PR%ZGRAMMING SERIES

STEPBY-STEP
PROGRAMMING

0] 150) R VO TR 0 B Y 1

IAN GRAHAM

=
QoneonShol

PROGRAMMING SERIES

—1—

STEP-BY-STEP
PROGRAMMING

THE DK SCREEN-SHOT PROGRAMMING SERIES
Never has there been a more urgent need for a series of well-produced,
straightforward, practical guides to leamning to use a computer. It is in
response to this demand that The DK Screen-Shot Programming Series
has been created. It is a completely new concept in the field of
teach-yourself computing. And it is the first comprehensive library of
highly illustrated, machine-specific, step-by-step programming manuals.

BOOKS ABOUT THE ZX SPECTRUM
This is Book Two in a series of unique step-by-step guides to
programming the ZX Spectrum. Together with its companion volumes, it
will build up into a self-contained teaching course that begins with the
basic principles of programming, and progresses — via more
sophisticated techniques and routines ~ to an advanced level.

BOOKS ABOUT OTHER COMPUTERS
Additional titles in the series will cover each of the world’s most popular
computers. These will include:
Step-by-Step Programming for the _BBC Micro
Step-by-Step Programming for the Cpmmodore 64

Step-by-Step Programming for the Acorn Electron
Step-by-Step Progrrarrnming forthe Appltﬁzﬁll
Step-by-Step Programming for the IBM PCjr

IAN GRAHAM

After taking a B.Sc. in Applied Physics and a postgraduate diploma in
Journalism at The City University, London, lan Graham worked as
assistant editor of Electronics Today International and deputy editor of
Which Video? Since becoming a full-time freelance writer in 1982, he has
contributed to a wide range of technical magazines (including Computing
Today, Video Today, Video Search, Hobby Electronics, Electronic Insight,
Popular Hi-Fi, Science Now, and Next...) and has also written a number of
popular books on computers and computing. These include Computer &
Video Games, Information Technology, The Inside Story — Computers,
and The Personal Computer Handbook (co-written with Helen Varley),

e ESSE S

I!iw e . !
S 3
o0 3 e s - : b et
= 1
) = — o
\ 3
= 18 —— A —
| i |
L A 5 e XA . -
| O = i
Pt 3 o EEEE | | =
|
2 8 o M o 20 i -
[<
| |
] S | _ i E- =
| |
e e e —_—— 4 —— el
| [O
= . L3 - 1 - ' | e
| |
== - .plillilill A, A O
,‘ -
h 1 &3
2 |
| Bl | 5 —
et e s O — —
0 i |
(<]
(L0 Py Sy | = By . £2eet® LS |
L) X |”
i g D e s © |
D |
|
| ¥ §o_ e e |
{
| S 1S i | SEVE) Bl F-c Do) i pol | i) MRE. il BRGR [0e0) — o8) S S .
[
| |
...... ez Bl S0 | = EOl 2% 3 S Cd SR DT S
[

L IEEEENIIRN.
! i
|

| STEPBY.STEP |
PROGRAMMING |

En
SPECTRUM

IAN GRAHAM

l BlEEr DOR{LINGKINDEIFRSLEY LONDON f |
i | '
‘ l 1 ‘l— ,,;,,, 1 ! 1 ‘ ’ 1 k \ |

CONTENTS

, 6
DEFINING FUNCTIONS

—

B 8 En

10

CHANGING STEP
IN GRAPHICS

12 |

* INFORMATION FROM

THE KEYBOARD

14

|

16

CURVES AND CIRCLES

—
1

 NATURAL

g 18 |

GRAPHICS

RANDOM

NUMBERS AND

EXTENDING DECISIONS

|

The DK Screen-Shot Programming
Series was conceived, edited and
designed by Dorling Kindersley
Limited, 9 Henrietta Street, Covent
Garden, London WC2E 8PS.

Project Editor David Burnie

Art Editor Peter Luff

Designer Hugh Schermuly
Photography Vincent Oliver
Managing Editor Alan Buckingham
Art Director Stuart Jackman

First published in Great Britain in 1984
by Dorling Kindersley Limited,

9 Henrietta Street, Covent Garden,
[.ondon WC2E 8PS.

Second impression 1984

Copyright ©) 1984 by Dorling
Kindersley Limited, London

Text copyright © 1984 by lan Graham

As used in this book, any or all of the
terms SINCLAIR, ZX SPECTRUM,
ZX MICRODRIVE, MICRODRIVE
CARTRIDGE, and ZX PRINTER are

ODDS

PErra 20
THE COMPUTER CLOCK
GEiiis o) 22 |

USING ARRAYS

Trade Marks of Sinclair Research
Limited.

All rights reserved. No part of this

publication may be reproduced, stored |

in a retrieval system, or transmitted in
any form or by any means, electronic,

mechanical, photocopying, recording,
or otherwise, without the prior written
permission of the copyright owner.

British Library Cataloguing
in Publication Data

Graham, [an, 1953—
Step-by-step programming for the
ZX Spectrum. Book 2.
1. Sinclair ZX Spectrum
(Computer)——
Programming
I. Title
001.64°2 QA76.8.5625
ISBN 0-86318-031-0

Typesetting by The Letter Box
Company (Woking) Limited, Woking,
Surrey, England

Reproduction by Reprocolor Llovet
S.A., Barcelona, Spain

Printed and bound in Italy by

A. Mondadori, Verona

ITEM|COST |NO | SUB Trx TOTHAL
|| 2 Ji.08lz0|39.6 |3.17|ez.77]
"3-? .4 19jaS.6 '_“.;:b'.'_' 4;-";‘;
5 |s.e |11]|ei1.e 4.95|66,55
4 |2.05|ss|e7.2% |a.70|s2.03] |
S [4.03%|325(65.25 |S.22|70.47
6 |2.99|1% |as.6% |5.59|da0.44
rd 1.9 |24 |48 ,08 3.69]49.77
& |7.2 |s |=8.8 2.29[01.19
Fgu S.45 |8 2.7 2.62 |05,
¢ 'ITV;I"J A Naw tax rate
W
| 24 |

WORKING WITH

WORDS 1

WORKING WITH

WORDS 2

26 L |

§

A 23 [T b | R 40 1; | 50 l‘

FACT-FINDING WRITING GAMES 2 TRACING ERRORS
DT 30 e

I 52 SR

SPEEDING UP
PROGRAMS

| e s« [
HINTS AND TIPS

PIE CHART S

-"]”, I 42
WRITING GAMES 3

R+ B
IMPROVING SOUND

[| 16 [T

T 2 | THESPECTRUM ool b
DRAWING GRAPHS SCREEN POINTER CONVERTING

B PROGRAMS

. . USINGA PRINTER
BT et GRAPHICS AND
—

M — CHARACTER GRIDS

PATTERNS WITH e 60 oo

SYMMETRY THE SPECTRUM
R P - ;.. CHARACTER SET

GRAPHICS WITH [S]
GRAVITY GLOSSARY

= sl N
WRITING GAMES 1 ~ o

DEFINING FUNCTIONS

All computers feature a range of built-in functions,
commands which can be used to transform one number
into another in a specific way. Functions produce a
result that can be used later in a program. SQR (SQuare
Root) or INT (INTeger) are two examples of functions
that are pre-programmed on the Spectrum. When you
use these commands, they take a number and operate
on it to produce another number.

The range of keyboard functions on the Spectrum is
quite wide. But if you want to use a function that does
not appear on a key, you don’t have to type out a chain
of instructions every time. The Spectrum allows you to
program it to carry out specific sequences of
calculations. These functions are “called” by the
command FN (FunctioN) and defined by the command
DEF FN (DEFine FunctioN).

How to write a function

In order to use a function, you must first define what it
is going to do. That is done with a defining statement.
For instance:

120 DEF FN a(x)=4*x+36

defines a function called “a”. The number that a
function operates on is known as its argument. In this
case the argument of the function is x. The function
takes whatever value of x it is given, multiplies it by 4,
and then adds 36. If in a program you want to put the
number 10 into the function, you would do so by using
the keyword FN like this:

200 PRINT FN a(10)

This would PRIN'T the value of the function when 10 is
substituted for x — which is 4x10+ 36, or 76.

DEF FN is obtained by pressing CAPS SHIFT
together with SYMBOL SHIFT;, followed by SYMBOL
SHIFT again to get the extended mode cursor, together
with key 1. The same procedure, but using key 2 instead
of key 1, produces FN.

Once a function has been defined in a program, you can
use it and its argument just like any other number or
numeric variable. For example, you can add, subtract,
divide and multiply functions and their arguments
together, and even make functions work on numbers that
are themselves produced by functions. Unless you are
doing mathematical research you are unlikely to get this
far, but for more straightforward tasks functions are easy
to use and helpful in making programs simpler.

Why use a function?

The following program shows a simple way in which
you can put functions to work in a program to produce
a numerical result which is then PRINTed:

FUNCTION CONVERSION PROGRAM

10 PRINT
tres conversio
20 PRINT A
I EEE RS R SRR RE.
3@ DEF FN

2;"Gallons to Li

"EZLAEFTERA 2222

3 EHRL S
eEquUivale

to'
50 PRINT

3 L1O0%FN
C LU LD

a
equavalent

45.9 L(i1tres
\

The program carries out a conversion. The function that
actually does the converting is defined in line 30. Line 40
waits for you to type in a number of gallons, which is then
converted into the equivalent number of litres by FN ¢(1)
in line 60. Multiplying and dividing by 100 may look odd,
but it’s just a way of producing an answer to two places of
decimals with INT. Using INT on its own removes all
decimals, and so reduces accuracy.

Going to the trouble of using a function here might
seem a bit unnecessary, and in fact it’s unlikely that you
would use FN in such a simple program. But imagine
what would happen if you wanted to do the calculation
a number of times at different places in the same
program, and with different numbers. It is then that the
user-defined function really comes into its own. When
the function is long and complicated, defining it just
once enables you make calculation lines much simpler
to write and check. FN is very much like a one-

command subroutine that deals only with numbers.

Because an expression containing FN actually
represents a number, you can use it to replace any kind
of complex calculation. When you write your own
functions, you are in effect giving the computer
functions that its resident programming language
(BASIC) doesn’t already have - extending the
capabilities of the language.

Calculation sequences with functions
Imagine that you want to calculate the cost of something
that is sold by area — perhaps carpets to cover the floor
of a house. You would need to multiply the length and
width of each room to get its area, and then multiply
that by the cost of the floor covering per square metre.
If you called the length and width X and Y, and the cost
per unit area C, then the cost per room would be worked
out by (XxY)*C.

In the next program, the cost for each room is
calculated by a function. It is defined in line 190, and
used in lines 180 and 200:

CARPET COSTER PROGRAM)

LET A=0

@ BORDER PRFER 1. I

CRAW
d B

AT A8, 8

0<08608E6

INPUT V="' b R AT 18.1

ca e
vl e o
7 <OXD OO0
-
S

INFPUTY e g | [=4 =4 i T 1S .2

»
n

oLt

142 PAUSE 1S5S0 PRAPER © BORDER

b S

1S@ _PRINT AT &,3; "LENGTH= ';%:f
“WUIDTHme =Y

T 8,93; i Y
160 INPUT "COST PER SQUARE METR
By “;C

@

170 PRINT AT 4,3; "COST PER Souan
RE METRE= '";C
é?u FPRINT RT 12,93;"COST “iPFN T
(
DEF FM T(C) s (X#Y) 2C
LET A=R+FN T (C)
PRINT AT 14.3; “TOTAL COST=

PRAUSE 250
GO TO =20

Lines 20 to 130 set up a graphics display which
produces an outline of the room, and then wait for you
to ENTER values for length and width. Once you have
done this, the program INPUTSs the values and then
clears the screen.

The next display asks you for the cost per square
metre of the floor covering. Once you have keyed this
in, the program tells you what it would cost to cover the
room. As well as using the function T to produce this,
it uses it in line 200 to update a running total. If you
keep keying in values every time the program returns to
the first display, you will find that the TOTAL COST
line in the second display will be updated to show the
running total of all the costs calculated:

CARPET COSTER DISPLAYS

COST PER SQURARE METRE= 6.8
LENGTH= 12.5
UIDTH= &

COST= &S0
TOTAL COST= 1750

You can define a function at any point in a program,
although if the DEF FN and FN lines are far apart in a
long program, this will increase the program’s
RUNning time. In the carpet coster program, using a
function makes lines 180 and 200 less complicated than
they otherwise would be. On page 33 you will see how
using a function can make graphics far easier as well,

EXTENDING

DECISIONS

The BASIC keywords IF and THEN let a program
operate in one way until the condition specified by the
IF statement is encountered. When this happens, the
program is then triggered to follow another course of
action. But the capabilities of [F ... THEN do not stop
at making a straightforward “yes” or “no” decision. By
combining IF ... THEN with the keywords AND and
OR you can make it tackle much more complicated
situations. Because BASIC is designed to reflect how
words are used in ordinary language, you can use
IF ... THEN just as you would when describing a set
of conditions to someone. Here is a program which
shows how you can take IF ... THEN decision-making
to a more advanced level:

BOUNCING PROGRAM

PRPER 1

0
=

W
1]
) DI
-
200K PUYT

HFCOrTrZZOMMoZo0070

ARMIAMARMEDCODIMINR

3444+

DY&e DD

NEOVENGMALN
-4

COGOGCO6E

&
SR
m

™Y (RND %12
NT (RND £12)
b=l

c
p=

s+
10
1
AT
r+
«or
o

P

slag)

rel? "THEN L7 &m=

un

,
)

@ THEN LET ba-=

Lines 10 to 130 simply set up the display — a black
outline box in the middle of the screen. Lines 140 and
150 produce a random starting position for a “ball”’ (a
graphics square) inside the box. To make the ball

appear to move, line 170 erases the image at r,c and lines
180 and 190 produce new co-ordinates where line 220
will rePRINT the ball.

Before this happens, lines 200 and 210 check whether
the ball has reached any of the box’s walls. They
examine the ball’s position to see if the row number is
one below the box lid or one above the box bottom, or
if its column number is one more than the left side or
one less than the right side. If any of these conditions is
satisfied, lines 200 or 210 reverse the ball’s vertical or
horizontal motion, whichever is necessary:

BOUNCING DISPLAY

Adding decisions together
You can now move on a stage further from the previous
program to see how a second option can be incorporated
in an IF ... THEN statement. The next program
features two balls moving independently:

DOUBLE BOUNCING PROGRAM (1)

BORDER & PRAFPER

FOR r=3 TO 18
PRINT AT r,s,; "W

PRINT AT 8,r*5; "
NEXT

D

D

5
=1

HHEAA4444X XD

44z

N
Tl

c
GO+ 4+

2
Fnne

~ POFrrrrrZZmm
ITMMEMAMRMDIO0
I R

-

P |

This program is very similar to the first one, except that
now there are two lines that PRINT a graphics square at

the squares starts at a random co-ordinate which is
defined in lines 120 to 150. The squares are then
animated by lines 160 to 300:

DOUBLE BOUNCING PROGRAM (2)

c=c+b
dmd # |
THEMN
FHEN
THEMN
THEN
PRIN (¥ P e

PRIN s ,d;"'m"’
L ™ ($ +90.5) -1

(2+0.95)
THEN BEEP ©.5,

AND

The second ball is made to set off in a different direction
from the first and at a slightly faster vertical speed, so
that the two balls have a greater chance of meeting.
Otherwise, they would just follow each other around
the box in the same tracks. Line 280 is the one in which
the computer makes a multiple decision about the
position of both of the squares. Without this line, when
the squares met, they would just carry on through each
other as if nothing had happened. This isn’t a very
convincing simulation of what would really occur, so
line 280 decides whether the squares are close enough
together to have collided. The line includes an
IF ... THEN decision with three ANDs to see if r and
s are sufficiently close together, and then if ¢ and d are
also within the same limits. It does this by taking r, for
example, and then deciding whether it is greater or
equal to INT(s+0.5)—1 and simultaneously smaller or
equal to INT(s+0.5)+1.

If all these conditions are met, then it means that the
two balls are either occupying the same square or are on
adjacent squares, in which case they can be assumed to
have collided. A BEEP is sounded and the whole
process starts again.

IF ... THEN in games programming
Decision-making by this method is very useful if you
want to know whether or not two characters are
occupying the same screen location. This is often used
in program where a character is “shot down” by
another. The next program shows how you can
incorporate the technique in a simple game which has a
number of characters moving simultaneously:

changing row and column numbers. As before, each of

FIRE-BASE PROGRAM

10 BORDER 1 PAPER @ INK & C

LS
20 _PRINT AT 19.15;: "% J&";AT 20,
16; "B AT 21,14; " b

PRI

9@ PRINT AT r,16; * *

Qa fr=0 THEN LET r=19
-4

4l gk DEEP ©0.9

cwlts OR =7 AND
 FER GO TO 1@

a p

i
1
- B
1
:
: 8
1

The program PRINTS a fire-base at the bottom of the
screen. It fires upward arrows at two horizontal arrows
that repeatedly fly across the screen. Line 130 checks
whether the screen co-ordinates of the upward arrow
are the same as those of either of the horizontal arrows.
If they are, the program jumps right back to line 10 and
begins again. If not, it jumps back to line 40 and moves
all the characters on one space. Line 100 checks
whether the upward arrow has reached the top of the
screen. If it has, a new arrow is launched from just
above the fire-base. Lines 60 and 70 check whether
either of the horizontal arrows have reached the right
edge of the screen. If either has, its column co-ordinate
is reset 1o zero.

When you RUN the program, you should find that
the fire-base’s arrow finds its target on the horizontal
arrows’ seventh pass across the screen. This happens
because the program is working with fixed figures. If
you use RND instead, the results become
unpredictable and will change with each RUN:

FIRE-BASE DISPLAY

BT e T T

s
CHANGING STEP IN GRAPHICS

. NEXT loops are very useful for repeating a
agquume of program statements a predictable number
of times. If you want to increase the value of a variable
by more than 1 on every cycle through a loop, you could
replace FOR ... NEXT by a GOTO statement
preceded by N=N+2 or whatever change you want to
make to N. However, if you have already started
writing a program and then find that the standard
FOR ... NEXT loop is unsuitable, it is sometimes
awkward and time-consuming to substitute a
completely new programming technique like this.
Fnrtunalcly, there is a much more straightforward way
of jumping forwards or even backwards in a loop.

How to change jump sizes with STEP

The BASIC keyword that deals with this is STEP,
which you may already have come across in Book 1.
Here is a program which uses STEP with graphics:

GRAPHICS WITH STEP

PRAFPER & INK 2: C

17%

0w
-
]

DEOVBNCNS+RN
08080069660

BRP

The graphlcs cursor is moved to each of the four corners
of the screen in turn. A line is DRAWn from each corner
to a point on the opposite side of the screen. The line
separation is determined by the STEP size in line 20.
STEP 4 gives the best results. This makes the values of
y 0,4, 8, 12, 16, and so on, instead of y increasing by 1
in every circuit of the loop.

Using STEP to DRAW grids

One dlsplay that can be produced very easily using
STEP is a games grid. You could make a grid]llbl by
DRAng a series of criss-crossing lines against a
contrasting background. But instead of specifying each
line, you can use loops with STEP to do most of the
work for you:

GAMES GRID PROGRAM

BORDPER &: PRPER 2: INK 7: C

Yw@E TO 151 STEP 21
PLOT 26,y
DRAW 204 ,0
NEXT 4
FOR X =26 TO 230 STEP 24
PLOT X ,=28
PRAW ©, 1"’G
NEXT X

Lines 20 to 50 DRAW a series of lines across the screen
at vertical intervals of 21. Then lines 60 to 90 DRAW
lines down the screen with a separation of 34, (The co-
ordinates and line separations given here may be easier
to follow if you refer to the graphics layout grid on page
59.)

Next is a program that will produce a games grid with
as many squares as you like. The program asks you
what sort of grid you want (how many squares across
and down) and then feeds those numbers into a
subroutine describing a generalized grid pattern.

The program is divided into three sections. First the
INPUT section (lines 10 to 100) asks you for the
information necessary for the second half of the
program. This takes the numbers you supply and uses
them to calculate the separations of the lines DRAWn in
the final display section (lines 140 to 240). It does this
with two Vdriahles; w, which represcn[s the number of
squares across, is divided into the screen’s display panel
width in line 130. In the same line h, the number of

e [) B——

squares from top to bottom, is divided into the height.
With this program you can produce an almost endless
variety of grids containing either squares or rectangles,
depending on the figures keyed in:

VARIABLE GRID PROGRAM

510 BORDPER 1: PRPER 7: INK @: C
20 PRINT AT 9.,9;"Do It Yoursel

Q
o
0
n
-
z
=
D
b=
=
=
[
=

J"Games Grid”

1
5
rD
@ac
o
m
e
@
o

INT AT 9,6 "Enter the gri

e V0

INT AT 11.4; "HOwWw many 24qu
ross™"

-

>; "HoOw many squ

o

PEEEERET
660600 GYG8WE~ 0686

CUAUNEFEDPOON WAL
FrOONTO-T T~

L
8

y=1
i

L R TS
AUN=900
96068900

You can use this type of program as the basis for a chart,
and then PRINT figures inside each square or
rectangle. By using a technique which you will
encounter on pages 22-23, you can then make the
figures within the chart respond to different INPUTS.

