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BUG REPELLENT
lo illustrate the techniques of the top-dow n
design approach to Assembly language
programming, we now begin to build up a
debugging program. The first thing we must
do is develop the control module, which has
overall command of the lower-level modules
that perform more specific activities.

We shall first take a brief look at the specification
and design stages for the production of a
debugger. The specification is reasonably
straightforward; we have already looked at the
functions we would expect such a program to
provide (see page 739).

The inputs to the debugger will be:

1. A program to debug: We will assume that the
debugger is loaded with the program it is to debug
already in memory.
2. Commands: We must decide whether the
commands are to be entered directly or as choices
from a menu. We will enter single-character
commands from the list given in the margin.
3. Addresses: These would presumably be entered
in hex, so it will be necessary to convert a string of
ASCII hex digits to a 16-bit binary number.

The outputs from the debugger will be:

1. 'Echoes' of input characters: Remember that
keypresses do not automatically generate
characters on the screen — the computer must be
programmed to do this (this is called 'echoing').
2. Eight- and 16-bit numbers:'These are accepted
as strings of hex digits.
3. Strings: These are used to label the above.

There arc many ways in which a program could be
split up into modules and then into subroutines,
but there must always be an outer module — the
'shell' — which ties all the others together. For our
debugger program, this will take the form:

THE MAIN MODULE
Data:

Start-Address of program (16-bit)
Prompt for command entry (single ASCII character

Command Character is a single ASCII character (do
we allow lower-case characters?)

Break-Address is the address of the handler routine
that services the SWI interrupt

Process:
Set up Interrupt
GET Start-Address
REPEAT

DISPLAY Prompt

REPEAT
Get Command

UNTIL Command is valid
DISPLAY (Echo) Command
IF Command = 'B THEN

Insert-Breakpoint
ELSE IF Command = 'U' THEN

Remove-Breakpoint
ELSE IF...

Until Command = '0'
End of Main Module
From this we now have a good idea of the routines
that will be required. A module is not the same
thing as a subroutine, however. Clearly, there are
several subroutines that logically go together in
groups with shared data — one such module, for
example, might deal with breakpoints. The next
stage of refinement shows how we might design
such a module:

MODULE BREAKPOINTS
Data:

Breakpoint-Table is an array of 16-bit addresses
where breakpoint addresses can be stored

Removed-Values is an array of eight-bit values
corresponding to the above table. The op-codes
that get replaced by an SWI instruction at the
breakpoint can be stored in this

Number-Of-Breakpoints is an eight-bit value
containing the number of active breakpoints

is an eight-bit value, which contains
the next breakpoint that will be encountered in the
run

SWI-Opcode is an eight-bit op-code for the SWI
instruction

Processl: Insert-Breakpoint
IF Number-Of-Breakpoints < MAX THEN

Get-Address
Add 1 to Number-Of-Breakpoints
Store Address in Breakpoint-Table
(Number-Of-Breakpoints)

ENDIF
End Of Processl

Process2: Set-Up-Breakpoint(N)
(N tells us which of the breakpoints in the table is to

be set up)
Get-Address in Breakpoint-Table(N)
Get Op-code at that Address
Store it in Removed-Values(N)
Store SWI-Opcode at Address

End of Process2

Process2 is at the stage where we could begin
coding it. There are four data values that must be
manipulated: N, the parameter that tells us which
breakpoint to use, is an eight-bit number in the

insert Breakpoint
Un-insert (remove)

breakpoint
Display current
breakpoints

Start running program
Go (resume from where the

program left off)
display contents of

Registers
tvi
 

inspect and change
Memory location

Quit
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