
MACHINE CODE: PART 6

BYTE BY BYTE

At this stage in the Machine Code course we
follow the full procedure of program
development — from defining the initial
task through its Assembly language
interpretation to the machine code itself -
and provide a BASIC program that enables
you to enter and observe the results of the
code thus created.

In the previous instalments of the course, we have
seen how BASIC program . lines are reduced on
entry to tokens followed by ASCII data. From this
we realised that BASIC, although it is certainly a
high-level language, isn't all that high-level: it
consists essentially of sequences of instructions,
and each instruction consists of a command word
(immediately replaced by a token, which is itself
only one level above a machine op-code)
followed by the data for that command. The fact
that the command words and their data (variables,
numbers or strings) are closer to natural language,
and that the instructions are visibly separated by
line numbers or colons, makes a BASIC program
look very much more high-level to us than it
appears to the BASIC interpreter. It follows,
therefore, that machine code should need only a
little cosmetic work to make it reasonably
comprehensible to our eyes.

The machine code `cosmetic' that we use is
Assembly language, in which alphabetic
mnemonics like LDA and ADC stand for the single-
byte op-codes that the microprocessor actually
understands, and in which alphanumeric symbols
such as LABEL1 and TFLAG can be used instead of
memory addresses and numeric data. The
microprocessor does not understand Assembly
language, so before a program can be executed it
must be translated into machine code — either by
a program called an assembler, or manually by the
programmer. The point of Assembly language is
that it is machine code in translation. By simply
substituting opcodes for mnemonics, and
numbers for symbols, it can be turned directly into
executable code. But it is much more
comprehensible to human eyes than machine
code could ever be, and is therefore extremely
useful in program development. We shall always
write programs in Assembly language, and hardly
ever concern ourselves with the machine code
equivalent until the very last stages of developing a
program. But it's worth doing both at the moment
for the sake of interest and for complete clarity,
remembering that, in general, Assembly language
will do everything we want.

The microprocessor can perform many

116 THE HOME COMPUTER ADVANCED COURSE

different operations, but essentially it can only
manipulate the contents of memory. It does this by
acting directly on computer memory — the RAM
and ROM chips that comprise the computer
system — or by working through its own internal
memory, which consists of registers. These are
several bytes of memory physically located inside
the microprocessor chip, which have certain
special functions, but are otherwise
indistinguishable from any other bytes of memory.

ACCUMULATOR REGISTER
The most important of the microprocessor
registers is called the accumulator. It is connected
directly to the Arithmetic and Logic Unit, and so is
used more often than any of the other registers. In
order to use it we must be able to put information
into it, a process which is called `Loading the
Accumulator'. Using Assembly language, we say
that the 6502 does this by performing the LDA
operation, and in the Z80 by the operation of LD A.
Taking information from the accumulator is as
essential as loading it, and in 6502 Assembly
language this is achieved by the STA (STore the
Accumulator contents) operation. The Z80,
however, regards both loading and storing as
different cases of the same thing — i.e. data
transfer. Therefore, taking information from the
accumulator register is also done by the LD A
operation, but in a different format — as we'll see
later in this article.

Suppose, then, that we want to write an
Assembly language program that will copy the
contents of one byte of memory into the next byte
of memory. Let's start by copying byte$09FF into
byteSOA00. Immediately, we can express this in
Assembly language as:

6502 Z80

LDA S09FF LD A, ($09F=)
STA SOAOO LD (SOAOO),A

Notice that we're copying the contents of
byte$09FF into byteSOA00, without knowing
what those contents are: it's vital to get this clear
from the outset. ByteS09FF may contain any
number from S00 to SFF, and all our program
does is load that number into the accumulator,
then transfer it from the accumulator to
byteSOA00. The 6502 version of Assembly
language does not make it clear that LOA refers to
the contents of S09FF, but it does distinguish
unequivocally between loading (LDA) and storing
(STA). The Z80 version does not make this latter
distinction in its opcodes, but its instruction
format is always:

OPCODE DESTINATION, (SOURCE)

