

T R

~ RAM pack which is now positioned quite a distance away

“simplest and best is one that requires no hardware modifica-
tions. It is simply to use some “Blu-tak” or similar adhesive
substance to make the temporary connection between the
machine and its add-on RAM pack more secure. Use a fairly
thick ‘sausage’ of the adhesive to bridge the gap between the
RAM pack and the ZX81. This should be proof against the
sort of slight bumps that are bound to occur. It will, of course,
be insufficient if you are going to subject your ZX81 to really
‘tough treatment — but then that’s not to be encouraged in any
case!

When using the printer as well as the RAM pack, the printer
interface plugs directly into the ZX81 and the RAM pack
plugs into the back of the printer interface. This means being
even more careful about maintaining the connection to the

from the ZX81 itself. However, we have discovered that as
long as we arrange the equipment on a firm, flat surface, we
have no problems at all. Before you start programming test
the security of the connection with this simple test —strikea
few keys on the keyboard as if you were typing in a program.
~ The junction between the printer interface and the RAM pack
should not flex. If it does your arrangement is not stable
enough. If necessary, try fixing all the equipment, the ZX81,
the printer interface and the RAM pack, to a firm base (e.g.a
piece of blockboard) with double-sided adhesive strip.

New programming considerations

Getting an extra 16K certainly makes life easier. No longer do
you need to employ crafty space-saving tricks to squeeze in
your programming ideas. No longer will you need to fret about
how to incorporate extra features into your, already over-
flowing, programs. You can now relax and concentrate on
good programming style instead.

Youll find that having an extra 16K makes programming
your ZX81 more fun because you can tackle more difficult
programs and ones that are quite different in scope. However,
if you are going to make full use of its increased power you
need more information and new sources of ideas. After all,

2

suddenly you have sixteen times as much memory available!
Your ZX81 could do quite a lot before, o its new potential is
really very impressive. Unleashing its capabilities is all a matter
of writing programs that make use of them. That’s where this
book comes in. It aims both to provide an understanding of
programming techniques that will use 16K of memory to the
full and suggest sufficient ideas to set you off on writing the
programs that will really use the new potential of your ZX81.

The ZX printer

If you've not already bought one, it’s now time to consider
buying a ZX printer, You’'ll find that you’ll need one, both to
enable you to write more elaborate programs and to fully
appreciate their results. Once your programs grow to a length
that fills the screen many times over it is virtually impossible
to find the bugs in them by reading them off the screen. Nor
is it advisable to write out listings by hand — you are likely to
introduce more mistakes this way. The only really practical
course is to list them out using the printer to enable you to
look at the whole program at once.

The printer also opens up a whole new range of applications
for your ZX81. It means that you can keep records —financial
statements and accounts, for example — in ‘hard copy’. With
the 16K RAM pack you can even make the ZX81 capable of
high resolution plotting. This means that you can display
statistical information of all sorts graphically. Again, once
you’ve obtained the results from such programs you’ll want to
be able to take them away in order to make full use of them.

The ZX printer has its disadvantages. Compared to conven-
tional printers it is very narrow, which tends to restrict the
range of applications to which it can be put, and it uses shiny,
grey aluminium paper, which tends to make the output look
unattractive — however, it actually photocopies very well,
giving a really sharp black image. While copying information
from the TV screen the printer makes the image on the screen
flicker and shake, and while printing out on paper it is noisy
and causes alarming “‘flashes”. Its great advantage however,
compared to all other printers yet available, is its price. Fora

3

: memory locations. The way that this works is based on the

principles of binary numbers but from the point of view of a
BASIC programmer this is an unnecessary complication and it
is best understood and easier to remember in terms of the
decimal numbers that are used in programming statements.
The largest number that a single memory location or byte can

- hold is 255. So if you use a single memory location to count,

you can start at zero and count quite happily until you reach
255, If you try to add one to 255 you cannot store the answer
756 in a single memory location but you could store one in
another memory location to indicate that you have reached
256 once. You could then carry on counting in the first
memory location as if nothing had happened (starting again at
zero) until you reach 255 again. In fact, what you are doing is

to use the second memory location as a counter of the number

of times that you have reached 256. The first memory location
counts single things and is known as the ‘least significant byte’
and the second memory location counts 256s and is known as
“the ‘most significant byte’.

first memory second memory
location location
units 2568
least significant most significant

It should now be obvious how to ‘reconstruct’ an address from

_two memory locations. As the first counts units we can just
PEEK its value but the second counts 256s so its value must be

multiplied by 256 before it is added to the first value. Trans-

lating this into BASIC gives:
PEEK M +256+PEEK(M+1)

as the way of finding out what is stored in two memory
locations, the address of the first being stored in M. Going the
other way is just as easy. If you want to split a number up so
that it can be stored in two memory locations, first divide it

by 256 to find out how many 256s it contains and store the

8

result in the'most significant byte and then store the remainder
in the least significant byte. That is

POKE M+1,INT(V/256)
POKE M,V-256+INT(V/256)

will store the number in V in the two memory locations M and
M+1. Both of these PEEK and POKE methods will be used
later on.

More memory locations

The digression about memory addresses interrupted our
examination of the memory map before we had considered the
final four areas. To resume, the calculator stack is an area of
memory that the ZX81 uses to store any temporary results
generated while it is doing arithmetic. The size of the
calculator stack varies while a program is running according to
what calculations are actually being done. The machine stack
is different from the other areas of memory in that there is no
way to find out where it ends. This information is stored in a
location that BASIC has no access to called the ‘machine stack
pointer’, but this doesn’t really matter because nothing of any
use to a BASIC programmer is stored in this region. The
GOSUB stack is used to save the line number that a RETURN
statement uses to return control from a subroutine. The final
element in the memory map is ‘free RAM’, in other words,
RAM that is available for use by the programmer. The system
variable RAMTOP is normally set to the address of the highest
RAM location when the ZX81 is first switched on. However it
is possible to change the value stored in RAMTOP to reserve
some memory for special purposes, such as a machine code
subroutine (see Chapter Ten).

