
values 8 for cursor left, 28 for cursor right, 29 for
cursor up and 30 for cursor down. Your computer
will probably use different values. Substituting the
values you have found for your computer's cursor
control codes in the program above, try the
following program:

10 PRINT CHR$(12): REM USE CLS OR
APPROPRIATE CODE

20FORL=1TO39
30 PRINT "*";
40 NEXT L
50FORL=1TO22
60 PRINT CHRS(8); :REM USE `CURSOR LEFT CODE
70 NEXT L
80 FOR L= 1104
90 PRIN- "®';
100 NEXT L
110 END

This should print a line on the screen looking like:

Lines 20 to 40 would simply have printed a line of
39 stars. However, lines 50 to 70 `printed' the
cursor left `character' 22 times, so the cursor
moved back along the line 22 places. Lines 80 to
100 then printed ® four times and the program
then ended. Programming techniques such as this
allow the programmer to move the cursor around
the screen to print new characters in new positions
that may not be known until the values are
calculated in the program. This technique has the
advantage of enabling ordinary screen characters
to be used to plot simple graphs, without resorting
to the computer's special graphics facilities (if it
has any).

To see how this kind of cursor control can be
used to produce graphs as an output from your
programs, try the following short program:

10 PRINT"THIS PROGRAM PRINTSABAR GRAPH OF
3 VARIABLES"

20 INPUT "INPUTTHE THREE VALUES ";X,Y,Z
30 PRINT
40 FOR L=1TO2
50FORA=1TOX
60 PRINT*"; .
70 NEXTA
80 PRINT CHRS(13)
90 N EXT L
100FORL=1TO2
110 FORA=1TOY
120 PRINT "+";
130 NEXT A
140 PRINT CHRS(13)
150 NEXT L
160FORL='TO2
170 FORA=ITOZ
180 PRINT "#";
190 NEXT A
200 PRINT CHR$(13)
210 N EXT L
220 PRINT
230 END

The program prints out a bar graph of the three

Basic Programming a

variables. The bars are printed in horizontal rows,
starting from the left and following the `natural'
cursor movement. Notice that a PRINT CHR$(13) is
needed in lines 80,140 and 200. They are needed
because semi-colons at the . end of PRINT
statements suppress carriage returns (13 is the
ASCII code for <CR>).

More About Variables
So far we have treated variables as though there
were only two kinds (numeric and string). In fact,
there are several types of numeric variables
recognised by Basic, and a good programmer will
always specify the right type to economise on
memory and ensure correctness.

When a variable is declared in a programming
language, a certain amount of memory space will
be automatically allocated to store that variable. If
the program knows that the variable will always be
an integer, (e.g. LET SCORE = TOTAL + BONUS -
PENALTY) less memory needs to be set aside for the
variable. If we have a variable that can take an
infinite number of different values (e.g. LET AREA =
PI * RADIUS * RADIUS), more memory space will
have to be allocated.

In the development of our computerised
address book, we became familiar with the
convention of specifying string variables by using
the S sign after the variable name (e.g. LET
SCHKEYS = MODFLDS(SIZE)). Variables without the
`dollar' sign were assumed to be ordinary numeric
variables. However, similar conventions can be
used after variable names to specify the type of
numeric variable. A variable name with no
specifier is assumed to be a real numeric variable
of single precision. Other signs recognised by most
BASICS include: % to specify an integer variable, ! to
specify a single precision variable, and # to specify
a double precision variable (i.e. the variable can
store twice as many significant digits). Here is a
fragment of a hypothetical program that uses these
signs:

70 LET PLAYERS = "JOHN": REM A STRING
VARIABLE

80 LET SCORE% = 0- REM AN INTEGER VARIABLE
90 LET PI! = 3.1416: REM A SINGLE PRECISION

VARIABLE
100 LET AREA# = PI*R*R: REM DOUBLE PRECISION

VARIABLE
110 LET GOES = 6: REM ASSUMED TO BE SINGLE

PRECISION REAL

Having said that, it must be pointed out that not all
BASICS support all these variable types. The
Spectrum, for example, does not have integer
variables. Integers are simply stored as single
precision real numbers. Neither does it support
double precision numbers. However, single
precision numbers in Spectrum BASIC are
calculated to nine significant figures, against only
seven significant figures in Microsoft BASIC. The
BBC Micro does support variables of the integer
type and single precision reals calculated to nine

THE HOME COMPUTER COURSE


