L

|

insert Breakpoint

Un-insert (remaove)
breakpoint

Display current
breakpoints

Start running program
Go {resume from where the|

program left off)
display contents of
Registers
inspect and change
Memory location
Quit

R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRBRRRRRRRIDES

BUG REPELLENT

To illustrate the techniques of the top-down
design approach to Assembly language
programming, we now begin to build up a
debugging program. The first thing we must
do is develop the control module, which has
overall command of the lower-level modules
that perform more specific activities.

We shall first take a brief look at the specification
and design stages for the production of a
debugger. The specification is reasonably
straightforward; we have already looked at the
functions we would expect such a program to
provide (see page 739).

The inputs to the debugger will be:

1. A program to debug: We will assume that the
debugger is loaded with the program it is to debug
already in memory.

2. Commands: We must decide whether the
commands are to be entered directly or as choices
from a menu. We will enter single-character
commands from the list given in the margin.

3. Addresses: These would presumably be entered
in hex, so it will be necessary to convert a string of
ASCII hex digits to a 16-bit binary number.

The outputs from the debugger will be:

1. ‘Echoes’ of input characters: Remember that
keypresses do not automatically generate
characters on the screen — the computer must be
programmed to do this (this is called ‘echoing’).

2. Eight- and 16-bit numbers: These are accepted
as strings of hex digits.

3. Strings: These are used to label the above.

There are many ways in which a program could be
split up into modules and then into subroutines,
but there must always be an outer module — the
‘shell’ — which ties all the others together. For our
debugger program, this will take the form:

THE MAIN MODULE
Data:
Start-Address of program (16-bit)
Prompt for command entry (single ASCII character
=)
Command Character is a single ASCI| character (do
we allow lower-case characters?)
Break-Address is the address of the handler routine
that services the SWI interrupt :

Process:
Set up Interrupt
GET Start-Address
REPEAT
DISPLAY Prompt

758 THE HOME COMPUTER ADVANCED COURSE

REPEAT
Get Command
UNTIL Command is valid
DISPLAY (Echo) Command
IF Command =B’ THEN
Insert-Breakpoint
ELSE IF Command = ‘U’ THEN
Remove-Breakpoint
ELSEIF. ..
Until Command ='Q’
End of Main Module
From this we now have a good idea of the routines
that will be required. A module is not the same
thing as a subroutine, however. Clearly, there are
several subroutines that logically go together in
groups with shared data — one such module, for
example, might deal with breakpoints. The next
stage of refinement shows how we might design
such a module:

MODULE BREAKPOINTS

Data:

Breakpoint-Table is an array of 16-bit addresses
where breakpoint addresses can be stored
Removed-Values is an array of eight-bit values

corresponding to the above table. The op-codes
that get replaced by an SWl instruction at the
breakpoint can be stored in this
Number-0f-Breakpoints is an eight-bit value
containing the number of active breakpoints
is an eight-bit value, which contains
the next breakpoint that will be encountered in the
run
SWI-Opcode is an eight-bit op-code for the SWI
instruction

Process1: Insert-Breakpoint

IF Number-0f-Breakpoints << MAX THEN
Get-Address
Add 1 to Number-Of-Breakpoints
Store Address in Breakpoint-Table
(Number-0f-Breakpoints)
ENDIF
End Of Process1

Process2: Set-Up-Breakpoint(N)
(N tells us which of the breakpoints in the table is to
be setup)
Get-Address in Breakpoint-Table(N)
Get Op-code at that Address
Store it in Removed-Values(N)
Store SWI-Opcode at Address
End of Process2

Process2 is at the stage where we could begin
coding it. There are four data values that must be
manipulated: N, the parameter that tells us which
breakpoint to use, is an eight-bit number in the




