Chapter 5
Sundry Unary Operations

In Chapter 2 we rapidly disposed of the two sixteenths of the 68000
instruction set reserved for use with co-processors. Chapter 3 covered
another three sixteenths of the instruction set and all the addressing
modes, while Chapter 4 covered just one sixteenth of the instruction set.
The next sixteenth is so full of interesting instructions that we shall split
its discussion across the next two chapters.

18I0 DEFine Fuction disd$ipci

1842 L0Cal 1,j,k,a8,b8

3858 IF PEEK(pc)®OD 2=1 THEN

3858 1=PEEK (pc)DIV 2 MOD 8

3878 IF PEEK{pc+114192 THEM

JBER af="CHE 544"

One of the easiest instructions to pluck out of the mass in dis4$ is
CHK. The mnemonic stands for check and is designed to allow rapid
checking of the contents of a data register against both upper and lower
bounds. The QL uses CHK to test array bound limits and string length
limits in SuperBASIC. The comparison is always with the least significant
16 bits of a data register, treated as a signed number. If this number is
negative, or greater than the data source, then a TRAP is invoked.

3898 IF PEEK(pc+{1=18B8 THEN

3180 po=pctd

3118 RETurn a$d"#$"khexcond (pc-2)khexcon$ (pc-138" D81

312@ EMD IF

CHK has an immediate data version and a more general version
which allows any normal addressing mode, apart from the contents of
an address register, as the upper bound data source. Flag settings are
undefined after using CHK, except that X is unaltered.

3138 pr=pct?

I140 j=PEEK(pc-1)HMOD 44

3150 IF PEEK(pc-11{128 OR i DIV B=1 THEN fault=1:RETurp **

M1

3168 RETurn a$hadr$(j DIV 8, MOD 8,pc)d*,D%%i
3178 END IF
3188 pc=pc+2
3199 j=PEEK(pc-1)MOD 64 _
3288 IF j<=15 OR (j>=24 AND j(=39) THEN fault=1:RETurn **
3210 RETurn "LEAyuaaa"kadr$(i DIV 8, WOD 8,pcik® A%k
3270 END IF
LEA stands for load effective address. Rather than dealing with the
data item identified by its source addressing mode, the address formed
by the source addressing mode is loaded into the full 32 bits of an
address register. Obviously, there is no way of describing the address
of a data or address register. Equally, the postincrement and
predecrement modes are not allowed. LEA helps us to get round the
problem of being unable to alter items addressed using program
counter relative addressing. For instance, we could write:
LEA $76(FC) AL
MOVE.W $FFFF, (A1)
while we could not write:
HOVE.W $FFFF,$74(PD)

without generating an error. LEA is also useful as a variant of the ADD
instruction, allowing complex additions to an address register, such as:
LEA $76(R2,D6.4) AL
which adds $76 to A2 to the sign extended low word of D6, and places
the result in A1,
As might be expected, the use of LEA does not alter any of the
condition code flags.
The rest of dis4$ is rather more complicated:
38 i=PEEK{pc) MOD 16
48 pc=pc+?
3250 j=PEEK({pc-1) DIV 84
3268 k=PEEK{pc-1) MOD 44
270 IF i<14 AND k DIV B=1 THEN fault=1:RETurn ®*

32
T3
12

o

2

3298 =@:5ELect ON j

3300 =:a$="NEGX.B,,"

NEGX negates an item directly, also subtracting the value of the
extended arithmetic bit X. All the condition codes are set according to
the result, except for Z. Z is cleared if the result is non-zero, but left
unchanged if the result was zero. This allows you to set the Z bit before

42

starting a series of NEGX on an extended number; testing Z afterwards
determines if all the items were zero.

NEGX does not operate on address registers or through program
counter relative addressing modes, in the same way as many of the
commands in dis4$.

CHK source, Dd _ ;
(1]t] o | B8 | R
ADDRESSIN
? . 2 v 4 MODE " zcz_mmm_
1 | L 1
LEA source, Ad . i _
a]]] e | R,
ADDRESSING
0 1 0 0 i 4 . _<_O©m i zc_,mmmm.h
NEGX.size destination

2o omm.ﬂ_z\é.ow mmm_ﬁmw__oz
SIZE | ADDRESSIN
O T3 0 0 B 0 MODE NUMBER

1

CLR.size destination

sty DESTINATION ommmﬂmﬂ_oz
SIZE | ADDRESSING | R
9 1ah l L8 42 MODE NUMBER

NEG.size destination

5 b omm.jz>j.om mmm_mﬂmﬁ_oz
IZE | ADDRESSIN
o i pcl 0 L S MODE NUMBER

NOT.size destination

DESTINATION | DESTINATION
o100 |0|O|1([1]|0 SIZE | ADDRESSING | REGISTER

, MODE NUMBER
MOVE SR, destination
0 || 1|1 | REBMRATRY | ReRyA
ADDRESSIN

AP RN MODE | NUMBER

MOVE source, CCR/SR «

0l0|1%l0o]| 1] 1 ADDRCSSING | REGISTER

o Pl i MODE | NUMBER

1 1

TABLE 5.1 SUNDRY INSTRUCTIONS IN dis4$

43

3318 =1:a$="NEGI.H,,"
3328 um"mwuazmmm._r:...
338 =31a$="MOVE,,,,5R,"
1348 END SElect

Lol

m
i

JI58 IF k=38 THEN fault=1:RETurn **
368 RETurn a¥hadr${ ¥ DIV 8,k HOD B,pc)

Zﬂjm MOVE mm variant of the MOVE command, transfers the 16 bits
Mmomm. WMH%MMM@_QQ to the addressed item, without altering the status
. HOVE SR,-(aA7)
is the most useful variant of this instruction, pushing the status register
on to the A7 stack, where it will be available for subsequent restoration

337@ =2:5ELect ON j |

3388 =B:a$="CLR.B"

3390 =lia$="CLR.¥"

34B@ =Z:a$="CLR,L"

JE1Q =T:ifault=1:RETurn **

3478 EMD SElect

3430 TF £)=58 THEN fault=1:RETurp **

3448 RETurn a$%",,,"kadr(k DIV 8,k HOD B,pci

CLR clears all the bits of the addressed item to zero, but, being part
of a section of the 68000 instruction set designed to first read an item
203 memory, then act on its value before storing the result back in the
original location, CLR reads the item before clearing it. This does not
normally cause any problems, but if the address is that of a peripheral
_ooq“ reading the port may trigger some undesirable action by the
peripheral. In such a case, an immediate data MOVE of zero, or the use
ofthe mm (set false) instruction which we shall meet later, <<oc._Q be more
appropriate.

CLR nm::oﬁ alter address registers or program counter relative
maa.ﬁmmm ltems. It clears the C, V and N flags and sets the Z flag while
leaving X unaffected.

I830 =4:5Elect ON j

3468 =31 1F k=50 THEW

347¢ IF PEEK{pci<>@ THEN fault=1:RETurp **

J4BB pr=pc+?

3498 a$="#5"thexcon$ (pc-1)

1589 ELSE

3318 at=adr${k DIV B,k MOD B.pc!

3528 END IF

3338 RETurn "MOVE,,,,"ka$k" CCR®

i

[

44

This variant of MOVE can be used to set up any required pattern of
condition code bits in the status register. Despite the destination being
of size byte, the source is treated as a word item, so that the instruction
properly reverses the only way of storing the condition codes, which we
saw earlier, was as part of the 16 bit status word. This command directly
affects the condition codes.