A memory test program

As an example of how to use system variables let’s consider
the problem of writing a program to test the ZX81’s memory.
The most obvious method of checking that a memory location
is working is to store something in it, read it back and see if it

9

Screen layout _
When the ZX81 is first switched on it checks to see how much
memory it has available to it. If it has less than 32K of
memory then a minimum screen is set up. A minimum scre
consists initially of 25 “newline” characters. The first newline
character is used to indicate the start of the screen display.
The subsequent newline characters are used to mark the end of
a display line. As you print information to the screen the
characters are inserted between the appropriate pairs of new-
line characters. When the ZX81 comes to create the screen
the information between each pair of newline characters is
displayed. As each line on the screen must be 32 characters
long, if there are less than 32 characters between newlines,
the ZX81 substitutes enough “blank™ characters to form a
full line. It is important to realise that a “blank™ is just as
much a character as the letter ““A” and takes up the same
amount of memory if you want to store it. You should now be
able to see that there are two ways that a completely blank
line can be produced on the screen. Either by storing 32 blank
characters between “‘newlines” or by two “‘newlines” being
next to each other. In the first case the ZX81 would send 32
blanks to the screen because they are stored in memory and in
the second case it would send enough blanks to make the line
complete. The first method requires 32 extra memory
locations and the second requires none! For example, suppose
that the first part of the display area of memory looks like
this.

INLINLIH |1 |[BLIT [H [E [R |E [NLINLI. . .INL]

Where NL is the code for “newline”, BL is the code fo:
“blank” and all other letters should be replaced by their codes
e.g. “H” is 45. Then the screen display would be constructed
as follows. The first NL simply marks the start of the screen.
The second NL marks the end of the first display line so the
ZX81 would check to see how many characrers had been
printed. On finding the answer to be zero it then sends 3
blanks to make a full display line. Following the second NL
are eight character codes and these are displayed on the screen

30

in turn until the next NL is reached when 24 blanks are sent
to make another full line and so on to the end of the display.

This method of producing a display may seem complicated
but it does save having to use memory to store blank lines.
However, if there is sufficient memory, i.e. more than 3%K,
the ZX81 does use the simpler, if slightly more wasteful,
method of sefting up a screen consisting of 24 lines of 32
blanks. The “newline” characters are still used to signal that
the display should start a new line so the screen displays of the
1K and 16K ZX81 share the same basic structure. As the
screen is used, some of the blanks are replaced by other
characters but the screen always stays the same size. There is
one exception to this rule, however, and that is the SCROLL
command. Issuing a SCROLL command makes the whole
screen display move up by one line, the top line being lost.
This is done by introducing a blank line at the bottom of the
screen consisting of a single “‘newline” character. So after each
SCROLL a short line is introduced to the display. After 22
SCROLLs the screen is back into its 1K form with all the extra
blanks removed. To get back to the full screen all that is
necessary is to clear the screen using CLS.

Screen PEEKing and POKEing

What we have discovered in the last section is that a 16K
screen undisturbed by SCROLL has a fixed layout in memory.
The first screen memory location’s address is in D_FILE and
it contains a “newline” character. The next 32 memory loca-
tions contain the character codes of whatever 32 characters
appear on the first line of the screen. The next location after
that contains another “‘newline” and so on to the last line of
the screen. What this means is that we can easily work out the
address of any location on the screen and use it either to
change what is displayed or more importantly to discover what
is being displayed.

If D is the address of the start of the display file then the
memory location that corresponds to the column number
stored in X and the row number stored in Y is:

31

380 PRINT AT 1,1;"8";
390 PRINT AT 20,30;"+";
400 RETURN

500 LET XC=30

510 LET YC=20

520 LET M=0

530 LET X=XC

540 LET Y=YC

550 LET A$=INKEY$

560 GOSUB 900

570 IF As="""" THEN GOTO 550

580 IF A$="5" THEN LET X=XC-1
590 IF A$="8" THEN LET X=XC+1
600 IF A$="6" THEN LET Y=YC+1
610 IF A$="7" THEN LET Y=YC-1
620 GOSUB 200

630 IF C=13 THEN GOTO 800

640 |IF C<>0 THEN GOTO 530

650 PRINT AT YC,XC;" ";

660 LET XC=X

670 LET YC=Y

680 PRINT AT YC,XC;"#";

690 LET M=M+1

700 GOTO 530

800 CLS

810 PRINT AT 0,2;"YOU HAVE TAKEN “;M;
“ MOVES"”

820 PRINT “ANOTHER GAME Y/N"

830 INPUT As

840 IF As(1)="Y" THEN RUN

850 IF A$(1)<>"N" THEN GOTO 820

860 STOP

/900 IF RND>L1 THEN RETURN
910 LET Cs=" "
920 IF RND>.5 THEN LET Cs="[A]"

34

930 PRINT AT RND#19+1,RND*29+1;Cs
940 PRINT AT 1,1;“8";
950 RETURN

1000 FOR 1=0 TO 31

1010 PRINT AT 0,1;“[]*“;AT 21,1, 1”;
1020 NEXT |

1030 FOR 1=0 TO 21

1040 PRINT AT 1,0;”[]";AT 1,31;[1*;
1050 NEXT |

1060 RETURN

The program starts off by asking for the difficulty level, L.
is governs how many squares are used to block your way.
is information is used by subroutine 300 to construct the
itial maze. The details of this are straightforward. First a call
subroutine 1000 draws a border around the maze. Next a
NT AT is used to print the graphics block [A] at random
ints on the screen. Notice how FAST and SLOW are used to
ide the maze while it is being built and to get things done as
ickly as possible. Before leaving the subroutine a § sign is
inted in the fop left hand corner to represent the target
ition for the asterisk which is printed in the bottom right

S

For an example of a program that tries to follow all these
suggestions, you are referred to the statistics program in the
next chapter.

User-friendly programs

When you first start writing programs there is an excuse for
not worrying too much about the quality of your handiwork.
If the program does the job then it is a success. The trouble is
that this attitude tends to continue even when you are no
longer a beginner. The result is a large collection of programs
that no one can use except you. There is nothing more satis-
fying than finishing a program to such a level that other
people can use it and then knowing that other people ARE
using it! Programs that are finished in this sense have to be
“uger-friendly” in other words they have to be kind to even
the most inept user. When you write a program you should
always have in mind someone who knows very little about
computers/programming or even the topic that your program
deals with. It is difficult to give a complete list of the points to
pay attention to when making a program user-friendly but the
following might be helpful:

Ask clear and un-ambiguous questions, do not use jargon.
Accept all reasonable answers to each question. For example
treat “Y” and ““YES” as equivalent.
Check the answer to each question for validity as it is given.
If it is not valid at the very least repeat the question.
Do not present too much information in one go and use
PAUSE together with a “Press any key to continue™
message, or a similar method, to allow the user to
control when the program should move on. '
Be careful not to fill the ZX81’s screen and so stop the
program. The best way of avoiding this is to use PRINT
AT statements so that repeated printing of questions
doesn’t accidentally fill the screen. Also use PRINT AT
21,0; print list and SCROLL to print long lists of data.
Repeat the answer to any questions on the screen on the
same line as the question was asked so that the user can
see the answer later on. :
Do spend time writing a good title screen including a simple
introduction to what the program will do.

