
40- COMPUTER SCIENCE/LOGO - 

LOGO is an ideal language for exploring 
mathematics. You begin by developing a 
few procedures for basic arithmetic tasks, 
and then use these primitives to perform 
quite complex calculations. We demonstrate 
how the language is used to calculate 
factorials, and show how a few results are 
transformed into 'factorial trees'. 

In how many ways can you arrange four people in 
four chairs around a table? The first person can be 
seated in any one of the tour seats, but once he has 
sat down only three choices remain for the second, 
then there are two choices for the third, and for the 
last there is only one place left. So, the total 
number of different arrangements is 4 X 3 X 2 X 1. 
This is usually written as 4! and read as '4 factorial'. 
Factorials are often found in mathematics 
problems concerning arrangements, 
combinations and probabilities. 

It is simple to write a recursive definition to 
calculate factorials. First of all, we must note that 
the factorial of 0 is defined as 1. The factorial of 
any non-zero positive number - x say - is the 
factorial of x-1 multiplied by x. Translating this 
into a program we get: 

TO FACTORIAL :X 
IF :X = 0 THEN OUTPUT 1 
OUTPUT (FACTORIAL :X-1) * 

END 

To try it out, type PRINT FACTORIAL 6 - the result 
should be 720. 

This procedure works fine up to 12, but beyond 
this the numbers become too large to be held as 
integers by the computer. On the Commodore 64, 
for example, PRINT FACTORIAL 13 gave 6.22702E9 
- that is, 6.22702 times 10 9. This is hardly 
satisfactory, as the last four digits have been lost. 
There are many reasons (including simple 
curiosity) why we might want to know what these 
remaining digits are. The first thing we need to do, 
therefore, is extend the arithmetic capabilities of 
LOGO so that it can calculate to greater than seven 
figure accuracy. 

To simplify matters, we will only consider 
positive integers. We'll represent the integers as 
lists - so we will represent 1,234,567 as [1 23456 
71. The following two procedures will do addition 
on such numbers. Try them out with PRINT 
LONGADO [123] [569]— the result should be [6 9 2]: 

TO LONGADD :X :Y 
OUTPUT LONGADD1 :X:Y0 

END 

TO LONGADD1 :X :Y :CARRY 
IF (ALLOF (EMPTY?:X) (EMPTY? :Y) (:CARRY= 
0)) THEN OUTPUT [1 
TEST EMPTY? :Y 
IFTRUE IF CARRY = 0 THEN OUTPUT :X ELSE 
OUTPUT LONGADD1 :X [1] 0 
TEST EMPTY? :X 
IFTRUE IF CARRY = 0 THEN OUTPUT :Y ELSE 
OUTPUT LONGADD1 [1] :Y0 
MAKE SUM (LAST :X) + (LAST :Y) + :CARRY 
OUTPUT LPUT REMAINDER :SUM 10 LONGADD1 
BUTLAST :X BUTLAST :Y QUOTIENT :SUM 10 

END 
These procedures work in much the same way as 
we would do additions on paper, adding from the 
left and incorporating any number carried from 
the previous column. 

Subtraction is a similar process. However, we 
have included a routine to delete leading zeros 
from an answer, so that we don't end up with 
results such as [0 0 0 7 81. 

TO LONGSUB :X :Y 
OUTPUTSTRIPZEROS LONGSUB1 :X :Y 0 

END 

TO LONGSUB1 :X :Y :BORROW 
IF (ALLOF (EMPTY? :X) (EMPTY?:Y) (:BORROW= 
0)) THEN OUTPUT [0] 
TEST EMPTY? :Y 
IFTRUE IF BORROW = 0 THEN OUTPUT :X ELSE 
OUTPUT LONGSUB1 :X [1] 0 
IF EMPTY? :X THEN PRINT [SORRY, I CANT 
HANDLEA NEGATIVE RESULT] TOPLEVEL 
MAKE "DIFF (LAST :X) - (LAST :Y) - :BORROW 
IF :DIFF <0 THEN OUTPUT LPUT (10 + 01FF) 
LONGSUB1 BUTLAST :X BUTLAST:Y 1 
OUTPUT LPUT :DIFF LONGSUB1 BUTLAST :X 
BUTLAST :Y 0 

END 

TO STRIPZEROS :X 
IF EMPTY? :X THEN OUTPUT [0] 
IF NOT ((FIRST :X) = 0) THEN OUTPUT :X 
OUTPUT STRIPZEROS BUTFIRST :X 

END 

Long multiplication is slightly more complicated. 
We'll implement it using the technique normally 
taught in schools. For example, supposing we 
want to multiply 123 by 338. The problem is split 
up into three parts: first we multiply 123 by 8; then 
we multiply 123 by 330; and, finally, we add the 
two results together. This method depends on the 
fact that the second stage can be broken down into 
two sub-stages: firstly, 123 is multiplied by 33; and 
then a zero is placed at the end of the result. To 
multiply a number by 33 clearly involves the use of 

954 THE HOME COMPUTER ADVANCED COURSE 