1548 =B:a$="HEE.B"

3538 =1:a$="HEG.W"

1568 =Z:a¥="HEG.L®

1570 END SElect
3588 IF k=58 THEN fault=1:RETurn *°
3599 RETurn a$b",,,"kadr$(k DIV B,k MOD 8,pct

NEG means negate and is very similar to NEGX in that it constructs
the negative of the original number, unaffected by the value of the X bit,
but it sets all the condition code flags including X and Z. It could thus be
used to negate the least significant item of an extended number, whose
higher order elements are then negated using NEGX. A simple
definition of a negative which may be useful to remember is ‘that number
which when added to the original gives zero as a result (ignoring any

carry)’.

3508 =h:5Elect ON j

3518 =3:01F k=60 THEN

1628 a¥="#¥"khescond (prikhercond{po+ll

3638 po=pot?

I648 ELSE

3558 a$=adr$li DIV B,k WOD B,pci

J660 END IF

3478 RETurn "HOVE,.,,"kal®,SR”

This variant of MOVE can alter all 16 bits of the status register,
including the supervisor bit. It is thus a privileged instruction, and only
allowed if the supervisor bit is set before the instruction starts. It is
common for a supervisor program which is about to initiate a user
program to use this command to clear the supervisor bit and thus switch
modes.

ILB2 =B:a$="HOT.B®

3598 =lia¥="NOT. WY

3788 =2:a%="NOT.LY

19 END SElect

28 IF k>=38 THEN fault={:RETurn *"

38 RETurn a$k®,,,"kadr$ik DIV B,k KOD B,pct

45

NOT inverts every bit of the addressed item, clears the C and V bits,
sets N and Z according to the result, and leaves X unaffected.

1748 =B:5Elect ON j

3738 =B:IF %»=58 THEN fault=1:RETurp "

3768 RETurn "NECD, ... "%adr$(k DIV 8,k MDD B,pc)

NBCD is very much like NEGX.B in the way it works, but the key
difference is that it deals with binary coded decimal numbers. Binary
coded decimal numbers are a useful alternative way of representing
numbers inside the computer; each byte of a BCD number is used to
contain two four bit digits, which can only take values @to 9. BCD is more
accurate than the normal binary representation of numbers, in that it is
nearer to the form in which numbers are normally displayed. Thus 1/10,
which is a never ending recurring number in its binary representation,
can be accurately represented in BCD notation, and additions and
subtractions do not compound the error introduced by the limited length
ofthe binary representation. BCD is thus a better notation if you are only
going to involve yourself in adding and subtracting, but its advantages
disappear if you want to become involved with multiplication and
division. In some high level languages it is possible to specify the use of
BCD arithmetic inside the computer in order to maintain the desired type
of accuracy, but the QL ROM does not use BCD arithmetic.

NBCD produces a result formed by subtracting the value of the
addressed byte and the value of the X bit from 100 in BCD arithmetic.
The C and X bits are set according to the result, Z is cleared if the result
is non-zero, but unaffected if the result is zero, and N and V are
undefined and meaningless.

3778 =131F k<B THEN RETurn "SWAP,,,.D"kk

SWAP switches around the two 16 bit halves of a data register. This is
particularly useful in conjunction with the multiply and divide
instructions we shall meet later, but it also allows the top 16 bits of a data
register to be used as a fast temporary storage location. The C and V
bits are cleared by the instruction, Z is set if all 32 bits of the register are
zero and is cleared otherwise, N is set according to the value of the most
significant bit of the result. X is unaffected by the operation.

3788 TF k=15 DR (k=24 AND k<=39) THEN fault=1:RETurp **

1798 RETurn "PERuu,.4"%adré(k DIV 8,k WOD B,pci

PEA stands for push effective address and like LEA it calculates an
address then uses that as data, rather than the item it addresses.

PEA uses the A7 stack, and could thus be considered as:

LEA address,- (A7)

46

destination _ : ; _
e DESTINATION mmmmﬂmﬁ_oz
o|l1|lo0|lo|1|0|0O|0O|0O]|O pww_mmmm_zo S
SWAP Dd : :
0 d
ol1lolo{1]|l0|0O|0O|0O|1]|0|0 : ;
source i J . :
7 ot | U
o|l1|lo|o0|1|0|0O|0O| 0|1 o__w_wummmmw_zm ooiots
EXT.WA Dd : _
L/ 0 d
ol1loflo|l1]|]0|lO0]|O]|1|WL| 0|0 _ _
TST.size destination :

T T T T
DESTINATION DESTINATION

REGISTER
o|l1l0|0| 1|0 1]0 SIZE OWWﬂmmm_zo s

TAS destination

umw.._z>__._Oz DESTINATION

ol1|lo|l0o|1]0O0)|1]|]0O] 1] 1 p@ooﬂmmm_zo umm__mwwm

TABLE 5.2 SUNDRY INSTRUCTIONS IN dis4$ (CONT.)

Predecrement and postincrement modes are not allowed for %m
address, but program counter relative modes are allowed. Four bytes o
data are always pushed, and no condition codes are affected.

3808 =2:5ELect ON &
I81@ =B TO 7:RETurn “EXT.W...D %k . ;
EXT.W sign extends the low byte of a data register 6. Bmx.m a 16 bit
word with the same signed value. This is done U<.oou<_3© bit 7 oﬁ. the
data register into bits 8 to 15. If you have been Qo_s.@ some byte sized
data operations and want the result to affect a word m_Nma item, you ozmﬂ
need the size of the two operands to match and _.mx.ﬂ is s_mmama..mxx
clears the C and V flags and sets N and Z appropriately while leaving
unaffected. o |
3828 =32 T0 39:RETurn "MOVEM.H,"kregmaskpredec$(pc)®® - (A"%{k HOD B1%
nw a . ' .
3838 =16 TO 23,48 70 57:RETurn "MOVEM.W,"kregmaskpostinc$(pcid”, "kadr
$(k DIV 8,k MOD 8,pc)
3848 =REMAINDER :fault=1:RETurn "*
IB5@ END SELect

47

MOVEM stands for move multiple. It is designed to save the contents
of a number of registers in a single construction. Subroutines often want
to return with registers unaffected, but need to use the registers, so they
need to save and restore a number of registers. An extension word in the
MOVEM instruction allows any combination of the 16 current registers to
be saved or reloaded. The actual bit pattern in the extension word is
different if the registers are pushed on to a stack using the
predecrement mode to the pattern used with other addressing modes
when the registers are saved at increasing addresses. The registers are
always saved so that DO occupies a lower address than D1, then D2 to
D7 and AQ to A7, except that an unsaved register does not reserve any
space in memory. The actual register mask is decoded by functions
regmaskpostinc$ and regmaskpredec$. Since regmaskpostinc$ ad-
vances pc by 2, moving over the extension word, it is essential that line
3830 is evaluated from left to right for adr$ to pick up the appropriate
extension word if it needs one.

Note that postincrement and program counter relative addressing
modes are not allowed, and no flags are affected by the instruction.

1850 =3:SELect ON k
3878 =B T0 7:RETurn “EXT.L...D"kk

MOVEM. Wi register-list, — (Ad)

ol1(ojo|1|o|O|O|1 (W] 1|00 d

D0 D1 (D2 |D3|D4|D5|D6|D7|A0| A1| A2| A3| A4 | A5| A6l A7

MOVEM. Wi register-list, destination

DESTINATION | DESTINATION
ADDRESSING |REGISTER
MODE NUMBER

/2 L e T O/ A O O R 7

-

1 1

A7 [A6|A5|A4|A3|A2|A1|A0|D7| D6| D5| D4| D3| D2| D1| Do

MOVEM. Wi source, register-list
SOURCE SOURCE
0| 1[{0|0|1[1|0] 0| 1]|WL|ADDRESSING REGISTER
MODE NUMBER |
—
A7|A6|A5[A4|A3|A2| A1| AD| D7| D6|D5| D4| D3| D2| D1 Do

TABLE 5.3 MOVEM INSTRUCTIONS

48

EXT.L sign extends a 16 bit word in a data register to the full 32 bits in
a similar manner to EXT.W. To sign extend a byte to the full 32 bits, you
thus need to use EXT.W followed by EXT.L.

