PROGRAMMING SERIES

STEP-BY-STEP
PROGRAMMING

ZX SPECTRUM
X SPECTRUM +

Elel bRk S

PIERS LETCHER

EEmEEnEEE }f_"_ji L ELE) 'Tﬂ[Tkl H_ L L
|| e - Tl | S 1 ll _ |
B i S s o e Sop bt G SRR e e e s L e B <
e BEEs 5 1}3‘,\: 2
| | —
LaEE | PROGRAMMING SERIES |
| ' | I | 1
T STERBYSIER
TR | aom
- | PROGRAMMING g
[ZXSPECTRUM |
| ZXSPECTRUM+ |
o - = o
i) e s S) A s —_— o
| i I : | e |
AR “ HEEE S
_____ ! L Al | e
| \ | | | | | |
u [L L1 L THE DK SCREEN-SHOT PROGRAMMING SERIES |-\ —
s dot bt Books One and Two in the DK Screen-Shot Programming Series | | . e i o _|_
! brought to home computer users a new and exciting way of , Bl
v e N S B learning how to program in BASIC. Following the success of this B T s T e i
" L BN O 2 completely new concept in teach-yourself computing, the series bl s |*_| i o B b L B
f bole o now carries on to explore the speed and potential of machine-code _ : LaER
T e i e S graphics. Fully illustrated in the unique Screen-Shot style, the e S ST o L T U
L N S) W series continues to set new standards in the world of computer T
L l el books. e B R 0l i D
{ | | | | I T T
Sl Sl e BOOKS ABOUT THE ZX SPECTRUM+ |
i g [| This is Book Three in a series of guides to programming the ZX
S e e e = Spectrum+. It contains a complete BASIC-and-machine-code
sl b I graphics language for the Spectrum+, and features its own
fid graphics editor which enables you to use all these facilities directly
R | from the keyboard. Together with its companion volumes, it builds
............ 4 Eobs e up into a complete programming and graphics system.
e L ALSO AVAILABLE IN THE SERIES
o i R “—1 g Step-by-Step Programming for the Commodore 64
7 = i e o ! e Step-by-Step Programming for the BBC Micro
T g +— Step-by-Step Programming for the Acorn Electron
—~ . = -!-"— Step-by-Step Programming for the Apple lle
|_ . | A Step-by-Step Programming for the Apple llc
e
L LR PIERS LETCHER
| i |J % After graduating with a degree in Computer Systems, Piers
_ | Letcher has worked in many areas of the computer industry, from
4 L o e programming and selling mainframes to designing and marketing
oo L — educational software. He was Peripherals Editor of Personal
!_ { e Computer News until May 1984 and has since written a guide to
T i AT \ —"I : peripherals and a number of other books for popular home micros.
_._i_—_._____ : :.._,. : | __.{_--— I = ! \ T ‘ Jr i |_ ! [| | |l [i. J bl
i e I 0 B A B L

{
s
| |
€] |
1 1 T
: -
| |
T — 8 + e —r e T
| R o
I t
| |
} i TR
o T
| | |
ok
i | : |
[l _
i | |
|
i i _ i S 1
|) |
| | T I N
| | | |
ey t : — -
" | m, _
t t t -3
_ | |
__ ! i =
i 1
| | | |
| 1 e { |
| | 1 i
| | | |
1 t+ T 1 §
_ | |
1 |
| ‘ | |

0D

|
|
|]]
1 | |
| |
i * 1 l !
| |
L e |
| |
| | |
| |
...... | ! =1
{ i |
] i |
Feee | I m
1 w 1
L
L | |
| | |
; A LA
[I
s ok
i o I—— -
|

g wa

PROGRAMMING SERIES

STEP-BY-STEP
PROGRAMMING

ZX SPECTRUM + gEeERf

| GRAPH

..____4__ ! BeEk ifsl il Rkl 2 1 I ! ? .._;___,_ :

nom.me KINDERSLEY LONDON

12

t 16

CONTENTS

SCREEN COLOURS 2

6 |

ABOUT THIS BOOK

8 o

USING THE
MACHINE CODE

10 |

14

SCREEN COLOURS 1

The DK Screen-Shot Programming
Series was conceived, edited and
designed by Dorling Kindersley
Limited, 9 Henrietta Street, Covent
Garden, London WC2E 8PS.

Editor Michael Upshall

Designer Steve Wilson
Photographer Vincent Oliver
Series Editor David Burnie

Series Art Editor Peter Luff
Managing Editor Alan Buckingham

First published in Great Britain in 1985
by Dorling Kindersley Limited,

9 Henrietta Street, Covent Garden,
London WC2E 8PS.

Second impression 1985

Copyright © 1985 by Dorling
Kindersley Limited, London

Text copyright © 1985 by Piers Letcher

As used in this book, any or all of the
terms SINCLAIR, ZX SPECTRUM+,
MICRODRIVE, MICRODRIVE
CARTRIDGE, and ZX PRINTER are
trade marks of Sinclair Research
Limited.

ENLARGED TEXT

SCTna T

All rights reserved. No part of this
publication may be reproduced, stored
in a retrieval system, or transmitted in
any form or by any means, electronic,
mechanical, photocopying recording, or
otherwise, without the prior written
permission of the copyright owner.

British Library Cataloguing
in Publication Data

Letcher, Piers
Step-by-step programming
ZX Spectrum and ZX Spectrum+
Graphics.
- (DK screen shot programming
series) Bk. 3
1. Sinclair ZX Spectrum (Computer)
- Programming
L. Title
001.642 QA76.8.5625

ISBN 0-86318-103-1

Typesetting by Gedset Limited,
Cheltenham, England
Reproduction by Reprocolor Llovet
S.A., Barcelona, Spain

Printed and bound in Italy by

A. Mondadori, Verona

PICTURES WITH
POINTS 1

! 18 I

PICTURES WITH
POINTS 2

[20 l
LINE GRAPHICS 1

LINE GRAPHICS 2

[24 I

DRAWING BOXES

TRIANGLES
E 28 |

CIRCLES AND ARCS 1

—

30 42 Il | 50 |
CIRCLESANDARCS2 | GRAPHICSEDITOR1 | GRAPHICS EDITORS
E | 52 ;
SECTORS MULTIPLE LINES
AND SEGMENTS . - 1
' MAGNIFICATION
| AND REDUCTION 1
| 56 | |
B | MAGNIFICATION
GRAPHICS EDITOR 2 AND REDUCTION 2
34| 46 | == -
FILLING SHAPES 1 GRAPHICS EDITOR 3 ‘(H =/
FILLING SHAPES 2 mas
I 38
OVERPRINTING | 58

AND ERASING

SAVING AND
LOADING DISPLAYS

l 60

ROUTINES

40

CHECKLIST

62

ERROR TRAPPING

—

il

363

GRAPHICS GRIDS

i

ABOUT THIS BOOK

The Sinclair Spectrum is one of the most popular
microcomputers ever produced. One reason for its
success has been its remarkable ability to produce
graphic displays rivalling those produced by much
larger computers designed only ten or fifteen years ago.
However, graphics programming in BASIC under-
utilizes the Spectrum. To produce the kind of displays
seen in commercially available games, you need to use
machine code as well as BASIC.

What is machine code?

The heart of the Spectrum, the Z80 central processor,
cannot understand BASIC. A BASIC program must
first be translated into a simpler language that the
machine can understand (hence the term “machine
code”). This code is in the form of binary 1s and Os.
Before the processor can execute a BASIC program
line, all keywords and variables are first converted to
machine-code instructions.

BASIC is an example of what is known as an
“interpreted”, as opposed to a “compiled”, language —
that s, it is executed by the central processor line by line
rather than as a complete program. While an
interpreted language is easier to use, it is also slower in
execution. By writing programs in machine code, you
can miss out the BASIC interpreter altogether. In
addition, machine code allows you to utilize many
features of your Spectrum which cannot be reached
from BASIC, so that you can therefore achieve far more
impressive results than would ever be possible from the
simpler, but more restricted, BASIC. You can get an
idea of how much faster machine code is by seeing the
time taken for the programs in this book to run.

Disadvantages of machine code

Given all the advantages of machine code in both speed
and flexibility, why not ignore BASIC and use machine
code all the time? The answer is simply convenience.
Using machine code is time-consuming, difficult and
frustrating, and attempting to write your own code is
only for the expert. When you see machine-code listings,
they are usually in a “disassembled” form, that is, with
some of the numbers translated into mnemonics such as
LD for LOAD, and JP for JUMP. But a special
disassembler program is required simply to give you a
machine-code listing in this form, and these mnemonics
are themselves far from simple. Using machine code
even the simplest operations in BASIC, such as drawing
aline on the screen, require many lines of machine code.
In addition, machine code has no error-trapping
routines such as those in BASIC. If a mistake is made
when keying in a BASIC program, the program will not
be lost (although the program may refuse to RUN at

some point); in machine code, without error-trapping
routines, a mistake will probably cause the Spectrum to
crash, erasing both the program and its DATA.

The solution

This book combines the advantages of machine code
with the convenience and simplicity of BASIC. This is
done by giving the machine code in the form of ready-
made and tested routines, which you can then use in
your BASIC programs. The machine code is shown as
DATA statements in BASIC, which means it isn’t
necessary for you to understand anything about
machine code to be able to use the routines. The DATA
is given in the form of decimal numbers, rather than in
binary or hexadecimal (to base 16), so that the machine
code is in the form most convenient for you to read and
key in.

The machine-code routines
Here is an example of a machine code routine (the
point-plot routine, FNf, from page 17):

l ROUTINE LISTING |

735@ LET b=61500: LET L=60: LET
z=@: RESTORE 7360

7351 FOR i=@0 TO L-1: READ a
7352 POKE (b+i) ,a: LET z=z+a

1
7354 LET Z=INT (((Z/L) =INT (zZ/L)
IF a<»Z THEN PRINT|

IS

O N~ PEWK- -
MO ~ p
- wa
e

<RI~ - N
<0 RO

OUNUN R R PR

[

s v v v v n o s Py
b
S
m

S DOPERG- OO~
CUREANRROD. OR
OEON- + NNNUOD~
=Y NN INTI I A}
B~ PHs ~ ~ Wi |l
C NG RUPPO A
O B~ ARWE N P

N

W

o

m

Q

D

o

D
NPUUNRRNONYS R
PN PRPE- - N

Each routine in the book is shown like this, in the
form of a BASIC program. The machine code is
contained as a series of DATA statements in lines 7360-
7372. At the beginning of the routine in lines 7350-
7355, there are a few lines of BASIC. This is a loader
program; variable b tells the computer where in mem-
ory to begin loading the routine, and variable 1 the num-
ber of bytes in the routine. When the loader routine is
RUN, this routine is placed in memory from address
61500 onwards, and has a length of 60 bytes.

As shown here, of course, the routine is simply a list of
numbers, and has no visible meaning. These numbers
are the ready tested and assembled machine code which
has then been converted to a sequence of decimal
numbers. Each number corresponds to a single
instruction or item of DATA required by the routine;

—

s LT | AT |

hence, all the numbers have values between 0 and 2535,
the maximum value of a byte. All you need to know
about the routine is what it does and what information it
requires so that you can call it correctly from your
BASIC program.

All the routines in the book are defined as functions.
Each functionisindividually coded by thelettersatot; a
complete list of functions is given on pages 60-61.
Demonstration BASIC programs can be found on the
same page as the routine, which give an indication of the
kind of displays possible using the machine code.

How to use the routines

To use any program in this book, simply key in a
machine-code routine together with a BASIC program
which demonstrates its use. You will find full details of’
how to do this on pages 8-9. When you RUN the
program, you will immediately begin to see the true
power of your Spectrum.

As you progress through the book and the range of
routines grows, the BASIC programs grow too by
calling several routines to produce increasingly complex
graphics. By keying in each routine just once, and then
SAVEing it onto cassette or Microdrive, you will have a
sophisticated graphics capability at your fingertips.

The programs in use

A typical program from this book (the exponent curves
program on page 17) contains two details which will be
unfamiliar to BASIC programmers who have not used
machine code before:

EXPONENT CURVES PROGRAM

DEF _FMN F UsR 51500
BORDER 6&: "] 6: INK

FOR n=1,19 TO 1.80 STEP ©.0

FOR %x=0 TO 22 STEP ©.S
Z=INT (X1

2: ©

First, you will see in line 10 a DEF FN statement, which
is used to instruct the computer that a machine-code
routine with two parameters (x and y) is located at
address 61500 in memory. You will also notice two
RANDOMIZE FN commands (lines 150 and 160).
These are the calls to the point-plot routine, and the
numbers in brackets which follow them are the

parameter values to be passed to the machine-code
routine (in this case, the co-ordinates of the point to be
plotted). When RUNning, the program is carried out by
the computer in this way:

POINT-PLOT PROGRAM FLOWCHART

10 DEF FNf (routine
name and address)

'

110,120 set up loops

Y

150 RANDOMIZE FNf [| Foutine plots point at
- 2 (ZJO
Y

—| routine plots point at
160 RANDOMIZE FNf B (255-2,168-y)
* >,

170,180 repeat loops

On the left side of this diagram is the main BASIC
program, and on the right you can see the machine-code
routines, called twice using a RANDOMIZE FN
statement. You will see from the diagram that the
machine-code is used here very much as a subroutine
would be used in BASIC, with variables passed to the
routines each time they are called.

What the routines do

Much of this book gives you machine-code versions of
the graphics commands you are familiar with in BASIC.
You will find that the machine code is often many times
faster, and offers you alternative ways of producing
graphics which will often be preferable to the BASIC
method.

In addition, several routines are included in this book
which would simply not be possible in Sinclair BASIC,
such as magnification and reduction, and filling in
irregular shapes with the current INK colour.

The graphics editor

To make the machine-code routines in this book even
easier to use, all the routines contained on pages 10to 41
have been combined in a single program to form a
complete package of routines, which you can use as a
graphics editor (pages 42 to 51). No knowledge of
BASIC is required to use the graphics editor; even
someone with no knowledge of programming, and who
has never used a Spectrum before will quickly learn how
to produce sophisticated displays using this graphics
editor.

—

USING THE MACHINE CODE

The machine-code routines in this book can easily be
incorporated into your BASIC programs without you
having to understand the intricacies of how they work.
Simply choose a program from this book, and follow the
four steps given here.

1: CLEAR memory
As soon as you switch on the Spectrum, type CLEAR
55500. This command resets RAMTOP, the top of the
area in memory free for BASIC programs, and ensures
that BASIC programs cannot overlap with the machine
code (stored in memory from 55500 upwards). Now you
can safely use NEW to delete BASIC programs without
deleting any of the machine code in memory.
Remember to use CLEAR before loading machine
code, since this command erases whatever is in memory
above the specified address.

2: Load the machine code
Now type in whatever machine-code routines are

required by the BASIC program. After keying in the
routine, RUN the short BASIC program which
accompanies it: this loads the code into memory. If you
keyed in the DATA correctly, you will see an “OK”
message on the screen; if not, you will see a couple of
question marks. In this case, look again at what you
have typed in to trace the mistake.

3: SAVE the routine
When you are sure you have keyed in the routine
correctly, SAVE it onto cassette or Microdrive. Always
SAVE machine code before using it, to minimize the risk
of losing everything you have keyed in. When BASIC
errors occur, an error message is usually produced but
the program is not lost. Machine-code routines,
however, do not generally have error-trapping facilities,
and a fault in the code will as often as not cause the
Spectrum to crash — deleting everything in memory.
The machine code can be SAVEd in two ways: either
in the form of DATA statements like any other BASIC

EXPLANATION OF A MACHINE-CODE BOX

F N i/ Routine title (a single letter)
TRIANGLE DRAW-ROUTINE Name of routine
Address in memory at which Number of bytes in memory
routine is located Start addr_es 300 L?ngth ! taken up by routine
: 5 Other d Line draw routine (FNg). ’ 5
Oﬂ_lermachme-code routines What it does Draws a triangle given the pixel-co-ordinates of
which must be present in three points. Purpose of routine
memory for this routine
to work Using the routine The routine uses absolute co-ordinates.
Specifying off-screen co-ordinates produces—an—errot Poi -
message; values more than 255 pixels off the screen will thom““‘_”lf’te“’hen“91“3
probably cause the Spectrum to crash. Colours are set by the EASEALE
current screen INK attributes.
List of parameters used by the T\ ROUTINE PARAMETERS]
routine, and letters used to =
describe these parameters _DEF FNi(x,y,p,q,1,$) |
X,y || specify first corner of triangle (x<<256;y<<176)] What the parameters do

|
|
| P.q ” specify second corner of triangle [p<256.q<1?6+”r
|

r,s ” specify third corner of triangle (r<<256,5s<<176) |

BASIC loading routine for
machine-code DATA

Maximum and minimum values
of parameter to ensure the routine
does not plot off-screen points

ROUTINE LISTING

]

Number of bytes for machine-

Start address for POKEing 1 -60300: LET L=7S.CET code (without check digit)
z=@: RESTORE 761@

DATA 760©1 FOR i=@ TO L-1: READ a
7602 POKE (b+i1) ,a: LET zZz=zZ+a Calculat fieck da

: NE2T— i alculates check digit z

POKEs byte value a into 5604 LET z-INT (((z, L) - M &

location (b+i) LE - PRINT READ:s next DATA item, the
pedek sSTOR routine check digit: if this is not

: DATA 42,11,92,1,4 the same as z, two question

Start of machine-code DATA 761 ATA ©,9,86,14,8 s
7612 DATA 9,94 ,237 ,33,208 marks are PRINTed to show a
7613 DATA 235,9,86,9,94 mistake has been made
7614 DATA 237.,83,210,235,9

EER e L e e e R e

listing, or, after you have loaded it into memory, as a you opt to use RESTORE instead of RANDOMIZE
block of code. To save machine code, type: then be especially careful if there are any READ or
DATA statements in your program.

