
0 Basic Programming

Search Warrant
The time taken to locate a particular record can be greatly reduced
using the `binary search' — provided that the file has already been
sorted into an appropriate order

The three most important activities in the address
book program — adding new records, saving the
file on tape or disk, and reading in the file from
mass storage when the program is first run — have
now been developed. But an address book is no
use if you can only add information and cannot
extract any. What is needed next is a routine to find
a record.

Finding a complete record from a name is likely
to be the most frequent activity, and that's why the
first option on the choice menu (*CHOOSE*) is FIND
RECORD (FROM NAME). Searching is a highly
important activity in many computer programs,
especially in database programs where specific
items of data often need to be retrieved from a file.
Broadly speaking, there are two search methods —
linear and binary. A linear search looks at each
element in an array, starting at the beginning, and
carries on until the particular item is located. If the
data items in the array are in an unsorted state, a
linear search is the only type that can be
guaranteed to work. The time to locate the item
using a linear search in an array of N items has an
average value proportional to N/2. If there are few
items to be searched through, N/2 may be
perfectly acceptable, but as the number of items
increases, the time taken to perform the search
may become excessive.

If the data in the file is known to be in a sorted
state, however, there's a far more efficient
searching method, known as the 'binary search',
which works in the following way. Suppose you
want to find the definition of the word
'leptodactylous' in a dictionary. You don't start at
the first page and see if it's there, and go on to the
second page if it's not, working your way through
the dictionary until you find it. Instead, you put
your thumb roughly in the middle of the book,
open the page and see what's there. If the page you
open happens to start with 'metatarsal', you know
you've gone too far, so the second half of the book
is irrelevant and the word you want will be
somewhere in the first half of the book. You then
repeat the process, treating the page you originally
opened as though it were the end of the dictionary.
Again you split the first part of the dictionary in
two and open the page to find `dolabriform'. This
time you know that the page selected is too `low'
and (for the purposes of our search for
'leptodactylous') can be considered as though it
were the first page — all earlier pages are irrelevant
as they are known to be too `low' in the sense that

416 THE HOME COMPUTER COURSE

`1' is'higher' than V. The 'first' and `last' pages of
the dictionary can now be considered as the ones
starting with `dolabriform' and 'metatarsal'
respectively. Again you put your thumb in the
middle of the 'relevant' section and open up at
'ketogenesis'. Again this is too `low' so the word we
are looking for must He between this page and the
`metatarsal' page. Repeating this process often
enough is guaranteed to locate the word we are
looking for — as long as it is in the dictionary!

In the example we have just considered,
'leptodactylous' was the 'search key'. The search
key is the entry we are trying to find. Each time we
examine a record, we will compare the search key
against the 'record key' to locate the `target' or
`victim'. Together with the record key we can
expect to find what is called 'additional
information'. logically enough. The additional
information for the record key 'leptodactylous'
would be the dictionary definition of the word -
in this case, slender-toed.

The analogy with searching through a file in a
database for a target record is a close one,
provided that the records have been previously
sorted as the entries in a dictionary have. Think
how difficult a dictionary would be to use if the
entries were in the order the lexicographer first
thought of them!

The search routine required for our address
book will need to be more complicated than we
might first appreciate for reasons that will become
apparent. The first thing the search routine — let's
call it *SCHREC* for the time being — will do is
request the name to be searched for. This is called
the search key. Suppose that somewhere in the file
there is a record for a person called Peter Jones.
The record for this person will have a field (with
the name in standardised form) containing JONES
PETER. The search routine might prompt us with a
message such as WHO ARE YOU LOOKING FOR?, and
we would respond with PETER JONES, or perhaps P.
JONES or Pete Jones. Before this gets too
complicated, let's assume that we respond with the
full name, Peter Jones. The first thing the search
routine will do will be to convert this response to
the standardised form, JONES PETER. Next, it will
compare our input, the search key, with the various
contents of the MODNAMS fields. If the program
were using a linear search, the search key would be
compared with each MODNAMS field in sequence
until a match was found or until it was discovered
that an exact match did not exist,


