S!mw'g

PROGRAMMING SERIES

STEPBY-STEP
PROGRAMMING
ZX SPECTRUM
IYX SPECTRUM +

L JIlHli

PIERS LETCHER

DK
bl

PROGRAMMING SERIES

STEP-BY-STEP
PROGRAMMING

THE DK SCREEN-SHOT PROGRAMMING SERIES
Books One and Two in the DK Screen-Shot Programming Series
brought to home computer users a new and exciting way of
Ieamin% how to program in BASIC. Following the success of this
completely new concept in teach-yourself computing, the series
now carries on to explore the speed and potential of machine-code
graphics. Fully illustrated in the unique Screen-Shot style, the
series continues to set new standards in the world of computer
books.

BOOKS ABOUT THE ZX SPECTRUM+
This is Book Four in a series of guides to programming the ZX
Spectrum+. It contains a complete machine-code sprite-programming
course for the Spectrum+, and features its own sprite editor which
enables you to design and store sprites directly from the keyboard.
Together with its companion volumes, it builds up into a complete
programming and graphics system.

ALSO AVAILABLE IN THE SERIES
Step-by-Step Programming for the Commodore 64
Step-by-Step Programming for the BBC Micro
Step-by-Step Programming for the Acorn Electron
Step-by-Step Programming for the Apple lle
Step-by-Step Programming for the Apple llc

PIERS LETCHER
After graduating with a degree in Computer Systems, Piers
Letcher has worked in many areas of the computer industry, from
programming and selling mainframes to designing and marketing
educational software. He was Peripherals Editor of Personal
Computer News until May 1984 and has since written a guide to
peripherals and a number of other boaks for popular home micros.

o e e s ettt
1 I | !
i] n
_ _
| i
Tt m e
| | | |
| | | |
[=T 1
| |
| 2 |
| |
| |
|
1 |
| | |
sl L 1 S
_ _“ m
! | i
| | |
e 4 ! -
|
P g 1 T
|
| | | =T
] | | |
| | |
T - o]
..|.|" |1|_ S S - —— -]
i il B =
|
“
__ SRS s B L R R .
| |
1 & |
{
i) |
| | it) ot e) WS A) B) s
| |
| |
1 i |
: - 2
] S
T B
[] o] 7

L]
z | |
. el
e L
R
- B
0
O
0 3
G
s U 0 0l
O) b
O
L] - al
|
& |
. v |
[) s, | |
- o 5 |
- |
& z 5 m
5 =
"y G
- |
A/ o |
Az 13 "
% |
: o Bl
.
LS . :
B |
... " T i
o |
A - yl ._
E o |
o @ |
. |
1 3
- |
- _”
O
5
- =
-
-
-
- |
T |
T |
| | | |

Q{'

PROGRAMMING SERIES o

PIERS LETCHER

DORLING KINDERSLEY-LONDON

ﬁw

CONTENTS] | 1]
THE SPRITE EDITOR 1 MOVING SPRITES 1
> I 12| |
ARl 1:“5 i . THE SPRITEEDITOR 2

USING THE
MACHINE CODE

10 |

WHAT ARE SPRITES? |

14

e

The DK Screen-Shot Programming
Series was conceived, edited and
designed by Dorling Kindersley
Limited, 9 Henrletta Street, Covent
Garden, London WC2E 8PS.

Editor Michacl Upshall

Designer Steve Wilson
Photographer Vincent Oliver
Series Editor David Burnie

Series Art Editor Peter Luff
Managing Editor Alan Buckingham

First published in Great Britain in 1985
by Dorling Kindersley Limited,

9 Henrietta Street, Covent Garden,
London WC2E 8PS.

Second impression 1985

Copyright © 1985 by Dorling
Kindersley Limited, London

Text copyright © 1985 by Piers Letcher

As used in this book, any or all of the
terms SINCLAIR, ZX SPECTRUM+,
MICRODRIVE, MICRODRIVE
CARTRIDGE, and ZX PRINTER are
trade marks of Sinclair Research

" Limited.

DISPLAYING
SPRITES

All rights reserved. No part of this
publication may be reproduced, stored
in a retrieval system, or transmitted in
any form or by any means, electronic,
mechanical, photocopying recording, or
otherwise, without the prior written
permission of the copyright owner.

British Library Cataloguing

in Publication Data

Letcher, Piers
Step-by-step programming
ZX Spectrum and ZX Spectrum+
Graphics.
— (DK screen shot programming
series) Bk. 4
1. Sinclair ZX Spectrum (Computer)
- Programming
L. Title
001.642 QA76.8.5625

ISBN 0-86318-104-X

Typesetting by Gedset Limited,
Cheltenham, England
Reproduction by Reprocolor Llovet
S.A., Barcelona, Spain

and F. E. Burman Limited, London
Printed and bound in Italy by

A. Mondadori, Verona

L 18 |
MOVING SPRITES 2

-] -

AR

-s_lu'uin-n]&:‘?zj h

1' 20]

KEYBOARD-
CONTROLLED SPRITES

| 22 |

DOUBLE-SIZED
SPRITES

N % |

T

24 I 35
ANIMATION 1 USING THE

= | SPRITE DIRECTORY
ANIMATION 2

30

Il u“,,,m o

[‘ﬂ
"'ﬁ "u ||

|

32]
62
WlNIBWS 2 ROUTINES CHECKLIST
34 64
INDEX

WINDOWS 3

ABOUT THIS BOOK

The Sinclair Spectrum is one of the most popular micro-
computers ever produced. One reason for its success has
been its remarkable ability to produce graphic displays
rivalling those produced by much larger computers
designed only ten or fifteen years ago. However, graphics
programming in BASIC under-utilizes the Spectrum. To
produce the kind of displays seen in commercially avail-
able games, you need to use machine code as well as

machine code, without error-trapping routines, a
mistake will probably cause the Spectrum to crash, with
the result that both the program and its DATA are lost.

The solution

This book combines the advantages of machine code
with the convenience and simplicity of BASIC. This is
done by giving the machine code in the form of ready-

BASIC. made and tested routines, which you can then use in
your BASIC programs. The machine code is shown as
What is machine code? DATA statements in BASIC, which means it isn’t

necessary for you to understand anything about
machine code to be able to use the routines. The DATA
is given in the form of decimal numbers, rather than in
binary or hexadecimal (to base 16), so that the machine
code 1s in the form most convenient for you to key in.

The heart of the Spectrum, the Z80 central processor,
cannot understand BASIC. A BASIC program must first
be translated into a simpler language that the machine
can understand (hence the term “machine code™). This
code is in the form of binary 1s and Os. Before the
processor can execute a BASIC program line, all
keywords and variables are first converted to machine-
code instructions.

BASIC is an example of what is known as an “inter-
preted”, as opposed to a “compiled”, language — thatis,
it is executed by the central processor line by line rather
than as a complete program. While an interpreted &=

The machine-code routines

The screen below shows an example of a machine
code routine (the double vertical sprite routine, FNj,
given on page 17).

DOUBLE VERTICAL SPRITE ROUTINE]

languagﬁ 18 easier 10 use, lt iS 3130 SlOWE:r in Execution. By 74S@ LET =S5210@: LET L=22oS LET
writing programs in machine code, you can miss out the S Es FOR OB Te 104i: RAEAD a
BASIC interpreter altogether. In addition, machine code e RELT Pl o LR ZSEY e
allows you to utilize many features of your Spectrum phad. BRI SRt £RED S mRiE iRt
which cannot be reached from BASIC, so that you can La2Eh REHD &v Zk Axez THEN FHEEINT
therefore achieve far more impressive results than would
£: > . 746©@ DRTA ©,42,11,92,17
ever be possible from the simpler, but more restricted, 7461 DATA 4,0,25,78,30
p . ~ . 7462 DATAHA §,25,70,25, 126
BASIC. You can get an idea of how much faster machine 7463 DATA 230,3,50,103,204
code is by seeing the time taken for the programs in this 7485 DATA 25,126,590, 1,50 .
book to run. 2265 BATA 122679817364, 28°°°
7483 BATE 1%843728%:9:33
. . A 9,213,25,61,
D.lsadvantages ofmachmq code . P, DAl S, . e i
Given all the advantages of machine code in both speed 7471 DATA 20S,33.21@, 205,86

and flexibility, why not ignore BASIC and use machine
code all the time? The answer is simply convenience.
Using machine code is time-consuming, difficult and
frustrating, and attempting to write your own code is only
for the expert. When you see machine-code listings, they
are usually in a “disassembled” form, thatis, with some of
the numbers translated into mnemonics such as LD for
LOAD, and JP for JUMP. But a special disassembler
program is required simply to give you a machine-code
listing in this form, and these mnemonics are themselves
far from simple. Using machine code even the simplest
operations in BASIC, such as drawing a line on the
screen, require many lines of programming. In addition,
machine code has no error-trapping routines such as
those in BASIC. If a mistake is made when keying in a
BASIC program, the program will not be lost (although
the program may refuse to RUN at some point); in

Each routine in the book is shown like this, in the
form of a BASIC program. The machine code is con-
tained as a series of DATA statements in lines 7460
onwards. At the beginning of the routine, in lines 7450
to 7455, there are a few lines of BASIC. This is a loader
program; variable b tells the computer where in
memory to begin loading the routine, and variable | the
number of bytes in the routine. When the loader routine
is RUN, this routine is placed in memory from address
52100 onwards, and has a total length of 225 bytes.

As shown here, of course, the routine is simply a list of
numbers, and has no visible meaning. These numbers
are the ready-tested and assembled machine code which
has then been converted to a sequence of decimal
numbers. Each number corresponds to a single
instruction or item of DATA required by the routine;

SRR R S,

hence, all the numbers have values between 0 and 2535,
the maximum range of a byte. All you need to know
about the routine is what it does and whatinformation it
requires so that you can call it correctly from your
BASIC program.

All the routines in the book are defined as functions.
Each function is individually coded by the letters a to 03
a complete list of functions is given on pages 62-63.
Demonstration BASIC programs can be found on
the same page as each routine; these give you an
indication of the kind of displays which are possible
using the machine code.

How to use the routines
To use any program in this book, simply key in a
machine-code routine together with a BASIC program
which demonstrates its use. You will find full details of
how to do this on pages 8-9. When you RUN the program,
you will begin to see the true power of your Spectrum.
As you progress through the book and the range of
routines grows, the BASIC programs grow too by
calling several routines to produce increasingly complex
displays. By keying in each routine, and then SAVEing
it onto cassette or Microdrive, you will have a sophisti-
cated but flexible graphics capability at your fingertips.

The programs in use

A typical program from this book (the unicycle program
on page 23) contains two details which will be
unfamiliar to BASIC programmers who have not used
machine code before:

UNICYCLEPROGRAM

DEF FMN jix,9,d,L,s5,C,n) =USR

a
EORDER 2
ANDOMIZE FM j{15,7@,1,59,0

R
RAMCOMIZE FM jiz22@,7e,e,7e,
]
G

0O TO 11e

First, you will see in line 10 a DEF FN statement, which
is used to instruct the computer that a machine-code
routine with two parameters (x and y) is located at
address 52100 in memory. You will also notice two
RANDOMIZE FN commands (lines 110 and 120).
These are the calls to the double vertical sprite routine,
and the numbers in brackets which follow them are the

parameter values to be passed to the machine-code
routine (in this case, the start co-ordinates of the sprite,
its direction, how far it is to move and various other
instructions). When RUNning, the program is carried
out by the computer in this way:

HOW THE UNICYCLE PROGRAM WORKS

10 DEF FN)j (routine

name and address)

'

100 sets border colour

v

110 RANDOMIZE | sprite printed from co-
FNj | «—| ordinates 15,70

'

120 RANDOMIZE e
FNj]

'

130 repeat sequence

sprite printed from co-
ordinates 220,70

On the left side of this diagram is the main BASIC
program, and on the right you can see the machine-code
routines, called twice using a RANDOMIZE FN
statement. You will see from the diagram that the
machine-code is used here very much as a subroutine
would be used in BASIC, with variables passed to the
routines each time they are called.

What the routines do
The routines in this book free you from the limitations
of programming in BASIC. By using the machine-code
given here, you will be able to create and control sprites,
to control them on the screen and to animate them, and
to scroll both the entire screen and defined areas of it.
In addition, two of the later routines provide an intro-
duction to one of the most exciting aspects of machine-
code graphics: interrupt-driven routines, which operate
independently of BASIC, and which enable you to
program your Spectrum to carry out several tasks
simultaneously.

Creating and editing sprites

To make sprites even easier to use, a directory of over
200 sprites is included from pages 36 to 61. These
sprites can be keyed in and then edited with the sprite
editor routine and program, given on pages 11 to 13.
Using the sprite editor, you will find it easy to make your
own versions of the sprites given in this book. Using
single-key commands, for example, you can invert the
sprites, make them face another direction, or turn them
upside down.

USING THE MACHINE CODE

The machine-code routines in this book can easily be
incorporated into your BASIC programs without you
having to understand the intricacies of how they work.
Simply choose a program from this book, and follow the
steps given here.

1: CLEAR memory
As soon as you switch on your Spectrum, type CLEAR
49000. This command resets RAMTOP, the top of the
area in memory free for BASIC programs, and ensures
that BASIC programs cannot overlap with the machine
code stored in memory from 49200 upwards. Now you
can safely use NEW to delete BASIC programs without
losing any of the machine code in memory.
Remember to use CLEAR before loading machine
code, since this command erases whatever is in memory
above the specfied address.

2: Load the machine code
Now type in whatever machine-code routines are

required by the BASIC program. After keying in the
routine, RUN the short BASIC program which accom-
panies it; this loads the code into memory. If you keyed
in the DATA correctly, you will see an “OK” message on
the screen; if not, you will see a couple of question
marks. In this case, look again at what you have typedin
to trace the mistake.

3: SAVE the routine
When you are sure you have keyed in the routine
correctly, SAVE it onto cassette or Microdrive. Always
SAVE machine code before using it, to minimize the risk
of losing everything you have keyed in. When BASIC
€rrors occur, an error message is usually produced but
the program is not lost. Machine-code routines, how-
ever, do not generally have error-trapping facilities, and
afaultin the code will as often as not cause the Spectrum
to crash — deleting everything in memory.

The machine code can be SAVEd in two ways: either
in the form of DATA statements like any other BASIC

EXPLANATION OF A MACHINE-CODE BOX

FNf,,._m

SPRITE PRINT RO

Name of routine

Address in memory at which
routine is located

Start address 54160 Length 75
Other routines called Sprite editor routines (FNa-FNe).

Number of bytes in memory
taken up by routine

Number of parameters used
by the routine, and letters
used to describe these
parameters

BASIC loading routine for the
machine-code DATA

Whatt it does Prints a single sprite onthescreemataspecifed
point.

Using the routine This routine displays any single sprite from

Purpose of routine

the sprite buffer. The routine does not move the sprite. Note
that if the sprite is too far to the right of the screen it will
reappear one character below on the left-hand side of the

Points to note when using the
routine

What the parameters do

S since the Spectrum PRINT routine is used in the transfer
of memo screen.

I ROUTINE PARAMETERS s
| DEF FN T
| X,y H specify printposition (x<29, y<21J 7

| _n_|[specifies number of sprite (1-10) [

-

ROUTINE LISTING

Maximum and minimum
values of parameter to ensure
the routine does not plot off-
screen points

Start address for POKEing
DATA

POKE:s byte value a into
location (b+i)

Number of machine-code
bytes (without check digit)

Calculates check digit z

Start of machine-code DATA

79Q@ I FT h=54100: LET L=?Q.--’"CTE/'_T
z=0: RESTORE 7910
7901 FOR i=90 TO L-1: RERD a
7902 KE (b+i) ,a: LET z=z+a
EX ' L;ﬁ%rf““’ﬁﬁ;ﬂrrﬂ#;.rﬁﬁ‘;
79024 LET z= T{Z L) —INMT (Z./L)
1 ELY
7905 REARD_a:- IF 3+« zTHEN PRINT |
2 oP
2910 DATA 42,11,392,1,4
7911 DATA ©,9,36,1,3
7912 DATA ©,9,94,257,83
7913 DATA 143,211,9, 126, S@
7914 DATA 1S@.211,123,230,24
7915 DATA 246,64 ,103,123,230
72916 © 7183 .31.81.32

READs next DATA item,

the routine check digit; if this
is not the same as z, two
question marks are PRINTed
to show a mistake has been
made

D
_|
b
Q- -

|

R s © PR . - |

listing, or, after you have loaded it into memory, as a
block of code. To save machine code, type:

SAVE “routine name” CODE start address, length in
bytes

The start address and length are given at the top of each
machine-code box. The diagram on the facing page
shows how this information is displayed.

4: LOAD a BASIC program

With the machine-code routine in memory, you can now
use it in a BASIC program. DEF FN statements are
used to tell the Spectrum the whereabouts of the routine
in memory, and what information it requires.

Using functions
A machine-code routine can be called simply by
specifying its start location, like this:

10 RANDOMIZE USR 54100

Aline like thisin a BASIC program, however, is not very
informative. It tells you neither what the routine does,
nor how many parameters the routine may require
when called. This information could be POKEd into the
appropriate memory locations — but the consequences
of a mistake could be disastrous. Much more reliable is
to pass information to the routines using a BASIC
function. Functions on the Spectrum are identified by a
single letter, and are followed by parameters in
brackets. When you define the name and location of the
function in your program, you must also specify the
parameters, if any, which are to be passed to the routine.
For example, the sprite print routine, FNf, requires
three parameters:

10 DEF FN f(x,y,n)=USR 54100

Which letters are used after DEF FN is not important;
their function is only to tell the computer the number of
parameters which will follow the routine callina BASIC
program.

A machine-code function can be called from BASIC
in two main ways, both of which require you to combine
the keywords FN or USR with a BASIC keyword. The
method used generally in this book is with the keyword
RANDOMIZE. Thus,

20 RANDOMIZE FN {(10,10,1)

would display the first sprite from the sprite buffer in
memory at co-ordinates 10,10. Note that using
RANDOMIZE also resets the random number
generator with a new seed; this may cause problems if
you are also using a random function in your program.

The second word you can use to call machine code is
RESTORE. However, RESTORE also resets the
pointer to DATA statements when you use it — which is
of course the purpose of the RESTORE statement. If

you opt to use RESTORE instead of RANDOMIZE
then be especially careful if there are any READ or
DATA statements in your program.

QUESTIONS AND ANSWERS

What if I make a mistake in keying in?

Don’t panic! Nobody keys in long lists of numbers
without making any mistakes. A check routine is
included with each machine-code routine to warn you if
you made any mistakes in keying in the DATA. This
routine compares the DATA you have entered with a
check number, which is placed by itself on the last
DATA line of each routine.

After the loading program has POKEd the DATA
numbers into memory, it looks to see if the check digit is
the same as the one currently calculated. If the two
numbers are different, the program prints two question
marks to show an error has been made. If this happens,
look through the numbers you have typed in to find the
mistake. Having corrected the error, you may still find
that the routine fails to load correctly; look to see if you
have made more than one error.

Can I start anywhere in the book?

Yes, you can start on any page, but obviously when you
key in a program it will not RUN unless the machine-
code routine it calls is present in memory. Check before
you begin if the program you want to RUN calls any
machine-code routines you haven’t already keyed in.
If you key in all the routines in this book as BASIC
DATA statements, you will find there isn’t room in
memory to store them all. By loading each routine as
machine code as soon as you have keyed it in, you can
avoid this happening. In the form of machine code, you
can, of course, use any of the Book Four routines
together, as well as any routines from Book Three — the
routines will not overlap in memory.

Can I adapt the BASIC programs?

Yes. You can edit the BASIC programs in any way you
want to produce different displays, and you will find
suggestions for variations throughout the book. One
suggestion, though, if you are going to experiment with
unusual or off-screen values for the machine-code
parameters, is to SAVE what you have keyed in before
experimenting. This will prevent you from losing hours

~of work at the keyboard!

Can I adapt the machine-code routines?

Yes, but at your own risk! Without a good under-
standing of machine code, it is highly unlikely that you
will be able to alter any of the routines successfully.
Much more probable is that the Spectrum would crash,
with the result that both program and code are wiped
from memory.

WHAT ARE SPRITES?

Most of the computer graphics you have created up to
now have probably been stationary rather than moving,
though you will have seen all sorts of moving graphics in
arcade games and in commercial Spectrum software.
Before you can create moving graphics for yourself,
however, it is necessary to look at the ideas behind
movement.

What is movement?

You tell something is moving if its position changes
relative to something else. You know a train going past a
window is moving, because the window is still. This book
is about creating movement, and displaying moving
objects. The objects to be moved are called sprites: objects
which can move over a background without destroying it.
The diagram below shows a single sprite..

EXAMPLE OF A SPRITE

21 [1]

24

Creating movement

The problem in creating movement is not so much in
making something move as in making it move smoothly.
You probably know that one way of getting something to
move in BASIC on your Spectrum is to PRINT an object
on the screen, wipe it off again, and PRINT it again in
quick succession. This method has several disadvantages,
the most important of which you will notice as soon as you
try it out — the movement looks jerky. This is because
there will be a space of one character between each
position where the object is PRINTed. The other problem
with BASIC is that it is simply not fast enough in
operation to be used for smooth movement.

The jump of eight pixels between each position of the
object is easily visible, and the obvious solution is to print
the object every pixel rather than every character. This is
easier said than done, however, since printing objects
across pixel boundaries requires the step from BASIC to
machine code. Using machine code will also give you the
increase in speed which is necessary for implementing
smooth movement.

To use movement effectively you must first make a few

decisions on what you plan to move around the screen.
Firstly, you must decide the size of object you want to
move. The most obvious choice is a single character (8 by
8 pixels), but this looks very small in screen displays. On
the other hand if you pick a size which is too large you will
have the problem of trying to move thousands of pixels at
the same time, resulting in a very jerky effect. The
solution presented here is to use a shape 24 pixels wide by
21 pixels deep — or in character terms a little under three
by three characters. To create a practical illusion of
movement you must also make sure that the object to be
moved does not destroy the background over which it
passes.

Ways of implementing sprites

Some computers have sprites built into them as part of the
machine hardware. The Commodore 64, for example,
has a sophisticated chip dedicated to the implementation
of sprites, since the method used to display them is'so
complicated. The chip works by saving the area of the
screen underneath the sprite position (a block 24 by 21
pixels), printing the sprite, wiping off the sprite, printing
the sprite one pixel further on and then replacing that part
of the background which was uncovered by the
movement. Though it would be possible to implement this
process on the Spectrum, it would be very slow, or altern-
atively it would require a very long routine with many
hundreds of bytes of DATA to be typed in.