SAVE “routine name” CODE start address, length in
bytes

The start address and length are given at the top of each QUESTIONS AND SNSWERS
machine-code box. The diagram on the facing page What if I make a mistake in keying in?

shows how this information is displayed. Don’t panic! Nobody keys in long lists of numbers
without making any mistakes. A check routine is
4: LOAD a BASIC program included with each machine-code routine to warn you if
With the machine-code routine in memory, you can now you made any mistakes in keying in the DATA. This
use it in a BASIC program. DEF FN statements are routine compares the DATA you have entered with a
used to tell the Spectrum the whereabouts of the routine check number, which is placed by itself on the last
in memory, and what information the routine requires. DATA line of each routine,
After the loading program has POKEd the DATA
Using functions numbers into memory, it looks to see if the check digit is
A machine-code routine can be called simply by the same as the one currently calculated. If the two
specifying its start location, like this: numbers are different, the program prints two question

marks to show an error has been made. If this happens
10 RANDOMIZE USR 63000 look through the numbers you have typed in to ﬁrr)l?:l the
Aline like thisin a BASIC program, however,isnotvery | mistake. Having corrected the error, you may still find
informative. It tells you neither what the routine does, that the routine fails to load correctly; look to see if you

nor how many parameters the routine may require have made more than one error.

when called. This information could be POKEd into the

appropriate memory locations — but the consequences | Can I start anywhere in the book?

of a mistake would be disastrous. Much more reliable is Yes, you can start on any page, but obviously when you
to pass information to the routines using a BASIC key in a program it will not RUN unless the machine-
function. Functions on the Spectrum are identified by a code routine it calls is present in memory. Check before
single letter, and are followed by parameters in you begin if the program you want to RUN calls any
brackets. When you define the name and location of the machine-code routines you haven’t already keyed in.
function in your program, you must also specify the

parameters, if any, which are to be passed to the routine. Can I use more than one machine-code routine
For example, the screen clear routine, FNa, requires in my programs?

four parameters: Yes — you can use any combination of routines from

this book together. The complete graphics editor
10 DEF FN a(x,y,h,v) = USR 63000 program (pagg::s 42-51) provides a convenient way of
Which letters are used after DEF FN is not important; using machine-code routines together in a single
their function is only to tell the computer the number of program.

parameters which will follow the routine callina BASIC

program. - Can I adapt the BASIC programs?

A machine-code function can be called from BASIC Yes. You can edit the BASIC programs in any way you
in two main ways, both of which require you to combine want to produce different displays, and you will find
the keywords FN or USR with a BASIC keyword. suggestions for variations throughout the book. One

The method used generally in this book is with the suggestion, though, if you are going to experiment with
keyword RANDOMIZE. Thus, unusual or off-screen values for the machine-code

o parameters, is to SAVE what you have keyed in before
RANDOMIZE FN a(10,10,10,10) experimenting. This will prevent you from losing hours
would clear a rectangular area of 10x10 characters with of work at the keyboard!
the top corner at point 10,10. Note that using
RANDOMIZE also resets the random number Can I adapt the machine-code routines?
generator with a new seed; this may cause problems if | Yes, but at your own risk! Without a good
you are also using a random function in your program. understanding of machine code, itis highly unlikely that
The second word you can use to call machine code is you will be able to alter any of the routines successfully.
RESTORE. However, RESTORE also resets the Much more probable is that the Spectrum would crash,
pointer to DATA statements when you use it — which is with the result that both program and code are wiped
of course the purpose of the RESTORE statement. If from memory.

SCREEN COLOURS 1

The Spectrum CLS command is used to wipe off any ink
from the screen, leaving the PAPER and INK attributes
for the screen unchanged.

However, there are often occasions when you may
want to clear a portion of the screen without disturbing
the rest of the display. The partial screen clear routine,
FNa, enables you to do this. It clears any rectangular
portion of the screen, leaving the PAPER and INK
attributes at their current setting. Itis used in a program
by first defining the function (as in line 10 of the
program below), and then calling it with a
RANDOMIZE FNa statement (line 160).

Colours on the Spectrum

The Spectrum screen colours are set by the familiar
INK and PAPER commands. However, although each
character square on the Spectrum can have one INK
and one PAPER colour, a command such as INK 2

PARTIAL SCREEN CLEAR PROGRAM

DEF FN a (x
BORDER 4:

FOR n=8_ TO 783
PRINT "%";

NEXT n

PRUSE 108

FOR n=1 TO S

RANDOMIZE FN a (n*6-5S,n*3-1,
NEXT n

affects the whole screen, even though you may only
want the command to affect a small area. How can this
be done? It is possible to change the INK attribute of a
single character square on the screen by PRINTing
spaces in graphics mode and using OVER, or by finding
the relevant memory location of the INK attribute, and
POKEing the new value, but these would be very slow
methods of changing the INK colour on more than a few
squares.

Changing colours with machine code

The window ink routine allows you to change the INK
colour of any rectangular area of the screen. Whatever
you draw on this area of the screen will now be in the
INK colour specified by the routine, while outside this
area, colours remain in the current Spectrum INK
colour. The routine also allows you to set the BRIGHT
and FLASH attributes of the area you are specifying.

WINDOW INK PROGRAM

DEF FN bi(x ,49.h.v,C,b,f)=USR
a
BORDER @ FPARPER @ IMNKE a4 c

r

WIBRROBREREROR0

FOR n=03_TO 703
PRINT "%,

NEXT n

PAUSE 1@@

FOR n=1 TO 7

RANDOMIZE FHN b(@,n*3-3,32.,3
,@,@)

TO 7
RANDOMIZE FM bin:4-1,8,2,22

L@
NEXT n

o
aEm

By o o [N e e

FNa
PARTIAL SCREEN CLEAR ROUTINE

FNb
WINDOW INK ROUTINE

Start address 63000 Length 100 bytes

What it does Similar to BASIC CLS command, but clears only a
specified rectangular portion of the screen.

Using the routine Parameter values in this routine represent
character positions rather than pixel positions. As with all the
machine-code routines in this book, parameter values must be
whole numbers.

If the result of adding x and h is greater than 31, or if the sum of
y and v is greater than 23, the area to be cleared will run off the
screen, and the routine may crash as a result.

[ROUTINE PARAMETERS |
| DEF FNa(x.,y,h,v) |

X,y specify top left-hand corner of area to be cleared
(x<32,y<24)

[h,v |[horizontal and vertical size (x+h<<32, y+v<<24) |

ROUTINE LISTING B

702 LET b=5630@0: LET L=9S5: LET

7001 FOR i=@ TO L-1:
7002 POKE (b+i) ,a:
70@3 NEXT i

7084 LET z=INT (({(z- L) =INT (z,/L)

7005 RERD_ a:
vt STOP

RERD 2
LET zZ=zZ+a

IF a<>z THEN PRINT

-

Moo~
=~ 0~ 10

[l R RN
W= -

P W - P
FOWO 0
-~ @ - N
0~ M
WWO

er Q

w

QULOOE
nam

Ops v B

~
8
=
]
Q0
I
3
I
ONIWRPPDONE ~NNFUNORGE &
s (U0 P10~

NN TEORE- B - PR RE - 1

v e~ M-
G- PPRONN- N QURDEd- « JiE

o] i [U'l\-.\-
s QERRRE DO - e DDRO0 A
G- 00r- NN RO AD- W

GOFRUANE: PE -~ BRUPIEED-
G- NRNURENEE Bes R0 Deng
c B BDNDADOR - R ESO0W- -

O WERMNUs O B D% s s s e v v 2
Tps QRN NNG OO0 0D MR
R s v s

While the standard Spectrum screen graphics area is
22 characters deep, with two lines reserved below this
for text (lines 23 and 24), both the routines on this page
can be used anywhere within the whole screen area, 32
characters wide by 24 deep.

The two programs on the facing page demonstrate
the machine-code routines in action. Both programs
begin by PRIN Ting a graphics character over the whole
screen (lines 110-130). The partial screen clear program
then clears five rectangular areas on the screen. The
result is that the INK is deleted in these areas, while the
paper colour remains unchanged. The window ink
program calls the ink routine in two loops eight times
across and down the screen, producing a grid effect.

Start address 62800 Length 135 bytes
What it does Sets the INK colour of any specified part of the
screen.

Using the routine Be careful that you do not try to set the ink
colours of points off the screen. Since parameters h and v are
added to x and y respectively, this means that x-+h should not
be greater than 31, and y+v should not exceed 23. If they do,
you may crash the Spectrum and lose the program you were
working on.

If, when using the routine, it appears that nothing has
happened, then either you have set the INK colour to what it
was already, or the area you have altered contained no INK
attributes. Try the routine again after printing something in the
specified area.

Note that the routine can set the ink colour over the whole
Spectrum 32x24 character screen, not just over the normal
32x22 graphics area.

| ROUTINE PARAMETERS |
l DEF FNb(x,y,h,v,c,b,f) |
Lmy|E&wwmbﬂMNwmmdbma%ﬁ<%J<%ﬂ

b specify horizontal and vertical sizes of area
: (x+h<32, y+v<<24)
r c || specifies ink colour (0<=c<=7)

| b “specifies bright (1=bright, 0=off)
[¢][specifies flash (1=flash, 0=off)

e e e e

r ROUTINE LISTING

7@5@ LET b=6280@: LET L=130@: LET
Z=0: RESTORE 7060

7051 FOR i=8 TO L-1: RERADC 2
7852 POKE (b+1i) ,a: LET z=z+a

7053 NEXT i

?e?? LET Z=INT (((ZAL) =INT (Z~-L)
*

70SS READ a: IF a<>z THEN PRINT

oo CSTOR

7@6@ DATA 42,11,92,1.,4

7@61 DATA ©,9,586,1,5

7@562 DARATR ©,3,94,237,83

7063 DATA 210 ,245,9.,86,9
78264 DATA 94,237 ,583,2038,245
7@65 DATA 9,126 ,230,7,50
7@66 DATA 2087 ,24S,9, 126,230
7067 DRTA 1,40,8,58,207

7068 DATA 245,246,564 ,50,207
7969 DATA 245,9,126,230, 1
707@ DATA 40,8 ,58,207,245
7871 DATR 246,128,50,20@7,245
7@72 DATRA 237,91,210 ,245,58
7O73 DATH 208,245,254 ,@,200
@74 DRATA 237,83.210,245, 123
TO7S DATA 230,24 ,203 ,63,203
7876 DATA 63,203.,63,246,58
7277 DATA 103,123,230,7,183
7878 DATA 31,51,31,31,13@
7879 DATA 111,53,203,245,71
708@ DATA 197 ,229,583,209,245
70881 DATA 71,126,230,5S5.,79
7082 DATA S8.,207,245,177,119
7@83 DATA 35,16,244,22S,
7@84 DATA 32,@,9,193,16

7@8S DATA 230.,201,@2,2,5

7@86 DATA S3.0,0,@,0

SCREEN COLOURS 2

The Spectrum PAPER command sets the background
colour of the whole screen. The window paper routine
on this page, FNc, allows you to set the paper colour of
only a part of the screen, in the same way that you can
use the window ink routine to change the INK colours
on a part of the screen.

As for the ink routine, the paper routine requires you
to specify the top left-hand co-ordinates and height and
width of a rectangular area within which the colour is to
be changed. Unlike the PAPER command in BASIC,
you will see any colour change without having to clear
the screen with CLS. Again, like the previous routine,
you can use the routine to set the BRIGHT and FLASH
attributes of the area. By calling the routine several
times you can create a layered effect, with colours
apparently superimposed on one another.

A layered effect forms the basis of the random boxes
program on this page. Random values are chosen for the

RANDOM BOXES PROGRAM

WP DG

[elodal ol ol o d o T Lol X o)

e e e e T T = STy

S0~

start co-ordinates (x1,y1) and horizontal and vertical
increments (h1,v1) of the area, and a random colour
value is chosen, before the routine is called, inside a
loop. Note that the machine-code routine s called using
RESTORE rather than RANDOMIZE. Using RAND-
OMIZE would reset the seed of the random number
generator within the loop, so that the same random
number sequence would begin again and again.

“MONDRIAN” PAINTING
PROGRAM

Mr.rni
LIl d | second

How the program works
The window paper routine
draws black “lines” (single program continuing until a key
character-width boxes), and is pressed, so that the bortom
then fills areas of the screen two lines of the display are not
with colour. lost.

Line 10 defines the window
paper routine.

Lines 100-150 draw the black
“lines”.

Lines 160-190 draw the
coloured areas.

Line 190 also stops the

RN e SR | [e T

The “Mondrian” painting program demonstrates
how by using only a single routine, you can produce
quite an effective display.

FNc
WINDOW PAPER ROUTINE

gI:F Fr
RANDCOMIZE
RANDOMIZE
RANDOMIZE
RANDOMIZE
RANDOMIZE
RANCOMIZE
RANMDOMIZE

H~

& 6 6
O-0-a-ahe
]

@
@

RAMDOMIZE
RANDOMIZE

RANDOMIZE
FRAUSE @

2:1

.
CPEREY BOE- P B B
0 SU-0OY~0GUEER-LUEBNOLEENR

x f& -6 o-e-e

[I

SORDER 7

cix,g,h

Frd
Fr
FH

“MONDRIAN" PAINTING PROGRAM

(16,0,1,24,0,
(24 ,@,1,24,0,
(©,9.,32,1,92,0
(2,17.32,1,0,
(14,3,18,1,0,
2,9,15,9,4,1
(S,18,11,6,6,
(25.,0,7,9.,2,1
(17,1&.,.7.7.1,

Start address 62600 Length 150 bytes
What it does Changes the PAPER colour of a specified
rectangular area of the screen.

Using the routine The routine works in the same way as the
window ink routine, except that here the PAPER attributes are
changed within the area specified. As before, it could be
dangerous to go beyond the limits set for the parameters, so
the sum of x and h should always be less than 32, and y and v
together should be less than 24. This is because h and v are
relative, not absolute, parameters, which means they are added
to x and y respectively to produce the values actually plotted.
Thus, if xis 15 and his 20, then the right-hand edge of the paper
area i1s column 35, which is off the screen.
As before, the routine operates over the whole Spectrum
32x24 character screen, not just over the normal 32x22
graphics area.

ROUTINE PARAMETERS

|

DEF FNc(x,y,h,v,c,b,f)

l

[xy ||specifytop left-handcorner of box area(x <32, y<<24)|

h,v

specify bottom right-hand corner of area (x+h<(32,
y+v<<24)

Cc

H specifies paper colour (0<=c<<=7)

|[specifies bright (1—bright, 0—off)

f

|| specifies flash (1=flash, 0=off)

[
| b
l
[

ROUTINE LISTING

Ea et ENENEN AN |
R K P RRREN R
NEO-0606816
MN=FUNLEE

BREPRPREERRRRE BRRRRRR R R R
NURDUNUN OGN RRrRrRrRrRrRRRR

& RVEN ENVEN ENENENENEN TN Y EVENENEVEVENEVEN RN ENENEN ENEN ENENENEN|

PRPERERRRP
WWWWWOWWHL

LET b=62609 : L=145;
RESTORE 711@

FOR i=@ TO L-1: READ a
POKE (b+i) ,a: LET z=z+3

LET LET

(((Z-0) =INT (Z-L)

IF a<»z THEMN PRINT

B~ - W
~ @~ e DO
W BRDBY- -«

s v v~ 10

AROEOWRDDE
U~ G~ RO

0 () &0~

< B

M9 = LI C0D) 1=)
B DB (- -
=~ OG-
BORUN- 00

[(]

WHNNEUNRE VONONEONEE
. Q
b
_{
I
NONEDANLREE 2DAMOONE G &
~ RO

W @~ Bl B O s s~ QNP

- WEWUL-

BEO- WAON- 0O O B~ 8- @ &
n
]
]

=~ - @ - -~ G
WORSNGN L. A

G-
Ce L O -

PLP- GOR B D
T G~ O -
PO QA « (g
LN -
NN NN

Ls B -

=
= 0 10~ B
o~ M
wne
on

o ~ ~
R
I'U
Y
IS

AT
(T (T TG
& MEMRGL

POONEON LG
0
D
_{
D
e UL (TSN | (V] (VTN
(=]
2

S Ll e N TATH]
- T UG

- @~
B - « R pR

- uaN- - p
- B0 W
9 90UY- JrQ

U Te] VRN Y e
o~

ENLARGED TEXT

Doubling the size of Spectrum characters is quite
straightforward in principle. Spectrum characters are
drawn on a grid eight pixels by eight; they can be
enlarged onto a 16x16 grid by the routine looking at
each pixel of the 8x8 grid in turn. If a pixel is filled, then
two pixels across and two pixels down are filled on the
16x16 grid. The diagram below gives an example of a
character and its enlarged version.

HOW A CHARACTER IS ENI.ARGED‘

8x8 grid 16x16 grid

Both routines use this method to enlarge a string of
characters (text or graphics) and then print them on the
screen at twice their normal size. The horizontal text
routine, FNd, prints enlarged characters across the
screen; the vertical text routine, FNe, prints the
enlarged characters downwards.

The two demonstration programs below show how
the routines are used. Both programs begin by defining
the word “Spectrum” asthe string (n$) to be enlarged by
the routine, and both then POKE these characters into
memory using a subroutine beginning at line 500. The
string must always end with 13, the code for
RETURN, to signal to the computer there are no more
characters to be enlarged. The horizontal text program
prints the string against a background of horizontal
lines; the second program displays the vertical string six
times, each time with a different coloured background,
using the window paper routine.

HORIZONTAL TEXT PROGRAM

BORDER 1:

FOR i=8 _TO

CRAU 2SS

DRAL

NEXT i

DRAY 255,90

LET ng&=" Spectrum
@ GO0 SuUB sSsee

FOR m=1 TO 22 STEP 4
@ RANDOMIZE FM 4(7.m)
MNEXT

VERTICAL TEXT PROGRAM

12 DEF FN c(x.y,h,v,

etx.yJ"USR
1: PER @:

ET ng="Spectrum’
GO SUB See
LET clL=1
FOR x=5 TO 25 STEP 4
-1,2,

@l
50 RANDOMIZE FN e (x ,3)
LET cl=cl+1

(T$3: LET k=52499

a]
LET n=CODE n$ (i)
POKE k+i,n

MEXT i

POKE k+i , 13
RETURM

@:1

Btﬁﬁnmﬁm

15

FNd
ENLARGED HORIZONTAL TEXT ROUTINE

FNe
ENLARGED VERTICAL TEXT ROUTINE

Start address 62200 Length 220 bytes
What it does Displays a double-sized version of specified
characters horizontally on the screen.

Using the routine Before using this routine, you must first use
some BASIC lines to store in memory the text (n$) which you
want to display. Lines 500-560 of the programs on the facing
page provide an example.

The text is stored as a string in 100 bytes of memory from
address 62500 to 62600. The routine continues printing
characters from this location onwards until it reaches a
RETURN message.

Note that with double-sized characters you are now restricted
to 16 characters across the screen; longer strings are
continued on the line below. To print a space in the text string,
use the graphics blank character (above the 8 key) rather than
the space key. ;

Start address 61900 Length 215 bytes
What it does Displays a double-sized version of specified
characters vertically on the screen.

Using the routine This routine works in the same way as the
horizontal text routine, but prints text down the screen instead
of across it. The same BASIC subroutine is needed to store the
text string (lines 500-560 of the demonstration programs on
the facing page). Remember to put the string into memory
before calling the routine.

Since each character is twice its normal size, only 12 characters
down are shown in a column. The routine displays only one
vertical line of text, and does not continue a message across to
the next column. To display a message longer than 12
characters, call the routine again for each new column of text.
To obtain a space in the text use the graphics blank character
(above key 85).