How to PRINT a chessboard

To program the computer to PRINT a chessboard, you
can PRINT alternate white and black squares, working
your way down the board from top to bottom. It is then

a simple matter then to add some colour to the display
by introducing BORDER, PAPER and INK:

CHESSBOARD PROGRAM

r
U
G

[t L T BN TE TR A1)
9000060009689

BREBRRR

Here PRINT AT is used to build up rows of dark blue
squares over a cyan background. The program selects a
blue foreground colour (INK 1) and sets the row co-
ordinate to the top line of the board. Having PRIN Ted
one blue square, it skips the second one, leaving it cyan,
and PRINTS a blue square in the third position. The
column STEP size is set to 4 to deal with this. As each
loop draws two rows of squares, the row STEP size of 4
skips every other row.

INFORMATION FROM THE KEYBOARD

To key in new information while a program is RUNning
you have — until now — used the command INPUT.
Wiith INPUT you must press ENTER after keying the
information in. This technique has its disadvantages.
Even when you know that it’s necessary to use ENTER,
you can occasionally forget, and using two keys in
sequence also slows programs down. It is much more
useful if the computer responds without waiting for you
to press ENTER, just as arcade machines respond
every time you press a control button. To make the
Spectrum do this, you can use the keyword INKEY$.

ASCII codes

Keywords, numbers, letters, punctuation marks and

mathematical symbols — in fact, all the symbols that the

computer recognizes — are stored inside the computer as

numbers from 0 to 255. Most computers, including the

Spectrum, store these numbers according to a code

called the American Standard Code for Information

Interchange (ASCII). So, every computer that uses the

ASCII standard stores a letter A as the decimal number

65, a “+” sign as 43, and the decimal number 1 as 49.

(A complete table of ASCII codes is shown on page 60.)
You can see all the characters that the Spectrum uses

by keying in a very simple program:

10 FOR n=33 TO 255

20 PRINT CHRS$ n;

30 NEXTn

This makes the computer take each ASCII code in turn

and then PRINT the character that the code represents,
missing out the initial “blanks” and control codes:

SPECTRUM CHARACTER SET

™

3
9
it

D ;: RS
.hy,-
Fwis
AXNN

4C 4 mme @-<-4p

3]
“<H 0ND0KHT -H0ZD W

ZDD
:_
Ui F:‘ J

z=

NONCq &0
o

0OOf M IPDO0
noRm

Z
3.
z
Ma

4
DM
1M

DCITIHAH
IMO-D

=M=

r

QRIDT 2
@ne=<Mm
alv B]

Lk

Inmsm m

HMD=MDDZ DO U

-y

MIMDAQDHAKT D
W QZZD "

R
[
-4
p o
=]
| 8
B
o
S

D

MCrony nIrem o=

QRMDO-4Mmy < D

DDVOM—4OCT
ph

“AmcCH
c
m-

nom
z3
MNT
MmO
D
n

You can see from this that some codes represent just one
letter or number, whereas others represent complete
BASIC keywords.

The next program uses INKEYS$ to respond to keys as
they are pressed, and then uses ASCII numbers to
PRINT in a simple code:

ENCODER PROGRAM

PRINT AT $,10:"TYPE ENCODER

IF INKEYS<>"" THEN GO TO a0
IF INKEY$="" THEN GO TO 320
IF INKEY&E="%" THEN STOP

LET n=CODE INKEY &)

PRINT CHRS% (n+2) ;

GO TO 20

Line 10 PRINTs the title and lines 20 and 30 use
INKEY$ to wait for you to release a key before
continuing. Line 20 may puzzle you. Change it to:

20 REM IF INKEY$<>"“” THEN GOTO 20

so that it doesn’t work. You should find it impossible to
press a key and get a single character on the screen.
Unlike INPUT, INKEY$ doesn’t wait for you - it
checks if any key has been pressed and then moves on to
the next line. So line 20 keeps on being carried out until
you release a key, then line 30 keeps on RUNning until
you press the next key.

Line 40 then tests the keyed character to see if it is an
asterisk. If it is, the program ends. If not, line 50
converts your character into its ASCII code. Line 60
adds 2 to the code for the key you have pressed and then
PRINTs the equivalent character. So, the program
appears to PRINT nonsense when you key something
in. There’s no point in producing a coding program if
you can’t crack the code. You can quickly turn the
encoder program into a decoder by inserting:

10 PRINT AT 5,10;“TYPE DECODER”

60 PRINT CHR$(n-2);

To see if it works try keying in the following when the
program is RUNning:
ngctp"vq”rtqitco“ykvi”ng‘_‘FM”ugtggp"uiqv”uglkgu

Testing your reactions with INKEY$
You can use INKEY$’s ability to check the keyboard in
combination with ASCII codes to write a program that

enables you to time the speed of your reactions.

This program produces a random symbol on the
screen, and then times how long it takes you to press the
symbol it has selected:

REACTION TESTER

PRFPER 7 INK @ (=

T
20 PRINT AT ©,7. '"Test Your ref
Le s

10 BORDER 7

xXe>
30 PRINT AT 10.10. “"agaxnst the

40 PRINT
R

S PRAUSE 1
60 PRINT AT

FREACTION TES
S “Find this
LET n=0
CHE® (k)
LK) THEN GO

LS
@ PRINT RT 11.%;'You toor “; !

Seconds

Lines 10 to S0 PRINT the title frame and PAUSE for 3
seconds. Then the game begins. Line 70 sets k equal to
a randomly generated number between 33 and 127, the
ASCII code numbers for the Spectrum’s letters and
symbols (this excludes the¢ graphics symbols and
keywords). Line 70 also sets n equal to zero - n is used
later to work out the time taken to press the correct key.
Line 80 makes a sound to signal the beginning of the
timing period. Line 90 PRINTs the character
equivalent to the random code found by line 70. Line

110 checks whether you have pressed the correct key. If

not, it cycles back to line 90, and on each loop, n is
increased by 1.

If you do press the correct key, the time elapsed since
the BEEP is calculated by (INT(n*2.68))/100 seconds.
If you want to know why this is the line to use, try
inserting the following line:

105 IF n=1000 THEN BEEP 0.3,20

in the program. This lets you time 1000 loops with your
watch. They should take roughly 26.85 seconds, so
each loop takes 0.02685 seconds. To find the elapsed
time, multiply n by 0.02685. To limit the time
PRINTed by line 130 to two decimal places, multiply
(n*0.02685) by 100 (=n*2.685), take its integer value
(to get rid of all figures after the decimal point) and
finally divide the result by 100.

Using INKEY$ to control movement
INKEY$’s quick responses make it ideal for controlling
movement on the screen. In the following program,
instead of going through a predetermined series of
movements, the computer waits until either the Z or M
keys are pressed and then moves the character left or
right respectively. Lines 170 and 180 stop the character
being moved beyond either side of the screen:
INKEY$ ANIMATION PROGRAM

-
n
%)

o o
wun »
ac-
VOVOITN
CCay
NPag- 6 -
DDNDT

nIcc
=m

on
e W0

' THEN GO TO 108

- THEN GO TO 140
="Z' THEN LET c=C-

THEN LET cCwucC+

55 S00CSG6OGH6 SGNS S

M& WRPGVANCAE
nm WothCOCmD
H H= —mmmmo

T e

HH HOC

m Mmige
Z,

MK
'l

NKEY
INKEY

INKEY $="m"'

SUNS9Y0
OCE96660

NRRRYPRER
»NDDDDS

If you RUN the program, you will find that the
character responds only to keys Z and M.

RANDOM NUMBERS AND ODDS

The Spectrum has two separate keywords which both
deal with random numbers - RND and
RANDOMIZE. As you have already seen, RND is
used to generate random numbers. A line like this:

80 LET a=RND

will produce a random number between 0 and
0.99999999.

Actually that’s not quite true. The Spectrum has a
sequence of 65,536 different numbers between 0 and
0.99999999 stored in its memory. They are all mixed
up, so that there is no obvious pattern. Because of this,
RND is said to be a “pseudo-random” function. There
is a sequence behind the numbers, but for most
purposes the numbers can be taken as completely
random. Although a number between 0 and 0.99999999
isn’t much use, a line like the following produces whole
(integer) random numbers in other ranges:

100 n=1+INT(2*RND)

| Here the line produces a 1 or 2, for a coin toss program
perhaps. 2xRND produces a number between zero and
1.99999998. INT rounds that down to the next lowest
integer (0 or 1), and 1 is added to this to produce a 1 or
2. In the same way:

100 n=1+INT(6xRND)

produces numbers between 1 and 6.

How to start a “random” sequence

Debugging a program that uses RND can be difficult,
because no two RUNSs of the program produce the same
result. It is easier to find the errors if the RND
statements are made to produce the same numbers each
time the program is RUN. First type in:

RND PROGRAM

» "TPREDICTING RA

;11 14 *RND

tenth stored number on each RUN. You can follow

This very simple listing produces a series of six random
numbers. Each time you RUN the program you should
get a different series of numbers. The first screen below
however produces a series which is always identical. It
is programmed by adding:

125 RANDOMIZE 10

By using the keyword RANDOMIZE (which appears
as RAND on the keyboard) each RUN produces the
same numbers. This command works in a simple way -
by controlling where RND starts selecting from its
store of 65,536 numbers:

& RANDOM/REPEATING DISPLAYS

PREDICTING RANDOM NUMBERS

LS89 5ge
. 2953064

. 42300513
78110564
0STOLS4a
2851257

4.
4
T
p B
L3
e

PREDICTING RANDOM NUMBERS

Q.176@R5039
.17CQRS09
. 1760250W
Q.1750850%
0.17602539

0.17602559

The second screen shows what happens when you move
RANDOMIZE. Using the screen editor, change line
125 to line number 135 and delete 125. Now you should
get the same number (0.17602539) every time.
RANDOMIZE 10 starts the random sequence off at the

- e

RANDOMIZE with any number between 1 and
65,536. RANDOMIZE on its own uses the time since
the computer was switched on to set the starting point
for RND. So, using RANDOMIZE with RND makes
RND even more random!

Setting odds in adventure games

Whatever you do with RND, it only produces one
number at a time. That’s fine for coin-tossing or dice
programs where each of the possible results (heads or
tails, forinstance) is as likely as any other result. But
imagine you want to build probability into a program,
so that some results are more likely than others. This is
how many adventure games are written, making the
programs much more interesting than ones that deal
with predictable sequences of events.

The following program does this. It demonstrates
how, in an adventure game, you can make it likely that
the player will encounter some characters or symbols
more frequently than others. You can also set the odds
5o that more often than not, nothing happens:

ADVENTURE ODDS PROGRAM

+1,128,1 ,64 ,125,128

. B
1]

8 -
0

~ QOO0
~NUBNBUSKe

I D=IOD

DD 40-N= == 0=- -

»3,192,3,160 ,123,12

M B & >~
NEYEGEE ©

© -~
<

224 ,19,144 ,2,1

UDEDEADPDEDIEDIUDRED

Do
[} OS] Jps
o

U P

1,128, 120,120.,5.,

. O »

ULV LW X Y,

D
4
D
o]
o
[
5S4
D
B
=]
I
R
P

A
2
=)
A
>
A
-]
(=}
E
(=18

-
¥

M OD DwDw

QMDD D D&TO

N Qs MEAQNESOOORE
=

LV B (VAT (V0] 5T DT T EYETETn
0+ 0+ 006066006606

Do

N~ w
Lo}

L]
(2]
]
-

]

oR
SR
THEN LET FAg=‘

43 =R ;
Base PRINT AT 19,16;A%; AT 11,16;

-

37@ PRINT AT i12.S
T 12,86.d;AT 17,1
80 BEEP V.2,15
I90 NEXT n

Lines 10 to 230 reprogram the keys A to L with the 12
characters that make up the three game symbols - a bag
of treasure, an armoured knight and a dragon. Each
symbol is made up from four characters, the first two
above the second two.

Line 310 produces a number between 1 and 20. If it
equals 1, then the treasure symbol is selected. If it
equals 2 or 3, the knight is selected and if it equals 4 or
5, the dragon is selected. If it equals anything else,
nothing (represented by four asterisks) is selected. So,
aknight or a dragon are twice as likely to appear as a bag
of treasure,

When you RUN the program, 100 random selections
are made. The running totals of treasure, knights and
dragons are shown building up on the screen. You can
change the relative probabilities of the three symbols
appearing by changing the numbers in lines 320 to 350.
Inserting a PAUSE statement in the loop, or increasing
the duration of the BEEP in line 380, slows the program
down. By the end of each RUN, you can see how often
the program has chosen each of the characters:

ADVENTURE ODDS DISPLAY

CURVES AND CIRCLES

On many personal computers, drawing curves and
circles is quite an involved process. The Spectrum
makes drawing circles very easy — its CIRCLE
command does all the mathematics that you would
otherwise have to do yourself. To produce a circle, all
you have to do is specify the co-ordinates of the point at
the centre of the circle — x and y, and the length of its
radius, r. This lets you produce any size of circle in any
position, within the limits of the graphics grid.

Any circle can be produced with the command CIRCLE x,y,r

Hnrizontal\\

distance=x b

The following direct command will produce a circle on
the screen:

CIRCLE 128,88,50

The centre of this circle is at the centre of the screen
(128,88) and it has a radius of 50 units. So, the
horizontal diameter goes from 78 to 178 units across the
screen and the vertical diameter from 38 to 138 up it.

Producing patterns with CIRCLE
You can use the CIRCLE command to make up
patterns by selecting the co-ordinates of a circle’s centre
at random. Here is a program that builds up a display by
this method:

CONCENTRIC CIRCLES PROGRAM

BORDER &

FOR Nn=1 TO &

LET X=50+INT
" Y =SS0+ INT

CONCENTRIC CIRCLES DISPLAY

Lines 30 and 40 produce a pair of x and y co-ordinates
at random so that neither is within 50 units of any of the
screen edges. It is set like this because the program will
then draw concentric circles up to a radius of 50. The
loop at lines 50 to 70 repeatedly draws circles with the
same centre but with gradually increasing radii (r). Line
80 starts the whole process off again but with a new pair
of random co-ordinates.

You can change the maximum radius of the circle and
the STEP size between radii by changing line 50:

50 FOR r=10to 20 STEP 3

or even STEP 2, which produces smaller patterns.

Drawing arcs and waves

An arc (part of the edge of a circle) can be produced on
the Spectrum’s screen, but you cannot use the CIRCLE
command to do this. But adding another number to the
DRAW command — making it DRAW x,y,a - DRAWS
an arc of a circle, starting from the last point PLOTted
or DRAWn to, and finishing at a point specified by x,y.
The “a” value is more complicated. This is the angle
that the arc turns through (if you imagine it as being
part of a circle). You can see the command at work if
you key in these two lines (you will find the keyword PI
above the M key):

PLOT 10,88

DRAW 230,0,P1/4

This produces a display like a piece of rope suspended
at both ends and sagging in the middle. The first
statement PLOTSs a point near the left edge and halfway
up the screen. The DRAW statement then DRAWS an
arc from that point in an anticlockwise direction to
(10+230),(88+0) or 240,88.

Whether the arc forms a shallow sag or a semicircle is
determined by the size of “a”. This angle is measured
not in degrees but in radians. Radians are simply an
alternative way of measuring angles based on the
geometry of a circle. A complete circle is produced by
turning around through 360 degrees. That is exactly
equivalent to 2+PI radians. PI is an important
mathematical constant, which has a value of
3.14159625 ... (you can see this by keying in PRINT
PI). It is the ratio of the length of the circumference of
a circle to its diameter. There are 2*PI radians in a
circle. PI/2 radians are therefore equivalent to a quarter
of a circle (90 degrees), PI/4 radians are equivalent to
one eighth of a circle (45 degrees) and so on.
Now, without erasing the first arc, try adding:

PLOT 10,88
DRAW 230,0,—P1/4
The second arc is DRAWnN between the same two points
to form an eye-shaped figure. You can build up shapes
using arcs to produce wave-like patterns:

~ WAVE PATTERN PROGRAM

BORDER 1: PAPER 1: INK 7: C
LET

~foR z

FOR X=® " STEP 30

PLOT X,y
DRAW 15,0,PIX DRAW 15,0, -

Line 20 sets the first y co-ordinate value of the waves.
Line 40 STEPs the x co-ordinate across the screen. IUs
important that the STEP size is the same as the
combined x lengths of the two parts of the wave formed
by each loop. Line 50 PLOTs a point at the x,y co-
ordinates set at the beginning of each loop. Line 60
DRAWS a small arc of a circle and then it goes on to
DRAW a second arc of the same size. The first arc sags
downwards, the second upwards and so on, building up
a row of waves. When that is complete, line 80 moves
the y co-ordinate downwards. The program continues
until the waves reach the bottom of the screen.

Programming creeping curves

On the previous page CIRCLE was used to produce

concentric circles at random. Here is a program that

DRAWSs semicircles, also at random, each of which goes

up, down, left or right, to creep over the screen:
CREEPING CURVES PROGRAM B

BORDER 1: PRAPER 6. INK @: C

PLOT 128,88
LET & L

Try changing the arc size in lines 50 to 80 for different
effects. You’ll find that if you reduce the arc size to 4, it
looks more like a letter v.

NATURAL GRAPHICS

Most of the shapes you have DRAWn so far have
involved working out beforehand where the key points
of the shape (the corners of a square, for example)
should lie, and then DRAWing lines between them.
Fortunately, much more complicated geometrical
patterns can be DRAWn by using functions that do all
the work for you. You don’t have to PLOT a single
point. Using the functions' SIN (short for the
mathematical term “sine”™ and COS (short for
“‘cosine”), you can produce some spectacular graphics
with quite short programs.

All of the programs on these two pages use a
combination of SIN and COS, so it’s worth trying to
understand what these commands actually mean.

Another way to PLOT circles
On page 16, you saw how the command CIRCLE can be
used to produce a circle. You can actually PLOT a
circle by another method, using SIN and COS.
Although the program is longer, it then enables you to
branch out into some much more elaborate graphics.
If you sketch out part of a circle, you can relate each
point on the circle to an angle at the circle’s centre.

Centre

- -

Horizontal distance=x

The distances x and y can be expressed in another way,
as multiples of the angle and SIN or COS. Every angle
has its own value of SIN and COS, and the co-ordinates
of any point on the circle can be written as:

r«COS(a),r*SIN(a)

Once you know this, you can get the computer to
PLOT a circle. By working through all the possible
values of the angle “a” with a loop, a program can use
the functions SIN and COS to PLOT the co-ordinates
of every point on the circle.

You can, of course, do this much more easily by using
CIRCLE. However, if you key in the next program,
you can develop it to produce graphics that CIRCLE
itself cannot produce. Line 20 sets the radius of the
circle to 80. The angle has to vary from zero to a full
circle (360 degrees):

CIRCLE PROGRAM

DORDER 1. PAPER 1 I
LET r=80

Because the BASIC functions SIN and COS operate on
angles measured in radians, like the command DRAW
X,y,a on page 16, the range of the angles again uses the
keyword PI. The STEP of P1/120 (line 30) is chosen so
that the dots are relatively close together but the
program doesn’t take too long to RUN.

Patterns with SIN and COS

The circle program, above, produces a circle because
the x and y co-ordinates vary exactly out of step with
each other. When x is zero, y is at its maximum value
and vice versa. What would happen if you varied x and
y at different rates? Try altering the angle after the SIN
command. Here the angle has been doubled in the first
display, and multiplied by five in the second:

s “LISSAJOUS” FIGURE — SIN (2#a)

The number of loops in each display depends on how
many times the angle after SIN has been multiplied:

O R PR g

“LISSAJOUS” FIGURE — SIN (5%a)

"‘\~.. ,,..-'4"'-
-
o =g "'--_‘

—c
o P—— L
et SO
S

Complex curves
an you can make a different sort of change:

KIDNEY I'R()(vl(AM

BORDER © PAPER © INK S C
=20 - rsle
30 2R Aa=0 TO 2:xPIX
49 PLOT {r=C05
al)) +120 ., 0% #*DIN
S50 NEXT a

STERP PIs4az0
(a) #r #5SIN (Q.5»
(a) +868

In this program, the colours and STEP size have been
changed as well as the co-ordinate values. The program
will continue DRAWing if you increase the range of
angle values. The next program roughly doubles the
range. It also accelerates the RUNning speed by
DRAWing short lines instead of PLOTting individual
points as in the CIRCLE program opposite:

HOURGLASS PROGRAM

BORDER 3 PRAPER 2 INK 7

LET r=60
LET x=0 LET yn

(F1 ¥

3
oovdiie
0696608 65

You can experiment with this program to produce a
whole variety of more complicated shapes. The next
design is produced by changing the colours and lines 40
and 50 to:

40 FOR a=0TO 1000 STEP 0.1

50 LET i=rxCOS(a)*SIN(0.98*a)

The shape starts off by being quite open but eventually

the program fills in the circle (this screen shows it after
half an hour of RUNning):

BALL DISPLAY

You may find with this type of program that the
graphics resolution cannot cope with too much detail
as every curve has to be shown as a series of dots.

