Artificial Intelligence on the Sinclair QL introduces the
concepts involved in Al. The book shows you how to
implement Al routines on your QL and turn it into an
intelligent machine which can hold a conversation with
you, give you rational advice, learn from you and even
teach you.

The book explains Al from first principles and assumes no
previous knowledge of the subject. All the important
aspects of Al are covered and are fully illustrated with
example programs. In addition to covering programming in
SuperBasic the book explains how to implement
‘intelligent’ routines for the QL Archive database program.

Artificial Intelligence is an increasingly important area
which will have profound effects on all our lives in the next
few decades. This book will give you an appreciation of
the possibilities and problems which Al brings.

Keith and Steven Brain are a father and son team and have
already published the best-selling Dragon 32 Games
Master, Advanced Sound and Graphics for the Dragon
computer and Artificial Intelligence on the Spectrum. They
are both regular contributors to Popular Computing
Weekly.

68 £ Ner +0D0k.95
ISBN O0-94k408-41-b

M eeeee
A IEp
% 9 ?soﬂ[!“!ﬂ;am] H h 1‘ ‘; ! i}

' Sinclair QL

Artificial Intelli

gence on th

=

Artificial Intelligence on the
Sinclair QL ,

Make your micro think

Keith and Steven Brain

First published 1984 by:

Sunshine Books (an imprint of Scot Press Lid.)
12-13 Little Newport Street

London WC2R 3LD

Copyright © Keith and Steven Brain. 1984

@ Sinclair QL, QL Microdrive and SuperBASIC are Trade Marks of
Sinclair Research Ltd.

© The contents of the QL are the copyright of Sinclair Research Ltd.

@ Quill, Archive, Abacus and Easel are Trade Marks of Psion Software
Ltd.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, phorocopying, recording andfor otherwise,
without the prior written permission of the Publishers.

British Library Cataloguing in Publication Data

Brain, K.R.
A rtificial intelligence on the Sinclair QL.
1. Artificial intelligence—Data processing
2. Sinclair QL (Computer)
I. Title I1. Brain, Steven
001.53°5°0285404 Q336

ISBN 0-946408-41-6

Cover design by Grad Graphic Design Ltd.

Cover illustration by Stuart Hughes.

Typeset by Paragon Photoset, Aylesbury.

Printed in Great Britain by Short Run Press Ltd, Exeter.

>

CONTENTS

Program Notes

Introduction

(%]

10

11

12

Artificial Intelligence

Just Following Orders
Understanding Natural Language
Making Reply

Expert Systems

Making vour Expert System Learn for Itself
Fuzzy Matching

Recognising Shapes

An Intelligent Teacher

Of Mice and Men

Intelligent Use of Archive

A Naturally Expert Salesman

Page
vii

(O%]

29

49

69

85

109

137

147

181

iii

Contents in detail

CHAPTER 1
Artificial Intelligence
Fantasy — reality: two-way conversations. robots, expert systems.

CHAPTER 2
Just Following Orders
Preset orders and fixed responses — a REPeat loop — upper and lower

case — invalid requests — a turtle and screen movement — using
direction PROCedures — command words and responses in DATA
arrays — expanding the vocabulary — removing redundancy —

abbreviated commands — partial matching — sequential commands.

CHAPTER 3

Understanding Natural Language

Dealing with sentences — subjects, objects, verbs, adjectives, adverbs —
punctuation — a sliding search — partial matching — rearranging the
wordstore array.

CHAPTER 4

Making Reply

.Getting more sensible replies — checking many words — making logical
decisions before replving — picking the appropriate reply — alternative
subjects — putting the subject in context — inserting the subject in the
sentence — problems with objects — changing tense.

CHAPTER 5

Expert Systems

How an expert works — simple problems — more difficult problems —
including pointers — sequential and parallel branching — checking how
well the answers match the data — better in bits.

CHAPTER 6

Making your Expert System Learn for itself

Letting the computer work out its own rules for two objects — expanding
the system — automatic digestion.

Artificial Intefligence on the Sinclair QL .

CHAPTER 7

Fuzzy Matching

Recovering information from the human mind — soundex coding — a
program for converting names — retrieving information.

CHAPTER 8

Recognising Shapes

Simulating the action of a light sensor — looking at a smaller number of
features of the pattern.

CHAPTER 9

An Intelligent Teacher

Questions and answers — keeping a score — shifting the emphasis of
questions to areas of difficulty — making questions easier or harder.

CHAPTER 10

Of Mice and Men

Setting the scene — making the maze — finding the route — reaching the
centre — deciding where to move to — coping with corners — reducing
the amount of checking — random selection at junctions — backtracking
— finding new routes — speeding up.

CHAPTER 11

Intelligent Use of Archive

Extracting the required information correctly — finding a match —
searching specifically — selecting records — putting things in order —
using PROCedures — a more friendly (inter)face.

CHAPTER 12

A Naturally Expert Salesman

Combining processing natural language with an expert system — making
conversation with the computer — making decisions — the Computer
Salesman.

vi

Program Notes

The order of the X and Y coordinates in the ‘AT’ command vary with the
version of the ROM. If the screen organisation looks wrong, then simply
reverse the two parameters following AT. ’

Introduction

Artificial intelligence is undoubtedly an increasingly important area in
computer development and one which will have profound effects on all
our lives in the next few decades. The main aim of this book is to
introduce the unenlightened reader to some of the concepts involved in
artificial intelligence and to show them how to develop ‘intelligent’
routines on the QL which they can then incorporate into their own
particular programs. Only a superficial knowledge of programming is
assumed and the book works from first principles as we believe that this is
essential if you are really to understand the problems involved in
simulating intelligence, and how to set about overcoming them.

The basic format of the book is that ideas are taken and suitable
routines built up step by step. exploring and comparing alternative
possibilities wherever possible. Rather than simply giving you a series of
completed programs, we encourage you to experiment with different
approaches to let you see the results of variations in technique for
yourself. Detailed flowcharts of most of the routines are included.

Although the main emphasis is placed on the Al aspects of the routines,
we have taken the opportunity to exploit many of the advantages of
SuperBASIC, such as PROCedures, FuNctions, and Windows.

You may notice that in places certain lines are strictly redundant,
but these have been deliberately included in the interests of clarity
of program flow. As far as possible, retyping of lines is strenuously
avoided but modification of routines is commonpiace. Certain defined
PROCedures are common to several chapters and we remind you that
these can be SAVEd separately to microdrive and then transferred into
the different programs with the MERGE command.

All listings in the book are formatted so that they clearly show nesting
and program flow, and so they do not appear exactly as they will on the
screen display. In most cases spaces and brackets have been used liberally
to make listings easier to read but be warned that some spaces and
brackets are essential so do not be tempted to remove them all.

All routines have been rigorously tested and the listings have been
checked very thoroughly so we hope that you will not find any bugs. Itisa
sad fact of life that most bugs arise as a resuit of ‘tryping mitsakes’ by the
user. Semicolons and commas may look insignificant but their absence
can have profound effects!

Artificial intelligence is increasing in importance every day and we
hope that this book will give you a useful insight into the area. Who knows
— if you really work at the subject you might be able to persuade your
machine to read our next book for itself!

Once again thanks are due to Liz who has managed to resist the
temptation to throw out “all that rubbish’ and redecorate the room.

Avriificial Intelligence on the Sinclair QL

Keith and Steven Brain
Groeswen, July 1984

(]

CHAPTER 1
Artificial Intelligence

Fantasy

For generations science fiction writers have envisaged the development
of intelligent machines which could carry out many of the functions of
man himself (or even surpass him in some areas), and the public image of
artificial intelligence has undoubtedly been coloured by these images.

The most common view of a robot is that it is an intelligent machine of
generally anthropomorphic (human) form which is capable of indepen-
dently carrying out instructions which are given to it in only a very general
manner. Of course, most people have ingrained Luddite tendencies when
it comes to technology so in the early stories these robots tended to have a
very bad press, being cast in the traditional role of the ‘bad guys’ but with
near-invincibility and lack of conscience built in. -

The far-sighted Isaac Asimov wove a lengthy series of stories around
his concept of ‘positronic robots’ and was probably the first author really
to get to grips with the realities of the situation. He laid down his famous
‘Three Laws of Robotics’” which specified the basic ground rules which
must be built into any machine which is capable of independent action —
but it is interesting to note that he could not see the time when the human
race would accept the presence of such robots on the earth itself. ‘Star
Wars’ introduced the specialised robots R2D2 and C3PO, but we feel that
many of their design features were a little strange: perhaps there is a
‘Interplanetary Union of Robots’ and a demarcation dispute prevented
direct communication between humans and R2D2.

Of course intelligent computers also appear in boxes without arms and
legs, although flashing lights seem obligatory. Input/output must
obviously be vocal but the old metallic voice has clearly gone out of
fashion in favour of some more definite personality. If all the boxes look
the same then this must be a good idea, but please don't make them all
sound like Sergeant-Major Zero from ‘Terrahawks’!

Michael Knight's KITT sounds like a reasonable sort of machine to
converse with, and it is certainly preferable to the oily SLAVE and
obnoxious ORAC from ‘Blake’s Seven’. ORAC seemed to pack an
enormous amount of scorn into that little perspex box but other writers
have appreciated the difficulties which may be produced if you make the
personality of the machine too close to that of man himself. [n Arthur C.

Artificial Intelligence on the Sinclair QL .

Clarke’s ‘2001: A Space Odyssey’ the ultimately-intelligent computer
HAL eventually had a nervous breakdown when he faced too many
responsibilities. In “The Restaurant At The End of The Universe’ the
value of the ‘Sirius Cybernetics Corporation Happy Vertical People
Transporter’ was reduced significantly when it refused to go up as it could
see into the future and realised that if it did so it was likely to get zapped,
and the ‘Nutri-Matic Drinks Synthesiser’ was obviously designed by
British Rail Catering as it always produced a drink that was “almost, but
not quite, entirely unlike tea’. More recently the rather flashy holo-
graphic figure of ‘Automan’ has demonstrated some quite amazing
capabilities in his fight against crime, although there do seem to be some
major omissions in his programming with regard to dealings with women.
More worrying themes have also recently appeared. The most sig-
nificant feature of ‘Wargames’ was not that someone tapped into
JOSHUA (the US Defence Computer) but that once the machine started
playing thermonuclear war it wouldn’t stop until someone had won the
game. In ‘The Forbin Project’ the US and Russian computers got
together and decided that humans are pretty irrelevant anyway.

Reality

The definition and recognition of machine intelligence is the subject of
fast and furious debate amongst the experts in the subject. The most
generally accepted definition is that first proposed by Alan Turing way
back in the late 1940s when computers were the size of houses and even
rarer than a slide-rule is today. Rather than trying to lay down a series of
criteria which must be satisfied. he took a much broader view of the
problem. He reasoned that most human beings accept that most other
human beings are intelligent and that therefore if someone cannot
determine whether they are dealing with another man or woman, or only
a computer, then they must accept that the machine is intelligent. This
forms the basis of the famous ‘Turing Test’ in which an operator has to
hold a two-way conversation with another entity via a keyboard and try to
get the other party to reveal whether it is actually a machine or just
another human being — very awkward!

Many fictional stories circulate about this test, but our favourite is the
one where a job applicant is set down in front of a keyboard and left to
carry on by himself. Of course he realises the importance of this test to his
career prospects and so he struggles valiantly to find the secret,
apparently without success. However. after some time the interviewer
returns, shakes him by the hand, and congratulates him with the words:
‘Well done, old man, the machine couldn’t tell if you were human so you
are just what we need as one of Her Majesty’s Tax Inspectors!’

Everyone has heard from the TV advertisements that the use of

. Chaprer { Arrificial (neelligence

computer-aided design techniques is now very common and that in-
dustrial robots are almost the sole inhabitants of car production lines
(leading to the car window sticker which claims ‘Designed by a computer,
built by a robot, and driven by an idiot’). In fact most of these industrial
robots are really of minimal intelligence as they simply follow a pre-
defined pathway without making very much in the way of actual decisions.
Even the impressive paint-spraying robot which faithfully follows the
pattern it learns when a human operator manually moves its arm cannot
learn to deal with a new object without further human intervention.

On the other hand the coming generation of robots have more
sophisticated sensors and software which allow them to determine the
shape, colour, and texture of objects, and to make more rational
decisions. Anyone who has seen reports of the legendary ‘Micromouse’
contests where definitely non-furry electric vermin scurry independently
and purposefully (?) to the centre of a maze will not be amazed by our
faith in the future of the intelligent robot, although there seems little
peint in giving it two arms and two legs.

Another important area where artificial intelligence is being currently
exploited is in the field of expert systems, many of which can do as well (or
even better) than human experts, especially if you are thinking about
weather forecasting. These systems can be experts on any number of
things but, in particular, they are of increasing importance in medical
diagnosis and treatment — although the medical profession doesn’t have
to worry too much as there will always be a place for them since
‘computers can’t cuddle’.

A major barrier to wider use of computers is the ignorance and
pigheadedness of the users. who will only as a last resort read the
instructions, and expect the machine to be able to understand all their
little peculiarities. Processing of ‘natural language’ is therefore a major
growth area and the ‘fifth generation’ of computers will be much more
user-friendly.

Most of the serious work on Al uses more suitable (but exotic)
languages, such as LISP and PROLOG. but unfortunately these tend to
be pretty unintelligible to the average user! The SuperBASIC routines
which follow cannot be expected to give you the key to world domination.
although they should give you a reasonable appreciation of the
possibilities and problems which artificial intelligence brings. Like all
specialists, the experts in Al have their own technical jargon with which
to impress the ignorant natives. However, as this book is squarely aimed
at the edification of Mr/Ms Average, we have deliberately chosen to
avoid the use of such jargon wherever possible. as we feel that it tends to
confuse rather than aid the novice!

W

CHAPTER 2
Just Following Orders

As your computer is actually totally unintelligent, you can really only
converse with it at a relatively basic level, and in a formally structured
way. We will demonstrate later how you can try to break down this
‘language barrier’, but let’s make sure we can walk before we try to run.
The first step is to have a series of preset orders to which there are fixed
responses.

We will start by examining the problems involved in making the
computer understand you giving it compass directions. At first sight the
simplest way to program this appears to be to form a REPeat loop which
asks for an INPUT from the user and contains a separate [F-THEN line
for each possibility (see Flowchart 2.1).

Flowchart 2.1: Giving Compass Directions.

We will use two PROCedures, which will be steadily refined as the
chapter progresses. For the moment, START just clears the screen,

Artificial Intelligence on the Sinclair QL .

whilst WHICHWAY does the work of comparing vour input with four
key command words.

10 START
20 WHICHWAY

10000 DEFine PROCadure START
10010 CLS
10990 END DEFine START

11000 DEFine PROCadure WHICHWAY

11010 REPwat DIRECTION

11020 UNDER 0 : PRINT \"DIRECTION?"
11030 INPUT IN$ 1 UNDER |

11100 IF IN$="NORTH" THEN PRINT "NORTH"

11110 IF IN$="SOUTH" THEN PRINT "SOUTH"
11120 IF IN$="WEST" THEN PRINT "WEST"
11130 IF INs="EAST" THEN PRINT "EAST"

11980 END REPeat DIRECTION
11990 END DEFine WHICHWAY

To distinguish clearly between your INPUT and the response from the
QL we have arranged for the response to be UNDERIlined, whilst the
backslash before ‘DIRECTION’ forces a new line.

A problem case?
When you test this routine you will soon find a common problem — the
computer only matches upper case (capital) letters. as strings are
compared exactly.

Thus, while ‘NORTH’ equals ‘"NORTH’ and ‘north’ equals ‘north’,
‘north’ cannot equal ‘NORTH'.

The simplest thing to do is to just check if the first character of IN§ is
upper case. All capitals have CODE:s less than 91 so a large prompt could
be displayed, when necessary, reminding vou to press CAPSLOCK.

11040 IF CODE(INS)>?0 THEN

11050 CSIZE 2,1 1 PRINT "press CAPSLOCK!"
1 CSIZE 1,0

11060 NEXT DIRECTION

11070 END IF

(In SuperBASIC there is no need to specify the first letter (IN$(1)) as
CODE will return the value for the first character in a string unless a
different point is specified.)

. Chapter2 Just Following Orders

A more sophisticated approach is to persuade the computer to
automatically convert all letters entered into a particular case. To
understand how this operates we need to look at the binary rep-
resentation of the letters (see Table 2.1). You will notice that the only
difference between corresponding upper and lower case letters is that bit
6 (= 32) is always set in lower case but reset in upper case.

Table 2.1: Binary Representation of Upper and Lower Case Letters.

bit 8 7 6 5 4 3 2 1
value 128 64 32 16 8 4 2 1
A 0 1 0 0 0 0 1
B 0 1 0 0 0 0 1 0
Y 0 1 0 1 1 0 0 1
Z 0 1 0 1 1 0 1 0
a 0 1 1 0 0 0 0 1
b 0 1 1 0 0 0 1 0
y 0 1 1 1 1 0 0 1
z 0 1 1 1 1 0 1 0

To force both upper and lower case characters into lower case, we
therefore need to ensure that bit 6 is always set: to perform the opposite
conversion, we need to ensure that bit 32 is not set (that it is reset).

To set bit 6, we need to perform a ‘bitwise OR’ on the character code.
This sets bit 6 whether it was already set OR not.

For example:

‘AT =65 01000001
bitwise OR 32 00100000

01100001 = 97 (‘a’)

‘a’ =97 01100001
bitwise OR 32 00100000

01100001 = 97 (*a”)

To reset bit 6 we should perform a ‘bitwise NOT" on the character code.
This resets bit 6 whether or NOT it was set.

Artificial Intelligence on the Sinclair QL .
For example:

‘A’ =65 01000001
bitwise NOT 32 00100000

01000001 = 65 (*A")

‘a’ =97 01100001
bitwise NOT 32 00100000

01000001 = 65 (‘A")

We will DEFine a FuNction called GETS$ which will perform either
conversion. This uses only the bitwise OR command of the QL for two
reasons. The first (very practical) reason is that our QL at least, doesn't
recognise the bitwise NOT command even though it is in the manual! The
second reason is that it is then possible to use a single function to convert
from lower case to upper case or vice versa simply by passing a parameter.

The GETS function is called from line 11030 which replaces the old
INPUT line and prompt.

11030 IN$=GET#(1) ¢ UNDER 1
11040 REMark DELETED
11080 REMark DELETED
110460 REMark DELETED
11070 REMark DELETED

The parameter passed (cs) must be either 0 or 1 where 0 indicates
conversion to lower case, and 1 conversion to upper case.

An INPUT (i$) is made as usual. but then the REPeat GET_CHAR
loop takes each character in turn (i$ (n)) and this has a bitwise OR (}})
with 32 performed on it. This forces bit 6 to be set. However the value of
32*cs (the parameter passed) is now subtracted from the result. If cs is
zero then this will have no effect and lower case will be produced. But if
csis 1 then 32 will be subtracted, which will effectively reset bit 6, whether
it was originally set or NOT, and produce upper case. If the end of the
INPUT is reached (n=LEN (i$)) we EXIT GET_CHAR and the result
(r$) is RETurned to the calling line as INS (see Flowchart 2.2).

20000 DEFine FuNction GETS$(cs)
20010 LOCal i$,n,t%$,ré

10

. Chapter 2 Just Following Orders
20020 n=t
2003 rg=""
20040 INPUT i3
20050 REPeat GET_CHAR
20060 ts=is(n)
20070 ré=r$ & CHR$((CODE(t%) |i 32)-
(32¥cs))
20080 IF n=LEN(i%) THEN EXIT GET_CHAR
20090 n=n+1
20100 END REPeat GET_CHAR

20110 RETurn r$
20120 END DEFine GETS$

o L []
- 1

SUBTRACT BITWISE _
32%CS ma.—“w'mw

n=n+1

RETURN
r$

Flowchart 2.2: GETS PROCedure.

(Note that all variables used are LOCal to the FuNction and are defined
in lower case to distinguish them from global variables.)

Artificial Intelligence on the Sinclair QL .

As it stands, this will modify all characters, which produces problems
such as a space (CHR3(32)) being transformed into CHR$(0) which is
non-displayable! We can prevent the conversion of spaces and numerals
by restricting the modification to characters having certain CODEs., A
simple way to do this is to restrict modification to characters having
CODEs greater than 63, by multiplying (32*cs) by NOT CODE (t$)<63.
Now if the CODE of t$ is less than 65, then (32%c¢cs) will NOT be
subtracted, and the character will be unchanged.

20070 ré=r$ & CHR$((CODE(ts®) || 32)-
(32%cs) % NOT CODE(t$)<63)

Invalid requests

If you type in anything other than the four key ‘command words’ then
nothing will be printed, except for another input request. It would be
more user-friendly if the computer indicated more clearly than your
command was not valid. You could do that by adding a test that none of
the command words has been found. but that becomes very long-winded,
and effectively impossible when you have a long list of valid words.

11140 IF INS<>"NORTH" AND IN$<>"SOUTH" AND
INSCO"WEST" AND INSCHUEAST" THEN
11150 CSIZE 1,1 t PRINT "INVALID REQUEST"
1 CSIZE 1,0

11160 END IF

On the other hand, adding NEXT DIRECTION to the end of each
[F-THEN line will force a direct jump back to the INPUT when a valid
command is detected. If all the IF tests are not true then the program falls
through to line 11150 which prints a warning. Making direct jumps back
when a valid word is found is a good idea anyway, as it saves the system
making unnecessary tests when the answer has already been found (see
Flowchart 2.3).

11100 IF IN$="NORTH" THEN PRINT "NORTH" :
NEXT DIRECTION

11110 IF IN$="SOUTH" THEN PRINT "SOUTH" 1
NEXT DIRECTION

11120 IF IN$="WEST" THEN PRINT "WEST" : NEXT
DIRECTION

11130 IF IN$="EAST" THEN PRINT "EAST" : NEXT
DIRECTION

11140 REMark DELETED
11160 REMark DELETED

12

’ Chapter 2 Just Following Orders

| PRINT ,
INVALID

Flowchart 2.3: Deleting Unnecessary Tests.”

Adding some action

That will echo the command given on the screen but of course it does not
actually do anything. As a model to work with we will introduce Boris the
turtle, who will move around the screen in response to our commands. To
conveniently display him separately from the text we will divide the
screen up into windows in a SCREEN PROCedure, which splits the
screen vertically with window #1 (white) on the left and #2 (green) on the
right. Now text wiil appear on the right window, and Boris’s trail on the
left window.

12000 DEFine PROCedure SCREEN
12010 MODE 4

12020 WINDOW #1,230,200,257, 14
12030 BORDER #1,1,2

12040 CSIZE #1,1,0

12050 PAPER #1,4

12060 INK #1,0

12070 CLS #1

12080 WINDOW #2,230,200,26,16
12090 BORDER #2,1,2

Artificial Intelligence on the Sinclair QL .

12100 CSIZE #2,1,0
12110 PAPER #2,7
12120 INK #2,0

12130 CLS #2

12140 INK #0,7

12150 CLS %0

12160 END DEFine SCREEN

The START PROCedure must now call SCREEN, set an appropriate
drawing SCALE, and move the turtle to his start position. The absolute
coordinates of the start position are 10,10 in channel #2, but it is simpler if
we express movement as plus and minus in relation to this point by means
of variables X% and Y%.

10010 SCREEN

10020 SCALE #2,20,0,0
10030 LINE #2,10,10
10040 X%=0 1 Y%=0

The actual screen movement is dealt with by the TRACK PROCedure,
which draws a LINE_Relative to the last point (0,0). Notice that the
updating parameters are passed to TRACK as X1 and Y1.

13000 DEFine PROCedure TRACK(X1,Y1)
13010 LINE_R #2,0,0 TO X1,Y1
13020 END DEFine TRACK

We now need to add the real response to your command, as well as the

message indicating that it has been understood. and a printout of your
current position (see Flowchart 2.4).

11020 UNDER O : PRINT \"DIRECTION?"\"Xa"y

Xy "Y="y Y%

11100 IF IN$="NORTH" THEN PRINT "NORTH" 1
Y%=Y%+1 ¢ TRACK 0,1 1 NEXT DIRECTION

11110 IF IN$="SOUTH" THEN PRINT "SOUTH" :
Y4= ((YAx3)=3)/3 1 TRACK 0,-1 1 NEXT
DIRECTION

11120 IF IN$="WEST" THEN PRINT "WEST" :
X%=((X%¥3)-3)/3 1 TRACK -1,0 1 NEXT
DIRECTION

11130 IF IN$="EAST" THEN PRINT "EAST" :

X%=X%+1 : TRACK 1,0 : NEXT DIRECTION

. Chaprer 2 Just Following Orders

SET
X AnND Y

INPUT
DIRECTION

%‘gw Y=Y-1 | |
oL TINT. Y=vy+1 | o |
WFRUNT X=X-1 i
;i X=X+

w PRINT |
INVALID
Flowchart 2.4: Adding a Response.

('You may notice that lines 11110 and 11120 look a little strange as X% =
((X%*3)—3)/3 and Y%=((Y%™*3)—3)/3 effectively only subtract one
from X% and Y %. The reason for this long-winded path is that the initial
version of the QL had a bug which caused —1—1, —2-2, and —4—4 to all
result in 0! As —3 is the smallest number which can be subtracted
correctly, X% is multiplied by 3 before subtracting 3 and divided by 3
again! If your machine can successfully calculate —1—1=-2then you can
replace this long version with X% =X%—1 and Y% =Y %—1, wherever
it appears in this book.)

Using direction PROCedures

Of course that is a very simple example and, particularly where the results

15

Artificial Intelligence on the Sinclair QL '

of your actions are more complicated, it may be better to put the
responses into individual PROCedures.

11100 IF IN$="NORTH" THEN NORTH 1 NEXT
DIRECTION

11110 IF IN$="SOUTH" THEN SOUTH 1 NEXT
DIRECTION

11120 IF IN$="WEST" THEN WEST : NEXT
DIRECTION

11130 IF IN$="EAST" THEN EAST : NEXT
DIRECTION

14000 DEFine PROCedure NORTH
14010 PRINT "GOING NORTH"
14020 Yi=Yi+1

14030 TRACK 0,1

14090 END DEFine NORTH

14100 DEFine PROCedure SOUTH
14110 PRINT "GOING SOUTH"
13120 Yi=({Y4x3)-3)/3
14130 TRACK 0,-1

14140 END DEFine SOUTH

15000 DEFine PROCedure WEST
15010 PRINT "GOING WEST"
15020 XA={((X%4¥3)=3) /3
15030 TRACK =-1,0

15040 END DEFine WEST

16000 DEFine PROCedure EAST
16010 PRINT "GOING EAST"
16020 X¥U=XVU+1

16030 TRACK 1,0

16040 END DEFine EABT

More versatility

You could extend this use of [IF-THEN tests ad infinitum (or rather ad
memoriam finitum!) but it is really rather a crude way of doing things
which creates problems when you want to make your programs more
sophisticated. A more versatile way to deal with command words and
responses is to enter them as DATA and then store them in string arrays.

16

. Chaprer 2 Just Following Orders

First you must DIMension arrays of suitable length for command
words, C$, and responses, R5. As only fixed length string arrays are
allowed in SuperBASIC, both the length of each element (20), and the
number of elements (3) must be defined. (Note that SuperBASIC has a
zero element which is also used. thus catering for the four directions.) We
now also need to think about how we will match these array elements
apainst the INPUT. The length of an ordinary string input will be the
number of characters entered — but the length of the array elements is
fixed at 20, with any unused positions being filled with CHR$(0).

Now an input of:

NORTH
cannot be equal to an array element containing
NORTH (plus 15 empty positions)

unless we force our INPUT string into the same format by declaring it
with a DIM (INS$,20) statement.

10050 DIM C$(3,20),R$(3,20), INS(20)

If you put the commands and responses in pairs in the DATA statement
then it is more difficult to get them jumbled up and easier to read them in
turn into the equivalent element in each array (see Table 2.2).

Table 2.2: Content of Command and Response Arrays.

ELEMENT COMMAND RESPONSE
NUMBER WORD (CS$(n)) (R3(n))

0 NORTH GOING NORTH
1 SOUTH GOING SOUTH
2 WEST GOING WEST

3 EAST GOING EAST

At this point we will add some lines to the START PROCedure which
will initialise the arrays (fill them with your words). As SuperBASIC does
not automatically RESTORE on RUN, this must be done explicitly.

10060 RESTORE

10100 DATA "NORTH","GOING NORTH", "SOUTH",
"GOING SOUTH","WEST","GOING WEST",
"EAST", "GOING EAST"

10200 FOR N=0 TO 3

Artificial Intelligence on the Sinclair QL .

10210 READ C$(N) : READ R$(N)
10220 END FOR N

Allthose [F-THEN tests can be replaced by a single loop which compares
vour INPUT with each element of the array containing the command
words (CS) in turn (see Flowchart 2.5).

INPUT
DIRECTION

CHECK
COMMAND
ELEMENT

Flowchart 2.5: More Versatility.

11100 FOR N=0 TO 3

11110 IF INS$<>C#(N) THEN
11120 END FOR N

11130 REMark DELETED

11140 REMark DELETED

11160 ELBE
11170 PRINT R$(N)
11200 END IF

. Chapier 2 Jusi Following Orders

Now IF your INPUT does not match any of the command words the test
fails through. or ELSE the corresponding response element (R$(N)) is
printed out.

Of course we are now back in our original position of actually doing
nothing, so we need to add back some actions. We will do this through a
new POSITION PROCedure which is called when a match is found.

11180 POSITION

We stiil have a pointer to indicate which word matched the input as N (the
number of array elements checked) holds this value. POSITION uses this
in the SELect command to move to appropriate routines which are
similar to those we wrote earlier, except that there is no need to define the
particular message. as this has already been printed as RS(N).

14000 DEFine PROCedures POSITION
14010 SELect ON N

14020 ON N=0

14030 Y4=Y4+1

14040 TRACK 0,1

14100 ON N=1

14110 Yi=(({Y%33)-3)/3
14120 TRACK 0,-1

14140 REMark DELETED
14190 REMark DELETED

14200 ON N=2
14210 Xu=((X%x3)-3)/3
14220 TRACK -1,0

14230 REMark DELETED
14290 REMark DELETED
14300 ON N=3

14310 X%=X%+1

14320 TRACK 1,0
14330 END SELect

14390 END DEFine POSITION

Expanding the vocabulary

The arrays can easily be expanded to contain more words and it would be
better if we defined the number of words as a variable, WD % . which we
would then use to DIMension the arrays and for both the filling and
scanning loops. This produces a general routine which is easily modified.

19

\rrificial Intelligence on the Sinclair QL .

10050 WD%=3 : DIM C3(WD%,20),R$(WD%,20),
IN$ (20)

10200 FOR N=0 TO WD%
11100 FOR N=0 TO WD%

For example we can add intermediate compass directions which change
both X and Y axes.

10050 WD%=7 1 DIM C#(WD%,20),R${WD%,20),
INS (20)
10110 DATA "NORTH EAST","GOING NORTH EAST"
,"SOUTH EAST", "GOING SOUTH EAST"
10120 DATA "SOUTH WEST","GOING SOUTH WEST"
,"NORTH WEST", "GOING NORTH WEST"

and add some more actions:
14330 REMark DELETED

14390 REMark DELETED
14400 ON N=4

14410 YHEYR#FL 1 X%mX%+L
14420 TRACK 1,1

14500 ON N=S§

14510 Yh=(YRAS) =30 /3 ¢ XUmN%+l
14520 TRACK 1,-1

14600 ON N=g

14510 Yim((Y%83)-3) /3 1 K= (X%43)=3)/3
144620 TRACK -1,-1

14700 ON N=7

14710 YhsYZ+1 1 X%=((X%43)-3)/3
14720 TRACK -1,1

14730 END SELect
14740 END DEFine POSITION

Removing redundancy

All the responses so far have included the word ‘GOING" and this word
has actually been typed into each DATA statement. Now typing practice
is very good for the soul but it would be much more sensible to define this
common word as a string variable. Notice that a space is included at the
end to space it from the following word. All occurrences of the word
*GOING" can be deleted from the DATA and GS combined with each
key word in the response instead.

