
THE HOME COMPUTER ADVANCED COURSE137

PART 2/MACHINE CODE

This system of paged memory is convenient
because we can look at the address of any byte,
and split it into two parts — the digits from the
hundred column leftwards are the page number of
the byte, and the digits from the tens column to
the right are the number of bytes counted from
the bottom of that page. In the example above we
have actually split the address 3518 into two
numbers: page number 35, and byte number 18
on that page. We call 18 an offset, or page offset,
because it is the number by which you must offset
(or increase) the address of the bottom byte on
the page in order to reach the byte in question.

The computer, however, doesn't count in
decimal, as we do — it counts in binary. The
paging system depends upon being able to find
the page and the offset by simply inspecting the
address of the byte. The decimal address 99 is
represented by 01100011 in binary, and 100
decimal is 01100100 binary; decimal 199 is
11000111, and decimal 200 is 11001000 binary.
We can see, from these examples, that there's no
simple way of looking at the binary numbers and
telling page from page, as we can so easily do with
the decimal equivalents. The reason for this is the
choice of page size.

We chose 100 as the page size precisely because
it's a meaningful number in the decimal system
(it's a power of 10). If we are to count in binary,
however, then we must choose a page size to suit
that system. The page size used by our computers
is 256, so that page0 starts with byte0 and
continues to byte255; pagel starts with byte256
and continues to byte511, and so on. To see why
this is convenient we must write these addresses in
binary:

Page 0: byte 00000000 — bytellilli11
Page 1: byte 100000000 — bytel l i l l i 111

As you can see, we can count in binary from 0 to
255 in an eight-bit number; the next number 
256 — requires nine bits, and with nine bits we can
count up to 511. The next number — 512 -
requires ten bits, and with ten bits we can count up
to 1023; and so on. We now see that if the page
size is 256 and we count in binary, then the offset
is the rightmost eight bits, and the page number is
given by the bits from bit8 leftwards.

This may be puzzling since we have already
stated that the CPU can handle only single bytes,
and a byte contains only eight bits. Therefore, you
may ask, what good is it to talk about nine- and
10-bit numbers? The answer is that all addresses
in memory are treated as two-byte numbers, and
the CPU deals with them one byte at a time. If we
rewrite the page boundaries as two-byte numbers
this system becomes more clear:

Page 0 starts at 00000000 00000000
ends at0000000011111111

Page 1 starts at 00000001 00000000
ends at0000000111111111

Page 13 starts at 00000010 00000000
ends at0000001011111111

Page 11 starts at 00000011 O0000000
ends at000000111111111

and so on.
Now we can see that when the CPU fetches

information from, or puts information into, a byte
in memory, that byte will be identified by a two-
byte address. The first, or leftmost, byte of the
two gives the page number, while the second, or
rightmost, byte gives the offset.

On page 38, we provide programs that convert
from decimal into binary, as well as hexadecimal
numbers. The latter are used extensively in
machine code, and will be fully discussed later in
the course.

Paged Addressing
Paged add-essing divides

memory into imaginari blocks
or pages of 256 bytes. All

addrxsses are then expressed as
two-Dyte nimbers: one byte
gives the page number the
other gives the offset from the

start of that page


