About this book

An Expert System is, simply, computer software that encapsulates some area of
human expertise. It can help a doctor to diagnose ilinesses, a chemist to deduce
chemical structures or help to choose the best place to drill for oil or precious
metals. Up to now, this has been the province of big computers, bigger programs,
and exotic languages. But, this book brings the important topic down to earth with
easy explanations and practical BASIC programs that you can key in immediately
on your personal microcomputer.

You too can join in the debate about Artificial Intelligence. You can see for yourself
how an Expert System works, and you can use it on your own microcomputer to
help you in such tasks as weather forecasting, car maintenance, even medical
diagnosis. All of the programs inthe book have been tested on the popular Applell
and Sinclair Spectrum micros.

About the author

Chris Naylor holds degrees in Psychology and Philosophy from the University of Keele and
Mathematics and Statistics from the University of London.

He is a member of The British Psychological Saciety, The Institute of Mathematics and its Applications,
The Institute of Statisticians, The Institute_of Personnel Management, The Institute of Data Processing
Management and the British Computer Society.

He has been using computers since 1965 and, for the last ten years, has written on various computing
topics in magazines including: Computer Digest, Which Computer, Computer Management, Datalink,
Computer Talk, Computerworld, and Practical Computing.

“Can we have more along the lines of Build Your Own Expert System by Chris Naylor?”
Computing Today.

“Naylor's book serves as a good intreduction to the subject and includes descriptions of
most of the well-known expert systems in operation currently.”

The Times.

“This is an excellent book on a forbidding subject. Even if you don't buiid an expert system
' from it, your money won't have been wasted.”

Personal Computer News.

“This is probably the most unusual text book you will everread. If you're Jjaded and looking
for something new to try, you couldn’t do better. “

Which Micro & Software Review.

“Build Your Own Expert Systemn by Chris Naylor is one of the mast interesting new books
I've read recently.”

Popular Computing Weekly. 2

Published in the UK by SIGMA PRESS, Wilmslow

Published in the USA and Canada by HALSTED PRESS, a division of
JOHN WILEY & SONS,
New York - Chichester - Brisbane - Toronto

Sigma Press Edition ISBN 0-905104-41-2
Halsted Press Edition ISBN 0-470-20172-X

Buéld your own

 " Expert System

' Chris Naylor

Build Your Own
Expert System

by

Chris Naylor

o
SIGMA Publishers. Wilmslow
N DRSS B

JSTE,

. HALSTED PRESS a division of JOHN WILEY & SONS
Press New York - Chichester * Brisbane + Toronto

Copyright © 1983 by C. M. Naylor
Reprinted 1984, 1985.

All Rights Reserved

Ng part of thi; book may be reproduced or transmitted by any means
without the prior permission of the publisher. The only exceptions are for

the purposes of review, or as provided
(Photocopying) Act or in order to enter the

for by the Copyright
programs herein onto a

computer for the sole use of the purchaser of this book.

ISBN 0-905104-41-2 (Sigma Press) <
ISBN 0-470-20172-X (Halsted Press) P4

L=

First published in 1983 by:

o

SIGMA PRESS, —_.

5 Alton Road,
Wilmslow,
Cheshire,
UK.

Published in 1985 in the USA .and Canada by:
HALSTED PRESS, L aen

a Division of JOHN WILEY & SONS, INC
New York.

Distributed in Europe and Africa by:
JOHN WILEY & SONS LIMITED,
Baffins Lane, Chichester,

West Sussex, England.

Printed in Great Britain by J. W. Arrowsmith Ltd., Bristol BS3 2NT

CONTENTS

1. Why ‘Expert Systems’?

What is an Expert System?

s
nhwi=

2. A Statistical Scheme

Setting up a Matrix
Probabilities

More Probabilities
More Variables
Bayes' Theorem

N B
Wk =

3. Avoiding Probabilities

The Learning System

Other Types of Data

The Judgement Rule

Building a Rule

Prior Probabilities

Expanding your Options

Can it Make a Mistake?
Summing Up: The Program so far

WWWWwLwww
wowOLBhwWN =

4. Improving your Expert

4.1 Parallel and Sequential Decisions
4.2 Adding some Commonsense
4.3 A Trial Run of our New Expert

What do You Want an Expert System for?
What do Other People Want an Expert System for?

What do You Want Your Expert System to do?
Some Untrue Things about Expert Systems

How to Make the Computer do the Hard Work

-

oo pbw

13
20
23

33

35

36
37
43
45
49
53
54
58
61

65

65
72
78

5. The Making of A Real-World Expert

The Weather Again

A Chi-Squared Program
Exercising your Expert
Direct Estimation

mooo
PwWh =

6. Running for Real

6.1 Using your Expert

6.2 Reserved Judgement

6.3 The Problem of Distance
6.4 Understanding your Problem

7. An Expert on Everything in the Entire

Known World

Nodes

The Variables so Far
Going through the Nodes
Tailor-made Nodes
Specific Code

Saving your Expert

The Multi-Node Code
Some Examples

MNNNNSNNNN
oNOORWNS

8. How can you Use your Expert

8.1 Choosing a Problem
8.2 Analysing the Problem

9. Large - Scale Expert Systems

MYCIN - Medical Diagnoses

PUFF - Breathing Disorders

DENDRAL - Chemical Structures
PROSPECTOR - Searching for minerals
Some Other Examples

©Lwoooo
[6) Y YA N gy

89

89
98
99
1056

110

110
115
117
124

125

125
131
137
142
145
146
148
157

164

164
166

170

170
178
185
190
196

10.1
10.2
10.3

11. The

 J
10. A Rule-Based BASIC Expert

A System that Works Backwards
The BASIC Program
A Medical Knowledge Base

Tower of Babel

12. Summary and Technical Overview

121
12.2

12.3
12.4
12.5
12.6

)A
s
0~

12.9

Events
Probabilities

12.2.1 Bayes’ Theorem

12.2.2 Prior and Posterior Probabilities
12.2.3 Odds

12.2.4 Approximations

12.2.5 Combinations

12.2.6 Descriptive Statistics

12.2.7 Normal Distribution

12.2.8 Discrete and Continuous Variables

Surfaces

Discrimination

The Learning Algorithm

Parallel and Sequential Procedures
Maximum and Minimum Values
Processing Strategies

12.8.1 Goal Driven Strategies
12.8.2 Data Driven Strategies
12.8.3 Selecting the Next Variable
Intermediate Conclusions

12.9.1 Explanatory Systems

12.10 Linear Interpolation of Responses

1204

Data Formats

13. Select Readings

Index

201

201
205
214

221

229

229
229

230
231
232
232
233
233
234
235

235
236
237
237
238
238

238
239
239
240

241
242

244

247

For Catherine and Philip

and much good may it do them...

vi

PREFACE

A potential reader is standing in a bookshop with a copy of a possible
purchase in his or her hand. Having looked at the front cover, and looked at
the back cover, he or she now reads the Preface to determine whether or
not the book should be purchased. The Preface, says the Theory, clinches
the sale.

So much for theory. The real reason you should buy this book is because,
for a book on computers, it is relatively cheap. It also contains working
examples in BASIC for both the Apple Il and the Sinclair Spectrum so you
get some ‘free’ programs thrown in for your money.

It tells you a moderate amount about Expert Systems, but, frankly, to
disclose exactly what it does tell about Expert Systems would rather
annihilate the reason for buying it. After all, you could just stand there, in
the bookshop, reading the preface and hang onto your money. But it will
(just as a sort of an appetiser) enable you to build your own medical
diagnosis program, Or a program for working out why your car won't start
in the morning. Or it will enable you to build a learn-by-example Expert
System which can be taught expertise in a wide range of areas.

It will also teach you a fair amount about statistics and inferencing
systems but, despite that, you should still shell out the necessary and buy
a copy.

I know money is tight these days and you could usefully spend it on
something else, like drink, which would give you greater pleasure but |
have to make a living too you know and the cost of typewriter ribbons
alone was pretty enormous when it came to bashing this lot out.

Well, after all that, maybe you've had the heart to fork out on a copy and
you're actually planning to read the thing now. What you do is start at the
beginning and carry on until you get to the Technical Overview. Then think
of something you'd like to try out — such as a learning system or a bit of
problem diagnosis — and dig out the relevant parts using the contents
pages, the index, and the technical overview to tie it together.

vii

Alternatively, you could have your computer switched on as you read the
book and key in the examples as you go along, that way seeing how they

g (o] s, itcould take you agestoget
work as an aid to understandir fyou dott (o]
y Y

The big point to note though is that this book is not arranged like a normal
text book. The chapters are not isolated entities. One way or another you
do have to churn right through from front to back to get the ideas in the
proper sequence. A few people have commented that it reads more like a
novelthan a text book inthe way it's arranged - which is a fair point, but it's
probably as well to warn you that it's like that. '

Prior to publication this book was read b i i
)] v Graham Beech, Phil Bradl
Hudspith and Phil Manchester (in alphabetical order). oo

They all chipped in with comments of one sort or another and they each

ave caused some | proveme t e M he fi versi h
3 stob ade to the fina i
o i I version. Which

If anyone, having read the book, has any comments which might lead to

useful future alterations, then drop the publisher a line and let him know.

Chris Naylor, 1983

viii

CHAPTER 1

Why ‘Expert Systems’?

“An expert system is regarded as the embodiment within a computer of
a knowledge-based component from an expert skill in such a form that
the system can offer INTELLIGENT ADVICE or take an INTELLIGENT
DECISION about a processing function. A desirable additional
characteristic, which many would consider fundamental, is the
capability of the system, on demand, to JUSTIFY ITS OWN LINE OF
REASONING in a manner directly intelligible to the enquirer. The style
adopted to attain these characteristics is RULE-BASED PROGRAMMING”.

A formal definition of expert systems approved by the British Computer
Society’s committee of the specialist group on expert systems.

Once upon a time, a long time ago when the Earth was still new and the
Sun had a big smile on it's face when it got up each morning, there was no
such thing as Expert Systems. Yet, suddenly, everyone seems now to be
talking about the things. Why is this?

Well, the answer is that Scientists Have Determined that there is an
increasing quantity of Government Money around for computer
applications and, further, they have also determined that there is scant
chance of accessing this pile of money unless there is a goodish chunk of
expensive and arcane research activity to be carried out on the application
of computers. So, to this end, they invented Expert Systems which,
because nobody in Governmental circles knows what they are, are lia bleto
attract Government Money if only as an aid to identification.

Less mercenary scientists (whose names currently escape one) are not
interested in Government Money per se and will, in fact, point to the
notable absence of Government Money to date in this field. These altruists
will simply state that they want to make computers more accessible to
more people. They want to make computers think like people. They want
computers to replace people. They want computers to be user-friendly.
And, inthe final analysis, they probably also want computers to take on the
job of allocating Government Money.,

All of this is fine - but the real problem lies in finding out enough about
Expert Systems so that one can even begin to attract Government Money
on one’s own behalf. Beyond this point in the book the subject of Money
will receive little attention but, hopefully, the book will enable you to get
the hang of Expert Systems so that you can, at least, build your own -
Government Funded or not.

The first part of the book relies on your total ignorance to build an Expert
System - it is a learn-by-example system which can pick up skills in a wide
range of subject areas. It acquires expertise.

Later, some knowledge of a specific area is assumed and we build an
Expert System which is able to use this knowledge intelligently to offer
advice after the fashion of a human expert.

A point which really must be made is this: that this book, as an aid to
understanding and as a sop to sloth, gives all of its examples in BASIC. But
it does not contain an overview of, or instructions on, how to program in
BASIC. That is the one piece of expertise which the reader has to bring to
the task for him or herself.

The main examples are given in BASIC with the major programs written in
dialects for bath the Apple Il and the Sinclair Spectrum so they should be
readily modifiable onto most micros. Very short sections of code are
written just in Apple BASIC (i.e. Applesoft.)

The final chapter in the book summarises the information given in
previous pages so that, when you get that far, you'll be able to see exactly
what it was that you were reading about earlier.

T e e e e

1.1 What do you want an expert system for?

There are two major faults possessed by most e‘xisting expert systems
and these two faults are: that you, personally, don't understand how they
work, and that you, personally, haven't got one.

These faults can, in extreme cases, be quite serious.)
You slink around avoiding other people’s eyes. You av_md conversation
with others. You hide behind COBOL man'uals.‘You Iljsten greedzly to
other's talk of 'knowledge bases’, ‘artificial intelligence’ and lreal-world
representations’. You are afraid to come clean and ask what it's all about
for fear of social rebuff.

You become an outcast and a despised person in your own eyes.

All of which can become a bit irksome after the first five minutes or so.
Particularly when you feel that the subject matter can't really be all that
difficult as evidenced by the fact that those who do profess to understand
it can’'t, surely, be any cleverer than you yourself are.

What is needed, to put matters right, is for you to ha_we your Very Own
Expert System. Tailor-made to A Little Known Dgg:lgn it will enable you to
lean confidently on any bar counter and pontificate on the subject of
expert systems. Instead of hiding your head and keepmg your own
counsel you will be able to raise a slight sneer in the direction o_fthose who
have expert systems but didn’t build them Fhemselves. You will be able to
laugh condescendingly at those who don't really under’stand how their
own expert system works. And at those whq actually don’t have an expert
system of any kind (one doesn’t even bggln to know hgw such people
manage to get by) you will be able to raise a deeply quizzical eyebrow.

For you (the tall, confident one standing near the centre of the bar qnd
holding forth to a crowd of admirers, many of whom are young and nubile)
are about to Build Your Own Expert System.

No special knowledge is required although it would be handy if you had
access to a computer; otherwise much of what is to follow may come to
seem, somehow, well, Academic.

1.2 What do other people want an expert system
for?

There are two main uses for expert systems and these correspond to the
two concepts of manifest and latent functions in sociology.

The manifest function of an expert system is to provide, on a computer,
human expertise. For instance, they can diagnose illness, deduce
chemical structures, suggest sites for digging up precious metals or carry
out a host of similiar tasks. They are user-friendly to some degree -
embodying human knowledge in a form vaguely similiar to the form in
which a human expert might hold knowledge. They often have some
ability to explain their actions and opinions in much the same way that a

human expert might. And, like a human expert, they might even be able to
teach their expertise to someone.

The other function of expert systems - hinted at earlier - is their latent
function which is, one suspects, to baffle the ignorant with arcane
explanations of how they were built. Typically, they use large computers,
of the sort you have not got, and employ exotic-ish languages, such as
LISP and PROLOG, which you have not got either. This tends to have the
advantage of somewhat sewing up the market for supplying expert
systems because, if demand can be stimulated by a description of an
expert system’s manifest functions, this demand - surely? - can't be met
simply by anyone possessed of a micro and a BASIC interpreter. Which
doubtless affects the price.

The way out of this problem is to provide a micro-orientated guide to
building expert systems. Not a complete guide which gives the last word
on the subject necessarily - but enough to break down some of the
mystique and get the average person started.

Up to now the real problem in understanding expert systems has been
simply that there was no simple place to go for an introduction to the
subject. Unless you were prepared to put some pretty hard thought into
the matter, all of the currently available writings on the subject just
seemed to emphasise the difficulty of ever understanding any aspect of
the subject - which tends to inspire one to give up and leave it to the
experts! It's all rather reminiscent of trying to climb a mountain (well, hill,
maybe) on which there is just no first toehold to be found. If you could only
get started you'd feel a lot more optimistic about what might be done and
you'd even be able to work out a lot of the subsequent steps for yourself
without the aid of a book. And, after all, that's what the human experts on
expert systems are doing: working it out for themselves.

4

ick lies in getting yourself into the same way of_thlnklng as the
Irge}:\itcliaders \ngthe fie?ld. Torealise that there is something conc':jr_etftat?ac:
accessible to think about with real toeholds to hang onto. Tlo thin il
there are some interesting problems here and that the§e prob sl:ms, with a
bit of thought, are perfectly so»luble and_that t_he so?ut|ons ast e_}f_:ptp&ar
are perfectly amenable to bemg explained in plain languaglel. a te
subject of expert systems is not'm fact a mystic art but, like a cotmpu er
subjects, is something as practical and down-to-earth as carpentry.

1.2 What is an expert system?

Before you climb into your overalls and rush to your\.'\{orkbench it'sas WF:I_:
to just pause for a moment and ask:_what, actually, is an expert systet_ ?
For, if you think about it, you'll realise that _the answer to this qL‘IIES iﬁn
might well have a profound effect on the finished object. ACFUF y, t rz
answer won't affect the object much - as we shall see - but, certainly, you
think it should.

It all started many years ago, back in the empty vastnesses of time when
computers were about as powerful as a pock_et calculator and tlranslljstor:s
were spoken of in awed tones. In betwee.n bemg struck speechless by the
power and complexity of the monsters v_nnth which they worked, computer
scientists found words to express their deepest desires.

“Wouldn't it be nice,” they used to say to each other, “if”we could get this
thing to do something other than payroll calculations.

“Yes,” they used to agree, “we've got literally hundreds of words of
memory and it now works faster than the chief accountant yet, for all that,
it is like working with an idiot.”

“Certainly he is an idiot,” another would concede, “but eur computer is
little better than him.”

i i i d attempt to hatch
And they would drink beer long into _the night and
schemes whereby the full power of their Frankensteinian monster could
be unleashed.

Well, they are still sitting there, drinking beer and plotting against the chief
accountant and the computer is still doing the payroll. The progress has
not been dramatic in the direction of gettir)g the computer to ldo
something more, but the motivation is still the same. For, like
Frankenstein, they wanted to dream up a way of breathing a little life into

5

s S

their subject. They didn't just want a glorified adding machine, they
wanted an actual thinking machine.

That, of course, is how the whole field of artificial intelligence started up,
and the field of expert systems was just a part of it.

People noticed that the chief accountant, say, wasn't just a glorified
adding machine (despite the rumours) but that he was something of an
expert in his own field. He could cook the books, for instance, in a way
quite beyond the abilities of any computer.

And it wasn't just accountants that could beat computers. In every field
there were human experts who had special skills and knowledge which
made them both indispensable and expensive. Every time a group of
computer scientists talked to someone who was an expert in some field
they would listen to him for, maybe, a couple of hours. Then they would
start to long for the day when he could be replaced by a computer so that
they could switch him off, and then forget to pay him.

The dream was an alluring one. So alluring that, in time, it took sufficient
hold for people to think that there must be some way of realising that
dream. The problem was: how?

It's easy to see that, if one did solve the problem, one could call the result
an ‘expert system’. It would have the expertise previously found in human
experts yet it could be switched off at night. But, the problem as to how

this was to be done not only proved hard to solve - it has hardly been
solved vyet.

Ask anyone how a human expert works and, apart from comments like
“slowly’, you'll find that nobody knows. Or, at least, they don’t know to the
extent that you could write a computer program to do it. Any explanation
will be fuddled with words like ‘judgement’ and ‘experience’ which simple
don’t occur in the world of formal languages.

But the basic ideas are simple enough.

People, it's said, are general purpose thinking machines. Give them any
problem and a bit of experience and they can use their judgement to think
out a satisfactory solution to the problem. All that people consist of is a
collection of brain cells, wired together somehow, and all that computers
consist of is a collection of memory cells, also wired together somehow.
So, write a program which will solve problems (in general) and you have a
system which will replace people. With the added advantages of not
breaking down, forgetting, going wrong, wanting to be paid, and so on.
The problem is that this general purpose problem solver has been pretty
elusive.

6

i ifi olvers. For example, you might
lusive have been specific problem s | :
h:iz aecalculation to perform. Well, you could easnylwn:je ahprogc;grr:\etglca!?
i ; sed a computer you already have 4
i el ion and it can work out the
i r machine an arithmetic expression) :)
Gr:\ls?/v:??or you. That sounds pretty obvious butin evaiuatlrr:_g ra1n arlt:umnigﬁ
: i ' done everything which a
sion the computer has don Ve
ex.strl;aesmatician would have done. It hasn't just added a few nuzr;E:::
' ether, it's taken a string of symbols and mar'!lpulated them té) pu e
?g?o a sénsibte form. After that, any arithmetic would have been y
K:::{aif you should think that this is bemdq the1 pﬁlnglcogsll(c;etrhae i;gl;:zm
i ter can'timmediately handle. Take tf
s athant i Integrating expressions can be
integrating a mathematical expression. Integ f
zZLZrigusiy gifﬂcult to do with some functions - so Yt:-:l gggﬁnre%s{ﬂngglwy
i i ic for an expe .
ink that it would be a suitable topic t
E.;Tg:;ose that you had written such a system. What would it actually look

like?

It would look, probably, just like your current gom_ﬁutherdwghfg‘s’:vBﬁilrg

i ifference would be that it ha

e s L. if look around at some pocket
sions in the language. In fact, if you k | I

E:ﬁ:rueI:tors. you'll find that they've got ‘integrate keys wh_lch W|IIII canxlio:gt

numerical integration for you on any function. So there’s really no

remarkable about that anymore.

And this serves to illustrate a point‘: oﬂce we:Poo:;Sg:\: ;?ﬁﬂ;;?ﬁ::&;?eg
i it, then it all cease i

and can write a program fqu ; ital P Lo

i didn’t happen to be a ma g
e e i rform integration. In other
u'd have had to call one in to pe

yoc:lrzjsseli;c\;qd have sent for an expert. With the calculators and pr_ogralrlns

gﬂailai;le today that isn't necessary because the task has ceas%drswrdtluacglll

to be one which needs an expert. And, as a consequence, we d hardly

the ‘integrate’ key on a pocket calculator an expert system.

eople who were
more everyday example, there once were p e | >
;gy:?)hZ:pens. In fact, some of the most agile minds in ‘;hedarltllsot;ghmo?;rse
i Pay Corps. Adept at finding ;
could have been found in the Army wpiend
i i llowances, these human experts
special cases, hitherto unknown a ; ; il et
g B ears. It was simply p
would say ‘superhuman’) held sway for y . e ekl
i lerks the way of the dinosaur. payrol
program which sent pay ¢ R gl Nl
n easily be seen as an example of an &
gggg?jz:siie total ium of human expertise on the subject of payrolls. But
nobedy thinks of it like that anymore.

It's simply another case of a problem seeming to be trivial once someone
has solved it. ;

And that's really the case with expert systems today. Previous advances
are dismissed as scarcely being advances at all for the very simple reason
that, like the early computer scientists, we're all sitting around wishing
that we could get the computer to do something ‘special’. Something
more than it's doing already. But, if it did, we'd still be sitting around
making noises of discontent because we'd still be looking for that
something extra which, as yet, we have not got.

Each advance brings with it another computer program - no more and no
less than that. But there just doesn't seem to be that one, final, Big

Advance which brings the ultimate program. The one that finally breathes
life into the monster.

And, just to make matters worse, if there were such a system, the next
thing that would happen is that there would appear a new breed of
experts. Human experts, they would be expert in the workings of the
ultimate systems. They would know more about it than did anyone else -
and they would be well-paid for their expertise. And, if you don't
immediately believe that, ask yourself how it was that computer
programmers ever appeared on the scene.

Suppose, for instance, that you devise an expert system which is able to
carry out medical diagnosis. This has, of course, been done already. What
do you think would happen next? Well, learned papers would appear in
academic journals describing the system and saying what it could do. And
others, noting what it couldn’t do would set about building a better expert
system. This, of course, has already happened. Itis past history. You might
sum it up by saying that: a computer program was written which was then

criticised and improved by human experts who then wrote a better
computer program. And so on. ...

Inevitably then, any expert system is only going to be a temporary
palliative. Something to stave off the pangs of deprivation for a while. The
trick is to find a good palliative rather than a bad one. Something that
makes you think ‘That's clever!” - even if you don’talways continue to think
it's clever. A computer program, in short, which will do something that you
hadn’t realised could be done by a computer at all. A computer program

which does something which you'd have thought really needed the
services of a human expert to achieve.

But still, in the end, a computer program.

1.4 What do you want your expert systemto do?

i i mputer program, no more, no
efined an expert system as a co
Hawr\ﬁeiould just sitaround content in the knowledge that we knew whatt
\esse,xpen system was and we already had one. This is the easy way out.
an

The hard way outis to take the functional approach and ask: what do you
want your expert system to do?

This is a dangerous question to ask because the answers 0ﬁn inv:si\ifgey;gg
i i hich is generally co

i ng to do some work, something w ! :

clir"sthaas\gafal. But that's computers for you. Generally speaking, peopl{e donrtt

dleﬁne computer programs except by virtue of what thsy_fio. So, if expe

systems are computer programs then, what do they do?

Atthis point the onus goes over, temporarily, to you. Because the 31;251;?':
s not “What does one, in general, want an expert system to e
“ﬁNhat doyou, in particular you, want your very own expert system osa 'in
Afterall, it's you who's going to build it. You might as well have some say
the matter if you can.

ion i . Settling into your armchair you
that question is, of course, easy
z\’u':iitt:h on [\],'our computer, close your eyes and dream. The_ roo;n esl\;v;glds
before your eyes, a warm glow passes thro%gljh I\:our vt:;y b;J;iiio,:- HOV\;'
i ile plays on your lips as you i y key in the i
E?Ani‘fllcl'g?c%ml\:’lz g?\},kLLIONAIHE? and a few simple, well-chosen phrases
appear on the screen by way of answer.

“Of coursel" you exclaim. “Yes, certainly. Yes. That would obvious}‘y make
me a millionaire. If only I'd built my own expert system sooner.

And you make a note of the answer and proceed to Lntetrc:gg:fgfrt}?aai:
i i - tion of how you can s
achine on the previously vex_ed ques T ir ha
;oing grey, followed by a session on how to stop dandelions growing in
your lawn,

It all works like a dream and, in fact, it is a dream.

Which is a bit of a pity, really. But Life's like that and no amount of
programming is really going to help that much,

The problem is that some things are impossible to prpgram,_%fpeta;?:yitr‘een;
or no expert system, and if you want to program an impossible g
you will encounter difficulties of implementation.

Returning from dreams of great things to the real world, in which you re9

[P

sitting there with a computer in front of you, needn’t be too much of a let-
down.

Having said that some things are impossible to program doesn’'t mean
that everything's impossible to program. But why, you might ask, talk
about programming when what you really want is to get on with building
your very own expert system? Well, it's really just a matter of making sure
that ‘expert systems’ doesn’t get mistaken for the phrase ‘universal

panacea’. Take an analogous case which has been around a bit longer:
databases.

Databases can be pretty complex things. They can take a lot of working out
and a lot of understanding. This can lead to paralysis of the intellectual
kind on the part of those who encounter databases for the first time. Yet, i
you have a few files (and who doesn't) then you have a database (of sorts).
Sowhere's the problem? To be honest, thereisn't a problem. You just ease
into the subject kind of gradual and you soon get the hang of it.

It's much the same with expert systems. There’s nothing much to them,
really. Which is a good thing, seeing as how you're planning to build one.

There is one idea which is worth having in mind though: that's the idea of
an expert system as being a system which has ‘judgement’. Now, all
computer programs tend to have some measure of judgement. As soon as
you write code to compare one value with another and take specific action
depending on the outcome you have judgement.

It's just that expert systems tend to place judgement rather centrally in
their design. Judgement, rather than calculation, tends to typify expert
systems. But, as the judgement usually comes as a result of calculation,
the difference tends to be conceptual rather than actually, as it were, real.

So, think of something you'd like an expert system to do and ask yourself if
it can be reduced to a series of judgements. If it can, you have a good

chance of building an expert system to do it. And that allows an awfully
wide range of possibilities.

To start you off, here are some possibilities:

Diagnosis of common illnesses.

Fault finding in simple circuits, or even a TV.
Diagnosing plant diseases.

Electrocardiogram recordings.

Classifying animals, birds or plants according to species.

But, you are certain to have your own ideas.
10

1.5 Expert systems: some untrue things

On the subject of expert systems, people say a wide range of things and
not all of them are factually true.

he common error, strangely enough, is not to overstate W,h‘.it. an expert
Ty;em could, in principle, do. It is to understate the possibilities.
s s

i i 'S tem can only do ...” followed
Ily, you might hear that “an expert syster " ’ .
gvplﬁZth::vhat itcan dowith the implication being thatitcan tdo anthI;ng
elvsz This is nonsense. If you can think pf away of doing something then
you 'can build an expert system to do it.

Someone else’s expert system may only be able todo sych-and-such. E;:

ours! That's another matter. Your expert system Is under nlo s :
yonstraints. Yours is going to be bigger and better than anyone & Sﬁ s {u
fhat's how you build it, that is). It is presumptuous of anyone to tell yo
what your expert system can't do.

Take for instance:

ONETHING."” Patently
% PERT SYSTEM CAN ONLYBE EXPERT'ON |
uﬁﬁuﬁf}kll you've got to do is to build one that's expert on two things and
you've proved the critics wrong.

“AN EXPERT SYSTEM CAN ONLY DO WHAT A HUIVIA_II\Jd EXPSEeHr:
COULD DO (AT BEST)" Also untrue. Suppose you chose to bui z?lsy »
for which there aren’t any human exp_erts? If it ever works at ?f'ylijus\i’n
proved this statement false. More typically, there are plenty o 1r:|;| P
which human expertise is less thaq complete. In such a case,l ah |Ynan
expert system has to do is be a little bit better than normal hu

judgement.

“EXPERT SYSTEMS WILL NEVER REPLACE MAI'\I." Of course they will.
There'd be no point building them if they couldn’t.

Human nature being what it is, it's always possible to find s\?meoneev:.'gg
will disagree with this book's description of expert systems. n?':u may
disagree with it yourself. So, let's note the following points:

le, a special characteristic of expert systems is that they are
L((}:i:g:?veePF?r?eaningpthat the behaviour of the program chanﬁsalsé‘(us;.lr?‘lalx
for the better) over a period of time. They can do this either by ho |ngc,r »
knowledge in rules which can very rea_ldﬂy be aitergd by the_usert, Witz
building up their knowledge from their own analysis of the inputs iy

ki

_’

little intervention on the part of the user. In both these senses the systems

described in this book are adaptive.

Anaim of many of today’s expert systems is to make them generally expert
in a wide range of tasks simply by drawing a distinction between the
knowledge they use and the mechanisms which manipulate that
knowledge. By changing the nature of the specific knowledge they use,
the expert system then becomes able to exercise its manipulative ability to
become expert in a new field. For instance, an expert system designed to
carry out medical diagnosis might, by removing the medical knowledge
and substituting knowledge pertaining to structural engineering, become

expert in structural engineering instead. The programs described in this
book are organised in this way.

It is often said that a special characteristic of expert systems is the rule-
based organisation of their instructions. Unlike conventional computer
programs which proceed in a line-by-line system of execution, expert
systems consist of a collection of rules which are not executed
sequentially but which ‘fire’ only as and when appropriate conditions are
met. In the literal sense this description is rather misleading because,
apart from some very rare machines, all computers step through their
code in much the same way. Conceptually, however, the point is a
reasonable one to make - but only in the sense that expert systems often
behave as if every line of code began with the word IF.... . And that,
indirectly maybe, is how the programs given in this book work.

12

Chapter 2

A Statistical Scheme

2.1 Setting up a matrix

i liminaries. Having been
ugh, you may well exclaim, of pre g
Ergm‘iag:d gn e:pert system, where is it? How, in short, do you build your

own expert system?

Well, it's easy.

First of all define a two dimensional array and Lhink of it asrta srs:tt:nmg::?dr
i i i t to ask your expe]
x. Think of the questions you wan y
I[;'l:gtlthe columns of the matrix with all of the posmbig a'?tswer;. th?dt::r:g
i i i hich the expert might nee !
all the pieces of information w jht n
gfrive at tﬁese answers and label the rows of the matrix with these pieces

of information.
Take a concrete example, to make it clearer.

Suppose that you'd like your own expert system tcf)lteil yot'irjlf it spgg)my%:(f:
i i i t to be able to sidle u
tomorrow. The idea is that you wan J
L?rilputer and ask; Is it going to rain tomorrow? And the computer w;ﬂ?
pause for thought and reply: Yes or No. To avoid confusion it won't reply:

Yes and No.

So, there are two possible answers. Therefore we w.'a_nt a mit_n?w;;h :iv;s
columns. We don't at this stage know how many pieces o ”m Orsaa fon
the expertwill need in order to answer the question but Ieths ad qzv'uezised
rows in the matrix. So, in BASIC, DIM E(10,2). Incaseyou hadn'tg ,
E stands for Expert. Graphically, we have:

Fig. 2.1
An expert’s matrix

Rain tomorrow
a
2 ¢ d

Observation No rain tomorrow
1 b

10 o ;

Where, down the left hand side, we've listed the pieces of information
available to the system to make a decision about the weather. These are
the numbers, say, 1to 10and might correspond to questions such as: Is it
raining today? Is it cold today? And so on. Trie letters a,b,.....s, tinthe array
are items which, as yet, we do not have but they will represent the
possibility of each outcome being true. They will Iater be filled out with
information relating to the weather. The task for the expert system is to
decide which of the two columns, Rain or No Rain Tomorrow, it should
select given the answers to the questions 1 to 10.

For example, observation 1 may occur when the answer is YES to the
question

“Is it cold today?”

From numerous observations (by experts) of cold days, there is a 60%
chance that it will rain tomorrow. So, ‘a’ will be 60 or 0.6 if you like
decimals. In a like manner, we would obtain values of b, ¢ and so on,

ensuring that we could get a sensible sort of answer based on the
observations we make.

Now, as it stands, things might be looking a bit more concrete than they
were but, despite that, have we really done anything useful? Well, yes.
We've established a Knowledge Base and a Domain of Enquiry both of
which are good phrases to remember next time you feel like waxing
eloquent in a local hostelry.

Take the Domain of Enquiry. Well, that's what it's all about. Literally. It's
the subject matter of the expert system. If something falls within the
Domain of Enquiry you can ask your expert system about it and, if it isn't,
you can't. Simple as that, really. In this case the Domain of Enquiry is the
14

in, i i i bit). There's absolutely no
r rain, if you want to restrict things a e’s ab:
anth?‘fy(gur askingythis expert how you can become a rn_nllonalre becauEE
o!r:!a question would be outside its Domaip of Enquiry. Tne;e r’;n":vthe
S:rfer reasons why you can't ask that question but one will do fo
o

moment.

[i it is the array E(10,2). It
sider the Knowledge Base. In this case, i : 0 |
N;:tva‘i:r?: all of the knowledge the expert has on ;he subbjifi;;uj\,’elzt:‘rgf
: ignifi it’ ‘t know a thing abo ;
ficantly, it's empty. It doesn’t ng 2 / !
ﬁi?ésl?nzalns thgl. so far, there's absolutely no point in your asking this
expert about the weather either.

As this is so crucial to our main theme, take a look at Figure 2.2

‘field” inwhi is intended
i nquiry is the ‘field" in which the Expert‘Sy:stem isin
Iggt?g%ilr:.c‘lfnih?s e:amp\e we have a weather-predicting expert so the
Domain of Enquiry is The Weather.

i is fi ds a Knowledge Base. That
rtin this field, the expert system neea: :
}I;Oﬁtx}s iﬁg?mation which we give itabout the suhbj e}c(:t of v;re;;l;eé.;geac\;gfi:
i e
which, in our case, we do not have) the Knowled
Wr?crcl:nj-n(pass the whole of the Domain of _Enquwy j.e. it wouldh k:;ol\.:
:verything there was to know about the sub]ect“m har;d (the Vg’oerattime1 ‘\;'Ve
i ing - it will just know a i
tice, it's unlikely to know everything - it will ju)
Egicr;)resent this by showing the Knowle_dge Base as being smaller than,
but existing within, the Domain of Enquiry.

When a specific question arises, if askedeith any _r;?:vo;ranmzcs:;f?aﬁ
ithi i i owever, i

must fall within the Domain of Enquiry. > A e
ithi Base on our diagram. Exactly wi

exactly within the Knowledge G i
ecific example depends on the extent to w 't

gl:sc: \?v;;tﬁin the Expert System encompasses the specific example we

produce.

Consider a human expert to whom you turn with a thrustirllc?bquviisltl:zn
concerning the likelihood of rain tomorrow. MBOStt Elsg\ffa“\r;:n ad?famag%
i tter. But,
to hazard some kind of guess on the ma y S
: hat weather is and they can lo
over the computer to date: they know w ithe] i
i : ther is like - which might g
ut of the window to see what today’s weathe
?hem a clue about tomorrow's weather. Obviously, we want our expert
system to do a similiar kind of thing.

isti i i i i ion in the problem. We
‘s distinguish two different kmds}ofmformat'lon int v
fgﬂ:gtczﬁthen?a number of different things, but let's try Fixed Information
and Variable Information.

15

uld go in the Knowledge Base. It containg
ase, would be about the weather in general,

_Fixeq Information is what wo
invariable data which, in this ¢

Variable Information is what wo

it uldn'tgo i -
specific information relating to ¢ go in the Knowledge Base. This is

orm é he problem in hand. In this case it
be the specific information which would enable the expert to say if it \t:vvgs:g

rain tomorrow or not given that we ar. i i

‘ ! C e asking the question tod

Just asking the question about any day in general, el
Fig. 2.2

Knowledge base and domain of enquiry

Knowledge
Base

Domain of
Enquiry

Specific knowledge
of weather

Specific example
of weather

Weather in
general

In a way, these two sets of information are like the difference between
programs and data. The fixed information is part of the program and the
variable information is the data for this specific problem. But, just to mak_e
sure that the subject doesn’t become too clear-cut, it's worth making it
woolly again by pointing out that we might want to alter the fixed
information quite often (soit’s notreally fixed afterall) and it might even be
as variable as the variable information at times. This is because most
experts change their methods of working as time progresses and we
wouldn’t want to prevent our expert system fromlearning as timegoes on,
would we? In fact, this is often a feature of expert systems. -

Anyway, back to the expert on weather. We've just asked if it's going to
rain tomorrow and received a reply to the effect that it hasn't a clue. What
next?

Well, give it something to work on. Tell it something about the weather.
For instance: if it rains today it's more likely to rain tomorrow. This is
because rain tends to go in spells. We have wet spells and dry spells.
Therefore if it's raining today, it's likely to be a rainy spell which implies
that it will rain tomorrow. That, incidentally, is more or less true. So what
we're doing is embodying a bit of human expertise in our expert system.

Suppose we reasoned that, if it's raining today there’s a 60 per cent
chance of it raining tomorrow. Therefore, by an amazing feat of arithmetic
we see that there's a 40 per cent chance of it being dry tomorrow. Further
suppose that if it's dry today there’s a 55 per cent chance of it being dry
tomorrow. By the same feat of calculation there's a 45 per cent chance of
it's being wet. Now re-draw our original array with these gems of
knowledge built in:

1. Rain tomorrow 2. No rain tomorrow

60
45

1. Wet
2. Dry

40
56

At this point it becomes quite obvious what we should do. The expert
system has to print out the statement Rain Tomorrow or the statement No
Rain Tomorrow. To decide which, it asks if it is wet today. If itis, it prints
out Rain Tomorrow because that's the most likely outcome. If it isn't wet
today it can do one of two things depending on how you want to program
it.

It can either print out No Rain Tomorrow on the grounds that if it isnt
raining it must be dry and, therefore, it's most likely to be dry tomorrow. Or

17

it can specifically ask if it's dry today and, on receiving the answer Yes,
proceed from there.

Now, all of this might be concrete but, is it useful?

After all, you can always listen to a weather forecast or, failing that, just
wait and see what the weather does. It's not really that important, you
might feel.

And, what’s more, you probably haven't got much faith in those numbers
we put in the matrix (sorry, Knowledge Base) in the first place.

Well, it's fair enough to have some reservations. But consider some
aspects of what we've done.

Take those numbers we dreamed up. They are, certainly, a bit ad hoc. But
suppose they hadn't been. Suppose that they had been precisely
determined numbers - what then? Well, it would have made some
difference in some circumstances. Say, one of the numbers had been 100
per centand another O per cent. Then our expert could have made a certain
decision, not just a likely guess. Further, suppose that we didn't know
what those numbers had been at all. We might not have known that rain
typically precedes rain or that weather goes in spells. If our expert system
could have worked that out for us, then it would have known more than we

did originally and it might have been better at weather prediction than we
are.

Now consider the actual question asked: Is it going to rain tomorrow?
Probably rather trivial for the super-smooth expert system with which we
intend to impress the world. But it could have been a different question.
The rows and columns of the matrix could have been labelled differently

providing different variables, different outcomes, and a different field of
expertise.

We might have asked: Is Greyhound X going to win in this race? Or: Does
my headache denote a hangover?.

Providing that we can contrive to specify some variables, some outcomes,
and some method of linking the two, we can tackle a wide variety of
problems with our expert system. The trick is simply to have some

methaod, like this, for getting the system organised around the problem to
start with,

18

ig. 2.3)
ft\lf%ather forecasting

Program

+

Variable Qutcome

Data

Knowledge
Base

spocificallv: -

R Program
Information on i
Todays
Weather Knowledge Base
of
Wgaﬂg_zl"‘ Weather Forecast
en

o AT RN W L

S S U

&
2.2 Probabilities

Inthe previous example we thought of an event as being, say, 55 per cent

likely to occur; 45 per cent likely to occur; 100 per cent likely to occur.

There's no particular reason why we shouldn’t continue to do that but the
use of probabilities has some advantages.

Probabilities are very precise thin

gs. They are represented by numbers
which range between 0 and 1.

If an event is absolutely certain to occur, then it has a probability of

occurrence equal to 1. If an event has no chance whatever of occurring
then it has a probability of occurrence equal to 0.

If an event has a fifty:fifty chance of occurring then
occurrence equal to .5.

All other cases fall somewhere in between.

it has a probability of

Consider the cases of 0 and 1. There is a difference between a probability
of exactly 1 and a probability which is approximately 1 - so close to 1 that
we may as well write it down as 1, If an event has a probability of exactly 1
then it must occur. It simply cannot not occur. It may have a probability
number associated with it but there is no element of chance involved with
itatall. It almost has the force of a causal statement, Consider: if you leave
go of your glass when there's nothing underneath it then it will fall to the
ground. That is a certain event and has probability 1 associated with it. It's

also a causal statement in as much as the falling glass is caused by the
releasing of your grasp.

But consider: when you eventually leave that bar in
you'llfind that everyone else leaves as well. You all
public house at the same time with probability 1
this isn’t a strictly causal event. It
leaving that causes everyone else
further pleasures for them. Itis the f
the night and is throwing you all

which you had a glass
,in short, walk out of the
-itis a certain event, But
isn't the fact that you, personally, are
to decide that the hostelry holds no
actthat the barmanis closing down for
out that is the causal item.

So, if two or more events occur together with
between them need not be strictly causal

always go together. But they still happen to
about that.

probability 1 therelationship
- they might just happen to
gether and there's no maybe

Now go back into the bar and drop that glass again.
20

idi i round - butwe didn't say it was going to
Ui Eald gw:i %tt}l;?otgafglilrts\rtilrllz%d, maybe it will break with proba_blllt_y
o 9 Irllen féct to save writing out all those 9's we could say that it wﬂl
.gggggiﬂ:‘ probai;)iLity approximately 1. But this isr}'_t the same as sayn;g \1t
br.eakW k with probability exactly 1. If the probability had been exactly
gl DTS lass would have broken - and no two ways at_)out it. But as long
b ic figure of 1 is not exactly achieved there will always be some,
asbthiltssrrq-lzgl’l, probability that the event won't occur - and the difference
zLUeM well be an unbroken glass.

ili bility O event can't
uments go for probability 0._ A proba)
Theuﬁarélﬁta;% event v%hich has a probability of approximately O can

g:::'tai;'lly occur even though it's very rare.

i here’s no particular reason why
_it may have dawned on you that i
o nstl:'-:’owuldn't \I;ave used percentages. 100 per cent 1|ke]y to occur ;’nﬁfg:
m‘;t you're quite certain about something. For less certainty, you mig
99.99 per cent certain and so on.

ly. You could have a scale from
use any scale you choose really :
:ﬁﬂuiia?ive to plus five if you wanted. OLam_ﬁ'th. Th;eor:IOy tr;a;(szr;ég:
ing the point is to make c!gar that it's possi
?rté)%ggﬂﬁies inpa very precise fashion. Forlour pur;:)oses_fav:grsvr:szetlz
i ili ers i
event can be described by probabi ity num
g?a:z?ilbe it like that. And the reason for using the usual 0,1 l;janige ?;
probabilities is really to remind ourselves that what we are doing
precise.

Take our statement that “if it rains today then thereés;ﬁf{)gfe;gs;rtrg:zgc;
it raini = fcourse, a probabily
of it raining tomorrow.” We mean, o A Pl
his we can deduce that if we wa
0.6 for the event. Now, from t ; st
infini i Id find that 0.6 of them were
infinite number of rainy days we wou ¢ it
i i if, but, or maybe. In this case, of ¢ :
by another rainy day. There is no if, - i
i i te but that doesn't ren
ur figure is almost certainly inaccura |
gtaterr?ent in which it was used meamng_less.’The meanfl_ng w?is r\:te?;
precise. Only the figure was wrong. And, if we'd got the |?ureI ght,
would not only have been meaningful, it would have been true!

That's the reason for stressing the point.

i i n expert system. “lt
Imagine yourself holding forth about your ow p
decaigc,ied,"yyou announce, “that there was a k75 probability of World War
Three starting on any one day of next week.) B
"Oh? respon%s a bored audience. "It isn't sure about it then?

21

And they start talking about something more certain. Like the weather, for

instance.

It could be absolutely infuriating to have an expert system which could
work out something like that and then have it dismissed so lightly. Really
sends the blood pressure up, that sort of thing.

But listen to what you said.

You were using a probability measure, so, if there's a .75 probability of
World War Version 3 starting on any one day of next week then the

probability of World War 3 not starting on any one day of next week is 1 -

.76 =.25. And, for War to hold off right through the week, not occurring

on each and every one of its seven days, we have a probability of

.25(power of 7). So the probability of a Peaceful Week is 0.00006 1035,

The probability of not having a Peaceful Week is, therefore, 1 - .25(power :

of 7) = .999938965. Which is the probability of World War Three
breaking out on some day next week.

This all assumes, of course, that when World War 3 does break out it does ;
so quite independently of anything which might have occurred on

previous days but, as it’s all computer-controlled nowadays, this doesn't
seem to be an unreasonable assumption to make - after all, chips do tend
to go faulty in a statistically-independent fashion!

You haven't specified which day of the week it's all going to happen but

there would be less than 6 chances in 100,000 that it wouldn't happen at
all. So, all in all, everyone could reasonably go out and buy tin helmets on
the strength of the information you've just given them.

But the important thing to remember is that you needn’t look down on

probabilities. You can calculate a lot of exact things with them and make
some very exact statements, some of which just might be true.

And, on a more practical note, if you're going to build your own expert
system then you won't be inspired to get very far with it if you think that
anything with a probability in it is only a vague ‘chance’ and not really
waorth considering seriously at all.

22

2.3 More probabilities

Now, it could be that probabilities are, as it were, an open book to you.

On the other hand, it might be worthwhile, just in case they
ar[;n't mentioning a few basic points about what happens when you have

more than one probability.
some notation might help.

we'll try: ' .
P(A), P(A&B), P(A:B) and define them this way:

is the probability of A occurring. .
';{(i)&lg) is the probability of both event A and event B occurring.
P(A:B) is the probability of event A occurring given that event B has

occurred.
Respectively, we say that:

P(A) is the probability of A

P(A&B) is the JOINT probability of A_and B
P(A:B) is the CONDITIONAL probability of A given B.
They are not different ways of saying the same thing.

Going back to our weather example, we had the matrix (using
probabilities, rather than percentages):
1. Rain Tomorrow 2. No Rain Tomorrow

1. Wet . B . 4
2. Dry 45 .55

These are CONDITIONAL probabilities. They are the probablhtles of
particular weather tomorrow GIVEN today's weather. For instance, there
is probability .6 of rain tomorrow if there’s rain today. Thatis not the same
as either the probability of rain tomorrow, or the ?JOINT probability of rain
tomorrow and rain today. At a first reading it might sound as if they are
much the same thing. But they aren’tand it's worth sorting the matter out
fairly early on otherwise all that stuff about probabilities being precise,
exact things tends to be wasted.

First, what's the probability of rain tomorrow?

Note that we haven't said anything about today’s weather. Itsa single
item in isolation of the previous day’s weather. Just, in ge_r_'l'erai, will it rain
tomorrow? The information we have is that if, on any day, it's wet then the
probability of rain tomorrow is .6. On the other hand, if it's dry, the

23

probability of rain tomorrow is .45. What should we do to get the overal| -

probability of rain tomorrow? Add them up (1.O5)? Average them (.525)?

Take P(R) as the probability of rain tomorrow and use W and D to mean
Wet and Dry today respectively. We want to find P(R) and our table gives

us P(R:W), P(R:D) in the first column.
At this stage we introduce a formula:
P(A&B) = P(A:B)P(B).

Inwords this says that the probability of both A and B occu rring is equal to ‘

the probability of A given B, multiplied by the probability of B.

If you think about it you'll find it's fairly reasonable. We want to know
about A and B occurring. If B definitely occurs then there is a probability
P(A:B) that A also occurs. But B only occurs with probability P(B) so we
have to allow for that to get the figure for both A and B occurring. Hence
we multiply P(A:B) times P(B) which, as P(B) is no greater than 1 tends to
make the answer smaller, allowing for the chance of B not occurring.

So, the probability that it will rain tomorrow and that it rains todlay is:
P(R&W) = P(R:W)P(W)

i.e. the probability of rain tomorrow and today is equal to the probability of
rain tomorrow given rain today, times the probability of rain today.

Or: P(R&W) = .6 P(W)

And, for a dry day today:
P(R&D) = P(R:D)P(D)

Or: P(R&D) = .45 P(D).

Butwe wanted P(R), the probability of rain tomorrow. Well, the probability
of rain tomorrow is obviously equal to the probability of rain tomorrow and
rain today plus the probability of rain tomorrow and a dry day today. So:
P(R) = P(R&W) + P(R&D) = P(R:W)P(W) + P(R:D) P(D)

=.6 P(W) + .45 P(D)

At this point we recall that today is either a wet day or a dry day.
So: P(W) + P(D) = 1, it must be one or the other with probability 1.
And we get

P(R) = .6 P(W) + .45 (1 - P[W))

=.6 P(W) + .45 - .45 P(W)
=.15 P(W) + .45

So, in order to answer the question: what is the probability of rain
tomorrow? we need to know the probability of a wet day today.

24

i easily because we reckon
. a question that we can answer 0
- courg:bilig' of rain tomorrow is the same as rain on any other day
hat it's the same as the probability of a wet day today.

It is,
that the pro
which means t

That is: P(R)=P(W)

So: P(H) =15 P(R] +.45
.85 P(R) = 45
P(R) = .45/.85

.63 approximately.

more likely than not, it will rain tomorrow as it has done today and will
g;untii the world ends. That's our weather for you.

; i i 't been the same as
ouldn’t have got this result if P(R) hac'in t
N?ﬁ t:}alg(v\j\?)chad been, say, mist today this wouldn't have been the saf_mg
:cg ra)iln tomorrow. Then we'd have had to go to some other source to fin

out a value for P(W).

i i i ility of rain tomorrow isn't
ortant point to note is thqt the probabi
Tir':te;;gm?n that original table staring at you. Those are CON{DI;I]'IONAI;
f)robabilities, not probabilities of isolated events, and they aren’t the sam

thing at all.

i Iso obtained some JOINT
:—;cttl)-l:bili:ict)il;rss.e Pczilg\?\:;(";?\da”P?Il(gljc;tnwvﬁcﬁ were .6 P(\ng]_a?c_:ip(c-vs}
P(D),respectively. Now, we know that P(R)=P(W)andthat P(D)=
=1-P(R).
So: P(R&W) = .6 P(R) =.3176 approximately and
P(R&D) = .45 (1 - P(R)) =.2117 approximately.

These probabilities are much lower, because we're asking :Ngztsﬂ:g
probability of rain tomorrow and rain today is (ie. two wde , yda
succession) and what is the probability of rain 'gomurrovg ?Jr"l't amg(es;
today (ie. two days of alternating _Wea_ther_]. This joint probabi lg i
more exact request for a specific situation. Less is assumed a
chances of getting just what we ask for are so much less.

ili g i ilities by now. Certainly they
In all probability, you're fed up with prol?abmlltlgs
don't I:TIEKB particularly interesting reading owing to a pretty complete
absence of plot, corpses and jokes.

There is one more thing to be done in this section though. After that we'll
get back to the expert system proper.

25

On July 16, 1917 no less than 4.65 inches of rain fell in 2.5 hours at

Kensington. No less than 8 inches fell in 5 hours near Bridgewater on’
August 18, 1924. On June 28, 1917, 9.56 inches of rain fellduring ong
day at Bruton, Somerset. £

Moving to other parts of the Empire:
In Gibralter on October 25, 1836, 30.1 1 inches of rain fell in asingleday,

In Bagnio in the Philippines on the four days July 14t0 17,1911, the i
rainfall was: 35 inches, 29 inches, 17 inches and 8 inches. :
All of which goes to show something we haven't built into our expert
system yet: the knowledge that sometimes it never rains, it pours. i

2.4 More variables

Itis a typical day again. It is cold, wet, windy and foggy. You turn up the
collar of your threadbare jacket against the elements and light a soggy
cigarette to warm yourself about its glow. A raindrop of more than usual
size extinguishes the cigarette for you.

Will it, you ask yourself, be like this tomaorrow?

Well, of course, it probably will. Anyone could tell you that, for this is

England, the land where anything is possible as long as it involves getting
rain down the back of one’s neck.

But, just toindulge a wild fantasy, it has to be admitted that a dry day might
occur. So, will it rain tomorrow?