20

. Chapter 2 Just Following Orders

10100 DATA "NORTH", "NORTH", "SOUTH", "SOUTH",
"WEST", "WEST", "EAST", "EAST"

10110 DATA "NORTH EAST","NORTH EAST", "SOUTH
EAST", "SOUTH EAST"

10120 DATA "SOUTH WEST","SOUTH WEST", "NORTH
WEST", "NORTH WEST"

10130 Ge="GOING "
11170 PRINT G$jR&(N)

Now that is starting to look rather silly as both arrays contain exactly the
same words, so why not get rid of the response arrays, RS, and siﬁlplv
print C$(N)? Well. in this case you could do that without any pmbiem-.
but of course where the responses are not simply a repetition of the input
(as is very often the case) the second array is essential.

If you look hard at all those action PROCedures you will realise that
they all do essentially one thing — update the values of X% and Y%.
Now we could include that information in the original DATA and get rid
of them altogether! We need to add two more arrays to hold the NXandY
coordinates. add the appropriate values into the DATA lines after each
response, and READ in the information in blocks of four (INPUT,
RESPONSE. X-MOVE, Y-MOVE — see Table 2.3).

Table 2.3: X and Y Moves Incorporated into Arrays.

ELEMENT COMMAND RESPONSE X-MOVE Y-MOVE

NUMBER WORD C$(n) RS3(n) X(n) Y(n)
1 NORTH NORTH 0 =1
2 SOUTH SOUTH 0 1
3 WEST WEST =] 0
4 EAST EAST 1 0
5 NORTH-EAST NORTH-EAST 1 =1
6 SOUTH-EAST SOUTH-EAST 1 1
7 SOUTH-WEST SOUTH-WEST -1 1
8 NORTH-WEST NORTH-WEST -1 =1

10050 WD%=7 : DIM C$(WDY,20),RS (WD%, 20}, INS
(20) , X (WD), Y (WD%)

10100 DATA "NORTH","NORTH"0, 1, "SOUTH",
"SOUTH", 0, -1, "WEST", "WEST", -1, 0,
"EAST", "EAST",1,0

Artificial Intelligence on the Sinclair QL .

10110 DATA "NORTH EAST","NORTH EAST",1,1,
"SOUTH EAST","SOUTH EABT",1,-1

10120 DATA "SOUTH WEST™,"SOUTH WEST",-1,-1
,"NORTH WEST","NORTH WEST",-1,1

10210 READ C$(N) : READ R$(N) : READ X(N)
1 READ Y(N)

Now we can delete all the redundant lines and modify the TRACK
PROCedure so that X% and Y% are suitably updated (see Flowchart

2.6).

PRINT

X anp Y

INPUT
DIRECTION

CHECK
—— COMMAND
ELEMENT

yes [pant X= [x=
nase T S
ELEMENT X ELEMENTS | Eeement

NO

INCREMENT
ELEMENT
NUMBER

|
|
|

Flowchart 2.6: Using Linked Arrays.

14010 X%=COX%RT)+ (XN 23)) /3 2
YH=(IYRES) + (Y (N)X3)) /3
14020 TRACK X(N),Y(N)

14030 REMark DLINE 14030 TO 14730

This overall pattern of putting all the information into a series of linked

7

. Chapter 2 fust Following Orders

arrays is a very common feature which is used in several of the later
programs in this book.

Abbreviated commands

So far we have always used complete words as commands. but that means
that you have to do a lot of typing to give the machine your instructions. [f
you are feeling lazy. vou might think of changing the command words to
the first letter of the word only, and then INPUT a single letter. However,
unless you start using random letters, that will only start work as long as
no two words start with the same letter! To code all the eight compass
directions used above, we will have to use up two letters: N.NE, E. SE. S,
SW. W, NW.

10100 DATA "N","NORTH",0,1, "S", "SOUTH", 0, -
1,"W", "WEST",-1,0,"E", "EAST", 1,0

10110 DATA "NE","NORTH EAST", 1,1, "SE",
"SOUTH EAST",1,-1

10120 DATA "SW","SOUTH WEST",-1,-1, "NW",
"NORTH WEST",-1,1

Notice that it is only the actual command words which have changed and
that the computer gives a full description of the direction, as we are still
using that second array which holds the response.

Partial matching

[n all the programs above we have always checked that the input matched
a word in the command array exactly. However it would be useful if we
could allow 2 number of similar words to be acceptable as meaning the
same thing. For example. you could check whether the first letter of the
input word matched the abbreviated keyword by only comparing the first
character (taking IN$(1)).

11080 INS=IN$ (1)

That will work with NORTH, SOUTH. EAST and WEST, but there are
obvious problems in dealing with the intermediate positions, so we will
get rid of these positions again.

10050 WD%=3 1 DIM C${(WD%,20),R$ (WD%,20),
INS(20), X (WD%), Y (WD)

10110 REMark DELETED

10120 REMark DELETED

Artificial Intelligence on the Sinclair QL .

In addition there are lots of words beginning with the letters N, S. E and
W — all of which would be equally acceptable to the machine as a valid
direction.

For example:

NOT NORTH
would produce:
GOING NORTH

A more selective process is to match a number of letters instead of just
one. In this example, the first three letters of the four main directions are
quite characteristic.

NOR
SOuU
EAS
WES

[f vou use these as command words then. for example:

NOR

NORTH
NORTHERN

and NORTHERLY

will all be equally acceptable, but:

NOT

NEARLY
NOWHERE

and NONSENSE

will all be rejected.

All we need to do is to take the first three letters of the input, INS(1 TO
3). and compare them with a revised DATA list.

10100 DATA "NCR","NORTH",0,1,"SOU", "SOUTH"
,0,-1, "WES", "WEST", -1, 0, "EAS", "EAST"
41,0

11080 IN$=IN&(1 TO 3)

24

. Chapter 2 lust Following Orders

Sequential commands

In the routines above we have dealt with the intermediate compass
positions as separate entities, but if we could give a sequence of commands
at the same time we would not need to do this. There is always more than
one way to get to any point and if more than one command word couid be
understood at the same time we would not have to worry about checking
for directions such as ‘NORTH EAST as they could be dealt with by the
combination of 'NORTH’ and ‘EAST".

This brings us to the very significant question of how to split an input
into words. First you must ask yourself how you recognise that a series of
characters make up a separate word? The answer, of course, is that you
see a space between them. Now, if we look for spaces we can break the
input into separate words which we can look at individually. The easiest
way to look for spaces is with the INSTR command which searches the
whole of a designated search string for a match with a second target
string.

To begin with we will incorporate INSTR into a WORDSPLIT
FuNction which is now called from line 11080.

11080 WORDSPLIT

15000 DEFine FuNction WORDSPLIT
15010 SP%=" " INSTR IN®
15030 PRINT "SP% ";SP%

15090 END DEFine WORDSPLIT

This starts by checking whether the first character in INS is a space. Ifitis
not a space, then it will automatically continue checking until the end of
NS is reached. If no space is found in the whole of INS then SP% will be
set to zero. If a space is found the value of SP% will be the number of
characters along IN$ that the space is located (see Flowchart 2.7). The
temporary line 15030 prints out SP% so that you can observe INSTR in
action.

MOVE TO
NEXT
CHARACTER

Flowchart 2.7: Locating the Position of a Space.

Artificial Intelligence on the Sinclatr QL .
Try this out with:

NOR WES

SP% 4

NORTH WEST

SP% 6

NOR NOR WEST

(Note that you will also get an *Invalid request’ message for the moment
as INS$ is no longer converted to the first three characters only.)
Although the length of the word is accounted for by SP%, only the first
space is found. To find all the spaces we are going to have to work harder.
First of all a space needs to be added to the front end of INS, so that the
first word has the same format as the others, and we must define the start
position of the search (ST%) as zero.

11080 IN$=" " & IN$ 1 ST%=0
11050 WORDSPLIT

The WORDSPLIT FuNction is now modified to find and cut out each
word in the INPUT (see Flowchart 2.8). Once a space has been found (at
SP%) a new search start position is defined as one character further along
INS (at ST%), a word (W$) cut out as the first three characters following
the space (§T% TO ST%+2), and the INPUT string (IN$) truncated so
that it only contains the unchecked part of the entry (IN§(ST% TO)).
15010 SP%=" " INSTR IN®

15030 STh=8P%+1

15070 W$=INS(ST% TO ST%U+2) 1 IN$=INS(ST% TO)

As WORDSPLIT was DEFined as a FuNction, we can use it to return
different values. We will RETurn minus one if no space is found
(SP% =0), and zero if a space is found and a word cut out.

15020 IF 8P%=0 THEN RETurn -1

15080 RETurn 0

26

Chapter 2 Just Following Orders

£al
ROSITION
(sT=1)
ADD SPACE
T0
START I
= 4
YES SET SEARCH H
C 'SP",:,CE T6 BPACES 1 |
MOVE TO : (sr=seev)|
NO CHECK
CHARACTER R
| W$ = THREE 1]
| cH RS L__M__
AFTER
SPACE “
I

Flowchart 2.8: Searching for a Keyword.

Now we can use the value RETurned by WORDSPLIT to EXIT the
REPeat WORDS loop as soon as no word is found.

11090 IF WORDSPLIT THEN EXIT WORDS
Now typing:

NORTH WEST

produces:

GOING NORTH
GOING WEST

and even:

NOR NOR EAST
is decoded as:
GOING NORTH
GOING NORTH

GOING EAST

[t would be a lot neater if we deleted all those redundant *GOINGs’ and
put all the reported directions on the same line. We need to PRINT GS$
once, immediately before the INSTR check. Now each time we 20
through the loop comparing the current word with those stored, we
‘PRINT RS$(N); if there is a match. As there is a semicolon after this the
words will be printed on the same line but we also need to add spaces
between them.

Artificial ntelligence on the Sinclair QL

11080 IN$=" " & IN$: ST%=0 : PRINT G3$;
11170 PRINT R&E(N) 3" "3
Now:

NORTH EASTERLY SOUTH WEST
sends you neatly round in circles

GOING NORTH EAST SOUTH WEST

CHAPTER 3
Understanding Natural Language

So far we have only communicated with the computer in a very restricted
way as it has only been programmed to understand a very few words or
letters and it only recognises those if they are entered in exactly the right
way. For example, if you put a space before or after your command as you
INPUT it then it will be rejected. This is because we are comparing
whether the two strings match exactly.

However, in the real world evervone uses what is known as natural
language, which is a very sophisticated and extremely variable thing
which only the human brain can cope with effectively. Even if we forget
for the moment the differences between *English’ and ‘ American’ or even
regional dialects of either of those (can *Ow bist old but’ really mean
‘How are you old friend’?), dealing with language has an infinite number
of problems. =

Even the most sophisticated systems in the world cannot cope with
everything. There is an old story which illustrates this point very well. The
CIA developed a superb transiation program which could instantly
convert English into Russian and vice versa. In the hope of impressing the
President they laid on a demonstration of its capabilities in which it
converted everything he said into Russian, spoke that, and then
retranslated the Russian back into English. He was most impressed and
was totally absorbed until one of his aides reminded him that he had
forgotten that the First Lady was waiting for him outside. When he
ruefully commented ‘out of sight. out of mind’ he was amazed to hear the
machine come back with ‘invisible maniac’!

Dealing with sentences
Everyone knows that real language is made up of sentences, but what
exactly do we mean by a sentence? Well, the most obvious way we recognise
a sentence is that we see a full stop! However, if we are going to be able to
deal with sentences we are going to have to think a lot harder than that.
The Oxford Dictionary definition includes ‘a series of words in
connected speech or writing, forming grammatically complete expression
of single thought, and usually containing subject and predicate, and
conveying statement. question, command or request’ but also concedes

29

that it is used loosely to mean *part of writing or speech between two fuil
stops’. Phew! Can somebody translate that into everyday English,
please? The intricacies and illogicalities of the Eneilsh language are
infamous, so how can we expect a computer to cope?

Artificial Intelligence on the Sinclair QL

Parsing the parcel
Before we can understand a sentence we must break it down into its

component parts before we can analyse the significance of each individual
segment. This process of dividing up the sentence is known as ‘parsing’ by
the cognoscenti. so there’s one more piece of jargon to impress your

friends if you are that way inclined.
Let's start by looking at some simple examples of sentences.

[WANT.

consists of a subject I and a verb WANT.

I WANT BISCUITS.

also has an object BISCUITS.

[WANT CHOCOLATE BISCUITS.

qualifies the object with an adjective CHOCOLATE.
[SOMETIMES WANT CHOCOLATE BISCUITS.
qualifies the verb with an adverb SOMETIMES.

The most important word in ail the above examples was “WANT". as it
conveyed the main idea. The second example was more informative as it
indicated that only one particular type of object, BISCUITS, was
wanted. The addition of an adjective, CHOCOLATE, gave further
information on the type of object wanted, but life became more uncertain
again when the adverb SOMETIMES was included.

Now how could a computer program decode such sentences? The
answer must be to find some logical structure in the sentence. so what
‘rules’ could we lay down for this example?

1) All started with a subject. I, and ended with a full stop.
2) The last word was always the object BISCUITS (uniess there was no

object and only two words).

. Chapter 3 Understanding Natural Language

3 It Fhe word before the object was not the verb WANT, it was an
adjective, CHOCOLATE. ‘
4) If the word before the verb was not the subje i
te I, adv
S jec it was an adverb,

Let’s write a program in which we give the computer sentences and ask it
to break them up into their component parts. ‘
‘Io begin with, we will set up a suitable SCREEN format with three
windows. C.hannei #0 at the bottom receives your input, and the rest of
the screen is split horizontally into windows #1 and #2. Window #1
(lower) shows the final results of the program. whilst window #2 (u)
displays the workings of certain subroutines. B

30 SCREEN

10000 DEFine PROCedure SCREEN
10010 MODE 4
10020 CLS
10030 WINDOW #0, 435, 40,38, 216
10040 WINDOW #1,455,100,26,116
10050 WINDOW #2,455,100,24,14
10060 BORDER #0,5,4
10070 BORDER #1,3,2
10080 BORDER #2,3,2
10090 PAPER 40,0
10100 PAPER #1,7
10110 PAPER 42,4
10120 INK #0,7
10130 INK #1,0
10140 INK #2,0
10150 CSIZE #0,1,0
10160 CSIZE #1,1,0
:g:?o CSIZE #2,1,0
BO CLS #0 : CLS #1 : C
10190 END DEFine SCREEN v

We need to give it a vocabulary of objects, adjectives and adverbs to work
with. by calling a SET_UP PROCedure which READs these from
DATA? and stores them in arrays OBS(n,10), AJ$(n.10) and AVS(n.10)

accurd.mg to type. Note that the length of the longest word (10) mu;[hc;
taken into account when DIMensioning the arrays and that the number of
each type of word is defined as a variable (OB% . AJ% AV%)sothatiti

easy to add more words later. . o e

Artificial Intelligence on the Sinclair QL

10 RESTORE
40 SET_UF

11000 DEFine PROCedurs SET_UP

11010 OBY%=5 1 AJ%=5 1 AV¥=2 1 DIM OB$(OB%,10)
,AJ% (AJ%, 10 , AVS (AVY, 10)

11020 DATA "BISCUITS","BUNS","CAKE", "COFFEE"
,"TEA", "WATER"

11030 DATA “CHOCOLATE","GINGER","JAM","COLD"
, "HOT", "LUKEWARM"

11040 DATA "ALWAYS", "OFTEN","SOMETIMES"

11080 FOR N=0 TO OB%

11060 READ OB%(N)

11070 END FOR N

11080 FOR N=0 TO AJ%

11090 READ AJ$(N)

11100 END FOR N

11110 FOR N=0 TO AVY

11120 READ AVS$ (N)

11130 END FOR N

11140 END DEFine SET_UP

Now we need to INPUT the sentence to be parsed. using the GETS(1)
FuNction described previously, and a REPeat IN loop. (Don't forget that
you can use MERGE to transfer the original GETS lines from the
program described in the last chapter!)

The sentence must be broken into words (see Flowchart 3.1). To make
life easier, we will add a space on to the end of INS, so that the format of
the last word looks just like that of other words, and also a dummy
character (*) right at the end for reasons which are explained below.

120 IN$=IN$ & " x"

Once again we will use an INSTR search for spaces, and then cut out and
store each word. This is done here with the REPeat WORDS loop and
the WORDSTORE FuNction. The initial search start is defined as ST%
= 1.

130 8Th=1

170 REPeat WORDS

180 IF WORDSTORE THEN EXIT WORDS
190 END REPeat WORDS

. Chapter 3 Understanding Natural Language

.

SET WORD
COUNT 1O
ZERO(WC=()

MOVE TO
NEXT
CHARACTER

Flowchart 3.1: Cutting Out Words.

If a space is not found (SP% = 0) then the end of the sentence has been
reached. and WORDSTORE RETurns a value of —1. If WORDSTORE
RETurns any value other than zero then we EXIT the WORDS loop.

12000 DEFine FuNction WORDSTORE

12020
12030

SP%=" " INSTR IN$
IF 8P%=0 THEN RETurn -1

12090 END DEFine WORDSTORE
If a space is found, the section of IN$ from ST% (current search start) to

SP%—1 (current space—1 = length of word) is cut out, the word count

(WC%) incremented, and the section stored in a word store array.
WS(WC%). ’

33

Artificial Inteiligence on the Sinclair QL

20 DIM W$(5,10)
60 WCi=-1
12040 WC%=WCZ+1

12060 WS (WCX)=INS (8T% TO SP%-1)

To begin with, ST% = 1 so that the search starts at the first character in
the input string, and the word count variable, WC%. is set to zero (ie — L
+1) so that the first word found is stored in the zero element of the word
store array. The word count is incremented in each cycle so that the next
element of the array W$ is used next time.

The length of IN$ is now reduced by cutting off the word already stored
from the front end to leave INS(SP%+1 TO) and a value of 0 RETurned
by the FuNction. As WORDSTORE is therefore zero, the WORDS loop
is repeated. The dummy asterisk at the end is needed as the new INS is
always defined as one more than the last space, so that the ultimate end of
IN$ must not be a space.

12070 IN$=INS (SF%+1 TO)
12080 RETurn 0

Adding the following lines will produce a printout in the upper window
showing the reducing length of INS as the search proceeds.

150 UNDER #2, 1 : PRINT #2,"IN$"\ i
UNDER #2, 0

12010 PRINT#2,, INS

A check is made that there are not more than six (0 to 5) words in the
sentence, as that would exceed the array size. If this is true then WC% is
reset to —1, and WORDSTORE RETurns —1, so that we EXIT the
WORDS loop.

12050 IF WCY%>S THEN PRINT "SENTENCE TOO
LONG" 3 WCY=-1 : RETurn -1

When the search is completed (END REPeat WORDS), the list of words
found is printed out in the lower window.

. Chapter 3 Understanding Natural Language

160 UNDER #1, 1 1 PRINT #1,"W$(N}"\ i
UNDER #1, 0

200 FOR N=0 TO WC3

210 PRINT, WS(N);" *

220 END FOR N

A test is now made to see whether there is a match between words in the
sentence W$(N) and the objects in the vocabulary array OBS$(N) (see
Fio\fchart 3.2). Only words 2, 3 and 4 are checked as these are the only
pps;tble positions for the object in our restricted sentence format. Three
dlftere_m PROCedures are jumped to according to the position of the
matching word in the sentence. If no match is found a message is printed
and a new input requested. B

TAKE
OBTECT.
(0B3(N))

Flowchart 3.2: Looking for a Match.

230 FOR N=0 TO OB%
240 IF W$(2)=0B$(N) THEN NEITHER :
NEXT IN

(5]
n

Artificial Intelligence on the Sinclatr QL .

230 IF W$(3)=0B$(N) THEN EITHER :
NEXT IN

280 IF W$(4)=0B%(N) THEN BOTH :
NEXT IN

270 END FOR N

280 PRINT \,"object not found"

290 END REPeat IN

If the object was found as word 3, then there was neither adjective nor
adverb.

1000 DEFine PROCadura NEITHER
1010 PRINT \,"no adjective or adverb"
1020 END DEFine NEITHER

If the object was found as word 4. there could have been eirfier an
adjective or an adverb in the sentence (see Flowchart 3.3)

Flowchart 3.3: Adverb or Adjective.

2000 DEFine PROCadurea EITHER
2010 PRINT \,"either adjective ar adverb"

. Chapter 3 Understanding Natural Language

First we check for a match between the second word and the contents of
the adverb array.

2020 FOR N=0 TO AVZ

2030 IF We(1)=AV$(N) THEN PRINT ,
"ADVERB" : RETurn

2040 END FOR N

If no match is found then we check the third word against the adjective
list.

2050 FOR N=0 TO AJ%

2060 IF We(2)=AJS(N) THEN PRINT ,
"ADJECTIVE" : RETurn

2070 END FOR N

If a match is not found in either of these lists, then it would be useful to
indicate which word was not understood. The simplest answer is to check
whether the second word was not the verb “WANT’, as in that case the
second word must have been an adverb. On the other hand if the second
word was the verb then the third word must have been an adjective.
Notice that the actual word which did not match is now included in the
message. ’

2080 IF W8{1) <>"WANT" THEN PRINT \
"ADVERB "jWs(1);" NOT UNDERSTOOD" :
RETurn

2090 PRINT \"ADJECTIVE ";W$(2);" NOT
UNDERSTOOD" : RETurn

2100 END DEFine EITHER

If a match is found in any test then we RETurn. Note that these possi-
bilities are exclusive and that in four words we can only have one or the
other.

Where both adverb and adjective are present we must check for both
(with ADV_CHECK and ADJ_CHECK), and therefore a match in the
first test also jumps on to the second test (see Flowchart 3.4).

3000 DEFine PROCedure BOTH

3010 PRINT \"ADVERB and ADJECTIVE"
3020 ADV_CHECK

3030 ADJ_CHECK

3040 END DEFine BOTH

|

i

Artificial Intelligence on the Sinclair QL .

_PRINT
“ADVERB

NoT .
UNDERETOOD

Flowchart 3.4: Adverb and Adjective,

If an ADVerb is found then we RETurn to the last PROCedure (ie
BOTH) and continue with ADJ_CHECK. Otherwise the word not
recognised is reported before ADJ_CHECK is called.

4000 DEFine PROCedure ADV_CHECK

4010 FOR N=0 TO AVY

4020 IF W$(1)=AV$(N) THEN RETurn

4030 END FOR N

4040 PRINT “"adverb ";W$(1);" not understood"
4050 END DEFine ADV_CHECK

ADJ_CHECK works in the same way.

W
(=]

. Chapter 3 Understanding Natural Language

5000 DEFine PROCedure ADJ_CHECK

5010 FOR N=0 TO AJ%

5020 IF Ws(3)=AJ%(N) THEN RETurn

5030 NEXT N

5040 PRINT “adjective "j;W$(3);" not
understood"

$0S0 END DEFine ADJ_CHECK

What about punctuation?

As we already said, you usually recognise the end of a sentence because it
has a full stop, although when you type into a computer you usually forget
all about such trivialities. But what will happen in the program so far if
some ‘clever’ user puts in the correct punctuation? If you think for a
moment you will realise that the computer will start complaining as it will
no longer recognise the last word, as this will actually be split out as the
word plus the full stop.

We therefore need to check if the last character in the input string IN$
is a full stop. The best place to check PUNCTUATION seems to be
immediately after the INPUT. If the end character (EN§ = IN§$
(LEN(INS$))) is a full stop then simply CHOP this character off.and then
RETurn.

20 PUNCTUATION

6000 DEFine PROCedure PUNCTUATION
6010 EN$=INS (LEN(INS))

6020 IF EN$="," THEN CHOP 1 RETurn
6050 END DEFine PUNCTUATION

7000 DEFine PROCedure CHOF
7010 INS=IN$ (1 TO LEN(IN®)-1)
7020 END DEFine CHOP

Other punctuation marks may also appear at the end of the sentence so
perhaps we should look closer at the last character. More useful sentence
terminators are the question and exclamation marks which often indicate
the context of the words.

5030 IF EN$="7" THEN CHOP : PRINT #0,"
RUESTION?"\
6040 IF ENs="!" THEN CHOP : PRINT #0,"

EXCLAMATION"\

In many dialects of BASIC. the INPUT command will not accept any-
thing after a comma, which it reads as data terminator, bu.r igrtgnatgly

Sup;rBASIC has no objections. Commas may t.\e useful in mdmann%
different parts of a sentence, which could be examined as ‘sub-sentences

in their own right. However, in simple cases they are pest deleted and
replaced by spaces before the sentence is broken into wqrds (sgc
Flowchart 3.5). Note that this will only function totally correctly if there is
no space after the comma, as any space following a replfmed comma will
be seen as a new word. If no comma is found (CM% = 0) then we
RETurn. otherwise the lefthand part of IN$ (up to the comma), and the
righthand part of INS (beyond the comma) are taken and joined together

with a space.

Artificial {ruelligence on the Sinciair QL

f

TAKE ASCll
VALUE &F

LAS’
CHARACTER

Flowchart 3.5: Dealing with Punctuation.

100 COMMA

8000 DEFine PROCedure COMMA
B010 REPeat comloop
8020 CM%="," INSTR IN$

8030 [F CM%=0 THEN RETurn
8040 IN$=INS(1 TO CM¥-1) % " " & IN®(CMA+1
T0)

8050 END REPeat comloop
B0O&0 END DEFine COMMA

. Chapter 3 Understanding Natural Language

Apostrophes can be dealt with in the same way, except that we do not
replace them with a space but simply close up the words.

110 APOSTROPHE

9000 DEFine PROCedures APOSTROPHE

9010 REPeat aposloop

{020 AP%=""" INSTR IN®

030 IF AP%=0 THEN RETurn

040 INS=INS (! TO AP%-1) & INS(APY%+1 TO)
9050 END REPeat aposloop

7040 END DEFine APOSTROPHE

A sliding search approach

Although the method of examining a sentence described above will work
it has the disadvantage that it requires the sentence to be entered in a
particular restricted format. For example if you enter:

[WANT REALLY HOT CHOCOLATE CAKE
the computer will report:
OBJECT NOT FOUND

as it only looks for objects as far as the fifth word.

Using a sliding search of the whole sentence for each keyword, without
first dividing the sentence down into words, has the advantage that it
allows a completely free input format. In this approach we take the first
keyword and try to match it against the same number of letters in INS,
starting at the first character. If this test fails then it is automatically
repeated, starting from the second character, etc, until a match is found
or the end of IN$ is reached. For example if IN$ was ‘I WANT CAKE’
and the first keyword was ‘CAKE", the comparisens would be:

pass 1 I WA

pass 2 WA N

pass 3 WANT

pass 4 ANT

pass 5 NT C

pass 6 L Gk

pass 7 CAK

pass 8 C AKE (match found)

41

3
1
&

Artificial Inteiligence on the Sinclair QL .

We can use much of our existing program, but substantial changes are
also required. Therefore delete all the lines from 80 up to 9999 with
‘DLINE 80 TO 9999’ as a direct command and modify the DIM statement
in line 20 to expand the size of the wordstore array (WS$(N)) to twenty
words. The WORDSTORE FuNction will not be used here so you can
also remove that with ‘DLINE 12000 TO 12090°.

10 RESTORE

20 DIM W8{19,10)

30 SCREEN

40 SET_UP

50 REPeat IN

&0 WC%=-1

70 AT #0, 1,1 1 INS=GET$(1)
90 CLS #1 1 CLS #2

To replace the WORDSTORE FuNction we have a somewhat similar
FIND(T$) PROCedure (see Flowchart 3.6). This searches INS for the
temporary string (T$) which is passed to it as a parameter. As TS is passed
when FIND is called, it can be used to perform an INSTR check for any
particular string. If no match is found we RETurn. To report what has
been found, and so that we can use the words discovered later, we will
store each matched word (T$) in an array as it is detected. We have
already expanded the word store array. WS$, to hold up to 20 words
(which should be enough for even a very verbose sentence!).

1000 DEFine PROCadure FIND(T$)
1010 IN%=T$ INSTR IN$

1020 IF IN%=0 THEN RETurn
1040 WCU=WCY+1

1050 WS (WCH) =TS

1080 PRINT #2,,,Ts

1090 END DEFine FIND

Each object can be compared with IN$ by forming a loop, and similar
checks can be made for matching with words in the adverb and adjective
arrays.

120 FOR M=0 TO OB%
130 FIND(OBS (M)
140 END FOR M
150 FOR M=0 TO AV%
160 FIND(AVS (M)
170 END FOR M

. Chapter 3 Understanding Natural Language

180 FOR M=0 TO AJ%
190 FIND(AJ% (M))
200 END FOR M

PASS
TS

el
YES

INCREMENT
WARD
COUNT

T

STORE
WORD

PRINT
T$

Flowchart 3.6: Find (T8$).

The program waits until the time delay (500) runs out, or a key is pressed

before clearing out the INPUT wi :
& indow and REPeati ;
sentence. ng the request for a

250 DUMMY$=INKEY$ (500)
260 CLS #0
270 END REPeat IN

Partial matching

One ﬂc_ivantage of the sliding search is that vou can easily arrange to
recognise a series of connected words by only looking for some key

43

Artificial Intelligence on the Sinclair QL .

characters. This is obviously useful as it saves you having to put both
single and plural nouns such as BISCUIT and BISCUITS. If you amend
the DATA in line 11020 as below then both will now be recognised.

11020 DATA "BISCUIT","BUN","CAKE","COFFEE"
, "TEA", "WATER"

However life is not that simple, as using BUN rather than BUNS can
produce some unexpected results. On the plus side it will detect BUN,
BUNS. and BUNFIGHT but unfortunately BUNCH, BUNDLE,
BUNGALOW, BUNGLE, BUNK, BUNION, and BUNNY as well!
This problem is not restricted to prefixes as the computer will also not
distinguish between HOT and SHOT. You could include a check that the
character before the start of each match was a space (ie that this was the
start of a word., see Flowchart 3.7). IN% gives the current start of word
position, so IN$(IN%—1) is the character before this. and we RETurn if

this is a space.

Flowchart 3.7: Checking That This is the Start of a Word.

1030 IF INS(IN%-1)<>" " THEN RETurn

For this to function correctly on the first word, we must add a space to the
start of INS.

80 INg=" " & IN$

In a similar way vou could use checks on the next letter after the match, or
the length of the word, to restrict recognised words.

Putting things in order

Although we have now detected all the words in the sentence. regardless
of their position or what else is present, they are found and stored in the
order in which they appear in the DATA. This is because the comparison
starts with the firstitem in the object array rather than the first word in the
sentence. [t would be useful if we could rearrange the wordstore array so
that the words in it were in the order in which they appeared in the

sentence.

. Chaprter 3 Understanding Natural Language

_'[‘o do that we must keep a record of the sentence position of the word
IN "7: and word count, WC%, as each word is matched in a new worc,;
position array, WP%. This is a two-dimensional array with the sentence
position kept in the first element, WP(WC%.0), and the word count
WP(_WC%.I}. in the second. To make the display clearer, ‘word’ anci
"position’ (ie character position of start of the match in INS) labels have
been added.

20 DIM W8(19,10) & DIM WP(19,1)
110 PRINT , "word","position"

1060 WP (WC%,0)=INY% : WP(WCY,1)=WC%
1070 PRINT #2,,WP (WC%, 1) ,WP(KC%,0)}

The actual sorting routine which does the rearrangement is in the
ORDER PROCedure which is only reached if a match is found.