An alternative method of implementing sprites uses a
technique that you have probably used quite a lot already,
which is to print onto the screen using Exclusive,/OR
plotting. If you do this with sprites you do not have to
worry about the background, as it will remain unchanged,
with the sprite appearing to move across the background
without interference.

SPRITE SCREEN DISPLAY

THE SPRITE EDITOR 1

In order to use sprites, you need some means of creating
them, and you need alocation in memory where anumber
of them can be stored for future reference. This is the
purpose of the sprite editor program. The program allows
you to design and edit sprites on the screen, and stores
them in memory for use by the sprite routines. Each sprite
consists of 504 pixels, and is stored in 63 bytes of the
Spectrum memory.

The sprite editor allows ten sprites to be defined at a
time, and gives you the option of transferring sprites from
one location in the sprite buffer to another. In addition,
sprites can be flipped horizontally and vertically, and
inverted (by switching the ink and paper attributes). The
program also allows you to load in previously edited
sprites from tape, and to save the current batch to tape for
future use.

The sprite editor is a combination of BASIC and
machine code. The code comprises six different routines,

all linked together. The purpose of each routine is
explained below.

The sprite editor routines

Routine FNa, at address 54200, is the base routine for the
editor. It converts the large grid on the screen to the small
display of the current sprite you see on the right. The
current sprite is temporarily stored in a buffer, and the
routine converts each dot in the buffer to a square on the
screen.

When you want to save the current sprite, you have to
decide which of the ten sprite positions you are saving to.
A routine at 54317 transfers the sprite stored in the buffer
to the appropriate location in the sprite table in memory.
Routine FNb, at address 54353, carries out the reverse of
this operation, transferring a sprite from its position in the
sprite table to the sprite editor buffer. Routine FNais then
called again to display the sprite.

SPRITE EDITOR PROGRAM

B
SE006

e I
GRG0
000 686

W oCHeTNINT

IO wmﬁZZZZZ

- 0

P
a
1]

MMZWEN N~

* Mg W odngy

'S
OEeLO
HFﬁD
TmDD
-CZ
0no
omo
[

LET J=PEEK
g$="I", THEN RﬁNDOHIZE
RRNDDHILE FN a ()
IF ag="R" THEMN RAMDOMIZIE
RFENDDHIZE FM a ()
IF gg="U" THEN RANCDOMIZIE
RF)NDDMI"E F
[THEN GO TO _485@
T

S NR~0-0~0-0

A NGO RO e e
o Ge-evevw

w

Wi
Wi n
1 1 1 1
+14+1
rQWE
i

TO
as%
g%
94
9%
9%
(=18}
L=

B
@

(=1]
ENM LET s=s+1:

W
a
-

L3244 THEM LET s=s-1: GO
£<¢<a THEM LET s=s5+32: GO
s;a—l+21*32 THEN LET s5=s

THEN LET

SPRITE EDITOR PROGRAM CONTD.

=l b
a 8
= 2 B
L THEN LET
L»24 THEN LET

< <a THEN LET
£3>3-1+21232 TH

POKE 0,56
POKE s,135S: GO TO 14@
PRINT AT 1,26; "SAVE "
PRINT AT 3.,26."a-4"
LET g$=INKEYS .

IF g%<"a" OR g%>°'

2a
9520 LET v=CODE g9$-96:
$30 RANCOHIZE USR S4317
S54@ BEEF .4 ,2
S5@ GO SUB .19'2‘@

sScrotL7y

THEN GO
POKE 233e"

IFE gs_"a" THEM
éF as<"a"” OR g$>

LET v=CODE 9%-96:
G0 SUB l@ed

RAMDOMIZE FM b (1}
PRINT AT 7.,26;9%; "

THEN GO
POKE 2332

ragaadqOdmd-
QLULEED~O0E<
Slalolelelalaololo]

FiUE bl o o s o i R
= l]
SAVE n SC"'DE S46500 , 699

THE SPRITE EDITOR 2

The first two routines in the sprite editor enabled you to
draw, load and save sprites. The remaining sprite routines
have been written to give you the means of manipulating
the sprite you have drawn. The effect they have on the
sprite is shown in the displays here. Each routine is called
by a keypress. Thus, when CAPS SHIFT and I are

SPRITE EDITOR PROGRAM CONTD.

GO TO 4@

INPUT "LOAD *“;n$: LOARAD ns C
: CLS

LET h=INT (5-32]:
RETUR

LET L=s-h

N
=8 _TO 200 STEP_ &
i CrRAW @, 167

xXT i
FOR i=8 TO 179 STEFP B
PLOT &,i: DRAW 1892 ,@
MNEXT i
PLOT &,17S5: DRAW 192,00
RETURN

e e e e o e e S D
LT VEVEVE TR S T S e

o Lot e VRS T T T By p T i)
OeeEREE0H G668 86

pressed together, a routine is called to invert every pixel of
the sprite. To change the direction in which the sprite is
facing, routine FNe at address 54436 is used, called by
pressing CAPS SHIFT and R. Finally, to turn the current
sprite upside down, routine FNf'is used (called by pressing
CAPS SHIFT and U).

The BASIC editor program
The BASIC controlling program (shown on this page and
on page 11) works as follows. Line 110 calls a subroutine
atline 1200 to draw the grid on the screen (a simple series
of lines). Line 120 calls a section of the program which
prints the menu to the right of the grid. From this section
blocks of the program at lines 1000, 1100 and 1130 are
called as required. Lines 1000-1020 wipe the menu off the
right-hand side of the screen. Lines 1100-1110 save the
current sprite table to tape, and return control to the start
of the program. A BEEP is heard whenever a sprite is
saved in memory. Lines 1130-1140 load a new sprite table
from tape into memory. If neither 1100 or 1130 is called,
control returns to line 130.

Line 150 prints a sprite on the screen. Lines 180-210
accept a keypress and check ifitis one of the functions I, R
or U. If so, the relevant machine-code routine is called. If

R T T | e e

FNa-e
24 x 21 SPRITE EDITOR ROUTINES

Start addresses 54200,54353,54422 54436,54482
Length 355 bytes

What they do The routines allow the user to design and edit up
to ten sprites, and save them for use by later routines.

Using the routines The routines work in conjunction with a
BASIC program shown on page 11. Editing the current sprite is
controlled by the 5, 6, 7 and 8 keys; used with the shift key,
pixels are inked in; used without, pixels are unset or, if set,
changed to paper. The current sprite can be inverted (CAPS
SHIFT and 1), turned to face the other direction horizontally

(CAPS SHIFT and R), or turned upside down (CAPS SHIFT and
U).

Sérites are stored in a table from location 54600. Previously
defined sprites may be loaded from tape, altered, and then
saved as a new selection. When you save the sprite table,
remember that all ten sprites are saved, not just the one you
have most recently been editing.

| ROUTINE LISTING

LET b:5¢2@@éBLET L=35S@: LET

RESTORE 79

the keypress is CAPS SHIFT and Z, control goes to the
short sequence at 480 to display the menu again. Lines
250 to 280 do the work of editing the sprite. The sub-
routine at line 1160 is called from this section. Notice how
line 1160 divides the address to be saved into two parts,
since 16 bit addresses will not fit into a single byte.

MANIPULATING THE CURRENT SPRITE

FOR i
POKE
NEXT
LET z

REARD

CATA

w
)
]
0
0
I
-
be]

o 00 QuOEENm
00 000000006

NN FPRRERRERRER R
P YONOOPLUNEG
Q
I
_'
I

=@ T
(b+i

i
=INT

|3 e
JoaE

RERD a

C(CZT ALY —INT

LET zZ=Z +a

(z-L)

a: IF a<»>z THEN PRINT

“22%. STOP

A0 & 0o

Wy~ ~ ~
< e (P 2 DRI
O~

SETTAI N N
S

BRE- - DM F-JM -
POO- O P~ DO~
Ded= W U=~ 100 ~ PRRE- BR0-

~ WG~
GOOm- M A= DERe- -

(o

el ENE SWRRLDLGRDNON EWONEW TR0 WO 300 0L
~Jan-

NEE OUUGOREG- =
N o~~~
mNE- «

BTV T e
G Ly -

< GIDR- 10~
-
S VT (T

. (e = >

WﬂﬂrUWHUMJ
L U (VRS

W= M- My
GNEENEND D DNALAA-JOqOMm

Wew
S

FUNREELDEDODE PPN W00 0= 0L G
0o ongg ;-
SRAOONEE- -

WEdEE -
m

NoiG- -

R N

[
0

= o a
Al

POON ~ Pl

P PUNARO- &
o~

= - WENDD- O
PR -~ MERRe
e P AR
G- G100 NG

= WP~

R0~ ~ WEFEMD-
s @ - - N
n N
r B0
N o

ONEWW- N- P - ~ GONAO- |
ome
!

- P s 00N AR
< NEMENG- O
C PR ORODRE GRS ~ ~ G-

FOT OO W
WA WO

M=
RrrEEO
]

S 060800
Wis « - PUAR Ws WP~ ~ G- & NDBE0. « « (-

W WRRN D - P
CCPNOUEEOH O~ B 0 R

s v~ 00> 0

s WWRnN-
s ANAGQEN O

na NORdOE- A0
aw

e S
VTSR0 N (VERT o (VS

[]

~p

SN RW
]

R T ATE]

=
Mo~ BRRADEE

- M- e ppEan- O- (P

o= W~ -

o~
WrEOn- G~ Bg- 0
B R O]
. BO- QU0 [-
-
PN St o (1]
o~ e - -
BN e BN
= [11] m
7]

NE- - ~Jen- 0

1
4
a
=
(]
=

L
S@a .,
126
Q= .,

L=

a

S L)] ()

- [y
Ele B RREERe s GO0 pRpEes BUEDL N SO0 - (-
Rl
[
[A]

0e- -
[0l

dEG B8 O A
[=

0 ny o caon

< i Jip=

s
(e

-

RO~ BEDO-INW
n 08 ro

ONE W Tl
s M=~ g -
CE 1

s POLG-
QRAGONE- U FU- F- b
e T N
o W~ M- OE-
~ PR
N Fe

BUNRERENEE- -
QR PP

- NYYop em
GFrOO0

- W0~ NG
QRREOEM- W- & PO~ -

CANOIOAL B s

TS
nnw
ROS

]
o

nm

1]

DISPLAYING SPRITES

Once your sprites are defined it is very useful to be able
to see what they look like on the screen. Obviously this
can be done using the sprite-handling routine, but it is
very hard to examine a sprite with a critical eye whileitis
moving across the screen! To avoid this problem, and
also to give you the chance of looking at the shapes and
designs of several sprites at once, the sprite print
routine, FNT, has been provided.

This routine prints a sprite from the sprite buffer onto
the screen at a specified position. Since any of the sprites
can be printed at any position on the screen you can use
the routine to preview the sprites you have designed,
and it is at this stage that you can decide the best sort of
starting and finishing positions for the sprites when they
come to be used.

You can also use the routine to preview the effects of

animation by calling the routine repeatedly to print
sprites in an animation sequence on top of one another.

PR R R
TNEIONE S
806-AQ80 88

aamaang
ALNEe
QoeQae

SPRITE DISPLAY PROGRAM

RANDOMIZE FMN fF(l@,1e,9)
PRAUSE 10

RANDOHIZE FMN F(l@,102,1@)
PAUSE 1@

GO TO Silie

e

e &

s 12

y

HE
=

- 3.
-

fii:

i

R | RSSO |

This will give you an idea of how effective the animation
is going to be, as well as allowing you to make any
changes to the sprites before you work out the
animation in detail.

How sprites are stored
Before examining the machine-code routine it is
important to understand how sprites are stored in
memory. As you know, a sprite table which stores ten
sprites can be found at location 54600 onwards in
memory. A 24 by 21 sprite has 504 elements (24x21),
and since any of these elements can have an ink
attribute either set or not set, this means that 504 bits of
information need to be stored away for each sprite.
Each sprite requires 63 bytes of memory (since there are
cight bits in a byte) and, as all ten sprites are stored one
after the other, they take up a total of 630 bytes.
Each sprite is arranged in memory as shown in the
diagram below. Numbers correspond to the byte
numbers (0-63), and the 1s and Os represent the
individual bits.

FNf
SPRITE PRINT ROUTINE

HOW SPRITES ARE STORED IN BINARY

Sprites are stored as binary numbers in 63 bytes (504 bits) of memory.
The Isand Os correspond tosetand unset pixels respectively on the
sprite diagram shown underneath.

how memory 9]
bits are 145
Se'l 160

LM

e

i
COCDO0000000000000000
COoO0DO00000000C0000ORO0O
COOHRBRHEOODDOOOOOOORDOOOD
COCOCOKKOCCOOHKKHOOOOSD
HEHOOOOOMMKOOOOKOOOO0OODOO
CORMKOOOOKOCORMKMOOOO OO M
COCOHRMHOKRKROOHOOOORKBKEO
COOCQQORROPORRERORKEEROOOD
CoOCCO0OKOROCRORKROOOOOO
COCDOOKRKKRHOKMOKOOOODOD
CODCORKRERBREBRBRRERORKROROOD
COCOHHHKENKRHBRBEEBEBEEBEOSCOO
COCOCHEKERBRRBRHKEHEOKBRKBROROSOO
CO0DO0OKRKKRRHOKMOHKOOOOOOO
CO0DO0O0OKMOROKOKRKOOOOOO
COCOOCORRORORBRRERORERRE SO O
COCCHHHOKKROOHOOOOKKB RS
COMKMOOOOKOOOKKHOOOOOOK
HFRrOOOCOOKKOOOOROOOOOCOO
COCOCORKOCOOOKRKKEOCOOS
COCKMMKMOOOODOODOOOKOOOOD
CO0O000O0OOC0000DCOKROOG
0000000000000 000DO000
CO0C0O000D0C0O0O0D0000O0O0C000

sprite — —==tF F | 1
diagram |

Start address 54100 Length 75 bytes

Other routines called Sprite editor routines (FNa-FNe).
Wha;t it does Prints a single sprite on the screen at a specifed
point.

Using the routine This routine displays any single sprite from
the sprite buffer. The routine does not move the sprite. Note
that if the sprite is too far to the right of the screen it will
reappear one character below on the left-hand side of the
screen, since the Spectrum PRINT routine is used in the transfer
of memory to screen.

=

ROUTINE PARAMETERS —|

| DEF FNf(x,y,n)

[%y][specify print position (x<29, y<21)

n ”specifies number of sprite (1-10)

| ROUTINE LISTING

LET b=S4100:
RESTORE 7910
FOR i=@& TO (-1: RERAD a

(b+i) ,a: LET zZz=Z+a

LET L=7@&; |

[CEZALY) —TINT (Z.-17)

IF a<>Z2 THEN PRINT

R

=
L]

v s PR s
e Qe
B P

B4

. O
- BRPE-
s PROWAR. Gy «

[1']\
BT IV YA ST N

SO0 PRORDDOG

NI
N IR 1

PRW N -8
W PO WN

N T R e T
By

v

I

.{

D
TV VRN T T
GhpPRPERs BORY «)
Q- s O (-

s B IO G Lo O o 00 =
EEGIN- UG- FrEfkd
O

88

B0 Ry WERPLUWN- ~Jik

The BASIC program

The program on this page shows the contents of a sprite
buffer, containing ten different sprites, displayed on the
screen. The program calls the sprite print routine five

times in a loop, to display the sprites down the screen as
well as across it.

How the program works

Line 10 defines the sprite print routine, which has three
parameters: the X,y screen co-ordinates at which the
spriteis to be printed, and the number of the sprite (from
the ten sprites stored in the sprite table). Lines 90 and
180 set up loops to print the sprites. Line 190 prints the
sprite, using a combination of the two loop variables to
define the x,y co-ordinate.

Lines 300 to 330 show how animation can be
achieved using a print routine. A left and right mirror
image of a single sprite are printed one after the other to
produce a simple animation effect. You could produce
more complex animation in this way; the only limitation
to the method is the amount of time it takes to define
sprites, although the animation in this program can also
be speeded up substantially by leaving out the PAUSE
statements. Of course, the other drawback is that you
cannot move the sprite around the screen using this
method.

MOVING SPRITES 1

Now that you have routines to create sprites and display
them on the screen, you need a routine which makes the
sprites change position. The routines introduced here
enable you to get your sprites moving on the screen.

The master sprite routine

This routine enables you to move simple (that is, not
animated) sprites. The routine has no title since it is
always used together with the sprite-controlling
routines in this book; by itself, the routine does nothing.
When you use a sprite, it is this routine which causes the
sprite to move across the screen in the required way.
The main job of the routine is to print a sprite on the
screen using Exclusive/OR printing, wipe it off, and
print it again one pixel away until the program or
routine asks the sprite to stop moving.

The routine has been programmed to work whether it
has been called by a routine which is working within
BASIC (a normal routine) or by one working indepen-
dently of BASIC (an interrupt-driven routine).

The sprite-handling routine

This routine, FNg, allows you to control the movement of
sprites. The routine works in conjunction with the master
sprite routine, and both must be present in memory for
sprites to move on the screen. The routine has a range of
parameters to control exactly how the sprite will appear
on the screen.

How to use the routines

Having produced some sprites, it is a simple matter to
display them against a background, and the ideal way of
creating backgrounds is to use a graphics editor program
such as that in Book Three. All the background displays
in this book were created using the graphics editor. The
programs in this book do not themselves create back-
grounds; you must add these yourself.

Interrupts
Most machine-code routines are called (as you will have

seen) from BASIC, and are then executed in much the

->83@ DATA 21,8,221,94,@
MASTER SPRITE ROUTINE 5831 DATA 221,86,21,221,78
2832 DATA 42,35,35,126,169
25335 pATA 119,435,126 ,170,119
7834 DATA 43,155,1715119,3
a3 DPATA 61,490,218 221
Start address 53700 Length 365 bytes ‘ 7836 DATA 35,36,124,230,7
What it does Used in conjunction with the sprite-handling 2837 pATA 32,221,8,9%.85
- : i :) 7838 DATA 1,208,46,62,21
routrr)e(FN%), this routine takes a sprite from the sprite table at 5830 DATA 147,128,71,205,177
location 54600 and moves it across the screen. 7843 DATA 34,24 ,205,229,213
7841 DRATA 19?,229,221,225,151
. - 3 s 7842 DATAH 5@,41,211,128,205
Usm% the routine This routine must always be used together zs43 oaTA 177.34,202.218.210
with t 'ﬁ othter sprite rg;:tme;gwen in thlshbook; if used by itself, Zg4s paTA 13@ : gié’ < ag’ée 1,8
’ 8, 1.86
you will not see anything happen on the screen. Whenever 2o OO e aET Sk e
sprites are used, the master sprite routine is called by the other 2848 DATA 1,17S,203,27,203
routines to do the work of moving the sprite. 7849 DRATA 26,205,25,31.16
7850 DATA 247 ,35,35,35,71
7g51 garn 128’isd 148 231942
126, 168, 9,433,126
f_ ROUTINE LISTING _l 5855 DATA 161,196.33,211,126
5854 DATA 169,119,433, 126, 162
500 LET b=S370@: LET L=360: LET $855 DATA 196,33,211,126,17@
z=2: RESTORE_751@ 7856 DATA 119,43,126,163,196
7801 FOR i=0 TO L-1: RERD a 7857 DATA 33,211,126,171,119
78@3 POKE (b+il,a: LET z=2+32 2858 DATA &,61,40,25,8
7803 NEXT i 7859 DATA 221,35,36, 124,230
5884 LET z=INT ((fz,L)—INT €z-L)
> =L)
5 7860 DATA 7,32,183,1,49
?Qﬂﬁ,agﬁgpa' IF a<>z THEN PRINT R0 N o' oe . oEh
it 73g= pata o, 147 120,25 282
563 DATA 177 ;24 , ’
231@ DATA 229,213,197 ,245,229 5864 DATR 209.225,558,41,211
2811 DATA 221,225,120,205.,177 7865 DATA 201,237.,67,21.211
7812 DATA 34,48,32,237,5? 7866 DATA 62,21 ,8,221,94
%2813 DATA 15,210,500 ,229,229 586> DATA ©,221,86,21,221
7814 DATA 62,21,58,221,94 7868 DATA 78,42 ,35,35, 126
7815 DATAHA B,221,86,21,221 Y869 DATA 161,196,33,211,126
%2316 DATA 758,42,6,1,17S
7817 DATA 203 ,27,203,26,203 -870 DATA 169,119,43,126, 162
2818 DATA 25,31.,16,247,35 _ - 2871 DATA 196.,33,211,126,170@
7819 DATA 35,35,174,119.,43 $872 OATA 112,43,126,163,196
%2873 DATA 33,211,126,171,119
7820 DATA 126,169,119 ,43, 126 7874 DATA 8,61,40,281,5
%2851 DATA 170.,119,43,126,171 5875 pATA 221,35,056,124,230
7822 DATA 119,8,61,48,295 7876 DATA 7,32,2@5,3,95
7823 DATA 8,221,35,36, 124 2877 DATA 8,1,208,46,62
4854 DATA 230,7,32,205,1 558758 DATA 21,147,128,71,28S
7825 DATA 49.,0,86,95.8 %879 DATA 177,34.,24,120,245
z826 DATA 62,211,147, 128,71 758@ DATA 62, 1,5@ g ST
7827 DATA 205,177 ,34, 24,159 2881 DATA 241,201, 1,8,0
7828 DRATA 241,193,209,225,201 L2882 DATA £3,0,0,0,0
2829 DATA 237.,67,81,219,62 e o

R et | | U kil

TYPICAL SPRITE BACKGROUND

same way as the BASIC program, line by line. When the
machine-code routine has finished running control is
returned to the BASIC program. However, there is a
much more sophisticated method of using machine code,
which is to make a routine run independently of BASIC.

This can be achieved by taking advantage of the fact
that at regular intervals the Spectrum interrupts the
running of any BASIC program or machine-code
routine which is being executed. It does this so thatit can
print information on the screen, and perform various
other household chores, like memory management.
These interrupts occur at least fifty times a second, so
quickly in fact that if you carry out a machine-code

FNg
SPRITE-HANDLING ROUTINE

HOW A SPRITE MOVES

Sprites move in blocks of three pixels. On reaching an obstacle, and
with the collision flag set to 1, asprite continues to move for three
pixels before stopping.

| T | moyveme

.| —T [T - -] L .
original] e AR lhr.e-pntl

otLtacle

e

routine as well as a BASIC program using interrupts it
will appear that both things are happening simultan-
eously.

