
MACHINE CODE/6809 CODE

BUG REPELLENT
lo illustrate the techniques of the top-dow n
design approach to Assembly language
programming, we now begin to build up a
debugging program. The first thing we must
do is develop the control module, which has
overall command of the lower-level modules
that perform more specific activities.

We shall first take a brief look at the specification
and design stages for the production of a
debugger. The specification is reasonably
straightforward; we have already looked at the
functions we would expect such a program to
provide (see page 739).

The inputs to the debugger will be:

1. A program to debug: We will assume that the
debugger is loaded with the program it is to debug
already in memory.
2. Commands: We must decide whether the
commands are to be entered directly or as choices
from a menu. We will enter single-character
commands from the list given in the margin.
3. Addresses: These would presumably be entered
in hex, so it will be necessary to convert a string of
ASCII hex digits to a 16-bit binary number.

The outputs from the debugger will be:

1. 'Echoes' of input characters: Remember that
keypresses do not automatically generate
characters on the screen — the computer must be
programmed to do this (this is called 'echoing').
2. Eight- and 16-bit numbers:'These are accepted
as strings of hex digits.
3. Strings: These are used to label the above.

There arc many ways in which a program could be
split up into modules and then into subroutines,
but there must always be an outer module — the
'shell' — which ties all the others together. For our
debugger program, this will take the form:

THE MAIN MODULE
Data:

Start-Address of program (16-bit)
Prompt for command entry (single ASCII character

Command Character is a single ASCII character (do
we allow lower-case characters?)

Break-Address is the address of the handler routine
that services the SWI interrupt

Process:
Set up Interrupt
GET Start-Address
REPEAT

DISPLAY Prompt

REPEAT
Get Command

UNTIL Command is valid
DISPLAY (Echo) Command
IF Command = 'B THEN

Insert-Breakpoint
ELSE IF Command = 'U' THEN

Remove-Breakpoint
ELSE IF...

Until Command = '0'
End of Main Module
From this we now have a good idea of the routines
that will be required. A module is not the same
thing as a subroutine, however. Clearly, there are
several subroutines that logically go together in
groups with shared data — one such module, for
example, might deal with breakpoints. The next
stage of refinement shows how we might design
such a module:

MODULE BREAKPOINTS
Data:

Breakpoint-Table is an array of 16-bit addresses
where breakpoint addresses can be stored

Removed-Values is an array of eight-bit values
corresponding to the above table. The op-codes
that get replaced by an SWI instruction at the
breakpoint can be stored in this

Number-Of-Breakpoints is an eight-bit value
containing the number of active breakpoints

is an eight-bit value, which contains
the next breakpoint that will be encountered in the
run

SWI-Opcode is an eight-bit op-code for the SWI
instruction

Processl: Insert-Breakpoint
IF Number-Of-Breakpoints < MAX THEN

Get-Address
Add 1 to Number-Of-Breakpoints
Store Address in Breakpoint-Table
(Number-Of-Breakpoints)

ENDIF
End Of Processl

Process2: Set-Up-Breakpoint(N)
(N tells us which of the breakpoints in the table is to

be set up)
Get-Address in Breakpoint-Table(N)
Get Op-code at that Address
Store it in Removed-Values(N)
Store SWI-Opcode at Address

End of Process2

Process2 is at the stage where we could begin
coding it. There are four data values that must be
manipulated: N, the parameter that tells us which
breakpoint to use, is an eight-bit number in the

insert Breakpoint
Un-insert (remove)

breakpoint
Display current
breakpoints

Start running program
Go (resume from where the

program left off)
display contents of

Registers
tvi
 

inspect and change
Memory location

Quit

758 THE HOME COMPUTER ADVANCED COURSE