[ROUTINE PARAMETERS i | | ROUTINE PARAMETERS]
[DEF FNd(x,y) | | DEF FNe(x,y) |
X,y specify position on screen from which text is to be X,y specify position on screen from which text is to be
1, . .
printed (x<<32, y<<24) printed (x<<32, y<24)
[ROUTINE LISTING ! | ROUTINE LISTING |
% = : = : 725@ LET b=6190@: LET L=210: LET
e e aee e 229 BE°T95576°0%1, neno a
151 F i=@ TO L-1: READ a z i=] -1
3152 F‘gﬁEa (b+i) ,a: LET z=2z+a 7252 POKE (b+i) ,a: LET z=z+a
7153 NEXT i 7253 NEXT i
7154 LET z=INT (€(z- LY —INT (Z,/L) 7254 LET Z=INT (((z,U} -INT (z-/L)
) ® L
7155 nggg a: IF a<>z THEN PRINT 7255 Rgﬁgpa: IF a<»>z THEN PRINT
v 3 ." & =1 e %
716@ DATA 42,11,92,1.,4 ;gg? gg¥2 ;2é1é69§,%»4
2165 BATA 8’3'82:%5?,83 2562 DATA ©,9,94,237,83
7163 DATA 240©,243,62,993,71 25263 DATA 191,242,62,99,71
¥ ’ ’ 4
4 DATA 33,36,244,34,244 7264 DATA 33,36,244,34,19S
Lo =0 it 5565 DATA 242,197,257 ,91,191
716S DATA 243,197,237 ,91,240 A 242;52 é@ 1é6 é42
7166 DATA 243,62,30,186,242 7266 DATA 242,82.30,188,242
7167 DATA 37,243.,22,0,28 7267 g 244.24147 . 280,65
7168 DATA 28,237,583 .,240,243 ;ggg Dg¥2 O, e S .
7169 DATA 62,200,187 ,250,111 F s " N
7379 BATAR 82°442:244,25°,22° 7379 oaTa 89324123242 25
5175 DATA 31.250,111,243,254 5595 DATA 144,242,62,242,214
7352 Bean jecgoet, 1il aadiais 7353 Be 2204,°.8 25,
7174 A8, 72 i , 29 ; ;
7175 DATAH 54—,92,35:9,61 727S DATA 32,252,34,193,242
7176 DATA 32,252,334 ,242 ,240 7276 DATA 123,230 ,24 ,246 ,64
7377 gath 138,238 24,256 21 2827 gota 103,155,350 7,15
5 i Br] i i g
7179 DATA 331 ,31,31,31 .15 7279 DATA 111,34,189,242,205
718@ DATA 111,34 ,238,243,205 +28@ DATA 54 ,242,58, 191,242
7181 DATA 113,243,58,241,243 7281 DATA 60,60,50,191 ,242
7182 DATA 6@,60,50,241,243 7282 DATA 193,16,169,201, 193
7183 DATA 193,16, 164,201,193 7283 DATA 201,177,157 .,242.,6
7184 DATA 201,17 ,206,243,6 7284 DATA 32,62,0,18,19
7185 DATA 32,62,0,18,19 7285 DATA 16,252,237.,91,193
7186 DATA 16,252 ,237.,91,242 7286 DATA 242,33,157,242,6
2i%2 A BT 0 aetn 2222 BATA 5:197:85:248 aeo
71 ; 5) 2288 DATA 4,197 ,23,245,2
2180 DATA 4.,197.23,245,203 2589 DATA 22,241,203 ,22,16
7198 DATA 22,241,203 ,22.,16 729@ DATAH 47 ,35,193,13,32
7191 DATA 247,35.193.,13,32 7289 BATA 531:33.126.24%,a3
%18% Bg;g ?gé'gg'%§51§$5523 7292 DATH 126,35,35,119,333
? 5 i 44,119,35,19,1
7194 DATA 2411119,35,19,193 3332 82¥2 ?E,é29?42,i89,2¢2
7383 RIS 18iasp i f0s s E=m B ioiieria e
%197 DATA 229,6,8,26,119 e e SE s Sé Tia a0
7198 DATA 35,19,26,113.139 7598 DATA 43,36, 16,245,225
7199 DATA 43,36, 16,245,225 7299 DATA 62,32,133,111,438
7208 DATA 62,32,133,111 ,48 23@@ DATA 4 62,3,132;103
ZER DEIH A o2 i ea0n, 23@1 DATA 13,32,228,201,0
2503 DATA B,é,BjO,B) ' 7302 DATA 125, .,0.,0,0

PICTURES WITH POINTS 1

The Spectrum ROM routine which is called by the
BASIC command PLOT to draw single points is also
used by the BASIC DRAW and CIRCLE commands.

The point plot routine given here, FNg, is used in the
same way, both to plot points on the screen, and to
provide the basis for the other drawing routines in this

COSINE CURVES PROGRAM

0O 16@ STEFP -4

sSl@a

(90 +60 % (COS (m*PI
Fim,g)

book, including routines for lines, boxes and circles.

The demonstration programs on this page may seem
slower than you would expect. This is not due to the
speed of the routine, but because the BASIC program is
switching to machine code for each single point and then
returning to BASIC. Later drawing routines, which call
the point-plot routine from machine code, give a better
indication of the routine’s true speed. The programs
here show only the difference in speed between the
BASIC commands RANDOMIZE and PLOT.

The planet program plots random points on
horizontal lines which begin and end on the
circumference of a circle. There is an increasing
probability of a point being plotted towards the right of
each line (line 540). The series of exponent curves are
produced by varying the horizontal co-ordinate, x.

Line 10 defines the function.
Line 130 sets the horizontal
start co-ordinate of each curve.
Line 140 calculates the y
co-ordinate (each curve is a
slightly different function,
since j varies for each curve).
Line 150 plots a point at m,y.

COSINE CURVES
PROGRAM

? 833 minutes

How the program works
Over 10,000 points are plotted
in a series of cosine waves.

FNf

PLANET PROGRAM

CEF _FN
EBORDER

LET r=60:

GO SUB S

LET r=20: LET wyc

GO SUBE Soe
oP

r®-=-9%4))
#x122)+1
ORE FN f
550 MNEX

S68@ MNEX
S7@ RETUR

n
(X +XC ,Yd+9C

T

=

Line 130 raises x to the power n to determine the point
for plotting, z. Line 160 plots the curve again,
subtracting co-ordinates from an initial value.

POINT-PLOT ROUTINE

Start address 61500 Length 65 bytes
What it does Plots a single point on the screen.

Using the routine The point-plot routine uses pixel rather
than character co-ordinates. Pixel co-ordinates are calculated
from the bottom left-hand corner of the screen, unlike charac-
ter co-ordinates which start on the Spectrum from the top left-
hand corner. Thus, points are calculated on the screen from 0
to 175 vertically upwards, and from 0 to 255 horizontally:
point (255,175) is the top right-hand corner of the screen, for
example. Note that routines in this book which use pixel points
will not go over the text area of the screen (the bottom two
lines of the screen) since the point (0,0) is actually above
these two lines.

| ROUTINE PARAMETERS |
[: DEF FNf(x,y)]

Xy specify pixel position at which point is to be plotted
2 (x<256, y<176)

ROUTINE LISTING |

7358 b= 61508 LET L=8@&: LET
ZzZ=8: RESTORE 736
7351 FOR 1=@ TO t—1: READ a
7352 POKE (b+i) ,a: LET z=zZ+a
7353 NEXT i

7354 LET zZ=INT (((Z-L) =INT (z.-L)
7355 RERD a: IF a<»z THEN PRINT
e T STOP

736@ DATA

'S

NP~ ~ p
=0 N0
-~ LN
N@

oM~

O N PEWRs N0~
[
-l
o

\

W

o

o

v]

I

_|

D
NENNNRANNONDE &
PRONUN- PRRE- « [
S 0Np@PENE- MOW-
L e
S R TS 17s T T
SO ~ NNNOOO-
Sl N ENTRY RS VT
O« PR s s R)
s B0 BRR RO R
0 P FRUE NN P

» |.\ﬂ'|o'|~. N A T
BRUNRRRR R

EXPONENT CURVES PROGRAM

CEF FN F (: USR 1S5S0
EQORDER & : INK @: C

FOR n=1.19 TO 1.80 STEP 0.0

FOR x=@ TO 22 STEP ®.S
LET Z=INT {x+n)

LET 4=INT tx*al
RANDOMIZIE FKN lz,g)
RANDOMIZE FHN (255-z,168-3)
NEXT x

NEXT n

EXPONENT CURVES DISPLAY

PICTURES WITH POINTS 2

The displays on the previous page used only a simple
BASIC listing and a single routine, the point-plot
routine. There is no reason why you should not combine
routines together to produce far more complex displays,
as demonstrated here.

The cityscape program

The large display on this page is produced by a single
program, the cityscape program. The program
combines plotted points with three other routines to
produce the display.

A total of four routines is used in this program. The
skyscrapers are drawn by the window paper routine,
FNb; the vertical text routine (FNe) is used to draw the
word SINCLAIR, printed in blue by the window ink
routine.

The effect of a crowded group of skyscrapers is
achieved by drawing coloured windows atrandom. The
effect of random heights but a constant base line is
achieved by making all the windows end on the bottom
line of the screen. This is done by subtracting the starty
co-ordinate (y1) from 25, the total number of vertical
text characters on the screen plus one.

The vertical text routine, which is used to print the
word “SINCLAIR”, must have the letters which are to
be displayed placed in memory before the routine is
called. Lines 110-170 take the characters from the word
one at a time and POKE them into memory ready to be
used by the routine. As before, the final character
entered is 13, the ASCII code for carriage return. You
will remember that the routine requires the co-ordinates
of the top left-hand character (x,y) as well as the stored
text string in order to print the text. The window ink
routine is used in line 360 to give a blue colour to the area
over which the text is to be printed.

CITYSCAPE PROGRAM

NEXT i
RANDOMIZE FN £ (2,14 ,.25,15.,1
FOR i =1 TO S©

sScrolbi?

-
-

Line 210 calls the point-plot routine to plot the stars.
Random co-ordinates are chosen in lines 190 and 200
for each star. The moon is drawn in lines 530-560 by
using semicircles nested inside each other, using the
Spectrum BASIC DRAW command. A later routine in
this book will enable you to produce circles using
machine code. Finally, the meteor is drawn as a series of
straight lines (lines 490-510), again using BASIC.

You will notice from the listing for this program that a
convention has been used for all the listings in this book.
Lines numbered from 10 to 90 are used for the function
definitions, while lines 100 onwards are used for the
main listing. You can thus see clearly which machine-
code routines have been used for each program, as they
are placed at the beginning of the listing.

i

S

TN

CITYSCAPE PROGRAM CONTD.

1
151)

HIHHNNH
MU= N
M+ ZN&@+Mm
H1+H

R *
L =]
ND e
i~ *
c K ¥

c(16,9,1,15,4,
c(17,6,2,18.,4,
c(19,12,1,14,4
b(17,6,2,18,1,

RANDOMIZE
RANDOMIZE
RANDOMIZE

FM e (17,6}

FN c€(1,11,5,14,2,

TO 22 STEP =2

(o - S R [T T

II[I
|

|

Ii!

|

o]

3
Liahtaaet,

UNESVA~=O~NLBULD -

NUIANPRPEORPERR. pp—p=
0066068 68 O0-00

CITYSCAPE PROGRAM CONTD.

RANMDOMIZE FN ci(4,1i ,1,1,6,1,

NEXT i ¥
RANDOMIZE FMWN < i23,18,9,7,3,

FOR i=24 TO 3@ STEFP 2
RANDOMIZE FN cfi ,19,1.,1.4,

1
RANDDOHMIZE FN c(i ,21,1,.1,4,1

NEXT i
INK. &: BRIGHT 1
FOR i=-6 TO & STEF 2
PLOT 250.165-i
CRAL -7 ,:1-40: HNEXT i
=
1=@
;=50 ,0.8%F T

PRUSE @
@: 1

CITYSCAPE PROGRAM

QQ: ?S seconds

This program calls four
routines, all of which must be
present in memory before
RUNning the program:
window ink routine (FNb)
page 11

window paper routine (FNc¢)
page 13

enlarged vertical text routine
(FNe) page 15

point-plot routine (FN{)

page 17

How the program works
Lines 10-40 define the
routines.

Line 110 defines the text
string.

Line 120 sets up a loop to
POKE characters into
memory.

Line 130 POKE:s a single
character into memory.

Line 170 POKEs ASCII code
13 into memory.

Lines 180-220 print stars at
random points in the top 74
pixel rows of the screen.
Lines 240-320 set up values
for the window paper boxes
and draw them — a total of 50
boxes,

Lines 330-380 draw the
“buildings™ with windows
which appear in front of the
paper boxes (lines 340 and 360
print flashing boxes).

Lines 480-510 draw the
comet.

Lines 520-570 draw the
moon (a series of semicircles).

LINE GRAPHICS 1

Lines are drawn in BASIC on the Spectrum using the
command DRAW. This command uses relative co-
ordinates, that is, the command is followed by co-
ordinates which specify the distance from the current
plot position. A line is then drawn from this point to the
specified point. Itisn’t always as simple asitmay seem to
calculate this horizontal and vertical increment from
the current plot position.

The line-draw routine
The routine on this page, FNg, offers an alternative to
Spectrum DRAW for drawing straight lines. This
routine is faster than the DRAW command, and uses
absolute, rather than relative co-ordinates. Thus, you
no longer have to worry about calculating distances
from the current plot position.

The line-draw routine contains some error-trapping
to prevent the Spectrum crashing if the routine is called

CUBE PROGRAM

CEF FN gix, -] =USR 607
BORCER 1: pEPER LT ZNK®E T2°

FOR j=@ TO 116 STEP 8
RANDOMIZE FN g iS56,24+; 168,

24+
142 RANDOMIZE FN g (S6+),24,56+,
‘158 RANDOMIZE FN g (564+), 136,964+
|
iga RANDOMIZE FN 9 (168,244,208
+
"17B NEXT
ci59 RANDOMIZE FN a(98,160,208,1
LA99 RANDOMIZE FN 3(208,160,208,

SUNSET PROGRAM

1@ DEF FN cix.9.h.v,c,b,f)=USRK

®BEF Fn Q) =USR 62700
BSRoER & “paeEaYAT 5: C

RANDOMIZE FMN Ci(@,2,32,17,2,
4—42 TO 174 STEP 12

RﬁNDDH ZE FN 9 (B, j,128.,48)
RANDOMIZE FMN 9(255,Jo128; 40

NEXT 4
OR .Jj=6 TOo 255 STEP 12
RﬂNDDﬁIZE FM g91(j,175,128,40

36 TO ® STEP
IZE FMN 91(19+J*3).4;(

with off-screen co-ordinates. This makes it easier to
devise complex graphics displays using a trial and error
method, since there is less danger of losing both
program and routine if off-screen co-ordinates are
entered.

The cube display on page 20 is formed from a series of
lines. The program s very simple. The line draw routine
draws four lines repeatedly in the loop from lines 120 to
170: two to draw the grid pattern, and two for the pers-
pective effect. Lines 180 and 190 specify the two lines
which complete the cube shape.

SUNSET PROGRAM

DB‘. Bgseconds

Line 110 sets the blue colour
in the bottom part of the screen
using the window paper

routine.
How the program works Lines 130 and 140 draw the
Yellow lines are drawn horizon.

Lines 160-180 draw the
yellow lines in the sky.
Lines 190-210 draw the
horizontal lines on the lower
half of the screen.

radiating from a point at the
centre of the screen to points on
the edge. Horizontal lines are
then added to create a reflec-
tion effect.

T ———— e

FNg
LINE-DRAW ROUTINE

Start address 60700 Length 205 bytes _
What it does Draws a line between two specified points.

Using the routine This routine draws a line joining any two
pixel points on the screen. Although the Spectrum already has a
line draw routine available in BA%!C, the version given here is
much faster, and uses absolute rather than relative co-
ordinates. Ths means that co-ordinates p,q represent the
position of the end point of the line, not the horizontal and
vertical increment from x,y.

The routine will usually work if off-screen points are specified,
but for safety some error-trapping has been incorporated. If you
attempt to plot lines off the screen, you will see an “Integer out
of range” message, unless the value you have entered is more
than 255 pixels off the screen; in this case the routine will
probably crash.

ROUTINE PARAMETERS

I DEF FNg(x,y,p.q)
[xy][specify start position of line (x<256,y<176)

P9 || specify end position of line (p<256,9<<176)

ROUTINE LISTING |

749@ LET b=6@728: LET L=216: LET
Zz=0: RESTORE 7410

Z74@1 FOR i=0@ TO —-1: READ a

7492 POKE (b+i) ,a: LET z=zZ+3a

NEXT i .
7484 LET z=INT (((Z-L) -INT (z- L)

1 #L)

7405 READ a: IF a<>zZ THEN PRINT
TV STOP

7410 PATA 42,11,92,1.,4

7411 DATA ©0,9,86,14,8

7412 DATA 9,94 ,237,83,26

7413 DATRA 237,205,226,237,94
7414 DATA 42,26,237,217.,229
7415 DATA 217.,237,115,17S5,237
7416 PATA 1,1,1,122,148

7417 DATA 21©,70,237,6,255
7418 DATA 237.,68,87,123,149
74129 DATR 21©,80,237,14 ,255

742@ DRTA 237,68,95, 122,187
7421 DRTA 48,108,106 ,237,67
7422 DATR 177,237.,175,71,19S
7423 DATR 187 ,237.,178,202,167
7424 DRATR 237,187 ,9@,237.,67
7425 DRTAH %;7,23 2

~

7437 DATA 237,202,147 ,237,237
7438 DATA 123,17S,237.,217,225
7439 DATA 217.,201,181.,214.,1
744 DATA 1,62,175,147,218
7441 DATA 249,36,95,167,31
7442 DATA 55,31,167,31,171
7443 DRTA 23@,248,171,1083,122
7444 DATAR 7,7,7,171,230

7445 DATA 199.,171,7,7,111
7446 DRATHR 122,230 ,7.,71.,4

7447 DATA 62,254,15.,16,253
7448 DATA 6,255,168,71, 126
7449 DATA 176,119,201 ,229, 197
7458 DATA 285,179,237, 193,225
7451 DATA 9,86,9,201,0

7452 DATA 192,0,0,02.,0

LINE GRAPHICS 2

Line-drawing routines are ideal for producing
interference patterns. These are produced when a series
of lines or points are drawn so close together that whatis
produced is neither separate lines nor a complete solid,
but a pattern.

The pyramid program below shows interference
patterns at work. Each pyramid is drawn by a
subroutine beginning at line 500, which draws lines
from the top of the pyramid (the fixed point tx,ty) to
points along a horizontal base line (by). Only the base
x co-ordinate (x) is varied within the loop. Interference
patterns are seen from near the top of the pyramid
(where the lines nolonger have the appearance of asolid
figure) to a point towards the base of the pyramid
(where lines are beginning to be seen distinctly).