Two of these “interrupt-driven” routines have been
provided in this book. One is the keyboard-controlled
sprite, and the other is the interrupt-driven window
given on pages 32-33.

Start address 53500 Length 170 bytes
Other routines called Master sprite routine.
What it does Prints and moves a single sprite on the screen.

Using the routine The screen area is measured in pixel co-
ordinates from the top left-hand corner, rather than from the
bottom of the screen.

Sprites move in multiples of three pixels, so a value of 60 for |
moves the sprite 180 pixels. If the collision detection flag is set
to 0, the sprite will pass over obstacles (any pixels with INK set).
If cis setto 1, the sprite will stop when it hits an object (after an
overlap of three pixels). You can find out the precise position
where a sprite stopped by PEEKing locations 53498 and 53499
for the y and x co-ordinates respectively.

| ROUTINE PARAMETERS]

[DEF FNg(x,y,d,l,s,c,n) J
I X,y ” specify top left-hand corner of sprite (x<<232, y<155)|

d gir_eé;tion of travel of the sprite (0=left, 1=right, 2=up,
=down)

Hdistance moved (vertical <<=51, horizontal <=77)

s J[switch (s=1 to disappear, s=0 to remain on screen)

il
|
|
|

c
n || specifies number of sprite (1-10)

|
|
[| collision detection flag (1=stop, O=continue) J
|
ROUTINE LISTING I

LET LET

Y|

S DV EN I BN EUEN ENANEN LR

LET b=S3500: L=156%"
: RESTORE 776@

FOR i=2 TD L-1: RERD a
POKE (b+i) .a LET zZ=Z+a
NEXT 1
LET zZ=INT

IF a<»Z THEN

(((z/2L) =INT (Z-L]

PRINT

LN e ENEVEN]
S =g o
N=pUNREE

RVRVAN
S
S

oRTA

~
A
o
0]
o]
D

N @n-
n

M- =M=
BooRWENRA -

s b AP EEE - LWIDD- ORGP
nNr&

nw- 8- ~
o

~omad- -
WEEDD- DA N - @RO0N

SO - - BT

NUINGO G
M- =NOE R -
<@~ @ oY

0P U6 PO 0~
s O AW

n

IDpIDIDD
49494333
NN PR~

DIIDID DIDIDID

0

I

=}

bi}
AEN~JPELEN

w-
(s = ~

= 0y

(1N
< BN

N

\J

a

[ir}
vlofoluleliivielolelely}

WA PO~ O ~

DIIDD
49444

BN W We
0 a8
]

C e MNG6 F-O8ND- O
~ - BD O

B s~ QUD BN
O PNAR(E- - -~ PR DRADNE OO O-

CRONOGOANNEELRE O REE- B -

O« @ -

- NEPEO- -

S EOANUEOFNMNEE OO0 0E- NEWOD

6. 0D - WRONLE
SRR RODRON. -

v B NORE-

a n

- 8UNe- -
n

e BORPDEYRD U - - - G- @O
Py « « -« ~

N T T
a0
'S

Bl By PR ~ BpE DER- -~ S0LI-
UMESERN N0

NENMHeN- « PAWY W - PO
- NeeNOEAANDL. O

M WERs URERen
G- D p- o~ 0~ P

Q
I
|
I
ONEMNWNR &0

- B~
@- ©-

MOVING SPRITES 2

The sprite-handling routine has many user-controlled
features built into it, as you can see from the long list of
parameters which are passed to it. It is a good idea to
become familiar with these, as otherwise you will under-
utilize the potential of this very powerful routine. The
train program, given here, is a good example of how the
parameters are used.

The train program

The large display on this page shows a train and some
carriages being shunted along a railway line. All the
movement in this program is controlled by the spnte—
handling routine. Lines 110 and 120 take the train
sprite and move it from left to right across the screen. A

mirror image of the train is then selected and driven
back to the start position, where it remains on the
screen. Lines 130-150 set up a loop which calls carriages
one by one. Since this contains the collision flag set to 1
each carriage moves across the screen until it
encounters an obstacle—the previous carriage — when
it stops and remain on the screen.

More about the parameters
It is worth looking at the impressive range of parameters
available with the sprite-handling routine in a little more
detail.

The first feature which you will use, of course, is the
specification of the x,y co-ordinate at which you want

- T

LV ALLFLALEEE 1

T

SRR R 5 ([E e |

TRAIN PROGRAM

EF FN gi(x,y,d,Ll,s,C,nl)=USR

2
BORDER 4

EHNDDHIZE FN g (205,139,0,638
R

)
ANDOMIZE FN 9(1,139,1,7e,1

rl

—

FOR x=1 TO 7
RANDOMIZE FN 9(1,139,1,70,1

BPREEOROREN
U Bl N HBLE

ONBINBEE6US

NEXT x
16@ PAUSE @
178 GO TO 11@

the sprite to start. Normally you can specify this simply
by looking at the screen, but more sophisticated
methods are available for determining the start point.

In the program example a train appears from the left
and crosses to the right-hand side. It travels a distance of
65 (that is, 195 pixels) and so you know that you can
start the second train off from a point 195 pixels to the
right of where the first started. But what if you didn’t
know where the first train had started or stopped? Since
the routine stores the last pixel position of the sprite at
two pointers in memory, the new sprite could then start
from position (PEEK(53499),(PEEK(53498)).

There is a case for making the distance moved by the
sprite (parameter 1) as short as possible with each call to
the routine, despite this producing some flicker because
of the volume of transfers from BASIC to machine code
and back. This is because while you are in BASIC you
can keep a check on the current screen, the position of
the sprite and so on, but while the sprite is moving you
do not have any control over it. This, of course, is an
advantage of interrupt-driven routines which allow you
to monitor the progress of other things on the screen
while a sprite or window is moving.

The value you give the switch, s, depends on what you
want the sprite to do after you have finished using it. In
the program the switch is off for the first train and on for
the second: after the first train has come on and travelled
across the screen it should disappear before the second
returns. On the other hand the second train must remain
on the screen after its journey as, if it doesn’t, the
carriage will have nothing to run into.

The bat program

The final program on this page shows how the sprite-
handling routine can be called a number of times in a
loop to move an object in four different directions
around the screen. Although you see the bat moving
continuously on the screen, the program listing reveals

that four different routine calls are being used, one for
each direction that the sprite is being moved, and three
different sprite shapes are used to give various views of
the bat’s body as it moves around the loop.

BAT PROGRAM

FM g9€48,140,1,40,
FN 9(183,140,3,34
ANDOMIZE FN g (177,25,@,40,
ANDOMIZE FN 9(48,25,2,40@2.,0

KEYBOARD-CONTROLLED SPRITES

The keyboard-controlled sprite routine, FNh, enables
you to control the movement of sprites using the cursor
keys. The only difficulty with the routine lies not so
much in using it as in switching it off. Because the
routine is interrupt-driven it continues to operate after
any BASIC program has finished. Even as you edit a
program you will find that the sprite is still moving on
the screen. A subroutine is required to switch it off:

2000 DEF FN z(s)=USR 53100
2010 RANDOMIZE FN z(0)
2020 RETURN

This redefines the routine with just one parameter, the
switch. If the switch is given a value of 0, the routine will
be switched off. The maze program on page 20 gives you
a chance to try using the routine; you can create your own
maze with the Book Three graphics editor.

Controlling the routine

Although keyboard-controlled, the routine is quite hard
to control from within a program. Since the sprite
routine runs outside BASIC, it is only when the routine
stops that you can check its position. One solution is to
leave the collision detection off but to set up your own
collision detection instead. You can do this by switching

the sprite off, and looking at the last x,y co-ordinate
(stored at 53099, 53098). Then use the POINT
command to find if pixels at these co-ordinates are set:
X,y x+24,y

x,y+21 x+24,y+21

If this is so, a collision has occurred.

MAZE PROGRAM

DEF FN h(s ,xX,4,c,n) =sUSR 531

DEF FHN zZ (5) =USR S319@
BORDER 2

RANDOMIZE FN hR(1,1,5@,@,3)
GO TO 120

T OoOP

RANCOMIZE FN Z (@)

e e e e T e ———

FNh

KEYBOARD-CONTROLLED SPRITE ROUTINE

ROUTINE LISTING

Start address 53100 Length 250 bytes
Other routines called Master sprite routine.

What it does Puts a sprite on the screen and allows it to be
controlled by the cursor keys.

Using the routine The routine is interrupt-driven, so it will
continue to respond to keyboard presses until switched off by
calling the routine with the switch parameter (s) set to 0.

If not switched off, the routine continues to operate even when
you stop the program and attempt to, say, edit — you will see a
sprite moving whenever you use the cursor keys. [t is advisable
to switch the routine off at the end of any BASIC program which
calls the keyboard-controlled sprite routine. This can be done by
defining the function a second time using a function title not
used elsewhere in the program, say FNz. This functionis defined
as having a single parameter only, s, which means that the
function can then be called with this parameter only, set to zero.
The collision detection parameter, c, can be used to detect if
the sprite passes over any pixels with set INK attributes.

ROUTINE PARAMETERS

{ DEF FN h(s,x,y,c,n) =
| s ” switch (1==on, 0=off) |
| X,y Hsiart position of sprite (0 <=x<(=231, 0<=y<154) J
| © || collision detection (1=on, 0=off) |
] n ” number of sprite (1-10) |
The obstacle program

The final program again has the aim of avoiding
obstacles. Lines 10 and 20 define the routine twice as
before. Line 110 switches the keyboard sprite on. Lines
120-140 print a series of random graphics blocks on the
screen. The aim of the game is to avoid these blocks. Line
500 is a continuous loop which keeps the program
RUNning.

LET
RES
FOR
POKE
MEXT
LET

> REALC

b=53100: LET L

TORE 766@

i=@a TO L-1: RE
fb+i) ,a: LET
1

Z=INT (((Z - L) —

=245 :

RhRC 3
Z=z+a

LS

INT (z-L)

a: IF a<>z THEN PRINT

STOR

DRATA
DRTA

o0
D
r|
D

leleMi=lelelelelo}
I DDDDDD
oo o e o

Q
b}
-
IID DDDIDID

Q
I
'
I

oA

-

29 393933
349945
D DIDIDDD

D
55

DRTAR

jolvlvivle)
DIDDD
44444
LIDDD
= = o
Nhy- =
« RO
P G p

0]

o

D

3

D
MU0 DO TN f MO N
TMEEEE P

®- G- - DOANE

b)HFLJ@FbPUILﬂI‘U GGUMNENRY ~ W QUNAMN- »

ST T 4

(R 7, N Sy N
N~ s ST
- Q- 010 OG0
= W~ - MO -
HUGQRNE- - e

v v w e s QNN O
(- =

by
e QRO Ny WO W

nuNe- M8 Wus 3 ~ N~
[STATEENENEN [/ B (VRN |} SRENTERN (SRR Y

o Bl OROR VOO B0~ e
Y NI

© s DNRO- LY

=N @8@-J-

© PO A
T .

Flps ~ 00NE NEGNGODNEWN

= UNS0- - - Do 0
GII'UE.H‘EUQIU\IIUP\.I m

TNEEN: fOBLN NG

N NURELENENOD GESUULONEN MERrUNe NG R
p- - QUOOO- -

Ll
o

o
e NENeWEM- & « -~ W0 POUA WU MBS~

Cap OOWR. -
Ge s) NANBROUDNOY 06 - P

nmn

Nea

(AR
~
we
nea

=
1¥]
[
Sane P GO

W= G- s Qi

n
M-) +
1]
LV}
« (s (i
G N BB RERRR-
S GB0REEDONeN - - - SRNED
[l LR RN [
SONJE. N

S LV 0 VT T (VA V]
G NOOUWE: » RAREO- 8- Oip
O~ @ ~ OO NG WEN- =

B2 R LR o O T

- -
@~)~ v o

G- WLEONE- &

i NeeNE- 8- N

FUNWID.
W e
Q@ -

[}

)
w0

aqn

N TN
N 0086
(=

P

weOeYL
]
n
0

NEWEH e~
68 W@
n

B
=
o

OBSTACLE PROGRAM

DEF FN hi(s ,x,9,C,n) =USR S31

DEF FN zZ(s)=USR S3100
BORDER 1: PAPER S: IMNK 2: C

RESTORE FN h(1,10,12.,1,3)
FO TO 1@

R x=1
PRINT INK 3; ﬁ?.- .EINT (RNC 2@

[RND #32)) ;
T

STOP
RANDOMIZE FN z (@)

OBSTACLE DISPLAY

DOUBLE-SIZED SPRITES

You have already seen what can be done with a sprite 24
by 21 pixels (504 pixels in all), but there are occasions
when you would like to use larger sprites still. This makes
great demands upon your Spectrum, but the two routines
that are provided here (FNi and FNj) each give you the
power to move over 1000 pixels at once. These routines
provide you with double horizontal and vertical sprites
respectively. In each case sprites from the sprite table are
attached to one another and are then moved together in
exactly the same way as a single sprite — though naturally
not quite as quickly.

The double sprite programs

Both the demonstration programs are straightforward.
In the first program, a double horizontal sprite has been
used, and this demonstrates the effectiveness of quite
large moving objects — it would take 18 user-defined
graphics to define the area of the car, let alone move it!
The program enables you to see the great improvementin
sprite visibility that can be obtained by doubling its size.

FNi
DOUBLE HORIZONTAL SPRITE ROUTINE

The two sprites which make up the car are stored as the
tirst and second of the sprite table — the routine simply
takes the sprite specified by the n parameter, together
with the following sprite from the sprite table that is
stored in memory.

AUTOMOBILE PROGRAM

1@ DEF FNH i(xXx,u,d,;LlL,;s,c,n) =USR
s2428

1@ BORDER 3: PAPER 3: INK 6: C
11©@ RANDOMIZE FN i (19, 130,1,65,

g?NDDHIZE FM i (205,130,0,65

Start address 52400 Length 235 bytes

Other routines called Sprite editor routines (FNa-FNe).
What it does Displays and moves two sprites together hori-
zontally on the screen.

Using the routine The routine takes sprites n (left) and n+1

(right) from the sprite buffer. Parameters are as for the sprite-
handling routine (FNg). Bytes 52398 and 52399 specify the y
and x co-ordinates of the sprite's final position after calling the
routine.

| ROUTINE PARAMETERS |
E DEF FNi(x,y,d,l,s,c,n) |
[xy |[start co-ordinates (0<=x<=2310<=y<=154) I

d specifies direction of travel (O=left, 1=right, 2=up,

3=down)
‘_-l__l |distance moved (vert<=51, horiz<=77)
| s ||switch (1=on, 0=0ff)
c llflag for collision detection (1—on, 0—off)

ROUTINE LISTING

| | S | B |

|
| n ”number of first sprite (1-10)
I

755@ LET b=5240Q: LET ' =23@: LET
Z=0: RESTORE 7S6@
7551 FOR i=@ TO (-1:
7552 POKE (b+1i) ,a:

7553 NEXT 1
7554 LET Z=INT (((Z L) —INT

7555 RERD a:
77t STORP

READ a
LET z=z+a

(Z 1)

IF a<>Z THEN PRINT

nw- 8-~ 4
- RN
P O W
NrEeL &

[+ |

S e -~ @0
TNDE - -

S6 s O RO
- QA0 DNFOR
N N T

L~ ~ A~ -

-
n
a

Y n

o]

na

o~

SOUON- N Wo- -
WEPWOON- NO
N0 N 06

Ne~ MBr JN-
v
n
11

~ dARn?- - 0

EBRRPRPNE- -~ B @~~~ (-
0
O

Ny AN PNEPPUORPE- WUE -~
0

s NMPreEN- ORY NNEGREE- POE PUBNEE. «~ (-
[

e s O MW ~ VORDW VEO
FREs WE AN

B~~~ ~ [U- 0~

~~ @M

N~ = ~

PONRE P

PGS

n

~DUERO- DY FAUEN ~ 0- 6@ O~ - NODKEN NODNBLNMOD-
o]
[

QUELL- BOEU
REPUAINET T | I

~ ROA O s) NONQW @~ Al =~~~ Nh- e O P SO0
n- N AeN

nNN@O- « NRrapp NOOOE- PN WPrrEDONDEA DOEUDA- G- -

£ NP B P DONKNAOEWOND ~ OE- O~ - - -

T e
N TS
8
g0 » 6088 PO
o0 N SNAN

NeEgpR
00

-

~ - R

~J

a

o

Q

0

D

4

D
NUONEORE PONLDENPODN PERAORUUNLL BNORNDD LORE DO GODE &
ONP. - -

WONENRE NONG- - f2AE NOWO- - NEOLE AN BENWYW- FIEENN- !~ I

B QP 0 B ROQAONPAN -~ - PRRNID-

CRRROY NEREU- NAA

G NEONEe 86 rr,EN- O
8- pOIONQ OO ~ ARND- ~

0~ P~ ~ @
< e N N
~ G@R- U0
B -~ -~

Lo i o Gatei S e i e

e e o [)

AUTOMOBILE DISPLAY

The other program shows a double vertical sprite — a
unicyclist — against a circus background, drawn using
the graphics editor from Book Three.

FNj

DOUBLE VERTICAL SPRITE ROUTINE

Start address 52100 Length 230 bytes
What it does Displays a double vertical sprite.

Using the routine Used in the same way as the horizontal
sprite routine, but final sprite position now specified by 52098

and 52099.

| ROUTINE PARAMETERS

.

I DEF FNj(x,y,d,l,s,c,n)

| X,y]! start co-ordinates (0<=x<=231,0<=y<=154)

3=down)

d specifies direction of travel (0=left, 1=right, 2=up,

i

|[distance moved (vertical <<=51, horizontal <—=77)

| s | switch (1=on, 0=0ff)
| c “ flag for collision detection (1=on, 0=o0ff)
| n || number of first sprite(1-10)

UNICYCLE PROGRAM

EF FN Jjix,9,d,L,s,c,n)=UusR

E 2
ANDOMIZE FN j(1S5,70,1.,69,@
ANCOMIZE FN j (220,7@,09,70,

|

ROUTINE LISTING

[e e

LET b=5210@: LET =22
: RESTORE 7460

FOR i=@2 TO L-1: READ

POKE (b+i) ,a: LET z=z
NEXT i hl
LET Z=INT (((zZ L) —INT
RERD a:
: STOP

CRTAH
CATA
DRATRAR
CRATAR

B G- PP -)
n- e
n aop
WP
5]

Be U NORG- M-
= SR AOd- e

- N @UIAL- - -
N Gfs -~ (O~ B
NdE- VNO- -
- W DWe- Now
PO~ PO (-
S PRROORGR
WO~ - £~ N
nonoo- o

S

s PR R NEE O NOG- PO N
0O M ~v o
- Re Q0N
301 wee

REDAUE AN SOQN- - 1D- -

NpEs « « v o P

WOWw- ~ AN NOOA- - GLOA

COBO s s s DO

ERUREUANNE
NE- ~ O A~

PRRPRPPR
DONOOMHMm
~NONEON=E

FUNNE6-

NEN- RO D0~

WRERRDWL M=0

e EREE

NNOFPUON e

P pa O R A0~ O~ O ~Jan
AUEG
&

B B B BV RV RN RN A
s RROA pORE - (AR~ - N

PRQE- OF- ~ 0 O« « DO~
s P QOB
= U~ DO SR

p NAWER

80 (MEQR 0 PROR

s RBRUs - - @ B R - (TR QDO
W ~ N s -
M- AN G-

-~ AN FEN- ORONEN
OO~ B~ Q- & G- A~ ~ DD

O QR - DRRR
s~ WNNE O pB
NET- TSR T

e N0 PRAORD
N RO G- DO NAO

ang- N OP- ONe- - -
AOOND WPN- BANL- AU

SME- p
R

WRDNED ORI ELN NUREONEEER DERRONE DD OrPrPrUNLO &S
. B P

O 80 A6~ FRNONFE ONWE- MUY DEAROE- 950

O 8k BO- UOON. P

Or0- O
- @EpOn
< BOP-
B~ ~ Ok

< BP0
80 - -

5:

a
+a

LET

(Z L1}

A

B
1]
~

4]
[+

]

'S

N

o
P

IF a<»Z THEMN PRINT

ANIMATION 1

So far the movement you have seen has been restricted
to moving fixed sprites on the screen. Thisis all very well
if your sprite is an aeroplane flying across the sky, or a
car driving along, because these do not change shape as
they move. However, if you want to have a moving
person or a flying bird then something more sophisti-
cated is required: the sprites need to be animated while
they are moving on the screen.

Animation, like most techniques in computer
graphics, relies on tricking the eye. It is achieved by
displaying several stationary images in succession to
create the illusion of movement. Animation can be
achieved without any relative movement, as in an
animated figure of a man jumping on the spot, for

ACHIEVING SMOOTH ANIMATION

The body of the horse sprite stays in the same position in successive
frames (shown in red and blue); only the legs and tails of the horse are
moved.

example. You will immediately notice when you start to
animate your designs how only a small change in the
sprite shape is required to give an effective result. By
looking at the display in the figure above, for example,
you will see how only the legs and tail of a horse need to
be moved to give an animated effect; the horse’s body
remains unchanged. If the body was moved when the

ANIMATION PROGRAM

DEF FHM Bl ,Yad s L,8, FC .M
S5170Q
BORDER 3 PRFER S: Irir @ C

RANDOMIZE FN kil@®,1@,1,65,0

horse was animated, the effect would look very jerky.

In many cases you only need to take two frames and
switch between them to produce convincing animation,
but the animation routine, FNK, allows you to have as
many frames as you like, within the limits of the sprite
table — that is, up to a maximum of ten. Using ten
frames, each of which differs slightly, you can create
very effective illusions: unless you think about what is
happening you would never realize that the sprites are
being printed as stationary images.

The illusion produced by animation is also used in the
cinema, where stationary images are shown one after
the other at 14 frames per second. When watching a film
you don’t think of the picture as stationary, because the
images are changing too fast for your eye to register.
Since the animation routine allows you to vary the speed
at which images are replaced on the screen, you can
experiment by giving different values to the v parameter
to see how slow the animation can be before your eye
begins to detect the frames making up the movement.