THE COMPUTER CLOCK

Time delays are among the most frequently used
commands in computer programs. One of the problems
of working with a micro is that it often RUNs through
programs too quickly. Time delays slow programs
down to a speed that is useful. A delay may keep some
text on the screen for a moment, long enough to read it,
before it disappears and the program continues, or it
may slow down an otherwise too rapid sequence of
images — in an animation program for example.

The quickest and easiest time delay to write into a
program is the PAUSE statement. It takes the form of
the following program line:

100 PAUSE 50

where the number after PAUSE represents the time
delay in fiftieths of a second. It’s a simple matter to
RUN a program containing the above PAUSE
statement and see for yourself if the delay is long
enough. If not, then increase and test the number
following PAUSE again. ItU’s approximate, but
convenient. However, if you want to time an event in a
program you can use a clock that has been built into the
Spectrum itself,

Using the internal clock

Some computers have a timing facility, a clock that runs
regardless of whatever the user’s programs are doing.
The Spectrum doesn’t have any command or function
that enables you to use a timing facility with a single
program statement.

However, in common with every other personal
computer, the Spectrum has an internal clock which
synchronizes its activities. Linked to this is a counting
device. Three “addresses”, or slots, in the Spectrum’s
memory count the number of television pictures (or
frames) that have been produced since the computer
was switched on. The first address (numbered 23672)
counts frames up to a maximum of 255. Then it is reset
to 0 and the contents of the next address (23673) are
increased by 1. When that reaches 255, it is reset to 0
and the contents of the third address (23674) are
increased by 1. Because, in Europe, television pictures
are produced at the rate of 50 per second (the rate is 60
per second in the United States), the first address
(23672) in effect counts in fiftieths of a second, the next
address in 5.12-second intervals and the third address
in 1310.72-second intervals.

If this internal clock/counter is only accurate to a
fiftieth of a second, you might wonder what the
advantage is of using it instead of the much more
convenient PAUSE statement, which has roughly the
same order of accuracy. The reason is that PAUSE is a
BASIC statement which makes up part of a program.

The program is unable to do anything else during the
PAUSE. It can never be more than a temporary
interruption to the program.

The frame counter works in a different way. It keeps
on counting whatever the program is doing — with two
exceptions. If you make the computer BEEP or you use
any piece of hardware connected to the computer - a
cassette recorder or printer, for example — the frame
counter stops while you are doing so, and then resumes
its count. So, if you want to use the frame counter as a
clock, it would lose time during these operations.

Timing with the frame counter
To see the frame counter working, try keying in the
following two lines:

10 PRINT PEEK 23672
20 GOTO 10

The screen should fill up with increasingly large
numbers (up to 255), until the “scroll?” prompt
appears, as shown on the display:

FRAME COUNTER DISPLAY

AP FFQLARDNE=66900
FERONOSCRENNLONOD

1
Y
=
2
=
=
2
=
2
2
=
2
a2
=
2
2
=
2
1
=
a8
i

n
n

PEEK looks into the address specified to see what
number is stored there. It’s the counterpart of POKE,
which puts a number into an address. PEEK 23672
means ‘“‘the contents of”’ address number 23672, Note
that the numbers PRIN Ted aren’t consecutive. There is
a difference of three or four between each pair. That’s
because the PRINT and GOTO statements themselves
take some time to be carried out, so the program isn’t
able to “catch” every single fiftieth of a second “tick” of
the frame counter. That can cause problems when you
want to use the frame counter to count in small time
intervals, as you can see from the following program.
When you RUN it, a BEEP should sound every second.
The variable t is set equal to the contents of 23672:

FRAME COUNTER “CLOCK”

1@ LET t=PEE
20 _ IF PEEK
0.05.,20 GO
3@ GO TO z©

THEN BEE

When the difference between the PEEK 23672 and the
fixed t reaches 50, then one second has passed and the
BEEP should be sounded.

Unfortunately, as you probably discovered, when
you RUN this program, it hardly produces more than a
couple of BEEPs. The trouble is that PEEK 23672t is
unlikely to be equal to 50 at the instant when line 20 is
being carried out. Also, the BEEP statement stops the
frame counter for a twentieth of a second every time it
sounds. This sort of program can be used as a timer, but
the time interval (the time between ticks) must be large
compared to the time taken to carry out the program
statements.

The next program times a S-second interval,
although it is not completely accurate. The second
address counts every time the first address is full — that
is, every 256 fiftieths of a second, or 5.12 seconds. That
is adequate for a timer that only has to be accurate to the
nearest minute or half minute. Line 10 resets the
address to 0 every time the program is RUN:

5-SECOND TIMER

10 POKE 23673.,0
20 LET t=PEEK 23670
30 IF PEEK 23673t THEN PRINT
*LAicCcKk"
=1~

Using time in programs
Because PEEKing the frame computer requires a
number of calculations, you can substitute a function
FN t() to represent the number of seconds that have
elapsed since the computer was switched on. A variable
T is set equal to this, and, later in the program, when
FN t() exceeds T, the seconds display is increased by 1.
T is then reset to FN t() for the next count. A program
can also incorporate tests to increase the minutes and
hours displays when necessary.

This relatively accurate timing is of more value in
programs. Here is an example of one way to use it, in a
program that times the speed of your reactions:

R ~ REACTION TIMER

@ DEF FN E*PEEK 2674
4 - 23672
INT AT ;6 "Time Yyour rea
ctions*
3@ PRINT

492 PRINT AT 12.,4; "when You hea

the tone*

S50 PRAUSE 10044 % (INT 100#RND)
LET T=FN t(): BEEP 2.1,2%
PRINT AT 16.,6; "Your time st
now*

@ IF INKEYS="" THEN Q00 TO 80
CLS

PRINT AT 8,12;"You LOOK";AT

;"Press a key

19,13 (FN L () -T) /SO, AT 1R,12."s
econds
11@ PAUSE 1S5S0

120 CLS GO TO 2@

Time Your reactions

Press a kay

When You hear the tone

YOUFr tame Starts

The time function FN t() is defined in line 10. It PEEKs
all three frame counters. The final division by 50 is
omitted, so that the function counts in fiftieths of a
second, instead of in seconds. Line 50 causes a random
delay of at least 2 seconds before the timing period
starts. Line 80 waits until you press a key before
clearing the screen (line 90) and then calculating and
PRINTing your reaction time.

USING ARRAYS

An array is a way of storing facts and/or figures in the
computer’s memory in the form of a table, so that you
can locate any one item in the table without having to go
through all the others first. Each item in an array is
specified by one or more numbers. In the following
array, each item is given a pair of co-ordinates which
identify it and nothing else:

1 2 3 4 5 6
1 FRED KATE JOHN JANE ALAN JUDY
R OORR 80 R 0T M D IO e 691

This is a 6 %2 array, so-called because it has 6 columns
and 2 rows. Item (2,2) is 250, item (1,3) is JOHN, and
so on. Because two numbers are needed to identify each
item, this array is known as a two-dimensional array. If
it was composed of only one row of names or numbers,
it would only need one number to identify each item
and so it would be called a one-dimensional array. The
BASIC keyword DIM is used to tell the computer how
big an array is to be.

A one-dimensional array can be used to store a list of
frequently used numbers or strings:

ONE-DIMENSIONAL ARRAY

'‘February",
Jnnn' Ju
‘Octiobe

L
r

LR R

Here line 20 tells the computer that the array m$ is
12 %9 entries (9 is the maximum number of letters in the
name of any one of the 12 months). The program
PRINTS out the list of the months of the year given in
line 10. Although there are easier ways of doing this,
later on in a program, you might want to match up a
month with other information or the result of
calculations. Using this listing, you can pick out any
month by using m$(n) where n is the month number.
When the program is RUN, the display it should

produce looks like this — a month chart ready for more
information:
3 ONE-DIMENSIONAL ARRAY DISPLAY

A

CCIDITMC
wOebwy
o |

D
) O oo Ol

b
{

r
;]
ne
L

9
P

o
r
(=3

How to add a dimension

Now you build upon the calendar array program to

make it do something useful. Add a second array, a

numeric array, so that you can list some values against
cach month, The following program uses the array to

represent monthly rainfall totals.

The table now has two headings. You don’t have to
PRINT all the members of the string array — m$(n) -
before moving on to select the numeric array - r(n).
Line 80 takes one item from each array. As these are to
be PRINTed on consecutive rows of the screen, they
can easily be identified by relating them to the row
number. For each value of n, m$(n). and r(n) are
PRINTed at different column numbers of row (5+n):

TWO-DIMEN SIONAL ARRAY

RERD ri(n): N
AT 4,1

T N
80 PRINT AT 4 ,8; "MONTH™
8; "RAINFALL (cms) ™

70 FOR nw=l TO 12

80 PRINT AT S+n.5:m&(n) ;AT S+n
,20; r(n)
90 NEXT n

iy

TWO-DIMENSIONAL ARRAY DISPLAY

MONTH RAINFALL (cms)

i]

Januvary
February
March
AP L
Mau

June

Ju Ly

aeaan

aa

WEpEEQEOI=N

(1]

Writing tables with arrays
You can now make a table that is more ambitious:

" TAX TABLE PROGRAM

DRAW O, 1680

A ITEM Y S RT X2t
"NOY;AT 1,14 "SUB

o0
: 16
10
20
oo
a0
sS@
=1
7
[=1=)
os
r

p
5]
1
a
1
o1
1
1
1
1
o
cro

~“BL66

*«~03 -

N NN~ ~ NONE
=l A
TOVDZN+~DTVITT
:DDMeH*-iD- D

HeHOXEG: » HEHD

-

x
A 2AN=NIVE- G

BUOGCO+ k-

Z ZU-HeN\NZ~2
=M = 0% =2

D

260 GO TO

In this financial planning program, the columns are
interrelated and you have the option of changing some
of the information displayed, should you need to do so.

Line 10 contains the DATA for the first part of the
array, a series of prices, and line 20 the DATA for a
second part — a series of quantities. Line 20 also
contains some co-ordinates which will be used later in
the program. Lines 40 to 90 dimension the 92 array
and READ in its DATA. Lines 100 to 170 simply
DRAW the grid of lines that frames the DATA. The co-
ordinates of the bottom end of the vertical lines in the
grid are stored in line 20. Line 180 PRINTs the column
headings.

The DATA is PRINTed in the grid by lines 190 to
220. It is to be PRINTed every other line from rows 3 to
19. The number of the item, n, (from 1 to 9) is related
to this by:

row=2+n-+1

and this appears throughout lines 200 and 210 in the
PRINT AT statements. The last two items in line 210
look particularly complex. If the subtotal was 8.25, the
tax would be calculated as 0.1548.25=1.2375 - too
many decimal places. To solve that, the tax is multiplied
by 100, the INTeger value of it is taken (removing all
the decimal places) and it is divided by 100 again. The
0.005 is added to ensure that the final figure is rounded
down to the nearest unit.

Lines 240 to 260 invite you to enter a new tax rate. If
you do and press ENTER, all the figures in the table
that use the tax rate are recalculated. This instant
recalculation facility is the principle behind a type of
financial planning program called a spreadsheet. Inter-
related columns of figures representing income, raw
material/production costs, overheads and so on can be
entered. Then the effects of changing one or more of
these parameters can be observed as all the totals are
recalculated throughout the display:

TAX TABLE DISPLAY

o |

TOTHL

48 .77

-
Q@
0
m

49.295

66.50
51.03
7@.47
45.44
a49.7?7
31.19
as.32

n
~
o

Ndiela
mimim|e

0
N
0

&ldmip D
&l;

'S
@

Glo
(e

uio
0|0

olo|vlola|s|o|n

1|
o
n

nipfojo|laleolse|w)
@
0

ﬂ
[
¥
o |-
-
m

WORKING WITH WORDS 1

Almost every program you have looked at so far has
taken numerical data and performed some calculations
to arrive at a result. But the strings used have almost
invariably been left in their original order. However, as
you saw in the reaction test program on page 13, the
computer stores letters as well as numbers as ASCII
codes (a table of the Spectrum’s ASCII codes appears on
page 60). Because these codes have numerical values,
the computer can examine strings and then reorder
them in a similar way to numbers.

How to rearrange numbers

To see how words — or any strings — are sorted or
reordered, it’s helpful if you understand how the same
thing is done with numbers. Here is a program which
asks you for six numbers, and then rearranges them in
numerical order. You could easily extend it to deal with
many more numbers:

NUMERICAL SORTER PROGRAM

DIM a(6)
PRINT AT S,10; "NUMBER SORT"
FOR n=1 TO &
@ PRINT PAPER @ INK 7,AT 10,
#N;: N
PRINT AT 20.1;"Tupe in a 2
dig:t number'
INPUT a(n): PRINT AT 12,2+4
;& (n)
@ NEXT n
FOR t=1 TO S FOR N=1 TO S
IF ain+1) <atn) THEN GO SUB

NEXT n: NEXT ¢t
FOR Nnwl TO &
PRINT AT 16 .2+4.%n;a (n)
NEXT r
-- SORT

]
PRINT AT 20.21;"
TE -

i e =4, sTOP

L-:,lr;t LET a(n) =a(n+l)
LET a(n+1l) =b
1690 RETURN

@ oK, ©:1

Line 50 asks you to type in a one- or two-digit number.
Each time you do this and press ENTER, the next
prompt (from 1 to 6) is PRINTed above the next
INPUT position. This is where your chosen number
will be PRINTed by line 60. All the numbers you
ENTER are loaded into an array, so that they can be
tagged with a number to identify them.

After you have ENTERed six numbers, the sorting
procedure begins automatically at line 80. First look at
the n loop (from the second statement in line 80 to line
100). For each value of n, a(n+1) is compared to a(n).
If a(n+1) is the smaller, line 150 reverses them. So, on
the first pass round the loop (n=1), if your first two
numbers were 34 and 16, the reversal subroutine would
be called, because the second number is smaller than
the first. It would set b equal to a(1) — 34 in this case -
seta(l) equal to a(2) - 16 here — and finally set a(2) equal

to b, which on this loop is equal to 34. This juggling
reverses the two numbers. The maximum number of
sortings needed to put the list of numbers into the
correct numerical order is five, so the t loop repeats the
sorting process 5 times. These screens show the
numbers before and after sorting:

NUMERICAL SORTER DISPLAYS

Number sort

> d19it NUmMbEr

NUMBER SORT

B8 =
67

55

——-=w SORT COMPLETE

9 STOP statement, 140:2

This reversal process can be used to manipulate strings
in the same way. It’s easy to see how the computer can
compare two numbers and test whether the second is
smaller than the first. We do it ourselves all the time -
when comparing prices for example. But the computer
can also decide whether “London” is less than “New
York” — that is, whether one comes before the other in
the alphabet. A line like:

50 IF “New York”<*“London” THEN GOSUB 300

doesn’t seem to make much sense at first glance. But
because the computer stores a string like New York or

London as a series of numbers, these numbers can be
compared and reordered. So comparisons like a<<b and
Stockholm=>Paris both make perfectly good sense in
BASIC.

Rearranging in alphabetic order

One of the most useful applications for string sorting is
rearranging into alphabetic order. The following
program shows one, method — it works on strings
already built into the | program, but you can easily adapr

the program to accept different strings by using
INPUT:

ALPHABETIC SORTER PROGRAM

yU'Stockholm® , N
"Rome' , "Amster

20 DIM as

ﬂn FOR n=1 T READ as%in) N

“ALtpha sort 1"

) <a%in) THEN GO 5U

PRINT AT 3
PAUSE 25

BREEERE
WNPAFQN

(=}

Line 20 dimensions a string array using the method
demonstrated on page 22. Line 30 then READs the
contents of line 10 — a series of capital cities. The
subroutine at lines 120 to 140 PRIN'Ts the cities in their
original order. Then the sorting routine moves the
strings around until they are in alphabetic order. You
could add a PAUSE to slow things down so that you can
actually follow what is going on:

ALPHABETIC SORTER DISPLAYS

AlLpha sort 1

Paris
Stockholm

New York

London
ROome

Amszterdam

Hmsterdam

London

New YOorKk

Paris

ROome

Stockholm

9@ STOP statement, 110.=2

The sorting routine at lines 150 to 180 is basically the
same as that used to sort numbers. The variables used
here are of course string variables, but the computer
uses the same mathematical comparisons as it uses
when operating with numbers. The program then
STOPs at line 110,

Note that the temporary store used in both the
number and string reordering programs (b and b$) need
not be an element of an array. The variable is only used
once on each sorting and then is not required again.

How to turn strings into numbers

The Spectrum uses a number of keywords which enable
it to use numerical information from strings. In
addition to taking string characters and comparing their
ASCII values, the computer can decide how long a
string is. To program this, you need to use the keyword
LEN. The following program line for example
produces a number:

1_0_0__ n= LEN“Spectrum”

Here n is equal to 8, the LENgth of the string. You can
use this in programs to reject an INPUT word or name
that is too long, or make the computer take different
courses of action depending on how long certain strings
are. You can add LENSs together to find out the length
of a number of names or any other piece of text.

The Spectrum also has a keyword which operates on
strings that are themselves numbers. VAL coverts a
number-string containing a calculation into a number.
‘The number produced by this is itself the result of the
calculation. For example:

150 LET a$="2%34.5x0.3"
160 PRINT a$;“=";VAL a$

PRINTSs both the calculation and its result — a useful
programming technique. You can use this command to
evaluate a string and then pass this value on to another
part of a program.

§

2 8

WORKING WITH WORDS 2

Until now, you have treated strings — or words that
make up strings — as indivisible units. Some of the
programs so far have added strings together, but none
of them have “looked inside” the quotation marks that
begin and end every string to work on the characters
that are there. With the Spectrum you can take strings
apart and reassemble their characters in a number of
different ways. This means that you can program the
computer to take out part of a word or group of words
and examine it — a process that can be very useful.

Most computers that work with BASIC have a family
of commands that can be used to manipulate strings —
LEFTS, RIGHT$, MID$ and so on. They are used to
pick out the first, last or middle character of a string
respectively. Although the Spectrum doesn’t have any
of these commands on its keyboard, it can do
everything that these commands do, if you know how to
program it.,

How to cut up words

You can make the Spectrum break into a word by
slicing parts off the string. It’s fairly straightforward.
To see how to do it, first type in the listing on the
following screen:

STRING SLICER PROGRAM

S0 MNEXT n

The special technique here is in line 40, where a TO
command appears as part of a string variable. For each
value of n, line 40 PRINTS a string n characters long,
from the first character to the nth character. So, the first
line contains the string “S”, the second line “SI” and so
on, until n equals the length that is set. With this
program you can use any string — a group of words,
numbers or other symbols; it’s best if the value of n 1s
not more than one screen line (32 characters). If you use
a different string, make sure that the maximum value of
n in line 30 is no more than the length of your string:

STRING SLICER DISPLAY

3333

232

s
S
S
S
s
S
>
s
S
S
S
S
S

N e e e e B e B s e o
332
) OO IVUI VDD DI ODDD

33333320

O e

e e e e e e e e e e g
0 NoAANNANAANNNANANNAN

B QOGO

You can use this kind of technique to pick out strings
that all begin with the same letter or word, and then
perhaps PRINT them out in a series of lists.

The reverse effect is just as easy to produce. Try
adding the following lines to the program, then RUN it
to see what happens:

60 FOR n=1TO 31

70 PRINT a$(TO 32—n)

80 NEXT n

Now, as n increases from 1 to 31 on each loop, the
length of the string PRINTed decreases from 31
characters to only 1.

Picking out parts of a phrase
Now you can explore this technique. Type in and RUN
the listing on the following screen:

SELECTIVE STRING SLICER PROGRAM

LET as="DK Screen Shot Sera

S INT ¥ S.9;, "S5t rang Chopps
RINT T

NT r 190,6; o (
x INT AT iz, s amE {d
tINT R 1 - s (

' S,

-

o 2)

TO 149
TO 1

NOAE QN :
8668 00

T
S

[T T e e

oo e Rl R R R

You aren’t limited to dealing with the first n characters
of a string. In fact, you can take any consecutive group
of characters from a word or sentence. In this program
line 50 works in the same way as line 40 of the slicing
program. Line 60 forms a string from characters 4 to 14
out of the middle of a$. Finally, line 70 forms a third
string from character number 15 to the end of a$.
Although these three ‘“‘substrings” are formed from
parts of a$, a$ itself is still intact. This technique lets
you take a group of words and pick out any of them for
use on their own in a program.