210 ORDER

The SORT loop performs a simple exchange sort (see Flowchart 3.8). Tt
tak5§ the sentence position (IS%) of the first word found (first element in
the first dimension, WP(0.0)) and compares it with the sentence position
(IS%) of the second word found (second element in the first dimension
WP(0+1.0)). If the position variable for the first word is of higher valué
than that for the second word then the first word found is Earthe?alonu the
sentence than the second word, and these therefore need to be excha:ged
by g\yapping through a dummy variable (D%). This will put the sentence
position pointers right, but the word count markers also need to be
rearranged to the correct positions. This process is repeated until the
WQrd pointers are all in the correct order. Notice that the actual contents
of _the string array which holds the words are not altered but only the
pointers (index) to them.

NO
SWAP
YES | Sentence SoRp YES
POSITION COUNT
POINTERS POINTERS

NO

Flowchart 3.8: Putting Words in Order.

45

e

Artificial Intelligence on the Sinclair QL . . Chapter 3 Understanding Narwral Language

100 PRINT #2,,"store","position"

O e R T 2000 DEFine PROCedure ORDER

2010 REPeat SORT
2020 FOR N=0 TO WC%-1

2030 IF WP (N, 0) >=WP (N+1,0) THEN

2040 D%=WP (N, 0} 1 WP(N,0)=WP (N+1,0) 1
WP (N+1, 0) =D¥%

2030 DZ=WP (N, 1) i WP{N,L1)=WP{(N+1,1) i

WP (N+1, 1) =D%
2060 END REPeat SORT

H

2070 END IF
m 2080 END FOR N
= 2090 END DEFine ORDER
4
o
= C If the strings are now printed in revised word count. WC%, order they
E ’I - B will be as they were in the original sentence, which should make it easier

to understand them.

2

= % 220 FOR N=0 TO WCY%

v q 230 PRINT ,N+1, WP (N, 0), , W (WP (N, 1))
= 0 240 END FOR N

o

If you RUN some test sentences you will be able to see the original
position of the words in the store (top window) and the words then
rearranged as in the sentence in the bottom window (see Figure 3.1).

woolate

cha

hot

want

i

TR

Figure 3.1: Sort.

T

®
Chapter 4
Making Reply

More sensible replies
We have considered at length how to decode sentences which are typed
into the computer, but the replies it has produced so far have been very
limited and rigid. Although many of the original words in a sentence are
often used in a reply, in a real conversation we look at the subject of the
sentence and modifv this word according to the context of the reply.

For example the input:

INEED REST
might expect the confirmatory reply:
YOU NEED REST
and similarly:
YOU NEED REST
should generate:
I NEED REST
If vou look at the situation logically you will realise that for each input
subject there is an equivalent output subject. and that we have simply
chopped off the original subject and added the remainder of the sentence
to the appropriate new subject.
‘I" is only a single character so we could check (IN$(1)) and. if this was

‘I, PRINT "YOU" would be added to the front of the remainder of the
input IN$(2 TO).

10 SCREEN

20 REPeat LOOP

30 AT #0, 1, 1 : INS=GET$(1)
40 INS=INS &" "

49

Artificial Inteiligence on the Sinclair QL .

&0 IF IN$(1)="I" THEN PRINT "“YOU" &
INS(2 TD)

70 DUMMY$=INKEY$ (500)

100 CLS #0

110 END REPeat LOOP

(Note that the SCREEN format and the GETS(1) routine are exactly the
same as described for the last program.)

In the same way, the first three characters IN§(1 TO 3) could be
checked against *YOU” and replaced when necessary by 'T":

80 IF IN$(1 TO 3)="YOU" THEN PRINT "I"
& INS(4 TO)

If you try that out with a series of sentences you will see that it works OK
until you type something like:

YOU ARE TIRED
which comes back as the rather uninteiligent:
[ARE TIRED

We could get around this by checking for the phrases ‘1 AM’ and "YOU
ARE’ as well as ‘'[' and *YOU" on their own, but notice that you must test
for these first and add NEXT LOOP to the end of lines 50 and 70 to
prevent a match also being found with *I" and "YOU" alone.

S0 IF IN$(1 TO 4)="1 AM" THEN PRINT
“YOU ARE" & INS$(S TO) 1 NEXT LOOP

70 IF INS(L{ TO 7)="YDU ARE" THEN PRINT
"I AM" & IN$(B TO) : NEXT LOOP

Wider dimensions
Although this method will work, the program soon gets very long-winded
as a separate line is needed for each possibility as we must take into
account the length of the matching word or phrase. Where many words
are to be checked it is therefore better to use a multidimensional string
array which can be compared with the input by a loop.

A convenient format is to have a two-dimensional array, I$(N,M),
where the first dimension of each element, IS(N,0), is the input word or

N

. Chapter 4 Making Reply

phrase and the second dimension, I$(N,1), is the corresponding output
word or phrase. It is easier to avoid errors if these are entered into DATA
in matching pairs and READ in turn into the array. Start a new program
with these lines which SET_UP the array.

20 SET_UP

11000 DEFine PROCedure SET_UP

11010 RESTORE

11030 DIM 18(3,1,7)

11100 DATA "I AM","YOU ARE","YOU ARE","1 AM"
11110 DATA “I","YOU", "you","I1"

11200 FOR N=0 TO 3

11210 READ I%(N,Q) 1 READ IS(N, 1)

11220 END FOR N

11390 END DEFine SET_UP

We will use a looping sliding string search again, which for the moment
will just print out the corresponding word or phrase to that matched,
I$(N.1) (see Flowchart 4.1). One advantage of the sliding string search
here is that it will happily match embedded spaces in phrases as we have
not broken IN$ into ‘words’ before matching. (Note that the SCREEN
format and the GETS$(1) routine are once again the same as described for
the last program.)

Flowchart 4.1: Using a Corresponding Reply.

10 SCREEN

30 REPsat IN

40 AT #0, 1, 1 3 INS=GETS(1)
30 IN#=IN$&" "

&0 FOR M=0 TO 3

Artificial Intelligence on the Sinciair QL .

70 1S%=I8(M,0) INSTR INS
80 IF I8%4>0 THEN EXIT M
20 END FOR M

120 DUMMY$=INKEY#$ (500)
130 CLS #0
140 END REPeat IN

The required response word is in the second dimension of the array
(I$(M,1)) so we PRINT this when the loop is left.

100 PRINT 1%(M,1)

To get a fuller reply we need to add back on the rest of the original
sentence (see Flowchart 4.2). It is not difficult to define the "rest of the
sentence’ as we must simply subtract the matched word from the front
of the sentence. [S% points to the start of the matched word. and we
can easily find the LENgth of this word as the word is stored in the
first dimension of the array as I$(M,0). We therefore need to add
IN$(IS% +LEN(I$(M,0)) on to the front of our response word. To make
clear what is happening, the individual parts of the reply are printed
separately in the upper window.

100 PRINT #2, I%(M, L), INS(ISU+LEN(I$(M,0
¥ T0)

110 PRINT I8(M,1) & IN®(ISU+LEN(I®(M,0))
T0)

Now when you try:

I AMCLEVER

the computer agrees:

YOU ARE CLEVER

Before vou feel too clever try:

WE ARE STUPID

which may well surprise you when it gives the reply:

YOUD (111)

52

. Chapter4 Making Reply

TAKE
INPUT

REMOVE
FIRST
WORD

Flowchart4.2: A Fuller Reply.

If you think for a few moments you will see that one of our keywords is
hiding inside another word in this particular sentence. If you cannot see it
then try:

WE ARE INCOMPETENT
where the computer returns:
YOUNCOMPETENT

Although the keywords are tested for in turn, we EXIT the loop when a
match is found so only the first match is reported. As the keyword is only
checked for once in each sentence, embedded ‘I" only causes problems
when it precedes the keyword or there is no keyword in the sentence.

To get around this we must consider which keywords may cause
problems. Although the letter ‘I" is very common it is very rarely the last
letter in a word. and so we could check that there is a space after the
keyword. We must treat ail keywords in the same way so add a space to

Ln
()

Ariificial Intelligence on the Sinclair oL .

the end of them all. This can be done by changing the DATA. Note that
there is no need to add spaces on to the end of the replies.

11100 DATA "I AM ","YUU ARE","YDU ARE ","I AM"
11110 DATA "1 "g"YDU","VUU n npw

We now need to subtract one less character from IN$, as a space has been
included as part of the keywords.

110 PRINT I$(M,1) & INS(ISU+LEN(I®(M,Q))
-1 70

The computer will now readily agree on your incompetence.
If the first key is not at the start of the sentence then everything before it
will be ignored in the reply. For example the answer to:
WHAT IFIFALL?
will be:

YOU FALL?

Some strange results can still occur when two true keywords are present.
For example:

WHATIF YOU AND [FALL

gives

YOU FALL

and

WHAT IFI AND YOU FALL

replies

YOU AND YOU FALL

However adding more suitable keywords is easy and some combinations
will just not be acceptable. To make the routine more general it is better

to define the number of keywords as a variable, KW%. and use this in
place of the actual number.

. Chaprer 4 Making Reply

&0 FOR M=0 TO 3

11020 KW%=5

11030 DIM I$(KW%,1,7)

11120 DATA "WE ", "WE","THEY ","THEY"
11200 FOR N=0 TO KW%

Now the answer to:
WHAT IF WE FALL?
is the more logical

WE FALL

Pointing to replies

So far our computer has displayed only slightly more intelligence than a
parrot as it has merely regurgitated a slightly modified version of the
input. The next stage, therefore, is to make it take some logical decisions
on the basis of the input before it replies.

The numbers of subjects, SU%, verbs, VB%, and replies, RP%, are
defined as variables so that the program can be easily expanded, and
three arrays using these are set up. (As we have a zero element in the
array these values are all one less than the number of words.) S$(n.n) is a
two-dimensional array which is concerned with the subjects in the input
and output sentences. The first dimension, (n,0) contains the recognised
subject words and phrases allowed in the input, and the second dimension
(n,1) contains the opposites which may be needed in the output. V$(n)
holds the legal verbs. and R$(n) a series of corresponding replies.

10 SCREEN
20 SET_UP

11000 DEFine PROCedure SET_UP

11010 RESTORE

11020 SU%=26 : VBY%=6 1 RPU=b

11030 DIM S$(8U%,1,7) : DIM VE(VB%,7)
DIM R#(RP%,350)

The first six lines of DATA contain paired input and output subjects (see
Table 4.1) and these are READ into corresponding dimensioned

tn
O

Artificial Intelligence on the Sinclair QL

Tabled.1: Pairs of Subjects in S$(n,n}.
S$(n,0) S$(n.1)
IHAVE YOU HAVE
I'VE YOU'VE
IAM YOU ARE
I'™M YOU'RE
YOU HAVE ITHAVE
YOU'VE I'VE
YOU ARE [AM
YOU'RE '™
YOU [

SHE HAS SHE HAS
SHE IS SHE IS
SHE'S SHE'S
SHE SHE
THEY'VE THEY'VE
THEY ARE THEY ARE
THEY'RE THEY'RE
THEY THEY

HE HAS HE HAS
HE IS HE IS
HE’S HE'S

HE HE

WE HAVE WE HAVE
WE'VE WE'VE
WE ARE WE ARE
WE'RE WE'RE
WE WE

1 YOU

elements in the S$(n,n) array. As the pronouns (‘I', *YOU’, etc) are
frequently linked to other words to form phrases (such as ‘I'VE’) these
combined forms are also included in the DATA. Notice that these are
arranged in such an order that the most complete phrase containing a
keyword is always found first. A space is added on to the end of each
element, so that some clashing of partial matches is avoided and a space is
automatically formed in the reply.

11040 DATA "I HAVE ","YOU HAVE ","I'VE ",
"YOUVE ","I AM ","YOU ARE ","I AM
"y "YOU’RE ", "YOU HAVE ", "1 HAVE "

. Chapier 4 Making Reply

11050 DATA "YOU’VE ","I’VE ","YOU ARE ",
“I AM ", *YOU'RE *,"I'M *,*YOU *,"I *

11060 DATA “SHE HAS “,"SHE HAS ","SHE IS *
f “SHE IE"] IISHE,SII' IISHEI Sll' |CSHEII. IISHEII

11070 DATA “THEY’VE ","THEY’VE ","THEY ARE
",“THEY ARE ","THEY’RE ","THEY’RE ",
"THEY ", "THEY "

{1080 DATA "HE HAS ","HE HAS ","HE IS ", "HE
!8 II'HHEFS II'IIHElS II,NHE “'!IHE II’DINE
HAVE ", "WE HAVE "

11090 DATA "MWE’VE ","WE’VE ","WE ARE ","WE
ARE ll’lle’RE II’IIwE’RE Il’lle II’IINE II’III

II'IIYDU L

11140 FOR N=0 TO SU%
11150 READ S8(N,0) 1 READ S8(N,1)
11160 END FOR N

The next DATA line contains the main verbs which are READ into
VB%$(n). The verb ‘to be’ is omitted as its variations are so complicated,
and many of its versions are already accounted for in the ‘subject’ check.

11100 DATA "HATE","LOVE","KILL","DISLIKE",
YLIKE","FEEL", "KNOW"

11170 FOR N=0 TO VBY
11180 READ V$ (N}
11190 END FOR N

The last set of DATA contains the replies which are put into R$(n),
before control returns to the main part of the program. To make things
simple to understand and check at this stage, all the replies contain the
original verb, although of course they could say anything.

11110 DATA "PROBABLY HATE YOU AS WELL","LOVE
You ToO0"

11120 DATA "KILL YOU","DISLIKE LOTS OF THINGS"

{1130 DATA "LIKE CHIPS","FEEL POWERFUL?","KNOW

EVERYTHING"
11200 FOR N=0 TO RP%
11210 READ R$(N)

11220 END FOR N
11230 END DEFine SET_UFP

Ariificial Intelligence on the Sinclair QL .

Matching

The input string is now compared with the list of subjects in the first
dimension of S$(n.n) (see Flowchart 4.3). If there is no SUB_MATCH
then the NEXT IN is requested, or else a subject match variable, SM%. is
set to the element number at which a match was found. (The fact that no
subject was found will be indicated by the fact that the input window (#0)
does not clear before the next input.)

30 REPeat IN
40 AT #0, 1, 1 1 IN$=GET$(1)

50 INS=INS & " "

50 SUB_MATCH

90 DUMMY$=INKEY$ {500)
100 CLSHO

110 END REPeat IN

1000 DEFine PROCedure SUB_MATCH
1010 FOR M=0C TO SUZ

1020 18%=5% (M, 0) INSTR INS
1030 IF 18%>0 THEN

1050 SMY%=M

1060 RETurn

1070 END IF

1090 END FOR M

1100 NEXT IN

1110 END DEFine SUB_MATCH

The verb array is now compared with IN$. If no verb is found then the
input is rejected, or else the VERB_MATCH variable, VM %, is set.
70 VERB_MATCH

2000 DEFine PROCedure VERB_MATCH
2010 FOR M=0 TO VBZ

2020 18%=Vs (M) INSTR INS
2030 IF 18%>0 THEN
2040 YM%=M

2060 RETurn

2070 END IF

2080 END FOR M

2090 NEXT IN

2100 END DEFine VERB_MATCH

. Chapter 4 Making Reply

SET
SUBTECT
MATC
POINTER

PICK UP

Flowchart4.3: Setting Match Pointers.

Artificial Intelligence on the Sinclair QL .

Making reply B A

Now that the subject and verb have been identified. we can pick up the

appropriate reply by using VM% as a pointer to the reply array, R3(n).
20 REPLY

3000 DEFine PROCedure REPLY
3010 RLS=R$ (VML)

In the simplest case we can just add the appropriate subject to the front of
RLS before we print it.

3060 RL$=5$(SM4,0) & RLS

3150 PRINT RL3
3190 END DEFine REPLY

Now, for example, if you type in:

I HATE COMPUTERS

the program will reply with
[PROBABLY HATE YOU AS WELL
and:

[KNOW A LOT

generates:

[KNOW EVERYTHING

Alternative subjects

If you prefer the machine to agree with you rather than trying to beat you
at your own game, then just change the subject added to RLS to the
second element of the array (the ‘opposite’).

3060 RL®=88(SMX,1) & RLS
Now:

[KNOW A LOT

60

. Chapter 4 Making Reply
generates:
YOU KNOW EVERYTHING

For more variety you can pick the subject at random from the first or
second element, so that the reply is not predictable.

3040 RL$=5% (SM%,RND(1)) & RL3

Putting the subject in context

It would be more sensible altogether if we chose the correct subject
according to the context of the reply, but to do that we must have markers
in the reply array. We will use a slash sign. */, to indicate that the word in
the first dimension of the subject array is to be used, and an asterisk **' to
indicate that the word in the second dimension is to be used.

11110 DATA "/PROBABLY HATE YOU AS WELL",
"/LOVE YOU TOO"

11120 DATA "/KILL YOU","¥DISLIKE LOTS OF
THINGS"

11130 DATA "/LIKE CHIPS","$FEEL POWERFUL"
, "XKNOW EVERYTHING"

We can search the reply string, R$(VM%), pointed to by the verb
marker, VM%, for a slash sign, /. If a slash sign is found then the
contents of the first dimension of the subject array, S$(SM%.0), are
added to the reply, RLS, less the first character (the slash sign. see
Flowchart 4.4).

YES CUT OFF ADD ON
.y PR f—
74 DIMENSION

NO
YES CuT OFF SUBTES W
' SELOND
* DIMENSION
NO

Flowchart 4.4: Putting the Subject in Context.

01

Artificial Intelligence on the Sinclair QL .

3000 DEFine PROCedure REPLY

3010 RL$=R$ (VM%)

3030 PRINT #2, RL%

3040 18%="/" INSTR RL%

3080 IF 18%>0 THEN

3040 RL$=88%(SM%,0) & RLS$(IB%+1 TO)
3080 END IF

If no slash sign is found in the reply, a second search is made for an
asterisk, **. If this is found then the second dimension of S3(n.n) is used
in the same way.

3090 IS%="%" INSTR RLS$

3100 IF 18%4>0 THEN

3110 RL$=8S8 (SMZ,1) % RLS(ISY%+l TO)
3130 END IF

3150 PRINT RLS

3190 END DEFine REFLY

Now:

ILOVEME

will give:

ILOVE YOU TOO

but:

[FEEL POWERFUL

produces:

YOU FEEL POWERFUL

Inserting into sentences

To make things simple we have always started our reply sentences with
the subject, but in real life this is not always the case. Now that we have
markers in the replies to indicate what type of subject is to be added, we
can also use them to indicate where in the reply to insert this word or

phrase. First we will amend the DATA so that the word to be inserted is
never at the start, to make the insertion process obvious.

62

. Chapter 4 Making Reply

11110 DATA "DO YOU REALISE THAT /PROBABLY
HATE YOU AS WELL","WELL /LOVE YOU TOO"

11120 DATA "IF /DON’T KILL YOU FIRST","S0
WHAT /DISLIKE LOTS OF THINGS ESPECIALLY
‘ n

11130 DATA "DO /LIKE CHIPS","WHY DO %FEEL
POWERFUL?", "XTHINK ¥KNOW EVERYTHING"

(Note that the space after the asterisk in the DISLIKE reply is essential as
a marker must not be the last character in a reply string.)

We actually already have a record of where to insert the word as IS%
tells us where in the reply the slash or asterisk was found. All we need to
do is to take the part of the reply before the marker (RL$(1 TOIS% —1)),
add the correct version of S$(SM%.n), and then the rest of the reply
(RLS$(IS% +1 TO)).

3060 RL$=RL$(1 TO IS%-1) & S$(8M%,)
% RL$(ISY%+1 TO)

3110 RL$=RLS$(1 TO IS%-1) & S$(SM%, 1)
% RL$(IS%+L TO)

Now:

[WILL KILL HIM

produces:

[F I DON'TKILL YOU FIRST

and:

I DISLIKE COMPUTERS

gives:

SO WHAT YOU DISLIKE LOTS OF THINGS

Although we are now inserting the subject into the reply sentence more
naturally, we are only dealing with one subject per sentence. Some more

minor modifications will allow us to insert any number of subjects into a
sentence.

11120 DATA “"IF /DON’T KILL YOU FIRST","SO
WHAT /DISLIKE LOTS OF THINGS ESPECIALLY
' "

11130 DATA "DO /LIKE CHIPS","WHY DO ¥FEEL
POWERFUL?", "¥THINK $KNOW EVERYTHING"

Artificial Intelligence on the Sinclair QL

We need to define the initial reply (RL$) as R$(VM%) and then REPeat
the CHECK for markers until no more are found (IS% = 0) when we
EXIT the CHECK loop (Flowchart 4.5).

SET TAKE ADD ON ADD J
"B | FOINTER |~ LEFT EnD WERer —{ RIGHT END
MATCH OF REPLY DIMENSION OF REPLY
NO
RESET
SEARCH
START
T
YES | SET TAKE ADO oM ADD J
POINTER —— LEFT END —— J4275CT = RIGHT END
MATCH OF REPLY DIMENSION OF REPLY
NO

Flowchart 4.5: Inserting into a Sentence.

3000 DEFine PROCedure REPLY
3010 RL$=R$ (VM)
3020 REPeat CHECK

3030 PRINT #2,RL%

3040 I8%="/" INSTR RL$

3050 IF IS%>0 THEN

3040 RL$=RL#(1 TO IS%-1) & S8 (SM%,0)

& RL$(IS4+1 TO)
3070 NEXT CHECK

3080 END IF

3090 I8%="x" INSTR RL$

3100 IF 18%>0 THEN

3110 RLS$=RLS (1 TO IS%-1) & S8$(SMi,1)

% RL$(IS%+1 TO)
3120 NEXT CHECK
3130 END IF

fd

. Chaprer 4 Making Reply
3140 IF 18%=0 THEN
3150 PRINT RL%
3160 EXIT CHECK
3170 END IF

3180 END REPeat CHECK
3190 END DEFine REPLY

Now:

[KNOW EVERYTHING

produces:

YOU THINK YOU KNOW EVERYTHING
and:

[DISLIKE COMPUTERS

gives

SO WHAT I DISLIKE LOTS OF THINGS ESPECIALLY YOU

OBJECTions on the SUBJECT

Everything is starting to look rosy until you try something like:
IHATE YOU
which replies

DO YOU REALISE THAT YOU PROBABLY HATE YOU AS
WELL

The probiem here is that we are jumping out of the search routine as soon
as the first match is found, and that although we are checking for the
subject ‘I" we are finding the object “YOU’ first. As “YOU" comes before
‘" in the subject array this is found first, in spite of the fact that it comes
later in the sentence.

As we cannot practically mimic all the intricacies of the human brain we
will have to make the assumption that the subject always comes before
the verb, and the object after it. In the program so far we have been
checking for the subject before we checked for the verb, so we will have to
reverse that order.

Artificial Inteiligence on the Sinclair QL .

60 VERB_MATCH
70 SUB_MATCH

The verb position in the input is the value of [S% when a verb is found, so
we will save that as a verb position, VP%, pointer.

2000 DEFine PROCedure VERB_MATCH
2010 FOR M=0 TO VB%

2020 18%=Vs$ (M) INSTR IN$
2030 IF 18%>0 THEN
2040 VMZ=M

2050 VP%=18%

2060 RETurn

2070 END IF

2080 END FOR M
2090 END DEFine VERB_MATCH

SET_ (vM)
VERB
MATCH

SET (VP
VERB
PASITION

SET _ (5M)
SUBJECT

Flowchart 4.6: Rejecting Object Matches.

66

. Chapter 4 Making Reply

Now when a match with the subject array is found we can compare that
position, IS%. with the stored verb pointer, VP%. and reject the match if
the match is positioned after the verb (see Flowchart 4.6).

1000 DEFine PROCedura SUB_MATCH
1010 FOR M=0 TO SU%

1020 I8%=58(M,0) INSTR INs$
1030 IF I8%>0 THEN

1040 IF 18% < VP% THEN
1050 SMi=M

1060 RETurn

1070 END IF

1080 END IF

1090 END FOR M
1100 NEXT IN
1110 END DEFine SUB_MATCH

A change of tense

Although both ‘LIKE’ and ‘DISLIKE’ contain the sequence ‘L-I-K-E”,
we find ‘DISLIKE’ correctly as it is before ‘LIKE' in the array. But if we
change to the past tense of the verb it may or may not be found. With the
first five verbs the situation is straightforward as to change to the past
tense we just add on a ‘D’ at the end of the present tense. Both forms are
therefore accepted.

HATE HATED
LOVE LOVED
KILL KILLED
DISLIKE DISLIKED
LIKE LIKED

However, with the last two verbs the word changes completely. so there
can be no simple match. Although we might get away with checking for
‘KN, as this is a rare combination, there is no practical way we can use
such a common group as ‘FE" as a keyword.

FEEL FELT
KNOW KNEW

It is easier if we treat all verbs in the same way and, if there are no

67

Artificial Intelligence on the Sinclair QL .

constraints on memory, then we can simply put all the possible versions
into the verb array in pairs.

11020 BUZ=26 1 VBU=13 1 RPuL=%

11100 DATA "HATE", "HATED", "LOVE","LOVED",
"KILL","KILLED","DISLIKE", "DISLIKED"

11105 DATA "LIKE","LIKED","FEEL","FELT",
"KNOW" , "KNEW"

Unless we want to have different replies for the different tenses, we will
now have to divide the verb match variable, VM%, by two. to point to the
correct reply for both forms.

2040 VM%=INT (M/2)

68

CHAPTER 5
Expert Systems

A human expert is someone who knows a great deal about a particular
subject and who can give you sensible advice (‘expert opinion’) on it.
Such expertise is only acquired after long training and a great deal of
experience, so unfortunately real experts are few and far between. In
addition they are often not on hand when a problem needs to be solved.

Scientists have therefore applied themselves to the problem of
producing computer programs which mimic the functions of such human
experts. Such programs have the advantage that they can be copied very
easily to produce an infinite number of experts, and of course they do not
need tea-breaks, sleep, pay-rises, etc, either! Of course the computer
must be totally logical and can still only follow pre-programmed
instructions entered by the programmer. It is interesting to note that
science fiction authors have envisaged problems when the ultimate
experts (such as HAL in ‘2001: A Space Odyssey’ or Isacc Asimov’'s
positronic robots) are faced with alternative courses which conflict with
more than one of their prime directives and produce not system crashes
but ‘pseudo-nervous breakdowns’.

Before we can start writing programs for expert systems we must ask
ourselves how a human expert works.

Let us first consider the simplest situation where the expert’s task is to
find the answer to a known problem.

First of all he takes in information on the current task

Secondly he compares this with information stored in his brain and looks
for a match

Finally he reports whether a match has been found or not

What we need here is simply a database program which tries to match the
input against stored information (see Flowchart 5.1). A user-friendly
system would accept natural language (see earlier) but to keep things
simple here we will stick to a fixed input format. To start with, let’s look at
recognising animals by the sounds they make. We use a START
PROCedure to set up two arrays: the question array, QUS(n), contains

69

Artificial [ntelligence on the Sinclair QL .

PRINT

ANSWER

Flowchart5.1: A Simple ‘Expert’.

the sounds which are known. and each element of the answer array,

ANS(n), contains the name of the relevant animal.

10 SCREEN
20 START

10000 DEFine PROCedure SCREEN
10010 MODE 4

10020 CLS #0 1 CLS #1 : CLS #2
10030 END DEFine SCREEN

11000 DEFine PROCedure START

11010 RESTORE

11020 DIM QUS(4,5),AN$(4,5), IN$(5)

11030 DATA "MIAOW","CAT","WUFF","DOG","MOOQ"
. ucuun, " H-DUT", "OWL", "NEIGH" , "HORSE"

11040 FOR N=0 TO 4

11050 READ QUS(N) 1 READ ANS(N)

11060 END FOR N

11070 END DEFine START

Now we just need to ask for a sound, using our GETS$(1) FuNction, and
compare it with the contents of QUS(n). If a match is found then an
ANSWER PROCedure is called.

70

. Chapter 5 Expert Systems

30 REPeat QUESTION
40 PRINT\"WHAT NOISE DOES IT MAKE? "j
S0 IN$=GET$ (1)

&0 FOR N=0 TO 4
70 IF INs=QUS (N) THEN ANBWER
80 END FOR N

50 PRINT"SORRY I DON’T KNOW THAT ONE"
100 END REPsat QUESTION

12000 DEFine PROCadure ANSWER

12010 PRINT"AN ANIMAL THAT ";QU$(N);"S IS
A ";ANS(N)

12020 END REPeat GUESTION

12030 END DEFine ANSWER

Perhaps we should say at this point that our computer expert may well be
better at this task than the human as it cannot make subjective judge-
ments, become bored, or accidentally forget to check all of the in-
formation in its memory. On the other hand it is not very literate as it
reports ‘A OWL’, etc. (We will leave you to tidy that up by adding a
routine which checks whether the first letter of the answer array match is a
vowel.)

Branching out

The example above is very simple as only one question is asked, and there
is only one possible answer. In reality we need to be able to deal with
more difficult problems, where the answer cannot be found without
asking a whole series of questions. For example what should an expert do
if he put the key in the ignition switch of his car and turned it, but nothing
happened?

There could be a number of reasons for this:

FLATBATTERY
BAD CONNECTIONS
SWITCH BROKEN
STARTER JAMMED
STARTER BROKEN
SOLENOID BROKEN

To find the cause he should follow a logical path and make a number of
checks. The first thing to do is to check whether it is only the starter motor
which is not working?

Artificial Intelligence on the Sinclair QL .
IS IGNITION LIGHT ON? (Y/N)

If the answer to this is "N then there is no power at the switch, so the cause
must be one of the first three possibilities listed above. We can narrow
things down more by finding out if the lights work:

DO LIGHTS WORK CORRECTLY? (Y/N)

If the answer is yes then the battery cannot be flat, and it must be
connected to the light switch correctly. so presumably the switch is
broken and a suggestion can be made that you replace it.

REPLACE IGNITION SWITCH

If the lights do not work then the connections should be checked.

ARE BATTERY CONNECTIONS OK? (Y/N)

If the answer is yes then the battery is flat so you must charge it (or push!).
CHARGE BATTERY OR PUSH CAR

In the same way a sequence of checks could be made to deal with the
situation where there is power but the starter mechanism itself does not
work (the last three possibilities). The simplest way to program this
branching structure is a series of IF-THEN tests which call the
appropriate PROCedures according to your response (see Flowchart
5.2).

10 SCREEN
20 START

10000 DEFine PROCadure SCREEN
10010 MODE 4

10020 CLS #0 1 CLS #1 : CLS #2
10030 END DEFine SCREEN

11000 DEFine PROCedure START
11010 PRINT \"FAULT DIAGNOSIS"
11020 IGNITION

11030 END DEFine START

12000 DEFine PROCedure IGNITION

2

. Chapter 5 Expert Systems

Flowchart 5.2: A Branching ‘Expert’.

12010 PRINT \"IS IGNITIDN LIGHT ON (Y/N) "3
12020 IN$=GET$(1)

12030 IF IN#="Y" THEN REST

12040 LIGHTS

12050 END DEFine IGNITION

13000 DEFine PROCedure LIGHTS

13010 PRINT \"DO LIGHTS WORK CORRECTLY (Y/N)"jy
13020 IN$=GET$(1)

13030 IF INs="Y" THEN BATTERY

13040 PRINT \"REPLACE IGNITION SWITCH "

13050 START

13040 END DEFine LIGHTS

13

Artficial Intelligence on the Sinclair QL .

14000 DEFine PROCedure BATTERY
14010 PRINT \"ARE BATTERY CONNECTIONS OK

(Y/N) "3
14020 IN$=GET$ (1)
14030 IF INS$="Y" THEN CHARGE

14040 PRINT \"REPAIR CONNECTIONS "
14050 START
14060 END DEFine BATTERY

15000 DEFine PROCedure CHARGE

15010 PRINT \"CHARGE BATTERY OR PUSH CAR "
15020 START

15030 END DEFine CHARGE

16000 DEFine PROCedure REST
16010 STOP
16020 END DEFine REST

This sort of program is relatively easy to write, but as usual is inefficient as
it becomes longer and more complicated.