-

b

FNk

TR

Start ITE ANIMATI
Oth addres ON RO
er routi s 517 U
Wrat adiihs 1700 Length 275 bt TINE
give th ses aste bytes
e a rs
Usi effect of sequence Drl_te routi T ROUTINE
el s ¢ el gl fot 7238 RISt LISTING
ore, Wi outin ' m the spri i, 2 0 ' FRE5T=517
cont , with som e Most of sprite but oot EOR Ll ee. LE
s rol of the e additio of the routi ter Tome N T e T =2
pecifies h animat nal ones ine par J 2y LET 2k 17,57 HER e i
veloci ow m ed spri added ramet 73 z= JeBEon ET
moocﬁy parametany framef”te& Thus t}?ﬁlve Yo ers are as 385 READ INT (¢ el M
ve fro erd are used in ef uincre P57, STOP z/0) oA
value mone f etermi sedint rame ased = e e L
of 0 rame t nesh the ani ' param 736e D s S
g Othe ow qu n'mat etel’ 361 ATA THE IR
| next. D ickly th ion, and 323 BEC a2 N P
.Donotgi erOLI‘Un' the 736 Dn-rn 2,2 11,9 RIMNT
. e sh - 3 D =1 2:25 < =,1
| ROUT give this ould Zoo EHEE 425,785 i
INE P paramet e S ST 8228
er 73 DA 1 @,2 ,12
(| s e ETeT T) 5385 Ean 5%3:22%?@5 ,23°
sprite start co-ord y,d.I.s,f.cv.n) I T e ggig fﬂg’ég?iééégegi%
-ordi : TA . iy
d || specifies di nate (0<x< 7370 © 282,53%4 ESe =9, 218
3=(ies directio 256 0< J ?371 DgTQ - 5, 12é5® } E‘igs
o) ULE s 725225 B T8 8°54%3 ,50,2
I][d avel (0=left 76 | 7375 BATA 592522023353 17
istance mo 1 1={|ght 20— 3375 Bn-rg Eé?% : Egégig?éaa
3 ved (verti d up 376 ATA 50,2 &,21¢ 34 S
|[swi ertical < : 7376 DAT 58,215, 254,213
witch —3 > -3 7 D a s '9:5‘2‘32’ a5
= (1=switch 1, horizont 2378 BATA 23‘2158 202 252 S
n on, O=swi al<= 3 oA A = 2,17,292 =
| umber of fra : switch Off) 77) \ >a50 TR 4%55_93 ' Si F éd-% , 213
m 5,355,218, 2 &
£ ll"a es used in Cetisl pexre ’58,2’254
g for collisi the ani 352 aTa o254 1@ 2;@
| v | collision detecti nimation (1-1 | 3353 BHTR §12 . Séia 2 , 202
F"Elocity aEan ction (1=o0 0) 73%; Dg::_-g gé5a . 2?2’19% S5
[n ” S nimation (1< n, 0=off) | 7338 32$2 g;g%ggéei%a%}éfs'a
er of fi —v<=2 7354 pATA 17 3,0 i 5
BsUsPe 95, the slow I 7383 cATA 262 196Gé23%7 4
-10) est) ‘ s ocaTA gggjéggjggg,EES
73909 4.0 , D, , S8 LA1s
The anim 733% DF|$2 = e 4ejeg@élé2@g
Thi ati] 739 CAT = RE S , 254
v Py onr 7333 BaTA s SAn =
e Q ~a 1z + Z
e i at it is diffic been displ 3392 B':;g %?11';%' 19%’9332; 13 .
spri a still ult to ayed f e e G H 31,4'12,’162“5'52 _
prites and ill photo CApIITE or the obvi 338 BATA 3‘32,48 125174 4202
effect of displays thgraph, The p[ht‘ effect of vious a0 ong St égg :i-éigg o
the b moveme min t rogram move- Ji62 BerR 22 32863353
ottom ent. Th urn to gi take waex Un B 125 3%
edito of th e fiv 0 give a s five 7403 O T geriae , @ yada
r : ¢ (S VEry 424 ATAR 67,2 = , 194
minor IC\LOtICehOW s?;gf o the)l?r;tes are Sh;\}» smooth tios BATA gg?’?fégéﬁJggé?‘gsv
ange 114 appe m al Tl oA =] ’1,1’ 25 4.,
eve ges a reac ar o on 7427 D DL 2007 d= 93 2
n better rcsulrte needed fclz"ht?-lrse iStOthl:gthe sprit% -—f.:gg 82$§ %3%*::?%%3)3@ G iy
n . n » 41 AT 214 , i , 19
, Increase th e animati ext; onl ?4%? DF‘TE S 26-15'3 : 4, 12% , =32
¢ nul-nb ton. FO y 7412 CATA 20> 3, 61"‘8 Bt
er of fi ran e e =hoa=te ol
fr 74 oa = PO B _"a,-.
ame is Beaa e esls 32
8. AT 118 a2 2.-23_,»155
A 53’652@5’}3%,2‘,’37
H i)Q'B-"a"gia?gel
c 3
I L1
I 2 5
| ﬁ
i

ANIMATION 2

How does the animation routine work? The answer is and critical about a sprite design if it is not moving across
simple for you, but not quite so simple for the the screen. If you print your sequence one after the other
programmer. What happens with ordinary sprites is that onto the same screen position in a continuous loop you
they are picked out of memory, printed on the screen and will get some idea about where changes need to be made
moved across it, according to the parameters passed to (if any) before the sequence is animated properly.
the routine. With animation the firstsprite is picked out of Secondly, you will be able to judge more accurately the
memory, displayed on the screen, and moved one position sort of speed at which the sequence should be animated.
(three pixels in the case of the sprites in this book). The Put a PAUSE statement between each print statement in
sprite is then deleted from the screen, and the next sprite the loop, starting with values of about 20. You will then be
in the sequence (the equivalent of the next frame in a film, able to see how much the animation routine needs to be
or next drawing in an animated cartoon) receives exactly slowed down to be most effective. In practice you should
the same treatment. It is printed on the screen, moved multiply the results you get from tests with the PAUSE
three pixels and then wiped off again. statements by a factor of between five and ten (that is,
The sequence continues until all the frames in the PAUSE 20 converts to a value for v of 100), simply to
sequence have been displayed, and then starts again. compensate for the fact that machine code is so much
Some applications are ideally suited to two frames (like faster than BASIC.
birds flying), but obviously the more frames in the It is a good idea to make use of the sprite print routine
sequence, the smoother the animation will be. For this for one more reason. Once a sprite is being animated with
reason it is best to choose to animate things which have a WILDLIFE DISPLAY: BIRD

regular and repetitive movement.

Transferring animation to the screen
Sooner or later you will want to start designing your own
animated characters. The technique recommended is to
begin by reproducing the movement you see, as simply
as possible. Remember that your eye will help by per-
suading you that things resemble real life, even though
they are not, Secondly, remember that the effectyou are
aiming for is a flowing movement. To achieve this it is
necessary to make sure that the last frame in the
sequence runs into the first, so that the sequence is
circular — after all this is the way it will be projected
onto the screen. One of the commonest errors made in
animation is to have an open-ended sequence, so that
when it is shown repeatedly on the screen the effect is
smooth during the sequence, but with ajerk attheend as
the sequence restarts.

You are fortunate enough to have the sprite editor and
the sprite print routine to help you with your designs. You
will find that designing on the screen is much easier than HH!
sitting down and working out animage withapenciland a Hi
grid. As a further aid, several animated sequences have i
been provided in the sprite design directory later in the H
book. Using the sprite editor, you can start a new sprite i
design from a previous one and so create smooth and
flowing animation sequences with little difficulty.

e

-r

Trying out the animation :
When you have designed an animation sequence you can HH
use the sprite print routine to preview your designs. You HEH : _ _
saw this idea used with a robot earlier in the book, but the it R Y
point of using the print routine here is twofold. SRR R R (!

The first point is that it is much easier to be analytical

T R TR S T |

:
i
'

YTt
T

ToT
= -
o

T

T

T
T
v
e
T
z
T
T
o
T
i
T
T
1
T

the animation routine it is impossible to stop it until the
distance | has been covered. This can take quite a while if
you have long pauses between each frame of the
sequence. However, with the sprite print routine you can
break into the program between single frames at any
point since the Spectrum is returning to BASIC between
each call to the print routine.

WILDLIFE PROGRAM

DEF FMN k(x,9,d,L,s,Ff,C,¥,n)

FN kK (12,1@,1,65,0
FMN k (285,10,0,865,

FN k(1@,140,1,865,
FN k(225,142 ,0,65

Once you are completely satisfied with the edited
results and the way that they work with the sprite print
routine then you should be sure to save the sprites
generated to tape, as a separate file. The reason for this is
that after all the effort you have spent getting the sprite
right it would be a pity to lose them through a clerical
error — Or a momentary power cut.

The wildlife program

The displays on this page are both produced by a single
program. Both displays use two states of animation, and
both move the animated sprite across the screen and
back again. The movement of the hare (shown in the
large display below) is simplified to two states — the
elongated position, and the familiar crouching pose.
Alternating between these two provides a reasonable
approximation of movement. The two bird sprite states,
shown in detail in the close-up photograph, show how
both the wings and body of the bird are made to move.
You may find the bird’s movement rather jerky. One
way of overcoming this, without increasing the number
of frames, would be to reduce the displacement of the
body by keeping it more central, rather than rising and
falling within the 24 by 21 frame with each animation
state.

B N T T e A G T T TR T

B A A LA LA AR AR AR A LA A A A A b A A A A b

S 1
A b AR LR AL LA L AL AL AL A
AR

SCREEN SCROLLING

All the movement you have seen so far relies on the idea SCROLLING THE SCREEN HORIZONTALLY
of you being stationary and something moving past you.
But how can you create the illusion of moving past
something which is stationary? The most effective way
of doing this is by scrolling the whole screen. There are
several ways of doing this; the simplest can be seen
whenever you use the BASIC command LIST, which
scrolls the screen upwards one character at a time.

The scroll routines
To create a more effective and gentle illusion of move-
ment you need a smoother scroll, which moves the
screen one pixel at a time. The two routines given here,
FNI and FNm, allow you to scroll the screen a pixel ata
time in either a horizontal or a vertical direction.
Note that when using the two scrolling routines on
this page, it is inadvisable to use an interrupt-driven
routine (such as the keyboard-controlled sprite routine,
SCREEN SCROLLING PROGRAM [SCROLLING THE SCREEN VERTICALLY

—-——
s T2
PR ol
L AL
28861010
[=lolal]

-y

aam

ZZZzZoaam

GrOmpGr

sbothatind 1]1)
a8
a8

DIDDOOr
TIIAIM- -~ M

FNh) at the same time. This is because the scrolling
routines are shifting the co-ordinates of screen memory
back and forth as the screen is scrolled, and an image is
displayed on the screen by interrupts being used to :
“refresh” the screen atregular intervals. Obviously, this E.
can cause problems if the screen display moves its
location in memory when the screen refresh routine
looks for it.

A similar difficulty arises when using PAUSE, since
this statement is also based on interrupts. Rather than
use PAUSE between two calls to ascroll routine, you are
advised to use a FOR...NEXT loop for a delaying effect.

Other scrolling effects

Several effects can be linked to scrolling the screen.
Both of the scroll routines have a wraparound effect,
which means that whatever goes off one edge of the

FNI
HORIZONTAL SCROLL ROUTINE

FNm
VERTICAL SCROLL ROUTINE

Start address 51500 Length 190 bytes B
‘gﬂ][at it does Scrolls the screen left or right a specified
Istance.

Using the routine Parameters d and | set the direction and
length of scroll. The routine has a wraparound effect, so that
whatever disappears off the left of the screen reappears on the
right, and vice versa.

ROUTINE PARAMETERS

d || specifies direction of scroll (0=left, 1=right)

Start address 50900 Length 215 bytes ,
dWhat it does Scrolls the screen a specified distance up or
own.

Using the routine Parameters are the same as for the hori-
zontal scroll routine. As before, a wraparound effect occurs
with the routine, but in this case when scrolling off the top and
bottom of the screen.

| ROUTINE PARAMETERS |
| DEF FNm(1.d)]

[1][specifies length of scroll (0-175) 5

|]
| DEF FNI (i,d) =]
e [spec'rﬁes length of scroll (0—255)]
| |
I |

ROUTINE LISTING

| d ILspecifies direction of scroll (O=up, 1=down) |
| ROUTINE LISTING |

)

S R oS N oY
e QLWL Q)

ET L=18%S EET

My
in
8
e
-

18
b

RERAD 2
LET zZ=Z +3

nd
-

1
L
a

b
m
1]l
AT
n==10on
+

H oI

r
m
_|
s
Z
-
H

L =INT G2 ik ¥

JO~OE00106
MN=RNLEG
L
O
x
m

RERD 3 IF a<*z THEN PRINT

IS
=

;281

(1 F
o

o Ll

- BLIWO&E D -
(]
l-llll-.

0]

- AN =)=

[
)

VR RN EN BN RN RN ENENEN |
R e e
o
I
_|
I
LT N TR (R S (V)

WWE WU WOLOWWELLWG0

[V]V RIA (Y]

m
SN
=
B

1w
NE M-

NBLNES DOOME N =G
o
I
_|
I
M k- =

RV AVEVIENEVEN]

7326 DRTAH

- Q- QN
0

-

I

N

=

M- T - 00
o~
Qe

L e e
N

AL ¢ R
MM e QIO U=
B OEQNN- -

Q

D

=1

D
NURPRPRENDE R
SRWRONN D ED
Bas 0 s DL

e PR
B PN AN B
- W
~ e W
oW

o e v e e o] @NRPGROO-
"
i

R RVEN]
WL
WL
ong
Q
D
o
D
FERUREONGE &
We WOds W N
PO ST T T |V SN Lo R [V
- (-

IR OGN T
W~~~ g~ N
MGG O
PRS- pOE
M- 000 e
SR -
P m-

)
B

-0
Mo~

S WL M-
nem
(NIRES

7.
~ M M-

~J
G
B
f}
Q
b
_'
D
TRy N (T
=
m

IR TR N VE (N RT]
= E QdE
Graendm-
~ 0 WEW
QUMM «

SO~
G~~~ DR

O L fpe
“ B
- QUM -)

screen then reappears on the opposite edge. Other
routines allow you to leave something stationary on the
screen while scrolling the rest — as used in popular
games like Defender and Pole Position. To do this
requires a much longer routine than those given here.

However, another type of scrolling effect has been
included in this book. This is a partial screen scroll, in
which the vertical dimension of the area scrolled is

7200 LET b=S@9@e: LET L=210: LET
Z=0: RESTORE 721@
72081 FOR i=@6 TO L-1 RERD a
7202 POKE (b+i) ,a LET zZ=Z+a
72@3 NEXT 1

7284 LET z=INT (((z-L) —INT (z-L)

7205 READ a: IF a<«<»>z THEN PRINT

oY
~

Gr

Q@
N T

wou- -
PER A

-~ @rPEQO@- N~ N ARG~ G- OO CUW- KA 1 - ~ Q- B U

B OONRRA- WRO-

C G -

= Qs MW NOW
AL -
= NG- UG-
s s -
R
BE W
s QOUNE- 80 PO EnJUJ M
] W
o] a

LU‘
WNRREO R0

~ ~

n n

W [

(Y 0]

v) [elelelvivlvlele]

D DIIDDDIDD

- 44444444

I DDDDDDID

BPUONROWOOWRIRWN prRrlRr@RORERE RUORRPRADTE WEEBRRPOADAN

- n-
No~J- ~ - BBN
[}

.

- PE
s POUWAE By v s TN B~ PURNENNREO-

8- ~ QRrguls - N

<
B U
n oW
®

s WPAOODWSI
MR = (e

B v = s 5 = =
(O] L A
Tl 1 N
RO 20
o
N B QP
o~ 0 NN
oW
w

By B WO
W o
~

~ Mo~
WOM P~
s NRReUNOE- 0
< - WO~ P 6~
O P By VUSRD N 0 ORr@RpRpe ~ PORUNORL-
EUTTAT ENENTT T
T

[

MNTICN
pUNRY
AN Y]

Rt R
O~ QROFE AR PG URRUNDEWY OO~ UprRRE

POOS ~ REOWS P OIDAR -~ O © POOAR: «

NONNORNANNNED NONDs O+ 000 OLNEEE- VNG - - 0l O - &
SrUpw
o

CREO s s N
s @ROON DWNS N0 DR B NG DN ~ ~ B0 N

G~ - ~ POy

8- O~

restricted to the size of the sprites used in this book. This
partial screen scroll routine (given on page 30) produces
what is in effect a window.

The program on this page shows scrolling at work.
You will notice that the routine has the effect of moving
ink attributes while leaving coloured areas unchanged.

WINDOWS 1

As you saw on pages 28-29, it is often more useful to be
able to scroll parts of the screen than to scroll all of it.
The window routine given here, FNn, enables you todo
this. With the routine, you can define an area of the
screen three characters deep of any width, and then
move a sprite across it. The routine enables you to make
sprites appear to move behind objects on the screen,
since they appear from outside the window and then dis-
appear the other side — rather like looking out of a
window and watching a train go past.

Repeating sprites

One additional feature of the window routine is that you
can repeat the sprite to give the effect of a chain of
sprites passing through the window. Alternatively, quite
spectacular effects can be achieved by having a variety
of sprites set up in the sprite table, like the sequence
produced by the cockpit program shown on this page.

Differences between sprites and windows
In many cases, you may find it more useful in your
programs to use this window routine than a standard
sprite routine. However, when using the routine, it is
important to remember that the routine is essentially a

scrolling, rather than a sprite routine, and that every-
thing contained in the window will be scrolled by the
routine, even if it was only part of the original back-
ground. To display a sprite moving against a static
background, or to move a sprite vertically, you must use
one of the sprite routines.

COCKPIT PROGRAM

1@ DEF FN n(x,49,Ll,n,d,r) =USR 4

: RANDOMIZE FN
PRAUSE SO

120 IF x=2 OR
RANDOMIZE FN n
NDOMIZE FN ni1l

SE_Se
13@ NEXT x
i14@ GO TO 1@0

R e 1) SR

FNn
WINDOW ROUTINE

ROUTINE LISTING]

Start address 49600 Length 290 bytes _
What it does Moves one or several sprites across a window of
specified dimension.

Using the routine The routine carries out a partial screen
scroll: everything contained within the area defined by the
parameters is scrolled.

Note that the start co-ordinates x,y represent the top left hand
corner of the sprite if the sprite moves right, but the top right-
hand corner of the sprite if the sprite moves left. The repeat
flag, r, can be used to repeat a sequence of sprites moving
across the window. Repeated sprites can be seen in the window
game program on pages 32-33.

ROUTINE PARAMETERS
DEF FNn(x,y,l,n,d,r)
Xy | [start coordinates (0<=x<=31, 0<=y<=21)
| [width of the window (0<=I<=31)

Hnumber of sprite to be scrolled (n=1-10)

n
d_|[specifies direction of scroll (O=right, 1=left)

|
I
|
|
|
|
|

r H repeat flag (1=switch off repeat, 0=repeat)

The cockpit program

The large display on this page shows windows at work.
From the interior of an aircraft cockpit, various air- and
spacecraft can be seen flying acrossin front of the plane;
the display shows one of these. What is particularly
effective is the way the sprites disappear behind the
centre pillar and reappear in the other window — an
effect which could not be achieved with the sprite
routines. This program, then, shows the real difference
between windows and sprites — using windows you can
make the sprites look as if they are behind a solid object
rather than in front of it.

How the program works
Line 10 of the program defines the window routine,
together with its assortment of parameters. As you can
see, three characters wide is a very effective width for
the routine. The program actually uses two windows,
three characters apart, with a barrier (the window
frame) in the middle of the screen. The eye, however, is
tricked into believing that the sprites are moving along
behind the windows when they are in fact disappearing,
stopping, and then reappearing as a result of a second
window call. Line 100 sets up aloop so that all ten sprites
can be made to appear across the window, one by one.
Line 120 deals with the sprites that are left facing —
thatis, all of the sprites which appear to fly from right to

LET b=49600@: LET L=28%: LET
@ .]

READ a

(b+i) ,a: LET z=z+a

NE X i
LET Z=INT (((Z-L) -INT

READ a: IF 2«3z THEN FPRINT
STOP

Lz L)

RV AV ENENEV RN |
ARk BRRREN R
JO~R088106
AR UNREE

7

0

%

B P OO R
B Be « O p
Qr- PN P
pON- ~ OOE
B Ue
(]

PONWNVYOO-
-~ QAR D
~ PRPRO- -

NREs N~ PR
~ 0N Ao
B BRRr gR
]
1]
~

4]

SN ENEVENENENENEN ENEN
RPRRPRRBRRERR
L

RPRRRRRRRRR
PUNKRE PONONRQNRLE

Q

D

_|

D
NEPEREREONDOE -
WO~ DR ~
GfpaO0QN0OWD-
v @ - B
namn- pe- Wk
-~ BNORE- 0-

o0 - 80 NOQ
~ e 0RO W
NANEE 1O

W~ 0O DAP
n
n

e s Nips @

N~ P ONPWYE WP BN~ B0 GUNNERDY-
s RUNE pR R

FROG ~ DAEO A~ OO0 O WP

VOWORREY 0B PO~ (IRPBE >~

- NBRAN- W

By (IR -~
RO+~ By NP B 00~ 0 06

L TN NNV A TEOIY N N R TR TITAN
4]
'S
=

1]
i)
P

fwwo- M~ N~ ONOVLBOE
m

naUN- A0~ PP NRNOROE- MR

CoRAGOON -
SC NAMO. OO
<~ QAN DN
“ - ORER
AUWD -
w~ o

anw

MM
(TSR o]
=

NN By e D0 QDRDOO- ©
TRNREARRON

B U QORENE POPR- O DR

NUREN- 0000
Al G0 RO 0
A TE S ST [y
= M- ONROOAED
R ARE TN
NNOEH- ~ ~ ~

[IWEN]

=
1]
p
]

oD
-~ -
REONo-
[
s

S P (VESR I (VRSN I T N
o
~

S ot SR =T~ B o

W W

soas e s QIUAE pRE- O - 0 -
(]

n
NN ITY Y, 1

UUWENNGEr M- N0 G-

N L L] AR

wmnm- QNGO
B o s
Qe B O
N P kP

s ~

0 n

W

Dhrs = QOO QR - WA
EE =
L

[TTiTAN
W boe ~ I~ MO8 -

M =~ N - O-

OUN- - Wr WO ~
i

W& =0
S il (VI
O

=

1]

&

RV R RN AN BN R B LN RV Y R R N RN EN AN ENEN ENEN TN BN EN ENEN IR ENEN BN BN BN ENEN BN N IEN EN BN ENEN ENENENENEN|
85"

REEPRPREE BPREREREPRRER RBRRRRRRREREE RRRBRREREBRRBPRRE BPRPPRRPRRR
aOOCOOO® NOANANNANNG pppppppppp QURRWOLDROWE RNV

NOOEONRE VONONAWNEE PONONRWNRE VONOURUNRE VONON
o] Q
D D
. =
D bi]
pUNUANOE PROFOOURFED OUNUANRRE ORRREREDUONE RFRUBPRANWR

RPUANNWE GOS0 M)

QU ROE- O
. e

8-
8-

seventh sprites which are right facing. If any other sprite
is to be used then it is first made to go across the right-
hand window, immediately followed by a call to make it
go across the left-hand window. A PAUSE statement
has been added to give you time to think about what just
flew in front of your eyes!