3688 =32 TO 39:RETurn "HOVEM.L,"kregmaskpredec$(pc)¥”,-{A"%(k ROD BiY

1898 =16 TO 73,48 10 S7:RETurn "MOVEM.L,"kregmaskpostinc$ipcik®,"kadr

${k BIV B,k HOD 8,pci

3900 =REMAINDER :fauit={:RETurn °*

3912 END SElect

3928 END Stlect

MOVEM.L is identical to MOVEM.W except that it saves all 32 bits of
the registers involved rather than just the 16 bits saved by MOVEM.W. It
is, of course, at this point that we realise that it might have been more
efficient to combine the ON j=2 and ON j=3 selections, as they were
identifical apart from the “.L” in place of the “.W” specifying the data
item sizes.

3928 =1@:5ELect ON i

1948 =B:a$="TST.BF

TST tests a data item, and sets the N and Z flags accordingly. The C
and V flags are cleared, and X is unaffected.

3958 =1:a$="T5T. 4"

1968 =2:a$="T5T.L°
G708 =3:a$="TAS,,"

TAS tests a byte sized data item, sets the flags according to its value,
and then in an indivisible operation sets the sign bit of the byte to one.
TAS constantly selects the appropriate RAM address throughout the
read, modify, write cycle, so that if the RAM is being shared by another
processor, its contents can neither be examined nor changed by the
other processor during the cycle. TAS can thus be used to operate
semaphores where two or more processors sharing some memory or
peripheral can indicate to the others that a device is in use by setting this
flag in an agreed byte. Equally, TAS can be used by one program to
indicate to other programs on the same processor that a resource is in
use, though this function could be achieved using BSET. BSET cannot
be used with multiple processors, because there is a period between
reading the bit and setting it when another processor could access the
RAM and either read the value which was about to change or change
the value which had just been tested, resulting in two processors
subsequently accessing the same resource in a conflicting manner. QL
owners need not worry about this problem.

YIS

.

49

1988 END SElect

3998 IF k=58 THEN fault=1:RETurp *"

4008 RETurn a$k",,,"kadr${k DIV 8,k WOD B,pc)

4818 =12:1F j{2 OR k{16 OR k DIV 8=4 THEN fault=1:RETurn °*

4820 a$=regmaskpostincéipc)

4839 IF j=2 THEN

4B40 bE="H,"

4850 ELSE

4060 p="L,"

4873 END IF

4880 RETurn "MOVEM. "kb$kadr$(k DIV B,k MOD B,pc)d”,"bas

This adds the missing part of the MOVEM command which restores a
set of registers from memory. As the registers are always read from
increasing addresses during restoration, the same bit pattern is used in
the register list extension word. This extension word always directly
follows the instruction word, despite it referring to the destination for the
data. If the register source is addressed using a program counter
relative mode, the value of the program counter added into the address
calculation is the start of the addressing mode extension word, four
bytes after the start of the instruction. Predecrement addressing modes
are obviously not allowed, and the command does not affect any flags.

4878 =14:RETurn dis4E$ipc,i, k)

4108 END SElLect

411¢ END DEFine

We will leave the commands beginning with $4E until the next
chapter and, in the meantime, clear up the register list decoding for the
MOVEM commands.

You have seen that when a static address, one that is neither
predecrementing nor postincrementing, is used, the function
regmaskpostinc$ is applied for both the saving and restoring of
registers. This is because the address supplied is taken as the lowest
address of a block of memory, and incrementation takes place inside
the 68008, though the result of incrementing is not put back in the
address source, thus:

MDVEM.L D2-D7, (R&)
will save all the data registers in a 32 byte block of memory addressed
by A6, and as A6 is not changed by the operation,

HOVEM.L (A&),DB-D7
will subsequently restore the contents.

The way to remember the extension word bit patterns for
regmaskpredec$ and regmaskpostinc$ is to think of the extension word

50

being examined by the 68008 bit by bit starting at the least significant
bit, and also to remember that DO ends up stored in the lowest
numbered address and A7 in the highest numbered.

4178 DEFine FulNction regmaskpostincd(pc)

138 L0Cal a%,d$,i,]

4149 a§=""

415@ j=PEEK (pc)

4160 FOR i=@ 10 7

4178 IF § DIV 2%

418@ END FOR i

4198 compress a$

As you saw in the examples above, the programmer is allowed to
miss out register names by putting a hyphen between the names of the
firstand last registers in a range. compress achieves this alteration, and
also adds “/" between other register names in the manner usually
required by assemblers.

4708 d§=""

4718 prepc+?

4220 j=PEEK({pc-1)

4239 FOR i=8 70 7

4248 IF 3 DIV 2% MDD 2=1 THEN d$=d$%°D"i

4258 END FOR i

4752 compress df

4278 RETurn combine$ (d$,a$)

4788 END DEFine

298 DEFine FuNction regmaskpredecs(pc)

4300 LOCal a%,d$,1,]

4318 dg=""

4328 j=PEEK{pc)

4338 FOR i=8 70 7

4348 IF j#2°1 DIV 128 ROD 2=1 THEN dé=d$%"D"&i

4358 END FOR i

4368 compress df

4378 a$=""

4389 pc=pct?

4398 j=PEEK{pc-1)

4402 FOR i=8 70 7

4418 IF j#2*1 DIV 128 MOD 2=1 THEN a$=a$k®A"li

442@ END FOR 1

4439 compress a$

444@ RETurn combine${d$,a$)

MOD 2=1 THEN a$=a$k"A"ki

Sl

4458 END DEFine

4458 DEFine PROCedure compressia$)

4478 LOCal 1]

4488 i=LEN{a$!

4499 SElect ON i

Short strings are relatively easy to compress.

4508 =B TO 2:RETurn

Indeed, there is no shorter representation of zero or one registers.

4518 =4:a%=a%(1 T0 2)&"/"%a$(3 TO 4):RETurn

Two register names can always be separated by a /"

4578 =REMAINDER

Longer register lists are the problem. We split the problem into two
stages, first marking where compression is possible by crossing out the
“A” or "D" with a “—".

4330 FOR j=2 70 i-4 5TEP 2

1548 TF a$ij)+1=a${i+2) THEN

Coercion is a really useful technique, as long as you can understand
what is happening. Here we are checking that adjacent registers in a$
have successive numbers.

4358 IF a${i)+Z=a$(j+4) THEN a$(j+i)="-®

4560 END IF

4578 END FOR 3

Now we will scan through the string looking for hyphens and
removing the register names in the middle of ranges. The first hyphen
may be in the third position in the string.

SE¢ =3

4578 REPeat iuggle

As yet, | am unsure how many times we shall need to repeat this next
section, so we use a REPeat loop.

4688 TF j:LEM(a$) THEN RETurn

As the length of a$ is going to vary during the course of this loop, we
cannot check j against the fixed number i. However, we know that we
have finished when all the string has been scanned.

4518 TF a®()<>"-* THEN a$=a$(l TO j-1)%"/"ka$(j TO):i=j+3:NEXT juggle

If the scanned character is not a hyphen then no compression can
take place. Indeed, we need to add a “/" to separate the two register
names, and advance j to the next potential hyphen before restarting the
loop.