Switch on the expert system to find out. Before switching on, check for

any rainwater inside the casing. Remember matrix E(10,2)? Well, fill it in
as follows:

1. Rain tommorrow 2. No rain tommorrow

1. Cold P(Rain:Cold) P(Dry:Cold)
2. Wet P(Rain:Wet) P(Dry:Wet)
3. Windy P(Rain:Wind) P(Dry:Wind)
4. Foggy P(Rain:Fog) P(Dry:Fog)

Say that you know the conditional probabilities in the matrix and can fill
them in easily. Now if, say, it was Cold today and NOT Wet, Windy or

26

! ing (i king, that is). Because

d be laughing (in a manner of spea Ce
Oggy-thﬁnv?tli) dois tn?ook at the table and see whether the cond |t|QFaI
L ﬂit\?of Rain given Cold was greater than the conditional probability

mﬁagain given Cold and choose whichever was the most likely outcome.
of No

Go for the biggest probability.

i i is what to do when more than one
n that really arises though is what i
He %llj:ztzl:iurs In this case we have four variables. How will your expert
"f,gfem work out if it will be wet or dry tomorrow? 3
s

ivi i if i is cold, wet, windy and
trivial question. After all, if it re_ally is cold, .
e maytioeﬁ!ni?:ounds 25 if any idiot could predict rain with a fair degre::;
fo?g{my It sounds like a bad spell of weather with more to come.
ce .

that, really, is just the point.

ig. 2.4)
!;I\su correlated variables

Rain
Tomorrow

i d
i 2.4 represents two variables. Rain Today and Rain Tomorruv\:‘, atr'\:ia:!:)e' il;e:d:’a
F'gureho‘ws that these two variables are correlated. !f we know w| el L
?\:raesﬂain Today we can judge the probability of Rain Tomorrow by looking
extent to which these two variables ‘overlap’.

e /

Fig. 2.5

Today

Similarly, we can do the same if one of our variables is Cold Today, instead.

27

A Vg b oy e A

-

g

it A

Fig. 2.6
The 3 variable case

g O]

Rain
Tomorrow

¥
However, if we have information on both Rain Today and Cold Today simultaneously -
the problem becomes much more difficult because the size of the overlap into Rain

Tomorrow depends on the overlap that exists between Rain Today and Cold Today
i.e. the extent towhich these two variables are correlated. This isshownin Figure 2.6

If even an idiot can make a decent guess on the basis of that information

then surely your expert system ought to be able to make at least as good a
guess.

First, let's think of the variables we have:

It's cold. That sounds like bad weather - but does it mean rain? Actually, it
often doesn’t. In cold weather the atmosphere can’t contain so much
water vapour as in warm weather so, if it did rain, there wouldn't be so =
much water in the sky to come down. In defence of this point you could -
look at monthly rainfall figures for Great Britain. You'll find that it doesn’t H
rain much more in winter months than it does in summer months - which
can be a bit of a surprise if you have strong memories of getting drenched :
in winter. Probably, you just don't notice warm rain so much as cold rain. =

It's wet. Well, weather tends to go in spells, so a wet day could well
precede a wet day. Unless, of course, there wasn't any left up there to
come down tomorrow. (This latter suggestion is known as Optimism.)

It's windy. This often precedes rain. Warm, moist air being blown into a
cold area will rise, cool, and pour water down onto our heads. And
movements of air, like this, are just another way of describing a windy day. -

28

Well, if it's foggy it's not likely to be windy,is it? Fog usually

IS foggym still, damp air. It may or may not turn to rain.

arises frof
king our four variables, what do we have? Nothing, at this stage, very

gt int to rain. Certainly, it would be handy

i but not all of them poin b
Gfe;]tzlynz;llsgg‘igndicate rain with a probability greater than .5 because, if they
ift

g itation in getting our expert system to predict rain.
did, we e ZZV;:?i::tiggt:;nFoggv wegd used the variable Sunny. And just
Butsupp?hat the weather had been: cold, wet, windy and sunny. Now this
2 Osg what meteorologists call ‘unsettled Weathgr 3 but, for our
o it's just a nuisance because Sunny tends to indicate a dry day
p”,;%fs\f& whereas all of the other variables tend to indicate rain.
10

eneral, we have a set of pointers and we're alright as long as they all
n ! . .
Ipoi?'lt in the same direction.

Fig. 2.7
Pointers to the Weather

Rain Tomorrow

Foggy

Dry Tomorrow

If we have several indicators, we can get our n_axpa_rt to judge tl';la cqrr:(i‘::l :ll#f?:zat
easily if all the indicators point in the same direction. If they BI' |:|o|nt i
directions, problems arise because we don’t know how much reliance to p

one indicator.

29

So: what to do about it?

Back to our conditional prababilities and we s
today) - the probability of Rain given that it's raining today.
But what we've got js:

P{Rain:event X) where the
windy and foggy.

What we want to know is:

P(Rain:Cold & Wet & Windy & Foggy)

and specifically,
P(No Rain:Cold & Wet & Windy & Foggy).

Going back to one of the formulae we had before:

P(Rain:event X) = P(Rain & event X) / Plevent X)
or;

P(Rain:Cold & Wet & Windy & Foggy) =

P(Rain tomorrow & Cold today & Wet today & Windy today & Foggy today)

P(Cold & Wet & Windy & Foggy)

For instance, we started off with statements
in exactly the same form as the question we've
general, take a lot of simple statements aboy
turn them straight into one big statement

2 about the probability of one
event given the joint occurrence of a lot of

other events,

In case you're not convinced, consider an example.

It's misty and it's foggy. The probabilit
today is.75, likewise th
foggy we add the two t
1.5 which is obviously

30

y of rain the next day given mist
€ probability of rain given fog. Asit's mistyand it's
ogether and get a probability of rain tomorrow of
wrong. Probabilities can't exceed 1.

G R TR T

tarted off with P(Rain:Raj

event X is the event that today it is cold, wet

we want to know whether it's greater or smaller than:

like: P(Rain:rain). Which isn't

tconditional probabilities and

ili ether.

we consider P(A&B), the prob_zabzhty of lv;?ti\ée;;s;ﬁg ren
B Suaﬁzieevent be rain tomorrow glven mlStv:g(i:Ztld e
fatie iven fog today. Suppose say ! s
basain 19 nﬁrc:?gaglh S hor shon P(AEB) = PIA)P(B) which is equa
; e
e .75 times .75 = .5625. d
G '« worse. With both events pointing at rain we've calculated a
hat's worse.

- . itself!
o ility of rain actually less than either pointer by itself!
i

p(obab

i They're
W i fog are the same thmg.
is, of course, that mist arjd : Thex!
e 2:-:1 ‘i:?\’f (\-:Jater droplets in the alr_and the only difference is le]
zoghlgra;:r water droplets than does mist.
2.

n t db
d mist are just different words for the same hll"lg a Y
a

i i situation at
meeiod both statements we've said nothing extra about the

including
all.

i = s predicted by
H e, t epobabilitvo ain tomol ow is.75 the same as p
ence,
either stateme 1.

igi s
i in our original table there wa
i ires brief thought to see that, ino L o
- I|t c;gli\\: ;th‘l:il;?;to indicate this. Ifwe L_ell_d_Mls;::td ::Oogt];es;nsve il
i i itional probabilities b Ve |
i onditional p 2 e
IEft.ha'nd‘l S;?aev;ﬁzg tche same entry twice - but with nothing to indic
vely, ame ¢
fﬁ:gﬂper\; system that this might be so.

i i ing to occur in lots of d_ifferent ways for
o v Sathem Lrt‘:(faﬂr;ablz?alts\sgceg found is a correlation l_afmonc?jltdthbu:
ath_el' Pt ES were all independent of _each other thgr:j i eN;vw e o
variables.If t evneral they won't be. Consider Wet & Win y:f Jovr; thees
il lqut, - gen inI' don’t mean the same thing at_ail. Buti S! Al
tvo Va".ables ce_ tahe Yaren't independent. If we hgd included uthn i
ohf‘ten v;mgz'ttor?ave b\;en independent of Foggy either because
Ionﬂet ‘!ftends not to be the other,

i ily, it tends to
Happily, there is a way of dealing wi;h thl_s problem. Unhappily, it te
inchJlee lsome labour. What you do is this:

1. Think of all of the variables you have, say n.

2. Think of all the possible combinations of these variables.
: . . . - n
This is the sum ‘n pick x’ for x=0 to .

n! n! n! 3
n-0) 101 n1) 111 n-2)f2; * et and so oo
(n-2)

In the case of four variables on the weather, we have:

41 a1 41 a1 41 §
@0 * oy t @202 * 3yt En e i

which is:
1+446+4+1=18

i.e. there are 16 different combinations which could arise with our foyr -
Yes/No variables,

The exclamation marks mean ‘factorial’ as well as being rather like a cryof
computational anguish.

3. Make out a new list of variables. This time you list all of thnse:.
combinations of variables as well as the variableg themselves.]

L

4. Assign a probability for each outcome given the occurrence of each of
the specific combinations of variables.

5. When youwant to use the system you justlook to see what combinration
of variables you have, find that combination in your extended table, and
read off the probability for each of the possible outcomes,

6. Having contemplated this you raise an eyebrow, purse your lips, furrow

your brow and exclaim: “You must be joking!" (Exclamation mark, not
factorial).

Well, yes, sorry about that. But that's how you do it. It is a bit time- ©
consuming one does admit....

It would be much easier, of course, if you didn't have so many variables.
It's really your own fauit for thinking you can just sling anything at a
computer simply because it's got a lot of memory,

32

D

2.5 Bayes’ Theorem

’ Iways
ou do try to make a go of this methortli1 %O:Dﬁsgéfcjlaﬁo\;_

If however, ¥ If further by introducing Bayes -Theored ted his life to the

confuse Yﬂurjega es, as you can guess from his title, c evgatistics 'And his

L Hevferﬁ‘r;gs e\;en":al like, for instance, problems in s

thi

study ©

theorem states that:

P(X:R)P(R)
P(X:R)P(R) + P(X:nat R)P(not R)

P(R:X) =

n other i to be a
h ords, CO i Rain Tomorrow and X
d sider Rto bet eeve_: t A it
I rt I WrCO ;)ination of events describi g tﬂdaYS weather 1say et
pa icula 4
windy, cold and Ol!‘ld). . |
the robab i iven X today is equal to the
Then P ility of Rain to ‘C‘)r UW' givel 3 ‘
'blty of X t(l)d:y given that it's going to rain tomorrow
abill times the

bil tyofra tomorrow, divided by the total pi obabi Ity o X occurrir
a

prob:
anyway. »

‘re not happy about why this should be true consider:
If you

M this is a standard result we gave earlier.

P(R:X) =
P(X&R)
So, also P(X:R) = T

So, P(X&R) = PX:RIP(R) = P(R:X)P(X)

P(X:R)P(R)

P(X:R)P(R)
& - P(X:R)P(R) + P(X:not R)P(not R)

P(X)

So, P(RIX) =

iti - notrouble.

i :X) you could just enter itin at the start- no itk

o i ﬁi‘:’:cﬂreﬁl\ér to find P(X:R) - it depends to somlfe\::it:: o

v rnlgf he question as to which is easier. For_the one qd iy

| ki ::l et?m probability. of rain tomorrow given X tﬁ taybu e
"t vide the probability of X today given that y

other you have to pro -

it's going to rain tomorrow (or, more realistically, the probability of X
yesterday for each day that it rained today). You also (just so that you don't
feel you're getting on top of the problem) have to give P(X:not R) the
probability of X given that it's going to be a
well feel that this method is even worse than any previous methods.

Which isn't quite true. It's certainly pretty bad if all the events are
correlated with each other so that you have to provide probability values

for each and every possible combination. But if they are independent then

you can calculate an overall P(X:R) much more easily than you can
calculate an overall P(R:X).

Suppose, for instance, that X is the pair of events Y and Z.
Then: P(X:R) = P(Y&Z:R) = P(Y:R)P(Z:R) a simple multiplication.

But: P(R:X) = P(R:Y&Z) does not equal P(R:Y)P(R:2). If you don’t believe

this, figure the two calculations out separately and see what sort of

different results you get.

Later (much later, in the second half of this book)
which uses this method to build an expert syste
that all events are, in fact, independent of each
would run badly. Often, systems are designed whi
of the variables just to make life easier. Certainly it eases the problem of
that vast number of combinations which must otherwise be considered
but often the asumptions of independence are only roughly true. And if

there is a lot of intercorrelation among the variables the problem really
becomes immense,

m. It works by assuming
other - if they weren’t it

If ever you get to the end of this book maybe you ought to come back to

this section and think about it all again when you've seen how a system
might be implemented using this particular method of working. Or,
maybe, when you get to the end you could just sell the book and spend the

proceeds on drink. That way you become less likely to care whether or not
it's going to rain tomorrow.

34

dry day today. And you might

there’s a program given

ch assume independence

e

3

ey T

il

S S S

Avoiding Probabilities

e should have filled yourlvefry tbei(r)mg.v;.;orlé
i Id be easy. In fact, y

ilding an expert system wou / e
Hgott I;hsitpt:':!r‘r(\jisgd that it was. You have a c?{nﬁ‘ufr|-1<m;?\;$§g;gn§ies?
s o ou? What, you ask, is all this ta rc 7
e ?f t&z:ggfg:}yyuu have to tell the exper_t ;che probability of every

r . e

}g?:'oftcome in order to get a decision out of it

By this time a strange uneas!

ot to do all of this work then you hardly need a

Frankly, if you've d a bit of time and do it yourself.

computer. You might as well save

e iated
i i knew the probabilities associa
m anything else, if you ! ol
f\‘lrl‘lt?l ;apcahrtp]:;:slble Z;t of events you wqul?ngonfriigasn;\srcmz|‘c:hiChpy0u
want an expert system is to ngs ! ke
The’tr?:lisfor: zgﬁrse\f. To tell you things which you didn’t previously
can

ert
i feels. But, your very own exp
ich are fair comments, one | nown
,:\:'Ist(;fmwirs! different to most existing expert systems in this way.

ly on fairly intensive reseafch which,
| il k?msminmvilt\f;sd;it:kiﬁgythe braini of an expert to find o:;it;'iz
e speah ?;d every possible outcome to each and every _pob e
Odd:t 0'Ir']h:a(‘t:‘luna’lan) expert knows these odds. Pecpll?htha:r?;ﬁkﬁrli:e trl'?em
i he odds too. They
e = e;?ter;::ts;;m ézqu(:tm{:{tknows all the odds afta;r ‘Szg
o ?r):p They then give the expert system to so‘rnecu'lsse'j
E’:fegsr:'l;n?r':osu: all of the odds and that person is then duly impre .

expert systems work slig pICcKsS
Some T t k t Y at th pu

P Y Wi Vd erently int e com el ck
teexpetsbals-butlnatosteveycasetepeselceo E(U a)

expert in the subject is assumed.

But conside your case as you build your very own expe t system. f you
35

knew everything about the problem, you wouldn't need an expert system
to tell you about it. Typically, you don't kn

In short, your requirements for

an expert system are very different to the
requirements of those who ha

ve built such systems to date.

You want something that's fairly quick and easy to build, gives good
results, and doesn’t involve you in taking up a lifetime's study of the
subject in which expertise is needed, d

So that's what we'll do. As outlined above. Right at the beginning we said
that your expert system would be better than anyone else’s - or, at least,
different. This is largely where the differences start to appear.

3.1 How to make the computerdo the hard work

The system now changes. You don’
anymore - although you do know enou
what it's got to do. You'll justgive the
it can work out what to do by itself.

expert system. It's also going to have
the machine that's going to have to do
called Delegation.

t give the machine probabilities
gh about probabilities to appreciate
machine enough information so that
It's not only going to have to be an
to be a learning system because it's
the learning, not you. That is what is

And it's also about time that you had a

program which you can put on the
computer so that you feel that you're

getting somewhere,

What we'll do is this: we'll set up the eXpert system so that it can have a
training session during which it can learn to make a decision on the basis
of experience. Afterit's been trained we let it loose andallow it to make real
decisions using its expert judgement. Unless YOu examine the program
carefully, you won't need to know how jt came to its decisions at all.

Certainly, you won't have to tell it explicitly, which is what you would have
done previously,

Hopefully, this will
business.

36

make you feel a bit more optimistic about the whole

ow all there is to know. And, ag |

it 1K

L e

spanss

4

b e T R Ty R TR

3.2 The learning system

he progran
-srhown in Fig.
Spectrum.

- 3.1 .
?gsli:lple learning program

Apple Il listing

OME . INPUT “HOW MANY VARIABLES HAVE YOU 2"V
H

VIR[V),VS(V)
s Sg‘; Y={1:TD Ve vll)=0 : Rll)=0: NEXT

40 PRIN NAME THESE VARIABLES”
‘PLEASE M E E
5 FOR | = 1TQ V: INPUT "VARIABLE ME ";V$ EX
s NA, N

60 PRINT “PLEASE NAME THE OUTCOMES”
70 INPUT"CUTCOME 1 Q1%
80 INPUT “OUTCOME 2 Q2§
%0 FORI=1TO \l:(l]\;tg

“VARIABLE "})
l?g T:I:JTT 1§ THIS VARIABLE THE CASE 2"/A$
IF AS = "Y” THEN () = 1

120
130 NEXT
=0
140 D
150 FORI=1TOV
160 D=D+V() - Rl
o AS: IFAS =
168 NEl:a)” 0 THEN : PRINT "OUTCOME IS ";Q18: INPUT “IS THIS RIGHT 2/,A$
180 IFD>= : 3
“v* THEN : GOTO §0) s As o
|':DT<HETHEN‘PRINT"OUTCOME!S",G%; INPUT“IS THIS RIGHT #,A$
190 |
Em i =1 TO V-R{l) = R() - V() NEXT
- =“N"THEN . FOR I = | .
e IE g Z E :»?;2:: “N” THEN : FOR | = 1 TO V:R{l) = R{) + V(l}: NEXT
210 |
220 GOTO 90

i in Fi flowchart for it is
i is listed in Fig. 3.1 and a C L
i ththW?tvrsI“vl\ﬁ?t; in BASIC for the Apple Il and Sinclair

37

Sinclair Spectrum listing

1@ CLS : INPUT "Houw many varia
bles have you?" ;v

28 DIM 93283 DIM FEI2@) : DIM
¥ivl: DIM rivi: DIM ¥E (v, 201

S@ FOR i=1 TO w: LET wfil=@2- |

ET rli¥=: NEXTF i

4@ PRINT AT i6,@; "Plesss name
these variabiszn
S@& FOR i=1 TO w: INFUT “Uarish
Leegagggg;us;i}: NEXT 3
T 6.6; "Pieas z
the outromes ~ o °0/ Please name
72 INPUT “Outcoms 17 - -

88 INSLT "Duicoms Sv viim
e F BLS : FBR i=1 TO w: LET wij

192 PRINT “Uariabie: *;wsiij
i1i@ IMPUT = i wariai
ggae‘?";as Is this ¥Yarizbie the
s+ S L
130 NExR¥I7Y" THEN LET vii)-a

14@ LET d=a
g RN
d=d+v (32 il
NEXT D ; 1) %5 (i

& i
1S&@ IF d»=@ PRINT

i - THEN - - P
25,18, ERA% INPUT “1sTinis riaht
* gk : = . . 3
190 IF d¢@a ThEN | TEN GO To 22a

OR

R i=1 FTo w: r i ; Tt
NEXT i EF l"f.t]:ff:}*\-?f:}.

38

;i
€ is ir$5 INPUT “"Is this

THEN RINT "Quicom

L2%: IF agzvyr Taew & raaht?
200 IF d>=0 AND agovne ;gaﬁgq =

NE;;iiTD Wi LEF rlid=r (i3 weis.
21@ IF d<@ AND as=-p~ THEM Fo

22@ CLS : PRINT AT 1&.a: -
L0 continue™ " BReAR’ 4 g?gpﬁe
23@ LET 3E=INKEYS: IF ag=-" THE

S A

R R AT B T A O Y. A B LT B 1

e gt e

-

Enter
] Variables

Apply Current
Judgement Rules

Suggest an
Qutcome

Is this
Correct?

No

Modify
Judgement Rules

i] . I 4
:ul!l;e::;‘iing process for developing set of judgement rules

If you enter this program and run it, what it appears to do is this:

i isto
and DIMensions two arrays. lOne is
evelop all by itself. The other is to hold

i ifi r the
information on the variables present in a specific casg. Lttir?:rsnflcéasks
names of the variables so that it can talk toyou sensibly aog i the'n i
for the names of the two possible outcomes, Q1% anfd_ 1 t‘ Lol o
into a loop in which it asks you for the details of speci |fc ins sase o s

iable the case - yes or no). Having collected details of one
varia "

It asks how many variables you have
hold a judgement rule which it will d

& guess about what it should be and su
with the judgement you reply Y for YES
vou disagree it modifies its judgement
another case.

ggests an outcome, If you agreg
and it goes on to another case. |f
rule slightly and then goes on tg

What you should notice is that, gradually,
guessing the correct outcome although how
rather on what you give it to work on,

the machine gets better at
Much better it gets depends

If, for instance, you're still worrying about the weather
are Rain/No Rain then it's hard to see how you could
Was right or not - unless you're willing to wait unti| to|
And one entry a day isn't very fast as far as learning

and the outcomes
tell if the machine
morrow to find ouyt!
speed goes.

A better scheme would be to work from a collection of weather records sg
that you actually knew what the outcome should be.

On the other hand, you don't have to have that kind of problem. You coulg
invent something rather stricter - like classifying objects, for instance,
Suppose you think of an object - it has to belong to one of two classes,
Think of a number of variables which could be associated with itand enter

those. The program has to be able to learn which class of object you're
thinking of,

You may, for instance, want the ‘expert’ to tell you whether i
plane (a typical, workaday problem). Your variable list then might contain
items such as: wings, tail, beak, engine, feathers, undercarriage, and so

. Obviously, as S00n as you've specified that it's got an

t'sabirdora

If we choose a bird or a plane and run the program, we find that the first
ﬁmg. thinking of a plane, the system guesses thatit's a bird. We tell it that

itright. After that it
in judging between a

Which is fine. It makes us feel as if we're getting somewhere at |ast. But,
before we go out and celebrate, it's worth spending some time checking

out just what happened and why it happened. Because what we really

wantto know is whether or not this programis a universal solution to all of
Our expert system problems,

40

e b M S i il el i A i

B B i ey

PRk

Exirt i

TR

: iia v .
ine 1 hare se ev retru
the variables whic tto whe erthey are true
WeOUtll

First,
Yes?
Wings 1
Tail 1
Beak
Engine 0
Feathers 1

Undercarriage 0

i h d ones
n other words e i is built up of noug tS. an
d he variable array V, is J ; .
laccotd'nrg ars t;atwhet er or not the currentl Valrlab:F (obJecr u tdl e
r' I tion, call it what you \ike} has that particular property or no
examina N

In the case of a bird, V is the array (1,1,1,0,1,0).
n

In the case of a plane, V is (1,1,0,1,0,1).

Now look into the program in y R which is the rule the expert
m! hals t':le\t/e!op:ad for judging between the two possibilities
syste

i i i herule
By the time the system has stopped making mistakes, we find that t
ars;ay Ris (0,0,1,-1,1,-1).

iplyi at:
We form the variable D by multiplying arrays R and V so th

D= D + R(l)*V(l) for all the values of | (i.e. 1 to 6).
: = +1+0=2.
So, if we take V for a bird, we get D=0+4+0+1+0
-1+0-1=-2.
Taking V for a planewe get D=0+0+0-1

iti r t) and a
Sot expert can say it'sabirdifDis positive (g eater tha noug)
grine .
plane if D is negative UBSS than noug t:‘.

1 ir ith ese variables it's
As this is all we can say about birds alnd planes Wi |y :

i h stem has learnt cor
obvious that the expert sy ectly and can't make a

mistake any more.

ookingatth r nwe see that there’ n T e firs

u g i tthere sa ought (o] t !
i ga e € array again wi a S he f It wo
a .abi les, wi gsla d T;’ii. so these aren’t taken into 'ECCIOUI ti aki ng a
d I. i ' s off with the value O and the varia S do g 10
decision. D start | riables d othing t

b kel

change that fact. Which is pretty reasonable because if it'sgotwingsands

tail it could be either a bird or a plane. That knowledge doesn't tell yg
anything.]

On the other hand, beak and feathers each have the value +1 and enging.
and undercarriage each have the value -1,

So it seems that the behaviour of the system looks reasonable, at least in
E

this example.

But, at this stage, it might look as if we've done something very different
from when we talked of probabilities. Have we ?

It's fairly easy to check. We can write out the table again and fill in the ©

conditional probabilities as before:

Bird Plane
P(Bird:Wings) .5 P(Plane:Wings) B
P(Bird:Tail) 5 P(Plane:Tail) .5
P(Bird:Beak) 1 P(Plane:Beak) 0
P(Bird:Engine) o] P({Plane:Engine) 1
P(Bird:Feathers) 1 P(Plane:Feathers) 0
P(Bird:Undercarriage) 0 P(Plane:Undercarriage) 1

If it's got wings or a tail the table tells us nothing about whether or not it'sa

bird or a plane - the odds are equal both ways - but it has to be one or the

other. The other four variables tell us that it's either a bird or a plane, but

not both, and the probabilities associated with that are 1 and O to denote
certain events. In terms of a diagram, take a look at Figure 3.3.

Inthis example, ifit's got a beak then it must have feathers and it can’t have 3
engine or undercarriage. So it's a bird with probability 1. If it's got an

engine then it must have an undercarriage and it can't have a beak or
feathers. So it must be a plane with probability 1. There is no possibility of
making a mistake once we know these variables.

And that is just what our expert system has done - i.e. it has developed a
rule so that there is no possibility of making a mistake. Which is in line with
events which occur with probability 1.

42

LA i e,

vt a8 gt e

Feathers Engine

Undercarriage

Fig- 3.3
Agird has win
undercarriage.

gs, tail, beak and feathers. A plane has wings, tail, engine and

3.3 Other types of data

i i e expert
he previous section we concentfated on cases in Wrt!:a?t;hknovf'\f |
g pworked on a simple yes/no dichotomy. It!ust V\‘:an sty
s‘i',:;ir?eature was present or absent and scored either 1 or
g

d 0 - not the words Yes and No. So, as it's using

But note: it used 1 an <2 The answer is Yes. It would make no

numbers, could it use any ngmber
difference at all to its working.

Consider the weather again. When we started off, we

i ohis good navs. hether or not it was cold, wet, windy or foggy.

simply considered w

; t you
Now, if you glance at a weather report for yesterday you I: i’?:a:lzare; in
couIc'! have had the temperature (rnamlmum andtr:r:r:\t':trjamge sl
i i i tres
rainfall measured in millimetres, | r o
ﬂfegar:SféJ?: r:iles per hour, and the visibility measured in miles (

43

millimetres in England). All
more information about the w
would instinctively tend to fee
disregarded all of this potentially useful data,

Sowe don't disregard it. Inst
has occurred we could have it print the n
numeric value by way of response. So
degrees, the rainfall in millimetres, the

And, if we wanted to includ
Thunderstorms Yes/No - we can
the presence of that feature and

ame of each variable and takeing
visibility in miles, and so on.
e a simple yes/no

continue to do so by replying, say 1 for
0 for its absence.

The program will then proceed as before but mi

results because we're giving it better information, i

's happening most of the examples
that follow will use

discrete, dichotomous (Yes/No), data- but remember, -
You could have contj

might be better.

On the other hand, we can't do this with the outcomes.

It can only choose betwe
produce an answer which
will be tomorrow - it can
rainfall.

en different categories of outcome. [t can't
says exactly how much rainfall it thinks there
only say whether or not it thinks there will be ;

This doesn’t mean that we can’t make a rou

more specific. We could decide that there wi
into five categories:

gh attempt at getting it to be
I be rainfall falling, as it were,

Rainfall Categories:

No Rain Less than .5 5" g 1~ 1" to 1.5" Over 1.5"
1 2 3 4 5
Dry Wet Wetter Really Wet Horrid

Inthis case our expert system could, with five outcomes, say something a
bit more sensible about the likely weather. And shortly we'll be seeing
how to devise a system with this number of outcomes,

a4

ead of having the expert ask if 3 given variabjy

Nuous variables just as easily, and in some cases they

we could give the temperature in

item - such as

ght, hopefully, give better =

not be devised to try to give exact
s thhatratﬁﬁt:mw;?;ué‘;tegories. Ifwe wapted”tg we;c;il‘da
swers rata l;?nul'dpie regression equation for rat";}?tim:f:(exact
trys =Y develoci?lirr]%ut variables. This would give an ﬁgsﬂmmw,s by
larg® nur:k:; not necessarily correct predictions) o
estimate:

This doesn
numeric an

. dicting
is that, although this system might ;ﬁtrgﬂgfg&!. o,
The D’O.blemldn't easily be modified to be expertin Plane? (Or, for that
rainfall, I Couwou!d it work out if that was a Bird or a !
for instance,

matter, a Glider?)

i thing
to produce some
ildi own expert system IS (O | ;

L bu”dmgs\;onizaly expert in a number of different ﬁetlrc‘iis; A fﬁartt
i redevice which you cou!d apply to somgIin gou at
i-pug)odsihat being the case, there's no pmr:jt‘ln igase yc?ur u o
reathy to do is diag
i u really want ¢
g ;vahsi:'{otocan be a successful brain surgeon, or some

The obje
which can
of genera
interests yo
predict the weather :
medical symptoms so
such.

3.4 The judgement rule

i ee
% i ‘
Maybe ou’ve now set up the learni gSYStB n and found that ‘tdoeI S S :
to - Ofve o VleSS work. Fine, you say. But, EXECﬂy, wny does waor
" . X : k?
W"hat’s it doi ga d can it be made to do it any better?

isi ful thing
ider the idea of Description Space for, rIlOttont‘:lLs LtnaoﬁIngeablv
Well, cons it's also pretty impressive to be able to ek
Spoctather indsofspacethan the boring old three-dime
about 0

you see before you.

0 ug ur ng a
make it easy tho start o suming ha youre si
. wWe | by as. . that tt
your desk Whlz conveniently, has a two dimensional top sp!ead out
'
before you ormal col on-or-ga de space

et set! ts - ClIS rcli - which w
Also, you have two sets 0 ObJEC S=-pe ils and paperclips say e
y

can use to illustrate some points

i erclipsand
Now suppose that you want to get you rth'ea'pgfc?rigcp”::é}ldspaarfd thepother
ivi i s - one containin) bl
divide them into two hgap one e g
ini erclips. This is easy. i nongst pur
cqntalnmgaggilzvzatﬁis taspk -allyou have to dp isto }ake ﬁa}tr:]f:;:‘bejzr A
Frglis;f'\atnsay ‘Is this a pencil or a papercl_lp? ye;r:idrge;c?t ool
: ingto the answer you give ! f. s
Tlc::kr;sgp:fcac:rglbr}gct and wondering if it's a bird or a pla

45

i
i
|
i
:

categorising it depending on which it is. The point is that the problem of !
trivial if the description of that object coincideg -

classifying the object is

neatly with the criteria by which we want to carry out the classification,

But suppose that, for some reason, when you looked at

the object yoy
couldn’t immediately tell if it w:

as a bird or a plane, or a pencil or a
paperclip? Then the problem is definitely non-trivial and you have to think
of some other method of passing judgement. And this is exactly the
position that the computer is in - it can’t see the big difference, even if it's
obvious to you, so it has to get a little more subtle.

So, now get the pencils and the paperclips and spread
desk. Place the pencils on the left and the paperclips o
ignoring the fact that You can identify pencils and pape
how would you decide which was w
istodraw a line down the middle oft
the left of the line and all of the pap
classify the two sets of obj

them out on the
n the right. Now,
rclips at a glance,
hich? Well, it's easy. All you have to do
he desk sothatall of the pencils are on
erclips are on the right. Now you can
ects simply by measuring their position along

the desk.
No Flies Yes
Yes
A Birds 0000
00O00O
Feathers dividing line _ _ _ _ _ _ _ _ _ -
¢ Planes X x x x
No x X X X
Fig 3.5:
A Description Space that Consists of Two Dimensions specified as ‘Flies’ and
‘Feathers’. Planes can fly but have no feathers. Birds can fly but have feathers.

46

N

I

ety

i is doing. Except that it's got to
ly, is what the computer is do t
And that Iiout?ar;c‘lfer than you because the objec_ts haven't t;egn izldaggf
work & h:;; space. They've been laid outina particular description sp
neatly In

hich isn't really very different.
w

bird/plane example now and suppose that two items of

Goback 10 the available. Does the object fly? And, does the object have

information are

featherS? f the desk top and
ite 'flies’ h of the des|
sk and write ‘flies’ along the Igngt :
Nowhdf;ra‘llg:é ?ﬁe depth of the desk top as in fig. 3.5. If an object can fly
‘feathel

laced to the right of the desk, and to the leftif it can't. If an object

g er s it's placed at the back of the desk, and to the front if it can't.

has feather

ird i lace it at the back
i i had a bird in your hand (!) you wquld p
Obwoutilzlrli;m.ulf it were a plane, then you'd plage itatthe frlont and tloél;?
a_nd tDA d, if you wanted to know whether an object was a bird DrcacErgtely
right. tnbéing specifically told what it was - you could ans;ve;a;t eLrEteh
WIﬂ:\?Ltlime simply by looking to see Whll.‘,(;'\ qugrte; Ti;tehge“?een - two.
< j imply by drawing
ki udgement simply by j v
Ioupcsog;dc;}:cfsaajnd geeing which side of the line any object fell.
ea

i i h as feathers/no
i 't have to be simply Yes(No items suc ’
o W?(Lgsr;;ulg, if you wanted, consider a bit of weather forecasting
feaéh;:f.a scale along the desk top to denote rainfall figures, say.
an

i f
throw away the desk, you simply hav_e any numbc‘ajr faiﬁgdti;%eﬂ?e
. ot hanging there in description space. Itisn't a space de gl
o gre And, really, it isn't anything to do with normah‘ s
d'ESk ar_ly:;l sbace a'nymore. It's a brand new type of space. VI;IemAnd
dm‘]enzlgolely by the variables you're using - one axis to each Vi?l’l?j fiﬁe -
dEmneluezs on these variables that any object posseses uniquely de e
g::es;:'aon in this description space. Unfortunately, we can't draw a p
for you!

)) i
Just to illustrate the idea in three dlmen&ops, supzoseerzﬁev;fjﬁ;er
walking in the garden one fine summer’s evening (we t?lc?uds i
evenings occasionally). Suppose that you see_éwo it
buzzing around in the sunlight. One cloud of mi _ges et e
Midges and the other of Little Midges and you decnl et,J pt s thé LAt
separate the two. One way which might work would be ?o%ds kb
sheet of paper in the world and place it between the twoc

This might work but, before you try it, the only reasog_ fo: glvr:?ght:é
example is to show that you can have two groups of objects wi

47

M a1 ik

defined by reference to three dimensions (the physical position of each

midge) and that you could, in theory, separate them by placing a surface
between them,

In fact, once you've moved into description space, the objects can be
defined in terms of any number of dimensions. If you have one dimension
for each measured variable then a set of objects defined in terms of ten
variables exist in a ten-dimensional description space. But the idea about
placing a surface between them is just the same - you can have a ten
dimensional surface for your ten variables and each object can be
classified according to which side of the surface it falls,

Incidentally, the equation of a surface in n dimensions is Y= byx; +box, +

..... + bx,,, where the x, represent ‘position’ measurements on the n axes
and the b; are constants.

So the desk top would have the equation, in two dimensions, y = b,x; +
b_x
g

By specifiying the x, for a new object we can calculate y for that object and

we could use the value of y to say on which half of the surface the object
occurred.

And thatis what the learning program does. It takes all of the Xjwe can give
it by way of examples and calculates some values for the b; so that, once
it's working properly, it gets a value of y which uniquely determines which
group an object should belong to.

The way you can think of itis as a process of trial and error. You present the
program with an object and values for its variables, Initially, the program
has a surface which is lying around just anywhere and it looks to see what
side of the surface your object falls and decides accordingly. It may, by
chance, be right. But if it's wrong, it nudges the position of the surface
around a bit in description space using the values you gave it. It then has
another go with a new object, maybe doing a bit more nudging of the
surface. Then again, a bit more nudging, again... And so on, until it has the

surface positioned so that it will always come up with the right answers - if,
in fact, it's possible to do so.

Having given this explanation you might well wonder if there's a ‘best’ way
of using this particular method.

Would it, for instance, be better to adjust the position of the surface in

some way when the computer guessed right as well as when it guessed
wrong?

48

i i f problem you give it-
eris that it all depends on the type o
r}srnvéle way. If you have some data to present to your expert
the following points are worth bearing in mind:

The simplea
put not in @ s
system then

¢'s only a finite number of possible examples that can occur you'll
er

goth he best results by giving the expertall of these possible valuestolearn

gett
from.

g ; "
i the judgement rule) into the correc
ke a while to get the surface (r
;i m;?g:- one showing of each example often won't do. So you may need
toos;';resent all of the examples a number of times.

ill
i how many goes the system wi
'« difficult to say beforehand exactly) /
9 g'tfc?c et things right - so you should work pragmatically (wh‘u:"t: megg:
o cEit and see). Give the expert a set of e;_(amples and let it .a_veh 3
youastuthem and count how many mistakes it mahlges. 'I;!?eqtrllztr l::s i\;t
. istakes. Carry on like this until ei

nd count the mistakes. Carry | ‘ T
anaoé;e; gr?yamistakes any mare or until it's not improving any more.
m

If you want it to work on examples which you do not, as yet, have l:hk:-;afi?é
e in predicting the weather at some future date) the_n try to g
mStanI-ll:et'thepexamples you give itto learn from are as much like the ones i
su_rlet Elmually get as is possible. This may sound obvious - but if yoai,u train
\i,twcl:me“cr)?'le thing it may not necessarily be able to use the same rules on
other, rather different, data.

There is one point you might be wondering about - if e_xpe;t svs‘;eL{nti:trigg
replace human experts by embodying human expertise, ov: 15 Bt e
orked out a set of rules all by utse_lﬂ‘ It seems a]mos a SN
S\;Zt:?nv: human help at all. The answer is that you did, maybe Wla\.toeuit
:zalising it, give it quite a lot of very i'|_uman knuw_ledge. V\;’Is*l%tn\i'm;egcause
was the initial knowledge of which object was which - it wi 47 azd e
you, the user, were able to judge the difference between a
that enabled the program to learn at all.

3.5 Building a rule

Once you've realised that all the Learlnc;ng svstyemsgg:: ;sué?] ILna(: ttl?iz
i in n-di i escription :
ation of a surface in n-dimensiona : g |
zgrface reasonably well separates two groups of objects, you might we
think that it's possible to do something rather better.

After all, the learning system finds its su rface in an apparentlxtr rﬁfrgff,?f
ready V\;ay and needs, often, fairly lengthy training. Why not, 3

49

-t

calculate a really good set of values for a surface and give those values to
the expert system from square one? That way there’s no training needed
and, in cases where it's rather hard to judge between objects, you would at
least know that the best possible surface was being used.

Well, without wanting to put a damper on any enthusiasm it's only fair to
point out that the subject of discrimination is a rather hard one.
Incidentally, some people refer to the subject as ‘discrimination’ others as
‘classification” but they mean the same thing. And, typically, in books on

multivariate analysis (multivariate = lots of variables) you'll find a chapter
or two on the problem.

Consider again the problem of the two clouds of midges which you want to
separate - this is fine as long as the two clouds are reasonably far apart, but
if they aren’t not only is the learning system likely to make mistakes but
almost any system will make mistakes because there may not be any
position in which a surface could be placed to separate the two groups.

Butwhat could be done is to calculate the exact centre of each group, draw
a line between the two centres, and then classify each individual item
according to which side of the line’s centre point it fell. This, in fact, is the
basis of most methods of discrimination. In many ways it's better to do
this than to rely on the learning system because the learning system relies
heavily on outlying values when deciding the final position of its surface.
That is to say, it only alters its surface when it makes a mistake and,
towards the end of the process, it only makes mistakes when it's nearly in
the right position anyway. So, if you think of the two clouds of midges, the
surface is being moved around at the whim of a very few midges right on
the edge of the cloud - and these might not be very representative of the
positions of the midges as a whole. And it’s the same with the objects in

description space. Outlying objects may not be representative and might
give some unwanted results.

The situation that we have is a problem of classifying objects in an N-
dimensional space. So, we start by reserving space,

10 INPUT M1 = ";M1: INPUT “M2 = ";M2: INPUT "N = ";N
20 DIM VI{N]V2(N)

for the N variables and then find M examples. Suppose we have M1 of
the first kind and M2 of the second kind.

Then, we calculate the average value of each variable, VV1(J):

50

b

30 FORI=1TON
o V=0

NEXT
zg FOR | =1TO M1
70 FORI=TTON
g0 INPUT “VARIABLE = "X
90 Vi) = V() + X/ M1
j00 NEXT: NEXT

where X is the value of variable J for example |

2(J) on the M2 examples of the second kind and you

Do the same for V " for each of the two kinds in the

then have the average values or “means
two arrays V1 and V2.

1o FORI=1TON
120 va() =0

130 NEXT

140 FOR1=1TO M2

150 FORJ=1TON
160 INPUT “VARIABLE = "X
170 val) =Vva() + X/ M2
180 NEXT : NEXT

i j ing these means. Suppose that you
to classify another object using these :
E::;l ttrl;i values ofythe variables of this object in array X. Don't forget to

DIM X(N).
The ‘distance’ of the new object from the two means can now be
calculated as D1 and D2:-

190 DIM X[N]

200 D1 =002=0

210 FORI=1TON

220 INPUT X())

230 D1 =D1+X{) " V()
240 D2 =D2+ X)) * V2l
250 NEXT

Alternatively, you could calculate the differences between the means and
store them in a new array V.

51

260 DIM V(N)

270 FORJ=1TO N:V(J = 0: NEXT
280 FORJ=1TON

290 V) =Vvi(y) - va()

300 NEXT

Then, you could simply calculate D from array V (DIM'd as VV/(N)) and array

X and classi y the object de endi
il
. ; P ndlngonw ethel OrlOtDWaSQ eater than

310 D=0

320 FORI=1TON
330 D=D+X{) * v())
340 NEXT

At which point it becom i i
\t wi es fairly plain that this is, i
similiar to the method used by the learning systér": " oo

In fact, it's pos ible di Y i
) " ify the lear i i i
t 0 'S bletor lO earning system so that it turns i to this

Instead of adjusting the decisi
ecision rule only when a mistake is i
. C made,
Frr;,iis;s[::ﬂhindiﬁ?pfe a,nd te{p[, it which class the example I:elor?t_;sg't}::e
| 1on rule so that it constantly hol, :
the difference between the two sets of rr'lean\:ralutscjsS el Rl o

For instance, if ther
\ e have been M1 exam
f ples from cl
you then provide another class one example SRR
370 FORJ=1TON

380 ViU = (vip) =
0 NE{XJ; VIU) = MT +X(0) 7 M1+ 1)

Fig. 3.6
Measuring the distance to the nearest mean

52

array X holds the values for the new object.

where the

This way V1 is constantly updated with the latest estimates of the mean
value for that group.

And, using the latest values in V1 and V2 it's possible to have the latest
values for the decision rule, say
FOR J=1 TO N:R(J) = 0:NEXT

FORJ=1TON
R{J) =V1() - v2()
NEXT

and then to make subsequent decisions according as to whether D is
greater than or less than zero with:

D=0

FOR J=1 TON
D=0 +X(J)"R}J)
NEXT

There are plenty of other ways of constructing decision rules which could
be used but they all depend on a more intricate knowledge of the variables
being used. In the meantime, if you want to know which of these two
methods is best - the learning algorithm or the nearest mean approach -
the best way is to try it and see. There isn't a general answer because so
much depends on the exact nature of the variables which you, personally,
choose to give the system.

3.6 Prior probabilities

But there is one refinement to the nearest mean approach which you
might try. And this occurs in the case where you know for sure that one
outcome is more likely than another, irrespective of the values of the
variables. This is known as the prior probability of each outcome and if
outcome one was three times more likely to occur than outcome two, then
P(outcome one) =.75 and P(outcome two) =.25. What you could do in
this case is to make a decision which wasn't quite based on the nearest

mean.

Consider: to make a decision based on the nearest mean with the array R
holding the difference between the two means you would simply consider
whether the calculated D was greater than or less than zero. But maybe, if
D was calculated as approximately zero for some example and you knew
that class one, say, was much more likely than class two then you might
decide to go for class one even if the calculated value of D tended to
suggest the opposite.

53

In programming terms it simply amounts to testing for D greater than
some value C (say) and, whereas, normally C=0 it might improve matters 3
bit if C had some other value.

The difficulty lies in specifying a really good value for C other than zero, |f
you know enough about the data you're working with and are a competent
mathematician it's possible to find a value which enables you to say some
fairly definite things about how the system will behave. But if you don’t
and you aren't, then it's back to experimenting (which isn't a bad ideg
anyway) and the only real warning that needs to be given is that if youdon't

have enough typical examples to test the system on then you'll neverreally

know how it’s likely to work in practice at all and it would be better to avoid
any complications.

3.7 Expanding your options

So, there you are, staring up at the sky. All around you people are crying
out: “Isita bird? Isita Plane?” You reach for your expert system and key in
a few well-chosen variables and, in seconds, you make an authoritative
pronouncement. “Wrong!” the people exclaim in tones of malicious glee,
“It's a glider.”

It makes you feel every bit as bad as do your weather forecasts. Turning to
your finely-wrought expert system it predicts Rain for you. Or, maybe, it
predicts a dry day. But either way, as you grope your way around in an
impenetrable fog the following day you feel kind of let down. Fog, you
suppose, is kind of wet. But not completely wet like rain. And it's also kind
of dry. What fog really is, you muse, is Fog. And nothing else.

And, somehow, you feel cheated that your expert system should have
failed to allow for other outcomes.

In general; youwant your expert system to be able to give any number of
different outcomes. You might rest content with having to specify these

outcomes in advance - but you still want more outcomes than just two,
which is all we've had so far.

There are, of course, lots of ways of building an expert system so that you
can have a variety of outcomes. But, for the time being, we'll just consider
an extension of the system we've dealt with so far.

54

3

pasis ©

the rulesin.
which we

a rule for making dgcisi
e a decision - effectively, a

ons. It was one rule and the
yes or no decision - on the

i i system with a
&'l do now is provide the sy it

two-dimensional array to k_ee_p
h like the rectangular matrixin

that we hac‘i:|
a

e What Wi :

gl frl-rl:ﬁ'es so that it can pronounce on a genera

umber O t
gneral noutcorr\es. To dothis we draw up ac
ik and this array will Io_o_l§ very mu
first put our probabilities.

(VK] - the rules for V variables, with K outcomes.

Call the array R N
4 we will use the bird/plane example again:

4 Bird F‘Ie:;e
Wings g .
Tail . A
Beak . 5
Engine . .
Feathers g °

Undercarriage
i [iables, we have
he moment, we'll forget about gliders and, with 6 variable
the m .
;?é 2), so K=2 outcomes.

The method of working is this: d -~
ichi indicate

of the array R contains a rule which Iscl:)sr?:stgonding how

i stem believes in the outcome panding 9. 12}

el e belief is measured by calculating D,

S g ide
jsing arra V which contains the values 0 the var iables be consid ed
Yy

at the moment. -
So: for outcome J (J=1 or 2) we calculate D as:
D = D+R(1J)*V({l) for I=1t086

i i IR(1J)=0
tice that, to start with, a
\l\,:roc::‘gsboth beliefs are equally strong lor

so, obviously allD= 0. In other
weak) at this stage.

s, you either tell the expert

n op val
e e it guess and, if it's wrong,

Now, depending on how Yo i

i belongs to, or
h group the array A" f 510
\\’,'Vct:.llc'letgit take the following action:

then we add the V(I) values im?ittgePEir::
| and subtract them from the Plane column. If V belonge
column

ird. Thisis
1d add the V(1) values to Plane and subtract them from Bi
we wou

i i ‘Bird’ values:
what it looks like after adding the Bi .

If V belongs to outcome Bird

vil) V(i) R(L1) R(L2)

Bird Plane Bird Plane
Wf'ngs 1 1 1 -1
Tail 1 1 1 =
Beak 1 0 1 1
Engine 0 1) 0
Feathers 1 0 1 1
Undercarriage 0 1 0 0

So far, we've presented a V for Bird to the array R. It couldn't make a
decision because all of the D were identical. So it added V(1) to column one
and subtracted it from column two. Now, if it gets a Bird again it can make
an accurate decision because D will evaluate as +4 using R(l,1) and as -4
using R(l,2). So all the expert has to do is to select the column of rules
which gives the biggest value to D.

But, if we now give the expert a /(1) for Plane we find it will still select Bird
as the most likely outcome as, using R(l, 1) gives D avalue of +2 and, using
R(1,2) gives D a value of -2.

So, our amazing expert system can't even tell the difference between a
bird and a plane yet.

Butadd V for Plane into the second column and subtract V for Plane from
the first column, and we get:

R{l.1) R(1,2)

Bird Plane
Wings 0 0
Tail 0 0
Beak 1 -1
Engine -1 1
Feathers 1 w1
Undercarriage -1 1

Now, if we present it with V(1) values for Plane, column one gives Davalue
of -2 and column two gives D a value of +2

So, it will choose the outcome: Plane. Correctly.

And, if you re-check with V(1) for Bird you'll find that this gives +2 on
column one and -2 on column two.

So the expert system now works every bit as well as it did before.

In fact, if you check back, you'll find that it's doing just the same thing as it
was doing before when we only had a one-dimensional rule array - so you
might, rather cynically, think that this has been a lot of effort for nothing.

56

A A g

ifyoujustwantto decide between a birdand a plane, it certainlywasa
nd, it YO

jot of effort for nothing.
i to R(1,J) to allow for it.
t glider and add another column I
b::cli(}Sﬁt gs we have done with more than I:V\;o Oﬁf.:r?ibmﬁ
hoose that co
s of D for each column and choo L
Za‘(li?'rLuuem value of D. In the event of a m%?;ake, c;;;antltc;,g'ri‘:rgsglsl
i i have chosen. The sys
hich column it should 42
b Sy'Sn:”-rl‘u‘:‘s it's working with to the correct column and subtracts'jcglem
theW”n‘\‘,:aother column which gave a value of D greater than, or equ E
a
I;loen::olumn it should have chosen.

But, bring
you'd proc
calculate th
gives the m

ct outcome’s rule and pushes down the

[fyou like, it gives a lift to the corre et ot ihwway ofitls

values of the other outcomes’ rules to ge
correct one.

sewe'd had aglider. A glider, of course, is like a plane but itdoesn’t
- .
E:\?sfan engine or undercarriage.

i i i R(1,J) = O so it might have
first guess, given a Bird, all the) :
N:WéznGmir Ias w%ll as the other two options. So the third, Glider, column

fs gsushed down in the same way as the Plane column.

On the second try we gave it a Plane - and it guessed a I%irdé??‘;?;riiﬁg
VH) for Plane to the second column and _sub(t}rlgugted V{IHr:r: w?ﬁch omie
i w that we have a third, Glider, co 3

S;S:a??tlaﬂwgbﬁ;;terl:%lumn we also have to subtract the V(1) from the Glider

column. This gives:

1,1 R(1.2) R1.3)
Rﬂ(ird) Plane Gllczjer
Wings 0 8 k-
Tail 0 3 3
Beak]I 1 1
Engine N 1 1
Feathers 1 d 1
Undercarriage -1

Now,obviously, like this it's never going to select Glider bgcafeeo:‘ﬂ;ﬁz
ever\;' value in column three being negatlveéheare W|_l! aIy:Jaszl_}deec: Ty

ich gives a bigger value of D. Butgive ita i
other rules which g v

V(l) R(1,3)
Glider Glider
Wings 1 -1
Tail 1 -1
Beak Q -1
Engine 0 -1
Feathers 0 -1
Undercarriage 0 -1

We don’t need to show the other two anymore because everytime a Glider

turns up, and the expert fails to guess what
subtracted from both Bird and Plane - minus o
rules. This won't affect the system’s abilityto g
plane at all. But, gradually, adding+1 towingsa
the values there until when a Glider arrives R(l,
value of D and a correct choice will be made

it is, the same values are
ne from the wings and tail
uess between a bird and a
nd tail in Glider will pull up
3) will give the maximum
every time.

By that time R(l.J) will look like this:

R(I.1) R(1.2) R(1,3)

Bird Plane Glider
Wings -1 -1 0
Tail -1 -1 0
Beak 1 -1 -1
Engine -1 1 -1
Feathers 1 -1 -1
Undercarriage -1 1 -1

You can check for yourself that this will now choose correctly between the

three alternatives. It's learned correctly and it won't make any more
mistakes.

And, what's more, you could have had millions of different outcomes and
millions of different variables and it would stjll have kept on churning the
numbers around until if found something like a correct set of rules for
choosing an outcome from a particular set of variables.

3.8 Can it make a mistake?

So far so good. But what are the odds on the thing going wrong - or never
learning the correct outcomes adequately?

Well, the odds are pretty difficult to give in terms of exact probabilities
because it depends so much on what type of problem you set the expert.

58

+hod all depends on the concept of Linear Separability and thisis a
e
-grzzgjﬂphrase to remember.

Ily against the bar of your
 you pronounce as you lean casua e g

$0f coil;;se’\‘,it \Yv?)rkps perfectly, does my Expert Sy{s;em,a(‘)tlplgigﬁt?jllstﬁcp;:;st
B o " At this point you might try giving a
KHOWI?dg?oBrzifeéct, and add: "As long as it’s workm_g ona przblez::;;;
your p'lpesreparable, of course.” At this point you might Itry adep
:'m;;:r:nd exclaim: “But show me a problem that isn't!

aul

ow iti d will
j Il but your severest critics an |

Thi of jargon should daunt a ! bl

hlslfrnake Ué f(g)l' the fact that your expert system doesn’t alway

easl!

were, work.

. alineor
s simply back to our clouds of midges. As long as you C;;_?ﬁm losrn o

s sl urface between the two groups this e;per.t syste e

g!ﬁfe SUSish between them. If you can't, it won't. It's as simple '
istin

Consider though, the example of the red and blue garden railings.
on i .

a garden with a line of railings down th_e side of it. TEeL:I;erg?}g..
e gb‘.ue one, a red one, a blue one (you'll soon get the ?he I
e st failings Iinéarly separable? Can you distinguish bet\l_;een
’:;:;h:rfg the blue ones by placing a surface between them

. . ¢
Il, it depends. If you measure them (or descnbg ther;)sié'lrigaermse;.
s down the garden, you can’'t. Suppose you _dld so de! e .
R a0t Oth t ten feet down the garden is a red railing. Twelve fee bl
otk athe next railing and it's blue. So you place a_su!‘fa_ce e_eh ;
Ee gardenllls rden between the two railings. Obviously, |td|st|_ngu!f ci
feetduwntth esgatwo railings - one red and one t_)lue_ - but htt filr?acg
lcji?s?iv:gexrish Eetween all of the other railings both this side of the s
and the other side.