Debugging

One of the most difficult things to learn is the art of debugging
a program. It is comparatively easy to learn BASIC or to write
programs but how to find out what is wrong with a program
that isn’t working is something that can take years to learn.
The main problem is that debugging is something that is
learned by practice rather than by theory. While this is true, it
does help to have explained a few possible approaches to
debugging and some of the helpful features of the ZX81 in this
respect.

Some bugs are easy to find — the program misbehaves, you
list it and say “ah ha, there it is”! The real trouble starts when
something doesn’t go right and you stare at the program and
see nothing wrong. What you should do in this situation is
not to stare for too long. To find a bug you need information
on how the program is running and compare it with your
predictions of how it SHOULD be running. When you find a
divergence between what does happen and what should
happen you are at least nearer to your bug even if you haven’t
. quite found it.

What sort of information on the program’s running is
relevant to debugging? You may think that there is a huge
range of information that has to be considered. In fact there
are only two points — the order in which the program lines are
carried out and the value stored in each variable. Some
versions of BASIC have a TRACE facility which, if used, will
print the line number of each line as it’s being carried out.
ZX81 BASIC doesn’t have a TRACE facility but it does have a
STOP instruction and a CONTINUE command. If you want to
know what is going on at any point in a program all you have
to do is to temporarily insert a STOP command. When the
program reaches the point in question it will stop with the
appropriate report code. The report code includes the line
number so if you have a number of STOP commands in a

o]

It is difficult to write a perfect program but you should trj
52]

- you want to LOAD a program from tape and restart it then

Start the tape running and press “newline”. When the program
has finished loading stop the tape recorder but, instead of
starting the program with RUN, use CONTinue. You should
be amazed to see the program carry on from where it left off,
printing the next number in the list! This is an important and
useful discovery because you can now SAVE and CONTinue
a program if it is taking too long to do something and you
cannot wait any longer. You can also use GOTO to restart a
program at a different place without disturbing the contents
of the variables area of memory.

When you try either of these techniques, however, you may
be disappointed to notice that although the program CONT-
inued from where it left off the screen display wasn’t restored
to what it contained when you broke into the program’s
execution. The reason for this is that any BASIC command
entered from the keyboard and carried out immediately (i.e.
one that doesn’t have a line number and isn’t part of a
program) clears the screen before it has any effect. For
example, try typing

LET A=0

~ the cassette tape. This chunk of memory includes most of t
system variables, all of the program, the display file and all
the program variables! You should think of this as a “sna
shot” of all the memory locations that matter to a runni
program. If you break into a program at any point and SAVE

it, then as well as the lines of BASIC that make up the
- program, the current contents of the screen and all the.
variables are stored on tape. If you then LOAD the progra
back into the memory then the “snapshot” can
“re-activated” and the program can continue from where
left off! If this is true why is it that every program that you'
LOAD from tape appears to start from the beginning with no
“knowledge” of its past life? The screen is always clear, with
o sign of anything printed by an earlier RUN of the progra
and all the variables are set to.zero. The reason for these
observations is two-fold. Firstly, whenever you RUN a
program the command RUN clears the screen, resets the
variable area and starts the program off from the first line.

you must avoid RUN. The obvious command to use
CONTinue. To convince yourself that this works type in
following program:

10 FOR 1=1 TO 100
20 PRINT AT 21,0;1
30 SCROLL

40 NEXT |

~ If you start it off by using RUN you should see it print
integers from 1 up to 100 on the screen. At some convenient
point before the program finishes press the BREAK key and
notice the last number on the screen. Next prepare your tape
recorder ready to SAVE a program and type

SAVE “TEST”

Start the tape running and press “newline”’. When the SAVE
is complete re-wind the tape and switch your ZX81 off to
ensure that the old version of the program is lost. Then type 3

LOAD “TEST"

unfortunately what happens when you use the SAVE
i command. Before the memory is stored on tape the screen is
cleared and it is this “blank™ screen that is restored when you
CONTinue the program.

There is a solution to this “loss of screen” problem. Both
SAVE and LOAD can be used as statements within a pro-
gram and when they are used in this way they do not result in
the screen being cleared before they are obeyed. There is also a
useful spin-off from using these commands as part of a
program. If you LOAD a program that was SAVEd as a result
of a SAVE statement within a program, then at the end of the
LOAD the program will continue from where it left off
without the use of a CONTinue command. To be exact, the
first statement to be executed is the one immediately
following the SAVE. This facility is immensely useful because
it allows us not only to SAVE a partially completed program
and restart it including the screen display, but to write self-

56 57

When you press “newline”’you will see the screen clear. This is
p

Data storage

~ running programs! To see that all this actually works ty'pé' in .
Now that we know that SAVE stores the contents of the

the following program

10 FOR I1=1 TO 100

20 PRINT AT 21,0;1 builds and manipulates data files should be easy. As an

30 SCROLL example consider the problem of writing a statistics program
40 IF 1=20 THEN SAVE "“TEST" that can be used to enter a list of numbers, edit and generally
50 NEXT | change them, and then SAVE them on tape for later use.

Although this is described as a statistics program the problems
encountered and the methods used are similar to storing and
maintaining any list of information, including lists of strings.

Following the suggestions presented in the last chapter
for designing modular programs using stepwise refinement,
the first thing to do is to get an overall outline of the program.
We need a subroutine to read numbers into an array, a sub-
routine to offer the user the chance to change the list and
a section to SAVE the list on tape. If the next instruction
following the SAVE is a GOTO “the start of a program™
then when the program is re-located it will self-start at the
beginning but with the data from the previous RUN already
in memory. Notice that our file of data is in fact a mixture
of data and program. It is the case that the ZX81 can only
store data along with the program that uses it. To many
people used to other computers this is a strange idea. They
are familiar with the idea that programs and data are very
different things and should be treated separately. However,
if you think about it, the ZX81’s approach has a lot to be

which does the same thing as the previous example apart from
the fact that it SAVEs itself when “I” reaches 20! If you RUN
this program you have to be ready to record the program just a
little before the integer count gets to 20. So have the tape
recorder ready and start it recording when you first see 15
appear on the screen. When “I”” reaches 20 you will see the
familiar patterns that tell you that something is being recorded
appear on the screen. At the end of this the program continues
as if nothing had happened, printing 21,22, and so on.
Re-wind the tape and switch your ZX81 off to convince your-
self that all trace of the program is lost. If you LOAD the
program TEST in the usual way you will find that at the end
of the LOAD the program continues from where it left off,
inluding the screen showing the numbers previously printed.

