
Basic Programming I

Dummy
In order to use data files it is first necessary to create them in
skeleton form, and then fill them with information

.^s

I

At the end of the last instalment of the course,
readers were left with the problem of solving this
apparent dilemma: how can we make a program
read in a file that does not exist (on tape or disk)
when the program is first run? The initial activity
we are likely to want the program to perform will
be to read in the data file and assign this data to
arrays or va riables. Yet, if we insist on w riting to the
file first, whenever the program is run, we will have
to be very careful in the programming not to lose
all the data in the file. As we discovered last time,
attempting to open a non-existent file will either
simply not work, or else cause the program to
'crash' (stop functioning).

Fortunately, there's a very simple solution.
Many commercial software packages include an
'install' or 'set-up' program that has to be nun
before the program proper can be used, and this is
the approach that we shall adopt. Such programs
typically allow the user to do a small amount of
'customising' (such as selecting whether the p rinter
to be used will be an Epson or a Brother, parallel or
serial, and soon), but they also create data files that
will later be used by the main program.
Remember, unlike program files, data files can be
accessed by any program (see page 316).

To solve our problem and allow RDINFL* (the
routine that reads in the file and assigns the data to
the arrays) to be performed, we can w rite a very

simple set-up program that does nothing more
than open a file and write a dummy value into it.
We will choose a value that can be subsequently
recognised by the program proper as not being a
valid address book record. A suitable value would
be the character st ring ©FI RST, because no name or
address, no matter how obscure its o rigin, is likely
to start with this particular string. *RDINFL* will
have to be slightly modified so that when it opens
and reads in from the file. it tests for this value
before going any fu rther. If your computer doesn't
have the G symbol, then you will have to replace it
with `!' or another character — as long as this is a
string that won't occur naturally in your address
book. First, however, here is the set-up program:

10 REM THIS PROGRAM CREA-ES A DATA FILE
20 REM FOR USE BY THE ADDRESS BOOK

PROGRAM
30 REM IT WRITES A DUMMY RECORD THAT CAN
40 REM BE USED BY *RDINFL.
50 REM
60 REM
70 OPEN "0°,#1. "ADBK.CAT"
80 PRINT #1, ''FIRST"

90 CLCSE #1
100 END

As mentioned previously in the Basic
Programming course, the details of reading and
writing files differ considerably from one version
of BASIC to another, but the principle is almost
always the same. First, the file must be declared
OPEN before it can be used for either input or
output. Then the direction of data flow is declared,
either IN or OUT. Next a 'channel' number is
assigned to the file. This allows more than one file
to be open and in use at the same time (for the time
being, however, we will use only one file). Finally,
the name of the file we wish to use must be
declared.

Line 70 in the program (le ft) is in Microsoft
BASIC and is similar in principle to the OPEN
statements used by most BASICS (BBC BASIC is
somewhat different — see page 319). OPEN, of
course, declares that a file is to be OPENed and 'O'
says that data will be output. #1 is the number we
are assigning to the file for this operation; a
different file number could be used later if needed.
'ADB4.DAT' is the name we have given to the file.

Line 80 simply writes a single record to the file.
The syntax of writing data to a file is usually (in
most BASics) exactly the same as the syntax used
for PR I NTing, except that the PRINT statement must
be followed by the file number — #1 in this case.

Line 90 CLOSES the file. Files may be left open
for as long as needed in the program, but 'open'
files are very vulnerable and should be CLOSEd as
soon as possible within the program in order to
protect the data in them. If, for example, you were
to accidentally switch off the computer while the
fi le was open, you could find that data has been lost
when you next read the file.

There is some confusion over the way the terms
record and file are used in computers, and this
confusion is worst when we are talking about
databases, on the one hand, and data files on the
other. In a database, the file is a whole set of related
information. Using the analogy of an office filing
cabinet, the file could be a drawer labelled
PERSONNEL. This file could comprise one
record (a card in a folder) on each person in the
company. Each record (card) would contain a
number of fields, identical for each record,
containing such information as NAME, SEX,
AGE, SALARY, YEARS OF SERVICE etc.

If the PERSONNEL file were compute rised, all
the information would be treated in exactly the

376 THE HOME COMPUTER COURSE