Alternating railings aren't X
always linearly separable. 0

X
It's impossible to draw a line that 0
separates one type of railing from x
another.....

59

0
X
0
...unless we can describe them in a different way that makes use of their differences.

Fig. 3.7
The alternating railing problem

The railings, as you've described them, are not linearly separable.

If, however, you went down the garden and moved each red railing a little
to the left and each blue railing a little to the right then you could easily
place a surface between them simply by placing your surface along the
original line of the railings. Then, they'd still be the same railings but they
would, now, be linearly separable.

Alternatively, you could stop describing them in terms of where they were
inthe garden and simply number them in order. As they alternate, firstone
and then the other,it's obvious that the even-numbered railings will be one
colour and the odd-numbered railings another colour. So, if you described
all of the railings in this way they would be linearly separable and our

expert system could learn to tell which was a red railing and which was a
blue railing.

The point is: that the railings haven't changed. You haven't even moved
them about the garden. You've simply described them differently.

That's the essence of the matter. You must try to choose variables which
look asif they're going to enable the expert system to distinguish between
the various outcomes. Not a very subtle point to make, to be honest,
because you'll naturally tend to do this anyway. After all, if you want your
expert system to say whether or not it's going to rain tomorrow you're
hardly likely to give it, say, the football results to work on. Given a
knowledge of today's football results won't help it predict tomorrow's
weather so you aren’t making the problem linearly separable by doing so.

(One might concede that the football results say something about today's
weather, from which something might be deduced about tomorrow’s
weather, but one would hardly expect a clear-cut answer.)

60

itself (are the cases linearly
om the nature of the problem i ‘
Apaar:agle?) there is the matter of how long the expert system will take to
f;prn a decent set of rules.

best way is to give it all possible exz_lmpl_es until it stopﬁ m§k|r;rg1
Thetakes if the number of possibilities is fairly small. If there’s 3
r‘."Srrrn:!us number of possibilities then you at least needto giveita co;xip:)n
egzxamples for each possible outcome and keep an eye on its opera
3nti| it seems to have settled in a bit.

i ‘ve described so far - but it's
ram works by using the methods we've ibec
If];?"s?lr?gnning through it just to make sure that nothing’'s wrong.

First, it wants to know how many variables are to be cons1den;ad in the
deciéion-making process and how many outcomes there can be.

i be

s V and Q. Knowing these values the arrays can
-[I')Tlt\ens:nzli'gr::g. V\?\[';IB have: V(V) for holding the values of the (_:urrerr:t
riables; V$(V) for holding the variable names; Q$_(Q) for holdlfng;1t 3
\r::mes o% the outcomes; R(V.Q) for holding g}efdec;:sl?c? ruleiieo vtmﬁes

i ; olding
jables for the Q possible outcomes; D(Q) for he v
‘é:Ircl:al‘Jlated for a given V(l) using R(lJ) for the Q possible outcomics.

The names of the variables and outcomes are entered so that they can be
referred to by name.

At line 120 a training session begins. Values for V(l) are entered and,
using R(1,J), the Q values of D(J) are calculated.

Array D is searched for its largest value and a guess is made that this
largest D(J) = D(HI) points to the correct outcome, Q$(HI).

If this is the correct outcome the program returns to line 120 to continue
training with another example.

If it isn’t, all of the possible outcomes are d'isplayed and you are asked to
say which was the correct outcome. This is Qs$(HJ).

i j dingly, subtracting
this knowledge the system readjusts R(1.J) accor
3ﬁ3nfgruﬂlseach rule that gave a value as big as or bigger than D(HJ) and,
finally, adding V(1) to the rule HJ i.e. R(l,HJ).

61

Having adjusted R(l,J) the program then returns again to line 120 for

another example.

As the training session proceeds the judgement of the system should
improve and, in some cases as the bird/plane/glider example, will

eventually get it right every time.

And there's a bit of inbuilt scorin
perfect for itself,

Fig. 3.9
The program so far,

Apple Il listing

120

320

HOME : INPUT "HOW MANY VARIABLES HAVE YOU 2"V

DIM V(V),V$(V)

PRINT “PLEASE NAME THESE VARIABLES”
FORI=1TOV

PRINT “VARIABLE “,1;" 1S *;; INPUT V$(l)
NEXT

INPUT “HOW MANY OUTCOMES HAVE YOU 2",Q: DIM Q$[Q)R(V,Q).D(G),5(Q):
REM :WITH S(Q) WE CAN KEEP A SCORE

PRINT “PLEASE NAME THESE OUTCOMES"

FORI=1TO Q:sf) =0

PRINT “OUTCOME “1;* IS “:: INPUT QS()

NEXT

HOME : PRINT “THIS IS A TRAINING SESSION". PRINT “PROVIDE VALUES OF

VARIABLES": PRINT “| WILL GUESS AN OUTCOME": PRINT “YOU MUST TELL ME IF |
AM RIGHT OR WRONG"

D =0: FOR | = 1 TO Q:D(l) = 0: NEXT
FORI=1TOV

PRINT “VARIABLE "1;" (" V$(1)") 15 “: INPUT V(1)
NEXT

FORI=1TOV

FORI=1TOQ

D(J) = D{J) + V() * R{I)

NEXT : NEXT

FORI=1TOQ

IF D(I) > = D THEN :D = D({l):HI = |

NEXT

PRINT “IS IT OUTCOME “HI;" [Q$ (HI),") 2
INPUT A%

IFAS ="Y"THEN :$(HI) = 1:5C=0: FOR = 1 TO Q:5C = SC +§(): NEXT: [F SC=Q
THEN . PRINT “I'M PERFECT I”. END

IF A$ = “y" THEN . GOTO 120

FOR | =1TO Q: PRINT I ",QS(l)

NEXT
INPUT “WHICH OUTCOME IS IT 2";HJ
FORI=1TOQ

IFD{l) > =D AND | <> HI THEN : FOR J = 1 TO V:R(J,I] = R{J) - V{J): NEXT

g so that the program can judge when it's

330
340
350
360
370

380
390

NEXT

FORJ=1TOV

RUHI) = RUHY) + V()

:REH):]:I'“LGOT # §C.* RIGHT BEFORE | MADE A MISTAKE I": PRINT PRINT “PRESS ANY
KEY TO CONTINUE”: GET X$

FOR I=TO @ : S{)) = 0 : NEXT

GOTO 120

sinclair Spectrum listing

te ";Utii;™

:Cifl?:lE‘UT “"How many variables?”

PRINT AT 16.@&; "Please name

1a
za
25 DIM viv): DIM v&iv,20)
Sa

FoR i=3i TO w: INPUT “Variab
4 .t iis “owHiid: NEXT i
LS
gg ghPUT “How many outcomes ha

ve douz";q

28 DIM q%ig.208Y: DIM riv,q1: D

THM d(q}): DIM _s(q)

th
NFE# “Dutcome " (i};™ is M;qElil
: NEXT i

is a
ession™: PRINT : PRINT

r

=]

55 an outcome™: PRINT : PRINT ~

e

8@ PRINT AT 16,@;"Please name
&% For i=1 TO q; LET s(ir=@: I
10@ CLS

11@ LET sc=8&
iZ@ PRINT “This

t
ide walues of ": PEI
?gé\”: PRINT . PRINT

if I am correct"
kéSngIINT : PRINT "Press & key

to continue®

N
t
d

196 LET as$=INKEY$: IF ag%="" THE
126 "

Igg EES : PRINT AT 1€.,@;"Enter
iables:" .

QSBVEE'} d=@: FOR i=1 TQ q: LET

{i) =@: NEX{ '}'CI v

: DR iz 3 . a .

igg ,;NPLIT “Number ", {il; (" (v

{i));™) is “;wiil

1 % .
R i=1 TO v: FOR J=1 TCQ _9:
I\J_.E$ E?J!:di.}l+v(i)*r[1,,ﬂ: NEXT
J: MEXT i

63

AT

{

T

N

i
34@ FOR j=1 TO

Jabhil 4w (j): NEXT
37@ PRINT "I got
before I made a mi
: PRINT :

PRINT

to continuae™
GO TO

39@ FOR i=1 TO
EXT i

64

i
4@@ GO TO 128

q:

P

LET

(sc);" right

e!": PRIN

fess any key
38@ LET %g:INKEYt IF ags="" THE

S(i)=8: N

Chapter 4

Improving your Expert

4.1 Parallel and sequential decisions

We've now reached the stage at which we actually have an expert system.
After a suitable training period it should be making decisions for us on the
subject of our own choosing and, unless we start examining R(l,.J) we
won't even need to know exactly how it's doing it.

Which is enough, really, to make most people feel pretty pleased with
themselves. Apart, of course, from the inevitable sceptics.

“If it was a real expert system,” they whine, “it wouldn’t work like this. It
would work differently.” they say.

And they would point to the fact that, every time they wanted an expert
decision, they'd had to key in answers to a whole load of questions all at
once before the expert deigned to do a stroke of work.

Real expert systems, they argue, ask you one question, then maybe
another question, and then, depending on the outcome, either ask you
more questions or tell you what their expert opinion is. They don’t start off
by asking you absolutely everything all at once.

What, in fact, is being said is that many systems use sequential decision
procedures, not parallel ones.

What we have is a parallel decision procedure - it gets in all the information
on a subject and then makes a decision.

The sequential procedure is always guided by the last piece of information
it received. For instance, in our weather example, a sequential procedure

65

might decjde that the most important thing to know in passing opinion on
tomorrow'’s weather was: is it raining today? It would ask that question and
then either seek more information or pass judgement.

One of the difficulties with the weather example, though, is that we don't
exactly know what will accurately predict rain tomorrow. Not so the
bird/plane example - by definition we know the differences between birds
and planes. So consider a sequential expert at work on this problem.

You state that you are thinking of either a bird or aplane and want the expert
to say which it is.

Parallel procedures
consider all
of the
evidence before
making a
decision

Sequential procedures
see if they can
predict an outcome
after each new
input. If not
they request more No
information

Get a variable

Can | predict an
outcome yet?

Yes

Fig. 4.1
Parallel and sequential decisions

66

~Does it,” muses the expert as he sucks on his pipe, "have feathers?”

#pctually, yes.”, you concede.

And at once the great thinker deduces that it's a bird.

There was no need to consider all six variables at all.

Suppose, now, that you were thinking of an object and didn’t specify that it
could fly. The parallel and sequential approaches for this problem are
shown in Fig. 4.2,

“Does it have wings?" you get asked. You concede that it does and are
instantly confronted with the previous question concerning feathers. At
once the expert has it. The sequential technique has won.

In general, sequential techniques ask less questions than do parallel
techniques - which might make them seem, initially, more desirable. Or, at
least, less garrulous.

But whereas the desirability of sequential procedures is obvious in the
bird/plane example it isn’t in the weather example.

Because, even if you were a real expert and knew everything about the
weather there is to know, you'd still never be absolutely certain if it was
going to rain tomorrow or not. And, as this is the case, the wise expert
would gather all possible evidence before him prior to making any
judgement. And that's what parallel procedures do.

Knowing that one can't be absolutely certain, in general, about an outcome
they gather all the information they can and then make the best guess they
can. A sequential procedure smacks of leaping to conclusions - and our
expert system doesn’t do that.

If you think about it for a moment you'll realise that the best a sequential
procedure can do is only as good as a parallel procedure - because, as a
parallel procedure uses all of the information to come to aconclusion then
the parallel procedure comes to the most likely conclusion to be right. The
sequential procedure can, by sequentially going through all of the available
information, come to the same conclusion but, by doing so it's effectively
done just what the parallel procedure did but it did it by stages.

There isn’t always much difference between the two methods. Suppose
our expert had asked about the variables by clearing the screen in between
each item. Then it might have looked like a sequential procedure - but, as it
didn’t decide anything until the end, it's really parallel.

67

Parallel Procedure

Judgement

Rules

Sequential Procedure

Judgement

No further information needed
Rules

Fig. 4.1
Parallel and sequential judgements

68

£ 3
g]
|
i
|
{
t
1
£
!
:

We could obviously take some of the effort out of entering information if,
when it had a crucial piece of information, the expert was instantly able to
come to an opinion and skip the rest. But how would we write such a

progral‘l‘l?

Well, if we knew what the subject of our expert’s enquiries was going to be
we could write atailor-made program for it. But, in our case, we wanted a
general-purpose expert system.

And, if we knew the exact probabilities for every outcome we could also
write a program to do it. For instance, as the expert gathered, sequentially,
pieces of information, it could look through all the possibilities to find the
most probable one. It could then check all other outcomes to see if they
could ever, given the current information, become more probable than the
one that was currently most probable. If they couldn’t, then the expert
could make a decision without going any further. If they could, then
another piece of information would be needed.

Taking the bird/plane example, if we had entered the actual probabilities of
the various outcomes instead of letting the expert learn for itself then we
would have told the expert that if it had Feathers then it was Bird with
probability 1 and it was Plane with probability O. So, as soon as Feathers
turned up (as it were) the expert could calculate that Bird was the only
possible outcome and stop asking any more silly questions.

But we haven't proceeded in this way. By example, the expert learns that
only outcome Bird has variable Feathers. But it also knows a number of
other things. For instance, it knows that outcome Bird has variable Beak as
well, Does this mean that it's only abird if it's got both feathers or abeak? Or
is it still a bird if it's only got one of these? And, more to the point, does it
mean that in the examples so far it happened by chance that birds had
beaks and feathers and that there might yet appear a bird which had
neither? In other words, is it amatter of absolute certainty, with probability
1 attached to it, or is it avery high probability, but not 1, which might not be
the case later?

Now, as regards birds and planes, you could tell it what to expect. But what
about the weather? In this case, nothing occurs with probability 1. It's all
pretty uncertain and you aren't in a sufficiently knowledgeable position to
explain anything further to the expert system. You don’t know the answers
yourself, except by waiting to see how the weather eventually does turn
out. So how can you explain it to the expert system?

69

In specific cases asequential procedure can be devised which will save you
time and trouble and which may give as good judgements as a parallel
procedure. But, in general, a parallel procedure will make decisions which
are as good, and usually better, than a sequential procedure and the
program using parallel procedures is much more general purpose because
it makes fewer assumptions.

Having said this, let’s consider how we might turn our expert systeminto a
sequential device, as shown in Fig. 4.3.

Suppose that it displays the name of the first variable and asks for a value
for it which you then provide. It can then calculate the initial D values for
the Q outcomes using just this one variable value.

Having done this it can then scan these values of D, select the highest, and
consider whether or not that might be the correct outcome. And the way it
can do thatis by scanning all of the rules in R(l.J) to see if any of them might
increase their own D value by enough to exceed the currently-favoured
likely outcome. But, to do this involves guessing dummy values of V(I) to
work with, Now, if it really guesses it's introducing more uncertainty into
the situation and there’s enough uncertainty around already. If it's going to
doitand be sure of itself it has to know the minimum and maximum values
which V(l) can take for each of the variables. If you can provide these values
then the expert system can at least discount some options and if it can
discount all but one of the options it can make a decision.

But what if it makes an incorrect decision?

Well, if it's been given correct information about the minimum and
maximum values of the variables then it can only make an incorrect
decision if its rules in R(l.J) are wrong. And it may be that the rules need
adjusting on all variables. So the program would have to revert to parallel
mode to obtain all of the variable values from you and then adjust R(l,J) as it
did in the parallel processing case.

In terms of building your own expert system it may not always be really
worth the effort to do all this. Especially if you don’t like programming.

But in terms of making the system more interesting or easier to use it
might be worth having a go. Whether it will make any difference to what
the expert does depends on the minimum and maximum values you

70

Start

Y

Get variable

Y

Choose the
most likely
outcome

Y

Given certain
A minimum and
maximum values
for the remaining
Yes variables —
could anything
occur to make it
choose different
outcome?

Y ro

Solution

Fig. 4.3 _
A sequential expert algorithm

provide. They have to be wide enough apart to be genuine |Ir'E"|ItS on the
input data - otherwise the expert will make m_s?akes. Butifthey're very far
apart they won't help the expert to pin the decision down very muchandso
it will behave just like a parallel processor again - but after a lot more
programming effort on your part!

71

4.2 Adding some commonsense

As we've seen, if you can't tell the expert something more about the
problem in hand the parallel procedures we've described give the best
solution to date. But if, at the least, you could specify minimum and

REM -ARRAY PD HOLDS THE POSSIBLE DECISION VALUES USING THOSE VARIABLES

#40 THE EXPERT HAS ALREADY GOT
260 FORJ=1TOQ

RI=1TOV .
. rfvc{\} = 1 THEN - IF R(1) > = R(LHJ] THEN :2D()) =PD) + (R(L)) - R(LKJ) * M(?,\I]
Zgg JF VCll) = 1 THEN : IF R(LJ) < R(LH) THEN PD() = PDU) + (RILJ) - R{LHI) = M(1.)
2

maximum values for the variables it would be possible for the system,

under some circumstances, to skip a few items when asking for
information.

Let’s outline the method in Applesoft BASIC, step by step. Suppose we
DIMension M(2,V) to hold the minimum and maximum values of each of
the variables. Minimum values in M(1.1), maximum values in M{2,1). You
can arrange to enter these at the start of the program training session either
after each variable name is entered or as a separate block of information
later on. You also need to DIMension VC(V),PD(V).

Then, as we go into a training session:

2 v=6Q=3
5 REM :VALUES ARE NEEDED FOR V AND Q
10 DIM VC[V),PD(V),M(2,V),D(Q),V[V) R(V.Q): REM :MINIMUM AND MAXIMUM VALUES
MUST BE PROVIDED INTO M(2,V]
20 FORI=1TOV
30 wvef) =1
40 NEXT
50 REM .THAT SETS UP ARRAY VC AS A FLAG ARRAY TO SHOW WHICH VARIABLES
HAVE BEEN USED SO FAR IN THE DECISION PROCESS
0 FORJ=1TOQ
70 pp=o0
80 NEXT
90 REM :CLEAR D
100 FORVW=1TOV
110 INPUT V(VV): REM :GET A VALUE FOR ONE VARIABLE
120 VC(VV) = 0: REM :FLAG SET TO ZERO
130 REM :NOW CALCULATE ARRAY D AS FAR AS POSSIBLE
140 FORJ=1TOQ
150 D{) = D)) + V(vV) * R(vV.J)
160 NEXT
170 REM :THAT UPDATES THE DECISION ARRAY
180 D=0
190 FORI=1TOQ
200 IF D(J)) > =D THEN .D = D(I}HJ = J
210 NEXT. REM FIND THE MAXIMUM D(J) AND PUT IT IN D - HJ IS THE MOST LIKELY
DECISION TO DATE
220 FORI=1TOQ
230 pDY) = D())
240 NEXT
72

300 NEXT: NEXT

i i hat haven't been used

i is to go through all of the variables that '
(\g{hatstir:gs ?P?:inowr?minimum and maximum Val?f’?};tlﬂ)telrtsdigé‘?hlig gr;
e i i instead o ;

to find another possible outcome ir : 5
aﬂemrrﬁ?n;that all the remaining variables w!ll actagainst thecurrent Choﬁfl«;
ass;.: only has to find out if the current choice can be displaced it can V\tl :
Q'?th the difference R(1,J)-R(1,HJ) instead of R(l.J) and R(I,HJ) separately.

310 H2=HI
320 FORJ=1TOQ
330 IF PD(J) > = H2 THEN :H2 = PD{)):HI =

NEXT
g;g IF HI = HJ THEN : STOP : REM :ALL SOURCES AGREE ON THE OUTCOME

360 IF HI < > HJ THEN : NEXT VV. REM :THERE IS NO AGREEMENT AS YET AND
ANOTHER VARIABLE VALUE IS NEEDED

i ision is sti VC(l) is checked to see which
Il this, awrong decision is still made :
gélif;esrti‘ V(1) have not been entered yet and these values are provided. The
program then goes into its routine to alter R(l,J).

Finding the values of V(l) by working thro;gh_ thtemc‘rg %g?;gmg:;?g:hj?
thod which makes the most sense. For instance, ' ,
\t.:jr?eequai for agiven variable then obtaining avalue fo_rthat variable W‘}:J\z
tell the expert system nothing. It might as well skip it. In this casi a 4
lines of code could check, before avariable was requested, ifall R(l,J) wgrle
equal for that variable. If they are, the expert could jump to the next varia

without requesting a value.

What we really need is some general method for decidinegv\;»;?;gre:a;?gﬁ
t next. For instance, som I
value the system should reques : oHS8
i he outcome. What we have i
more crucial than others to the) :
Erfethod which divides the variables into twoﬁgrougs L:giﬁn\;vr};cuh"gﬁ;\;
hich won't affect the of i t
affect the outcome and those whic : gl
i i lues first for those variables w
write routines to tryto getva] B e il
Il have the possibility that, in i
to affect the outcome most we sti ssibil ok o
i i t all will still be required al
ariables which affect the outcome at and
f:::’\\:e gained is a re-ordering of the variables and not a reduction in the
number we've had to consider.

73

One method which we might try is to look first at those variable values
which have the biggest range of variation in terms of their minimum and
maximum values (assuming we're able to provide such values). As these
variables can vary the most it might be presumed that they contribute the
most to the decision-making process. Obviously, in the bird/plane
example the minimum and maximum values are O and 1 respectively
corresponding to the presence or absence of a feature so this wouldn't
help us much. However, using data relating to, say, weather conditions we
could have variations in minima and maxima for various items. Cloud cover
could be nought to ten, corresponding to nought to ten-tenths cloud and
rainfall could be nought to two, corresponding to inches of rainfall. So it
would seem that cloud cover, with the greatest range, is the item we
should check first. Unless, of course, we choose to measure rainfall in
millimetres in which case the same rainfall is represented by nought tofifty
(millimetres, not inches). And rainfall is the variable to check first,

All this rather serves to illustrate even further the point that, in general, the
method of working the expert system can't be pinned down too closely
because if it's to be fairly general with regard to the datawe give it we can't
make it too specific in how it handles that data.

If you build your expert system to be fairly indifferent to the exact area in
which it's supposed to acquire expertise then, in specific cases, it's likely
to appear alittle clumsy and laboured. If that happens then you may feel like
customising the thing to a specific application by, say, getting it to ask
about particular variables early on in the process and getting it to skip other
variables according to some special knowledge of your own. But once
you've done that you'll be likely to find that your expert system can't learn
other problems quite so readily. It won't be a general-purpose expert

system any more even though it might be better for the purpose you built
it,

It all really depends on what you want your expert system for. If you know
what you want it for then you stand a good chance of being able to build a
better one for that purpose than would be possible with any general
method given by someone else.

Having said which, we might as well have a crack at getting the system to
go for the "best’ variables first. We can do this by considering just how
much variation they can cause in the decision rule.

If we DIM RV(V) to hold an indicator of this variation (the ‘Rule Values'), we
can write:

74

10 FORI=1TOV

20 FORI=1TOQ

30 RV(I) = RV(I) + ABS (M(1]) - M(2/]) = ABS (R{LJ)
40 MNEXT : NEXT

is, we find the absclute difference between the minimum and
‘r:a:(?rl:;.lm values of each variable ar_1d multiply this difference F\"J\}I Ithe
absolute values of the rules for that variable. Then we would search Tkg‘)to
find that variable which corresponded to the largest value of HV!_i). |s;|st
the variable that we suppose to be the most |mpon_ant.So we |npfut t ha
value first. If the system calls for another variable it would call for the
variable with the next highest value of RV(l). And so on.

The success of this method, apart f!'om the comments n-!aqe airead\:j,
depends .on the accuracy with which we know the mlmlm;;:m a!n
maximum values for the variables and the extent to which the rules
developed by the system so far are good rules.

Obviously, when it's first starting and all R(1,J)=0it qu't have 'acluewhéch
variables are important to the problem and which aren t. Wheth:r
experience will improve the system in this respect depends mainly on the
problem it's given to work on.

i i hen trying to decide
There is another refinement that could be u§ed w eci
which variable to ask about. You'll see that we've got amethod of plckm_g
that variable with the maximum value in RV(l). Now, suppose th.:aE this
variable has already been entered. Then VC(l)=0 to indicate that it's no
longer needed.

The system then goes off to check if it can deduce an unegquivocal
outcome. It can't, so it goes looking for another variable, the next largest

RV(1).

i king for other possible outcomes there might qn]y
E:\};awt?::nlt :Vassn‘fglecnungber of outcomes which remained possible
contenders. Checking the possible decision rule values in PD(J) some of
them might have been less than the D(J) the §ystem_p;cked upasthe mgst
likely outcome so far. In this case, thfay aren’t possible contenders under
any circumstances and they can be ignored for all purposes.

i i tly the
Suppose we DIM QC(Q) for the outcomes and use this array in exac
san?ng way as we used VC(V) for the variables. Set all of the elements equal
to 1 to start off with and set any QC(J) to nought as soon as it becomes
apparent that this outcome can never be chosen.

75

Then, whenever we're dealing with aset of values we can quickly eliminate
those which are 'dead’

For instance;

10 FORI=1TOV

20 FORJ=1TO0Q

30 RV(l) = RV(I) + ABS (M(1)) -M(2))) = ABS (R(L))) * VC(l) * QCl)
40 NEXT : NEXT

Which has the effect of changing nothing if all of the variables and all of the
outcomes are still active because VC(I) and QC(J) are all equal to 1.

But, if any variable has been used, or if any outcome is no longer possible,
then VC(l) or QC(J) are equal to 0 and RV(1) is unchanged by that variable or
outcome. It simply means that we're only considering the reduced

problem of what to do next given that some of the items are no longer
active.

Incidentally, there isn't anything sacred about using the values of RV(l) as
they're calculated here. You might, for instance want to square R(l.J)
instead if using its absolute value. It all depends what you think might be
useful. For instance, suppose that you wished to choose between two
variables which had two outcomes, and R(lJ) values:

Qutcome 1 Qutcome 2
Variable 1 2 2
Variable 2 1 3

Now, if both of these variables had the same maximum and minimum
values they would both give the same values in RV(l), because each of
them adds up to 4. But you'd like variable 2 to be investigated first because
ithas the greatest effect (actually, it's the only one that has any effect, in this
example!). If you'd taken R(l.J) squared you'd have got;

RV(1)=2%+2% =8
RV(2)=12+3% =10

which would have picked variable 2 first.

Naturally, variable 1 would have been out of the running anyway because it
had the same value for each outcome. But suppose you had athird variable:

Outcome 1 Qutcome 2
Variable 3 0

76

is would have made a contribution to RV(3) of the order of 16 and
I\Eild have been picked before variable 2 (or_ variable 1). T_akmg the
absolute value of R(l,J) in RV(l) wouldn’t hgve picked up any dlﬁerence’s
between the three variables although you might have felt that they weren't
all making an equal contribution to the problem.

ere wasn't anything sacred about the previous method, there’s
‘;L;?:}'liansgtr;acred about this one either. Squarirjg R(l.J) accentuated any
differences which might have existed. But taking a higher power would
have accentuated them more. Taking ar_'lrodd power (anc} not taking the
absolute value) would have kept the positive or negative sign ofthe_values
intact which might be useful (one can’t th‘ink why, actually) and Fakmg any
other function could make it all behave in a pretty weird fashion which
might suit someone’s weird program.

Naturally, there’s an even more complicated way of doing things but in
some cases it might actually be worth doing it.

And that is: to consider the sum of squares about the mean of each
variable’s rule. To do this you calculate the avera_ge_value of the rules for
each variable and then calculate the squared deviation of the rules about
these values. For instance:

j0 FORI=1TOQ

20 M=M+(RIJ) 7/ Q) VCll) = QC())
30 NEXT
FORJ=1TOQ
;g RV(I) = RV(1) + ([R(1)) - M) A 2) = ABS [M{1]) - M(2)) * V(] * QC())
60 NEXT

This gives RV(l) as the sum of squares about the mean of R(1,J) for variable |
over each of the possible outcomes.

You have to work this out for each | and you should include VC(l) and _OC(J]
as before when calculating both the means and the sum of squares if you
want to allow for variables which have already been given and outcomes
which are no longer being considered.

The point about this methed is that you might have the following rules:

QOutcome 1 Qutcome 2
Variable 1 ! 5
Variable 2 1

77

Intuitively, you feel that variable 2 is the most important because of the
large difference it can create in the outcome. But ABS(R(l,J)) wouldn't
detect any difference between the two sets and neither would R(1.J)
squared. Variable 2's rules vary most about an average value and it's this
variation that we can try to measure in order to select the best variable for
consideration.

The average value for variable 1 is 1.5 and that for variable 2 is -.5 so we
calculate respectively, (1-1.5)*+(2-1.5)*=.5and (1 -(-.5))2+(-2-(-.5))?
=45

This method picks variable 2. And, whether it's worth the trouble or not
probably depends most on how'many variables you have to deal with. Ifit's

alot you might be glad of any method which helps you gettotherightones
first.

4.3 A trial run of our new expert

We will modify our original program so that it will try to eliminate some
variables by use of the maximum,/minimum method from section 4.2. The
modified listing is at the end of this section.

To see how well, or otherwise, the expert works we'll give it the
bird/plane/glider example. And, so that we don’t get too bogged down,

we'll give it three simple pieces of information to work on: wings, beak,
engine.

A bird has wings and a beak, but no engine. A plane has wings and an
engine but no beak. A glider has wings but no beak or engine.

To start with, the rule array, R(1,J) contains zeros. We tell the expert system
that the problem has three variables and three outcomes. We name the
variables and the outcomes for it. We then provide minimum and
maximum values for the three variables. Clearly, these are nought and one
corresponding to the presence or absence of the feature in question,

Variable Minimum value Maximum value
Wings 0 1

Beak 0 1
Engine 0 1

78

At such time as we enter a complete description for any one of the three
outcomes the description would be held in V() and would be:

Variable Bird Plane Glider
i 1 1

Wings 1

Beak 1 ? 8

Engine 0

The order of events is now up to the user (you) but we'll suppose that it
happened like this..........

We think of a bird. And we input V(l) values to correspon_ﬁd to a bird. The
rule array R(l,J) is adjusted because the expert makes an incorrect guess:

R(1.J) Bird Plane Glider
Wings 1 -1 :
Beak 1 (13 0
Engine 0

In other words, V(1) for abird has been added to the outcome bird rule and
subtracted from the other rules.

The expert now enters another session. We think of a bird again.
It first asks for a value for 'Wings'. We reply with 1.

The system then asks if it can deduce outcome bird. Which it can. We
reply, Yes, and nothing is adjusted.

i _we know that wings aren't sufficient to indicate a bird. It's
rNe[;‘IFIV{r ggvel\?it::lselxce atall. Butin the current state of kr_!owlgdge gf the expliret
it is enough. For with V(1)=(1,xx) the rules for a bird give a bigger va e
than the rules for any other outcome. And, consnjerlng the mlﬂm';untw :wo
maximum information the system has, no values exist for the las
variables in V(1) which could ever change this decision.

So, the expert has got the right answer on imperfect |r1fforrnat|orr;, gtmv\tg
working incorrectly but because its set of rules are, so ar,l;mt;?e re“ e
might show a little charity towards it at this stage - after all, it's only
come across one bird in its whole life so far.

Now another session. We think of a plane.
79

It asks for a value for "Wings’'. We reply with 1.

Again the system asks if it can deduce outcome bird. Which is a
reasonable question to ask because, last time, it could. We reply that it
can't,

The system asks which outcome it should have been. We reply Plane.

The system now asks for values for the rest of V(1) so that it can readjust its
rules. We give it the correct values for beak and engine so V(I)=(1,0,1).

The rules are adjusted.

Now another session. We think of a plane again.

It first asks for a value for ‘Beak’. We reply with O. It then asks about
‘Engine’. We reply with 1.

The system now asks if it can deduce outcome plane. Which it can.

Now this is quite promising. It didn't ask about wings this time which is a
good thing because it wouldn’t have learned anything by the question.

Let’s look at the rule array, R(l,J) as it now exists:

Bird Plane Glider
Wings 0 0 -2
Beak 1 -1 -1
Engine -1 1 1

After the last mistake it made, the expert added the plane variables to the
plane rule and subtracted them from the bird and glider rules.

Now: why did it ask about beak first?

Itdid it because this seemed like the mostimportant variable of all. In each
rule there is a 1 or -1 against beak so, summing the products of the
maximum variable values and the absolute values in the rule array, the
expert rates beak as 3, engine as 3 and wings as 2 in order of importance.
Beak comes before engine in the list of variables so it asks about beak first.

From now on, if we just consider birds and planes, the expert will always
be right. Every time it will ask about the object’s beak. If it's got one it will
judge itto be a bird. If it hasn't, it will ask about the engine and, ifit has one
of those, it will judge it to be a plane.

80

L

Now another session. This time we think of a glider.

In response to a query about the object’'s beak we reply with ‘0'.It then
asks about 'engine’ - reply ‘0". And ‘wings’ - reply ‘1",

At this point it guesses that it's another plane - which it isn’t and we tell it
so. We tell it that this is a glider and it adjusts array R again.

Another session. This time we think of a bird.

The expert asks about wings and beaks. We reply 1" and "1" and it then
correctly, decides: bird.

Another session. We think of a glider. It asks about wings, beak and
engine we reply with'1',°0", '0". The expert guesses glider - whichis right.

Another session and this time we think of a plane. It asks about wings,
beak and engine and we reply '1,'0", 1" and it deduces, correctly, that this
is a plane.

Another session, and this time we give it the bird. It asks about wings and
beak only and we reply ‘1, “1" - and it gets it right.

After this, it's perfect and makes no more mistakes. It can correctly identify
a bird, plane or glider and it doesn't always need to ask about all three
variables to do it.

The set of rules at this stage is:

Bird Plane Glider
Wings -1 -1 1
Beak 1 =1 sl
Engine -1 1 -1

There are a few points to make about these rules at this stage.
First, it only guesses glider correctly by, as it were, default.

That is: glider has the variable values (1,0,0,) - so any of the three
outcomes gives a decision value of -1, there is no reason for picking glider
against any other outcome. The reason it does pick glider correctly is that,
having found the object has wings and no beak, it searches for the
maximum decision value. They are all equal so it comes to rest on glider -
the last value it looks at. When it finds the object has no engine either it

81

does the same thing - coming to rest on glider as the last item in the listand
finding that nothing can displace this judgement by being greater in value
than this.

In an example like this a lot depends on whether rules are adjusted and
decisions made on the basis of a conditional test of ‘greater than’ or
greater than or equal to'. The more stringent test (greater than or equal to)
alters the rules more often and, initially, makes the most mistakes. But if
often results in a slightly better rule set - one which asks fewer questions
when itis possible to do so. A simple ‘greater than’ testalters the rules less
often and works, in part, because of the natural order of the data in the list -
which is something you should remember when you are trying to work out
what your program has done with its rules.

A further point is that the expert often asks about Wings - and we know
that this question has no bearing on the outcome at all. The reason it does
this is because the rule values in array RV are (3,3,3) for (wings, beak,
engine) - and it's this that makes us think that some other method of
calculating the rule values might have been preferable. For instance, if we
calculated the means for each variable (-1, -5, -¥4) we could have calculated the
sum of squares about the mean of each variable (0, 2.67, 2.67) - which gives
beak and engine as, clearly, the most important variables and leaves wings right
out, as it were, in the cold. (The sum of squares of a variable about its mean is,
incidentally, the same as the variance of that variable but without dividing by n -
see the Technical Overview at the back if you're not sure about this.)

Also, we'd have been quite likely to get a different set of rules if we'd
trained the expert by giving it the problems in a different order.

But all that we require of a decent set of rules is that they should work -
which these do.

Think about our talk about linear separability. WWe've got an expert system
which has managed to draw lines between the three groups of objects -
birds, planes and gliders. It doesn't matter exactly where the lines are
drawn as long as they serve to separate the three groups. The current set
of rules does that but it wouldn’t be hard to think of another set of rules
which did it just as well.

This example is fairly neat - but don’t suppose that every problem given to
the expert will look as nice as this one does.

Suppose that we keep our three outcomes: bird, plane, glider. Now give it

82

—

six variables to work on: wings, tail, beak, feathers, engine, undercarriage.
Commonsense tells us that most of these variables are redundant - they
aren’t needed to answer the basic question. But will the expert work that

out?
The answer is: No.

As there are still only three outcomes we know that no more than two well-
chosen questions will still settle the matter. However, after the expert had
pbeen sufficiently trained, it asked about the following items for each of the

three outcomes:

Bird Engine - Reply O
Undercarriage - Reply O

Beak - Reply 1 Deduction: Bird

Plane Engine- Reply 1 .
Undercarriage - Reply 1 Deduction: Plane
Glider Engine - Reply O
Undercarriage - Reply O
Beak - Reply O

Feathers - Reply O Deduction: Glider

Now this isn't bad. It gets it right every time and it doesn't ask_ about all of
the variables. For instance, it never asks about wings and tail - which is
good, because these variables don't tell it anything. Howevgr, from.our
point of view, it's rather dense in asking about the undercarriage straight
after asking about the engine every time. But that's b_ecaqse we know that,
in these examples, the two always go together. Likewise, it often asks
about feathers straight after asking about the beak - another two items
which we know always go together.

The point is, of course, that the expert system doesn’t _know that t.hes_e
things always go together. Having asked about the engine, a question it
thinks is important, it finds that it can't be sure of the outcome ar_1d soit has
toask another question. The undercarriage seems important to itsoit asks
about that. It didn't realise that it could have deduced undercarriage from
engine. For all the expert knew, engine and undercarriage might have just
occurred together by chance so far. In the problem it was working on at
that time engine and undercarriage might not have occurred togethgr and
that would have changed its view of the possible outcome. It simply
needed to keep on asking questions until, given the state of its rules and

83

the minimum and maximum values assigned to each variable, there was
absolutely no possibility whatsoever of its getting fresh information on
any variable which would cause it to change its mind about the likely
outcome.

Knowing that the object had an engine wasn't enough for it to be
absolutely sure of the outcome. Suppose (you can imagine it thinking to
itself) | had an object with an engine and then it suddenly turned out to
have no undercarriage. Would that cause me to think differently about
what it was? Yes, it would. Better ask about the undercarriage.

Precisely what sort of object the expert thought might have an engine and
no undercarriage is a bit of a mystery. Maybe we should have included the
outcome: rocket. Just to keep the expert happy.

The following is a listing of the program used in this section. It uses the
learning algorithm. Minimum and maximum'values are used in ordertotry
to come to a speedy conclusion. Questions are asked on the basis of their
values - using the ABS function with the min/max values to try to assess
their importance.

Outcomes which cannot achieve a high enough value to displace the
current best guess are eliminated from further calculations.

Once you've run this try altering the code so that the rule values in RV are
calculated using the sum of squares about their means (see p. 77) rather
than the ABS function - it should influence the order of question-asking.

Fig. 4.4
Minimum/maximum modified program

Apple Il listing

20 HOME . INPUT “HOW MANY VARIABLES HAVE YOU 2"y

30 DIM V(V),VS(V),M(2,V) VC(V) PD(V).RV(V)

40 PRINT "PLEASE NAME THESE VARIABLES"

50 FORI=1TOV

60 PRINT "VARIABLE "1;” 1S ;: INPUT V(1)

INPUT*ITHAS MINIMUM VALUE =";M(1,]): INPUT"AND MAXIMUM VALUE =",M(2,1)
80 NEXT

INPUT "HOW MANY OUTCOMES HAVE YOU 2",Q: DIM Q$(Q).R(v.Q).D(Q),Qc(Q)
100 PRINT “PLEASE NAME THESE OUTCOMES"

110 FORI=1TOQ

120 PRINT “OUTCOME “I;" IS “;: INPUT QS ()

130 NEXT

PRINT "VARIABLE”,"MIN VALUE"; SPC(5);"MAX VALUE”: FOR | = 1 TO V: PRINT
VS(ILM(1I1M(2,]): NEXT . PRINT “PRESS ANY KEY TO CONTINUE". GET X§

150

160
170

180
190

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

360
370

380

390
400

410
420

430
440
450
460
470

480

: “THIS IS A TRAINING SESSION": PRINT “PROVIDE VALUES OF
GSR}T‘:BLESP'STRIN:E: \Smu. GUESS AN OUTCOME": PRINT “YOU MUST TELL ME IF | AM
RIGHT OR WRONG"”

FOR|=1TO V:VC({l) = 1:V{]) = 0: NEXT: FORJ = 1 TO Q:D[J) = 0:PD(J) = 0:QC{}) =1
:\fEiTow =1,FOR|=1TO V:RV[l) =0: FOR J = 1 TO Q:RV(I) = RV({l} + ABS [M(1.I] -
M(2,]) * ABS (R(LJ)) * VC(1) * QCU): NEXT : IF RV(I) >RV THEN :VV = IRV = RV(])
NEXT : REM :THAT PICKED A PROMISING VARIABLE TO LOOK AT

IF RV = 0 THEN . GOTO 390: REM :THE MOST PROMISING VARIABLE WOULD
CONTRIBUTE NOTHING

PRINT “VARIABLE "WV, (";V$[VV):") IS *;: INPUT V(VV)

VC(VV) = 0: REM :SET FLAG TO ZERO

FORI=1TOQ

D) = D) + V(W) * R(W.J)

NEXT . REM .THAT UPDATES THE DECISION ARRAY

D=D(1} FORI=1TO Q@

IF D{J) > = D THEN :D = D(J):H) =]

PD(J) = DJ): NEXT : REM :THAT FINDS THE BEST GUESS TO DATEH)
FORJ=1TOQ

FORI=1TOV)

IF VC{l) = 1 THEN : IF R{1J) > R(I,HJ) THEN :PD{J) = PDJ) + (R(1J) - R{LH)) . M(2)
IF VC(I) = 1 THEN : IF R(1J) < R{LHJ) THEN :PD(J) = PDU)) + (R(LJ) - R{LHJ)) * M(1.])
NEXT : NEXT : REM :THAT GETS ANY POSSIBLE ALTERNATIVE VALUES

H2 = PD(H))HI=HLFORJ=1TOQ

IF PD(J)) > H2 THEN :H2 = PD(J}:HI =)

IF PD(J) < D{HJ) THEN :QC(J) = 0: PRINT“IT CAN'T BE ";Q5(J): REM :THIS OUTCOME IS
NO LONGER LIKELY

NEXT

IF PD(HI) > PD(HJ) THEN : GOTO 170: REM - THERE'S STILL UNCERTAINTY SO GET
ANOTHER VARIABLE

PRINT “IS THE OUTCOME ";Q$(HI);” 2". INPUT A$: IF A$ ="Y"THEN : PRINT “WHOOPEE
1. PRINT “PRESS ANY KEY TO CONTINUE"; GET X$: GOTO 150

FOR | =1 TO Q: PRINT I, ";Q$(l): NEXT : INPUT “WHICH OUTCOME IS IT 2",
FORJ=1TOV: IF VC[J) = 1 THEN : PRINT “WHAT WAS THE VALUE OF VARIABLE ".J;"
(" V§(1);) 27 INPUT V(J):vC()) =0

NEXT

FOR|=1TO Q: IF B(l) > =D(P) AND | <> PTHEN : FOR J =1 TO ViR{J)) =R{LI) - V{J):
NEXT

NEXT

FOR J = 1 TO VR[JP) = R(J,P) + V(J)): NEXT

PRINT “THE CURRENT RULE ARRAY IS -"

PRINT SPC(10);: FOR J =1 TO Q: PRINT @$(J); SPC(10 - LEN (Q5())));: NEXT
FOR|=1TO V: PRINT V$(1); TAB 10);: FORJ = 1 TO Q: PRINTR{lJ); TAB(10 +) * 20}
NEXT : PRINT : NEXT

PRINT “PRESS ANY KEY TO CONTINUE": GET X§: GOTO 150

85

Sinclair Spectrum listing

2 REM Note that the arrays ar
e renamed for the Spectrum 3s it
only permits single letters
1@ CLS
28 INPUT “"How many variables?"

v
258 DIM vivi: DIH v (v,1@): DIM
m(E w}: DIM civ: DIM P(\fﬁr- DIM

aliv
thBB PRINT AT 16.,@; "Please name
48 FOR i=1 TO wv: INPUT “"Uariab
Le " (i);" is ";vd(i)
L35 INPUT "It has minimum value

i@(1,i): INPUT “"And maximum vz
lue—“;nre il
S@ NE i

F@ INPUT “"How many outcomes ha
ve_yousvq

7S PIM gsiq, Eal- BIM rev,qx: D
IM diqY: DIM gigq}
thaa PRINT AT 1&6.@; “Plilease name

em"*
g2 FOoR 1—1 TG q: INPUT "Dutcam
-t 1 ";gHEi{il: NEXT

lagd LS - PRINT "&ar:abta",TﬂB
12;"H;n:num" TAE 22; "Maximum™: P

RINT : FOR 1;1 TO v: PRINT v%ii)
cTRE 12:)mil1,i);TREB 22;m(2,i): NE
XT i: PRINT : PRINT "Press anu k
ey to continue™

185 LET as=TMKEY%- IF ag="" TFTHF
N GD EE ias

=
12@ PRINT "This is a training s

ession”: PRINT : PRINT “"Please p
Fovide ¥walues of ": PRINT "wariag
bles”: PRINT : PRINT “I mitt guse

25 akr oculcome™: PRINT © PRINT T
etl me ifF ¥ am correcit™

125 PRINT : PRINT "Press 2 key
te _continue™

12 LET135=INKEV51 IF as="" THE

128 CLS : PRINT “Tell me your v
=

i3@ FOR i=1 TO v: LET cli)=31: L

ET wiild=@: NEXT i: FOR Jj=1 TO a-

LET deJ—Q‘ LET P(JJ—@ LET qiJ
¥ =1: NEXT

86

Fe=@&; LEF ww=1t: FOR i=1°
%SBVLETLET aril=@: FOR J=I TO q: -
LET aii):ati!+ﬂﬁﬁ_tmfital-ntgfxt
} 3 ¥ABS (r(i,j))*ci:)*q(;l:_QELET:
J: I atid>»rvy THEN LET wvv=i:

AaB@ MEXT i: REM That picked a pP
ng walue
rgg:SEFng)B THEN Gg T 2@ &
ig@ PRINT : PRINT At this = ?g
e, uou will” "have to tell me
eiggtgggﬁT “press a key to cuntij

nggi LET as INKEY&: IF a$=""-THE =
N GO TO 19
=0 TD Ica e .
19% ENPUT "Numbaﬁ “§(uh) Sb i
=
vs;gv;éT citv:—@ REM set flag 1
o _Zero
228 FOR Jj=1_TO X i1
(Y =d (GY +v IVVY Er VvV, J
ggg h§§TdJ: REM Update dec:gsan
array
d=d{(ir: FOR J=1 TOQ g
ggg EETﬁ(J)}—d THEN LET d=di{j):
h j - -
Egg LET pijd=dij): NEXT Jj: REM -

that finds the best guess ta dat =

s
ible aiternat;v_
p(hjl: LET hi=hJj:

*h2 THEN LET ha=pi.jl

td thj) THEN LET q(Jl
t can“t be " [9%0J)}
iz no tonger Llikely

3 k J
IF thi}»pthj) THEN GO TO 1
ﬁg7aREH Set gno%:eruxﬁgé:gtg_{q
PUT "Is e ;
ig??l;ﬁq“‘aﬁ FF as= THEN PR
NT 7 UWHOOPEE!™ a8
t>"y” THEN GO TO 3
ggé égnale TO 1BB, NEXT i: PRI
NT *Precs any key to_conti QHET =
385 LET ag= INKEYﬁ IF as%= HE =
N GO TO 385 :
386 GO TO 128 i s

87

40@ CLS : FOR j=1 TO v: IF c(J
=1 THEN PRINT AT 16,@; Wh3t Sos
t(i_-p::‘ (5?;&"'”:?3 j:_'?f?\..:ar.iab e “;itj¥;m
] ;:(JJ=5 H 2" : INPUT w(4) = L

1o e
. J=1 TO w: j =
J PEHV ESET NEXT J LET S Hanlay
o A L e
outcomar ows for each
468 PRINT : PRINT

j TO q
488 PRINT q$(j): PRINT
S0 FROWE Saie T riE

VEEIY,r (i,]

810 NEXT i Til-rti.n

S2@ PRINT "Press :
tinue* 8ss any key to con

S53@ LET as= z -l kR
NGO TG S3g KEYS$: IF ag="" THE
CUNEXT

S4@ CLS :
55@ GO To 1i2s

88

Chapter 5

A Real World Expert

5.1 The weather again

It's all very well to have an expert system which can answer contrived
questions about birds, planes and gliders. It makes a nice toy. But what
happens if we give it a real problem such as the weather? What will it do if
we ask it if it's going to rain tomorrow?

Well, it's a real problem certainly. We don't know how to answer that
question ourselves so if the expert can work something out for us we
might feel that we'd got something here.

So, forget contrived examples. We'll turn to the London Weather Centre
for some real data.

Each month the London Weather Centre publishes figures showing the
rainfall, temperature and sunshine for each day. By looking at any given
day we could provide data for the expert and train it by letting it know if it
was raining on the following day or not.

As we progressed through the records we (might) find that our expert’s
guesses improve.

The figures shown in Table 5.1 are for March 1982 and give minimum
and maximum temperatures (in degrees centigrade), rainfall (in
millimetres), and sunshine (in hours). If the rainfall is zero it's (would you
believe) a dry day. Otherwise, we'll consider it to be raining.

We can provide some minimum and maximum values, although it
wouldn’t be too hard to find weather that fell outside these ranges:

Temperature: minimum 0°C. maximum 20°C
Rainfall: minimum O mm maximum 25 mm
Sunshine: minimum O hours maximum 12 hours

89

art from the minimum rainfall and sunshine figures these r'mnrl]z'nur?l
aAr?d maximum values would have to be widened to allow for weather a

the year round.

o T T Rainal Sunahing i Incidentally, it was the sunniest March s_ince 1967 andd?:e stzcot::
v e i m oS sunniest March since records be?(an in 1 gtizrr?'sﬁ:c:r:d vgho i
Hentn © < logical Office who are well-known op nists
mféi%rghc;ﬁ optimism to telling people that what we've just had was good
1 94 11.0 1.7:8 359 weather. -
g 4.5 1‘12'5 - 6l12 Anyway, we set up the expert system with four variables: Minimum
4 ;l7 }Og ?g £11'3 temperature, maximum temperature, rainfall and sunshine.
g 32 ng gg We give it what we reckon are reasonable minimumand maximum values.
g ?g gg 5.5 1?; J We give it two outcomes: Rain and No Rain.
18 ég }g; 25 ‘31'51; The first item is: 1st March 1982. We enter the variables and let the
" 3.7 10.9 4.4 9.2 | expert know that there was rain the following day.
12 5.9 10.0 4.8 7:1 Z 5 ive i lues for the 2nd March and, if it
| the next day. We give it the values : L
;2 gg };? ik 183 gzzgsléslswmng about the next day’s weather we let it know that, again, it
12 8:8 9.‘1 8.8 . rained the following day.
; ? ﬁg 1 385 gg 2:13 ‘ Then, it is the next day and, yes, you are Right! Excitement is not a feature
18 3.4 1.1 . 6.6 of this process.
19 4.4 8.4 5.4 0.7 . g here are 18 wetdaysand 13
t Table 5.2 you'll see that the e18 i
27 4 3 K o gruytclifa\,\lle:ngri\igfc?ha1 9?32. Whigh suggests thatthere'sa flftv-fl;fty(éougslllag
55 gg 11(:)3 1o 6.8 chance of getting the answer rightjustduetochanc;a. How, then, doe
23 5.7 14.0 8.8 expert get on - and is this any better than chance?
: .2 o o3) d rai its absence
25 5.8 16.4 10.3 hat the expert predicted rain,orits a ;
Table 5.2, you can see tha € :
26 3.9 17.0 9.9 E(;?gcrlay fir 22 of the 30 days (the first day we don’t count because_l_tr:z
28 55 154 o0 [expert had no rules established until it knew the outcome of day .ci)r'ue)r.n e
28 5.8 15.4 7.0 is 73 per cent success and actually sounds pretty good. Possi ylt !
0 a5 56 o e better than a human would have guessed. But let's go overthe resultsina
g? 22 gg 3.2 ig (bit more detail.
Table 5.1

London weather summary for March 1982,
(A gap indicates zero)

91
20

Day of Actual W
Month next day aher \xe::l;ee:tForecast
; Rain Don't know
Rain Rain
3 Rain Rain
g Dry Rain - Error
Dry Rain - Error
6 Dry Dry
7 Rain Dry - Error
8 Rain Rain
9 Rain Rain
10 Rain Rain
11 Rain Rain
12 Rain Rain
13 Dry Dry
14 Rain Rain
15 Rain Rain
16 Rain Rain
;Ig Dry Rain - Error
19 Rain Dry - Error
Rain Rain
20 Rain Rain
g Dry Rain - Error
2 Dry Dry
23 Dry Dry
24 Dry Dry
25 Dry Dry
26 Dry Dry
27 Dry Dry
gg Rain Dry - Error
Dry Rain - Error
30 Rain Rain
31 Rain Rain
Table 5.2

Actual & predicted weather for March 1982, London
92

The first thing to do is to damp down a bit of the (possible) enthusiasm for
the results. We do this by pointing out that there is a very simple rule
which, with this data, would have made ten mistakes over the whole
month. This rule is: that the weather tomorrow will be the same (rain or no
rain) as it is today. If we use this rule we'll only be wrong every time a dry
day precedes a wet day or awet day precedes adryday. By and large, using
this rule, we would expect to be right most of the time simply because we
know that weather comes in runs - we tend to have a spell of dry days
followed by a spell of wet days.

So, by this line of reasoning, if all the expert system did was to adjust its
rule base to predict for tomorrowwhat we had for today then it would have
made only ten mistakes. In fact, it's done better than that with only eight
mistakes - which shows that it hasn't been quite so simple. But, if you look
at the results you'll see that it was when the weather actually did change
that the expert was caught out. It wasn't always caught out by a change in
the weather, as you can see on the 13th March, but it generally was.

What happens is that, after the first day, the expert makes predictions of,
in this case, rain. These are correct until (in case you hadn’t guessed) they
are wrong - due to a dry day occuring. This error causes expert to adjustits
rules and it eventually gets itself sufficiently sorted out to predict a dry day
on the 6th March.