There is one more interesting and useful feature of SAVE
and LOAD when used in programs that we haven’t yet
mentioned. You can use not only a string as the name of a
program but a string expression. So the following are all valid:

SAVE As said for it and it may be just a matter of time before other
SAVE “PROG"+STRs$(l) machines offer such facilities. The advantages of the ZX81’s
LOAD A$+B$ method is that you do not have to remember two file names

(one for the program and one for the data) to process some
information. The disadvantage is that it is difficult to trans-
fer data from one program to another and even if you want
to store only a little data you have to wait while the whole
program is SAVEd. There are ways around both of these
problems involving PEEKs and POKEs and a knowledge
of the ZX81’s memory layout, For example, you can pass
data from one program to another by transferring the entire
variables area of memory into free RAM. When you LOAD

59

The only restriction on using SAVE within a program is
that it must not be used from within a subroutine. The reason
for this is that the GOSUB stack area of memory is not
SAVEd on tape and so when the program is LOADed and
* restarted the next RETURN command will cause the program
to stop and an error message to appear.

58

variables area of memory on tape, writing a program that

it can then be transferred back into the variables area as

- ~ addition of fresh data to what already exists. As this is the sort

~ numbers and no bigger — we don’t want to waste time storing

a new .program, this area of memory is left unaffected and storage used by E by issuing the following command:

DIM
the first task of the new program. These are, however, very IM E(1)

advanced methods, and as long as we have enough memory,

it is possible to do quite a lot without resorting to such tech- |

niques.

. The statistics program as outlined above will work nicely
- unless one of the options of the editing subroutines is the

This may seem a silly way of increasing data storage, and it
has to be admitted that it can be slow and it does use a lot of
memory, but all the other methods used available on the ZX81
are complicated and have problems of their own.

of thing we would like to do it is important to examine what Statistics program

the problem involved is and how we can solve it. Before you .
can start to enter your list of numbers, the statistics program
has to set up an array to receive them. It is obviously
important that the array is just the right size to hold all those

This is the largest program in this book and it illustrates many
of the ideas that we have already met and introduces some
new ones. Apart from being an example it is also a useful
program in its own right and could easily form the basis for an
even more comprehensive statistics program.

un-used array elements on tape. So the first question to ask
the user is “How many values do you want to enter?” and set
up an array of the correct size. Now imagine that all the num-

=i BEE B e e R e T

{1} ENTER NEW DATH
bers have been entered and SAVEd on tape. How do we {Z) GENERATE RANDOM DATH
increase the size of the array so that some more numbers can :3: gg 5-‘;; EE’{%
be added? While there are clever ways based on a direct manip- {S} CALCULATE STATISTICS
ulation of the variables area of memory to make that array :‘g} EIG:::[&; HISTOGRAM
. =

bigger, there is a simple programming solution. If the original
number of variables was N and we want to add M extra vari-
ables we could create a new array by '

DIM E(N)

transfer all the current data from the original array, D say,
into E and then re-dimension D to the larger size, i.e.

DIM D(N+M)

This works on the ZX81 because its dimension command is
unlike most other BASIC DIM commands. If you dimension.
an array that already exists, the ZX81 erases the existing array
* and replaces it by a brand new version which can be a different
size from the original. After creating the larger version of D it
is simplicity itself to recopy the old data in E back into the
first N elements of D and ask the user for the values of the
extra M elements. The thing to remember is to release the

60

TYPE REQUIRED NUMBER

Briefly, the program can be used to enter data and calculate
2 number of simple statistics, the maximum, the minimum,
the mean, the range and the standard deviation. In order to
examine the data graphically there is a facility to plot a histo-
gram of the frequencies of the data grouped into - equal
intervals. The option of editing the data is also provided and
this is organised as a second ‘“‘edit menu” and associated sub-
routines. The editing operations available are: list all or a part
of the data; change a single value; delete a subrange of the
data; and add extra values. As part of the main menu the
edited data can be SAVEd on tape for later use. The final
option is the generation of random data. This may seem like a
strange thing to want to do but it can be used both to test the
program and demonstrate it.

61

As the program has been constructed using subroutines the .

Hefe are some samples to show you what to expect when
following table will help you to find your way around:

you run this program. It is very long so it is impossible to

describe its operation in as much detail as usual. line. number description
10 The name of the program
500— 690 The main menu routine

1000—-1270 Generate random data
1500—1670 SAVE program and data
2000-2140 Calculate statistics

2500—2580 Print statistics

3000—-3140 Manual data input

40004150 Secondary edit menu
4200—4350 Edit option (1) — list data
4500—4590 Edit option (2) — alter data value
4600—4790 Edit option (3) — delete data
4800—5060 Edit option (4) — add data
5500—5530 Calculate and print statistics
6000—6230 Plot histogram

7000-7110 Construct frequency count
8900—8920 Press any key to continue routine

NUMBER OF URLUES=4@
MAXIMUM=18
MINIMUM=1

MERN=0
URARIANCE=18.851282
STRNDRRDE DEU.=4.24860

PRESS ANY KEY TO CONTINUE

HOW MANY BINS 710
MANIMUM URLUE= 11
HININUM URLUE= 1

Most of these subroutines are easy enough to understand
d those that are less than obvious should be easy to under-
and in the light of the discussion so far. However there are a
w points that are worth noticing. In subroutine 1000 notice
the random values are generated using the method described in
the 1K book. In the case of fractional data a slightly different
formula is used. The lines 1500—1670 SAVE the data on tape.
They are not used as a subroutine but entered by a GOTO in
ine 650. The reason for this is that the auto run following
SAVE wouldn’t work if the program was SAVEd from within
2 subroutine, (see previous section). In subroutine 4200 line
4330 causes the listing to pause after every 20 lines scrolled
onto the screen. Subroutine 4800 adds new data to the
existing data using the method discussed earlier, but notice the
use of messages to stop users thinking that the machine has
forgotten them!