52

4478 IF a${j+2)="-" THEN a¥=a${l T0 j-1ika${j+2 TLI:NEXT juggle

If there are two consecutive hyphens, we can remove the two
characters a$(j) and a$(j+1) and j will already point to the next register
letter (we know this is a hyphen, but we have to recheck some items, so
we start the loop again).

4630 af=a$ll TO0 jikagiie2 T

4648 j=341

4458 END REPeat juggle

4640 EMD SElect

4578 ENG DEFine

This final tidying up copes with an isolated hyphen, removing the
excess register number and advancing j to point to the next register

letter.
It is conventional to show the list of data registers before the list of

address registers because they occupy the lower memory addresses,
so combine$ adds the two lists together in that order.

4688 DEFine Fulction combine${d$,a#}

4598 IF d$="" THEN

4708 1F a$="" THEN fault=1:RETurp **

4718 RETurn af

4778 END IF

4738 IF a$="" THEN RETurn d$

4748 RETurn d$&"/"ka$

4758 END DEFine

53

Chapter 6
Interrupts, TRAPS,
Subroutines and Jumps

We have so far only hinted at the TRAP mechanism which diverts the
68008 from the normal program flow when an error occurs. Now is the
time to go into the concept of TRAPs and exceptions in much greater
details, as many of the commands with a first byte of $4E involve more
TRAPs.

Nominally, the first kilobyte of the 68008 address space is allocated
to exception vectors, that is, a list of addresses to which the program
jumps when an error, TRAP, interrupt, exception, or whatever else you
like to call a diversion from the processor’s normal task, occurs. Not all
the exceptions allocated by Motorola are possible on the QL, nor are all
the possible exceptions catered for.

We make a short diversion from the dissembler itself to discuss the
exception vectors in turn. Each vector is four bytes long and has a
vector number which when multiplied by four gives the address in
memory where the vector is held.

Vectors 0 and 1: Addresses @ to 7 are the reset vectors. On power up,
or pressing the QL reset button, vector @ is read into the supervisor stack
pointer, vector 1 is read into the program counter, the status register is
altered so the bit S is set, the T bitis cleared, the interrupt level is setto 7,
and processing is initiated. No record is kept of the processor status
before the reset happened, so any program which was running when
you pressed reset cannot be restarted.

The 68008 has three output pins which identify to its associated
hardware the type of item it is addressing, with the possible types being
user data, user program, supervisor data, supervisor program and
interrupt acknowledge. These signals allow the external hardware to
protect memory or peripherals from access or alteration by an
unauthorised user program, or allow the same address to refer to
different chips depending on this addressing mode. The 68010 and
68020 processors in the 68000 family have special instructions which

55

allow a supervisor program to manipulate the addressing mode outputs
so that the supervisor program can access other address spaces.

<moﬂoa 0 and 1 are in supervisor program space, the remaining
exception vectors are in supervisor data space. This allows vectors 0
and 4 ...nSQ the initial program they set running to be in ROM, but the
remaining vectors may be in RAM and thus be free to be changed by the
program.

OFFSETTOBE
ADDEDTO THE 6800p
NAME CONTENTS OF ot
$28050TO FIND
THE NEW VECTOR
ADDRESS ERROR $0054 3
ILLEGAL INSTRUCTION. $0058 4
DIVISIONBY ZERO $005C o)
CHK OUTSIDE RANGE $0060 6
TRAPV WHEN OVERFLOW $0064 7
PRIVILEGE VIOLATION $0068 8
TRACE EXCEPTION $006C 9
LEVEL 7 INTERRUPT $007d 31
TRAP #5 $0074 37
TRAP #6 $0078 38
TRAP #7 $007C 39
TRAP #8 $0080 40
TRAP #9 $0084 41
TRAP #$A $0088 42
TRAP #$B $008C 43
TRAP #$C $0090 44
TRAP #$D $0094 45
TRAP #$E $0098 46
TRAP #$F $009C 47

TABLE 6.1 QL REDIRECTABLE EXCEPTION VECTORS (VERSION “AH")

56

The QL does not use the addressing mode signals, all the QL
addressing modes share a common address space, none of which is
protected against being overwritten by wild user programs. Thus, all the
QL exception vectors are in ROM, but the QL does allow a number of the
vectors to be redirected by a table in RAM. Such redirectable vectors
will be identified in the following list.

When a vector is redirectable, the QL examines the longword system
variable starting at address $28050. If this is zero, no redirection takes
place, otherwise its contents are used as the base address of a
redirection table, to which an offset is added as indicated in table 6.1,
The longword at the resultant address is taken as the starting address of
your exception processing routine.

Vector 2: Addresses 8 to $B form a bus error vector. A bus error is an
error generated by hardware outside the 68008, indicating that an
address does not make sense to the point that addressing it indicates a
program error. The 68010 and 68020 use this error to support a virtual
memory system, where the processor has access to less physical
memory than programs have been told exist; the contents of the extra
memory reside on magnetic disc, or other storage device, and the bus
error is used to trigger the loading of that data into physical memory in
place of some data no longer needed. An occurrence of a bus error
stacks 14 bytes on the supervisor stack, as shown in table 6.2, and
changes Sto 1 and T to 0.

Itis possible, because of the way the 68000 family reads ahead of the
actual program counter to try and even out memory requests, that the
bus error occurs before the program counter reaches the erroneous
address; so, if a patch of bus error generating memory follows
immediately after some program memory, the program may not run to
completion because a bus error will occur before the program reaches
the end of valid memory. The stacked program counter may also point
part way through the instruction being executed when the error
occurred, so it may be necessary to search backwards from the given
program counter to find the start of the instruction which caused the
error.

The QL does not support bus errors. None of the internal QL hardware
generates bus errors. External hardware plugged into the peripheral
expansion port may generate bus errors, but the QL response is to make
an immediate return to the code which caused the error, to try to
continue as if nothing had happened.

Vector 3: Addresses $C to $F form the address error vector. An
address error occurs when the 68008 accesses a word or longword

57

BUS ERROR OR ADDRESS ERROR EXCEPTIONS

™0 000000000 aWE|] F |
B L S s i

after * ADDRESS WHICH CAUSED THE ERROR—HIGHWORD 4
error " " 1 i 10 L L + 1 1 1 1 1 1= 1
ﬁ ADDRESS WHICH CAUSED THE ERROR — ro“<< WORD g
f 'FIRST 16 BITS OF INSTRUCTION BEING PROCESSED ©~ _ Tl
=t enaen i
‘ OLD STATUS REGISTER CONTENTS 4 ADDRESSES
1 1 1 il 1 1 1 1 1 1 1 1 1 1
_ PROGRAM COUNTER WHEN ERRORHAPPENED _HIGH @ 4
mmv 1 1 1 1 1 1 s \n’ 3 3 1 E 1 b 1
before _ PROGRAMCOUNTER-LOWWORD | ~
error ' E 1 1 1 1 1 “ 1 1 1 1 1 it 1
IV PREVIOUS TEMON SUPERVISORSTACK ! _
3 " 1 " 1 1 1 1 1 1 1 1 1 1

W: E = A'READ’' CAUSED THE ERROR
. = A'WRITE' CAUSED THE ERROR
E a = AN INSTRUCTION WAS BEING PROCESSED
. = AN EXCEPTION HAD ALREADY DIVERTED THE PROCESSOR

= E = ERROR IN'USER DATA' SPACE

= ‘USER PROGRAM' SPACE

*SUPERVISOR DATA SPACE

‘SUPERVISOR PROGRAM' SPACE

I

R[S = " " INTERRUPT ACKNOWLEDGE'
EXTRA DATA IS STACKED BY THE 68010 OR 68020
ALL OTHER EXCEPTIONS
mmﬂ' ﬁ.u_.o,m._ﬁ._,_Cwm_mo_m_,ﬁm_”woo_./:mn_.ﬁw_ : o _ __Zomm>m_zo
after = T MEMORY
mxomu:o:_ PROGRAM COUNTERRETURN ADDRESS -HIGHWORD _>ocmmmm
o) — 4 ——
o, P ISR e]
exception

Ly | PREVIOUSITEMONSUPERVISORSTACK _
1 1 1 L L 1 L y 1 1 ' L 1] |
1

AN EXTRAWORD GIVING THE EXCEPTION VECTOR NUMBER IS STACKED BY THE
68010 OR 68020

TABLE 6.2 DATA STACKED BY EXCEPTIONS (68008 OR 68000)

58

item at an odd address. The same information is stacked as for a bus
error. This vector is redirectable, and the new vector starts $54 bytes
after the address given in $28050.

