
steps (Convert all the letters to upper case)
through a second and third level of refinement and
created a short program in BASIC to do this task.
We will now attempt this for the other steps:

2ND REFINEMENT
3. (Find last space)
BEGIN
LOOP wiile unscanned characters remain in NAMES

IF Character =
THEN note position in a variable
ELSE do nothing

ENDIF
ENDLOOP
END

3RD REFINEMENT
3. (Find last space)
BEGIN
READ FULLNAMES
LOOP (while unscanned characters remain)

FOR L =1 to length of FULLNAMES
READ character from FULLNAMES
IF character = ' "

THEN LET COUNT = position of character
ELSE do nothing

ENDIF
ENDLOOP
END

We are now in a position to code from pseudo-
language into programming language:

10 INPIIT "INPUT FULL NAME '; FULLNAMES
20 FOR L =1 TO LEN iFULLNAMES)
30 LET CHARS = MIDS (FULLNAMES,L,1)
40 IF CI-ARS =" "THEN LET COUNT = L
50 NEXT L
60 PRINT "LAST SPACE IS IN POSITION ";COUNT
70 END

Note that line 10 is a dummy input for testing the
routine; be 60 is a dummy output, also for
testing; and line 70 will have to be changed to
RETURN when the routine is used as a subroutine.

Now let's try the same process for step four:

2ND REFINEMENT
4. (Read surname)
BEGIN
Assign characters to right of last space to SURNAMES
END

3RD REFINEMENT
4. (Read surname)
BEGIN

READ FULLNAMES

MBasic Programming

Rank And Fmile
Continuing our programming project to develop a computerised
address book, we now look at how our file of data will need to be,split
up into records and fields

We ended the previous instalment of the Basic
Programming course by setting the task of refining
the elements of the programming exercise through
one or more layers of `pseudo-language', up to the
point where the examples could be coded into
BASIC. We will start by revising this exercise and
giving some possible solutions. The first
`Statement of Objectives' for the exercise was:

INPUT

A name (in any format)
OUTPUT
1.A forename
2. A surname

In our first level refinement we found that this
could be broken down into six steps (later we
found that the last step could be dispensed with).
These were:

1. Read the name (* READ *!
2.Convertall the letters to upper case (* CONVERT *)
3. Find the last space (* SPACE *)
4. Read the surname (* READSURNAME *)
5. Read the forename (* READFORENAME *)
6. Discard the non-alphabetics from the forename

We are treating all of these activities as
subroutines and the name we have assigned to
each subroutine is given in brackets.
Unfortunately, most versions of BASK, are unable
to call subroutines by name and it will be necessary
when writing the final program to insert line
numbers after the respective GOSUBs. During the
development phase, however, it is much easier to
refer to subroutines by name. These names can
then later be incorporated in REM statements. We
are indicating this use of named subroutines by
putting the names within asterisks. In languages
that can call subroutines by name (such as
PASCAL, subroutines like these are usually
referred to as `procedures'.

Even though your BASIC may not be able to
handle procedures, it is recommended that you
pretend it can while programming at the pseudo-
language stage. Similarly, your version of BASIC

may not he able to handle long variable names
such as COUN T or STREETNAMES, but at the
pseudo-language level it is easier and clearer to
assume that it can. Try to make them descriptive.
It is much clearer to call a temporary variable for a
string TEMPSTRING$ than to call it XV$.
Fortunately, many versions of BASIC now allow
longer variable names.

We have already developed the second of the

254 THE HOME COMPUTER COURSE