The subroutines 6000 and 7000 are new in the sense that
we haven’t discussed the topic of plotting histograms before.
Subroutine 7000 counts the number of data values that fall

71

(NB uses different data set to previous example.)

FLACE BLANK TARPE INTO
THE RECORDER

UHAT DO YOU URNT TO CRLEL
THE PROGRAM 7T
TEST

PRESS PLAY AND RECORD

AND THEN PRESS RANY KEY
ON THE KEYBORRD

70

into each interval using the equation in line 7020. If you
imagine the intervals numbered from left to right starting at
one, then the equation gives the number of the interval that
any value falls into. This interval number is then used to select
the element of H that has one added to it. In this way H(I)
keeps count of the number of values falling in interval I. Sub-
routine 6000 prints the correct number of solid blocks te
represent the number stored in H(I) for each value of I. The
largest column of blocks that can be printed on the screen is
25. If we make this the length of the longest column of the
histogram we print 25/F blocks for each count in H where F is
the largest frequency, ie. for a count of 1 we print 25/F
blocks. So for each element of H we should print H(I)*25/F
blocks and this is what lines 6160—6180 ensure.

Since this is such a long program, there are ma
programming details that haven’t been mentioned and the bes
way to become aware of how things work is to try to change
or improve the program. Because of its modular design add :
extra features is straightforward. Some suggestion for
extensions are: add a print out of the frequency table H usec
in subroutines 6000 and 7000; change the program to handle

Chapter Seven
NUMBER FORMATTING

Although it cannot be called a serious deficiency, the ZX81
does lack any facility to control the way that numbers are
printed out. If you use PRINT A then you cannot predict or
control the number of digits before or after the decimal point
and you certainly cannot control the position of the decimal
point on the screen. The most you can do is to specify the
screen location where the first digit of the number is to appear
by using a PRINT TAB or PRINT AT statement. You may be
wondering why you might want to go to the trouble of
controlling the format that numbers are printed in. The answer
is simply to make your print out and screen displays easier to
read and less misleading. For example, if you print a number
with too many digits after the decimal point you might lead an
-innocent user into the trap of believing that the calculation is
really accurate to that degree. The ZX81 doesn’t have the
more than one column of numbers and let the user choos formatting commands that are available in other BASICs but
which column to plot or calculate statistics on; and, when you it is possible to write subroutines to provide almost identical
feel confident of the techniques we have discussed in features.

book, add to this more-than-one-column program routines tha
will calculate the correlation co-efficient and plot a scatte

dia Truncating and rounding
gram.

The danger of printing too many digits after the decimal point
was mentioned in the previous section. It is surprising how
often a calculation is carried out on numbers that are INPUT
10 only a few decimal places and the result then PRINTed to
the maximum number of decimal places that the machine can
handle. It is a sad fact, however, that calculations performed
by a digital computer are not carried out with perfect
precision and the final result is always less accurate than the
data used in the calculation. The task of deciding how many
digits should be printed after the decimal point is a difficult
one to give any exact rules for. The best approach to adopt is
to print only digits that you feel will be meaningful to the user

72 73

of the program. For example, if you are trying to ca]culat_eih_

DIGITS=1 @.8
: : 5 DIGITS=2 g
amount of fuel oil to order to run a heating system for s X oD §g gs= g : 333?
_months then there is little point in arriving at the answer: o rrg; s
" DIGITS=5 @.42221
NUMBER OF GALLONS OF FUEL NEEDED = 102.34983723 DIGITS= .56664581
| EE E R £
: GITS= .
~ You would be lucky to find anyone who would sell you .3 of g%gn5= = @.55800508

Gallon, let alone .34983723 of a Gallon. It’s true that no
sensible person would order the exact figure printed by the

computer but then again why have the computer print an

answer that has to be further processed by a human. More
seriously, if a column of fuel amounts was printed out in this

way it would be quite difficult to compare figures because

of all the spurious digits after the decimal point. :

It is fairly easy to limit the number of digits printed aftes

the decimal point using the INT function. Try the following

program: '

10 FOR N=1TO 10

20 LET V=RND

30 PRINT “DIGITS= "“;N;TAB 15;
40 GOSUB 1000

that follow the decimal point and it is perfectly feasible that
fewer will be printed.

There is an objection to using subroutine 1000 as it stands
nd that is that is “chops off™ the excess digits. This is usually
called “truncating’” the number, and humans are usually
appier with the idea of “rounding” a number. If you want to
ound a number to a fixed number of decimal places you look
i the first digit that would be lost if you truncated the
umber and add one to the next digit if it is 5 or greater. Thus
2.126 truncated to two decimal places is 0.12 and rounded to
two decimal places is 0.13. You can convert subroutine 1000
‘0 round numbers by changing line 1010 to read:

50 PRINT 1010 PRINT INT (V+DIG+.5)/DIG;
?g g_:_ig; N f you follow through the calculation using .126 as V and 100

s the value for DIG you should see how it succeeds in

1000 LET DIG=10+*N pradiigee e

1010 PRINT INT (V#DIG)/DIG;
1020 RETURN

You should find that the number of digits printed after the
decimal increases from 1 to 9. Subroutine 1000, which is
responsible for “chopping” off any excess digits can be used
by any program. V contains the number to be printed and Nis
the maximum number of digits to follow the decimal point.

igning decimal points
 you were lucky you might have got a neat triangular shaped

st of numbers from the example in the previous section but it
s more likely that the print out looked more like this —

e RIoitss 2 .55

The way that the subroutine works is very simple and is best ITS= .25
understood via an example. If V is .123 and N is 2 then DIG 8 BIGITa: 2 23358

10%%2 ie. ten squared or 100. Multiplying V by 100 gives g%g%{ - "65 A
12.3, INT chops off the fractional part giving 12 and dividing DIGITS= 7 .9877434
by DIG restores the number to its correct magnitude (i.e. .12). g%g;rs: a ? éggé?:?gg
Notice that N only governs the maximum number of digits DLIGITS= 1@ @.12482941

74

~]
wn

PRINT “ “ (1 TOM=N)

The only thing left to do is to find a way of calculating N, the
number of digits before the decimal point. Try the following
program for a range of inputs from 1.0 to 100000.0

To overcome this untidy problem we need a subroutine tha
will allow us to specify the position of the decimal point as
well as the number of digits following. Columns of figures look
much better when the decimal point is aligned and this is fairly
easy to achieve on the ZX81. Try the following program:

