
a

1 60,320
! 32.880

11 	2I28.800
itt 390916,800
121 4 79001.600

22W20,800
86 2L 98 (29 1,200
jJ609 ,604 ,368.000
X L 923,89,888,000

068T,08,096,000
6,020620,0,728,000

;1t4th1208,832.000
2,42M,ØO8,U6,640.000

888.000
1 ,,60 :429,096,000

6,402,;0028,000
12 1 ,645(6U8,832.000
243290;O6,1 7 6640,000

'.;. 	.)..

3,687.428M96.:
6,4023 73. 0 72$, Ii U ()
121.645, 100

432 90 2 00$ I 	"

18!
1!
1!

12!
18!
19!
26!

^Ot
16!

18!
IT
20!

0!
1!
2!
3!
41
RE

Explosive
Factor
Factorial values increase with
startling rapidity, as can be
seen here. Because the values
become so large, most
computers and calculators
will represent factorials for
numbers greater than 12 in
exponential notation. Thus,
the factorial of 12 would be
given as 4.79E8, or 4.79
108 . Accuracy is increased if
all the significant digits are
shown

2
6
24
120

t! 720
21 2,040

Mi llf -I
i 11' . II

recursion. The procedure LONG MU LT controls this
general strategy:

TO LONGMULT :X :Y
IF EMPTY? BUTLAST :Y THEN OUTPUT
LONGMULT1 :X LAST :Y 0
OUTPUT LONGADD (LONGMULT1 :X (LAST :Y)0)
(LPUT "0 LONGMULT :X BUTLAST :Y)

END

The details of multiplying a line by a single digit are
carried out by LONGMULT1:

TO LONGMULT1 :X NO :CARRY
TEST EMPTY? :X
IFTRUE IF CARRY = U THEN OUTPUT [1 ELSE
OUTPUT (LIST CARRY)
MAKE PROD (LAST :X) * :NO + CARRY
OUTPUT LPUT REMAINDER PROD 10
LONGMULT1 BUTLAST :X NO QUOTIENT
PROD 10

END

We won't need procedures to perform division for
calculating factorials, but you might care to extend
the system to cover division for yourself.

We now have a set of primitives for carrying out
arithmetic to any degree of precision. The only
limitation on the size of numbers that can be
handled is the total memory space available to the
program.

MAKING MODIFICATIONS
We can now modify our original factorial program
to use our new form of long multiplication.

TO FACT :X
IF FIRST :X = 0 THEN OUTPUT [1]
OUTPUT LONGMULT (FACT LONGSUB :X [l]) :X

END

To try it out type FACT [131; you should get [62270
2 0 8 0 0] as the result. There are problems,
however. The calculation process is slow, and -
on the Commodore 64 - the largest factorial we
obtained before running out of memory was 34!,
which has 39 digits (and took some time to be
calculated).

The expression of large numbers as lists looks
rather unusual, but we can modify the program to
overcome this problem by translating back and
forth between our usual notation and the list form.
We employ two procedures - EXPLODE and
IMPLODE - to do this.

EXPLODE 123 outputs [12 3] and IMPLODE [1 23]
outputs 123

TO EXPLODE :X
IF EMPTY? :X THEN OUTPUT[]
OUTPUT (SENTENCE FIRST :X EXPLODE
BUTFIRST :X)

END

TO IMPLODE :X
IF EMPTY? :X THEN OUTPUT
OUTPUT (WORD FIRST :X IMPLODE
BUTFIRST :X)

END

THE HOME COMPUTER ADVANCED COURSE 955

