
Horizontal Scrolling
Screen byte at right

edge of window

Ys inside window
Zs outside window

ID A,(MASK 1)

11111

AND (HL)

LO C,A 0ZZZZZ

LD

0 0 0Z

A,B

011111

CPL

000 0 0

AND (HL)

00 0 0 0

SLA

0 00 00 0

OR C
ZZ Save Carry

on Stack

ID (HL),A Puts this byte
onto the screen

LD B,A0 o

0 0 0 1 1 1

0

0 0

Push AF Carry

..„
Address in DE\411

Vertical ScrollingEdge of Window

Address in HL

AND (HL)

000

AND (HL)

0,0 0

OR C

Z Z Z

ID (l),APuts this byte
rionto the screen

EX DE, HL Restores pointers
to original values

DID

LD A,B

A A A DID

A A A Z Z

111111r SPECTRUM WINDOWS
,
MACHINE CODE 4

-vr

the stack by a PUSH AF instruction, and is restored
to the carry flag by POP AF. For a leftward scroll the
routine selects the RL (HL) instruction and the byte
on the screen is shifted left, with the bit from the
carry flag being moved into the left-hand end of
the byte and the right-hand bit going into the carry
flag. PUSH AF saves the carry flag, so this bit can be
moved into the next byte. To test for the end of the
row the routine simply compares the L and E
registers; this is because the high byte of a screen
address will be the same for all screen bytes in the
same row. Partial scrolling of the last byte is
achieved in a similar way to that of the first byte.

Up and down scrolling routines are combined
in a similar way. If we examine what happens when
VERT is scrolling upwards, we see that the routine
begins by copying they co-ordinate for the top row
into temporary storage for the current row. The
screen addresses of both left and right-hand
margin bytes in the row are then calculated and the
length of the row determined. The routine puts the
address of the left-hand margin byte into DE and
the address of the corresponding byte of the row
immediately below into HL before calling the
subroutine VL N SCR to do the scrolling. VERT then
tests to see if it has reached the bottom of the
window. If it hasn't, it moves down one line before
jumping back to VERT5 to scroll another row of

pixels. If the bottom has been reached, the section
of the routine beginning at CLREDG fills the bottom
pixel row with zeros to blank the row on the screen.
VLNSCR treats margin bytes separately, in a

similar manner to HLNSCR. The way the code
handles these edge bytes is illustrated in our
second diagram. To move the central section of
the pixel row, the routine increments HL and DE so
that they point to the first interior byte on the
current line and the corresponding byte on the line
above. VLNSCR then calculates the length of the
central section (the bytes that fall wholly within the
window area), loads this information into BC and
uses the block move instruction LD I R to move the
whole central section of this row of the window up
one line.

These scrolling routines are relatively slow. This
is partly because left and right and up and down
routines are combined and the program must
make frequent tests to decide which piece of code
must be used, and partly because the bytes at the
left and right-hand margins require special
treatment if they straddle the window's borders.
The scrolling could be made faster if the program
were rewritten to give a separate routine for each
direction of scroll, and if the window were
restricted to starting and ending at the boundary of
a byte of screen memory.

Down The Line
Horizontal scrolling presents
particular problems at the
window edge: the screen byte
must be masked to isolate the
pixel bits inside and outside the
window, and the byte contents
must be shifted. Both
processes employ logical AND,
OR and SHIFT, and the stack is
used to save the PSR status.

Vertical scrolling is made
simpler by the Spectrum's
screen memory map (see page
358). The screen byte must be
masked to isolate pixels inside
and outside the window, and
the EX instruction is used to
swap the contents of the DE
and HL registers, which contain
screen address pointers

THE HOME COMPUTER ADVANCED COURSE 39'7