: 10 INPUT V
10 LET M=7 20 PRINT V, INT(LN V/LN 10)
20 INPUT V Lf EOT0

30 PRINT TAB 10;
40 GOSUB 3000
50 LET V=V+100#RND

You should see that this prints out one less than the number
of digits before the decimal point. The way that this works is

60 GOTO 30 that LOG V is the power that you have to raise 10 to get V i.e.
V=10##(LOG V). If you chop off the fractional part of LOG
3000 PRINT “(1 TO M= (V>1)*INT(LN V you have one less than the number of digits in front of the

decimal point. The only trouble is that the ZX81 doesn’t have
a LOG (log to the base 10) function, only a LN (log to the
base e) function. However using the relationship LOG V=LN
V/LN 10 solves this problem. We can now write the formatting

V/LN 10)+ (V<.1));V
3010 RETURN

221 line as:
2:8228888" - :
123%‘%%3%‘35_ PRINT (1 TO M=INT(LN V/LN 10));V
65293, 728 This is almost the same as line 3000 apart from the terms
49388575.5

(V>1) and (V<.1). These are conditional expressions that
evaluate to O if they are false and 1 if true, and are used to
adjust the number of blanks printed to take account of the
different way that the ZX81 prints numbers smaller than 1
and smaller than .1.

This program may look a little complicated, especially line 3000
but its action is easy to understand if you break it down. Lines
10 to 60 simply provide test numbers for subroutine 3000
format. The variable M sets the “field width™ i.e. the number o
printing positions before the decimal point and V is the numbe
to be formatted. To make sure that the decimal point is alway
printed in the same place you have to add a variable number o
_ blanks to the front of the number before it is printed. Fo
example, if the field width is 5 and you are printing a numbe
with 2 digits in front of the decimal point then you have t
print three blanks then the number — so to print 22.12 yo
~ would print blank[blank|blank|2|2[.|1|2|. Obviously if thers
are N digits in front of the decimal point and the field width i
M you have to print M—N blanks to ““pad” the number out tc
M printing positions. This can be done by slicing a string
blanks thus ;

PRINT USING

Most print formatting problems can be solved using a combina-
tion of truncating, rounding or aligning the decimal point.
However other versions of BASIC have a very powerful state-
ment PRINT USING that allows a wide range of number
formats to be specified. It is possible to write a subroutine that
provides some of the capabilities of the PRINT USING
command and this would be useful both for converting
programs and for new writing new programs.

The format of a number produced by a PRINT USING
statement is specified by the use of a *‘picture” of the number

76 77

stored in a string. For example, in most BASICs “###. ##”
would specify a format of three spaces or digits in front of the
decimal point and two digits following i.e. 3.123 printed using
 this format would be [blank|blank|3|.|12|. There are many
other formatting symbols that can be combined with # to
form a “‘picture” of the number but perhaps the most useful
is the “floating”” money sign. If you write either a dollar or a
pound sign in front of the formatting “‘picture” the money
sign will be printed to the immediate left of the formatted
number. For example, “###.###” would format 3.1234 as
|blank|blank|3|.|112(3. This method of drawing a “picture” of
the number is a very easy to use and powerful formatting
method. For example, if you don’t want a decimal point
printed then all you have to do is leave it out of the “picture”
ie. “###” If the number to be printed is too big for the space
allocated to it by the “picture” then it is printed unformatted.
A general PRINT USING subroutine for the ZX81 would

be rather long but we can produce a subroutine that will
accept a “picture” involving digit positions marked by #, the
decimal point and floating money signs. The only change that
we have to make to the usual PRINT USING is to change

2050 LET F=0

2060 LET M=0

2070 LET N=0

2080 FOR I=1 TO LEN Us

2090 IF Us(l)="." THEN LET F=1

2100 IF Us(l)="=" AND F=0 THEN LET M=M+1
2110 IF Us(l)="»" AND F=1 THEN LET N=N+1
2120 NEXT |

2130 IF M=0 AND H$="0"" THEN LET H$=""
2140 LET H$=S$+Hs$

2150 IF LEN H$>M THEN GOTO 2170

2160 LET Hs=" (1 TO M—LEN Hs)+Hs
2170 IF F<>0 THEN LET H$=Hs+"."

2180 LET Ls$=L$+" 0000000000000

2190 IF N<>0 THEN LET H$=H$+L$(1 TO N)
2200 PRINT Hs;

2210 RETURN

e “picture” format is stored in the string U§ at line 10.
Lines 20—70 simply send test values in V for subroutine 2000
o format. Before any formatting begins the number contained

n V is converted into a string by STRS and then split into
wo parts. The digits in front of the decimal point are stored in
1S by line 2000 and the digits following the decimal point are
tored in L$ by lines 2010—2020. Notice the use of IF . ..
N, IF ... THEN construction in line 2020. This has the
e effect as IF ... AND ... THEN but it is needed because
i this case the second condition, i.e. L$ (1)="."", can only be
orked out if the first condition is true i.e. if L§<>* . The
=xpression IF L$<>* ” AND L$ (1) THEN ... will give an
rror message if L$ is null because in this case L$ (1) doesn’t
=xist. The variable S$ is used to hold any floating money sign
1 the formatting string U$, if there is no such sign then S§ is
t to the null string (Lines 2030—2040). Lines 2050—2120
-ount the number of digits before the decimal point (M) and
22 number of digits after the decimal point (N) in the format-
ing string US. The variable S is zero if no decimal point is
sund. Line 2020 removes the leading zero if the number is
=ss than one and there is no digit position specified by the

79

to * because the ZX81 doesn’t have a # character.
print using subroutine and a small test program is:

10 LET Us:”sannnu-*_ene”
20 PRINT TAB 9;Us

30 INPUT V

40 GOSUB 2000

50 LET V=V#100«RND
60 PRINT

70 GOTO 20

2000 LET H$=STR$ INTV

2010 LET L$=(STR$(V)) (LEN Hs$+1 TO)

2020 IF L$<>""" THEN IF L$(1)="." THEN LET
=1$(2.TO)

2030 LET S$=Us(1)

2040 IF Us(1)<>"“£" AND U$(1)<>"s" THEN LE
S$=””

78

cleared and another 20 numbers printed. Notice that the
action of the COPY command is entirely automatic and no.
user intervention is required. :

Using this idea it should be possible to convert programs to
use the printer very quickly. Once you have identified the
points at which a whole screen is produced simply insert &
question “DO YOU WANT TO PRINT THE SCREEN?” and if
the answer is “yes” do a COPY. This will provide printer
versions of standard output without the need to worry abo
the LPRINT bug mentioned earlier and is the only way of
printing graphics produced using PLOT/UNPLOT.