Vector 4: Addresses $10 to $13 form the illegal instruction vector. This
and all subsequent exceptions only cause 6 bytes to be placed on the
supervisor stack, namely the program counter and the status register.
As usual, the status flags are also changed to indicate supervisor,
untraced mode.

This vector indicates where program control will transfer to if one of
most of the codes which cause the disassembler to set fault=1 are
executed. Again, the vector is redirectable on the QL.

Vector 5: is the division by zero vector. Rather than just setting the V
flag, division by zero causes this TRAP. This vector is software
redirectable on the QL.

Vector 6: is the CHK vector. If a CHK fails, this vector defines where
execution continues. It is redirectable on the QL.

Vector 7: is the TRAPV vector. If the V flag is set when TRAPV is
executed, this QL redirectable vector comes into play.

Vector 8: is the privilege violation vector. If a user program tries to
alter the contents of the whole status register, or tries to use one of the
privileged instructions we shall meet later in this chapter, processing
moves to the address defined by this QL redirectable vector.

Vector 9: is the trace vector. If the T bit is set in the status register, this
vector is followed after every instruction is executed. Trace mode is
switched off while the exception is processed, and will normally be
switched on again by the restoration of the old status register from the
stack, when the processor returns to execute the next instruction. As
usual, the vector is redirectable on the QL.

Vector 10: is the vector for the unimplemented disA$ type of
instruction. Operation codes beginning with $A were intended by
Motorola to mimic in software the operation of a possible co-processor.

The QL designers (certainly in version “AH" of the QL ROM) have
overlooked this TRAP and this vector contains part of a QL exception
processing routine, namely $61266124. Execution of an instruction
beginning with $A will thus cause a jump to address $66124, which is in
the space reserved for the 512k byte expansion RAM.

Vector 11:is similar to vector 10, being intended for those instructions
which start with the hexadecimal digit $F. The version “AH" ROM
contains $61226120 at this location, which will cause a jump to address
$26120, a location in the screen memory.

59

Thus, while the execution of an instruction beginning $A or $F
probably indicates that the QL has crashed, the QL programmers have
chosen not to take advantage of the 68008's identification of such
crashes, which might thus have prevented any very disastrous results of
the crash. Instead, the 68008 will compound the crash problems,
switching into supervisor mode and starting to execute data or non-
existent memory.

The next few vector numbers are officially reserved by Motorola for
some, as yet unannounced, purpose.

Vector 24: Addresses $60 to $63 are the spurious interrupt vector.
These occur if interrupting hardware presents a level number which
causes an interrupt, but by the time the 68008 goes back to read the
level number in order to determine where execution should continue,
the interrupt level number has returned to zero. The QL ignores such
interrupts, doing an immediate return to the interrupted program.

Vector 25 is for level 1 interrupts; these are also actively ignored by
the QL.

Vector 26: is for level 2 interrupts. These are obviously used by the QL
hardware, as the vector points to a complex routine in ROM. When an
interrupt occurs, the | bits in the status register are set to the interrupting
level, in this case 2, preventing further interrupts at the same or lower
levels unless the software changes the setting of the | bits.

Vector 27 to 30: are for level 3 to level 6 interrupts. The QL ignores
these.

Vector 31: is for level 7 interrupts, the equivalent of a non-maskable
interrupt, as level 7 interrupts cause an exception even when all three |
status bits are setto 1. The QL can redirect this interrupt through its RAM
table.

Vector 32: is for the command TRAP#0. The TRAP command is like
the Z80 processor's RST command in that it allows a short instruction to
call an operating system routine. On the QL, TRAP#0 is implemented
as a request to change to supervisor mode.

Vector 33 to 36: are for TRAP#1 to TRAP#4. These are used in the
QL for QDOS subroutine calls.

Vector 37 to 47: are for TRAP#5 to TRAP#$F. These vectors are
software redirectable on the QL.

An external device plugged into the QL expansion port which causes
an interrupt can invoke any vector from 0 to 255, and is expected by
Motorola to use a vector from 48 to 255. On the QL, most of this area of
the ROM contains program, and so it is probably best for any external

60

device to be designed to invoke a level 7 interrupt and use the facility of
the QL to vector exceptions through a table in RAM.

Let us now return to the disassembler program itself.

4760 DEFine FuNction disdE${pc, ik}

4778 IF i=B THEN fault=1:RETurn ®°

4788 IF j1 THER

4798 IF k<=15 OR (k>=24 AND k<=39) THEN fault=1:RETurp *°

4808 IF i=7 THEN RETurn "JSRi, ... "kadr¥ik DIV B,k MOD 8,pc)

4818 RETurn "JWP s4as"kadr$(k DIV B,k HOD B,pc)

4820 END IF

JMP and JSR (jump to subroutine) are very similar instructions. In a
similar manner to LEA and PEA they calculate an effective address and
use that rather than the data it addresses, in this case by loading the
effective address into the program counter. In addition, JSR saves the
address of the following instruction as 4 bytes on the A7 stack in order to
enable the processor to return to the calling routine. Neither instruction
alters the condition code flags.

4839 SElect OM &

4848 =B T0 {3:RETurn “TRAP;, . #¥"Xhex ik}

This is the TRAP instruction mentioned earlier in the chapter, which
can call one of sixteen operating system subroutines. The call preserves
the status register, and changes to supervisor state.

485 =1& TO Z3:pospotl

4858 RETurn "LINMK,..A"%{k HOD B3X", #$"khexcon${pc-2)khexcon$ipc-1)

LINK is a useful command for high level languages, operating
systems or other large programs, particularly those involving recursion
(where a routine calls itself either directly or indirectly). One of the
address registers is nominated as a frame pointer which is going to
point to a part of the stack reserved for the local variables of the current
subroutine. LINK is normally used on entry to the subroutine in order to
set up the frame. It assumes that the named address register contains a
previous frame pointer, or other important information, so itis pushed on
to the A7 stack. The new value of A7 is copied into the frame pointer
register and the immediate data word is added to A7 to reserve space
on the stack. The immediate data word is thus minus the number of
bytes of local data required: to make sense this number should be even
and negative. For instance,

LINE A3, $FFFR
reserves 16 bytes of data space, which can be addressed by the

61

indexed addressing forms $FFFQ(A3) to $FFFF(A3). If you need to

access the previous subroutine’s local variables, something like:
MOVE.L (A3),A2

could be used to pick up the previous frame pointer.

4878 =24 TO 31:RETurn "UNLK,,,,A"%(k MOD 8)

UNLK unlinks a frame from the stack, the reverse of LINK. First, the
frame pointer register is copied into A7, then the old frame pointer is
popped off the A7 stack into the frame pointer register. Never be
tempted to use A7 as a frame pointer, the instruction set has space for

this instruction, but the multiple use of the stack pointer will cause
confusion.