The line pattern program demonstrates a related
phenomenon. Here the line-draw routine (called in lines
140-170) has the paradoxical effect of producing

PYRAMID PROGRAM

Bi(x,%.h, ¥ ,c,b,f)=USRk
cix,4,h,¥,C,b, f)l =USR

N gix,d4,p.d) =USR 5@700
®: PAPER 1: INK 2

5
]
9
m

ro
n
=)
m
I

cLS
RANDOMIZE FM Cc(®,8,31,14.6,

LET tx=8@: LET tu=136: LET
4: L a=16: LET b=128

LET
STEP 2
aitx,ty,x,bd)

+16
gitx,ty,%,by)

[0 L T e TR e e e e el o
MPpEREEMRNE I OENPGLY
OO0E06AEAGENE-6E

LINE PATTERN PROGRAM

1@ DEF FMN g
@2 BORDER ©:
i@ CLS

2

3@ FOR

4@ RANDOMIZE

" 15@ RANDOMIZE

16@ RAMNDOMIZIE
i15@-4j}
17@ RANDOMIZIE

18@ NEXT

J
19@ PAUSE ©@: CLS

20@ NEXT i

) =USR E627VO0
2 . B

IHNK

LINE PATTERN DISPLAYS

LINE INTERFERENCE PROGRAM

REND
RANDOMIZE FN
RANDOMIZE FN
RANDOMIZE FHN
NEXT
PRAUSE ©@: CLS
HNEXT 1

T S e
BUO-ONEGNEER
0606000000860

A)

TR RLR 1 ¢

curves. The series of horizontal and vertical lin
sequence produces the curve effect. As the lines become
closer together, with each successive display, a better
effect is obtained.

The line interference program shows how a program
similar to the line pattern program can produce
interference patterns simply by increasing the number
of lines plotted on the screen, from 150 to 255 (the
variable i in line 130).

€S 1

LINE INTERFERENCE DISPLAY

LINE INTERFERENC
PROGRAM

B 8 ; 8 5 seconds

How the program works

Patterns are produced by
drawing lines from each corner

of the screen to the opposite
screen edge.
Line 120 sets up the first loop,

to draw complete displays.
Line 130 sets up the second,
inner loop, which calls the
routines 255 times to draw a
single display

Lines 140-170 call the line
routine to draw four lines.
Line 190 waits for a key to be
pressed before clearing the
screen and beginning the next
display.

TRIANGLES

A triangle shape is useful as the basis of all kinds of
graphics displays. Pyramids, mountains, trees and
bushes can all be formed from a triangular shape; even
the spotlight display on this page is drawn with
triangles. However, Spectrum BASIC does not have a
single-statement triangle command.

The triangle routine, FNi, enables you to draw
triangles quickly and painlessly. Like the line-draw
routine (FNg), on which it is based, the triangle routine
uses absolute rather than relative co-ordinates; this
makes complex graphics displays easier to program.

All the displays shown here make use of the routine
within a loop or loops. The repeated triangles program
is based on triangles plotted between two parallel lines.
Several interesting modifications are possible here: try,
for example, changing the first x co-cordinate of the
triangle from xc-2«y to xc-y. This will produce
parallelograms between the parallel screen edges.

The spotlight display is produced by drawing a series
of triangles from a single point (5,170). The base of each
triangle is a horizontal line, the end points of which lie
on the circumference of a shallow ellipse.

The final program, the triangle curves program, is a
display of curves produced from sequences of triangles.
The outer and inner curves are produced by the routines

REPEATED TRIANGLES PROGRAM

CEF FM i (x,4,pP,q9.,r ,s)=USR &
BORDER &: PAPER S: INK 2: C
LET r=263: LET Xc=1287: LET u
FOR i=7? TO 2 STEP

Yy=r TO - STEP -i

FOR

RANDOMIZE FMN i (XC-22%Y,4C-y4,
YC+Y ,XC+Y ,9C=-y)

@ NEXT 4

o

v
BREEARRE e
86000 666

b

1
=]
@
:
.
2
3
4
S

REPEATED TRIANGLES
PROGRAM

0 0 : G 3 seconds

How the program works
The program draws a series of
triangles. Each of the three

along a straight line, by
changing the variable y for
each successive triangle.

Line 120 begins the first loop,
which sets the distance
between each triangle in the
display.

Line 130 sets up the second
loop, which draws the pattern.

called in lines 130-140 and 180-190 respectively.

points of the triangle is moved

SPOTLIGHT PROGRAM

DEF FMN i (xX,4,P.,q.r.s5) =USR
BORDER @: PRFER ©: INK &

FNi

TRIANGLE DRAW ROUTINE

Start address 60300 Length 80 bytes

Other routines called Line draw routine (FNg).

What it does Draws a triangle given the pixel co-ordinates of
three points.

Using the routine The routine uses absolute co-ordinates.
Specifying off-screen co-ordinates produces an error
message; values more than 255 pixels off the screen will
probably cause the Spectrum to crash. Colours are set by the
current screen INK attributes.

ROUTINE PARAMETERS 7
DEF FNi(x,y,p,q,t,s) |
X,y H specify first corner of triangle (x<<256,y<<176) J

|
[P.a |[specify second comner of triangle (p<<256,4<176)
| ns —|| specify third corner of triangle (r<<256,5<176)

1

ROUTINE LISTING

|

Line 160 of the curves program sets the central screen

area to red using the window ink routine, FNb (which
must be present in memory for the program to RUN).

76@@ LET b=603@@: LET L=7S: LET

Z=0: RESTORE 7rF61e@

7601 FOR _i=0 TO L-1: READ a

7602 POKE (b+i) ,a: LET Z=Z+a

7603 NEXT i

?6?? LET Z=INT (((Z-/L) =INT (z~,L)
*

76@5 RERD a: IF a<»>z THEN PRINT

vy STOP

7610 DATA 42,11,92,1,4

7611 DATA @,9.,56,14,8

7612 DATA 92,94 ,237,83,208

7613 PATA 235,9,86,9,94

7614 DATRA 237,83,210,235.,9

7615 DATA 56,9,94,237,83

7616 DATA 212,235,42,210, 23S

7617 DATA 34 ,26,237,205,51

7618 DATA 237,237,91,208,235

7619 DRATAR 42,212 ,235,34 ,26

7620 DATA 237.,205,51,237,237

7621 DRATA 91,210 ,235,42 ,208

7622 DATRA 235,34 ,26,237,205

7623 DATA S1,237,291,40,656

7624 DATA 40,1453 ,88©,123.,@

7625 DRATARA 63,©0,0,0,0

TRIANGLE CURVES PROGRAM

(=]

YEF FN_bi(x,d.,h
YEF FM i (X,4,P.,4.r ,5) =USR
FPAFPER 4: IMNE 1

-8]
7]
non 08
T

1 h

s
i
1
1
K
;
1
1
;
a
i
1

@,
1
1
i

2

=

(D

=]

[ul
@D oM
' D

® m-

D

10
23
2
Pal)
Q@
i@
29
S
a)
75
4@
a3,
;3 ,
S@
50
(o)
e
=1=]
25
ca
16
ae

Wl Z
= =~ ORD
QG

]
)
=

TRIANGLE CURVES DISPLAY

CIRCLES AND ARCS 1

Two methods are commonly used to draw circles on a
computer. The first uses a combination of sines and
cosines; this is the method used to draw circles in
Spectrum BASIC. The sine /cosine method is derived
from the fact that, for a right-angled triangle, the length
of the horizontal and vertical sides can be calculated
from the size of one angle and the length of the third
side. If a right-angled triangle is formed between the
centre of a circle and any point on the circumference, as
shown in the diagram below, then the length of the sides
is given by

X=rcos (a)

y=r xsin (a)

You can see a typical example of circles plotted in
Spectrum BASIC in the circle program on this page.

The command requires the centre-point and radius to
be specified (x,y and r).

DRAWING A CIRCLE USING SIN AND COS

=TI xC0sa

X
y=rx*sina

The second method is faster in operation but requires
more memory to implement. This method, based on
squares, forms the basis of the machine-code routine
given here. It is derived from the equation

XZZ*_y 2==r2
This, of course, is Pythagoras’ theorem, which gives the

relation between the sides of a right-angled triangle, as
shown in the squares method diagram below.

DRAWING A CIRCLE USING SQUARES

XX+ YxY=TIxI
y=SQR(rxr—xx)

BASIC CIRCLES PROGRAM

EORDER S PAFER 7 IrE

'_
m
=]

"

L

X---4-nn-
n
e L A e e T
El (T L N T
ml =
1+ 1 X
SR
(]
S
a

Zrrrrom
MM -0

This method is more complicated than the sine,
cosine method, since it must calculate square root
values each time a circle is drawn. To use it most
effectively, first calculate a list of square roots and then
store this list in memory — as done by the routine at
address 59600. The list of square roots can then be
“consulted” by the main routine. Using stored square
roots makes this routine much faster — and more
accurate — than using the BASIC CIRCLE command.

Using the routines

Together with the BASIC square loader program, the
routines given here do the work of calculating points for
circles to be drawn. After keying in these routines you
will not yet be able to produce anything on the screen,
because the routines do not in themselves draw any
curves; for this you must also key in one of the curve
routines in the following pages.

R e SRS w0 v [e o e

7720 DATA S5©,115,232.,56,114
7721 DATA 232,205,19.,23=2,50
MASTER CURVE ROUTINES 7722 DATA 116,232,71,58,11S
7723 DATA 232,144 ,200,58,11S
% 2723 gars 233059450 8304 5g
’ s i
Start addresses 59600 and 59000 7726 DATA 232,144 ,32,34,50
Length 60 and 525 bytes _ 2727 BATA 5@,i23,232.55,121
Other routines called Point-plot routine (FNf). 5453 DATA SB.118,2352,54, 124
What they do Carry out the calculations for the arc, sector and
sersnt routi +73® DATA 232,195,7,231,58
segment routines. 7731 DATA 11€.232,71.58,119
. . . R o
. I J)
Using the routines The following BASIC program must be 77233 BATR 123:535°34°%2%e 202
keyed inand RUN before using the machine-code routines given 7735 DATA 238,1,32,3,62
here. 7736 DATA @,5@,124 ,232, 195
' 7232 Bara zgoel,Peilis en,
égIEEI'R]— 59?80255 4%3a pATA 232,71.33, 105,231
i=0T
o . 77492 DATA 17,18,0,2S5,16
30LETp=i%i:LETh=INT (p/256) 7741 DATA 253,34 ,125,232,58
40 LET|=p—256 h 3743 BATA 331°45°945°255.53
G - 7744 DATA 122,232 ,205,65,232
50 POKEj,|: POKEj+1,h 7745 DATA 42,125,232 ,233,20S5
60LET]_J+2 7746 DRATA 81,232,53,122,232
7747 DATA 33,124 ,232,190.,40
7ONEXTi 7748 DATA 43,600,252 ,93 ,231
7749 DATA 24,228,588, 122,232
This program POKEs the squares of numbers from 0 to 255 into 775@ DATA 71,S8,119,232, 167
1 | | 7751 DATA 144,56, 122,232,205
memory. Each square is stored in two bytes, since numbers 2781 DATR 83%238:35%4525452
larger than 16 squared will not fit into a single byte, which has a 7753 DATA 233, 2@s,81,232,88
: ; TG : 7 ATA 33,
maximum value of 255. Having keyed in this routine, SAVE the 2525 BATA 190.40,6,561,250
area of memory containing the squares by using the command zzSe DHIA ?géég%éE’géegg B8
- " - » »
SAVE “title” CODE 59700,600. These 600 bytes are also used 2784 DATA 232.62,0,50, 122
as workspace by the circle routines. 7759 DATA 232,58,123,232.,61
The routine at 59600 calculates square roots and stores them 776@ DATA 20@,254,1,202,205
1 1 1 ¥ 7761 DATA 230,195 ,239.,23@.,8
in memory. The longer routine, starting at address 59000, cal 5%62 DATA S&,122,232,95,58
culates points on the circumference of a circle using these 7763 DATA 111,232,130@,87,58
2 m 7764 DATA 110 ,232,131,95,195
square roots. 776S DATA 43,231,95,S8, 122
7766 DATA 232,87,58.,111,232
= = 7767 DATRA 13@,87.,58,110,232
| ROUTINE LISTING 7788 gATA églégsiégs,sg,§g1
A i s 232,
765@ LET b=S9600: LET L=55: LET
72232 RELZTORE Seeo 777@ DRATRH 53,11%,233,145,87
: 7771 DATA S38,1108,232.,131,95
5252 £BRe’ 1,10 1T P02 0 7522 BEIR 18%.4n233i50. %3,
7653 NEXT i e N s . s :
7654 LET z=INT (((zZ,L) —INT (Z-L) 722¢ BaTh gggf%%%iéé:?gé%ég
*
7655.READ 5: IF a<>z THEN PRINT £7zL orTa gg?ég?i??jéggfﬁfg
[agier TOPRP 7778 DATA 87,558,110 ,232, 147
e e e A R 7779 DATA 95,195,43.231.55
7661 DATA 187,32,1,201,1
2862 pATA 52,233,16,111,3 Tias e 86188, 208, 07,58
76e3 parA 19,103,107, ,2372,92 %582 paTA 110,232,147,95,19S
Ze6S DATA 242.17,202,22.96 Z7a3 DATH 8@,=31.82.00¢%22
2668 DATA 105,25,124,167,31 Z284 DeIE SR R e e
66> DAaTA 125‘31J201’33 ée 7788 DATA 13@,87,538.11@,=232
7668 DATA 233,22,8,7.,45 7786 DATA 147,95,195,43,231
feea bATA 1 Eé gé é5’94 7787 DRATA B?,SB,}22,23§,95
2eSa pATA Sé Bé Eél é o 7788 DATA 58,111,232,13@ .87
2651 DATA 3,@,@:9,@) » 7789 DATAR 55,118,232 ,147 ,95
779@ DARATA 195,80.,231,6,5
2231 Bote 289’csiitisnd e
= 2 , ’ i
Al 7333 BaTA 39°i13;423:23:8%
’ » Fl ’
n i = . 779S DATA @,25,45,4,12
TZoe. LELsPORE SRt T Losmer LEv 2555 BaTA 33,3403110858”
7282 CORe' TR.15, 57 eRF0223, 2738 BATA 187,203,29,203,25
7703 HNEXT 1 . » » » ,
?:?? LET zZz=INT (((zZ L) =INT (Z.-L) 733? Bng 2¢5i§g5é2@sé%gaéial
7 TA 58 PR —fc = » =
450 Nl 1 TS TR PR 7382 BaTA 22012337027262%7
» E » 4
; S 7804 DATA 208,232,201,53, 104
e D SE i el O R s 7805 DATA 232,254,0,40,3
2712 DATA 232,237,83,117,232 7E0E DOTE 178 R e a7
7?7132 DATA 167 ,2@3,26 ,283,27 £ - = ¥
2%14 DATA =0 505 . 535 50)119 7808 DATA 1@3,232,2@5,72.,240
7715 DATA 232,585,113 ,232,205 JHOD DHIW 201.8.0 S8 o~
7716 DATA 11,232.50,120,232 Zo1: DATA 5o,17@,318.11, 432
7717 DATA 58,114 ,232,205,11 = 2 > i
55 =] 7812 DATA 3.,21.,7,6,@
18 DATA 2_15_*,56,121,232,58 7813 DATA 1,1 ,213,231.,0
7719 DATA 113 .,232,205,19,232 7914 DATA 234 ,0,0,0,0 |

CIRCLES AND ARCS 2

With the arc routine, FNj, given on this page, you will be
able to draw arcs more quickly and with more flexibility
than with the Spectrum DRAW command. The routine
can be used to draw either arcs or complete circles by
varying the final two parameters.

To produce any circle-based program on this page,
you must first key in the machine-code routines and the
BASIC squares program on page 29, as well as the
routine given on this page, since the arc routine calls all
these routines.

Starting and finishing the arc

The only complication of the arc routine given here isin
specifying how much of the circle is to be drawn. The
start and finish parameters can have values from 0 to
255, instead of 0 to 360. This is because the parameters
are stored in a single byte in memory, and one byte can
have only 256 values (thatis, from 0 to 255). This means

that s,f values of 0,255 will draw a complete circle,
values 0,127 will give a semicircle, and so on.

Since the routine begins drawing from a position
horizontally to the right of the selected centre point,
s,f values of 0,64 will produce a quarter circle from the
right of the centre to a point vertically above it. The
diagram below shows how the start and finish
parameters correspond to the more usual degrees.

CALCULATING POINTSON A CIRCLE

ARC PATTERN PROGRAM

o]
o
]

1
el a e
W .

-
4]

- D9F6

Using 90° Using the 64
degrees routine
G 0° 0
150 3600 177 255
270° 190

L A A A A A A A A & _A A _A B A A A A A _J J

PTOaLLLLLLE L LU LY

-~

FNj
ARC ROUTINE

Start address 58900 Length 45 bytes

Other routines called Master curve routines.

What it does Draws an arc or circle at a specified radius from
a centre point.

Using the routine The table on the facing page shows how
the s and f parameters specify the length of the arc. A dif-
ference of 255 will produce a complete circle, 127 a semi-
circle, and so on. The numbers themselves define the angle
from the centre of the circle at which the arc starts and
finishes. The arc is drawn from a position due east of the
centre of the circle, so that an s or f value of 1 is to the right of
the centre point, a value of 128 to the left, and a value of 192
directly beneath the centre of the circle.

Unlike CIRCLE in Spectrum BASIC, you can draw curves with
this routine which go some distance off the top or bottom of the
screen without an error message appearing.

Because of the way the screen memory works, there are
several screen positions where a curve cannot be drawn using
this routine. If you find the routine does not work in any position,
move the centre point one pixel in any direction.

| ROUTINE PARAMETERS |
[DEF FNj(x,y.r.s.f) |

X,y specify the centre point from which the arc is drawn
: (x<256y<176)

‘ r ”specifiestheradius0fthearc[r<256) ‘
[sf |[specify the length of the arc(s<f, s<256,/<256) |

| ROUTINE LISTING |
785@ LET b=S8900: LET L=4©@: LET
Zz=0: RESTORE 7860
7851 FOR i=@ TD L-1: RERAD a
7852 POKE (b+1i) ,a: LET z=z+a
78S3 MNEXT i
78854 LET zZz=INT (((zZ/2L) —=INT (zZ 1)
) x L)
7855 READ a: IF a<»z THEN PRINT
22" : STOP
786@ DATA 42,11,92,1.,4
7861 CATA ©,9,86, 14,8
7862 DATA 9,94 ,237,53.,110
7863 DATA 232,9,126,5@, 112
7864 DATA 232,9,126,5@,113
7865 DATA 232,9,126,50, 114
7866 DATA 232,71,55,113,23=2
7867 DATA 176,200,195 ,120,230
7868 DATA 17,0,0,0,0

CONES PROGRAM

F)l =USR

r
o}

3B, sS=9

o}

PAFPER @: INK &

j (254 -1 5, INT

e
s 1

e

T 5 o s e e s 3 g

[

ZODMNZ- DNZ~DN0

D O 6
maDoMODOM=-D0r

(n
In=@ITyr=Iy

+
O

CUOOGAGArE000
KNZDX#x ZDX~ ZDH])

RS L]

-

The cones program produces patterns by varying the
x and y co-ordinates of the centre of a circle each time it
is drawn. In the left- and right-hand patterns, the x co-
ordinate is a function of the variable i, while the y co-
ordinate is given by i raised to the power of 1.7. As a
result, the circles appear on a curve. In the third loop,
only the y co-ordinate is varied, so that the sequence of
circles rises vertically.