High resolution plotting

Using a few simple subroutines it is possible to produce high
resolution (256 by 256 points) graphs and as many user-
defined characters as you want. The basic ideas outlined in the
following sections are derived from the demonstration
programs in the printer manual. However you should be abl
to use the subroutines presented here to produce your own
programs, not just demonstrations.

To use the printer in high resolution mode it is necessary
to modify part of the machine code stored in the RO
Machine code is treated in more detail in Chapter Ten but for
the purposes of this chapter all you need to know is that it is
possible to copy the definition of LPRINT from ROM to an
area of RAM and then modify it. Before you can do thisit is
important to reserve an area of memory that BASIC will not
try to use. This can be done by altering the address stored in
RAMTOP using the following commands:

POKE 16389,124
NEW

To see high resolution plotting working try the following pro-
gram which plots random points. (You might find that
changing to FAST mode speeds this program up quite a lot.)

10 GOSUB 1000
20 GOSUB 3000

88

30 GOSUB 2000
40 GOTO 20

1000 IF PEEK 16388+256+PEEK 16389=31744
THEN GOTO 1030 :

1010 PRINT “MEMORY NOT RESERVED"

1020 STOP

1030 FOR =0 TO 112

1040 POKE 31744+1,PEEK (2161+1)

1050 NEXT |

1060 POKE 31800,63

1070 POKE 31857,201

1080 RETURN

2000 FOR H=0 TO 31
2010 POKE 16444+H,H
2020 NEXT H

2030 LET H=USR 31744
2040 RETURN

3000 FOR 1=1 TO 32+8

3010 POKE 32255+1,255*RND
3020 NEXT I

3030 RETURN

High resolution pattern (compare with low resolution equivalent
on p. 31 of 1K book),

89

~ Subroutine 1000 transfers the machine code that defines th

(ROM area) to 31744 (reserved RAM area). Lines 1060 an

by calling the machine code set up by subroutine 1000.

way LPRINT works, into the RAM reserved for it. Before th
is done lines 1000-1020 check to make sure that RAMTOP ha
been altered and the memory reserved. The FOR loop (line
1030—1050) transfers 113 bytes of machine code from 216

1070 POKE the required two changes to the machine cod
These two changes make it print the contents of the 23
memory locations from 32256 onwards. Subroutine 2000
responsible for initiating the printing. Lines 2000 to 202
set up a character count in the printer buffer starting :
16444. Line 2030 is the line that actually starts the printis

done via the
USR ‘““address”

function which transfers control to a machine code subroutis
starting at “address” in much the same way as GO
transfers control to a BASIC subroutine at the stated lis
number. The only complication is that USR is a function (lik
SIN or COS) and therefore has to be used in an expressio
This is the only reason that line 2030 starts with LET H=.)
are not interested in the value stored in H as a result of th
assignment, just in getting to the machine code starting
31744. Subroutine 3000 changes the contents of the area.
memory that is printed by subroutine 2000 by POKEi
random numbers. (Remember that a memory location ca
only store numbers between 0 and 255.)

The operation of the program should now be easy to unde
stand. First line 10 calls subroutine 1000 to set up t
machine code. Then line 20 calls subroutine 3000 to random!
alter the area of memory to be printed and line 30 calls su
routine 2000 to print it. This is then repeated over and ow
until you get bored and press “break”! These three stages, s
up machine code, set up area of memory to be printed ai
print it, are the three fundamentals of high resolution printin
Subroutines 1000 and 2000 will be used as they are in all th
subsequent programs in this chapter. The only thing that wi
change is the way the memory is set up before printing.

90

Plotting a sine curve

The previous example served to introduce the fundamental
subroutines 1000 and 2000 but the output could hardly be
called useful. To be able to use the high resolution printing
facility we must obviously find out how the information
POKEd into the memory area by subroutine 3000 controls the
pattern of dots produced by the printer. Unfortunately this is
where most of the difficulties of high resolution graphics lie.
Each time subroutine 2000 is used the equivalent of a whole
row of characters is printed out. As each character is formed in
a square of eight by eight dots, a whole row is 32x8x8 dots or
2048 dots. This is obviously a lot more than the 256 memory
locations that are used to define the pattern of dots that are
printed by subroutine 2000. The answer is that each memory
location controls the state, i.e. black or white, of eight
individual dots. Thus each memory location controls a row of
eight dots. You may think that the most obvious arrangement
would be for the first 32 memory locations to control the
pattern of dots of the first row of the printout. This is not so,
the first eight memory locations control the eight rows that
make up the first character position, the next eight control the
second character position etc.

Ist 2nd nth
character character character

Row memory 1

location 2

memory 9
location 10
11

00 -1 O bh b b =

o1 Ovh bW
——
F-N

The way that each memory loation controls eight bits is
slightly more difficult to describe. Depending on which of the

o1

ahcdabcdabcdabcdabecdabocdabed
Aabcdabcdabcdabcdabcdabocdabed
abcdabcdabcda3bcdabocdabcdabod
abcdabcdabcdabocdabocdabodabed
abcdabcdabcdabcdabecdabecdabed
dbcdabcdabcdabecda abcdabcd
ahcdabcdabcdabcdabecdabcdabed
abcda3kbcdabcdabcdabedabocdabod
ahidabcdabcdabec dabcdabodabesd
abcda3bcdabcdabcdabocdabecdabed
ahcda3bcdabcdabecdabe dabo

abcdabcda3becd3bcdabocdabocdabed
ahcda3bcdabcda3bocdabocdabedabed
abcda8bcdabcd3bcdabocdabocdabod
abcdabcdabcdabocdabedabodabecd
ancdabcdabcdidbodabcdabcdebo g
Abcdabcdabcdabcdabocdabodabod