Pointing the way
A more efficient way to deal with the situation is to put the text into arrays
and have pointers which direct you to the next question or reply,
according to whether you answer yes or no to the current question (see
Flowchart 5.3).

The format for entering the DATA for each branch point is then:

(TEXT), (pointer for *YES’), (pointer for ‘NO")

The first question was:

IS IGNITION LIGHT ON? (Y/N) A |
If the answer was ‘N’ then you need to ask the second question:

DO LIGHTS WORK CORRECTLY? (Y/N) 2
Otherwise you need to continue with the other part of the diagnosis
(which we have not included but which would be point 7). We need to set

up three arrays: OPS$(n) contains the output (text), Y(n) the pointer for
‘yes’, and N(n) the pointer for ‘no’. To make the program easy to modify

74

. Chapter5 Expert Svstems

SET
CURRENT
POSITION

(cP=1)

CP POINTED
TO BY
N(cP)
CP_POINTED
TO BY,
Y(CP)

Flowchart 5.3: Pointing to the Next Output.

a variable. NP%, is used for the number of points. The DATA is read in
groups of three into each element in these arrays. Where the DATA point
is a possible end of the program this is indicated by the Y(n) and N(n)
pointers being set at zero. (Note that the SCREEN PROCedure is the
same as in the last program, but that the rest of the program is new.)

10 SCREEN
20 START

11000 DEFine PROCedure START

11010 RESTORE

11020 NP%=7 : DIM OP$(NP%,30),Y (NP%), N(NP%L)
11030 DATA "I18 IGNITION LIGHT ON",7,2

11040 DATA "DO LIGHTS WORK CORRECTLY",3, 4
110%0 DATA "REPLACE SWITCH",0,0

11060 DATA "ARE BATTERY CONNECTIONS OK",5,6
11070 DATA "CHARGE BATTERY OR PUSH CAR",0,0

~1
w

Artificial [ntelligence on the Sinclair QL .

11080 DATA "REPAIR CONNECTIONS",0,0

11090 DATA "rest of program”,0,0

11100 FOR M=1 TO NP%

11110 READ OP$(M) 3 READ Y{(M) : READ N(M)
11120 END FOR M

11130 END DEFine START

The actual running routine is very simple. A pointer, CP%, is used to
indicate the current position in the array: to begin with this is set to 1, and
the first text pointed. If this is an end point. Y(CP%) = 0, (hardly likely
just yet!) then we EXIT QUESTION and CP% is reset to 1 when the
sequence is RESTARTed. If a real pointer is present then the REPeat
QUESTION loop requests an INPUT. If the input is *Y" then CP% is set
to the value contained in the appropriate element of the Y(n) array,
otherwise it is set to the value contained in the N{n) array.

30 REPeat RESTART
40 UNDER { 1 PRINT \\"FAULT DIAGNOSIS"

¢ UNDER 0
50 CPY%=1
&0 REPsat QUESTION
70 PRINT \OP$(CP%);" "}
80 IF Y(CP%)=0 THEN EXIT GUESTION
90 INS=GETS (1)
100 IF IN$="Y" THEN CP%=Y(CP%) 1
NEXT BUESTION
110 CPY%=N(CPY)
120 END REPeat QUESTION

130 END REPsat RESTART

A parallel approach
An alternative to the sequential branching method described above is the
parallel approach which always asks all the possible questions before it
reaches its conclusion. This method usually takes longer than following
an efficient tree structure but it is more likely to produce the correct
answer as no points of comparison are omitted.

Let us consider how we might distinguish between various forms of
transport.

We will consider eight features and mark 1 or O for the presence or
absence of these in each of our five modes of transport (Table 5.1). If you
look closely you will notice that the pattern of results varies for each of the

76

. Chapter3 Expert Systems

different possibilities. so it must be possible to distinguish between them
by these features.

Table 5.1: Presence or Absence of Features.

bicycle car train plane horse
wheels 1 1 1 1 0
wings 0 0 0 1 0
engine 0 1 1 1 0
tyres 1 1 0 1 0
rails 0 0 1 0 0
windows 0 1 1 1 0
chain 1 0 0 0 0
steering 1 1 0 1 1

We will enter these values as DATA and then READ them into a
two-dimensional array, FE(n,n), which will hold a copy of this pattern,
together with a string array containing the names of the objects OBS$(n).
(Note that SCREEN is as before.)

10 SCREEN
20 START

11000 DEFine PROCedure START
11010 RESTORE
11020 DIM OB$(5,7),FE(S5,8)

11030 DATA "BICYCLE",1,0,0,1,0,0,1,1
11040 DATA "CAR",1,0,1,1,0,1,0,1
110%0 DATA "TRAIN",1,0,1,0,1,1,0,0
11060 DATA "PLANE",1,1,1,1,0,1,0,1
11070 DATA "HORSE",0,0,0,0,0,0,0,1
11080 FOR N=i TO 5

11090 READ 0B$ (N)

11100 FOR M=1 TO 8

11110 READ FE(N,M)

11120 NEXT M

11130 NEXT N

11140 END DEFine START

We can now QUESTION whether the first feature is present or not. and
then CHECK which modes of transport match at this particular point (see
Flowchart 5.4).

Artificial Intelligence on the Sinciir QL .

WHEELS 7

AN=1

Flowchart 5.4: A Parailel Approach.

30 REPeat QUESTION

50 PRINT \"DOES IT HAVE WHEELS ";
: CHECK

250 END REPeat QUESTION

12000 DEFine PROCedure CHECK
12010 IN$=GET$(1)
12020 AN%=1

12030 IF IN$="N" THEN ANY%=0

12040 FOR N=1 TO 5

12050 IF FE(N,1)=AN% THEN PRINT OB$(N)
12060 END FOR N

12070 END DEFine CHECK

[n this case, answering *Y" will produce a printout of:

78

. Chapter 3 Expert Sysiems

BICYCLE
CAR
TRAIN
PLANE

and answering "N" will produce a printout of only:
HORSE

This clearly demonstrates a possible disadvantage of the parallel method
as. although we have just shown that only a horse does not have wheels,
the program insists that we still ask all the other questions before it
commits itself. This is not really as silly as it seems at first, as if you answer
Y to the next question (‘does it have wings’) then you will see that the
computer quite logically refuses to believe in flying horses.

We can now use the comparison CHECK PROCedure to test for all
eight features in turn. We need to make slight modifications. adding an
array pointer, AP%, which is incremented to check the next element of
the feature array, FE(N,AP%), in each cycle (see Flowchart 5.5).

i

INCREMENT
ARRAY

POINTER
(APY

Flowchart 5.5: Checking the Features in Turn.

Artificial intelligence on the Sinclair QL .

30 REPeat GUESTION
S0 PRINT \"DOES IT HAVE WHEELS "j 1

CHECK

&0 PRINT \"DOES IT HAVE WINGS "j 1
CHECK

70 PRINT \"DOES IT HAVE AN ENGINE "; 1
CHECK

80 PRINT \"DOES IT HAVE TYRES "; :
CHECK

90 PRINT \“DOES IT NEED RAILS "“j 1
CHECK

100 PRINT \"DOES IT HAVE WINDOWS "j 1
CHECK

110 PRINT \"DOES IT HAVE A CHAIN "j :
CHECK

120 PRINT \"IS IT STEERABLE "; :
CHECK

130 APY%=0

250 END REPeat QUESTION
11020 DIM OB$(5,7),FE(5,8) : AP%=0
12020 AP%=AP%+1 1 AN%=1

12050 IF FE(N,AP%)=ANY% THEN PRINT OB%(N)

Top of the pops

The previous routine will print out a list of matches for each individual
question as it proceeds, but it does not actually tell us which set of DATA
is an overall match for the answers to all the questions. We can produce a
SCORE which shows how well the answers match the DATA by havinga
success array element. SU(n), for each object, which is only incremented
when a match is found, FE(N,AP%) = AN% (see Flowchart 5.6).

200 PRINT \"SCORE"

210 FOR N={ TO 5

220 PRINT OB$(N),SU(N)
230 SU(N) =0

240 END FOR N

11020 DIM OB%(5,7),FE(5,8) 1 APY%=0 i DIM SU(D)

12050 IF FE(N,AP%)=AN% THEN PRINT OB${N)
1 SU(N)=8BU(N)+1

80

. Chaprer 5 Expert Systems

INCREMENT
SUCCE
(sulNY)

Flowchart 5.6: Measuring Success.

If a complete match is found then SU(n) will be equal to 8. Where one or
more points was incorrect. the score will be lowered, but scoring in this
way is particularly useful where the correct answers to the questions are
more a matter of opinion than fact (eg is a horse really steerable?), as the
highest score actually obtained probably points to the correct answer
anyway. (Notice that in this case each correct answer has equal weighting.)

Better in bits

You may have noticed that we just happened to use eight features for
ccmpariéon and it may have occurred to you that this choice was not
entirely accidental as there are eight bits in a byte. If we consider each
feature as representing a binary digit (see Table 5.2), rather than an

Table 5.2: Binary Weighted Features.

bicycle car train plane horse
wheels 1 1 1 1 0
wings 0 0 0 2 0
engine 0 4 4 4 0
tyres 8 8 0 8 0
rails 0 0 16 0 0
windows 0 32 32 32 0
chain 64 0 0 0 0
steering 128 128 0 128 128
sum total 201 173 53 175 128

81

Artificial Intelligence on ike Sinclair QL .

absolute value. then each object can be described by a single decimal
number which is the sum of the binary digits. instead of eight separate
values. We will convert to decimal with the least significant bit at the top
so that starting from the top at ‘wheels’ each feature is equivalent to 1, 2,
4,8, 16, 32, 64, 128 in decimal notation.

It is not too difficult to convert our "score’ of 1 to 8 into the appropriate
binary value, as long as we remember that the decimal value of the binary
digit, BV %, must double each time we move down and that we must only
add the current binary value to the score if the answer was ‘ves', AN% = 1
(see Flowchart 5.7).

If you consider for a moment, vou will realise that we only need to keep
track of the total number produced, SU%, by adding the binary values of
the ‘yes’ answers — there is no need to loop through and check each part

Flowchart5.7: Producing a Binary Score.

. Chapter5 Expert Sysiems

of the array contents each time, or even to have a two-dimensional array
atall! The only DATA we need to enter are the overall decimal values for
each object, bV(n). and when all the questions have been asked we can
check these against the decimal value obtained by the binary conversion
of the 'yes/'no" answers, SU% (see Flowchart 5.8).

Flowchart 5.8: Matching the Decimal Value,

40 BVZ4=1 : BU%=0

220 IF DV(N)=8U% THEN PRINT ,0B$(N) 1
NEXT QUESTION

230 END FOR N

240 REMark DELETED

11020 DIM OB$(3,7),DV(D)
11030 DATA "BICYCLE", 20!
11040 DATA "CAR",173
11050 DATA "TRAIN",53
11060 DATA "PLANE",175
11070 DATA "HORSE", 128

11090 READ OBS (N)

11100 READ DVIN)

1111¢ REMark DELETED

11120 REMark DELETED

12040 IF AN%=1 THEN SUX%=SU%+BV%

Artificial Intelligence on the Sinclair QL .

12050 BVX=BVL+BYY
12060 REMark DELETED

This approach obviously saves a lot of memory and time, as each array
element takes up several bytes and must be located before it can be
compared, so it is particularly useful where you are dealing with large
amounts of information. But it does mean that you have to calculate the
decimal equivalents of all of the bit patterns before you can use them., and
it also gives you no clues when a complete match is not found. (Note that
you cannot simply take the nearest decimal value here as the decimal
equivalent value of each correct answer depends on its position.)

Of course you could do the calculations the hard way. but on the other
hand you can easily DEFine a BIN FuNction to do the hard work for you.
A row of eight dots is printed as a prompt and the required string of
binary digits (N$) entered, and passed to BIN. This slices off each
individual digit, starting from the least significant (righthand end). If the
digit is 1 (note that SuperBASIC coercion allows direct comparison of
string and simple variables) then the decimal value (DV%) is updated.
When all eight digits have been checked, the final decimal value (DV%)
is RETurned.

CLs

PRINT "euisnnend®
INPUT N$

PRINT BIN(N®)

GO TO 2

[LIR 2 S

30000 DEFine FuNction BIN(N$)

30010 DVY%=0 1 BD%={

30020 FOR N=8 TO 1 STEP -1

30030 IF N$(N)=1 THEN DV¥=DV%+BD%
30040 BD%=BD%+BD%

30050 END FOR N

30040 RETurn DV%

30070 END DEFine BIN

84

CHAPTER 6
Making your Expert System Learn for
Itself

Although the expert systems described so far will function all right, they
all require you to give them the correct rules on which to base their
decisions in advance. which can be very tedious, or even downright
impossible where the human expert is not really sure of the answer.

However it is also possible to construct an expert program which can
learn from its mistakes and work out the decision rules for itself, which is,
of course, what a human expert tends to do. The only requirement is that
vou have to tell it when (although not where) it goes wrong. This is
bbviously an advantage if you are not altogether sure of the correct rules
yourself anyway. In this case we start out with a series of feature variables
which we Eu)pé should enable us to distinguish between the different
objects (outcomes) but without any predefined yes/no pattern of these
features (‘decision rule’) to guide us. Instead we use the program itself to
determine what the pattern should be.

We will work with our familiar transport example and start by setting
up the variables. FE% is the number of features to be considered. 8.
FES(N) is an array containing the names of these features, FV(N) is an
array which will hold the values which you give to each feature when you
make input at any particular point (as 0 or 1), and RU(N) is an array
which will hold the current overall values of the decision rule on each
feature.

10 SCREEN
20 START

10000 DEFine PROCedure SCREEN
10010 MODE 4

10020 CLS #0 1 CLS #1 : CLS #2
10030 END DEFine SCREEN

11000 DEFine PROCadure START
11010 RESTORE)
11020 FEY%=8 1 DIM FES$(FEY,8),FV(FE%) ,RU(FEX)

Artifictal Intelligence on the Sinclair QL .

11030 FOR N=1 TO FEZ

11040 READ FE$(N)

11050 END FOR N

11040 DATA "WHEELS", "WINGS","ENGINE","TYRES",
"RAILS", "WINDOWS", "CHAIN", "STEERING"

11070 END DEFina START

Each feature is considered in turn (see Flowchart 6.1) in the QUESTION
PROCedure. First the current feature value, FV(N), for this cycle is set to
0, and then a ‘yes/no’ input INS$ is requested from the user on each point.
If IN$ is 'Y, the feature value element, FV(N), isset to 1, but otherwise it
remains set at 0. This will produce a pattern which describes the particular
object (outcome) as a pattern of 0" and *1” in array FV(N).

CURRENT
FEATURE
VALUE = 1
DECISION
VALLE = @
PRINT UPDATE
pEcision it DECISION
VALUE el
No
YE < TNYES
S=g 18 BicveLe 7 Y WEIGHT
NO o
CAR? e STES | wEIGHT ,
? ElG
NO
NG

YES PRINT UPDATE | |
RULE RULE

Flowchart 6.1: Learning to Distinguish Between Two Objects.

86

. Chapter 6 Making your Expert System Learn for ltself

S0 REPeat QUESTION
&0 FOR N=1 TO FE%

70 FVIN}=0

80 PRINT !FES(N)j

30 IN$=INKEY#(-1)

100 IN$=CHR® ((CODE (IN$) ! 32)-32)
110 IF INSs="Y" THEN FV(N)=1

120 END FOR N

200 END REPeat QUESTION

(Note that a simpler method of forcing upper case is used here, rather
than the GETS PROCedure. as only single character inputs are made
which are easily modified.)

Now in UPDATE_DE the decision variable, DE%, is set to zero
before being recalculated as the sum of the current value of DE% plus
each of the feature values, FV(N), entered multiplied by the current
decision rule values, RU(N).

130 UPDATE=DE

12000 DEFine PROCedure UPDATE_DE

12010 DE%=0

12020 FOR N=1 TO FE%

12030 DE%=((DEU%3) +(FV(N) 3RU(N)) %3)) /3
12040 END FOR N

12050 PRINT \\"DE%= ";DE%

12060 END DEFine UPDATE_DE

Which is which?

To start with, we will consider the simplest situation where there are only
two possibilities — a BICYCLE or a CAR. Initially we make the
distinction between these quite arbitrarily by saying that if the final value
of DE% is equal to or greater than 0 then it is a BICYCLE, whereas if
DE% is less than 0 then it is a CAR. It does not really matter that this is
not actually true as the system will soon correct itself. When the program
has made a decision on the basis of the value of DE% it requests
confirmation (or otherwise) of the result.

180 IF DE%>=0 THEN PRINT \"IS IT A BICYCLE
"; 3 INS=INKEY$(-1) : IN$=CHRS ((CODE(
IN®) [} 32)-32) : PRINT IN$ 1 BICYCLE

87

Artificial Intelligence on rhe Sinclair QL .

190 IF DE%<O0 THEN PRINT \"IS IT A CAR "y 1
INS=INKEY$(-1) 1 INS$=CHR$ ((CODE (INS$)
11 32)-32) 1 PRINT IN$ 1 CAR

Three possible courses of action may be taken according to whether or
not the computer’s decision was confirmed by you.

If it was correct then effectively no action is taken as the weighting
variable, WT%. is set to 0.

IF DE% was >=0, but the computer was wrong (and selected CAR),
then the weighting variable, WT%, issetto —1.

If DE% was <0, but the computer was wrong (and selected
BICYCLE), then WT% is set to +1.

13000 DEFine PROCadure BICYCLE

13010 IF IN$="Y" THEN WT%=0 : UPDATE_RULE
13020 WT%=-1 1 UPDATE_RULE

13030 END DEFine BICYCLE

14000 DEFine PROCedure CAR

14010 IF INs="Y" THEN WT%=0 : UPDATE_RULE
14020 WT%=1 1 UPDATE_RULE

14030 END DEFine CAR

The effect of the weighting variable takes place in the UPDATE_RULE
PROCedure in which we modify the values in the rule array. RU(N),
pulling them down when they are too high, and pulling them up when
they are too low.

15000 DEFine PROCedure UPDATE_RULE

15010 PRINT \"RULES"\

15020 FOR N=1 TO FE%

15030 RUCNY=({RUCN) X3} + (FV(N) 3WT%) 23) /3
15040 PRINT RU(N),FE$(N)

15050 END FOR N

15040 END DEFine UPDATE_RULE

The way the system operates is best seen by a demonstration. Type RUN

and then follow this sequence of entries. (Note that the punctuation has

been designed to give a screen format which clearly indicates the

relationship between your input values and the decision rule values.)
First of all enter these values:

WHEELS Y WINGS N ENGINEN TYRES Y
RAILSN WINDOWSN CHAINY STEERING Y

88

. Chaprer 6 Making vour Expert System Learn for liself

The program will return with a decision value, DE%, of 0, as this is the
initial value and no modifications have yet taken place:

DE% =0

As DE% is 0 then the system assumes that this is a BICYCLE and asks for
confirmation, to which the answer is, of course, ‘ves’:

ISIT ABICYCLE?Y

The contents of the rule array, RU(N), are now printed out. This shows
that the values have not changed from 0 as the correct answer was, by
pure chance, obtained!

RULES

WHEELS
WINGS
ENGINE
TYRES
RAILS
WINDOWS
CHAIN
STEERING

OO0 O0OCCOoOO

Now try entering this sequence which describes a CAR:

WHEELS Y WINGS N ENGINE Y TYRESY
RAILSN WINDOWSY CHAINN STEERING Y

DE% is still 0, so the wrong conclusion is reached and the wrong question
is asked (BICYCLE) to which the answer must be "no’:

DE% =0
ISITABICYCLE?N

Now as a mistake was made the decision rule is modified by subtracting 1
from each value in the rule array where a ‘yes’ answer was given. The
contents of the rule array are thus now:

89

Arrificial Intelligence on the Sinclair QL .

RULES

=¥ WHEELS

0 WINGS

=1 ENGINE
=1 TYRES

0 RAILS

=l WINDOWS
0 CHAIN

= STEERING

If you now enter the values which describe a CAR once more, the
program will come up with the correct answer:

WHEELSY WINGS N ENGINEY TYRESY
RAILS N WINDOWSY CHAINN STEERING Y
DE% = -5

ISITACAR?Y

RULES

el WHEELS
0 WINGS

-1 ENGINE
-1 TYRES

0 RAILS

-1 WINDOWS
0 CHAIN

=1 STEERING

Before you feel too pleased with yourself. try giving it the values for a
BICYCLE again, which it will get wrong!

WHEELS Y WINGS N ENGINEN TYRESY
RAILSN WINDOWSN CHAINY STEERING Y
DE%= -3

ISITACAR?N

RULES

90

. Chapter 6 Making your Expert Svstem Learn for [tself

0 WHEELS

0 WINGS

=1 ENGINE

0 TYRES

0 RAILS

=1 WINDOWS

1 CHAIN

0 STEERING

However the positive features which are common to the BICYCLE and
the CAR are now automatically increased by 1. so that if you repeat this
last sequence it will now produce the correct conclusion:

WHEELSY WINGSN ENGINEN TYRESY
RAILS N WINDOWSN CHAIN'Y STEERING Y
DE% =1

ISIT A BICYCLE? Y

RULES

0 WHEELS

0 WINGS

-1 ENGINE

0 TYRES

0 RAILS

~1 WINDOWS

1 CHAIN

0 STEERING

The situation has now stabilised and the program will always recognise
both CAR and BICYCLE correctly every time you enter the features
which describe them:

WHEELSY WINGSN ENGINEY TYRESY
RAILS N WINDOWS Y CHAIN N STEERING Y
DE% = -2

ISITACAR?Y

RULES
0 WHEELS
0 WINGS

91

Artificial Intelligence on the Sinclair QL .

-1 ENGINE

0 TYRES

0 RAILS

-1 WINDOWS
1 CHAIN

0 STEERING

Notice that the final value of DE% for a BICYCLE is 1, and for a CAR
—2. If you look at the rule array values, you will see that these correspond
in both number and position to the unique features which distinguish
these objects (CHAIN for BICYCLE, and ENGINE and WINDOWS
for CAR).

A wider spectrum

Although you have now managed to teach your computer something, itis
not exactly earth-shattering to be able to distinguish between only two
objects. Let's expand the system to deal with a wider spectrum of pos-
sibilities (see Flowchart 6.2).

To start with we need to define the number of objects (outcomes) we
wish to be able to recognise, OB%. name them as DATA which we
READ into a new array, OB$(OB%), change our decision rule array into
a two-dimensional form, RU(FE%, OB%), which can hold rules for each
of the objects separately, and set up a decision array, DE(N), to hold
decision values for each object.

20 START

11000 DEFine PROCedure ETART

11010 RESTORE

11020 FE%=8 1 OB%=5 : DIM FE$(FE%,8),FV(FE%L),
RU(FE%,0B%),0B% (0OB%,7) ,DE(OB%) @ T84=3

11030 FOR N=1 TO FE%

11040 READ FES$(N)

11050 END FOR N

11060 DATA "WHEELS","WINGS","ENGINE","TYRES",
"RAILS", "WINDOWS", "CHAIN", "STEERING"

11070 FOR N=1 TO OB%

11080 READ OB$(N)

11090 END FOR N

11100 DATA "BICYCLE",“CAR","PLANE","TRAIN"
, "HORSE"

11110 END DEFine START

92

. Chapter 6 Making vour Expert Svstem Learn for liself

ZERO

sy / FEATURE
— DECISION | FEATURE PRINT
VALUES VALUE FEATURE VALUE

=1

VARIABLES

DE = DE(N)
TS=N

NO
UPDATE ALL
RULES | GARCRED Dy FTT
[—

Flowchart 6.2: Learning the Rules for a Wider Spectrum of Possibilities.

Rather than just having a single decision variable, DE%. we need here to
determine a decision value for each object each time. In each cycle we
must first set DE% to zero, and then zero every element in the decision
array, DE(N), so that we start with a clean state for every object (ZERO
DE).

50 ZERO_DE
14000 DEFine PROCedure ZERD_DE

14010 DE%=0
14020 FOR N=1 TO OB%

Artificial Intelligence on the Sinclair QL .
14030 DE (N)=0

14040 END FOR N
14050 END DEFine ZERO_DE

Questions on the values for each feature are then entered in the same way
as before.

40 REPeat QUESTION

50 FOR N=1 TO FE%

70 FV(N) =0

80 PRINT !FES(N);

90 INS=INKEY$ (-1)

100 INS=CHR# { (CODE (INS) 1! 32)-32)
110 PRINT 'INS$;

120 IF INS="Y" THEN FV(N)=1

130 END FOR N

200 END REPeat BGUESTION

UPDATE_DV now updates each element of the decision array, DE(N),
according to the status of the entered values, FV(N), and the contents of
the appropriate rule array element, RU(N.M).

140 UPDATE_DV

15000 DEFine PROCedure UPDATE_DV

15010 FOR N=1 TO FE%

15020 FOR M=1 TO OB%

15030 DE(M)=((DE(M) $3)+ ((FV(N) X
RUIN,M))23)) /3

15040 END FOR M

15050 END FOR N

15060 END DEFine UPDATE_DV

We now need to look to see if any of the DECISION values for any of the
objects. DE(N), are greater than or equal to the overall decision value,
DE%. If this is true then we set a ‘top score”. TS% . variable equal to the
number of the object producing the best match, N.

04

. Chapter 6 Making your Expert Svstem Learn for liself
150 DECISION

16000 DEFine PROCadure DECISION

16010 FOR N=1 TO 0B%

16020 IF DE(N)>=DE% THEN DE%=DE(N) : TS%=N
16030 END FOR N

16040 END DEFine DECISION

The best guess of the system is that this is the correct answer. so once
again it asks for confirmation, and simply returns for a new input without
making any changes if the answer was correct.

160 ANEWER

17000 DEFine PROCadure ANSWER

17010 PRINT \"WAS IT ";0B$(T84);" "}

17020 IN$=INKEYS (~-1)

17030 IN$=CHR$ ((CODE(IN®) |} 32) =32)
17040 PRINT IN$

17050 IF INs="Y" THEN NEXT GQUESTION
17060 END DEFine ANSWER

However, if the answer needs correction, the names and numbers of all of
the objects are printed out and you are asked for the number of the
correct answer, CR%. (The limitations on CR% prevent you crashing
the program by entering an illegal value.)

170 CORRECTION

18000 DEFine PROCedure CORRECTION

18010 FOR N={ TO OB%

18020 PRINT \N,0B$(N);

18030 END FOR N

18040 PRINT \\"WHICH WA8 IT? "y

1B0S0 INS=INKEY$(-1)

18060 CRY%=CODE (IN$)-48 : IF CRY<1 OR CR%>5
THEN CORRECTION

18070 PRINT CR%

18080 END DEFine CORRECTION

To UPDATE_RULES we must first make a check to determine whether
the decision value for each object, DE(N), is greater than or equal to the

Artificial Intelligence on the Sinclair QL .
overall decision value, DE%, AND whether the object being considered
is NOT the correct answer. If borh of these are true then the rules are

updated again by subtracting the correct feature values, FV(N), to bias in
favour of the correct answer.

180 UPDATE_RULES

19000 DEFine PROCadurs UPDATE_RULES

19010 FOR N={ TO OB%

13020 IF DE(N)>=DE% AND N<{>CR% THEN

19030 FOR M=1 TO FE%

13040 RU{M, N) ={ (RU(M,N)33) -
(FY(M) x3)1)/3

19050 END FOR M

15060 ELSE NEXT N

19070 END IF

19080 END FOR N

Then the correct feature values, FV(N), are added to the rule array for
the correct object to bias in the opposite direction.

19050 FOR M=1 TO FE%

19100 RU (M, CR%) = ((RU (M, CR%) ¥3) +
(FV(M)x3)) /3

19110 NEXT M

19120 END DEFine UPDATE_RULES

Finally DISPLAY_RULES prints out the status of the rule arrays so that
you can see what is happening.

1590 DISPLAY_RULES

20000 DEFine PROCedure DISPLAY_RULES
20010 CLS #2 : CLS #3

20020 FOR M=i{ TO OB%

20030 AT #2,3,M-1 1 PRINT #2,DE{M);"

"yDE%;" "y CRY%
20040 FOR N=1 TO FE%
20050 AT #3, (N¥3)-3,M=-1 1 PRINT
#3,RUIN, M) ;
20060 END FOR N

96

. Chapter6 Making your Expert System Learn for Itseif

20070 END FOR M
20080 PRINT
20090 END DEFine DISPLAY_RULES

To make the whole program easier to understand we will use the
capabilities of the QL to produce a comprehensive screen status format
(see Figure 6.1) with multiple windows. These are produced by the
SCREEN_SET PROCedure and then LABELled appropriately.
Although we will omit any discussion on the details of this ‘decorative’
aspect of the program, we should explain that the main action takes place
in the default window (right half of screen), with printouts of DE(N),
DE % and CE% in window#2, the rules in window #3, and various labels
in windows #4, #5 and #6.

Note that a separate SCREEN PROCedure is defined which not only
clears the whole screen to start with but also provides yvou with a safety net
which can easily return you to an acceptable format for listing the
program. The two parameters passed to SCREEN are PAPER and INK,
respectively, hence typing SCREEN 6,0 as a direct command before
LIST will automatically return the full screen area and produce a black
listing on a white background.

10 SCREEN 0,4 : SCREEN_SET
30 LABEL

10000 DEFine PROCadure SCREEN_SET
10010 MODE 0
10020 CLS #0

10030 INK #0,7

10100 WINDOW #1,230,200,257, 16
10110 BORDER #1,3,6

10120 CSIZE #1,2,0

10130 PAPER #1,5

10140 INK #1,0

10150 CLS #1
10200 WINDOW #2, 140,50, 105,32
10220 CSIZE #2,0,0

10240 INK #2,2

10250 CLS #2

10300 OPEN #3,SCR_170X60ABSX100
10310 BORDER #3,3,2

10320 CSIZE #3,0,0

10330 PAPER #3,4

10340 INK #3,0

97

Artificial [ntelligence on the Sinclair QL

no

Figure 6.1:

LEr o TT R R i

Mo T E—=

ST SO =0

A Learning Expert.

10350
10400
10410
10420
10430
10440
10450
10300
10510
10520
10530
10540
10530
10600
10610
10620
10630
10640
10650
10700

20000
20010
20020
20030
20040
200350

13000
13010

13020
13030
13040
13050
13080
13070
13080
13090
13100

13110
13120

END DEFine SCREEN_SET

DEFine PROCedure SCREEN (A,B)

END DEFine SCREEN
DEFine PROCedure LABEL

. Chapier 6 Making your Expert System Learn for ltself

CLS #3
OPEN#4, SCR_175X50AB0X 155
BORDER #4,5,2
CSIZE #4,0,0
INK #4,1,0
PAPER #4,4
CLS #4
OPEN#S, SCR_230X70A26X90
BORDER #5,3,2
CSIZE #5,0,0
INK #5,3
FAPER #5,b
CLS #5
OPEN #&,5CR_230X70A26X18
BORDER #6,5,2
CSIZE #6,0,0
INK #6,1,4
PAPER #b,6
CLS #6

WINDOW #2,440,200,248,16
PAPER #2,A

INK #2,B

CLS #2

AT #6,11,0 1 CSIZE #6,1,0 1 PRINT
#6,"DE(N) DEX CRX" : CSIZE #4,0,0
FOR N=i{ TO 0B%
AT #6,1,N 1 PRINT #4,0B8(N)
AT #5,1,N 1 PRINT #5,0B$(N)
END FOR N
FOR N=1 TO FE%
FOR M={ TO 8
AT #4, (Nk3)-2,M-1
PRINT #4,FES(N,M)
AT #5,15,0 1 CSIZE #5,3,0 1 PRINT
#35,"RULES" : CSIZE 45,0,0
END FOR M
END FOR N

13130 END DEFine LABEL

Once again a demonstration is the best way to understand what is
happening so enter the following sequence:

Artificial Intelligence on the Sinclair QL

WHEELS Y WINGS N
ENGINEN TYRESY
RAILSN WINDOWS N
CHAINY STEERING Y

The program will come back with the erroneous conclusion that it was a

HORSE. so vou must tell it that this was wrong, when it will ask you for
the correct answer (BICYCLE = 1):

WAS IT HORSE N

1 BICYCLE
2 CAR

5 TRAIN

4 PLANE

5 HORSE
WHICH WAS IT 1

The status of the various decision and rule arrays are now printed out for
your information, in the windows on the lefthand side of the screen.