CONES PROGRAM
.77
BU ¥ } | seconds

Lines 120-140 draw the left-
hand circles.
Lines 150-170 repeat the

How the program works
Three circle patterns are
drawn, using the circle routine
within a loop.

above loop, reversing the x,y
co-ordinates.
Lines 180-200 draw the

centre circles.

SECTORS AND SEGMENTS

The two routines on this page are useful supplements to
the circle routine introduced on pages 30-31. Sectors
are constructed by drawing an arc and then joining the
end points to the centre from which the arcis drawn. A
segment differs from a sector in that the ends of a
segment are joined to each other, rather than to a centre
point. The advantage of the routine is that they enable

v
s
it

1@ DEF FN k(X ,3,r,5,f) =USR
a?BD BORDER @: PAPER @: IMNK 4
LET xc=25B: LET 4
STEF -1

STEP -i
kixc=-y*2,dc-IN

you to join the ends of an arc together without having to
work out the co-ordinates of those points.

Both the sector and the segment routines call the
master circle routine (page 29), the arc routine, FNj
(page 31) and the line draw routine, FNn (page 21).
This means that the sector and segment routines will not
work unless these other routines are present in memory.

The sector program on this page creates the illusion of
a third dimension by repeatedly drawing smaller and
smaller sectors while at the same time moving the centre
point upwards and to the right. Try varyingiinline 120
to see a different number of sectors displayed.

The segment program repeats a pattern of segments
(drawn from a single centre pointin lines 140-150) three
times across the screen. The number of patterns can be
increased by varying the step size of x in line 120.

SECTOR PROGRAM

Bg "? Fseconds

drawn in one display.
Line 130 sets up a loop to
vary y, used to calculate the

How the program works A
sector of a circle is drawn
repeatedly with decreasing
radius.

Line 120 sets up a loop to
vary i, the number of sectors

centre point and the radius.
Line 140 draws a single
sector.

Line 160 waits for a key to be
pressed before drawing the
display again.

FNk

SECTOR ROUTINE

FNI
SEGMENT ROUTINE

Start Address 58800 Length 45 bytes

Other routines called Arc and line-draw routines (FNj, FNg).
What it does Draws an arc of specified radius, and joins each
end to the centre point.

Using the routine The sector is drawn anti-clockwise from a
point to the right of the centre. When the ends of the arc are
Jjoined to the centre, the result is a wedge shape if the difference
between s and f is less than 127, or a cut pie shape if the differ-
ence is greater than 128. Sectors plotted off the screen to left
or right may reappear rather unpredictably elsewhere on the
gcqeen, so it is best to keep within the parameter limits given
elow.

] ROUTINE PARAMETERS |
| DEF FNk(x,y,r,s,f) |

- specify the centre point from which the arc is to be
Y |l drawn (x<256,y<176)

[r Hspecifies the radius of the arc (r<<256) J
[s f Hspecify the length of the arc (s<<f, s<<256, f<(256) |

| ROUTINE LISTING |
790@ LET b=S380@: LET L=4@: LET
Z=0: RESTORE 791@©
7991 FOR 1i=0 TO L-1: RERAD a
7902 POKE (b+11}) ,a: LET Z=zZ+a
7903 NEXT 1
79@4 LET z=INT (((z,0) —=INT (z-L)
1 L)
79@S READ a: IF a<»z THEN PRINT
r22 . STOP
791@ DATA 20S,20,230,237,91
7911 DATA 106 ,232,42,110,232
79lz2 DATA 229,08 ,34 ,26,237
7913 DATA 205,51,237,237.91
7914 DATA 108.232,225,34.,26
7915 DATA 237,205,551 ,237 ,237
7916 DATA 291,110,232 ,205,72
7917 DATA 242,201 ,0,0.@
7918 DATA 35.0.,.0,2.,0@

Start address 58700 Length 30 bytes

Other routines called Arc and line-draw routines (FNj, FNg).
What it does Draws an arc of specified radius from a centre
point, and joins the ends together.

Using the routine This routine works in the same way and
with the same restrictions as the sector routine, except thatin
this case the ends of the arc are joined together, rather than to
the centre.

Notice that, like the previous routine, you may get problems
trying to connect the ends of the arc together, if either of the
end points (and especially if both of them) are off the screen.
As before, segments plotted off the edge of the screen to left or
right will have unpredictable results: they may reappear on the
other side, or cause the Spectrum to crash.

| ROUTINE PARAMETERS |
| DEF FNI (x,y,1.s,f) |

specify the centre point from which the arc is to be
drawn (x<256,y<176)

[r | [specifies the radius of the arc (r<256) [
[sf |[specify the length of the arc (s<f, s<256, f<256) |

X,y

| ROUTINE LISTING [

79508 LET b=S8700: LET L=25: LET
z=0: RESTORE 796@

7951 FOR i=@ TO L-1: READ a
(b+i) ,a: LET zZ=zZ+a

EXT i
7954 LET z=INT

(C(Z L) =INT (zZz-L)
Y L)
7955 RERAD a: IF a<»>Z THEN PRINT
ety STOR

SEGMENT PROGRAM

CEF FM LI(X,4,r,s,f) =USR 587
BORDER 4: PAPER 4: INK 1:

LET r=8@: LET
FOR x=82 TO 1
FOR i=1@ TO 8
RAMDOMIZE FN

RAMNCOMIZIE FHN
NEXT i
NEXT %

FILLING SHAPES 1

The fill routine given here, FNm, enables you to fill any
enclosed shape no matter how irregular. The routine
works by looking at the pixels adjacent to the specifed
start point. If a pixel INK attribute is set, the routine
does not change it, and does not look at pixels adjacent
to this one; otherwise, the routine sets the INK attribute
to the current INK colour and moves to the next
adjacent pixels.

This method is known as the flood or grass-fire
method, since, as you can see from its characteristic
diamond shape, the INK spreads outwards until it
reaches a “trench”, which stops it from spreading
further. Any shape which is not completely enclosed,
even if only by a single pixel, will “leak” when filled.

Colouring irregular shapes
Since the Spectrum can only have one INK and one
PAPER colour in each character block, you may have

FILL PROGRAM

N e

Fix1l,9l,x2,92)

: LET y2=2@
Xl.,dl1.x2,492)

10,202,138, 2)
259,29, 13@,2

IZ=INPrPIINREN

HE HEH O HILB R HInie

NE NN N
MmO MM Ma~k MEdxo -

FM m(l1@,5}

problems when there are more than two colours on the
screen, and you call the routine to fill irregular shapes.
If, for example, the shape has diagonal edges, you will
see a jagged effect corresponding to character borders,
instead of a straight line when the shape is filled. The
diagram below shows how a combination of INK and
PAPER colours can be used to overcome this problem.

FILLING SHAPES AT CHARACTER BORDERS

O PABER
INK | Y
N C
NPAPER kg

N orac ﬁ:‘hlpc =

]NK \ mg'j. i — .—-.--”""4#
o PAPER
Character bardFr
INK N PAPER
eing filled \

BOX FILL PROGRAM

r

Q

GS:SGQ& olo 1]

QUITEQNE QD

1
S
x
1
1
p B
(u}
i
i

BOX FILL PROGRAM

BB: 8 5 seconds

How the program works
Boxes are drawn in a loop, and

filled alternately.

Line 120 scts up a loop.

Line 140 fills a box if variable
x is exactly divisible by 10.
Line 150 reduces the value of
X by 3.

FNm
FILL ROUTINE

Start address 57700 Length 195 bytes

Other routines called Line-draw routine (FNg). .
What it does Fills in an area bounded by a solid line of INK, in
the current INK colour.

Using the routine This routine fills in an area up to the edge
of any shape enclosed by an INK line, or to the screen border.
Remember that if there Is even a single pixel of PAPER colour
at the border, then the INK with which you are filling will leak
out, and you may fill the entire screen. Notice also that a
“wraparound” effect occurs when filling to left and right of the
screen, which means that when the routine reaches the left-
hand edge of the screen, it starts filling from the right-hand
edge inwards, and the same will happen when the routine
reaches the right-hand screen edge.

If some of the attributes for character squares within the area
tobe filled differ from each other (as will happen, for example, if
you change some of the attributes using the window ink routine)
then the area will be filled with these colours, rather thanin a
single colour.

[ROUTINE PARAMETERS |
| DEF FNm(x,y)]

x pixel co-ordinates of the point at which to start filling
Y || (x<256,y<176)

| ROUTINE LISTING |

800@ LET b=S7700@: LET L=19@: LET
Z=0: RESTORE_S@1@

80@1 FOR i=0 70O L-1: RERD a

8002 POKE (b+i) ,a: LET zZz=z+a3a

8003 MEXT i

8034 LET zZz=INT ({(z, L) -INT (zZz.,L)

S@@5 RERD a: IF a<»Z THEN PRINT
st b A s |

8@le DATA
8811 DATAH
8012 DATA
8813 DATA
8014 DATAH

B

B
wuan
o

Qa@- « - oo~
W
0

MR TAT S
N TS AL
< DRG0

- WS- e
R NS

W0~ @R
U DARADA LADADN. o

o

e

’H

o

o

D

_|

D
MUNEUNIYE A
NENANWNR- - N
- QMM A~
C P DDA

W~ BUNWE - Ap- DONDURY BN ~ &
D pONWD

n
)
~
]

[A]

o

0

n

N

o]

bi]

=

D
NN
NENe
QMmN
O
rEH

~J

5]

- N
QA OROQ- Q- -

s (s @
nQ

M-

8029 DATRAR 226,237 ,7
8030 DATA 167,237,

o
]
w
=
=
I
4
I
=
W
(]

Y CRE = T
n NeERr N

B RN Q0 0 00
w o

-

C~ s P OG0 ONWNS Ns - R
OPAl P s s

ST, |
e BRW ~ - O
OFR- -~ B 010~ O BQE-
QUNED @ -
<0 0~ DflEs N pe~ URS A O~

b
S al ol Ll 11111

a
0}

OO ~d =
WM. -
B
[elailoYie]
]

AR 1]

A Es
oNW- NNAD NADUNW. FOE SUAWDA- B p

WA ~ NE

S WM - W M- RrRROmo
P~

QM-
s BUW FORD WNESR RSO

NOAD RUNO O - - NOOR
ORON P ARRO

s e ANIDOD

w

[

P

[~

Q

bi]

_‘

b1
NEROPENRERE PR O
SN O ~ -~ -

o (M

G-
s~ O « O~

e
o

LY

The fill routine really comes into its own when it is given
highly irregular shapes to fill. Not only does it cope with
these shapes with ease, it also fills them very quickly.
The two programs on this page give an idea of the
routine’s capabilities.

The only complicated detail in each program is the
calculation of the point from which the fill routine is to
start. Each program has to calculate this point on each
pass of the loop. To ensure that whole numbers are
passed to theroutine, the formula for the co-ordinates of
the point is placed in brackets and an INT statement
placed in front of it.

m!dli Hiii #H
T l

SQUARES AND CIRCLES
PROGRAM

an.ng
L g * LJ J seconds

How the program works A
series of boxes and circles of
increasing size is drawn, and
the fill routine called inside
areas at which the boxes and
circles intersect.

Lines 10-30 define the
routines.

i 'mz'
[i|||“1|

iy
i|I T ;‘i I
Hl'i'hs.u

PO
Ltamﬁ*‘li i

Line 120 scts a centre point
for the display (x1,y1).
Line 130 starts a loop to
draw the boxes and circles.
Line 140 draws a box based
on an increment from the
centre point.

Line 150 draws a circle.
Line 1535 sets a test which
calls the fill routine on alter-
nate passes of the loop only.
Lines 160-190 fill four
corners of the display.

e e) 7 (B R

parameters, caused by different shapes created each
time the boxes and circles are drawn. The boxes and
circles are drawn in a loop at lines 140-150, and the
intersections filled at lines 160-190.

SPIRAL PROGRAM

The squares and circles program fills in the inter-
sections between a series of boxes and circles. The
program is interesting for the different final displays
which can be obtained by changing the values of a few

SQUARES AND CIRCLES PROGRAM

DEF FN Jj(x,4,r.,s,f)=USR 589

DEF FN m(X ,4) =USR 57721@

e
1: PRPER 1: INK 6&6: C

FN jl(1283 ,858,81,0,
LET pd=2%FPI-n
(]

n
(4@ 3C0OS p)
(4@%SIN P}

& .
(i -2}
Jix1,91,INT (i

1@
=1
Sa
Qaa
zZa
3Q
4

= Mo

1
1
b
1
»

15@ RANDOMIZE
s2) ,@,255)
1SS IF (i +8)1 »32=INT ({i+5) ~32)
THEN GO TQO 202
16@ RANDOMIZIE FN mi(x1+1-INT (i~
2) ,41+1-INT (irs2))
17@ RANDOMIZE FN mixd1-1+INT (i~
2) ,91+1-INT (i-2))
88 RANDOMIZE FH m(x1-1+INT (i~
L,Y1l=1+INT (irs2))
9@ RANDOMIZE FHN m(xL+1-INT (i~
sHL-1+INT (i -2
@0 MNEXT i

e 0OK, @:1

The spiral program

The spiral program is an effective use of the fill
routine to colour in alternate portions of the circle. The
two displays were achieved by varying n, which deter-
mines the number of spirals to be drawn.

SPIRAL PROGRAM the sequence repeated. The
number of spirals is set by

00: Ljaseconds variable n.

Lines 10-20 define the
How the program works routines.

- -

-

Only the arc and fill routines
arc used in this program. A
circle is drawn and then two
BASIC semicircles are drawn
to join the centre point to the
circumference. After two of
these curves have been drawn,
the space between is filled and

Line 120 draws a complete
circle (centre 128,88).

Line 180 draws two curves in
BASIC, using PI to specify
semicircles.

Line 190 fills the area
between two curves on
alternate passes of the loop.

i

Y it

o

S

operators” on the Spectrum; its more formal title is
Exclusive/Or, or XOR for short. XOR forms the basis
of the machine-code routine, FNn, on this page. You
will recognize at once the other logical operators, since
they occur in Spectrum BASIC with the same titles:
AND, OR and NOT. Logical operators give a result
depending on the way particular bits are set. The table
below shows how the four operators make decisions.

The OVER command in BASIC is one of four “logical

TABLE OF LOGICAL OPERATORS

AND OR NOT XOR
A B AANDB|{A B AORB|A NOTA|A B AXORB
) 0 HEl 0 0 1 00 0
01 0 OFT 1 1 0 UE) 1
10 0 150 1 10 1
11 1 1 1 15550} 0

Thus, the XOR-line routine (FNn) looks at the screen
before setting a pixel. If the pixel is currently set, the
routine clears it; if the pixel is not set, however, the
routine sets it.

1@
aa
@

L
=3

1
=]
1
Ak
1
1
1
1
1
1
1
1
=

1
o
2
3
4
=3
=3
7
a8
9
@

XOR ELLIPSEPROGRAM to points on an ellipse.
Line 130 specifies how many
B z ; IQ minutes lines are to be drawn.

How the program works co-ordinates of a point on the
Lines are drawn from a centre

@QGG&QGGGE

Frd

CEF n =USkR S7E00@
BORDER 5: HI =

INK 1

n -

LET s=1: LET

£=3
LET x1=127: L
i=@0 TO 25

Dm0 @ mi

b

Lines 140-150 calculate the

circumference.

INTERFERENCE CIRCLES PROGRAM

nz
b
o i)

Q =2

Q 255 STEP =
INT

M L

FMN

WO KAk Wooma

Ll Lol e T T TRV SR)
WG X @0

+ M=

+3

TOTU 2 1 o b 2 2 e 2
WUESOO-JTNEDNS e S
GoOGO0EERERORE B0
B0 = wM4++--6

(o N ||
BE X

The interference circles program shows how, by
using XOR lines, two overlapping circles can produce an
interesting pattern instead of an area of solid colour.

OVERPRINTING PROGRAM

DEF FM N (x .
EORCER 1: P

o]
I Ul e e

W =W

b LUl B AT o T

j=1@

RAMCDOMIZE FMN
RAMNDOMIZIE FN

NEXT
PALZE @

60 6060 G600 LT

=0 TO 159

FNn
XOR-LINE ROUTINE

Start address 57600 Length 20 bytes

Other routines called Line-draw routine (FNg).

What it does Draws an Exclusive/OR line on the screen
between two specified points.

Using the routine This routine works in the same way as the
line-draw routine, except that Exclusive/OR allows you to erase
what has been drawn. Using the routine you can draw lines over
an image and then remove them again, without affecting the
original image. As for the line-draw routine, the routine incor-
porates some error-trapping.

| ROUTINE PARAMETERS g
I DEF FN n(x,y,p,q) |

X,y specify the start pixel co-ordinates of the XOR-line
(x<256,y<176)
P.q specify the end pixel co-ordinates of the XOR-line
(p<256, 4<176)
| ROUTINE LISTING
8@5@ LET b=5S7€00@: LET L=1%S: LET
Z=0: RESTORE 5S060@
80851 FOR i=0 TO L-1: RERAD a

8252 POKE (b+i) ,a: LET zZz=z+a

8053 NEXT 1

8054 LET zZ=INT (((Z-/L)-INT (zZ-/L)
1L

8@5S READ a: IF a<»Z THEN PRINT
TG s AR |

806@ DATA 62,168,508 ,223,237
cATA 205,28 ,237,62,176
8®@62 DATA S50,223,237,201,0
8063 DATA 13,2,0,0,0

OVERPRINTING DISPLAY

Finally, the overprinting program gives an example of

the XOR-line routine being used to draw over some text
and cover it (lines 160-170), and then “undraw” the
lines by calling the routine again in lines 200 and 210,
leaving the text intact.

COMBINING ROUTINES

The programs on this page give some further examples
of combining the routines used earlier in this book. You
will see from the programs used here that, in a program
of any length, itis a good idea to separate the machine-
code routines clearly at the beginning of the program, as
has been done here.