Subroutine 1000 and 2000 are used in the normal way to se
up the machine code subroutine and print the memory ares
Subroutine 4000 sets up the dot pattern of any new character
that you want to use. The dot pattern for the Ith character i
stored in L$(I) as a string of eight characters. To code a d¢
pattern all you have to do is to draw the shape of the characts
on an eight by eight grid. Take each row at a time and writ
down the number corresponding to each point that is bla
(see the table on page 92) and add up all the numbers. One
you’ve dealt with all eight rows you will have a list of eigh
numbers between O and 255. Each number is the code of thi
character that must be stored in the string to produce that ros
of dots. To store this list of numbers in the form of a string
is necessary to convert each to its corresponding characte
using the CHRS function. To save space (and typing effort
however, it is preferable to enter these characters directly fro
the keyboard. So, rather than type CHR$(0) for example, y¢
would simply type a space. ;

This procedure is easier to understand from an example
Consider a lower case letter “a”. The grid and its correspondir
set of numbers could be as follows:

- - - . U

ey 0

o oE E-w . 32+16+8=56
i e e 4
e 32+16+8+4=60

96

g e ey TR e e 84.|.4=68
et L T 32+16+8+4=60
. - . 0

These numbers are then converted to the following characters
in the string L$(1):

L$(1)=" S[4]W"“+CHR$(68)+"W "

Notice that where there is no symbol corresponding to the
character code we have no choice but to use the CHR$
function. If you need to use a keyword such as LET within
the string you can either use CHRS or enter the keyword
directly by pressing “THEN”, to obtain the “K” cursor, then
“LET” and then using the edit keys to erase the “THEN”,
After the dot patterns have been set up in L§$ you can store
a string of characters in A$ (line 30) and lines 40—90 will print
their new shapes on the printer on a single line. The way the
standard character set corresponds to the new shapes is
determined by line 60. In this case “A” corresponds to the
pattern stored in L$(1). Line 70 calls subroutine 5000 which
will load the dot pattern in L$(C) into the character location
specified by P. After all the dot patterns have been loaded a
call to subroutine 2000 (line 90) prints the contents of the
memory. :

Conclusion

The high resolution capabilities of the ZX81 and its printer
have barely been explored by this chapter and there is much
more that you can do. For example, the lower case character
set program could be turned into a full text processor with
both upper and lower case characters. The text could be first
edited on the screen with inverse characters representing upper
case letters and normal characters representing lower case.
When the screen was printed out the program would convert
all the letters to upper or lower case and produce a normal
looking document. Another project would be to produce a
small graphics package for the ZX81 to make the high
resolution even easier to use. The possibilities are endless —
over to you! 97

you to learn machine code for yourself. The point is tha
machine code isn’t something that you can pick up in an after
noon but it is a rewarding thing to learn.

Why is BASIC so slow?

BASIC is one of the many so-called “‘high level” languages that
you can use to program a computer. Any given computer cai
often be programmed in a range of such languages e.g. BASIC
FORTRAN, ALGOL etc. Even the ZX81 in theory could b
used with other high level languages, it’s just that its BASIC
is so convenient to use that it’s unusual to find anyons
wanting to use anything else. The way that one computer cas
run so many different languages is that each one is translateé
to a more fundamental language before the program is run.
This more fundamental language is usually called machine
code and it is the only language that a computer can obey
directly. Each different machine has its own machine code
language and each machine translates the high level language:
available for it into its own personal code. This means that yol
cannot learn machine code in general but only a specific
computer’s machine code. The ZX81 has a Z80 microprocesso:
inside it so the machine code that it uses is Z80 machine code.
This is a very good choice for a first machine code to learn
because- the Z80 is a very popular microprocessor and is usec
inside many other machines but you should be aware tha
many well known computers such as APPLE and PET do not
use a Z80. '

So your ZX81 has to convert your BASIC statements to
machine code before they can be carried out. In fact the
process is rather more subtle than a direct translation t
machine code. There are machines that translate a whole
BASIC program to machine code before carrying it out by the
use of a program called a “‘compiler”. However these machines
are in general more difficult to use than the ZX81 which uses
a different technique. What happens inside the ZX81 whesn
you run a program is that each line of BASIC is examined at
the moment that it is to be carried out. The keyword is thes
used to “look up” what is to be done in a list of actions. Fo

114

T

e

example if the line of BASIC was GOTO 10 then the ZX81
determines that the keyword is GOTO and uses this to look up
what to do in a table. The entry in the table for GOTO would
contain the machine code equivalent of:

“work out the expression following the GOTO, find the
line of BASIC with the same line number and make this
the next instruction to be obeyed”’.

This method of running a BASIC program is known as “inter-
preting” and the program that carries it out is called an
“interpreter””. Thus the ZX81 interprets every line of BASIC
that you write and this is why BASIC is so slow. Before the
action that your BASIC command specifies can happen, the
ZX81 has to spend a lot of time working out what your line
of BASIC actually means! By contrast, a machine code
program is executed immediately without any interpreter and
can therefore often run over ten times faster.

The characteristics of machine code

If machine code is so much faster than BASIC why don’t we
use it more often? The answer to this question has already
been briefly mentioned in the introduction to this chapter — it
is more difficult to program in machine code than in BASIC.
The reason why machine code is more difficult than BASIC is
that it is a much simpler language! In BASIC you might write
something like LET A=B+C#2—Z and rightly expect the
answer to be stored in A, but in machine code the only arith-
metic operations that you can use are addition and subtraction
and these can only be carried out one at a time and on single
memory locations! To do *“difficult” things like multiplication
you have to write subroutines that will split them down into
simpfer operations. For example, to multiply two numbers
together you have to resort to repeated addition.

It is not within the scope of this book to teach you
machine code but the rest of this chapter will attempt to give
you the “flavour” of machine code programming and an intro-
duction to some of the fundamental ideas involved. The best
way to achieve this is via a couple of simple examples. First it

115

e S e

N R R N T T e

FEm————"

s T

The Art of
Programming
the 16K ZX81

This book is the sequel to BP109, The Art of Programi
the 1K £X81, and it sets out to help you use your 16K R/
pack and ZX printer to the full. It concentrates on good pro-
gramming style and introduces some interesting programs that
are both fun and useful.

Chapter One introduces the 16K RAM pack and the printer.
Chapter Two explains how the extra storage space is used and
presents a memory test program to check that your new 16K is
operational. Chapter Three covers some utilities that you will
find useful in writing longer programs. Chapter Four is an inter-
lude from serious applications, presenting four games programs
that make the most of the extended graphics capabilities now
available to you. Chapters Five to Eight deal with writing and
debugging large programs, storing them on cassettes and printing
out both programs themselves and their re
also introduce programs for editin
analysis for financi

Chapter Nine
s machine code

o discover just how versatile and pow
that you will realise just how rewarding programming with it
can be.

e S S s

