TO DEFINE.UNIT :NUMB DEFINE "UNIT TEXT WORD "UNIT :NUMB END

We will now run the grid drawing and unit drawing parts of a pattern at the same time. A procedure called PAT lets us do this:

```
TO PAT :GRID :NUMB :PROC
    DEFINE "MOTIF TEXT :PROC
    DEFINE "R.MOTIF REWRITE :PROC
    DEFINE.UNIT :NUMB
    RUN (LIST :GRID)
    ERASE MOTIF
    ERASE R.MOTIF
    ERASE UNIT
END
```

To draw pattern 17 we would now type:

PAT "HEX 17 "LIT

This draws a hexagonal grid, with UNIT17 at each point, using LIT as the basic motif.
This method works well for all the patterns except $4,6,7$ and 12 . In these cases, the unit shape is not the same at each point, but instead undergoes a transformation (reflection, rotation, or both together). One way of dealing with this is to incorporate these transformations into the LINE and DOWN procedures. So we'll define TRANX as the transformation to be applied to the basic translation across the screen, and TRANY will be the transformation to be applied between rows. LINE and DOWN then become:

TO LINE : X
REPEAT 3 [UNIT SETX XCOR XCOR + : X TRANX] SETX XCOR - $3^{*}:$ X
END
TO DOWN :Y:A
SETH:A
FD: Y
SETH 0
TRANY
END
We now define pattern 7 as:

```
TO PATTERN7 :PROC
    DEFINE "TRANX [[] [REFLECT RT 180]]
    DEFINE "TRANY [[] []]
    PAT "RECTT 7 PROC
    ERASE TRANX
    ERASE TRANY
END
```

To use this, enter PATTERN7 "LEG. After running the above procedure, TRANX would have been defined as:

```
TO TRANX
    REFLECT
    RT 180
```

END

REFLECT is used to reflect the unit pattern. This procedure is defined by rewriting the UNIT

The Seventeen Plane Groups

Key :
$\mathbf{P}=$ Parallelogram lattice
$\mathbf{R}=$ Rectangular lattice
$\mathbf{C}=$ Rhombic lattice
$\mathbf{S}=$ Square lattice
$\mathbf{H}=$ Hexagonal lattice
ROS = Rotational Order of Symmetry
$\mathbf{M}=$ Mirror reflection
$\mathbf{G}=$ Glide reflection
Parallelogram

P1 (ROS = 1)

P2 (ROS = 2)
Square

$S 4($ ROS $=4)$

S4M (ROS = 4)

Rectangular