Although the programs look complicated, they both
consist mainly of machine-code calls. The repeated
circles program is a symmetrical pattern; the small
circles on the circumference of the large ones are drawn
in lines 230-380. Variables x,y, which are points on the
circumference of a large circle of radius rz, are used to
determine the centre of the small circles. The actual
centre points of the small circles are obtained by adding

REPEATED CIRCLES
PROGRAM

g Q : }'8 seconds

How the program works
This program displays circles circles and the centre box.
with smaller circles on their Lines 250-380 draw the small
circumference. Each of the circles.

small circles is then half-filled. Lines 400-440 set the colours
Line 100 defines ad, the step of the four quarters of the
size. screen.

Line 120 defines x0 and y0,
the offset from the centre for
the four large circles, and rx
and rz, the radius of the small
and large circles.

Lines 140-200 draw the large

or subtracting an offset (x0,y0) from x and y in lines
270-340. Variables xm,ym are used to calculate the co-
ordinates for the fill routine.

The kite program is even simpler; the only compli-
cated part is the drawing of the tail (drawn by a sub-
routine in lines 500-600). The number of bows in the tail
can be modified by changing the variable s in line 110.

REPEATED CIRCLES PROGRAM

bix,4d,h,v.,.C.b, F}=USR
(X,9,h,v,c,b, F) =USR

(x,d,h,.v) =USR_S0402
j s ,f) =USR S&89

N
m
L]

o0 GEEEREGEE B

= .

W

PAPER 41: INK &6: C

-

FM J(x1-x0,yl-4go,

-

FM J(X1+X0,d91-40,
FN j{x1l+xX0,91l+y0,

FM j{x1-%0,91+90,

[T T T
A MRN RN N ROE)
T L DT B

1]

BRA

==

RA
RRNDDMI;E
FOoR

LE

LE

LE

i T
27@ RﬂNDOﬁIZE
, 8,255

2ce RRNDoﬁIZE
290 FcﬁNDDr"II;.E
rx.,a,25%

3@9 RQNDOMILE
(=]

31@ RAMNCOMIZE

SCcrollL”

_‘

==
ERNDOMIZE
RANDOMIZE
=)

BEANDCHMIZE
RANDOMIZE

RANDOMIZE
LET a=a+ad
NEXT i
RﬁNDDHI*E
RAMNCOMIZIE

RAMNDOMIZE

]
o

"

-

]

REMDOMIZE

® RANMDOMIZE
(= k]
RANDOMIZE

0 e N e
Of- b Bo P POROO DHOH=RX
~“0- O-EO0006 GONG 66

[

0 “POWENOREELO-O IR O -

]

n, @:1

KITE PROGRAM

ﬁg.f‘l'l
LIl 0 | seconds

How the program works
The program draws a kite
using coloured triangles, and
then adds a tail with bows.
Lines 120-130 draw the kite
using triangles.

Lines 150 and 180 set values
for the subroutine variables.
Line 190 sets colours for the
tail.

REPEATED CIRCLES PROGRAM CONTD.

TD 255 STEP 15

= 1+INT
240 T u 1+ INT
==t} T Xm=x1+INT

=41+ INT

Frd

Frd
Frd

Frd
Frd

Line 500 is the start of the tail

subroutine.

Lines 510 and 520 calculate
the point x,y, at which an
ellipse is drawn.

Lines 530-560 draw and fill
in each bow.

Line 570 draws a line between

each bow.
Lines 580 and 590 set values
for the next bow to be drawn

FH
FMN
FH

JEXL,9l,rz+rx,

JEXL,Y1l,rZ-rx+
h(il17,78,20,186
miles, 8551

(rz#«=35IN a)
(rz%*C0O05 a)
((rz-3) *SIN a
({rz-3)*C05 3

JiX=-%0,94-4o ,rx

mixm=X0 ,dMm-<940}
Jix+xo+l.,9-90,

e {XXM+=x0+1.dm-—1d

Jix+xo+1,4+90 .,

mixXm+Xo+1 . dm+y
JIX=—HO ,Y+40, rx

mEXm=x0 ,dm+9401]
JIX,Y,rx,9,255

mi¥m,dml
mil,L1)
b(@,@d,16,11,2,
bil15,11,16,11,
ct@,2,16,21,6,
cil6,12,16,.11,
Bild ,9,4.,4,3.,0

KITE PROGRAM

s, C

Q) =
-

(SR

[

SUS S00

OMIZE FM 29 (47,

®1l=x1+4+39S BT
LET 42=40: G

HEBQ+FD~B‘B

m
- N

[

99 RANDOMIZE FN b (1,

RANDOMIZE FN b(6, &)
RANDOMIZE FN B(1,6,
RANDOMIZE FMN b (25
RRANDOMIZE FMN b(S5,1

PRUSE ©: STGP

s ===

8 68 686
SUHNANNLENONPENEFEE

[T T o L W T O R T
L

X ®
Pl
CEp N CONmD

* 00080 00- 90006-0-E
i~ +

]
u]

8,6,

B, F) =USR
=USR S@720
SR S

J2) =

S0 ,47,40)
Lt=172: L
o SuUBE See¢

]

&,1@,

~ OH
XL XL XMZWw

GRAPHICS EDITOR 1

Perhaps the most effective way of using machine-code
routines like those in this book is in a single program
which enables you to use the routines together.
Although by this stage in the book you have enough
routines available to create the kind of sophisticated
displays seen in much commercial software, you do not
have what the professionals use: a complete graphics
editor. This is the purpose of the following program.

The graphics editor program

Each stage of the editor program incorporates routines
from this book. The final program includes a facility for
SAVEing and LOADing individual screens. The
displays accompanying the program on this page and on
the following few pages will give you some idea of the
sort of pictures you can produce using the completed
program.

How the program is built up

The graphics editor is shown in five stages, with each
stage complete in itself. By keying in the lines on this
page, you will have enough of the program to be able to
move two cursors on the screen. These are used for
plotting points and drawing lines in future stages.

GRAPHICS EDITOR STAGE 1

RANDOMIZE FHN
GO TO 10@@
LET cL=2P@®: LET cCrs=29

=] IF cx<QB THEN LET cl=cx: GO

23
220 IF cX >235 THEMN LET cr=255-c¢
230 RANDOHIZE FN nlcx-Cl,cy,CxX+

cr,cy)
240 LET clL=20: LET cr=20

258 IF cy<2@ THEN LET clL=cy: GO
TO 270

26@ IF cy»>15S THEN LET cr=175-c¢
L

270 RAMNDOMIZE FM nicx,cy-cl,cx,
cy +Cid

28% RETURM

LET me=7: LET mw=7: LET mus=

SCrokblL?

How stage one works

Only two machine-code routines are used in stage one.
The box-draw routine, FNh, draws aline round the edge
of the drawing area, to prevent the fill routine (added
later) from “wrapping around” the screen edge.

GRAPHICS EDITOR STAGE 1 CONTD.

= T md=7
7BiléEIF mx {7 THEN LET mw=0: LET
mu=mw: GO TQO 339

320 IF mx»>248 THEN LET me=2: LE
T md=me

33@ IF my<mw OR my<md THEN LET
mw=2: LET md=mw: GO TO_ 350

4@ IF 17S-my<mu OR 17S-myd <ime T
HEN LET mu=0Q LET me=mu

2S@ RANDOMIZE FMN nimX-mw MyYy-mw ,
mx+me ,md+me)

S6@ RANCOHIZE FN n(mx +md , my-md,

a7e

]
e
]

e OE
neee

HeEWE
o g

A ST eo0n

W

-

n

2]
reWroe
m mmo--

O0B6LROEG)
HEH
mom

o
H@
Mo

2 @0 T

> £ >8 THEN GO TD
SUB cur: LET
CxX ¢® THEM LET

SuUB cur: GO TO 1100
ke<¢:>10 THEN GO TO 125@
SUB cur: LET cy=cy-d
CYy<® THENM LET =a: LET

SUB cur GO TO
ke <311 THEN GO

PROPRPREELRERRRT RO
A NRDENNRDERFPRERETPRREE PREE
S MESUNPSENN-II-{NEWNRRENX

68 8080 G666

~ HE HOHO HD

3

o MOMQ Mo

25
1
2

L]
S

S5UB cur LE
CY>17S THEN
=0

a
GHD -G
Q0 omoemo

sSUB cur:
ke<>»77 THEN GO TO 13288
SUB mar: LET mx=Cx: LET

SUB mar: GO TO 1109
TO 1l1i@@

RFRrEpRpRM R
i

£ G G Moy
E 1 @OO=-{~a
29 0660 66

[nin}

disturbing whatever has already been drawn. Try
moving one of the cursors in this program to a corner of
the screen to see the XOR effect. The screen border
remains unchanged when the cursor is moved away.

Line 1000 is the beginning of the main routine. It
gives initial values to all the variables used in the
program. These, for example, store values for INK,

CURSORS DISPLAY

PAPER, FLASH and BRIGHT. After setting initial co-
ordinates for the two cursors (points cx,cy and mx,my),
the program moves to the subroutines. These are stored
early in the program to increase the running speed.

The cursor subroutine is at lines 200-280, and the
cursor is positioned at point cx,cy. The second cursor is
placed on the screen using the subroutine at lines 300-
370 (points mx,my). These cursor subroutines (called
cur, mar) are used to delete the cursors before any rou-
tine is called, and again to put the cursors back on the
screen afterwards.

GRAPHICS EDITOR PARAMETERS

The other routine included here is the XOR line
routine, FNn, used to draw the two cursors. Exclusive,

OR plotting is used because the cursors have to be able
to move around the screen and remain visible, without

A aturibute edit & line
I ink
P paper Q window paper
0 bright/flash
ENTER toquitatributeedit S save screen
box T triangle (press T
i again for second
C circle corner of triangle)
S start
F finish partial screen clear
D dot X text
E i ik ENTER 1o quit text
F fill
G d All these instructions
g require you to press CAPS
] T, SHIFT followed by the

letter shown, in upper case.

GRAPHICS EDITOR 2

Thesecond stage of the graphics editor adds routines for
points, lines and boxes, as well as adding the ink, paper
and partial screen clear routines.

Colour is set by the subroutines in lines 400-850.
These allow you to select colour, BRIGHT and FLLASH
values. Points are drawn using the point-plot routine, in
lines 1320 to 1350. Some of the details in these lines
reappear throughout the program. Line 1320, for
example, checks to see if key D has been pressed (ASCII
code number 68). If it has, the two cursor subroutines
are called, and the values of cx and cy are used as the co-
ordinates of the point to be plotted. Lines 1360 to 1490
work in a similar way for the line draw, fill and box rou-
tines. Line 1500 is a “dummy” line, where other
routines will be inserted.

The grid subroutine
Lines 1730 to 1790 set up a grid on the screen, by

GRAPHICS EDITOR STAGE 2

DEF
DEF
DEF

F

sa DE
62500
8@ DEF

12@ GO _SUB
42@ PRINT 8O
410 PRUSE ©: L

S
HKEY $:
o TO

Jew Tivw Iw-JTF T Ty

=M T oMeT o Me 20
FZHJnZuﬂuZH

N
=}
JQL
- INKE
GO
AL
490 RETURMN

scrollL7?

LET XCc=INT (cX/8): LET yc=2

i (imx »8): LET ym=2

® = xc: IF xc>xm THEN LET

u3@ LET 4Y=4cC: IF yc>ym THEN LET

5¢B LET h=RABS (Xc-xXxm)+1: LET wv=
ABS (yc-um) +1
550 RETURM
IF ke <>68 THEN GO TO lsaa
30 SUB cur: GO SUB ma
RAMNDOMIZE FN F(cx,cg)
GO TO S92
IF ke <»76 THEN GO TO 1400
: GO SUB mar

rﬂ:zg FM™g (mx ,my ,cx,cy)

=1=)
370 THEN GO TO 14402
curi GO
IZE FN m{Cx,

GRAPHICS EDITOR STAGE 2 CONTD.

*

ComDn-
momno

2

FrRap 2
M
[l B e
266N

&

=
147@ LET JY=cCcyd: IF cg»mg THEM LET

o=md

148@ RANDOMIZE FMN h(xX,d4,ABS (cx-
mxl ,ABS (CY4-my))

14S@ GO TO So@
1738

*»71 THEMN GO TO 180608
THEN GO TO 1780

ZE ILUSR SS5S5S00
2o
E USR S5531

FODDCHHD
mDoIMmMMo
2
i O-D wux-
CCmaQQow o
MR

GCo TO l1le@

81 THEN GO TO 219@
(=g

400

o gl B B B VRN
O EeAAVGANAE
~n3X 3HH«
v S

a
=
4
=]
=]
rd
=1
=
4
=]
=]

PEH
oom
mm

GO SUB cur: GO

TR N[EYRYEYRYETRTIIN

I
=
=

o

printing character squares in normal and BRIGHT
alternately. When key G is pressed, a grid drawn by a
machine-code routine appears. The routine is POKEd

into memory by the subroutine at lines 6000 (called in
line 120). The grid is used to show character borders on
the screen while you are drawing a display.

GRAPHICS EDITOR STAGE 2 CONTD.

mar
@ RANDOMIZE FM cix,d,h,v,c.,b,

GO TO 291@

IF ke<(:>87 THEN GO TO 2240
GO SUE @

G0 SUB cur: GO SUB mar
RANDOMIZE FN a (xX.d.h ,v)

GO TO 9l@

IF ke<>69 THEN GO TO 110
S0 SUB 500

GO SUB 4@@: GO SUB cur: GO

mar
?%?@ RAMNDOMIZE FN b(X,y . h,v.C,b,

2280 G0 TO 919
SQ20 ESSTORE 65@3@: FOR n=5SSS0@ T

POKE n.a

6830 CATA =35,0,83,1,192,2,17,55,
217,257,176

3l i i g

GRAPHICS EDITOR STAGE 2 CONTD.

69042 DATA 33,247 ,216,17,0,388,1,6
2,237,176
! !’ e

a
g DATA 33,55,217,17.,8.86,1,19
(237,176,201
FOR n=5S5543 TO S5S5574 STEP 2
: POKE n+l1.56

POKE n.S6: POKE n+1.,.120

NEXT n
RETURM

USING THE GRAPHICS EDITOR GRID

The graphics editor grid (CAPS SHIFT and G) is used to display
character borders by setting the BRIGHT attributes of alternate
characters. The grid does not delete anything currently on the
screen. The cursor shows the current pixel position, superimposed
on the grid. In the diagram, the cursor is on the leftmost pixel of a
character square.

GRAPHICS

EDITOR 3

The third stage of the graphics editor adds routines for
drawing circles and triangles. These routines give you
many new possibilities for your displays, as you can see
from those shown here.

Drawing circles

Line 1500 is the start of the circle routine. Lines 1510 to
1530 enable the user to enter start and finish parameters
between 0 to 360 degrees, rather than the machine
code’s 0-255 parameter values. Lines 1570 and 1580

contain some BASIC error-trapping to prevent a circle
being drawn too far off the screen and causing the
Spectrum to crash. These lines could be incorporated
into any BASIC programs which call the circle routines.

Adding triangles

Lines 1610 to 1720 are used to store corner co-ordinates
for a triangle before calling the triangle routine, FNi.
The parameters of the three corner points are held as
variables cx,cy, mx,my and tx,ty.

GRAPHICS EDITOR STAGE 3

DEF FN jix,49,r,s,f)=UsR 589
DEF FN i ({x,4,p.,q,r,s) =USR &

IF ke<>6? THEN GO TO 1610
INPUT o f
IF s5:@ DR F{i@ DR 5)360 GR F
or s<>INT S OR fF<>INT Ff THE
O TD 151
LET &= INT t255*(51369)1: LE
F=INT (25S5=%I(f-,36@)
iS4@ GO SLB cur
%E?B LET]K—RBS tcx~-mx) : LET 4=RB
Y —m
1?59 LET r=INT (SR (X12+412) +@.
15?8 IF’ r»>»255 THEN BEEFP 2, INP
U G0 SUB cur: GO TO 112@
1s5e IF F+mx >27S OR mMX-—r <-2@ OR
r+md >195 OR muy-r <—-20 THEMN LET r=
2 : o 1570
1590 RANDOMIZE FM jimx . my.,.r .S ,Ff)

SCcroLL?”

GRAPHICS EDITOR STAGE 3 CONTD.

Y:
B LET as INKEY % -
TO_ 163
1643 LET a-CDDE as
165@ GO SUB cur
@ LET Ccx=cxX+lx({a=9 AND c<cx <255
lx(a=8 AND cx>@)
LET cu=cy+1lx(a=11 AND cy<i?
*#(a=1@8 AND cy>@)
D SUB _cur
F a<»84 THEN GO TO 1630
U SUB cur: LET tx=mx: LET
SUB mar: LET mxX=p: LET

ceDHE

1
)
- 5
s
p ¢
o &
X
t
% RRNDOhIZE FN ilcx,cy,.mx,my,
1

=1
67
] -
68
&9
7@
y=
oy
T3
)
72

Zﬁ%&%@s;ff..iffﬂ

t

i

BILLIARD BALL DISPLAY

SPACE STATION DISPLAY

Lines 1660 and 1670 take advantage of Spectrum
BASIC’s facility for writing conditional statements in
an abbreviated form. Line 1660 could be rewritten as:
1660 IF a=9 AND cx255 THEN LET cx=cx+1
1665 IF a=8 AND cx0 THEN LET cx=cx-1

These lines are used to move the cursor in BASIC to the

third corner of the triangle, by calculating new values
for cx and cy as akey is pressed. You will notice from the
movement of this cursor how much slower BASIC
movement is than the usual cursor speed, which is
carried out by machine code. This speed advantage alone
would be sufficient justification for using machine-code
routines rather than BASIC.

GRAPHICS EDITOR 4

The designs on this page show one method of producing
a typical display. One general point is worth noting
before beginning any large-scale graphics editor
display. Each photograph of the cocktail display
represents a point where the screen was SAVEd before
going further to add more details. The reason for this is
simple: even when you have a little experience with the
editor, it is easy to ruin a display by adding an
unintended line, or by filling a shape that is not totally

ground. This effect can be obtained by changing the
initial graphics editor screen to black INK and white
PAPER colours. A simple change like this can be very
effective.

Building up a display

The cocktail display shown here is an example of how a
graphics editor display can be developed in stages. Stage
one of the display uses only lines, squares and triangles.

[COCKTAIL DISPLAY 1 ;

[BLACK PAINTBOX DISPLAY
[
|

PAINTBOX DISPLAY

COCKTAIL DISPLAY 2

enclosed. Rather than risk losing an entire display, it is
sensible to take a few seconds and SAVE what has been
drawn before continuing.

The paintbox displays

The paintbox displays above show the difference in effect
which can be obtained by drawing in white ink on a black
background, rather than using black ink on a white back-

Even at this early stage, however, the design has been
planned so that there will be no problem with character
borders when colour is added. The position of character
borders can of course be checked by using the grid
(CAPS SHIFT and G). The grid does not delete
anything which has been drawn, so itis a simple matter
to flick between the grid and the normal screen as
necessary at this stage to ensure that lines and points are

drawn in the correct position on either side of a char-
acter border.