At this point the weather turns wet again and the expert makes a mistake.
By this time it has adjusted its rules three times and these rules give it
pretty good service until the 17th of the month when a dry day arrives
unexpectedly. Some more adjustment occurs to the rules and, by the
22nd, the expert is running well enough to predict a dry spell. On the 28th
and 29th more errors occur as rain returns.

In one way of thinking our expert has performed poorly because it does
periodically make mistakes. It isn't perfect. And what will concern some
people is the fact that, as it adjusts its rule base every time it makes a
mistake, it isn't using the same set of rules throughout the performance
which might cause one to think that, in some sense, it's cheating. Afterall,
you may say, what is it that we're judging here? With most games you
aren't allowed to change the rules every time you lose.

It's this changing of the rules that makes our expert difficult to analyse
except by trying it out to see what it does. If it had one set of rules which
never changed then it would be possible to say more about them - but it
doesn't, it just has a general method for supplying an answer.

93

In some ways, this makes the system more human. After all, if you were
asked what you thought the weather would do tomorrow you'd probably
take account of what the weather had been doing recently. By this, one
doesn’t mean solely what the weather has done today. If, by and large, the
weather continues dry a light shower isn’t going to cause you to change
your mind about the chance of a dry day tomorrow. Or, at any rate, it's
unlikely to. You'll approach the matter of weather prediction with a given
mental ‘set’, or predisposition, to interpret today’s clues in the context of
generally recent weather.

Suppose, for instance, that you wanted to guess if it would snow
tomorrow. Now, if it were the middle of January and there’d been a lot of
snow recently and there were signs today of more snow to come then
you'd be fairly happy to predict snow. But, if it were the middle of July and
there were signs which, in mid-January, would indicate snow then you'd
be more reluctant to predict snow. The fact is: that you're using different
rules yourself at different times.

And if, in mid-July, it actually did snow then you'd quickly adjust your
internal weather prediction rules and be much more willing to reckon on
the possibility of snow tomorrow if the same signs appeared again. And
this is what our expert does. Having said which, its behaviour begins to
look a lot more reasonable.

Also looking reasonable is its behaviour in asking for information. Recall
that our expert is free to choose which variables it first enquires about and
free to make a prediction without asking about allvariables if it's sure of its
outcome.

In this example it makes use of this freedom. Almost invariably the one
question it asks first is: rainfall?

Having got a figure for today’s rainfall it then, usually, makes a decision
without checking any other items and, as we’ve seen, it's usually right.

What it appears to be doing is predicting rain when today’s rainfall is high
and predicting dry weather when today's rainfall is low. Just how high is
high and how low is low varies though. And, in between, there’s a grey
area in which it just can’t make up its mind. In this grey area it will
sometimes call on the other variables to add to the rainfall information,
typically asking about temperature and sunshine. Very rarely does it want
to know values for all the variables involved.

94

_7

In all, its behaviour seems reasonable. Also reasonable is the set of rules
which it has developed by the end of the month:
The array R as of 31st March 1982:

Rain Tomorrow Dry Tomorrow
Minimum Temperature -0.6999 0.6999
Maximum Temperature -2.5 25
Rainfall 4.1 -4.1
Sunshine 4.6 -4.6

We can see that, for a prediction of rain tomorrow, the expert will look for
high rainfall figures today with low temperatures. Strangely, it will also
look for high sunshine figures as a predictor of rain - but, maybe, this isn"t
so strange. Cold, wet and sunny weather is certainly ‘'unsettled’ weather -
so, maybe, that's what the expert is looking for. After all, by the end of
March we might well expect some sunny April showers to be starting!

On the other hand, for a dry day tomorrow the expert is looking for warm,
dry, overcast weather today - maybe this is the sort of still weather that
doesn’'t presage rain. In all, these are not items which we would
automatically use ourselves to predict the weather tomorrow - but maybe
we should do. If our expert system can make a good prediction of the
weather in this way it may well be that, by now, it genuinely does have
some expertise which exceeds our own in some respects. Possibly,
having initially learnt from us we can now learn from it.

But just how well has it done?

Actually, we can be a bit more precise about how well it's done by saying
that, not only does it get things right 73 per cent of the time (for this
example) but that the probability of this being due to chance is less than
0.025 - i.e. less than 25 chances in one thousand. And how, you may
wonder, do we say such a thing as this?

Well, a bit of statistics comes in. We say that there have been 17 rainy days
and 13 dry days in March and the expert has predicted 19 rainy days and
11 dry days. We can represent this as follows:

95

Expert prediction

Rain Dry Total
Actual Rain 14 3 = 17
Weather Dry 5 8 = 13
Total 19 11 = 30

On 14 days rain was predicted and there was rain. On 8 days adry day was
predicted and it was dry. On 8 days mistakes were made.

Using the totals we can calculate what those figures would have been by
chance. These are the so-called 'expected values’ and a description of how
to calculate them is given at the end of this section:

Expected values

Rain Dry Total
Actual Rain 10.77 6.23 = 17
Weather Dry 8.23 4.77 = 13
Total 19 11 = 30

We can use these two tables in a statistical test called a chi-squared test.
A chi-squared test of significance says that the table built up from the
actual predictions of the expert is different from the table based on chance
and that it is so different that the probability that expert is working by
chance is less than 0.025.

The problem with that sort of statement is clearly that: you may not know
what a chi-square test is or whether to believe it or not.

Well, you can take it on trust if you like and believe it.
If you actually want to know how it works...
The first table contains the Observed frequencies, we'll call these O (for
‘observed’). The second table contains the expected frequencies and we’ll
call them E (for "expected’).
Chi-square is calculated by:

CH = CH + ((0-E) A2)/E

for each of the four cells in the table.
Sa:

96

’*__

CH = ((14-10.77)42)/10.77) + ([3-6.23}4 2)/6.23) + ((5-8.23)42)/8.23)
+ ((8-4.77)A2)/4.77, for this example.

So: cH=6.11

Now, you look up the value of chi-square in a table of statistics (sorry,
you’ll have to buy a table of statistics). Look against the values for 1 degree
of freedom and you'll see that under the 0.25 (some call it 2.5 per cent)
column, chi-square has a value of 5.02. Our value of chi-square is bigger
than this so we can place at least .025 probability confidence in the
possibility that our results are not due to chance.

Some of you will find this all a bit tedious so you can always ignore it. But it
does give you a way of judging the performance of your expert systemina
fairly exact fashion. After all, you may have a different problem and may
want to estimate how well your expert is at working on that.

You may also, if you're interested, wonder what degrees of freedom are
and how we came by the expected values.

Degrees of freedom depend on the number of rows and columns in the
table. We calculate:

DF= (R-1)*(C-1). where R= rows and C= columns, and DF= degrees of
freedom.

In this case R=2, C=2, so DF=1. But you might have had more outcomes
and, so, a bigger table.

Expected values are calculated for each cell by:

Looking to see what the row total is for that cell. (Observed).
Looking to see what the column total is for that cell. (Observed).
Multiplying these two together.

Dividing them by the overall total. (Observed).

Repeating this process for each cell.

Entering these values into the Expected Values table.

If you've done it right the Expected table should have the same row,
column, and overall totals as the Observed table.

97

In our example the first cell in the expected table was 10.77
because: 10.77 = 17 X 19/30.

Actually, it's an ideal subject for a computer program, if you're still
interested and awake by now.

If you don’t happen to have any statistical tables handy then you could just
note that if chi-square equals nought then the results could certainly be
due to chance. The bigger chi-squared, the better for our purposes.

5.2 A Chi-squared program

If you feel interested in testing experts’ results in a formal way using chi-
squared, but haven't come across the method before, then you might as
well have a program to do it for you.

You could jot down your results, as before, into a table, and then follow the
logic of the following Applesoft program.

10 HOME : INPUT "HOW MANY ROWS HAVE YOU #“R
20 INPUT “HOW MANY COLUMNS HAVE YOU?”,C
30 DIMQ[R+1.C+ 1), ERCQ)

40 FORI=1TOR

50 FORI=1TOC

60 PRINT “ROW "I COLUMN “;J;* = *;: INPUT Q(LJ)
70 NEXT - NEXT

80 FORI=1TOR

90 FORJ=1TOC
100 QR+ 1J=QR+1J)+aQ()
110 QC+1)=Qlc+1)+a()
120 QR+1C+1)=QR+1,C+1)+Q(J)
130 NEXT . NEXT
140 FORI=1TOR
150 FORI=1TOC
160 E()=QC+1)* QR+ 1J)/QR+1C+1)
170 NEXT : NEXT
180 FORI=1TOR
190 FORJ=1TOC
200 CH=CH +((Q(l) - E1J) A 2) / E(1))
210 NEXT: NEXT
220 DF=(R-1)*(C-1)
230 PRINT “CHI SQUARE = ";CH,;” DEGREES OF FREEDOM = ";DF

This prints the answers. And, sorry, but you still need those tables!

98

The Sinclair Spectrum equivalent program is shown below:

I@ CLS - INPUT "HOow mang-<ocws 7

2@ INPUT "How many columns?v;C
38 DIM qir+l, c+11 DIM elr,.cC)
i@ FOR i=1 TO

s@ FOR Jj=1 TO c

62 PRINE FIT 16,@; "Row ";i;" Co

‘133 LET q[f+1,41—q€l'+1,J)+qu T |
"11@ LET ati.c+1)=9€i,c+124q0i,
1:_121a_| LET Qir+1,c+1)=qir+1,c+1)+q
(iéé3NEHT'J: NEXT i

ii@ FOR i=1 TO r

ise FOR =1 TO ¢)
16@ LET (i, r=a(i C+Ir&air+i,J

23@ LET dF=(r-1} £ {c—11}
536 CLS . PRINT AT 29.,8; "Chi Sq
Ua:e— “;ch""Degarees Oof Freedom=

idf

5.3 Exercising your expert

There is, at this stage, one little point which, in fairness, ought to be made
about your expert system.

It's, in many ways, fine. There's nothing wrong with it. It will work. It will
learn its expertise with little or no help from you. It only needs to be given a
few examples to start with.

But how many examples does it need? At what point will it be making
expert judgements of the very best quality?

99

Well... Considering the bird/plane/glider example you might innocently
suppose that three examples would do. One of each sort. After all, it will
have seen everything once it's been shown all three. True, it will have seen
everything. But not true that it will have developed adequate rules to
recognise them again. It will take it rather more than three attempts to
shuffle its set of rules around until it's got a really decent method of
working.

So, to be precise, just how many examples does it need to be given. In
actual numbers.

Well (and at this point one sort of shuffles the feet a bit and attempts, as it
were, to avoid the reader’s eye) the theory actually depends on the expert
having access to one example of each possible input actually, well, an
infinite number of times, to be precise. That's what the theory says.

But the good news is that, if the outcomes are linearly separable, it will
have developed a set of rules which will identify all the possible outcomes
in finite time.

So, with the bird/plane/glider example you might be willing to give each
of the three possibilities to the expert an infinite number of times, but if a
good set of rules exists, it will find those rules in finite time. So: there's
your answer. [twants 3*infinity examples to work on. But it may well come
to a decent conclusion well before it's worked through them all - and it is
only with extreme difficulty that one resists suggesting that it might only
need half those 3*infinity examples!

At this point there are doubtless those amongst you who will have thrown
aside this tract either on the grounds that it's inherently worthless or on
the grounds that if you've got a nearly-infinite amount of data collection to
do then you'd better get started now.

You are urged, however, to pause a moment. We'll trim the problem down
a little,

First, there might, in theory, be an infinite range of different inputs you
could provide. But, in practice, you won't have records of all of those
possibilities (they'd take up so much room...).

In practice you'll have a nice, finite stack of data for it to start working on
and in finite time the performance should become reasonably decent if
you just keep on slinging all the examples you have at it.

So what the problem really comes down to is: how to give the expert
100

ﬁs—ﬁf_

plenty of exercise at solving problems without spending the rest of your
life at the keyboard and going to bed every night with bleeding fingers.

Fortunately, this all becomes pretty easy. It's justa matter of dull repetition
- which is what computers were originally built to do. All you need is to
take all of your examples and putthemin an array, say E(V+1,N), and write
a short routine to let the expert exercise itself in your absence.

The idea is that you set up the examples, get it working over them, and
then retire to a local hostelry where you can tell the assembled crowds that
your own expert system is currently doing all the work and there’s nothing
left, therefore, for you to do. That sort of comment always attracts a certain
amount of respect amongst the audience because, largely, they won't
know whether or not you're telling the truth but, if they think you might be,
they will be consumed with powerful emations.

So, suppressing the urge to retire to the hostelry prior to getting the expert
working, we proceed:

First E(V+1,N). Obviously, the N is the number of examples you're going
to give the expert. Equally obviously, the first dimension holds the V
variables. The V+1 element is used to hold the outcome for that example.

At this point (ie. early on in the process) you could always cheat a bit and,
instead of building up this data from scratch, you could fill in the array E at
the same time as you input a few items to the expert system in a training
session. It doesn’t matter much though - it's up to you.

All you need to do now is to put a frequently-repeated loop into the routine
so that it keeps on and on working over these examples and altering its
rules as it goes. A possible method is to use the index on the loop, say |, to
pick which example the expert should work next.

10 FORI=1TON
20 FORJ=1TOV
30 V(1) = Q)

40 NEXT . NEXT

This does have some disadvantage as the examples are always given in
the same order. Maybe this wouldn’t matter in some cases. But suppose
you had a set of rules which found a correct judgement on example |. Now,
these rules might then give a correct judgment on example I+1 so the
rules wouldn't be changed. Now suppose we had an example 1+2 which
the expert got wrong. The rules change and, maybe example I+3 will get
the right response but, if example | had been next that might not have

101

suited the current rules so well - there might have been a mistake and the
rules could be altered as a result.

C!ear_ly, to be as foolproof as possible, the expert should try out every
possible order of picking the examples and it should work through them
time and again. So, if you have N examples, there are N ways of picking the
first example, N-1 ways of picking the next example, N-2 ways of picking
the next example. In general, there are N! (N-factorial) ways of picking the
examples. Where NI = N(N-1)(N-2)...(2)(1).

Which is not only a lot, but it's rather hard to program in Basic.
And, what's more, it should be repeated a few times for good measure.

A more rea;onab_le approach which gives easier code and works for any
value of N is to pick the examples at random and just do it a lot of times.
Suppose we dd it 100 times:

50 FORP=1TO 100
60 I=INT(RND (1} * N +1)
70 NEXT

Doubtless, of course, you're happy about that piece of code - but RND and
INT do vary a bit from one machine to another, so let's just define what it
does on the Apple:

The function RND(1) gives, with 1 as its variable, a random number
greater than or equal to nought and less than 1.

So, multiplying it by N gives a number greater than or equal to noughtand
less than N.

Adding one to this number gives a number greater than or equal to nought
and equal to N or just a bit more. Less than N+1 actually.

The INT function gives an integer number which is less than or equal toits
variable - so we now have a number which is greater than or equal to
nought and less than or equal to N and which is integer.

So we can use it for picking an example.

This way the expert jugt keeps on randomly bashing away at the
homework you set itand, if you really want to give it a hard time you could
always put it into a continuous loop and leave it running until the cows
come home.

From our previous in-depth studies the rest of the code is fairly easy:
102

80 FORP=1TOND=0C=0

90 I= INT{RND (1) * N +1)

100 @1 =E(V + 1]); REM :Q1 WAS THE ACTUAL OUTCOME WITH THIS DATA

110 FORI=1TOV

120 D =D+ E{) " RUQI)

130 NEXT . REM THIS FINDS THE VALUE OF THE DECISION RULE WITH THE RIGHT

OUTCOME
140 FORK=1TOQ
150 D2=0

160 IFK<> Q1 THEN . FORJ = 1TO V:D2 = D2 + E(}) * R[J,K): NEXT : REM :THIS
CHECKS THE VALUE OF THE DECISION RULE WITH THE WRONG OUTCOMES

170 IFD2>=DTHEN : FOR J =1 TO V:RJK) = R(IK) - E[J): NEXT

180 IFD2>=DAND C=0THEN.FORJ=1TOV-R(J Q1) =R, Q1) +E(l): NEXT.C=1:
REM .THIS ADJUSTS THE RULES IF THE CURRENT RULES WOULD HAVE GIVEN THE
WRONG ANSWER. C IS A FLAG TO MAKE SURE Q1 IS ONLY ADJUSTED ONCE

190 NEXT K: NEXT P

Now, of course you can retire to the hostelry of your choosing leaving the
expert to do its homework. But take this tract with you (it creates a good
impression to be seen able to read a book) for there is a bit more to be said.

Will the expert, when you return, have developed the same set of rules as if
you had patiently hammered away at the keyboard for the rest of your life?

You would think so - but it might not. Because the data is being given to the
expert in a different way.

Consider. It only alters its rules when it makes a mistake. And it only
passed judgement when it was quite sure that no new variables could be
entered which would cause it to change its mind, given the minimum and
maximum values you so kindly provided.

So, at the keyboard, it might have decided that nothing could change its
mind, made a judgement, and been right. Therefore, it would not have
changed any rules. Now suppose that two rules, with a given example,
gave the same value - a tie occurred. In our previous code it wouldn't have
altered the rules unless the outcome it guessed at, from a tie, was the
wrong outcome. If it could possibly get away without altering the rules, it
did because that saved you from the sweat of giving it any more
information.

But, in this case, you aren’t having to sweat away at the keyboard so the
above code checks out all possibilities and alters the rules in the event ofa
tie until no further ties occur. So it will, in general, alter its rules more often.

103

An example:

Suppose you gave it a bird. It checked its current rules and found that it
could be a bird but, equally, it could be a glider. But a bird was the firstitem
it came to in the list and, as glider only gives an equal result, it guesses
bird. Correct, you tell it. And the rules remain unchanged with bird and
glider giving the same values when bird is input. The system still works,
though.

But in the code we've just given it the expert won't put up with a set of
rules in which bird and glider are the same. It will alter the rules until an
absolute difference exists for each and every outcome.

This doesn't really mean that one set of rules is better than another - after
all, if it gives the right answers who can argue with the way it does it?

If you wanted the same rules for both cases you'd have to make the code
for exercising your expert a bit more complicated. For instance, you could
change it so that the rules were only altered:

IF 02 > D, instead of greater than or equal to
or

IF D2 =D AND K >Q

‘which means that the rules are changed if a rule is found which gives an
alternative, incorrect outcome with an equal score to the correct outcome
and this incorrect outcome occurs before the correct outcome. It it occurs
after the correct outcome itwon't cause any problem because, by then, the
correct outcome will already have been picked up and another outcome
which merely gives an equal score won't displace it.

It's a bit of a fine point but you will notice some practical effects when
running your expert system. The most practical effect is simply that it may
ask you for more information on the variables before it makes up its mind.
This is because it keeps on asking for information until it's certain that
nothing can occur to make it change its mind. By making more changes to
the rules than before, the actual numbers in the elements of the rule array
R(l.J) may have got bigger or smaller. Because of this there will be greater
possibilities for variations amongst the various values for the outcomes.
So, when the expert is checking your minimum and maximum values on
those variables you haven't entered yet, it will seem to the expert that

104

there’s more uncertainty than there was.
And it will go on asking questions of you to try to clear up this uncertainty.

The answer is, if you want to be a purist about it, to use exactly the same
methods for exercising the expert as you use for running it normally, This
would involve either writing out virtually the same code twice, or mixing in
two possible sources of input - from keyboard or the array E(V+1,N) - to
the one s’tretch of code. Either way it's a bit more work and complication
_and,tas it's you that's doing it, it's up to you whether or not you want to give
it a try. ‘

5.4 Direct estimation

What we've done so far is to pretend that our expert is going through a
training session just as if we were sitting at the keyboard giving it
examples one at a time. And there's no reason why we shouldn’t continue
to think like this. After all, it works.

But the whole gist of the technique is to find a set of rules which will give
decent judgements and we might be able to do better than to leave the
machine to bash away on a basis inspired mainly by a random number
generator,

When we were considering the case of only two outcomes we pointed out
that it would be possible to adjust the rules after every example whether
the current rules gave the correct answer or not and we could do the same
with more than two outcomes.

In this case we'd ignore the random element and work through all of the
examples we provided to the system as follows:

10 FOR K =1 TO N assuming that we have N examples
20 FOR I= 1 TO Q working through all of the possible cutcomes
30 FOR I =1 TO V working through all the variables

40 IF I = E{V + 1,K) THEN :R(Jl) = R{JJ) + E(JK)

50 IF1 <> EV+ 1K) THEN R{LI) = R{JI) - E(JK)
60 NEXT . NEXT : NEXT

What this does is to add the example values to the rule which gives the
correct outcome and subtract the example values from all of the rules

105

which belong to other outcomes. No reference is made to the question of
whether or not the current rules would have worked or not.

Ar_ the end, after working through all of the examples in this way, we're left
with a set of rules whose values (in theory) we know quite precisely.

Suppose, for gxampfe, that we have three outcomes. Think of them as the
corners of a triangle hanging in space somewhere as in Fig.5.1. The rules
consist of vectors - lines in particular directions - which each point to one
corner of the triangle and away from the other two corners.

The corners ofthe triangle are, in fact, determined by the average values of
the variables for each of the outcomes. Suppose that outcome 1 has
average value x, for some variable or other and outcome 2 has average

value of x; and outcome 3 has average value x3. Then the rule vector for
outcome 1 contains x, - Xq = Xg.

Direction: xq - x5 - x3 Direction: x5 - xq - x3

outcome 1
position x 4 outcome 2
position x,
outcome 3
position X3
Direction: x5 - Xq - Xp
Fig. 5.1
Direction vectors for 3 outcomes
106

Likewise, the rule vector for outcome 2 contains x, - x4 - X5, and so on.

Each rule vector tries to steer a course as much in the direction of its own
average value as possible - but, by subtracting the average values of the
other outcomes, it also tries to steer away from them as much as possible.

You might have noticed that we haven't really used average values. Say,
there were n, examples of outcome 1. We haven't divided x,by n, to get
the true average.

First consider what would happen if there were an equal number of
examples of each outcome. Well, it wouldn’t make any difference if we
divided by the number of examples or not. Only their relative size is
important so nothing would have been gained or lost.

Now suppose that there really are a different number of examples of each
sort. Well, it could be that this is important. If you really give the expert a
representative set of examples and that set of examples contains, say, one
outcome which occurs twice as often as another outcome then this is
useful information. The knowledge that one outcome is twice as likely as
another and the fact that there are twice as many examples of it might
cause you (or the expert) to think that twice as much faith (to use a
scientific term!) should be placed in the outcome with the most examples.
So, we might, having got the mean values for that outcome, ‘weight’ them
by multiplying them by two.

In general, if there are n, examples of x; we might multiply x,by n,. And, if
x1 had been the average value of the nyexamples we'd have been back
where we started. Simply adding up all of the examples would have been
quite adequate.

The snag is that things might not always be as simple as they seem. If we
were still trying to predict the difference between a bird and a plane and
we gave the expert one example of each it could then go away and work
out a set of rules. But suppose, for some reason, that you give the expert
two examples of the same thing. What would this mean?

The same set of rules would still separate the different possibilities quite
nicely and there’s no reason to think that one outcome is twice as likely
as any other. In essence, what you give it might not have been truly
representative at all. And that would cause a bit of a problem. It's really up
to you to judge what you should do here.

107

-:

For a start, you could assume that the values you provide are fairly
representative and work from the average for each outcome. After that,
you could consider the question separately as to whether the number of
examples in each outcome is important or not. If it is, you could weight the
averages by the number of examples with each outcome and possibly gain
some benefit. But if you feel that the number of examples with each
outcome isn't really a helpful guide - possibly because you just dreamed
them up on the spur of the moment - then you could stick with the ordinary
unweighted averages.

Clearly, to get the averages you need to keep count of how many examples
you've got of each possible outcome. You could do this by splashing out
on another array, DIM N(Q) to keep track of it.

So:

FORI=1TON
N(E(V+1))) = N(E[V+ 11))+1
NEXT

And, then, divide the R(l.J) by the values in N(J) to give mean values.

The only snag with this method is that, in all honesty, it doesn't always
work. Consider the following values for V(l):

Bird Plane Glider
Wings 1 1 1
Beak 1 0 0
Engine 0 1 0

So a bird has wings and a beak, a plane has wings and an engine, and a
glider has wings and very little else. Now work out a set of rules R(l,J)
using average values and their differences:

Bird Plane Glider
Wings -1 -1 -1
Beak 1 -1 -1
Engine -1 +1 -1

Finally, give each of the sets of variables, in turn, to these rules to find the
values for D(J) with each V(l) input to R(l,J):

108

Examples D(J) for each possible outcome:

Bird Plane Glider
Bird 0 -2 -2
Plane -2 0 -2
Glider -1 -1 <1

Clearly, it hasn't got a clue about the glider, even though it can guess the
other outcomes with no trouble.

This problem wouldn’t have arisen if Glider had been possessed of some
other variable which uniquely identified it - like Towrope, for example. But,
asitis, it hasn't and the method has broken down. |t can easily be put right
by counting Glider twice so that against Wings we have -2 for Bird and
Plane and O for Glider - but we didn’t know that until we checked out the
rules to see if they worked.

So, although it might seem useful to attempt a direct estimation of the
rules, it's always a good idea to check them out afterwards. Maybe just by
running the expert on a few examples. But, while you're doing that it might
as well be building up its own rules in its own way - which rather takes us
back to exercising the expert, just as we were doing before.

109

e <ot

®
Chapter 6

Running for Real.

6.1 Using your expert.

By now you've got, believe it or not, the makings of a general-purpose,
fully-fledged, expert system with which you can amaze your friends and
colleagues. You've been through all the important stages and, in case you
hadn't realised it, they were these:

You've given the system the names of all of the possible variables and
you've told it what you think are the minimum and maximum values for
each variable. The variables can be intrinsically numeric or just categories,
like Yes/No data. Either way,it's treated as numeric input.

You've given the system the names of all the possible outcomes. As the
expert is going to choose one of these outcomes every time it's asked for
an opinion you'd better make sure that at least one outcome in the list will
always be applicable. Ideally they should be mutally exclusive and the sum
of the probabilities of each occuring should be one. Which means thatonly
one outcome can occur but that there must always be one outcome which
actually does occur.

You've given the system some examples (as many as possible) of likely
inputs and told it what the outcome was for each input.

You've set up a training session in which the expert keeps on churning
around the examples you've given it and modifying its set of rules until it's
got a set of rules which always gives the right answers or, at least, until it's
absolutely sick of trying.

But now, you actually want to use the expert for something. Obviously,
you can carry on just the same as you would do for a training session. Say,
you've set it up to predict the weather.

110

The day dawns, y(’go to your expert, key in a few variables, and it gives
you a forecast. No trouble. And then, the next day, you do the same. And
the next day. But suppose the forecast is wrong ? Well, if it's running as a
training session, the first thing the expert would want to know is if its
previous forecast was correct so that it could adjust its rules if it wasn't.
Now, in this case, there's no particular hardship in satisfying its curiosity
on the matter. You could let it know the outcome for the last set of data you
gave it and then ask it about a weather prediction for today.

But, in your haste to pack umbrella, raincoat, wellington boots and all the
usual equipment needed for an English summer you might either forget to
let the expert know what happened to its last forecast or you might just
want to forget.

Likewise, you might have set up the expert to carry out far-reaching
medical diagnosis. You've had a training session and there you are, sitting
in your consulting room with a queue of patients outside the door.

The first patient enters. You switch on the machine.

Typing his symptoms into the expert the screen flashes up the chosen
outcome. :

“Sorry, old chap,” you observe sagely, "'not your day, by the look of it.
Only seven days to live. Next !”

And, at this point, you have to sit around with the next patient for a whole
week before you can let the expert know if its predicted outcome was
correct for the first patient. It's the sort of thing that loses you customers if
you don't make provision for dealing with the situation in advance. And
besides, you want people to get out of your consulting room as fast as
possible if there’'s any chance that they may be carrying germs.

The point is that, overall, although it's a good idea to give the expert as
much continuing feedback as possible there comes a time when you want
to stop training and simply get on with the business of making expert
judgements. And, in programming terms, all that this involves is going
through the training routine but assuming that every response from the
expert is correct. It doesn’t ask you any more if it was right or not and it
doesn’t adjust its rules either.

In a nice clear-cut example, like the bird/plane/glider, when the expert
can quickly get to be right every time - it makes little difference if you stop
giving it any feedback. But in more usual cases - like weather forecasting -
when you know, or are pretty sure, that mistakes will still occur from time
to time the expert will lose out a bit by missing its feedback. You can

11

—_ e e
® : ®

largely get around this though by storing the details of the examples that DAY OF ACTUAL WEATHER WEATHER FORECAST
occur and filling in the outcomes later when you feel like it - or when the MONTH NEXT DAY BY EXPERT
outcomes become known.
1 Rain Rain
That way you gradually build it an ever-bigger set of actual data which you 2 Rain Rain
can periodically use to exercise the expert to make sure that it isn't getting 3 Rain Rain
out of touch with its subject. 4 Dry Rain - Error
5 Dry Rain - Error
If, now, we go back to our weather example you'll see that we get different 6 Dry Rain - Error
results when we run it for real to the results we got on a training session. 7 Rain Rain
During training, everytime a mistake was made the rules were adjusted. 3 Rain Rain
Now, we have a replay of March 1982 using the heavily-exercised, rules 9 Rain Rain
. without change throughout. The results. are in Table 6.1 10 Rain Rain
11 Rain Rain
At first glance we might think that the results aren’t wildly impressive - 12 Rain Rain
after all, it has made nine mistakes during March. But if we go on to apply 13 Dry Rain - Error
the same rules, without any feedback, to April (Fig 6.2) we find that we 14 Rain Dry - Error
only get six errors in 29 days. So, over these two months we've got 15 15 Rain Rain
errors in 60 days - a 75 per cent success rate. Which, again isn't perfect, 16 Rain Rain
but it's far better than chance. After all, that sort of success rate suggests 17 Dry Rain - Error
that, if you were actually using expert, it would only be wrong 1.75 days of 18 Rain Rain
the week! i 19 Rain Rain
20 Rain Rain
And, as an added bonus, you could consider that it doesn’t matter much if [21 Dry Rain - Error
the expert predicts rain and the rain doesn't arrive. The worst that happens 22 Dry Dry
is that you walk around with an umbrella you don't need. The bad news is 23 Dry Dry
when expert says it's going to be dry and it rains. And this happened on 24 Dry Dry
only four days in March and April 1982 - about every other week. So 25 Dry Dry
maybe the news isn't all bad. 26 Dry Dry
27 Dry Dry
The interesting point to note about April’s weather though is that it wasn't 28 Rain Dry - Error
this weather on which the expert was trained. Suppose that weather 29 Dry Rain - Error
prediction was a problem that really was linearly separable. It isn't, and 30 Rain Rain
that's why it's such a hard test for our expert system. But suppose it was, 31 Rain Rain
and expert was trained on March's weather. Then, after due exercise, the
expert could infallibly predict the weather for March. But that doesn't
mean that it could predict the weather for April - which might have entirely
different values. The fact that it has produced a fairly decent set of
predictions is something of a bonus inasmuch as it suggests that there is
something about weather forecasting in general which our expert system
can do for us. It can take genuinely novel data and come up with
something like a reasonable solution even though we don't know
ourselves exactly how to predict tomorrow's weather and have only been
able to give our expert system the most general of approaches to work | Table 6.1
with and a few examples to help get it going. Weather forecasts for March 1982, London

112 | 113

DAY OF
MONTH

T i
CQWUWONOUPWN—_0ORNOUORWN =

RN N
BwWN =

NN
oo,

Table 6.2

Weather forecasts for April 1982, London

114

ACTUAL WEATHER
NEXT DAY

Rain
Dry
Dry
Rain
Rain
Rain
Rain
Rain
Dry
Dry
Dry
Dry
Dry
Dry
Dry
Dry
Dry
Dry
Dry
Dry
Dry

WEATHER FORECAST
BY EXPERT

Rain - Error
Dry
Rain - Error
Rain - Error
Rain - Error
Dry

Dry - Error
Dry

6.2 Reserva judgement

If, when attempting to make a decision, our expert system couldn’t make
up its mind what the outcome might be the best thing it could do would be
to say so. Admit defeat rather than putting out a simple guess.

Unfortunately, this is a particularly difficult thing for it to do.

Suppose it was back with the bird/plane/glider example and, early in its
training, it found that all three outcomes gave identical values on a given
input. As the expert is built so far it would make a guess as to the correct
outcome if this happened, and if it was wrong, it would correct its rules.
But, you say, if all the rules give identical answers it could reply: Don’t
know. Rather than pretending it did know when it really didn't. Yes, fine. Of
course you could program that in. A slight alteration to the code and, if
there’s more than one most likely outcome, print “Don’t know" or, better,
list the several possible outcomes. That would tell you a lot more about the
judgement that had taken place and, so, you might as well include itin the
program now.

But will it ever use this extra bit of code? Yes, sometimes. For instance,
with that bird/plane/glider example it may well give a Don't Know -
reserved judgement - answer while it's training. But, once its rules are
established it won't reserve judgement at all because it will always get the
answer right. Which is just as you'd want it to do.

But now turn your attention to the weather (again).

What do you think the odds are of a given set of inputs concerning the
weather giving rise to two or more identical judgements on the basis of a
given set of rules? It's hard to calculate an exact answer to that question:
but, certainly, it's approximately nil.

The variable values you input are continuously variable. REAL variables
they can vary infinitely (within the limits of the machine) from any one
value to any other. Take several of these variables and combine them with
agiven rule which is also made up of REAL values. Take another, different
rule with REAL variables and see if you get the same answer. In general
you won't. Even if two answers are very similar it's going to be most
unusual for them ever to be exactly the same.

Further, if you think back to the rules as a method of placing a surface
between the different outcomes, you'll see that as long as the surface does
separate the outcomes it doesn’t matter exactly where it is. Likewise, it
doesn’t matter exactly what values are in the various rules as long as they

115

work. So those values could be altered quite a bit, thereby altering any
equalities which might have occurred, without upsetting the main
working of the expert,

Naturally, you'll say that you don’t need the values to be exactly the same
in order for the expert to reserve judgement - just similar. But how similar
is similar? And to a machine? If you divide all of your variables by, say, 100
before applying the rules the differences between the values given by
each rule will be reduced by a factor of 100. So: they're more alike, at least
they give more similar answers and so, surely, the expert could reserve
judgement more readily. Obviously this isn't right. But what would be a
correct way of working?

As we've been thinking in terms of categories so far, we could introduce
an extra outcome and call it: Don’t know. But how would you train the
expert on that outcome? The whole point of the training sessions is that
you certainly do know the outcomes. If the expert asks you if Don’t Know
is the correct outcome, how would you answer? Perhaps you should give
up and reply that you don't know either.

The problem in essence, is not one of deciding whether or not the expert
really does know the answer or not. It's the problem of deciding the extent
to which it believes in each of the possible outcomes individually. Its final
answer will be to suggest that outcome which it believes in the most, But,
if this is very similar to the extent to which it believes in some other

outcome, then you'd like it to reserve judgement, or at least tell you about it
all.

And, with the expert system we've built, this isn't really possible, Qur
expert system is designed to accept any input on any problem and give the
best answer. If you want to know how much confidence you can place in

that answer there is only one way to proceed. That is to give it some data
and see how often it gets it right.

For the bird/plane/glider example we found that, after training, it got the
rightanswer every time. So its opinion is expressed with probability 1. For
the weather forecasts it was right 75 per cent of the time. So its answer is
expressed with probability .75, But these are figures for the answers in
general. They are not figures for isolated, specific answers. One answer
may be given with well-nigh absolute certainty and another with a great
deal of uncertainty. But the problem is that we do not know which is
which. Nor, for this general case, do we have any means of finding out.

116

6.3 The problem of distance

one might think that we could work as_foilowsg We t'nsas\;zna
rules in our expert, built up aftgr a longish training ?et o 0%
he expert another item to decide on. It could then lis ;
against each, list the values which the ruhes
the given input. The expert will pick that
lue and, surely, this value, and the values for
Il reflect the probabilities for each cutcome

Now, surely,
decent set of
We then give t
the possible outcomes anq,
gave for this outcome with
outcome with the highest vall
the non-chosen outcomes, wi
peing correct?

The expert has been trained to pick the largestvalue
but it has been told nothing about what these valuei'(s1 ac;:l:silty I;l;ggb|lr;
iliti i lue denotes the

of probabilities. The biggest value
:f;gcs:me -pbut how much more probable is, to the expert, a complete

mystery.

It's all tied in with the problem of distance and distance measures - and
that's what we'll look at now.

Sadly, no. They won't.

In the current, learning, system the expert has to place afbouencaizg;z:;:ls

between several different outcomes. As Ior;lg ashé?:it fsng’\.fhatmaners
it doesn't matter exactly w :

it el S iables fall - it doesn't matter at all

is simply which side of the fence the variable ¢

Ihsoilvn::{;:e to the fence they are. And in this sense, the concept of distance

doesn’t occur to it.

To help get these ideas straight let's imagiqe that we have before u?lgg:raﬁ
of a strange country. As you can see in Fig 6.1. It has two ;l(xesdY phis
South and East-West) and it has two locations r;\ar::e;? otn :'a(in alr_.loca'tior:’s
i tof the te ;
i contour markings to denote the heig !
?(nadn!cti r‘;’aasre, we see from the contour markings, each situated on the top of

a mountain. (refer to fig 6.1.)

i i d, we see on the map, that
have Mountain X and Mountain'Y and,
Sgir‘:::lePr]igwmore or less, on Mountain Y,.whlc'h means that anyone could
I%ok at th'e map and say which Mountain point P belonged to.

Having set up this map, we can now look at the various ways in which are
expert could solve the problem.

Using the learning algorithm all the program does it to lay tdg\{\.'snoi
boundary fence between the two mountains and as Ic_)ng as pO[nh i I
tl'cl)e Mountain Y side of the fence then the boundary is in the right place

132

& e

because point P will be classified correctly. But that doesn’t really tell us to
w_hat extent P belongg toMountain Y- it could be right on the peak, at point
Yitself, or right down in the foothills. At best, all it really tells us is that point

P isn’t part of Mountain X.
So now to measuring distances.
The easiest way, and the one that would first occur to you, is to measure

therdis_tances from_P to X and from P to Y - and classify P according to
which is the least distance. That's not a bad method to use so we'll do it

N
w E
S
®
Point P: Which mountain
does it belong to?

Fig. 6.1
A physical analogy for distance measurements
118

Unfortunately, it isn't just a question of getting out a ruler because what
the computer has is not a map, as such, but a series of map references
denoting measures along the two axes. So point X has co-ordinates in
North-South and East-West as (NSx, EWx) and pointYis at (NSy, EWYy) and
P is at (NSp, EWp).

To calculate the distance of P from say X we calculate: d2 = (NSx- NSp;p2 +

(EWx - EW.:)2 which is the Euclidean Distance measure (squared to keep
everything positive) of P from X. We calculate the same thing for distance
P to Y and we've then implemented a Minimum Euclidean Distance
Classifier for point P. .

The fact that the mountain example works in real space and our problems
exist in an n-dimensional description space makes no difference to the
way we now proceed. All we need to do is to work out the ‘position’ of each
variable for each of the categories denoting an outcome. Taking the
bird/plane example with two variables, beak and engine, we have, for a
bird, co-ordinates (1,0) - beak and no engine - and for a plane (0,1) - no
beak and an engine. Given then an object P which has co-ordinates (1,0)
we can classify it as a bird because this gives the minimum Euclidean
Distance measure out of the two possibilities. In fact, if in array R we held
the “positions” of each outcome we could input a new object in array V
and calculate:

FORI=TO V
D = DHV(I)-ROLI)A 2

NEXT

and choose that outcome J which gave the minimum value for D. No
trouble. Working like this would, in fact, be quicker thanimplementing the
learning algorithm.

The point to be made now is: that, maybe, without noticing it, we actually
were very woolly about what we actually asked the expert to do. When we
asked to which category point P belonged we didn't really define the
categories at all well because we could have been asking either : which is
the shortest distance , P-X or P-Y? Or, to which mountain, X or Y, does
point P belong? And, whereas the distinction doesn't really matter too
much in the bird/plane example, it would matter a great deal, for instance,
in weather forecasting.

Staying with the bird/plane example, all we did was to find the minimum
distance of P-X, P-Y, and carry out our calculations more or less as the
crow flies.

119

e T e

We were able to do this because the variables were point functions - they
only exist atasingle pointand, if you like, the nature of the terrain between
the points is quite immaterial.

If we'd been working with continuous variables, rainfall figures say, then
we wouldn't have had point functions we'd have had continuous variables
and these would define an intervening terrain. What is more they would
have needed a bit of calculation in order simply to ascertain where the
mountain tops actually were.

In general, the position of the mountain tops is best calculated by finding
the mean (or average) value of the variables for each outcome. If we have n
observations for a given outcome then the mean, m, is:

m = (X; + X3 + X3+%;)/n which is all fairly familiar.

So, whether we've got discrete or continuous variables, we could still
proceed by calculating the mean values for each outcome, placing them in
array R, and then implementing a Minimum Euclidean Distance Classifier.

The problem still remains though that we've calculated the distance to the
mountain tops - we haven't fully attempted to answer the question of
which mountain point P belongs to.

To see why this might matter, suppose that the mountains were of
different sizes - one might be a proper mountain and the other much more
like a molehill. Now suppose that point P is only three feet away from the
centre of the molehill and five hundred feet away from the centre of the
mountain. Now: does point P belong to the mountain or the molehill?
Using the minimum Euclidean Distance Classifier it certainly belongs, not
to the mountain, but to the molehill. But is this right? After all, three feet
away from a molehill is a long way - well clear of it. Whereas five hundred
feet from the centre of the mountain might be half way up it. You see the
problem.

That's where the contour lines come in. If we were looking at a real map
we'd intuitively take the size of the mountains into account in answering
the question - and that's what we must try to do with the problem of
classifying objects now.

In terms of variables the contour lines represent the probability
distribution function (pdf) of the variable - the normal pdf is just one
example, and, viewed from the ‘side’ it looks like this:

120

Probability

‘Distance’

Fig. 6.2
The normal probability distribution function

Point X is the mean value for variables with that pdf and, if it were
measured in two dimensions and viewed from the top” it would look just
like the picture of a mountain with contour lines.

Now, associated with every pdf is a ‘standard deviation’, sd, which is the
square root of its variance. The standard deviation is:

sd = ﬁ(xf m)*4 (%, - m}2 + (x5 - m)2 + (X - m)z]/n

So you calculate the mean, m, first for the n observations on each variable
and then calculate the sd.

The sd is a measure of the 'size’ of our mountain - it measures the spread
of each variable. So we can make all of the mountains the same size by
dividing all of the measurements by the sd. This is called Scaling to Unit
Variance.

Working from a sample set of data it's possible to calculate the means,
calculate the sd. then calculate a new ‘distance’ measure as:

d? = ((x-m)/sd)?
which gives a minimum distance classifier scaled to unit variance.

This will certainly help the expert in making decisions - but will it enable
the expert to say with what probability its statements are true?

Well, the answer is: maybe.
121

Suppose that the variables were, actually, narmally distributed (that s,

they have the normal pdf). The measure d=f(F has been tabulated for the
normal pdf and it is possible to look in the tables (or calculate your own
tables on the computer - not a very easy task) to see just what the
probability is that, with a given value of d, the new observation belongs to
mountain X (or, in statistical terms, to see what is the probability that the
given observation comes from a given population). Doing this for each
outcome would enable the expert system to make statements with
probabilities attached to them.

The problem that really arises though is that many variables aren’t
normally distributed and it can be quite difficult to determine exactly what
their pdf is.

Returning to the bird/plane example with two variables Beak and Engine,
it is immediately obvious that these variables aren’t normally distributed.
As point functions they don't resemble mountains so much as lamp posts
- with everything concentrated in one place. In fact, that makes life
somewhat easier, in this instance, because we don’t need to use tables -
the probability is either O or 1 depending on which variables and which
outcomes we have so the system can make exact probability statements
about its opinions. The 'distance’ measure will always be either O or
greater than O and the probability for each classification being correct will
be 1 if the distance is O and O if the distance is greater than O. Easy.

The real problem occurs when we simply don’t know what the pdf is for a
given variable - and this might be the case for, say, rainfall figures. We can
be pretty certain that it isn't normally distributed because it isn't
symmetrical about the mean value. And we know it isn’t a point function
because we have continuous variables. So: what is it? And, if we knew the
answer and implemented it on our expert we'd then have an expert system
which was very good at weather forecasting but, probably, quite useless at
anything else with a different pdf. (see fig. 6.3)

The concept of distance measures is a good one - but translating these
distances into probability statements can be a very complex task, because
distance and probability are not the same thing at all.

The problem of distance is really a very general one and shades into the
problem of similarity.

Suppose that we had a given set of variables and we wanted to decide an
outcome. What we might do is to run through the set of values the expert
was trained on to see how many of these items were exactly the same as
the values we've just got. We could then get the expert to pass judgement

122

fashion as

ely-behaved pdf. like the normal pdf, probabilities vary in a very regular
C o .

For ani the distance from the mean varies.

probability Mean

Disu‘ance

hip can be much harder to define. In

b) For less well-behaved functions the relations| N eh more likely than

this “skew-left” example below-average readings can be
some above-average readings.

Probability Mean

t
Distance

;I\,?rﬁtﬁ-r;ztric and asymmetric probability distribution functions.
the largest number of

: i ined
by choosing that outcome which contain ol i b ey of

examples with exactly the same variable values.
working if the data suits it.
i i re
st form, of not relying on the distance measu
f items or any other method of describing the
lane/glider example it would work well.
123

It has the value, inits sin_'wple
- 50 we can use categories o
data we like. For the bird/p

r;?

But, back to the weather. In this case the chance of finding even one set of
identical readings is very remote - so how do we measure the similarity?
Back to the distance measure and all of its problems. It's a bit of a pity
really, because, if it worked we could actually assign probabilities to the
various outcomes based on the number of similar cases which fell into
each category. Certainly, if you had a specific problem which suits this
method of working you'd find it simple to use, easy to understand, and
reasonably accurate. The sort of situation in which it would work might be
the case in which your variables consist of a number of categories but
these categories don’t precisely define any particular outcome. In the
bird/plane/glider example the categories did exactly define the outcome.
If, though, you had a list of medical symptoms which indicated a particular
complaint but did not point with absolute certainty to exactly which
complaint then this method would give as good results as any. It would, in
fact, give as good results as our original method (which is one reason for
sticking to that method) but it would also be able to indicate the extent to
which it thought its judgement might be correct.

A variant on this technique is, obviously, to use the original method to
make a judgement and then to search through past records to check for
exact instances which might be identical so that an indication might be
given of other judgements that might be considered.

6.4 Understanding your problem

The whole essence of this approach to building an expert system has been
to produce a method which will work with a reasonable measure of
reliability in any circumstances. It must produce a moderately decent
outcome irrespective of the problem you give it and, more to the point,
irrespective of whether or not you actually understand the problem.

Take weather forecasting. You may be working at the Meteorological
Office, but you probably aren’t and probably don’t know how to predictthe
weather. But you can still develop an expert system to help you to do it.

The same goes for many other problems you might think of. You can use
the same basic expert system to have a crack at a wide range of problems.

But, if you really have a problem which you understand well, then you'll
stand a chance of getting much better more precise results if you make up
a tailor-made program for it. The point is: if you really understand your
problem you won't need anyone else to tell you how to do it. Will you?

124

®
Chapter 7

An Expert on Everything in
the Entire Known World.

7.1 Nodes

Haw_ng got your expert system up to this stage there’s one very special
@ppllcatloq for it. Your can get it to become expert in absolutely Everything
in the Entire Known World. It sounds difficult, perhaps, but it isn't really
Just a bit time-consuming. »

girst, set up the system as before with seven variables and five outcomes.
ay:

Variables Outcornes
Wings Bird

Beak Plane

Engine Glider

Min. Temp. Rain tomorrow
Max. Temp. Dry tomorrow
Rainfall

Sunshine

Now you start running atraining session. First, teach it about the secrets of
birds, planes and gliders by providing examples of things with or without
wings, beaks and engines. If it asks about the other variables reply with a
zero or something equally non-commital. When it seems to have got the
hang of tha_t, tgach it about the weather and, if it asks about wings, beaks or
engines, give it zeroes again. Now let it run away and practice for a while.

N_ow, believe it or not, you will have an expert system that is
sgjultaneously expert in predicting the weather and in identifying flying
objects.

125

The extension of the situation to cover every field of Human Endeavour is
obvious. You just keep on adding new variables and new outcomes and
new training examples. And the expert will, finally, become expert in
everything. Subject, of course, to the limitations of your computer’s
memory size.

“But surely,” you exclaim, “this is wonderful!”

Well, yes, it is, of course. One doesn't waste one’s time designing trifling
systems when there are the entire problems of the world to be solved. But
you will, possibly, find it alittle slow. And you may, possibly, get irritated if
it keeps on asking you about beaks and engines when you really only want a
weather forecast. For one of the difficulties in this scheme is that, as it
stands, the expert is not only capable of solving every problem in the Entire
Known World. It will actually, really, try to solve every such problem every
time you switch the wretched thing on. It's a noble attempt on its part, of
course. But the admiration one feels for it can soon pall.

The answer, obviously, is to have two versions of the expert. One which is
good with flying objects and one which is good at predicting rain. And
further versions which are good at other things too, if you like. And you
don’t connect them to each other because there’s no point in connecting
them.

Which brings us to nodes.

For what we've designed is a node. There is one node for flying object
identification another node for weather forecasting. The two nodes aren’t
connected because they have no need to be. But each node has several
inputs (variables) and several outputs (outcomes) and they could have
been connected if we'd wanted to connect them.

For instance, suppose we had two expert weather forecasting nodes. We
could have connected the output from one node to one of the inputs on the
other node. And, then, we could have used the first node for predicting, say
this afternoon’s weather and the second node for predicting tomorrow's
weather.

Then, when the expert had formed a prediction for this afternoon it could
use that prediction as an input to its long-range (tomorrow!) forecast.

However, going back to the one big node which was expert in absolutely
everything, that big node was simply the ultimate example of a parallel
process. You told it everything it wanted to know and it told you something
in return. By splitting it up into two smaller nodes - weather forecasting and
flying object identification, say, - we changed it into two parallel processes.

126

As they won't be executed simultaneously, they are two parallel processes
arranged sequentially. As they don't have anything to do with each other
they aren’t connected. But, if they had been connected we would have had
akind of sequential process built up out of a series of nodes {two, in this
case) with a tree structure, if you want to think of it like that.

Each node could be set up and trained individually so it would be just as
good as if it was the only node in town.

Input __)—— Rules for Possible

Variables } this Node Outcomes

Fig. 7.1
A single node.

And, although in theory it's no better than one big parallel process, in
practice it might help save you some time, as well as giving you a bit more
information about what's going on.

Think, for another boring instance, about the weather again.

Currently, you have a node which will tell you if it's going to rain tomorrow
or not. Fine. But it could have told you other things. Like, for instance,
whether or not it was warm today. Now surely, one comments, any idiot
can work that one out? True, but this is a computer so it's a bit more
complicated than that.

Set up another node and start training it. Get it to say Warm Today if the
temperature is over, say, ten degrees Centigrade. It should get the hang of
that without too much trouble even if you, personally, have some doubts
about ten degrees Centigrade being warm.

Now go back to your first node and give it five variables - max. temp., min.
temp., rainfall, sunshine, and warm today. The warm today is the output

127

from the first node and is obviously 1 if the max. temp. is over ten degrees
Centigrade and O if it's not, Train the second node to predict rain or dry
tomorrow. The process is shown in Fig. 7.2.

Now, you should notice that, for some strange reason, it behaves
differently to the way it behaved before with only four variables.

It's almost as if it had some extra information - but all you've given it is a
variation on the exact temperature which is something it already had.

Not quite. You've given it some extra information. That item about warmth
is extratowhat it had before. Not very much extra, but abit. The pointis that
Warmth, as we've just defined it, is a non-linear transformation of the
maximum temperature. As the expert only works with linear
transformations you've given it something it didn't have before and that it
couldn’t ever have worked out for itself.

One way of thinking about it, if you're not convinced, is to suppose the
expert only had the four variables minimum temperature, maximum
temperature, rainfall and sunshine. From these it works out a set of rules
for predicting the weather. You then ask for a forecast and,ignoring for the
moment the other three variables, it picks out maximum temperature and
multiplies that by a number in its set of rules. According to the answer it
makes its prediction.

Now add in Warmth. This is O if the maximum temperature is below ten
degrees Centigrade. So, below that temperature, everything is calculated
as before.

But as soon as the maximum temperature goes above ten degrees
Centigrade \Warmth gets the value 1 and this is multiplied by some value in
the new set of rules and added to the final results. So, suddenly, as the
maximum temperature rises the decision process is given a boost, as it
were. Mathematically, this is called a step function and it is non-linear.

So now you have an extravariable,a real, new, extravariable and, obviously,
you could just say that you've got five variables and, every time the expert
asks if it's warm today you could just look at the maximum temperature and
give it a 0 or 1 accordingly.

But you could also get the expert to do this for you by setting up a special
node for it. This node only really needs one variable for input - maximum
temperature - and you could go to that first, train it to recognise warmth,
and get the answer to that matter first. Then you could take the outcome -
warmth or not - and use it as the input to the next node, which is the one

128

Node 1

|
Max. Temp. i)
Node 2

Rules
Warm

in. Temp.
il) Rules
Rainfall) Dry
Sunshine) :

Fig. 7.2

Adding an extra node.

Several nodes can be combined toge!hsr to form a network
giving intermediate conclusions and inputs to other nodes.

that predicts rain. It's abit like messing around with the wiring on ahi-fi set.
You take the output lead from one unit and plug it into another unit, And
maximum temperature is an item with leads which go to boyh units. And,
like a hi-fi set, you can keep on adding fresh leads and plugging bits in and
unplugging them until you go blue in the face. Hopefully, it will start
working before the strain destroys you.

It takes a bit of alteration to your program to do this - but no;too much.
i . Then, when you set

Suppose you decide that your program has N nodes

up your variables and rules, you could write DIM V$(V,N), Q$(Q.N),

R(V.Q.N), V(V.N)
In other words, just add another dimension to every v;riable - most of
which are arrays anyway, and then reference each node in turn simply by
specifying N.