Word games with string cofnmands

The next program shows how you can use these
methods of handling words in a game. ItU's a
computerized word-guessing contest in which one
player enters a word and the other has to guess it; the
computer PRINTS the letters that the user has guessed
correctly in their right positions in the word:

“HANGMAN"” PROGRAM

19 BORDER ©: CLS
12; "HANGMAN "'
20 PRINT AT 1.2, "Asrx a riend
Tt0 type &8 word*
30 PRINT AT 1&.,.3; "o Phrase (o

PRINT AT 1.

5,4 "DON'T LOOK A

AT 20,0, '""Press ENTER
you e finished"
L=LEN a8 L=y
et]
* THEN PRINT
NEXT n
I&=L) 7240, "

T
S

P UHRNGHMANS
rpace”
' Try a \&
S & 1 to gw

fe @
0 B
neNEEM

o
NIF~ PRAPERER

[
0
b
el
Jaun
e W 2

LV

ITDZ T T -

OFNMEDOM~TO MANZ

)

OCOUEGAPEIES

._{-{~ ~ 0

= X~
-
oeOm -

2D

[

O BENARPG0~0N=0N+0

—HOn H

FODY

e
T
e

Lo ol
"

D+

nNn

Lines 10 to 50 PRINT the title frame. When a friend
has typed in the test string that you will have to guess,

line 70 calculates the length of this test string using the
command LLEN, and sets the score, s, to zero.

The program now has to PRINT symbols on the
screen to represent the letters in the test string. As you
guess the letters, any correctly guessed letters will
replace these symbols. Also, to allow for test phrases
rather than just words, the positions of the spaces
between the words are shown. Line 100 PRINTs
hyphens to represent the characters. Line 90 PRINTs
black squares to represent any spaces in the test string.
In lines 90 and 100, (32-1)/2+n works out where the
characters that represent the test string should be
PRINTed so that they lie in the middle of the screen,
not off to either side (a similar effect is incorporated in
commercial word-processing programs).

If you want to guess the whole word or phrase instead
of keying in individual letters (you can do this at any
point in the game), press 1. The program jumps to line
210. The word or phrase that you type in (t$) is
compared to the stored string (a$). Then a
“CORRECT” frame is PRINTed or if the guess is
wrong, the program returns to single letter entry. When
a single letter is tried, lines 170 to 190 compare it to each
character of the stored string in turn. If the guess is
correct, the letter is PRINTed in the appropriate
position in the display. Here is an example of the
display you should see when a game is in progress:

“HANGMAN” DISPLAY

HAMNGMAN

- Lettar B =srace

P
whole thing

You can easily limit the number of guesses by adding
the commands:
IF s=>n THEN STOP

after the statements where the score, s, is calculated. If
you should make a mistake when using the program, it
can be difficult to interrupt using the shifted BREAK
key, so to make this easier, add one extra line:

145 IF t$=“3” THEN STOP

To stop the program at any point, simply press 3.

FACT-FINDING

You can use your Spectrum to store information, rather
like an electronic filing cabinet. However, it would be
time-consuming if you had to display the complete
contents of a long file every time you wanted to look up
a single item. You would still have to scan the screen
visually to find the piece of information you were
looking for, as if you were using paper files. A good
program lets you pick out information selectively, so
that the computer, and not you, does the searching.

How to program a serial search
The program that follows uses a simple but effective
method to locate one item in a long list of DATA. It’s
called a “serial search” because it searches the DATA in
a series of stages. It takes the test string (T'$) that you
type in and compares it to each string in the program’s
DATA statements in turn. It carries on until the test
string matches one of the stored strings:

SERIAL SEARCH PROGRAM

D ITaN
a0 DR =
FQ =

0 DOG= ARG &0
: 0809

Jendy ‘', "
BORDER
PRINT
PRINT AT

7 PRINT AT 20.2;"Press ENTER
Lo start search

80 INPUT T%
99 LET =1

» "Enter name

'PRINT AT 10,17:;T8

ScroLL?

Q@ FOR n=1

10 READ N% . P%

20 IF NE=T$ THEN GO SUB 190: S
P

30 LET t=t+1l

Search
~-=Name not

—-——8€arch

Lines 10 to 30 hold a list of names and telephone
numbers. Lines 100 to 140 repeatedly READ a name
(N$) and number (P$) from the DATA statements (note
that the numbers are treated as strings). This carries on
until a stored name is found to match the test string.
Line 210 then PRINTs the phone number.

If the computer cannot match the test string with any
string in the DATA lines, line 170 announces that the
name has not been found. If you now add the following
line you can count the number of searches made before
a successful match is found:

215 PRINT AT 16,12;t; attempts”

Now try RUNning the program to find the last
telephone number on the list:

SERIAL SEARCH DISPLAY

Wendy-====

attempt

sSearch complLate-

statement 120+ 3

You will find that the program takes 17 searches and a
fraction of a second to find the last name in the list.
That’s acceptable in a short program like this with just
a few pieces of stored DATA. But for a serial search
program with more than about 200 names or other
items of DATA, the delay caused by looking at every
single piece of DATA to find the correct one becomes
quite noticeable. The program is simple but slow.

Speeding up a DATA search

Fortunately, another DATA searching method can
speed things up considerably. It relies on the storage of
DATA in strictly alphabetical or numerical order. The
DATA stored in the program is repeatedly divided in
two and the first item found there is READ and
compared with the test string. This produces three
possibilities. First, the two strings may be identical - a
successful match at the first attempt. Second, the test
string may come later in the alphabet or numerical
order than the item found. Third, the test string may

R T [RN e T T

come before the item found. If the match is not
successful, the half of the DATA in which the test string
lies is further divided in two and searched in the same
way until the strings are matched.

STAGES IN A BISECTION SEARCH

First Mit&lc Last
O Tz130aT5 (617 e T3 holilizlasey
ATTEMPT 1 First Middle Iast

arremer 2 [9 [10lnf12]13]14]15]16[17]

First Middle Last

In this search the computer ATTEMPT 3 |l3|l4|i'5 16[17

is looking for item 15.

Here is a program which carries out this “bisection
search” of a DATA bank:

BISECTION SEARCH PROGRAM

“Anne* , "
Tabeth"

=
-0

~ :JO

) I M PC-
OAPOLN ~T ::
B IND

] :ABNIRODTuAN
Bps pUmb~43

MO0 BAVGS OO
- :
MmN 901 NOVTAD

CIM PS(17,11)
RERAD N%(n)

READ PS(nJ .

O,"Bisection se¢a

SCrolL\L7?

"ENnter name: -
"Press ENTER
19.17;7Ts

L0 start se
110 INPUT
' LET t=

U

TO

ik s
L=mXx

HEN GO

INNNUARRORR SR
) ~OAEQAN
DEGOGFO0ONOGOGHE

The DATA has been reorganized into two separate
listings — one of names and a second of telephone
numbers. In order to be able to locate one item in these
DATA statements without having to READ through
every item, the DATA must be numbered or tagged in

some way. Line 40 does this by creating two numbered
lists of DATA, or arrays. Lines 50 and 60 READ the
relevant pieces of DATA into the two arrays. Line 130
sets the conditions for the first search. The first item in
the range to be halved, f, is one and the last item, 1, is
18. If a match is not made at line 140, lines 150 and 160
set the new values of f and 1 for the next search.

If you RUN the program in the form shown here, it
will answer “Name not found” to every test string.
That’s because line 40 tells the computer that every
name string (N$) is 9 characters long and every number
string (P$) is 11 characters long. A name like “Wendy”
is therefore stored as “Wendy ” which, as far as the
computer is concerned, is not equal to the test string. To
deal with this add:

111 LET T=LEN T$
112 IF T<>9 THEN LET T$=T$+“ ”:GOTO 111
205 PRINT AT 16,12;t;* attempts”

This keeps adding spaces to the test string until it is 9
characters long. Now the program RUNs and PRINTs
the number of attempts to find a match:

BISECTION SEARCH DISPLAY

w STOFP statement,

‘The last item in line 10 is not a misprint. Because of the
way the program divides the DATA into halves, the last
name (WENDY in this case) would actually never be
located. The maximum value of x is one less than the
number of DATA items. To get around this, the dummy
item ABCDE is added, so that all of the DATA can be
searched successfully.

Using this method, the last name can be found after
only 5 attempts. To save time, the phone number, P$,
is only READ when a successful match for the name is
found. This time saving makes the bisection technique
much more suitable if you want to search long lists of
DATA. You could also use programs like those on pages
24-25 to order your DATA before you use it in the
bisection search program. By combining the programs
you would have an accessible DATA bank.

Y S B O S . |

PIE CHARTS

Computer graphics are invaluable for displaying
information in a way that can be understood at a glance,
and one of the most easily understood displays that
computers can produce is a pie chart. Pie charts are
particularly useful for showing the relationship
between a quantity and the amount of which it is a part.

Drawing a fixed pie chart
To produce a pie chart, the first job is to draw a circle,
then you can start to put in the edges that mark off the
“slices”. Each edge is a radius of the circle. Once the
first radius is DRAWN, all the other radii can be
DRAWNn relative to the first one. It’s like cutting a pie;
it doesn’t matter where the first cut is made, but after
that, the size of each slice is determined by the angle the
slice makes with the previous one.

In the followim, program, one right-angled slice is
DRAWn ina LlI’LlL

SINGLE SLICE CHART

BORDER 1! PHRFER 4 INK @ L=

CIRCLE' 125,88
PLOT 13 =3=

8,886

= 50,0
Q 2.5

=S 53
PLOT 128.885. DR

The program constructs the circle at the centre of the
screen (128,88). Line 30 DRAWS the first radius from
the centre to the right. Line 40 then DRAWS the second
radius straight up to form the slice.

Adding more slices
You could go on to DRAW a second quarter-circle slice
by adding the line:

50 PLOT 128,88: DRAW —80,0

and from there you could go on adding lines to DRAW
further radii and build up a pie chart with a number of
slices. But this sort of program isn’t really very useful
because you have to work out the positions of all the
edges of the slices beforehand.

However, the principle behind the first program can
be used to write another program which will work out
the positions of all the radii for you:

VARIABLE CHART

170 NEXT n
oK, ©:1

R T) T,

Lines 20 to 90 set up the title and INPUT frame. Line
10 tells the computer that the program will use a one-
dimensional numeric array called s which will have
three items in it. Each of these items will be the size of
one of three slices that the loop at lines 60 to 90 asks you
to type in.

First, though, you must type in the total pie size in
response to lines 40 and 50. Lines 100 to 170 DRAW the
circle and radii in positions calculated using the slice
sizes you typed in. The variable s, which was set to zero
in line 10, fixes the position of each slice relative to the
first radius. When n=1 for example, s=s-+s(1). When
n=2, then s=s+s(2). Finally, when n=3, s=
s+s(3). For each value of s, a line is DRAWn from the
circle’s centre to the point calculated using COS and
SIN in line 160.

You might wonder how this can DRAW lines which
end to the left of, or below, the centre. When COS is
used with angles between PI/2 and 3xPI/2 radians (90
and 270 degrees), the number it produces is negative.
So if COS(s*x2xPI/t) is equal to —1, the radius is
DRAWN to an x co-ordinate of 128+ (—80), or 48.

Labelling the slices
The previous program works well enough, but there’s
nothing to identify which slice is which — you need a
good memory to know which slice represents which of
the quantities you keyed in. So, next you can add a
routine to label the slices:

LABELLING ROUTINE

LET 4(1l) =@
=00#C0OS (2 #2R3PI/t

(s #2FP I/
X(n)+xn+l)) s/
ik (X /8+1

=

¥

J N} +Y in+1))

L=INT (Y- -8+1)

RPER n. INK 7,AT r.,c
?

FRINT FPRFER N INK ;AT N,
b TS)

;N =28 (N
250 NEXT n

Line 121 sets up two arrays, x and y, which are used to
store the co-ordinates of the ends of the radii DRAWn
on the circle. There are four pairs, not three - those for
the first fixed radius plus three for the slices whose sizes
you have typed in. The co-ordinates of the end of the
first radius are known (50,0), and these are set in
line 122,

For each value of n, the co-ordinates of the end of that
radius are picked out of the arrays by x(n+1),y(n+1).

The program uses these co-ordinates to PRINT a label
on the screen. The position for the label is given by two
co-ordinates x and y. These co-ordinates are half the
distance between x(n) and x(n+1) respectively. The
two graphics co-ordinates are then translated into text
row and column numbers by lines 200 and 220.

The two co-ordinates x and y are each divided by 8
because there are 8 graphics pixels to each character
position. But there is a disadvantage to calculating the
label position this way. Since the label is to be PRINTed
between the ends of the two radii, it will not work
properly if the slice is more than half of the circle.
However, for values less than this, the program works
correctly and labels the pie chart for you:

LABELLED CHART

For each label, line 240 PRINTs the same number
against -a corresponding coloured background and
PRINTs the size of the slice beside it to give you a
display of the figures keyed in.

Try keying in the following answers in response to the
question frame:

500 - total income
160 — bills

100 — insurance
180 — travel

If you try these figures, you will end up with a chart that
has a black unlabelled slice. This represents the amount
of income that you have left over after the payments you
have keyed in.

You can adapt this program to show more than three
slices by changing the number of INPUTs and the
dimensions of the arrays. It is possible to make the
Spectrum DRAW sections of a circle that are filled in
with colour. However, if you use routines that DRAW
with INK to fill in sections on the pie chart, you will
find that you have difficulty getting smooth edges to the
sections. This is because the Spectrum’s INK works at
text rather than graphics resolution.

=
DRAWING GRAPHS

Because they are so good for games, computer graphics
are often only partially exploited for more serious uses.
But as you saw on the previous two pages, you can use
your Spectrum to produce high-resolution graphics to
show any information that you can put into number
form. Pie charts are useful for showing how something
is split up. Graphs, on the other hand, show how two
sets of items are related. Here is a simple graph display:

FIXED GRAPH

You don’t need to be a mathematician to get some
useful information from this graph. As time goes by
(along the horizontal axis), the value measured by the
vertical axis is steadily increasing.

How to set up a graph

The program that produces the graph above has to
DRAW the horizontal and vertical axes, label them,
PLOT the points and finally DRAW a line:

FIXED GRAPH PROGRAM

19 BORDER 1
20 DATAH

‘A’
0@ DATR _ 16,7,
13.1%,0,15,9.1

224 ,24

c=4 TO 24
RERD M4
P HT INK 2

Bun
~ =
+Z0

-~ X

0

mmIpOommDMmO
i
no
DI

o
) F%ﬂtﬁhu
1

DNZ

.ﬂ

mo
D

o -
3

se
(=1~
70
=1%)
=1
aa
10
20
%)
40
=1
5@
70

.
1
1
o
1
3
1
1

..
o0
X0

The sets of information are contained in the DATA in
line 30. Line 40 DRAWS the two axes of the graph. The
two loops that follow, between lines 50 and 80 and
between lines 100 and 130, PRINT the labels along
each axis. The first loop takes each letter in turn out of
the DATA in line 20 and then PRINTs it along the
horizontal axis. The position along the axis is
determined by ¢ in line 70. This increases in STEPs of
4 (line 50) so that there is a gap between each of the
labels, Line 110 PRINTs numbers up the vertical axis.
This time, because the labels are a sequence of
numbers, there is no need for them to be stored 1n a
DATA line. Instead, they are produced by the STEP in
line 100.

Programming graphs to order
The main disadvantage of the previous program is that
it will only ever produce the same graph. You can
change the information in the DATA lines, but this is a
laborious way of altering the display. Ideally, you want
a program that will allow you to type any co-ordinates
you wish while the program is RUNning. Also, you
don’t want to have to translate the graph’s co-ordinates
into Spectrum screen co-ordinates before using them.
So, the program must be able to do this conversion for
you.

The next program does all this. Although it produces
axes that have set labels, you can key in any co-ordinates
you like, as long as they fall within the graph’s limits:

VARIABLE GRAPH PROGRAM

1© BORDER 2 PRAPER & INK
DRAW -192,

-4 TOgéa 5TEP 4

,
GCOGSE068606
GNO=DNZrDNCrZO

NMZDDMAMDOMMD O
J i n

A
<
S
=}
7
=]
e

1Q

11

12

13

14
15

16

98969

Line 20 DRAWSs the axes as before. Lines 30 to 50
PRINT the x axis labels. Here the program pmdllu.,s
labels that could be time in hours. The program again
uses FOR ... NEXT loops to determine not only what
the labels are to be, but also where they are to go. As the
column numbers of the horizontal label positions go

from 4 to 28 and the values go from 0 to 24, the program
uses the column number to produce the label in line 40.

Lines 60 to 100 PRINT the labels up the vertical axis.
Here they are chosen so that they can represent a range
of temperatures in Centigrade.

Line 130 invites you to enter a pair of co-ordinates,
Type in a time, press ENTER and type in a temperature
followed by ENTER again. The computer BEEPs and
line 150 PRINTSs an asterisk at the screen position:

VARIABLE GRAPH DISPLAY

How to alter the display

The graph display is quite coarse, because asterisks can
only be PRINTed in the 384 character positions within
the graph’s area of 24 columns by 16 rows. For a more
detailed graph, you could replace line 150 by:

150 PLOT 32+192+h/24,24+128+t/32

This will produce a display with points instead of
asterisks, each positioned on a graphics grid that allows
higher resolution:

GRAPH WITH POINTS

R T T - (B T T e

Altering the program so that it produces connected
lines, rather than isolated points, is a little more
difficult. What you need to do is tell the computer to
PLOT a point, DRAW back from there to the previous
point and then PLOT the second point again so that it
in turn can be DRAWn back to. A program like this is
ideal for writing with functions, Without them, the
program lines would have to include repetition of a pair
of quite cumbersome calculations for establishing co-
ordinates. Here are the line changes and additions that
are needed to make the program produce the line graph,
together with a display:
: LINE GRAPH CHANGES

LET a=22

INFPUT 3 mthpie, ot
PLOT FN X(C) ,F
DRAL (N X
PLOT FN X 1(

LET asFN X

GO TO 120

CEF FN X (¢) =2&
DEF FN Y (&)

G FrO L RNR

Two functions are defined by lines 180 and 190. They
convert horizontal and vertical graph co-ordinates into
Spectrum screen co-ordinates so that the program can
PLOT and DRAW with them. Line 110 sets the first
point (a,b) at the bottom left corner of the graph. Then
every time you INPUT a pair of co-ordinates, the
program converts them, PLOTs a point at x,y, DRAWSs
back to a,b, PLOTSs x,y again and lastly, at line 160,
makes a,b equal to x,y.

T T A

BAR CHARTS

Graphic information can be presented in a number of
different ways. Graphs, as you saw on the previous two
pages, are good for showing trends, while bar charts are
particularly useful for showing differences in levels.

‘ Bar charts are so named because the information in
them is displayed not as single points, but as columns
whose height corresponds to the size or level of the item
shown. You will frequently see bar charts used on
television to show changes in currency exchange values,
numbers of votes in elections and so on.

Writing a bar chart program

Because a bar chart is essentially a graph, you can use
much the same techniques as used in a conventional
graph program to produce one. The main difference is
that instead of PLOTting a single point when fed with
co-ordinates, the program must construct a column.
With the Spectrum, these are most easily constructed
from a series of square graphics characters (using the
graphics cursor plus shifted key 8). INK can then be
used to add colour to the chart. The next program
incorporates this technique:

SIMPLE BAR CHART PROGRAM

19 BORDER ©; PAPER @
PLOT 284 ,24: DRAV
nnu Q,128
30 FOR c=4 TO 26 STEP
PRINT AT 19.c; (¢-2)
RS

LET naro

FOR =18 TO 2 STEP
PRINT AT r.2:n

LET Nnmun+8

NEXT r

FOR mml TO

18- (t=-80) /2 STE

PRINT INK CAT rL2zm+2; ER
NEXT r: NE

0

5]
“+Q
sSe
(=1}
70
2e
=15
100
1i@
120
130
14@
-3
uR-1-]
160

The axes are DRAWn by line 20 in the same positions as
those for the graphs on the previous pages. The
FOR ... NEXT loop at lines 30 to 50 labels the x axis
with thc numbers 1 to 12, which could represent the
months of the year. If the columns that the labels are to
be PRINTed under go from 4 to 26 (STEP 2) then the
month number is given by:

month ~_(C()Iumn -2)/2

Try it — column 4, at the beginning of the axis, is
equivalent to month 1. Column 26, at the end of the
axis, is equivalent to month 12, There are 12 STEPs
altogether. Here is the program in action:

B T Y RIS TR . TR A

SINGLE-COLOUR CHARTS

3486 786 9 101112

7 8 9 19111=2

Combining charts

The bar charts so far have shown just one list of items.
But it is possible to reorganize the first program so that
it shows more than one set of information. You may for
instance want to show both maximum and minimum
figures like temperatures on the same chart. You don’t
have to rewrite the first program from scratch. A few
additions will do the job:

105 FOR n=1TO 2

150 IF n=1 THEN PRINT INK 3; AT r,2xm+2;
l(-’)

155 IF n=2 THEN PRINT INK 6; AT r,2xm+2;
ll-ﬂ’

170 NEXT n

‘This RUNSs as before until you have finished keying in
the first set of data. It then sets n to 2 and PRINTs

columns of yellow squares instead of magenta ones. The
second set of data must be composed of figures smaller
than the first set, otherwise the magenta chart will be
overwritten by the yellow squares:

MAXIMUM/MINIMUM CHART

As soon as you start ENTERing the second set of items,
you’ll notice that the x axis and part of the y axis of the
chart disappear. You can get around this very easily by
reDRAWing the axes each time a column is DRAWnN:

156 INK 7:PLOT 224,24:DRAW —192,0: DRAW
0,128

You will need to PRINT the columns as PAPER. This
slows down the program considerably, so you may
prefer to reDRAW the axes only once at the end,
ENTERing the above line as line number 180.