The second stage uses circles and arcs to draw, for
example, the cherry in the glass. Because of the
relatively low resolution of the Spectrum screen display,
a small circle such as that which forms the cherry may
not be completely enclosed. Four single points were
plotted on this circle to prevent the INK from “leaking”
when the shape s filled. The umbrella in stage three was

COCKTAIL DISPLAY 3 [

also drawn to take advantage of character borders when
filled with colour. The colour change on the umbrella
lies along a horizontal and vertical character border,
although it appears from the display to be diagonal.
The picture was completed by filling areas and then
adding colours. When drawing a complex display, it is
always best to keep the filling and colouring operations
until last. Remember also that colours should not be
added while you are using the grid.

| COCKTAIL DISPLAY 4

GRAPHICS EDITOR 5

Text is added by lines 1800-1890 of the program. Line
1810 takes the current pixel position (variables x,y) and
converts these to character co-ordinates. Thisis because
text is printed in character positions rather than using
pixel co-ordinates, Line 1820 deletes the cursors, and
line 1830 prints a flashing text prompt at the character

BOXES DISPLAY

position. Text is then entered in lines 1840-1870, which
include BASIC controls for deleting mistakes in keying,
and ending the text string when ENTER is pressed.

Attribute editing
Lines 1900-2030 give you the option of setting INK,

PENCILS DISPLAY |

EEes. e s) [

PAPER, BRIGHT and FLASH attributes of any
character square on the screen. As with text, the current
pixel position is converted to character co-ordinates
(held as variables lin, col) for this routine. Lines 1970
and 1980 simply move the cursor (a flashing character
square, printed in line 1960) onto the next line or
column when the end of either is reached.

Saving and loading screens

Finally, lines 2040-2130 of the program enable you to
SAVE and LOAD your displays, using the Spectrum
SCREENS$ command. An advantage of this method is
that you should be able to load onto the graphics editor
the title display of many commercial games, since these
programs often begin with a SCREENS display. This
will enable you to make your own versions of these
screens.

GRAPHICS EDITOR STAGE §

1896 IF ke<:88 THEN GO TO 190@

1810 LET xX=INT (cx-/8): LET y=21-

INT {Cyr-8)

1820 GO _SUB cur: GO SUB ma

183@ PRINTng y,x, OVER 1; FLRSH

e

18¢B PAUSE ©®: LET as$=INKEYS$: IF

""" DR agE<CHRS$ 12 THEN GO TO 1

18%e IF as=CHR$ 13 THENM GO TO .18
186@ IF 3$=CHR$_12 THEN PRINT CH
RS B+° CHRS S+CHRS 8; as

ScrollL?”

o i
i

,ulmi‘,;ll ﬂ...m{}s::m:, p’ms:!

Ii‘j hht lllim!ﬁm _5.1.1 fifi E{'E:ﬂ;Lii“

L [!==={ss;,ﬁ‘ﬂ

GRAPHICS EDITOR STAGE 5 CONTD.

137EHPRINT as; OVER 1; FLASH 21;"

: G0 TO 184

gUER 1,")"‘ GO TO 912
13%BBIF ke ¢85 OR 9=1 THEN GO TO
1910 GO _SUB cur: GO SUB mar
192@ LET COL—INT EX 780 : LEF Lip
=21-INT <9 /82
1952 PHINT AT Lin,col; INK ink;
PAPER pap; OQUER 1; FLAsSH 1," &
194@ LET as=INKEY%: IF ag=""

TO 1348

195@ ELET asc‘CGDE 2%

PAPER P3P,

SUB See:
SUBE SO0
GO SUB 4358
GO TO 20%0
“iP%
GO SUB mar
SHUE P SSCREENS
= ¥ ke<>74 THEN GO TO 2140
INPUT *“LORD ",pPS$
GO SUB cur: GO SUB mar

LOAD pSSCREENS
GO TO 910

PR
i

R Aot A T (o - e
I. HS‘E : L‘; I : . i :

When using the line-draw routine (FNg), you must
specify both the start and the end points for each line
drawn. Where only a few lines are involved, this is not
difficult, but if you are drawing a complicated shape
with many lines joined together, you will find yourself
continually specifying each point twice: once as the end
of aline, and then again as the start of the next line. This
can be avoided by using the multiple line-draw routine
(FNo). This routine takes a series of co-ordinates which
have been stored in memory, and joins each point in
turn to the one before.

Having drawn your complex series of lines so quickly,
you now need a way of wiping them off without
damaging the rest of the display. For this reason an
Exclusive/OR version of the routine is also included
" (FNp). This routine is the same as the multiple line-
draw routine, but plots XOR lines. The XOR routine
will enable you to repeatedly draw and undraw a whole
series of lines on the screen in a few seconds.

Putting the points in memory

Before using the routines, you must specify the co-
ordinates of the points to be linked, which are stored in a
buffer. In operation, the routine takes a point from

memory and joins it to the next point, and continues
until it reaches a y co-ordinate of 255. Points can be
POKEd into memory by using a loading routine such as
the one below, which accepts pairs of co-ordinates:

10 LET n= 57200

20 INPUT “x=7; x : INPUT “y="; y
30 POKE n,y : POKE n + 1,x
40LETn=n+2

50 GOTO 20

400 bytes from 57200 are reserved in memory for this
purpose, so you can draw 199 lines with the routines.

These routines are especially useful for plotting the
same shape on the screen repeatedly, since points once
stored in memory can be called by the routine almost
instantaneously.

cllipse. The shape is then filled.
Lines 140-330 POKE into
memory the values of points
around the edges of the screen.
Lines 350 to 400 POKE into
memory points on an ellipse.
Lines 410 and 420 POKE
values of 255 to complete the
table of points.

MULTILINE PROGRAM

808!_3 seconds

How the program works An
explosion effect is obtained by
drawing a continuous line
joining points on the edge of
the screen with points on an

MULTILINE PROGRAM

Il e e L
08 G080 066

175 STEP s

)|
L]

Ore NER T

B g

LET L=L+4

NEXT i

FOR i=@ TO 87 STEP =

POKE Z+2+L,i

POKE z+3+L,255: LET L=L+4
NEXT i

LET ad=8x%PI-L

FOR i=@ TO L+

LET xX=x1+INT

LET Y=Jdl+INT

=] PEKE

NEONEe00
6600600006

Z+i,yd
=a+ad
1
Z+L+2
Z+L+3
MIZE

iee
HMIZE
i

The multiline program draws a long sequence of lines,
which are then filled by the fill routine. Both routines
must be in memory for the program to RUN.

FNo
MULTIPLE LINE-DRAW ROUTINE

Start address 57100 Length 40 bytes

Other routines called Line-draw routine (FNg).

What it does Draws a series of lines on the screen, from a
specified list of co-ordinates.

Using the routine Co-ordinates of lines to be glotted are
stored in a table at memory location 57200. Up to 200 lines can
be stored in this area of memory. Points in the table must be
specified by the y co-ordinate g0<=y<== 175) followed by the
X coaordinate (0<=x<{=255), rather than the other way
round.

To stop the routine POKE specify a y co-ordinate of 255. The
routine will continues plotting points until it reaches this y co-
ordinate; if you omit the 255, the routine will continue to plot
points using whatever numbers are in memory after the co-
ordinate table.

| ROUTINE LISTING |

810@ LET b=S710@: LET L=3S: LET

z=0: RESTORE 8110

8101 FOR i=© TO L-1: READ a

812 POKE (b+i) ,a: LET z=z+a

85183 NEXT i

?1?? LET Z=INT (((Z/L)=-INT (Z,-L)
*

8185 READ a: IF a<«»z THEN PRINT

v STOP

811@ DATA 33.,112.,223,94,35

8111 DATA 86,237,83,26,237
8112 ©ATA 35,126,254 ,255, 32
8113 bATAR 1,201 ,95,35%5,86

8114 DATA 43,229,42,26,237

811S LATA 285,511,237 ,225,24

8116 DATA 228,0,0,0,0

8117 DATA 17, 8,.0.@.,0

FNp
MULTIPLE XOR-LINE ROUTINE

DISPLAY BEFORE FILLING

Start address 57000 Length 20 bytes

Other routines called Multiple line-draw routine (FNo).
What it does Draws a series of Exclusive/OR lines on the
screen, using points specified in a table.

Using the routine This routine works in the same way as the
multiple line-draw routine, but can be called twice with the same
table of co-ordinates to erase the lines drawn. Remember as
before to POKE points in the order y,x. Co-ordinates are stored
in memory from location 57200, and the final point must be
followed by a y co-ordinate of 255.

| ROUTINE LISTING

8
r
m
-
L
I
0
~

= LET L=15: LET

a

60
L-1: READ a
a LET zZz=Z+a

h .
LET Z=INT (((Z /L) =INT (Z-1)

0~ QODON
0~ P UNE
z
:

READ a: IF a<>Z THEN PRINT
STOP

DRATA 62,168,50,223

DATA 205,12,223,62
se,223,237 .28

DATA 13,020,090, ,0

.23
, 17
1,@

BRER JERPRAR| R
aOAOO JN~0Nanen

Qoo
(SN
v)
D
o
bl

MAGNIFICATION AND REDUCTION 1

One of the most dramatic uses for machine code is to
magnify a portion of the Spectrum screen. The principle
behind magnification is straightforward. To double the
size of a single byte, for example 00110010 (a value of
50 in decimal), simply rotate it left one bit, thus making
01100100 (which is equivalent to 100 in decimal).
Using this principle of doubling, you can magnify whole
sections of a screen. The magnification routine, FNgq,
given here, is based on this idea. The routine simply
requires you to specify the screen area to be enlarged.

The magnification routine is accompanied by a
reduction routine, FNr, which is used to reduce an
already-magnified area. The reduction routine actually
forms part of the magnification routine, with the start
address of the second routine being a call which “hooks”
into the main routine, The reduction routine restores
the screen as it was before the magnification, and works
by the magnification routine saving the entire screen
each time it is called before magnifying any area; the
reduction routine simply displays this area from
memory on the screen. Each time the magnification

routine is called, therefore, any former stage of magnifi-
cation is deleted from memory, so the reduction routine
can only be used to reduce a magnified area once.

The magnification program

This program uses the magnification routine to
repeatedly enlarge a part of the screen. By adding the
following lines:

30 DEF FNr()=USR 56957
280 RANDOMIZE FNr()

you can incorporate the reduction routine into the
program. This will have the effect of reducing the
enlarged area to its last state.

I

Remember that the magnification program calls the
multiline routine, FNo, to draw the background
pattern; this routine must also be present in memory for
the program to RUN correctly.

MAGNIFICATION PROGRAM

1@ DEF FN o () =USR S7108@

290 DEF FN qQ(x,d9.h,v) =USR S&702
1@ BORDER 1: PFPRFER 1: INK 6&6; C
LS

1108 LET x1=2: LET x2=174

120 LET yil=174: LET yZ2=2

13® FOR i=57200 TO S7S59E STEP 3
149 FOKE i,491l: POHEKE i+4+1,x1

158 POKE i+2,492: POKE i+3,%1
168 POKE i+4,42: POKE i45,x2
17@ POKE i+6,91: POKE i+7,x2
180 LET 9l=4l-2: LET Xl1l=x1l+2
190 LET wa2=yZ+2 LET x2=x2-2
200 NEXT i "

21@ POKE 57545 ,25S

220 RANDOMIZE FMN o ()

230 INPUT as FRIMNT AT 2.2;4a%
249 FOR i=1 TO ©

258 RANDOMIZE FMN q(2,2,15.,10)
2E@ PAUS 1o

=230

=
ﬁir___

MAGNIFICATION
PROGRAM

DU" 85 seconds

(to magnify area)

How the program works
Lines 110-220 use the
multiline routine to draw a
series of lines.

Lines 130-200 POKE co-
ordinates of the lines to be
drawn.

Line 230 waits for text to be
entered.

Lines 240-270 magnify the
area with text five times.

5

FNq
MAGNIFICATION ROUTINE

Start address 56700 Length 290 bytes
What it does Magnifies a specified screen area to double its
previous size.

Using the routine The routine uses character co-ordinates,
as in the window ink and paper routines (FNb and FNc), rather
than pixel co-ordinates. Remember that these start from the
top left-hand corner of the screen. The routine can be used to
magnify the same area repeatedly, increasing the enlarge-
ment each time.
Since an area is doubled in size by the routine it is easy when
magnifying to make part of the area disappear off the screen.
To prevent crashes occurring, use the tests in the parameter
table to make sure that the area when enlarged will not be off
the screen. These tests can be incorporated into your
programs.

ROUTINE PARAMETERS

DEF FN g(x,y,h,v)

specify top left-hand corner of area to be magnified
(x<<32,y<22)

specify horizontal and vertical sizes of area
(x+(2xh)<32y+(2xv)<22)

| LISTING FOR BOTH ROUTINES

Z=0: RESTORE 821@
82@1 FOR i=0 TO L-1: REARAD a
8202 POKE (b+i) ,a: LET zZ=zZ+a
82©@3 MNEXT i
8204 LET Z=INT (((zZ .- L) -INT (zZ-L)

]
S RERD a IF a<»Z THEN PRINT
> STOPR

£

o]

n

=

m

[slvieiv)

IDDD

45454

IDID

NNNYS

nnw- - N

I

v fas

mow- W
RPN

QA NNOe

0o WL
e

oo
R
[
N
(o]e)
oD
<5
i)

R

ANQ

N
-

N

ne
B Y (T VENTS]

NOUO-PFNONE DRPQORENL DR P DWOO-
an- rNee-

QA WU OON QORQLN- ~ =
18

8219 DRATA 137.,2

=

SONE0O- PO - ARl DD NeSST- ~ NO-
0

[Ty]
nN o
RN N
npwn
3925
==«
IDIDID
= = O
Wenw-
W~ W WM
R s s 2)
N =
[A
m~

n
n
n

Ultngs-mah HEN ~ NROLPRW
v A e

o]
]
0
~
Q
D
ar
D
s
IVENT

o
n
n
10
o]
b
_|
b
0
p
QN O O NAR L s s NAGIQe

c @RREs . QRO -~ BRGe 0

S A

NESPpE P POGE N

~

mommom
M0 RO O D Y
[BIRTATATATA]
NEON=E
wlvieiviele}
IDIDDD
44444
IIDDID

FRADDN

AUO- DD

[TATEY (Ve V]

s v 0w pas
RN « GO0
WS R N
B B e
BOURN W P
W oRRr 0 R

AV 71}

o]
n
W
~
0
D
-
D
[
n
LY}
[
NO- NEOFAN N~ PPN ~ >

u
n
W
o
Q
D
4
hi]
]
n
n
fn

22,237

DYy« OW- K NREOE OO WA ROODD. « O 2

W~ s~ NEPOE -~ - Wi -~ -

< (0~ DA~ s~
R St e

oo o
N N
pRp QO
nre o
Q00 ©
DD D
449 4
DD D
-~
WrpR 0
e
HW- P
RN
N80
PR
U~
g
n-
-
Lad ULl o)
TYnNE O
@8 W
- N -~
8 OARNON K
ORUOIN 0
1] anon

241

WAL

S AW QPOPUR - O~ 0~
.-

"

8250 DRATA 203,22.,1

o}
n
0
W
Q
I
-
D
n
1
w0
o
n
v}
a

s s s QNS NP OO
]
(]

SOUMNEUUNWWAE N PO K
WM B -~
SR NOUSRRW O
PO QPO A

~ MNP WW
s BOUNPWUN P DR O DO G- WD

PRy
(=
v

NN @
ane -
n

=
1]
IS

- 080 GO NN @R~ P -~
B B

CE0 - BREE RRERE

8- - PP~ s~

8200 LET b=5S6700: LET L=28%: LET

FNr
REDUCTION ROUTINE

Start address 56957 Length 290 bytes

What it does Reduces a previously enlarged routine to its

original size.

Using the routine Each time the magnification routine is
called, it saves in memory the screen as it was before magnifi-
cation. The reduction routine simply displays this saved screen.
Thus the reduction routine cannot repeatedly reduce an area on

the screen; it will only show whatever was on the screenb
the last magnification.

efore

MAGNIFICATION AND REDUCTION 2

The program on this page gives an indication of the
capabilities of the magnification routine. From an
initial display, the magnification routine is called three
times to enlarge different areas of the screen. As a
further sophistication, these enlarged areas are then
coloured using the window paper routine, and a line is
drawn around the edge of each area.

The various shapes are drawn by different sub-
routines at lines 300, 400, 500 and 600, and each shape
is drawn higher up a column by increasing the y co-
ordinate before calling the subroutine. After a single
column has been completed with five shapes, the display
isrepeated by the loop beginning atline 110 which setsa
new value for the x co-ordinate.

After the subroutines have been completed, line 700
uses the magnification routine for the first time. Each
time an area is magnified, the box routine is then called
to draw a black line around the edge of the enlarged

SWEETS PROGRAM

ROE C.TU N

R 1A TET SRR ey ey

=S NS0 Q

0 EGEA0GOQE

~ ZOrarararea

w) momomomnﬂo
P GIC PaC ONC (¢
GRERARLRARE:
C+0+0+8+6 O

,._

u

2530 PARAUSE 5@

ol o

. 255!}
RETURMN
RBNDOMIZE
RANDOMIZE

RANDOMIZE
RETURN

RANDOMIZE
RANDOMIZE

RANDOMIZE
RAMNDCMIZE

RANDOMIZE
RETUURHM

XX XX X XX
+ wn

BR ~ pp

W o~

[

2 73 T 3 TT
- e R P
£ 4L 4

P BFRE BpRp R pp

+ v v
PORR 0D B 3R
M+ <M + ~ 0

P LR WL e oo

.
~

area (in this case, line 710). After a pause, the new area
is coloured, and another area is enlarged.

Relocating areas in memory

The magnification routine works by storing in memory
whateverisonthescreenin the specified area. It uses 8K
of memory, stored from location 30208. If your BASIC
program is particularly long, you may find that this area
is required by your program. By POKEing the following
three numbers:

POKE 56793,176
POKE 56950,176
POKE 56959,176

you can place the code about 18K higher in memory.

SERERRAREREER IR Db ﬂ:

SWEETS PROGRAM CONTD. SWEETS PROGRAM CONTD.

(Xx1+25,91+7,6

L

@0 RANDOMIZIE
,@, 255}
1@ RANDOMIZE

ZE

(X1+25S,91+7,7

(X1+25,91+7.,5S
(X1+S,91+1,x1
EXL+S.,491+13,x

[T | [S

1)
ANDOMIZIE
1+13)
ANDOMIZE

| I
MM+ OSOO0O

(X147 ,491+7,7,
(X1+7,491+7)

NIE I

(16,14 ,10,6,3

J
m
q
h

(1,.4,4,5)
RAMNDOMIZ (8,176-112 .64

PAUSE 1@@
RANDOMIZE (L,4,8,1@,4,0

PAUSE 1l@@
RANDOMIZE (11,21 ,4,3)

ScCrolLL?”?