129

And, say you've come to a node which makes a judgement Q$(JN1) -
outcome J on node N 1 -a short routine can search all the other variables to
see if this outcome is an input variable for any other node anywhere else. If
it is then V(IN2)=1 for variable | on node N2 assuming that
VS(I,N2)=Q$(JN1).

It's abit like automatically scanning around to see if any switches can be set
in the system.

And, having set a switch, this is equivalent to providing the expert with
another variable value. So, of it's own volition, it can now check around to
see if it can draw any further conclusions. If it can, then that's another
outcome it can work on for possible inputs to new nodes. And so on, and
so forth, until it comes up with something you think is actually useful. Like
the answer to the original problem you set it.

Of course, the real difference in the expert’s behaviour with more than one
node lies in the fact that, typically, at each node non-linear transformations
of the data take place - it isn't the presence of nodes as such that make it act
differently.

Butthere is an incidental advantage. The nodes give you an idea of what's
going on in your expert’'s head. For each of these nodes provides an
outcome which you might think of as an intermediate solution. Like:
Input: Maximum temperature today

Qutput: It's warm today!

Input: Minimum temperature, Rainfall, Sunshine

Output: | bet it's going to rain tomorrow (gloom descends).

Exactly how your expert replies is up to your programming - but that's
roughly what it can do and, put like that, the matter of whether or not
today’s weather is warm doesn't sound quite so trivial. After all, it might
almost be people talking if, of course, people were actually in the habit of
flashing their words up on ascreen everytime the weather was mentioned.

Doubtless any application of your own will have lots of nodes and lots of
variables and lots of outcomes and deal with something much more non-
trivial like, for instance, DIY Brain Surgery. If this is the case, having the
Expert show you a few intermediate conclusions before it finally advises
you “Remove patients head” could help avoid much acrimony.

130

"—ﬁ—’ =

7.2 The variables so far

By now, unless you've been concentrating hard and taking notes at the
same time, you've probably got an amazing collection of unrelated
statements lumped together under the heading Expert System. It really is
quite surprising how these things can creep up on you. All you do is write a
bit of code, add another bit, modify the first bit, add a bit more, think of
something else, wander off to make some coffee, have a bright idea, and

add that . . .

What you really need is abitof asortout. So, hereitis -a collection of all the
main variables you might have used so far.

DIM VS(MV,N)

This is the list of all the variable names that you have in your expert system.
There is one list for each node. The maximum number of variables you can
have at any one node is MV and the number of nodes is N.

When you're first setting up the expert and want to start DIMensioning
arrays the first thing you should get the system to ask is:

INPUT “"HOW MANY NODES HAVE YOU?"; N
after which it can ask:

INPUT “WHAT IS THE MAXIMUM NUMBER OF VARIABLES YOU HAVE
AT ANY ONE NODE?";MV - or words to that effect.

Obviously, you're going to waste array space doing things this way, unless
all of the nodes happen to have the same number of variables going into
them. But, although this can be avoided, it would make life complicated to
do it any other way. A separate one-dimensional array for each node’s
variables would be economical but it's hard to see how you would
DIMension them all in BASIC without knowing how many nodes the
program was going to have in the first place.

This way you can have up to MV variables at each node.
DIM V(MV,N)

This is the list of variable values at each of the N nodes corresponding to
the variable names.

DIM VC(MV,N)
131

This is a, sort of, ‘flag” array marking which variables have been input into
the decision process and which haven't. It has values of O for elements
which have been input and 1 for elements the system's still waiting for.
The sequence is that you name the variables V$(x,y). The system asks for a
value of some V$(x,y) for which VC (x,y)=1 and it puts this value in V(x,y)
and, then, sets VC(x,y)=0.

DIM RV(MV,N)

This is the array which holds a ‘rating’ on each of the variables at each of the
N nodes. The system uses this to judge which variable it wants avalue for
next. The V$(x,y) it asks for will, typically, be the one with the greatest
corresponding RV(x.y).

DIM M(2,MV,N)

This array holds the minimum and maximum values of the variables
V$(x,y). So, the minimum value that V(x,y) can have is given by M(1,x,y)
and the maximum value it can have is given by M(2,x,y). You, personally,
have to provide these values - usually at the time you name the variables
V$(x,y). They are used to help the expert assess the relative importance of
each variable in coming to decisions and are needed to calculate RV(x,y). If
you don't know the minimum and maximum values the variables can take
you could try guessing. After all, there must be alimit to them somewhere.

DIM VA(N)

This holds the number of variables that occur at each of the N nodes. The
system already knows the maximum number that can occur (MV). But it
must know how many actually do occur. This is where it's held. In asingle
node situation - such as we've dealt with already, this problem was solved
with the single variable V. So, for several nodes, you can get rid of VV and use
VA(x). You can’t use V(x) because you already have V(x,y) and you'd get an
error if you had two arrays with the same name. If you've written a single-
node expert and decide to convert it to several nodes you can save a bit of
sweat by still using the variable V but, before you use it to any great extent,

put V =VA (x) assuming that you're in a piece of code which is working
on node x.

DIM Q(N)
This holds the number of outcomes that can occur at each of the N nodes.
It's much the same as for the comments on VA(N). Similarly, you can carry

onusing the old variable Qfor the number of outcomes butyou need to put
Q=Q(x) when you're working on node x.

132

jiiiiiiiiIlIIIIIIIlllllllllIIIlllI.!.IIllIlllIIlIIIIIIIIIIII-------

DIM Q$(MQ.N)

This is the list of all of the outcome names th.:ﬂ the expert system uses, just
like V$(MV,N) was the list of all of the variable names.

Just as with the variable names, MQ s the maximum number of outcomes
at any one node and you should:

INPUT “WHAT IS THE MAXIMUM NUMBER OF OUTCOMES AT ANY
ONE NODE?"; MQ

early on in setting up the system.
Much the same comments apply here as to V$(MV,N)
DIM R{MV,MQ,N)

This is really the heart of the system, the array of rules the expert uses to
make judgements. There are N sets of rules, one set for each node. Each
set of rules has VA(x) variables going to it and Q(y) outcomes leading away
from it. R(MV,MQ,N) is set up by training each node either from examples
worked on the keyboard or by giving the system a whole list of examples
and letting it work through them by itself.

DIM D(MQ)

This holds the values formed for each rule on each outcome at any one
node. You could DIM D(MQN) for the N nodes so you always have
everything to hand. It depends a bit on how you choose to search through
the nodes as to whether this is necessary or not. If you get thelexpert_ to
solve one node at a time then you don't really need the extra dimension
and, anyway, you could always calculate D(y) afresh every time the system
went on to a new node.

DIM PD(MQ)

This holds the possible values for each rule. Suppose, at agiven node, only
some of the variables have been entered. Then, for these variables, D(y) can
be calculated from V/(x,y) and R{x,y , node). For these variables D(y) and:
PD(y) are the same. But, for the unknown variables PD(y) can be ‘guessed
by the system from the minimum and maximum values you placed in
M(1,x,node) and M(2 x.node). The idea is that a ‘best’ guess will be made
by the system on the basis of the maximum value in D(y) so far. I_’D(y) will
then be calculated assuming that all the rest of the variables will either take
their minimum or maximum values in an overall attempt to discredit the
current best guess. If the system can't discredit the current choice in this

133

$t.?.——

way an outcome can be chosen for the current node. If it's possible to
discredit the choice by finding a different variable with amaximum in PD(y)
then, obviously, more values for other variables are still needed.

DIM E{MV+1,50,N)

This holds any examples you might want to give the expert to practice on.
There is room for a set of up to 50 examples on each of the N nodes.

Obviously you might want a different number of examples to 50 and you
could think of a different way of holding these examples. Disc files spring
to mind if you've got disc. If you're short of memory space and haven't got
disc you could always DIM E(MV+1 x) where x is the number of examples
you want to hold and you then keep on loading the array from cassette for
each node, one at a time.

Either way, the system will want to know how many examples there are in
this batch so you might as well keep this numberin E(MV+1,50,N+1) and
update it every time you add some more examples. If you're working a
training session from the keyboard you could place every example you give
the system in this array so that it can work over them later in the privacy of
its own chips. This will save you wearing your fingers out entering the
same examples twice.

Suppose that you've built asingle-node expert and want to convert it to a
multi-node expert. First, contrive an example and run it as a single-node
example. This will serve as a reference for the future behaviour of the
system.

Next, go through the list of variables and convert the program to N nodes.
Insert extra code to ask about N, MV, and MQ. Place one big loop around
the main code to step through the nodes:

FOR NO=1TO N
main body of code
NEXT NO

Now run your single-node example again with N=1. The results should be
exactly the same as before. You should have made no noticeable progress.
Actually, of course, the results won't be the same for the program will go
wrong, thereby announcing that you have made a mistake. So, correct the
mistakes. You've probably forgotten to convert some V or Qto VA(x) or

Qly).
134

by some quirk of fate, you get the program working_ onhone :::; rfl;cejg
If’n n with two nodes - and put your previous exa\i,mpllﬁ Ill; t ztiiished o
e i hange. You e a

is ti , nothing should ¢ g E .
i t;rgz't ﬁ;r\??;ﬁ;eh can chgnge on these little occasions when nothing
:?cfjid have changed. It's quite an education, really.

Now run again wi node: ne t your exal ple n both

gal two s. This pu t
nodes W Y Id = C e
. at you shou otice Is ott gsnhou d change So correct

code until it doesn't.

N comes the big moment when you start fastening these nodes
ow

together. Try:

When you've found an outcome for node NO:

FOR I=TO N
FOR J=1TO VA (1) -
IF Q$ (outcome NO) = V() THEN:V({L) =1:vC{J,)=0

= NO| _
rgxssktjlylgsﬁfnoi AND K < >outcome THEN: VC[J =0

NEXT
NEXT:NEXT

What this does it to take the current outcome from node N?handa;s;irlgl;

, h the entire list of variable names 10 see if it matche_s e vI et
thr_oug‘ tto any other node. If it does then it sets that \.:arlable va Efe (o]
il m?cﬁ flag for that variable VC(J,1) to O. The value 1 is pretty ar !;rary,
an?rzgtjson;inggto Yes/No states. You could use some other value if you
3\.?anted to - for instance, the maximum value M(2,d.1).

on node NO which didn’t

hes through all of the outcomes : ,

N iljl? ?ﬁ:(icdea being that all of the outcomes are mutually %x{:,’lasj\;?;:n
EC ing ot one outcome, it can't have the qther outcomes ar|1 : r'them
trfg:\ngegsetto zero so that the expert doesn’t go asking for values fo ;

i Id
Also, when you privide a variable value, V(VV,NO) you cou

FORI=TO N

= I
IFFO &s}(v:a;%]v:‘:f(slu,n THEN: V(1) =VVVNO):VE(LI=VCIVY,NO)

NEXT:NEXT

i node its
So that if any given variable occurs as an input to more than one

value won't be requested more than once. .

The whole idea is to squeeze as much out of the information you're giving
as pt_)s_sibig. If you provide a variable value it has to work for its living by
providing inputs to as many nodes as it can. If an outcome is chosen this
should be fed into as many nodes as need that information as quickly as
possible in the hope of making further outcomes possible with as little
intervention from you as possible.

If you now set up the system again with two nodes and make each of the
two nedes identical, containing your previous example, you should find
that, having solved the first node, the expert immediately gives the answer
to the second node. The same answer with no more help from you - after
all,cijt's got all of the information for the second node when it solved the first
node. : .

This should leave you with a basic multi-node system which is adequate for
anumber of problems.

Try setting it up with an example. Say, two nodes:

Node 1
Variables Outcomes
Feathers Animal
Metal Machine
Beak

Node 2
Variables Outcomes
Animal Bird
Machine Plane
Bealf Glider
Engine

The exact details of the example don’t matter too much. The main points to
note are that it should first decide whether or not it's being given an animal
ora machine. It should then use this information to decide whether or not
it's being given a bird, plane or glider. It should not have to ask about Beak
twice (you provide that information in node 1). And it should not have to

ask about Animal or Machine at all (it should be able to work that out for
itself in node 1).

136

7.3 Going through the nodes

Suppose that you decide to set up an expert system with more than one
node in it. The expert would then have several points at whlrch it becam_e
able to pass some kind of judgement and, depending on each judgement, it
might then be able to go on to make more judgements.

The problem that you face when you're building a system like this_‘rs that
the program has to pass from one node to another. You have to give it a
method for deciding which node it should go to next, and the method you
choose will influence how well, or badly, the system works.

To make matters worse, there isn't really any ideal method for every
situation. Depending on what you want to do with the expert system one
method might be better than another.

It's exactly the same as the problem of tree-searching. Or graph searching.
And, to really go into it in detail needs the best part of abook on the subject.

Fortunately, the way we've worked so far has left us with apretty loose sort
of problem so we might as well attack it in a pretty loose sort of way.

For a start, you could visit the various nodes in exactly the same way as you
selected variables in the single node case.

Recall, that we had an array RV(V) which held a value for each of the V
variables. This value was calculated as being the maximum amount of
variation that each variable could introduce into the problem. Take the
minimum and maximum values for a variable, calculate the difference
between them, and then go to the rule array and look at the values in the
rule array for that variable. Multiply them together for each outcome and
that gives some sort of measure of the likely importance of each variable.
Take the most important variable and let the expert ask for a value for that
variable first. It that doesn't enable it to make a judgement, then go and get
the next most important variable. And so on.

There’s no reason why we shouldn’t use the same approach over a large
number of nodes. There would be some difference in the programming
because some variables might occur in more than one node - but,
generally, that would make them seem rather more important to the expert
and it would ask about these first, Which seems a reasonable approach. It
simply consists of selecting for study those variables which provide the
most information to as many nodes as possible.

Actually, what we're doing if we do this is to turn ordinary tree searching
137

techniques on their head a bit. Normally, one would specify a method of
searching atree with reference to the structure of that tree. You know the
sort of thing - search down one path until you get to a dead end, then
search down the next path to that, and so on.

In this case we're not searching in that way at all. We have labels on each
path corresponding to the names of the variables we've provided. What
we're saying is: find the most important variable and then explore all the
paths that use that variable. And there's something to be said for doing this.
For, in general, we don't know the exact form of the prablem you might set
your expert so we don't know the best searching methad through that
problem. We do, however, know that it must have variables in the problem
s0 we ignore the structure and concentrate on the variables themselves.
This approach is often called 'Forward Chaining’.

It's amethod that will eventually produce answers, even if it means avalue
has to be provided for each and every variable before you get the specific
answer you want. It's just that some people might feel uneasy about a
method that seems to proceed with complete disregard for the network
through which it's proceeding or the eventual goals you might wish to
achieve. Not so much a method, it's rather more like some kind of
primordial sludge which oozes through the network of nodes on the basis
of: “This bit looks interesting, let’s look at that next.”

But, as the system ignores the particular way the nodes are organised it
also leaves you free to ignore the way they're organised too. All you've got
to do is to specify your nodes and name variables and outcomes for each
one, and the system will get somewhere in the end. It does have a number
of practical disadvantages though.

One of the most practical disadvantages is the fact that all linkage between
nodes is done by giving variables and outcomes specific names. This
means that if you happen to forget exactly how you spelt some variable last
time the required linkage won't be made. This is certainly a bit like saying
that if you press the wrong keys on your computer you'll get the wrong
answers. But if you have alarge number of variables and you've had atiring
day it can be areal problem. There isn't much that can be done about it in
principle. In practice though, it's a good idea to get the system to let you
name variables by showing you a list (menu) and asking which variable you
want, rather than by typing it in (sometimes incorrectly) each time.

More specific to this method of working is the fact that the expert might
consider a certain variable to be important and, so, ask you for a value for
that variable. You then realise that you don't really want to be asked about
that variable at all. This might be because you don't have avalue for it atthe
moment or because you know, even if the expert doesn't, that it justisn't
138

ful to provide that information for this particular problem. You'd rather
::ssad asked about something else.

i i ith several nodes. Suppose
i lem can be fairly easily overcome witf nod
Thlshpa:?ebN nodes you can access them by placing them msmci'e al\:olggt. So
tt?: system considers node 1 first, node 2 next and, so, node :

ious method for deciding

ode, the system could use the previou 1 a

athfl-?r\:‘a?iables to ask about and, on finding an O:tCDTte}ielt;:ymZ'::iTsae

if that outcome was an input varia ere else.

o er de to the next could be rigidly

f passing from one nol t ‘

ey up. This way, if you know the
ified at the time you set the system up. vay, N !

speg;zrendyuu want to train the expert on, you could setitup t]? deaf:j}fwg:

prose things that you, personally, know should be han.dlerd. n’sTI. el by 5

g:)i't know the perfect order, or don't care, then nothing's really lost by It.

i ert
Roughly speaking, this problem is the problen’; g;f v;:ears:% i;a:ﬂtﬁt\ws;:g s
:) e o
ng on the task in hand and it's at its wo]
\sp\;z:tktlhg task either. Not atrivial point. CD[‘ISIIdEr: th?r?yss;eglu:c‘}ﬂt:tlgtlzzl;f:s
i iables and ask for values on those, .
the most important variab o i oo
i it mi t seem important to you. Yo
g ml‘ght i derly progression through the
starting point by means of an orderly p i
32;?:?15 nodeg. But, suppose you sometimes have one lot oflvanaftélreasnemg
you sometimes have anotherlot. In generﬁ[,yotgon tpf;arft’esxzjlzsobviously
i i hat you do have, the ex |
ariables and, depending onw |
:tan from different points and then pass to different points.

Ideally you just want to be able to go to the e);gfr}r;(;d oghllvsa:dv;h;\t’
information you have and let it make what it can of it. Tt ly Lkt
giv he expert a variable name and a value for that variable. The .
ok :1 ?1 deptermines which node or nodes the system goes to flrst.{-\:l i
ga?a?ltseeof the danger of mis-keying the variable name you shougd etlé :r:
szlect them from the menu or check that t_he |n;?1ut cor;e:ﬁpoannds ol
existing variable before it gets accepted into the syste

everything up.

|f that was the problem of where the expert shpgld start_wo;kin%éhere san
equal problem of where the expert should finish up in the end.

' L 5
It's fine to say that eventually it will have worked out 'evthcIIrLgn’ltt (a::’c;s

ou'll always get an answer to your prol?lem. In practice r]ot: bl i
zvant to sit around entering data for various nodes which are

incidental to the main problem.

i in order allows you to control
hod of working through the nodes i I 1
tTr:]: :geszome extent inasmuch as node N could contain the final, overall,

139

decisions and the aim is then to get to node N as quickly as possible. |n
general, what you can do is to always go to the node which is nearest to
node N. And the problem is then to define ‘nearest’.

The simplest way is to think of each node as either ‘active’ or ‘dead’. If it's
already produced an outcome it's dead - you don’t need to go through it
again. If it hasn't it's active - and you have to find an autcome for that node,
You can then travel in order through the nodes, resolving the active ones to
take you successively nearer to node N. At which pointit's easy to observe
that node N is the nearest node to node N - so why not try to resolve that
one first? It would save so much time.

Well, if you could do that, you wouldn't have needed the other nodes in the
first place. And, if you can't do that, where can you start in order to finish
there? It's at about this point that you realise that searching through nodes
isn’t necessarily an easy subject to cover completely.

The most general method takes us back to you supplying details of what
variables you have values for, entering those, and seeing what outcome
turns up.

But, if you don’t want to enter more details than you have to and you have
specific ideas about which intermediate results you'd like the picture gets
more complicated. Suppose, for instance, that you simply want the
quickest route from some starting point to afinal solution. Does that mean,
by quickest, that the smallest number of nodes should be visited? Or the
least number of questions asked? It's up to you what the answer is to that
question - but it does show that there isn't just one, single, answer. Asking
the smallest number of questions gives you the least amount of work to do.
Visiting the smallest number of nodes gives you the smallest number of
intermediate results. Maybe you'd like to get as many intermediate results
as possible for the least effort. So you'd like to visit as many nodes as
possible whilst the system asks you as few questions as possible. And,
possibly, these aims are incompatible.

At the risk of increasing the programming effort you could keep track of
the distance to node N, in terms of nodes and in terms of variables still
unresolved, for each point in the network of nodes. But the increase in
programming effort may be daunting. This is especially the case if there's
more than one route to node N from some points in the program. You not
only have to find out what the ‘distance’ is for one route you have to find out
how many routes there are and how far they are from node N and,
somehow, you have to keep track of all these routes so that you can choose
one which suits you best.

This isn't an impossible problem by any means. If you go through the

140

jiterature on graphs and trees you'll find plenty of solutions. But it certainly
I .
isn't trivial.

i i duced, and the strain on
neral, the programming effort will be much re ,anc \
1ﬂ§?ntellect lessened, if you proceed by one of the following methods:

volunteer the information to the system. Specify on which variables you
have information and let the expert proceed on all nodes that are applicable
to that information to see what conclusions it can reach.

Let the system ask for information on those‘variablesl wbi’ch_ selem most
jmportant to it. Assuming that you have all the informationiit’s likely to w‘;ni
you can provide what's requested and let the system ldl;aw whal
conclusions it can until it either gets the answer you want or information
has been provided on all variables.

Get the system to pass from node to node sequentially. This way it wogt
miss anything and will get to the end eventually. When you first set the
system up you should try to establish the nodes in an order that seems
sensible to you. You might as well let the system mqke what deductions it
can, when it can, with this method though - because it might happen toget
to the end by some route faster than you expected. And, if the system
comes to anode which has, by this means, already produced an outcome it
might as well skip it otherwise it's doing the same job twice.

It's worth mentioning that you could do exactlv the same with a single-
node system. Or a system which looks like a single ncude._ If, say, you just
have R{l,J) to represent one node, you could have a variety of possible

outcomes some of which could be identical to some of the variables.

If the expert decided on some outcome and this happened to mgtch up
with an input variable this outcome could be used to switch on, as it were,
that input variable. After which aflag ‘woutd have to be set on that outcome
so that its effects weren't counted in more than once.

You can then proceed by specifying variable names on which you interjci to
provide information, or letting the system pick its own vanabls_zs on whlch it
wants information, or proceeding sequentially through all variables in turn.

roblem with this approach - of having all t_he separate nodes
:pf:cgvc;!y contained in one big node - is the scope it offers for getting
confused. Suppose, for instance, the system was meant to predlctlthe
weather and, for a start, it judged that it was a warm day today. Wh?at sto
stop it then making the comment that it was not a warm day today? :uftgr
all, with a given set of rules the two most likely outcomes might be

141

mutually exclusive and it might give both these outcomes before it gives
anything else.

Of course, you can easily devise a method for dealing with this problem,
Butavoiding confusion is one of the best ways of getting programs towork
and a less than ideal method in some respects quickly becomes the best
method in every respect if it happens to be the only one you can get
working reliably.

7.4 Tailor-made nodes

On the day when you're setting up your expert system for a particular
problem you might be faced with the odd node which seems to be either
too complicated or too simple for you to want to just let it learn by example.

For instance, suppose that you've decided to set up an amazing medical
diagnosis system. One of the input variables is the patient’s temperature.
The first thing you want to do is to get the system to say whether or not the
patient actually does have a high temperature or not. Now - that's easy. If
it's over, say, 99 degrees Fahrenheit we want outcome 1 at some node -
outcome 1 being High Temperature. Clearly, if you give the expert enough
examples to train on it will eventually learn to give this information of its
own accord. But it might seem like rather a lot of hard work. After all, you
actually, in this case, know what the rules should be. Why mess around
with a training session?

Quite. So, skip the training session and set up atailor-made node to assess
the patient’s temperature. The problem is simply to find values for R(l.J)
which will give the right answers. Here's a node that will do it:

High Temperature Low Temperature

Constant 0 99
Temperature 1 0

This uses a node of size R(2,2). Suppose now that you have an input V(1).
V(0) contains the value 1, the constant, and V(1) contains the patient’s
temperature. Multiplying by the first rule, high temperature, the answer is
always equal to V(1). Multiplying by the second rule, low temperature, the
answer is always equal to 99. Obviously, the first rule gives the highest
value as soon as V(1), the patient's temperature, is over 99 - and, so, the
system will always get it right about the matter of high versus low
temperature. Much easier than giving the thing a whole load of examples
and waiting for it to sort out the answer on its own.

142

In general, the decision rule always gives an answer which depends on:
D = byxq +.... + bnxy
so, if you can put the decisions into this form it's fairly straightforward.

If you can't think of a way of expressing the problem in thisl styfe then VOLI:
can always give the system some examples and see 'f, it can v:rorI
something out for you. If what you want the system to do is particularly
complicated then you've got probtems' - a comment wi'_uc!:x |s1:1 t
particularly encouraging because there isn't, |n_general, any method for
fitting everything you might want to do into this form.

Suppose you had an input variable which could take values from_O to 1 OfO.
If it falls in the range 50 to 60 then this has some spec_lal s#gnlflc’ance or
you and you want the expert system to detect this S|gn|f1'cance_. It'snotan
unusual problem - it might be some n}egsqre'mems you're taking and 50
to 60 might be optimal values. Now, it isn't |m.med|ately apparent that a
set of rules could be written to detect this particular band of values. You
could get around the problem in two ways. First you could use two UOF’eS
to deal with it. The first node could detect if the value was over SQ -in just
the same way as we set up a node to detecta high temperature. Ifitis over
50 the system could pass its result to another node which, in the se_m?_te
way, would detect if the value was under 60. If the system gets the right
outcome from both of these nodes it can then deducg t'hat the.vanab#e isin
the range 50 to 60 and it's solved your problem. Soitis possible to detect
the required values using this framework.

On the other hand, it would seem to be so much simpler to put in a piece of
code:

IF V{l) > = 50 AND V{l] < = 60 THEN: G{J)=1: and so on, and so forth rather than to
force the problem into a rather alien framework.

Butonce you've started to do this sort of thing you've still got the problem
remaining of how to fit odd items like this into the overall pattern. The
simplest way is to place tailor-made pieces of code like this very early on in
the program so that every time thelprogram s'tar‘ts to work on a new nodq.
say, the variable values for the tailor-made items are chgck_ed to see if
they've been provided yet. This means that the cpde is likely to get
executed more often than is strictly necessary - but it has the mpor‘tanf
advantage of ensuring that the expert doesn't forget to execute them at all!

inki i ical diagnosis problem,
Suppose now, thinking back to our amazing medica ‘ .
tha? we want to decide if a patient has a fever. We define a feverasa hiqh
temperature and flushed cheeks (or any other set of symptoms that you'd

143

like to choose). The system has already decided about the patient's
temperature so all that's left is to see if he has flushed cheeks as well.
Given enough examples, the expert will work out a set of rules for this by
itself. But equally, you can put in your own rules. And this is an example of
logical connectives: if (high temperature) and (flushed cheeks) ...

Suppose that we had rather different medical views we might reckon that
itwas sufficient forthe patient to have just one of those symptoms: if (high
temperature) or (flushed cheeks) ...

The logical connectives ‘and’ and ‘or’ are so common that it's worth having
some tailor-made rules for them.

Outcome 1 QOutcome 2
Constant 0 n-1/2
Variable 1 1 0
Variable 2 1 0
Variaﬁle n 1 0

Using this set of rules outcome 1 gives a maximum value of n, if all n
variables have thevalue 1. Outcome 2 gives the same value irrespective of
the variable values it gets and the value it gives is always n-1/2. So,
outcome 2 will always be chosen by the expert except in the special case
when all n variables have the value 1. In other words, when we have
(variable 1) and (variable 2) and (variable 3) ... and ... (variable n) then
outcome 1 will be chosen.

Qutcome 1 Outcome 2
Constant 0 1/2
Variable 1 1 0
Variable 2 1 0
Variab-le n 1 0

Using this set of rules outcome 2 always gives the value 1/2. Outcome 1
will be less than this, with a value O, as long as all of the variables have the
value O. As soon as any one variable produces a value of 1 outcome 1 gives
the highest value. So, outcome 2 will always be chosen by the expert until
we have:

(variable 1) or (variable 2) or ... or (variable n).
144

4

You can see that these two sets of rules are very similar to each other. In
fact, if the constant on outcome 2 has the value (x-1/2) the expert will
reckon on outcome 1 as soon as x or more of the input variables have the
value 1 instead of 0. For the (and) connective x=n while for the (or)
connective x=1. But you could have any other number if it suited your
application.

The advantages of setting up your own rules like this are that you know
exactly what the system’s going to do at any moment (or, roughly,
anyway). The advantages of letting the system learn its own rules by
example are that it provides a relatively easy way of entering the rules into
the system coupled with the bonus that you don't have to bother to sit
down and work out in advance what those rules should be.

7.5 Specific code

Thinking about amazing systems for medical diagnoses, cne ponders on
the matter raised in the last section. The matter of fever. Suppose we
reckoned a fever as a high temperature and flushed cheeks. Well, we saw
how we could, either explicitly or by example, build this into our
knowledge base in the form of rules and how a fever could then be
diagnosed. But wouldn't it have been simpler just to write the BASIC line:

IF T> 99 AND F=1 THEN: PRINT “FEVER"

where T contains the patient’s temperature and F=1 if the patient has
flushed cheeks?

Well, yes, actually, it would be much easier. You could scarcely go wrong
at all.

In fact, you could have a whole collection of statements like this and they'd
give you a system to diagnose anything (as long as the ‘anything” was
covered by your programming). It would be quicker and easier to do things
this way because BASIC is such a straightforward programming language
that, if you've had a bit of practice, you can just sit down and write the code
almost as quickly as it would take to set up a set of rules in a more general
purpose system. It might be a bit haphazard until you'd defined the
program but a general purpose approach has to be a bit haphazard too just
to make sure it covers all possible uses it might be put to.

It's all to do with a theoretical claim that’'s sometimes made about expert
systems. It's said that, ideally, they're general purpose programs. They
contain a method for making expert judgements in general. And it's

145

suggested that, with an expert system, you add a knowledge base and get
adifferentkind of expert. Now that is something you can’t do if you just sit
down and write your own code for a specific problem. If you write a
medical diagnosis system just by sitting down and writing it you'll never
be able to alter it readily to solve another problem.

All of which is hardly a fair criticism if that's what you want to do. After all,
most expert systems only really work on one specific problem - they aren’t
truly general purpose. The one you're building might be general purpose,
able to do anything. But there aren’t many others like it. And, as we've seen
so far, it does have its limitations at times.

7.6 Saving your expert

Come the end of the day, you've been sitting at the keyboard training your
expert to a high degree of skill and it's time to go to bed. Switch the
machine off and - lo and behold! - the expertise vanishes like mist.

You knew this would happen, after all it was only data. But it's no use
having an expert that has to be rebuilt from scratch every time you want to
run it. You want it to get better, not worse, every day.

The program can be SAVE’d on cassette or disc but exactly how you save
the data depends on your system. With a disc-based system you might
have found it better to use file-handling techniques rather than all those
arrays (now he tells us!) but you couldn’t have done that if you didn't have
discs and you might not have discs. Besides, it depends largely on your
system how many files of what type could be open at any one time.

The simplest way is to dump the whole memory of the machine either to
cassette or disc, depending on what you've got. Again, it depends on your
system as to whether this will work. Before you start building up the
expert too thoroughly try dumping the memory. Do this in the middle of a
program run using whatever methad your manual suggests might work. If
all is well you should be able to switch the machine off, then on again,
reload the memory and carry on from where you were. If you can, it's fine
to use this method. If you can’t do exactly that, then see if you can get the
program running again anyhow - maybe from some other point than the
one you broke off from. Try a GOTO statement to get into the program
rather than a RUN statement.

If this doesn’t work you've got to think of something else. That something
else s likely to consist of picking on specific arrays and explicitly SAVE'ing
them. For instance, you'll want R(1,J) again for the rules and M(2,J) for the
minimum and maximum values of the variables.

146

What you can do ig write a small routine which saves the program and all
of the variable arrays you want. At the end of a day’s session you go to this
routine which will be, for the Apple Il

SAVE:STORE R:STORE M and so on

and execute it. Either to cassette or disc this should lay down the program
and variables just in the order shown.

Then, when you start up the next day, you LOAD the program and key RUN
immediately. Have as the first instructions in the program RECALL
statements in the same order as the STORE statements you had last. This
will bring the array information in off the cassette or disc in the order you
stored them.

On the Sinclair Spectrum, you SAVE the entire program complete with all
data including arrays, with a statement such as

SAVE “"EXPERT”
But, when you re-load the program, you must not type RUN because that

clears all variables. Instead, type GOTO 10, say where 10 is a line number.
This technique is used in the listing in section 7.7

147

L i

7.7 The multi-node code

To save anyone the inconvenience of having to do any thinking, here's a
complete, menu-driven, multi-node, learning expert system which should
enable anyone, after a few seconds practice, to achieve some reasonably
modest aims. Like, for instance, World Domination (as long as you can
think of some examples to give it).

Fig. 7.1
Menu-driven, multi-node expert

(a) Apple Il listing

10 Z=0W=1TW=2:M = . 1E38.TH = 13.TE = 10O = 40
20 GOsuB 1200

30 PRINT . PRINT : PRINT “1. INITIALISE EXPERT”

40 PRINT “2. INPUT EXAMPLES”

50 PRINT “3. EXERCISE EXPERT”

60 PRINT “4. TRAINING SESSION”

70 PRINT “5. NORMAL RUNNING”

80 PRINT “6. SAVE CURRENT EXPERT": PRINT “7. EXAMINE RULE VALUES AND
EXAMPLES”

90 PRINT : PRINT . INPUT “CHOOSE AN OPTION",OP

100 |F OP =W THEN 170

110 |F OP = TW THEN 680

120 |F OP = 3 THEN 970

130 IF OP = 4 THEN .T$ = "Y". GOTO 330

140 |F OP = 5 THEN :T$ = “N". GOTO 320

150 |F OP =6 THEN 1100

160 |F OP =7 THEN : GOSUB 1120: GOTO 20

170 GOSUB 1200: PRINT “TO SET UP AN EXPERT SYSTEM": PRINT “PLEASE ANSWER
THE FOLLOWING :-": PRINT . PRINT : INPUT “HOW MANY NODES HAVE YOU 2".N

T80 PRINT: PRINT . PRINT “WHAT IS THE MAXIMUM”: PRINT “NUMBER OF VARIABLES”:
PRINT “AT ANY ONE NODE 2", INPUT MV

PRINT : PRINT : PRINT “WHAT IS THE MAXIMUM": PRINT “NUMBER OF OUTCOMES":

PRINT “AT ANY ONE NODE 2*; INPUT MQ

200 DIM VS[MV,N),V{MV.N],YC(MY,NLRY[MY,NJ,M(TW.MY,N)EMY + W,50,N) VA[N],
QU(N), Q$(MQN).R(MV,MQ,N|,D(MQ) PD(MQ),QC(MQ,N),EZ(N)

190

210 FORNO=WTO N: GOSUB 1200: PRINT "NODE “;NO: PRINT : PRINT “HOW MANY
VARIABLES HAVE YOU": INPUT “AT THIS NODE 2 VAINO)

220 PRINT : PRINT “PLEASE NAME THESE VARIABLES :-": PRINT

230 FORI=W TO VA(NO): VTAB (TH): FOR P = W TO TE: PRINT SPC(FO);: NEXT: VTAB

(TH): PRINT : PRINT “VARIABLE "1, IS " INPUT V(L NO):X$ = “N” !
240 FORP =W TO NO: FOR @ =W TO VA(P): IF V5(I,NO) = V$(Q,P) AND NO < > P

THEN PRINT “(";V$(,NO);") ALREADY OCCURS". PRINT “ON NODE “P. PRINT

“WITH MINIMUM VALUE ";M(W,Q,P): PRINT “AND MAXIMUM VALUE ";M(TW,QP):

PRINT « INPUT “IS [T THE SAME HERE 2".%$
148

260
270

280
290

300
310
320

330

340
350

360
370
375
380
390

400

410
430

440
450

460
470
480
490
500
510
520

530
540

IF X$ = "Y" THEN :M(W,LNO) = M(W,QP)-M[TWINO|] = MTW,Q.P):X$ = “N":
GQOTO 280

NEXT : NEXT

PRINT : PRINT . PRINT “IT HAS MINIMUM VALUE =" INPUT M(W,LNO}): PRINT “IT
HAS MAXIMUM VALUE = ", INPUT M({TW,|,NOJ:

NEXT |

GOSUB 1200: PRINT “NODE “;NO: PRINT "HOW MANY OUTCOMES HAVE YOU 2".
INPUT “AT THIS NODE 2";QU(NO)

PRINT . PRINT“PLEASE NAME THESE OUTCOMES ..": PRINT . FOR | =W TO QU(NO)
PRINT “OUTCOME “/1" 1S “;: INPUT Q${I,NO): NEXT

NEXT NO: GOTO 20

IF T$ = “N” THEN . GOSUB 1200: PRINT “EXPERT READY": PRINT - PRINT : PRINT |
WILL ASK YOU FOR INFORMATION": PRINT “AND TRY TO MAKE A CORRECT
DEDUCTION": GOTO 350

GOSUB 1200: PRINT “TRAINING SESSION" PRINT: PRINT : PRINT “I WILL ASK YOU
TO ENTER SOME VARIABLES”: PRINT “THEN | WILL MAKE A DEDUCTION": PRINT
“YOU MUST TELL ME IF | AM RIGHT"

PRINT . PRINT “PRESS ANY KEY TO CONTINUE". GET X$

FOR NG =W TO N: FOR | =W TO VA(NO}:VC{I,NO) = W:V(INO) = Z: NEXT|: FORJ
= W TO QU(NOJ:QC[J,NO) = W: NEXT J: NEXT NO: FOR NO = W TO N:V =
VA[NO)-Q = QU(NO): FOR J = W TO Q:D()) = Z

FOR K = W TO V. IF VC[K,NO) = Z THEN :D(J) = D{J] + V[KNO) * R(KJNO)
NEXT K:NEXT J:D=MI:FOR J=W TO @:PD(J}=D(J):IF D{}j>=D THEN:HJ=J:D=D(J)
NEXT J

GOSUB 1200: PRINT “NODE ";NO

H=ZVV =7 FORI=WTOVRV[INO)=ZM=ZNI1=Z.FORJ=WTOQM=M+
R(IJNO) * VC(I,NO) * QC(I,NO):NT=N1 +QC[J NO). NEXTJ: IFN1 THEN M =M/
N1

FOR J =W TO Q:RV(,NO) =RV(I,NO) + ABS [M(W,|,NO] - M(TW,INC]} * ([R{II,NO)
- M) A TW) * VC(I,NO) * QC[JNO): NEXT J. IF RV(INO) > H THEN :¥V = I:H =
RV(I,NO)

NEXT I: IF H = Z THEN 560

VC[VVNO) = Z

FORJ=WTO Q- W. FORK =] + W TO Q: IF R[VV.J,NO) < > R[VV,K,NO] AND
QC(JNO) AND QC[K,NO) THEN 450

NEXT K: NEXT J: GOTO 390

PRINT V" “V$(VV,NOJ;: INPUT V(VV,NOJ: IF V(VV,NO] <M(W,YV,NO) OR
VIVV,NO) > M(TW,VV,NO) THEN : PRINT : PRINT “INPUT IS OUT OF RANGE". PRINT
“YOU GAVE MINIMUM “;M[W,VV,NOJ: PRINT “AND MAXIMUM “;M(TW VV,NO)
GOTO 450

FORP =W TO N: FOR VI =W TO VA[P): IF V§(V1,P) = V§(VV,NO) THEN :V[V1 P) =
V[VV,NC}:VC(V1P) = Z

NEXT V1. NEXTP.D = MI: FOR] =W TO Q:D(J) =D(l} + V(VV,NO} * R(VV.J,NO):PD(J}
= D). IF D) > = D THEN .D = D(J}H) =)

NEXT J

FORI=WTO V. FORJ=WTO Q@

JF VC(I,NQ) = W THEN : IF R(1J,NO) > R{LHJ,NO) THEN :PD(J) = PD(J) + [R{1.NO) -
R(LHJ,NO)) = M(TW,I,NO)

IF VC(I,NO) = W THEN - IF R(1,LNO) < R{l,HJNO) THEN .PD(J} = PD}) +
[R(ILINO) - R{LHINO)) * M(W,NO)

NEXT J: NEXT |

H2 = MI: FOR J = W TO @ IF PD{J) > = H2 THEN :H2 = PD{J}-HI = J

JF PD(J) < PD(HJ) AND J < > HJ THEN :QCJNO) =2

148

550
560

570

580
590
600

610

420
630

640
650

660

670
680

690
700
710
720
730

750
76C
770
780
790
800
810
820
830
840
850
860
870
880
890

895
900
210
920
930

150

NEXT J: IF PD(HI) < > PD(HJ) THEN 390 .

THEN , PRINT : PRINT “CAN | DEDUCE OUTCOME ".Q$(HJNO}):
Y THEN . GOSUB 780: GOSUB 850: NEXT NO: PRINT - INPUT
“DO YOU WISH TO CONTINUE TRAINING 28§ IF BS = "Y” THEN 350

IFT$ ="N" THEN - PRINT “I SUGGEST *,Q$(HJ,NO)," AS LIKELY": GOSUB 780: NEXT
NO. PRINT . INPUT “DO YOU WISH TO CONTINUE 2”;8§: IF BS =Y THEN 350
IF (AS ="Y" AND B$ = “N" AND T§ = “Y") OR (8§ = “N" AND T3 ="N") THEN 20
IF H} = Z THEN 600

FOR =W TO Q: PRINT I ";Q$(I,NO}. NEXT I: PRINT : INPUT “WHICH OUTCOME IS
IT 2" HI

FOR | = W TO V. IF VC[I,NO) THEN . PRINT “WHAT VALUE WAS "V$(INO);" #*;
INPUT V(I,NO)-VC(INO) = Z

NEXTI

FORI=WTO@: IFD(l] > =D(HI) AND I <> HI THEN: FOR J = W TO V:R(J,,NO] =
R{JJNO) - V[, NO): NEXT J

NEXT |

FOR | = W TO V-R(J,HI,NO) = R{JHINO) + V(J,NO): NEXT J:HJ = HI. GOSUB 780:
GOSUB 850: NEXT NO

PRINT - PRINT . INPUT “DO YOU WISH TO CONTINUE TRAINING 2“.CS: IF C§ ="Y"
THEN 330

GOTO 20

FORNO =W TO N: GOSUB 1200: PRINT “NODE ";NO: PRINT : PRINT: PRINT“INPUT
SOME EXAMPLES”: PRINT . PRINT - PRINT "HOW MANY EXAMPLES HAVE YOU 2"
INPUT “AT THIS NODE";N2

FOR | = W TO N2

GOSUB 1200: PRINT “EXAMPLE NO. *I;" ON NODE “;NO: PRINT : PRINT

FOR J = W TO VA[NO)

PRINT “VARIABLE “,J; (V§(J,NO);") IS ";: INPUT E(J,| + EZ[NO),NO)

NEXT

PRINT . PRINT “AND THE OUTCOME IS 2. FOR J = W TO QU(NO): PRINT J;".
“,Q$(J,NO). NEXT - INPUT “ANSWER BY NUMBER ;E(VA(NO) + W, +EZ(NO)NO)
NEXT

EZ(NO) = EZ(NO) + N2

NEXT NO:. GOTO 20

FORP=WTON

FOR V1 = W TO VA(P)

IF V§(V1,P) = Q$(HINO) THEN :V[V1,P) = MTW.V1 P).VC(VIP) =1

FORR =W TO Q: IF V$(V1,P) = Q$(RNO) AND R < > HJ THEN :VC(V1P) =2
NEXT

NEXT : NEXT

RETURN

INPUT “DO YOU WISH TO KEEP THIS EXAMPLE 2";ES: IF E§ = “N" THEN : RETURN
FOR J = W TO VA(NO): IF VC{JNO) = Z THEN 900

WV = L.VC(JNO) = Z

PRINT “WHAT VALUE WAS ..”

PRINT VV;“.“,V$[VV,NO);: INPUT V(VV,NO). FOR P =W TO N: FOR Q =W TO VA[P):
IF V$(Q,P) = V${VV,NC) THEN -V(QP) = V[VV,NO):VC(Q,P) = Z

MNEXT Q:NEXT P

NEXT J

EZ(NO) = EZ[NO) + W

FOR J = W TO VA(NO)

E{JEZ[NO),NO) = V[I,NO)

940
950
260
970

980

1000

1040

1050

1060

1070
1080
1090
1100

1110
1120
1130
1140
1150

1160
1170

1180
1190
1200

NEXT

E(VA(NO) + WEZ(NO),NO) = HJ

RETURN

GOSUB 1200: PRINT "EXPERT IS WORKING ON IT”: FOR NO = W TO N.DE =
EZ[NO):l = Z: FOR P =W TO DE * 200:/ = INT (RND (W) * DE + W)

D =Z:C = Z.V = VA[NOJ:Q = QU(NO)

FORJ=WTOV

D =D +E(LNO) * RUE(V + W,,NO),NO)
NEXT

FORK=WTO Q

D2=2Z

:EP;: > E(V +W,INO) THEN : FOR) =W TO V:D2 =D2 + E(LLNO) * RUKNO):
IFD2> =D ANDK <>E(V +W,INO)THEN :C=C+W: FORJ=WTO VR KNO) =
RUKNO) - E[JLNO): NEXT

IFC=WTHEN:FORJ=WTO VR =

Semflodipy el (JE(V +W.INO)NO) = R{JE(V + W,,NO),NO) +
NEXT

NEXT

NEXT NO: GOTO 20

GOSUB 1200: PRINT “SAVE THE CURRENT EXPERT”: PRINT . PRINT “CALL-151"
PRINT : PRINT “~0000.CO00W": PRINT : PRINT “TO CASSETTE"; PRINT : PRINT “TO
GET IT BACK™: PRINT”*0000.CO00R

PRINT : PRINT : PRINT “KEY ‘CONT’ TO CONTINUE": STOP : GOTO 20
FORPP=1TON

PRINT “NODE" PP

PRINT “E(l.J,NODE)"

FOR QQ =W TO VA(PP) +W: FORRR=W TO EZ(PP): PRINT E(QQ,RR PP);
PRINT : NEXT

PRINT “R(lJ,NODE)"

FOR Q@ =W TO VA(PP): FOR RR = W TO QUIPP): PRINT R(QQ,RR PP);" “;: NEXT .
PRINT : NEXT

GET AS

NEXT PP

HOME : PRINT "EX PE RT": PRINT ,"--------.."; PRINT: PRINT : PRINT . RETURN - REM
:SCREEN HEADER

3 NEXT:

151

(b) Sinclair Spectrum listing

2 REM Don’t fergetl to tgp§ {2l
BEa

TO 3@ to start the sustes
t Losing the var;abtesi

i@ LEF mz—wie. EETF LET
ag="": LET bE="": LET t& : LE
T d=@
26 S0 Sun IZae
4@ PRINT """ ""1. Initialise Exp
ert”""2. Inpul Examples™*“3. Exe
rcise Expert” "4, Training Sessi
oR"“"5. Noermat Running”™ " "6. Save
Current Expert™- "7, stptag Ru i
es and Exampples™ “"&. Stop"
ie® INPUT "“Cheoose an Optien: *;

o
li@ IF op=1 THEN GD TO 178
12e IF op=2 THEMN &0 TO &7
13& IF op=3 THEN GO _TO 7@
l4@ IF op=4 THEMN LET ts="u": GO

i5® IF op=5 THEN LET it1s="mn"- GO

16@ IF op=6 THEN GO TO i1l1G8

i85 IF op=7 THEN GO TO 112@

166 IF op=8 THEN STOP

168 GO TO 22

17@ GO SUB 120@@8: PRINT “"To set
up an Expert System" " "Please ans

wer the following: " : INPUT "How
many nodes have Yyouv:n

i@ PRINT ““"What is the maximyu
B pumber"““of variables 2t anuy o
ne node?": INPUT Bv

is@ PRINT ““"What is the maximu
% number™““of poutcomes at anu on
& node?": INPUT mq

200 DIM vHinv,n,20): DIM vimv.,n
}: DIM cimv,n}: DBIM rimv,n): DIM
mi2,mv.n) DIM e(mu+i;5@,n] oI
M ain): DPIM uvin): DIM g%img,n.,=@
}: DIM simv.mqg,n): DIM dimql oI
M pimg): DIM qimg,n} DIM Zinl
21@ FOR o=1 TQ n: GO SUB 1228

PRINT AT 2@.8;"At Node “; (0): IN

sgf "?0? many variables are ther
;a

23@ PRINT “"Please name these v

23@ FOR i=1 TGO aiol}: INPUT "Uar
1§ble ;Ui ;t ois " ;v®ii,p): LET
K=ty

24@ FOoR p=1 TQ o:

R =1 To {
2l Ig YHELI: . 0=vS 8 -

Fe
B} AND o<s2p
iT" atreasdy

&
oCcCcurs on node *; ‘With minimun
val e "imil,q.pl “and maximum
value mi2,9,p)2 INPUT "Is it
the same here?";x%

152

2s@ IF xs—" * THEN LET
_mii q,Ppl LET mi2,i,0}
: x&="n": GO ﬂ 28@
'ﬂea NEXT a: NEXT-

2?@ INPUT ‘"It haﬁ minimum valu
e=";m{i,i,oc}: INPUT "And maximum
hBlUﬁEk+hEE,1,D\

Egg GO SUB 12@@: INPUT "How man
g outcnmeq "rmat Nede Y iod;UTU

a PRINT ““Please name these &
u??omes. : FOR _i=1 TD uio): INPL-
T "Outcome “; (il;" is “;qfii.od: -

NEXT i
2318 NEXT o: ca TO =@
28 IF 1%= “ THEN GO SUB 1z2eé:

PRINT "ExPert Ready” """ witt & =
=k yeou fer infaxrmation*""and iry
ip make a cofrect” " “dedbclion™:
=0 TO 359
gBB G0 SUBR 120@: PRINT “"Trainin
g Session” "I will ask you to e
nter some"’“variables, then I wi
LL make™ "a deduction. You must
te é me“‘“'r I am right.” :
34 INT ‘Press any kevy to co =
tin UE :
D345 LETﬁag INKEY;. IF a&—““ THE

4
358 FOR =1 TO n_ FOR i=1 TO ai
g - -‘ - q'
,03=1: NEXT 4J: NEXT o0: FDH o=

% T v EF'cik,nJ=a T 2

Il

0.
-
.

-
e
<
-
.~

O
L3
a
=
.