DE (N) DE% CR%

BICYCLE 0 1

CAR 0 0 1

TRAIN 0 0 1

PLANE 0 0 L

HORSE 0 0 1

RULES

BICYCLE 1 0 0 1 0 0 1 1
CAR -1 0 0 -1 0 0 -1 -1
TRAIN -1 0 0 -1 0 0 -1 -1
PLANE -1 0 0 -1 0 0 =1 =1
HORSE -1 0 0 -1 0 0 =1. =1

. Chapter 6 Making your Expert System Learn for liself
w W E T R w C S
H I N Y A [H T
E N G R I N A E
E G [E L D [E
L S N S] O N R
S E W [
S N
G

If you look closely you will see that the features which have caused
alterations in the rule arrays are wheels. tyres, chain and steering —
which are all features which we defined as part of a BICYCLE but w?uch
are not found in a HORSE. In addition you will see that the values for
these features in the BICYCLE rule array are now all +1, Whiisrr the
values for these features for all the other objects are all now —1. Now give
?‘t the fgaturcs of a CAR. which it thinks is a BICYCLE, and then Cor?cct
it. Notice that the rule arrays for BICYCLE and CAR are now amended
to take into account the new information.

WHEELS Y WINGS N
ENGINEY TYRESY
RAILS N WINDOWS Y
CHAINN STEERING Y

WAS ITBICYCLEN

1 BICYCLE
2 CAR

3 TRAIN

4 PLANE

5 HORSE

WHICH WAS IT2

DE (N DE% L
BICYCLE 3 ™ 3 e
CAR -3 3 ._,
TRAIN g 3 53
PLANE -3 3 5
HORSE -3 3 2
RULES

101

Areificial Intelligence on the Sinclair QL .

BICYCLE 0 0 -1 0 0 =1 1 0
CAR 0 0 1 0 0 1 -1 0
TRAIN -1 0 0 -1 0 0 =1 =1
PLANE -1 0 0 -1 0 0 -1 =1
HORSE -1 0 0 -1 0 0 -1 -1
w W E T R W G 5
H [N Y A I H T
E N G R [N A E
E G I E L D [E
L S N S S 0] N R
S E W I
S N
G

Next give it a PLANE, which it decides is a CAR. and correct it again.

WHEELS Y
ENGINEY
RAILSN
CHAINN

WASIT CARN

[P ST

WINGS Y
TYRES Y
WINDOWS Y
STEERING Y

BICYCLE
CAR
TRAIN
PLANE
HORSE

WHICH WAS IT 4

And now a TRAIN, which it still gets wrong!

WHEELS Y
ENGINE Y
RAILS N
CHAIN N

WINGS N
TYRESN
WINDOWS Y
STEERING N

WAS IT PLANE N

[P

102

BICYCLE
CAR
TRAIN

. Chapter 6 Making your Expert Svstem Learn for [tself
4 PLANE
5 HORSE

WHICH WASIT 3
And finally a HORSE, which comes out as a PLANE!

WHEELS N WINGS N
ENGINEN TYRESN
RAILS N WINDOWS N
CHAINN STEERING Y

WAS IT PLANEN

BICYCLE
CAR
TRAIN
PLANE
HORSE

[e T

WHICH WASIT S5

[f you continue to feed your expert information then eventuaily it will get
the right answer every time. How long this will take depends upon the
extent of the differences between the features of the objects, and on the
order in which the objects are presented to the expert. Be warned that it
can take a long time before it becomes infallible! Here is one sequence
which eventually was right every time.

PLANE (TRAIN) CAR (PLANE) BICYCLE (YES)
CAR(YES) PLANE (CAR) PLANE (YES)
HORSE (YES) PLANE (BICYCLE) CAR (PLANE)
PLANE (CAR) PLANE (CAR) CAR (PLANE)
CAR (YES) PLANE (CAR) PLANE (YES)
CAR (YES) PLANE (YES) HORSE (YES)
BICYCLE (YES) TRAIN (CAR) TRAIN (YES)
BICYCLE (YES) CAR (PLANE) CAR (YES)
PLANE (CAR) PLANE (YES) CAR (PLANE)
CAR (YES) PLANE (YES) CAR (YES)
BICYCLE (CAR) CAR(YES) PLANE (YES)
TRAIN(YES) HORSE (YES) BICYCLE (YES)

As the final scale of values ranged from +6 to —2 you should not be
surprised that it took a long time to get there.

103

Artificial Intelligence on the Sinclair QL .

RULES
BICYCLE 1 0 =1 1 0 =2 3 0
CAR -1 4 1 0 =1: -2 0
TRAIN 0 -1 1 =2 2 1 -1 =2
PLANE -2 6 0 0 -1 0 o
HORSE -1 0 0 -1 0 0 -1 0
w w E T R W C S
H I N Y A I H T
E N G R I N A E
E G [E L D I E
L S N S S O N R
S E W [
S N
G

Automatic digestion of the data
Although our expert now manages to sort out the rules for itself, we are
still left with the tedious job of holding a ‘conversation’ with it, whilst it
builds up the correct pattern in its rule arrays. In areal application of such
an expert system it would be much better if we could feed it a mass of
collected information on a subject area and the conclusions, and then
leave it alone to digest this and come up with the rules automatically in its
own good time.

In fact it is not too difficult to modify our existing program to produce
an ‘automatic’ mode which crunches information provided as DATA.

First of all we need to enter that information in a fixed format
containing the name of the particular object and *Y" and ‘N’ answers for
each feature, in the correct order.

25000 REMark INFORMATION STORE

25010 DATA "BICYCLE","Y","N","N","Y",
N, NN ey nyn

25020 DATA "CAR","Y","N", nyn uyn,

25030 DATA "TRAIN","Y","N","y","N",
IIYKI ' HYII. KNII' NNH

25040 DATA "PLANE","Y","Y","Y*,"Y*",
|IN|I’ IIYIII "N"| IlYll

25050 DATA IDHDRSEIJ ’ IINIIl IINII f IINII ' IIHII '
“NII' IlNll, IINII’ IIYN

25060 DATA "END"

104

. Chapter 6 Making your Expert System Learn for liself

We now introduce a READER PROCedure, called at the start of the
QUESTION loop, which, for the moment, just READs and PRINTSs out
the name (N3) of the object currently being examined.

45 READER

26000 DEFine PROCadure READER

26030 READ Ns$

26100 CSIZE 3,1 1 PRINT N% 1 CSIZE 2,0
26110 END DEFine READER

The *Y" and ‘N’ answers for each feature are also READ in turn, as IN§,
in a replacement for the previous INKEYS check in the QUESTION
loop.

90 READ INS

In the ANSWER PROCedure, we need to compare the name of the
object being examined (N§) with the name of the top-scoring object
(OB$(TS%)) selected by our expert. If a match is found then
‘CORRECT is printed.

14020 IF OB$(TS%)=N$ THEN

14030 CSIZE 3,1 : PRINT \"CORRECT"\\ :
CSIZE 2,0

14040 NEXT QUESTION

14050 END IF

In the CORRECTION PROCedure we need to compare the name of the
item currently being examined (N§) with the names of each of the objects
(OBS(N)) which are known by our expert. The best way to do this is to
insert a check inside the listing loop which sets CR% to N when there is a
match. The original INKEYS and following validation check must also be
removed.

17025 IF OB%(N)=N$ THEN CR¥%=N
17050 REMark DELETED
17060 REMark DELETED

Once those changes have been made you can sit back. or perhaps indulge
in a cup of coffee, as you watch your expert hard at work!

105

Artificial Intelligence on the Sinclair QL .

Round and round

As it stands the program will end when all of the objects have been
examined once which, as you should have already noticed, is not enough
to build the correct rules. We can force repeat cvcling bv checking
whether the ‘END’ message following the real DATA has been detected,
and RESTOREIing to the appropriate line number. Notice that we must
READ NS again after the RESTORE.

26040 IF N$="END" THEN
26050 RESTORE 27000
26080 READ N8

26090 END IF

To be able to see how well our expert is doing and to be able to
congratulate him when he has finished his task. we need to keep track of
how many cycles of testing have been completed, and whether full success
has been achieved. Two new variables are defined. CY% is the number of
cycles of comparisons completed. and SU% is the success achieved. SU%
must be incremented in the ANSWER PROCedure, reset on RESTORE,
and be compared with the number of objects to be correctly identified (5).
A printout of the current cycle is produced in the bottom left hand corner
of the screen on channel #0, so that you can assess progress. and a
‘RULES LEARNT message appears when SU% reaches 5.

S CY%=1 : SU%=0
14040 SU%=8U%+1 1 NEXT GUESTION

26010 IF SU%=5 THEN STOP
26020 AT #0,0,0 : CSIZE #0,3,1 1 PRINT #0,
CY% 1 CSIZE #0,0,0

26070 SU4=0

When vou test out this automated version you will discover six cycles of
the DATA are required to guarantee successful recognition of the five
modes of transport as the DATA is entered. However, if you switch the
positions of the BICYCLE and the HORSE this reduces to only four
cvcles. With PLANE swapped with BICYCLE only four cycles are again
needed, but with BICYCLE and CAR switched the requirement rises to
no less than rwelve cycles! It is also interesting to note that the final rules
differ in each case. We leave you to experiment with random selection of
the DATA. as well as expansion of the field of knowledge.

106

. Chapter & Making your Expert System Learn for Itseif

Keeping your expert

Now that your expert has been trained it would be a pity to lose him when
the power goes off. However. as the rules are stored in arrays, vou could
easily write a routine to save them and then reload them for use at a later
date.

107

CHAPTER 7
Fuzzy Matching

Computers are totally logical but our own memory banks are much more
unreliable, which can lead to problems when you are trying to recover
information on a particular subject. For example English is a very
variable language and there are frequently alternative spellings of the
same (or very similar) surnames, which can cause difficulties. One way
round this problem is to try to match the sound of the word rather than the
actual letters in it by means of ‘soundex coding’, which was originally
developed to assist processing of the 1890 census in the USA. This
method of coding ensures that similar sounding words have almost the
same code sequence. The rules for coding a word are as follows:

1) Always retain the first letter of the word as the first character of the
code. From the second letter onward:

2) Ignore vowels (a. e, i. 0. u).
3) Ignore the letters w, v, q and h.
4) Ignore punctuation marks.
5) Code the other letters with the values 1-6 as follows:
Letters Code
bfpv 1
cgjksxz 2
dt 3
1 4
mn 5
r 6
6) Where adjacent letters have the same code only the first one is
retained.
7) If length of code is greater than four characters then take first four
only.
8) It length of code is less than four characters then pad out to four

characters with zeros.,
To make this clear here are some examples of soundex coded names:

BRAIN-B650: Bisretained. Ris6, A and [are dropped, Nis5 and azero
is added to pad out the code.

109

Aruficial [ntelligence on the Sinclair QL .

CUNNINGHAM - C552: C is retained. U is dropped. both Ns are rep-
resented by the single code 5, lisdropped. the third N is represented by 5.
G is 2. Hand A are dropped. and M is coded as 5 — but the resulting code
(C5525) is truncated to four characters.

GORE - G600: G is retained, O is dropped, Ris6. E is dropped and zeros
are added to pad the code.

IRELAND - [645: [is retained, R is 6, E is dropped, L is 4, A is dropped,
N is 5 and D is 3 — but the resulting code (16453) is truncated to four
characters.

SCOT-S300: S is retained. C is dropped because it is in the same group as
S. O is dropped, T is 3 and zero is added to pad the code.

If your name is full of vowels and other rejected letters then you will find
that your code is somewhat abbreviated!

HEYHOE - H000: H is retained, all the other letters are rejected (1), and
the code is filled up with zeros.

Coding routine

To save all that brainwork let’s develop a program which allows you to
input a word in English and output it in soundex code (see Flowchart 7.1).
The first thing to do is to jump to a SET_UP routine which first of all
RESTORES the DATA pointer and then calls SCREEN which sets up a
suitable series of screen windows.

10 SET_UP

10000 DEFine PROCedure SET_UP
10010 RESTORE

10020 SCREEN

10030 CODES

10050 END DEFine SET_UP
The SCREEN display is divided vertically into two main windows (#1
and #2), with#0 at the bottom reserved for INPUT, and #3 and #4 at the

top of the screen used for labels (see Figure 7.1).

11000 DEFine PROCedure SCREEN
11010 MODE 4

110

11020
11030
11040
11050
11060
11070
11080
11090
11100
11110

Chaprer 7

[weur [TAKE 18T
LETTER
NAME LT

i

TAKE_NEXT

SET TM$
EMPTY

Flowchart 7.1:

ADD TM$
TO co$

Producing a Soundex Code.

WINDOW #2,230,186,26,30

BORDER

#2,2,6

CSIZE #2,1,0

CLS #2

WINDOW #1,230,186,257,30

BORDER

#1,2,4

CSIZE #1,1,0
PAPER #1,5

INK #1,

CLE#1

0

Fuzzy Matching

111

Artificial Intefligence on the Sinclair oL

2y
-
. o o o
I e a . =)
c o (= et
mf - - £ g =
.—.u . e g p—— TUIUD U o vt vt ot
B+ C ESaS+ S S O0DewD O
-0 — o — T Tt vttt — O
T U wITTU WwICTTTToT U
b o W o ow =}
i - -t - - -
5 U EN]
- - =
i o bl n f]]
- TR B i o
] fad X = =<
=] i = A=]
& Th (ERET) [-2 1} [N} [2x] = E h
o wi=oc T wWwW>-oC
LT @OOL T NTTCW @M o
B Lttt L T bl
_|u\ Rt P DU R R s s =l 1Y [T T BT
BME O v WO 00w oo oo oW
R C 1 Lo ool LMoo oo
Bl T L. —~ L IX L -~ C&@IEC@TT@T L
| o oo o
Figure 7.1: Fuzzy Matching,
112

APFLEBE

. Chapter 7 Fuzzy Maiching

11120 BORDER #0,1,4
11130 CSIZE#0,2,0

11140 CLS #0

11150 DPEN #3,B8CR_230X14A257X14

11160 OPEN #4,SCR_230X14A26X16

11170 BORDER #3,1,4

11180 BORDER #4,1,4

11190 CSIZE 43,2,0

11200 CSIZE #4,2,0

11210 PAPER #3,0

11220 PAPER #43,0

11230 INK #3,7

11240 INK #4,7

11250 CLS#3

11260 CLS#4

11270 PRINT #3," NAME"," CODE"

11280 FRINT #4," COs™;" ";"IN$!{ TO N} "3
11290 END DEFine SCREEN

The CODES PROCedure reads each group of the retained letters into
one element of a soundex code string array, SC$(n). Note that these
groups are arranged so that the letters are in the array element cor-
responding to their code value.

12000 DEFine PROCedure CODES

12010 DIM SCs(5,7)

12020 DATA "BFPY", "CBJKSXZ","DT","L","MN","R"
12030 FOR N=1 TO &

12040 READ SC#(N)

12030 END FOR N

12060 END DEFine CODES

We can now INPUT the word to be converted, INS. (A mug-trap is
provided for an empty string, but if you want to convert automatically
from lower case you can include the GETS PROCedure described in
Chapter 2.)

100 REPeat LOOP
110 AT #0,1,2 1 INPUT #0,IN$; : IF
IN$="" THEN LOOP

140 END REPeat LOOP

113

Artificial [ntelligence on the Sinclair QL .

As conversion to the code numbers and compilation of a soundex code
string will be required at various points, we will set this process up as a
FuNction named COMPILES. As this is a FuNction we can easily PRINT
out the result of passing INS$ to it.

120 AT #0,20,2 : PRINT #0, COMPILES
(INS)\\

To begin with we must make the coded version of this, COS$, the first
lerter of the INPUT word (following the first rule above).

15000 DEFine FuNction COMPILES (INS$)
15010 TMS$=IN$(1) 1 CO$=TM$: CONVERSION

For conversion of each letter to the appropriate code character, we have
to check TMS$ against each individual letter in each group of letters,
SCS(N), to find a match. To check each letter group we have to go round
six times, making a search string, SES, the current soundex code group
and using an INSTR routine which checks each letter in the group against
TMS in turn.

14000 DEFine PROCedures CONVERSION
16010 LOCal P

16020 FOR P=1 TO &

16030 SE$=8Cs (P)

14040 SP%=TM$ INSTR SE$

When the INSTR check has been made we have to determine whether a
match has been found to any of the soundex groups, and, if so, to which
group. If no match is found then SP% will be set to 0. On the other hand if
amatch is found then SP% will be set to P which will point to the value of
the code group matched. If a match was found (SP%>0) then we convert
the value of the loop scanning the code groups, P, to a string, TM$, which
replaces our original temporary string.

16050 IF SP%>0 THEN TM$=P : RETurn
[f no match is found in that group, we have to check the next group.
16060 END FOR P

If no match is found at all then TM$ must contain one of the characters to
be ignored so we reset TM$ empty — TM$=""".

114

. Chapter 7 Fuzzy Matching

16070 THM$=""
16080 END DEFine CONVERSION

We then need to check the other letters of the word, 2 TO LEN(INS), in
turn after first making a temporary string, TM$, equal to the current
letter to be translated.

15030 FOR N=2 TO LEN(INS)
15040 TMe=IN$ (N)
15050 CONVERSION

We can now make the coded string, COS$, equal to the original coded
string plus the newly-converted character, TMS, and RETurn the final
result when all characters in IN$ have been checked.

15080 CO$=CO$xTMs
15110 END FOR N

15140 PRINT #2
15150 RETurn CO%
15150 END DEFine COMPILE$

The final converted code will eventually be printed out at the bottom of
the screen (next to the INPUT) but it would be instructive to watch how
the computer reaches its decision. Adding the following line to the
COMPILES routine will provide a detailed printout of the state of play
during each cycle of the conversion in the lefthand window.

15100 PRINT #2," ";COs,,INS(l TO N)

If you INPUT the name STEVEN you will get the code 5315, by the
following route:

CO$ IN§(1 TON)
S3 ST

S3 STE

S31 STEV

531 STEVE
$315 STEVEN

However, if you try BRAIN or CUNNINGHAM you will get codes B65

and C55525 respectively.

Artficial Intelligence on the Sinclair QL .

COs$ INS(1 TON)
B6 BR

B6 BRA

B6 BRAI

B63 BRAIN

C Cu

Cs CUN

C55 CUNN

C55 CUNNI

C555 CUNNIN
C5552 CUNNING
C5552 CUNNINGH
C5552 CUNNINGHA
C55525 CUNNINGHAM

The code for BRAIN is too short, and needs padding out with zeros, and
the code for CUNNINGHAM is too long and the same codes are
repeated one after another for the letter N.

Dealing with the details

To solve the problem of the repetition of the same code for adjacent
letters, we need to keep a record of the last temporary string, LT$. We
need to make LTS the code of the first character in INS to start with, so
that the initial letter is not repeated. As we go through the FOR-NEXT
loop we must then compare LTS with TMS, and if they are the same we
must not add TMS to COS. Otherwise we need to make LTS the latest
T™S.

15020 LT$=TM%

15060 IF TM$<>LT$ THEN
15070 LTé=TMs
15090 END IF

Now we can sort out the problem of the code being too short. First of all
we check the length of the string, LEN(CO$)<4. If it is too short we add
three zeros on to the end and then cut the string back down to the correct
size (four characters).

15120 IF LEN(CO$)<4 THEN CO%$=COs$%"Q00"
1 COs=COs(1 TO &)

116

. Chaprer 7 Fuzzy Matching

Finally if the string is too long then we cut it down to size with CO$(1 TO
4) again (see Flowchart 7.2).

w18
NAME. A5 TM$ 3

|
* : SEARCH |
STRING=
| CODE GROUP| |
co$ =TM$ { o I
J_ | cuéqucen NO MATCH |
o | |
il suTaTS"u’rﬁ'Ss: : YES YES i
__r__ | | seT ™% me = |
g | | EMPTY NUMBER | |
LT$=TM$ | |
| \
* | |
TAKE NEXT e —— -
TTER
AS TMS
LA
IEUSROUTINE I
| IR R JI
NO
s NO - ADD TM$
Yes
e co$=FRsT| _ | co$= | YES
ND CODE FOUR CHARS | C0$ + ppp)
I NO
Flowchart 7.2: Dealing with the Details.
15130 IF LEN(CO%) >3 THEN CO$=COs(i TO
4)
Matchmaking

Now that we have a reliable method of producing the soundex codes, let’s
give it something to work on. The first task is to READ a list of names out

117

Artificial Intelligence on the Sinclair QL .

of DATA statements into a name string array, NAS(N). Our demon-
stration list only consists of 18 names, but if you want more a quick flick
through your local telephone directory should soon solve that problem!
Note that the number of words is also stored as NW %, and that this
PROCedure is now called from within SET_UP.

10040 NAMES

13000 DEFina PROCadure NAMES

13010 LT$="" 1 NWi=17

13020 DIM NAS (NW%,16) 1 DIM NCs(NWY,18)

13030 DATA "ABRAHAM","ABRAHAMS", "ABRAMS",
"ADAMS", "ADDAMS", "ADAMSON", "ALAN",
"ALLAN", "ALLEN"

13040 DATA "ANTHANY","ANTHONY","ANTONY",
"ANTROBUS", "APPERLEY", "APPLEBEE",
"APPLEBY", "APPLEFORD"

13050 FOR N=O TO NW%

13060 READ NA$(N)

13070 END FOR N

13120 END DEFine NAMES

The whole idea of matching with soundex codes relies on the fact you use
the soundex code to make the match before printing the possible words.
We therefore have to find the codes for each of the names from the
DATA and put these codes into an equivalent string array, NC$(N).
However, this is easy as the previously DEFined FuNction COMPILES
can be re-used to find the soundex code, if NAS(Q) is passed instead of
INS.

13080 FOR G=0 TO NW%

13090 NC$ (Q)=COMPILES (NAS(Q))
13100 PRINT NA$(Q),NC$(Q)
13110 NEXT @

If you RUN this now you will see all the codes for the DATA produced
(on the left window) and displayed (on the right window) before the input
request. However. the righthand display is rather ragged, so let’s smarten
it up by formatting it with a TABLES FuNction. This puts the results into
two neat columns by adding padding spaces to the righthand end of the
strings, and then retaining only the first part of the result.

118

. Chapter 7 Fuzzy Matching

13100 PRINT TABLE$ (NA$(Q),NC$(Q))

14000 DEFine FuNction TABLES (Il%,I2%)
14010 Iis=I1$ & FILLS&(" “,168)

14020 I2%=12% & FILL$(" ",8)

14030 Iis=Ii%(1 TO 1&)

14040 I2%=12%(1 TO 8)

14050 RETurn " "&I1$%I2¢

14060 END DEFine TABLES

NAME CODE
ABRAHAM Al65
ABRAHAMS Al65

ABRAMS Al65
ADAM A350
ADAMS A352

ADDAMS A352
ADAMSON A352

ALAN A450
ALLAN A450
ALLEN A450

ANTHANY AS535
ANTHONY AS535
ANTONY AS535
ANTROBUS A536
APPERLEY Albd
APPLEBEE Al4l
APPLEBY Aldl
APPLEFORD Al41

The only thing we need to do now is to compare the codes and determine
which of these names match the code of your input.

130 COMPARE

17000 DEFine PROCadure COMPARE

17030 FOR N=0 TO NW%

17040 IF CO$=NCS(N) THEN PRINT #2
y TABLES (NAS(N),
NC% (N))

17030 END FOR N

17090 END DEFine COMPARE

119

Aruificial [ntelligence on the Sinclair QL . .

This will only print words with exactly matching soundex codes. For
example, if you try entering the name APPLEBE you will get the
following response:

Chapter 7 Fuzzy Matching

APPLEBE Aldl
NAME CODE
APPLEBEE Al4l
APPLEBY Aldl

APPLEFORD Al41

Although APPLEBE (one E at the end) is not present in the DATA, we
have found APPLEBEE AND APPLEBY. as well as APPLEFORD
{where the interesting sound at the end has been chopped off).

Partial matching
Notice, however, that APPERLEY has been rejected, even though it
sounds quite similar at first. [t would therefore be useful if we could also
print out partial matches.

This can easily be done by adding an extra FOR-NEXT loop which
compares a decreasing section (1 TO M) of the INPUT with decreasing
lengths of the stored codes (see Flowchart 7.3).

17010 FOR M=4 TO 1 STEP -1
17020 PRINT #2,\"first ";M;" characters

match"\
17040 IF COs(1 TO M)=NC&(N) (1 TO M)
THEN PRINT #2,TABLES (NAS(N),
NC$ (N)) Flowchart 7.3: Partial Matching.
17060 PRINT #2,"press any key to continue" a5
17670 DUMMY$=INKEY$ (-1) first 3 characters match
17080 END FOR M APPLEBEE Al41
APPLEBY Aldl
If you now try APPLEBE. you can see the whole range of possibilities. APPLEFORD Al41
press any key to continue
APPLEBE Aldl
first 2 characters match
first 4 characters match ABRAHAM Al6S
APPLEBEE Al4l ABRAHAMS Al165
APPLEBY Al4l ABRAMS Al65
APPLEFORD Al41 APPERLEY Albd
press any key to continue APPLEBEE Aldl
170

171

Artificial Intelligence on the Sinclair QL

APPLEBY Al41l
APPLEFORD Al4l
press any key to continue

first 1 characters match
ABRAHAM Al6S
ABRAHAMS Al65

ABRAMS Al635
ADAM A350
ADAMS A352
ADDAMS A352
ADAMSON A352
ALAN A450
ALLAN A450
ALLEN A450

ANTHANY A535
ANTHONY A535
ANTONY A535
ANTROBUS AS36
APPERLEY Al64
APPLEBEE Aldl
APPLEBY Al4l
APPLEFORD Al4l
press any key to continue

CHAPTER 8
Recognising Shapes

We normally recognise objects using our senses of sight, sound, taste and
feel. whereas of course our basic computer can only obtain information
through the keyboard. Whilst it is possible to produce sensors which can
be interfaced to your machine to give it another view of the outside world,
constructing these requires a reasonable amount of electronic and
mechanical knowledge and skill. We will make do instead with a
simulation of the action of a light sensor to illustrate how shapes can be
recognised.

Let us think for a start about three simple shapes — a vertical line, a
square, and a right-angled triangle.

We can recognise these shapes by looking at the pattern they make on
an imaginary grid and deciding whether or not there is a point set at each
X and Y coordinate.

In the case of the line, only the first X coordinate is used, but all of the Y
coordinates. The square is a little more complicated. as all the X
coordinates on Y rows 1 and 8 are set, but from Y rows 2 to 7 only the first
and last X points are set. Finally the triangle is even more complicated as
the slope is produced by incrementing the X axis each time.

Table 8.1: Decimal Values of Shapes Described in Binary Form.

o
=
Q
z

ine square triangle
1 1 255 1
2 1 129 3
3 1 129 5
4 1 129 9
5 1 129 17
] 1 29 33
7 1 129 635
8 1 255 255

One obvious way to describe these particular figures would be to
represent each point by a single bit and produce a decimal value for each
row in the same way as we did before when we were looking at expert
systems (see Table 8.1). In fact this type of approach is used to produce

Artificial Intelligence on the Sinclair QL ' .
Chapter 8 Recognisin g Shapes
the characters which you see on your screen display, the formats for
which are stored in memory in just this form. For example, Figure 8.1
shows how the letter “A’ is built up.

Figure 8.1: Forming the Letter ‘A’.

There are now machines available (optical character readers) which
can reverse this process and actually ‘read’ a printed page by scanning the
paper in a grid pattern and measuring whether light is reflected at
particular coordinates.

What they actually take in will be a pattern of ‘yes’ and ‘no’ for each
coordinate and of course this must then be decoded and compared with
the patterns for known shapes. The most obvious way to make this
comparison would be to consider every point in turn as a binary digit and
then convert each row back to a decimal value which could then be
compared with a table of known values. However this has the dis-
advantage that we must actually check every individual point on the grid
(64 points).

A branching short cut
A quicker approach relies on the fact that each character can actually be .
detected by looking at a much smaller number of critical features of the Figure 8.2(a): Decision Tree for Alphabet.

“rrray

Artificial Intelligence on the Sinclair QL . g . Chaprer 8 - Recognising Siapes
pattern. For example, Figure 8.2 gives a decision tree which will find all
the capital letters of the alphabet using only 12 points (see Figure 8.3),
and it is not even necessary to check all 12 in any particular case. If you
¥ o follow each of the routes you wiil see that the maximum number of steps

to be followed is 7, and that most letters are found in less than 5 steps

- (Table 8.2). This must obviously be quicker than comparing all 64 points!

bes @
Qmo wr(:)
~N
2
z

S 3 ?
.

: +

0y g ‘:-

ZR\‘E»% * : 8 ><
O LA B B X
: {0 s X

e s g,s zﬁ»g 7 =

Figure 8.3: Points Used in Decision Tree.

23

22

21

20

51
40
&)
(4;]

13

To demonstrate how this approach works, we will simulate the action
of the scanning head by producing a grid on the screen, on which you can
construct characters.

The SET_UP routine does the initial housekeeping, starting with the

Figure 8.2(b) display.

Table 8.2: Numbers of Steps Required for Recognition of Each Character.

A rrificial Intelligence on ihe Sinclair QL

3steps—I, D
J

10 SET_UP

10000 DEFine FROCedure SET_UP
10010 SCREEN

10070 END DEFine SET_UP

The SCREEN is cleared and two vertical windows are set up. The left
window (#2) is cleared to white, and the right window (#1) to green.

11000 DEFine PROCedure SCREEN
11010 MODE 4

11020 PAPER 0

11030 CLS

11040 WINDOW ¥2,270,200,26,16
11050 BORDER #2,3,7

11060 CSIZE ¥2,1,0

11070 CLS #2

11080 WINDOW #1,144,200,318,16
11090 BORDER #1,1,7

11100 CSIZE #1,1,0

11110 PAPER #1,5

11120 INK #1,0

11130 CLS #1

11140 BORDER #0,10,0

11150 INK 40,7

11160 CLS #0

11170 END DEFine SCREEN

The decision tree is held in a series of linked arrays where NB is the
number of branches, LES(N) holds the names of the letters, C1(N) the X
coordinate to be checked next, C2(N) the Y coordinate to be checked

. Chapter 8 Recognising Shapes

next, N(N) the next element to use if the answer was ‘no’, and Y(N) the
next element to use if the answer was ‘yes’.