Splitting bars by changing INK

One of the problems with the previous displays is that
you cannot distinguish each bar on the charts, making
it difficult to connect the bars with the scale on the x
axis. You can get around this by using two different
INK colours again, but this time alternating them as the
bars for one set of INPUTs are PRINTed. It is then
quite easy to see which bar relates to which figure on the
X axis.

The following program is an adaptation of the first
one., If you take out the lines used for the double
display, you can then edit the first program to produce
the following one. Instead of having the INK colour
fixed, it is now controlled by a variable a. A loop is used
in conjunction with IF ... THEN to set the INK
colour to either blue or red. When ais 1, the INK colour
for that bar is blue, then for the next INPUT, when a
becomes 2, the INK colour changes to red. You can use
this type of colour-changing loop with as many of the
INK colours as you like. If you want to increase the
number of bars that can be made to appear on a chart,
you can reduce the width of each bar by using a single

35

graphics square only. The program would also have to
be altered to change the PRINTing positions. Here is
the two-colour chart program and some sample displays
that it can produce:

' TWO-COLOUR CHART PROGRAM

10 BORDER @ PRAPER © INK 7: C

" 224 ,24 DRAW -192.,0 (5]

STEP =2

o] TO =206
PRINT AT 19.C; (Cc=2) /Rl

o
S

86, 9608006

60) 2 STE

18-t

INK a: AT ,.2Em+2;

N0 ASNE

PRINT

1
i
1
b X
- ¥
1

1
1

1

1 r
m =+ NEXT 2
= m<12 THEN GO TO 120

]
]

123486786 0 101113

199: 1

GRAPHICS WITH GRAVITY

On pages 18-19 you saw how SIN and COS could be
used to make ‘“natural” graphics, shapes that are
sometimes seen in the natural world. To make these
shapes you can just experiment with the graphics
commands and see what happens. But if you want the
computer to simulate something moving in a realistic
way, an understanding of how it moves in real life will
help you a great deal when you are trying to simulate
that object’s movements on the computer screen.

Let’s take a simple simulation using a bouncing ball
and go through the steps necessary to build up different
types of program. On pages 8-9 you saw how
IF ... THEN could be used to “bounce” a ball in
straight lines moving at constant speed. However a ball
doesn’t move in straight lines. On the screen below is a
short program to demonstrate how you could begin
simulating a more realistic fall (the display beneath it
includes after-images normally deleted):

SIMPLE FALL PROGRAM

BORPER 1. PRPER S INK 2. ¢

LET FfuS. LET c=16 -
FRINT AT r,c: "W A
PRUSE LOO
PRINT AT ¢,cCc., "
LET r=r+v

AT

-

1llmg,, objects are influenced by several forces -
gravity, air resistance, surface friction and something
called the “‘coefficient of restitution”, which make them
move in a complex way. However, you don’t have to be
a physicist to write a more realistic “bouncing”
program. If you drop a ball, it falls to the ground and
bounces up again, and that’s all you need to know to
simulate bouncing on the screen.

In the previous program listing, line 30 PRIN'ISs the
“ball” near the top of the screen. After a 2-second
PAUSE, the “ball” starts to move downwards. Line 50
erases it. Next, the row number is increased by 1 and
last, the “ball” is PRINTed again.

Movement in two directions

If you RUN this program, you will find that although
the “ball” is indeed falling to the bottom of the screen,
its movement doesn’t look very realistic. The program
also ends with an error message when the “ball” falls out
of the bottom of the screen. The next program improves
the display considerably by making the “ball” move
sideways as well:

SIDEWAYS FALL PROGRAM

BORDER FAPER S THKE

res LET C=16: LEF

The variable h represents the change in horizontal
position and v the change in vertical position. On each
loop, v is added to the row number and h to the column
number. Now it’s easy to modify the motion in any
direction. For instance, you can make the “ball”
bounce by adding:

65 IF ¢c=0 OR c=31 THEN LET h=—h:BEEP

0.05,20
66 IF r=0 OR r=21 THEN LET v=-v:BEEP
0.05,20

If you take out the lines which erase the “ball” as it
moves, you will see a display like this. Note that the

e —————

e R e

BEEP is only sounded when the “ball” encounters the
edge of the screen:

SIDEWAYS FALL DISPLAY

Simulating gravity
Although the “ball” now bounces around the screen, it
does not yet look completely realistic. The reason for
this is that the “ball” on the screen does not mimic the
effects of an object falling under gravity.

You can add a “force” like gravity that acts in any
direction, or that even changes direction during the
program’s RUN. Gravity acts downwards, so, as the
“ball” moves from top to bottom of the screen it should
accelerate. When it bounces up from the bottom, it
should begin to slow down until it falls back down to the
bottom again. The next program imitates this effect.
Type in the following listing:

[~ BOUNCING BALL PROGRAM

BORDER 1 PAPER © INK 7. ©

DRATA 48,120.2%2.,2%2,120,48,

FOR nu@ TO 7
READ =
POKE USSR ‘BTAN LN
NEXT n
=S LET c=158 LET h=1

8069

B
am-Jn
6+

- c=c4+h
30 THEN LET h=-

=1
100
11
120
150
h.

20 THEN LET vw=

In this program, the ball is a user-defined character.

The gravity factor is added at line 110. The addition of

0.2 to v means that the change in r - the vertical position
— is no longer constant. It increases on each loop,

speeding the ball up. When the ball hits the bottom of
the screen its direction is reversed (line 140) and
therefore v becomes a negative number, repeatedly
decreasing the row number. Moreover, the additive
gravity factor at line 110 makes v less and less negative,
slowing down the upward progress of the ball until its
vertical motion ceases, v becomes positive again and the
ball begins to move downwards once again.

This display shows how the ball moves with this
program:

BOUNCING BALL DISPLAY

*9 00 e

The ball bounces around as before, but as it does so, it
doesn’t reach the same height on each bounce. Its
height is gradually decreasing, although its horizontal
movement remains the same. The result of this is a
rough example of a curve known as a “‘parabola”.
Eventually the ball will bounce along the bottom line of
the screen, just as a real one would.

In just the same way as the vertical movement can be
modified by a “force”, you can alter the horizontal
movement as well. This gives the impression of an
object that is not only falling under gravity, but which
is also being blown along by a strong wind.

The curve that the ball makes during this program is
not very smooth. This is because the ball is a text
character, and its movement is limited to the 32x22
character positions on the screen. If you want to
produce smoother bouncing, you can experiment with
the PLOT command instead. This will produce a single
point at a graphics co-ordinate, allowing much
smoother curving over the 256x 176 graphics grid. To
do this, however, you would have to modify the
program so that the character positions in all the lines
were converted to graphics co-ordinates. If you refer to
the grid on page 59, you should find that this is not too
difficult. Because a single point is not very easy to
follow, it is simplest to leave all the points PL.OTted on
the screen to make up a series of gravity curves, tracing
the path of the point as it falls to the ground.

WRITING GAMES 1

The next six pages will take you through writing a
games program, showing you how to put all the phases
together to build up a complete listing. Writing a games
program requires some careful planning before you
actually start writing lines. To begin with, you need to
decide what sort of game you want. Many games
combine your acquired skill with an element of chance
(the roll of dice, the turn of a card, and so on), and many
have a number of different phases of play, each of which
confronts you with a different set of problems.

To plan a game, it is best to start by drawing a rough
sketch of the screen display, marking the colours and
the positions of any fixed characters or patterns. You’ll
want to refer back to this as you write your program.

Next, you can draw up a flowchart showing the
program steps and the order in which they will appear
in the program. It isn’t necessary to draw a detailed
chart - a list of the steps connected with arrows to show
their order is sufficient. A complete games program will
be more complicated than anything you’ve written so
far, so it is worth designing the program before you key

it in. It’s easier to rub out a pencil arrow or a couple of

lines on your plan than it is to start rearranging lines on
the screen if, when you try to RUN it, you find that the
program doesn’t work.

Keying in phase 1

With the game on this page, the planning stage has been
completed, and you can now key in the first part of the
two-phase program. The listing that follows is for a
practical game — one that anyone should be able to play
without any prior knowledge offthe program or the
computer. Below is the first screen of the program. This
phase of the game involves shooting at a moving
spacecraft:

PHASE 1 SCREEN 1

a

TR 6@, 12&-.9@.255,16511d6,

=
o -~
L

GDZVIDTIAD OO
—“mmo

—~y
2999999~ eNGeno
¢
- TMAXZZDD
m
T0- —.x.-,,—:l m

"o

9
rzrsr

LET

~H~1

i (RN

1
=2
=]
2
4
s
S
1=}
=
8
-
@
+
1
T
2
e |

mMOMAM «MMOOMOAD IOMm

zZr
peHpmE &8
D -
==

n

G-06

ET n=n+1
LET a=21

L

@
)
In
0 17 LET
1
]

4

B
op
o8
-0
or
&

The program gives you a laser base which you can then
move left or right. You can fire, but only straight up the
screen. A number of spacecraft approach you one by
one, and you must destroy them to carry on.

The DATA for the user-defined spacecraft and laser
base are READ in by the loop at lines 50 to 90. The time
taken to complete the game will be used later to
calculate the score, so a time function is defined at line
100, using a technique mentioned on page 21. Some of
the variables used in the program are initialized (set to
their starting values) by line 110.

The program is impossible to decipher if you don’t
know what these variables represent. The following

table outlines what each nf them dm,s

The first phase of the game uses a total of fourteen dxfferent
variables to control graphics and record strikes. g

Variable(s) Function

r,c Fix row and column co-ordinates of spacecraft

l,m Fix row and column co-ordinates of laser base

h Records successful laser strike

f Records total number of laser strikes on target

q Records number of times laser fired

X,y Fix starting point of laser beam

a Sets change in position of spacecraft (=1 if left
to right, otherwise=—1)

g Sets column position of mine explosion

i ' Records time taken to complete game when
subtracted from FN t()

n,p General variables

Line 120 sets the random starting point for the
spacecraft. Line 130 starts your laser base off in the
middle of row 17. In line 140, n records the number of
spacecraft attacks. When there have been five attacks, n
will equal 6. When it does, the program jumps to line
400 and the scoring calculation.

The second screen of the program contains a number
of lines which make decisions and then direct the
program to later subroutines. You will notice as you go
through the listing that the line numbers sometimes
jump by more than 10. This is because it is simpler to
give subroutines line numbers that are -easily
remembered -~ multiples of one hundred are
convenient.

When you key in the second screen’s lines, remember
that D and Cin lines 170 and 180 represent user-defined
characters. This means that you will need to switch to
the graphics cursor so that they are not PRINTed as
letters (after the program has been RUN they can then
be LISTed in the form in which they appear in the
game). The second screen looks like this:

PHASE 1 SCREEN 2

4RND #1000
L:RT L.wm;*" D
R:RAT £ ,CH O

* THEM LET m=m-
THEN LET m=ms+

22 IF m<@ THEMN LET m=0

1 THEN LET m=31

3 IF INKEYS="m" THEN GO SUB S

hel THENM GO TO 120

C=C+5a

cu@9 OR' ¢c=@ THEN LET

IF m>3

'T p=INT (RND*20+1)
pe3 THEN GO SUE 500
D TO 170

L) =T) /S+Q12-10%(

=250
260
270
2609
290
400
410

After a random PAUSE (line 160), the laser base and
spacecraft appear again. Lines 200 and 210 let you move
your laser base to either side and line 220 stops it
disappearing out of the side of the screen. If you press
the M key, the program jumps to the “fire” routine at
line 500. If that records a hit, the program jumps back
to line 120 and begins a new attack.

Lines 250 and 260 control the movement of the
spacecraft. Lines 270 and 280 make the program jump
to the mining routine — which is positioned by a variable
listed in the table on the opposite page — at line 600 once
in every 20 spacecraft moves. This is done by picking a
random number from 1 to 20; just one of these numbers
will trigger the mining routine. Line 290 continues the
same attack by jumping back to line 170.

Lines 400 and 410 calculate the score and end this
part of the program. The score is based on the time
taken to complete the program, the number of times the
laser was fired and the number of direct hits. The score
isn’t actually used here, but it will appear again later as
you develop the game. If you want to check that the
scoring lines are working, RUN the program and then
key in the direct command PRINT s, without a line
number. Your score should then be displayed on the
screen.

The subroutine section

Finally, here is the last part of the first program. It
contains a pair of subroutines, Lines 500 to 550 DRAW
and “unDRAW” the laser beam using DRAW and
OVER 1. If m=c then the laser has hit its target. Lines
600 to 690 explode a mine on row 17. The mine’s
column position is random. If it lands on the laser base,
the q value of your score will be affected.

Once you have typed in the listing on the following
screen and RUN this phase of the game, SAVE it on a
tape so that it is ready to be combined with the next part
of the program:

PHASE 1 SCREEN 3

XxumeB4+12: LET Yysad:. LET
» Y ODRAL INK ©; OoOUER

BEEP ©0.05,50
DRAW INK ©; OVER 1;0,=-13S%
IF m=c THEN BEEFP ©.2.0 LET

=l

RMND 31
e

DOOEAORORNET AU

OONOAFQNEORY SGNOE

00050606900~ 009
B+

DNIRZBDIDAC
moIMmEDRDOMMC

Here is the program in action. In the first display, the
laser is firing at the spacecraft, while in the second, a
mine has appeared:

PHASE 1 DISPLAYS

1]

/4.
pp4

L asa oo el

-k,

‘f.‘

=
|G |

/

\:\ \;;.’
bk 48 4B

x

o

L S S 2

84T iz Y
S A4H P4

&\

P W W e
L)

>
WY

|
‘ﬂi“ﬂ.b‘h

WRITING GAMES 2

In the second phase of the program, the scene changes
from the air to the sea as a ship tries to depth-charge a
moving submarine. Again, the aim is to hit the enemy to
produce the best score. The scoring instructions are still
not used in this phase, but are ready to be brought into
operation when the last phase of the game has been
keyed in, linking up the first two parts.

As before the program uses a number of variables to
control movement and subroutines. These variables
need some explanation if you are to follow what is
happening (in your own games you could use REM
lines to remind you).

PHASE 2 VARIABLES

The second phase uses six variables to control the three objects
animated by the program,

Variable(s) Function i

C LT After line 1090, this fixes the column

; i position of the ship :

t,d ; Fix row and column co-ordinates of
submarine

{ Records when depth-charge has been

i dropped i

u,e ~ Fixrowand column co-ordinates of

depth-charge

—hLELED

Setting the scene
The first section of the program produces the coloured
screen, and selects some random numbers:

DISPLAY/ANIMATION SECTION

N

BORDER 2. PAPER 4.

IF n=S THEN GO TO 1300
FOR r=Q@ TO 4

FOR ¢c=Q@ TO D21

PRINT AT r,c."W

NEXT

(NN Bl

THEN LET cmc+
25 THEN LET c=2S

)
- A
1
t
i
|
X
1
i
1
1
1
1
1
1
1
1
1
1
1

For the moment, ignore line 100 - you will find out why
it is included on the next page. Lines 1050 to 1090
PRINT a blue sky over the green sea, simply by laying
down rows of blue INK squares on top of the green
PAPER background. Line 1100 sets the column
position for the ship and lines 1130 to 1160 control its
movement across the screen,

‘T'he aim of this game is to hit the submarine. The M key
controls the release of the ship’s depth-charges. The
ship is also manoeuverable. If you press the Z key the
ship will move to the left, while pressing the X key will
make it move to the right. All these functions are
controlled by INKEY$ for a rapid response. The ship
always starts off in the middle of the screen. The
position of the enemy is less predictable. Lines 1110
and 1120 set the random starting point of the
submarine. It may appear at almost any depth in the
water and at any point across the screen.

Main program and subroutines
The second part of the program contains some of the
main program, together with a number of subroutines
which the main program calls. The subroutines control
movement on the screen and detect whether or not your
depth-charges have hit the target:

' SUBROUTINE SECTION

1160 IF c:<@ THEM
1170 F‘ETNT FAFPER

1188 "PRINT FAPER
* =l THEN

INKEY B=m"
LET sez4+100

XY
[E3
0

o
1"

N -0
A IMIDMODD--MM =MW

6068060 90
T HEOUrODY Wl

:ﬁ.i..ir.

E=C+2

A
THEN PRINT q¥ 1

LET (=0: RETUR

QG QUOORRNFYD M)
& UNBESAELY

o e el ol ST SR ETEY o] o ey RO
9

INT RT

1359 _1IF uUuwt AND e3>d AND e <o
EN BEEP ©.2,0. LET nsn+1. L

1300 LET s=s4FN T () ~T

Line 1200 makes the program jump to the depth-charge
routine at line 1300 if you have pressed M. The score, s,
is also adjusted every time a depth-charge is dropped.
The score is related to the time that has passed by using
FN t() in the last line of the program. Lines 1210 to
1240 control the movement and appearance of the
submarine. Line 1250 continues the program by
returning it to line 1130 to check the keyboard for key-
presses.

Lines 1300 to 1360 make a depth-charge travel down
the screen. The charge is composed of the graphics
character on key 3. If the charge reaches the bottom of
the screen, line 1330 returns f to its original value (zero)
and RETURNS to the main program. However, if the
position of the depth-charge coincides with any position
occupied by the submarine (line 1350), then that attack
1s terminated and a new one started. You will notice
when you RUN the program that only one depth-
charge can be released at a time. If { has been set to 1 by
line 1200, when a depth-charge is dropped, line 1190
stops you from dropping another charge until f is once
again equal to zero. This will be true either when the
charge reaches the bottom of the screen (line 1330) or
when it hits the submarine (line 1350).

The program uses keyboard graphics to make up all
the objects in this display, and as you can see from the
following screens, the results show the block outlines of
these characters. However, it is easy to improve the
game by using user-defined characters instead. To make
a ship or submarine, just PRINT a row of characters
together. The greater resolution that you can then
achieve will considerably improve the display, although
more programming lines will be needed.

Here are some displays of the game in action. In the
third screen, the path of a single depth-charge is shown
by putting a REM command in line 1310, disabling the
PRINT command which normally erases the charge
every time it moves down one position:

PHASE 2 DISPLAY

e A - TR S S]

PHASE 2 DISPLAYS

You might have noticed that there doesn’t seem to be
any means of erasing the old unwanted images of the
ship and submarine before the new images are
PRINTed. As both only move one character position to
either side of their current position, they can be
effectively and simply erased by including a blank
square (a space) to either side of the graphics.

The scoring routine
The time is once again used to calculate the score at the
end of the game. In the final version of this program, the
time function will be defined in the first phase of the
game, so a second definition is not necessary in this
part. However, if you want to check that the program is
working properly, you need to have the time function so
that you can PRINT s. Line 100 is put in here so the
scoring routine can be tested. The timing function will
be taken out again when the final version of the game is
written.

When you have checked that the program RUNS,
SAVE it on cassette ready to be combined with phase 1.

WRITING GAMES 3

Now that you have keyed in and SAVEd the first two
phases of the game, you are ready to add the game
instructions and complete the part of the program
which will produce the score. The first problem to
overcome is that the two programs are SAVEd as two
separate files on your cassette. To RUN as one program,
they need to be combined. You cannot simply LOAD
one program from cassette onto another which is
already in the computer’s memory. If you do this, you
will find that the program in memory will simply
disappear, just as if you had pressed NEW.