L
~

=]

37p _NEXT k: NEXT J: EOR j=1 TO
qQ: LET plil=dij): NEXT Jj ol
556 co sUB 128@: PRINT "Node *;

Z39@ LET h=@: LET vv=@: FOR i=1
TO : Lk ri(i,ol=@: LET m=@: LET
ni=@: FOR =1 TG q: LET m=m+s (i
sds0)Fcl(i,0)l¥qij,0): LET ni=nl+q
{j,0): NEXT .- IF ni¢>@ THEN LET
m;gzgén 1 TD q: LET rii,o}=rt
4 J= : - Fii,ol= =
i,0) +ABS Emii,i,o)—nr2'1,nll*{95
S (s(i,i,0)-m)+2r%c (i 0l xqij,0):
NEXT J: IF r(i,o)>»h THE

=i: LET h=r{i,0)l

41@ NEXT i IF h

415 LET ci [+

42@ FOR j=1 T0D

G q: IT sév "

qlj,0) <>

iae

153

438 NEXT k- NEXT - S50 TO 0098
448 INPUT (w¥l LB IVY,02]);

i
wiwv,o0}: IF wivv,climil,vv,0) OR
vtvv;nl>mt2,vv,oj THEN INT -
“Input is out of range“J“Yuu-gav
e minimum “; imil,vv,0)) "and max
imum ; imi2,ev,)l TS £48

45@ FOR p=1 TO n: FOR u=1 TO ai

}: JIF wHiu,p)=vEivy¥,0) THEN LET

Yiu,pl=vivv,0): LET clu,p)=

458 NEXT u: NEXT p: LET d=mi:
OR j=1 TO q: LET dijl=d{jY+vivv,
0l ¥s{wv,j,0): LET pljr=dij}:
d1j)>»=d THEN LET d=d(jl: LET hj

478 NEXT J =

48@ FOR i=31 TO w: FOR j=i1 TD q

49@ IF cii,o)=1 THEN IF =5(i,j,0
132s(i,hj,0) THEN LET pi(jl=pijl+{
5{i,j,0l-s5ti,hj,0))smi2,i . 0)

E@@ IF cii,p)=1 THEN-IF sSi{i,Jj.,
s (i ,hj,0} HEN LET pijy=spf il
2{i,Jj;0)=5(i,hj,0}rEmiX, i, ok

S1@ NEXT J: NEXT:"""" E

S2@ LET hZ2=mi: FOR j=1 TO q: IF
hE[JJ>=h2 THEN LET h2=p {j): LET

53@ IF pijl<p (h,;'! RND— ...ef—#.h—,} THE
o= 3

N _LET gij.o

S48 NEXT J: IF Pl’h:){)P (hJ) THE
N GO TOo 392

S5@ IF hJ<>@ AND tS$="ygy™ THEN IN
PUT "Can I deduce outceme:"’ iq%
hj,o0});a%: IF a%="9y"™ THEN GO SUE

F7a: GO SuUuB 846: NExT = ENEUT
“Continue Traipineg? 5 bB%: IF b%=
u" THEN GO TO 358&8 -
S&e@ IF 13="r" THEMN PRINT "I"'E&g,
gest "y iIgEisg,ory¥""Es- EzRKet9 .7
G0 SUB 778: NEXT o: INPUT “Do
U wish to continue?":b%: IF b$="
g™ THEN GO TO 358

S78 IF (ag="u" AND bs="n"-AND

="y} OR (b%="Nn" AND t3="nRn")

So@ FOR i=1 TO 9: PRINT i‘"“ =
(q%ii,ocr}r: NEXT i: INPETF Eﬁ;rh
cutcome is 1t°“‘hx :

6@@ FOR i=1 TO v: IF cii,ors@ T
HEN INPUT "Uhat value was "; (vl
i,0));" 2 ;vii,o}): LET ci{i,0)=8-"

XT 1
628 FOR i=1 TO q: IF d(i)>=dihi
} AND i<>hi THEN FOR =1 TD v L
II:?' s{j,i,o)l=s5(j,i,0Y-w(j,0)x: NE

7 RIS N S—

B63@ NEXT i %

648 FOR =1 TO w: LET silj,hi,0)
=s{j,hi,0)+vij,0): NEXT j: LET h

i=hi: GD SUB 773: GO SUB S84@: NE

XT @

&858 INPUT "Continue tiaining7?"™;
c%: IF c%="y" THEN GQ TO 33@
f8@ GO _TO =28

&7@ FOR o=1 TO n: GO SUB 1288

SRINT “Node ";o0 " "Inpul sSome exXam
pLes" 7 ""HD® Rany EXamples at itk
i node®”: INPUT n2

eE@ FOR i=1

TO n2
A9@ GO SUB 12@8@: PRINT "Example
numbey Y, (iY;‘"on node T (ol
788 FOR =1 TO asiol 8
i
1

71@ INPUT “"Uariable "; J;
oY,
t

i .
vl g,02) ;"2 isT edi,i+z(o
7@ N e

XT J g
73@ PRINT °""And the _gcutcom is
A FoRr J=1 TDO uigc): PRINT it
gHf.j,0): NEXT J: INFUT "Please
Inp"t by Number’ ,eiaiu)+1 i+Z o
748 MNEXT i
75@ LET zipl=z (ol +n2
758 MEXT o: 82 TG 2@
778 FOR P=i ;Q n <
7E@ FOR U= o aipl)
f8@ IF vEiY,pl=g3thj,0) THEN LE
T viy,pl=m{2,4,p): LET cly,p: =@
2@ FOR r=1 TO g: IF v3i4Y.pl=9%
r,0) RAND ri3hj THEM LET civ.pd=

‘mA@ NEXT

2@ MNEXT v: NEXT P

S3@ RETURN o
243 INFLUT "Keep this exapple?";
e%: IF es="n"_THEN RETURN)
&5 FOR J=i TO aior: IF cij,pl
@ THEN GD TOQ 898 .

g6@ LET vvw=4j: LET cij,0l=8
&E76@ INPUT "ithat value was: (wF
ivv,011;wlvy,0): FOR p=1 TOQ n: F
R q 1 TC aip): IF vEigq,pl=viivy
Cp) THEN LET viq.p)=vwivy,0): LET

S8@ NEXT q: NEXT p

SD@@ LET zzicl=z (o} +1

1@ FOR J=1 TO alo: .
s2@ LET E(J,z(ol,al =w(j,0]
& NEXT i
a5 LET efa(o*+l,L€Ol,ci—hJ
SE& RETU

a7a co SUB 12@@: PRINT ““"Exp
is working op it: FOR o=1 T
- LET de=z{@}): LET i=8: FOR
TO dex2@@: LET i=INT_ (l+des
QBB LET d=@: LET c=@: LET

il

:n
.20

155

NE.
1658 FoR ki 1 oTe 4
1@g3@ LET d2

ig4d IF ;ue:‘\ui,:,nr THEN FoR J

=31 TQ vw: LET dE2=d2+e lj,i. 0 ¥s1{j,

kK,0): NEXT

i1ase IF dE}Hd AND k<>e(v+l,i 0}

THEN LET c=c+1: FOR Jj=1 TO v: LE

;Tﬁi"d,.ﬁ. ;o == 1, k,p)-ij,i,0): NE
o

i@ IF c=1 THEN FOR j§=1 TOQ w: L

ET S!J,E[\ti-l;.‘.;ﬁ" ,oY=s(j,efv+l, i

,23.914--2(4;1;\:3. NEXT jJ: LET c=c

+

a8

P
Q9@ NEXT a: GO TO 2@

il@g@ GO SUEBR 12@@: PRINT ° ""Save
the current expert” " "i{i.e. both
1he progran and data" " "Please i

rt cassette™
1110 SAVE "multinode®
1115 PRINT “"Saved under name ‘@

156 LET a$=INKEY =
N:88 5B.38 $: IF as THE
: PRINT “r (i,Jj,nodei"
1170 FOR u=1 TO aix): FOR z=1i TO
UIX): PRINT = (Y,Z,%3;" “;: NEXT
z: PRINT : NEXT u
1175 PRINT "Press any key to con

1175 LET a$=I = =
NGB 7D 115 NREY$: IF as= THE
118@ MNEXT x

1138 PRINT "Press any key to con

tinue"

11968 LET as=INKEVS: IF as="" THE
1198 &0 T5 Sa

12 CLS : PRINT “"EXPERT™".,™

._'* : RETURN

156

gitingge
RINT “Press
Ange; e e
ET a =INKE i
N Bb 55 5 E‘}"S IF a% THE
11ie 8970 fe
: FO Xx=1 TO
1138 PRINT "Node "“;x n
iil4@ PRINT "“eli,Jj,nodel) ™
115@ FOR y=1 TO (X} +1: QR =z=1
TO z(x2: PRINT e(y,z,x};™ ;-

7.8 Some examples

If you actually managed to key in that program then the first thing you will
want to do is to go off somewhere quietly by yourself and nurse your
bleeding fingers for a week or so.

But, having done that, you might like to try running it - in which case some
examples could be handy so that you know if it's working or not.

So, first, RUN and you should get a menu of seven items. Choose the first
option to initialise the thing. Tellit you have one node. Tell it the maximum

-number of variables and outcomes is two.

Atthis node you have two variables. Name them as Wings (with minimum
value 0 and maximum value 1) and Engine (minimum O, maximum 1). Tell
it you have two outcomes. Name them as Bird and Plane.

Now you should get the menu back and you can do one of two things.
Either, go to a training session and let it learn slowly; or, go to the Input
Examples option to give it a slab of examples to work from. We go to the
Input Examples to make things simple. Give it two examples. It will ask
about the variables and the outcomes so, for the first example, give ita bird
and, for the second example, give it a plane.

Then go to Exercise Expert and put your feet up for a minute or two while it
works out its rules for you.

When it comes back go to option seven to have a look at the rules it has
developed. You should get array E holding the examples you gave it as
follows:

1 1 -this line is Wings, both Yes

0 1 -this line is Engine, only on the second
example

1 2 -this line is Outcomes, 1 for Bird, 2 for Plane

And you should have array R as follows:

1 -1 -this line for Wings
-2 2 -this line for Engine

Have a look at these rules and satisfy yourself that they will separate the
two outcomes the way they should. Once you see that they do you will feel
easier about the prospect of the program as a whole working - although
there isn't really any need to do this every time.

167

W

Press any key to return to the menu.

Go to option 5 - Normal Running.

The program will first ask about Engine. Notice that in array R this seems
the mostimportant variable (which it really is!). Reply 1 and the expert will
guess Plane without asking anything else.

Reply Y to continue.

It asks about Engine again. Reply O. It now asks about Wings, reply 1. It
guesses, correctly, that it is a bird.

If it does all of this the program is working pretty well and you can try
something rather more adventurous.

Try two nodes. On the first node set it up to establish whether the object
you have in mind is a machine or an animal.

For instance:

Variables Outcomes
Feathers Animal
Metal Machine

On the second node set it up to establish whether or not the object is a bird
or a plane.

For instance:

Variables Outcomes
Feathers Bird

Metal Plane
Animal

Machine

When you input examples on node one, think first of an animal and answer
the questions with this in mind. Then think of a machine and answer the
questions with that in mind. Two examples in all.

Then give two examples on node two. One with a bird in mind and another
with a plane in mind.

Take particular care to spell the words the same everytime you key themin
or the string matching will go wrong.

158

Then exercise the expert.
When it comes back send it off into normal running.

The first thing it asks about is Feathers. Suppose we were thinking of a
bird and reply 1.t then suggests Animal as likely and asks about Metal on
node two. Reply 0 and it suggests Bird as likely.

What happened was that the one variable, Feathers, was enough to settle
node one and enable it to deduce that the object was an animal. Now, if we
look at node two we see that Feathers also occurs there - so it knows about
that - and that it had already deduced avalue for Animal and for Machine (1
and O, respectively) so that the only point it was not sure about was Metal.
So it asked about that, got a reply, and could then solve node two correctly
to guess Bird.

Give it another try, thinking of a Plane.

Feathers? Reply 0. It deduces a Machine and, again, asks about Metal.
Reply 1 and it deduces that it is a plane.

Hopefully, by now your aching fingers are recovering and you feel a bit
better about the effort involved.

And the questionis: Can it now do anything useful? Something other than
an apparently trivial game. Well, we can give it a try with a real life problem
- like trying to diagnose faults on a cassette recorder.

We'll suppose that there are the following faults which you could observe
on your recorder:

1. No lights

2. Tape won't move
3. Unit won't record
4. Intermittent sound
5. Distorted sound
6. Erractic speed

7. Hum

These could arise from any combination of the following causes:
1. Not switched on
2. Deck in "Pause”

3. Tape jammed
4. Tape inserted wrongly

159

4—~v——_

5. Erase tab removed
6. Dirty head
7. Stretched tape
8. Poor recording
9. Amplifier problem
10. Dirty capstan
11. Wrong leads

And the remedial action could be anyone of the following:

. Switch on power
Press “Pause”
Replace cassette
Re-insert cassette
Clean heads
Re-record tape

. Check amplifier

. Clean capstan

. Check leads

CENG O WN -

So set up a two node system. The first node is to find out what is wrong so
it has as its variables the seven faults and, as its outcomes, the 11 causes.

The second node is to suggest remedial action so it has the 11 causes as
its variables and, as its outcomes, the 9 remedial actions.

Input examples.

For the first node give 11 examples, one of each cause, and answer the
system’s questions with the specific cause in mind. For the second node
give 9 examples, one for each remedial action, and answer guestions on
the causes in such a way that you reply “1" for each cause that might be
helped by the remedial action and 0" for each cause that would not be
helped by it.

Then exercise the expert (or, alternatively, instead of inputting examples
and exercising, you could have had a training session instead). It's only fair
to point out that, as the system gets bigger, the training and exercising will
take longer - so don't think the computer has gone and died if it goes away
for a while to work on the problem.

When it comes back, having worked out a rule set, you can send it to

normal running when it will try to figure out what's wrong with your
cassette recorder.

160

Exactly how it runs will depend on the examples you gave it to work on.
It may also depend to some extent on the random number generator in
your computer if you “trained’ it using Option 3 “Exercise Expert’’ - this
is because the actual rules formed can depend on the order in which the
examples are presented and not all random number generators produce
the same stream of random numbers. But, by way of illustration, this is
what happened during one session:

It askedlif there were No Lights. Replying 1 (yes, No Lights) it suggested
Not Svt_ntched On as likely and then passed straight to node 2 when it
immediately suggested Switch On Power. ‘

The next session we decided that the problem was Intermittent Sound.
It asked ‘No Lights?’ - reply O

It asked ‘Intermittent Sound?’ - reply 1

It asked ‘Tape Won't Move?’ - reply O

It asked ‘Erratic Speed?’ - reply O

It asked ‘Unit Won’'t Record?’ - reply O

It asked ‘Hum?’ - reply O

It asked ‘Distorted Sound?’ - reply O

It th_en deduced that Stretched Tape was the most likely cause and,
turning to node 2, it advised Replace Cassette without asking any further
questions. All of which seems pretty reasonable.

Now, Trying it on Tape Won't Move it kicked off by asking three questions
to which we replied ‘O’ and, then, when it asked ‘Tape Won't Move?’ we
reply 12 It then asked one moare question, to which it got a ‘0’ reply, after
which it suggested Tape Inserted Wrongly and, moving to node 2, it

advised Re-Insert Cassette. Not bad. Not bad at all.

Give it a try yourself, these are the examples it was trained on:

161

@ ‘ ®
Node 1 (Diagnosis) Once you have this up and running it soon begins to seem possible that
] something useful could actually be done with this system - after all, the

program as it stands would take a lot more nodes, a lot more variables, and
a much more complicated set of interconnections for it all.

Variables Outcomes You may well feel that it would be more natural, in many of the examples

(Faults) (Causes) given so far, to reply Yes or No rather than O and 1 - and you're probably
1234567891011 right. In fact, you could tailor the program quite extensively to behave in a
more natural way for a given subject. But just a brief reminder (again): the

1 100000000 0 O input variables do not need to be all ones and noughts.
2 $ } :II } ? g 8 8 8 8 8 They could be any real numbers - like rainfall figures, for example. Bear
i 000001110 0 this in mind when you are developing an idea for the expert system and it

5 000001111 1 1 could help to improve the performance.

g g 8 8 8 8 g 2} g ? (1) ? Note: On the Apple Il and many other micros, all variables and arrays are

initialised to zero when you key RUN. If your micro does not do this then
you will need to clear all the arrays and some of the variables at the start of
each run - setting them all to zero in the program code, right at the
beginning. Also, some micros (including the Spectrum) have to be told in
advance if any variable is assumed to be zero or null, as in a statement such
as

Node 2 (Remedial Action)

LET C =0

some micros assume C to be zero if it's not been mentioned before. The

Variables ~ Outcomes Spectrum requires you to set it to zero.

(Causes) (Remedies)

1234567889

“COUONOORLWN=
OO0O0000O00OCO—
00000000 —=0O
0000—=0—=0—=00
CO00000—=—=00
O0000—=00000
COO0—_,0000000
QO-=00000000
O—=000000000C
0000000000

7

162 | 163

Chapter 8

How can you use your
Expert?

8.1 Choosing a problem

Suppose that now you want to build your very own expert system. You
don’t want to build the system described earlier in this book, you want to
build something which is peculiarly yours. Well, the first thing to decide is:
About what shall this system be expert?

You can, if you like, reply that it has to be expert about absolutely
everything in the entire known Universe. There's no harm in such an
aspiration. But, if you do, you'll be likely to come up with something that
looks a bit like the system described in the previous chapter. After all, to be
expert in everything you need a very general design with an absolute
minimum of preconceptions. The snag with this approach is that, whilst it
might work on a wide range of problems, it might not be outstandingly
good at any of them in particular.

Ideally, you might choose an area of intended expertise which is not too
broad - and not too narrow. Which sounds a bit vague (and is) but has
some reason behind it.

S_uppcse that you choose too narrow a field to work in. Like, for instance,
diagnosing a fault in a motor car. Now you might think that this field would
be fine - after all, motor mechanics charge a lot and to get a computer to
take their place could be handy. But look at the problem more closely.

Say your car won't start in the morning. What you want is for the computer
to diagnose what’s wrong with it. So: look in the owners’ handbook and
you’ll probably find that it won't start for one or more of the following
reasons. |t might be out of petrol; have a flat battery; have water in the

164

distributor; or,%/e dirty spark plugs. So put that on an expert system.
Now run (mentally, as it were) that system. And, on the screen is the
question: Is there petrolin the tank? And you trudge out to the car tohave a
look and get an answer. If there was, you might be asked: Is there water in
the distributor? And, again, you trudge out to look. And, if there isn't, five
minutes later you're out there unscrewing a spark plug to see if it's dirty...

And, all in all, you really didn’t need to switch the computer on just for that.
You could have just taken the owner's manual out to the car with you and
saved on electricity.

The reason is that diagnosing why a car won't start is very trivial. The real
effortis in poking around the car trying to get the information you need in
the first place.

The computer can't poke around the car for you in this case - so what you
really need is a car mechanic to help you.

Certainly, there might be some tasks in car mechanics which could benefit
from an expert system. Suppose that you ran a workshop and regularly
had relatively inexperienced mechanics checking out different vehicles
and carrying out (fairly) complex work on them, Then you might think it
worthwhile to have a screen set up to advise them on how to proceed.
Alternatively, you could just give them the workshop manual. But, if it's
simply a matter of a car that won't start, that really does seem like a
problem which is much too narrow to be worth tackling. The problem has
to be 'large’ enough to actually give the computer some useful work to do.
And it will be most useful if the task isn't already accomplished in some
other medium - such as a workshop manual.

At the other end of the scale the problem shouldn’t be too large. The
reasons for this are practical ones again - primarily, the practical problem
of getting an expert system built with enough expertise in a large area. As
the size of the problem area increases so does the amount of effort onyour
part necessary to carry out a thorough implementation. And, if the
implementation isn't thorough, the usefulness of the system is pretty
dubious.

Real Life Expert Systems aren’t expert in, for example, the whole field of
medical diagnoses. They are experts in a narrow field - and are good in that
field. An all-singing, all-dancing system that frequently makes the wrong
diagnosis is liable to kill as many patients as it cures.

Finally, the system will have the most chance of being useful if there
appears to be some method of getting it to work. This sounds rather silly

165

but suppose you had a system which you intended to be expert in the field
of winning the football pools. Now how, even roughly, would you produce
such a system? Some sports and games of chance might be amenable to a
bit of computerised prediction. But football? All you need is a few key
players to stagger onto the pitch with hangovers and the result of the
game can be very different from any result the computer might dream up.
The problem is too diffuse to be handled by computer. It isn’t at all clear
what sort of rules govern the actual play of the game and it isn't at all clear
that there’s any method by which you could uncover any rules.

In general, you can get an idea as to whether you have a likely field for an
expert system (or any program) by asking yourself whether or not there's
anything much in the problem that can be measured.

If there is, then you're in with a chance. If not, forget it.

By ‘measured’, of course, one doesn’t necessarily mean length, breadth
and width. A yes/no response is a measure of sorts which will keep a
computer happy. But, overall, you must be able to describe the problem
areain terms of a series of measures of some sort. If there is something in
the situation that can’t really be reduced to a measurable quantity (like the
fine footwork of player X) then you have something which is unlikely to be
convertible to computer.

8.2 Analysing the problem

Once you've hit upon a problem area which looks worthwhile the next
thing to do is to start analysing it.

First, you need to get a broad overview. Typically, you already have this.
After all, most systems don't get written by accident. They tend to arise
because a specialist in some field thinks a computer could help or because
a computer person knows a specialist with a problem. If you don’t have
this overview then this is the time for gently poking around in the area -
primarily to see if you were right to think that this is something which
could be done on acomputer. Tocheck that it really was a suitable problem
to choose.

And then, the typical next step - you grab an expert and pick his brains on
the subject. And you can divide this up into a fairly orderly sequence

consisting of the outcomes, the measurable evidence (variables) and the
reasoning that links them.

The outcomes may be very simple - gold in them thar hills, bronchitis in

166

them thar lungs. That sort of thing. Is it, though, the presence or absence
of an outcome which is important? Or is there some other measure
associated with the outcome? A probability, for instance. It's important to
sit down and work out what, ideally, you want to get out of the system and
in what form you want it. A list of possible diagnoses, or conclusions, or
recommendations and an indication of how these results are to be
measured.

The variables are the pieces of evidence that the human expert has at his
disposal. You have to find out what they all are and how they are measured.
Having asked the expert what he hopes to find out you need to know what
he considered in coming to his conclusions.

The linkages between these items are the rules the expert applied. What
‘internal program’ was the expert working through when he came to his
conclusions? This can easily be the hardest bit. Quite possibly, the human
expert won't be fully aware of what rules he uses. So allyoucandoisto get
a first crack at finding out what he thinks he does and then go away and
implement it to see what happens.

Once you've got all this initial information together you may find that a
form for the program naturally presents itself.

For instance, with our totally general-purpose system the requirement of
generality of purpose dictated that it had to be self-learning, producing its
own rules from examples.

It also became evident that the particular inferencing structure used
wasn't too critical - because what might be right for one application might
be of less use for another (so, we produce a system that’s only of marginal
use in any situation...)

But if you have a known list of outcomes and a known list of variables and a
known list of rules in front of you - then the situation is different. If the
rules are of very widely varying type then you might have to write specific
code for each one. If they can be reduced to a common format you can
store them on file as if they were data and then write a routine for working
through them. If they all rely on logical connectives you can write fairly
simple deductive code to arrive at definite conclusions. If they have
probabilistic elements associated with them you need some method of
keeping track of the probabilities.

It seems a bit feeble to say that one can’t advise in great detail on what you

should do - that you should work it out for yourself, But, in fact, this
actually is what you have to do. You can look at some of the ideas in this

167

=3
@ !

book and they may give you ideas to help in working out an approach. But | in the dole queue wishing they could meet that nice computer person one

just as a general-purpose expert system falls down on fine detail so will a ! more time?

general-purpose method of building an expert system. Each application

area will have its own peculiarities which suggest a special treatment. Maybe you should be generous and offer your human expert a cut of the
royalties on your system. Maybe you should be generous and offer me a

People who have built expert systems of their own frequently report that cut of the royalties, too.

the hardest stage was the initial accumulation of outcomes, variables and
rules. Once they had derived this information from a human expert and set
this information down on paper the rest began to fall into place before
them. But, even if no absolute structure appears at this stage there is a
further reported fact which makes things slightly easier. Namely, that the
process doesn't stop there.

With the initial information you set something up to run on the computer -

a tentative sort of program which you think might work. You then runiton

a few examples and hand the results to the human expert for comment. |
Usually, the system makes mistakes and between computer person,
human expert, and computer a process of feedback sets in wherein the
program rules are altered progressively until the thing starts working
reasonably.

In some ways you could feel that the process is pretty sloppy. After all, if !
you set out to write a payroll program without much idea as to how
payrolls were calculated then people might feel you were in the wrong
business and should try, say, chicken farming instead.

But, this is how expert systems seem to be developed. And one could
argue that it's a reasonable method in a situation in which nobody really
knows exactly how the thing should be done. After all, if it eventually
works the means used probably justify the end. i

And one has to admit that, in fact, one does know people who have written
even such things as payroll programs by a method not entirely different
from this and have managed to sell the end product.

The really hard part of the problem to analyse, actually, is why any human ‘
expert should spend his or her, apparently valuable, time handing away
the secrets of their art to someone who's going to put it on disc, make a
million copies, and sell them to anybody at just £5 a time. Such an expert !
must, surely, be mad. It's as if one of two things were likely to happen:
One, that the system won’t embody their expertise, will be fairly useless,
and therefore no harm is done to their business; or, Two, that they really
don’t mind having their expertise devalued and being put out of business.
After all, where have all the payroll clerks gone? Perhaps they're standing

168 | 169

Chapter 9

Large-Scale Expert Systems

9.1 MYCIN - medical diagnoses

So far, all we've considered is the one expert system - our very own, totally
general-purpose, home-made expert system. There are, of course, others.
To what extent does our system resemble existing systems? Well, the
bestanswer is to describe a few others and see just where the similarities,
if any, lie.

MYCIN is an expert system designed to carry out medical diagnoses.
Specifically, it's designed to work in the area of blood and meningitis
infections - making an appropriate diagnosis from evidence presented to it
and recommending a course of drug treatment for any diagnosed
infections. It consists of a total of 450 rules developed with the help of the
Infectious Diseases Group at Stanford.

Its - most fundamental point - and the one which can give rise to the most
complications - is the use of probabilities. Medical diagnosis is an inexact
science. If a patient exhibits a particular set of symptoms then they might
wellindicate a particulariliness, but the connection is rarely total. Consider
the contrast between a medical diagnosis system and a system which was
expert in, say, the field of chemistry. To make it easy, let's consider
hypothetical systems - because, apart from anything else, this helps to
avoid tresspassing on the preserve of real, human, experts.

Suppose | have an expert system for chemical analysis and one of the
pieces of information | give it is the result of a litmus paper test. That is: on
adding litmus paper to the solution in question it goes, for instance, red.
Now, from this the expert can ‘diagnose’ that what | have is acidic. Easy.
There are no doubts present.

Now switch on the medical diagnosis system and inform it that the patient
under consideration has a bad cough. Well, that might mean that thereis a

170

case of bronchitis, tuberculosis, or, well... just a bad cough. There is no
absolute certainty about the meaning of the evidence.

And, somehow or another, the expert system has to be able to cope with
this uncertainty. Our own system did this to some extent - but not very
precise\v. And, if you recall the earlier discussion on probabilities you'll
recall just how difficult it is to deal with a problem like this.

The way MYCIN tackles the problem is to assign a Certainty Factor to
every one of its 450 rules. So you can think of MYCIN as containing a
series of rules of the form IF..THEN with certainty P.

And now, note that we used the phrase ‘Certainty Factor’ rather than the
word 'Probability’ and the question is: Why? Are they different?

Well, you know all about probabilities by now if you've read the earlier
sections of this book but what you didn’t realise is that there can be more
than one type of probability. The type we've looked at so far (and which
we'll continue to look at) are statistical probabilities. The whole theory of
statistical probability is based on the assumption that, if only you had
enough examples, these statistics would accurately describe the
behaviour or the system you're looking at. It is the frequency approach to
probability.

Some people, however, maintain that this is the wrong approach to use for
inferencing systems - systems which modify their degree of belief in an
outcome depending on the inputs they receive. For these systems, it is
claimed, a theory of Logical Probability is better than a theory of Statistical
Probability because, in the case of aninferencing system, there isn’t really
an external frequency model for what is happening. To go into the detail of
Logical Probability is somewhat beyond the scope of this book but, by way
of slight compensation, this author would suggest that if you stick to a
statistical model then you won't, really, go far wrong and that the theorists
of Logical Probability are not, in fact, particularly good at pinning down the
details of the calculations you should make, even if you did accept their
theories (this criticism of Logical Probability is known as the Sour Grapes
Theory). In other words, even if you knew the theory backwards it
probably wouldn't improve your program much.

Anyway, Logical Probability is the approach used by MYCIN and the
practical effect is that MYCIN's Certainty Factors are, roughly, what most
people would think of as Conditional Probabilities of the form P(H:E) - the
probability of this hypothesis given this evidence. Because they aren’t
really probabilities in the sense we've discussed them the calculations
which we've used so far don't really apply - and MYCIN uses a fairly ad hoc

171

method of summing up its certainty factors as it proceeds through the
program.

So, to start at the beginning, where did these Certainty Factors come
from? In the case of MYCIN they came from the human experts who
provided the rules in the first place. When they suggested a rule they
stated their degree of confidence in that rule on a scale from 1 to 10.

And the point we made earlier concerning probabilities arises - how dowe
know that these probabilities are correct? Well, we don't really. Doubtless
they're fairly correct (and the fact that MYCIN gives good results supports
the suggestion that they are pretty good) but the method is essentially ad
hoc - which means it wouldn't make a statistician happy.

Having set up these rules with their associated certainties MYCIN works
by backward chaining from a possible outcome to see if this outcome can
be believed or not. Once it's established all of the items it needs
concegning a particular outcome it makes a judgement on that outcome
calculated on the basis of the certainty factors associated with all of the
rules which had to be used to reach that particular outcome.

Eor instance, if the outcome were item Z, it might have been necessary to
establish both X and Y in orderto deduce Z. But the rules used to establish
X and Y might have certainties P and Q associated with them. Now if P and
Q were each of value 1.0 say, then Z would necessarily follow. If Pand Q
are less than 1.0 (which, in general, they are) then Z doesn’t necessarily
follow. It only follows with a certain amount of certainty.

And, recalling the earlier discussion of probabilities, it is no mean task to
calculate just what the certainty of Z will be under these circumstances. So
much depends on the exact form of all of the items concerned and how

they interrelate.

So MYCIN, instead of trying to get an exact solution to this problem,
simply cumulates all of the certainties concerned to give an idea of the sort
of relative magnitude of the answers.

Probably the important point to note is that MYCIN doesn’'tcomeupwitha
diagnosis and disclose the exact certainty of that particular diagnosis
being true. What it does is to come up with a whole series of diagnoses
each of which has some kind of certainty ‘score’ associated with it. Above
a certain - ad hoc - value all of these diagnoses are accepted as being, to
some extent, likely and the user is presented with a list of possibilities.

Mathematically the procedure is somewhat shaky but, against that, the

172

#

evidence is that it works very well i i
L y well in practice. So much, of course, for
Medical diagnosis, though, is itself s i
1osis, 1 omething of a shaky proced
gg;ganrtsdor?sn_t g:ve 32 exact probability statement abo\ljtpeach g;eﬁé
- he simply reckons that a particular diagnosi i i
‘ i L sis seems kind of like

wnhi_maybe, some otherdlagnoses being additional possibilities. Furthelly
a Ff)-? ient might not be s_uffernjg from just one complaint - he might be
(s):_.:e z:,";::Sgt from fe;_eral things simultaneously. In this case, to work gut th:

3 , exact, diagnosis is to exclude the perfec id ibili

k exac tly val

there just isn’t one best, exact, diagnosis, but seveyral SRR AL

It has been reported that member i
: . s of the medical fessi
encountering MYCIN, have been quite happy with it reckonjng?trsaisiﬁitio;s;

as good as theirs. Possibly that i
iy y that is where the real proof of the pudding

The next point to make about MYCIN is i

‘ : : is its use of the English |
Wheut wants information offthe user it asks foritin an Enggiish ?amg lf.laag.:
way. When the user enters information he does soin a way which apgpeagrs

fairly natural and English-like. Thi Ay,)
Healidiaiin g ike. This sounds handy - but is it anything more

There are two parts to the matti
er - the part that concerns u
re t T ser acce|
of the fmls_hed product (was it worth doing?) and the part that Coﬁ;ance
the actual implementation (was it easy to do?). o

Taking the first part it's reckoned that one of the advantages of expert
Eﬁt:ﬂrﬁsljfetrr;atczrgqn? CE.itf.l use them with very little previous knowlezge
i ainly, it's easy to see that users would r

A espon
;g\;'g;l(;’aggnt‘ota tls\i':tgrn that used their language than a systpemdwn;w?crﬁ
o talk in, say, BASIC. Doctors, for i i
found the language easy to w i ; e e EhCIN
ork with and, conceivabl ;
wanted to waste their time evaluatin : b
v waste g a system that was hard
if nobody’s willing to waste their ti i il
_ ime using a system th i
argue that its long-term usefulness was pretty ngn-ex[ster?? RSO

rBut what about implementation? After all, everyone knows that natural
anguage processing is one of the most difficult jobs around - how d
get around the problem? L

The answer, really, is a bitofach i
. 2 eat because, in fa g
carry out full natural language processing at all. S SRSl

The trick is that every profession tends to play its own little language

173

. .

game. It has special words, stereotyped ways of s&ng things, that are
quite particular to that profession. There are lots of reasons for this, some
of them good reasons. At the semi-malicious level one could point to the
fact that even small children often have their own private language which
they use to exclude outsiders from their conversations and which increase
solidarity amongst their friends. Adults have these private languages too
(including computer people - they're the worst of the lot). At a more
significant level, when one is talking about precise concepts one has to
use words in a precise way and in the same way every time you use those
words. This leads to a specialised subject language which might look the
same as normal English to an outsider - but which is actually very different.

Take for instance the words ‘chronic’ and ‘acute’. In medical parlance
these words simply refer to the duration of an illness - whether it has been
around for a long time (chronic) or only a short time (acute). So, clearly,
when a doctor says his patient has a chronic cough he doesn’t mean that
it's simply awful. Nor, if he says that a cough is acute, that he thinks the
patient is going to drop dead any minute. He's simply making a statement
about the length of time the patient has been coughing like that.

All of this might seem like an unnecessary diversion - butitcan helpa lotin
implementing an expert system. For MYCIN it was found that doctors
working in this area of diagnosis used words in very precise ways and
uttered very stereotyped comments. Much more so than most people
would doin the course of a normal conversation. And the advantage of this
was that it was possible to easily define a very limited subset of English
which would express everything that might be said on the subject with
very few complications. Standard phrases and forms of grammar were
readily adapted into the program and the result was a highly stunted
subset of English which was easy to program.

The doctors were happy with the result because, possibly without
realising it, they too spoke in a highly stunted subset of English. At least
when they were discussing their work they did. For all one knows they
turned into famous orators once they got home of an evening - but that is
beside the point.

In a way this all ties in with the comments on DENDRAL which, you'll see
later, doesn't use any English language at all. What it uses is a graph
language suited to the particular activities of chemists. That is a very
restricted subset of English - but the point is similar. Model the system
into the language of the human experts who will use it and you increase its
chances of user acceptance and can more readily take advantage of the
knowledge that already exists in that field which will, to some extent, have
shaped the language used to describe that knowledge.

174

The bad news thgh (there’s always some bad news) is that, having done
this, you have an expert system which is more difficult to adapt to other
areas of expertise, simply because of the differences that exist in the
language used to describe expertise in other fields.

On the subject of user-acceptance MYCIN has a capability which many
other expert svstems possess and which is frequently commented upon -
its ability to explain to the user why it is doing what it is doing.

As a simple example, suppose that you have an expert system and it asks
you if you have a cough. Instead of simply replying yes or no you could ask
the expert: Why? That is, why has it asked that question. The system could
then display a message pointing out that a cough sometimes indicates
lung trouble. Or some such comment.

Now, at its very simplest level, programmers will realise that this is
nothing more than a simple program comment. Every time a rule is
programmed into the system all you need to do is to program in a brief
piece of text giving an explanation of the purpose of that rule. So, when the
system asks a question involving that rule it can invoke this piece of textas
an explanation if the user wants it. It resembles the REM, in BASIC.

In other words, it's not very clever. So why the interest in it?

In the finished product, the reason for doing this is simply user
acceptance. Users, particularly those who don't know much about
computers, are impressed with a system that acts in such a human fashion
that it can explain itself when asked to. And, as noted before, there's not
much point in writing a system that nobody’s going to use.

But there's rather more to it than that. Consider the programmer (you, for
instance, writing the system). Program REMs are all well and good. They
certainly assist in debugging and design because they remind you of why
it was you included that bit of code and of what it is supposed to do. But
the snag with REMs is that you have to list the program in order to read
them. It sounds rather a trivial complaint but in a long program which
might have finished up almost anywhere there might be a better way of
recording what's going on.

And that's, to some extent, what the Why? of the expert systems
represents. They_are‘live‘ REMs that can be called at any time and remind
you of what's going on without actually interrupting anything else.

Now stand back a little further from the actual program and recall the
problems that are usually encountered in building up an expert system -

175

the problem of knowledge acquisition and engineering. The program
contains a series of rules and reasons for those rules and, typically, the
program doesn’t work perfectly as yet. The human expert is sitting at the
screen working through an example. Suddenly, as it were, the machine
asks a stupid question. At this point the (human) expert can now ask Why?
and get some idea of what's gone wrong with a view to putting it right by
adding another rule or modifying some old rules.

All of which would not be very earth-shattering if, really, all the system did
was to print out a standard comment. Something a bit more sophisticated
would certainly help.

Inthe case of MYCIN this something-more-sophisticated is TEIRESIAS -a
system for modifying the MYCIN rule set and explaining the actions of
MYCIN. In essence it's very much like a trace and dump facility with the
big advantage that it's somewhat more user-friendly than the traditional
technique of filling a box of lineprinter paper with the contents of main
memory in hexadecimal.

With our human expert sitting at the MYCIN screen it's possible to ask
why? in response to a request for information and receive a summary of
the line of reasoning that has been followed so far. Specifically, it can
display the current rule that has asked for information and show the status
of all the other inputs (if any) of that rule.

If you think of the system in the early part of this book you might have
given it the problem of identifying an object as either a bird, a plane or a
glider. The system, at some point, asks you if the object has an engine and
you ask: why?

Obviously, it would be fairly easy to check through the current node to see
what the state of the other variables was. In which case the system might
point out that it has already determined that the object has wings, and
doesn’t have a beak, and (with an extra piece of coding) it could calculate
that if itgot a Yes response to Engine then it could conclude the object was
Plane but a No response would cause it to conclude Glider.

And if the rules it was working from were faulty it might announce its
intention of deducing Glider if the object had an Engine - which would be
wraong, thereby letting the user know that this particular rule needed
modifying.

Naturally, a system like MYCIN needs more code to enable it to tailor its

statements, but the principle is the same. Why? provides a snapshot i‘n.to
the current reasoning position of the system which is a useful aid in initial

176

development and debugging as well as serving to reassure the eventual
users that it isn't just working at random.

Another facility of TEIRESIAS is the question: How? applied to any given
statement. Thinking again of our bird/plane/glider example one might
have introduced code to enable the user to ask how ? wings. In other
words, the system believes that the object in question had wings - how
has it come to believe that. The answer would be simple in this instance -
because the usertold it so. And it would be simple to printa short message
to that effect. ’

More complex systems need more complex methods though because,
typically, the userwouldn't ask about the validity of some statement which
he himself had made. He would be asking about some intermediate
conclusion drawn by the system itself. In this case the technique is to step
backwards through the chain of reasoning that leads up to this
intermediate conclusion showing what rules were used and what
information was used. The obvious application of this facility is again in
program development at the point where the system has made a mistake -
by asking an inappropriate question, for instance - and the human expert
wants to know how it managed to get to where it now is. If Why? is the
snapshot facility then How? is the trace.

It's fairly easy to see that enhancements like those offered by TEIRESIAS
can be useful in developing an expert system but, even with a system that
works perfectly, they have some use.

For, if the system can work well, and if the system includes the means to
explain its actions in fairly English-like terms, then you have a system that
could be used to teach others about its area of expertise.

After all, if you have a medical student who isn't very good at diagnosis and
a computer system which is very good at it then you might as well sit the
one down with the other and let them get on with it. A technigue such as
this could, one supposes, dramatically reduce the incidence of apoplectic
fits amongst those who would formerly have been landed with the
onerous task of educating the young.

This approach has, in fact, been tried.

A program, called GUIDON, has been developed to work with MYCIN in
order to exploit MYCIN's knowledge about diagnosis for teaching
purposes. And, again using GUIDON, the set of rules in PUFF (see next
section) has been adapted to MYCIN so that teaching work can be carried
out in the field of breathing disorders.

177

B N e e DI

Obviously, it would have been possible to use these expert systems as
they stand for teaching purposes. But some modification can enable the
system to act as a more closely-involved monitor of the students’
behaviour with a higher degree of interaction than would be possible if the
student just sat there staring at the screen until it was time to go home.

With all the work that's been done in the field of expert systems for
medical diagnosis you'd think that there was no need for doctors anymore,
really. Doubtless there’s some truth in this belief but as yet no medical
authority has suggested that an expert system could be licensed to
practice in its territory despite the reported comments that these systems
are as good as the human experts. And (one supposes) if there’s going to
be alicensed (human) expert on hand one might as well save some money
and get him to carry out the diagnosis as well.

A bit of a pity, really. The idea of an expert system with a pill dispenser just
below the keyboard is rather a nice idea. Unless, of course, one happens to
feel unwell oneself. That would then be a very different matter.

9.2 PUFF - breathing disorders

Having considered MYCIN, consider the following:

What would happen if one took MYCIN and shook it over the wastepaper
basket until all of the domain-specific knowledge fell out leaving only the
basic reasoning mechanism?

The answer is that you would have EMYCIN - Empty MYCIN - which would
be a more-or-less general purpose expert system that, temporarily, wasn't
expert in anything at all. So that's what the scientists at Stanford did. And,
having got an Empty MYCIN they then proceeded to fill it up with
something else.

That Something Else was a set of 50 or so rules concerning pulmonary
disorders and, once put into EMYCIN, they gave rise to PUFF a, rather
happily-named, program for diagnosing breathing disorders.

The idea is that a patient staggers into the doctor’s surgery and breathes
into a machine. There's nothing new in this - the machine simply records
the volume of air the patient breathes and how fast the air moves when he
breathes it. From this record a doctor can make some kind of diagnosis of
the patient’s condition.

For instance, he might be normal, he might be sick, the sickness might be
bronchitis, it might be emphysema, it might be a number of things.

178

Whatever it is, the idea is to input data into PUFF and have PUFF work out
a diagnosis.

Fora start, it's worth noting that PUFF doesn't receive its data straight off
the machine into which the patient breathes. Doubtless it could be
modified so it did, but it doesn't.

What happens is that the machine presents the doctor with several,
possibly relevant, pieces of information about the patient's breathing. The
doctor also has to hand certain, possibly relevant, pieces of information
about the patient in general. For instance: the patient’s sex, age and
smoking habits.

At this point you can forget about the breathing machine and turn your
attention strictly to the computer, ready-loaded with its expert system. For
all that we have now is a list of variables and certain values associated with
those variables and the machine has to make a diagnosis.

Asatrial run 150 sets of patient data were presented to PUFF to see how it
got on - and the results were that PUFF made the same diagnoses as a
human doctor about 90 per cent of the time.

Now, at this point, it's possible to see that this is the sort of thing which
could be set up on our own expert system, described earlier.

Taking all of the variables to be considered we could have set these up and
listed all the possible outcomes (perfect health, bronchitis, etc.). We could
then have presented the system with the 150 sets of data in a training
session and let the expert develop its own rules for forming diagnoses. We
might then have found that it was, occasionally, right in making
subsequent diagnoses.

However, it would be pretty unfair to the scientists at Stanford to suggest
that the systems are identical in every respect because they aren’t.

For a start PUFF doesn't work out its rules for itself. The Stanford
scientists got together with others from the Pacific Medical Centre who
actually told them how to make the diagnoses and, for most expert
systems currently in use, this approach is far more usual. One reason for
this could be that they don't like to trust the program to do too much by
itself - but a more likely reason is that it's usually possible to build a more
efficient system if you know, in advance, just how you want it to proceed.

So t_he medics came up with a set of rules by which diagnosis could be
carried out. And the computer scientists implemented these rules in

179

PUFF. Put like that it sounds fairly easy and, in fact, Stanford makes no
claims to the effect that it was hard.

About the form of these rules, it's worth making a few points. For a start,
like MYCIN its rules are in the IF..THEN... format. So, we might have (in
strictly non-medical language) |F (the patientcan hardly breathe) AND (he
smokes 200 ciggies a day) AND (he can’t stop coughing) THEN (he has a
smoker’s cough).

Now this (apart from the specifics of the items in brackets) is how many
workers describe their expert systems - as a set of IF...THEN rules. This
way of describing things has one prime advantage - that anybody who
uses computers knows what IF..THEN means. You could even write a
BASIC program in which you actually code in terms of IF...THEN. (There is
no disgrace at all in doing this - in fact, PUFF is one of the few expert
systems that actually has been re-coded into BASIC.)

But it's as well to avoid the trap of thinking that this is exactly how it must
be done. All the IF..THEN statement consists of is a proposition - a
statement in logic. And there are many ways of making the same
statement without using the words IF..THEN at all.

For instance, our expert system doesn't store its rules in IF..THEN terms
but it holds exactly the same information as if it did. The expert generates
its own rules and, every time it applies them, it effectively performs the
same logic as if there were an IF..THEN statement there whose
conditions correspond to the rules it has developed.

There's quite a range of terminology associated with the rules in expert
systems. Commonly, they're called ‘production rules’ because they can
produce an outcome, or conclusion. Often the first part of the statement,
following the IF, is called the "antecedent’ and the second part, following
the THEN, the ‘consequent’. But you can also call them: fact and
hypothesis, assertion and deduction, variables and outcomes, or whatever
suits you. The only good reason for standardising on terminology is so that
other people can understand you and, in a fairly new field, there isnt much
standardisation of terms as yet to provide many guidelines as to what
other people will understand.

In its early days PUFF had only 55 rules imbedded in it - which is quite
encouraging, because most computers (one would think) can cram 55
rules into them and it's nice, therefore, to think that most computers can
be made to contain something useful.

Now, before we go on to think about what PUFF does with its rules there's

180

a few more things to say. For a start, PUFF didn’t work too well at first, A
typical complaint of most programs under development, this should give
the amateur cause for cheer. The problem was that the medics didn't
supply perfect diagnostic rules in the first place. The rules they gave the
people at Stanford simply weren't logically capable of diagnosing
everything that came along. And this is where the Knowledge Engineer
comes in.

PUFF produces a faulty diagnosis. The medics say it's a bad diagnosis. So
(says the Knowledge Engineer) what should it have been? And then: why?
Which of the existing rules was wrong? What new rule should be added?

So the medics think about it and come up with a few suggestions which
are added into PUFF’s rule base. It sounds a trivial procedure, this process
of fiddling around with the rules until the thing works, and, intellectually,
maybe itis. Butitisn't a trivial problem as far as building an expert system
is concerned. In fact, it's one of the most commonly-reported problems
there is.

On the mechanical level, there has to be a facility for tinkering with the
system to get it working better - an easy way of modifying and adding
rules. This is because almost every system will need altering sometime
and the danger is that if it's hard to do then it won't be done as often as it
should be or as thoroughly. A practical point, but a worthwhile one.

On the more abstract level, you would think that a bunch of medics could
have got their rules right in the first place. And, again, it's an important
point to note that they couldn’t. The human expert working on a problem
usually has some idea of how he or she solves a problem - but most people
are agreed that, initially, they don't have any very exact idea. Certainly not
exact enough to get a computer to copy it straight off first time,

What happens is more like a process of mutual learning in which both the
computer program and the human expert find out how the human expert
has been working over the years. Possibly aided by the efforts of the
Knowledge Engineer standing between the expert and the program, the
program gets more sophisticated as the exact methods used by the expert
are gradually untangled.

All of this points up the basic problem of how to get the expert knowledge
into the machine in the first place. In many ways it's not strictly acomputer
problem. It's a problem of finding an expert and understanding what he's
talking about sufficiently to be able to write a program to do what he can
do. Rather more like systems analysis than anything else. But it's not a
problem which can be ignored altogether because it is often regarded as

181

the biggest (smallest?) bottleneck in the whole business of building an
expert system.

We cheated, of course. By designing a system which formed its own rules
we sidestepped the problem of finding and understanding a human expert
- but this may well have been done at the expense of the finished product,

The important point to note is that, apart from the simplest systems, it
should be fairly easy to add new rules and modify old ones.

Exactly how the rules are held isn't important. They could be explicitly
coded (with the hazard that this can make extensive alterations difficult) or
they can be stored as an antecedent/consequent list as if they were data.
This latter method is one which, theoretically, expert system builders
favour. By treating the rules as data it makes it, theoretically, possible to
modify them easily whilst retaining the same program for handling the
rules. '

Having built up a set of rules, it's reasonable to ask what PUFF does with
them. If it had been our own expert system it would have gradually
wandered through these rules drawing what conclusions it could as and
when it could. PUFF (and MYCIN), however, don't work like that for they
are much smoother.

In general, there are two methods of handling sets of rules - usually
referred to as forward and backward chaining.

E, —)— Es Es —)— H

Fig. 9.1
Forward chaining

IF E4.THEN: IF E; THEN: IF E3 THEN:H
so all of Eq,E; and E3 have to be established in order to establish H. H, as shown in
Fig.9.1

182

In a forward - chaining, or data - driven, strategy this is exactly how it does pr:
- che i Y y proceed.
he system is given Eq, after which it is given Ep, after which it is giv = r
T : it . g 2 ichiti en Ej - afte

|n.a backward - chaining, or goal - driven, strategy the system first considers H and
wishes to establish whether or not H is the case. Looking backwards it finds it needs
to know Ej to establish H. And to know Ej it needs to know Ez. and to know Eg it
needs to know Ej. So it requests data on E;.

After which it can proceed forwards again to H.

The difference is most apparent when there are a large number of different

conclusions (goals, H) at which the system could arrive and a vari
each goal. variety of routes to

2 H

Es

Fig. 9.2
Alternative reasoning

:En Fig. 9.2, H is most readily established by asking for E3 rather than by starting with
1.

Ain this case Forward Chaining would start with Eq to gi i

' th C 1 to give E3 to give H. Backward
Chaln[ng would start with H and, then, look to Ez or E3. Seeing E3 as the quicker
route it would obtain E3 to give H, ignoring Eq.

The system we described earlier used forward chaining inasmuch as it
worked out what it could from what it had, and having done that it then
went on to work out a bit more on the basis of what it had just done.
Forward chaining, as its name implies, involves moving forward through
;tlje rules all the time driven by the features which are present in the data
it's given.

Backward chaining, on the other hand, works backwards (surprise!) and is
much more purposeful in its behaviour.

183

It starts off by putting up a hypothesis - Is the patient suffering from
bronchitis? - and attempts to work out whether or not this is the case. To
do this, it finds a rule, one of whose outcomes is bronchitis and checks to
see what the antecedents of this consequent are (i.e. what would give the
outcome ‘bronchitis’). If it has data on these variables then it can come to a
conclusion about the possibility of bronchitis. If it doesn’t have data on
these variables it chooses just one of them and tries to get data on it.
Obviously, it can do this by either asking the operator to provide that item
of data oritcan do it by stepping back through the rules to find another rule
which, if satisfied, would provide the data as one of its outcomes.

The method is essentially recursive and (in case you were thinking of it) it
isn't particularly easy to code recursive techniques in BASIC.

But conceptually, if you think of our own system, it's a bit like going to the
last node in the system (or some node which has an outcome labelled as a
goal state) and then trying to get values for all of its inputs by stepping
backwards through all of the preceding nodes that provide input to this
final node.

The argument in favour of backward chaining is that it gives the system a
sense of direction. It isn't just trying to find out anything it can in an ad hoc
fashion - it's specifically trying to establish whether or not a number of
important things are the case.

With a well-formulated set of rules it's highly arguable whether it matters
much which methaod is used. But if you happen to have an expert system
that has been collected over a period of time and which contains (shall we
say) a wide assortment of rules of varying degrees of usefulness with a
wide variety of outcomes of varying degrees of interest then it could well
be an advantage to have a system which could get to the point as quickly
as possible rather than establish the truth or otherwise of absolutely
everything under the sun every time you used it.

As a final point on PUFF, one might wonder what benefits were gained by
writing the program. Why not just leave a subject like this to human
experts?

The obvious answer is that there's a bit of a shortage of experts in some
fields. And, in many ways, this answer is too obvious.

After all, they could have written a book, or manual, on the subject and left
it at that. Why bother with a computer program?

184

_7

Well, in part there’s some truth in this suggestion and there’s probably
also some truth in the suggestion that expert systems are being written
simply because they're interesting to write.

But it's very interesting to note that early versions of PUFF, as with other
expert systems, didn't work too well. Doubtless the human experts
thought they knew what they were doing when they formulated the initial
rule set- but, apparently, they didn't know all that well. So: if they'd written
a book on the subject, what would it have been worth?

In a way, one could make this general-purpose point about computers as a
whole - That they are really great Thought Machines. If you can think of
something, some way of doing things, you can try to program it on a
computer. If the program doesn’t work too well then you can be sure that
you have been unable to express what you wanted it to do - which implies
that you didn’t really understand the matter yourself. Or not as well as you
might have done.

Only when the program is working can you really feel that you understand
the problem fully - which makes the exercise of programming not just an
exercise in educating the computer. It's also an exercise in educating
oneself.

It is sometimes said that a person really has to understand a subject
tharoughly to be able to teach it. By a similar token, one has to have a very
good grasp of a subject to be able to teach a heap of chips the essence of
that subject.

9.3 DENDRAL - chemical structures

Seeing as how expert systems are the latest thing it might come as a bit of
a surprise to hear that DENDRAL dates back to 1965. There were, of
course, computers in 1965 but it was the age of the transistor, paper tape
and punched cards rather than the age of the chip and the screen.

All of which has nothing to do with DENDRAL itself - except to note that
this must be the oldest, best-established, expert system in the world. Or,
at least, the oldest system that's advertised as being an "expert’.

Like PUFF, it comes from Stanford University and is a joint effort between
the computer scientists and a bunch of human experts - this time in the
field of chemistry. The basic idea is this:

When a chemist has prepared a substance he frequently wants to know
what its chemical structure is and there are a number of ways he can find

185

out. First, he can make some intelligent guesses using his own expert
knowledge. Next, he can put some of it in a spectrometer and study the
resulting spectrum lines to refine his initial guesses. In many cases this
will enable him to pin down the exact structure of the substance and
everybody's happy. Th= problem is that this all takes time and a fair bit of
expertise of the human variety. And this is where DENDRAL comes in-it's
an attempt to automate the process of deducing the correct chemical
structure.

In very broad outline the process is just the same as that used by ourown
system or PUFF. The user presents DENDRAL with some information
about the substance plus the spectrometer data (infra red, nuclear
magnetic resonance and mass spectrometry) and DENDRAL comes up
with a ‘diagnosis’ in the sense of an appropriate chemical structure. But
you only need to go marginally deeper into the workings of DENDRAL to
find that the differences are so great as to almost mask the similarities
altogether. The problem really arises because of two main facts. One, the
structure of chemical substances can't easily be described in simple
words. Two, the number of possible structures is enormous - literally
millions of possibilities exist.

So, let's look at the first item - the description of the structures.

If you've got just a passing familiarity with chemistry you'll have come
across pictures of chemical structures, Those graph-like drawings that
show atoms and bonds. You might, for instance, have seen a picture of a
benzene ring - if so, then you know roughly what it's like. If you only had a
benzene ring and one or two other structures you could refer to them by
name and proceed very much as if you were diagnosing the presence of,
say, bronchitis given certain data. The problem is that there are so many
different interconnection possibilities that it just isn't feasible to name
them all. The only way to proceed is to draw them. And some of them are
so complex that the drawings are very far from simple. The way around
this problem is to describe each structure in terms of a graph with a variety
of nodes and links. By doing this any structure that might exist can be
described in one all-encompasing ‘language’.

Sofarso good. But a point worth noting is: that, having done this, the same
‘language’ could not readily be used to describe, say, medical diagnosis.
The language of graph theory simply wouldn’t be appropriate here. It is
occasionally said that the idea of an expert system is to provide a general-
purpose reasoning program. This program could become expert in any
area it chose simply by unplugging a set of rules on one subject and
plugging ina new set of rules on another subject. DENDRAL is a very good
example of the extent to which this ideal would be hard to realise because

186

it highlights the extent to which one descriptive language might suit one
problem and not another. It would be a major inconvenience (if not a
practical impossibility) to either force medical diagnosis into the language
of graph theory or to force the description of chemical structures into the
language of medicine. And to the extent that different subject areas are
best suited to different descriptive languages we find that it is necessary
to adopt a specialised approach for each subject area.

The second point concerns the number of possible structures. In medical
diagnosis it's feasible to hold all of the possible outcomes in memory all of
the time and the same is true of some other fields. Butwhen the number of
possible outcomes runs into millions this clearly is never possible. So the
problem then becomes one of choosing the correct structure when the
machine doesn’t ‘'know’ in detail just what structures are possible.

The way DENDRAL solves this problem is to generate possible chemical
structures at run time and then test them to see if they're the right ones. If
it did this with no constraints on its behaviour it could generate all possible
chemical structures and would be back with the initial problem - simply,
that there are too many of them. It gets around this problem by generating
only a small subset of all possible chemical structures.

Effectively, you can think of DENDRAL as being in two parts. Almost, two
separate expert systems in one.

The first part contains a set of rules for generating possible chemical
structures. The input data to this part consists of a series of statements
made by a chemist which provide some clues about what structures are
likely in this instance. This is, in a way, very similar to the systems we've
looked at so far.

The output from this first part, though, is not one single answer. It is,
usually, a whole series of possible structures - the program is unable to say
exactly which is the right one.