JSR address
ol1|ofo|1|1]1]0|1]0 pwwmmm_zw um@_w%m“
JMP address
o 1] fo]1]1]1]o]1] e Trome
_ e
TRAP # number
oftjojoft1]r1]ejo]1]|o]0]| |~
LINK An, #dg
-
oj1fojoft]t|1]e]efi]o|1]o| n
UNLK An
of1|ofo|1|1]1]lelol1]|0]1 |1 _:__
MOVE As, USP
o
o|1]ojoft|1]r|ofof1|1]a]e| s
MOVE USP, Ad
sty
oj1jofolr|r]t]o]ef1|1]o]1]| , d

TABLE 6.3 JUMPS AND TRAPS

62

You can allow a stack frame to grow during the course of a subroutine
by pushing more items on to the A7 stack as you decide that you need
them, as UNLK will always manage to tidy up the stack, deleting
however many unpopped items are left. So,

LINE A3, 80
is quite sensible, it maintains a frame pointer chain, but leaves the actual
frame contents to be set during the subroutine.

4880 =32 70 39:RETurn "MOVE,,,,A"k(k MOD 83&",USP"

This is a privileged version of the MOVE command, allowing a
supervisor program to set up all 32 bits of the user stack pointer (A7 in
user mode) before setting a user program running.

489G =42 TO 47:RETurn *MOVE, ., USP,A"&(k MOD 8}

Again, the command is privileged and it moves all 32 bits despite the
absence of a “.L" after the mnemonic. It allows a supervisor program to
read the contents of the user stack pointer. In a trace routine, for
instance, this could then be printed on the screen, or checked against a
range of valid addresses to warn of a program with a wild stack.

4988 =4B8:RETurn "RESET®

The RESET command is unconnected with the reset vectors or the
reset switch on the QL. It outputs a pulse on one of the 68008 pins which

is intended to reset some peripheral chips. Program execution
continues with the next instruction. RESET is a privileged command.

4910 =49:RETurn "NOP®

NOP stands for no operation. A command common to many
microprocessors, it is useful in producing precise timing in time critical
operations, and in filling spaces where program errors have been
removed.

4978 =5B:pc=pctl

4920 RETurn "5TOP, ... ¥8 " thexcon$ {pc-2) khex _on$ (pc-1)

Like most microcomputer STOP or HALT commands, this one
pauses the operation of the 68008 until an interrupt occurs, after the
processing of which, execution centinues at the instruction following the
STOP. The immediate data is loaded into the status register, and in
particular the | status bits, allowing the command to specify the
acceptable interrupt levels. STOP is a privileged command, and if the S
bit in the immediate data is clear, that will also generate a privilege
violation TRAP.

63

STOP #d1e

oj1jofo|t1 |1 |t1|(@|O]|1 |1 [1]O]|1]1]1

TABLE 6.4 INSTRUCTIONS WITHOUT PARAMETERS, AND STOP

748 =51:RETurn "RTE"

RTE stands for return from exception. Itis a privileged command, as
it takes two bytes from the supervisor stack and places them in the
status register, and then takes the next four bytes from the supervisor
stack and places them in the program counter. It is thus the command to
use to return from a TRAP, interrupt or other exception, restoring the full
status register. Exception processing routines must be careful to
preserve any other registers which they use.

4358 =53:RETurn "RTG"

RTS stands for return from subroutine. It pops four bytes from the
current A7 stack into the program counter, the reverse of JSR.

4958 =54:RETurn "TRAPY"

TRAPV, trap on overflow, causes a trap to vector 7 if the'V condition
code flag is set. A program which is concerned to identify and deal with
all arithmetic overflows would use TRAPV after every arithmetic
instruction.

64

4978 =55:RETurn "RTRY
RTR stands for restore and is a non-privileged version of RTE in that it
takes six bytes from the current A7 stack, placing the second byte in the
condition codes register, and the last four bytes in the program counter
while leaving the rest of the status register untouched.
We mentioned earlier the QL's use of TRAP#0 to switch to supervisor
mode. The actual code executed by TRAP#0 is:
qona %247
RTS
We have not met ADDQ yet, but it is simply a short form of an immediate
add, and by adding two to A7, the program moves past the status
register contents which form the last item on the stack, and then loads
the next four bytes into the program counter. As the S flag is set by a
TRAP, the result is that the processor returns to the calling point with
supervisor mode set, and the supervisor version of A7 available, rather
than the user stack pointer.
However, consider an alternative TRAP#0 routine:
FTR
This would take six bytes from the supervisor stack, the last four
being the program counter, leaving the processor in supervisor mode.
This version of the TRAP#0 routine is two bytes shorter than the original
and is also fractionally faster.
4988 =RCMAINDER :fault={:RETurp "®
455@ END SElect
3882 END DEFine

65

Chapter 7
‘Quick’ Arithmetic and
Conditional Operations

Before we look at dis5$, which would be the next function to handle if we
followed strict numerical order, we will make a short digression:

5018 DEFine FuMction dis7$(pc!

2828 IF PEEK!pcIMDD Z=1 THEN fault=1:RETurn °*

G838 prepcil

5848 RETurn “WOVED,, . #$"%hexcon$lpc-11%", D"&{PEEK (pc-2}D1V 7 WOD 8)

G258 END DEFine

MOVEQ stands for move quick, being a very short, and hence fast,
form of movement of immediate data to a data register. The eight bits of
immediate data are sign extended to fill all 32 bits of the data register,
rather than just affecting the least significant byte. As usual with MOVE,
the C and V flags are cleared by the operation, Z and N are set
according to the value of the result and X is unaffected. Note that
MOVEQ #0 is actually a slightly faster way of clearing a data register
than CLR.L.

Now we return to dis5$.

3858 DEFine Fulction disi$ipc)

5878 LOCal i,5,a8

5880 i=PEEK{pc)MOD 14

5898 i=PEEKipc+l}
Be pc= uﬁ+u
118 IF {192 THEH
2B IF 1 WOD Z=8 THEN
5138 a$="A0ODL."
148 ELSE
15@ a$="5URE."
os 53 IF

F i MOD 64:=58 ?..mz tault=1:RETurn *"
H 142 THEHW i

wn

LA wr Lh oL LnoLnownoen
._. r~~ .,..

,..,. —
e

&l"

67

MOVEQ #byte,Dd

T T T T L

0111 d 0 BYTE

1 1 L | | 1 1 1 1

ADDQ.size #q,destination

T T T T

_ _ _.
DESTINATION | DESTINATION
@10 |1|qg ™Moo 8 |0 | sizE ADDRESSING | REGISTER

1 | 1 _7_OD_m 1 ZC._,_mmJ
SUBQ.size #q,destination
b " [DESTINATION | DESTINATION
o1 0 |1 q mMoD 8 | 1 SIZE | ADDRESSING | REGISTER
_ _ _ MODE NUMBER
DBcc Dn,d+s (PC)
T T T T T
0|10 (1 CONDITION 1] N [B 17 S B TR n
1 1 1 1 1
DBRA Dn,d+ (PC)
T T
O(1]0)1]0 |0 |0 (11]1] 0| 01 n
1 1
Scc destination
T T T T T T T
DESTINATION DESTINATION
(i) 1 e (SR 0 1 A CONDITION 1 | 1 | ADDRESSING REGISTER
_ g) MODE | NUMBER

FIGURE 71 QUICK ARITHMETIC AND CONDITIONAL ARITHMETIC

ADDQ and SUBQ (add quick and subtract quick) can only add or
subtract a number in the range 1 to 8, the value of 8 replacing the not
very useful value of zero.

5190 SELect DN j

3208 =8 70 {S:fault=1:RETurn **

5210 =0 10 £3:a$=a$y"B’

Address registers cannot be used in byte lengths, and this order of
program lines rejects such an attempt. Note, in general, that where
SELect ranges overlap, the first range which gives a match is obeyed,
and then the QL ignores all subsequent ranges, even if they also match
the selected item.

