
an Assembly language control structure. To
perform binary multiplication, examine each bit of
the multiplier in turn, and add zero (if the bit is
zero) or the shifted multiplicand (if the bit is one)
to the total. How, then, do we examine a single bit
of the multiplier, and how do we shift the
multiplicand?

Testing the state of a particular bit in a byte can
be done using the BIT instruction on both the Z80
and 6502 microprocessors. On the Z80, this
instruction takes an address and a bit number as its
operands, and the zero flag is set if that particular
bit is zero and reset if the bit is one. On the 6502,
the operand is an address. The contents of this
address arc AN Ded with the accumulator, and the
zero flag is set or reset, depending on whether the
result is false or true.

These instructions permit subtle programming,
but neither method is particularly convenient
here. It would be much more convenient if the bit
in question could be made to act as the carry or
zero flag, so that program flow would branch
automatically according to the state of each bit in
turn. Needless to say, both processors' instruction
sets make that possible through the use of the shift
instructions. As the name implies, these will also
solve the problem of shifting the multiplicand.

There are a variety of shift and rotate
instructions in both instruction sets, although the
Z80's are more complex than those of the 6502. In
general, their effect is to shift each bit in a register
one position to the right or to the left. They differ
in detail in their treatment of the end bits of the
register — a bit must be shifted out of the register at
one end while another bit is shifted in at the other
end. If bit 7 is shifted out of the register and put
immediately back into bit 0, then the operation is a
rotate left. If bit 0 is shifted into bit 7 the operation
is a rotate right. If this is done, then the contents of
the register change in order, no new values are
introduced, and after eight such rotations the
register will be restored to its original state.

If rotation is not employed, then a destination
for the shifted-out bit is necessary, and a source
must be found for the shifted-in bit. Both are most
often supplied by the various condition flags of the
processor status register (PSR), and in particular
the carry flag. In constructing a multiplication
subroutine to multiply two single-byte numbers,
we need to shift the multiplicand left and the
multiplier right. The multiplicand bits must be
shifted out into the hi-byte of the multiplicand
while zeros are shifted into the unoccupied bits.
The multiplier bits have to be shifted through a
PSR flag for testing, but their destination, and the
state of the shifted-in multiplier bits, is
unimportant unless we need to preserve the
contents of the multiplier. All that concerns us
about the multiplier during multiplication is
whether the shifted-out bit is one or zero.

Given, therefore, that the multiplier is stored at
address MPR, the multiplicand at MPDLO, and the
product at PRODLO and PRODH I, we can write these
subroutines as follows:

As can be seen from this example, programming
the Z80 is made much easier by its 16-bit registers
and associated instructions. In particular,
compare the ADD IT subroutine in the two
programs. The 6502 version uses ROR to rotate the
multiplier rightwards through the carry, and ASL
and ROL to shift the multiplicand leftwards out of
MPDLO into MPD HI through the carry. The loop is
controlled by the X register as a counter.

The Z80 version uses SRL to shift the multiplier
rightwards through the carry, and SLA and RL to
shift the multiplicand leftwards in DE via the carry.
The loop is controlled by register B as a counter.
Notice that the ADD instruction not only supports
16-bit register arithmetic, but also is not affected
by the carry flag — unlike ADC.

In the next instalment of the course, we will
discuss methods of division, and consider various
ways of controlling the screen display. This will
complete the tutorial element of the course, and
will be followed by 6502 and Z80 exercises and
examples in future instalments.

Exercise 15

1)Write a multiplication subroutine using a 16-bit
multiplicand and.an eight-bit multiplier of your
choice.
2)Multiplication is merely repeated addition: write
an eight-bit by eight-bit multiplication subroutine
that does not use the shift or rotate instructions.

IF

f

ElGHT-BIT MULTIPLICATION

6502Z80

ORGSC100ORG$D000
STARTLDA#$00STARTLDBC, (MPR)

STAPRODLOLDB,S08
STAPRODHILO—N,(MPDLO)
STAMPDHILDD,$00
LOX#8LDHL,S00
CLCLOOPOSRLC

LOOPORORMPRJRNC,CONTO
BCCCQNTOCALLADDIT
JSRADDITCONTOSLAE

CONTOASLMPDLOENDLPODJNZLOOPO
ROLMPDHILDPRODLO
DEXRTS

ENDLPOBNELOOPOMPRDB$E2
RTSMPDLODB$7A

___.

MPRDB$E2MPDHIDB$OO
MPDLODB$7APROD LODW—$0000
MPDHIDB$00ADDITADDHL,DE
PRODLODB$00RET
PRODHIDB$00
ADDITCLC

LDAPRODLO
ADCMPDLO
STAPRODLO
LDAPRODHI
ADCMPDHI
STAPRODHI
RTS

THE HOME COMPUTER ADVANCED COURSE 299