Line 130 behaves in the same way, but handles the
right facing sprites. Sprites 2, 5, and 7 and upwards
appear to face to theright, so these are made to fly across
the left-hand window first, immediately followed by a
second call to make them fly across the right-hand one.
Line 140 ends the loop, and finally line 150 starts the

| left. This works by testing for the second, fifth and whole process over again.

WINDOWS 2

The window routine given on this page has all the features
of the window routine, FNn, but with the added feature of
being interrupt-driven. Once switched on, it will keep
going until switched off again, regardless of just about
any BASIC command.

Your first priority with this routine must be to have a
way of switching it off. As for keyboard-controlled
sprites, this is done by a subroutine:

2000 DEF FN z(s)=USR 53100
2010 DEF FN x(s)=USR 49200
2020 RANDOMIZE FN z(1)
2030 RANDOMIZE FN z(0)
2040 RANDOMIZE FN x(0)
2050 RETURN

This subroutine is slightly more complicated than you
would expect, since it is used both to set up the routine and
to switch it off again. The routine also switches on the

WINDOW GAME PROGRAM

(s ,%X,9,Cc.n) =USR 531
ix,d,d,L,s,c,n) =USR
(s,x,9,L,n,d,rl)=uUsr
{s) =USR 492082

1 1 2

PRINT INK

ggéﬂTiINK 1; AT
[e

GO SUB S@e
RANMDOHIZE FH 0(1,4,2,24,3,0

n BRp PHI
=D o
OOfe0 (9660 6006

wo.

roLL?

RAMDOMIZE FN KHh (1,.,32,150.,0.,1
IF INKEY$=" " THEN GO TO 23

GO _TO 21e
LET xp=PEEK S5S3098
ET EEK S53@99
QND xXp <=44 THEMNW L

2
=1
e RND Xp<=92 THEN L
ET ng=2

42 AND xp{-152 THEN
LET ng=

99 ANC xp<~2®a THEMN
LET nga=4

st THEN LET ng=g+1
HEM LET sc=sc-1: G

I
nm~u~urmrun

—Hon

WAWATADND T
N

H+ﬁ+V+V"u-vt
W n

340
RAMDOMIZE FMN g (Xxp ,up-20,3,I
((yp-3)),@,1,1)
330 IF INKEYS<> ~ THEN GO TO 33

scrot L7

WINDOW GAME PROGRAM CONTD.

orP
PRINT PAPER 6; INK ©@,;RT 0.1

" RETURN

122@ RANDOC

keyboard-controlled sprite routine, since this sets up the
interrupt vector table required for the interrupt-driven
window routine to work correctly.

The interrupt-driven routine can be used together
with the other routines in this book to set up and run
sophisticated games. A simple game is given here; you
will be able to improve it with a little effort.

The window game

This game is based on the idea of shooting at moving
objects at the top of the screen. The game uses three
machine-code routines. An interrupt-driven window is

WINDOW GAME SPRITE MOVEMENT

v

| =
UFOs controlled
by window routine

LEAE R RN NI

S (i LR
arrows controlled ¢
by sprite-handling ®

routine °®

scanner controlled by
keyboard-controlled sprite routine

used to make flying saucers scroll across the top of the
screen, the keyboard-controlled sprite routine is used to
control your scanner, and the sprite-handling routine is
used to send arrows towards the saucers.

One of the best parts about writing a computer game
is in deciding the scenario for the game. In this case you
could imagine, for example, you are trapped on earth
with only a scanner satellite, and your crew aboard it

FNo
INTERRUPT-DRIVEN WINDOW ROUTINE

Start address 49200 Length 315 bytes _
ﬁ:ﬂ\t%r routines called Keyboard-controlled sprite routine
Whaf it does Moves either one or several sprites across a
window, and continues to operate whatever is happening in
BASIC.

Using the routine To use this routine you must first switch on
the keyboard routine, since this routine sets up tables of
interrupts where needed. The keyboard sprite routine can then
be switched off again, unless it is called in the program else-
where. Use s in the same way as it is used in the keyboard
controlled sprite routine.

Note that the start co-ordinates x,y of the window routine
represent the top left-hand corner of the sprite if the sprite
moves right and the top right-hand corner if it moves left.

| ROUTINE PARAMETERS]
J DEF FNo(s,x,y,l,n,d,r) |
s Hstopflag(1=st0p, O=normal) I
| X,y Hstart co-ordinates (0<=x<<=31, 0 <=y<=21) ’
[1 ||width of window (0<=I<=31) |
[n number of sprite to be scrolled (n=1-10) ‘
[d |[specifies direction of scroll (O=right, 1=left) \
[v |[repeat flag (1=switch off repeat, O=repeat) =]

have only a bow and arrow with which to repel invaders.
You can also use other sprites with the same background
to change the feel of the game. Using different sprites,
you could convert this game to a fairground shooting
gallery, for example.

Several refinements could be made to the program.
One sensible one would be to stop the keyboard sprite
from going too high up the screen. This could be done by
testing the current y co-ordinate of the sprite (stored at
location 53098), and starting the sprite again at the
bottom of the screen if a given limit is exceeded.

How the program works

Lines 10-20 define the three machine-code routines.
Two of these routines are interrupt-driven and will
therefore have to be switched off at some point. Lines 40
and 50 are here for this reason. These extra function
definitions enable you to switch the interrupt-driven
routines off and on by calling the routine with just one
parameter, without bothering about specifying all the
other parameters normally required.

Line 110 sets up some variables. The current score is
held as variable sc, and the previous score (before the
current arrow was fired) as psc. Variables g and ng are
used to record the position of the keyboard sprite under

| ROUTINE LISTING
T@@@ LET LbL=4320Q LET: L=310C LET
Z =0 RESTORE 7@1l@
79801 FOR i=@ TO L-1 REALC 3
7a@z2 POKE (bB+11 ,3 LET z=z +a
T@@3 NEXT 1 ;
74 LET z=INT Lz L =INT (Z 7L}
L)
ToRas RERAD a IF 3<+»Z2 THEHMN FRIMNT
B T STOF
7F@ala oATAHA =2 e B = = R
TA@ll DATRHR 4 125,254
TAal12 DARATAR @ L17 , 252
TA13 DATRH 2 7,283,258 ,207
7@a14 OATA 2 1,117,139 ,192
TA1S COATAHR 2 250, 207,14
TAO16 CRATA & 2,94
717 DRTA = S, 10,195
Tals CRARTA =, S, 188,195
7@als CRTH = 2Za,1 .Sa
7az2e CATA 17 .123,.9,126 ,230
@21 0ATAH 1.5 .1885,193.,.62
7Az22 DATAH 1.5 .1Q4,.1393.5@
TAZ23 DATA 109,192 ,S@, 11,193
7@A24 DATA 123 .230,24 ,246 ,64
7@2S DATA 1@3,123,23@,7 ,183
T2 DATHR 351,311,311 ,31 130
7@27 pATH 111,34 ,102,193.,251
TRA2S DATA 201,533,107 ,193,254
729 DATAH @.,40,5 ,53, 100
70380 DATA 193,133,61,111,535
7831 DRTARA 1@1,193,71,16,S
7@32 DATARA 285,242,192 ,6,3
7033 DATA 120.,5@,1881, 193,17
7234 DATA 110,195 .,42,182,193
7@3S DRATA 53S.,1a7,193,254 ,@
7836 DATA 40,3,17.,.152 , 193
7@37 DATA £,3.229.,197.1=20
738 OATA 254 .1,32.,4,6
TAa39 DARATA S$S.,24 ,2,6,8
742 CATA 197 .213.229,5&8,1a7
7841 DATA 193 .254 ,.0,.32.5
7042 DATA 205 .42 ,193,24 .3
7243 DATAH 205,771,193 ,225.,2@23
@44 OHTH 1= S5 .19 .16 ., 231
7045 DATR 193 ,225,62,32.,133
7@45 DATA 111.438.,4,6562.,38
7947 £0ATAH 132,103, 165,204, 1395
70348 DATAH 252,297,535, 109, 193
T@a4s DATA &61.50,18%9,19353,19=
70@S@ DATA 62.3,50,1@9,193
751 DATA S$8,1@3,193,17 ,683
752 DATHA @,71,33,72,213
7@53 DATAR 167,237 ,82,2%5,16
7854 DATA 253.,67.17,1168,193
7@5E DATAHR S2,104 ,193,254,0
78568 DATA 4@,1,126,13 ,3S
7RS7 DATA 19,168,243 ,55, 106
758 OATA 193,254 .0 ,200,62
759 DATA 2,50 .,.1Q4 ,193,2@1
7068 DATA 167 .6,3.215,26
7061 DRTR 31,138,245 ,562,21
762 DATA 131.395.,45.1,2e
7AES CATA 241,166,242 ,209,58
754 DATA laa, 1¢ 71,283,390
TOES 0CATA 35,16 1 ,;20% E67
TASE DHTH 213.8 =25, 23
7Fasv? DATAR 15,245,123 ,214 ,21
TRAES DATAH 25,43 .1 .21 ,241 -
TREDQ DATAH 15 .242 ,20032 ,52,100
TaTvTe ORATA 19 TL., 202,28 ,43
TAT1I DATA 1% =l =8k S 4
TAT2 DATA 1S54 ,0.@ ,8 a8

the gaps, with ng defining the gap under which the sprite
is resting, and g the previous gap. These variables can
have values between 1 and 4 (since there are four gaps
through which you can fire), and these variables are
used to restrict your firing. The program compares
variables g and ng in line 310, and if they are the same,
the fire sequence is bypassed. At the beginning of the
game, itis important that g and ng have different values,
so that the fire sequence is not disallowed initially. Thus,
g is set at first to -1, a value which ng can never have.

WINDOWS 3

Lines 120 to 170 of the program draw the background,
with a loop used to create the sides and top, and line 170
creating the gaps through which you can fire. Line 180
calls the score subroutine at line 500.

Line 190 starts off the interrupt-driven window,
though it does not begin working until the interrupt
vector table has been set up by the keyboard-controlled
sprite routine. Because this is the very next statement you
do not see any delay. but it is important to remember that
the interrupt-driven window will not function unless this
table is in place. The window routine will continue to
scroll a sprite across the window until something occurs to
stop it.

Lines 210-220 form the main program loop, which
simply waits for the space key (the signal to fire) to be
pressed, since everything else at this stage is interrupt-
controlled. The controlling keys for the keyboard sprite
must of course be ignored, as their function is handled by
the machine-code routine.

Lines 230 and 240 find out the current position of the
keyboard-controlled sprite. Given the position of the
sprite, and the gaps in the barrier, the program can
decide whether a shot fired would go through a gap.

Lines 250-280 work in the same way for each of the

four gaps. First a test is made to see whether the keyboard
sprite is under the current gap. If it is then the gap flag
(ng) is set to the value of the current gap. In addition the
current score is incremented by two — not one as you
might expect. Line 290 normalizes the score by taking
one away again. Note that if the keyboard sprite is not
under one of the gaps then the score is now one less than it
was before the shot was fired.

Line 300 looks at the past score compared with the
present score plus 1, and makes the gap variables
different from their previous values, if the sprite was not
under a gap. Line 310 deducts another one from the score
if the gap is the same as the last gap which was fired at. It
also skips the arrow-firing sequence, since arrows are only
fired if the gap is a new one.

Line 280 fires an arrow by calling the sprite routine.
Line 340 makes sure that the score cannot become
negative, however bad the player. Line 350 adjusts the
values of the previous score and the old gap value, ready
for the next time round the loop. Line 360 prints the new
score.

Finally, lines 1000-1020 switch off the interrupt-
driven routines. To break out of the program, key GO
TO 1000 to stop the routines.

[

i d‘f s o?‘--'h - -J‘-t- i

= CEE ™ " " (]

USING THE SPRITE DIRECTORY

While using this book, you will have found that
producing good sprite designs is not always easy. To
overcome this problem, you can turn to the sprite
directory, which contains over 200 sprite designs. These
sprites can either be copied directly in your own
programs, or used as a model on which to base your own
ideas. Each entry in the directory includes the DATA
for the sprite and shows the sprite on the screen.

Keying in the sprites
A sprite from the directory can be keyed in by using the

EXAMPLES OF SPRITES

r JOKER

0,60,0,0,195,224,1
64,48,2,36,76,4,31
76,4,31,224,12,223,144
29,57,136,62,16,132,126
68,130,126,170,226,118,0
94,100,0,67,68,40,67
196,16,64,194,130,128,2
108,128,1,17,0,0,130
0,0,68,0,0,56,0

following loading program (add DATA from line 100):

10 INPUT “Sprite number (1-10)”,a
20 IF a0 OR 010 THEN GO TO 10
30 LET b=54600+((a-1)%63)

40 FOR i=b TO b+20

50 READ n : POKE i,n

60 READ n : POKE i+21,n

70 READ n : POKE i+42,n

80 NEXT i

100 DATA 0,0,0,0,etc

The routine loads the sprite in the DATA statements
into the sprite location specified by you at the start of
this BASIC program. The routine requires you to key in
all 63 sprite DATA items, even if some of them are
zero.The sprite table can easily be corrupted by wrong
DATA being entered, but the easiest way to correct this
is by editing the sprite image with the sprite editor.

What the directory contains

The directory groups various kinds of sprite under
theme headings. Most of the sprites are designed to be
used individually, but the directory also contains some
double sprites, which are used in conjunction with each
other. In addition, a number of animation sequences of
sprites in two or three different positions are included.
The sprites can be entered either by keying in the DATA
numbers provided, or simply by copying the drawing
using the sprite editor. The sprite editor can also be used
to increase the number of frames in an animation
sequence, up to a maximum of ten designs (the
maximum number of sprites that can be held in the
buffer at one time).

PACIFIC-TYPE LOCO | [

PACIFIC-TYPE LOCO ‘

0,0,0,0,128,24,252
160,126,126,160,255,75,255
255,75,255,255, 75,255,255
75,0,0,126,255,255,127
0,0,98,255,255,127,255
255,127,220,14,127,162,17
255,65,32,24,128,195,36
136,196,90,159,255,90,65
32,36,34,17,24,28,14

224,255,255,240,255,255,232
1,255,232,255,255,232,1
255,240,255,255,224,255,255
224,7,63,240,8,159,217
144,255,255,255,47,237,98
35,146,252,43,109,144,75
109,8,132,146,7,3,12

HOW SPRITES ARE SHOWN
R Thfe d.lagra.n"ls shown‘Ll]ustrare how
15,64,9,255,224,255,255 sprites are displayed in the

directory. Each sprite is shown in
the top left-hand corner as it
appears on the screen, and in the
large display below as it can be
keyedin ona grid. The 63 DATA
numbers which are POKEd into

memory are shown on the top right

of each sprite display.

Note that double sprites are

shown as two separate sprites;

obviously, the sprites will appear

joined when used with the double

horizontal sprite routine (FNi).

BUG

MICRO-MITE

0,129,0,0,66,0,0
36,0,63,24,252,33,255
132,76,195,50,255,255,255
255,60,255,127,255,254.,42
165,84,42,165,84,127,255
254,63,255,252,31,255,248
1,255,128,2,255,64,4
0,32,8,0,16,16,0
¢,80,0,10,188,0,61

2,0,64,129,0,129,64
153,2,32,126,4,16,195
8,9,24,144,15,231,240
159,66,249,176,189,13,102
165,102,98,165,70,176,189
13,153,66,153,14,129,112
7.102,224,8,102,16,16
153,8,32,0,4,64,0
2,224,0,7,224,0,7

6,0,96,1,0,128,0
129,0,0,66,0,0,25%
0,1,219,128,3,255,192
7,189,224,7,90,224,6
60,96,63,126,252,103,231
230,69,153,162,196,25%,35
12,36,48,8,66,16,56
66,28,96,102,6,0,0
0,0,0,0,0/;0,0

TRIPOD

HOPPER

HOPPER

80,66,0,80,36,96,32
24,144,35,126,142,36,219
1,73,255,129,75,255,222
40,255,32,36,60,36,36
126,58,68,255,1,137,255
130,147,153,204,163,12,194
68,4,34,8,2,16,16
1,8,32,2,132,64,0
2,224,0,7,160.0,5

7,0,112,5,127,80,3
2%5,208,15,190,248,95,255
253,111,0,123,127,255,255
1%1.255,251.55,2%5.246,59
255,238,28,0,28,6,193
176,2,193,160,126,193,191
0,193,128,17,128,196,47
0,122,0,0,0,0,0
0,0,0,0,0,0,0

7,0,112,5,127,80,5

255 ,208,15,190,248,95,255
253,111,34,123,124,34,31
108,34,27,54,34,54,59
0,110,28,200,220,6,73
48,2,235,160,126,213,191
0,201,128,17,136,196,47
8,122,0,20,%,0,34
,0,65%,0,0,65,0

'ROBOT

ROBOT

ROBOT

3,60,16,4,255,32,3
255,192,7,0,224,7,0
224,3,255,192,0,60.0
115,255,206,118,152,110,63
151,188,63,247,188,55,247
172,55,119,172,55,248,108
51,255,204,97,66,134,131
231,193,147,231,201,101,50
166,4,24,32,7,255,224

128,240,0,131,252,0,143
255,0,159,224,0,159,224
n,143,255,0,128,240,0
207,255,0,95,255,150,122
0,249,58,0,25,57,255
242,28,0,16,31,255,240
15,255,224,1,254,0,2
1,0,15,255,224,27,109
176,27,109,176,15,255,224

0,126,0,0,219,0,0
219,0,0,126,0,0,0
0,2,255,64,7,255,224
2,129,64,2,165,64,2
255,64,2,165,64,0,255
0,2,0,64,2,231,64
0,231,0,1,231,128,0
165,0,0,231,0,0,0
0,0,231,0,0,231,0

SQUAROID

HUMANOID

“"DALEK™

192,34,3,112,65,14,16
128,136,16,65,8,12,34
24,30,20,56,55,255,236
99,255,19%8,227,165,199,119
165,238,30,255,120,119,165
238,227,165,199,99,255,198
55,255,226,30,165,120,12
0,48,16,0,8,16,0
8,112,0,14,192,0,3

113,199,28,122,170,188,121

. 69,60,98,40,140,97,199
12,111,239,236,127,255,252
127,255,252,27,255,176,2
238,128,1,1,0,0,254
0,0,130,0,0,254,0
1,255,0,1,239,0,3
199,128,3,199,128,7,131
192,7,1,192,15,131,224

5

0,16,0,0,56,0,0
68,16,0,131,232,128,254
16,65,109,0,96,254,11
145,1,20,8,254,36,13
1,96,7,255,192,3,255
128,1,171,0,0,170,0
1,85,0,1,85,0,2
170,128,5,85,64,10,170
160,21,255,248,31, 255, 248

SEACEEIY

INSECTOID

SEA MONSTER

0,0,0,0,0,0,0
0,0,128,0,2,96,0
12,24,68,48,70,238,196
49,41,24,11,109,160,34
108,136,27,109,176,3,109
128,1,171,0,14,238,224
17,85,16,18,16,144,18
16,144,18,40,144,36,0
72,0,0,0,0,0,0

1,0,128,0,129,0,0
126,0,0,219,0,0,36
0,0,24,0,3,255,192
7,255,224,44,0,52,25

 255,152,17,255,136,32,0
4,0,255,0,0,255,0
0,0,0,0,126,0,0

4 126,0,0,0,0,0,60
0,0,24,0,0,0,0

33,18,8,18,57,20,84
124,132,178,254,136,130,254
68,69,255,66,69,255,33
41,255,65,36,254,70,36
124,72,20,84,144,83,125
32,72,254,192,135,255,1
129,40,194,78,70,33,144
129,17,167,32,133,168,72
105,73,132,37,6,3,194

ANDROID

JELLY MONSTER

HYDRA MAN

0,248,0,32,248,0,33
172,0,253,252,0,188,136
0,140,248,0,205,172,0
15,39,129,15,39,144,1
173,144,1,221,252,1,253
252,1,252,4,1,252,4
1,252,12,1,140,0,3
6,0,7,7,0,12,1
128,24,0,192,16,0,64

128,60,6,128,189,9,65
255,144,35,255,204,71,24
226,143,219,241,143,255,243
71,255,228,111,255,248,19
52,192,2,66,32,12,66
64,16,129,32,32,70,16
24,68,16,9,35,8,50
192,132,66,2,68,129,5
198,129,8,1,129,4,1

12,0,48,37,0,164,22
36,104,12,90,48,4,60
32,5,36,160,7,219,224
0,66,0,2,126,64,7
255,224,120,60,30,144,24
9,48,60,12,72,126,18
96,231,6,1,195,128,1
129,128,0,195,0,0,66
0,1,66,128,1,195,128

PLANETARY PROBE SPACE FIGHTER

0,0,0,128,0,1,243 4 1,255,224,0,3,128,0
24,207,28,165,56,4,189 3rl23.2,3,l92.0p3 N
32,3,255,192,0,231,0 ' 224,0,7,255,0,7,255

3,231,192,4,189,32,28 5 0,3,240,48,28,8,127
189,56,243,24,207,128,0 $,13 L 227,252,255,239,252,137,227

1,0,0,0,0,0,0 5 1 252,48,28,8,0,3,240
255,255,2 H 0,7,255,0,7,255,0
60,8,16,66,8,56,129 3,224,0,3,192,0,3
28,56,0,28,56,0,28 128,0,3,128,1,2355,224