3228 =64 70 127:af=ask"W"

5238 =REMAINDER :a$=a$i”L®

324@ END SElect

52

5268 END IF
ADDQ and SUBQ can affect any normally addressable item, apart

68

from program counter relative items, as opposed to MOVEQ being
limited to only affecting data registers. Remember that when address
registers are affected, the source operands are sign extended to 32 bits
before the operation takes place, so there is absolutely no difference in
operation between word and longword forms of these instructions when
an address register is the destination, the different instruction forms are
simply retained for completeness. ADDQ and SUBQ affect all the flags,
C, V, Z, N and X except when the destination is an address register,
when no flags are affected.

5278 IF i DIV B MOD Bl THEN

5288 IF j»=258 THEN fault=1:RETurn ™"

5298 RETurn "S5"%con$(iV&" ;... kadr$(i DIV B MOD 8, MDD B,pc]

5300 END IF

Scc stands for set conditionally, and it sets a byte in a data register or

an addressed item to $00 if the given condition test is false, but to $FF if
the condition is true. Decoding of the condition tests is left to the function
con$, as they are common to the next few instructions. Scc does naot alter
the condition code flags, instead it is a way of remembering some of
their settings for later use. SF, set false, is particularly useful if you need
to clear a byte register in a peripheral chip, where reading the register
would produce unwanted side effects, as CLR.B actually performs a
read before its write. You will find that the QL ROM uses SF quite
frequently. ST, set true, is also useful, in that it quickly produces the
value minus one.

5318 pe=pe+?

5370 RETurn "DE"kcon$(i)&" ..., 0"k{] HOD 834", $"khexcond{pc-2ikhexcond
{pc-11&" {PC)=$"%hex5% (po-2+254*PEEK (pc-2) -PEEK (pc-2) DIV 128%6533
b+PEEK {pc-1))

538 END DEFine

DBcc stands for decrement and branch until. You see from line 5320

that its operation depends on a condition code test and a data register,
and it may result in the processor making a program counter relative
jump using a 16 bit signed offset. We have calculated the actual
address to which the processor may jump, by adding the offset to the
address of the start of the offset word, allowing for sign extension.

Decrement and branch first tests the condition represented by con$.

If the required condition is true, no action takes place and the instruction
following the DBccis executed next. If the condition is false, the contents
of the least significant 16 bits of the named data register are
decremented by 1. If the result of this subtraction is minus one, no further
action takes place and the instruction following the DBcc is executed

69

next. Otherwise the branch is taken. DBcc never alters the setting of the
condition code flags itself.

DBT, decrement and branch until true, will thus never take the branch
and is not a particularly useful instruction.

DBF, decrement and branch until false, is the most widely used
DBcc, as it is roughly equivalent to the conventional decrement and
branch instructions found on other computers (such as DJNZ on the Z80
processor). DBF is so useful that assemblers will often accept the
mnemonic DBRA in its place.

Beware the fact that a loop constructed using DBcc will not terminate
until the counter reaches minus one, so the loop will be executed one
more time than the counter might make you think.

The multiple conditions of DBcc are occasionally quite useful.
Suppose you are reading a line of text into a sixteen character buffer and
want to stop, either when the line is terminated by <ENTER> or the
buffer is full. The typical program to do this might look like:

MOVER 4F,D1
Loor ISR REARDCHAR
CHP.R $BA,D8
OBEE D1,LOOF
where the subroutine READCHAR reads a character into the buffer and
into D@. The loop terminates when D@ is equal to $QA or D1 reaches
minus one.

dis6$ also deals with conditional instructions and straightforward
branches.

3348 DEFine FuNction diséd$(pc)

S350 LOCal i,j,a%

G340 1=PEEK(pciHOD 14

Z378 J=PEEK{pct+l)

5388 pr=pctl

5798 a¥=con¥ (i}

o408 IF a$(2)="," THEN

5418 IF a$="T," THEW

G428 a$="RA"

5438 ELSE

5440 a$="35R"

G450 END IF

G458 END IF

Slightly different mnemonics to usual are used, BT is called BRA,
which stands for branch or branch always rather than branch if true. The

70

BRA dss (PC)

o|t|1|/o0|l0|O0|O0O|O|O|O|O0O|O|lO| O] O] O
T T T T T T s 3 « T T T T T T T
dig
1 1 | 1 1 1 1 " | i Wi 1 1 1 1

BSR dss (PC)
o|jtT|j1|o|j0|jO0|O|1|]O|O|0O|O0O| 0| 0| 0| 0
T T T T T T T 1«‘ T T T = T T { g
die
1 1 1 1) 1 1 _ L 1 1 1 i’ 1 1

Bcc ds (PC)

(73 iy 5 CONDITIO oo |0 0| O0|0O] 0| O
T) T T T T T « T T T T T T T
dis
1 1 1 1 1 1 1 « 1 1 1 1 1 1 1

BRA.S dg (PC)

T T T T T T T
o 1|1 |0|0|0|0]|O0 _ _ Q_m A s _
BSR.S ds (PC)

T T T T T T T
O (1|1 0|00 |0 |1 _ _ Q_m : _ :
Bcc.S dg (PC)
0 {111 |0 _ oo_zo_jwuz H H) Q_m _ _ _

TABLE 7.2 BRANCHES

meaningless instruction BF is replaced by the more useful BSR, branch
to subroutine, which pushes a return address onto the A7 stack.

3478 IF 3{:@ THEN RETurn "B"%a$k".5,,.$"kheycon${pc-11&" (PC)=§"Lhex5d

{pcti-j DIV 1Z8¥256)

This basic form of branch is shorter than JMP or JSR, which always
require an extension word for program counter relative addressing; but
itonly allows a jump over a range of —128 to + 126 bytes from the start of
the next instruction. Indeed, there is a slight waste of space in this

71

instruction mode, as the branch must always be over an even number of CONDITION KAME e
bytes, so the least significant bit of the instruction is always zero. BITPATTERN
The "“.S” indicates to an assembler that it should use the short form of olololo T]
the branch instruction, rather than the longer form which follows.
Assemblers may sometimes decide to use the short form without the ol o|lo0o| 1 F 0
need for the “.S”, but more often than not they need such coaxing.
5488 prepc+? 00| 11]0 HI NOT (C OR 2)
3490 RETurn "B"ka$h®.iaasa%"%hexcond (pc-2)%hexcond (po-1) %" (FL)=$"khex5 ol ol 1] 1 LS CORZ
$(pc-2+256%PEEK (pc-21 -PEEK (pc-2) D1V {28%455T6+PEEK (pc-1))
5508 END DEFine 0| 1|10]| 0 CcC NOT (C)
The 16 bit signed offset long versions of the branch instructions are
indicated by a zero byte for the short offset. The 16 bit offset is relative to 0] 101 CS C
the start of the offset word, as usual. The long form of BSR is fractionally ol 11110 NE NOT (2)
faster than the program counter relative version of JSR and should be
used in preference to it in time critical situations. ()| R 5 B EQ Z
Assembly language programmers sometimes use a trick to repeat
the last few _:m:mo:w:mnoﬁw subroutine twice, and would like to write 110(0]0 Ve NOT(V)
something such as: 11lolol 1 VS V
SR.5 THICE
TWICE ... 110[(1]0 PL NOT (N)
’ 1011 MI N
R15 111(0]| 0 GE NOT (N XOR V)
But the short form of BSR would require a zero offset in this case,
forcing the use of the long form despite the proximity of the BSR and its Ty A LT N XOR V
destination.
Now, it is really time that we covered the range of condition tests o Mt el AT ORANTORND)
which can be used with set, decrement and branch until, and branch. A E] LE Z OR (N XOR V)

