
2ND REFINEMENT
1. Read NAMES
2. (Conver all letters to upper case)

BEGIN
LOOP while unscanned characters remain in NAMES

Read out characters front NAMES in turn
IF character is lowe r case

THEN convert to upper case
ELSE do nothing

ENDIF
Assign character to temporary string variable

ENDLOOP
LET NAMES = temporary string variable
END

3. (Find last space)
BEGIN
LOOP while unscanned characters remain in NAMES

IF Character =
THEN note position in a variable
ELSE do nothing

ENDIF
ENDLOOP
END

4. (Read SURNAMES)
BEGIN
Assign characters to right of last space in NAMES

to SURNAME$
END

5. (Read FORENAMES)
BEGIN
LOOP wile unscanned characters remain in NAMES
up to last space

SCAN characters
IF character is iot a letter of the alphabet

THEN do nothing
ELSE assign character to FORENAMES

ENDIF
ENDLOOP
END

6. (Discard non-alphabetics from FORENAMES)
(This has been handled in 5 above)

This second level refinement is now very near the
stagewhere it could be coded into a programming
language. Let's develop 2 (Convert letters to
upper case) to a third level of refinement and therP
code it into BASIC. We've encountered an
algorithm for doing this before (see page 212).

3RD REFINEMENT

2. (Convert all letters to upper case)
BEGIN
READ NAME$
LOOP
FOR L =1 TO length of string

READ character L
IF character is )owe' case

THEN subtract 32 from ASCII value of
character

ELSE do nothing
ENDIF
LET TEMPSTRINGS = TEMPSTRINGS' character

ENDLOOP
LET NAMES = TEMPSTRINGS
END

© Basic Programming

the final space and to make the names equivalent
to AJP TAYLOR and ALFRED TAYLOR. If
we were to do this, both AJP and ALFRED could
be considered as forenames, and so AJP would
come first.

Part of our program would accept as an input a
name and produce as an output a name, address
and telephone number (note that we have not
even begun to consider the meanings of `address'
and `telephone number'). If we were to accept
names with a 'fuzzy' format as input, with internal
conversion to a standardised format, would we
expect the output to be in the 'standardised' form,
or in the same form as the original entry? The most
`user friendly' output would be for the name to be
in the original form, hut, as we shall see, this will
complicate the programming.

As an initial programming task, let's suppose
that a name has been assigned to the string
variable NAMES and that we have two other
variables, FORENAMES and SURNAMES. How will
we assign the appropriate parts of NAMES to
FORENAME$ and SURNAMES? Ignoring, for the
moment, the problem of keeping a record of the
original form in which the name was entered (so
that it can be retrieved when needed later), a
simple statement of the program could be:

Convert all characters to upper case
Eliminate all non-alphabetic characters except
the final space
Assign all characters following a final space to
SURNAMES
Assign all characters preceding a final space to
FORENAME$

Before considering how this problem could be
coded into BASIC, we'll see how the process of 'top
down programming' can take us from a very
broad statement of our objective to the point
where coding into a particular programming
language becomes possible. You will notice that
we are using not only long variable names like
SURNAMES, but command words like BEGIN, LOOP
and ENDLOOP. These are constructions that we
have invented to help us describe our program. At
the final stage of development, they will be
replaced with equivalent commands from BASIC.

We'll explain more about these commands, and
why we have indented some of the lines in the next
instalment of the course.

1ST STATEMENT OF OBJECTIVES

INPUT
A name (in ay format)
OUTPUT
1. A forename
2. A surname

1ST REFINEMENT

1. Read NAMES
2. Convert all letters to upper case
3. Find last space
4. Read SURNAMES
5. Read FORENAMES
6. Discard non-alphabeticsfronm FORENAMES

234 THE HOME COMPUTER COURSE