10020 AT #2,5,10 : PRINT #2,"LDADING DATA
INTO ARRAY"

10030 TREE

10040 CLS#2

12000 DEFine PROCedure TREE
12010 RESTORE
12020 NB=53 : DIM LE$(NB),C1(NB),C2(NB)

s N(NB) , Y (NB)
12030 FOR C=1 TO NB
12040 AT #2,15,12 ¢ PRINT #2,C
12050 READ LE$(C) : READ CI(E) 1

READ C2(C) ; READ N(C)

12060 END FOR C + READ ViE)

12070 DATA 0,0,0,2,19
12080 DATA 0,0,4,3,10
12090 DATA 0,2,1,4,9

12100 DATA 0,4,0,5,8

12110 DATA 0,2,0,4,7

12120 DATA "_",0,0,0,0
12130 DATA "8",0,0,0,0
12140 DATA "J",0,0,0,0
12150 DATA "1",0,0,0,0
12160 DATA 0,4,3,11,14
12170 DATA 0,4,4,12,13
12180 DATA "C",0,0,0,0
12190 DATA "6",0,0,0,0

12200 DATA 0,4,6,18,1%
12210 DATA 0,1,3,17,14
12220 DATA "A",0,0,0,0
12230 DATA "@",0,0,0,0
12240 DATA "0",0,0,0,0
12250 DATA 0,4,0,20,29

12260 DATA 0,4,3,21,28
12270 DATA 0,4,2,27,22
12280 DATA 0,4,4,23,26
12290 DATA 0,4,4,24,25
12300 DATA "P",0,0,0,0

129

Artificial Intelligence on the Sinclair QL .
12310 DATA "B",0,0,0,0
12320 DATA "R",0,0,0,0
12330 DATA "L",0,0,0,0
12340 DATA "D",0,0,0,0
12350 DATA 0,4,4,45,30
12350 DATA 0,1,5,31,44
12370 DATA 0,4,2,32,39
12380 DATA 0,0,4,33,36
12390 DATA 0,2,0,34,35
12400 DATA "X",0,0,0,0
12410 DATA "1",0,0,0,0
12420 DATA 0,3,1,38,37
12430 DATA "K",0,0,0,0
12440 DATA “E",0,0,0,0
12450 DATA 0,1,3, 40,43
12460 DATA 0,3,1,42,41
12470 DATA "M",0,0,0,0
12480 DATA "N",0,0,0,0
12490 DATA "H",0,0,0,0
12500 DATA "W*,0,0,0,0
12510 DATA 0,2,0, 86,51
12520 DATA 0,0,4,47,50
12530 DATA 0,1,3,48,49
12540 DATA "Y",0,0,0,0
12550 DATA "V",0,0,0,0
12560 DATA "U",0,0,0,0
12570 DATA 0,0,4,52,53
12580 DATA "T",0,0,0,0
125%0 DATA "F",0,0,0,0
12600 END DEFine TREE

A 5 x 7 GRID array (don’t forget the zero elements) is DIMensioned to
hold the points set information on the character which we will produce,
and the cursor position is set to the top lefthand corner of this (X% = 0,
Y% =0).

10030 DIM GRID(4,4)
10060 X%=Q ;1 Y%=0

Key prompts are displayed on the lefthand screen and then we are ready
to use the EDITOR to design our character.

130

. Chapter 8 Recognising Shapes

20 REPe=at CHARACTER
20 PRINT #2,\"SPACEBAR to set point"
40 PRINT #2,\"F1 to erasa point"

50 PRINT #2,\"F2 to clear screesn"
&40 PRINT #2,\"F3 to decode"
70 EDITOR

50 END REPeat CHARACTER

A block representation of the contents of the GRID array, with a flashing
cursor to show your position, is produced in the righthand window (#1)
by the EDITOR. The loop sets a block at the current coordinates
(X% .Y %) to colour 2 (red), and then checks IF the corresponding GRID
array element contains 1 (ie GRID (X%, Y%) is TRUE). If 1 is found
then this block is set to colour 0 (black). Alternatively, ELSE sets the
block back to colour 4 (green), so that there is no lasting effect. The rate
of flashing is controlled by the delay value in the INKEYS$(N) check, and
the sequence repeats until a key is pressed.

13000 DEFine PROCedure EDITOR
13010 REPeat LOOP
13020 BLOCK 28,28, (X%328), (Y4x28),2

13030 IF GRID(X%, Y%) THEN

13040 BLOCK 28,28, (X%228), (Y%128),0

13030 ELSE

13060 BLOCK 28,28, (X%x28), (Y4228
1,3

13070 END IF

13080 AS=INKEY$ (5)

13090 IF As="" THEN END REPeat LOOP

When a key is pressed, the CODE of this key is taken and used in a series
of IF-THEN tests. The X and Y coordinates are updated according to
movement of the cursor keys and if the spacebar is pressed the colour of
the current screen position is set to black and the corresponding GRID
element is set to 1. If you make a mistake then Function kev 1 erases the
current position by resetting the colour to green, and resets the GRID
element to 0. Note that checks have to be included to prevent movement
bevond the edges of the grid.

13100 A=CODE (AS$)
13110 IF A=192 AND X%>0 THEN X%h=X%-1 :

Artificial Intelligence on the Sinelair QL .

END REPeat LOOP

13120 IF A=200 AND X%<4 THEN X¥=Xi+l 1
END REPeat LOOP

13130 IF A=208 AND Y%>0 THEN Y%4=Y%i-1 1
END REPeat LOOP

13140 IF A=214 AND Y%<&6 THEN Yu=Y%+l 1
END REFeat LOOP

13150 IF A=32 THEN GRID(X%,Y%)=1 1

BLOCK 28,28, (X%%x28), (Y%$28),0 1
END REPeat LOOP

13160 IF A=232 THEN GRID(X%,Y#4)=0 :
BLOCK 28,28, {X%u228), (Y4128),4
END REPeat LOOP

If your character design becomes a complete disaster then Function key 2
clears the screen in window #1, and then resets all the points in the GRID
to 0.

13170 IF A=236 THEN

13180 CLS #1

13190 FOR C=0 TO 4
13200 FOR M=0 TO &
13210 GRID(C,M)=0
13220 END FOR M
13230 END FOR C

13240 END REPeat LOOP

13250 END IF

Finally Function key 3 RETurns to the READER PROCedure which
decodes your design, or else the program loops back to the keycheck.

13260 IF A=240 THEN RETurn
13270 END REPeat LOOP
13280 END DEFine EDITOR

80 READER
In the READER PROCedure, the design produced is checked against
the recognised patterns (see Flowchart 8.1). The array pointer, AP, is

first set to 1 so that the search is started from the beginning. X and Y
coordinates are read from the C1{AP%) and C2(AP%) elements pointed

132

. Chapter 8 Recognising Shapes

ARRAY
FOIN;I‘ER

f

COL;:.ECT'
(COORPINATE,|

YES USE "YES’

POINTER

USE "NO” NO
POINTER

YES

Flowchart 8.1: READER PROCecure.

to, and the last position, LP%, pointer set equal to the current array
pointer, AP%. The point colour, PC, at these coordinates is now
determined by looking into the appropriate GRID array element. If this
contains 1. then this point has been set and the ‘yes’ pointer, Y(AP%),
must be followed. If any other value is found then the ‘no’ pointer,
N(AP%), is followed. In either case a check is now made to see whether
the element pointed to contains a 0 (which indicates the ultimate end of a
branch), which shows that a character has been found. If so, the
appropriate letter LES(LP%) is printed in window #0, and the display is
held until a key is pressed, when a new cycle is initiated. As long asa
higher value than 0 is found, this must be another branch point and so the
program loops back and picks up the new values of CI(AP%) and

133

Artficial [ntelligence on the Sinclair QL .

. -w-/.n_ﬂ

C2(AP%). To allow you to see which points have been checked these
BLOCKS are set to red as they are found. Any points which were set but
not tested will remain black.

14000 DEFine FROCadure READER

14020
14030
14040

14050
14060
14080
14090
14100
14110
14120
14130

14140
14130

AP%=1

REPgat PIXEL_CHECK
X%=C1(AP%) 1 Y4=C2(AP%) 1
LP%=AP%

PCA=GRID (X%, Y%)
IF PC¥A THEN AP%=Y(AP%) 1
ELSE AP%=N{AP%)

IF AP% THEN
BLOCK 28,28, (X%%28), (V%X
28),2 '
END REPeat PIXEL_CHECK
END IF
CSIZE #0,3,1 : AT #0,6,0 1
PRINT #0,"CHARACTER IS ";LE$
(LP%)) 1 CSIZE %0,0,0
PRINT #2,\\"PRESS A KEY TO
CONTINUE"
AS=INKEYS (-1)
CLSHO 1 CLS #1 1 CLS #2

14160 END DEFine READER

So that you can see which part of the tree was actually followed, add these
modifications which will print out the sequence of branches followed
along the tree.

14010

14070

PRINT #2,\"X axis","Y axis",
"point", "next"

PRINT #2,\X%,Y%, PC¥,APY)

The disadvantage of this more rapid method (of only checking critical
points) is that it will make a mistaken match if it encounters a shape that is
not on the tree, whereas if all points are checked then no match will be
found in such a case. Early optical character readers would only accept a
single particular typeface, but the latest machines not only accept
different styles of type, but actually learn the recognition rules for

134

. Chaprer 8 Recognising Shapes

themselves by means of a built-in expert system. You teach these by
showing them a few pages of text and then entering these same characters
via the kevboard. However we feel that it will still be a long time before
anyone can produce a machine that can read our handwriting!

135

CHAPTER?9
An Intelligent Teacher

Another place where artificial intelligence can be particularly useful is in
teaching programs. It is all very well having a program which tests a
student’s knowledge at random, but this is not how real human teachers
work. As well as asking the questions, they keep an eye on the progress of
the students, increase the difficulty of the questions as experience
increases, and test them more rigorously on the types of problems with
which they are having difficulties. For example, if a child takes a test
involving addition, subtraction, multiplication and division, but only gets
the division questions wrong, then it follows that the child should be given
more division questions in the future to provide more practice.

Let’s have a look at how we can introduce these "human’ qualities into a
teaching program.

Questions and answers

We need to create random numbers to be used in the first question, which
we will make an addition. Using RND(0 TO 10) will give numbers
between 0 and 10.

10 SCREEN

20 REPeat QUESTION
40 A%=RND(0 TO 10O}
50 B%=RND (0 TO 10)

10000 DEFine PROCedure SCREEN
10010 MODE 4

10020 CLS #0 : CLS #1 ¢ CLS #2
10030 END DEFine SCREEN

The computer adds these together and then goes on to an INPUT and
CHECKing PROCedure.

&0 Ch=A% + B%
70 CHECK

i s e b e S

Artificial ntelligence on the Sinclair QL .

First of all, CHECK must print the question and then INPUT your
answer, [P%.

1000 DEFine PROCedure CHECK
1010 PRINT \ALj"+";B%;"="}
1020 INPUT IPY%

Your answer must then be checked. If the answer, C%. is the same as
your answer then CORRECT is printed, ELSE ‘“WRONG" is printed
followed by the correct answer, and then the next question is asked.

1030 IF Cl=IP% THEN

1040 PRINT \"CORRECT"

1050 ELSE PRINT \"WRONG, THE CORRECT
ANSWER WAS ";C%

1060 ENDIF

1080 END DEFine CHECK

280 END REPeat QUESTION

Not a number?

If you experiment with this simple routine, you will find that it crashes if
you enter a letter in place of a number (deliberately or accidentally). It
would be a much more friendly teacher who refused to accept anything
other than a number as INPUT, so we will use a GET PROCedure
instead of that simple INPUT request. This INPUTs a string (IP$), rather
than a number, and first checks that the string is not empty (RETURN
alone pressed). It then checks that the CODE of each character in the
string (IPS(N)) is a numeral (CODE between 42 and 56) before convert-
ing IP$ to a simple variable (IP%) by coercion.

1020 GET
2000 DEFine PROCadure GET
2010 INPUT IPs%

2020 IF IP#="" THEN GET

2030 FOR N=1 TO LEN(IPS)

2040 IF CODE(IP$(N)) <43 OR CODE(IP$(N)
>37 THEN

2050 PRINT " ENTER A NUMBER!'' “;

2060 GET

2070 END IF

2080 END FOR N

138

. Chapter9 An Intelligent Teacher

2090 IP%=IPS$
2100 END DEFine GET

Alternative rules

The other three rules of arithmetic (subtraction, multiplication and
division) can be easily dealt with in the same way if we replace the *+"sign
in line 1010 by a sign string, SG$, which we can set to the appropriate
character at the time. At the same time, as RND(0 TO 10) is common to
all the calculations, we might as well DEFine this as a FuNction called
PICK which RETurns an appropriate number.

1010 PRINT \A%jSG#$;B%; "=";

3000 DEFine FuNction PICK
3020 RETurn RND(O TO 10)
3030 END DEFine PICK

40 A%=PICK
50 B%=PICK
&0 C%=RYU+B% : SG&="+"
70 CHECK
100 A%=PICK
110 B%=PICK
12¢ C%=AY%-B% 1 SG$="-"
130 CHECK
160 A%=PICK
170 B%=PICK
180 C%=A%¥BY% 1 SGE="1"
190 CHECK
220 A%=PICK
230 BY=PICK
240 CY=A%/B% 1 SG#="/"
250 CHECK

Dividing by zero o
As it stands, the program can crash if B% happens to be 0 when a division
is selected. This can be simply fixed by always adding 1 on to B%, in this
case:

139

e e e

Artficial Intelligence on the Sinclair QL .

230 BU=PICK+1

Deleting decimals

We are using integer variables to keep us to round numbers, but of course
a division may still produce a fractional answer, which you cannot enter
correctly as [P% will be rounded down, eg:

32=15

but the program will accept 1. 1.5, 1.9 or any other number between 1 and
1.999. . . as correct.

To avoid producing decimals, A% needs to be a multiple of B%. To
achieve this we calculate B% first and make A% equal to B% multiplied
by a random number between 0 and 10.

220 BA=PICK+!
230 A%=PICKRB%

Keeping a score

Now that we have the test itself working we need to consider how to keep
a score. The simplest thing is to increment a tries variable, TR%, each
time the GET PROCedure is used, and to increment a score variable,
S$C%, each time a correct answer is obtained.

{0 SCREEN : TR%=0 1 SC%=0
1040 PRINT \"CORRECT" : SC%=SCl+l
2090 IPY=IP$ 1 TR%Z=TR4U+1

Your current performance can now be shown by a SCORE PROCedure
called at the end of CHECK.

1070 SCORE

4000 DEFine PROCedure SCORE
4010 PRINT "YOUR SCORE IS "jSC%;"/";TRX
4020 END DEFine SCORE

If you prefer the score as a percentage then amend line 4010 as follows:

4010 PRINT "YOU HAVE HAD "j (SC%/TRY%)$100)
"% CORRECT"

ne

. Chapter 9 An Intelligent Teacher

How many questions?

The program will now ask one question of each type in sequence, ad
infinitum. We can limit this by defining the number of questions, NQ%,
as a variable.

10 SCREEN : TR%=0 1 SCZ=0 1 N@%=32

Each time a question is asked, NQ% is decreased by 1: when NQ% = 0
the test ends (after eight questions of each type have been answered).

2090 IP%=IP$: TRA=TRU+1 1 N@Y=N@%-1

2010 IF N@%=0 THEN PRINT "32 QUESTIONS
ASKED"

Shifting the emphasis

If we are going to bias the questions in favour of areas of difficulty, we
need to keep a record of performance in each individual area. We
therefore need separate variables for each type of question (AD% for
addition, SU% for subtraction, MU% for multiplication, and DI% for
division). These variables are defined in terms of one eighth of the total
number of questions to be asked, NQ%.

10 SCREEN : TR%=0 : SC%=0 : N@%=32 :
AD%=N@Y%/32 t SU%=N@%/32 : MU%=NG@%/32
1 DI%=NQZ/32

Now if the correct answer, C%, is the same as your answer, IP%, then an
increment variable, IN%, is set to —1, CORRECT is printed, and the
routine returns. Otherwise IN% is set to 1 and WRONG is printed
followed by the correct answer.

1040 PRINT \"CORRECT" : IN4=-1
1050 ELSE PRINT \"WRONG, THE CORRECT
ANEWER WAS "jC¥% 1 IN%=1

IN% is added to the appropriate individual number of questions variable
— AD%. SU%, MU% or DI% — on returning from CHECK., pro-
ducing an increase in this value if the answer was wrong, or a decrease if
the answer was right.

141

Artificial Intefligence on the Sinclair QL .
70 CHECK : AD%=AD%U+IN%
130 CHECK : SU%=8U%+INZ
190 CHECK & MU%=MU%+IN%
250 CHECK : DI%=DI%+IN%
Now we add a test to see whether all the questions of a particular type
have not been correctly answered (eg AD% >0, see Flowchart 9.1). If all

questions of a type have been correctly answered then no more of this
type are asked as this section is jumped over.

i

PICK
Ist No

PICK
2np No

| INCREMENT
TRIES
\ NO
; el SCORE
UPDATE
INDIVIDUAL
SCORE
i UPDATE.
SCORE

Flowchart 9.1: Intelligent Teacher.

142

. Chapter 9 An Intelligent Teacher
30 IF AD%>0 THEN
B0 END IF
90 IF SU%>Q THEN
140 END IF
150 IF MU%>0 THEN
200 END IF
210 IF DI%>0 THEN
260 END IF

If the appropriate number of each type has been answered correctly —
AD% =0,SU% = 0,MU% = 0, DI% = 0 — then the program ends.

270 IF AD%+SU%+MU%+DI%=0 THEN PRINT
"4 QUESTIONS OF EACH TYPE CORRECT"

Notice that you are no longer asked questions about areas in which you
have correctly answered four questions without making any errors. If you
make a mistake then AD% (etc) will be increased, and therefore you will
have to answer more than this number correctly before AD% reaches 0.

Degrees of difficulty
How about making the questions easier or harder according to how well
you are doing (ie the values of AD%, SU%, MU%, and DI1%)? So far
the current values of A% and B% have always been between 0 and 10, as
thev were produced by RND(0 TO 10). We now need to bias the numbers
produced for the questions towards higher values, if you are correct. and
lower values if you are incorrect. At the same time we must ensure that
you do not produce negative values if your performance is abysmal.

To start with, we need to modify the PICK FuNction so that the current
value of the ‘number of questions to be asked in each group’ pointer
(AD%, SU% . MU% or D1%) is passed to it as X%.

40 A%=PICK(AD%)
S50 B%=PICK(ADW)
100 A%=PICK(8UX)
110 B%=PICK(8U%)

Artificial Intelligence on the Sinclair QL .
1460 A%=PICK (SU%)

170 A%=PICK (S8U%)

220 BY=PICK(DI%) +1

230 AA=PICK(DI¥)

3000 DEFine FuNction PICK(X%)

The "worst case’ will be if you get all the questions wrong in the last group.
In this case only four questions will be asked on the first three groups,
leaving 32—(3*4) = 20 questions to be asked on the last group. In
addition we must remember that X% (eg AD%) starts at a value of 4, so
that the maximum value of X% which could be obtained is 20+4 = 24,

We therefore set up a weighting variable, WT%. which is calculated by
subtracting three times the number of questions to be asked in each group
(3*AD%) from the total number of questions (NQ%) and adding back
on the number of questions in the group AD% at the start.

WT%=NQ%—(3*AD%)+AD%
This is more simply expressed as:
WT%=NQ%—(2*AD%)

10 SCREEN 1 TR%=0 1 SC¥=0 : N@%=32 :
AD%=NE%/32 1 SU%=NQZ%/32 1 MU%=NG%/32 1
DI%=N@%/32 1 WTZ=NQ%-(2%AD%)

We now replace the fixed value of 10 by the difference between WT% and
X%, by modifying the calculation in the PICK FuNction.

3020 RETurn RND(O TO (WT%%-XX))

To begin with, WT% = 24 and X% = 4 so numbers between 0 and 20 will
be selected. If a correct answer is given, then X% is reduced to 3 and
numbers between 0 and 21 will be chosen. After four correct answers,
X% will not change (for this type of question) as it will have reached 0 and
the line will be skipped. The last values will therefore be between 0 and
23.

But if the first answer is incorrect, X% will increase by 1 and the range
of numbers produced reduced by 1 (0-19). In the ‘worst case’, X% will be
increased 20 times to 24 and (WT% —X%) will fall to zero for both A%
and B% (so you should be able to solve that particular problem!).

144

. Chapter 9 An Intelligent Teacher

What about words? ‘
Although the example above deals solely with mathematical problem.s.
there is absolutely no reason why the same technique cannot be used in
dealing with more detailed textual questions and answers.

i
xj
i)
:

CHAPTER 10
Of Mice and Men

Mankind has been fascinated by mazes for centuries and the difficulties
involved in finding the way out of (or to the centre of) a maze have
featured prominently in mythology. More recently the theme has been
taken up by the enthusiastic band of ‘mouseketeers’ who send their
electronic micromice as their champions to do battle against the
unknown. Whilst some may feel that these activities are trivial. we are
sure that they would not object too much if somebody else was sent to
check for radiation after a nuclear accident, or to explore the surface of
some alien planet in their place!

Although short-range direct control of devices is possible, and a video
link can allow an operator to ‘see’ his way. the delays involved in long-
distance transmission pose considerable problems. It is of little value to
see a picture showing that your multimillion pound exploratory probe is
about to fall into a Martian crevasse if it has already fallen by the time you
receive the picture! Autonomous intelligent devices will therefore always
have their place. Although any real exploratory robotic device must be
fitted with suitable sensors, dependent upon its environment and
activities, and will require some reliable form of motive power, with our
QL alone we can at least simulate some of the problems involved in
finding your way around.

Setting the scene

To begin with we set up a screen with three windows. On theright (#1) we
will show the actual maze, on the left (#2) the contents of the MOUSE
BRAIN are displayed, and at the bottom (#0) we have the current time
and status.

10 SCREEN

10000 DEFine PROCedure SCREEN
10010 MODE 4

10020 WINDOW #2,230,200,25,15
10030 BORDER #2,1,4

10040 PAPER #2,7

e e e L A S A 1 T et e b

Artificial Intelligence on the Sinclair QL .

10050 INK #2,0

10060 CSIZE #2,1,0

10070 CLS #2

10080 WINDOW #1,230,200,258, 15

10090 BORDER #1,1,4

10100 PAPER #1,0

10110 INK #1,7

10120 CSIZE #1,1,0

10130 CLS #1

10140 PAPER #0,0

10150 INK #0,0

10160 CSIZE #0,2,0

10170 CLS #0

10180 PAPER #0,7

10190 PRINT #0,"
MAZE "

10200 END DEFine SCREEN

MOUSE BRAIN

Making the maze

We now need to produce a maze to travel through. Although we could
generate one randomly it is rather more fun to design your own. and it
makes it easier to create tests to determine which particular types of
situation cause confusion. The actual maze is contained within a 37 by 33
array, but a copy of the contents of each array element is also displayed on
window #1. Here each array element is represented in the window by a 6
by 6 pixel BLOCK, and before we start we will show the centre of the
maze (18,16) as a green (colour 4) BLOCK. The start position is set in the
top left cornerat X% =1, Y% = 1.

20 DESIGN

11000 DEFine PROCedure DESIGN
11010 DIM MAZE(37,33)

11020 X¥=1 1 Y%=l

11030 BLOCK 4,4, (18ké), (16%4),4

As long as no key is pressed, we loop around flashing a non-destructive
cursor, which alternates between green (colour 4) and the present colour
in the current maze coordinates.

11040 REPeat LOOP
11050 BLOCK &, &, X%kb, Yiks, 4

148

-

. Chaprer 10 Of Mice and Men
11060 BLOCK &,6,X%%6,Y%%6,MAZE (X7, Y4)
11070 As=INKEY$(2)
11080 IF A$="" THEN END REPeat LOOP

When a key is pressed, the four cursor directions are checked. As long as
you remain within set limits in the array the X and Y coordinates are
updated, and the screen cursor moves (without leaving a trail).

11090 A=CODE (A%)

11100 IF A=192 AND X%>1 THEN X4i=X%-1 1
END REPeat LOOP

11130 IF A=200 AND X%<35 THEN XZ=X%
+1 1 END REPeat LOOP

11160 IF A=208 AND Y%>1 THEN Yi=Y¥%i-1
1 END REPeat LOOP

11190 IF A=216 AND Y%<31 THEN Y%=Y%

+1 t END REPeat LOOP

To form the maze we need to mark out a path in the maze array for the
mouse to follow. We also show this on the screen as white (colour 6)
BLOCKs. So that it is easy to alter the maze by swapping white BLOCKs
for black (0), we DEFine a PATH PROCedure to which we can pass a
parameter indicating the colour to be used. Remember that both the
actual maze and the screen display must be updated.

12000 DEFine PROCedure PATH (COLOUR)
12010 MAZE (X%, Y%)=COLOUR

12020 BLOCK é,6,X%%é,Y%%6,COLOUR
12030 END DEFine PATH

White BLOCKs are produced by pressing CTRL and an arrow key, and
black erasing BLOCKs by pressing ALT and an arrow key.

11110 IF A=193 AND X%>1 THEN PATH 0
: X%=X%-1 : END REPeat LOOP
11120 IF A=194 AND X%>1 THEN PATH &
¢ X%=X%-1 1 END REPeat LODP
11140 IF A=201 AND X¥%<33 THEN PATH 0
t X%=X%+1 ; END REPsat LOOP
11150 IF A=202 AND X%<33 THEN PATH &

1 X%=X{%+1 ; END REPeat LOOP

149

Ariificial Intelligence on the Sinclair QL .
11170 IF A=20% AND YX%>! THEN PATH 0
1 Y4i=Y%-1 1 END REPsat LOOP
11180 IF A=210 AND Y%>1 THEN PATH &
1 YX=Y%-1 1 END REPeat LOOP
11200 IF A=217 AND Y%<31 THEN PATH 0
1 Y¥4=Y%+1 1 END REPeat LOCP
11210 IF A=218 AND Y%{(31 THEN PATH &

1 Y¥=Y%+1 1 END REPeat LOOP

Should your maze start to look like a disaster area, then pressing SHIFT
and F1 will RUN the program so that you can start from scratch again!

11220 IF A=234 THEN RUN

Finally SHIFTed F2 will RETurn from DESIGN so that the mouse can
start his search, (Note that the only condition to be satisfied in the maze is
that the start point (X% =1, Y% = 1) must be connected to the centre in
some way.)

11230 IF A=238 THEN RETurn
11240 END REPeat LOOP
11250 END DEFine DESIGN

Finding the route

We can now send our mouse into action looking for the cheese in the
centre of the maze. We need to give him a memory, which will be the
same size as the maze array, set him the start position (1,1), and reset the
clock with SDATE, so that we can time his progress.

30 REPeat RESTART
40 DIM MEMORY(37,33) 1 X%=1 1 Yi=1

&0 SDATE 1984,0,0,0,0,0

The movement of the mouse falls within a loop (see Flowchart 10.1). The
first action in this is to PRINT the last five characters of DATES (ie the
minutes and seconds part). Note that you cannot slice DATES itself. but
must convert it to the temporary variable D$ first.

150

. Chapter 10 Of Mice and Men

Flowchart 10.1: Starting Movement.

70 REPeat MOVEMENT

80 D$=DATES

?0 De=D$ (16 TD)

100 AT #0,16,0 1 PRINT #0,D%
180 END REP=at MOVEMENT

The array element at the start coordinates in the MEMORY is set to
green (colour 4), and a flashing cursor on window #2 in the corresponding
position is produced by the TRACK PROCedure. This takes three
parameters (X and Y coordinates and the colour to be used for the
BLOCK).

Artificial Intelligence on the Sinclair QL .
110 MEMORY (X%, Y%) =4

120 TRACK X%,Y%,0

130 TRACK X%, Y%, MEMORY (X%, Y%)

1000 DEFina PROCedure TRACK (X1,Y1,0)
1010 BLOCK #2,6,6, (X134),(Y188),C
1020 END DEFine TRACK

A bull’s eye?

We can easily check whether the centre has been reached by checking the
appropriate coordinates (18,16). When (or maybe that should be IF) the
centre is reached. then the journey time is reported, and you have three
options. Pressing ‘N’ RUNs the program so that you can design a new
maze. Pressing ‘C’ clears the screen on window #2 and then returns you to
RESTART for another attempt at the same maze (as only the MEMORY
array. and not the MAZE array, is reset). Pressing any other key
RESTARTS on the same maze without clearing the screen, so that any
differences in the points which are checked in the next attempt are more
obvious.

140 IF X%=18 AND Y%=1& THEN CENTRE

2000 DEFine PROCadure CENTRE

2010 PRINT #0," HE REACHED THE CENTRE OF
THE MAZE"\" IN "yD$(1 TO 2)3"
MINUTES AND "jD$(4 TO 5);" SECONDS"

2020 As=INKEY$(-1)

2030 IF As="N" THEN RUN
2040 IF A$="C" THEN CLS #2 : END REPeat
RESTART

2050 END REPeat RESTART
2040 END DEFine CENTRE

Which way?

The mouse must take a look to see where it is possible to move. The next
position to be examined is determined by adding X and Y Decision values
(XD% and YD%) on to the current coordinates. To begin with, we will
set XD% to 0 and YD% to 1, so that the mouse will always try to move
down.

152

. Chaprer 10 Of Mice and Men
so XD%=0 1 YD¥=1
150 IF MAZE(X%+XD%, Y%4+YD%) =0 THEN

eToP
170 XA=X%+AD% 1 Yh=YU+YDY

RUN the program, draw a simple vertical line, and start the mouse by
pressing SHIFT F2. You will see that he moves down until he reaches the
end of the line, when he STOPs. So far so good but we now have to decide
what he should do when the next position does contain 0.

Coping with corners

Your first thought might be to reverse the direction if a wall is hit
(inverting XD% and YD% by multiplying them by —1) but of course that
would only send the mouse shuttling back and forth along the line ad
infinitum. If he is to be able to make a turn to a new heading then he must
check around to find out more about his surroundings. Four FuNctions
are defined to cope with each of the four possible directions (left, right,
up, down). Each of these works in basically the same way, using an
UNKNOWN PROCedure to find out what is in the next possible
position. So far we have only looked at the maze and have not put any
information into the mouse memory. As long as nothing has been put into
a MEMORY location then this will still be 0. We must therefore copy the
appropriate maze information into MEMORY. as well as making a
TRACK to show that we have looked here. If the location has already
been checked then UNKNOWN has no effect. Now if any of the direction
FuNctions find an unchecked MEMORY location then we RETurn
immediately without CHECKing the other possibilities. This means that
LEFT has priority over RIGHT, which has priority over UP, which has
priority over DOWN. Note that this means that the mouse will always
make the same decisions, and that XD% and YD% are only updated‘if
the Colour Code variable (CC) is matched, indicating a pathway is
present (see Flowchart 10.2).

150 DUMMY=CHECK

3000 DEFine FuNction CHECK
3020 CC=6

3060 IF LEFT THEN RETurn 0
3070 IF RIGHT THEN RETurn 0

L
[

5

SiaEEHEE

Artificial Intelligence on the Sinclair QL

YES | cHECK DISPLAY
| MAZE KNOWLEDGE
NO y
UPDATE.
DIRECTION
VARIABLES

Flowchart 10.2:

Coping with Corners.

3160 IF UP THEN RETurn O
3170 IF DOWN THEN RETurn 0O

3240 RETurn -1

3250 END DEFine CHECK

4000 DEFine PROCedure UNKNOWN (X1,Y1)
4010 IF MEMORY(X1,Y1)=0 THEN

4020 MEMORY (X1, Y1) =MAZE (X1, Y1)
4030 TRACK X1,Y1,MEMORY (X1,Y1)

4040 END IF

4050 END DEFina UNKNOWN

5000 DEFine FuNction

LEFT

5010 UNKNOWN X%-1,Y%
5020 IF MEMORY (X%-1, Y%}
¥D%=0 1 RETurn -1

5030 RETurn O
2040 END DEFine LEFT

154

=CC THEN XD¥4=-1 !

. Chapter 10 Of Mice and Men

6000 DEFine FuNction RIGHT

6010 UNKNOWN X%+1,Y%

6020 IF MEMORY (X%+1,Y%)=CC THEN XD%=i i
YD%=0 1+ RETurn -1

6030 RETurn 0

4040 END DEFine RIGHT

7000 DEFine FuNction UP

7010 UNKNOWN X%, Y%-1

7020 IF MEMORY (X%, Y%-1)=CC THEN XD%=0 ;
YD%=-1 : RETurn -1

7030 RETurn 0

7040 END DEFine UP

8000 DEFine FuNction DOWN

8010 UNKNOWN X%, Y%+1

8020 IF MEMORY (X%, Y%+1)=CC THEN XD%=0 :
YD%=1 : RETurn -1

8030 RETurn 0

BO40 END DEFine DOWN

If you try that out with a winding pathway such as that shown in Figure
10.1, you will see that only LEFT and RIGHT are actually checked most
of the time, as the program RETurns before UP and DOWN are reached.

