the memory location 1053.

The next stage is that the contents of this
address, which is 58, or 00111010 in binary, is
placed onto the data bus and ‘loaded’ into the
CPU. Here, because the CPU is expecting an
instruction, the byte is interpreted by the control
block and causes a very precise sequence of
operations to be performed. This particular
instruction specifies that the next two bytes in
memory will contain 16 bits to be used as a
memory location, -and that the contents of this
location are to be loaded into the CPU’
accumulator. As soon as the CPU recognises this
instruction, it knows that the next two bytes in
memory will specify an address and that the
contents of that address will be loaded into the
accumulator. It consequently knows that it will not
receive another instruction from memory until
after these operations have been performed, and
that the next instruction will reside in location
1056.

The instruction we are using as an example
causes the address bus to be incremented by one,
so that the next memory location addressed is
1054. The contents of this location are then put on
the data bus and loaded into the CPU. This time,
however, they are put into one half of an address
register. Having done that, the CPU increments
the address bus again so that it now addresses
location 1055. The contents of this location go on
to the data bus and are similarly loaded into the
CPU, this time to be stored in the other half of the
address register.

Transferring Numbers

The next stage — and remember that ali of these
actions happen automatically as a result of the
original instruction — is that the numbers in the
address register are transferred to the address bus.
These numbers, as we can see, are 3071. The
memory location now being addressed is therefore
3071. This address (0000101111111111 in binary)
is decoded by the address decoder and selects
memory cell 3071. The contents of this location,
96, (01100000 in binary) are put onto the data bus
and loaded into the CPU. This time, however, the
data will be put in the CPU’s accumulator. After
this the address bus will be set to 1056 and the
CPU will expect to find another instruction there.

Now that the CPU has one piece of data in its
accumulator, what sort of instruction might be
expected to be encountered next? It could be
almost anything — CPUs have from a few dozen
to a few hundred instructions they recognise,
depending on the CPU — but suppose we wanted
to invert the data in the accumulator. Inverting
means changing each one into a zero and each zero
into a one. The instruction to do this would be
located at address 1056. On our imaginary CPU, the
code for this instruction would be 84. When this
number was received by the CPU, the data in the
accumulator would be inverted. The number that

was in the accumulator was 96 (01100000 in

binary). The instruction to invert would cause it
to be changed to 10011111 in binary. The
instruction to invert a number in the accumulator
is a ‘one-byte’ instruction, so again the CPU would
know that the contents of the next memory
location, 1057, would again be an instruction
rather than data.

This method of addressing a memory location
to retrieve a piece of data is only one of several
methods available to the programmer. The
specific instruction bytes we used in the example
(58 to load the accumulator and 84 to invert the
contents of the accumulator) are the instructions
for our hypothetical CPU, but the same
principle applies to all other microprocessor chips.
The only difference is that different codes are used
for the various instructions and each make of CPU
has slightly different ‘instruction sets’,

1/O (Input/Qutput) locations must also have
unique addresses, but the principles for addressing
them by the CPU are the same. Usually, in eight-
bit microprocessors, only eight of the address lines
are available for addressing 1/0 locations, so the
maximum number of I/O addresses is 256. This,
however, is more than enough for most small
computer applications.

Address Decoding

The 16 lings constituting the
adaress bus are capable of
uniguely identifying any one of
65,536 separate memary
locations The combination of
ones andzeros on the address
bus are decoded in address
decoders. Part of the decoding
s performed by address
decoders built up from simple
logic gates in chips mounted on
the circuil; much of the
decoding is periormed by
equivalent circuits inside the
memory chips themselves. The
illustration shows how two
address lines can be decoded to
select one, and only one, of four
chips

INPUT LINES 0 1

T

M ®

AND

OUTPUT LINES

e
Y

AND

Address decoding is always needed so that the
device selected by the CPU (whether it be a
memory location or an I/O location) is made
uniquely active while all the other memory or 1/O
locations remain inactive. This process is called
‘enabling’. When there are only a small number of
address lines to decode, it is possible to use simple
logic gate chips to perform the decoding. The
principle of a two-to-four line decoder is shown in
the illustration. It is usual to use this type of simple
decoding for selecting 1/Q devices. As the
number of address lines increases, however, the
complexity of the decoding circuit grows
massively. When there are 65,536 separate
memory locations that must be individually and
uniquely selected, it is usual for most of the
address decoding to be performed inside the
memory chips.

THE HOME COMPUTER COURSE 145

LIZ DIXON