The second part of DENDRAL then takes each of these structures in turn
and uses a second expert system to work out, for each, what spectrometer
results it would give if this substance actually existed and was actually
placed in a spectrometer. The input to this second expert is some
program-generated chemical structure; the rules it uses are a series of
rules derived from real chemists which express the behaviour of a
spectrometer; and, the output is a simulated spectrometer response. At
this point we recall that a further input to DENDRAL was the actual
spectrometer readings which actually came from the substance under
investigation - and DENDRAL compares its hypothesised simulation

187

results with the actual results to see if they're the same. If they are then
this might be the right structure - if not, this structure can be discarded
and another one generated.

The process is one of constant pruning to keep the number of possibilities
under consideration as small as possible at any one time. Unlike some
expert systems, DENDRAL isn'ta ‘toy'. It doesn't exist just to test a theory
about expert systems - it actually has a real use in identifying chemical
structures and over two dozen scientific papers have been written using
the results of DENDRAL working on real problems. In its field it is said to
rival human experts. As such, it certainly gives cause for optimism that
other, useful, systems can be produced for use in other fields. But the
extent to which they could make use of DENDRAL's methods is
debatable.

Certainly, the overall scheme of narrowing the search area down with a
few initial constraints, generating possible solutions, and testing these
possible solutions against some other criteria - that might be applicable in
other fields.

But the precise DENDRAL code in which solutions are described in terms
of graph theory and tested by means of spectrometer simulation - that
might be a bit difficult to transport to another field.

And this seems to be a fairly general point: That simple expert systems can
be fairly easily converted to work in another field but are only of limited use
in any field. And systems which have a very real use have this usefulness
because of their complexity and are very domain-specific. By making them
solve one particular set of problems really well they become highly
specific to that particular problem area and become difficult, if not
impossible, to adapt to other areas.

As a further illustration of this point, consider META-DENDRAL. You
recall that DENDRAL has a system for simulating spectrometer results
from a given chemical structure - well, META-DENDRAL is an expert
system which was used to build that simulation. The problem was: How to
simulate spectrometer results? What are the rules which an expert system
should have so that it could do this? And that's what META-DENDRAL
was built to find out. It works, roughly, the same as DENDRAL inasmuch
as it is able to generate a whole series of possible rules which it then re-
applies back on to the input data to see if each rule would explain the
results.

Specifically, it receives as data some spectrometer output and a graph
description of the substance that gave rise to that output. It then starts to

188

; 1

generate a series rules which might be applied to that spectrometer
dataand, for each rule, applies itand checks its own output to see if it's the
same as the given structure, If it isn't, it generates a different rule, If it is,
then that rule is a possible rule.

By working over a large number of examples META-DENDRAL was able
to generate a set of rules which would show the likely spectrometer
output from a given structure.

In a (very rough) way this is similar to the system described in the early
part of the book in which we just presented the expert system with a series
of examples with known outcomes and let it work out a set of rules for
itself. And it goes close to the heart of one of the main problems in the field
-thatwhen you start building an expert system you often dont really know
what rules should be used at all and need some, preferably simple, way of
finding out.

We noticed, with PUFF, that human experts’ knowledge of the rules they
use is often pretty shaky - and that's in a field in which there actually are
human experts. But why should there be any human experts in the field of
META-DENDRAL? What person would spend his time working out the
likely spectrometer output from a substance of which he already knew the
molecular structure? After all, if you have such a substance, you could
always put it into a spectrometer and solve the problem that way. And, if
you don't have such a substance, who cares what sort of output it *vould
give? The need to have an expert in META-DENDRAL's field only arose
because of the existence of DENDRAL itself and there wasn't really any
expert to turn to for help - so everybody started from square one.

The problem is an interesting one. Most expert systems carry the
knowledge of human experts in some form or another. But a system that
can acquire its own knowledge in this way relies much less heavily on any
pre-existing body of knowledge and is actually likely to increase our store
of knowledge, not just about specific cases but about the entire domain in
which it operates.

Consider the earlier example of weather forecasting. Maybe you know
nothing about weather forecasting. Well, that doesn’t matter too much.
You can still set up a system and train it with a series of examples of actual
weather and, in time, it's likely to get the idea and predict the weather to a
reasonable extent. Now, the fact that it can do this means that it actually
has a set of rules in there which are better than any rules you yourself have
for forecasting the weather. And if you then poke around inside its rule set
you would stand some chance of learning something about weather
forecasting for yourself. A trivial example, possibly, but an interesting
principle - and one which META-DENDRAL puts to good use.

188

9.4 PROSPECTOR - searching fo’minerals

Whereas it must be nice to be able to heal the sick, and doubtless could be
nice to be able to deduce a molecular structure, there’s not really much
doubt that nicest of all would be to be able to discover gold in them thar
hills. Real gold, that is. The sort you can spend.

Now, PROSPECTOR doesn't help in actual prospecting for gold for its
originators have confined their activities to much duller though still
valuable deposits. But the principle’s the same. PROSPECTOR isan expert
system designed to help in the hunt for commercially-exploitable mineral
wealth. And, as such, it's interesting.

Traditionally - one supposes - the human expert in this field loads his mule
with a few pots and pans, makes enough sandwiches to last him through
the winter, and heads up into the hills to apply his expertise. Come Spring,
having used his expert judgements, he is able to stagger into town,
exhausted, and file his claim to a piece of goldbearing territory.
Immediately after he does this he is, usually, shot leaving only his
daughter to avenge him and get the gold back. The rest of the plot is pretty
familiar (she does get his gold back, along with the hand of one who
helped her, and lives happily ever after).

But the real question, which is never satisfactorily answered in most
accounts, is: what did he actually do when he was up in the hills?

So begins the story of PROSPECTOR. For the first stage was - as with all
expert systems - to find out what real human expert prospectors do when
they're looking for gold (or some duller, but still valuable, deposit). And the
answer, in general, is the usual series of inferences and deductions, some
certain, some probabilistic, from which the expert forms a judgement on
the matter.

Justin case you're wondering, the method doesn’t consist of pointing the
computer system at a vast tract of territory and asking it where one should
look for gold - that's a bit vague for a computer. It consists of specifying an
exact location about which certain facts are known and asking for an
estimate of the probability of a certain deposit occurring at this location.
It's a bit like medical diagnosis in some ways. In medical diagnosis you
present the expert (human or machine) with a patient and ask what's
wrong with that particular patient. You don't just ask the expert for a
diagnosis of patients in general.

And, in some ways, the prospector can proceed as does the medic. Like
MYCIN, for example, PROSPECTOR contains a large number of rules

190

|
|
!
i

concerning the.rious things which might be observed and the things
which might be deduced from them. It then proceeds by backward
chaining - hypothesising that a particular outcome might be the correct
outcome and working backwards through the rules to see if it can justify
this outcome.

Unlike medical diagnosis though, the result isn't a simple statement on
the matter.

Consider. Given a patient suspected of being ill, what one wants to know
is: what is he ill with? One of several outcomes has to be chosen. It's not
very important really what the exact probability of the diagnosis being
correct should be. It's simply a matter of getting that diagnosis which is
the most likely.

Now contrast this with mineral prospecting. In any given situation any
given mineral is likely to occur in some quantities - albeit minute - so the
conclusion that a certain mineral exists isn’t very helpful. What the user of
a prospecting system wants to know is just how much of the mineral is
present. Maybe the exact quantities aren’t too important - it would be
quite good enough to know that there was ‘a lot'. But the probability of
there being a lot there is very important. A simple yes/no answer won't do
when the cost of digging up the terrain to test the system's opinion is high.

The subject of risk analysis has some bearing on the matter, inasmuch as
there is a cost associated with a wrong decision.

Suppose you have a patient and you diagnose an illness in that patient.
Now, the diagnosis might be right - in which case, by treating for that
illness you've done the right thing. Good. And with some probability the
diagnosis might be wrong - but, typically, it won't do the patient much
harm if you still treat him for that illness. (Don’t amputate limbs on the
advice of a computer, though.)

The essence of medical diagnosis is that it's important to uncover, and
treat for, every possibility and doesn't generally matter too much if the
possibility doesn't turn out to exist in fact.

With mineral prospecting the situation is slightly different. Obviously,
you'd like to dig in all the places where you might find gold justin case you
happen to be lucky. But, in some ways, it's more important not to dig for
gold in places where there isn't any.

Digging up the scenery takes time and costs money - and while you're
digging up one bit, in general, you aren't digging up another bit.

191

The trick is to find the most likely place and dig there - and that's why an
exact estimate of probabilities is important here in a way it wasn't in
medical diagnosis. It's not that gold is more valuable than health (even
though it is), it's just that the equations on which you take action are
different.

Having said this, it's interesting to see how PROSPECTOR handles the
matter of probabilities in coming to its conclusions - arguably, its methods
are the best worked out of any current expert system.

The simplest cases occur with those rules that express logical relations.
These are of the sort IF x THEN z in which z follows necessarily from x.
Now that's easy, and it's still easy if you associate a probability with x
because you can argue that if the probability of x is p then the probability of
z is p also.

But, in general, for x to have a single argument would make that rule quite
trivial. More usually we would replace x by a more complex term, say, (x
AND y) or maybe (x OR y).

In the case of ANDed relations in which the individual elements have
probabilities associated with each of them, PROSPECTOR takes the
minimum of the values and assigns this minimum probability to the
outcome. So, if the probability of x was 0.1 and the probability of ywas 0.2
then the probability of z would be 0.1. It's easy to see why this method is
chosen - for z to be true both x and y have to be true, which is a tight
constraint so you take the minimum value.

On the other hand, for items joined with OR the maximum value is chosen
because either x or y will cause z, which is a very loose constraint.

Actually, this method isn't entirely free from criticism - again, you could
glance at the section on Probabilities. To give an idea of the error, if xand y
are both independent variables then P(x and y) = P(x)P(y) i. e. the product
of the two. If x and y aren’t independent but are exactly correlated one with
the other then P(x)=P(y)and P(x and y) = P(x) = P(y). And, in general, for
partially correlated variables the truth lies somewhere in between.

Also, for the OR relationship independent variables would give P(x ory) =
P(x) + P(y) - P(x)P(y). And, if they were completely correlated then P(xory)
= P(x) = P(y). With the actual value for partially correlated variables lying
somewhere in between.

So, PROSPECTOR's method is a bit ad hoc but it's still a method which
gives an answer in the appropriate range.

192

———<‘-__—-‘

The next, and more interesting method, is one in which a series of
assertions (rules) occur which each contribute something to the
probability of some hypothesis.

Forinstance, we might say that if there's gold lying around in big lumps on
the ground then there’s gold in them thar hills with probability 0.9.

By itself this statement is much the same as ones we've come across
earlier. The difference here is that we're really only concerned with the one
hypothesis - that there's gold in them thar hills - and, therefore, a very great
number of statements will occur which have some bearing on that
hypothesis, either supporting it or contradicting it. The problem then
becomes one of how to keep score of all of these probabilities.

The method PROSPECTOR uses is a neat application of Bayes' formula
(see section 2.5) for assessing the prior and posterior probabilities of an
event occurring - and ‘event’ here can be anything, such as the hypothesis
concerning gold and hills being true.

In putline. each hypothesis starts off with an initial (prior) probability of
being true, say P(H). So, the prior probability of there being gold in them
thar hills might be, say, 0.1. P(H)=0.1.

Now, there you are in your prospector's hat, sitting at the screen
presenting the system with an extra piece of evidence. Having got this
extra piece of evidence ("just found a piece of gold the size of your fist”,
say) the probability P(H) changes to become P(H:E) - the probability of the
hypothesis given this new evidence. So the system can update its old
probability value with an assignment statement: P(H) = P(H:E) and then
proceed to check out a new item of evidence.

The guestion then is: how to calculate P(H:E).
Well, the Rev. Bayes had an answer. It is:
P(H:E) = P(H)P(E:H) / (P(H)P(E:H) + P(not H)P(E: not H))

And, in some ways, the best thing to do is to put this into the program and
forget it. If you can't persuade yourself to do that, then try:

P(H:E) = LS.P(H) / (P(not H) + LS.P(H)) which, at least, looks easier. And
LS = P(E:H) / P(E: not H)

ﬁf ofr\:hese formulae mean the same thing in factand the explanation goes
Ike this.

193

4__’___—

al

LS is the likelihood ratio (a well-known quantity, but only to statisticians).
It is the ratio, in this instance, of the probability of receiving this bit of
evidence given that the hypothesis is true divided by the probability of
getting this same bit of evidence given that the hypothesis isn't true.

So-the hypothesis is that there's gold in them thar hills. Now, ifthisistrue
the probability of picking up a piece of gold the size of your fist is, maybe,
0.3. And, if it isn't true the probability of the same event falls dramatically
to, say, 0.1. So the likelihood ratio has the value 3.0.

If we turn then back to the formula for P(H:E) we get
P(H:E) = 3 P(H) / (1 - P(H)+ 3 P(H)) =3 P(H) / (1 + 2 P(H))

And so, ifthere was a fifty:fifty chance of gold being in the hills beforehand
P(H)=0.5 then P{H:E) = 1.5 / (1 + 1) = 0.75.

In other words, things are looking up.

This gives a new value of P(H) for this hypothesis and, as more evidence
accumulates, new values of P(E:H) will continually modify P(H).

The story doesn’t quite stop there, because there are always a few
pessimists around who will note that some evidence points to the fact that
the isn't any gold around. Specifically, you might find that there aren'tany
pieces of gold lying around the size of your fistand you want to be able to
allow for this. The calculation is the same as before except that you
consider not-E instead of E, to indicate that the evidence was lacking. And
you then calculate the likelihood ratio and adjust P(H) as before. The main
point to note is that you need a new set of probabilities - a new likelihood
ratio because the old one was based on the presence of the evidence. So, if
we take

LN = P{not E:H) / P(not E: not H)

as the likelihood ratio associated with the lack of a certain piece of
evidence we can calculate a new P(H)=P(H: not E) as before except that
we use LN instead of LS.

Suppose, for instance, that you haven't found that bit of gold. Then the
probability of not finding a lump lying around given that there isgold in the
hills might be 0.9, say, and the probability of not finding gold lying around
given that there's no gold in the hills might be 1.0. Giving LN=0.9/1.0=
0.9. So the absence of gold lying around would reduce the probability of
there being gold in the hills - but not by very much. In the example above it
would reduce P(H) from a value of 0.5 to a value of 0.47 approximately.

194

Of course, if the system asked you about lumps of gold lyi

you said that, yes, there were, then there'd be nF:: nee% forli\;lggtg;?luar;i 323
if it was true that there weren'tany lumps of gold lying around. Effectively
the reason for having the two values LS and LN is simply to put mgether'
thg results qf the two questions - the positive side and the negative side
without having to be so boring as to ask each question separately. '

Ingeneral, the rules in PROSPECTOR are all in this form IF...T|

so that each rule is set up with a likelihood ratio both fgrEla\I ngsrw;
response and a negative response. These ratios are calculated as just
described and originate in the minds of expert, human, prospectors, The
designers of the system having asked the experts questions like: If t'here
was gold in therr_l thar hills what do you reckon the chances would be of it
lying around in big lumps? And: If there wasn't gold in them thar hills what
do you reckon the chances would be of there not being any lying around?

F'our questions in all to cover the full range of possibilities, to give values
or:

P(E:H)

P(E: not H)

P(not E:H)

P(not E: not H)

Obvipusly, in order to keep things simple, we've considered a rather
special case - that in which the user of the system actually knows the
answer to the question the system asks.

After all, any idiot ought to know if he's got a lump of gold in his fist or not.
But, in general, in real life, the answers are much less certain.

Prospectors of other minerals tend to ask pretty specific questions, like:
Has hornblende been pervasively altered to biotite?

And, really, one sympathises with an isn"
s i yone who isn't altogether sur,
answer to that one. ¢ R

The PROSPECTOR solution is to give the user a scale from -5 to +5 in
which to answer. A reply of +5 is definite yes, and -5 is definite no.

Typically, the user will answer somewhere in between and PROSPE!

takes account of this by readjusting P(H) with a little bitof LS and a Iitfl-zre(gg
of LN by a system of linear interpolation. You can think of it as a linear scale
with LN on the leftand LS on the right. Accordingly, as the user’s response
varies betv_veen -5 and +5 then P(H) is adjusted with the value, L say,
which is picked off from this sliding scale between the two. ' '

195

As it stands, the system that PROSPECTOR uses is pretty elegant in theory
and, according to reports, pretty good in practice. But, like most experts, it
isn't quite so modular in design as it at first appears.

The main difference occurs when the user starts to respond with answers
that aren’t simply yes or no. For instance, the system might want to know
the estimated age of a lump of rock and the answer would be a figure in
years. This leads to a situation in which the values for LN and LS aren’t
simple values. In general, likelihood ratios are functions of a variable and
these functions have to be stored somewhere and calculated at the time
the input is given. It's not a big problem - but it's a departure from strict
modularity. Also, the strictly logical questions require a slightly different
form of code to the mare general probabilistic items.

The result is that, although the principles used in PROSPECTOR could be
adapted to other areas, the exact code might not be easily modifiable - a
comment that could be made about many expert systems.

And, to a very large extent, the bulk of the work on building the system,
seems to consist of obtaining the rules from the human experts on the
subject - again, a comment that could be made of most other systems.

But the overall impression (again, with most systems) is that once the
human experts have been interrogated and a set of rules drawn up the
hardest part of the job is over. For, after this has been done, the form in
which the system should be programmed becomes, to some extent,
apparent. Or, at the very least, some possible ways of proceeding become
very unattractive and some other ways tend to stand out.

It's all a bit like the distinction between systems analysis and
programming. If by ‘programming’ you mean doing the entire job then it
can be quite complicated. But if programming simply entails coding up a
structure predetermined by systems analysis then it's fairly
straightforward. In the field of expert systems the big problem lies in
uncovering this overall structure prior to the actual coding for each
separate area of expertise.

9.5 Some other examples

The problem with giving examples of expert systems is that the very
definition of expert system is sufficiently loose to enable one to add in just
about anything. This doesn't mean that the definition is completely
useless - it just means that it's flexible. You can stretch it a bit (in which
case the list of current expert systems become nearly endless) or hold it
rigid {in which case there are hardly any expert systems in existence atall).

196

s e

Andit’s not jusgs who have this problem. At the time it f

Central Computer and Telecommunications Agencyoa‘(‘gg;lg? thhaeu:lu Kni
sufficiently jumpy about the prospect of Great Britain being swampedgby
cheap Japane_se expert systems that it commissioned a survey to find out
who was doing what in the field. This survey (and no disrespect is
mtended_ to any myolved parties) consisted of a questionnaire which
began with a definition of expert systems (the one given at the front of this
book_] and then.. more or less, asked respondents whether they had one
ara]nd, if so, what it did.‘ It'sa sensible approach in many ways but it would
‘A;\;elzgzrhgnl?gi sensibly applied to a subject about whose exis¥ence there

For instance, towards the end of this book you'll find i

mfe(encmg program which can be readily used formedical di.':c::;nBc;)i!s?Sg:Jr'1
putit on your micro and you then have an expert system and can tell? thé
CCTA about it. If everybody did that UK usage of expert systems would
apparently, rocket. Or, maybe, do the same with the system in the first pan"
ggr;hghpooll(. Ort,hr_na\;be,ds;nking even lower, just write a program to do

ing (anything) and decide tha i i

i ek ol withgvou? tthat's an expert system, And who's

The point is that asking someone if they have an ex isn’
! S] ert system isn't th
same thing as asking them if, say, they've got a coﬁ)ur T‘\;' ©

Still, be that as it may, the following is a list of som i
! f e systems which
claimed to have a large knowledge-based component.y cnare

System Name Purpose
QAJE;N Dﬂedical Diagnosis
PIP "
CASNET ’
INTERNIST :
SACON Engi i i i
gineering Diagnostics
EEOSPECTOR Geology Diagnosgtics
SENDHAL Chemistry
SYCHS Chemistry
ELNCHEM Chemistry
Circuit Analysis
I\r\ﬂflé)LGEN Genetics
el CHO Mechanics
FHCOS Programming
Configuring Computers
SU/X Machine Acoustics

197

VM Medical Measurements
SOPHIE Electronics Tuition
GUIDON Medical Tuition
TEIRESIAS Knowledge Acquisition
EMYCIN '

EXPERT "

KAS "

ROSIE Building Expert Systems
AGE i

HEARSAY Il "

AL/X "

SAGE "

Micro-Expert

There are a number of interesting points to note in this list. And, doubtless,
the first point to note is the number of expert systems which are involved
in building other expert systems - and maybe this helps to show the
difficulty of definition. Consider, for a moment, compilers. These are
computer programs and their function is to help people write computer
programs. And, by allowing a definition of expert systems that includes
expert- systems that help people write expert systems, aren't we,
somehow, getting a definition that's really about as loose as the term
‘computer program'? Maybe it doesn't matter if we are. After all, we could
just sit back and say: “They're useful, who cares what they're called?” And
that attitude may well, in the end, prove to be the best one to adopt -
otherwise there's a danger of being so pedantic that we finish up
criticising other people’s work simply because it doesn’t fit some
preconceived label.

The next interesting group of systems are those used in Knowledge
Acquisition, Weve already noted that getting the expert knowledge into
the system is one of the hardest tasks and one for which computer help
would be handy - so here’'s some computer help.

Not, of course, that we haven't got our own help; our learn-by-example
system is a Knowledge Acquisition System in its very own right.

If you've got your own expert system (the one described so far) running
you might be interested to see if it can run in any of the problem areas
listed above.

Medical diagnosis should be fairly straightforward. Use symptoms as the
input variables and illnesses as the outcomes and throw some examples
at the system to see how it gets on (though you might find the later,
Bayesian, system rather more effective for this).

198

Engineering diagnostics - yes. You could try building up a system to show
you why your car won't start.

Geology - maybe. It depends rather on your knowledge of geology. The
advantage of medicine is that you can buy medical encyclopaedias fairly
cheaply which give information on lots of illnesses to work with. There
aren’t very many home textbooks on mineral prospecting, unfortunately.

Anyone with an interest in palaeontology could try classifying fossils
using our expert. For instance, a lamellibranch has an asymmetrical shell
whereas a brachiopod has a symmetrical shell. So: itis a lamellibranch or a
brachiopod? The snag is that, having said that, you hardly need acomputer
to work out the answer once you've looked at the shelll More complex
examples may well spring to the mind of the enthusiast.

Chemistry - yes. Chemical analysis (at school level) does involve a series of
tests with specific results. So it could assist in some chemical analyses.

Circuit analysis - again yes. Because the system only deals with Yes/No
responses it would be no good with analogue circuits (in which currents
vary continuously) but it could very easily represent a digital process. Use
a multi-node system and let each node represent one component whose
inputs are either O or 1. Interconnect the various nodes and you could
have an expert system to represent a whole boardful of chips. If certain
conditions were good (i.e. were consistent with the designers’ intentions)
then these could be monitored by another node designed to judge good
conditions from bad ones. So the expert could simulate the ‘chip’
operations at the same time as monitoring the operation for error
conditions.

Many of the applications listed above will tend, however, to leave our own
expert system somewhat standing - largely because ours is too general-
purpose to be able to be tailored to some of these specific applications.

Take MECHQ, for instance. This is an expert system which can give
intelligent answers to complicated mechanical problems. Suppose, for
instance, that you have a system of pulleys, strings and weights. In place
of one weight there is an empty pan hanging by a string. With the pan
empty the system is not in equilibrium and the question is: what weight
should be placed in the pan to bring it into equilibrium? The problem is
fairly familiar in school physics. To answer the question the system needs
to understand the arrangement of pulleys, the relevant laws of physics,
and be able to use this knowledge to get an answer. MECHO can do this.
And, in a very, very crude way our multi-node system might also do it.
Using each node to represent a pulley the inputs could be the weight

199

ﬁ———i

hanging from that pulley and the outputs (outcumes’:nuld be the strings f

supporting that pulley. And the problem is that our system with its i H P ; ER 7 0
Yes/No outcomes could only (once it had got past the first pulley) say i
whether a given string had a force acting on it or not - not the exact force

that was acting on it. Which makes an exact solution impossible.

You might try to get around it by ‘using’ standard weights - like, for

instance, presence or absence of a weight altogether. And then add a

‘monitoring” node to check for equilibrium at some point(s) asitsinputand i 1 0. A Ru Ie- Bas ed BASIC
then outputting additional weights here and there according to its inputs

until the system balanced. But it might (might!) lack a certain precision. ! Expert ’

On the other hand, of course, it might work, There's really no substitute for i
putting together a system that you think might do something and then :
watching to see what it actually does. After all, that's what everyone else

does! That's what is known as Research.

10.1 A system that works backwards

Although the system described in the early parts of this book may be fine
for you, the previous chapter shows that there are some alternative
methods that might be more useful in certain circumstances. In this
chapter there is a practical alternative for you.

In a sense, one of the main problems in building an expert system seems
to be that even if all of the necessary knowledge is readily available it's in a
form which is the wrong way round.

1 Suppose you want to build a system which is expert in the field of medical
| diagnosis.

Now: you hardly need to build a system based on learning by example, as
| we did in the case of weather forecasting, because there's lots of
| information readily available which should allow you to go to a much more

direct solution. The problem really is that the information appears to be the

wrong way round.

Get a medical encyclopaedia and look up the entry for influenza, say. You'll
find that all of the symptoms are given, and that there isn't any argument
about these symptoms. In other words, given the symptoms, an accurate
diagnosis could be made every time.

But, to use information organised in this way rather suggests that what
you should do is to pick up a patient, decide he has influenza, then look in
the encyclopaedia to see if he has the right symptoms and, somehow, this
seems all wrong.

200 ! 201

D -

What you want todo s to pick up a patient, decide what his symptoms are,
and then look these symptoms up to see what he’s suffering from - and the
encyclopaedia doesn’t seem quite the right way of doing this. Instead of
one illness with lots of symptoms we want a system which shows a group
of symptoms followed by one illness. And that's what we'll put together
now. The ideal being a situation in which you can, in some particular field,
simply throw a lot of definitions at the machine in such away thatitcan use
these definitions rather like a human expert might use them.

This is what, of course, programs like PUFF, DENDRAL and
PROSPECTOR try to do. So there’s no harm in us giving it a try.

We'll use a Bayesian inferencing system to allow for the fact that most
information isn't absolutely certain, but probabilistic, and to allow for the
fact that it sounds pretty good to say you're using a Bayesian inferencing
system when you're telling people about it all. And we’ll place the main
emphasis on the form of the information you're going to give the program
about the field in which it's supposed to become expert because collecting
this information is likely to be he hardest part of the job.

So, to get going, we'll start coding.

2000 DATA SYMPTOMS
2010 DATA 1, SYMPTOM 1
2020 DATA 2, SYMPTOM 2, END

This is the form in which we'll keep the symptoms. By saying 'symptoms’
it sounds as if we're exclusively concerned with medical work - but it
might be anything really. The essence of the matter is that there’s a lot of
questions the computer might ask and that these questions are held as
strings SYMPTOM 1, SYMPTOM 2, etc.

For instance, SYMPTOM 1 might be the string: DO YOU COUGH A LOT?
Or, if you were trying to fix a wayward car: ARE THE LIGHTS DIM?

Organised in this way, you can type in a lot of questions very fast.

Now we have the illnesses.

1000 DATA ILLNESSES
1010 DATA ILLNESSES 1,p, [jpy.en) 999

1020 DATA ILLNESSES 2,p, [jpy.pn) 999

This is the form in which we'll keep the ilinesses. They needn't actually be
ilinesses though. They can be any outcomes and each DATA statement
contains one outcome and all the information relating to it.

202

Togo through the items one atatime, the first is the name of the outcome -
say INFLUENZA. The next item, p, is the prior probability of that outcome
P(H) - this is the probability of this outcome occurring given no further
information at all. We then have a series of repeated items with three
elements. The first element, |, is the number of the relevant symptom (or
variable if you want to call it something else). The next two items are
P(E:H) and P(E:not H) - the probabilities of getting a Yes answer to this
variable given the outcome is true and the probabilities of getting a Yes
answer if it isn't true. The last item is a stop code - it's there so that the
_;?Irogram can tell when it's come to the end of the details on one particular
illness.

For example:
1010 DATA INFLUENZA, 01, 1,9,01,2,1,01,30,01,999

This says that, in the case of influenza, there is a prior probabilty P(H)=.01
of any random person having this illness.

Now suppose that the program asks question 1 (symptom 1). We have
P(E:H)=.9 and P(E:not H)=.01 which says that if the patient has influenza
then nine times out of ten he'll answer Yes to this question and, if he
doesn’t have influenza, then he'll only answer Yes in one case in a
hundred. Obviously, a Yes answer supports the hypothesis that he has
influenza. A No answer tends to suggest that he hasn't.

Similarly for the second symptom/probability group (2, 1,.01). In this
case P(E:H)=1 which says that, if has has influenza, then he must have
this symptom. He might have the symptom without influenza (P(E:not H)
=.01) but it's not very likely.

Question 3 rules out influenza if he gives a Yes answer because P(E:H)=0.
This could have been a question like - Have you had the symptoms for
most of your life? Or some such.

It takes a bit of thought and, if you want good results, a bit of research to
come up with reasonable figures for these probabilities. And, to be honest,
getting this information in the first place is probably the hardest task - and
one in which a computer can't help you much. But if you can get the
information in this form then you can write a fairly general-purpose
program to sort it all out.

Fundamental to this program is Bayes’ Theorem, which states that:

P(E:H)P(H)

PIR:E) = o E-R)P(H) + P(Enot H)Pnot H)

203

The gist being that the probability of some hypothesis given a certain
piece of evidence can be calculated from the prior probability of that
hypothesis with no knowledge of the evidence and the probability of the
evidence arising given that either the hypothesis is true or that itisn't true.

So, looking at our illnesses, we can calculate:
PY.p

P{H:E) = ————
{=iE Py.p + pn.(1-p)

The process is that we start off with P(H)=p for each iliness. The program

asks a question and calculates P(H:E) depending on the answer. The

answer Yes gives the above calculation. The answer No gives the same

calculation but with (1-py) instead of py and (1-pn) instead of pn.

Having done this, this question is then ‘forgotten’ except inasmuch as
P(H), the prior probability, is replaced by P(H:E). And the process carries
on like that, continually updating P(H) as new information arrives.

Broadly, we can divide the program into a number of parts:

PART ONE

The program searches through the DATA statements to find out how
many illnesses there are and how many symptoms. You could have told it
this in advance, but it saves you having to count them all up if it can do it for
itself.

At this point any arrays that are needed can be DIMensioned.

PART TWO

The program checks the DATA statements to find al! the prior probabilities
P(H). It also works out some rule values RV(l). The idea of these is to see
which questions (symptoms) are the most important so that it knows
which to ask first. If you calculate:

RV(l) = RV{l) +ABS(P(H:E) - P(H:not E))

for each question you'll get RV(l) showing values which represent the
amount of change they can make to the probabilities of all the ilinesses to
which they apply.

PART THREE

The program finds the most important question and asks it. There are a
number of ways you can handle the answer - you could just take Yes or No.
You could also consider a Don’t Know (which produces no change). More

204

A

e

complex - you could have a scale from -5 to +5 to express degrees of
certainty in the answer.

PART FOUR
The prior probabilities are updated with the new values, given the new
evidence.

PART FIVE

New rule values are calculated. Also calculated are minimum and
maximum values for each illness based on the current prior probabilities
and the supposition thateither all the remaining evidence goes in favour of
the hypothesis or goes against it. The idea is to see whether any given
hypothesis might still be in the running or not. Those which aren’t can be
discarded. Those whose minimum values are above a certain level can be
announced as possible conclusions.

The program then goes around to Part Three and continues until there's
nothing more for it to do.

10.2 The BASIC program

Here is the BASIC equivalent of the above steps. For clarity, the Applesoft
version is explained fully and the Spectrum version is listed.

10 REM :FIND NUMBER OF ILLNESSES AND SYMPTOMS
20 READ ASAS
30 IL=0RL=0

40 READ PJ

50 READ PYPNS: IF § < > 999 THEN : GOTO 50
60 IL=IL+1

70 READ AS$: IF AS = "SYMPTOMS" THEN : GOTO %0
80 GOTO 40

90 READ A$BS: IF AS = "END” THEN : GOTO 120
100 RL=RL+1
110 GOTO 90

120 DIM P(IL),RV(RL),EO%(IL),MI{IL,MA(IL),IL%(IL) ER%RL)
130 FORJ=1TORL

140 ER%() =1

150 NEXT

The code scans the list of ilinesses looking for, and counting, the number
of stop codes to give IL, the number of ilinesses defined. It then reads the
list of symptoms, counting them, until it comes to the word END in the
DATA, giving RL as the number of symptoms listed.

205

The arrays DIM'd are:

P(IL) - which is used to keep a record of the current probabilities.

RV(RL) - which is used to keep a record of the ‘value’ of each
symptom in terms of the amount of change it can induce in
the probabilities of the illnesses.

EO%(IL) - a list of the number of relevant symptoms outstanding for
each illness, this is reduced every time a symptom is
queried.

MI(IL) - the minimum possible value which each illness can achieve.

MA(IL) - the maximum possible value which each illness can achieve.

IL%(IL) - a record of the number of symptoms listed for each illness.

ER%(RL) - a 'switch’ whichis setto 1 initially. After each query it is set
to O to stop the same question being asked twice.

160 REM :FIND THE PRIOR PROBABILITIES AND RULE VALUES
170 RESTORE : READ AS

180 FORI=1TOIL
190 READ AS.P(1)J
200 P=P[)

210 READ PYPN,S

220 EO%(|) = EO%[) + 1

230 RV{J)=RV{))+ ABS (P = PY/[P " PY+(1-P) * PN)-P* (1-PY)/(P* [1-PY)+(1-P) " (1 -
PN))

240 IFS <> 999 THEN .J = 5. GOTO 210

250 I1L%() = EO%(1)

260 NEXT

270 REM -FIND THE MAXIMUM SYMPTOM AND QUERY

280 R=0HR=0

290 FORJ=1TORL

300 IF RV[J) > R THEN :HR = J.R = RV())

310 RV} =0

320 NEXT
330 IF HR = 0 THEN : PRINT "NO FURTHER SYMPTOMS": END
340 READ AS

350 FORJ=1TOHR
360 READ PAS

370 NEXT
380 HOME : PRINT “E X P E R T": PRINT “-eneeeo--": PRINT : PRINT : PRINT "QUESTION "
PRINT AS

390 ER%(HR) =0

At this point the program has found a question and printed it on the
screen. What you have to do now is to answer it.

In this program your response is held in RE and is on a scale from -5 to +5.

206

400 INPUT “REPLY ON A SCALE -5 (NO) TO +5 (YES)",RE
410 REM :UPDATE THE PRIOR PROBABILITIES USING THE RESPONSE
420 RESTORE : READ A$

430 FORI=1TOIL

440 READ AS$P

450 FOR K =1TO IL%[l)

460 READ JPYPN

470 IFJ < > HR OR EO%(l) = 0 THEN : GOTO 540

480 EO%(l) = EQ%() - 1

490 P=¢p()

500 PE=P"PY+(l-.P)*PN

510 IFRE>OTHEN P =P " (1 +(PY/PE- 1) RE/5)

520 IFRE<=0THEN Pll) =P " (1 +(PY- (1 -'PY) * PE / (1 - PE)) * RE / 5
530 IF P(l] = INT [P() THEN -EQ%(l) = 0

540 NEXT

550 READ ST

560 NEXT

You might be a bit puzzled by the calculations for P(l) which vary
depending on whether or not RE is positive or negative.

The idea is this:
If RE were +5 then the answer would be Yes and we calculate

P(E:H)P(H)

P(H:E) =
e P(E:H)P(H) + P(E:not H)P(not H)

and, if it were -5, we calculate

P(not E:H)P{H)

P(H:not E) =
) P{not E:H)P(H) + P(not E:not H)P(not H)

and, if RE were Q we calculate
P(H:E) = P(H).

And if it's somewhere in between the extremes we have a bit of one and a
bit of another - the code given calculates just how much of one bit and how
much of another with a bit of simplification and re-arranging thrown in to
speed things up a bit.

If P(l) = INT(P(I)) then we can knock EO%(l) down to zero because we have
a certain event - no more questions are needed on this item.

207

570 REM :FIND NEW RULE VALUES AND MINIMUM AND MAXIMUM PROBABILITIES
580 RESTORE

590 READ A$
600 MM =0:MH =10
610 FORI=1TOIL
620 P=P()

630 Al =1A2=1A3=1Ad4=1

640 READ ASPZ

650 FORK =1TO IL%(l)

660 READ JPYPN

670 IF ER%[J) * EQ%(l) = O THEN : GOT? 7;:!
IF PN > PY THEN :PY = 1 - PYPN =1 -

:53 RV{I) =RV{J)+P * Y/ (P PY+(1 -] * PN)-P (1-PY}/ (P~ (1 -PY)+(1-P) " (1 -PN])

700 Al =Al"*PY

710 A2=A2" PN

720 A3 =A3 " (1-PY)

730 Ad=A4"(1-PN)

740 NEXT

750 MA() =P * Al /(P Al +(1-P) " A2)

760 MI)=P A3/ [P A3+[1-P)" A4)

770 IF MA[l) < PZ THEN .E0%(l) =0

780 IF MI()) > MM THEN :MH = MM =MI(l)

790 READ A$

800 NEXT

Of this, probably the calculation of the new rule values looks easy, but the
bit about MI(1) and MA(l), probably isn’t so clear.

First, notice that we tested PY against PN to see which was the biggest. If
PY is the biggest - fine, that means thata Yes answer increases P(H)and a
No answer decreases it. If it's the other wav’around we want the opposite
of these answers and that means, when you're vyorklng with probabilities,
taking the complement, i.e. 1-PY and 1-PN. This way we can phras_el_c_wur
questions any way around we like and,Aas long as we got the_probabl ities
right, the program knows whether it has supporting evidence for a
hypothesis or not.

What we do now is to consider MA(l) - the maximum probability possib!e
and we calculate this by assuming that all the unanswered questions will
eventually be answered in such a way as to support the hypothesis.

We still calculate P(H:E) in exactly the same way as we wm_JId have done if
we'd been adjusting the probabilities. But, for the maximum possible
value we regard E as not justthe answer to one‘quesnon put the answe.vl"to
all the outstanding questions. So P(E:H), for instance, is the probability

208

that alllthe su p;&ting evidence occurs given the hypothesis is true. And,
assuming that each question is independent of every other question, this
is the product of all the outstanding values of P(E:H).

P (all supporting evidence occurs: H) = P(E,:H)P(E,:H)P(E;:H)...P(E,:H)
which is the value we stored in A1,

So we have:

A1 = P(all supporting E:H)
A2 = P(all supporting E: not H)
A3 = P(no supporting E:H)
A4 = P(no supporting E:not H)

And, frankly, anyone that starts to get a little mixed up at this point isn't
alone. The procedure | usually adopt is to write down what | think it means
then go and mow the lawn. Then | come back and write down what |
should have written down if I'd been thinking straight in the first place.
Then | go and mow the lawn again. Then | realise that | hadn't seen it quite

straight that time and alter the equations a bit. Then | go and mow the lawn
again. And so on.

At the end of the day, the lawn looks magnificent and | have a few drinks at
which point | realise I've got it wrong and, just before passing out, see
what | should have done and forget to write it down.

The next day the process resumes.

Atthe end of the week | am nearly down to bedrock where once there was
a fine lawn and am trembling with what might well be fatigue.

| then realise that the very first set of equations | wrote down were right
but that I've lost the piece of paper | wrote them on.

You, too, can spend your life this way. It has the great benefit of qualifying
you for a disability pension around 35 or less. Or, you can plan the whole
thing systematically in the first place.

Anyway, having got A1, A2, A3, A4 you can calculate the minimum and
maximum possible values as shown. All you need do is copy out the code
and reflect on the fact that this treatise is built on human suffering beyond
average comprehension.

Finally, we deduce the most likely conclusion, like this:

209

810 REM :SEARCH FOR A CLEAR WINNER

820 FORI=1TOIL

830 IF MI(MH) <= MA(l) AND | <> MH THEN .MM =0
840 NEXT

850 IF MM = 0 THEN : GOTO 270

860 RESTORE : READ AS$

870 FORI=1TO MH

880 READ I$,A$

890 FORK =1 TO IL%l()

900 READ JPYPN

910 NEXT

920 READ AS

930 NEXT

940 HOME: PRINT “E X PE RT": PRINT “--eeeeeeees " PRINT : PRINT : PRINT “THE MOST LIKELY

OUTCOME IS 1%

950 PRINT “WITH A PROBABILITY ";P(MH)
960 END

1000 DATA ILLNESSES

1010 DATA ILLNESS 1,01,1,8,1,2,2.9,999
1020 DATA ILLNESS 2,.5,1,1.5,2,0,1,999
2000 DATA SYMPTOMS
2010 DATA 15YMPTOM 1
2020 DATA 25YMPTOM 2ENDEND

What this does is to take the maximum of the minimum values possible
and see if it's greater than the maximum of any of the other values.

If it is, you stop, having finished.

If it isn’t this is because some other outcome could, just possibly, be more
probable than this particular outcome and, as this is the most probable
outcome, you can’t draw any firm conclusion yet and you have to go back
and query another item.

If this sounds a bit too much like hard work you could simply pick that
outcome with the greatest P(l) on the basis of the questions asked so far

and, if it's a high enough probability to satisfy you, decide that this is the
correct conclusion. Or, correct enough, anyway.

Here is the complete program written in Spectrum BASIC:

210

Sinclair Spectrum listing

2 REHM Notice that the DATRA st

ements and correspanding tests

ar stop codes are changed slig

Ly for the SPECTRUM

DIM a$(2E@) : DIM b%s(20): DIM

isi{20)

1@ REM Find numbesr OF illnesse

and sumptomns

20 REBD a%,3%

3@ LET il=@: LET riL=0@

4@ READ pP.,J

5@ READ pu.pn.s: IF =5<¢>899 THE
TO s@

6@ LET it=il+1
7@ READ a%: IF a%(TO 8)="symp
toms™" THEN GO TO 9@
88 go.io <8
p,a%: IF a =
4" THEN G0 To 128 e S

o

n

J

i@ REM fFaind rior 1 Latsx
= and rule vaLEe; PEAEmRE T S
17@ RESTORE : READ as%

21@ READ py.pn,=
ggg jL_E-:‘I' c-‘i;:otil-ri

ET vijl=w{Jj}+RABRS (pspy-(ps
FY+(1l-p) spnl -p%il-py) i 3
tiwp-)ira—pntlg ! PSS (P2 (I-pyl+

25@ LET L{i)= i
26@ NEXT in -
278 REM find max sSumptor and qu

ery

28@ LET r=@: LET hr=@

29@ FOR j=1 TO r

B?E J{IF w(ij)>»r THEN LET hr=j: LE
=W
1

4
33@ IF hr=@ THEN PRINT "
her symptoms": STOP o FUEA

34& READ a%

35@ FOR Jj=1 TQ hr

36@ RERD p,as%

378 NEXT J

??B"CLS : PRINT AT 12.0;, "EXPER
T PN " tRuestion: T’ (af)

21

30@ LET r thir)=0)

i0@ INPUT “Reply on -5 to 45 Sc

208 TN = 2
aley AEm update prior probabilit

es
=AEE RESTORE : READ 2%
43@ FOR i=1 o il
448 RERD &
45@ FOR k=
45@ READ J
478 %F Jiz (]
sS4 .
TESB LE; nii%;&(x)—l
49@ L p=p (i
e=pxpy+{(1-p} ¥pn
g?g %ETFS}E THEN LET pili)=px(1l+
spe—-1)sres 5l L
(ggépIF re<=@ THEN LET pt:J;p*[l
+Epg—(1—p3)*Pexil—pegsirexs T
s5@ IF pti) =INT (p(i}) THEN
ol(i)=8
S48 NEXT k
SS@ READ st
gg@ ggng;nd npew rute values, ®m
inima nNd WaxXima
-RESEDRE
so@ RERSD 2
&@@ LET mm=2: LET mh=0
6l1@ FOR i=1 TO il

3
63@ LET ai=1: LET aZ=1: LET al

i
’$0 L il
PY,P

P

§
= n
f R ©(i)=0 THEN GO

n
« 1
—P)-}Pﬁ]—P*[i (Pll-pyl+(i-p
2(1-pni)

788 LET al

290 LET a5=
72& LET al3=al
75@ LET ad=at:x

XT
Bl @ LET it(i)=psa3-(pxal3+(1-p)*a
ai S o
afi)<pz THEN LET 01i):=

ZZ2 IF F1i13he THEN LET mh=i: L
ET mm=i (i}

9@ READ =

g?g gghwﬁéa!_ch For & clear winn

r .
ESE@ FOR i=1 TO il
212

pa—pg.!(P*Pyi"i‘l:

83@a IF tmh) ¢<=a (i) AND i<>mh TH =

EN LET mm=@2
84@ NEXT i

85@ IF mmr=@ THEN GO TO 274
86@ RESTORE : RERD as
7@ FOR i=1 TO mh

888 READ i%,p

89@ FOR k=1 TQ (i1}

Saa RERD g,pg,pn

22@ READ = =

i
4@ CLS : PRINT AT 12,@; ,"EXPER

2 oy TTT"The B»ost likely. o
utcome 38 " {i%) " ""mith 2 probab
ility “, (pfmhl)

&E@ STOP
igaa@ DRTA ¢ esses"”

tn
tness 1" ,.91,1,.8,; .
tness 2",.5,1,1.,.5%.,

» ag9g
28@aa DARTRHR s ptoms ™
2elea DATA 1, symptom 1"
202e DRTA 2,"symptom 2" .8,"end"”

Although this program works reasonably well (a miracle of modern
technology, really) a great deal of its performance depends on the list of
questions you supply it with.

On a theoretical level, the calculations all proceed on the assumption that
each question is independent of every other question - and, if they aren't,
the performance will deteriorate.

For instance, if you ask “Do you have a temperature?” and “Are you
feverish?” it's obvious that the two questions are very highly correlated.
There simply isn’t any point in asking both questions but, if you do, it will

have the effect of upsetting the probabilities you'd associated with these
items.

Also, you have to provide enough questions to be able to actually make
some sort of diagnosis. To actually enable the system to come to a
conclusion. That sounds obvious, but suppose you gave details of the
Common Cold and Influenza and reckoned that both made you feel unwell,
with a runny nose and a cough. Maybe the probabilties would be a bit
different in each case - but they have to be sufficiently different to enable
the program to actually see the difference. The trick is to go for clear,

213

R

unambiguous quesions which don't overlap each other and are capable of
splitting up the problem as cleanly as possible.

Typically, you'll find yourself working like any other person wha's
developed an expert system.

You'll write the program and throw a handful of likely-looking rules at it.
(The rules are those definitions you gave in the DATA statements.)

You'll then pretend that you have pneumonia (if it's a medical system;
maybe, a flat battery if you've been producing an expert mechanic) and
answer the questions the system gives you with this in mind.

The system will then produce a wrong answer or ask some stupid
questions - so you start fiddling around with the questions and the
probabilities until the performance improves. And, really, this process has
nothing much to do with computers atall. It's all to do with understanding
the subject in which you want the computer to become expert - and itcan
be quite interesting in its own right.

And, if it isn't you can always revert to the system described in the e_arlier
part of this book, just sling a few examples at itand let it work out for itself.

10.3 A medical knowledge base

If you set up the Bayesian Infergncing scheme just described then there
will be one thing lacking before it will do anything useful - a Knowledge
Base. Now, strictly speaking, that's your job to provide it with some
domain-specific knowledge. But doing so can be pretty time-consuming.
So, just to help things along a bit, here is a Knowledge Base forthe Domain
of Medical Diagnosis. If you load this code into line 1000 and forwards
and line 2000 and forwards it will provide the expert system with
knowledge on nearly 100 different disease types and their diagnoses. The
figures given are, roughly accurate and although it won't enable you to
practice medicine it will enable you to indulge in some very exotic
fantasies of hypochondria. It will also serve to give you an idea about how
you might build up a Knowledge Base in other fields and will demonstrate
how the expert runs when it has a real slab of knowledge inside it.

Once you have loaded this try altering some of the items to see how it
affects the expert's skills.

For instance, you might want the expert to take account of the fact that
Chronic Bronchitis (illness 10) is mere commen in men than in women

214

('sympton’ 53%0 you could add to illness 10:-
53,.8,:5;

i.e., if the patient has chronic bronchitis then he is male wi s

i : th probabilit
0.8 - and, if the patient does not have chroni 2 it y
probability of male is 0.5. onic bronchitis then the

In other words, the healthy population is .
o an even
females. mixture of males and

Many diseases are sex-related in their incidence i
| s0 question 53 coul
added to a number of points in the Knowledge Base. dbe

If you add question 53 to enough illnesses then you are likely to fin
RV (53) rises and one of the questions the expert asks veryyearly 0?1 tJ:a:
consultation will be to determine the patient's sex. Which seems
re_asonable_ - few (human) doctors would be willing to carry out a diagnosis
without this, very basic, item of knowledge. .

Then try adding another iliness - bubonic i i
1 plague, for instance, and

the expert can diagnose that. If you need to add more s.ymp?grenlsf

(questions) these_ can easily be tacked on to the end of the list and

referenced by their number in the same way as existing symptoms.

Then try writing a Knowledge Base of your ow i i

T] i n with questions an
[Illnesses relating to the problem of why, forinstance, your car won't stagt
(it's probably got bubonic plague).