The Spectrum has a command to deal with this
problem — MERGE. It adds together the contents of
two files. To see how MERGE is used, imagine that you
have SAVEd both programs from pages 38—41 on tape,
but that the “sub sinker” program is already in the
computer’s memory. If you then type:

MERGE “ "

— putting the first filename inside the quotation
marks — and then press ENTER and play the tape, the
first program will be LOADed into the computer. This
time the “sub sinker” program will not be erased, as
happens with LOAD. However, MERGE only
combines programs properly if their line numbers do
not overlap. The extra line (100) added to the “sub
sinker” program so that you could test the scoring
routine will be over-written by line 100 of the first
program. This is why the “sub sinker” is numbered
from line 1010 onwards. If it had been numbered from
line 10, it would have been over-written by the first
phase of the game wherever there were lines of the same
number.

The two MERGEGd phases are now a single program.
As a safety precaution you could now SAVE the whole
program on cassette. This is well worth the trouble if
you are developing a long program, because accidental
deletions can otherwise take a long time to put right.

Adding the game instructions
If you RUN the MERGEd program, you will find that
although it is theoretically one program, it still behaves
as two separate units. When you are writing games
programs in phases like this, you will need to do a little
tailoring to the final MERGEd program to make it
RUN through properly.

Linking the two phases is easily done. Change line
410 to:

410 GOTO 1000

That’s not a mistake, even though the “sub sinker”
program begins at line 1010. It’s to allow you some
space to add game instructions starting from line 1000.

Now you can go right back to the beginning and start
the program off with a title frame containing all the
instructions the player will need. The keys that control
the movement of objects on the screen need to be listed.
You also need to tell the player how to start the game,
bearing in mind that by the time the message appears,
the program that contains the game will already be
RUNning. Here are four lines that give the openine
instructions for phase 1:

" PHASE 1 INSTRUCTION LINES

-
C Jp
%
T

=

. =0

« N D

HHATOD%T 2 =1
D
t#N-D :

Z&MHCID 1
HH~ =« Z00b4Z
ZZO0B De-{avtinx

=

e OC IRP
DRE

: D
[T T

PoMe o <3

-

AE -O»
MMw -~ % DarnkD

<< e =R

i
3,
i@
ng
Yo
=
¥
sE
ri
Y
3
a4

UXEx Lo
3. D

0 %
el gl =l

NWE ~ 0% DI =0~
BB Ik
s R
04 "®Dxd -7+
o
FS
@ v De

Lines 1 and 2 PRINT the game title, and explain its
controls. Line 3 stops the computer from accepting
your RUN and ENTER key-presses as the trigger to
start the game. The next time you press a key, the
condition for repeating line 4 is broken, and the first
phase of the game begins:

PHASE 1 INSTRUCTIONS

Five alien spacecraft
are Laying mines in Your zone

YOoU mUsSt destroy the atLiens

AR RESEEERERS SRR R R R R LS

R BASE CONTROLS
X:right m:fire

any key Lo start

The instructions for the second phase of the game are
inserted in a similar way:

'PHASE 2 INSTRUCTION LINES

v 8

B0
0F :Z
.k ArR(
To :DC
=0

* n D
TE-Qn
‘Cw B0 M
~Dke "o40pZ
n--2ZD

A M e~::0

. -

@ Tk ~EC M
HI =i»2
-Dﬁﬁ*
-
RO Me @D X
Ba=De 09 M
ad 8]

W=Dk PALRO
Bl
M HUTORT ~ Q@ WD

SNOT IxOB—< -0
B9 TH%®E

W M ~0%D G WpD
ZCEBEDk-1 <CBw-

Qe XUix=PDI Dp
L)
F)

SUEB SINKER
EAEEEXEEES

Now frive
invaded ygour

FEFFEEFER T

SURFRCE SHIPFP CONTROLS
ft

zT: Lle X:right m:drop Charge

Press any kéy to start

You can of course use any keys you want to specify
movement as long as you change them throughout the
program. Now neither phase of the game starts until the
player is ready and presses a key to begin.

Completing the scoring routine

Finally, a scoring routine needs to be added to the end
of the MERGEd program. The final score line of “sub
sinker” is retained:

1400 LET s=s+FNt()—~T

However, if you have played the two games
independently and typed PRINT s afterwards, you will
have noticed that the first phase of the game yields a
result ranging from — 20 or so to several hundred, but
the second phase produces results of several hundreds
to several thousands. The results of the two games need
to be of the same order of magnitude. That can be
achieved by multiplying the running score total in line
400 by 100. This makes the score compatible with that
from phase 2:

This line is a good test of your understanding of the
variables from pages 38—41! To make the presentation
of the score more interesting, you can add a few more
lines to turn this purely numerical score into a ranking:

SCORING ROUTINE

190 BORDER ©:. PAPER 7. INK @:. C

20 PRINT AT 6,2, "YOU have e€arn
the rank of*

$ <1000 THEN LET as="COMM

- AND s <2000 THEN

AND 5 <4000 THEN

AND s <6000 THEN

eme
b 1]
*H
m

2
[T I
R

1=}
oMy WM

THEN LET as="RO0O

PRERMRPrREreDenpr e
SEHAMEMAMEZEGE0A
.

ony-He-H0<4+00

© FPRINT 10.,12;a%

YOoU have earned the rank of

PILOT

Lines 1410 to 1480 divide the scores up into bands, each
of which is assigned to a rank. A series of IF ... THEN
lines decides where your score comes in the ranking.
You can change the cut-off scores for each band to make
the games harder or easier.

You now have a complete two-phase game with
instructions, action and a scoring routine. Although the
two phases used on these pages are relatively simple, the
way that they are combined can be used to build up
games of your own that are much more complex. You
can use MERGE to put together a number of sub-
programs, each written and tested independently. The
only restriction on this is the size of the computer’s
memory, but unless you are combining very long
programs, this shouldn’t be a problem.

IMPROVING SOUND

On the Spulrum the command used to produce sound,
BEEP, is quite straightforward. A line like:

100 BEEP d,p

will produce a sound that is d seconds lung at a pitch p.

But one of the problems of using BEEP in programs is
that it stops everything else while it is being carried out.
This means that if you want to produce long sounds in
conjunction with movement on the screen, you cannot
use a single BEEP command, or the program will
“freeze” until the BEEP has finished. To link sound and
animation as well as possible, BEEP needs to be used
briefly but frequently, so that the sounds produced add
up to give the effect you want.

How to improve sound with animation
You can hear BEEP working badly with animation if
you RUN the following program:

BASIC SOUND AND ANIMATION PROGRAM

:0,05,859,128 ,0.,68

« HBG NG9 @

-

N PROBRRBRE
44 me DIDDDDE -~ POARE B

A N0 ARONESOINOG: A W

L

2
=

cJ
, €3
ND #2)
LET &
ND #2)
(Wl —auelif v
LET €
=27 R

O
L]
ana

~ BASIC SOUND AND ANIMATION PROGRAM

The flying saucer is made up from six user-defined
characters arranged in two rows —a,b,c on top and d,e,f
underneath, with one space either side. In addition, a
row of spaces is PRINTed above and below the saucer,
so that, whichever way it moves, the spaces
surrounding it erase the previous image. Line 200
produces a 0 or 1 at random. Line 210 turns that into
either —1 or +1. This will be used to change the
position of the saucer. Line 220 pruduccs another 0 or
1 at random. If it’s a 0, the saucer’s row is changed by
the variable a. If the result of line 220 is 1, the saucer’s
column is changed by a. This moves the saucer around
on the screen in an unpredictable way. Line 250 tests to
see if the saucer has reached the edge of the screen and
if so brings it back to the centre. The sound is dealt with
in line 260 in a single BEEP statement lasting a fifth of
a second. It can be improved by adding these lines:
NEW LINES TO SPLIT SOUND

[IGEVISET
CrLUNEEY
suaaaan
800060
6990666
650866606
Ll fo b fededed
WaaEQUN
NoNeacn

T+ [|

The first version is a very poor example of animation.
Effective animation relies on changing from one
character display to the next as quickly as possible, but
in that program the single BEEP interrupts the
movement for too long, so the saucer moves in a slow,
halting way and the sound effect really doesn’t add
much to it.

By adding the lines listed on the previous screen you
will split the BEEP up into a number of shorter sounds,
thus improving the quality of sound in the program.
Each BEEP now lasts for only five hundredths of a
second. The total duration of all the BEEP statements
(0.035 seconds) is less than a quarter of the length of the
single BEEP used previously, so this program RUNs
approximately four times as quickly as the first version.
Moreover, because the sound effect is split up into a
number of separate statements, this gives you a chance
to sound them at different pitches to produce a much
more interesting warbling effect.

You could also write more BEEPs between the

introductory lines (10 to 140) to announce the arrival of

the saucer in advance of its appearance, but note that
any BEEPs written into lines 50 to 130 will sound eight
times because of the n loop connecting them.

Linking BEEP to screen positions

One very effective way of producing sound with
animation is to link the BEEP pitch to a variable that
controls a character’s position on the screen. You will
have already encountered this with the “bouncing”
program on pages 8-9. Linking BEEP like this is fairly
casy, and it cuts out quite a lot of programming lines.
All you have to ensure is that the variable controlling
the BEEP comes within the right range, and is used to
change the duration or pitch of the BEEPs in the right
direction. You can experiment with these techniques on
the next program. Type in the following listing and
RUN the program:

LINKING BEEP WITH POSITION

510 BORDER &:
20 PATA _1.18
2,9

’

a9 v ORR
i1L10 ~
BRDOE n
Derev b~

el el e =
R e *

COOCCEO0GO0UR
ZUVODOUNZUD
mMDDDDDOMY

S
a
-]
=)
7
8
9
a
p
=
=3

This program PRINTS a star field and then moves a
keyboard graphics rocket upwards through it. Lines 10
to 60 PRINT the star field. Lines 70 to 130 PRINT and
move the rocket. When you RUN the program, the
following display should appear:

LINKED BEEP DISPLAY

Now you can add the sound effects to the above
program. This time, their aim is to produce an unusual
sound of changing pitch. What is needed is a BEEP
statement containing a variable whose value changes
every time the BEEP is carried out. The obvious thing
to relate the pitch to is the changing row number. The
problem is that the sound should increase in pitch as the
rocket rises, but as it does so, the row number
decreases. So if the pitch were simply made a multiple
of or a fraction of the row number, it, too, would
decrease as the rocket rose up through the star field.

However, there is a way of overcoming this problem.
Tty typing in this line:

125 BEEP 0.05,80—(10%r)/2

Now the smaller r is, the higher is the pitch number. If
the range of pitch is too large, multiplying r by a smaller
number will reduce it:

125 BEEP 0.05,80—(5*r)/2

If the pitches are too high overall, reducing the starting
value (80) will bring all the BEEPs down in pitch:

125 BEEP 0.05,60—(5xr)/2

To make the sound more interesting, you can split it
Into two components:

75 BEEP 0.025,60—(5*r)/2
125 BEEP 0.025,63~(5*r)/2

The second sound is slightly higher in pitch than the
first, giving a progression in pitch between the two.
Using a number of even shorter BEEPs in these lines
will make the sound effect even more complex.

e v e G B 5 i Wil L

THE SPECTRUM SCREEN POINTER

In many Spectrum games programs, areas of INK
colour on the screen represent objects that you have to
avoid. If you hit them, the programs respond with a
penalty of some kind. But how do you go about
programming the computer to decide if a character you
are moving on the screen has hit something? You could
use I[F ... THEN to check co-ordinates, but there is a
way that is much easier and quicker.

The Spectrum BASIC command POINT lets the
computer examine any point on the screen and test
whether it is a PAPER or an INK colour. In the line:

100 a=POINT (x,y)

a will be equal to zero if x,y is a PAPER colour, or it will
be equal to 1 if x,y is an INK colour,

The next program produces INK squares at random,
and then lets you test whether a particular pair of co-
ordinates is covered by a PAPER or INK colour:

PAPER/INK TESTER

BORDER 3 PRPER

_OT % .4
TF a=0 THEN PRINT AT 21,24;

=
IF a=l THEN PRINT AT 21,14;
GO TOD Be

M

et e PSR

PAPER/INK TESTER DISPLAY

Lines 20 to 60 PRINT dark blue squares in random
positions on a cyan background. The bottom line of the
screen is left blank for use later. Line 70 switches to
black INK. Line 80 waits for you to type in the x and y
co-ordinates of any point on the screen.

Type in an x co-ordinate (0-255), press ENTER, and
then type in the y co-ordinate (0-176) and press
ENTER again. Line 90 will then test whether this point
is PAPER or INK. Line 100 PLOTs a black point at X,y
to mark it. Note that this program would not work if
lines 90 and 100 were reversed, because x,y would
always be an INK colour, coming immediately after
PLOT x;y.

The result of line 90 is PRINTed on row 21 by lines
110 and 120. If x,y is a PAPER colour, the point
ENTERed appears as a small black dot on the screen. If
x,y is an INK colour, the whole character-sized square
turns black because if you change the INK colour of a
single point in any character position, the whole
character position changes to the new INK colour.

Using POINT with animation

Now you know how POINT is used, you can try out a
practical application of the command. You have
probably come across a situation where you have several
characters on the screen, but you don’t want to go to the
trouble of storing their positions and recalculating
when any of the characters move in order to keep track
of them during animation.

The next program gets around that problem. It uses
POINT to test for the position of obstacles scattered
over the screen as a character bounces between the
screen edges. There are only a few obstacles in this
display, but you can easily increase the number by
altering the range of the loop between lines 20 and 50:

MINESWEEPER PROGRAM

b10 BORDER 1 PARPER 6: INK 1: C

290 FOR Nel TO S
8@ LET s=INT (RND#22) :
(RND*3R)
@ PRINT AT = ,d4;"W"
NEXT n
LEI Ffel@: LET €=?: LET v=i
h

IF rms RAND Ccwd THEN GO TO 2

W g
OR r=21 THEN LET vs=
"

-
OR €=31 THEN LET h=-
.29

LET C=C#h
XmCuB+4 LET 94=176-(r=8

130 IF POINT (¥ ,y)=1 THEN GO TO
190

LET ds=I

PRINT INK O AT

The program uses POINT to locate INK characters on
a PAPER screen. Lines 20 to 50 PRINT dark blue
mines (squares) on a yellow PAPER screen. Line 60 sets
the start position for the minesweeper (a copyright
symbol). If this start position coincides with any of the
random blue squares, a new set of random squares is
PRINTed. Lines 80 to 150 form a routine that you have
encountered several times now. It makes the
minesweeper bounce around the screen from side to
side and top to bottom. Every time the minesweeper
reaches one of the screen’s four edges, its direction is
reversed and a BEEP sounded. The BEEP produced
when the minesweeper reaches the sides of the screen is
much higher in pitch than when it reaches the top or
bottom edge.

For each position the minesweeper symbol moves
into, line 120 converts its row and column co-ordinates
into the x,y graphics co-ordinates of the mid-point of

the position. Line 130 then checks whether this is a .

PAPER or INK colour. If it is a PAPER colour, the
program jumps back to line 80, erases the minesweeper

and rePRINTS it in a new position (calculated by line
110). If it’s an INK colour, line 130 returns the value 1
and the program jumps to the explosion subroutine at
line 190. This repeatedly PRINTs two graphics
characters in a range of different colours, accompanied
by sound effects. After every explosion, the program
jumps back to line 10 and starts again:

MINESWEEPER DISPLAYS

The number of mines is set to 5 so that the minesweeper
has enough space to go back and forth across the screen
several times before it hits anything. You can provoke
an explosion more quickly by increasing this number in
line 20. Masking the PAUSE in line 140 will also speed
up the program.

Using POINT in routines like this enables you to
program the computer to make a complex decision with
a simple series of commands. POINT is very useful in
games where you are controlling an object that has to be
steered around the screen and kept clear of walls or
other obstacles. You can test your skill at computerized
navigation by using POINT to direct the program into
a crash or penalty subroutine when you steer into INK.

PATTERNS WITH SYMMETRY

If you make the Spectrum produce a pattern at random,
the display produced will be entirely unpredictable.
Using a simple technique, it is possible to generate a
random display in a way that produces a symmetrical
result. An unpredictable display makes a random
pattern all over the screen, a technique that is useful for
producing a background “galaxy” effect for a star wars
game. But with a symmetrical display, the first part of
the program produces a random pattern in one quarter
of the screen, while subsequent parts of the program
repeat this random pattern in each of the other three
corners of the screen. The effect is like seeing part of the
display reflected in a mirror.

To see how you do this, first you need a program that
produces a random display. On the Spectrum this is
very easy:

RANDOM DISPLAY PROGRAM

BORDER = PARPER A1: INK 7: C

FOR nNn=1 TO S0©O
LET C=INT (RND2O2)
LET rwINT (RND#2=Z)
PRINT AT r,c; "W
NEXT n

This short program repeatedly produces row and
column co-ordinates for a random location on the

screen. Although the column furthest to the right is
numbered 31, the expression in line 30 that produces
the column number includes 32, because INT rounds
numbers down to the nearest integer, so the highest
value that INT(RND=#32) can have is 31. The graphics
symbol on key 8 is used to produce the display. The
program positions 300 squares at random. There are a
total of 704 character positions, so, at most, about half
the screen is covered. There’s nothing to prevent lines
30 and 40 producing the same pair of co-ordinates on
several occasions, so that often the INK squares will
take up a smaller arca than this.

Reflecting a random pattern
Now you can use the graphics symbol, but in a slightly
different way, to turn this entirely random pattern into
a random pattern with symmetry:

SYMMETRICAL DISPLAY PROGRAM

BORDER 1: PRPER ©: INK 4: C
nel TO

This program divides the screen into four equal
quarters. All of the co-ordinates that lines 30 and 40
produce lie in the top left-hand quarter. They are
copied onto corresponding locations in the other three
quarters. Because each pair of co-ordinates produced
gives rise to four symbols PRINTed on the screen, the
program only needs to carry out a quarter the number of
loops as the previous program. The maximum value of
n in line 20 is therefore reduced to 75, but this produces
300 images as before. The first of the next pair of
screens shows a typical RUN of the program. The
second screen shows the result of adapting the program
by changing line 10 to:

10 BORDER 1:PAPER 0:INK 6:CLS

and then using a smaller graphics character (this time
on the 3 key). The program will produce a different
display every time it is RUN:

SYMMETRICAL DISPLAYS

The program works out the positions of the mirror
images of each original “seed” symbol by performing
some simple arithmetic on the co-ordinates r,c. The
first mirror image is on the same row as the seed, but on
the opposite side of the screen. Its co-ordinates are
therefore r,31—c. Each point is reflected by two others
in the bottom half of the screen.

USING SYMMETRICAL CO-ORDINATES

Seed point
B %
r,¢ r3l=-c

21-r,c

21-r,31-c

Each is as far up from the bottom of the screen as the
seed point is down from the top, so their co-ordinates
are the 21 =r,cand 21-r, 31—c in line 50.

Programming a crossword grid

Most crosswords are constructed from a symmetrical
grid, and by reflecting the black squares in one corner of
the crossword grid, you can program the computer to
PRINT the complete pattern. Again, “seed” squares
are positioned at random:

CROSSWORD PROGRAM

PRAPER & IMNK

B
]

BORDER

TO 136
DRAW 96,0
DRAL @, <

OANRAPLN
-~ BOGO8699

Lines 20 to 50 DRAW the grid. The grid is 12 squares
across and 12 squares down. This line spacing is chosen
so that each blank square that lies within the grid is the
same height and width as a keyboard character (8
graphics pixels across and 8 down). The RND
statements in lines 70 and 80 are chosen so that the
random co-ordinates produced by them always lie
within the crossword grid. Line 90 then PRINTs the
seed point and its three mirror images as in the previous
program. Wherever a graphic square is PRINTed, it
fills a blank square in the grid.

TRACING ERRORS

The Spectrum is much more helpful than many
microcomputers in tracing errors or ‘“bugs” in
programs. Some computers will let you type in almost
anything; you only discover that your program does not
make sense when you RUN it and get a whole
succession of error reports. The Spectrum, on the other
hand, checks each line you type in for errors before you
can use it in a program.

Although you cannot spell a keyword wrongly,
because the Spectrum’s entry system works on single
keys, it is easy to use punctuation incorrectly. If you
miss out a semi-colon after an AT, or separate two
commands with something other than a colon, for
example, a flashing question mark appears on the line
when you press the ENTER key. Its position indicates
where the error is. All you have to do is move the cursor
back down the line and correct the error. If the cause of
the error isn’t immediately apparent, check that you
have used the commands in question correctly.

This system of entry-checking does not mean that
you can’t make a mistake when programming the
Spectrum. You can easily write a program which the
Spectrum will accept, but which is still riddled with
errors. Here is a program that is full of errors. If you key
it in (the computer will accept all the lines) you can then
see how to go about a thorough “debug”.

The program is the “hangman” game from page 27,
but it has been written and ENTERed hurriedly, so
that it will not work. Don’t cheat by looking back at the
correct program! Go through the listing and see if any
bugs-are obvious to you. See how many you can find,
and try and work out how you would correct them.
Then check your-results against the bugs that are
explained on these pages.