SPACE FIGHTER EXCURSION VEHICLE EXCURSION VEHICLE

0,0,12,0,0,24,0 [EETsen 5 0,60,0,0,66,0,0 0,24,0,0,24,0,0
0,48,0,1,204,0,0 : 153,0,1,126,128,59,153 24,0,0,24,0,0,24
112,0,0,224,0,64,225 i 220,127,24,254,255,255,255 0,0,60,0,0,102,0
2,193,63,2,247,249,63 i 199,24,227,1987,153,163,198 0,66,0,1,90,128,0
234,52,242.6,60,62,234 5 . H 126,99,127,255,254,46,255 231,0,1,66,128,2,90
52,2,247,249,2,193,63 . 2 i 116,21,126,168,14,60,112 64,15,255,240,25,231,152
0,64,225,0,0,224,0 . B 12,0,48,4,0,32,14 - 16,231,8,17,255,136,27
0,112,0,1,204,0,0 | 0,112,10,0,80,59,129 255,216,6,36,96,12,102
48,0,0,24,0,0,12 220,59,129,220,0,0,0 : 48,56,102,28,112,0,14

INTERGALACTIC CRUISER INTERGALACTIC CRUISER COMMAND SHIP

192,0,3,192,0,3,192 56,0,28,48,0,12,112
0,3,192,0,3,192,0 0,14,96,0,6,224,0
3,192,24,3,224,60,7 7,192,24,3,224,60,7
224,126,7,227,165,199%,255 224,126,7,227,165,19%,255
219,255,255,165,255,255,165 219,255,255,165,255,255,165 79,229,0,143,247,255,255
255,227,219,199,224,126,7 255,227,2192,199,224,126,7 245,23%,255,231,120,15,253
224,60,7,192,24,3,192 224,60,7,192,24,3,224 127,255,255,0,112,3,0
0,3,19%2,0,3,192,0 0,7,%96,0,6,112,0 127,254,0,63,252,0,31
3,192,0,3,192,0,3 14,48,0,12,56,0,28 252,0,15,252,0,7,248

TRIBAL SPECTRE

SPOOKY SPIDER

16,0,4,8,8,8,4
28,16,2,62,32,1,127
64,0,221,128,1,235,192
3,0,96,7,107,112,15
107,120,127,136,255,13,255
216,4,0,16,3,255,224
3,192,224,7,255,240,14
255,184,12,127,24,16,62
4,32,2R,2,80,8,5

9,0,0,31,0,124,32
128,130,32,128,130,32,65
2,39,85,114,40,201,138
40,127,16,40,221,138,41
127,74,42,34,42,42,34
42,42,34,42,42,34,42
42,20,42,42,0,42,74
0,41,74,0,41,82,0
37,82,0,37,84,0,21

,3,0,192,0
,66,0,0,36

255,255,127,255,254,31, 255
248,2,0,64,7,0,224
8,129,16,0,0,0,0
0,0,6,0,0,0,0
0,0,0,0,0,0,0

LT

VAMPIRE

VAMPIRE

1,64,1,0
128,0,255,0,63,255,252
127,255,254,255,255,255,255
195,255,255,36,255,111,129
246,15,195,240,63,231,252
247,102,239,231,36,231,203
129,211,217,129,155,152,195
25,144,0,9,144,0,9

1,1,0,2,2,64.4
127,128,12,255,192,28,113
192,30,24,128,31,112,192
63,248,0,63,252,112,63
254,208,62,243,128,60,225
0,56,240,0,24,248,0
24,108,0,24,56,0,8
56,0,12,108,0,5,198
0,4,133,0,5,133,0

2,0,64,4,129,32,12
66,48,12,36,48,28,90
56,30,36,120,30,36,120
62,60,124,63,24,252,63
189,252,63,255,252,63,255
252,62,60,124,62,60,124
62,255,124,62,165,124,30
36,120,28,102,56,24,0
24,8,0,16,8,0,16

1 1 O S

GHOUL

GHOUL

GHOUL

8,0,16,8,0,16,4
0,32,2,0,64,1,24
123,0,189,0,0,126,0
0,25%,0,1,153,128,3
255,192,6,219,596,14,2192
112,28,0,56,62,219,124
126,219,126,255,255,255,0
102,0,0,195,0,1,129
128,0,231,0,0,36,0

0,0,0,0,126,0,120
255,30,253,255,191,203, 255
211,198,255,99,206,126,115
204,60,51,204,189,51,204
165,51,204,36,51,198,102
99,231,255,231,115,153,206
169,153,149,169,129,149,137
129,145,137,153,145,80,219
10,0,126,0,0,60,0

0,0,0,0,0,0,255
255,254,95,255,244,47,255
232,31,255,240,7,57,192
7,87,192,31,215,240,127
255,252,97,85,12,193,85
6,197,131,70,104,130,44
114,198,156,28,68,112,0
108,0,1,171,0,15,57
224,18,16,144,36,0,72

HELICOPTER

HIGH-ALTITUDE JET

2,5,129,160,7

192,3,0,192,3,255,192
29,153,184,23,153,232,28
219,56,2,255,54,3,195
192,3,129,192,3,129,192

0,0,0,0,0,0,0
96,0,255,255,248,0,96
©,3,240,18,5,252,14
8,255,252,16,167,226,63
167,1,48,255,0,49,255
0,15,254,0,4,16,0
63,254,0,0,0,0,0
¢,0,0,0,0,0,0
0,0,0,0,0,0,0

0,254,0,0,112,0,0
72,0,0,124,0,0,66
0,240,127,0,96,127,128
113,255,224,127,193,156,135
255,207,127,193,156,113,255
224,96,127,128,240,127,0
0,66,0,0,124,0,0
72,0,0,112,0,0,254
0,0,0,0,0,0,0

BIPLANE

BIPLANE

0,36,0,255,255,255,255
255,255,36,0,36,38,24
100,35,126,196,33,231,132
33,255,4,33,255,4,255
255,255,255,195,255,1,126
128,1,24,128,1,36,128
3,66,192,3,129,192,3
0,192,2,0,64,2,0
64,0,0,0,0,0,0

0,0,0,255,192,0,255
128,0,51,0,0,51,0
0,25,128,0,103,152,3
243,63,135,243,63,255,121
159,226,112,7,252,48,15
132,127,255,0,28,64,0
4,128,0,5,0,0,14
c,0,18,0,0,18,0
0,12,0,0,0,0,0

0,12,0,0,14,0,0
15,0,0,15,9,0,15
¢,0,15,12,0,15,14
0,15,14,63,127,254,126
79,254,254,203,241,126,79
254,63,127,254.,0,15,14
0,15,14,0,15,12,0
15,0,0,15,0,0,15
0,0,15,0,0,12,0

SEAPLANE

SEAPLANE

SEAPLANE

0,0,0,0,0,0,0
0,0,0,0,0,64,0
12,64,0,30,64,56,30
64,92,30,127,255,254,245
127,254,127,255,252,95,255
240,65,8,0,65,8,0
66,4,0,2,4,0,4
2,0,4,2,0,127,255
248,127,255,240,63,255,224

OO OO

+255,224
4,60,112,255

14,102,112,4,60
0,0,24,0

0,32,4

0,16,0,0,56,0,0
40,0,3,41,128,0,56
0,3,57,128,255,255,254
251,125,190,59,125,184,15
255,224,3,57,128,3,57
128,3,57,128,1,17,0
1,1,0,1,1,0,1
1,0,1,1,0,1,1
0,1,255,0,1,255,0

|

O

STUNT PLANE JET TRAINER

] 32,0,0,248,0,0,252 0,0,0,0,0,0,128
0,0,254,0,0,126,0 0,0,192,0,0,160,0
0,127,0,0,127,0,0 : 0,208,0,0,168,0,0
127,128,0,127,224,0,1 212,0,0,170,7,192,213

8 240,240,127,255,143,1,255 . 3 254,32,255,255,16,63,255

124,121,62,79,105,247,203 | . 255,127,255,255,1,255,255 200,67,3,252,64,240,62

8,255,136,8,156,136,29 g i 127,255,128,1,128,0,127 63,236,1,0,19,254,0
136,220,21,136,212,28,28 : Eeeetmwesi 0,0,0,0,0,0,0 : 16,4,0,16,4,0,48
28,0,28,0,0,20,0 : I il ¢,0,0,0,0,0,0 4,0,48,2,0,0,0

HELICOPTER AIRSHIP

0,0,0,255,255,254,0
16,0,0,16,0,0,16
0,0,56,0,4,56,64 8 3,31,255
7,199,192,4,124,64,0 2,18,10 127,255,255,255,255,240,127
254,0,1,17,0,1,17 9,145,98,254 255,25%,63,255,255,31,255
0,3,17,128,5,17,64 * ' 231,15,255,3,0,0,0
29,147,112,28,254,112,2 0,56,0,0,253,0,0
0,128,0,0,0,2,0 125,0,0,0,0,0,0
128,2,0,128,0,0,0 0,0,0,0,0,0,0

TRANSPORTER

0,16,0,0,56,0,0
56,0,0,56,0,0,56

37 - 0,0,56,0,4,186,64

7,127 4,186,64,251,125,190,251

255,126,195 : J 125,190,63,255,248,1,255 119,248,14,151,255,254,147
,192,0 . 0,0,56,0,0,56,0 285,255,61,240,255,195,128
o6 0,56,0,0,56,0,0 63,254,0,7,252,0,0
56,0,0,238,0,0,238 0,0,0,0,0,0,0
0,0,108,0,0,16,0 0,0,0,0,0,0,0

v
v
B

o

OOV NOO
~ hada

SHUTTLE __J

55,128,1
+3,193,224,1,221
,0,255,128,0,221,128
7,182,240,127,221, 255,1
255,1592,2,8,32,2,20
32,7,0,112,5,0,80

8.0
0,0
0,8
0,2
3

"

,124

40,7
255,244,31,255,252,115,255
244,255,255,242,255,255,254
127,0,126,63,255,242,24
€0,28,8,4,0,8,4
0,24,6,0,24,6,0

0,0,240,0,1,240,0
3,248,0,7,248,0,31
248,0,127,248,1,255,198
14,0,62,63,255,254,119
255,254,247,255,193,119,255
254,63,255,254,14,0,62
1,255,198,0,127,248,0
31,248,0,7,248,0,3
248,0,1,240,0,0,240

LUNAR MODULE

LUNAR LANDER

VIKING |

0,0,0,0,0,0,0
0,0,3,255,192,5,245
192,13,245,192,29,245,195
61,245,207,125,245,223,253
255,255,229,255,255,253, 255
255,125,255,223,61,255,207
29,255,195,13,255,192,5
62,64,3,255,192,0,0
9.0,0,0,0,0,0

24,0,12,24,0,13
.0,3,255%,192,1,255
3,255,128,3,255,128
1,255,192,7,255,224,7
255,240,15,255,248,7,251
248,3,248,240,0,60,128
15,255,248,19,255,200,43
255,212,39,255,228,123,255
222,64,0,2,224,0,7

0,
60
0,
1

0,128,0,0,192,0,0
196,0,3,244,0,0,212
0,0,212,0,0,148,0
0,21,0,30,149,120,34
151,68,67,255,194,131,24
193,131,36,193,125,231,190
57,255,156,3,255,192,4
219,32,11,0,208,28,0
56,32,0,4,248,0,31

SKYLAB

SKYLAB

VENERA

128,24,1,96,60,6,24
60,24,6,60,96,1,153
128,0,60,0,0,126,0
0,74,0,0,126,0,255
215,255,128,86,1,128,126
1,255,255,255,128,126,1
128,70,1,255,255,255,0
126,0,0,126,0,0,24
0,0,60,0,0,126,0

4,68,32,10,34,32,25
18,32,36,137,64,18,70
238,9,33,240,4,205,224
2,223,208,1,63,44,0
127,147,0,255,136,1,255
4,0,254,194,1,253,33
7,250,144,3,210,72,1
129,36,0,128,146,0,0
76,0,0,40,0,0,16

0,0,2,0,0,4,0
0,12,0,0,24,0,0
16,255,248,32,146,72,64
74,144,128,42,161,0,31
194,0,15,132,0,1,63
0,7,243,160,13,191,156
29,191,234,97,181,235,29
181,234,13,181,156,7,245
128,0,63,32,15,255,224

CARRIAGE

0,60,0,0,24,0,31
255,248,33,0,132,127,255
254,36,36,36,36,36,36
36,36,36,36,36,36,36
36,36,36,36,36,63,255
252,55,247,244,60,60,60
63,255,252,191,255,253,255
255,255,191,255,253,19,36
200,19,36,200,12,195,438

216,0,0,80,0,0,80
0,0,80,32,128,82,33
192,87,35,128,95,247,0
95,254,0,88,41,0,95
213,224,95,173,224,95,93
224,111,189,224,17,93,224
34,45,224,228,53,231,34
40,56,32,38,68,32,32
84,16,64,68,15,128,56

0,0,0,0,0,0,0
1,255,1,131,254,15,255
254,31,255,254,63,255,254
48,0,2,47,255,254,48
0,2,47,255,254,63,255
254,63,255,254,191, 255,254
255,255,255,191,255,254,9
36,144,22,219,104,22,219
104,9,36,144,6,24,96

4-4-0 LOCO

0,112,0,0,118,0,0
118,128,0,0,0,0,0
224,127,1,240,63,9,240
9,28,224,9,92,224,9
255,254,127,255,254,255,255
255,255,255,255,255,255,254
231,159,254,216,96,0,164
151,255,91,105,155,91,106
101,36,146,101,24,97,152

TENDER

0,0,96,0,0,240,2 :
32,240,255,113,248,127,113
248,73,112,240,73,244,96
73,255,240,73,255,240,127
225,248,127,255,252,65,1
248,255,255,240,255,255, 240
156,59,224,34,68,240,95
226,24,73,146,108,65,130
150,34,68,151,28,56,96

0,7,128,0,11,64,0
23,160,1,28,224,5,2
224,15,151,160,31,203,64
127,255,254,127,255,254,98
36,70,98,36,70,127,255
254,96,0,6,127,255,254
110,60,118,255,255,255,32
129,4,36,129,36,32,129
4,17,0,136,14,0,112

0,0,0,0,128,24,252
160,126,126,160,255,75,255
255,75,255,255,75,255,255
75,0,0,126,255,255,127
0,0,98,3255,255,127,255
255,127,220,14,127,162,17
255,65,32,24,128,195,36
136,196,90,159,255,90,65
32,36,34,17,24,28,14

PACIFIC-TYPE LOCO

127,255,255,33,8,586,63
255,254,51,156,230,33,3
66,33,8,66,33,8,66
33,8,66,115,156,231,51
156,230,51,156,230,51,156
230,51,156,23 15 30
63,255,254,255,255,255,7
0,112,8,128,136,10,128
168,8,128,136,7,0,112

0,31,123,0,15,0,0
15,64,9,255,224,255,255
224,255,255,240,255,255,232
1,255,232,255,255,232,1
255,240,255,255,224, 255,255
224,7,63,240,8,159,217
144,255,255,255,47,237,98
35,146,252,43,109,144,75
109,8,132,146,7,3,12

CARS, TRUCKS AND MOTORBIKES

VETERAN

|

VETERAN _1

SALOON _1

0,15,254,1,255,254,0
34,2,0,18,2,0,18
6,0,10,14,24,10,12
56,102,12,48,70,12,8
131,252,8,135,254,17,15
254,17,15,194,58,15,220
68,15,162,170,30,85,146
28,73,147,248,73,171,240
85,68,0,34,56,0,28°

1,255,254,0,129,254,0
129,198,0,128,198,0,160
198,0,144,198,0,168,254
32,192,254,63,255,134,61
123,132,61,176,132,61,129
140,55,129,24,123,129,62
5,131,97,50,130,204,72
255,146,180,255,173,180,0
45,72,0,18,48,0,12

3,25%5,192,7,255,224,8
0,16,8,0,16,16,255
8,17,129,136,63,255,252
127,255,254,127,0,254,204
126,51,133,189,161,133,255
161,204,0,51,255,255,255
128,0,1,230,0,103,254
0,127,255,255,255,240,0
15,240,0,15,240,0,15

MOTORBIKE

TOURER

0,224,0,1,192,0,1
64,0,0,160,0,1,194
0,1,224,0,1,243,0
1,223,224,1,128,160,3
135,96,19,255,192,125,255
64,50,245,32,109,55,60
94,185,114,49,46,211,33
106,153,127,254,153,23,0
195,51,0,102,30,0,60

0,0,224,0,9,240,0
4,225,0,3,225,0,13
224,0,1,250,0,193,253
1,254,235,3,255,115.4
31,245,11,239,158,23,247
250,119,251 ,254,239,251,128
239,27,255,142,172,0,254
77,255,126,175,255,3,24
0,1,240,0,0,224,0

0,0,0,0,0,0,128
0,0,128,0,0,192,0
0,255,240,0,255,255,248
255,255,196,171,255,254,171
254,14,171,249,244,171,231
250,255,151,250,252,111,254
227,223,31,31,222,175,255
190,76,255,254,172,0,7
28,0,3,248,0,1,240

FORKLIFT

255,255,255,255,255,255,255
255,255,255,255,255,255,255
255,255,255,255,255,255,255
255,25%,255,255,255,255,255
255,255,255,255,255,255,255
255,235,255,255,255,255, 253
255,255,255,152,255,25,164
2,36,90,6,91,90,0
91,36,0,36,24,0,24

0,0,0,0,0,0,0
560,0,8,16,0,19,254
0,11,252,0,18,68,0
10,68,0,19,194,0,11
195,194,19,255,254,11,219
250,19,219,250,191,219,250
103,195,250,91,255,186,165
255,75,219,128,181,219,254
181,36,0,72,24,0,48

0,0,192,0,0,192,0
0,192,1,254,192,1,2
192,1,50,192,1,50,192
1,98,192,1,122,192,1
118,192,125,114,192,255,254
192,231,242,223,219,238,217
189,222,213,230,179,211,218
173,213,218,173,217, 231,243
213,60,30,211,24,12,63

CARS, TRUCKS AND MOTORBIKES

SPORTS SALOON

FORMULA 1 I

223,15,0,47,31,255,240
31,249,255,127,240,255,99
246,128,63,240,255,0,25
128,0,31,128,0,15,0

248,0,239,255,224,47,255
252,238,0,12,12,127,252
252,124,252,255,248,124,0
27,126,255,248,96,0,28
192,0,15,

192,0,7,128

imEmEEmEEES e

63,128,0,63,128,0,63
188,248,255,190,250,255,190
250,228,127, 34,229,225,174
255,254 ,255,239,255,127,245
83,191,255,211,191,245,83
191,239,255,127,255,254,255
229,225,174,228,127,34,255
190,250,255,190,250,63,188
248,63,128,0,63,128,0

[, LONDON BUS

TRACTOR

127,255,255,255,255,255,196
33,19,196,33,19,196,33
19,255,255,255,234,170,191
213,85,95,255,255,242,196
33,18,196,33,18,196,33
18,196,33,30,255,255,255
252,255,207,251,127,183, 244
191,75,251,127,183,251,127
183,4,128,72,3,0,48

0,0,0,7,0,0,66
24,0,194,111,0,34,237
0,19,53,128,10,242,192
7,191,96,30,185,224,46
255,176,127,255,248,209,136
136,123,223,248,85,168,136
91,216,138,254,127,255,133
160,0,133,160,0,6,96
0,3,192,0,1,128,0

H

127,249,0,68,49,0,68
51,128,36,19,128,37,19
128,36,147,128,60,177,32
63,255,252,64,255,254,158
112,6,191,55,254,63,183
190,115,150,242,237,214,236
222,215,222,222,215,191,237
255,243,115,131,51,127,128
63,63,0,30,30,0,12

BULLDOZER

0,0,223,0,0,217,0
0,213,1,254,211,1,2
213,1,50,217,1,50,213
1,98,211,1,122,223,1
118,255,125,114,192,255,254
192,231,242,192,219,238,192
189,222,192,230,179,192,218
173,192,218,173,192,231,243
192,60,30,192,24,12,0

©,32,0,0,16,1,0
16,31,0,16,31,0,56
31,0,63,255,0,63,248
224,120,0,243,240,0,210
223,0,253,191,0,251,97
0,214,255,0,45,225,0
127,255,0,191,252,0,109
182,0,146,73,0,146,73
0,109,182,0,63,252,0

0,64,0,0,32,0,0
32,0,0,32,0,0,112
0,0,112,0,0,112,0
224,112,0,249,32,0,233
255,0,255,255,0,224,1
0,223,255,128,63,225,192
127,255,224,191,252,112,109
182,58,146,73,30,146,73
14,109,182,14,63,252,15

0,0,48,64,0,0,112
0,48,124,0,0,111,1
252,111,193 ,84,71,241,252
127,252,168,127,255,252,127
255,252,127,255,254,127,255
254,127,255,254,127, 255,254

LINER

0,224,0,0,236,0,0
236,0,31,253,128,21,85
128,79,253,128,117,85,128
127,255,128,111,255,128,123
251,192,126,254,224,127,191
176,127,239,232,127,251, 248
127,254,248,127,255,188,127
255,238,103 ,255,254,67,255
254,73,255,254,84,63,254

0,0,0,32,4,0,32
4,0,24,3,0,40,5
240,40,5,192,8,1,248
8,1,248,63,255,252,53
85,92,53,85,92,127,255
254,127,255,254,0,0,0
127,255,254,255,255,255, 255
255,255,255,255,255,127,255
254,63,255,252,63,255,252

6,2,16,0,193,8,0
16,128,128,0,68,64,15
4,0,255,192,31,229,226
31,242,242,63,242,136,71
242,252,67,242,130,71,242
252,63,242,136,31,242,242
31,229,226,0,255,192,64
15,4,128,0,68,0,16
128,0,193,8,6,2,16

255,255,226,143
241,255,255,127,255

SCOONNO OO

0,0,0,4,66,32,2
129,64,1,0,128,3,189
192,5,0,160,1,126,128
1,126,128,15,255,240,11
66,208,11,90,208,31,219

| 248,31,255,248,0,24,0

127,219,254,255,195, 255,255
255,255,255,255,255,127, 255

| 254,63,255,252,63,255,252

SUBMERSIBLE

£0,3,0,0
+2,0,0,7
5,128,0,62,144
0,127,144,3,255,248,23
255,252,47,213,126,104,255
195,251,125,252,104,250,248
47,251,112,6,15,224,16
4,36,15,255,248,0,0

0,0,0,0,0,0,0

0,0,0
2,0,0
0,0,1

3
4]
2

S
6,0,0

0,8,0,0,31,0,0
0,0,0,48,0,0,15
192,0,127,224,0,0,0
0,240,0,0,15,240,1
255,240,0,0,0,3,240
0,0,15,240,7,255,224
0,0,0,15,240,0,0
15,192,31,255,128,0,0
0,0,126,0,0,126,0

128,1,7,240,2,128,208
4,71,240,4,101,96,8

._ 127,230,16,127,254,63,255

254,127,255,254,0,0,0
127,255,254,223,255,252,207
255,248,199,255,240,255,255
224,0,0,0,0,0,0

TALL SHIP MAN O” WAR FISHING SMACK

0,126,192,0,126,240,4] 0,120,48,0,120,0,62 0,0,64,0,0,96,32
255,248,4,0,240,12,254 0,120,62,252,120,62,252 8,64,32,12,64,32,31
228,12,254,204,12,254,220 120,62,252,0,62,252,252 192,48,31,64,96,31,192
28,254,188,29,255,124,28 : 0,252,252,120,0,252,123 224,31,192,224,63,1592,224
0,252,61,254,252,61,254 254,252,123,254,0,123,254 63,192,224,63,192,47,191
252,61,254,252,125,254,252 85,3,254,127,171,254,127 192,42,128,64,42,128,64
125,254,254,127,255,0,0 ' 255,254,127,255,254,127,126 46,128,95,254,135,241,143
0,124,127,255,252,15,255 0,127,62,255,255,30,219 252,5,192,0,1,96,0
248,7,255,240,3,255,224 z 126,15,255,254,7,255,252 3,63,255,254,31,255,254

| B
I

B G

YACHT STERN TRAWLER

0,0,0,0,16,0,
7,0,0,16,0,0, 5
192,0,48,0,0, =

0,112,0,0,1,2 2

240,0,0,0,240 2,32,7,160,64,15
0,0,0,240,3,2 $,132,33,225,228,30,17 ; e, 16,141,158,8,133,30,4
0,0,112,7,240,0,0 92,42,143,34,32,0,31 - 255,254,3,0,7,3,255
0,32,15,240,0,0,0 255,255,29,64,0,15,3255 " 255,255,0,0,1,255,255
0,15,255,192,31,255,192 255,7,213,251,7, 255,255 255,234,175,255, 255, 255,255

0,0,16,0,0,16,0
0,16,0,0,16,0,0

24 16,0,0,48,0,0,96
0 . 0,0,224,0,1,192,16
340 3,192,3

L1}
El
3
4
v
4

2
.