Cutting the checks

As things are, LEFT, RIGHT and UP must all be checked before
DOWN, whereas it would be more sensible if we reduced the amount of
checking done by introducing a bit more logic. Only LEFT and RIGHT
need to be CHECKed when XD % is 0 (ie the mouse was already moving
UP or DOWN), and only UP and DOWN CHECKed when YD% was 0
(ie he was already moving LEFT or RIGHT, see Flowchart 10.3).

3030 IF XD%=0 THEN

3060 IF LEFT THEN RETurn 0
3070 IF RIGHT THEN RETurn 0
3120 END IF

3130 IF YD%=0 THEN

3140 IF UP THEN RETurn 0
3170 IF DOWN THEN RETurn ©
3220 END IF

Artificial [ntelligence on the Sinclair QL . .

Chaprer 10 Of Mice and Men

i
M
L
=
|
T
i |
] 1
!
! !
3 |
. = 1
| m T Flowchart 10.3: Cutting the Checks. :
— |
@ W | -:
W ; Jinxing at junctions i
T2 | Our mouse will now move round corners OK, but if he reaches a junction
T { then he will always move LEFT or UP, if they are possible, as these
- possibilities are always checked first. Such predictable behaviour can get
TOoOLC him going round in circles, so it would be better if we introduced random
[F it} selection from the two possible directions in each case, so that he does not 1
] always give the same priority. LR% (LEFT-RIGHT) and UD% (UP- i
& DOWN) variables are chosen at random as 1 or 2, and used to reverse the |
T order in which the directions are checked (see Flowchart 10.4). '
< 5
I ' |
] 3000 DEFine FuNction CHECK }
— Ll 3020 CC=4 1
T 3030 IF XD%=0 THEN %
3040 LR%=RND (1 TO 2 |
3050 IF LR%=1 THEN |
3060 IF LEFT THEN RETurn 0 :
3070 IF RIGHT THEN RETurn 0 |
3080 ELSE i
Figure 10.1: Coping with Corners. 3090 IF RIGHT THEN RETurn 0 ’

154

Ariificial Intelligence on the Sinclair QL .

3100

3110
1 1 I I 3120
| i i I 3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3240

. Chapter 10 Of Mice and Men
IF LEFT THEN RETurn 0
END IF
END IF

IF YD%=0 THEN
UD%=RND(1 TO 2)
IF UD%=1 THEN
IF UP THEN RETurn 0
IF DOWN THEN RETurn 0
ELSE
IF DOWN THEN RETurn 0
IF UP THEN RETurn 0
END IF
END IF
RETurn =1

_— - - 3250 END DEFine CHECK

If you try that out several times on a maze containing a square (eg Figure

YES
YES

NO
NO

10.2) then you will notice that now the same path is not always followed.

Backtracking
Now [F all the checks are negative, AND the next maze position contains

0 (indicating a wall rather than an unchecked position) then the mouse's
only alternative is to go into reverse (multiplying the current XD% and
Y D% variables by —1 — see Flowchart 10.5).

PICK
PICK
RANDOM
10R 2

uP/DOWN YES
NO
é@ﬁz
NO

Flowchart 10.4: Jinxing at Junctions.

YES | cHEcK |, | DISPLAY
MAZE KNOWLEDGE
MOVE

No ,

REVERSE
DIRECTION
VARIABLES

Flowchart 10.5: Backtracking.

159

Artificial Intelligence on the Sinclair QL

160

Figure 10.2:

Jinxing at Junctions.

ol

MAZE]

i
T
I

nOF THE
SECOHC

=]

o

THE
T

I

EFRATH
FEACHEDRD

A

I

P

HE.

. Chapter 10 Of Mice and Men

150 UNKNOWN X%4+XD%, Y%+YDY
160 IF CHECK AND MAZE (X%+XD%, Y4+YD%) =0
THEN XD%=XD%%-1 1 YD%=YD%x%-1

He will now reverse when a dead end is reached, and continue to check
until an alternative pathway is found.

Where no mouse has gone before

It seems sensible to give a higher priority to parts of the maze which have
not already been visited, as the odds in favour of success are biased
towards the unknown.

In the program so far the areas he has not visited, but which are valid
paths, are marked as white (colour 6}, and those visited once are marked
in the MEMORY as green. We can arrange so that when the mouse
backtracks the trail colour is changed from green to red. This is easily
done by adding a FOR loop which aiters the value of CC in the CHECK
routine. Now, as the loop decrements by 2 each time it repeats, white is
checked for first, followed by green (4) and, as a last resort, red (2). Once
the first match is found we RETurn so that we now have effectively
produced the colour priority white > green > red.

3020 FOR CC=6 TO 2 STEP-2
3230 END FOR CC

Speed merchant?

Although the progress of the mouse is now ‘slow but sure’, you might
consider that it would be better not to bother to make detailed checks on
the surroundings [F the path ahead was shown to be clear (ie colour 6).
Adding the following line speeds the mouse up considerably, as he now
only makes checks when that is absolutely necessary (Figure 10.3).

The disadvantages with this approach are that he becomes more
predictable and that he will always go straight on at a junction when that is
possible. In particular, side branches will not be found without back-
tracking. How important that is in specific situations depends on the
deviousness of your maze, which of course is up to you!

3010 IF MEMORY (X%+XD%, Y%+YD%)=4 THEN RETurn 0

161

Artficial Intelligence on the Sinclair QL

SRR

D

ARl

m
| ©
w
¥
E
L
m

162

Figure 10.3:

Speed Merchant.

THE
AHO G4 SECORDES

-

MIMUTES

=
e

=

FAoL=
IH

E ER
HE REACHED THE

®
CHAPTER 11
Intelligent Use of Archive

The ARCHIVE intelligent database program included with the QL is a
powerful tool for manipulating records and extracting information. Itisa
good example of a ‘state of the art’ intelligent program, but to use it most
effectively you must understand clearly how it operates.

Now whole books could (and no doubt will) be written on ARCHIVE
alone, so we will concentrate here on two aspects only. The first of these is
how to use the commands to extract the required information correctly,
and the second is how you could produce a more user-friendly sheil for
the ‘British Standard Idiot’ to use.

Start by loading the ARCHIVE program from microdrive with:

frun mdv1_boot

Now a DIRectory of microdrive 1 should show the sample database file
included with the program (GAZET_DBF).

dir “*mdv1_"
(Note that quotation marks are needed to access the microdrive from
within ARCHIVE.)

To make life easy we will use this GAZETteer database to explore the
potential of ARCHIVE, so first of all we need to activate it with:

look “*mdv1_gazet™

At this point, DISPLAY will show the layout and the first record in the
file (see Figure 11.1).

display
To move on through the file you can use:
next

and if you are browsing through the file then repeated tvping of ‘next’ can

163

Artificial Intelligence on the Sinclair QL .
Logical name : main
countrys$: AFGHANISTAN
continent$: ASIA
capital% : KABUL
languages$: PUSHTU,DARI
currency$ 1 AFGHANI
pop 1 19.5
gdp : 110
aresa @ 657

Figure 11.1: First Record.

be avoided by pressing F5. which repeats the last text in the keyboard
buffer, and then ENTER. Although this feature is of limited value in this
particular case, it is a boon when a long sequence of commands are
involved.

To retrace your steps use:

back

Or for major leaps:
first

or:

last

Finding a match
The simplest matching command available is FIND, which searches all
fields of a record for a match with the input string.

For example:

find “*europe”

will display the record for ALBANIA, which is the first occurrence of
EUROPE.

[t is important to notice that the lower case input (europe) was matched
with the upper case (EUROPE), as FIND is case-independent.

To find the next match with the same string, CONTINUE is used rather
than NEXT.

Thus:

164

. Chapter 11 Inteiligent Use of Archive
continue

will produce the record for AUSTRIA.

One feature of FIND is that it looks for a match with any part of the
record, and takes no account of surrounding characters. This can some-
times be a problem:

find “‘asia™
continue

produces first AFGHANISTAN but then AUSTRALIA, which is of
course in AustralASIA rather than simply ASIA.

On the other hand, this can be useful if you only want to match part of a
record. For example ‘languages’ often contains the name of more than
one language, but you will still find matches with any part of this.

Thus:

find “‘english™
continue
continue
continue

will eventually retrieve the BOTSWANA record where languages$ is
‘ENGLISH, SETSWANA’, rather than simply 'ENGLISH'.
Another good example would be finding which countries use some
form of dollar ($) as currency.
find
picks AUSTRALIA (with the AS$) as the first match.
Sometimes it is advantageous to deliberately truncate an input word to
obtain all required matches. If you compare:
find “*english™
with
find “engl”
you will see that the latter produces significantly more matches.

Searching specifically
SEARCH is a more specific, but also more powerful, command which

Artificial Intelligence on the Sinclair QL .

requires that a specified condition is satisfied. It acts only on specified
fields, and is case-dependent, so that:

search continent$ = ““asic
finds no matches but:
search continent$ = “ASIA™

does, whilst:

search continent$ = “AMERICA"

finds nothing as *AMERICA’ is always preceded by some qualifying
letter such as *N'.

Although you cannot search to find which countries use the dollar as
the unit of currency (as the dollar string is usually embedded) you can
easily search to determine whether a number is greater or less than a
specified value. Thus whilst SEARCH is basically more exact it allows
you to be less precise in some ways!

Hence:
search area <2

gives

HONG KONG (1)
MARTINIQUE (1)

and

search area >10000

produces only

U.S8.58.R (22402)

Strings can be compared as well as numbers:
search country$ >“C”

gives

CAMEROUN

166

. Chapter 11 [ntelligent Use of Archive

(the first country beginning with a character sequence further up in
alphabetical order than the letter specified, ‘C").

More than one condition to be satisfied may be specified. For example
how many countries in Africa use French as their sole language?

search continent$ = “AFRICA” and
languages$ = “FRENCH”

BENIN

CENTRAL AFRICAN REP.
CHAD

COMOROS.

CONGO

GUINEA

IVORY COAST

MALI

REUNION

TOGO

What about asking which of those use the CFA FR as currency as well?
The obvious way to do that is to tack another condition on:

search continents$ = “AFRICA™ and
languages$ = “FRENCH” and
currency$ = “CFA FR”

CENTRAL AFRICAN REP.
CHAD

COMOROIS.

CONGO

IVORY COAST

TOGO

Selecting records
A more effective way of dealing with this type of problem may be to
SELECT subsets of records. The total number of records in the GAZET
file can be found by:

print count ()

where the answer is 152.
You can select countries in Africa only with:

167

Artificial Intelligence on the Sinclair QL .

select continent$ = “AFRICA™

Now

print count ()

gives only 49, and the system acts as if only those records existed. Hence:
search languages$ = “FRENCH"

will now find the French-speaking-only countries in Africa, or you could
select just these with:

select languages§ = “FRENCH”
print count ()

leaving only ten countries in the file. (There is no reason why this
selection cannot be done in a single step.)

Putting things in order
If you look at the list of French-speaking African countries above, you
will see that they are in alphabetical order. This is purely fortuitous as the
whole GAZET file was originally set in alphabetical order by country, but
this ORDER can be easily modified.

Thus:

order area;a
puts them into ascending order by area as

COMOROS.

REUNION

TOGO

BENIN

GUINEA

IVORY COAST

CONGO

CENTRAL AFRICAN REP.
MALI

CHAD

and

168

. Chapter 11 Intelligent Use of Archive
order capital$;a

puts them into ascending order according to the name of the capital (with
ABIDJAN in the IVORY COAST top of the list).

Whether selection or searching is quicker really depends on what
particular information you are trying to extract.

To retrieve the whole file use:

reset

Partial matches

In one of the examples above we SELECTed the African countries which
have French as their sole language — but what about those who have both
French and other languages? Remember that FIND is not specific — so
why not select the countries in AFRICA, as before. and then find
‘FRENCH".

select continent$ = “AFRICA™
find “FRENCH”
continue

Using PROCedures

So far we have only scratched the surface of the potential of ARCHIVE
as we have only used direct commands, which have simply located and
displayed entire matching records. However, using the PROCedure
editor we can tailor more impressive sequences for specific tasks. To
enter the editor type:

edit
and when you are prompted for a PROCedure name enter:
contl

and then the following PROCedure lines which carry out an auto-
matically repeated FIND.

proc contl
cls
input "which continent? "ja%

169

Artificial Intelligence on the Sinclair QF. .

find a$

while found()
print countrys;" ")
continue
endwhile

endproc

Flowchart 11.1: PROC contl.

A search string (a$) is input in reply to the ‘which continent?’ question,
and a FIND for this is continued while FOUND() is true (see Flowchart
11.1). Now FOUND() is zero when FIND was unsuccessful, providing a
suitable loop-ending test. Notice that we have specified that only
country$ is printed, rather than the whole record, so that only the
requested information is displayed. Once the PROCedure is entered you
can press ESC to return to ARCHIVE and then run your new PROCedure
by simply entering its name:

contl
When the prompt appears enter ‘asia’ when a list showing only the names

of countries in ASIA will appear — but note that AUSTRALASIA has
also been found.

170

. Chapter 11 Inteiligent Use of Archive

To restrict the match to *ASIA’ you can search instead. The only line
that needs to be changed is:

find a$
which becomes
search continent$ = a$

Of course only upper case will now be matched. which can be rather a
nuisance. One way round this is always to convert your input into upper
case, and as this is a common requirement we might as well define it as a
new PROCedure called GET. Enter the editor as before and then use F3
and *N’ to create a new PROCedure.

proc get
input a$
let as$=upper (a$)
endproc

The input line in CONT1 now needs to be replaced by:
print “which continent? "’; : get

if both 'ASIA’ and ‘asia’ are to be accepted. To go back to your old
CONT1 PROCedure, press ESC followed by SHIFT and TABULATE,
and then edit the line.

A more friendly (inter)face

So far you have to type the string to be matched exactly as it appears in the
record — but it would be more user-friendly if you couid be rather
vaguer. Who knows, you might even be able to convince your sceptical
relations that computers are worth talking to!

We will define a new PROCedure called TELL, which provides an
outer ‘shell’ so that the user never has to worry about the nitty-gritty
details of what is actually being done within ARCHIVE (Flowchart
11.2).

A major feature is that it uses an INSTR search of your input against
keywords to try to find out what you want, rather than simply accepting it
as given.

Now when you use TELL you are prompted to make an input, which
can contain anything you like. This is checked for key sequences of

171

Artificial Intelligence on the Sinclair QL . . Chapter 11 Intelligent Use of Archive

PROC
COUNTRY

PRINT PROC
g

RESET

Flowchart 11.2(b): PROC tell (ii).

Flowchart 11.2(a): Proc tell (i).

Artificial Intelligence on the Sinclair QL . .

Chapter 11 Intelligent Use of Archive

SELECT WORLD INFORMATION
CONTINENT$

f No
. PRINT PRINT
C= COUNT() COUNT () /jéoumm \{Es

Flowchart 11.2(c): PROC cont2.

FLEASE ENTER YOUR QUESTION

? FLEASE WILL YOU GIVE ME SOME INFORMATION AEBOUT
AMERICA

DO YOU MEAN
N.AMERICA
S5.AMERICA
OR C.AMERICA
N.AMERICA
N.AMERICA

FIRST 1 = 2 i . AMER
—=— RECORD COUNT() ‘F|=Q There are countries in N ERICA
| CANADA u.s.a
NO Which country would vou like to know more about?
NEXT NO a CANADA
® L =l-1 [~ RECORD *ggf,ﬁm,

CANADA is in N.AMERICA

It has a population of 23.1 million,
spread over 99746000 sa km

(a population density of Z.32/sg km)
The capital is OTTAWA

and the currency is the CAN.$

YES 4
YES [“DONT PRINT §
UNDERSTAND, INFORMATION I=-1

Flowchart 11.2(d): PROC country.

Do vou wish to have any
more information about N.AMERICA
YES PLEASE

Which country would you like to know more about

characters, such as ASIA, AFRICA, AUSTRAL, and EUROPE. If you U.S.A.

now enter any sentence containing one of these key phrases which

describe continents, a search will be made for the appropriate match.
Thus: U.S.A. is in N.AMERICA
d It has a population of 215.3 million
§ % spread over 23463000 sg km

ASIA (a population density of 22.99/sq km)
ASIAN The capital is WASHINGTON
ASIATIC and the currency is the $
AFRICA .
Do you wish to have any

AFRICAN more information about N.AMERICA
AUSTRALIA NO
AUSTRALIAN
AUSTRALASIA " "

Fi 11.2: 1 t fi TELL 1
AUSTRALASIAN igure Sample Printout from TELL PROCedure
EUROPE
EUROPEAN

174

Artficial intelligence on the Sinclair QL .

will all be accepted.

In the case of AMERICA a more mug-trapped approach is used as the
GAZET file divides this into three distinct areas, which must be specified
precisely. Note that this depends on finding a space before AMERICA.

[f a continent name is not found (b$ = ") then a check is made to see
whether the input is the name of a country by the COUNTRY
PROCedure, which checks for a match between vour input and ail the
country§ variables in the file. Note that this uses an odd ‘logic’ as your
input may contain any number of words, whereas the variable in the
record is only a single phrase. Thus we look for country$ in your input
(a$) rather than vice versa.

If a match is found then a number of variables are picked from this
record and presented neatly embedded in text. Note that this information
also contains the DERIVED populaticn density figure which was not in
the actual record. The WHILE L (ie count(}) loop will check all records
in the file. so that you can ask about more than one country at a time, but
the INKEY() check gives you an easy way out if you can't stand the
graunching sound from the microdrives any longer. If no match is found
then you are advised of this and you return to the calling PROCedure.

Where the name of a continent is found the CONT2 PROCedure is
called, which selects the records of all those countries in this area, and
prints out their names. You are now asked ‘which country would you like
to know more about’, and the COUNTRY PROCedure is used to find
this as before. The WHILE R loop allows you to repeat your searches on
this continent.

Figure 11.2 gives a sample printout of the program.

This approach is obviously rather more friendly. but you can see that
the hard work has had to be done in advance, and that all the INSTR
checking inevitably slows things down. Perhaps you would like to try
adding more facilities to the program so that you can check more than one
field at a time.

ARCHIVE TELL PROCedure

proc tell

reset

mode 0,4

let dummy=-1

while dummy
cls
print
print "WORLD INFORMATION"
print

176

Chapter 11

print "PLEASE ENTER YOUR BUESTION"

print

let bgan"

print

print "? ";

get

if as="EXIT"
print "BYE FOR NOW"
lat dummy$=getkey ()
mode 1,6
reset
return
endif

if instr(a%,"ASIA") >0
let bs="ASIA"
endif

if instr(as, "AFRICA") >0
let bs="AFRICA"
endif

if instr(a$, "AUSTRAL") >0
let b$="AUSTRALASIA"
endif

if instr(a%, "EUROPE") >0
let b#="EUROPE"
endi+

if instr(" "+a®," AMERICA") >0
print
print "DO YOU MEAN?"
print "N.AMERICA"
print "S.AMERICA"
print "OR C.AMERICA?"
print
get
endif

if instr(a$, "N.AM) >0
let b$="N,AMERICA"
endif

i instr(a%,"S.AM) >0
let b$="S5.AMERICA"
endif

if instr(a$,"C.AM) >0
let b3$="C.AMERICA
endif

Inzelligent Use of Archive

177

Ariificial Intelligence on the Sinclair QL . . Chaprer 1 [ntelligent Use of Archive

if bs<omn ARCHIVE COUNTRY PROCedure
print b3
cont2 proc country
let r=-1 first
while r let l=count{)
print let f1=0
print "Which country would you while 1
like to know more about? " if INSTR(a%$, country$) >0 |
get let fl=-1
print print £
country ink 4 i
print "Do you wish to have any" print country$;" is in "jcontinent$ i]
print "more information about ";b$ print "It has a population of "jpopj |
gat " million," 1
if instr(as,"YE")=0 print "spread aver "jareaj;"000 sq {
let r=0 km"
endi 4 print "(a population density of " |
andwhile print str(pop/(area/1000),0,2); {
else "/eq km)"
country print "The capital is "jcapital$
endif print "and the currency is the "
let dummy$=getkey!) print currencys$
reset ink 7 i
endwhile endif
endproc next |
let 1=1-1 |
if inkey()}<>"" i
ARCHIVE CONT2 PROCedure return
endif
proc cont2 endwhile
select continent$=bs if fl=0
let c=count() ink 2 ‘
print paper 7 i
print "There are "jc;" countries in";b% print "I don’t understand what you
print mean"
while c ink 7
if c/4=int(c/4) paper 0
print endproc
endif
print country$;" ";
next
let c=c-1
endwhile
endproc

178 179

CHAPTER 12
A Naturally Expert Salesman

In the previous chapters we have dealt from first principles with various
aspects of artificial intelligence, but in this final chapter we have linked
together many of these individual ideas into a single complete program.
The original intelligent program was the famous ELIZA, which was a
pseudo-psychiatrist program written to send up a particular style of
psychiatric therapy, but we have resisted the temptation to follow this
lead any further and have opted instead to produce a synthetic replace-
ment for the computer salesman.

Although ELIZA-type programs which will hold a *conversation’ with
you are not uncommon, this particular program is rather unusual in that it
combines processing of natural language with an expert system to
produce a result which should both understand your natural language
requests and make suggestions which take into account your require-
ments, the strengths and weaknesses of particular machines in 20
different areas, and a number of hard commercial facts like cost and profit
margin!

Enough words and values have aiready been included to make the
program interesting, but you can easily customise it by adding your own
ideas to the DATA. (We take no responsibility for the values included so
far, which are for demonstration purposes only, or the views on particular
machines expressed by the program.) The program itself basically follows
the methods described earlier in the book and the functions of the various
PROCedures, FuNctions, variables and arrays are given in Table 12.1.

Table 12.1(a): Variables and Arrays.
SIMPLE VARIABLES

QP% no. of question sentences
Q% no. of questions

R% no. of rules

OB% no. of objects

Al% no. of adjectives

AV% no. of adverbs

LI% no. of likes

181

Araficial [ntefligence on the Sinclair QL

DL%
NJ%
NV%
HM%
BB%
CO%
FE%
CT%
CS%
EX%
HI%
LO%
LD%
TC%
TP%
OF%
NP%
M%
OM%
S1%
S2%
CM%
SP%
ST%
PH%
1S%
RU%
XX%
TX%
PT%
TS%
BS%
H1%
LO%
SE%
SL%

ARRAYS
OB$(OB%,10)

AJS(AI%.6)
NIS(NI%.7)

182

no. of dislikes

no. of negative adjectives
no. of negative adverbs

no. of cheap/expensive
bank balance

no. of computers

no. of features

no. of cost ratings

no. of cost suggestions

no. of excuses

no. of high price suggestions
no. of low price suggestions
like/dislike

total cost

total profit

object flag
negative/positive

marker

object marker

AND position

BUT position

comma position

search position

search start

selected question phrase
search position

rule update value
cheap/expensive

selected excuse

selected credit warning
cost of most expensive match
cost of least expensive match
most expensive match
least expensive match
most/least

cost phrase selector

=]

objects
adjectives
negative adjectives

. Chapter 12 A Naturally Expert Salesman

AVS(AV%,6)
NVS(NV%,6)
LIS(LI%.7)
DLS(DL%.7)
Q8(Q%.20)
QPS$(QP%,16)
CR(Q%)
PR(Q%)
IC(Q%)
IP(Q%)
HMS(HM% 20)
R(R%)
COS(CO% .30)
FE(CO% .FE%)
C(CT%)
CSS$(CS% ,100)
EXS(EX%,100)
HIS(HI% 100)
LOS(LO%.100)

adverbs
negative adverbs
likes

dislikes

question objects
question sentences
cost rate

profit rate

total cost

total profit
cheap/expensive
desire rule
computer names
feature names
cost ratings

cost suggestions
excuses

high messages
low messages

Table 12.1(b): PROCedures and FuNctions,

PROCEDURES

SCREEN

TITLE
SET_UP

PICK_QUESTION
LOOK_AT
LOOK_AND
JOIN_1

JOIN_2

AND_OR BUT

YES_PRESENT

NO_PRESENT

set windows

prints title
READs DATA, sets variables

selects question phrase (PH$)
looks for ‘@' marker in PH$
looks for ‘&’ marker in PHS
forms the question with the
question objects at the end

forms the question with the
question objects embedded
updates the rules depending

upon the word preceding

the AND_OR_BUT in your input
updates the rules if YES_PRESENT
in your input

updates the rules of NO_PRESENT
in your input

183

Artificial Inteiligence on the Sinclair QL . . Chapter 12 A Natwrally Expert Salesman

NT_PRESENT updates the rules if NT_PRESENT
in your input

DOUBLE_NEGATIVE checks fora DOUBLE_NEGATIVE
in your input

LIKES checks for LIKES verbs in %
your input W
DISLIKES checks for DISLIKES verbs in e
your input
OBJECTS checks for OBJECTS in your =
input]
ADVERBS checks for ADVERBS (positive) _.;
NEGATIVE_ADVERBS checks for NEGATIVE_ADVERBS) t%
ADJECTIVES checks for ADJECTIVES (positive) ‘ f
NEGATIVE_ADJECTIVES checks for NEGATIVE_ADJECTIVES
CHEAP_EXPENSIVE prints cheap or expensive message
RULE_UPDATE updates rules _"_
COST_PROFIT calculates total cost and profit S
SPENDING compares with bank balance
PICK_COMPUTER selects matching computer ::El-
J s
FUNCTIONS i T
FIND_slash searches for a slash */" in PHS$ @ L_L!
FIND_ask searches for an asterisk “** in PH$ ‘_ jf _‘I:—l,_.
FIND_comma searches for a comma *," in IN§ I
FIND_AND searches for ‘AND’ in IN§ j = ;
FIND_BUT searches for ‘BUT in IN$. E: :-—:
&
I

Making conversation
The format of the program is that you are asked for your views on each of
a number of possible features in turn (the exact wording of the question
being PICKed at random from a selection of available QUESTION
phrases). Note that the keyword or phrase is inserted into the sentence
where necessary and that the correct conjugation is applied, by FIND_
slash, LOOK _at, LOOK and, FIND_ask, JOIN_1 and JOIN_2.

The screen display is divided into five horizontal windows (Figure 12.1) Figure 12.1: Workings of Salesman’s Mind.
which are dedicated to specific purposes. Window #0, at the bottom,

¥

184 185

Arnfictal Intelligence on the Sirclair QL .

receives vour input sentences, which are entered in response to the
prompting questions which appear on the small window (#3) just above
it. Above this is the largest window (#1) on which a whole series of
relevant comments appear. Window #4 simply contains an advertisement
for the ‘Multimega Microstore’, whilst finally the top window (#2)
displays at least part of the contents of the salesman’s brain, to show the
rules on which he is basing his judgement. Of course this may give you
more insight into a salesman’s motives than usual.

Your input is examined in detail for a series of keywords. and a
DESIRE RULE array is updated according to your requests. (You
actually see the rule arrays being updated in the top screen window.)
Note that many of the keywords are truncated so that one check can be
made for a number of similar words, and a test is included to check that
the matching string is at the start of a word, to reduce mismatches (eg
LIKE in DISLIKE). If you are obsessed with one particular feature (eg
16-BIT PROCESSOR) then the salesman does not take you too seriously
as this is obviously a ‘buzz word’ gleaned from the last month’s issue of
‘People’s Computer News'.

The simplest test is whether there is YES_PRESENT or NO_PRESENT
which add or subtract | from the DESIRE RULE for that feature, and if
you mention the name of the OBJECTS (eg GRAPHICS) then a further
1 is added to the DESIRE RULE. In addition, using ‘positive’ ADJEC-
TIVES or ADVERBS also adds to this rule, whilst a NEGATIVE_
ADJECTIVE or NEGATIVE_ADVERB subtracts from this rule.
Separating the words into different classes allows you to make more than
one change to this rule at the same time.

Thus:

YES adds 1
YES BASIC adds 2
YES BASIC NECESSARY adds 3
YES GOOD BASIC NECESSARY adds 4
Whilst:

NO subtracts 1
and

NO MEMORY subtracts 2
186

. Chapter 12 A Naturally Expert Salesman

Furthermore verbs are grouped as LIKES and DISLIKES: the latter
reverse the action of the rest of the words.
Thus:

I DETEST MACRODRIVES subtracts 1

Both NO_PRESENT and NT_PRESENT are recpgnised and most
DOUBLE _NEGATIVES are interpreted correctly.

Thus:
[DON'T LIKE SOUND subtracts 2
[DON'T DISLIKE SOUND adds 2

[f anything appears at the start of a sentence and is followed by a comma
then FIND _COMMA usually cuts it off and it is effectively ignored.
Thus:

NO,IDON'T WANT GOOD SOUND subtracts 3
The exception is when AND_OR_BUT are included, when both parts of
the sentence are acted on independently.

Thus if the question is:
DO YOU WANT GRAPHICS?

and the answer is:

NO, BUT I WANT GOOD SOUND

then 1 is subtracted from the graphics rule and 2 added to the sound rule.
If the program does not find any keywords in the input then it politely
asks you to try again: ’

PARDON, EXCUSEME BUT. . .

'_I'he program can only cope with one feature at a time so if you try to ask
for SOUND and GRAPHICS, for example. at the same time, you will get
arequest for a repeat of the question.

HANG ON — ONE THING AT A TIME
However it is possible to make comments about single features that you

are not being asked about at the time. and these entries will still update
the rules (as in the BUT example above).

. Chapter {2 A Natwurally Expert Salesman

Artificial Intelligence on the Sinclair QL

1 -

SET UP CHOOSE CONTUGATE
{—=—— GUESTION AND ADD
| WORDS

ARRAYS SPACE

ADD SPACE
INPUT [| PRINT
kﬁ&%lﬁs REPLY aussnoai/

YES

S SUBTRACT

YE.
15T, WoRy CURRENT
NO, RULE.
%

ADD TOD
CURRENT
RULE

!

RU=RU +LD
OF=N
OM = 0M+ 1

RU=RU+LD

NP=NP+1
LD=-1

LD=LD¥-1
RU=RU+LD

RU+ve
LD=1

(1)
~(2)

Flowchart 12.1(a): Computer Salesman,
Flowchart 12.1(b)

Antificial Intelligence on the Sinclair QL

(2)

UPDATE.
OF N_YE
CURRENT
<“°""T RULE

NO *
UPDATE UPPATE
OBTECT TOTAL COST
RULE TOTAL PROFIT

‘¢cReEDIT [YES

NO

(3)

Flowchart 12.1(c)

100

(z)

Chaprer 12

A Naturally Expert Salesman

X

q

n

Flowchart 12.1(d)

Artificial Intelligence on the Sinclair QL

UPDATE
TS + HI

Flowchart 12.1(e)

. Chapter 12 A Nawraily Expert Salesman

Decisions

Once the input has been decoded as far as possible we move to RULE_
UPDATE. In addition to the DESIRE RULE array there are two other
arrays which are linked to this. The first is the COST RULE, which gives
an indication of the cost of this particular option, and the second is the
PROFIT RULE which indicates to the salesman how much effort it is
worth putting into selling this feature. The values for these last two arrays
are produced by multiplying the content of the corresponding rule array
element by factors entered originally in the DATA (see Table 12.2
where the format is:

(phrase describing feature, cost. profit)
eg EXPANDABILITY,2,9
indicates that the cost of including EXPANDABILITY is quite low (2)

but that it carries the potential for high profits, through sale of ex-
pansions.