Key in the program as it is and then try to use it:

BUGGED “HANGMAN” PROGRAM

1© BORDER © CLS
12; "HANGHMAN"'
20 PRINT AT 10,

PRINT AT 1,
“HASKk a ffriend
‘‘or phrase 1o
"DON'T LOOK A

;'Press ENTER

finished"
60 INPUT as
B
THEN PRINT AT
00 I | p B et bl i |

P HANGMAN' AT
space*

ampgp

Try a Le
i1 to Qu

‘2
8
=)
1,
1@
X7
a1l
16,
i2
te
55
r

b D~

n

Zz
T

ZreC

[N
R 0 L PRpREp
D
24+~
-w 40 Jsd-ma-
Th I mu un
ZDe ~®opD ::

.-

I X~
0 D#D-HL s@ —Heba

;U"Try the whol
PRINT AT 11,1
] -

..
THIDVOZ I MM THH M

; NARBYA~ANNENAEY
n]

o

4 e~

o

-

[

CGTGOOSGOGOGG

O
DO DOM~RODNNZ

=2;"scorem*

-

e
a2
1

When you try to RUN the program you will find that
the title frame comes up and you are invited to ENTER
the test string. But when your press ENTER, the error
report “1 NEXT without FOR, 100:2” appears. This
means that the program has stopped at the second
statement in line 100. LIST the program. You will see
that a loop containing n begins at line 80, but the NEX'T
statement in line 100 says NEXT 1. To make the loop
work properly, change this to NEXT n. Now try the
program again:
. “CRASHED"” PROGRAM DISPLAY

HMAMGHAN

Ask friend o

oFf Phifase [10f

DON'T LOOK AT THE 3SCREEN

Press ENTER when Yow'‘re finished

This time the title frame and test string entry work
properly, but the title frame stays on when the next
phase of the game starts. That’s easily dealt with. Add
:CLS to line 70. You may also have gota “B Integer out
of range” error report on screen. The characters
representing the test string are also PRINTed in the
wrong position. They may have run out of the side of
the screen as shown above.

The expression in line 100 should PRINT all the
characters in the middle of the screen. It should read:

(@Z=1))/ 72511

but in the program, the division by 2 has been missed
out altogether.

The display instructions tell you that a hyphen
represents a letter, but a row of the letter j is PRIN Ted
instead. Moreover, if you've ENTERed a test string
containing any spaces, you’ll have found that the black
square graphics symbol has not appeared.

The j-line has appeared because the programmer
forgot to press the shift key to get a hyphen. Correct
that, then look at line 90 again. This line checks for a
space in the test string and if necessary PRINTs a black
square, but this is masked by whatever line 100
PRINTs. If youadd: NEXT n to the end of line 90, then
when a black square is PRINTed, the program will
move on to the next value of n and the next character in
the test string,.

Further test RUNs

Now, when you RUN the program, as soon as you
ENTER your first guess at a letter, you will get a “2
Variable not found, 160:1” error report. The only
variable in line 160 is s, which represents the score. It
seems straightforward — it PRINTs the score. This line
is, in fact, correct. The error report is PRINTed
because the computer doesn’t have an initial value for s,
which it can PRINT. So, add :LET s=0 to the end of
line 70. When you have keyed in these corrections,
RUN the program again:

S“CRASHED” PROGRAM DISPLAY

HANGMAN

-1 Letter |]

i =@

Ltetray

the whole Thaing

Now, when you type in a correct guess, it will probably
appear to the right of the screen. Alternatively, if it
represents a letter that appears towards the end of the
test string, you may even get a ‘B Integer out of range,
180:2 error report, because the computer has tried to
PRINT the character off the screen altogether. Once

51

again, the division by 2 has been omitted from the
column expression. It should read as follows:

(32—-1)/2+n

The game now seems to work properly, but if you look
at the score, you will see that it’s not increasing. The
score should go up by 1 after each guess and this has not
been written into the program, so add LET s=s+1: to
the beginning of line 160.

Although single-letter guesses will work properly
now, the computer refuses to respond correctly when
you press 1 to guess the whole string. Line 150 should
make the program jump to the whole word guess
routine, but it actually leads to line 190, which is simply
NEXT n. This is a very common fault after you have
renumbered any of the program’s lines, and perhaps
forgotten to renumber the GOTOs and GOSUBs.
Change the GOTO statement in line 150 1o GOTO 210.
The following display should appear:

OVERPRINTED DISPLAY

HANGHMAN

:Leter | B

CORRECT =

scoresl

thing

Try typing in a correct guess for the whole string. The
“CORRECT” frame is PRINTed over the previous
game frame. That’s easily put right - change line 220 to:

220 IF t$=a$ THEN CLS:PRINT AT 11,12;
“CORRECT™; AT 13,12;"“score=""35+1

Finally, the program refuses to stop. When you’ve
made a correct guess, the program immediately
restarts. So, add :STOP to the end of line 220. The
program should now RUN properly.

If you are developing a program, constant checking
should prevent all but a few bugs from slipping into the
final listing. When you’re testing a program that you’ve
written, put it through all the situations it will meet in
use. If it’s supposed to have safeguards to stop it
“crashing” in some circumstances, test them too.
Testing the end of a growing program with GOTO will
ensure that each routine actually works before you
move on o the next,

SPEEDING UP PROGRAMS

One of the features of BASIC is that, if you want to, you
can write programs without much prior planning. With

many other computer languages, a much more
or;_.,dm/ed approach is needed. Although BASIC is easy
to use, it doesn’t encourage the best pru;,rdmmmb

One area where good and bad programming show up
is in RUNning speed. While it’s not of great importance
that a short program RUNs quickly, RUNning speed
does become more significant as your programs become
longer and more complex. Ideally, you will want them
to RUN as quickly as possible. On these two pages you
can see how a poorly written program compares with a
version that has been streamlined.

A “slow” program
The following program is of the type used on page 23 to
show how arrays can produce spreadsheets on the
screen. Here is the program listing:

~ “SLOW” TAX TABLE PROGRAM

AePUNNE

]
]
06006006 GNEGOORGS

o
QUOOr%=0D
DEDHMRDMM

o

P
WREFO0ON

W=20 TO 164
28.4 DRA

14Q
150
i6@
17
1860

190 PLOT 28 , 20 DRAW @,14
ﬁpﬂu 9,144 PLOT "l-«-

DRAW @, 144 :
laa

220 PRINT AT
“IRAT R,13, ”JUU
2,23. “FotaL~
230 FOR a=1
240 PRINT A/T
250 PRINT RT
260 PRINT AT
270 PRINT RT
(a)*n(a) +O. 7
280 PQINT RT
+ INT
=290
300
"“iFN

m ﬂn;munuc

ok O

[o] o U

The program takes a list of unit prices, numbers of
items and - given the current tax rate — calculates the
total cost of the items. The information is presented as
a table. To test the program’s RUNning speed, lines 20
and 30 start timing the program as soon as it starts and
line 300 PRINTS its total RUNning time on the bottom
line of the screen:

3 “SLOW” TAX TABLE DISPLAY

BRI
Q|0

7}
08N

(AR

41

2600002

Time taken

200: 1

The unit prices are stored in the DATA statement at line
50, and the numbers of each item in line 60. Both arrays
are dimensioned by line 40. The loop at lines 70 to 100
READs the unit price DATA into the one-dimensional,
eight-element array p. A similar loop at lines 110 to 140
READs the numbers DATA into the n array. Lines 150
to 220 clear the screen, DRAW the grid of intersecting
lines and PRINT the column headings - “No” for
number and “SUB” for subtotal. Lines 230 to 290
calculate and PRINT the figures to fill the grid.

On looking through the listing, you might have
noticed that two loops use the same variable (a) over the
same range of values (1 to 8). It would have been
possible to combine these loops and save space and
time. Also the row number given by 2*a+2 is newly
calculated in each line. This wastes some time. Finally,
the same expression (p(a)*n(a)) appears three times in
lines 270 to 290, calculated again each time it is
required. All this shows that the program has been
badly thought out, and needs improvement. It takes
about two and a quarter seconds to RUN. Now see how
much you can shave off this by using more economical
programming techniques.

Techniques for time-saving

Here is the program again, but in a modified form. It
produces exactly the same display, but in places the
program statements are quite different:

T e n— M L S s

e, R < TR A A e |

IMPROVED TAX TABLE PROGRAM T 'l'!Iere_is now a major chapgc‘ in the way the grid is filled
with figures. At the beginning of each loop, once the
value of a has been established by line 160, all the
calculations necessary for that loop are carried out once

"

b RE . . P e . .
o428, CEF and for all by line 170. The variables used work in the
At following way:
_5 DART
4:2:08:3 TAX TABLE VARIABLES
50 FOR . . .
22 RER The program uses four variables to fix positions and carry numbers
90 HEX calculated for use in the table.
116 FOR 20 TC 164 STEP 16
120 m_-:'t“{ 26 .4. DRAW 200,0 Variable(s) Function gots
30 NEXT u ; ;
142 PLOT 28,80, DRAW 0,14/ : r Fixes row number where DATA will be PRINTed
T 686,20 CRAL 0“"] "',‘ II.'\FJL:'g' .I"- 4 . - - - c——
LR AN e o, —oaamRse A e b Stores product of unit price and number of
LOT 228,20 CRAW O, 144 i inems QSUB Coll!mn_)
sSeroL LY d Stores amount of tax at 15% rate
e Stores total cost (subtotal + tax)

Line 180 is now a lot less complicated, because all the
calculations have already been done. It’s just a matter of
PRINTing the correct variable in the correct position in
the grid. If you RUN the program in its improved form,
the display now shows the time saved by making these

changes:

[#]
3

NG~ D

IMPROVED TAX TABLE DISPLAY

- +M
~+0Z 13&-11""-_0'0
Zuud:
oD -Nered

- o :
SRR B R

MEO--Dn

Z69I18c 98N+
Pl

=44 N4 Hae=

DR VR

1.
2.
- S
a2

The first thing you will notice is that ten lines have been
lopped off the listing. To achieve this, a lot of
unnecessary calculations have been removed and
several similar statements have been neatly condensed
into a single line.

The two listings are identical up to line 50. All of the The changes have taken more than a quarter of a second
DATA has been written into this line, but it’s also been off this short program, a saving of more than 12 per
reorganized. This is necessary because the loops that cent. You can imagine the saving in a longer program
load the DATA into the two arrays have been rewritten. dealing with much more complicated numerical DATA
There is now a single loop at lines 60 to 90, saving four or making lots of calculations for example.
lines. Both the price and number are READ by READ When you are writing a long program, watch out for
p,n in line 70. The DATA in line 50 must, therefore, be any repetition in the lines. The chances are that with
presented in this way - a price followed by a number, some planning you could save both RUNning time and
and so on. memory. Any large routine that is repeated a number of

Lines 110 to 150 are identical to lines 160 to 220 in the times will be worth making into a subroutine with
first program, except that several of the PLOT and GOSUB, while any calculations that crop up frequently
DRAW statements have been written into a single may be carried out with FN. These devices, plus the
statement instead of three statements taking up three various loops, can all be used to speed up a program.
lines. The computer can deal with multiple statements Because the speed with which your programs are RUN
in a single line substantially faster than with several is slowed down by conversion into machine code,
separate statements, each occupying a different line. savings'in BASIC are always worth considering.

HINTS AND TIPS

How to SAVE screen displays

Sometimes you may write a program which produces a
display which you would like to be able to see again
later. With the Spectrum you don’t necessarily have to
RUN the original program to do this. Instead, the
direct commands:

SAVE “display” SCREENS

can be used with a cassette recorder to store a picture
called “display” — or any other name - on tape. The
computer will then transmit to the tape the information
about every pixel on the screen. When you want to see
the image again, just play back the tape as usual, but
with these commands:

LOAD “picture” SCREEN$

The computer will gradually scan across the television
screen, PRINTing the pixels in exactly the same way as
in the original display. By using this command, you can
produce graphics directly without using program lines,
but then store the result on tape cassette in exactly the
same way that you would store a program.

Problems with functions

Two of the Spectrum’s built-in functions, SQR and 1 ,
may sometimes cause problems in your programs.
Because the square of any number is always positive,
the function SQR cannot be used with a minus number,
so if you are using SQR, make sure that this will not
happen. The problem with the exponent function is less
obvious. If you are mathematically-minded, you might
have tried the following way of producing a number
that is either +1 or —1 (this can be used in a program to
produce lines or characters over the screen in an
unpredictable way):

RANDOM GRAPHICS WITH EXPONENTS

%z
(o

8) #-11T (RN

B) =17 (RN

The exponent function should produce a positive or a
negative number, either +1 or —1 each time. In fact, it
won’t work. This is not because the maths is faulty, but
because, like SQR, the Spectrum’s exponent function
will not work with a minus number. The answer will
always come out positive — not much help for up-or-
down movement. The best way to produce the effect is
to set up a decimal figure from 0 to 0.99999999 with
RND, and then use an IF ... THEN line to produce
+1 or —1 like this:

200 LET a=RND
210 IF a>0.5 THEN LET a=1: IF a<=0.5 THEN
LET a=-1

SQR used with a minus number will produce an error
report. The exponent function with a minus number
will not, so you may not realize at first why a program is
RUNning oddly.

Setting boundaries with animation

When you start animating graphics, you may find that
they don’t behave as you wish when they reach the edge
of the screen. Here is a program that demonstrates this
problem:

ANIMATION PROGRAM

BORDER S PRPER

LET ag="

THEN LET

2=-

The program animates a small flying saucer symbol
built up from two rows each of three characters with a
space either side. The space erases the old image of the
saucer as the new image is drawn one space to the left or
right of the last position. Line 40 sets the starting
position and sets a — the change in position of the saucer
—to 1. Line 80 sets the position for the next PRINT).
Line 100 checks whether the saucer has reached the
edge of the screen (¢=0 or ¢=31) and if so, it reverses
the saucer’s direction. Then back to line 50 to PRINT
the new saucer:

SPLIT CHARACTER

But, as you can see, it doesn’t work properly. The
saucer appears to wrap round onto the next row down
and then retreat back up. It’s a common problem with
animation programs.

Line 100 deals with how the saucer behaves at the
screen’s edges. Remember that ¢ represents the column
number of the first or furthest left character of the
saucer. When the last saucer character (the furthest
right) reaches the right edge of the screen, ¢ has a value
of 27, not 31. To rectify this, change line 100:

100 IF ¢=27 OR ¢=0 THEN LET a=-a

The program now takes into account the size of the
object that is being animated.

Testing for the screen edge

‘The next program is similar to the previous one in that
it moves an object around the screen, but this time the
object is composed of only one character and it moves in
both horizontal and vertical directions:

EDGE-TESTER PROGRAM

190 BORDER 1: PRAPER 2: INK 7 c

20 LET r=11: LET ¢=16: LET v=1
LET h=1
90 PRINT AT r,c;'™ *
40 IF xnm:- s="'y’ HHD V30 THEN
LET v=V4+@,
@ IF INKE|§" ‘h AND h>@® THEN

LET hash+0.
5@ LET r—r+v cmc+h
70 IF c=0 THEN L.ET c=@: LET hs

IF ¢=31 THEN LET c=01 LET

IF r=0 THEN LET rw®: LET v=
IF re21 THEN LET r=21: LET
PRINT AT r.c

< b
BEEF 0.02,60-S5%r
GO TO 30

B i i T o 1 S A AR 1|

Each time the character is erased by line 30, line 60
changes the row and column values by v and h
respectively. These are initially set to 1. Because of this
and the effect of lines 70 and 80, the character bounces
around the screen just like a ball bouncing around
inside an empty box.

Lines 40 and 50 allow you to change the ball’s speed.
If you press the V key and the ball is travelling
downwards, the variable v is increased by 0.1,
increasing the ball’s downward speed. In the same way,
if you press the H key and the ball is travelling to the
right, the ball’s horizontal speed increases. But try it.
When you press either V or H, the ball speeds towards
the edge of the screen, and then the program throws up
an error message — either “B Integer out of range,
110:1” or “5S Out of screen, 110:1”. If you don’t touch
the keyboard, the program RUNs correctly, proving
that the animation lines have been written properly, but
for some reason will not work with INKEY$.

Consider for a moment what would happen if the ball
was at position 20,10 and travelling downwards and to
the right. At the same instant, you press the V key. Line
40 increases v from 1 to 1.1. Line 60 changes r to 21.1
and ¢ to 11. Line 100 checks whether r equals 21. It
doesn’t. So, line 110 tries to PRINT the ball AT
21.1,11, producing the “Out of screen” error message.

The problem is that you can no longer predict the
exact value of r or ¢ when the ball reaches a screen edge.
So, change some lines to cope with the situation and
conditions you do know about — that is, neither r nor ¢
can have values less than zero, r cannot be greater than
21 and ¢ cannot be greater than 31. So the lines are now:

70 IF c¢<<0 THEN LET c¢=0:LET h=~h
80 IF ¢>31 THEN LET c¢=31:LET h=-h
90 IF r<0 THEN LET r=0:LET v=-v
100 IF r>21 THEN LET r=21:LET v=-v

Once you have made these changes, the program will
correctly test for the edge of the screen.

CONVERTING PROGRAMS

One of the problems with BASIC is that it exists in
many different forms or “dialects”. The Spectrum uses
a form of BASIC which includes some commands —
BORDER, PAPER and INK for example — that other
machines do not have. Similarly, other micros may
produce effects that can be achieved on the Spectrum,
but by completely different techniques; nowhere is this
more evident than in graphics programs. All this makes
“program mobility” - trying to use the same program
on different computers - very difficult. You can see this
in software retailing where many programs are only
available for one type of machine.

If you do see a program in a magazine or book, or a
friend shows you a program RUNning on another
computer, you may decide that it’s worth converting to
RUN on your Spectrum. To do this you must know not
only how the machines concerned differ, but also you
must be able to understand why and how a program
does what it does. Then you can break the program
down into blocks or subroutines and finally look at it
line by line. But in the same way as you can rarely
translate a message into a foreign language word for
word, you cannot simply translate each “foreign”
program statement directly into the equivalent
statement for your computer. It may be more
economical in time and more efficient to completely
rewrite a section of program using the best commands
available on your machine.

Points to watch for when converting

One of the most variable aspects of BASIC is
punctuation and spacing. The Spectrum’s error-
checking system will ensure that you do not ENTER
any lines that have incorrect spelling or punctuation,
but you don’t want to have to keep experimenting until
you get things right. Full stops, colons and semi-colons
are used in different ways by many machines, and you
will often need to make punctuation changes before you
can use lines on your Spectrum.

Remember that any text or graphics co-ordinates are
likely to need changing. Because different computers
often have different display resolutions, the co-
ordinates used to produce displays can rarely be
incorporated without alterations in converted
programs. Making a note of the other micro’s text and
graphics grid limits will help you here.

When converting programs, you must always be on
the lookout for commands that relate directly to a
machine’s operating system, because they will have no
meaning for the Spectrum. Similarly, commands like
PEEK and POKE on the Spectrum cannot be used in a
program converted for other machines, as they refer to
the Spectrum’s memory addresses. Watch out too for

commands that use a computer clock: you will need to
completely rewrite routines to make use of the
Spectrum’s timing system.

The list of these problems is quite a long one, but
once you have tried some program conversion, you will
soon learn what is safe “standard” BASIC, and what is
“dialect”. Itis a good idea when converting programs to
have a look through the other computer’s manual, so
you can pick out any commands which look unfamiliar.
If you know what these do in advance, you will find the
process of translating a lot easier,

Converted and original listings
The following listing is an example of a program written
specifically for another computer, the Acorn BBC
Micro. It sets up a games board — a routine that you
might want to use on your Spectrum. But it won’t RUN
on the Spectrum in its present form:

BBC MICRO GAMES BOARD PROGRAM

LIST
MODEZ2 : VDUS
PROCSCREEN
GCOLO, 4:Y=832
FOR ROW=1 TO 7 STEP 2
LEFT=240 : RIGHT=840
PROCBOARD
LEFT=340;: RIGHT=940 : Y=Y -80
PROCBOARD
Y=Y -80
NEXT ROW
END
DEF PROCSCREEMN
GCOLO, 129:CLG: GCOLO, 6
MOVE 240,832:MOVE 1040,832
PLOT 85,240, 192:PLOT 85,1040,192
ENDPROC
DEF PROCBOARD
FOR X=LEFT TO RIGHT STEP 200
MOVE X,Y:MOVE X+100,Y
PLOT 85,X,Y-80
PLOT B85,X+100,Y-80
NEXT X
ENDPROC

B S T+ R e]

Almost everthing in this program is peculiar to the BBC
Micro and cannot be used by the Spectrum. The BBC
Micro’s colour commands and the way in which it calls
special kinds of subroutines, called procedures, are
entirely different. That’s why it is necessary to
understand how the program works before you can start
converting it. You will find that it is a great help if you
can see the program RUNning rather than working
only from a printed listing.