FTFHTE T AR EEHHHH IR T _ i SWEETS PROGRAM

g B : ’3 seconds

How the program works
A series of objects is placed on
the screen, and the
magnification routine used to
enlarge various parts of the
display.

Lines 130-220 call
subroutines to draw the
pattern of sweets.

Lines 300-670 form the
subroutines which draw the
sweets.

Lines 700-710 magnify the
top left-hand area (coloured
green in line 730).

Lines 750-770 magnify the
top right-hand area (to four
times its normal size).

Line 790 colours this area
cyan.

Lines 810-820 magnify the
third area.

Line 840 colours this arca
magenta.

“-=::E

i1

Sl toeety

e
et

e

e

il

it
11

it
—
et ttay

=4 § t i

SAVING AND LOADING DISPLAYS

The BASIC commands SAVE SCREENS and LOAD
SCREENS, used to save and load displays, have the dis-
advantage that they require nearly 8K of memory to
save any dlsplay, no matter how simple. The screen
compaction routine, FNs, allows you to store screens in
a fraction of this space: the simpler the display, the less
memory is required by the routine to store it. Even
highly complex screen displays are stored in
considerably less than 8K. As a guide, the three displays
on this page require a total of just under 12K.
Previously saved displays can be displayed again

COMPACTION (30000) where the first display
PROGRAM is to be stored.
Line 120 PRINTS this
nr.
g address.
i 0 03 Seonud Line 140 compacts the
How the program works display.

Line 150 PEEKSs start valucs
for the next display.
Lines 160-200 repeat the

Three screens are loaded using
SCREENS, compacted, and
then displayed again in quick
succession.

Line 110 sets values for high
and low bytes of the address

Lines 300-350 display the
screens in turn.

operation for the other screens.

using the decompaction routine, FNt. For both
routines, the memory location of a display is specified by
two parameters, containing the high and low bytes
respectively of the start address.

COMPACTION 'DECOMPACTION PROGRAM

ey ~o-He T
~WI ~NI oGP
WEH I W
ZO0x ZOT wmm
Duw Dpe TDer --
mm :

Q+UN&+UN&FHmﬁM
et e s WO WOW W ORMT
Om ~ ~ ~a W -~ M ~ WM

MCHX ORI - 0 ~

Z0x

RRNDOMIZE
PRIIUSE 5@
PﬁNDDNIZE
PRHIUSE

T T T Toam'd om[T 2

=]
RANMCOM IZE
FRAUSE S0:

(e T [I

FNs
SCREEN COMPACTION ROUTINE

FNt

SCREEN DECOMPACTION ROUTINE

Start address 56600 Length 65 bytes

What it does Saves the current screenin a compacted formin
memory.

Using the routine Parameters h and | are calculated by the
formula

10 LET h=INT (store/256) : LET |=store—256:h

where “store” is the address in memory at which the screen is
to be stored.
After storing a screen, you can find the start address for the
next screen to be stored by PEEKing locations 23297 and
23296 (for h and |, the high and low bytes respectively of the

address). This should be done immediately after compacting a
display.

Start address 56500 Length 45 bytes

What it does Decompacts a screen previously stored at a

specified address.

Using the routine This routine puts back onto the screen a
routine previously stored by the compaction routine. The
decompaction routine loads screens much more quickly than

the LOAD SCREEN$ command.

To obtain the start addresses (h and) of each screen com-
pacted by the compaction routine (FNs), PEEK locations 23297

and 23296 (for h and |) after compacting a screen.

|

ROUTINE PARAMETERS

DEF FN t(h,l)

| ROUTINE PARAMETERS

[DEF FN s(h,)

hii specify the high and low bytes of the data for the
! screen respectively (h,1<<255)

| ROUTINE LISTING [

8300 LET b=S860@8: LET L=6@: LET
Z=: RESTORE 5310

8301 FOR i=0@ TO L-1 REAC a
&§3082 POKE (b+i) ,a: LET z=z+3a
8303 NEXT i

§304 LET zZ=INT (((Z- L) =INT (Z,L)
) L)

8385 RERD a: IF a<:z THEMN PRINT
et STOP

8310 bATAH 42.11,92,1,4

8311 DATA @,9,86,14,8

8312 DATAH 9,94 ,237,83,82

8313 DPATAHA 221.,.33,08,64,6

8314 DATAHR 1,126,44,32,8

8315 DATA 36,245, 124,254 ,91
8316 DATAHA 40,16 ,241,78, 18%S

8317 DRATA 32,4 ,4,32,238

8318 DRATA S5,18,12,120, 18

8319 DATA 19,24 ,227,241,18

8320 DATA 19,120 ,18,237.,53

8321 DATRA 22,221 ,2@l ,0 .,

8322 DRATA S6,9.,2.@.,0

hi specify the high and low bytes of the data for the
7 screen respectively (h,1<<255)

L

ROUTINE LISTING

= M0aiaNg
R IeEAATATRTARTER]
SU=Mannen
NP LNE - G

000 C0 00 0 00 0 QO
WHHLLWWW
moaommam
NONEONEE

L=35:

REARD a
LET z=zZ+a

(Z ALY =INT (Z.-L)
IF a<»z THEMN PRINT

B: LET LET
=

~ M

0

I

_|

I
[NV (ENT (TR B S
-
M fae =
- WREE R D
OO NWM-

00 N s T
=N
G~ B B

- GFROO R

e]

B~ ~

COMPACTION PROGRAM: SAMPLE DISPLAY 2

COMPACTION PROGRAM: SAMPLE DISPLAY 3

The displays on this page were produced using the
graphics editor, stored by the compaction program and
then displayed in succession. The start addresses in
memory (variables h,I) of any screens you draw will

obviously differ from those given here.

The table shown below gives a summary of all the programs. If you have not used a routine before, you are
machine-code routines used in this book. This table does recommended to read the introduction to the routine on
not explain every detail of using each routine; it is the appropriate page of the book before using it in your
intended only as an aid when using the routines in your program.
page title parameters parameters co-ordinates
11 partial screen clear FNa(x,y,h,v) X,y start co-ordinates character
h,v horiz. + vert. increment character
11 window ink FNb(x,y,h,v,c,b,f) X,y start co-ordinates character
h,v horiz. + vert. increment character
c colour —
b,f BRIGHT or FLASH —
13 window paper FNc(x,y,h,v,c,b,f) X,y start co-ordinates character
h,v horiz. + vert. increment character
c colour o
b,f BRIGHT or FLASH —
15 enlarged horizontal text FNd(x,y) X,y startco-ordinates character :
15 enlarged vertical text FNe(x,y) X,y start co-ordinates character
17 point-plot FNIf(x,y) X,y start co-ordinates pixel
21 line-draw FNg(x,y,p,q) X,y start CO-Ordinate§ pixel
p,q end point co-ordinates pixel
25 box-draw FNh(x,y,h,v) X,y startco-ordinates pixel
h,v horiz. + vert. increment pixel
27 triangle FNIi(x,y,p,q,1,s) X,y start co-ordinates pixel ‘
P,q co-ordinates of second point pixel
r,8 co-ordinates of third point pixel ‘
29 squares table —|
29 master curve }
31 arc FNj(x,y,1,s,f) X,y startco-ordinates pixel
r length of radius pixel
s, start and finish point of arc i
33 sector FNK(x,y,r1,s,f) X,¥ start co-ordinates pixel
T length of radius pixel
s,f start and finish point of arc En
33 segment FNI(x,y,r,s,f) X,y startco-ordinates pixel
r length of radius pixel
s,f start and finish point of arc o
35 fill FNm(x,y) X,y start co-ordinates character
39 XOR-line FNn(x,y,p,q) X,y startco-ordinates pixel ..
p,q co-ordinates of second point pixel
53 multiple line-draw FNo()
53 multiple XOR-line draw FNp(
55 magnification FNq(x,y,h,v) X,y start co-ordinates character
h,v horiz. + vert. increment character
55 reduction FNr()
59 compaction FNs(h,]) h,1 high and low bytes —
59 decompaction FNi(h,l) h,l high and low bytes — J

B

e el ¢ e R

Before using a routine you must first define it in your
program using DEF FN followed by the correct number
of parameters. Parameters passed to machine-code
routines must always be whole numbers; if a parameter
value is calculated by your program, then put an INT
statement in front of it to ensure a whole-number value

is passed to the routine.

: ranges bytes address check
0-32and 0-24 100 63000 82
0-32and 0-24
0-32and 0-24 135 62800 53
0-32and 0-24
: 0-7
0=off, 1=o0n
0-32and 0-24 150 62600 19
0-32and 0-24
t 0-7
1 0=off, 1=o0n
0-32and 0-24 220 62200 0
0-32and 0-24 215 61900 125
0-255and 0-176 65 61500 24
, 0-255and 0-176 215 60700 192
i 0-255and 0-176
{ 0-255and 0-176 110 60400 86
| 0-255and 0-176
* 0-255and 0-176 80 60300 68
: 0-256 and 1-176
0-256and 1-176
1 60 59600 3
4 525 59000 234
4 0-255and 0-176 45 58900 17
0-255
0-255
0-255and 0-176 45 58800 35
0-255
0-255
0-255and 0-176 30 58700 18
0-255
0-255
0-32and 0-24 195 57700 57
0-255and 0-176 20 57600 13
0-256 and 1-176
40 57100 17
20 57000 13
0-32and 0-24 290 56700 38
0-32and 0-24
56957
0-255 65 56600 56
0-255 40 56500 28

This chart shows how the Spectrum memory is organised when all
the routines are present in memory. RAMTOP should be set to

MEMORY MAP

55500 using a CLEAR command.
Code Title
FNa partial screen clear
FNb window ink
FNc window paper
100-byte buffer
FNd enlarged horizontal text
FNe enlarged vertical text
300-byte buffer
FNf point plot
FNg line draw
FNh box draw
FNi triangle draw
600-byte buffer
squares table
master curve
FNj arc
FNk sector
FNI section
FNm fill
FNn exclusive/OR-line draw
400-byte buffer
FNo multiple line draw
FNp multiple XOR-line draw
FNq magnification
FNr reduction
FNs compaction
FNt decompaction

Address
63000
62800
62600
62500
62200
61900
61600
61500
60700
60400
60300
59700
59600
59000
58900
58800
58700
57700
57600
57200
57100
57000
56700
56957
56600

56500

ERROR TRAPPING

Error trapping in BASIC is carried out when an error
message is displayed to show a mistake has occurred.
This message is produced by a routine in the Spectrum
ROM which prints on the screen the nature of the error.
When using machine code, however, it is often
difficult to place restrictions on the way the routines are
used. In most cases a determined user will be able to
make the routine crash simply by passing it information
which it does not understand. This could be checked
within the machine-code routine itself to ensure that
whatever is inputted is within the possible ranges you
can type in, but to do this for all the routines in this book
would require each routine to be perhaps doubled in
length to incorporate the error checking required.

Preventing likely errors

In some cases it is quite easy, as well as helpful for the
user, to add at least some error checking. A check
routine has been added to the point-plot routine, for
example, which means that although you may get
rather unexpected results when you plot off-screen
points, the routine is unlikely to crash. Try plotting a
point which is off the screen and you will see the effects
— a point will appear, but since the point specified is off
the screen the routine will try to make sense of the data
and plot a point at a position on the screen.

Error-trapping with the line-draw
routine

Another part of the machine code which contains
some error checking is the line-draw routine, as you can
see from the error demonstration program shown here.
Specifying lines off the top or bottom of the screen will
result in “Integer out of range” being displayed, as
happens when the program below is RUN with the co-

ERROR DEMONSTRATION PROGRAM

@8 DEF FN g9 (x
BORDER 1:

FOR Jj=@ T
RANDOMIZE
24+

gl
130 NEXT J

PLOTTING OFF THE SCREEN VERTICALLY

Ml

E Integer out of range, 120:1

ordinates shown. Errors in horizontal co-ordinates are
more difficult to trap, since these co-ordinates lie
between 0 and 255, the range of numbers that can be
contained in one byte. If you use a number larger than
255 itis likely to be treated as if it were 255 less than its
actual value, with the result that the line wraps round to
the other side of the screen. This effect can be seen in the
screen below, the result of specifying parameter values
which are off the screen horizontally.

PLOTTING OFF THE SCREEN HORIZONTALLY

A similar effect can be seen with the curve routines,
which cause odd effects when they go off the sides of the
screen, but which will work within limits off the top and
bottom of the screen.

The error trapping in these routines covers only the
most likely errors you may make when using the
machine code. As far as possible, you should keep to the
limits and parameters specified for each routine.

GRAPHICS GRIDS

This grid shows screen divisions for both pixel and
character co-ordinates. Points on the screen are defined
by co-ordinates x (horizontal) and y (vertical).
Character co-ordinates are measured from the top left-

hand corner of the screen across and down. Pixel co-
ordinates are measured from the bottom left-hand
corner across and upwards. Pixel co-ordinates do not
cover the bottom two lines of the screen.

wvi 0 O N O w W 0 D -+
C 8B 80 TR I8/ AS v wo N Te w o 8w)
L T T o T e T . S e D e e S e L. - . - . - =T O . T > | L wy
W
= 2
- -
- =
- -
S Py
-
g (o]
3
= ~
=
= ~
< 2
& =
- =
-5 <
o~
o =
b2 -
8 P
h e
= =
o]
= =
b =
N i =
= y
ff ~
% ' / o
a— | - z
@ = 7 b
8 - e 2
y o w
5 =)< 2 3
g 2 3 %
5] wy = el — v ﬁ
= — > =
Q - B Py ﬂ
— A\ fj
~
r i
fas) b=
-
o S
—
e
et o
—
0
o @
—
=
o @
~
[2] . =~
- <
~ W\)’ -
— o
wy
¥ \
N
Y oo
w 1 | -+
=)
N -
b B o
- W0 U SR S &
" / \ B »
-
~ / \1\ o
Y)
— \ | -
=
>
=
S = H M n e ® ADS oM N gD B R D o

INDEX

Main entries are given in

bold type

AND 38

Arc pattern program 30
Arc routine 30-1
Attribute editing 50-1

Background colour 12
BASIC 6-7,9
Billiard ball display 47
Box-draw routine 25
Box fill program 35
Boxes 24-5
BRIGHT 10, 12

Characters
co-ordinates 63
enlarging 14-15
Circles
graphics editor 46
master curves
routine 28-9
ways of drawing 28
Cityscape program
CLEAR 8
Cocktail displays
Colour 10-13
background 12
changing 10
irregular shapes 34
partial screen clear
routine 10-11
window ink
routine 10-11
Compaction
program 58-9
Cones program 31
Cosine curves
program 16
Cube program 20
Cursor subroutines 43

48-9

DRAW 20

Enlarged horizontal text
routine 14-15

Enlarged vertical text
routine 14-15

Erasing 38-9

Error trapping 62

Exponent curves

program 17
Fill routine 34-5
FLASH 10, 12

Functions 9

Graphics editor 7,
42-51

attribute editing 50-1
cocktail displays 48-9
cursor subroutines 43
drawing circles 46
grid subroutine 44-5
loading 51

paintbox displays 48-9
parameters 43
program 42

saving 51
triangles
Grids 63
character
co-ordinates 63
pixel co-ordinates 63
graphics editor
subroutine 44-5

46-7

INK 10
Interference circles
program 39

Kite program 41

Line-draw routine
20-3, 52
error trapping 62
Line graphics 20-3
Line interference
program 23
Line pattern
program 22
Loading
displays 51, 58-9
machine code 8,9

Machine code 6-9
boxes &
disadvantages 6
error trapping 62

loading 8,9
saving 8-9
using 8-9

Machine code
routines 6-9

checklist 60-1
Magnification program
54-5
Magnification
routine 54-5
Master curve routines
29
Memory
clearing 8
map 61
Mondrian painting
program 12-13
Multiline program
Multiple line-draw
routine 52-3
Multiple XOR-line
routine 52-3

NOT 38

OR 38

OVER 38
overprinting 38-9
Paintbox displays 48-9
PAPER 12

Partial screen clear
routine 11
Perspective boxes
program 25
Pictures

with lines 20-3
with points 16-19
Pixel co-ordinates 63
Planet program 17
PLOT 16
Point-plot program
flowchart 7
Points

pictures with 16-18
storing 52
Pyramid program 22

Radiating box

program 25
RANDOMIZE 9, 16
Reduction routine 54-5
Repeated circles
program 40-1
Repeated triangles
program 26
RESTORE 9, 12

Saving
displays 51, 58-9
routines 8-9

Screen compaction
routine 58-9
Screen decompaction
routine 58-9
SCREENS 51, 58-9
Sector program 32
Sector routines 32-3
Segment program 33
Segment routine 32-3
Shapes, filling 34-7
Space station display 47
Spiral program 37
Spotlight program 27
Squares, drawing circles
using 28

Squares and circles
program 36-7
Sunset program 20-1
Sweets program 57-8

Text, enlarging 14-15
Triangle curves program
27
Triangle draw routine
26-7
Triangles, graphics
editor 46-7

Window ink routine 11
Window paper
routine 13

XOR ellipse program 38
XOR-line routine 38-9

Acknowledgments

A number of people
helped and encouraged
me with this book.
Thanks to Alan and
Michael at Dorling
Kindersley, to Jacqui
Lyons for her
representation and to
Andy Werbinski for
reluctant assistance. I am
particularly grateful, as
always, to my parents,
and to Martine.

Piers Letcher
Spring 1985

I

The bestselling teach-yourself programming course now takes you
beyond BASIC to the world of advanced machine-code graphics.

Using a combination of simple BASIC programming and a
collection oftailor-made, ready-to-run machine-code routines, this
book shows you how to produce precision, high-resolution graphics
in afraction of the time they would take in BASIC alone. A keyboard-

driven graphics editor and a wide variety of demonstration
programs will help you open up the full potential of the ZX Spectrum

—withoutthe need tor any knowledge of machine-code
programming.

Together, Books Three and Four in this series form a complete,
self-contained graphics system for Spectrum-owners.

All the programs in this book run on both 48K ZX
Spectrum and ZX Spectrum+ machines.

¢¢ Far better than anything else reviewed on these pages . . .
Outstandingly good 99
BIGK

¢¢ As good as anything else that is available, and far
better than most 99
COMPUTING TODAY

€C Excellent. .. Asaseriesthey could form the best ‘basic
introduction’ to programming |'ve seen 99
POPULAR COMPUTING WEEKLY

A new generation of software

Entertainment e Education ¢ Home reference
Send now for a catalogue to Goldstar, 1-2 Henrietta Street, London WC2E 8PS

DORLING KINDERSLEY

£5-95 9 "7808637181030