Motorola have always provided some quite complex condition code

testing on their computers, and the 68000 family carries on this tradition, TABLE7.3 CONDITIONAL TESTS

offering 16 different tests which cover all possible signed and unsigned 5408 =7:RETurn “EOY

arithmetic relationships. 5618 =B:RETurn *VC°
5518 DEFine FuMction con$ii} 3628 =7:RETurn "V§*
5528 SElect OW & 3638 =1@:KETurn “PL"
5338 =3:RETurn "T,° 5648 =11:RETurn "HI"
5548 =1:RETurn *F," 5658 =12:RETurn "BE"
3558 =Z:iRETurn "HI® 5668 =13:RETurn "LT"
5568 =3:RETurn "L5 3478 =14:RETurn "67"
5578 =4:RETurn "CC* 5688 =15:RETurn "LE"
5588 =5:RETurn °C8° 5478 END SElect
3598 =£:RETurn “NE® 578@ END DEFine

72 , 73

We have already met the tests F and T which are respectively always
false and always true.

EQ, equal, tests the Z condition flag and is true if Z is set.

NE, not equal, is the opposite, being true if Z is clear.

CS, carry set, is true if C is set, amazingly enough.

CC, carry clear, is true if C is clear.

VS, overflow set, is true if V is set.

VC, overflow clear, is true if V is clear.

MI, minus, is true if N is set.

PL, plus, is true if N is clear; so, as usual, zero is a positive number.

The remaining tests all actually test more than one bit in the condition
code register.

LS, lower than or the same, is true if C is set or Zis set and thus makes
an unsigned arithmetic test.

HI, higher than, is the opposite, being true only if both C and Z are
clear.

Some assemblers accept LO and HS meaning lower than, and
higher than or the same respectively, as alternatives for CS and CC
respectively, as they are also unsigned arithmetic tests.

LT, less than, is a signed arithmetic test, true if N is set and V is clear
(a straightforward less than), or if N is clear and V is set (a less than
involving numbers so far apart that overflow occurred).

GE, greater than or equal, is the opposite, true if N is clear and V is
clear, or if N is set and V is set.

LE, less than or equal, is an extension of LT being true if LT is true, or
Zis set.

GT, greater than, is the opposite, being true only if GE is true and Z is
Clear.

Itis thus possible to test any single condition code flag, apart from X,
and all sensible arithmetic comparisons.

Suppose you want to write:

IF D1<D@ THEN BOTO LABEL

in assembler.
If you are doing signed arithmetic this would assemble as:
CHP ne,nt
BLT LABEL
Or, in unsigned arithmetic:
CHP 0@,D1
BCS LABEL

as BCS is equivalent to BLO, the test you want to do.

74

Chapter 8
ADDition and SUBtraction

718 DEFine Fulction dis9${pc)sRETurn "SUB"kdis%orD${pc):END DEFine
728 DEFine FuNction disD$(pci:RETurn *ADD"%disYorD¥{pc):END DEFine

Addition and subtraction instructions are provided in matching sets,
so that we can write a common function to decode both types of
instruction.

5738 DEFine Fubction dis%orD${po)

5748 LOCal i, ka8

5750 i=PEEK{pciMOD 16
768 i=PEEK(pc+l) DIV &4
78 k=FEER (pc+1IMOD 44
788 poepoti

G798 IF 1 NMOD Z=0 THEN

CBP@ SElect ON i

oB18 =3:1F k=4@ THEM

3820 po=potl

5830 RETurn ".We..¥$"khezcond (pr-2)khexcond (pc-104%, Ak{D DIV 2

B4 EMD IF

G850 RETurn ".Wae,"kadrdlk DIV B,k WOD B,pc)&,A"%(1 DIV 20

This first sub-group of commands allows the addition or subtraction
of any addressed word or immediate data, to or from an address
register. As mentioned before, the source operand is sign extended to
32 bits and the addition or subtraction affects all 32 bits of the
destination register, and no condition code flags are affected by the
instruction.

5868 =B:a$=".B"

G878 =iia$=",W"

SBE8 =Z:a§=".L"

5898 END SElect

3988 RETurn a$¥".,."bhadr$(k DIV B,k MOD B,pci&",D"%(BIV 2

5718 END IF

-3
o
£
4

75

When adding to or subtracting from data registers, as in this group of
instructions, only the least significant byte, word or longword is affected
in the destination register, and all the condition code flags are set
depending on the result.

5928 SElect ON j

3938 =3:1F k=6 THEN

3948 pc=pc+d

5958 RETurn ".Las. ¥ Ehescond (pc-4) khezcon$ {pc-3) khexcon$ {pc-2) khexco

n¥ipc-10&" AL DIV 2)
5968 END IF
5970 RETurn ".Li.."kadr${k DIV B,k MOD 8,pc)¥&”,A"k{i DIV 2)

This completes the commands which have address registers as the
destination. The same conditions apply as the earlier group of address
altering commands. 7

5980 =R:a$=".p"

5999 =1:af=", K"

£08 =2:a$=",L" ,
6810 END SELect

6820 IF k(B THEN

683D RETurn "I"ka$h®,,D'%k® D*%(i DIV)

6048 END IF

ADDX and SUBX are extended arithmetic commands which also
add or subtract the value of the X condition code bit into the operation.
All condition code flags are altered to reflect the result of the operation,
except that Z is unaffected if the result is zero, so that Z can reflect the
value of the whole extended number.

6858 IF k{16 THEN

HB6R RETurn "X"ka$h", - (A"L(k-B)&) - (A"R(D DIV 2387}

6278 EMD IF

This command is the more usual extended arithmetic command
allowing you to scan two extended numbers stored in memory, starting
with the least significant byte, word or longword. Before starting an
extended operation, it is usual to clear X and set Z to obtain the right
result for both the number and the flags.

6888 IF k»=3B THEN fault=1:RETurn "*

6898 RETurn a$h”,,, D" 00 DIV 2)%" “ladr$(k DIV 8,k WOD 8,pc)

5180 END DEFine

76

SUB/ADD.WA source, Ad
T T

T T T 1
sug SOURCE SOURCE
U L d WA| 1 | 1| ADDRESSING | REGISTER
A MODE NUMBER
SUB/ADD.size source, Dd
T T T T T T T
suB SOURCE SOURCE
o1 et | 05 Pl d QO | SIZE | ADDRESSING | REGISTER
kg : MODE NUMBER
SUBX/ADDX.size Ds, Dd
T T T T T
SUBX
1 151 0|1 d 1 SIZE | O| 0| O S
1 1 1 1 1
SUBX/ADDX.size -(As),-(Ad)
T T T T T
SUBX
1 x| 0 | 1 d 1] size [0 0| 1 s
1 1 1 1 1
SUB/ADD.size Ds, destination
T T T T
suB _ _ _ DESTINATION DESTINATION
Tlezn) @] 1 S 1 SIZE | ADDRESSING REGISTER
_ _ _ MODE NUMBER

TABLE 8.1 ADDITION AND SUBTRACTION

And, finally, we have a mode which allows a value held in a data
register to affect a data item in memory. All the condition code flags are
affected by this operation. .

Note how ADD and SUB do not have all the various combinations of
source and destination addressing modes which are available to
MOVE. There are instructions available for whenever the destination is a
data register or an address register, or if those are not suitable, there are
modes for whenever the source is a data register or, as we saw in
Chapter 4, when the source is immediate data; but operations where
both source and destination are in memory are not allowed, excepting
the special mode available for extended arithmetic.

77

