
ColCo 2Co 3
128 64 32 16 8 4 2 U 128 64 32 16 8 4 2 U 128 64 32 16 5 4 2 U

BBC Sprites
(JailCol 2Col 3

DATA

255
254
252
240
232
228
194
129

129
194
228
232
240
252
254
occ

0
0
0
0
0
0
0

24
189
102
102
102
189
24

0

0

0

0

0

0

255
127
63
15

23

39

67

129
0
0
0
0
0

129

67

39

23

15

63

127
CJJ

0

111n111.0.-

Sprite graphics assist in creating fast-action
arcade-style games in BASIC. Machines like
the Commodore 64 have chips dedicated to
controlling sprite shapes; other machines
do not possess this hardware but are
capable of supporting sprites using
software. We look at a routine to create
and move a sprite on the BBC Micro.

Sprites can take many shapes and forms, but all
must be designed on a common grid. There is no
restriction on the choice of grid dimensions, but it
is most sensible to make the grid a whole number
of bytes wide (i.e. 8, 16, 24 bits etc.) and to
choose a depth that gives a broad rectangular or
square workspace. The routine we give uses a grid
24 pixels wide by 21 pixels deep. 63 bytes of
memory will therefore be used to hold the sprites
shape. The shape is defined by designing a shape
on the grid and then coding that design into
binary. Here, each pixel that we wish to have
turned on in the final shape is coded as a one and
each pixel that is to be turned off is coded as a
zero. Once the bytes making up the shape have
been defined as binary values, they must then be
converted to either decimal or hex, and placed in
an area of memory. The design of the
demonstration sprite is shown.

The 63 numbers that define the sprite can be
entered as DATA statements and READ by the BASIC
part of the program. As each number is READ in, it
must be placed in an area of memory specially set
aside for the purpose. This area can be anywhere
in RAM as long as it is protected so that it cannot
be overwritten during a program run. The most
obvious place to store the sprite data is at the top
of the BASIC program area. The top of this area is
defined by the variable HIM EM. So that our data is
not overwritten, it is first necessary to lower
H I MEM a little. Lines 220 and 230 of the program
do this and set the address of the first byte of data,
SPR DAT, to start just above the new value of
HIMEM. Lines 1740 to 1770 read the data and
place it in the 63 bytes starting at location SP R DAT.

THE MACHINE CODE ROUTINE
The machine code's main function is to analyse
the sprite design and then to carry out the
operations necessary to convert the data into a
screen display. To do this, the machine code
routine must look at each bit of the 63 bytes of
data in turn and for each bit decide whether to
plot a point (if the bit is one) or leave a space (if
the bit is zero). Probably the easiest way of
analysing each bit of a particular byte is to use one

of the Rotate instructions. Line 1100 of the source
code uses the ROtate Left (ROL) instructions on a
particular byte. This instruction causes each bit in
the byte to move one place to the left. The old
value of the carry flag is inserted at the right-hand
end, and the bit that 'falls off' the left-hand end is
shifted into the carry. By repeated ROLs, the
routine can examine each bit in turn, whilst it is in
the carry. On any subsequent ROL, the bit will be
returned to the right-hand end of the byte. As
long as we are careful not to alter the carry flag
between ROLs, then the byte will have returned to
its original value after nine rotations.

Original Contents

13

You can see from this demonstration that the
original contents of the carry flag (C) do not
particularly concern us, as this is rotated through
the byte and eventually shifted out of the byte

After 1st ROL

After 2nd ROL

After 3rd ROL

After 4th ROL

After 5th ROL

After 6th ROL

After 7th ROL

After 8th ROL

After 9th ROL

Sizing The Sprite
The sprite measures 24 x 21
pixels, and so maps onto 63
bytes, one pixel per bit in the
usual hi-res method. The
colour of the whole sprite is set
by the variable, logcol, while
the sprite size is determined by
the two scale factors, XSCALE
and YSCALE; these should be
even numbers

THE HOME COMPUTER ADVANCED COURSE 377