Table 12.2: Cost and Profit Margin of Features.

FEATURE COST PROFIT

NO.

1 GOOD BASIC 35 2
2 GRAPHICS 7 2
3 SOUND 6 2
4 A GOOD KEYBOARD 4 2
5 FUNCTION KEYS 1 5
6 A LARGE MEMORY 3 6
7 A TAPE INTERFACE 2 2
8 MACRODRIVES 2 4
9 DISCS 5 8
10 EXTENSIVE SOFTWARE 0 9
11 A CARTRIDGE PORT 1 6
12 A JOYSTICK PORT 1 7
13 AN ASSEMBLER 2 1
14 A CENTRONICS PORT 2)
15 AN RS232 PORT 2 6
16 EXPANDABILITY 2 9
17 NETWORKING 3 4
18 A 16-BIT CPU 1 7
19 MULTITASKING 5 5
20 GOOD SERVICE 1 9

|
|
{
|
!
|
{
.

ot =y

Artificial Intelligence on the Sinclair QL .

After each input the salesman considers the consequences of your
requests. First of all he looks to see if your SPENDING on your require-
ments exceeds a certain proportion of your bank balance, and if so prints
out one of a series of caustic comments on your credit-worthiness like:

THIS SPECIFICATION SEEMS TO BE
EXCEEDING YOUR CREDIT LIMIT

He also looks at how much profit he is likely to make on the sale so far,
and if this drops too low he will start to lose interest and come up with
comments like:

I HAVE AN URGENT APPOINTMENT
or
WE CLOSE IN FIVE MINUTES

At the same time he will be more helpful with regard to which of the
available computers will fit your requirements, using PICK_COMPUTER
which draws up a short list by comparing the rating given originally to this
feature in the description of each computer with the value you put on it.
The format for the descriptions (Table 12.3) is:

Tabie 12.3: Computer Feature Ratings.

FEATURES

NAME 12345678910111213141516171819 20
JCNPC 78898880997 707688999
KNACT SERIOUS 6768888088000763889297
CLEARSINMT 99977889967 7076799%91
ACHRON ILLUSION 87660370550060041002
BANANA IIE 35250460303500670004
SIELITE 8887 7880727400600000
COLECTOVISION

CABBAGE 55552555517700650900
CANDY COLOURED

COMPUTER 7642027049870063000%6
COMANDEAR 64 289776506967 0022000%6
ATRIA 600GT 188502507777006600035

(name, value of feature 1, value of feature 2, value of feature 3, etc)

‘ Chapter 12 A Naturally Expert Salesman

The highest-rated machine will always be picked out first but, if possible
at least three machines (possibly with lower ratings) will be selected anci
the final choice made from them. Either the highest or iowest.cost
computer (at random) will be selected for mention, for example:

IF YOU WANT A REAL ROLLS-ROYCE
THEN JUST LOOK ATTHE. . .

and

IF YOU ARE IN THE BUDGET MARKET
THEN WHAT ABOUTTHE . . .

[f only one machine fits the bill the program will come up with:

YOUR ONLY OPTIONISTHE . . .

Computer Salesman

10 SCREEN
20 TITLE
30 SET_UP
40 REPeat GUESTION
50 PICK_GUESTION

40 IF FIND_slash THEN
70 LODK_at

80 LOOK_and

{0 END IF

100 IF FIND_ask THEN
110 JOIN_1

120 ELSE

130 JOIN_2

140 END IF

150 PRINT #3,PH$ & "7"
160 INPUT #0, INs
170 IN$=" " & INS$

180 LD%=1
190 OF%=-1

200 FS%=1
210 NFP%=0
220 RU%=0

195

Arrificial Intelligence on the Sinclair QL . ! . Chaprer 12 A Naturally Expert Salesman

230 ML=0 3010 IF G8(@%,1)="@" THEN
240 OM%=0 3020 PH&=PH$(1 TO I1S%-1) & "ARE" % PHs
250 S1%=0 (18% TO)
260 82%=0 3030 END IF
270 IF FIND_comma THEN 3040 END DEFine LOOK_at
ggg ?:2:?:;%;1-*1 ™ 4000 DEFine PROCedure LOOK_and
300 END IF 3010 IF G$(@%,1)="%" THEN
310 YES_PRESENT 4020 PH$=PH$ (1 TO IS%-1) & "IS" & PHs
320 NO_PRESENT (1s% 10)
330 NT_PRESENT 4030 END IF
x40 DOUBLE_NEGATIVE ‘ 4040 END DEFine LOOK_and
350 LIKES 5000 DEFine FuNction FIND_ask
360 DISLIKES 5010 IS%="%" INSTR PH$ _
g;g ggggggg ! 5020 RETurn IS%
5030
390 NEGATIVE_ADVERBS : S0 (eFine ;FINOZwe
400 ADJECTIVES 4000 DEFine PROCadurs JOIN_i
410 NEGATIVE_ADJECTIVES 6010 PH$=PH$(1 TO IS%-2) & " " & @8(@%) (2
420 CLS #1 TO LEN(A$(Q%))) & PHE(ISY+1 TO)
430 CHEAP_EXPENSIVE ; 4020 END DEFine JOIN_1
440 IF M%<1 THEN PRINT "PARDON, PLEASE
EXCUSE ME BUT" : NEXT GUESTION 7000 DEFine PROCedure JOIN_2
450 IF OM%>! THEN PRINT "HANG ON - ONE 7010 PHS=PHS & " " & Q$(Q%) (2 TO LEN{GS(EL)))
THING AT A TIME" 1 NEXT QUESTION 7020 END DEFine JOIN_Z2
460 RULE_UPDATE
470 COST_PROFIT 8000 DEFine FuNction FIND_comma
480 SPENDING BO10 CM%="," INSTR IN$
490 PICK_COMPUTER 8020 RETurn CM%
500 Q%=Q%+1 : 8030 END DEFine FIND_comma
510 IF @%>19 THEN @%=0
520 END REPeat QUESTION 9000 DEFine PROCedure AND_OR_BUT
1000 DEFine PROCedure PICK_GUESTION 9010 IF FIND_AND + FIND_BUT THEN
1010 PHY=RND(4 TO @P%) 9020 IF INS(! TO 3)=" NO" THEN
1020 PH$=0FS$ (PHY%) 2030 R{Q%) =((R(Q%) £3)-3) /3
1030 END DEFine PICK_GUESTION 9040 IC(@X)=({IC(A%) 33) - (CR(A%) £3))/3
9050 IP(Q%) =((IP (@%) ¥3) = (PR (B%) ¥3)) /3
2000 DEFine FuNction FIND_slash . 7060 ELSE
2010 I18%=" /" INSTR PH$ 2070 R(Q%4)=R(A%) +1
2020 RETurn 1S5% 2080 IC(@%)=¢({1C(A%) 23)+(CR(A%) x3)) /3
2030 END DEFine FIND_slash 2090 IP(Q%) =((IP(G%) 23)+ (PR(QA%) $3)) /3
9100 END IF
3000 DEFine PROCadura LOOK_at ?110 END IF
= 9120 END DEFine AND_OR_BUT
104 197

Artificial Intelligence on the Sinclair QL

10000 DEFine FuNction FIND_AND
10010 S1%="AND" INETR INS
10020 RETurn S1% -
10030 END DEFine FIND_AND

11000 DEFine FuNction FIND_BUT
11010 B2%="BUT" INSTR INS
11020 RETurn S2%

11030 END DEFine FIND_BUT

12000 DEFine PROCadure YES_PRESENT
12010 8Ti=1

12020 Ti$=INS$

12030 REPeat YES

12040 11$=I1%(8T% T

12050 SP%="YES" INSTR I1$%
12060 IF SP%=0 THEN RETurn
12070 RU%=RU%+1

12080 LD%=1

12090 M7=1

12100 STU=8P%+1

12110 END REPeat YES
12120 END DEFine YES_PRESENT

13000 DEFine PROCedure NO_PRESENT
13010 STh=1

13020 I1s=INs

13030 REPeat NO

13040 I118=118(ST% TO)

13050 SP%="NO" INSTR Ii%
13060 IF 8P%=0 THEN RETurn
13070 LD%=-1

13080 M%=1

13090 ST%=6P%+1

13100 NP%=NP%+1

13110 END REPeat NO
13120 END DEFine NO_PRESENT

14000 DEFine PROCedure NT_PRESENT
14010 8T%=1
14020 I1s=INS

14030 REPeat NT
14040 I1$=11%(8T% TO)
14050 SP%="N"T" INSTR I1%

198

)

. Chapter 12 A Natwraily Expert Salesman
14060 IF 8P%=0 THEN RETurn
14070 LD%=-1
14080 M%=1
14090 ST%=5P%+1
14100 NP%=NPZ%+1

14110 END REPeat NT
14120 END DEFine NT_PRESENT

15000 DEFine PROCadure DOUBLE_NEGATIVE
15010 IF NP%=0 THEN RETurn
15020 IF NP% MOD 2 THEN

15030 RU%=((RU%X3)=3) /3
15040 LD¥%=~{

15050 ELSE

13060 RU%=RU%+1

15070 LD%=1

13080 END IF
13090 END DEFine DOUBLE_NEGATIVE

16000 DEFine PROCadure LIKES
16010 FOR N=0 TO LI%
16020 SP%sLIS(N) INSTR IN$

14030 IF 8PY%>0 THEN

16040 IF INS(SP%=-1)=" " THEN LD%=LDy%%1
1 Mi-1

16050 END IF

16060 END FOR N
16070 END DEFine LIKES

17000 DEFine PROCedure DISLIKES
17010 FOR N=0 TO DLY%
17020 SP%=DL$(N) INSTR INS

17030 IF SP%>0 THEN

17040 IF IN®(SP%-1)=" " THEN LD%=LD%%-1
¢ RUY=RUR-1 1 Mi=1

17050 END IF

17060 END FOR N
17070 END DEFine DISLIKES

18000 DEFine PROCedure OBJECTS
18010 FOR N=0 TO OB%

18020 SP%=0B$ (N) INSTR IN$
18030 IF SP%>0 THEN

Y

Artificial Inrelligence on the Sinclair QL .

18040 IF INS®(SP%-1)=" " THEN
RU%=((RU%X3) +{LD%33))/3 1 OF%=N :
M%=1 1 OMZA=0OM%+1

18050 END IF

18060 END FOR N

18070 END DEFine OBJECTS

19000 DEFine PROCedure ADVERBS
19010 FOR N=0 TO AVZ

19020 SP%=AVS (N) INSTR IN®
19030 IF SP%>0 THEN
19040 IF IN$(SP%-1)=" " THEN
RU%={ (RU%33) +(LD%23)) /3 ¢ Mi=1
19050 END IF

19060 END FOR N
19070 END DEFine ADVERBS

20000 DEFine PROCadure NEGATIVE_ADVERES
20010 FOR N=0 TO NVX
20020 SPY%=NV$(N) INSTR IN$

20030 IF SP%U>0 THEN

20040 IF IN®(SP%-1)=" " THEN LD%=LD%¥-1
1 RU%=((RU%23) +(LD%33)) /3 ¢ Mi=1

20030 END IF

20060 END FOR N
20070 END DEFine NEGATIVE_ADVERBS

21000 DEFine PROCedure ADJECTIVES
21010 FOR N=0 TO AJ%
21020 SP%=AJE (N) INSTR INS

21030 IF SP%>0 THEN
21040 IF IN$ (SP%-1)=" " THEN

RU%= { (RU%X3) +({LD%¥3)) /3 1 Mi=1
21050 END IF

21060 END FOR N
21070 END DEFine ADJECTIVES

22000 DEFine PROCadure NEGATIVE_ADJECTIVES

22010 FOR N=0 TO NJ%

22020 SP%=NJ$ (N) INSTR INS

22030 IF SP%>0 THEN

22040 IF IN®(SP%=1)=" " THEN LD%=LD%%-1
1 RU%= { {(RU%X3) +(LD%¥3)) /3 1 Mi=1

200

22030
22060
22070

23000
23010
23020
23030
23040
23030
23060

23070

23080
23090
23100
23110

24000
24010
24020
24030

24040

24050
24060
24070

24080

24090
24100
24110
24120
24130
24140
24150
24160
24170
24180
24190
24200

. Chaprer 2 A Nawrally Expert Salesman

END IF
END FOR N
END DEFine NEGATIVE_ADJECTIVES

DEFine PROCadure CHEAP_EXPENSIVE
FOR N=0 TO HM%
SP%=HMS (N) INSTR IN$
IF SP%>0 THEN
IF IN$(SP%-1)=" " THEN
XX%=N
IF XX%<2 THEN PRINT "CHEAP AND
NASTY"
IF XX%>=2 THEN PRINT "RATHER
EXPENSIVE"
END IF
END IF
END FOR N
END DEFine CHEAP_EXPENSIVE

DEFine PROCedure RULE_UPDATE
IF OF%>-1 THEN
?éegﬁiic<Rtasz):3)+<nuz:3})/3
=((IC(OF ’
aC (0P %) £3) + ((CR (OF%) $RUY)
IP(OF%) =((1P (OF%) : y
il £3)+((PR(OF%) $RUL)
ELSE
ROQ%)=((R(G%) X3)+ (RULED)) /3
IC(@%) = ((IC(@%) £3)+ ((CR(@%) *RUY)
13))/3
IP Q%Y= ((IP(@%) £3) + y :
4y ((PR (%) $RU%)
END IF
cLS #2
PRINT #2,"DESIRE"
FOR N=0 TO RY%
AT #2,NX3+15,0 1 PRINT#2, RI(N)
END FOR N
PRINT#2, "COST"
FOR N=0 TO R%
AT #2,NE3+15,1 1
LA ; PRINT#2, IC(N)
PRINT#2, "PROFIT"
FOR N=0 TO R%

201

X Chapter 12 A Naturally Expert Salesman
Artificial Intelligence on the Sinclair QL

24210 AT #2,N$3+15,2 1 PRINT#Z, IP(N) erien EOER BnTul 1 EHIND WLN NEY
24220 END FOR N csxzé i 55 ; s
24230 END DEFine RULE_UPDATE . i e
25000 DEFine PROCadure COST_PROFIT §;:§g FIEEgD:ley)
exte R J=c, 10 DY 27200 LAS=COS (LO%)
25020 TC%= ((TCHAT) + (IC(N) £3)) /3 i e
25030 TP%a ((TPUED) +(IP(N) 330) /3 s erisishe]
nmind END: FOR N 27230 IF SE%<>2 THEN
25050 PAPER #2,0 1 INK #2,7 i CSIZE #2,1,0 e BRINT BT el 1 maIgE
25040 PRINT 42," TOTAL COST "jTC4;" TOTAL B il .
PROFIT "jTP%;" BANK BALANCE "jBBY; ‘ EiR L éélz"*'*
25070 PAPER #2,4 1 INK #2,0 : CSIZE #2,0,0 i - ELéE 1 i E #1,2,0
“h0BG: EbE: DERTne: CORY. Feat L 27260 PRINT #1,L0%(SL%) : CSIZE
26000 DEFine PROCedure SPENDING ' *"_ai'f ;;ﬁ’ﬁ 'éé;z;':** .
26010 IF TP%<O%XS THEN TX%=RND(EX¥%) 1 INK j L% it 1L,2,0
#1,4 1 PRINT \EXS(TX%) 1 INK #1,0 g;g;g B Eﬁ?C;FC ’
26020 IF TC%>BB%/ (@%+1) THEN PT%=RND(CS%) : ine -COMPUTER
INK #1,2 : PRINT \CSS$(PT%) 1 INK #1,0 ‘ Y L p—
anoen A L 28010 MODE 4

26040 TP%=0Q

26050 END DEFine SPENDING 28020 WINDOW #0,470,40,25,215

28030 BORDER #0,5,4

27000 DEFine PROCedure PICK_COMPUTER | §§3§8 ?:EEioﬁg,o
27010 FOR X=9 TD O STEP -1 , ;
27020 pOg="" 28060 CSIZE #0,2,0
27040 IF ((FE(N,@%) %3) - (R(Q%) £3)) >X THEN y 470, 105, 25,
POS=PO$ & N : Mi=N 28090 BORDER #1,5,4
27050 END FOR N 28100 PAPER #1,7
27040 IF LEN(PO$)<3 THEN END FOR X ! 28110 INK #1,0
27070 T840 28120 CSIZE #1,2,0
27080 BSY%=10 - 28130 CLS #1
27090 FOR CH=0 TO LEN(PO$)-1 | 28140 WINDOW #2,470,350,25,15
27100 NCY%=PO% (CH+1) 28150 BORDER #2,3,4
27110 IF C(NCH%)»>=TS% THEN TSZ%=C(NC%) 28160 PAPER #2,4
1 HI%=NC% 28170 INK #2,0
27120 IF C{NC%)<=BS% THEN BS%=C(NC%) 28180 CSIZE #2,0,0
1 LO%=NC% 28190 CLS #2
27130 END FOR CH 28200 OPEN #3,SCR_470X20R25X195
R A S A
n 1]
27150 :séﬂT #1,"YOUR ONLY OPTION IS Sy e

202 203

Artificial Intelligence on the Sinclair QL

28240
28230
28260
28270
28280
28290
28300
28310
28320

29000
29010

29020

30000
30010
30020
30030
30040
30050
30040
30070
30080
30090
30100
30110
30120
30130
30140
30130
30160
30170
30180
30190
30200
30210
30220
30230
30240
30250
30260
30270

204

CSIZE #3,2,0
CLS #3

OPEN #4,SCR_470X25A25%45
BORDER #4,2,2

PAPER #4,2

INK #4,7

CSIZE #4,2,1

CLS #4

END DEFine SCREEN

DEFine PROCedure TITLE

PRINT #4," 33338 MULTIMEGA MICROSTORE
SHESE"

END DEFine TITLE

DEFine PROCedure SET_UP

RESTORE

QAP%=5

Q%=19

R%=0Q7%

0B%=0%

AJ%=7

AV%=4

LI%=3

DL%=3

NJ%=8

NV%=2

HM¥%=3

BB%=100

CO%=%

FE%=19%

CT%=9

HI%=2

LO%=2

Cs%=2

EX%=2

TC%=0

TP4=Q

DIM OB$(0B%,10)
DIM AJS$(AJ%, &)
DIM NJ${NJ%,7)
DIM AVS(AVL, &)
DIM NV$INVZ%,8)

30280
30290
30300
30310
30320
30330
30340
30350
30340
30370
30380
30350
30400
30410
30420
30430
30440
30450
30460

30470

30480
30490
30500
30510
30520
30530
30540
30550
30540
30570

30580

. Chapter 12 A Naturally Expert Salesman

DIM LI$(LI%,7)

DIM DL$(DL%,7)

DIM Q% (G%, 20)

DIM GP$(GP%,16)

DIM HM$ (KM, 20)

DIM R(R%)

DIM CR(@%)

DIM PRIQ%)

DIM IC(@%)

DIM IP(@%)

DIM CO$(CO%,30)

DIM FE(CO%,FEW)

DIM DF (CO%, FE%)

DIM C(CTH)

DIM CS$(CS%, 100)

DIM EXS$ (EX%, 100)

DIM HI$(HI%,100)

DIM LO$(LO%, 100)

DATA "BASIC","GRAFHIC", "SOUND",
"KEYBOARD", "FUNCTION" , "MEMORY"
"TAPE", "MACRODRIVE", *DISC"

DATA "SOFTWARE", "CARTRIDGE",
"JOYSTICK", "ASSEMBL", "CENTRONIC",
"RG232", "EXPAND"

DATA “NETWORK", "1&-BIT","MULTITASK",
"SERVICE"

DATA “GOOD", "EXCEL", "SUPER", "MAGNIF",
"FIRST", "FABT", "ESSENT", "LOT"

DATA "BAD", "RUBBISH", "POOR", "SLOW",
"INEFFIC", "FEW", "WORS", "LEAST", "LESS"
DATA "REAL", "VERY", "OFTEN", "NECESS",
" TRU n

DATA "NEVER", "UNNECES", "INFRER"

DATA "WANT","LIKE","NEED","REQUIRE"
DATA "HATE","DISLIKE", "LOATHE", "DETEST"
DATA "4G00D BASIC",S,2,"RGRAPHICS",7,2,
"$SO0UND", &, 2, "%A GOOD KEYBOARD", 4,2
DATA "@FUNCTION KEYS",1,5,"&A LARGE
MEMORY", 3, &, "%A TAPE INTERFACE",?2,2
DATA "@MACRODRIVES",?2,4,"@DISCS",5,8,
"YEXTENSIVE SOFTWARE",0,9

DATA "%A CARTRIDGE PORT",1,6,"%A
JOYSTICK PORT",1,7,"%AN ASSEMBLER",2, 1

205

Artificial Intelligence on the Sinclair QL. |"

30590

30600
30610
30620
30630
30640
30650
30660
30670
30480
30690
30700
30710
30720
30730

30740
307350

30760
30770
30780
30790

30800
30810

206

DATA "%A CENTRONICS PORT",2,S,"S%AN RS232
PORT", 2, &, "%EXPANDABILITY", 2,9,
"SNETWORKING" 3,4

DATA "%A 16=BIT CFU",1,7,"&MULTITASKING"
,5,5,"%G00D SERVICE",1,9

DATA "WOULD YOU LIKE","WHAT ABOUT","HOW
ABOUT™,"DO YOU WANT","DO YOU REQUIRE",
/% IMPORTANT"

DATA "CHEAP","INEXPENSIVE"

DATA "DEAR", "EXPENSIVE"

DATA "JCN PC",7,8,8,9,8,8,8,0,%,9,7,7,0
17,8,8,8,9,9,9

DATA "KNACT SERIOUS",s,7,&,8,8,8,8,0,8,
8,0,0,0,7,6,8,8,9,9,7

DATA "CLEARSIN MT",9,9,9,7,7,8,8,9,9,6,7
1700,7,6,7,9,9,9, 1

DATA "ACHRON ILLUSION",B,7,4,54,0,3,7,0,
5,5,0,0,6,0,0,4,1,0,0,2

DATA "BANANA 1IE",3,5,2,5,0,4,6,0,3,0,3
15,0,0,6,7,0,0,0,4

DATA "SI ELITE",S,8,8,7,7,8,8,0,7,2,7,
4,0,0,6,0,0,0,0,0

DATA "COLECTOVISION CABBAGE",5,S,5,5,
2,5,5,5,5,1,7,7,0,0,4,5,0,9,0,0

DATA "CANDY COLOURED COMPUTER",7,6,4,2,
0,2,7,0,4,%,8,7,0,0,4,3,0,0,0,b

DATA "COMANDEAR &4",2,8,9,7,7,6,5,0,6
1916,7,0,0,2,2,0,0,0,6

DATA "ATRIA &00GT",1t,8,8,5,0,2,5,0,7,7,
747:0,0,6,6,0,0,0,5

DATA 10,9,8,7,6,5,4,3,2,1

DATA "I THINK YOU ARE GETTING OUT OF
YOUR PRICE RANGE"

DATA "THIS SPECIFICATION SEEMS TO BE
EXCEEDING YOUR CREDIT LIMIT"

DATA "I DON’T THINK THAT YOU CAN AFFORD
SUCH LUXURIES"

DATA "EXCUSE ME, I CAN HEAR THE PHONE
RINGING"

DATA "1 HAVE AN URGENT APPOINTMENT"
DATA "WE CLOSE IN FIVE MINUTES"

DATA “IF YOU ARE IN THE BUDGET MARKET
THEN WHAT ABOUT THE ", "AN INEXPENSIVE
CHOICE IS THE"

30820
30830
30840
30850

30860
30870
30880
30890
30900
30910
30920
30930
30940
30950
30960
30970
30980
30990
31000
31010
31020
31030
31040
31050
31060
31070
31080
31090
31100
31110
31120
31130
31140
31150
31160
31170
31180
31190
31200
31210

. Chapter 12 A Nawrally Expert Salesman

DATA "YDU GET GOOD VALUE FOR MONEY WITH
THE"

DATA "IF YOU WANT A FIRST CLASS PRODUCT
THEN YOU MUST TRY THE"

DATA "FOR STATE OF THE ART TECHNOLOGY
YOU CAN’T BEAT THE"

DATA "IF YOU WANT A ROLLS ROYCE THEN
JUST LOOK AT THE"

FOR N=Q TO 0B%
READ OBS$(N)

END FOR N

FOR N=0 TO AJ%
READ AJS(N)

END FOR N

FOR N=Q TO NJ%
READ NJS$(N)

END FOR N

FOR N=Q TO AVZ
READ AVS (N)

END FOR N

FOR N=0O TO NV%
READ NV$(N)

END FOR N

FOR N=0 TO LI%
READ LIS(N)

END FOR N

FOR N=0 TO DL%
READ DL$(N)

END FOR N

FOR N=0 TO @%
READ G%(N)
READ CR(N)
READ PR(N)

END FOR N

FOR N=0O TO QP%
READ GP$(N)

END FOR N

FOR N=0 TO HM%
READ HM$(N)

END FOR N

FOR N=Q TO CO%
READ CO$(N)
FOR M=0 TO FEX

READ FE(N,M)

207

Artificial Intelligence on the Sinclair QL . .

31220 END FOR M
31230 END FOR N
31240 FOR N=Q TO CT%
31230 READ Ci{N)
31260 END FOR N
31270 FOR N=0 TO CS%
31280 READ CS%(N)
31290 END FOR N
31300 FOR N=0 TO EX%
31310 READ EX#(N)
31320 END FOR N
31330 FOR N=0 TO LO%
31340 READ LO%(N)
31350 END FOR N
31340 FOR N=0 TO HI%
31370 READ HI$(N)
31380 END FOR N
31390 B%=0

31400 END DEFine SET_UP

32000 DEFine PROCedure XX
32010 WINDOW #2,470,240,25,15
32020 PAPER #2,7

32030 INK #2,0

32040 CLS #2

32030 END DEFine XX

The rest is up to you

Artificial intelligence is a fascinating subject and we trust that we have
given you enough information to get you started on your own experi-
ments in this area. We have certainly enjoyed making our own ex-
plorations whilst putting this book together but we have started to
wonder how long it will be before someone designs an expert system
program which writes books. . . .

208

Other titles from Sunshine

SPECTRUM BOOKS

Artificial Intelligence on the Spectrum Computer

Keith & Steven Brain ISBN 0 946408 37 8 £6.95
Spectrum Adventures

Tony Bridge & Roy Carnell ISBN 0 946408 07 6 £5.95
Machine Code Sprites and Graphics for the ZX Spectrum
John Durst ISBN 0 946408 51 3 £6.95
ZX Spectrum Astrenomy

Maurice Gavin ISBN 0 946408 24 6 £6.95
Spectrum Machine Code Applications

David Laine ISBN 0 946408 17 3 £6.95
The Working Spectrum

David Lawrence 1SBN 0 946408 00 9 £5.95
Inside Your Spectrum

Jeff Naylor & Diane Rogers ISBN 0 946408 35 1 £6.95
Master vour ZX Microdrive

Andrew Pennell ISBN 0 946408 19 X £6.95

COMMODORE 64 BOOKS

Graphic Art for the Commodore 64

Boris Allan ISBN 0 946408 15 7 £5.95
DIY Robotics and Sensors on the Commodore Computer
John Billingsley ISBN 0 946408 30 0 £6.95
Artificial Intelligence on the Commodore 64

Keith & Steven Brain [SBN 0 946408 29 7 £6.95
Simulation Techniques on the Commodore 64

John Cochrane 1SBN 0 946408 58 0 £6.95
Machine Code Graphics and Sound for the Commodore 64
Mark England & David Lawrence ISBN 0 946408 28 9 £6.95
Commodore 64 Adventures

Mike Grace ISBN 0 946408 11 4 £5.95
Business Applications for the Commodore 64

James Hail ISBN 0 946408 12 2 £5.95
Mathematics on the Commodore 64

Czes Kosniowski ISBN 0 946408 14 9 £5.95
Advanced Programming Techniques on the Commodore 64
David Lawrence ISBN 0 946408 23 8 £5.95

211

Commodore 64 Disk Companion

David Lawrence & Mark England ISBN 0 946408 49 1 £7.95
The Working Commodore 64

David Lawrence 1SBN 0 946408 02 5 £5.95
Commodore 64 Machine Code Master

David Lawrence & Mark England ISBN (0 946408 05 X £6.95
Machine Code Games Routines for the Commodore 64

Paul Roper ISBN 0 946408 47 5 £6.95
Programming for Education on the Commodore 64

John Scriven & Patrick Hail ISBN 0 946408 27 0 £5.95
Writing Strategy Games on your Commodore 64

John White ISBN 0 946408 54 8 £6.95

ELECTRON BOOKS

Graphic Art for the Electron Computer

Boris Allan ISBN 0 946408 20 3 £5.95
Programming for Education on the Electron Computer
John Scriven & Patrick Hall ISBN 0 946408 21 1 £5.95

BBC COMPUTER BOOKS

Functional Forth for the BBC Computer

Boris Allan ISBN 0 946408 04 1 £5.95
Graphic Art for the BBC Computer

Boris Allan ISBN 0 946408 08 4 £5.95
DIY Robotics and Sensors for the BBC Computer .
John Billingsley 1SBN 0 946408 13 0 £6.95
Essential Maths on the BBC and Electron Computer)
Czes Kosniowski 1SBN (0 946408 34 3 £5.95
Programming for Education on the BBC Computer

John Scriven & Patrick Hall ISBN 0 946408 10 6 £5.95
Making Music on the BBC Computer

lan Waugh ISBN 0 946408 26 2 £5.95

DRAGON BOOKS

Advanced Sound & Graphics for the Dragon

Keith & Steven Brain ISBN 0 946408 06 8 £5.95
Artificial Inteiligence on the Dragon Computer

Keith & Steven Brain ISBN 0 946408 33 5 £6.95
Dragon 32 Games Master

Keith & Steven Brain ISBN 0 946408 03 3 £5.95
The Working Dragon

David Lawrence ISBN 0 946408 01 7 £5.95
The Dragon Trainer

Brian Lloyd ISBN (0 946408 09 2 £5.95

ATARI BOOKS

Atari Adventures

Tony Bridge ISBN 0 946408 18 1 £5.95
Writing Strategy Games on your Atari Computer
John White ISBN 0 946408 22 X £5.95

SINCLAIR QL BOOKS

Introduction to Simulation Techniques on the Sinclair QL

John Cochrane ISBN 0 946408 45 9 £6.95
Quill, Easel, Archive & Abacus on the Sinclair QL
Alison McCallum-Varey ISBN 0 946408 55 6 £6.95

GENERAL BOOKS

Home Applications on your Micro
Mike Grace ISBN 0 946408 50 5 £6.95

7113

Sunshine also publishes

POPULAR COMPUTING WEEKLY

The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best-selling software and books and up-to-the-
minute details of the latest games. Other features in the magazine include
regular hardware and software reviews, programming hints, computer
swap, adventure corner and pages of listings for the Spectrum, Dragon,
BBC, VIC 20 and 64, ZX 81 and other popular micros. Only 40p a week,
a year’s subscription costs £19.95 (£9.98 for six months) in the UK and
£37.40 (£18.70 for six months) overseas.

DRAGON USER

The monthly magazine for all users of Dragon microcomputers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year’s sub-
scription (12 issues) costs £10 in the UK and £16 overseas.

MICRO ADVENTURER

The monthly magazine for everyone interested in Adventure games, war
gaming and simulation/role-playing games. Includes reviews of all the
latest software, lists of all the software available and programming
advice. A year’s subscription (12 issues) costs £10 in the UK and £16
overseas.

COMMODORE HORIZONS

The monthly magazine for all users of Commodore computers. Each
issue contains reviews of software and peripherais, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news. A year’s subscription costs £10 in the UK
and £16 overseas.

For further information contact:
Sunshine

12-13 Little Newport Street
London WC2R 3LD

01-437 4343

Telex: 296275

t
—
th

