B becomes zeiol
TR ?

'O A |

v~ IPDID

OTDR 7

POP AF x
iFlags are oerermined by the Dyte at
FOP s -
PUSH AF -
PUSH s -

RES b.r
RET
RET ¢
RETN
RETI
ALA

LT

-
2
»

GS

Z - H -
@ - @ -
FEgPl.
s Bt A E oy
H 7
B =l ==
€~ 0 -
® -0 =
- -0
- o
e 23 M s
-0 -
® - @ -
@- o -
a3l
e
s
X x
the too of the
= '
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~~f ®
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ve wwi 1B 1B oo

| I IR IO IR I N IO P B}

(- N}

o0 o0 |11 v

—-— | Q| -

LR T FA

Lt

f

EE-NE -]

DI

INSTRUCTIONS
Op code

RLr

RALCA

RES b.r

RST 38

SBC Ar

SETbr
SLA ¢
SRA 1
SLR ¢
suBr

XOR «

-
2
»

11111 Bw

1P || 1!

T 11 998881111111 e~
]

I
|

? P99 199

®

P02 1 99

B TEELD TRT D
Il ooocoogoeo |l |1 110X

1

Y ERVAE L] LTEE

Poocol 0P

IR T T O I

B | DD

|
L T

Byl

o

TR LA O A WY |
11 BDDBDeD 111 |
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it 1 ®=

(RN |
| |
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|l oooooopoool (111l o0z
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