MEDICAL

| REM :KNOWLEDGE BASE IN THE DOMAIN OF MEDICAL DI
BAYESIAN INFERENCING ENGINE S e

1000 DATA ILLNESSES

101 DATA COMMON L

010 O 0LD,.02,1,9,05,2,8,.02,3,8,. 7.2,.0
ety C 02,1,9,05,2,8,02,3 8.02,5,6,01,6,1,.01,7,2,01

1020 DATA ALLERGIC RHINITIS,01,1
AT -01,1,1,01,2,1,01,6,9,01,10,7,.01,11,7,01,12,6,01,20,9,

1030 pATA SINUSITIS,01,14,8,01,13,9,01,15,8,01
.9.01,999)
1040 paTA PHARYNGITIS,02,3,1,01,1¢,9,01,8,5,01,1 1.9,01,37,8,3,64,.4,01,999

1050 DATA TONSILLITIS,.001
PATAR .001,3,1,01,7,9,.01,15,1,01,16,.7,01,1 9,0.5,8.8,01,34,0,01,64,8,

,8,5,01,

7.6,01,22,5,01,2,5,001,6,.5,01,63,

215

1060

1070
1080
1090

1100

1110
1120
1130

1140
1150
1160
1170
1180
1190

1200
1210

1220
1230
1240
1250
1260
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400

1410

1420
1430

1440
1450

1460

216

DATA INFLUENZA,OI,3,.9,.01,],.9,.01,bj.ﬁ..ClIJ,J,.UW,B.I.OW!I.‘OI,ILB,‘OI,WB,.b.
01,34,0,01,999
DATA LARYNGITIS,01,4,1,01,8,6.01,15,05,01,16,7,01,37,8,3,999

DATA TUMOUR OF THE LARYNX,00004,4,1,01,34,99,.01,37,8,3,999

DATA ACUTE BRONCHITIS,005,5,1,01,8,1,01,12,1.01,15,1,01,18.5.01.21,1.01,
31,9,01,340,01,22,9,01,999

DATA CHRONIC BRONCHITIS,005,5,1,01,12,9,01,14,5,01,21,1,01,22,8,01,34,1,
01,36,9,01,37,8,3,999 ¢

DATA ASTHMA,02,12,8,0122,1,01,23,5,01,24,5,01,25,5,01,26,5,01,31,8,01,999
DATA EMPHYSEMA,01,22,1,01,5,001,.01,26,8,01,12,001,01,21,001,01,37,8,3,999
DATA PNEUMONIA,0038,1,01,15,1,01,18,8,01,22,1,01,23,5,01,26,5,01 26,1,
01,29,02,01,27,2,01,31,9.01,36,1,9,7.9.01,17,9,01,32,5,001,999

DATA PLEURISY,001,31,8,01,32,8,01,22,5,01,5,8,01,8,9.01,15,1,01,340,01,999
DATA PNEUMOTHORAX,0002,18,8,01,22,8,01,32,8,01,999

DATA BRONCHIECTASIS,1E-521,1,01,27,5,01,5,1,01,14,5,01,999

DATA LUNG ABSCESS, 1E-533,9,01,18,5,01,21,5,01,27,5,01,999

DATA PNEUMOCONIOSIS,001,22,1,01,36,1,01,21,8,01,9,1,001,999

DATA LUNG CANCER,001,5,1,01,21,8,01,27,5,01,22,5,01,18,8,01,12,5,01,37,
99,3,999

DATA INTERSTITIAL FIBROSIS, 1E-5,22,8,01,35,8,01,21,8,01,999

DATA PULMONARY OEDEMA,001,22,9,.01,25,9,01,30,5,01,27,5,01,26,5.01,12,
8,01,999

DATA GASTRITIS,01,41,8,01,43,8,01,42,5.01,8,4,01,37,9,5999

DATA HIATUS HERNIA,001,18,9,01,32,5,001,42,8,001,57,9,01,16,9.01,41,8,01,999
DATA DUODENAL ULCER,01,37,8,2,42,99,001,41,8.01,999

DATA PEPTIC ULCER,01,42,9,001,18,5,01,20,8,01,41,7,01,56,9,01,62,0001,01,999
DATA DIVERTICULAR DISEASE,001,42,.6,001,43,5,01,41,5,01,8.5.01,49,5.01,999
DATA CROHN'S DISEASE,0001,42,9,001,43,9,01,15,9,01,8,7.01,62,00001,01,999
DATA INTESTINAL OBSTRUCTION,.00001,42,9,001,43,8,01,41,5,01,999

DATA APPENDICITIS,001,34,1,9,42,9,001,41,8,01,8,8,01,44,0,5,999

DATA FOOD POISONING,001,42,5,001,41,9,01,43,9.01,7.8,01,999

DATA GASTROENTERITIS,01,41,8,01,42,7,001,43,9.01,8,5.01,999

DATA KIDNEY STONES,001,42,7,001,999

DATA ACUTE PYELONEPHRITIS,001,42,9,001,8,8,01,41,7,01,67,9.01,999

DATA GALLSTONES,01,42,5,001,41,5.01,57.9,.01,999

DATA CHOLECYSTITIS,001,42,8,001,8,9,01,41,8,01,45,8,001,999

DATA SHINGLES,001,42,5,001,18,5,001,60,9,01,59,9,01,2,6,01,46,5.01,99%
DATA_ DEEP VEIN THROMBOSIS,0005,40,8,01,999

DATA RHEUMATOID ARTHRITIS,001,15,8,01,17,.8,01,40,5,001,899

DATA HEART FAILURE,001,22,9,.01,36,.5,01,25,5,001,12.6,01,18,5,001,32,3,
001,40,5,01,42,5,01,28,3,001,47,9,01 999

DATA ANXIETY,01,46,9,01,28,3,01,47,6,01,39,8,01,23,6,01,48,6,01,16,3,01,
43,2,01,22,5,01,50,5,01,57,5,01,58,5,01,15,.5,01,7,5.01,4,5,01,999

DATA DEPRESSION,01,47.5,01,7,5,01,49,5,01,50,5,01,15,5,01,62.8,05999
DATA CORONARY THROMBOSIS,01,18,5,01,32,9,001,20,5,01,36,0,2,38.5,01,22,
5,01,23,5,01,41,5,01,15,9,01,999

DATA ANGINA,01,37,8,3,18,9,01,36,9,01,22,5,01,23,5,01,38,5,01,41,3,01,999
DATA PULMONARY EMBOLISM,.0001,22,1,01,18,7,01,21,6,01,27,5,001,25,5,
.001,26,4,0001,999

DATA STROKE,001,28.8.01,38,7,01,51,8,001,58,9,.01,61,9,.01,999

1470

1480

1490
1500

1510
1520

1530

1540
1550
1560

1570
1580
1590

1600
1610
1620
1630
1640
1650
1660
1670
1680

1700

DATA TRANWENTISCHAEMIC ATTACK,. :
D TS CK.001,28,8,01,38,7,01,51,8,001,34,0,01,20,
DATA TUBERCULOSIS,0001,7,5.01,8,5,01,12,5,01,15.5,01,18..5.. 7
.01,27,5,001.22h5,o1,62,.0001,01,23,.55,.%1,1;: RSl
DATA HAEMORRHOIDS,01,52,9,001,49,8,01,56,9,01,59,5,01,999
DATA HYPOTHYROIDISM, 001 ,49,8,01,17.5,01.24, 7
5.01,43,0,01,46,001,01,48,001,01 ,62,.?,.05,99924 st tloRRoT N,
DATA IRRITABLE COLON,0007,43,5,01,49,5,01,42,8,001,41,3,01,57,9, 01,999
DATA CANCER OF LARGE INTESTINE,001,43,9,01,49,9,01,52,5,001 42, 5,001 56,
9,01,62,0001,01,999
DATA ULCERATIVE COLITIS,0004,42,8,001,43,8,01,52,6,001,23,5,01,41,5,01 5,
5,01,34,4,01,56,9,01,999 .
DATA MENIERE'S DISEASE,0005,38,9,001,41,8,01,34,5,01,20,9,01,999
DATA CERVICAL SPONDYLOSIS,006,54,9,01,7,5,0138,5.01,58.9,01 61.5,01,999
DATA SUBDURAL HAEMORRHAGE,000001,55,99,0001,26,9.001,7,9,01 41,9,01,
38,9,01,20.5,01,34,5,01,999
DATA BRAIN TUMOUR,1€-6,7,9,01,41,9,01,38,8,01,50,8,01,34,5,01,999
DATA MENINGITIS, 1E-6,8,9,01,7,9,01,41,9,01,28,7,01,54,9,01,2.9.01.60,5,01 999
DATA SUBARACHNOID HAEMORRAGE, 00001,7,99,01,54,9,01,38.7,01.28,7.01,
41,8,01,2,8,01,999
DATA ACUTE GLAUCOMA,01,2.9.01.7.9,01.41,7,01.20.8.01.34,8,01,63.8,01,68,
DATA TEMPORAL ARTERITIS,001,7,9,01,8,7,01,17,7,01,2,8,01,63,99.01 999
DATA DYSPEPSIA,.1,1 9,.7,.0],57,.7,.0],42,,7,,01,4T,.?,.Ol,46,.5,0|,20,‘9,‘Ol,999
DATA HEART BLOCK,0003,22,5,01,58,8,01,39,6,01,18,6.01 999
DATA PERNICIOUS ANAEMIA,0004,22,9,01,58,9,01,39,9,01,36,9,01,45,5,01.42,
5,01,50,5,01,28,4,01,999
DATA MIGRAINE,1,7,1,01,15,9,01,41,9,01,43,5,01,2,9,01,20,9,01,34,9,01.63,
99,01,999
DATA HYPERTENSION, 15,7,5.01,39,5.01,15,5,01,34,9,01,999
DATA ECZEMA,03,59,9,01,60,1,01,999
DATA URTICARIA,.03,59,.9,01,60,1,01 46,5.01,999
DATA SCABIES,001,59,1,01,60,1,01,999
DATA MEASLES,02,15,1,01,8,1,01,6,9,01,2,9,01,11,9,01,5,9,01,43,5,01,60,8,
.01,7,.5,.01,34,0,01,999
DATA RUBELLA,01,8,5,01,60,.9,01,54,2,01,34,0,01,64,5,01,999
DATA CHICKENPOX.001,60,1.01,59,1,01,8,8,01,7,5.01,15,5,01,34,0,01,999
DATA PSORIASIS,02,46,6,01,3,5,01,60,99,01,59,5,01,999
DATA PITYRIASIS ROSEA,01,60,1,01,59,9,01,34,5,01,999
DATA ACNE ROSACEA,01,60,9,01,2,5,01,34,8,01,999
DATA THYROTOXICOSIS,001,46,9,01,47,8,01,48,9,01,23,9,01,39,9,01.22,8,01
43,8,01,62,00001,01,2,5,01,24,9,01,64,3,01,68,3,01 999
DATA DIABETES MELLITUS,01,62,0001,01,61,5,01,2,5,01,66,99,01,68,1,01,999
DATA STOMACH CANCER.0003,41,5,01,42,7,001,62,0001,01,52,6,001,56,5,01 999
DATA ATRIAL FIBRILLATION,001,39,8,01,38,5.01,42,4,01 58,501,999
DATA HODGKIN'S DISEASE,0001,23,5,0163,6,01,54,8,01,59,7,01,64,99,01,999
DATA GLANDULAR FEVER,001,8,9,01,7,9,01,3,9,01,15,9,01,64,8,001,54,8,01,
45,5,001,60,.5,01,999
DATA LYMPHOMA,0001,64,9,01,54,8,01,15,8,01 62,001,01,8.8,01,23,5,01.59,
DATA MUMFS,.O],r.‘ldj,?g..ol,B,,ﬁ,.ol,liv,ﬂl,'\6,‘7,.01‘54,.6,.0',3,.9,01,999

217

FE_——_—

2070

2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200

2210

2220
2230

2240

DATA BELL'S PALSY.0003,51,9.01,63,5,.01,999

DATA PARKINSON'S DISEASE,001,48,9,.01,51,.8.01,42,3,01,50,2,01,28,1,01,999
DATA RHEUMATIC FEVER.01,3,8.01,15,8,.01,8.8,01,64,8,.01,60,5.01,59,001,01,
48,1,01999

DATA CYSTITIS.01,66,9,.01,65,9.01,67,9,.01,8,.5.01,999

DATA KIDNEY TUMOUR,001,8,6,01,62,0001,01,41,5,01,42,5.01,65,.7.01,999
DATA BLADDER TUMOUR,0004,65,9,01,42,5,01,66,.5,01,67,5,01,8,3,01,999
DATA IRITIS,0005,2,9,01,68,.9,01,999

DATA ACUTE HEPATITIS,001,8,8,01,15,8,01,17.5,.01,42,5,01,45,5.01,41,5.01,999
DATA SYMPTOMS

DATA 1,ARE YOU SNEEZING A LOT #

DATA 2,ARE YOUR EYES PAINFUL OR WATERING A LOT ¢

DATA 3,00 YOU HAVE A SORE THROAT 2

DATA 4,IS YOUR VOICE HOARSE 2

DATA 5,ARE YOU COUGHING A LOT ¢

DATA 6,00 YOU HAVE A RUNNY NOSE 2

DATA 7,00 YOU HAVE A HEADACHE OR - IN GENERAL - DO YOU SUFFER FROM
HEADACHES AT ALL 2

DATA 8O YOU HAVE A HIGH TEMPERATURE 2 [OVER 100 F SAY)

DATA 9,00 YOU SPEND A LOT OF YOUR TIME IN A VERY DUSTY ATMOSPHERE 2
DATA 10,DOES YOUR SKIN ITCH 2

DATA 11, DO YOU HAVE A DRY THROAT 2

DATA 12,15 YOUR BREATH "WHEEZY' #

DATA 13,15 YOUR NOSE VERY '‘BLOCKED UP’ 2

DATA 14,HAVE YOU HAD A COLD OR SIMILIAR INFECTION RECENTLY 2

DATA 15,DO YOU FEEL GENERALLY ILL #

DATA 16,00 YOU HAVE TROUBLE SWALLOWING 2

DATA 17,.DO YOUR MUSCLES ACHE 2

DATA 18,00 YOU HAVE ANY PAIN AT ALL IN YOUR CHEST 2

DATA 19,HAVE YOU HAD YOUR TONSILS REMOVED 2

DATA 20,00 YOU HAVE ANY SYMPTOMS WHICH TEND TO OCCUR IN ‘ATTACKS'
RATHER THAN BEING PRESENT ALL THE TIME 2

DATA 21,00 YOU HAVE A 'PRODUCTIVE' COUGH - A COUGH IN WHICH YOU BRING
SOMETHING UP 2

DATA 22,ARE YOU RATHER BREATHLESS 2

DATA 23,00 YOU SWEATA LOT - NOT JUST WHEN YOU EXERT YOURSELF BUT WHEN
YOU ARE APPARENTLY RELAXING AS WELL ?

DATA 24,15 YOUR PULSE RATE HIGH 2 NORMALLY IT SHOULD BE ABOUT 60 TO 80
BEATS EACH MINUTE AND SLIGHTLY FASTER FOR PEOPLE OVER 70 OR UNDER 20
DATA 2500 YOU HAVE SEVERE ATTACKS OF BREATHLESSNESS - ENOUGH TO
SERIOUSLY WORRY YOU 2

DATA 26,DOES YOUR SKIN HAVE A BLUISH TINGE 2

DATA 27 WHEN YOU COUGH IS YOUR PHLEGM STAINED WITH BLOOD ¢

DATA 28,ARE YOU CONFUSED - MUDDLED ABOUT WHAT'S GOING ON AROUND
YOU #

DATA 29,ARE YOU (OR THE PATIENT) DELIRIOUS - TALKING INCOHERENTLY WITH
POOR MUSCULAR COORDINATION 2

DATA 30,00 YOU HAVE A DRY (NON-PRODUCTIVE) COUGH 2

DATA 31,15 IT PAINFULL WHEN YOU BREATHE OR COUGH 2

DATA 32,00 YOU EVER HAVE ANY REALLY SEVERE PAIN IN YOUR CHEST 2

DATA 33,00 YOU SWING BETWEEN FEELING CHILLED AND FEELING FEVERISH 2

2340

2350

2360
2370
2380
2390
2400
2410
2420

2430

2440
2450

2460
2470

2480
2490

2500
2510
2520
2530

2540
2550

2560
2570

2580

2590

2600
2610

2620

2630
2640

DATA 34,00 YOU HAVE ANY SYMPTOMS WHICH HAVE BEEN PRESENT FOR SOME
TIME - POSSIBLY SIX WEEKS OR MORE 2

DATA 35,00 YOU HAVE ‘CLUBBED FINGERS' 2 - THESE ARE FINGERS IN WHICH THE
CUTICLES HAVE ALMOST DISAPPEARED AND THE NAILS CURVE OVER AT THE FINGER
TIPS

DATA 36,00 YOU HAVE ANY SYMPTOMS WHICH MAINLY OCCUR WHEN YOU EXERT
YOURSELF 2

DATA 37,00 YOU SMOKE 2 TO REPLY DIVIDE THE NUMBER OF CIGARETTES YOU
SMOKE BY 5 - USE THIS NUMBER TO REPLY (IF YOU SMOKE 20 A DAY REPLY 4). 5 1S THE
MAXIMUM REPLY AND -5 MEANS YOU DO NOT SMOKE

DATA 38,00 YOU SUFFER FROM FEELINGS OF DIZZINESS 2

DATA 39DO YOU HAVE PALPITATIONS 2 - THE FEELING THAT YOUR HEART IS
BEATING MORE STRONGLY OR FASTER OR MORE UNEVENLY THAN IT SHOULD.
DATA 40,15 EITHER OF YOUR ANKLES UNDULY SWOLLEN 2

DATA 41,ARE YOU VOMITING OR DO YOU HAVE STRONG FEELINGS OF NAUSEA 2
DATA 42,DO YOUHAVE ANY ABDOMINAL PAIN 2 THIS IS PAIN ANYWHERE BETWEEN
THE BOTTOM OF THE RIBCAGE AND THE GROIN.

DATA 43,00 YOU SUFFER FROM DIARRHOEA 2 - PASSING UNUSUALLY RUNNY
FAECES.

DATA 44 HAVE YOU HAD YOUR APPENDIX REMOVED 2

DATA 45,00 YOU HAVE JAUNDICE 2 THIS IS NOT A DISEASE BUT A SYMPTOM OF
DISEASE. OFTEN IT IS MOST OBVIOUS IN THE EYES - THE WHITES BECOME YELLOW.
DATA 46,ARE YOU RATHER TENSE AND APPREHENSIVE 2

DATA 47,DO YOU FIND ITHARD TO GET TO SLEEP OR DO YOU OFTEN WAKE IN THE
MIDDLE OF THE NIGHT 2

DATA 48,00 YOU HAVE ANY INVOLUNTARY TWITCHING OR TREMBLING 2

DATA 49,DO YOU SUFFER FROM CONSTIPATION 2 PASSING FAECES INFREQUENTLY
OR WITH DIFFICULTY.

DATA 50,DO YOU HAVE A POOR MEMORY 2 THAT IS - DIFFICULTY IN REMEMBERING
INDIVIDUAL FACTS EITHER OCCASIONALLY OR REGULARLY.

DATA 51,HAVE YOU TOTALLY OR NEARLY LOST THE POWER OF SPEECH 2

DATA 52,HAVE YOU EXPERIENCED ANY BLEEDING FROM YOUR BACK PASSAGE 2
DATA 53,ARE YOU MALE OR FEMALE 2 ANSWER 5 FOR MALE OR -5 FOR FEMALE. IF
YOU'D LIKE THE ANALYSIS TO BE GENERAL (FOR EITHER SEX) REPLY 0.

DATA 54,15 YOUR NECK STIFF AND/OR PAINFUL &

DATA 55HAVE YOU SUSTAINED ANY KIND OF HEAD INJURY OVER THE LAST FEW
WEEKS 2 EVEN A VERY SLIGHT INJURY CAN BE IMPORTANT.

DATA 56HAVE YOU RECENTLY BEEN PASSING ABNORMAL-LOOKING FAECES 2
DATA 57 ARE YOU PASSING LARGE QUANTITIES OF WIND - EITHER BY BELCHING OR
FLATULENCE 2

DATA 58,DO YOU HAVE SUDDEN FEELINGS OF FAINTNESS - FEELING WEAK AND
UNSTEADY MAYBE EVEN LOSING CONSCIOUSNESS 2

DATA 59,DOES ANY PART OF YOUR BODY ITCH - WITH OR WITHOUT THE PRESENCE
OF ANY RASH ¢

DATA 60,00 YOU HAVE A SKIN RASH OF ANY SORT 2

DATA 61,15 ANY PART OF YOUR BODY NUMB - OR DO YOU HAVE A TINGLING ‘PINS
AND NEEDLES’ SENSATION ANYWHERE 2

DATA 62,ARE YOU OVERWEIGHT OR UNDERWEIGHT 2 REPLY 5 FOR DEFINITE
OVERWEIGHT AND -5 FOR DEFINITE UNDERWEIGHT. REPLY O IF YOUR WEIGHT IS JUST
RIGHT.

DATA 63,DO YOU HAVE ANY PAIN IN YOUR FACE OR FOREHEAD 2
DATA 64,00 YOU HAVE ANY SWELLINGS UNDER THE SKIN 2

219

2650
2660
2670
2680

3000

DATA 6515 YOUR URINE ABNORMALLY COLOURED 2
DATA 66,ARE YOU URINATING UNUSUALLY FREQUENTLY 2
DATA 67,15 IT PAINFUL WHEN YOU URINATE 2
DATA 68,5 YOUR VISION IMPAIRED IN ANY WAY - BLURRING OR DOUBLE VISION OR
SEEING FLASHING LIGHTS 2 (THIS DOES NOT INCLUDE DEFECTS WHICH CAN BE
CORRECTED BY SPECTACLES).

DATA ENDEND

220

Chazwter 117

The Tower of Babel

Once upon a time, a long time ago, a group of computer scientists were
sitting round a table deep in thought. And, in between thinking, they were
counting how many transistors they had between them.

“Do you know,"” said one, "if we fastened all of these transistors together
we'd have a computer that could do anything.” To which statement the
others (in between swigs of beer) readily agreed. And, later that same
evening, they got out their soldering irons and started work.

Time passed and the machine they were building got bigger and bigger
until it was soon apparent that it, really and truly, would be able to carry out
any task to which they set it. A more powerful computer had never been
built and they dreamed of the day when they would switch it on and, in a
matter of seconds, discover the complete answers to every problem in the
Entire Known Universe.

As the machine rose skywards vast armies of programmers were
recruited to write the programs that would control the new monster and
each of these was initiated into the secret rites of machine code
programming because, at that time, that was the only programming
language that anyone had ever thought of.

The day of the great switch-on drew near and word of the great new
computer spread far and wide causing not a little apprehension amongst
the population as they thought of the awful cognitive power that was soon
to’be unleashed.

And, on the very night before the machine’s completion, that self-same
group of computer scientists again sat around a table, swigging beer, and
debating which program should have the honour of being the first
program to be written for the new machine.

"Y' know,"” said one sagely, it doesn't really matter what program is first.”
221

At which the others nodded their own heads wisely. “What really matters
is the language it is written in.”

At which point the others carried on nodding_their heads and began to
wonder what other languages there could possibly be, other than machine
code.

But the speaker held his ground and pointed out that machine code is
difficult to write and difficult to understand. It is machlne-orle_ntated, not
orientated towards the problems that want solving. And, it had that
greatest of all flaws - it was academically unsatisfying.

So, that night, each of the computer scientists went ho_me and wrote a
high level language definition and a compiler to go with it. And when the
next day dawned bright and clear they reassembled themselvgs atthe fopt
of the great machine and decided that, before they switched it on, they'd
settle for once and for all, which was the best of the new Ianguages to use.
And, being gentlemen, they decided to settle the matter by discussion.

As far as is known they're still discussing the matter and the machine
never got switched on, because the real problem was that none of them
would ever understand the languages the others had developed.

And, even if that story isn't one hundred per cent historic fact, there’s stilla
lot of truth in it.

For when the only language around was machine code (or Assembler,
which is a bit easier to understand but, essentially, the same) then every
computer person understood, more or less, what every other computer
person was doing. There are now so many programming languages
available that it's more or less impossible to be familiar with them all - yet_lf
ideas are sketched out in an unfamiliar language you'll have difficulty in
understanding those ideas. The language becomes a hindrance rather
than a help.

That's why the examples given in this book are in BASIC - because it'sa
language that most people understand. But the real question is: Is BASIC
the best language to use? Would it be better to have a crack at another

language?

Intuitively, you might think there were strong argur)'xents fqr usi‘ng. say,
LISP because that's the language in which most professional’” expert
systemns are written. Or, maybe, Prolog - a derivative of LISP.

To get at this question we need to consider just what a programming

222

language can and cannot do - and the first point to note is that it really and
truly can’t do anything which can't be done in machine code. For most
people this might be obvious but it's still worth noting that any language is
always compiled down into machine code prior to execution and it is the
machine code which defines the machine on which the program is run. If
an instruction cannot be reduced to machine code then, on that machine,
it is unexecutable. So, in machine code it's possible to do everything of
which the machine is capable and, in any other language itis impossible to
do any more than that.

So: if alanguage cannot do more than machine code can do, can it be such
that it prevents the programmer from doing as much as is possible in
machine code? That is: can a language reduce the range of possible
activities? The answer is: Yes. And, for an example, consider BASIC and
pretend that there aren't any such things as PEEK and POKE. Now
suppose that, for some reason of your own you wanted to look into byte
30896 in RAM, see what was there, and then alter only one bit in that byte.
That would be impossible except by using the weirdest contortions
imaginable because BASIC gives you no way (without PEEK or POKE) of
accessing an absolute address and no way of ‘bit-twiddling’.

In fact, this example isn't particularly unusual. Many high level languages
don’t give much scope for absolute addressing and yet there are plenty of
applications for which absolute addressing is essential. Real-time
programming gives plenty of examples of this - if the computer had to read
a measurement from an external meter, say, then almost always the
programming would have to rely on absolute addresses to get the meter
reading into memory.

So a language can never do more than machine code and can, often, do
much less. In which case, what are other languages good for?

Two things: One, they are easier to use than machine code. Two, they can
(but don’t always) act as an aid to thought.

The first point is obvious. BASIC is easier than machine code both to learn
and to use. That's true of most high level languages.

But the matter of an aid to thought isn't quite so obvious and, even when it
is, it can be rather a two-edged sword. Staying with BASIC consider the
FOR-loop. That is certainly an aid to thought. You can conjure itupin your
head, look at it on paper, display it on the screen and it's quite clear what it
does. So you can forget it and concentrate on what's inside the loop. At
which point the second edge of the sword starts to appear - because we
rather presupposed there that, with BASIC, you are definitely going to use

223

FOR-loops. In fact, such a strong aid to thought is the FOR-loop that, when
faced with a programming problem, the temptation is to try to work out
how best to arrange FOR-loops to solve that problem rather than to ask
whether or not FOR-loops are, in fact, a good way to proceed in this
instance. And if they weren't a good way to proceed then the odds are that
you'd still use them anyway.

To make this point clearer consider the dichotomy between the computer
and the problem the computer has to solve.

Machine code is exclusively computer-orientated. If you simply want to
drive the machine then machine code is the most efficient way of
programming in terms of getting a short, fast program.

But, to a greater or lesser degree, high level languages are problem
orientated - they look after the machine and let you concentrate on solving
the problem. And with, say, BASIC if you want to work on a matrix of
numbers then FOR-loops provide an ideal way of accessing the various
elements of those matrices so that you can do so. The mistake to avoid
though is to think that because a language is prbblem orientated it is
ideally orientated towards any problem that you might want to solve.
There are different types of problems which can be solved in different
types of ways - as the names of some of the programming languages
reveal. COBOL, for instance, is an acronym for Common Business
Oriented (sic) Language - it's aimed at business problems. ALGOL is an
acronym for Algorithmic Language - and it's aimed at problems for which
an algorithmic solution is handy (an algorithm is a recipe for solving
problems primarily in the field of logic and maths). FORTRAN is an
acronym for Formula Translator - a language designed for evaluating
formulae. And BASIC? That's Beginners All-Purpose Symbolic Instruction
Code - a language designed, actually, for the problem of beginners who
don’t know how to program at all well!

Back to expert systems though and the question: |s there a language
aimed at these?

Obviously, to answer that question you need to know the sort of problems
that arise when you're building an expert system. And that's difficult to
specify simply because of the wide variety of problems which are
subsumed under the heading ‘expert systems’.

However, there are a few points which can be made. For a start think of
that multi-node expert system we dreamed up. In BASIC the nodes were
connected to each other by means of labelling them with a string variable
and then searching through all the string variables to see if there was a

224

*

matching string to determine the connections. Now that was pretty messy
- qnd it \fvouldn tbe helped any by the fact that those variables are data and

:\I!:| Te likely to be lost as soon as you switch the machine off (or the power
ails).

This is the sort of problem that LISP was designed to get around for what
we have is a series of lists (LISt Processing Language, you see!) Suppose
now, for example, we have two nodes, node 1 and node 2 with inputs and
outputs to each.

Define a list, Node 2. This list contains all the inputs and outputs to that
node. Define two sub-lists in Node 2, Input and Output, to show which is
whicl-!. Do the same for Node 1. Now, if Node 1 has an Output 1 which
contains X which is the same element as node 2 Input 2 then it's possible
to define that in a LISP program also.

We can define a structure something like this:

Node 1 Node 2
lnpu.t 1 Output 1 Input 2 Output 2
Ii;st Iis-t Ii.st Fist
X X

And all of this is contained in the program code - not as data as such
(although, to be honest, the distinction between program and data isn't
very strong in LISP anyway).

_Having define_d the above structure it is fairly easy then to write code to ask
if any of the inputs on Node 2 are outputs from Node 1. That's a fairly

225

ﬁ—
i

i i itallows these structures
simple example and the real value of LISP is t_hat ita :
to bg defined in as complex a fashion as you like. You can justgo on and Dln
making things more and more complicated - something which would
make the average head hurt if it was tried in BASIC.

i i iven have been
Consider a further point - that all of the systems we have given
forward chaining. They collected items of data and then worked forward
through the program to see what could be done with that data. Suppose
that we'd wanted a backward chaining program? In the above example the
distinction goes like this:

ini i i t 1 on Node 1
In forward chaining we provide the program with, say, Inpu
which produces output which is passed to Node 2 as input so that Node 2
can produce output.

ard chaining the program looks at Node 2, thinks it will see if it
‘cr;:a;rt)v;uce a spec?fic Ouptpl?t, looks backwar_ds to see what |npu;s ||:
needs, sees Node 1 is needed for some of these inputs and then goes bac
to Node 1 and asks for input to that. Not very easy in BASIC. The mai_lln
reason why it's hard is because most BASICs don’t offer recursion - the
ability of a procedure to call itself.

ion (i ' hat itis) is
The most usual example of recursion (in case you're not sure w)
the evaluation of a factorial - say, 3!1=3*2*1=6. So, if we had the recursive
procedure FAC(N) we could say that

FACIN)

So
FAC(3) = 3°FAC(2) =3"2"FAC(1)=3"2"1 = 6.

= N"FAC(N-1) if N is greater than 1
=1 if N less than or equal to 1

isnt always so easy to give examples for less ;imple matters but
gu;)sgotsswe ¥1ad a recuy;sivegprocedure I_\IODE(N). This procedure tT’:’?x‘tlc
evaluate Node n and does it by considering the inputs to that node. |he
it is considering these inputs it also chec_ks to see if any of them al:etrtl 2
outputs from Node (n-1) and, if they are, it calls NODE(N-1].V\;’lhlcf: t?:f
checks Node (n-2) and so on until the method has got back to the fron
the chain.

uld be useful. Writing NODE(N) might take some thought
El?’c\jvcar::eatv::r?tten, it could be used on the arbitrarily complex structures Wri
mentioned earlier. But, of course, the fact thgt most BASICs don't suppgle
recursion doesn’t completely rule out rect_Jrswe_code. It_would be pofg;sj:jl
to write BASIC code which did behave like this - but it would be fiddly.

226

Using LISP (orglog] makes life easier if recursive activities seem like a
good idea for solving the problem in hand.

In a way, the advantages of these languages lie largely in the fact that they
are organised to help deal with very complicated structures which, largely,
have very little to do with ordinary mathematics. And the application to
expert systems lies in the fact that, when we try to make our expert system
behave like a human expert we are often trying to make it work with a large
amount of rather complicated, non-numeric, structures.

The point about non-numeric or non-mathematical structures helps to
display another side to the coin. The fact that if you need to do maths these
languages can be rather laborious. Take for instance the BASIC statement
X=2+2 and consider the LISP alternative which is (SETQ X ADD(2 2)).
Not too complicated, but consider what a real calculation might look like!

What's happened is that LISP was designed to help solve a particular type
of problem - and it was not the type of problem associated with maths
expressions. But some LISP users might want to do a bit of maths so that
side of it was expressed in just the same way as the rest. With the result
that the maths is somewhat on the weird side! In BASIC we find the
opposite. Beginners maybe did want to do lots of maths - so design a
language aimed at those problems. And, of course, you find that the
language so designed is somewhat weak in other areas.

What we really want is one, big, language that does everything under all
circumstances, but we'll be unlikely to get it simply because nobody
knows what it might look like. Even our very own English isn't up to every
task - witness the large number of specialist sub-languages that have
been evolved over the years to extend English into new fields - like, for
instance, that of the mathematician or the doctor. If we wish to produce a
language that would be perfect for, say, medical diagnosis we would need
English (to communicate with the patients), Doctor-ese (to communicate
with the medics - maybe Latin would do), and Mathematics (to work out
any calculations). And there's no harm in saying that this is rather more
than many practising physicians have!

Ina way the problem of languages isn't really so bad as might be made out
for the simple reason that most computer users only have access to a
limited number of choices - and that settles most arguments about which
language should be used. There's also the fact that, often, the best
language to use is the language you're good at. A great deal of research in
artificial intelligence has relied on LISP, for instance, but one reason for
this is that students of artificial intelligence are often taught LISP and, after
that, the habit is bound to die just as hard as does the BASIC-habit in
someone else.

227

i i or another, the way
But certainly the language you use influences, one way oranot v
ycL)ju think about problems and the BAS_-}EC programmer is likely :‘o f:r;d
himself implementing an expert system inquite a different way to the way

a LISP programmer might do it.

ies simply in the quality ofthe end
always go back to machine qm_je.
ht die of old age before you finish

In the end the value of each approach |
result and, in the final extreme, you can
The only danger of which is that you mig
writing the program.

228

Chapter 12

Summary and Technical
Overview

As this book reads rather like a story, the plot of which involves getting you
to do something, you may well be sitting there and saying something like:

“Fine, | can see how these systems work, | could even write my own
expert now but | can’t remember how this Naylor character defined ‘rules’
or..”

Well, you could look it up in the index or consult those notes you've been
making. But, to make it really easy, here s a list of the important terms that
you’'ll need to know:

12.1 Events

An Event can be almost anything.

Let H be the event that a given hypothesis is true.

Let E be the event that agiven piece of evidence occurs which may, or may
not, support the given hypothesis.

12.2 Probabilities (see also pages 20 - 26)

P(H) is the probability that H is true.

P(E) is the probability that E occurs.

Probabilities are numbers in the range 0 to 1.

If the probability is O then the event never occurs.

If the probability is 1 then the event always occurs.

P(not H) = 1 - P(H) and is the probability that H does not occur.

Two events are independent if their joint probability of occurence equals
the product of their separate probabilities of occurence.

229

i =

P(E, &E,) is the joint probability that both E,and Ezgcur.
E, and E, are independent if, and only if, P(E,&E;) = P(E,) P(E,).

P(H:E) is the conditional probability of H occuring given that E has already
occurred.

If H and E are independent P(H:E) = P(H).

In general: P(H:E) = P(H&E)
P(E)

Similarily, P(E:H) = P(E&H)
P(H)

So: P(H:E) = P(E:H)P(H)
P(E)

12.2.1 Bayes’ Theorem (see also pages 33,
190 - 195, 201 - 205)

P(E:H)P(H)
P(E:H)P(H) + P(E: not H)P(not H)

PH:E) =

P(H:E) versus P(E:H):-

[t might, initially, seem much more sensible to work always with P(H:E) -
after all, we want to know what the probability is for 2ach hypothesis given
the evidence, not the other way round.

The problem is that P(H:E) is not at all an obvious quantity. If you knew
P(H:E) to start with there would be very little point in writing a computer
program to do it for you.

P(E:H), on the other hand, is usually much more apparent when data is
being collected on the problem in hand.

You ask the question: If H is true, what is the probability of observing this
particular piece of evidence?

230

And, for P(E_:nr’): IfH is nottrue, whatis the probability of observing this
particular piece of evidence?

These two questions enable the program to calculate P(H:E) successively
improving the estimate as each new piece of evidence comes in.

For two, or more, events E, and E,:
If E; and E; are independent:
P(E,&E,:H) = P(E,:H)P(E,:H)
Note: it is never correct to say:
P(H:E,&E,) = P(H:E,)P(H:E,)

If E is the event’ all E; occur’, and the E; are independent of each other, then
we can calculate:

P(E:H) = P(E,:H)P(E,:H)...P(E,:H)
P(not E:H) = P(not E,:H)P(not E;:H)...P(not E,:H)

12.2.2. Prior and posterior probabilities

Suppose we have a hypothesis H and some evidence, for or against H,
which we call E.

Then:

P(H) is the prior probability of H. It is the probability of H with no
knowledge of E.

P(H:E), or P(H:not E), is the posterior probability of H. It is the probability
of H once we know the truth about E.

From Bayes' Theorem, we have:

P(H:E) P(E:H)P(H)

P(E:H)P(H) + P(E:not H)P(not H)

Or, if E were found to be absent, we would have:
P(H:not E)= P(not E:H)P(H)

P(not E:H)P(H) + P(not E:not H)P(not H)

231

Suppose that, for some H, there are a large number of items of evidence
which become progressively available to either support H or deny H. Call
them E, to E.

If they were all available at once, and if they were all independent of each
other, we could calculate P(E:H) as the product of the individual P(E;:H)
and then find P(H:E) where E is the event ‘all Ej occur’. Similarly, we could
calculate P(not E:H) as the product of all the P(not E;:H).

Butinstead, we might find it more convenient to work in stages, totting up
the evidence and its effects as we go through the E;. We can do this using
prior and posterior probabilities in the following way:

P(H) is the prior probability of H

For given evidence E; we have P(E;:H) and P(E;:not H).

Using Bayes' Theorem we can calculate P(H:Ei) or P(H:not E)
depending on the outcome of E;. This is the posterior probability of H.
We can now disregard E;altogether and call the posterior probability of
H the (new) prior probability of H. So: put P(H) = P(H:E), or P(H:not E))
depending on the value of E,.

5. Select a new E; to consider. Go to 1.

& LMo

12.2.3 Odds

The odds in favour of an event may be calculated from the probabilities of
that event:

O(E) = P(E)
1-P(E)

And:

PE) = O(E)
1+ O(E)

12.2.4 Approximations (see also pages 190 -
195)

P(A AND B)
P(A OR B)

min (P(A),P(B))
max (P(A).P(B))

These results are not strictly true and the extent to which they are in error
depends on the extent to which A and B are independent or otherwise. If

232

ﬁ#—_

information concerning the independence is not available they may,
however, prove useful.

min (x,y) = X if xis less than y
= y, if y is less than x
max (xy) = x, if xis greater than y

y, if y is greater than x.

12.2.5 Combinations (see also pages '31 - 32)

Given n events, of which we choose x, there are(;‘)

ways of making the selection.

(n) _ n! where n!l = n(n-1)(n-2)(n-3)...(n-(n-1))
X {nx)lxl eg. 4!=4.3.2.1.=24

If there are n items of evidence and any or all of these items may occur then there
are:
X=n
Z (n) possible combinations of the evidence.
X

X=0

12.2.6 Descriptive statistics (see also pages
119 - 124)

Descriptive statistics are, as the name implies, descriptions
usually made to summarise the main features of some data which
we have.

233

i=n
xI
W= Z n

i=1

, often referred to as the ‘average’.

Variance, v

Standard Deviation, sd

sd = SOR(v)

12.2.7 Normal distribution

Most of the methods in this book involve the use of non-parametric
statistics. Non-parametric statistics make no assumption about the
underlying behaviour of the variables being studied and are,
consequently, less prone to let you down.

Parametric statistics assume an underlying mathematical model for the
behaviour of the variables being studied. One such family of parametric
statistics is that group of statistics which assumes that variables basically
come from a population which possesses the normal probability
distribution function. This is the, well-known, bell-shaped curve. A Iqrge
body of theory is available for handling normal distributions and it is
frequently tempting to use normal distribution theory.

234

r*

Before doing so it is essential to examine any data to see if it really is
normally distributed. In practice, as opposed to theory, many variables are
not normally distributed even though many statisticians wish they were.
You should vigorously resist the temptation to apply normal distribution
theory on variables which are not normally distributed.

12.2.8 Discrete and continuous variables

A discrete variable is one which can only adopt certain fixed values - for
instance, Yes/No responses are discrete. Continuous variables are those
which can adopt any number as their value - for instance, rainfall figures
are continuous. Continuous variables may be made discrete by chopping
them up into sections - for example, rainfall over one inch/rainfall under
one inch.

But, you are likely to get into trouble if you use the same methods of
working for both discrete and continuous variables together. Decide
which you are using at the start and stick to that type of variable. In general,
you will find discrete variables much easier to handle than continuous
variables. To some extent this is because continuous variables tend to rely
on parametric statistics - and the choice of suitable parametric families can
be a vexed question.

12.3 Surfaces (see also pages 45 - 49)

The general equation of a surface is:

i=n

y= E bix;

i=0

where the b, are constants and the x; variables.

A table top has a two-dimensional surface (n=2) and x, and x, are at right
angles to each other. This can be expressed as saying that x, and X, are
independent of each other, or are not correlated with each other. In
general, there may be as many variables as you wish. They may be
independent of each other, or not. They may be used to describe
something which does not exist in real, three-dimensional, space. They
may be a description, for instance, of a particular pattern of behaviour, or of
disease, or of anything.

A surface is a mathematical convenience.

235

#Av__—l

12.4 Discrimination (see also pages 45, 58,
142)

Suppose that we have n categories of object described by measurements
on a certain number of variables. We are then given a further objectand a
set of measurements for this object on these variables. We then have to
decide into which of the n categories it falls. This is the problem of
discrimination,

Ingeneral, itis only possible to solve the problem completely if the various
categories are linearly separable. That is to say, if it is possible to place a
surface (or a series of surfaces) between each of the categories. The
surfaces are defined in terms of the variables we are able to measure on
these objects.

We may decide that the categories are mutually exclusive - that is to say,
the object can fall only into one category of the n. In this case we place it in
the most likely category.

This might mean, that category for which P(H:E) is a maximum. Here H
defines one category and E is all the evidence relating objects to category
membership.

Note that, mathematically, P(H:E) is the equation of a surface. It is a
surface which ‘points’ in the direction of a particular H. The calculations for
P(H:E) give, indirectly, the b; for the surface. And the evidence E on each
variable gives the x;

We do not, however, have to use probability measures explicitly. Any
method that produces a discriminating surface will do. Any method that
works is right.

If the categories are not mutually exclusive we may place our object into
more than one category. In this case we do not simply choose the most
likely category. We have a threshold criterion and the object is placed into
those categories for which it exceeds the threshold criterion.

If the discriminating surface is

i=n
y= Z bix;
i=0

we can categorise the object for each case in which y exceeds some y¢-
236

12.5 The learning algorithm (see also pages 37,
50, 55, 61)

1. Take n observations x; on an object to be categorised.

i=n

Z BiX;

i=0

2. Calculate Y=

for each of the possible categories. Initially, by,= O for all i,k.

3. Find that category k for which yy is the greatest.

4. Ifthe object belongs to category k then this categorisation is correct.
No changes are necessary. Go to item 6.

5. If the categorisation is wrong, modify b as follows:
bix = bik + x; for that category k to which the object should have been
categorised. Do this for all by in k.

bik = by - x; for all categories k to which the object should not have
been categorised and for which y,is greater than the yy for the correct
classification. Do this for all by in these incorrect catagories.
6. Take another abservation. Go to 1.

This algorithm requires a training set of objects with known
categorisations to get it going. Once it is working well it can be used on
further objects whose correct classification is not known.

12.6 Parallel and sequential procedures (see
also page 65)

A parallel procedure takes all the available information at once and makes
one, final, calculation on the basis of this information.

i=n
Yk = Z by,

=0

for all k categories

A sequential procedure steps through the variables one by one making
what use it can of the information as it goes along.

237

SR e By ol ptitieie

[
=
3

A sequential procedure should, once all of the :nfo;matlol? gl?so?iﬁg
collected, give the same result as a parallel proce unzl.-1) o i
information is always needed to obtain a conc!'usmn then the

between the two methods are purely cosmetic.

Vi =Yi- 1k DiXi

If a conclusion can be reached on the basis of less than aI_I tlrz posssliglisfE
information a sequential procedure could be more economical becau

would come to a conclusion faster.

12.7 Minimum and maximum values (see also
pages 70 and 78)

If the variables x, which are to be provided to the system have mlm;nuk;:;
and maximum values associated with them then the procedure may
able to come to a conclusion more quickly.

Suppose that all max(x;) always support a particu_Iart_cate_lg_;ﬁél:aftolrrigsa:ec:
i i h a categorisation. ;

that all min (x;) always argue against such ;

unknown V(arli)ables x; calculate two possible ou..ztcomes based on max(:)

and min (x;) for the outstanding variables. If neither of these overtumttbe

current ‘best guess’ of the system then that best guess canr;q g

overturned and can be taken to be correct. Therefore, the outstanding x;

are not actually needed.

12.8 Processing strategies (see also pages 137,
182, 183)

i isati difference in

. are required to make a categorisation then any ‘

grggetssnxgastrate%ies is purely cosmetic. If not all x; are needed then it

becomes important to use the most efficient processing strategy possible
in order to come to a conclusion as efficiently as possible.

12.8.1 Goal-driven strategies

These work by selecting a categorisation and, staying with Ll'éa;
categorisation, checking out the appropriate x; until itis possible toma

238

decision about that particular category.

Having done that, the system can then proceed to check out the next
category. And so on.

12.8.2 Data-driven strategies

These work by selecting an x,which, on some grounds, looks like a useful
X;to know. Having got a value for this x; the system makes what use it can
of the information.

Having done that, the system goes on to select another X;. In the course of
this, conclusions are reached about various categorisations.

12.8.3 Selecting the next variable (see also
pages 74 ,204)

Whether the system works on a goal-driven strategy or a data-driven
strategy there will usually be some latitude with respect towhich x; should
be examined next. The problem is one of choosing a ‘good’ question to ask
from a series of possible questions and it is hard to be very precise about
what constitutes ‘good’. However, of any question, we may consider:

1. How many categorisations does it influence?
2. To what extent does it influence those categorisations?
For example:
1. For each currently unknown Xj we might calculate:
Yik (using the max x;) - ¥, (using the min x;)
to determine the maximum possible change that can be brought
about by a knowledge of x;.
2. Using Bayesian probabilities we might calculate:
P(H:E) - P(H:not E)
where Eis the observation x;, to determine the maximum change
that can be brought about by each piece of evidence.

To work out these items for each variable prior to asking a question
involves far more processing (on the part of the computer) than simply to
ask the next question on a list. The advantage is that it might require,
overall, less effort on the part of the person using that computer.

239

Foe S

i S e

SR i R s 2

However, as short cuts to speed processing time:
Try: max(max(x)- min{xi)) to give an idea of an ‘important’ question. The

snag with this method is that x; might have a very wide range of variation
but might not be, actually, important in any way.

Try: max (variance (b;)) to give an idea of the extent to which a variable is
used in the categorisations.

The snag is that a variable which appears to be widely used might, in fact,
have a small (max(x;) - min(x;)) and the large range in the by, might simply
be to allow for this fact.

12.9 Intermediate conclusions (see also page
130)

Intermediate conclusions aren’t always strictly necessary but they can be
useful in ‘humanising’ the system. An intermediate conclusion can be
used as an input variable to another stage in the expert process. The use of
intermediate conclusions greatly increases the difficulty of writing the
system in the first place.

However, there is one point which is worth bearing in mind with respectto
intermediate conclusions - and this hinges on the rather vexed question of

independence.

Most of the statistical methods used assume independence of the various
items of evidence E; and, frequently, the assumptions of independence
are not justified.

If there are n items of evidence supporting a hypothesis H and they are
correlated with each other but the calculations are made as if the
correlations did not exist then H will receive more, apparent, support than
it in fact deserves.

Inserting intermediate conclusions in the reasoning process can help to
eliminate this effect.

Consider E; and E; both present to support Hi.

Let H, be an intermediate conclusion which acts as evidence for a further
conclusion Ha.

Let E, and E, be, to some extent, correlated with each other.

240

Then H; receivg'nore support than it should.

However, it might still be reasonable to ¢l

e donarmsstii o aim H, to be true so no real harm

But, without H, th i i

A 1 1 the error in calculating f

S : g for E; and E; wi i

I—mm:)ard |ntpr2, gradually getting more and more sezricu?si‘”d pozanied
, possibly correlated E; are added into the :::ak:ulationsaS more and

he presence of H, and other inte ediate conclus ns allo he slate to
; i 3§ .
o lusions all WSt

be fpetl clean, as it were. A ew set of calculations can be started 'or H2

basedonas aller numb items o evi nd ri r f
. : mber ot items i i
’ i i 9, idence and educmgthe isk of a

12.9.1 Explanatory systems

175) (see also page

Intermediate conclusions can be used to

state of the system. give explanations of the current

In general, an ex m
r planatory system can s i
. €) ay where it h in i
I:ﬁor}tmgf process and, often, how it got there. The probals mgqt Lt
s to force the computer to work in a way which is caiabjz g;at thdls
ready

explanation and this ay be diffi 0 achie rm.
PIg h T ifficul h
i i | it leve o ay even lead to a less

For instance, what
’ sort of explanation
wo
computer asked for x; because it had calcul p
influence P(H:E) more than any other x?

d be appropriate if
- the
ated that this particular x; would

Most of the strategies i i
Vios gies in this book for selecti !

. N t 3
Cir;(:\lfngBan x; which looks kind of important fronl-lng r:a?ho;d e
invoilvedutr.aayn::rsii:se:‘ m';ght well feel happier with exr;lgtr:g

d, say, g of which categorisations wo
- l uld
that x; irrespective of why that particular X; was reallfgl'?;fse:r:

consist of
al point of
tions that
ed most by

12.10 Linear interpolation of res

also pages 195, 204) ponses (see

Suppose that the user i i

S s not certain about his i

i € answer t

co?re;w;:dtio reply on a certainty scale from, say, nrﬂnouas q5uestxon. &
p ng to No (-5), Don't Know (0), and Yes' (+5) b andke

241

[S

Suppose now that the prior probability of any res&se is P(E).

If there is uncertainty in the answer then the system must deal with this by
putting a value on P(E) and, also, avalue on P(not E). |fthe user is uncertain
about the existence of a piece of evidence then that evidence might not be
there.

Let the user’'s response be R.

If R is greater than, or equal to, O then

P(E) = P(E) + (1-P(E))R/5

If R is less than, or equal to, O then
P(E) = P(E) + P(E)R/B

Obviously, P(not E) = 1 - P(E)

and, if R=0 then P(E) remains unchanged at P(E).

Then, to calculate the new P(H:E) we have:

P(H:E) = P(H:E)P(E) + P(H:not E)P(not E)

In other words, calculate both outcomes and weight the final outcome by

the certainty the user expressed for the evidence and against the
evidence.

12.11 Data formats

1. Arrays
DIM R(E.H)

Hypothesis 1 Hypothesis 2 ... etc.
Evidence 1 X X
Evidence 2 X X
wer E1C.

2. DATA statements (see also Section 10.1)

DATA hypothesis 1, prior probability of hypothesis 1, evidence j, P(E;:H).
P(E;:not H)

DATA hypothesis 2, etc.

242

and .

DATA j, evidence |

The array R holds i i
ray a series of equations for su i
categorisation process to be carried out. Tecas: Enabiing

The DATA statements hold similar i i
1 similar information - i
very much like one column from the array. SR TG

The advantage of usin i P
! g arrays is that proc] b
can be lost if you don't store it. processing is quickar - but the data

The advantage of using DATA statem

ents i .
but can be slow to process. is that they are less easily lost

A good method mi

ght involve holdi i i Lo
have one available ing the information on a disc file if you

243

®
Chapter 13

Select Readings

It's quite a problem producing a list of suggested re_ading for a sub]e(;t as
diffuse as expert systems because one of the best thingstodoistoread up
on the subject in which you want your system to be expert - and that
covers, potentially, everything.

Also, if the list is too long then nobody will ever start to look at the items it
contains: and, if it's too short, then it will miss out a great deal. However (in
alphabetical order)...

Bailey, N T J. Mathematics, Statistics and Systems for Health.
Wiley, 1977.

This has a nice section on medical diagnos}is. Bgcause c')f the;‘ n&ed';catl
orientation it doesn’t confine itself to theoretically 'perfect’ methods but,
instead, concentrates on methods that work.

Higman, B. A Comparative Study of Programming Languages.
McDonald/Elsevier Computer Monographs, 1967.

A relatively cheap book, this will be a bit_ of an eye-opener to anyone who
thought there were only three or four different programming languages.
Like most books which cover a large number qf languages this can cause
mental indigestion if you try to read it too quickly.

Hunt, E B. Artificial Intelligence. Academic Press, 1975

A nice book on Al, though it might seem a bit abstract for the non-
244

mathematical reader in places. It covers the learning algorithm and
Bayesian inferencing and is generally interesting on a wide range of
subjects.

Kendall, M. Multivariate Analysis. Charles Griffin, 1975.

This is, actually, one of this author's all-time favourites.

It's a book on statistics and covers the problems of classification and
distance. It isn't the most up to date book by any means - in fact, with
reference to computers, it several times suggests that the use of VDUs
(CRTs) could become widespread one day - but it contains a quantity of
good, sound commonsense which you won't find anywhere else on this
subject.

Knuth, D E. The Art of Computer Programming, Volume 1 Fundamental
Algorithms. Addison-Wesley, 1973.

It's pretty well impossible not to have a copy of this. You have to have a
copy it you want to mess around with linkages and tree structures
although its big disadvantage is that all the examples are givenin MIX -a
sort of assembler-level language for a fictitous machine.

Michie, D (ed.). Expert Systems in the Microelectronic Age.
Edinburgh University Press, 1979.

A useful collection of current papers on various systems, such as
PROSPECTOR, MYCIN, PUFF, SU/X, MECHO and others. It's especially
useful in revealing just how complicated things can get.

Mood, A.M, Graybill, F.A, Boes, D.C. Introduction to the Theory of
Statistics. McGraw-Hill, 1974.

So many aspects of expert systems are tied in with statistics that the odd
book on the subject is essential. The snag is, of course, that such books

245

B
3
|
i
4
z
e

can't always confine themselves simply to what you need to know, but
give you an entire course in all sorts of statistics. However, you'll find
Bayesian inferencing and basic probabilities covered here.

Morrison, D.F. Multivariate Statistical Methods. McGraw-Hill, 1976.

An alternative to Kendall. Rather a dry book but it uses matrix notation in
contrast to Kendall's use of subscripted variables.

Some may find the one easier than the other (in programming languages
they both refer to arrays).

Robinson, J.A. Logic: Form and Function. Edinburgh University
Press, 1979.

Some people may find this a difficult book if they don't have too much
training in logic but it does have a very nice section on LISP and, if you feel
like moving on to more complex systems, you're going to have a hard job
avoiding formal logic anyway.

Wani, J.K. Probability and Statistical Inference. Appleton-Century-
Crofts, 1971.

Another book on statistics this again gives you Bayes and probabilities.

If possible, it's always a good idea to have at least two books on any given
subject - especially if the subject is a difficult one.

That way you can read one version, fail to understand it, read another
version, fail to understand that, then go back to the first version - at about
which point the light often dawns.

In which case, as you've got one book now in your hand (this one) what is
the other bock you should rush out and buy?

Kendall probably. It's not a computer book as such - but it's a wonderful
source of ideas for someone with a computer. Or, failing that, Hunt.

cn/expert-index-1
246

Index

Adaptive Systems(see also Learning
Algorithm)
GE

Al/X

Antecedent-consequent
Applications

Backward chaining
BASIC

Bayes” Theorem
Belief

CASNET

Certainty Factor
Chi-square
Classification
Combinations
Conditional probabilities
Continuous variables

Description Space
DENDRAL
Discrete variables
Discrimination
Distance measures
Domain of enquiry

45,

11
198
198
184

164

171183
180, 222
33,193, 230
172

197

172

96, 98
50,117, 236
32,233

25, 26, 230
235

45, 50
185
235

50, 236

52,117

14

247

i

G Ry s o2

EL
EMYCIN
EXPERT

Factorials
Forward chaining

GUIDON
HEARSAY

IF... THEN
Independent Events
INTERNIST

Joint probabilities

KAS
Knowledge base

Learning algorithm
Linear seperability

LISP

Logical connectives
Logical probability

Machine code
Maximum values
MECHO

Mean
META-DENDRAL
Micro-Expert
Minimum values
MYCIN

MOLGEN

Normal distribution

Odds
248

37,

50,

12,

25,

12,

55,

70,

70,

197
178
198

32,102
138, 182

177

198
171,180

31, 231
197

30, 229

198
14, 146

61,237
59

222
144
171

222
78,238
197
52, 234
188
198
78, 238
170

197
120, 234

232

Parallel proee&ms

65, 237
DECOS 197
PIP 197
Posterior probabilities 231
Prior probabilities 53, 231
Probabilities 20, 23, 53,120,170, 178, 229
Probability distribution function (pdf) 120
Production rules 12,170, 180
PROLOG 222
PROSPECTOR 190
PUFF 178
R1) 197
Recursion 184, 226
ROSIE 198
SACON
SAGE ;Ig-é’
SECHS 197
Sequential procedures 65, 237
Similarity 122
SOPHIE 197
Standard Deviation (sd) 121, 234
SYNCHEM 197
Su/x 197
TEIRESIAS 176
Unit variance 121
Variance 77,121, 234
VM 198

n/expert-index-1

249

A message from the publisher

Sigma Technical Press is a rapidly expanding British publisher. We work
closely in conjunction with John Wiley & Sons Ltd. who provide excellent
marketing and distribution facilities.

Would you like to join the winning team that published these highly
successful books? Specifically, could you successfully write a book
that would be of interest to the new, mass computer market?

Our most successful books are linked to particular computers, and we
intend to pursue this policy. We see an immense market for books relating
to such machines as:-

DRAGON

THE BBC COMPUTER
APPLE
TANDY
SINCLAIR
OSBORNE
ATARI

IBM PC
SIRIUS
NEWBRAIN
COMMODORE

and many others

If you think you can write a book around one of these or any other popular
computer — or on more general themes — we would like to hear from you.

Please write to:

Graham Beech

Sigma Technical Press
5 Alton Road,
Wilmslow,

Cheshire, SK9 5DY,
United Kingdom.

or, telephone 0625-531035