.
L]
1
0

JUNK ROWING EIGHT ROWING EIGHT

14,248,0,0,0,0,14 0,0,0,0,0,0,0 £0,0,0,0,0,
248,0,0,3,188,14,248 0,0,0,17,17,0,34 ,0,68,68,0,34,34
0,0,3,188,14,248,0 34,0,68,68,0,136,136 +17,17,0,8,136,128
0,3,188,14,248,0,0 i 1,17,16,2,34,32,15 . 4,68,64,2,34,32,15
3,188,14,248,0,0,3 ; o 255,248,250,170,175,15,255 e 255,248,250,170,175,15,255
188,14,248,0,0,1,254 248,0,136,136,0,68,68 248,2,34,32,4,68,64
14,249,254,96,1,254,110 0,34,34,0,17,17,0 ; 8,136,128,17,17,0,34
249,252,96,1,252,63,255 N B,136,0,4,68,0,0 i 34,0,68,68,0,0,0
248,63,255,248,31,255,240 : 2,0,0,0,0,0,0 ,0,0,0,0,0,0

0

ANIMALS

ELEPHANT

0,0,0,0,0,0,3
128,0,7,207,240,14,63
248,15,223,252,31,223,252
27,223,252,223,223,254,159
223,254,159,31,254,183, 255
255,233,255,253,16,255, 253
32,255,252,0,127,252,0
120,120,0,112,56,0,96
24,0,96,24,0,96,24

GIBBON

KANGAROO

0,6,0,0,0,0,0
0,0,0,0,9,0,0
2,0,0,0,8,192,0
63,225,224,95,255,240,255
255,248,127,255,244,159,25
244,7,255,244,1,255,244
2,248,250,3,96,221,3
96,102,6,192,102,13,128
204,0,0,0,0,0,0

255,128,623
8,0,158,240
128,0

wn
=
-
kg
@
I

8,27,193,19%2
.8.,0

COoODNNNDS DD

POLAR B

11,255,249,255,255,254,63
255,252,95,255,252,143,255
252,31,255,243,25,254,248
16,252,124,0,248,52,0
208,36,0,144,68,1,32
132,2,33,8,0:0,0

223,248,127,223,244,159,12
244,14,255,244,13,255,244
11,252,244,7,227,122,12
193,105,24,193,140,24,135
12,12,195,12,1,134,24

255,252,0,255,255,16,255
255,252,255,255,251,255,25
255,255,255,254,255,255,24
255,255,224,127,253,224,12.
60,24%,120,60,120,56,28
8,55,28,0,60,30,0

FEEETE

CROCODILE

SCORPION

SQUIRREL

SKUNK

0,0,0,2,4,0,25
9,0,60,146,64,108,146
240,196,84,190,136,85,159
128,45,140,192,219,7,226
219,128,126,219,192,62,219
192,2,219,128,0,219,7
0,45,140,0,85,159,0
84,190,0,146,240,0,146
64,1,9,0,2,4,0

0,0,56,36,0,124,8
0,252,56,1,254,92,3
254,252,7,255,254,7,2319
31,135,231,31,227,227,15
243,243,15,249,242,63,253
242,39,253,244,33,252,240
3,254,240,7,254,224,7
255,192,7,255,192,0,255
0,3,254,0,15,248,0

0,0,30,0,0,51,0
0,97,0,0,193,0,0
221,0,0,213,0,0,219
0,0,106,0,0,56,0
0,28,0,15,156,0,124
204,12,192,44,51,0,24
80,62,48,252,255,224,15
255,240,3,248,240,1,128
112,1,0,16,2,0,32

MOUSE

FROG

0,0,0,0,0,0,0
0,0,64,0,0,163,252
0,71,254,0,175,255,24
31,255,144,63,255,160,63
255,224,63,255,240,63,255
218,63,255,254,63,255,254
31,255,254,15,255,248,13
247,6,6,6,0,6,4
0,2,4,0,1,2,0

8,16,128,4,9,0,2
13,0,2,7,0,4,3
226,8,3,220,16,7,248
32,15,240,32,31,226,32
31,244,32,63,250,32,63
252,48,127,248,24,127,240
8,127,240,12,127,240,6
127,224,3,63,224,3,255
192,1,255,128,0,31,224

0,0,1,131,0,30,1>
128,49,135,192,96,1+
192,156,240,192,216,24
112,123,250,32,63,252,0
31,252,0,7,252,0,31
252,32,63,252,112,123,25
216,241,224,156,240,152,
224,192,135,192,96,135,1
49,131,0,30,0,0,1

| L

CAT

0,15,202,0,15,239,0
15,253,128,7,255,128,15
255;@:12;62;0’11.191
1%2,8,28,0,7,15,128

0,6,0,0,24,0,0
96,0,0,64,0,1,192
0,1,0,0;1,0,0
1,240;80,0,254,120,1
255,236,13,255,248,17,255
184,47,207,0,27,129,196
32,0,48,64,0,8,0
0,0,0,0,0,0,0
0,0,0,0,0,0,0

Ns Wps s
o:noagm-oo'a

.8
. 4,3
,255.0
,0,0
+1,169
2,1,182,96

= ROWA =00

- I

0
5
]
1
1
0
1
3,
9

WASP

SPIDER

SNAIL

0,1,224,0,6,24,0
8,6,0,16,1,0,112
2,12,246,12,157,249, 240
175,254,0,175,253,192,121
203,160,50,167,112,18,162
2312,4,179,220,9,17,186
1,16,246,2,16,237,4
32,123,8,32,63,0,64
15,0,128,2,1,0,4

4,0,64,2,0,128,2
0,128,67,41,132,33,17
8,17,57,16,17,187,16
28,214,112,7,57,192,1
255,0,0,56,0,3,255
128,14,124,224,25,255,48
19,125,144,34,56,136,34
16,136,36,0,72,4,0
64,8,0,32,8,0,32

0,1,192,0,3,240,0
7,248,0,15,252,0,30
62,0,29,223,0,61,239
0,59,231,0,123,55,0
122,166,0,246,238,32,246
220,145,247,60,81,239,248
51,239,248,115,239,240,252
223,192,127,0,64,31,255
128,7,255,224,3,255,252

ANT

il

FLY

0,8,0,0,6
129,240,2,96,8
4,8,121,7,200,130
0,41,28,3,154,32,7
223,112,15,255,224,7,223
112,3,154,32,0,41,28
7,200,130,24,8,121,96
8,4,129,240,2,6,0
1,8,0,0,0,0,0

.
.

0,0
0,1
4,2

1
9,128,2,8,221,236,11
110,184,43,110,188,107,186
236,235,183,228,235,245,1¢
107,132,32,8,4,16,8
4,8,16,8,4,32,16
3,64,0,0,0,0,0

0,4,128,0,9,48,128
18,.76,64,99,132,32,158
4,28,184,8,2,240,16
57,254,32,127,213,192,255
148,192,63,255,192,255,148
192,127,213,192,57,254,32
2,240,16,28,184,8,32
158,4,64,99,132,128,18
76,0,9,48,0,4,128

|
BUTTERFLY |

DRAGONFLY

96,0,12,248,130,62,206
68,230,219,41,182,209,17
22,81,187,20,118,186,220
41,215,40,57,57,56,22
56,208,24,186,48,15,255
224,2,56,128,15,255,224
24,186,48,50,146,152,53
147,88,51,147,152,25,17
48,15,1,224,6,0,192

0,56,0,112,56,28,140
0,98,131,57,130,96,254
12,24,56,48,7,255,192
3,125,128,12,146,96,16
186,16,33,17,8,67,17
132,76,16,100,48,16,24
0,16,0,0,16,0,0
16,0,0,16,0,0,16
0,0,16,0,0,16,0

7,0,0,8,128,0,8
64,0,8,32,0,4,16
0,10,8,0,9,132,0
4,98,0,3,26,0,0
197,0,8,59,0,0,7
192,0,15,236,0,63,252
0,249,192,1,130,160,2
5,32,4,9,16,8,8
136,16,8,64,32,8,0

PELICAN

COCKEREL

15,231,240,30,0,120,31
231,248,92,0,58,92,0
58,92,66,50,76,255,34
167,255,229,147,255,201,143
255,241,71,255,226,63,255
252,7,255,224,63,255,252
67,255,194,141,255,177,144
126,9,160,0,5,160,0
5,16,0,8,8,0,16

0,0,120,0,0,246,0
1,255,0,1,254,0,3
254,0,3,243,0,7,241
¢,15,225,0,63,225,31
255,225,127,255,242, 255,255

242,255,255,244,259,255, 240

255,255,240,255,253,224,255
249,216,249,243,216,252,3
220,126,3,140,31,143,135

}0,0,0,0,0,0,0

0,55,0,0,127,0,0
126,0,0,252,0,1,248
0,3,240,0,15,240,0
127,240,3,255,240,31,255
248,63,255,248,127,255, 248
255,255,248,255,255,244,253
255,244,252,56,246,127,0

| 238,62,129,199,31,199,129

DUCK |

DUCK _J

0,0,2,0,0,14,0
0,62,0,0,126,0,0
254,0,1,254,0,15,255
0,255,255,3,255,255,13
250,191,62,250,191,127,250
191,255,58,191,252,254,191
115,255,255,3,255,254,0
31,240,0,3,240;0,0
240,0,0,48,0,0,0

2,0,0,0,0,0,0

0,3,0,0,6,0,0
12,0,0,28,240,8,56
255,152,120,255,252,240,255
25%5,224,255,255,224,255,254
240,255,236,112,254,4,56
224,0,12,0,0,0,0
0,0,0,0,0,0.0

0,9,0,0,0,0,0

0,24,0,0,60,0,0
€0,0,0,126,0,0,126
0,0,126,0,0,126,0
120,90,30,78,255,114,195
255,195,155,255,217,166,126
101,161,255,133,166,36,101
164,230,37,164,129,37,180
145,37,146,74,105,81,36
106,8,144,144,4,77,32

EAGLE

DUCK AND DUCKLINGS

PENGUIN

0,4,192,0,9,0,0
18,96,0,148,158,1,85
48,2,85,62,98,86,113
224,46,198,240,127,152,127
255,224,127,255,192,127,255
224,240,127,152,224,46,198
98,86,113,2,85,62,1
85,48,0,144,158,0,18
96,0,9,0,0,4,192

0,6,0,0,15,0,1
247,128,7,251,128,15,253
2,31,254,6,61,255,78
126,255,158,119,127,252,63
127,248,223,127,252,126,127

ﬁ 254,126,255,174,57,255,70

31,254,198,15,253,130,3
251,128,0,240,0,0,24

4 0,0,0,0,0,0,0

3,224,0,6,28,0,11
254,0,23,253,0,47,15
0,94,2,130,124,1,65
248,1,194,216,0,196,232
0,164,244,0,228,122,0
230,63,0,162,31,193,194
15,113,194,7,131,134,3
243,140,0,3,24,0,3

{ 176,0,1,224,0,0,128

CRAB SEAL

0,224,0,1,223,255,1 0,16,64,0,15,128,0 0,1,160,0,3,192,0
240,0,1,255,255,0,227 : : 18,64,0,45,160,0,45 : 2,224,0,0,160,3,129
254,0,112,254,0,56,28 160,0,34,32,0,18,64 : 240,3,193,192,7,227,176
15,158,0,31,207,128,63 - 0,56,192,0,119,64,0 S 15,231,176,31,255,128,31
247,192,63,255,224,127,255 = = 248,224,1,247,96,3,240 191,192,31,223,224,31,223
240,127,255,240,127,255,240 : 96,7,224,96,7,224,192 96,29,231,96,25,248,224
255,255,240,255, 255,240,255 15,128,128,14,1,0,28 8,255,192,0,63,128,0
207,224,195,135,192,129,0 E . g 5 14,0,21,178,0,38,66 ¥ 15,0,0,4,0,0,4
0,1,24,0,7,244,0 e 0,12,231,0,0,148,128 - 0,0,4,0,0,11,0

OCTOPUS

3,128,0,5,192,0,31 '0,0,0,0,0,0,0 0,0,0,0,128,0,1
224,0,1,224,0,0,96 248,56,3,255,244,31,255 128,0,3,128,0,7,192
0,0,225,128,1,195,0 255,63,254,56,127,252,0 0,15,192,0,15,192,0
3,143,192,7,31,0,14 255,248,0,7,248,0,29 15,192,0,15,224,0,15
631,224,28,127,128,56,255 240,0,1,240,0,3,240 224,0,7,240,0,7,240
112,121,255,128,255,248,127 : - 0,3,240,0,3,240,0 0,3,248,56,3,255,244
255,247,252,254,15,240,255 : 1,224,0,1,224,0,1 31,255,255,63,254,56,127
255,224,255,255,192,63,255 : 224,0,0,224,0,0,96 252,0,255,240,0,3,192
128,31,255,0,15,254,0 0,0,32,0,0,0,0 0,14,0,0,0,0,0

LOBSTER MORAY EEL

0,36,0,0,40,8,0 g g C (0,112,0,0,184,0,1
118,180 248,20,0,246 mams e 248,0,0,108,0,0,44
60,0,248,112,0,244,254 ! . 0,0,70,0,0,70,0
1,249,248,1,243,254,1 : 28,0 : . 0,79,0,0,63,0,0
331,240,1,239,252,15,255 R 255.0,1,255,0,3,131
224,31,255,144,133,254,0 0,2,67,0,4,67,0
0,252,0,0,254,0,0 : | 15,79,132,8,36,8,121 0:67,0,0,35,0,0
127,128,0,255,224,1,7 227,240,138,33,176,243,195 ° ; 15,0,0,19,0,0,119
192,7,7,128,8,128,0 2 16,32,130,24,81,67,12 0,0,11,0,0,56,128

CHARACTERS

SHERRIFF

SHERRIFF

SHERRIFF

0,60,0,0,126,0,1
255,128,0,126,0,0,126
0,0,126,0,0,60,0
7,129,224,9,0,144,18
0,72,36,0,36,72,0
18,144,0,9,255,255,255
15,255,240,7,255,224,3
231,192,1,231,128,3,231
192,7,231,224,7,231,224

0,7,128,0,15,192,0
63,240,0,14,128,0,12
64,0,8,140,0,4,148
0,4,100,0,10,24,0
20,136,0,9,4,0,18
2,64,20,2,132,23,254
134,20,30,255,7,252,255
3,248,252,1,240,68,0
224,170,0,248,145,0,184

0,7,128,0,15,192,0
63,240,0,14,128,0,12
64,0,8,128,0,4,128
0,5,96,0,10,144,0
18,136,0,18,132,0,18
130,128,10,130,132,6,254
134,14,252,255,23,248,255
59,240,252,60,249,68,24
127,170,24,62,145,12,24

HUNCHBACK

HUNCHBACK

0,0,3,128,0
0,55,64,0,78
,132,64,1,16,64
1,128,3,207,0,3
158,192,3,158,64,1,143
192,0,206,0,0,126,0
0,191.0,1,223,0,3
239,128,3,135,144,1,131
240,1,129,240,0,192,192

0,0,
7.0,
32,0
3,16

0,3,128,0

16,64
128 3 213,0,3
+3,246,0,1,246
6,0,0,246,0
,0,0,124,0,0
.9,112,0,0,112
2,0,0,92,0

o,
Te
32
1,
24
0y
0,
12
0,

0
0
.
1
[3
Q 4
2
0
0

128,0,254,0,0,125,0
0,251,0,1,247,0,3
239,128,3,135,144,1,131
240,1,129,240,0,192,192

DWARF

DWARF

DWARF

0,248,0,11,240,0,7
232,0,1,196,0,0,72
0,0,32,0,0,72,0
0,204,0,0,204,0,0
204,0,0,66,0,0,162
9,0,156,0,0,132,0
0,68,0,0,76,0,0
80,0,0,112,0,0,112
9,0,120,0,0,88,0

0,248,0,11,240,0,7
232,0,1,196,0,0,72
0,0,32,0,0,72,0
0,204,0,0,204,0,0
204,0,0,66,0,0,34
0,0,92,0,0,68,0
0,70,0,0,138,0,1
18,0,3,235,64,1,135
192,1,131,128,0,193,0

0,248,0,3,240,0,7
232,0,9,196,0,0,72
0,0,33,128,0,78,128
0,152,128,1,63,0,1
60,0,0,156,0,0,72
0,0,56,0,0,72,0
0,68,0,0,164,0,1
18,0,3,235,64,1,135
192,1,131,128,0,193,0

SHERRIFF

SHERRIFF

SHERRIFF

0,7,128,0,15,192,0
63,240,0,14,128,0,12
64,0,8,128,0,4,128
0,5,96,0,10,144,0
18,136,0,18,68,0,17
34,64,8,146,132,7,78
134,15,188,255,31,248,255
63,240,252,60,233,68,24
95,170,24,62,145,12,24

0,0,16,7,128,32,14
0,96,14,128,240,12,65
224,8,134,64,4,138,0
5,114,0,10,148,0,18
136,0,18,68,0,17,34
0,8,154,0,7,78,0
15,190,0,7,252,0,3
248,0,1,240,0,0,224
0,0,248,0,0,184,0

0,60,0,0,126,0,1
255,128,0,102,0,0,90
0,0,66,0,0,126,0
7,153,224,9,60,144,18
126,72,36,126,36,72,60
18,144,24,9,255,231,255
15,255,240,7,255,224,3
231,192,1,231,128,3,231
192,7,231,224,7,231,224

HUNCHBACK

HUNCHBACK

HUNCHBACK

0,3,128,0,7,0,0
55,64,0,78,32,0,244
64,1,128,64,3,153,128
31,166,0,3,174,192,3
222,64,0,255,192,3,127
0,7,191,128,31,223,226
63,231,254,56,0,252,24
0,48,24,0,0,12,0
¢,0,0,0,0,0,0

0,0,0,0,56,0,0
124,0,0,124,0,3,131
128,4,130,64,8,130,32
10,130,160,11,255,160,11
255,160,11,255,160,11,255
160,19,255,144,9,255,32
1,255,0,1,239,0,1
239,0,1,239,0,0,238
0,1,239,0,3,171,128

0,0,0,0,56,0,0
68,0,0,40,0,3,147
128,4,186,64,8,130,32
10,130,160,11,255,160,11
255,160,11,255,160,11,255
160,19,255,144,9,255,32
1,255,0,1,239,0,1
239,0,1,239,0,0,238
0,1,239,0,3,171,128

CHARLIE CHAPLIN

CHARLIE CHAPLIN

CHARLIE CHAPLIN

0,48,0,0,121,192,0
253,64,0,105,0,0,68
128,0,72,192,0,33,160
0,127,144,0,255,136,1
255,4,1,252,2,0,156
1,0,120,0,0,120,0
0,124,0,0,188,0,1
222,0,2,239,64,1,135
192,1,131,128,0,193,0

0,48,0,0,120,0,0
252,0,0,104,0,0,68
0,0,72,0,0,32,0
0,120,0,0,120,128,0
125,64,0,126,64,0,122
128,0,120,0,0,112,0
0,112,0,0,112,0,0
240,0,1,112,0,2,96
0,0,120,0,0,92,0

0,48,0,0,120,0,0
252,0,0,104,0,0,68
0,0,73,192,0,33,64
0,121,0,0,252,128,1
254,192,3,247,160,7,123
144,6,120,8,0,124,4
0,124,2,0,250,1,1
246,0,3,239,64,1,135
192,1,131,128,0,193,0

TYRANNOSAURUS

TYRANNOSAURLUS

ICHTHYOSAURUS

0,0,224,0,1,208,0
1,248,0,3,204,0,3
244,0,3,200,0,3,192
0,2,224,0,6,120,0
7,224,0,15,224,0,31
224,0,29,240,128,61,240
64,59,248,96,123,248,48
247,184 ,25,255,48,15,244
32,7,48,16,2,80,28

0,7,0,0,11,128,0
31,128,0,51,192,0,47
192,0,19,192,0,3,192
0,2,232,0,6,112,0
7.224,0,15,224,0,31
224,0,29,240,0,61,240
0,59,248,0,123,248,128
247,184,65,255,48,99,244
32,63,48,16,28,80,28

u,254,0,0,127,0,0
63,192,0,127,96,0,223
176,1,191,216,3,127,248
2,255,248,7,225,232,7
131,120,15,3,56,14,4
4,12,0,2,8,0,1
8,0,0,8,0,0,28
0,0,62,0,0,93,0
0,65,0,0,128,128,0