The most straightforward way to convert or translate
this program is to take each block, identify its function,
and then write a routine that will carry out the same
function in Spectrum BASIC. Lines 10 to 110 form the
main program, which jumps to two subroutines called
PROCSCREEN and PROCBOARD. These are called
by name instead of line number. PROCSCREEN draws
a large cyan square on a red background. The main
program draws a row of alternately coloured squares
across the screen (lines 50 and 60) then moves down
(line 70) and draws a second row of squares. The second
row is displaced to the right of the first. Four such pairs
of rows are produced to form a chessboard. The BBC
Micro builds each square from a pair of triangles, a
facility not available on the Spectrum.

You can now rewrite the program to RUN on the
Spectrum. Because so much of the program is in BBC
BASIC, there is nothing to be gained by trying to
translate it line by line. It's quicker and easier to
examine the program and then work out how the
Spectrum could best produce the same result:

SPECTRUM GAMES BOARD PROGRAM

-
9

INK %, C

]
W
s

PRINT RT
PRINT RTY
PRINT AT
PRINT RT
NEXT ¢
NEXT r

20
4
=1}
&
rd
8
=]
Q
1
2
3
4
-]

0S60GO69696

1
1
1
1
1
i

More BASIC differences

The next program, also written in BBC BASIC, lists ten
names on the screen. Each name is accompanied by a
number — it might be a list of the best scores for a game.
At first sight the method looks quite familiar in that it
uses arrays, and should be easily adaptable for the
Spectrum:

BBC MICRO ARRAY PROGRAM

JLIST

10 DIM NAMESC10)>:DIM SCOREC10)

20 DATA JOHN,400,ELLEN,246,FRED, 115,
GEORGE, 341 ,KATE, 692, DEBBIE, 944 , JAMES , 443
,TINA,672, JUDITH, 195, TONY, 733

FOR N=1 TO 10

READ NAMES, SCORE
NAMESCN>=NAMES : SCORE (N)>=SCORE
NEXT N

CLS

PRINT TAB<10,1)"NAME", "SCORE"
PRINT TABC10, 2) "XERRKKEKEEXKEREEX"
FOR N=1 TO 10

PRINT TABC10, 2%XN+2>NAMESCN) , ; SCORE
NEXT N

The Spectrum can produce this, but watch out for a
typical hidden problem. The Spectrum dimensions
arrays in a different way. The BBC’s name array is
dimensioned by:

10 DIM NAMES$(10)

but the Spectrum requires the length of the strings to be
specified as well:

20 DIM N$(10,6)

Also the strings in the Spectrum’s DATA must be
enclosed in quotation marks. Otherwise the programs
are very similar:

SPECTRUM ARRAY PROGRAM

30~
L)
* 10068

NEE DONCAS NTUNE

2060 9066606
o :m

ZTT DOOZIMNOADOD

Mmoo DICrMMOMNA DO
XHD HHOXID- o~ 430D

T

When you are trying to convert programs that seem to
use Spectrum-compatible commands, be careful that
you do not fall into the trap of assuming that they
operate in exactly the same way. Standard words like
DIM, INKEY$, TAB and so on, can make converting
tricky if you do not realize that many computers use the
same commands quite differently.

P A o 27 S FRT T oy i e R et

USING A PRINTER

Although you can write, edit and RUN programs on
screen and store them on cassette, a paper print-out is
still the best way of examining a listing closely. A print-
out can also let you keep the product of a program
RUN, which is very useful if you want to look over the
results again. So, sooner or later, you will want to add a
printer to your system.

The Sinclair printer is of the thermal/electrostatic
type. Sparks jump from a pair of moving metal needles

the aluminium in places to reveal a black ink layer
underneath. The spark pattern, and therefore the
character printed, is controlled by the computer.

Printer enabling commands

The printer is connected up to the computer by the edge
connector on the Spectrum’s back panel. When the
printer is plugged in, it won’t print anything unless you
tell it to. PRINT statements in a program send
characters to the television screen; the printer ignores
them completely.

There are several ways of getting information out to
the printer. The program opposite enables you to see all
of them at work, offering you a choice of the three
printer commands. The commands are designed to
allow you to use the printer selectively. You can either

The ZX Printer The printer used with the Spectrum is
controlled by three keywords that can be used in programs.

onto the special aluminium-coated paper, burning off

PRINT-OUT PROGRAM

FRINT

NONRUNEBESRPUNEYERUEUNE
099960696060000AGO0G6GES
(1]

GRUEWLOLDUNRESERNE

e
o
X

Choice®
LPRINT
LLIST

COPY

produce a printed version of what the program will
PRINT, or produce a printed listing, or see a copy of the
screen display produced on paper.

First of all, the printer equivalent of PRINT is
LPRINT. Itis used just like PRINT but with LPRINT
nothing appears on the screen. If you ENTER 1 with
the program, the results of a program routine are
directed to the printer instead. In this case, the printer
will produce a copy of the Spectrum’s character set.

The printer’s equivalent of LIST is LLIST, selected
in the program by ENTERing 2. Again, this only works
on the print-out, and will not produce a listing on the
screen.

The final method of using the printer is controlled by
the COPY command, selected in the program by
ENTERing 3. This makes whatever is displayed on the
screen appear on the print-out. This is the command
used to copy graphics displays, charts and so on.

I I ' . N " 4 % 3 ._”‘ J
The grid below shows the co-ordinates of the screen The second co-ordinate sets the vertical position
display when graphics commands are used. A point on measured from the bottom of the screen. A character
the screen is identified by two co-ordinates x,y. The PRINTed on the screen occupies an area that is 8
first co-ordinate sets the horizontal position which is graphics units wide and 8 graphic units high. You
measured along from the left-hand side of the screen. cannot PRINT on the bottom two lines of the screen.
GRAPHICS CO-ORDINATES GRID
175 ‘
168 A
\
160 o
152 .
; \
144
2 :
120 L
7 o
112 T
104 ~+ = o o 7 \
96 ——1 —
88
80 - : -
72 ;.._,_1 F==t
/ i 1} {] |
2 MTERE L]
= Rinl | [Tl
48 T t - g
40 { ' A
32 : : :
% 1 g [L ALY] B
16
8
0
ST e RNSYRINBERINRASINEECE0EEENATSY
SINGLE CHARACTER GRID R R 4-CHARACTER GRID R
00w A A aal N e ow ow = mﬁoc-fm-uoo B) NG00/ LR e v ow
B3 A= ; Totals Totals = 3 - S Totals
it ial | 21 l
- — -v - ——y -, "
ot k9 ot e
! L 8 3
. S ;
b s T 2%
Character grids These grids can be used i - -
to design either a single character (above) .
or a symbol made from up to four
characters (right). You can pencil in your i L~
design on the grids and then use the blue - P
columns to list the row totals. These are
used in a program with the commands
POKE USR. Keys A to U are free for
programming user-defined characters.

THE SPECTRUM CHARACTER SET

Each symbol or keyword that the Spectrum uses is forms of the code numbers as instructions or
represented by a code number. There are 256 code information needed to carry out programs. Codes 33 to
numbers altogether (0-255), each of which can be 126 are allocated to characters specified by the ASCII
converted into a single byte of eight binary digits. The standard which is used by most microcomputers. The
letter S for example is specified by CHR$ 83, or CHR$ Spectrum’s keywords and graphics symbols are
BIN 1010011. The computer recognizes the binary specified by the “spare” codes outside this range.
0 1 2 3 4 =) 6 7 8)
0 PRINT EDIT cursor left cursor right
COmina
10 cursor down | cursor up DELETE | ENTER number | TNK |PAPER | FLASH BRIGHT
| control control control | control |
20 INVERSE |OVER AT 5 o TAR RS
control control _|control lcnntml g R
30 space (! 'Y | # $ ___O/L__ s & b)
- BEERE e RN SR |
[| . .
50 WZ 3 4 : 5 6 i '77” i 8 9 . N |
60| < = | > ? @ | A B: -G [P E
0 F G Hais) LSS0 KL | M INE [1©
NP LOER ST YV WX
B 7 v | f T £ a b ¢
00| d € f g h 1 ik 1 ms
110 n 0 Pre el I S t L SO0 O
120 X - |7 { | } - @0 el
130 W wnigp| AR 1 % M| & CullE
140 w | ol B | W (@) [(b) | (c)[(d) | (e) L(f)
150 kBl Ml () 01 (F) | () T (D) (m)a () T (o)itipl
160 (Q) (r) (S) (t) (u) RND INKEY$ PI FN POINT
170 [SCREENS [ATTR [aT TAB VAL§ |CODE VAL |LEN SIN Cos
180 [TAN [asN ACS ATN LN EXP INT SQR SGN |ABS
190 [PEEK IN USR STRS CHRS$ NOT BIN OR |AND
200 |7 LINE |THEN |TO STEP DEFFN |CAT FORMAT | MOVE
210 |ERASE [OPEN# |CLOSE# |MERGE |VERIFY |BEEP |CIRCLE |INK |PAPER |FLASH |
220 |BRIGHT [INVERSE [OVER |ouT LPRINT |LLIST |STOP |READ | DATA RESTORE
230 [NEW BORDER |[CONTINUE |DIM REM |FOR GOTO |[GOSUB |INPUT |LOAD
240 |L1ST LET |PAUSE |NEXT |POKE PRINT |PLOT |RUN SAVE RANDOM
: X 73 IZE
250 |1F CLS DRAW CLEAR RETURN |COPY

GLOSSARY

Entries in bold type are BASIC keywords.

AND

Allows a program to take a particular course of action
only if two conditions are met. An extension of

IF ... THEN.

Array
A collection of DATA organized so that each item is
labelled and can be handled separately.

AT
Used with PRINT to place characters on the screen.

Bar chart
A type of graph where numerical data is represented by
columns.

BASIC

Beginners’ All-purpose Symbolic Instruction Code;
the most commonly used high-level programming
language.

BEEP

Makes the computer sound a short tone or beep, whose
duration and pitch are determined by the numbers
following the command.

BIN
Converts a number written in binary into the equivalent
number in decimal.

Binary
A counting system used by computers based on only
two numbers - 0 and 1.

Bisection search

A method of searching DATA for one particular item.
The DATA is continually bisected, or divided into two,
until the item in question is found.

Bit
A binary digit -0 or 1.

BORDER
Changes the colour of the screen’s border area.

BRIGHT
Turns specified characters to a brighter shade of their
INK colour.

Byte
A group of eight bits.

208 ¢

[e e e o) [S

Chip
A single package containing a complete electronic
circuit. Also called an integrated circuit (IC).

CHRS$
Translates the number following from a character code
into the equivalent character.

CIRCLE
Draws a circle of a specified size with its centre at a
specified point on the screen.

CLS

Clears the text area of the screen.

cory
Instructs a printer to print out a copy of the screen
display.

COS

The trigonometric cosine function.

CPU

Central Processing Unit. Normally contained in a
single chip called a microprocessor, this carries out the
computer’s arithmetic and controls operations in the
rest of the computer.

Cursor
A flashing symbol on the screen, showing where the
next character will appear.

DATA

The computer treats whatever follows DATA as
information that may be needed later in the program.
Used in conjunction with READ.

Debugging
The process of ridding a program of errors or bugs.

DEF FN
Defines a function used elsewhere in a program by the
command FN.

DIM

Informs the computer about the dimensions of an array
so that the computer knows how many items the array
contains.

DRAW

Draws a line in the current INK colour from the
graphics origin at 0,0 or from the last point visited to a
point specified.

FLASH
Makes characters flash on the screen.

Flowchart
A diagrammatic representation of the steps necessary
to solve a problem.

FN

Indicates that the variable following is being used as the
name of a function. The function must be defined by a
DEF FN statement.

FOR ... NEXT
A loop which repeats a sequence of program statements
a specified number of times.

GOSUB
Makes the program jump to a subroutine beginning at
the line number following the command. The

subroutine must always be terminated by RETURN.

GOTO
Makes a program jump to the line number following
the command.

Hardware

The physical machinery of a computer system, as
distinct from the programs (software) that make it do
useful work.

IF ...THEN
Prompts the computer to take a particular course of
action only if the condition specified is detected.

INK
Changes the colour of text and graphics that appear on
the screen.

INKEY$
Monitors the keyboard to see if any key has been
pressed, and if so returns the character.

INPUT
Instructs the computer to wait for some data from the
keyboard which is then used in a program.

INT

Converts a number with decimals into a whole number.

Interface
The hardware and software connection between a
computer and another piece of equipment.

INVERSE
Switches the PAPER colour for the INK colour and
vice versa.

K
Abbreviation of kilobyte (1024 bytes).

e e e @

LEN
Counts the total number of characters in a string that
follows it.

LET
Assigns a value to a variable.

LIST
Makes the computer display the program currently in
its memory.

LLIST
Instructs a printer to print out a listing of the program
currently in memory.

Transfers a program from a cassette tape into the
computer’s memory.

Loop
A sequence of program statements which is executed
repeatedly or until a specified condition is satisfied.

LPRINT

Sends whatever follows the command to a printer
instead of to the screen, so a paper copy only is
produced.

MERGE

Allows a second program to be LOADed into the
computer from a tape cassette without erasing the
program currently in memory, as long as the line

numbers do not coincide.

NEW
Removes a program from the computer’s memory.

OR
Allows a program to take a particular course of action if

either of two specified conditions are met. An extension
of IF ... THEN.

OVER
Allows new characters to be PRINTed on top of
existing characters.

PAPER
Changes the screen’s background colour.

PAUSE
Halts a program for a period set by a number measured
in fiftieths of a second.

PEEK
Reports the number stored in a specified location in the
memory.

Peripheral
An extra piece of equipment which can be added to the
basic computer system - a printer, for example.

Pie chart

A graphic display of numerical data in the form of a
divided circle. The size of each slice in the pie reflects
the size of the number it represents.

PLOT
Makes a dot appear on the screen at the point specified.

POINT
Reports whether the point at the co-ordinates following
is displayed as an INK colour or PAPER colour.

POKE USR

Stores a number that reprograms a key to produce a
user-defined character. On its own, POKE puts a
number into a specified memory location.

PRINT
Makes whatever follows appear on the screen.

RAM

Random Access Memory (volatile memory). A memory
whose contents are erased when the power is switched
off. (See also ROM.)

RANDOMIZE
Sets the point at which the fixed RND sequence will
begin.

READ

Instructs the computer to take information from a
DATA statement.

REM

Enables the programmer to add remarks to a program.

The computer ignores whatever follows the commands.

RESTORE
Resets the point from which DATA items are READ,
so that items can be used more than once in a program.

RETURN
Terminates a subroutine. (See also GOSUB.)

RND

Produces numbers between 0 and 1 at random.

ROM

Read Only Memory (non-volatile memory). A memory
which is programmed permanently by the
manufacturer and whose contents can only be read by
the user’s computer.

SAVE
Records a program currently in the computer’s memory
onto a tape. The program is identified by a filename.

SCREEN$
Holds the details of a screen display so that they can be
SAVEd or LOADed.

SIN
The trigonometric sine function.

Software
Computer programs.

SQR

Produces the square root of the number that follow:

Statement
An instruction in a program. There may be more than
one statement in each program line.

STEP
Sets the step size ina FOR ... NEXT loop.

STOP
Halts a program and PRINTS out the line number in
which it appears.

String
A sequence of characters treated as a single item —
someone’s name, for instance.

Subroutine

A part of a program that can be called when necessary,
to produce a particular display or carry out a number of
calculations repeatedly, for example.

Syntax
Rules governing the way statements must be put
together in computer language.

TAB
Used with PRINT to specify how far along a line
characters are to appear,

VAL
Evaluates a number-string, and produces a number.

Variable

A labelled slot in the computer’s memory in which
information can be stored and retrieved later in a
program.

VERIFY
Checks that a program that is currently in memory has
been recorded correctly on a tape cassette using SAVE.

INDEX

Main entries are in
bold type

Address 20-21, 56
AND 8-9, 61
Animation 13, 20, 44-5,
FL 46-7, 54-5

Alo. Array 22-3, 24,25, 29,
SN2 761

*SCII code 12-13, 24,
GOSUB 60

Makes the ;O’ 61

the line nu;
subroutineIC 7, 20, 26, 52,

a specL

SU=S

~ BEEP 20, 21, 44-5, 47,
61

BIN (binary) 61

BORDER 11, 56, 61

BRIGHT 61

Byte 60, 61

Calculations 6-7, 16, 17,
21,225 28,25,132.33:
38,41, 53

CAPS SHIFT key 6

Cassette tape/recorder
20, 42, 54, 62

Character 9, 24, 27, 31,
37, 38, 45, 46, 54, 58,
62
— graphics 34, 41, 55
- grid 56, 59
— set 60
— user-defined 37, 38,

41, 44, 63

CHRS$ 60, 61

Circle 16-17, 18, 61

Clock 20-21, 56

CLS 50, 61

Colour/COLOUR 34,
35, 38, 46-7

Co-ordinates 9, 16, 18,
22,31,32,33,37,48-9,
56, 59

COPY 58, 61

COS (cosine) 18-19, 31,
36, 61

Cursor 6, 34, 38, 61

DATA 23, 28-9, 38,
52-3, 57,61, 63
Debugging 14, 50-1, 61

DEF FN 6-7, 61, 62

DIM 22, 57, 61

DRAW 10, 16-17, 18,
19, 30, 33, 34, 35, 39,
61

E (exponent) 54

ENTER 12, 24, 35, 42,
46, 50-51, 58

Error message 50-51,
54, 55

File 28, 42, 63

Flash 61

Flowchart 38, 62

FN (Function) 6-7, 18,
21, 33,41, 53, 54, 62

FOR ... NEXT 10, 32,
34, 50-51, 62

Frame counter 20-21

Games 9, 10, 11, 15, 27,
38-43, 46, 48
GOSUB 51, 53,62
GOTO 10, 20, 51, 62
Graphics 10-11, 16-19,
30-43, 47, 48-9, 54-5,
56-7, 58, 60
— characters 48, 59
- grid 10-11, 16, 49,
56, 59

Hardware 20, 58, 62

IF ... THEN 8-9, 35,
36, 43, 46, 54, 61, 62

INK 11, 31, 35, 40,
46-7, 48, 56, 61, 62, 63

INKEY$ 12-13, 40, 55,
/862

INPUT 13,.12,25,.31,
33, 35,62

INT (integer) 6, 14, 23,
48,62

INVERSE 62

Keyboard 6, 12-13, 62

LEFT$ 26

LEN 25, 27, 62
LET 51,62
LIST 38, 58, 62
LLIST 58, 62
LOAD 54, 62, 63

Loop 8-9, 10, 18, 35,
36, 46, 52, 53, 62
LPRINT 58, 62

Machine code 53
Memory 20-21, 42, 43,

53, 56, 62, 63
MERGE 42-3, 62
MIDS$ 26

NEW 42, 62

Operating system 56-7
OR 8, 62
OVER 62

PAPER 11, 35, 40, 46-7,
56, 62, 63
PAUSE 15, 20, 25, 36,
39,47, 62
PEEK 20-21, 56, 62
PI16-17, 31
Pixel 31, 49, 54
PEOT 16,17, 18.32,
33, 37, 46, 53, 63
POINT 46-7, 63
POKE 20, 56, 63
- USR 59, 63
PRINT 11, 22, 25, 35,
38, 39, 40,41, 43, 49,
59, 61, 63
- CHR$ 11
Printer 20, 58, 63
Punctuation 50, 56

RAD (radian) 17

RANDOMIZE 14-15,
63

READ 23, 25, 28, 29,
38, 52-3, 61

REM 40, 41, 63

RENUMBER 51

Resolution 31, 32, 33,
41, 56

RESTORE 63

RETURN 41, 63

RIGHTY 26

RND 9, 14-15, 48-49,
63

RUN 14, 19, 20, 21, 32,
37, 38, 39, 42, 45, 50-
51§52, 53,54, 56, 57,
58

SAVE 39, 54, 63
SCREENS 54, 63

SIN (sine) 18-19, 31, 63

Software 56, 62, 63

Sound/SOUND 44-5

Speed 7, 10, 15, 19, 20,
25, 28, 35, 45, 47, 52-3

SQR (square root) 6, 54,
63

STEP 10-11, 17, 19, 32,
34,63

STOP 51, 63

Subroutine 7, 10, 24,
38, 39, 40, 47, 53, 56,
57,63

SYMBOL SHIFT key 6

TAB 57, 63
TO 26

VAL 25, 63

Variable 10, 21, 24, 25,
35, 38,40,43,44, 45,
51, 52, 53, 55, 62, 63
— string 24, 26-7, 28,
50-51, 62, 63

VERIFY 63