STEGOSAURLUS

ALLOSAURLUS

¢,15,0,0,31,128,0
31,128,1,223,184,1,198
56,1,223,184,0,63,192
6,127,230,6,255,246,1
255,248°,11,255,250,7,255
124,23,254,254,13,253,255
94,255,239,248,221,134,128
193,140,1,195,152,0,129
12,0,0,6,0,0,1

0,0,27,0,0,63,0
0,62,0,0,56,0,0
120,0,0,240,0,1,152
0,3,216,0,7,215,0
15,240,0,31,236,0,63
240,0,127,248,1,252,124
135,195,12,127,30,6,0
56,6,0,64,6,0,128
2,1,0,2,1,0,3

120,0,0,240,0,1,15:2
0,3,120,0,7,116,0
15,115,0,30,224,0,63
208,0,127,184,1,255,124
135,206,12,127,30,12,0
56,12,0,64,12,0,64
4,0,64,4,0,32,2

BRONTOSAURUS

PTERANODON

0,0,3,0,0,7,0
0,15,0,0,63,0,0
255,0,1,255,0,3,255
0,7,255,0,15,255,0
31,255,208,63,25%,248,127
255,29,248,255,15,224,63
7,192,31,0,0,14,0
0,12,0,0,28,0,0
24,0,0,56,0,0,113

240,0,0,248,0,0,254
0,0,255,0,0,255,128
0,255,192,0,255,224,0
255,240,0,255,248,0,255
252,6,255,254,9,255,255
16,255,255,16,255,255,136
255,255,204,25%,255,198,1¢
127,227,199,3,243,195,24
127,195,24,62,135,48,28

254,0,0,15,128,0,7
192,0,3,224,0,1,240
0,0,249,223,0,124,112
0,62,224,0,63,128,0
63,128,0,223,192,0,31
192,0,103,224,0,1,224
0,0,112,0,0,48,0
0,48,0,0,16,0,0
16,0,0,16,0,0,16

~ SPOOKS AND SPECTRES

SPIDER ‘ [

WITCH

BILACK CAT J

8,0,240,8,3,240,8
7,152,28,15,248,28,31
196,127,63,184,34,127,120
67,255,204,39,255,242,31
255,156,39,255,232,7,255
240,13,254,0,25,62,0
49,62 +35,126,468,110
127,127,255 255,240,80,63
127,0,9,48,0,24,15

0,0,6,0,0,9,0
€0,L,66,126,2,36,255
2,61,255,132,91,255,196
127,2%55,232,103,255,240,63
227,240,3,225,240,3,97
176,3,97,176,3,96,144
3,96,216,2,32,216,2
32,72,2,32,72,2,32
72,%,16,72,4,16,36

I I . | O =]]}
] | : : j' i I I - [
o EEE = I L
| ' |
I & |
B | | I u .
I i
T i P -
il I |
= 1 I T t L
. | | | |
I : I
| | | | | |
1 i o | I 1 . I
SPOOK i SPOOK

| 48,60,12,120,126

25 2:255;255,;2

5.2
126
126,249

0,126,0,0
255,128,3,255
9,224,7,24,224
15,126,240,15
1,255,248,31,231
9,248,63,36,252
2,63,255,252,127
27,221,254,245,204
16,85,164,136,85

T 7 T | I =}
| = [i —
| Fi-) | |
EE ,
: ! I | !
| |
L 11
=i | | T i
i » — &]
I. - - 1 —
| | I
| 2 5 ' ,
I |] | = | | | -
I | i ¥ 11] | | 1

0,8,0,0

12,0,0,

0,0,31,C

0,31,0,0,1

31,0,0,63,

0,0,63,32,
0,14,192,0,63,160,0
255,192,3,254,128,15,248
64,0,12,0,0,2,0

[] T 171 T1T1 | | 1 | [T T]] 1
| | | 8 I] | 11 | [T T T i A
I : . ! ! | A —— !
L1 I I | [N HE 1]
| 41 | | I T
: B [0 B o |
i = | [T 5
- I - — +—1

BANANA

APPLE =

SPADE

0,1,192,0,1,255,0
0,127,0,0,54,0,0
80,0,0,208,0,0,208
0,1,176,0,1,160,0
3,96,0,3,96,0,6
224,0,14,192,0,61,192
0,123,128,1,231,128,15
223,0,126,62,0,129,252
0,127,224,0,15,128,0

0,64,0,0,32,0,3
147,224,15,215,240, 31,255
1%2,7,151,0,0,16,0
3,215,128,7,215,192,15
254,96,15,254,96,15,255
224,15,255,224,15,255,224
7,255,192,7,253,152,3
255,128,3,255,128,1,255
0,1,255,0,0,238,0

0,16,0,0,16,0,0
56,0,0,56,0,0,124
0,0,124,0,0,254,0
1,255,0,3,255,128,7
255,192,15,255,224,31,255
240,63,255,248,63,215, 248
63,147,248,31,57,240,14
56,224,4,124,64,0,124
0,0,254,0,1,255,0

PINEAPPLE

PEAR

CLUB

0,16,0,0,214,0,1
125,0,0,56,0,1,255
0,2,124,128,4,56,64
0,68,0,0,170,0,1
17,0,2,170,128,2,68
128,2,170,128,3,17,128
2,170,128,2,68,128,1
171,90,1,17,0,0,170
0,0,198,0,0,124,0

0,15,0,0,63,132,0
255,196,0,63,232,0,31
16,0,0,40,0,3,204
0,63,238,15,225,238,24
15,239,57,255,239,121,255
207,127,255,135,255,254,3
255,248,3,255,248,1,255
240,0,127,224,0,63,224
0,31,192,0,7,128,0

0,56,0,0,124,0,0
254,0,1,255,0,1,255
0,1,255,0,0,254,0
0,124,0,7,125,192,15
57,224,31,187,240,63,255
248,63,255,248,63,215, 248
31,147,240,15,57,224,7
57,192,0,124,0,0,124
0,0,254,0,1,255,0

CHERRIES

STRAWBERRY

BELL

0,8,0,0,16,0,0
16,0,31,39,128,63,175
224,127,255,240,63,167,192
31,80,0,0,136,0,1
4,0,2,3,192,2,3
32,7,7,48,12,143, 248
28,207,248,63,239, 248,63
231,240,63,227,224,31,193
192,15,128,0,7,0,0

0,32,0,0,16,0,0
16,0,1,255,0,3,255
128,7,111,192,15,255,224
29,189,176,31,239,240,30
254,176,27,219,240,31,255
112,13,111,224,15,251,96
§,223,192,7,251,192,3
127,128,1,239,0,0,254
0,0,124,0,0,56,0

0,24,0,0,126,0,0

“| 249,0,1,240,128,3,240

64,7,224,32,7,224,32
7,224,32,7,224,32,7
224,32,7,224,32,7,224
32,15,192,16,31,128,8
31,128,8,31,255,248,0
52,0,0,52,0,0,24
0,0,0,0,0,0,0

DIAMOND

ROOK

0,16,0,0,16,0,0
56,0,0,56,0,0,124
0,0,124,0,0,254,0
1,255,0,3,255,128,7
255,192,15,255,224,7,255
192,3,255,128,1,255,0
0,254,0,0,124,0,0
124,0,0,56,0,0,56
0,0,16,0,0,16,0

244
0

20

-
'
U]
-
’

1
0
#0,7
+251,128,3,255
138,15,255,192

0,0,0,0,0,0,6
205,128,6,205,128,7,243
128,7,241,128,1,254,0
1,250,0,3,243,0,1
250,0,1,250,0,1,250
0,1,250,0,1,250,0
1,250,0,3,253,0,7
241,128,7,251,128,3,255
0,7,249,128,15,255,192

HEART

KNIGHT

BISHOP

]

3,1,128,7,131,192,15
199,224,31,199,240,63,239
248,63,239,248,63,255,248
63,255,248,31,255,240,15
255,224,7,255,192,3,255
128,1,255,0,0,254,0
0,254,0,0,124,0,0
124,0,0,56,0,0,56
0,0,16,0,0,16,0

0,3,253,0,7
28,7,251,128,3,255
49,128,15,255,192

O OMODN O

0,48,0,0,48,0,0
120,0,0,252,0,0,124
0,1,58,0,3,157,0
3,191,0,3,255,0,1
254,0,0,252,0,0,120
0,1,254,0,0,252,0
1,254,0,3,253,0,7
241,128,7,251,128,3,255
0,7,249,128,15,255,192

JOKER

KING

QUEEN

0,60,0,0,195,224,1
64,48,2,36,76,4,31
76,4,31,224,12,223,144
29,57,136,62,16,132,126
68,130,126,170,226,118,0
94,100,0,67,68,40,67
196,16,64,194,130,128,2
108,128,1,17,0,0,130
0,0,68,0,0,56,0

0,120,0,0,180,0,0
252,0,0,252,0,6,181
128,15,51,192,15,255,192
15,255,192,7,255,128,3
255,0,1,250,0,3,253
0,1,250,0,1,250,0
1,250,0,3,253,0,7
241,128,7,251,128,3,255
0,7,249,128,15,255,192

2,49,0,7,123,128,2
49,0,1,122,0,3,255
0,1,254,0,3,255,0
1,250,0,1,250,0,0
244,0,0,244,0,0,244
0,0,244,0,0,244,0
1,254,0,3,253,0,7
241,128,7,251,128,3,255
0,7,249,128,15,255,192

GAMES SYMBOLS

SKULL AND CROSSBONES

POINTING HAND

PALM TREE

112,0,14,208,0,11,144
0,9,232,255,23,21,129%
168,11,0,208,6,0,96
2,0,64,2,0,64,2
231,64,2,231,64,2,0
64,1,24,128,3,0,192
5,219,160,10,189,80,20
129,40,232,66,23,144,60
9,208,0,11,112,0,14

0,0,0,0,0,0,0
0,0,127,255,0,128,0
195,128,96,111,115,130,27
14,4,11,2,24,11,3
228,11,1,4,11,1,26
11,0,226,11,0,77,11
0,49,11,0,38,27.0
24,107,0,7,143,0,0
3,0,0,0,0,0,0

7,208,240,15,225,192,28
243,248,56,55,224,99,190
120,79,252,60,159,255,26
60,63,205,120,119,228,113
211,196,195,145,226,135,16
160,134,144,32,70,16,16
2,48,16,4,48,0,0
96,0,0,224,0,1,192
0,7,128,0,15,128,0

ARROW

ARROW

0,2,0,0,7,0,0
14,128,63,254,64,96,0
32,224,0,16,224,0,8
224,0,4,224,0,2,224
0,1,224,0,2,224,0
4,224,0,8,224,0,16
224,0,32,255,254,64,255
254,128,255,255,0,0,14
0,0,12,0,0,8,0

0,0,0,0,0,0,0
248,219,1,241,182,3,227
108,7,198,216,15,141,176
31,27,96,62,54,192,124
10%,128,255,255,224,124,109
128,62,54,192,31,27,96
15,141,176,7,198,216,3
227,108,1,241,182,0,248
21%,0,0,0,0,0,0

PENCIL

SHAMROCK

0,1,128,0,2,64,0
4,32,0,12,16,0,30
8,0,59,4,0,119,130
0,238,194,1,221,228,3
187,184,7,119,112,14,238
224,21,221,192,19,187,128
17,119,0,16,238,0,16
92,0,24,56,0,28,16
0,31,224,0,0,0,0

0,28,0,0,58,0,0
50,0,0,50,0,0,50
0,0,50,0,0,20,0
0,20,0,1,255,192,2
0,3%2,2,0,32,2,0
32,2,170,160,1,85,64
2,170,160,1,85,64,3
255,224,3,255,224,7,255
192,7,255,192,15,255,128

1,19%9,0,3,199,128,3
239,128,7,239,192,31,239
240,63,239,248,63,239,248
31,255,240,15,255,224,0
124,0,15,255,224,31,255
240,63,239,248,63,215,248
31,215,240,7,147,19%2,3
147,128,3,33,128,1,33
0,0,64,0,0,64,0

HORSE AND JOCKEY

CHARIOT

0,0,0

2,0,8,240

0,62,220,0

$0,7,211,128,3

233,224,1,245,208,1,255
200,3,255,228,15,131,98
22,0,184,40,0,72,80
0,36,160,0,18,32,0
1,0,0,0,0,0,0

0,0,0,0,0,0,0
192,0,0,240,0,8,60
0,28,92,0,62,200,0
127,147,128,7,233,192,3
245,224,3,255,208,1,251
208,0,241,136,1,193,72
1,33,64,0,146,128,0
69,0,0,42,0,0,4
0,0,0,0,0,0,0

0,0,0,0,2,0,0
28,0,0,32,0,24,64
0,25,128,0,18,0,0
58,0,8,94,0,28,152
0,62,152,0,127,16,127
248,28,255,240,61,255,240
62,255,224,126,227,192,78
96,240,180,33,16, 180,82
32,72,40,64,48,20,128

TROLLEY

TROLLEY

FROGMAN

0,0,12,0,0,12,3
0,132,3,1,76,4,6
60,12,24,12,28,96,4
54,152,12,49,24,20,40
24,36,72,60,34,136,60
33,204,126,97,255,255,255
243,255,207,140,0,49,18
0,72,45,0,180,45,0
180,18,0,72,12,0,48

48,0,0,48,0,0,33
0,192,50,128,192,60,96
32,48,24,48,32,6,56
48,25,108,40,24,140,36
24,20,68,60,18,132,60
17,134,126,51,255, 255,255
243,255,207,140,0,49,18
0,72,45,0,180,45,0
180,18,0,72,12,0,48

0 0.0
0 0,0
.1 0,0

$2,0,10,32,16
12,143,7,248,65,15
8,32,159,180,28,120,131
6,48,128,3,96,64,1
1%2,32,0,128,16,0,0
,0,0,0,0,0,0

BMX RIDER

BMX RIDER

0,56,0,0,40,0,0
16,0,0,198,0,1,147
0,3,57,128,0,56,0
7,69,192,0,56,0,0
22,0,0,22,0,0,198
0,0,214,0,0,214,0
0,208,0,0,214,0,0
56,0,0,208,0,0,16
0,0,16,0,0,16,0

,0,40,0,0
,198,0,1,147
,128,0,56,0

0,1
255,128,1,129,128,3,60
192,3,60,152,4,207,32
11,15,208,28,15,248,40
15,244,68,15,226,132,15
225,2,15,192,2,15,192

ROUTINES CHECKLIST

The table shown below gives a summary of all the
machine-code routines used in this book. This table does
not explain every detail of using each routine; it is
intended only as an aid when using the routines in your

programs. If you have not used a routine before, it is
recommended that you read the introduction to the
routine on the appropriate page of the book before using
it in your program.

page

routine

parameters

co-ordinates

sprite buffer

13

24 x 21 sprite editor

Fna()—(

character

15

sprite print

FNI (x,y,n)

print position

16

master sprite

17

sprite handling

FNg(x,y.d,l,s,c,n)

start co-ordinates
direction
distance to be moved

switch
collision flag
sprite number

pixel

pixelx 3

keyboard-controlled sprite

interrupt vector table

FNh (s,x,y,c.n)

switch

start co-ordinates
collision flag
sprite number

double horizontal sprite

FNi(x,y,d,l,s,¢c,n)

start co-ordinates
direction
distance to be moved

switch
collision flag
sprite number

double vertical sprite

FNj (x,¥,d,1,5,¢,n)

start co-ordinates
direction
distance to be moved

switch
collision flag
sprite number

sprite animation

FNEk (x,y,d,l,s.f,c,v,n)

0 o

=

start co-ordinates
direction
distance to be moved

switch

number of frames
collision flag
animation speed
sprite number

horizontal scroll

FNI (1,d)

length of scroll

direction

pixel

vertical scroll

FNm(1,d)

length of scroll
direction

pixel

window

FNn(x,y,l,n,d,r)

5
=2

start co-ordinates
width of window
sprite number
direction

repeat flag

character
character

mterrupt-driven window

FNo(s,x,y,l,n,d,r)

B - T TR LT R B = L= [
e

switch

start co-ordinates
width of window
sprite number
direction

repeat flag

character
character

B SO . L A S A A L

e L B e

is passed to the routine.

Before using a routine, you must first define it in your
program using DEF FN followed by the correct number
of parameters. Parameters passed to machine-code
routines must always be whole numbers; if a parameter
value is calculated by your program, then put an INT
statement in front of it to ensure a whole-number value

ranges

bytes

address

check

700

54600

355

0-28 and 0-20

75

1-10

365

0-231and 0-154
0-3

0-51 (vertical)
(-77 (horizontal)
0-1

0

170

231 and 0-154

o0 oo

1
1
1
1
1

[

0

250

256

53100

52736

0-231 and 0-154
0-3

0-51 (vertical)
0-77 (herizontal)
0-1

0-1

1-10

235

© 52400

0-231and 0-154
0-3

0-51 (vertical)
0-77 (horizontal)
0-1

0-1

1-10

230

52100

0-231and 0-154
0-3

0-51 (vertical)
0-77(horizontal)

bt et O bt
T

275

51700

51500

colee
L U
=
L

215

50900

0-31and 0-21
0-31

1-10

0-1

0-1

290

49600

0-1

0-31and 0-21
0-31

1-10

0-1

0-1

315

49200

154

This chart shows how the Spectrum memory is organized when all
the routines are present in memory. RAMTOP can be set to 49000

MEMORY MAP

using a CLEAR command.

routine

FNa-FNe

FNg

FNh

FNi

FNj

FNI

FNm

FNn

FNo

title

lowest book 3 routine

sprite buffer (700 bytes)

24 x 21 sprite editor

sprite print

master sprite

sprite-handling

keyboard-controlled sprite

interrupt vector table

double horizontal sprite

double vertical sprite

sprite animation

horizontal scroll

vertical scroll

window

interrupt-driven window

RAMTOP (after CLEAR 49000)

address

55500

54600

54200

54100

53700

53500

53100

52736

52400

52100

51700

51500

50900

49600

49200

49000

Main entries are given in

bold type

Aircraft 40-1
Aliens 36-7
Animals 48-50
Animation 24-7
Animation
program 25-7
Automobile
program 22-3

BASIC 6
BASIC programs
adapting 9
loading 9
Bat program 19
Birds 52
Boats 46-7
Bugs 51

Cars 44-5
Characters,

human 54-5
CLEAR 8

Cockpit program 30-1

Dinosaurs 56
Displaying
sprites 14-15
Double horizontal sprite
routine 22
Double vertical sprite
routine 23
Double-sized
sprites 22-3

Errors, while keying

in 9
FNa 11
FNa-e 13
FNb 11
FNe 12
FNf 14,15
FNg 16-17
FNh 20-1
FNi 22
FN; 23
FNk 25-7
FNI 28-9
FNm 28-9
FNn 31

FNo 33
Functions 9
Games symbols 58-60
Horizontal scroll
routine 28-9

Human characters 54-5
matchstick men 61

Interrupt-driven window
routine 33
Interrupts 16-17

Keyboard-controlled
sprites 20-1
Keying in sprites 35

Loading

BASIC programs 9
machine code 8
Lorries 44-5

Machine code 6
adapting routines 9
disadvantages 6
loading 8

routines 6-7, 62
using 8-9

Master sprite routine 16
Matchstick men 61
Memory

clearing 15

map 63

storing sprites 15
Motorcycles 44-5
Movement, creating 10

Phantoms 39

Railway trains 43
RANDOMIZE 9
Repeating sprites 30
Routines 6-7
adapting 9
checklist 62
saving 8-9

using 7

SAVE 8

Screen scrolling 28-9
Scroll routines 28-9
Sea creatures 53

Ships 46-7
Snails 51
Spacecraft
Spectres 57
Spooks 57
Sprite directory
aircraft 40-1
aliens 36-7
animals 48-50
birds 52
boats 46-7
bugs 51
cars 44-5
characters 54-5
dinosaurs 56
game symbols 58-60
matchstick men 61
motorcycles 44-5
phantoms 39
sea creatures 53
ships . 46-7
snails 51
spacecraft 38,42
spectres 57
spooks 57
trains 53
trucks 44-5
using 35
Sprite editor
program
routines
Sprites 10
animation
routine 24-7
displaying 14-15
double-sized 22-3
handling
routine 16-17
implementing 10
keyboard
controlled 20-1
keying in 35
moving 16-19
print routine 15
repeating 30
storing 15
Storing sprites 15

38,42

11-13
11=12
11-13

Train program 18-19
Trains 53

Trucks 44-5
Unicycle program 7, 23

Vertical scroll
routine 28-9

RN O T + [e
INDEX

Wildlife program 26-7
Window game

program 32-4
Window routines 30-4
Wrapround effect 28

Acknowledgments

A number of people
helped and encouraged
me with this book.
‘Thanks to Alan and
Michael at Dorling
Kindersley, to Jacqui
Lyons for her
representation and to
Andy Werbinski for
reluctant assistance. I am
particularly grateful, as
always, to my parents,
and to Martine.

Piers Letcher
Spring 1985

EEFREELERERENEER AENNEYEREEEOe s
IIIIIIIIIIII====

|

The bestselling teach-yourself programming course now offers the
first complete full-colour book on creating sprites on the
ZX Spectrum.

[llustrated with over 300 screen-shot photographs, it contains
programs for single and double sprites, for animation, and for
setting overlaps and detecting collisions, and includes an easy-to-
use sprite generator with which you can design and save your own
sprites. In addition, there is afull-colour design directory containing
over 200 original sprite designs complete with all the data needed to
program them.

Together, Books Three and Four in this series form a complete,
self-contained graphics system for Spectrum-owners.

Allthe programs in this book run on both 48K ZX
Spectrum and ZX Spectrum+ machines.

¢¢ Far better than anything else reviewed on these pages
' Outstandingly good 99
BIGK

€¢ As good as anything else that is available, and far
betterthan most9)
COMPUTING TODAY

€¢ Excellent. .. Asaseries they could form the best ‘basic
introduction’ o programming I've seen 99
POPULAR COMPUTING WEEKLY

A new generation of software

Entertainment ¢ Education ¢ Home reference
Send now for a catalogue fo Goldstar, 1-2 Henrietta Street, London WC2E 8PS

DORLING KINDERSLEY

